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Preface 

This volume contains the papers from BIOWIRE 2007, the first in a series of work-
shops on the bio-inspired design of networks, and additional papers contributed from 
the research area of bio-inspired computing and communication. The workshop took 
place at the University of Cambridge during April 2–5, 2007 with sponsorship from 
the US/UK International Technology Alliance in Network and Information Sciences. 
Its objective was to present, discuss and explore the recent developments in the field 
of bio-inspired design of networks, with particular regard to wireless networks and the 
self-organizing properties of biological networks. The workshop was organized by Jon 
Crowcroft (University of Cambridge), Don Towsley (University of Massachusetts), 
Dinesh Verma (IBM T.J. Watson Research Center), Vasilis Pappas (IBM T.J. Watson 
Research Center), Ananthram Swami (ARL), Tom McCutcheon (DSTL) and Pietro 
Liò (University of Cambridge). 

The program for BIOWIRE 2007 included 54 speakers covering a diverse range of 
topics, categorized as follows: 

1. Self-organized communication networks in insects 
2. Neuronal communications 
3. Bio-computing 
4. Epidemiology 
5. Network theory 
6. Wireless and sensorial networks 
7. Brain: models of sensorial integration 

The BIOWIRE workshop focuses on achieving a common ground for knowledge 
sharing among scientists with expertise in investigating the application domain (e.g., 
biological, wireless, data communication and transportation networks) and scientists 
with relevant expertise in the methodology domain (e.g., mathematics and statistical 
physics of networks). The aim of the workshop is to bring researchers together, to 
further our insights into bio-inspired computing and communications, and to investi-
gate collectively the challenges that remain. 

As an outcome from the workshop, we decided to edit the book Bio-Inspired Com-
puting and Communication that includes some of the research papers presented at the 
workshop and additional papers contributed from the research area of bio-inspired 
design of networks. We received many papers of high quality, and we selected 35 
papers in the following categories. Jon Crowcroft provides further insight into our 
selection in the introductory section. 

1. Biological networks (6 papers) 
2. Network epidemics (4 papers) 
3. Complex networks (7 papers) 
4. Bio-inspired network model (4 papers) 
5. Network protocol in wireless communication (5 papers) 



 Preface 

 

VI 

6. Data management (2 papers) 
7. Distributed computing (5 papers) 
8. Security (2 papers) 

We would like to express our deep appreciation to the authors for submitting articles, 
and for sharing the results of their research work with the rest of the community.  
Finally, we would like to thank Springer for their excellent cooperation and our spon-
soring organization. 
 
 

 

August 2008 Pietro Liò 
Eiko Yoneki 

Jon Crowcroft 
Dinesh C. Verma  
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Bio-Inspired Computing and Communication

Jon Crowcroft

University of Cambridge Computer Laboratory
Cambridge CB3 0FD, United Kingdom
Jon.Crowcroft@cl.cam.ac.uk

This volume of papers was put together by the Editors after a successful workshop
that was held in the University of Cambridge in April 2007, partly sponsored by the
UK-US ITA project. The goal of the workshop (and hence the purpose of this publi-
cation) was to bring together ideas from the natural world and problems in the area of
wireless networks.

Wireless networking is more prevalent than any other kind of artificial communica-
tions system on Earth at the time of writing. There are over three billion digital cellular
telephones in the world, and billions of analogue and digital TV receivers, as well as
numerous specialized wireless networks in civilian and military life.

Wireless network system design is a very complex discipline, as so many factors
interact. Radio propagation alone presents a huge challenge, as it is dependent on fre-
quency, terrain, atmospheric conditions and so forth. Antennae design, transmission
power control, coding and modulation, protocol design for sharing spectrum, for shar-
ing the medium, for coping with interference, for cooperation in transmission and cod-
ing and modulation are all inter-related. Routing over multiple hops, using multiple
radios simultaneously, managing interference, and disruption/delay/disconnection tol-
erance are all computationally difficult problems to solve. Increasingly, many of the
tasks can be solved in software, making radio systems much more flexible, and requir-
ing the systems designer to confront more choices than in the past limited by technology
and cost constraints.

Networks exist in the natural world too, in many many forms, whether biological or
otherwise. Such systems have typically evolved to fit certain ecological niches; how-
ever, they often exhibit characteristics that contain solutions to problems that we would
like to solve in artificial networks that we are designing and building. This we seek to
define as a sub-discipline of communications science, which is the bio-inspired design
of networks, and (for the purposes of this work in particular), wireless networks.

Natural systems are often very large in terms of the number of nodes and edges be-
tween nodes (if we think of neural or cell-signalling networks, for example). While the
networks they form may not be especially efficient in resource utilization on any partic-
ular axis (indeed they are often profligate with resources), they often manage to operate
over a far wider range of parameter values, not just in terms of numbers of nodes or
simple scale of the system, but more crucially in terms of dynamics too. These abilities
to scale to Moles’ worth of nodes and to shift operating modes (phase changes) to cope
with diversity, with changing topologies or attacks, or varying degree distributions or
(speaking metaphorically) link speeds, are highly attractive to future wireless network
designers.

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 1–8, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 J. Crowcroft

We attempted to group the papers in this volume by topic; however, it is clear that
there are several dimensions along which one can classify each work, and so we encour-
age readers to take with a pinch of salt the simple taxonomy we use in the introduction
here. One might wish to sort the papers into sections on: topology/graphs from nature;
or control and routing, or phase transition, or emergence, and the so-called self* prop-
erties, or perhaps adaptation (not just autonomic, but also through different operating
regimes), e.g., space vs. time optimization in file systems; or sloppiness and optimiza-
tion; or sources of inspiration whether physical, chemical, biological, including cellular
neural, ecological, botanical; and so on. However, this would be reductionist.

In any case, we give a list of the papers with some brief comments on the way that we
(as networking researchers) take messages home from the ideas presented from these
other, sometimes distant, subject disciplines.

1 Biological Networks

1.1 A Complex Network Approach to the Determination of Functional Groups
in the Neural System of C. elegans, by Arenas et al.

This paper is very useful for introducing the tools and techniques that can be learned
from the biological disciplines. C. elegans possesses one of the simplest, and most
completely understood structures (and morphogenesis) of any creature to date.

In this paper, a technique to comprehend structure modularity is applied to under-
standing the clustering of components in the neural system of the worm. This technique
has direct applications in diverse areas such as social networking, software fault diag-
nosis and threat analysis in artificial communications networks.

1.2 Modelling Gene Regulatory Networks, by Gelenbe

In this paper, the role of regulation in genetic systems is used to explore the potential
application of the ideas for control (e.g., traffic engineering and routing) in communi-
cations systems.

1.3 The Role of Simplifying Models in Neuroscience: Modelling Structure and
Function, by Kronhaus et al.

This paper brings together ideas from both of the previous papers, and includes an un-
derstanding of the evolution over time of structure and control as well as clustering and
modularity. One key take-home message from this paper is that while neural systems
can be very complex, it is sometimes possible to break them down into components.

1.4 An Artificial Chemistry for Networking, by Meyer et al.

This paper contains ideas from a very different subject discipline, and illustrates that
we can learn ideas of control via analogies with diffusion in chemical reactions. Similar
bi-sociative creative ideas have crossed over before from statistical mechanics. We will



Bio-Inspired Computing and Communication 3

see similar ideas in another paper on molecular communication later in this volume.
Key ideas are that control may be simple and stable even though it is decentralized.

1.5 Biomimicry: Further Insights from Ant Colonies, by Ratnieks

The large-scale behavior of insect populations in terms of organizing has been suc-
cessfully applied to the problem of decentralized routing. Given that communication
to control routing must flow over the same network as users’ traffic itself, and that in
any reasonable scale network there is significant latency in transmitting information,
any solution for routing should be decentralized simply so that reactions to changes
are localized and not based on stale information, and also that there is no dependency
on remote, potentially unavailable servers to compute routes. Decentralizing down to
the level of every individual node (as happens in insect colonies) and using continuous
functions to organize feedback to control behavior seems like a promising combination
of techniques.

1.6 Network-Related Challenges and Insights from Neuroscience, by Peck et al.

This paper gives some crucial insights into the devils in the details of neural networks
looking at the problem of calibration (correct detection of a signal and not merging or
splitting of separate signals), a further look at structure and sub-networking, and finally
revisiting self-organization.

2 Network Epidemics

2.1 Networks in Epidemiology, by Eames et al.

Natural epidemics involve the spread of diseases via some vector (water, air, touch, par-
asite etc.). Understanding the epidemic processes leads to understanding mechanisms
that can be used for content distribution, or indeed, for prevention of dissemination of
unwanted content (computer viruses and worms). The design space is nicely mapped
out via the epidemic equations the simplest of which involves only susceptibility, infec-
tiousness and recovery.

The earliest work in computer networks in this area was the paper on distributed
database update for Grapevine by Alan Demers and others at Xerox PARC, 20 years
back. There are many applications in today’s Internet and cellular phone networks.

2.2 Epidemiology and Wireless Communication: Tight Analogy or Loose
Metaphor?, by Eubank et al.

This paper goes into some detail about the use of tools and techniques from epidemi-
ology in communication networks by use (very roughly) of the analogy of wireless
communication as a vector.

The actual communications architecture can be designed by taking account of choice
of functions for signalling and data communications via packets, not just the control of
communications.
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2.3 Epidemic Spreading of Computer Worms in Wireless Networks, by Nekovee

This paper directly models artificial diseases and their propagation, detection/prevention
in wireless networks. This topic comes up later (but more structurally) when looking at
the overall topic of security (and defence).

2.4 Wireless Epidemic Spread in Dynamic Human Networks, by Yoneki et al.

This paper looks at the structure of networks formed by humans (social, mobile, en-
counter based networks), and proposes the idea of using epidemics for content distribu-
tion (a la Gossip) between smart devices carried by members of society.

3 Complex Networks

3.1 Stochastic Spreading Processes on a Network Model Based on Regular
Graphs, by Fallert et al.

In this paper, we move to the next level of network complexity (beyond the topology
and control) where the topic of phase transitions is introduced. One of the ways in
which large systems cope with a very wide range of operating environments is to switch
between different response functions by phase changes. As mentioned above, this idea
is far more powerful than classical autonomic control (feedback) having much more
than one operating regime. The idea has not seen much application yet in artificial
systems, beyond (say) simple two-region schemes.

3.2 Weighted and Directed Network on Travelling Patterns, by Miguens et al.

This paper models demand dynamics and again looks beyond the simple network and
control dynamics we have used to date in communications (or transport) system design.
In cellular networks (mobile phones) and in future vehicular control and information
networks, input from models like this will be essential.

3.3 Communication Networks in Insect Societies, by Nicolis

Re-capitulating the social approach of large insect populations, we now start to look
at phase transitions, as well as clustering and other patterns. The watchword here is
emergence. Useful properties may be present in the dynamics rather than in a static
behavior of a system in a stable environment.

3.4 The Topological Fortress of Termites, by Perna et al.

Termites build complex physical architectures within which they live. There are preda-
tors on termites, and the physical systems are “designed” to provide defensible struc-
tures, with interesting topology in terms of connectedness. This is the spatial analogy
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which is explored also in a later paper on defence as well as in covert networks (spies,
terrorism, etc.).

3.5 Evolutionary and Temporal Dynamics of Transcriptional Regulatory
Networks, by Babu

In yet another area of genetics, as discussed by Gelenbe earlier, we have regulatory
systems that have very useful properties in terms of emergent behavior, and phase
change/dynamic adaption to a changing “environment”.

3.6 Phase Patterns of Coupled Oscillators with Application to Wireless
Communication, by Diaz-Guilera et al.

In this paper, we look at more direct modelling of more regular systems where the
structure and phase transition are perhaps easier to model (quantitatively as well as
qualitatively) and have application in the area of decentralized control. This idea also
connects with the organization of timers in sensor networks, as we see next.

3.7 Self-organizing De-synchronization and TDMA on Wireless Sensor
Networks, by Degesys et al.

This paper looks at the problem of battling synchronization. In some networks, this is
a desired property, but in many sensor networks, the goal is to prolong the battery life
of the devices while maintaining a reasonable probability of timely reports of readings
and/or status from each device. Thus the goal is to prevent synchronization by suit-
able randomization in time through a self-organizing algorithm for allocation of TDMA
time-slots. This was also introduced in the Internet when it was discovered that routing
control messages between different devices tended to synchronize, leading to traffic and
route computational spikes in load.

4 Bio-Inspired Network Model

4.1 Bio-Inspired Multi-agent Urban Data Harvesting in Vehicular Sensing
Platforms, by Lee et al.

In this paper, a direct mapping of chemotaxis to the problem of gathering info (e.g., in
sensor networks on moving vehicles) is reported. Again, we see that not only biology
and ecology can inform us but also chemistry.

4.2 Bio-Inspired Approaches for Autonomic Pervasive Computing Systems, by
Miorandi et al.

This paper is, rather like this whole volume, a survey of techniques.
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4.3 Biologically Inspired Self-healing Routing with Preferred Path Selection, by
Szymanski et al.

As with ants following pheromones, we can design decentralized routing systems that
use tropisms as control, such systems can be resilient to node outage (someone stepping
on an ant) and self-heal. Self-* properties are of interest in ad hoc wireless networks,
and in peer-to-peer systems. Indeed, the routing in the Internet had, as an original design
goal, a strong requirement to be self-healing.

4.4 Biologically Inspired Approaches in Networks; The Bio-networking
Architecture and the Molecular Communication, by Suda et al.

Here we take inspiration from cell signalling and communication between molecules
as a way to build networks. This paper reports on what is part of a growing field of
synthetic biology.

5 Network Protocol in Wireless Communication

5.1 User-Centric Mobility Models for Opportunistic Networking, by Boldrini
et al.

In this work, it is observed that people are not ants.

5.2 Wavelet-Domain Statistics of Packet Switching Networks Near Traffic
Congestion, by Lio et al.

This paper reports on the notions of traffic modelling using mathematics usually used
to describe images or signals with self-similarity. Such signals may be generated via
coupled oscillators, and exhibit interesting phase shifting characteristics too.

5.3 A Circulatory System Approach for Wireless Sensor Networks, by Pappas
et al.

This paper jumps to a completely different area of the natural world, that of blood
circulation. Again, there are clear applications in routing, and (even before that) for
topology discovery. (See also ants!)

5.4 Epcast: Controlled Dissemination in Human-Based Wireless Networks by
Means of Epidemic Spreading Models, by Scellato et al.

Again, we look at the problem of content distribution between devices carried by peo-
ple, but now using directly observed patterns.

5.5 Maintaining Spatial-Temporal Knowledge Through Human Interaction, by
Lenando et al.

This paper is more introspective, looking at understanding the information gathered
about human social contact. (See Passarella in contrast.)
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6 Data Management

6.1 Beta Random Projection, by Lu et al.

In this paper, we are working bottom up, from information theory, to devise structures
for finding items in a large structured worked, by informational proximity (hamming
distance), despite entropy. Indexing data so that inaccurate (partially, or poorly speci-
fied) queries can be satisfied is a common problem in genomic and in search in peer-
to-peer systems, and also in intrusion detection systems were an attack may be only
partially pre-known.

6.2 Biologically Inspired Classifier, by Patti et al.

Here, clustering is driven more directly by knowledge of the dataset.

7 Distributed Computing

7.1 Human Heuristics for Autonomous Agents, by Bagnoli et al.

This paper presents techniques for agent organization and control for decentralized pro-
grams, i.e., not just for traffic. The approach is modelled after neural nets, so one should
look to Gelenbe, but the result is more Eckert/von Neumann.

7.2 Designing Biological Computers: Systemic Computation and Sensor
Networks, by Bentley

This paper presents a completely novel architecture for programming and control based
on the biological paradigm, and is a shift away from any conventional von-Neumann
(even distributed agent) based computing. This is also one of the topics for the recent
UK Challenges in computer science.

7.3 A Rule System for Network-Centric Operation in Massively Distributed
Systems, by Dressler et al.

A key goal here is to understand levels of scale that are cellular (1010 nodes), and far
beyond those of today’s artificial networks.

7.4 Field-Based Coordination for Pervasive Computing Applications, by Mamei
et al.

Again, the inspiration is ants. This time, the stigmergic concept is developed to propose
it for decentralized network control.

7.5 Coalition Games and Resource Allocation in Ad-Hoc Networks, by Gibbens
et al.

Here, the inspiration is from games in the most general sense, and their use as an orga-
nizing principle for decentralized control.
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8 Security

8.1 Bio-Inspired Topology Maintenance Protocols for Secure Wireless Sensor
Networks, by Gabrielli et al.

Natural systems are messy and inefficient, as we have said above several times, but
they may operate in many environments Here, we see a proposal to design defensible
wireless networks that use heterogeneity directly.

8.2 The Topology of Covert Conflict, by Nagaraja et al.

In this paper, we return once more to the graphs and node degree distribution within
natural networks (whether social or signalling) and how these structures are reflected
in artificial networks. This leads to a very general model for such structures, and the
ability to understand wherein lies the key weakness in terms of attack or defence.
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Avinguda dels Päısos Catalans 26, 43007 Tarragona, Spain

alexandre.arenas@urv.cat
http://deim.urv.cat/~aarenas/

Abstract. The structure of real complex networks is often modular, with
sets of nodes more connected between them than to the rest of the net-
work. These communities are usually reflecting a topology-functionality
interplay, whose discovery is basic for the understanding of the operation
of the networks. Thus, much attention has been driven to the determina-
tion of the modular structure of complex networks. Recently it has been
shown that this modular organization appears at several scales of descrip-
tion, which may be found by a synchronization process on top of these
networks. Here we make use of it for a tentative uncovering of functional
groups in the neural system of the nematode C. elegans.

1 Introduction

Complex networks are graphs representative of the intricate connections between
elements in many natural and artificial systems [1,2], whose description in terms
of statistical properties has been largely developed in the curse for a univer-
sal classification of them. However, when the networks are locally analyzed some
characteristics that become partially hidden in the statistical description emerge.
The most relevant perhaps is the discovery in many of them of community struc-
ture, meaning the existence of densely (or strongly) connected groups of nodes,
with sparse (or weak) connections between these groups [3].

The study of the community structure helps to elucidate the organization of
the networks and, eventually, could be related to the functionality of groups of
nodes [4]. The most successful solutions to the community detection problem,
in terms of accuracy and computational cost required, are those based in the
optimization of a quality function called modularity and proposed in [5], that
allows for the comparison of different partitioning of the network. Given a net-
work partitioned into communities, being Ci the community to which node i is
assigned, the mathematical definition of modularity [6] is expressed in terms of
the weighted adjacency matrix wij , that represents the value of the weight of
the link between nodes i and j (0 if no link exists), as

Q =
1

2w

∑
i

∑
j

(
wij − wiwj

2w

)
δ(Ci, Cj) , (1)

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 9–18, 2008.
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where the strength of node i is wi =
∑

j wij , the total strength of the network
is 2w =

∑
i wi, and the Kronecker delta function δ(Ci, Cj) takes the value 1 if

node i and j are into the same community, 0 otherwise.
The modularity of a given partition is then, up to a multiplicative constant,

the probability of having edges falling within groups in the network minus the
expected probability in an equivalent (null case) network with the same number
of nodes, and edges placed at random preserving the strengths of the nodes. The
larger the modularity the best the partitioning is, because more deviates from
the null case. Note that the optimization of the modularity cannot be performed
by exhaustive search since the number of different partitions are equal to the
Bell or exponential numbers [7], which grow at least exponentially in the number
of nodes N . Indeed, optimization of modularity is a NP-hard (Non-deterministic
Polynomial-time hard) problem [8]. Several authors have attacked the problem
proposing different optimization heuristics [9,10,11,12,13,14].

Maximizing modularity one obtains the “best” partition of the network into
communities. This partition represents an intermediate topological scale of or-
ganization, or mesoscale, that in many cases has been shown to coincide with
known information about subdivisions in the network [5,15]. However, recently it
has been pointed out that the optimization of the modularity has a characteristic
scale related to the number of links in the network, that delimits the resolution
beyond which no separation into smaller groups can be obtained when opti-
mizing modularity, although these smaller partitions, and then different levels
of description, are plausible to exist from direct observation [16]. The problem
seems to be that modularity, as it has been prescribed, does not have access to
these other levels of description. The reason for this is that the topological scale
at which we have access by maximizing modularity has a limit.

Here we propose the use of a synchronization process [17,18,19,20,21] between
nodes in the network, for the determination of the mesoscales in complex net-
works. In particular we show its applicability to the determination of several
scales of organization in the synaptic connectivity of the neuronal system of the
nematode C. elegans from actual data compiled from [22] and arranged by [23].

2 Determination of the Mesoscales

The main idea we propose here to detect the mesoscales is to assimilate all nodes
with identical oscillators following the coupling proposed by Kuramoto [24]. The
Kuramoto model consists of a population of N coupled phase oscillators where
the phase of the ith unit, denoted by θi(t), evolve in time according to the
following dynamics

dθi

dt
= ωi +

∑
j

Kijsin(θj − θi) i = 1, ..., N (2)

where ωi stands for the natural frequency of the oscillator and Kij describes
the coupling between units. The original model studied by Kuramoto assumed
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mean-field interactions Kij = K, ∀i, j. If the oscillators are identical (ωi = ω, ∀i)
there is only one attractor of the dynamics: the fully synchronized regime where
θi = θ, ∀i.

The temporal mesoscales of the dynamics of synchronization (of phase oscil-
lators) near the synchronization attractor are governed by the solutions of the
linear dynamics:

dθi

dt
= −k

∑
j

Lijθj i = 1, ..., N (3)

where k is a constant, θj are the phases of the nodes and Lij the Laplacian
matrix of the network, defined as Lij = wiδij − wij , where wi is the strength
of node i, δij is the Kronecker delta and wij is the element of the weighted
adjacency matrix.

To identify patterns of synchronization corresponding to temporal mesoscales,
we use a discretization of the matrix ρij = 〈cos(θi−θj)〉 where 〈· · ·〉 stands for the
average over different realizations of the initial conditions. In all cases presented
here we have averaged 105 realizations [17]. The solution of Eq.3 in terms of the
normal modes ϕi(t) reads

ϕi(t) =
∑

j

Bijθj = ϕi(0)e−λit i = 1, ..., N (4)

where λi are the eigenvalues of the Laplacian matrix, and B is the matrix of
its eigenvectors. The different intermediate scales are separated according to
gaps in the mode decay times defined by the difference between the inverse of
consecutive (ordered) eigenvalues 1/λi−1/λi+1. Note that the smallest (different
from 0) eigenvalue of the Laplacian matrix determines the time scale for the
whole network to synchronize.

By using this method it is possible to reveal the structural mesoscales follow-
ing the synchronization process, from the beginning of the process (t=0) when
oscillators are desynchronized, to the end of the process when the whole system
is at the synchronization fixed point. The mesoscales are defined as the commu-
nities of synchronization by taking snapshots of the evolution at discrete times
and finding the synchronization patterns as described above.

3 Analysis of the Mesoscales

The different structural patterns observed along the synchronization process can
be represented as a set of matrices at different times. For a comprehensive rep-
resentation of the whole mesoscale that allows for the extraction of information,
we propose to represent each matrix after processing it as follows: (i) for each
pair of nodes we compute the degree of synchronization; (ii) the matrix is re-
ordered from left to right by the size of the connected components with larger
synchronization values. The darker colors in the scale represent groups of nodes
that are more synchronized.

In the following subsections we give the details of the mesoscales determination
for a toy model, in order to clarify all the steps involved.
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{1, 2, 3, 4} {5, 6, 7} 58.25%
{1, 2, 3} {4} {5, 6, 7} 36.52%

{1, 2} {3} {4} {5} {6, 7} 5.23%

C D
1 2 3 4 5 6 7

1 1.00 1.00 0.95 0.58 0.00 0.00 0.00
2 1.00 1.00 0.95 0.58 0.00 0.00 0.00
3 0.95 0.95 1.00 0.58 0.00 0.00 0.00
4 0.58 0.58 0.58 1.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 1.00 0.95 0.95
6 0.00 0.00 0.00 0.00 0.95 1.00 1.00
7 0.00 0.00 0.00 0.00 0.95 1.00 1.00

1
2
3
4
5
6
7

1 2 3 4 5 6 7

Fig. 1. (A) Sample network for the determination of its mesoscales. (B) Lengths
corresponding to each optimal configuration. (C) Mesoscales table, formed by the
lengths of pairs of nodes in the same community, normalized by the total length.
(D) Mesoscales matrix (the contrast has been adjusted to enhance the visibility of the
four different length levels present in the mesoscales table).

3.1 Mesoscales Matrix

Let us consider the undirected graph in Fig. 1A, with all weights equal to 1.
We study the mesoscales using a discretization of the synchronization process.
Any graphical representation of the whole temporal mesoscale should take into
account, for every pair of nodes, the proportion of mesoscales at which they be-
long to the same community. Each mesoscale has a natural length (see Fig. 1B)
defined by the range of values of time (in logarithmic scale) at which the patterns
are represented. Thus, the length proportion for a pair of nodes is the sum of the
lengths corresponding to mesoscales in which they belong to the same commu-
nity, normalized by the total length (see Fig. 1C). The graphical representation
of this table, which we call mesoscales matrix, is shown in Fig. 1D.

3.2 Filtered Mesoscales Matrix

The previous example is quite simple since the mesoscales obtained are hier-
archical and their representation following the hierarchical order is convenient
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A
1 2 3 4 5 6 7

1 1.0 0.2 0.1 0.8 0.0 0.0 0.1
2 0.2 1.0 0.4 0.0 0.6 0.0 0.8
3 0.1 0.4 1.0 0.2 0.1 0.7 0.1
4 0.8 0.0 0.2 1.0 0.2 0.1 0.0
5 0.0 0.6 0.1 0.2 1.0 0.0 0.1
6 0.0 0.0 0.7 0.1 0.0 1.0 0.3
7 0.1 0.8 0.1 0.0 0.1 0.3 1.0

B C D E

1
2
3
4
5
6
7

1 2 3 4 5 6 7
2
3
5
6
7
1
4
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4

2 5 7 3 6 1 4
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2 7 5 3 6 1 4
2
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2
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3
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1
4

2 7 5 3 6 1 4

Fig. 2. Determination of the filtered mesoscales matrix. (A) Sample mesoscales table.
(B) Corresponding mesoscales matrix. (C) Connected components of the mesoscales
matrix at the threshold of 0.25. (D) Threshold of 0.50. (E) Threshold of 0.75.
(F) Threshold of 1.00. (G) Filtered mesoscales matrix (4 levels). (H) Filtered
mesoscales matrix (8 levels). (I) Mesoscales matrix using the ordering defined by the
filtered mesoscales matrix.

to extract information. However, let us suppose that, after averaging, we have
obtained the mesoscales table in Fig. 2A, whose mesoscales matrix is shown in
Fig. 2B. We define the filtered mesoscales matrix which is obtained by the ap-
plication of several thresholds to the mesoscales matrix, i.e. the lengths below
the threshold are discarded, and the connected components of the graph defined
by the remaining lengths are found. Figures 2C–F show the results after the ap-
plication of thresholds 0.25, 0.50, 0.75 and 1.00. The first threshold divides the
network in two connected components, which ordered by size are: {2, 3, 5, 6, 7},
{1, 4}. This partition gives the reference for the rest of the process. The follow-
ing connected components, ordered by size within each one of the groups found
in the previous threshold, are: {2, 5, 7}, {3, 6}, {1, 4} for threshold 0.50; {2, 7},
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{5}, {3}, {6}, {1, 4} for threshold 0.75; and {2}, {7}, {5}, {3}, {6}, {1}, {4} for
threshold 1.00. Finally, the filtered mesoscales matrix is built by the composition
of these four threshold matrices (see Fig. 2G).

In order to complete this example, we give two more matrices. First, we want
to show that by using more threshold cuts in the mesoscales matrix we would ob-
tain a more detailed filtered mesoscales matrix preserving the structures already
found because of transitivity. For instance, the result using eight instead of four
thresholds is given in Fig. 2H. Second, we would like to assert the difference be-
tween the mesoscales matrix and the filtered mesoscales matrix. For this reason
we show in Fig. 2I the former using the ordering found by the latter. Clearly, the
definition of the filtered mesoscales matrix helps to extract information of the
mesoscales imposing transitivity relations in the data found by the mesoscales
matrix.

4 Analysis of the C. Elegans Neuronal Network

Here we develop the analysis of the C. elegans neuronal network. We have taken
the largest connected component of the C. elegans neuronal network (297 neu-
rons), and analyzed the synchronization dynamics in 1000 exponentially distrib-
uted time steps up to complete synchronization.

The neuronal network of the C. elegans can be represented as a weighted
adjacency matrix. The order of the neurons in the matrix follows that of [1],
obtained from experimental data in [22]. The detection of the mesoscales in
this neuronal system has been performed according to the method explained
in this paper. The best partition corresponding to the Newman’s modularity
definition provides with 5 communities. They all contain neurons whose soma
can be correlated with spatial parts of the worm, mainly the head, the body
and the tail (see Fig. 3). This coarse graining provides then with a large scale
structural level in this system. We use the Newman’s partition as a reference for
the substructures found by the method, i.e. Newman’s scale corresponds to the
threshold equal to 0 in the mesoscales matrix.

Any trial of classification by the functional role of neurons in the C. elegans
is extremely delicate because of the multi functional aspects they have. Many
neurons participate in different synaptic pathways resulting in different func-
tionalities. To extract information from the results obtained, we use the filtered
mesoscales matrix as explained in the previous section. By fixing a threshold in
the length value, we are able to unravel sub-structural scales that could corre-
spond to groups of neurons involved in different functionalities. The most in-
teresting information is that provided at a large value of the threshold, because
in this case the substructures found contain small groups of neurons whose ac-
tivity is most likely associated to a specific action. With this information at
hand, and the wide description of each neuron found at the public database of
C. elegans [22], we propose a tentative classification of some groups of neurons
by functionality.
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Fig. 3. Mesoscales matrix (inside) and filtered mesoscales matrix of the C. elegans
neuronal network

We have studied the filtered mesoscales matrix at a threshold value of 0.6.
Fixing our attention at this level of description, we present a tentative functional
classification for the groups of five or more neurons (see Fig. 3). We have used
the information presented in [25] and [22] for each neuron position and individual
functionality, as a guide for the classification of specific actions. Our purpose,
after identification of individual functionalities, has been to assign a specific
action to the whole group of neurons.

The results of the analysis of the filtered mesoscales matrix for the C. elegans
neuronal connectivity show that: i) the substructures that prevail at different
topological scales are most of them in agreement with the location of the soma
of neurons along the body of the worm, and ii) the functionality of the differ-
ent substructures found by the method are correlated with specific actions of
the worm which allows for a tentative classification of functional groups. The
classification obtained (see Table 1) does not pretend to be exact but to provide
biologists with a useful information for future research.
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Table 1. Tentative functionalities of the groups of five or more neurons of the C. elegans
at a threshold level of 0.6 in the filtered mesoscales matrix

Neurons Tentative function
i RIAL, RIAR, RMDR,
RMDVR, SMDVL, SMDVR,
RMDDL, SMDDR

Nose/head orientation movement.

ii IL1DR, IL1VR, IL2DR,
IL2VR, RIPR

Head-withdrawal reflex, more related to dorsal re-
laxation. When worms are touched on either the
dorsal or ventral sides of their nose with an eye-
lash, they interrupt the normal pattern of foraging
and undergo an aversive head-withdrawal reflex.

iii IL2L, IL2R, OLQVL, OLQVR,
RIH

Head-withdrawal reflex, more related to ventral
relaxation.

iv ADLR, AIBR, ASEL, ASHR,
AWCL, AWCR, AIAR, AIYL

Olfactory and thermo sensation reflex.

v ASGL, ASJL, ASKL, AIAL,
PVQL

Chemotaxis to lysine reflex.

vi DB1, DB2, DD1, VB2, VD2,
AS3, DA2, DA3, DA4, DA5,
DB3, DB4, VA3, VD3, VD4,
VD5, VD6, WM

Backward/sinusoidal movement of the worm,
more related to touch stimulus.

vii AVAL, AVAR, AVBL, AVBR,
AVDL, AVDR, AVEL, AVER,
DA1, FLPL, FLPR, RIFR,
PVDL, PVDR, PVPR, PQR,
PVCL, PVCR

Forward and backward/sinusoidal movement of
the worm, more related to search for food in starv-
ing case, involve social feeding effect.

viii AVHL, AVHR, AVJL, AVFL,
AVFR

Impossible to determine from the experimental
data available. There is not any specific function
known for any of these neurons.

ix AVKL, AVKR, PDEL, PDER,
PVM, DVA, WN

The functionality of this group could be related
to a relaxation state similar to a sleep state, with
reduced motor activity, decreased sensory thresh-
old, characteristic posture and easy reversibility,
basically mediated by PDs neurons.

5 Conclusions

In this paper we have introduced a method to uncover information from the
several scales of description found in many real complex systems. The result is
a mesoscales matrix whose representation provides with a structural map of the
topology of the network. The mesoscale matrix for the sample network presented
reveals how nodes form groups at different scales. Nevertheless, the symmetries
of the network play in favor of this clear visualization. In real complex networks,
where these symmetries are usually absent, a filtering process is needed to reveal
the same information.

Hence, we have also designed what we call the filtered mesoscales matrix, con-
sisting in to: (i) fix a mesoscale (a level color) and remove from the mesoscales
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matrix the elements under this level (lighter colors), (ii) calculate the connected
components of the remaining elements (groups), and (iii) reorder the matrix from
left to right in decreasing size within the groups obtained at previous levels. This
process is iterated starting from the lowest mesoscale to the highest one, accu-
mulating the results of previous stages. This way, without losing any information
from the original mesoscales matrix, we achieve a clearer representation of the
structural map.

We have applied the complete method to unravel the mesoscales of the neu-
ronal connectivity of the nematode C. elegans. The whole nervous system of the
nematode can be represented as a weighted adjacency matrix. We have calculated
the corresponding filtered mesoscales matrix. The results of the analysis of the
filtered mesoscales matrix for the C. elegans show some interesting correlations
between synchronization patterns with the location of the soma of neurons, and
with the functionalities in the worm. These results could help biologists to design
specific targeted experiments based on the classification of neurons according to
their roles at different topological scales.
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16. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.
Natl. Acad. Sci. USA 104, 36–41 (2007)

17. Arenas, A., Dı́az-Guilera, A., Perez-Vicente, C.J.: Synchronization reveals topo-
logical scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006)

18. Arenas, A., Dı́az-Guilera, A., Perez-Vicente, C.J.: Synchronization processes in
complex networks Physica D 224, 27–34 (2006)
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Abstract. We consider methods to compute analytical solutions for the
probabilities of activation in gene regulatory networks with positive and
negative feedback loops, similar to those introduced by René Thomas,
and show how discrete state-space and continuous time probability mod-
els called can be used to compute their steady-state behaviour. The in-
clusion of logical dependencies in stochastic regulatory networks is the
developed in detail.
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1 Introduction

René Thomas states that1 “Most biological regulatory systems involve complex
networks of interactions. Theoretical modelling, together with simulations and
computational approaches, provides a useful framework for integrating data and
gaining insights into the dynamical and functional properties of such networks.
In this perspective, a major aim of [his] research is to contribute to the under-
standing of how regulatory mechanisms at various scales (e.g. molecular, cellular
and intercellular) act synergistically or competitively to achieve degrees of reg-
ulation not attainable by one mechanism alone. Key issues are the variety of
attractors possible for a network, the nature of transition states and transition
dynamics, and the role of the network in emergent behaviour. These issues are
examined in terms of systems of differential equations, automata networks and
probabilistic models.” This ambitious research programme has been developed
by its author over a quarter of a century, yielding elegant insights and biological
applications [1,2,3,4,6], and inspiring the work of others [5,15,16,17,18]. Com-
puter scientists on the other hand, have shown how such models can be enriched
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Analyse, Modélisation et Simualtion (RIAMS)” in Lyon on 29th November 2006 was
a great source of encouragement.

1 See http://www.ulb.ac.be/cenoliw3/theoretical.html
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with formal methods inspired from computational logic [15,17,16,18] so as to
be able to use computer based tools that allow the detailed study of network
transformation sequences within a semantically consistent framework.

In a regulatory network, although the effect of each individual agent on other
agents can be explicitly indicated, the resulting emergent behaviour of the net-
work is difficult to apprehend. One approach would be to describe the temporal
dynamics of the network and to characterise it by solving an appropriate equa-
tional system so that the successive values of the state of each agent, in time,
can be computed.

Another approach is to seek the stationary (steady-state) value of the state
of each agent, and to use this as the predictor of which agents are in fine active,
and which have been deactivated, as a result of the complex interactions between
agents. This is the approach that we propose here.

Thus the purpose of this paper is to develop an approach to model the be-
haviour of regulatory networks with positive and negative feedback loops so as
to compute the probability of activation of the agents in the presence of com-
plex interactions. We also show how this framework can be used to include the
effect of Boolean dependencies between agents when, for instance, the state of
some agent is determined by a Boolean function of the state of other agents.
Further work about the approach that we propose can be found in [19], and the
more fundamental problem of modeling chemical reactions which are relevant to
biochemistry can be found in [22]. Other recent papers on biological signaling
include [20,21].

In Section 2 we develop a probability model for regulatory networks, and
discuss its stationary solution in Section 3. In Section 3.1 we develop a simple
example to illustrate show how the model can be used to predict the probability
of activation or deactivation of agents in regulatory networks. Then in Section 4
and Section 5 we develop probabilistic models which include Boolean dependen-
cies between agents, in addition to the activation/inactivation type dependencies,
which include the standard normal forms of Boolean Algebra.

2 A Probability Model for Regulatory Networks

We adopt the abstract model of a regulatory network that is proposed through
the work in [15,18], consisting of a set V of n nodes, and a set of directed and
weighted arcs between the nodes, so that the model becomes a directed graph
with weighted arcs.

The nodes represent biological objects, such as genes, proteins, other active
biochemical substances, or organisms such as cells, viruses, while the arcs carry
weights in the form (+, x) or (−, x) where:

– The + sign denotes a positive effect (facilitating or exciting), while the − sign
denotes a negative effect (inhibiting), and the variable x is a non-negative
real number and represents a possible threshold.
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– Thus an arc from node a to b with a weight wab(+, x) means that if (say)
gene a has a concentration of at least x quantity, then it will facilitate the
“expression” of gene b. Here by “expression” in the case of genes we would
mean the synthesis of the proteins which are coded by gene b.

Note that the model we have just described does not have an explicit repre-
sentation of time. The time factor could be introduced by supposing that each
transition or activation takes unit time. However, weights which also represent
activation rates could also be introduced in the model. For instance, a weight
could have the form wab(−, x, z) where z is the rate (or inverse of the average
time) at which the interaction from a to b occurs. In that case, one has implicitly
introduced a continuous time model.

G-networks [7,8] are stochastic dynamical models with an unbounded discrete
state-space, which operate in continuous continuous time. In this section we
will describe a special instance of G-networks which is adapted to the needs of
modeling regulatory networks. The model will be composed of:

– Agents, which are the primary objects of interest; they represent genes or
other active biochemical or living objects whose levels of activity we wish to
represent, and

– Gates which represent the interactions between agents; gates are either binary
in nature (i.e. they describe the effect of agent i on agent j), or they are ternary
and describe the joint effect of two agents on a third agent, or they are multi-
valued, representing the impact of a set of agents on a given agent.

In fact by chaining agents with ternary gates, we obtain joint effects of multiple
agents on a single agent. We will now set up the probability model for regulatory
networks, and discuss its analytical solution [7,8,9]. The probability model is
defined via the following quantities defined for i, j ∈ {1, ... , N}. They are:

– The Ki(t) ≥ 0 are integer valued random variables which represent the
concentration or quantity of the agents i at time t ≥ 0.

– Λi ≥ 0 is a real number representing the rate at which agent i is being replen-
ished from some external source; similarly λi ≥ 0 is the rate at which agent
i is being depleted, provided that agent i is present in some concentration.

– The ri ≥ 0 are real numbers representing the activity rates of each agent i,
provided again that the agent is present in some non-zero amount. In precise
terms, λi, λi, ri are the parameters of exponential distributions, and Λi, λi

are the arrival rates of independent Poisson processes of signals which, respec-
tively, increase or decrease the level of the variable Ki(t). Similarly ri is the
average time between successive interactions of agent i with other agents.

– and P+(i, j), P−(i, j), Q(i, j, l) are the probabilities, respectively, that agent
i acts on j in a facilitating (excitatory) mode, or an inhibitory mode, or
that (i, j) together act on l in a facilitating mode. We will assume that
P+(i, j).P−(i, j) = 0, so that at most one of the two excitatory or inhibitory
effects can occur from agent i to j. Finally for any i,

di +
n∑

j=1

[P+(i, j) + P−(i, j) +
n∑

l=1

Q(i, j, l)] = 1. (1)
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– where di is the probability that agent i does not act on any other agents. In
many cases we will have either di = 0 (when the agent only has a role as an
activator or inhibitor of other agents) or di = 1, when the agent does not
act on other agents at all, for instance if it is the end product of a series of
other interactions.

– It will be more convenient, and more compatible with our introductory re-
marks about the graph model for regulatory networks and the weights, to
replace the probabilities by weights in the following manner:

w+(i, j) = riP
+(i, j) (2)

w−(i, j) = riP
−(i, j) (3)

w(i, j, l) = riQ(i, j, l). (4)

To include the effect of the activation threshold xi, we assume that we are
given a vector x = (x1, ... , xn) of non-negative integers so that agent i is only
activated when Ki(t) ≥ xi.

The dynamics of the G-network can now be represented by a system of
Chapman-Kolmogorov differential and difference equations that govern the ran-
dom process K(t) = [K1(t), ... , Kn(t)], t ≥ 0. This process represents the
number of units, or the concentration, of the n different types of agents.

Denote by k = [k1, ... , n] an n-vector of non-negative integers, and let
P (k, t) = Prob[K(t) = k] be the probability that K(t) takes that particular
value k. In order to write the C-K equations, define ei to be the n vector all of
whose elements are zero except for the i − th element whose value is +1. The
dynamic behaviour of the G-network is then given by:

dP (k, t)
dt

=
n�

i=1

[ P (k + ei, t)(λi + ridi) (5)

+ ΛiP (k − ei, t)1[ki > 0] − P (k, t)[Λi + 1[ki > 0](λi + ri)]

+
n�

j=1

[ 1[ki + 1 ≥ xi](P (k + ei − ej , t)1[kj > 0]w+(i, j) (6)

+ P (k + ei + ej , t)w−(i, j)

+
n�

l=1

P (k + ei + ej − el, t)1[ki + 1 ≥ xi]1[kj + ej ≥ xj ]

× ( w(i, j, l) + w(j, i, l) ) ] ]

where all the terms P (y, t) in the right or left hand side of the equation are zero
if any of the elements of the vector y are negative. Notice that the effect of the
activation thresholds x are explicitly included in (6).

2.1 Discussion

The probability model that we have presented provides a level of detail for the
interaction of agents which goes beyond just activation, since it also includes the
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level or degree of activation or concentration of agents through the quantities
Ki(t). Thus:

– As indicated earlier, Ki(t) represents the activation level, amount or concen-
tration level of the agent i. The equations (6) describe the case where any
agent i is only activated if Ki(t) ≥ xi ≥ 1.

– Through the parameters Λi, the natural replenishment of agent i, for instance
via some biochemical reaction, or via infiltration from an external medium, is
being represented. The parameters λi in turn represent a deletion of agent i.
Both Λi and λi are specific to a single agent and do not represent inter-agent
interactions.

– The parameters ri represent the overall rate at which the agent i interacts
with other agents; a higher ri represents the fact that agent i is more active.
At the same time, ri is the depletion of agent i as a result of the agents’
interaction with other agents, or via removal of the agent from the medium
being considered through the rates ridi. Note that ri =

∑n
j=1[w

+(i, j) +
w−(i, j) +

∑n
l=1 w(i, j, l)].

– The parameters w+(i, j) and w−(i, j) represent the replenishment or deple-
tion of agent j, or the excitation or inhibition effect, as a result of agent i.

– Finally, the parameters w(i, j, l) represent the excitation/activation of agent l
through the effect of i and j, or the rate of increase of the amount of l through
the effect of i, j.

Thus the probability model we have described will represent both the inter-agent
relations with respect to activations, and/or the amounts or concentrations of
the agents and the manner in which this affects their interactions and activation.

3 Exact Solution for the Probability Model When All
xi = 1

Consider the equations (6) in which we have set xi = 1, i = 1, ... , n. In other
words, as long as there is at least one agent of type i, agent i is activated.
In this case, the model we have presented is a special case of the ”G-network
with triggered customer movement” which we have introduced previously in the
context of queueing theory [8]. WE will provide a proof in the Appendix so that
this paper may be self-contained.

Consider now the manner in which the system behaves in the long run, rep-
resented by its steady-state probability distribution P (k) = limt→∞ P (k, t), and
introduce the term:

qi = min[1,
Λi +
�n

j=1 qjw
+(j, i) +

�n
j,l=1, l�=j qjqlw(j, l, i)

ri + λi +
�n

j=1 qjw−(j, i) +
�n

j,l=1 l�=j qlw(l, i, j)]
], (7)

for i = 1, ... , n, which represents the probability that agent i is activated in
steady-state.
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Theorem 1. Consider the case where xi = 1, i = 1, ... , n. For any subset
I ⊂ {1, ... , n} such that qm < 1 for each m ∈ I, and I = {m1, ... m|I|}:

P (Km = km) = qkm
m (1 − qm), and (8)

P (Km1 , ... , Km|I| = km1 , ... , km|I|) (9)

= Π
|I|
i=1q

kmi
mi (1 − qmi)

The proof of this theorem, stated in a slightly different manner, can be found in
[8]. Notice that (7) is a system of non-linear equations; thus we need to determine
the conditions under which these equations have a solution, and also to determine
whether they have a unique solution. Fortunately this was also proved in [8]:

Theorem 2. If all xi = 1, then the solution of (6) with x = (1, ... , 1) as
provided by (7), (9), (10) exists and is unique.

3.1 A Simple Example

In this section we develop a simple example to illustrate the use of the approach
we have introduced. In this example, three type of agents interact. The agents or
entities (C, V, A) interact via facilitation/excitation, inhibition. Also joint facil-
itation of an agent by two others is possible and is represented by the “ternary”
interaction operator w(i, j, l) where an agent of some type i can influence an
agent of type j to activate an agent of type l.

Agent C in isolation. In the system we consider, we would like to observe
whether the agent C is activated. When it exists in isolation, with a replenish-
ment rate Λc and a depletion rate rc, using (7) we have:

P (Kc > 0) = ρc =
Λc

rc
. (10)

if Λc < rc, while if Λc ≥ rc then P (Kc > 0) = 1 and Agent C is constantly
activated; in particular, if rc = 0 there is no natural depletion of agent C.

The effect of Agent V. If Agent V is introduced into the system at some rate
Λv, and V has an inhibitory effect on C represented by w(v, c, v). Thus not only
does V deplete C but it also re-activates itself V in the process, so that it is
both depleting C and maintaining its own importance. We suppose that agent
V is not subject to some other natural form of removal from the medium, except
through its effect on agent C. Thus rv = w(v, c, v). As a result when V is present
we now have:

qc =
Λc

rc + w(v, c, v)qv
=

Λc

rc + Λv
, (11)

qv =
Λv + qvqcw(v, c, v)

w(v, c, v)
, (12)



Modelling Gene Regulatory Networks 25

so that
Λc

rc + Λv
≤ qc ≤ Λc

rc + w(v, c, v)
<

Λc

rc
. (13)

In particular, when rc = 0, we see that the introduction of Agent V results in
having

P (Kc > 0) =
Λc

Λc + Λv
< 1, (14)

instead of P (Kc > 0) = 1. In fact, if Λv > Λc, then P (Kc > 0) < 0.5 which
may be unacceptably low. As a result, we now take the following step.

Introducing Agent A. Now in order to limit the effect of V we introduce an
agent A which has an inhibitory effect on V so that, still assuming that rc = 0,
we have:

qa =
Λa

w−(a, v)
, (15)

qv =
Λv + qvqcw(v, c, v)

w(v, c, v) + qaw−(a, v)
, (16)

qc =
Λc

qvw(v, c, v)
(17)

Conclusion. From the above equations, if Agent A is introduced in sufficient
concentration or at sufficient rate so that:

Λa >
w(v, c, v)Λv

Λc
(18)

then P (Kc > 0) = 1 and Agent C remains constantly activated despite the
presence of Agent V .

3.2 A Heuristic Expression When the xi ≥ 1

When we have to deal with the conditioning of activation or inhibition between
agents based on the “level of activity” or quantity present of some agents, which
we have represented with values of xi > 1, we currently do not have known a
closed form solution for the steady-state probability distribution P (x) resulting
from equations (6). Thus we propose a heuristic solution inspired by the previous
result, which is consistent with the exact solution (7), (9), (10). However we
cannot prove that this heuristic is correct in exact terms and its value can only
be determined from practical use.

Heuristic Solution 1. The approximate heuristic solution for equations (6)
when the xi > 1, where:

gi ≈ min[1,
Λi+
�n

j=1 g
xj
j

rjP+(j,i)+
�n

j,l=1 g
xj
j

g
xl
l

(rj+rl)Q(j,l,i)

ri+λi+
�n

j,l=1 q
xl
l

rlQ(l,i,j)]
]



26 E. Gelenbe

for i = 1, ... , n represents the approximate probability that agent i is acti-
vated, and is given for km ∈ I, kmi ∈ I where I is the set of indices of the
agents for which gi < 1, P (Km = km) ≈ gkm

m (1 − gm), P (Km1 , ... , Km|I| =

km1 , ... , km|I|) ≈ Πmi∈Ig
kmi
mi (1 − gmi). Note that we have used the terms of the

form q
xj

j because if the expression were exact, then P [Km ≥ xm) = gxm
m .

4 Logical Dependency of an Agent on Several Others: A
First Approach

We will now continue exploiting the exact solution provided in (10). In the
previous section we have covered the action of some agent i on an agent j, as
well as the joint action of agents (i, j) on some third agent l. In this section we
would like to consider how a set of agents [a1, a2, ... , aα] and [b1, b2, ... , bβ] can
jointly act on some agent l. More specifically we would like to represent a logical
equation of the form

Agentl = [∧α
s=1(Agentas)]

∧
[∧β

s=1(¬Agentbs)], (19)

where the Agentj ∈ {0, 1} are binary variables indicating whether the agent l is
activated (1) or inactive (0), and the notations:

– ∧ denotes the logical “and”,
– ∨ denotes the logical “or”,
– and ¬ denotes the negation or complement of the logical variable that follows

it.

We will also exploit the identity:

[∧β
s=1(¬Agentbs)] = ¬[∨β

s=1(Agentbs)] (20)

The approach we take is via the steady-state probability distribution of the
integer representing the internal state of the agent P (KAj) = limt→∞ P (KAj (t))
with:

Aj = 1 ⇔ Kj > 0, (21)

so that we compute qj = P (Kj > 0). In order to do this we:

4.1 Construction

– Introduce a set of “dummy agents” A1, A2, ... , Aα that act as intermediaries
between the set of agents a.

– a1 acts upon A1, (a2, A1) act upon A2 and so on. Finally (aα, Aα−1) act upon
Aα, and Aα acts upon agent l in an excitatory manner with w+(Aα, l) = 1.

– Furthermore we set ΛAs = λAs = 0, rAs = 1 for 1 ≤ s ≤ α, w(a1, a2, A2) = 1
and w(as, As−1, As) = 1 for s = 3, ... , α.
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– We also introduce dummy agents B1, ... , Bβ so that (b1) acts upon B1
in an excitatory manner with w+(b1, B1) = 1, (b2) acts upon B2 similarly,
and so on, and bβ acts upon Bβ in an excitatory manner with Bβ with
w+(bβ, Bβ) = 1.

– Then each Bs acts upon agent l in an inhibitory manner with w−(Bs, l) = γ,
1 ≤ s ≤ β.

– We set ΛBs = λBs = 0, rBs = 1 for 1 ≤ s ≤ β.

Using (7), we immediately obtain:

ql = min[1,
Λl +
�n

j=1 qjw
+(j, l) + qAαw+(Aα, l)

rl + λl +
�n

j=1 qjw−(j, l) +
�β

s=1 γqBs

, (22)

qAα = qa1 ... qaα ,

qBs = qbs , s = 1, ... β,

so that we have:

Proposition 3. The logical equation between agents

Agentl = [∧α
s=1(Agentas)] ∧ [∧β

s=1(¬Agentbs)], (23)

is obtained by setting Λl = λl = rl = 0 with w+(j, l) = w−(j, l) = 0 for all
j /∈ [1, ... , n] ∪ a ∪ b, and using only the connections between agents provided
by Construction. As a result we have:

ql = min[1,

∏α
s=1 qas∑β
s=1 γqbs

] (24)

and we use a decision threshold H above which any qas , qbs must be in order
to interpret Aas or Abs = 1, and they must be under the value L in order to
interpret any of them as Aas or Abs = 0. We will therefore need to relate H and
L for the thresholds used to evaluate the Aas , Abs on the right-hand-side of (24)
to θ that is used for evaluating Al on the left-hand-side of (24).

4.2 Selecting the Thresholds

From the previous discussion, and (24), we have the following requirements
for θ:

Hα

βγL ≥ θ

LH(α−1)

βγL ≤ θ
Hα

γH+(β−1)γL ≤ θ

resulting in the following simple choice of the threshold θ:

H(α−1)

γ
< θ ≤ Hα

γβL
(25)

which also requires that H > βL.
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5 Boolean Dependencies between Agents

The conjunctive (CNF) and disjunctive (DNF) normal forms are standard rep-
resentations for Boolean functions. Each of them is universal in the sense that
it allows the representation of any Boolean function. Consider a set of binary
literals Aj ∈ [0, 1], j ∈ [1, ... , n], and consider a term Ti = Xi1 ∨ ... ∨ Xin

where Xij is either Aj or it is ¬Aj .
The Boolean function F : [0, 1]n → [0, 1] is in DNF if it is written as:

F = ∧m
i=1Ti, (26)

while it is in CNF when it is written as

F = ∨m
i=1τi. (27)

where the τi = Xi1 ∧ ... ∧ Xin with Xij being either Aj or ¬Aj , and they
too are disjoint. Clearly we can transform an expression in CNF into DNF and
vice-versa using (20).

In this section we see how the expression (24) can be used to derive the sate
probability for a logical expression in CNF. Let us consider the CNF given in
(27) and assume that each literal Aj corresponds to a distinct agent. We will
associate an agent AF with the function F with qF = limt→∞ P (KF (t) > 0).
Similarly we associate dummy agents ATi with the terms Ti, and exploit Section
4.1 that was previously presented.

From the above discussion we see that once we have a way of representing
the logical expression (19) using a G-network, it is quite direct to obtain the
G-network counterpart for an expression in CNF. The approach requires an exact
representation of (19) which includes the negated terms ¬Agentbs , and is based
on constructing agents whose probabilities of being active are [1 − qbs ] where
qbs = limt→∞ P [Kbs(t) > 0], Agentbs = 1 at time t if and only if Kbs(t) > 0.

Turning to expression (7), we see that for any qi the term ρi = [1 − qi] is:

ρi =

ri+λi−Λi+
�n

j=1 qj [w−(j,i)−w+(j,i)]+
�n

j,l=1, l �=j
ql[w(l,i,j)−qjw(l,j,i)]

ri+λi+
�

n
j=1 qjw−(j,i)+

�
n
j,l=1, l �=j

qlw(l,i,j)]

Note that we would like to have an agent, say Agentci, whose state is the
complement of agent Agenti so that ρi is the stationary distribution that Agentci

is activated. Thus we require that the parameters in the expression for ρi have
the following properties:

If Agenti has – in the same network – a complementary agent Aci , then:

ρi =
Li +

∑n
j=1 qjΩ

+(j, i) +
∑n

j,l=1, l �=j qjqlΩ(l, j, i)
Ri + li +

∑n
j=1 qjΩ−(j, i) +

∑n
j,l=1, l �=j qlΩ(l, i, j)

, (28)

with

(I) Li = ri + λi ≥ Λi (29)
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(II) Ω+(j, i) = w−(j, i) − w+(j, i) ≥ 0 for j �= i

(III) Ω−(j, i) = w−(j, i) for j �= i

(IV ) w(l, i, j) > 0 ⇒ w(l, j, i) = 0 for l, j �= i

(V ) w(l, i, j) = 0 ⇒ w(l, j, i) = 0 for l, j �= i

(V I) ri + λi − Λi ≥ 0

Notice that for Agenti for which we wish to construct a complementary agent
within the same network we arrive at the following constraints:

(V II) ⇒ w−(j, i) ≥ w+(j, i) for j �= i

(V III) : (IV )&(V ) ⇒ w(l, i, j) = 0 for l, j �= i

(IX)Li = ri + λi − Λi ≥ 0
(X)Ri + li = li +

�n
j=1,j �=i[Ω

+(i, j) + Ω−(i, j) +
�n

l=1,l�=i,j Ω(i, j, l)] = ri + λi

Note that (V II) is easy to satisfy, while (V III) is compatible with the devel-
opment in Section 4.1, since it implies that all the agents Aas may initiate joint
actions of the form (as, As) → As+1, but that actions of the form (X, as) → Y
are not allowed.

Finally we have the following constraints for the Aci :

(II) ⇒ Ω+(j, i) = w−(j, i) − w+(j, i) for j �= i (30)

(IV ) & (V ) ⇒ Ω(l, i, j) = Ω(l, j, i) = 0 for l, j �= i

5.1 Expressions in Conjunctive Normal Form

Consider the Boolean function F : [0, 1]n → [0, 1] in CNF if it is written as:

F = ∨m
i=1τi. (31)

where the τi = Xi1 ∧ ... ∧ Xin with Xij being either Aj or ¬Aj .
Define the set of indices Υi = {j : Xij = Aj} and Φi = {j : Xij = ¬Aj}.

Using (28) and the Construction in Section 4.1, we obtain qF , the probability of
activation of Agent AF , as

qF = min[1,
m∑

i=1

∏
j∈Υi

qj

∏
j∈Φi

ρj (32)

The expression for the state probability of an agent whose state depends on
others’ state according to a Boolean function in DNF can also be constructed in
a similar manner.

6 Discussion

The analysis we have presented can be used to compute the probability that in
steady-state each agent in a regulatory network is activated or deactivated, as
well as the joint probability of the state of all of the agents.
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These results do not allow us to compute the successive states that a network
of agents will enter into in the course of time.

Suppose that we consider that a regulatory network acts as the control sys-
tem of a “biochemical nano-factory”, with the rate of production of certain
compounds being determined by the probability that certain sets of agents are
activated. Then our analysis would enable the computation of the rate of pro-
duction of these compounds over a period of time.

When the system being considered has some form of cyclic behaviour, with
agents being successively activated and deactivated through their interactions,
then our analysis can provide two things (a) the proportion of time that each
agent or each combination of agents is in some combination of active or inactive
states, and (b) by fixing the state of some of the agents in the right-hand-side
of expressions of the form (24) or (32), we can predict the state of some of the
agents when other agents’ states are known.

Thus our approach does not replace a discrete event simulation of a regulatory
network based on the full semantics of agent interactions, but does offer a means
to evaluate and predict the overall behaviour of the network over a long period
of time.

As a final illustrative examples, consider the following toy regulatory network2

composed of four agents, call them {A0, ... A3} connected cyclically so that the
i − th agent inhibits agents (i + 1)mod3 and agent (i + 2)mod3, and there are
no other dependencies. Assume that agents have just two states (on and off).

The timing in this simple model may be either deterministic, where each agent
changes state in exactly unit time, or random (e.g. exponentially distributed) of
average value 1 for all agents, or each agent can have a different timing behaviour.
Thus the resulting behaviour of this synchronous or asynchronous system can
be quite different depending on what is assumed about the time between state
transitions of the agents. Another important assumption about such a network
concerns the state the agents will enter when they are quiescent, i.e. when they
are left to themselves. Clearly, if the agents left to themselves all enter the 0
(off) state, then the model has little interest since all agents will remain in that
state, assuming that they start there. On the other hand, if we assume that
they spontaneously enter the 1 or “on” state when they are not acted upon by
another agent, then more interesting behaviours can result. Also, the meaning
of these interconnections can be interpreted in at least two different ways, for
any i = 1, ... , 3:

– Interpretation (1): Ai = ¬A(i−1)mod3 ∧ A(i−2)mod3.
– Interpretation (2): Both agents A(i−1)mod3 and A(i−2)mod3 inhibit the acti-

vation of agent Ai.

Assume now that all agents start in the same initial state, that all state tran-
sition times are exponentially distributed with average value 1, and that when
they are quiescent (i.e. free of inputs from other agents) they all reset themselves
to the value 1 (“on”). For both interpretations the probabilistic state of all agents

2 We thank Dr Luca Cardelli for suggesting this example.
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will be identical, and their stationary distribution q = limt→∞ P [Ai(t) = 1] is
given by:

– Interpretation (1): Using (32) we write q = (1 − q)(1 − q)] so that q = 0.382.
– Interpretation (2): Using (7) we have q = 1

1+2q so that q = 0.5.

Under Interpretation (2) we see that the agents will all spend half of the time
being “on” and the other half being “off’, and all 16 states represented by the
vector of four binary variables, will be equally likely with probability 1/16 in
steady state. With Interpretation (1) they spend more time in the “off” state
than in the “on” state; in fact in this case the state (0, 0, 0, 0) is 6.854 times more
likely to occur than the state (1, 1, 1, 1). Thus we see that the manner in which
the interactions between agents are precisely defined has significant impact on
the analysis that our modeling approach can offer.
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Abstract. The adult human brain has around 1011 neurons and 1015

connections between these neurons, thus forming an incredibly complex
network. In this article, we first describe two complementary approaches
to modelling brain function, namely simplifying and realistic models. We
then demonstrate, by way of two examples, the utility of building simpli-
fying neural models. In the first example, we consider the development of
neuronal positioning. In the second example, we investigate the stability
of a cortical network under control and perturbed conditions.

Keywords: simplifying neural models, retinal mosaics, cortical compen-
sation, anterior cingulate.

1 Background

This article introduces, by way of examples, the utility of theoretical modelling
in understanding aspects of neural circuitry. Perhaps one of the best examples
of theoretical modelling aiding our understanding in neuroscience is the seminal
work of Hodgkin and Huxley concerning the ionic basis of the action potential
(reviewed by Hodgkin, 1958). Since their work over fifty years ago, many re-
searchers have built upon this framework, developing more complex models to
account for new experimental findings. This work is an example of a “realistic”
model such that the computational model tries to account for all known rele-
vant details of a particular system (Sejnowski et al., 1988). The model is then
evaluated by comparing model output with experimental results.

One crucial issue with this kind of modelling is deciding just how much known
experimental detail to include in a model. As we now have a lot of information
about the details of individual neurons, should we include all those details when
we model a neuron? The answer may, perhaps, be yes if our model investigates
the behaviour of just one neuron. However, if, for example, we wish to study
the collective dynamics of a large population of neurons, modelling each neuron
in detail may not be possible, as the system may become too large to be care-
fully studied: for example, the model may require the specification of too many
parameters, or require prohibitively long computation resources. Furthermore,
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it may be the case that for a particular study, certain details, although known,
may be irrelevant for the model in question.

For example, the Hodgkin-Huxley equations capture the detailed time evolu-
tion of an action potential by modelling ion channels and voltage-dependent con-
ductances. However, if the detailed shape of an action potential is not important,
but rather we are interested in the timing of the action potential, then a simpler
integrate and fire neuron may be sufficient for our purposes. In this case, we can
refer to the integrate and fire neuron as a “simplifying model” (Sejnowski et al.,
1988). It clearly does not attempt to model all the details underlying action
potentials, but can be used as the basis for building larger models to study
e.g. network dynamics. This distinction between realistic models and simplify-
ing models is obviously not unique to neuroscience modelling. For example, in
ecology, the corresponding terms are “mechanistic” versus “phenomenological”
models (Nathan and Muller-Landau, 2000). Mechanistic models attempt to sim-
ulate mechanisms underlying key behaviours, whereas phenomenological models
are more concerned with replicating the behaviours, irrespective of the actual
mechanisms that may generate those behaviours.

A valid criticism against simplifying models is often that they are “biolog-
ically implausible” and, hence, do not tell us how the brain solves the task.
That often is indeed the case. However, the model may still tell us interesting
things about other aspects of the problem. For instance, the back-propagation
learning algorithm was used to train a multiple layer perceptron to investigate
how children might learn to pronounce words (Sejnowski and Rosenberg, 1987).
Specifically, the network was trained to associate letters within a word to the
corresponding phonetic representation. This is a difficult task to achieve (at least
in English) since the context of the letter is important: consider the pronuncia-
tion of the letter i within the words bite and bit. The back-propagation learning
algorithm was used to adapt the connection strengths within the network to
learn this association. This learning algorithm is so-named because of the way
that during learning, error signals “back-propagate” from the output layer back
to the input layer. This back-propagation of error is unlikely to occur in neural
systems, and hence this learning algorithm is validly regarded as biologically
implausible. However, if one regards this learning algorithm as simply a way
of training a network, we can still explore the properties of the network, and
compare them with human performance. For example, during training there is
a stage-like progression of behaviour, seen in young children, where an early
babbling-phase can be distinguished from the later, more-refined, performance.
Analysis of the structure of the internal representation formed by the networks
suggests that the network autonomously learns to distinguish vowels from con-
sonants (Sejnowski and Rosenberg, 1987). Therefore, even though the learning
rule may be biologically implausible, the model as a whole gives useful insights
into how the brain may acquire the ability to pronounce words.

In this article, we review two recent applications of simplifying models to
two different problems in neuroscience. The first model investigates an aspect of
structural formation of neural circuitry, illustrating how modelling can help us
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study early developmental events. The second application considers how models
can help us understand functional aspects of adult circuitry.

2 Structural Development of Neuronal Positioning

The human central nervous system is an incredibly complex structure: billions
of neurons connect to each other to form complex networks. A key challenge in
neuroscience is to understand how such complex networks are generated during
development. There are too many neurons and connections for the network to be
genetically encoded in the form of “wiring diagrams” that specify which neurons
connect to which other neurons. Instead, the nervous system is likely to take
advantage of principles of self-organisation to create such circuitry.

One key step in the generation of neural circuitry is for neurons to be appro-
priately positioned within their target tissue. Once neurons have been generated,
they need typically to migrate to their destination layer and move to a partic-
ular location, respecting the position of neighbouring neurons. This process is
most strikingly observed in the retina (the light-sensing neural structure at the
back of the eye). Figure 1 shows an example of the position of all neurons of a
particular class within a rectangular field of view. From this figure it is evident
that there is some spatial ordering within this population of neurons: cells are
not too close to each other, nor are they too far apart from each other. This
semi-regular structure is called a “retinal mosaic” due to the way that the cell
bodies (and their surrounding dendritic trees, not shown here) “tile” the surface
of the retina. This neuronal arrangement serves to ensure that there are cells
located throughout the retinal layer (rather than leaving “holes” in the surface),
and may help the subsequent wiring of neurons within different retinal layers.

Many developmental mechanisms have been implicated in the formation of
retinal mosaics, reviewed by Cook and Chalupa (2000). These vary from rela-
tively early events of neuronal differentiation through to lateral interactions me-
diated by dendritic interactions. In addition to many experimental approaches
to understanding the formation of retinal mosaics, there has been considerable
interest in using theoretical modelling approaches to investigate developmental
constraints in mosaic formation. To quantitatively compare real and simulated
mosaics, here we use the simplest, and most popular, measure of spatial arrange-
ment, the regularity index (RI) (Wässle and Riemann, 1978). The RI is simply
the mean of the nearest-neighbour distances divided by the standard deviation
of those distances (Figure 1). Informally, the higher the RI, the more regular the
spatial distribution of neurons; values less than two typically indicate a random
arrangement of neurons.

2.1 The dmin Model

The basic concept underlying the dmin model is that each neuron has a circular
exclusion zone surrounding the cell body, which prevents neighbouring cells from
coming too close to it. We take a phenomenological approaching by assuming
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Fig. 1. Example retinal mosaic and quantification of its spatial organisation. Left: po-
sitioning of rat cholinergic amacrine cells (data from Lucia Galli-Resta). Cells drawn
assuming 10 µm diameter; scale-bar (bottom left): 50 µm. Right: distribution of
nearest-neighbour distances of the neurons on the left. The regularity index of this
population, 4.2, indicates a mildly regular arrangement of neurons.

that biological mechanisms (which we do not explicitly model) can somehow
enforce the exclusion zone. To model a retinal mosaic, we create a region A of
the same size as the real mosaic being modelled. Initially this region is empty;
neurons are added to A using a serial algorithm, positioning neurons one by one
into the array until the number of neurons in the model region A matches the
real mosaic. To position a neuron into A we follow the following steps:

1. Generate a trial neuron position and exclusion zone (x, y, d). The position
of the neuron (x, y) is determined by uniform sampling of A. The effective
diameter of the exclusion zone, dmin is drawn from a truncated Normal
distribution with fixed mean and standard deviation (µ, σ). The Normal
distribution is truncated at some lower bound dlow so that d cannot be
smaller than e.g. the typical cell body diameter.

2. Find the distance of the trial neuron to all other neurons that have previously
been accepted into A. The smallest of those distances is labelled d.

3. If d < dmin, the trial neuron is too close to an existing neuron. The trial
neuron is thus rejected. Otherwise, if d ≥ dmin, the trial neuron is accepted.

To model a given retinal mosaic, the only parameters required by this model
are the mean and standard deviation of the exclusion zone. These parameters
can be determined by trial and error, or by systematic searching over a range of
suitable values. Furthermore, the model can also be used to generate randomly
distributed neurons within a layer, subject only to the constraint that their
cell bodies do not overlap, by setting the mean and s.d. of the dmin model to
match the mean and s.d. of observed cell body diameters. Figure 2 compares
a real mosaic against two dmin simulations: one where the exclusion zone has
been selected to generate patterns similar to those observed, and one where the
exclusion zone simply reflects non-overlap of cell bodies. Although in this case
the regularity index of the simulated mosaic (6.3) is higher than the regularity
index of the retinal mosaic (4.7), as will be discussed later, multiple simulations
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Fig. 2. Comparison of a retinal mosaic with two dmin simulations. Left: positions of
off-centre beta retinal ganglion cells from cat; data taken from (Wässle et al., 1981).
Cell bodies drawn to size, assuming 15 µm diameter. Regularity index: 4.7. Middle:
matching dmin simulation (µ = 130 µm; σ = 25 µm). Regularity index: 6.3. Right:
dmin simulation with exclusion zone set to only reflect non-overlap of cell bodies (µ =
15 µm; σ = 0.01 µm). Regularity index: 2.4. (Each sample field 1090 × 750 µm).

generate a range of RIs similar to the observed value. By contrast, when the
exclusion zone merely prevents overlap of cell bodies (Figure 2 right), the pattern
is typically quite disorganised, and both visually and quantitatively distinct from
the retinal mosaic: many areas of the sample field are devoid of neurons.

So far, all the dmin model shows us is that some local-acting mechanism is
sufficient for generating patterns similar to those observed experimentally. It
therefore does not constrain the underlying biological mechanism that may gen-
erate such a local exclusion zone (Galli-Resta et al., 1997). This is a limitation of
this simplifying model, and we must rely on either experimental results or more
detailed theoretical models to inform us. (In this case, both experimental and
theoretical evidence suggest the exclusion zone could be the product of lateral
migration mediated by dendritic interactions (Eglen et al., 2000).) However, we
can now use this dmin model to allow us to ask other questions, outlined next.

2.2 Bivariate Patterning of Retinal Mosaics

Figure 2 shows a sample of off-centre beta retinal ganglion cells (RGCs); these
cells respond to the offset of light stimulation. By contrast, there is a comple-
mentary group of neurons, the on-centre beta RGCs that respond to the onset of
light stimulation. The cell bodies of these neurons occupy the same layer of the
retina, generating a bivariate mosaic pattern, as shown in Figure 3, left (data
from Wässle et al., 1981). A striking feature of this pattern is that neighbour-
ing neurons are usually of the opposite type, which has led to the question of
whether there are interactions between the two cell types during development
that generate such a pattern (Eglen and Willshaw, 2002).

To address this question, the dmin model can be extended to generate bivariate
patterns. The null hypothesis of the model is that there are no functional inter-
actions between neurons of opposite type. In this case, we generate N1 type 1
neurons (here the on-centre neurons), and N2 type 2 neurons (off-centre). When
positioning a neuron in the array, e.g. a type 1 neuron, the type 2 exclusion
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Fig. 3. Bivariate dmin simulation. Left: bivariate pattern of on- and off-centre beta
retinal ganglion cells (on-centre coloured green and off-centre coloured red). Sample
field as in Figure 2. Middle: typical output from bivariate simulation. Parameters used:
(µ1 = 116 µm, σ1 = 20 µm, µ2 = 130 µm, σ2 = 25 µm, d12 = 9 µm). Right: quantitative
comparison of the regularity index of the retinal mosaic (horizontal red lines) with each
of 99 simulations (black dots; dotted black line indicates median). In each case, the
regularity index of the real mosaic is within the range generated by the simulations.

zone is ignored, and the trial neuron is rejected if it falls within the exclusion
zone of an existing type 1 neuron. Each exclusion zone is again described by
a Normal distribution with given (µ, σ). However, even under the assumption
that there are no functional interactions, cell bodies of two neurons of opposite
type still cannot overlap, and so a trial neuron is also rejected if the distance
to the nearest neuron of opposite type is less than some small value, d12, which
typically is around 9–15 µm, matching cell body diameter.

Typical results from this bivariate dmin simulation are shown in Figure 3.
The regularity index of either solely the on-centre cells, the off-centre cells, or
both types of cells fall within the range observed from 99 runs of the simulation,
leading us to accept the null hypothesis that there are no functional interactions
between neurons of opposite type, contrary to results from earlier modelling work
(Eglen and Willshaw, 2002). A fuller treatment of this problem, using a more
general style of model for simulating point patterns (the pairwise interaction
point process model) is given elsewhere (Eglen et al., 2005).

3 Investigating Compensation in Cortical Networks

In our second example, we consider a higher level problem: inferring the pu-
tative activity dynamics from connectivity maps that describe effective con-
nections between a network of cortical areas performing a cognitive task
(Kronhaus and Willshaw, 2006). Again, we take the approach of using a sim-
plified model that allows us to investigate subsequent ideas. In this case, we
study the stability of network performance in the presence of global and local
perturbations, as well as compensation in altered networks.
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3.1 Cortical Interactions Implicated in the Delayed Match to
Sample Task

Positron emission tomography (PET) was used to image brain activation during
performance of a recognition task, the Delayed Match to Sample (DMTS) task.
In this task, subjects were asked to identify a stimulus that was presented earlier
in the experiment (Haxby et al., 1995). Here, two conditions were considered.
In the first condition, perceptual matching, there were no distracting stimuli
between the two presentations of the stimulus to be identified, and just one
second delay between the two stimuli. In the second condition, long-delay, four
distracting stimuli appeared over an interval of 21 seconds. The stimuli used
in this study were pictures of male and female faces. The imaging data under
the two conditions were analysed, generating activity maps for each condition.
Structural equation models were then applied to estimate (effective) connectivity
between key brain regions thought to be involved in these tasks (McIntosh et al.,
1996). The path coefficients estimated by McIntosh et al. (1996) were used to
guide the generation of the networks studied here (Figure 4, Table 1).

Fig. 4. Human perceptual matching (left) and long-delay (right) networks inferred from
PET imaging data. Areas in each hemisphere are identified using the index described in
Table 1, which can be used to identify the corresponding Brodmann area. The areas are
arranged topographically, respecting their order within the brain. The colour and width
of arrows indicates the value and type (excitatory/inhibitory) of connection: thick red
(+0.65), thin red ( +0.35), thin blue ( −0.35) and thick blue (−0.65). Connectivity
data derived from McIntosh et al. (1996).

3.2 Modelling Cortical Dynamics

We assume that N brain regions are being modelled. (For the McIntosh data,
N = 22, eleven of the same brain regions from each hemisphere.) Each brain
region i is summarised simply by a real value ai denoting the overall activity
of that area; the vector a(t) represents the activity of all brain regions at given
time t. Cortical interactions (for each of the two conditions: perceptual match-
ing and long-delay) were encoded into an N × N connectivity matrix W, with
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Table 1. Brodmann Areas used in this study. Left and Right hemisphere (LH/RH)
index denote the region number assigned to this area in the model.

Lobe Brodmann Area Region LH index RH index
Frontal BA46 Middle frontal 1 12

BA10 Inferior frontal 2 13
BA47 Ventral inferior frontal 3 14

Temporal BA21 Middle temporal gyrus 4 15
BA37 Inferior temporal gyrus 5 16

Visual BA18v Fusiform 6 17
BA19d Cuneus 7 18

BA17/18 Cuneus 8 19
Limbic GH Hippocampus 9 20

BA24 Anterior cingulate gyrus 10 21
BA23 Posterior cingulate gyrus 11 22

positive/negative values denoting excitatory/inhibitory connections, respec-
tively. Given a pattern of activity at time t, the activity at time t + 1 is given
by:

a(t + 1) = f(Wa(t)) (1)

where f(x) =
1

1 + exp(−k(x − θ))
(2)

The sigmoidal function f(·) is applied elementwise to a to ensure that the activity
of each unit stays bounded within [0,1] (typically k=10, θ=0.5.) Given an initial
pattern of activity at time 0 (described in the results below), network activity
was typically updated for 100 iterations by which time the network dynamics
usually converged to a stable pattern.

3.3 Characteristic Behaviour

The basic network behaviour was examined by initialising the network with a
small amount of activity, and seeing how the activity propagated. In particu-
lar, one brain region (i) was selected to be initially active, whilst the remaining
brain regions were silent. Figure 5 shows typical results of the spread and sta-
bilisation of brain activity. Brain activity was normally initialised in BA18 (left
hemisphere; i=6); this area was chosen as it is part of the visual cortex, and so
likely to be activated by visual stimulation. For the perceptual matching net-
work, transient visual activity led to sustained activity in several left hemisphere
regions; some activity propagated transiently to the right hemisphere, but this
did not persist. By contrast, activation of only BA18 did not lead to persistent
activity in the long-delay network (data not shown). Instead, to generate persis-
tent activity, initial input was needed in both BA18 and another area, such as
BA37 (Figure 5 right). Visual comparison of the activity patterns in the percep-
tual matching and long-delay networks shows that although persistent activity
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Fig. 5. Characteristic activation in the perceptual matching (left) and long-delay
(right) networks. Each graph shows the activity of one brain region for 100 time steps.
The legend above each graph denotes the brain region being plotted and its hemi-
sphere (L/R). X within a graph (e.g. L BA18v on left) denotes the activation of this
area was set to 1 at time 0; remaining areas were set to 0. This figure adapted from
(Kronhaus and Willshaw, 2006), with permission from Oxford University Press.

is generated by both networks, in the long-delay network more activity persists
in the right hemisphere. This result could not be predicted by visual comparison
of the two networks in Figure 4.

As in Section 2, so far, this model can be regarded as a simplifying model;
clearly simplifying the neural activity within each brain region down to a single
number is not biologically plausible. However, we believe that we can use the
characteristic activity patterns (e.g. from Figure 5) as a signature of activity
that we can use as a reference when comparing these networks under different
perturbations to represent various experimental conditions, as shown next.

3.4 Compensation for Localised Dysfunction

In this section we show how our network approach can be applied to investigate
how cortical networks might adapt to either global or local impairment in a
clinical population of interest, namely depressed patients. One key experimental
finding suggests that in depressed patients there is an decrease in cortical ex-
citability throughout the entire brain (Shajahan et al., 1999). We have therefore
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investigated how characteristic network behaviour is shaped by a reduction in
cortical excitation. Surprisingly, characteristic network behaviour is unaffected
by global reduction in all excitatory weight connections (inhibitory connections
were held constant) by at least 20% (Kronhaus, 2004).

Furthermore, we systematically tested the role of each brain region in sus-
taining this characteristic behaviour in the presence of reduced global excita-
tion. Specifically, all output connections from a chosen area were reduced by
10%. Characteristic activity was maintained in each case except for reducing
connectivity from L BA24 (anterior cingulate). In this case, this local pertur-
bation of the anterior cingulate had the dramatic effect of silencing all activ-
ity within around 20 iterations. Since network architecture was constrained by
McIntosh et al. (1996), this prominent role of the anterior cingulate was an unex-
pected, emergent, finding. This novel result from the model echoed findings from
the experimental literature reporting reduced neuronal and glial cell density in
the anterior cingulate of depressed patients (Drevets et al., 1997).

Fig. 6. Compensation in the long-delay network. Left: recovery by mostly visual areas;
Right: compensation by BA37. Arrows indicate the direction in which an area’s out-
going connections were modified by the given percentage. X indicates the areas which
were initially stimulated. This figure adapted from (Kronhaus and Willshaw, 2006),
with permission from Oxford University Press.

How might the brain compensate for such changes in network connectivity?
One possibility is that activity in other areas may increase to compensate for
these changes. To test this idea, we focused on alterations to the long-delay net-
work, i.e. overall reduction of all excitatory connections by 20%, together with
reducing all outgoing connections from L BA24 by a further 10%; in such a
network, activity does not persist. However, it is possible to recover sustained
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activity, as shown in Figure 6, if we increase the outgoing connections from other
areas. In the first case (Figure 6 left), an increase of outgoing connections from
three visually-related areas led to a recovery in activity in both hemispheres.
This activity is far from the characteristic pattern (Figure 5) observed in the
long-delay network, as many areas that were previously active (e.g. both L and
R BA47) were inactive. Further, selective increase of outgoing connections from
just one area that plays a prominent role in generating the characteristic activity
pattern (10% increase to L BA37) produced sustained activity in many areas,
similar to that observed in the default network. Comparing Figure 6 right with
Figure 5 right, activation patterns are broadly similar, although L BA46 and
L BA10 are noticeably different. Thus, our model predicts that network dynamics
in brains where both global and local activity are compromised (e.g. depressed
patients) may be restored by intensifying activity elsewhere in the network.

4 Concluding Remarks

This paper has reviewed two recent examples of how simplified models of brain
structure and function can be useful to investigate problems in neuroscience.
Even though aspects of each model (e.g. the exclusion zone in the dmin model,
and the characterisation of brain activity within a region by a single scalar
value) do not have a direct biological interpretation, we believe that making such
simplifying assumptions in models allows us to use these components within a
bigger framework to test particular hypotheses and predict the outcome under
novel situations. Furthermore, even though both models exclude fine-grained
neurobiological details, they are consistent with the neural underpinnings. Thus,
changes in efficacy (excitation or inhibition) are not simply ascribed to excitatory
or inhibitory neurotransmitters. Instead, we argue that dynamic changes in the
network are more appropriate to emulate behavioural phenomena such as those
observed in clinical conditions such as depression.

In the context of this Volume, it is interesting to speculate on how these neu-
roscience models may inspire the next generation of wireless networks. One key
feature in both our neuroscience models is robustness, in both design and func-
tion. Rather than hard wiring a neural circuit, developmental processes adapt
to the local environment and create networks that are robust to environmen-
tal differences. Moreover, once the network is compromised, different features
of network wiring (e.g. excitatory and inhibitory connections) allow the net-
work to self-adjust, restoring function. These principles allow the nervous sys-
tem to develop and function under a wide range of conditions. We suggest that
such principles may also be of benefit to artificial systems, such as wireless net-
works.
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Abstract. Chemical computing models have been proposed since the
1980ies for expressing concurrent computations in elegant ways for shared
memory systems. In this paper we look at the distributed case of network
protocol execution for which we developed an online artificial chemistry.
In this chemistry, data packets become molecules which can interact
with each other, yielding computation networks comparable to biological
metabolisms. Using this execution support, we show how to compute an
average over arbitrary networking topologies and relate it to traditional
forms of implementing load balancing. Our long-term interest lies in the
robust implementation, operation and evolution of network protocols, for
which artificial chemistries provide a promising basis.

Keywords: artificial chemistry, network protocols, distributed algo-
rithms, load balancing, Fraglets.

1 Introduction

Chemical computing models have been proposed since the 1980ies for express-
ing concurrent computations in a natural way [1,2,3,4,5]. In parallel, artificial
chemistries [6,7,8] were constructed to model chemical phenomena related to
life and its origins. Some of these chemistries express and evolve computer pro-
grams [7,9], potentially representing new models of computation. However the
vast majority of these artificial chemistries have remained at the level of simu-
lations, where the actual pace of the chemical system with respect to the real
time and among different devices is not an issue.

In this contribution we examine the potential of such chemically-inspired
computation models for networking. On one hand, we extend our Fraglet lan-
guage [10] to a full artificial chemistry setting. On the other hand, we extend the
artificial chemistry concept to a distributed system, in two steps: The first step
is to extend it to an online environment where time synchronization becomes
essential for responding to external events with the expected impact. The sec-
ond step is to take the network topology into account, extending the centralized
analysis methods to a distributed system.

Finally, we show a case study on a distributed equilibrium algorithm that is
able to find the equilibrium concentrations of a target molecule among a set of
nodes in an arbitrary topology. The algorithm is applied to a load balancing
problem in which tasks should be equally distributed among all nodes.
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Many sophisticated approaches to load balancing exist [11,12,13,14,15]. A
classification can be found in [12]. More recently, a chemotaxis-inspired load
balancing approach was proposed [15]. Although also chemically-inspired, the
approach in [15] did not rely on a general purpose artificial chemistry. In our
system, in contrast, the load balancing algorithm implicitly emerges as an effect
of the chemical reaction network that is constructed and distributed among
nodes. We do not claim that the resulting algorithm is superior to the current
state of the art in load balancing. However, it offers a different perspective upon
problem solving in distributed systems: instead of pre-programming the system
numerically to achieve a desired stable state, an equilibrium can be reached
autonomously via the exchange of virtual molecules among nodes.

This paper is structured as follows: Section 2 provides some basic background
information on artificial chemistries and chemical computing, that will be needed
for the rest of the paper. Section 3 briefly describes the Fraglet language and
the instructions used in the load balancing case study, which is then presented
in Sect. 4. Section 3 also defines Fraglets as an artificial chemistry, then pro-
poses extensions of artificial chemistries to online and distributed systems. The
equilibrium study in Sect. 4 also relies on these definitions and extensions.

2 Artificial Chemistries and Chemical Computing

Chemical computing [4,5,8] includes real (wet computation with real molecules)
and artificial models inspired by chemistry but executing top of conventional
computer architectures. This paper focuses on the latter only, and their extension
to networked environments.

In [8] chemical computing models are classified within Artificial Chemistry,
the subfield of Artificial Life devoted to the dynamics of chemical phenomena
related to life and organizations in general.

The term artificial chemistry also refers to the specific chemical model used.
In this sense, an artificial chemistry [8] is defined by a triple (S, R, A), where S
is the set of molecules, R is the set of reaction rules, and A is an algorithm that
determines how the rules are applied to the molecules. For example, in [7] the
set S contains expressions from λ-calculus, the set R contains conditions under
which two molecules from S may react and the way reactions take place: the re-
actants remain in the reactor, the corresponding products are inserted, and two
other molecules are chosen at random for decay. The algorithm A just picks two
molecules at random and performs the reaction or not depending on the condi-
tions in R. Such a simplified chemistry can nevertheless show the spontaneous
emergence of self-sustaining organizations out of an initial “soup” of random
molecules. However, the algorithm A becomes computationally expensive if the
probability of two random molecules reacting with each other is small.

For simulating real chemistries in an efficient way, variants of the Gillespie
algorithm [16] are widespread. This algorithm simulates the stochastic dynamics
of a real-world well-stirred chemical reactor tank. For each time step iteration,
it calculates: (i) the next reaction to occur, taking into account for each reaction
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rule, the collision probabilities of their reactants; (ii) the virtual time τ when
the chosen reaction is expected to occur. The complexity of this algorithm is
O(|R|) for each iteration step: it is of course more complex than just choosing
two molecules at random at every iteration step, but on the other hand, it
only selects those molecules that do react in fact, and does not spend cycles on
inert molecules. Therefore it is more efficient when only a small subset of those
molecules in the reactor may actually react.

3 Organizing Interacting Packets as Chemical Reactions

In computer networking, the most frequently executed action on data packets is
the rewriting of header fields. For example, on each leg of a packet’s route through
a sequence of Ethernets, the packet must obtain a new destination field to reach
the next hop. Fraglets are a special form of data packets, based on the same
principle: By rewriting a packet’s header fields, we can implement distributed
computations like communication protocols or a load balancing algorithm.

In this section, we first describe the Fraglet communication environment be-
fore in Sect. 3.2 we show how Fraglets form an artificial chemistry. Relating
artificial time with real time and by interconnecting the artificial chemical re-
actors, we obtain a distributed artificial chemistry that is able to implement
network functionality in ways beyond classic forwarding tasks, as we show in
Sect. 3.3 and 3.4, respectively.

3.1 Fraglets

Formally, a string rewriting system is a pair (Σ, P ) where Σ is a finite alphabet
of symbols and P is a set of production rules. A production rule is a string
substitution pattern that operates on words w ∈ Σ∗. The Fraglet language is an
instance of a string rewriting system in which substitution patterns are limited
to those which, on their left side, only depend on the first symbol of a word. For
example, the rule

[exch S T U TAIL] → [S U T TAIL]

when applied to the word [exch a b c d] will result in [a c b d] – that is,
two symbols are swapped. The exch acted as a prefix command for the rest of
the word whereas the new leftmost symbol ’a’ serves as a continuation pointer
for further processing of the result.

This type of string rewriting systems, where the leftmost symbol identifies the
rule to apply, is also called a tag system. Unlike Post’s original tag system [17],
which operates on one initial word and asks about the system’s expansion, we
place ourselves in a multiset context where the production rules are applied
to all words in a multiset. In Fraglets, we interconnect several multisets such
that they form a network of packet processing nodes. Thus a Fraglet system
is a tuple (Σ, P, N, E) where N is a set of nodes n1, . . . , nk, each containing a
multiset of words over Σ to be transformed according to the rules P , and the
nodes being interconnected according to edges (ni, nj) ∈ E. An excerpt from
the set of production rules for Fraglets is shown in Table 1.
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Table 1. Selected production rules of a Fraglet system. S, T and U are placeholders
for symbols ∈ Σ, TAIL stands for a potentially empty word w ∈ Σ∗.

Op input output

exch [exch S T U TAIL] → [S U T TAIL]
node ni[node S] → [S ni] (get node’s name)

send ni[send nj TAIL] → nj[TAIL] (if (ni, nj) ∈ E, ε otherwise)

ni[send any TAIL] → nj[TAIL] (∃j : (ni, nj) ∈ E; anycast)

ni[send all TAIL] → nj[TAIL] (∀j : (ni, nj) ∈ E; broadcast)

split [split PART1 * PART2] → [PART1]+[PART2]
sum [sum S i1 i2 TAIL] → [S i1+i2 TAIL] (do. for mult etc)

match [match S TAIL1]+[S TAIL2] → [TAIL1 TAIL2]
matchp [matchp S TAIL1]+[S TAIL2] → [matchp S TAIL1]+[TAIL1 TAIL2]

mmatchp [mmatchp n S1 . . . Sn TAIL0] → [mmatchp n S1 . . . Sn TAIL0]
+[S1 TAIL1]+. . . +[Sn TAILn] [TAIL0 TAIL1 . . . TAILn]

As an example, the fraglet [split a b * c d e] will result in two fraglets
[a b] and [c d e]. The match rule lets two fraglets react together which share
a common symbol at the second and first position, respectively:

[match a b c] + [a x y z] → [b c x y z]

and the result is the concatenation of the two tails. The special persistent form
of match is called matchp and permits to define “catalytic” processing rules that
are not consumed during their reaction.

As a final example the following execution trace shows how the send tag can
be used to implement traditional packet forwarding:

[send n2 send n3 send n4 my payload] sender’s fraglet executes at n1
[send n3 send n4 my payload] at n2
[send n4 my payload] at n3
[my payload] arrived at n4

This example demonstrates source routing where the sending node n1 lets a
packet work itself through a chain of nodes n2 . . . n4.

3.2 Fraglets as an Artificial Chemistry

In accordance with the definition in [8] explained in Sect. 2, an artificial chemistry
is characterized by the triple (S, R, A), which we now define for Fraglets in the
following way:

The set of molecule species S corresponds to the set of all possible fraglets,
i.e. all words w ∈ Σ∗. Thus S ≡ Σ∗. Similarly, the set of reaction rules R is
equivalent to the set of production rules P : R ≡ P .

The algorithm A, which selects which molecules to process at each round,
only takes the molecules’ matching heads into account. This leads to a two-level
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hierarchy: the actual molecular species correspond to fraglets which are strings
w ∈ Σ∗ of arbitrary length, each of which may occur several times in the multiset
of a given node n ∈ N . The reactor algorithm only looks at their headers, defining
the second level of hierarchy where all the molecules with the same matching
head symbol are considered as the same reactant for the choice of the next
reaction to perform. This makes the algorithm scalable in spite of a potentially
large number of different fraglets.

The original reaction algorithm in Fraglets did not take into account the full
dynamics of molecule concentrations as in [7,16]. This restricted its applicability
to cases where linear dynamics would suffice. We have now extended the Fraglet
interpreter with variants of the Gillespie algorithm [16] such that more complex
dynamics can be expressed. This is essential for an analytically tractable control
of molecule concentrations. The header matching scheme is preserved in any
case, since the algorithm only operates at the second level of hierarchy, which
inspects only the fraglet headers.

3.3 Online Artificial Chemistry

In this section we introduce the concept of an online artificial chemistry for an
artificial chemistry that is embedded in a real world environment in which it has
to react in a timely manner.

In chemistry, the amount of reactions that may happen in parallel is only
limited by the amount of molecules present and their collisions. For instance, au-
tocatalytic reactions may lead to exponential growth in substrate concentration.
From an information processing perspective, this is equivalent to an exponential
growth in processing capacity. This powerful property is largely exploited when
computing with real molecules such as DNA computing.

Algorithms such as Gillespie’s [16] emulate chemistries on top of classical
von Neumann computers with fixed processing capacity. The elastic processing
capacity of chemical systems is emulated with the help of a virtual time which
is inversely proportional to the total sum of the products of concentrations of
all potential reactants. Virtual time steps can be made arbitrarily small as the
reactant concentrations grow. If such virtual time is used for making decisions
such as in a robot or network, then mapping it to physical time in a coherent
way is mandatory for the device to present consistent reaction times.

It follows that an online artificial chemical system has to map the calculated
virtual time (τ) which would have elapsed until the next reaction in a real tank
reactor, to a physical time (τ ′), the time that will actually elapse. A simple al-
gorithm is to assume a one-to-one mapping τ = τ ′, and just sleep for τ − T ,
where T is an estimation of the real time it takes to process the reaction in
practice. This simple algorithm obviously requires τ � T , meaning that there
is an upper bound in the number of molecules in the reactor, above which the
algorithm is unable to keep the pace of a real chemistry. On the other hand,
there is also a lower bound below which the sleeping time becomes too large
for the system to react to the real world and to the inflow of new molecules.
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Finding this compromise is crucial to have artificial chemistries running online,
and deserves further research.

3.4 Distributed Artificial Chemistry

In order to use an online artificial chemistry in computer networks, we must
expand it into a model of distributed reaction systems. In this section we show
the challenges of the distributed case, and that the resulting distributed artificial
chemistry can analytically be treated like a local one.

First we define a network of artificial chemical reactors (nodes). The network
topology, which interconnects the reaction vessels, describes a high-level struc-
ture, conceptually one layer above the reaction system inside a certain node.
A single node still reflects a well-stirred reactor that does not consider spatial
neighborhood of molecules.

In this sense, a network of reactors can be described as a undirected graph
G = {N, E}, where N = {n1, . . . , nk} is the set of all nodes in the network. Each
node ni ∈ N is an independent reactor, driven by an individual CPU. The edges
E = {e1, . . . , el} are bidirectional network links and connect neighbor nodes.
Two nodes ni and nj are neighbors iff ∃e = (ni, nj) ∈ E. In this case we define
adj (i, j) = adj (j, i) = 1, otherwise adj (i, j) = adj (j, i) = 0. Each node is able
to emit molecules, which are sent along the path of a link to one of the neighbor
nodes using unicast, broadcast, or anycast transmission primitives.

Since each node is simulated independently, a single node ni is an individual
artificial chemical reactor with its own (Si, Ri, Ai), i.e. each node is defined by
an individual set of molecules Si, reaction rules Ri, and algorithm Ai. We write
Wi for a molecule W ∈ Si. The exchange of molecules between two nodes ni

and nj can be treated like reactions that map the set of molecules Si to Sj , for
example Wi → Wj . Thus, in addition to a local reaction network, each node also
contains reaction rules that send molecules to other nodes. The overall reaction
network is then defined by (S, R, A), where S =

⋃
i∈N Si and R =

⋃
i∈N Ri.

Consider the following network G = {N, E}, where N = {n1, n2}, and E =
{(n1, n2)}. The reaction system over the overall set of molecules S = {Wi, Wj},
depicted in Fig. 1, achieves a balance in concentration of molecule W between
the two nodes.

The corresponding program in Fraglets uses unicast transmission to let each
node send one molecule W at the time to the other node.

W1 W2

Node n1 Node n2

Fig. 1. Equilibrium reaction for a two node network topology
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in node n1: [ matchp W send n2 W ]
[ W ]2000 (i.e., 2000 copies of [W])

in node n2: [ matchp W send n1 W ]

Even when starting with an unequal distribution of molecules W , the reaction
system drifts into a state where both nodes contain the same amount of W . The
stochastic simulation of this distributed reaction system is shown in the right
side of Fig. 1.

There is one essential requirement for the algorithm Ai of a distributed reac-
tion system: The virtual time evolution in all nodes participating the network
must be the same. Generally, when a node sends molecules to another node, the
sender generates a molecule stream of a certain rate with respect to the virtual
time of its simulation algorithm. This rate is proportional to the concentration
of the molecule. The molecule to be sent is then encoded as payload of a network
packet, and is sent to the destination node, which is usually driven by another
CPU. There the payload is converted back to a molecule, and is injected into
the destination reaction vessel, which simulates its own virtual time evolution.

Therefore if the nodes of a network are allowed to be driven by different
CPUs, it is important that the virtual time evolution in all nodes of the network
is the same. Otherwise, a molecule stream may be received with an other rate
than originally generated. If such a “synchronization” is achieved, for example
by locally synchronizing the virtual time of each node to the physical time,
then, the resulting distributed reaction system that is spawned across all nodes
can analytically be treated like a local reaction system. This includes methods
to analyze the topology of the network, stoichiometric analysis [18], metabolic
control analysis [19], as well as results from the chemical organization theory [20].

4 A Chemical Protocol for Load Balancing

In this section we introduce a novel approach to balance work load in a net-
work that exploits the dynamics of molecule reactions in an artificial chemistry.
To this end we install flows of “job molecules” that seek to level out different
concentration of job molecules on each node. The salient point is that load dif-
ferences never need to be computed explicitly, as differences in packet rates are
sufficient to steer the system into an equilibrium state.

Figure 2 depicts a typical network topology with columns representing the
amount of jobs before and after load balancing. The left side shows the situation
right after injecting a given amount of job molecules W into node n1, whereas the
right side delineates the job molecule distribution after the distributed reaction
system reached its steady state.

We assume that all jobs are either independent and self-contained, or that we
have job tokens which a node uses to request the actual job, that is: our system
does not have to maintain a queueing policy for job molecules.
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n1 n2

n3

n4

n1 n2

n3

n4

Fig. 2. Load balancing for a four node network topology. The columns represent the
concentration of job molecules W in each node.

4.1 Distributed Equilibrium Algorithm

The basic idea of our algorithm is to (i) publish the local concentration of job
molecules W to all neighbor nodes. Every node then (ii) requests job molecules
W from overloaded neighbors in a stochastic manner. (iii) This promotes another
reaction that carries job molecules from heavily to lightly loaded nodes.

We introduce three different families of molecule species: Wi molecules repre-
sent the work load, Si are signalling molecules whose rates indicate to neighbors
the current load level, while Ri molecules are requests from a node to obtain
more work. Our algorithm can be expressed formally by the following abstract
reaction system, where X

(j)
i denotes molecule X , currently residing in node i,

originally created and sent by node j.

Wi −→ Wi +
∑
j∈N

(
(i, j) · S(i)

j

)
(i)

S
(j)
i −→ R

(i)
j (ii)

R
(j)
i + Wi −→ Wj (iii)

The numbering of the reactions corresponds to our list of principles introduced
above. For example, reaction (ii) states that a received signaling molecule will
be converted into a request molecule that is sent back to the originator of the
signaling molecule.

The three reactions have a direct translation into the Fraglet language as
shown below. Note that each of these three Fraglet rules must be present in all
nodes of the network.

(i) [ matchp W split W * split node N * match N send all S ]
(ii) [ matchp S split node RCMD1 *

split match RCMD1 exch RCMD2 W *
split match RCMD2 RCMD R *
match RCMD send ]

(iii) [ mmatchp 2 R W send ]

Before we explain in more details how these reactions work together, we intro-
duce a graphical representation of the reaction network for a three-node string
topology. As can be seen in Fig. 3, S molecules are deterministically transferred
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broadcast

Node n1

W2 W3

R
(2)
3R

(3)
2R

(1)
2R

(2)
1

S
(2)
1 S

(1)
2 S

(3)
2 S

(2)
3

Node n2 Node n3

broadcast broadcast

(i) (i)

(ii)

(iii) (iii)

(ii)

W1

Fig. 3. Distributed reaction network

to a neighbor node and become a R molecule. Such a R molecule will stochas-
tically bind to a W job molecule and drag it back to where the S molecule
came from. The following paragraphs explain each of the three reactions in more
detail:

(i) Concentration Tracking: Each node must be informed about the load of its
neighbors. Therefore the first reaction’s task is to broadcast signaling molecules S
to all peer nodes. A signaling molecule contains the name of the source node, and
is emitted with a rate that is proportional to the concentration of job molecules
W . The opposite view is that each node receives a signal stream from its neigh-
bors. The resulting concentration of signaling molecules S reflects the concen-
tration of job molecules in the neighbor nodes.

(ii) Job Molecule Request: The second reaction stochastically picks and con-
sumes one of the signaling molecules Si. Since the Fraglet matchp reaction
matches only the head symbol, this rule applies for all molecules S

(j)
i received

from any neighbor node j. This results in picking the signaling molecules of heavy
loaded peer nodes more frequently, because the concentration of the signaling
molecule reflects the concentration of job molecules W in the peer node, and
due to the stochastic selection process. After picking a signaling molecule S

(j)
i ,

this reaction builds a request molecule R(i), tags it with the name of the local
node, and sends it back to the node j, the originator of the signaling molecule.
Request molecules are sent using unicast messages.

(iii) Job Molecule Transport: Request molecules promote the third reaction,
that transmits a job molecule Wi to the neighbor node j that requested it.

The overall result of this reaction network is that if a node has a higher concen-
tration of W molecules than any of its neighbors, it will emit more S molecules
than the neighbors, thus be drained more aggressively through R molecules.

4.2 Results

The proposed three-stage mechanism regulates the exchange of job molecules
W . Figure 4 shows the dynamic behavior of the concentration of molecule W
in a four node network as depicted in Fig. 2. This result was obtained with a
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Fig. 4. Equilibrium of job molecules W for a four node topology without delay and
packet loss. At time t = 10, a quantity of 4000 molecules of W is injected to node n1.

Fraglet interpreter that simulated the behavior of the four nodes. We injected
4000 job molecules W at time t = 10 into node n1. We ran the simulation of the
above system such that all nodes are operating in non-saturated mode and that
the network links are not afflicted with delay or packet loss.

The concentration of molecule W converges to the expected concentration of
1000 molecules in all nodes of the network. At t = 13 one can nicely see the onset
of W molecules in node n2: the rise of concentration is soon capped by nodes
n3 and n4 which start to drain node n2 from excess job molecules. The system
quickly reaches the steady state where the concentrations fluctuate around an
average value due to the stochastic notion of the reaction algorithm.

An important aspect of our approach is that we can verify the properties of
chemical protocols by formal methods of flux base analysis [18]. In the case of
the load balancing protocol, we studied the steady state of the system where the
molecule concentrations do not change anymore. Solving the resulting equations
for an arbitrary node shows that the concentration of W is equal to the average
concentration of W in its neighbors. From this it follows that the concentration
of job molecules must be equal in all nodes of the network for an arbitrary
topology.

4.3 Discussion

In this paper we showed another, chemical way of looking at the problem of load
balancing. In this section we first classify our algorithm and compare it to a
similar chemotaxis-inspired method. Then we show why our initial approach, an
even simpler, diffusion-based reaction network was not successful for an arbitrary
network topology. Finally, we discuss the impact of imprecise virtual to physical
time synchronization and network links with delay and packet loss.
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Related Work. The chemical algorithm proposed in this paper can be classified
according to [12] as a distributed dynamic load balancing algorithm: distributed,
because the algorithm does not rely on central knowledge of the job distribution,
and dynamic, because jobs may be dynamically produced and consumed during
operation. Our algorithm is similar to the chemotaxis-inspired load balancing al-
gorithm proposed in [15], which lets fast signals diffuse into the network. These
signals then act as attractors to move jobs from overloaded nodes to nodes with
available capacity. Similarly, in our algorithm, every node broadcasts signaling
molecules to its neighbors. The role of signaling molecules is to promote the
transfer of jobs. Unlike [15] we fully rely on the stochastic selection of reactions
and molecules. For example, our algorithm never explicitly calculates the exact
arithmetic difference of job molecules between nodes. Instead, the Gillespie algo-
rithm more frequently picks those molecules that manifest in higher concentra-
tions: The artificial chemical reaction vessel intrinsically balances the execution
probabilities of interdependent reactions, and thus the resulting balance is an
emergent property of the distributed reaction network.

Load Balancing with Less Than Three Reaction Types? The initial
idea was to let job molecules immediately diffuse to the neighbors using anycast
transmission. We hoped that a single reaction, which stochastically picks and
alternatively sends a job molecule to a neighbor, would already yield a balance
of work load. However, a formal analysis of the resulting reaction network, which
strongly resembles the diffusion mechanism in physics, showed that the equilib-
rium can only be maintained for a fully meshed topology. Already a simple chain
topology as in Fig. 3 results in an imbalance. At the end, we came up with the
presented algorithm that obtains a work load balance for any network topology.

Real World Considerations. So far we have assumed that a CPU that ex-
ecutes the artificial chemical reactor is infinitely fast, that its clock is precise,
and that the network is not afflicted with delay or packet loss. In the remaining
paragraphs, we show what happens if we relax these constraints.

In reality, CPU clocks are subject to jitter and drift which affects the virtual
to physical time mapping suggested in Sect. 3.3. Stochastic jitter is not harmful
for chemical algorithms since they do not rely on deterministic execution of
reactions. In contrast, clock drift between distributed reaction vessels lead to
shifted reaction weights. When dilating the virtual time on a certain node the
rate of incoming molecules increases while the rate of outgoing molecule decreases
with respect to the virtual time. In this case the proposed algorithm establishes
a distribution of job molecules proportional to the virtual time dilatation of
the participating nodes. For example, if there is one node in which a reaction
takes twice as long as in the other nodes, that node contains twice as much job
molecules as the other nodes in steady state. Therefore one must assert that
a node’s load does not affect the speed of the artificial chemistry reactor, as
otherwise our protocol will not achieve the desired result.

In addition to imperfect time mapping, in a real network the algorithm has
to cope with packet loss and delay. In case of overloaded links, some of the



56 T. Meyer, L. Yamamoto, and C. Tschudin

signaling molecules S will be dropped. Consequently, signaling molecules are
received at a lower rate, which leads to a lower concentration of S in the neighbor
nodes. Hence, the second reaction reduces its activity, and generates less request
molecules R, whereupon the algorithm gradually decreases the exchange of job
molecules W , allowing the link to recover from the overload situation. Although
this is a desirable behavior, it points out the need for another “job conservation”
protocol that can handle molecule leaks.

Another problem is that in networks with non-negligible delay, the concentra-
tion of S follows the peer concentration of W with that delay. In the proposed
algorithm we use the concentration of S for feedback control. A consequence
of having delay in the feedback loop are oscillations. However by adapting the
reaction constants accordingly, we are able to stabilize the algorithm for these
situations.

5 Conclusions

In this paper we showed how Fraglets, a tag matching system to design network
protocols, can be mapped to an artificial chemistry. By mapping Fraglets to
an artificial chemistry, and by extending artificial chemistries to an online dis-
tributed environment, we obtained a system that enables us to implement “chem-
ical protocols”. We demonstrated such a protocol for load balancing, where the
desired result emerges from the combination of the distributed reaction network
and the stochastic execution algorithm.

“Chemical protocols” are interesting because they offer a new way of coupling
network functionality: Instead of explicit numeric values (e.g. load differences)
we use rate difference, which is much more elastic and receptive for cross talk
from other network functions. Ultimately, we could organize network stacks as
an ensemble of intertwined metabolic pathways, which we hope will be more
robust and adaptive than the current static assembly of protocol modules.
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Abstract. Biomimicry means learning from nature. Well known examples 
include physical structures such as the Velcro fastener. But natural selection has 
also “engineered” mechanisms by which the components of adaptive biological 
systems are organized. For example, natural selection has caused the foragers in 
an ant colony to cooperate and communicate in order to increase the total 
foraging success of the colony. Ant colony optimization (ACO) is based on the 
pheromone trails by which many ant species communicate the locations of food 
in the environment around the nest.  Computer algorithms based on ACO 
perform well in hard computational problems like the Traveling Salesman 
Problem. ACO algorithms normally use only a single attractive “pheromone”. 
However, it seems that real ants use more. The Pharaoh’s ant, Monomorium 
pharaonis, uses three different trail pheromones to provide short-term (volatile) 
and long-term attraction (non-volatile) and short-term (volatile) repellence so 
that foragers are directed to particular locations of the trail system where food 
can be collected. In addition, Pharaoh’s ants also extract information from the 
geometry of the trail system and have division of labour among the forager 
workers, some of whom specialize in laying and detecting pheromone trails. 
ACO takes inspiration from ant colonies but does not need to faithfully model 
how ant colonies solve problems. For example, in ACO “pheromone” is applied 
retroactively once an “ant” has returned to the nest, which is something that can 
easily be implemented in a computer program but is obviously something that 
real ants cannot do. This raises the possibility that ACO might benefit from 
taking further inspiration from ant colonies. Presumably, real ants use multiple 
information sources and communication signals for a reason. 

Keywords: Ant colony optimization, Pharaoh’s ant, Monomorium pharaonis, 
honey bee, Apis mellifera, social insects, complex adaptive systems.  

1   Learning from Nature 

Learning from nature, or biomimicry, is common in engineering. Having spent the 
past 12 years living close to Chatsworth House in Derbyshire, England, one of my 
favourite examples concerns the giant water lily, Victoria amazonica, a spectacular 
plant with floating circular leaves up to 3m in diameter. A friendly rivalry developed 
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between the Duke of Devonshire, the owner of Chatsworth, and the Duke of 
Northumberland, the owner of Syon House in London, to cause this plant to flower. 
Joseph Paxton, the head gardener at Chatsworth, succeeded in 1849 and presented one 
of the first blooms to Queen Victoria. The ribs and veins on the undersides of the 
giant leaves appeared to Paxton "like transverse girders and supports" and became his 
inspiration for designing a giant glasshouse at Chatsworth and later the Crystal Palace 
in London, at the time the largest building in the world. Less spectacular but no less 
ingenious is the Velcro fastener, which was invented in 1951 by George de Mestral, a 
Swiss engineer. De Mestral was inspired by the hooks by which burdock seeds 
(Arctium spp.) attach to animal fur for dispersal, and which also attached to his dog 
and his own clothing during summer walks in the Alps  (information taken from 
Wikipedia). 

The two above examples both concern physical structures. But learning from 
nature is not confined to physical structures. In Biomimicry: Innovation Inspired by 
Nature, Benyus [1] gives examples in areas as diverse as farming, energy supplies, 
healing, making things, storing information, and business. In Biomimicry for 
Optimization, Control and Automation, Passino [2] focuses on insights from the ways 
that biological systems, such as cells or organisms, control and regulate processes. 

Life on Earth is more than 3 billion years old and has been subject to 
improvements “engineered” by natural selection throughout this period. Natural 
selection favours adaptations. These are normally features that cause organisms to be 
more successful in survival and reproduction [3]. All kinds of adaptations have been 
favoured, including physical structures such as the hooks on burdock seeds and the 
robust veins on giant lily leaves. But adaptations also include the internal mechanisms 
by which the different components of an organism function in a coordinated manner. 
In this way the organism functions effectively. That is, it stays alive, grows and 
reproduces. In short, natural selection has not only caused a wealth of adaptations 
involving materials and physical structures but also ways for controlling and 
organizing complex systems consisting of many component parts. The latter may be 
less immediately obvious, both in understanding how they work and in devising 
applications through biomimicry. But in a world in which humans rely more and more 
on systems consisting of many components, such as transport and communication 
networks, biology is a good place to look for ideas. 

The purpose of this article is to showcase the mechanisms by which a particular 
type of adaptive biological system—the foraging system of an insect society—is 
controlled and coordinated as an example worthy of further study by engineers. The 
emphasis is on the Pharaoh’s ant, Monomorium pharaonis, a species which we have 
been studying in my lab. I will also refer to the honey bee, Apis mellifera, which is the 
best studied of all social insects. Although computer scientists have already devised 
methods inspired by insect societies [4], such as Ant Colony Optimization (ACO) [5] 
and Swarm Intelligence [6,7], I think that more insights can be obtained. In particular, 
insect societies seem to be much richer in coordination and communication systems 
than seems to be minimally necessary. Presumably, there is a reason behind this, 
which may lead further insights and inspiration.       
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2   Insect Societies as Adaptive Biological Systems       

The need to organize efficient communication and transport networks is shared by 
both insect and human societies. The colonies of many species of ants form networks 
of foraging trails. To forage efficiently a colony must send foragers to where the food 
is [8]. Because food locations change constantly this is not a trivial challenge. In fact, 
it is a biological example of a dynamic optimization problem. This is a type of 
problem increasingly of interest to engineers and computer scientists. It is a problem, 
for example, in organizing cell-phone networks given that both phone locations and 
traffic intensity are constantly changing.  

Should insect colonies be of special interest? What about other groups consisting 
of multiple individuals? If you see a group of organisms, such as pigeons, of the same 
species this does not mean that they are working together to some common goal. 
They may well be aggregating to reduce predation (“selfish herding”) or to find mates 
[9]. But the subset of the worker force in an insect society that collects food is 
designed by natural selection to cooperate and, thereby, to work together more 
effectively. This is because the food that the many forager workers collect all goes 
back to the same nest to feed the same larvae. If one worker ant or bee helps a worker 
from the same colony to collect more food then this cooperation will be favoured by 
natural selection. (Conversely, if one pigeon in a flock were to help another to collect 
more food, this would not normally be favoured by natural selection.) The most 
complex known animal communication signal, the waggle dance of the honey bee, is 
one way of doing this [10]. A forager bee that has returned to the nest will often make 
waggle dances to communicate to unemployed forager bees the direction and distance 
of the food source she has been visiting. Foragers are more likely to dance if they are 
working a highly profitable patch of flowers, thereby causing positive feedback to 
better foraging patches [11]. Ants don’t have waggle dances but in many species they 
communicate the locations of food sources by pheromone trails or by leading recruits 
directly [11]. As such, the foraging system of an insect colony is a good place to look 
for insights into improving the performance of systems that rely on communication 
and cooperation among many components. Furthermore, social life in insects is a 
proven success. Both ants and honey bees are very successful organisms in terms of 
abundance and ecological importance [11].  

Ant colonies solve problems via the self-organization of multiple agents [12]. A 
solution, such as an efficient foraging trail network, emerges from the actions of 
many agents—worker ants—each of which is individually ignorant of the overall 
network and is simply responding to local conditions. For example, if a forager ant 
reacts to finding food by depositing pheromone on its way back to the nest then this 
will result in positive feedback on trails that lead to food. Negative feedback on trails 
that lead to depleted food sources can be caused simply by the evaporation of 
attractive trail pheromone, or by the addition of a repellent trail pheromone [13]. In 
this way, the trail network from the entrance of the nest does not direct foragers to 
random locations in the surrounding environment. Rather, it directs them to the better 
feeding locations. This is analogous to the honey bee foraging system, where positive 
feedback to better feeding locations comes about because foragers that are working 
more profitable flower patches are more likely to make waggle dances [10].  
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3   Inspiration from Ants and Other Social Insects 

One example of ant-inspired problem solving in computer science is ant colony 
optimization, or ACO [5]. Here, multiple-agent simulations incorporate an 
evaporating pheromone trail with successful agents laying more pheromone. In this 
way a wide range of potential solutions are explored. The better solutions are 
reinforced with pheromone, and the system converges on a good solution. Near 
optimum solutions to problems that cannot be solved analytically, such as the 
Travelling Salesman Problem, TSP, can be obtained [5] and the method also performs 
well in real world tasks [7].   

ACO is inspired by ants but does not faithfully follow ant biology. But why should 
it?  A computer algorithm need not be constrained in the same way as real ants. For 
example, in ACO “pheromone” is normally applied retroactively when an agent has 
“returned to the nest”. By contrast, real ants can only lay pheromone as they walk. 
ACO also employs heuristics that real ants cannot use. For example, in the TSP, when 
two cities are equally attractive in terms of “pheromone”, an agent may select the 
nearer. Ants may well have their own heuristics. In choosing between two branches at 
a trail bifurcation, more ants will likely take the branch that involves less angular 
deviation from their current path or direction.     

4   The Foraging System of Pharaoh’s Ants 

The Pharaoh’s ant, Monomorium pharaonis, is a good species for studying 
pheromone trails and foraging. The worker ants are only 2mm long. Short foraging 
distances between nest and food, such as 50cm, are both realistic and easy to set up 
experimentally. As a result, natural foraging can be studied in the laboratory. An ant 
colony is kept in a small wooden box or tube within a larger plastic box that acts as a 
foraging territory. Workers do not seem to be greatly guided by their own memory or 
landmarks when foraging, as occurs in some ants. 

Most ant species are hard to breed in the lab. But in Pharaoh’s ants nestmate males 
and young queens mate readily. In addition, colonies have multiple queens. To make 
two colonies, the ants and brood in a single colony are divided, making sure that each 
part has a few queens. This makes it simple, for example, to make up colonies of any 
desired size, and then to reuse or recombine the same ants to make up new colonies 
[14]. Pharaoh’s ants are “unicolonial” meaning that colonies are not well defined. 
Ants from different nests can be combined without fighting. Pharaoh’s ants are 
thought to originate from Africa, but have been spread worldwide by man. They are 
found in the UK, but only inside building where they can be pests. 

It is easy to get a colony to establish a foraging trail. Laboratory colonies are 
normally fed water, sugar syrup, and dead insects ad libitum. Before an experiment 
they are deprived of sugar syrup for several days. Syrup is then provided in a small 
plastic tube with pin holes for the ants to drink from, or simply by placing a drop of 
syrup on a piece of plastic. The syrup is placed in a location suitable for an 
experiment, such as at the end of a trail apparatus that is placed in the foraging box or 
connected to it by a temporary bridge. The bridge can lead to an experimental trail 
system, such as a straight trail with a bifurcation [13,15,22] or the ants can be given 
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access to a larger area and allowed to make their own trails. Trails can be made out of 
easily available materials including plastic [15] or photocopier paper [16].  Foragers 
normally discover the syrup within minutes. It then takes a colony of 1000-2000 
workers approximately 20 minutes to establish a trail with approximately 100 ants per 
minute passing to and from the feeder [15].  

Our research mainly investigates the behaviour of ants walking along pheromone 
trails at a behavioural level. For example, by determining the number of ants going 
left or right at a trail bifurcation or following a trail we can determine the ability of 
individual ants to detect the pheromones, and hence the decay rates of trails. It is also 
possible to study the pheromones directly, using chemical analyses of the trails [17], 
and to observe the trail laying behaviours themselves [18,19]. Pharaoh’s ants have a 
sting that they extend to deposit pheromone. Marks left by this sting can be observed 
if the ants walk over smoked glass [16].  

Our research has uncovered some unexpected and interesting properties of the 
pheromone trail system. Perhaps the main overall result is simply the richness of the 
system in terms of information and communication mechanisms. Trails are not 
marked by a single attractive trail pheromone, as is often assumed. Rather, the 
behavioural responses of workers to trails indicate that there are two attractive 
pheromones and one repellent pheromone. Information about the polarity of the trail 
(which direction leads back to the nest) is also extracted from the geometry of the trail 
system [16]. And individual foragers, although they look the same do not behave the 
same. Some specialize in trail laying [18] or trail detecting [20]. 

Why have multiple trail pheromones? Our working hypothesis [21,22] is that they 
have complementary functions (Fig. 1). One of the trail pheromones is attractive and 
volatile, decaying within approximately 20 minutes [15,22]. Having a trail that 
dissipates rapidly is presumably advantageous in that it reduces the duration over 
which foragers will be directed to a depleted feeding location. It seems to function 
like the “white line” on a road, providing something to follow. It also provides 
information as to which branch to take at a trail bifurcation [15].  One of the two other 
trail pheromones is also attractive, but is non-volatile lasting up to two days [20]. This 
probably acts as a “memory”, allowing a colony to re-establish a trail to a previously 
rewarding feeding location. Many ant species forage only at a certain time of day, and 
some food sources are only profitable at certain times of day, such as flowers or 
aphids that secrete nectar or honeydew. This long-lived pheromone is detected by 
specialist “pathfinder” ants that walk more slowly and with their antennae in contact 
with the substrate [20]. The final pheromone is repellent and volatile, decaying in 
approximately 30 minutes. It seems to act as a “no entry” signal, and is deposited 
after a trail bifurcation on the branch that does not lead to food [13]. This is in 
contrast to the attractive volatile pheromone, which is deposited along a whole trail. 
The repellent signal is volatile and can be detected before an ant reaches the trail 
bifurcation [13]. At junctions, additional information is provided in the form of road 
signs (human roads) and no-entry pheromone (Pharaoh’s ant trails). Ants detecting 
this signal are more likely to U-turn, and also zig-zag more, presumably in search of 
the alternative, rewarding, branch. 
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An additional source of information is provided by the geometry of the trail system 
[16]. The trails are analogous to the root system of a plant, bifurcating repeatedly. The 
two outward branches have an angle of approximately 60 degrees between them. As a 
result, the junction of the three trails is asymmetrical, and this asymmetry provides 
information concerning the polarity of the trail—which direction leads to the nest and 
which lead away from the nest. Ants walking through trail bifurcations often make U-
turns if they are walking the wrong way. (For example, foragers with a full stomach 
who are walking in the direction that leads away from the nest, and vice versa.) By 
experimentally altering the angle between trail bifurcations, it is clear that it is the 
geometry of the trail bifurcation that provides the polarity information, not the trail 
pheromone itself. At an angle of 60 degrees, approximately 5 times as many correct 
U-turns were made as incorrect U-turns. The precise angle was not critical showing 
that the underlying mechanism is robust. Angles between 45 and 90 degrees all gave 
good results [16]. 

In addition, even though the forager ants all look the same they do not behave the 
same. Approximately 7% actively maintain the trail, making repeated U-turns and 
laying trail pheromone with their extended sting [18]. Pathfinders, the ants that walk 
with their antennae in contact with the ground in order to detect the non-volatile 
attractive trail pheromone comprise about 20% of the foragers [20]. 

5   Conclusions 

Our research on the organization of Pharaoh’s ant foraging systems shows that ant 
foraging trail networks are much more complex that previously thought, with 
individual specialization, multiple information sources, and multiple trail pheromones 
providing both positive and negative feedback [21]. As an evolutionary biologist, I 
am certain that this complexity is not accidental but exists to make the foraging 
system of a colony of Pharaoh’s ants more effective at collecting food. In this way the 
workers will (indirectly) pass on more copies of their genes. At this stage of the 
research we have identified some of the mechanisms involved, but as yet how they 
work together (Fig. 1) is only a hypothesis.  

The focus of much research in complex systems in biology is directed at the 
organismal level or below, particularly cells within multi-cellular organisms, genes 
within the genome, or molecules within cells. Ant colonies, as well as colonies of 
honey bees and other social insects, provide another level of adaptive organization for 
comparison. The study of insect societies has several potential advantages. First, the 
subunits are macroscopic and can be directly observed. Second, it is easy to 
manipulate the system. Third, the number of communication signals and feedback 
loops is small enough to make the system manageable to study and model but not so 
small as to make the system trivial. Fourth, insect societies can easily be studied in 
the field or lab. In addition, insect societies have evolved many times (at least 10), 
and are highly diverse (approximately 20,000 species), and so provide many 
independent solutions to the problem of organizing a complex system. Finally, many 
of the problems solved by insect societies are within networks [23], including the 
network provided by the trail system of an ant colony, and are “agent-based” and so 
have wide applicability in engineering. 
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Fig. 1. Hypothesized complementary roles of multiple trail pheromones in Pharaoh’s ants. a) 
The trail network is marked out with attractive non-volatile pheromone. This acts as a 
“memory” lasting several days of where ants have been walking and foraging, and where food 
may be found again. The memory can be “retrieved” by “pathfinder” ants that walk with their 
antennae in contact with the substrate. b) If food is found at a particular location the path is 
marked with the volatile “white line” attractive pheromone. This guides ants along the correct 
path and helps them chose the correct branch to take at trail bifurcations. c) At trail bifurcations 
the non-rewarding branch is marked with the “no-entry” pheromone. This helps ants chose the 
correct branch at a trail bifurcation in which only one branch leads to food. It is volatile and can 
be detected before an outgoing forager reaches the trail bifurcation. d) When the food at one 
location has been eaten, this branch becomes less attractive by the decay of the volatile “white 
line” pheromone, which decays in c. 20 minutes, and by laying “no entry” pheromone. 
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Do the trail networks of ants have anything to offer human engineers and computer 
scientists? The complexity we see in Pharaoh’s ants may simply reflect the limitations 
that ants work under. Thus, the use of multiple trail pheromones may be because 
foraging ants make many mistakes when following a trail. For example, when a trail 
bifurcation is marked with attractive pheromone only approximately 75% of the ants 
choose the branch leading of food versus an unmarked branch [15]. An agent-based 
computer system could presumably make agents much more sensitive to differences 
in “pheromone concentration” at decision points, and this might obviate the need for 
multiple pheromones. On the other hand the realization that ant colonies use multiple 
trail pheromones might lead to improved ant-inspired problem-solving techniques. 
(Similarly, honey bees use at least 6 communication signals in organizing their 
foraging system [10,24,25,26]. ACO generally utilizes only a single evaporating 
attractive trail pheromone. What benefits might the implementation of multiple 
pheromones and the use of behaviourally specialized agents provide?  
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Abstract. At nearly every spatio-temporal scale and level of integration,
the brain may be studied as a network of nearly unrivaled complexity. The
network perspective provides valuable insights into the structure and func-
tion of the brain. In turn, the structure and function of the brain provide
insights into the nature and capabilities of networks. As a consequence,
neuroscience provides a rich offering of network-related challenges and in-
sights for those designing networks to solve complex problems. This paper
explores techniques for extracting and characterizing the networks of the
brain, classificationofbrain functionbasedonnetworksderived from fMRI,
and specific challenges, suchas thedisambiguationof classificationnetwork
representations, and functional self-organization of cortical networks. This
exploration visits theory anddatadriven neural systemmodeling validated
respectively by capabilities and biological experiments, analysis of biolog-
ical data, and theoretical analysis of static networks. Finally, techniques
that build upon the network perspective are presented.

Keywords: neuroscience, modeling, analysis, neural, network.

1 Introduction

For those seeking to exploit insights from biological networks for the under-
standing and design of network-based systems, neuroscience offers a compelling
subject of study for three key reasons. First, the nervous system, its elements,
and its activity can be characterized using network abstractions. Second, ner-
vous systems possess capabilities often sought by designers of network-based
systems. Insights into how these capabilities are achieved may have engineering
value. Finally, the biological and physical constraints on a nervous system’s ele-
ments and their interactions create new classes of challenges and problems, such
as maintaining stability, adapting to change, and eliminating representational
ambiguities, that must be solved enroute to satisfying the overarching require-
ments of nervous systems, such as producing coordinated, beneficial responses
to environmental threats and opportunities.

The network perspective can be applied at many levels of neuroanatomic
integration and abstraction, including:
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– The brain modeled as a network of anatomically and functionally distinct
structures, from small nuclei to major structures, such as the cerebellum and
neocortex [5].

– Individual structures modeled as networks of neurons. For some structures
it is not necessary to characterize every component and link of the network
because highly stereotyped, repeated microcircuits, or network topologies
applied to specific neuron types, have been demonstrated [17].

– Neurons modeled as electrophysiologically distinct, interacting compartments
arranged according to dendritic and axonal morphologies [16].

– Compartments modeled as networks of interacting molecules, some with
properties that change through these interactions.

Using various experimental modalities, such as functional magnetic resonance
imaging and micro-electrode arrays, it is also possible to extract and analyze
spatio-temporal networks of neural activity or brain function [7].

Similarly, emergent capabilities and the subnetwork challenges arising from bi-
ological and physical constraints occur at many levels of integration and abstrac-
tion. This interplay between network structure, biophysical constraints, emergent
behavior, and functional requirements provides insights not exposed by any of
these perspectives alone.

This paper attempts to illustrate the possibilities with a few examples. In
particular, it explores network-related challenges and insights derived from all
but the last of the abstraction levels itemized above. Sections 2–4 consider the
cerebral cortex from biological and theoretical perspectives. Section 2 presents
techniques to extract and characterize the neocortical microcircuit, the neurons
within it, and their interactions. Section 3 explores a critical aspect of the percep-
tual “binding problem”: how ambiguities arise in multi-layer classifier networks.
It also explores how the dynamic properties of neurons may overcome this prob-
lem. Section 4 examines how the information maximization technique may be
used to explain overcomplete representations in cortical maps. Section 5 presents
a technique for extracting complex networks representing spatio-temporal activ-
ity patterns across the brain. It also draws conclusions about the topological
features of these networks and how they can be used for classification and dis-
crimination tasks. Conclusions are presented in Section 6.

2 Neocortical Column Calibration

The behavior of a network depends upon the characteristics of the network’s
elements and their relationships to each other. The Blue Brain Project (BBP)
seeks to characterize the neocortical microcircuit of the rat somatosensory cortex
in greater detail than has ever been attempted, translate this characterization
into computational models, and use simulations to gain insights into neocortical
function that are not possible through biological experimentation alone [26]. This
section briefly describes the efforts of the BBP to characterize the neocortical
microcircuit by using biological data to calibrate the modeled components and
their structural and functional relationships to each other [14].
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The Blue Brain Project calibration effort encompasses multiple interdepen-
dent components. To monitor and manage these interdependencies, the project
has developed automated tools to score the resulting models for fit and com-
pleteness against each component of the calibration process. These scores are
combined to create an overall measure of the precision and quality of fit for the
resulting neocortical microcircuit model. Refinement of the model through these
calibration steps is necessary to converge towards biological accuracy.

The calibration process examines the model across many levels: from ion chan-
nels in single cells to large-scale network phenomena. Each step of the calibration
process includes a comparison of the model with biological experiments, a fit-
ness analysis, and a score indicating the overall precision and quality of the fit.
The calibration workflow for the neocortical column model checks the biological
fitness of: 1) ion channel kinetics; 2) single cell electrical behavior; 3) dendritic in-
tegration properties including postsynaptic potential and backpropagating spike
attenuation; 4) morphology repair; 5) monosynaptic properties including rise-
time, amplitude, latency and short-term synaptic facilitation and depression; 6)
polysynaptic loops including layer V pyramidal cell (L5PC)-Martinotti interac-
tions; and 7) emergent phenomena including network oscillations and population
responses to stimuli.

These calibration steps aim to apply experimental protocols to the model and
provide a quantitative measure of the success of the model in recreating experi-
mentally observed phenomena across multiple levels, from subcellular electrical
properties to large-scale emergent phenomena. The calibration process provides
a means to identify those areas where additional biological data is required and
model aspects needing refinement to replicate the biological data more accu-
rately. The calibration process is iterative and will be elaborated as new biolog-
ical details become available.

Ion channel kinetics are modeled from voltage-clamp studies. These hold a cell
or piece of membrane at various potentials for several intervals and measure the
currents flowing between intracellular and extracellular space. The activation and
inactivation conductance parameters and time constants for these voltage traces
are fitted using Hodgkin-Huxley-style equations [32]. The calibration process
for ion channel models entails applying the same stimulation protocol to the
model ion channels and verifying the resulting current traces with experimental
data. The difference between the model and experimental traces is computed
and serves as a fitness score. In the event of a low score, the model must be
further refined, possibly with additional experimental data.

A neuron’s electrical properties are determined largely by the types, numbers,
and proportions of ion channels and the way they are distributed throughout the
neuron’s morphology. The distributions of ion channels on the cell morpholo-
gies is determined by a genetic algorithm-based process to fit experimentally-
observed firing properties [6].

The BBP protocol for calibrating the electrical properties of modeled neurons
begins by stimulating real neurons with a sequence of computationally repro-
ducible electrical patterns, called an eCode, and extracting key features, such
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as mean and resting potentials, spike height and width, first spike delay, firing
rates, etc. A candidate computational model for the neuron is then stimulated
in the same manner, the measured features of its response are compared to the
actual, and a fitness score is computed.

The morphology of an individual neuron can be observed with a microscope
after injecting the neuron with a dye. Because neuron morphologies are often
damaged by the experimental preparation, Scholl analysis is applied to many
instances of each neuron type to gather the expected numbers and properties
of branches at each radius from the cell body and the missing portions of the
neurons are repaired according to these statistics [1]. The morphology calibration
step uses additional morphometric statistics to compare the repaired cells to the
statistics of the population of the morphological class to which they belong. This
ensures that repaired cells are consistent with biological classes of neurons.

Electrically and morphologically calibrated neurons are then used as building
blocks for the calibration of the neocortical microcircuit. Completing the micro-
circuit calibration process requires determining the numbers of different neuron
types and their relationships - both anatomically and functionally. Measure-
ments of neuron types by cortical layer are used to both calibrate the numbers
of neurons by type and complete the first step of calibrating their relationships:
determining their spatial layout.

The precise location at which a neuron synapses on the dendritic and somatic
morphology of another neuron influences the effect the presynaptic neuron has
on the postsynaptic neuron’s electrical response. It is therefore necessary to
model these relationships accurately. While detailed information about synapse
locations is generally not known, the number of synapses between two types of
neurons is often known and can be used to validate specific configurations.

With 10,000 neurons in the neocortical column, each comprising hundreds
to thousands of dendritic and axonal segments, finding configurations that yield
the biologically observed touches is computationally daunting [19]. This problem
has successfully been mapped to the 8,192 processor BlueGene/L supercomputer
used throughout the Blue Brain Project. The task has been made easier and more
effective by first fitting the connectivity within minicolumns and then fitting
the connectivity between them. A minicolumn is a collection of neurons that
migrated along the same radial glial cell during development.

With the anatomical relationships established, the calibration task shifts to
functional relationships of increasingly higher order. This begins by calibrating
the functional relationships in monosynaptic pathways. Experimental measure-
ments have characterized the monosynaptic properties of pathways in the neo-
cortex [25]. The key parameters of these relationships are those governing the
post-synaptic response: the amplitude, rise time, latency, and the rate at which
subsequent responses grow or decay.

Next, polysynaptic pathways are considered. In particular, a well studied cir-
cuit involving two layer five pyramidal cell (PC) and a Martinotti cell (MC) is
used [36]. In this circuit, the first PC excites the two other cells and the MC
inhibits both PCs. The first calibration step involves matching the effect of the
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first PC on the MC. The second involves matching the effect of the MC on each
of the PCs. Once these effects are matched, the cascade of effects on the second
PC from the first PC, both directly and through the MC, can be calibrated.

Finally, the emergent behavior of the entire column can be compared to bi-
ologically observed behavior. Comparisons to date have focused on cortically-
generated slow oscillations, high-frequency stimulus-evoked oscillations and
frequency dependent triggered recurrent activity. Analyzing the column’s ability
to reproduce these types of experimentally observed network behavior provides
feedback on both the completeness of other calibration steps and the sufficiency
of the levels of detail integrated into the model.

3 Dynamic Subnetworks Operating over Fixed Network
Structures

Since McCulloch and Pitts spawned the field of artificial neural networks in 1943,
researchers have sought to model neural systems and to recreate their capabilities
using multi-layer networks of simple classifiers. In 1962, Rosenblatt identified a
theoretical limitation of these networks [34]. This limitation, known as “Rosen-
blatt’s Superposition Catastrophe” (RSC), applies when neural responses are
binary and shared network resources are used to represent or classify multiple
input patterns. In such networks, ambiguities can arise when multiple input
patterns are presented simultaneously.

To illustrate how such ambiguities can arise, consider the following two layer
network of neural classifiers. The first layer contains four neurons responding
to features or attributes of a visual scene, without regard to location. The par-
ticular attributes are: 1) the color red, 2) the color green, 3) the presence of a
circular contour, and 4) the presence of a triangular contour. Objects that may
be present in the visual scene will have only one color and one shape. The second
layer contains four neurons, each of which responds to a specific combination of
attributes that may arise from objects in the visual scene: a red circle, a green
circle, a red triangle, and a green triangle. If any single object with one of these
attribute combinations is presented, the second layer will clearly respond prop-
erly. However, if two objects with mutually exclusive attributes are presented,
such as a red circle and a green triangle, then all of the neurons in the first layer
will respond. It is not possible to distinguish this response from that produced
by from a green circle and a red triangle. This ambiguity, the RSC, erroneously
causes all neurons in the second layer to respond.

The implications of the RSC are not only theoretical, but also biological.
The problem is a central component of the “binding problem.” The binding
problem arises when reconciling the functional neuroanatomy of the cerebral
cortex with the the properties of perception [24]. It has been observed that
different attributes of a visual scene, like color, oriented edges, and motion, are
represented by neural activations in distinct, distributed cortical areas [15]. Yet,
visual perceptions are experienced in a unified way; the various attributes of the
sensory space are “bound” together.
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The root of the RSC is that the implicit relationship between an object’s
color and shape is lost when these two attributes are independently classified
by the set of four classifiers in the first layer of the network example. Since this
lost information is not propagated forward through the network, an ambiguity
regarding the sources of attributes can exist at the second layer.

There are two solutions to this problem discussed in the literature [24]. The
first is avoiding the ambiguities and superpositions with a combinatorially large
network of classifiers. This solution is largely dismissed due the biological limi-
tations on cortical networks.

The other solution is to augment the neuron amplitudes corresponding to
classification with a second signal generated at the source of the classification
signal, where all attributes are physically related to each other. Here, we’ll refer
to this second signal as relationship information. Biological observations suggest
that synchronized neural activity reflects global properties of visual stimuli and
that synchronization is correlated with recognition [38,9]. For these reasons, most
researchers model the relationship information with the temporal properties of
the classification signal, such as amplitude, frequency, and phase [24].

In [31], four requirements on relationship information were identified:

– Uniqueness: relationship information must be sufficiently distinct to avoid
erroneous relationship interpretations,

– Propagation: relationship information must propagate forward and back-
ward,

– Aggregation: classifiers must take the disparate, but sufficiently similar rela-
tionship values of its feedforward and feedback inputs and produce a unified
relationship value; and

– Selectivity: relationship information must be used to modulate classifier re-
sponses to inputs.

If these requirements are satisfied, then the ambiguities in our example can
be avoided. Let us assume that the relationship information is represented by
the phase of signals propagating through the network. In our example, each
pixel in the visual scene input participates in the classification of all attributes:
color, shape, and, implicitly, location. For successful disambiguation, the process
begins by assigning a unique phase to each pixel. This information is propagated
forward to first layer classifiers. They produce their own phase based on the
phases of signals that contributed most to their response. This phase information
is propagated backward to its inputs, to synchronize them, and forward to the
second layer classifiers. All classifiers respond solely to signals that are phase
locked or nearly so. For this reason, second layer classifiers will not respond to
combinations of attributes unless they are in phase and the ambiguity caused
by multiple objects is avoided.

The effect of the relationship signal is to dynamically carve subnetworks of
classifiers out of a large fixed network. Successful uses of this technique have been
shown in the literature. For example, Rao et al. [33] constructed a network of
oscillating elements that produces a sparse representation of objects presented
to it. This network was able to demonstrate phase synchronization for single
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objects as well as superposed objects. This shows that the RSC can be overcome
through the introduction of a relationship signal, such as phase.

4 Functional Self-organization of Cortical Maps

In 1986, Grinvald et al. pioneered the use of infrared imaging to reveal receptive
fields of neurons in the primary visual cortex (V1) [11]. A visual receptive field
corresponds to the region and pattern of visual space that evokes the strongest
response in a neuron. In primates, the anatomical projections from the retinas of
both eyes, through the thalamus, to the cortex are organized in an overlapping,
retinotopic fashion; that is, retinal detectors responding to neighboring regions
of the visual field project to neighboring neurons in the cortex, and detectors
responding to distant areas project to distant neurons. Within this retinotopic
framework, the receptive fields are organized into meandering, terminating, and
forking stripes (or elongated ”ocular dominance columns”), where all neurons
within a stripe respond to information from one eye only.

Within these stripes, neurons are grouped into roughly cylindrical columns,
similar to the columns investigated by the Blue Brain Project. The diameter of
a column is approximately the width of the stripe that contains it. The columns
within a stripe maintain retinotopic relationships to each other and may contain
specialized groups of cells called ”blobs,” which respond to color information.

At a still finer scale, columns are made up of orientation-selective ”mini-
columns,” in which all neurons respond best to bars of the same orientation.
In 1991, Bonhoeffer and Grinvald showed that orientation-selective minicolumns
are organized in characteristic topographic patterns [12]. Neurons preferentially
responding to similarly oriented gratings tend to be close to each other in the
plane of the cortex. As a grating is rotated from 0 to π, the pattern of prefer-
entially responding neurons tends to radiate from the center of the column at
progressively increasing or decreasing angles, like a pinwheel. While there are
variations, iso-orientation bands form and typically begin and terminate at the
pinwheel centers of adjacent columns.

This organization enables the cortex to produce a distinct response to every
edge of every orientation located at any point in the visual space of either eye.
As the neurons have overlapping inputs, it appears some form of cooperation
is required in the organization of receptive fields to ensure the ability to re-
spond distinctively to all inputs without undesirable redundancy. This raises an
important question: “How does this organization arise in a network of neurons?”

Many ad hoc models of cortical learning processes have achieved key attributes
of primary visual cortex receptive field organization [28]. There are limits to these
models, however. For example, to be biologically plausible, models of the cortical
network should derive their receptive fields from locally dense and distantly
sparse interactions between network elements. This requirement is not satisfied
by the many models that require interactions among all elements. Models with
biologically realistic patterns of connectivity often use schedules to guide the
learning of their receptive fields[2]. This can create new challenges to biological
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plausibility. For example, configuring multi-map systems based on these models
creates biologically implausible learning schedule parameterization challenges.
Multi-map systems are those where the outputs of one or more maps are used as
inputs to others. Without a theoretical foundation, it is difficult to extend these
models to solve this multi-map problem.

Information theoretic approaches, such as information maximization (Info-
max) [22] [3], produce biologically realistic receptive fields and have a firm the-
oretical foundation. In related work, Linsker anticipated Grinvald’s topographic
observations by combining winner take all units and a wiring length minimization
constraint [21]. Subsequently, Linsker showed that a globally optimal Infomax
result could be achieved using information shared between neuron-like elements
and self-contained, autonomous learning operations [23]. This technique is not
hampered by biologically implausible learning schedules.

Until recently, the Infomax approach applied to these neuron-like elements
could not yield topographic organization. The primary reason is that information
maximization produces nearly statistically independent receptive fields and this
removes the opportunity to use spatial correlations to generate topography.

This problem was recently overcome by Kozloski [18], who describes a multi-
level network that first spatially smooths and rescales the output to successively
smaller, higher level layers. Next, it eliminates redundancy in the smallest, top-
most layer using an iterative Infomax technique. By successively rescaling and
applying the changes to successively larger, lower-level layers, the system ef-
fectively reduces redundancy in the original output layer based on long-range
statistics only. As learning proceeds, distant areas become statistically indepen-
dent, while local dependencies increase. As long range statistics stabilize, shorter
range statistics begin to dominate the learning process and local redundancy is
eliminated. Consistent with the conventional interpretation of the multi-grid
techniques from which this network was derived, the network first eliminates
low spatial frequency redundancies and then redundancies of increasingly higher
spatial frequencies. This continues until statistical dependencies in the output
are largely, if not entirely, eliminated.

This system produces stable spatial organizations because as the receptive
fields become statistically independent, the learning slows and the structure of
the network helps to maintain the topography previously achieved. If one recep-
tive field varies, it loses its statistical independence relative to other elements.
This forces a cascade of learning until statistical independence and topography
are approached once again.

There exists an important variation in the topographic organization achieved
above and that observed by Grinvald. The organization observed by Grinvald,
especially in the carnivore and primate (i.e., cat and monkey), is “overcomplete.”
Because there are more cortical outputs than thalamic inputs, the outputs must
necessarily be algebraically redundant. This may be valuable for biology by not
only representing independent components, but also explicit combinations of
them. Mathematically, however, this is quite challenging. Which redundant com-
ponents should be represented?
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In [18], Kozloski achieves some degree of overcompleteness by composing his
output layer from interwoven full rank Infomax subnetworks within the output
layer. The elements of these subnetworks together create an overcomplete out-
put. As above, they undergo spatial smoothing, and learn initially based on the
collective statistics of distantly separated neighborhoods. However, in the over-
complete variation, these neighborhoods span multiple subnetworks. In this way,
each subnetwork is co-embedded in the same topographic map, and components
emerge that are linear combinations of components from other subnetworks and
nearly statistically independent within each full rank subnetwork.

5 Classification of Brain Function from Spatio-temporal
Activity Patterns

Until 15 years ago, electroencephalograms (EEGs) were the only practical, non-
invasive technique to directly expose brain function. This changed in the early
1990’s, when the functional Magnetic Resonance Imaging technique (fMRI) was
developed [29,30,20]. This technique reveals locations and degrees of brain activ-
ity through localized variations in the magnetic susceptability of neural tissue.
Neural activity causes these variations by altering the deoxyhemoglobin to oxy-
hemoglobin ratio in blood perfusing the tissue. This is known as the blood oxygen
level dependent (BOLD) response.

Typically, fMRI data is analyzed with the General Linear Model (GLM) [8,37],
which explicitly assumes that brain areas respond to stimuli (visual, tactile, etc.)
or cause events (say, cognitive or motor) using linear mechanisms, and the ac-
tivity of these brain areas are statistically independent. Even though the linear
model has led to a number of remarkable findings, the above assumptions are ex-
tremely restrictive and certainly violated by the highly non-linear and intercon-
nected nature of the brain. A different approach is required to formally capture
and respect the brain’s complex dynamics, neural connectivity, and functional
interdependence.

One such approach is statistical network theory, pioneered by Erdös and fur-
ther developed in the late 1990’s [39]. It is a framework to model and analyze
large-scale graphs based on their topological properties. The approach has been
successfully applied to areas as diverse as social networks, the world wide web,
gene networks, and linguistic structures [27].

Assuming that the topological characteristics of fMRI networks are more ro-
bust across subjects than the topographical mappings used in the GLM method-
ology, Eguiluz et al. applied statistical network theory to fMRI data [7]. They
showed that networks defined by pair-wise correlations between functional voxels
exhibit properties similar to other large-scale self-organized biological and tech-
nological networks, namely scale-free connectivity distributions and small-world
topologies. These properties were also shown to be universal; that is, invariant
across subjects and experimental conditions.

The demonstration that topological analysis of functional networks uncov-
ers robust statistical regularities raised the possibility of classifying functional
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and dysfunctional brain states based on correlations with systematically-derived
network motifs. The initial approach of Equiluz et al., however, does not pro-
vide enough information about the dynamical state of the brain to discriminate
between sufficiently similar functional states. Consequently, Cecchi et al. [4] in-
troduced a generalization of the correlation method to augment and refine the
information for classification. In addition to the non-delayed or zero-lag corre-
lations used by Eguiluz, the Cecchi method also computes delayed correlations.
Significant delayed correlations are represented by directed links and significant
zero-lag correlations are represented by undirected links. Furthermore, this net-
work of directed and undirected links is simplified by eliminating redundant and
ambiguous links, such as those generated by common source correlations and
other correlation-based measures of functional causation.

The resulting hybrid networks were shown to effectively discriminate between
subtly different brain states based on specific topological properties, such as their
average mean geodesic path. The directed links are essential for this increase in
discriminatory power, as they capture significant task-induced deviations of the
functional dynamics from the default-mode state, which seems to be represented
by the undirected (zero-lag) links [10]. Hybrid networks so constructed also pro-
vide a richer ensemble of topological patterns for identification and classification.
Efforts are underway to implement motif analysis in massively parallel platforms.

6 Conclusions

It has been shown that the brain can be modeled using network abstractions
at many levels of integration based on a variety of properties. The Blue Brain
project models networks corresponding to neuron morphologies and the con-
nections between specific classes of neurons. It calibrates various properties of
these networks and analyzes emergent phenomena at many levels of network
integration.

Rosenblatt’s Superposition Catastrophe results from the properties of fixed
classifier networks that share resources. Observed correlations of synchronized
brain activity with global perceptual capabilities has inspired a solution to this
problem using temporal modulation of classifier signals with relationship infor-
mation that would otherwise be lost.

It has been shown that large-scale topographical organization of cortical maps
can be achieved by competitive learning mediated through complex networks. If
was further shown that overcomplete representations can be achieved through
cooperative co-embedding of self-organizing networks.

The work of Eguiluz and Cecchi show that statistical network theory can be
used to find robust properties of brain networks at the fMRI scale. Further, it
was shown that these properties can be useful for classifying brain states.

Together, this body of work shows that the network perspective is useful for
characterizing, analyzing and modeling the brain. Furthermore, it shows that
understanding the brain through this lens can cast additional light onto the
capabilities of networks and inspire solutions to network-related challenges.
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Abstract. We discuss the uses of networks as epidemiological tools to
describe the interactions taking place within populations. The difficul-
ties of accurate measurement of real-world social networks are discussed,
along with modelling approaches designed to require only incomplete
data. Properties of human contact networks such as clustering and vari-
able strengths of interactions are seen to be important factors in the
spread of an epidemic. We consider the evolution of a pathogen spread-
ing through a dynamic network and show that the pattern of contacts
within a host population determines the evolutionary pressures that a
pathogen experiences.
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1 Introduction

A wide range of mathematical models has been developed to study the spread
of epidemics. When considering the spread of an infection through a popula-
tion many factors are likely to be important, such as the transmissibility of the
pathogen, the immune response of the host, the quality of health-care provision,
and the behaviour of the host population. We will concentrate on the last of these
and will discuss the use of networks as tools to examine interactions within a
population. We will consider network approaches as applied to human popula-
tions but note that they are similarly applicable to animal and plant infections
[1,2,3].

We begin by reviewing the basic principles of mathematical epidemiology, pre-
senting briefly the standard modelling framework. We will then discuss the use
of networks, and will cover some issues of more recent interest: data collection,
modelling approaches, contact tracing and pathogen evolution.

2 Epidemiological Modelling

No simulation could accurately capture the multiple factors, their complexity
and their variability, that combine to determine how and where an epidemic will
spread. In order to gain insights into epidemic dynamics, to explain past events
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or offer predictions of the future, practicality demands that simplifying approxi-
mations are made. It is the nature of models that all underlying assumptions are
open to dispute, and in the case of epidemiological models this is particularly
true. However, bearing in mind their necessary limitations, models have proved
useful in the past and will be more and more relied upon in the future to direct
public health planning and policy [2,4,5].

2.1 Basic Principles

The standard model of epidemic spread divides the population into a set of com-
partments according to infection status; a common formulation is the Susceptible-
Infected-Recovered (SIR) model, in which individuals are assumed to be either
susceptible to infection, infected and infectious, and recovered (if recovery does
not result in long-term immunity, a Susceptible-Infected-Susceptible (SIS) model
may be appropriate). The two key processes of infection and recovery are viewed as
movements of individuals between compartments [1]. Infected individuals recover
at a rate γ and, under the mass-action principle, the rate at which new infections
arise is proportional to the product of the number of susceptibles and the num-
ber of infected individuals. The SIR model is described by the following system of
differential equations:

dS

dt
= −βSI (1)

dI

dt
= βSI − γI (2)

dR

dt
= γI (3)

where S, I, and R are the number of susceptible, infected, and recovered indi-
viduals respectively and N = S + I + R is the population size. β, the infection
parameter, contains information about the behaviour of the hosts and the trans-
missibility of the pathogen. These models are easily formulated, simple to solve,
and extremely adaptable, and have been applied to a wide range of contexts. We
define the ”basic reproductive ratio”, R0, to be the number of secondary cases
generated by a single infected individual introduced into a susceptible popula-
tion [1]. R0 summarises the potential of a pathogen to spread (though not the
time-scale at which transmission occurs). Here, R0 = βN/γ. In a deterministic
system an epidemic will occur if and only if R0 > 1.

The model assumes a number of things: that infection status can be described
by discrete compartments, that the numbers in each compartment can be rep-
resented as continuous variables, that the process is deterministic, that events
occur at constant rates, and that interactions are mass action in nature. More
complex modelling approaches have been developed to explore the effect of each
of these simplifications and there are circumstances in which they must be re-
assessed. Here we will focus on the mixing assumption and particularly on the
use of networks to represent interactions within a population.
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3 Mixing Patterns and Networks

The mass action approximation is unlikely to be applicable to any directly trans-
mitted infection. Therefore, several adaptations to the SIR model have been made
such as dividing the individuals into further categories (based on age, for instance)
and allowing different rates of interaction between those in different categories [1]
or assigning a spatial location to individuals or sub-populations and introducing
separation-dependent mixing [2]. Each is appropriate in the right context but nei-
ther solves the problem that, at some level, all individuals meet with all others
and each fails to take into account the fact that each individual in a population
has a specific set of contacts with whom he interacts [6].

Network approaches are inherently individual-based rather than population-
based. Individuals are represented as nodes and relevant interactions as links be-
tween nodes [7,8,9]. Precisely what constitutes a link will depend on the pathogen
of interest – for some, conversational contact will be sufficient for transmission
to occur, whereas for others links may correspond to sexual interactions [8,10].
Representing interactions as a network makes a number of points apparent. First,
each individual, in general, only interacts with a small subsection of the popu-
lation. Second, pairs of individuals that interact tend to do so repeatedly. Thus,
while a social network will be dynamic, changing as new contacts form and old
associations disappear, a large number of links will remain in place day after day.
Networks are therefore often treated as static, showing all relevant interactions
over a timescale of interest (such as the duration of an epidemic).

For the same interaction rate, infection will spread more slowly on a network
than via mass action mixing; since contacts are repeated within a network infec-
tion becomes locally saturated – infected individuals continue to interact with
those whom they have already infected. Therefore, infectious contacts will be
wasted; this saturation is referred to as ’self-shading’ in theoretical evolution
studies [11]. R0 is also different on a network; in the mass action model increases
in the transmission rate or infectious period can increase R0 indefinitely; in a
network R0 is limited by the number of neighbours an individual has (his de-
gree). Furthermore, since infection always occurs locally within a network, the
first few cases will interfere with each other since the first and second cases are
connected. Thus, local infection alters the epidemic threshold [12]. This effect is
further enhanced in a clustered network where connected individuals share other
contacts [13].

3.1 Measuring Networks

Network models are inherently more complex than mass action models and re-
quire more data to parameterise; in a mass action model all that is required
is a single parameter representing transmission whereas in a network model
ideally all interactions within a population would be known. Obtaining this in-
formation is a difficult and, often, impossible task [14,15]. Some information is
obtained through tracing chains of infection, but any network derived from in-
fection tracing will only be a partial one, since it only gives information about
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Fig. 1. a) Interaction network between 49 individuals each questioned on 14 separate
days. Red lines show interactions where there was some physical contact, blue lines
show conversational contact. The colour of a node represents its degree, with dark
nodes being of higher degree. b) Degree distribution of this network. c) Risk of infection
plotted against degree; a stochastic SIR epidemic is run repeatedly and the number of
times each node becomes infected is counted.

those interactions that resulted in transmission; other contacts are not unveiled.
Contact tracing provides a related source of network data: the contacts of in-
fectious individuals are sought and tested/treated [8,16,17,18]. Contact tracing
is commonly used for sexually transmitted diseases (STDs), where diagnosis is
usually carried out by laboratory testing; information about all contacts is re-
tained since it is not immediately apparent which require further intervention.
Any infectious cases uncovered have their contacts sought, and the process con-
tinues. When records are well-maintained it is possible to connect individuals
mentioned during contact tracing to form large networks of sexual interactions
[8,17,18].

Some studies aim, by interviewing all individuals within a sub-population,
to describe the entire network of social interactions within that subpopulation
[6,14]. Such studies are intensive and do not necessarily give information that
can be easily applied to an entire population, but are nevertheless often inter-
esting and instructive. Fig 1a shows interactions between 49 members of the
Mathematics and Biological Sciences departments at the University of Warwick:
on 14 different days these individuals were asked to record all individuals with
whom they had a contact that day, enabling a social network to be constructed.
The heterogeneous degree distribution is shown in Fig 1b.

Often it will not be possible to obtain enough data to parameterise a net-
work. In such cases, it may be appropriate to use an approximation of the
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true network structure. A number of different network idealisations have been
studied: random networks, lattices, spatial, small-world and scale-free networks
[10,11,19,20,21,22]. Some are based on convenience, others as means to explain
particular features of social networks (e.g. small-world networks having high
clustering but low diameter [22]; scale-free networks containing individuals with
unusually high degree [19,20]). Alternatively, proxy measures are used to describe
contact patterns: scientific collaboration graphs [23], the movement of banknotes
[24], or travel patterns [25,26]. Of course, the network type employed within an
epidemiological model should bear some resemblance to the network that it is
intended to represent.

3.2 Modelling Epidemics on Networks

Stochastic epidemics on networks are in theory straightforward to simulate
[21,25,26]; one must only keep track of each individual’s infection status and
the number of infected neighbours he has. However, stochastic simulations are
not always convenient; they require a large amount of computational time and
make exploration of an entire parameter space laborious. Furthermore, they re-
quire the entire network structure to be known or approximated. In cases where
data is limited this may not be wise, in part because such models tend to conceal
the limitations of their data [27].

An alternative approach is to use pair approximation methods [12,28,29].
These provide a deterministic model of spread through a network that lies some-
where between a full network model and the mass action approximation. As well
as keeping track of the number of individuals in each state pair approxima-
tion methods keep track of the number of connected pairs of each type (e.g.
susceptible-infected pairs); we denote the numbers of susceptible, infected, and
recovered individuals by [S], [I], and [R] respectively, and let [AB] represent the
number of pairs within the network with one individual in state A and the other
in state B (where A and B can be S, I, or R). Therefore

d[S]
dt

= −τ [SI] (4)

where τ is the rate of transmission along a link. To iterate the model we must
know how the numbers of each pair type change over time: infection can spread
within a pair or can enter a pair from outside, thus, for example:

d[SI]
dt

= −τ [SI] − γ[SI] − τ [ISI] + τ [SSI] (5)

To close the system at the level of pairs in a homogemeous network of degree
k the moment closure approximation

[ABC] ≈ (k − 1)[AB][BC]
k[B]

(6)

is applied [12]. This model, and more complex extensions [13,29], allow the cor-
relations that emerge between connected individuals to be accounted for without
requiring the whole network to be known or modelled.
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4 Use of Networks

Since each individual has a distinct location within the social network a range
of centrality measures can be used to assess an individual’s infection risk. The
simplest, degree, is unsurprisingly correlated with risk of infection. For instance,
Fig. 1c shows the outcome of stochastic epidemics spreading though the network
shown in Fig 1a; highly connected nodes are more at risk of becoming infected.
Other measures – betweenness, centrality, etc – have also proved useful to deter-
mine which individual should be targeted for interventions [7,9,16,20,30,31,32,33].

Placing individuals within a network also allows the identification of core
groups – interconnected groups of people with a greater than average degree.
Such groups have been shown to act as reservoirs of infection and to drive infec-
tion dynamics within a population [17,31,34]. Even when most individuals are
unlikely to become infected or, if infected, to pass infection on, a small high-risk
subpopulation can allow infection to persist. Interventions that target the core
group often have the best chance of eradicating infection.

4.1 Contact Tracing Models

Contact tracing, described above, is an intervention that makes use of the net-
work of interactions. The idea is to pursue infection up and down chains of
transmission, ideally catching up with it and snuffing out an epidemic. Network
models have been used to predict the effectiveness of contact tracing [35,36].
These demonstrate that, if tracing is carried out quickly and efficiently, it will
always be possible to prevent an epidemic; the difficulty in the real world is to
identify all risky contacts and to test and treat them before they spread infection.
Simple models demonstrate that if no more than one secondary case per index
case is untraced then rapid tracing can eradicate infection – tracing operates
similarly to vaccination within the neighbourhood of an infected individual.

Because contact tracing directs interventions to the neighbourhood of indi-
viduals known to be infected, it provides a well-targeted control measure. Since
tracing follows chains of transmission it naturally uncovers high-risk groups and
therefore results in the treatment of high degree nodes, thereby depriving a dis-
ease of those individuals most likely to pass it on.

5 Clustering

One important feature of networks is clustering: the existence of short loops [13].
In the simplest case we define a cluster as a group of three people who all know
each other, i.e. a triangle, and define a clustering coefficient, φ, as the probability
that two neighbours of an individual are themselves connected.

Some parts of a social network are expected to have high levels of clustering.
Households, schools, and workplaces, in which a large fraction of interactions
take place, are likely to be highly clustered locations, containing many groups
of people who all interact [4,25,26,37] – a household may well have a clustering
coefficient of 1. The network shown in Fig 1a, for example, has φ = 0.7.
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We see from the pair approximation model that clustering is important: the
moment closure approximation, (6), assumes that the two individuals at the ends
of a triple only interact via the central individual. However, if the triple forms a
triangle then they also interact directly. This has prompted the development of
an adapted triples approximation,

[ABC] ≈ (k − 1)[AB][BC]
k[B]

(
(1 − φ) + φ

N [AC]
k[A][C]

)
, (7)

that allows for the two possibilities [12,13,38].
In a highly clustered network connected individuals are likely to share other

contacts, so there is a chance that some of the contacts of a secondary case will
have been infected by the index case; this reduces the number of cases that the
secondary case can generate. Clustering increases the amount of local saturation
of infection and the number of ”wasted” contacts, thereby slowing the spread of
infection [13].

5.1 Pathogen Evolution

The structure of a network and the patterns of interactions within a population
have an effect not only on the spread of a single epidemic but on the properties
of the pathogen itself. The possibility that two infected individuals will both be
attempting to infect the same susceptible individual has significant implications
for pathogen evolution. Competition between strains on networks (and modi-
fied lattices) have been investigated using simulation models [11,21,38,39,40].
Much evolutionary work has focused on explaining observed differences of dis-
ease behaviour (in terms of transmission rate, infectious period and virulence)
by invoking trade-offs between such properties [41]. However, differences may be
explained by the host contact networks upon which pathogens transmit, mutate,
survive or become extinct.

The impact of network structure on pathogen evolution can be modelled by
allowing different strains to exist and infect hosts within a contact network,
with the properties of a strain (such as transmission rate and infectious period)
changing slightly on each transmission event, mimicking mutation. Different evo-
lutionary outcomes arise in networks with different clustering coefficients [21,39]
(Fig 2). When clustering is low, evolution leads eventually to long-lived strains
with a relatively low transmission rate. However, in highly clustered networks di-
rect competition between strains forces the transmission rate to evolve to a much
higher value. The emerging structure of susceptible components within each net-
work type re-enforce this evolutionary divergence. Direct competition between
strains means that, to be successful, a strain must be the first to colonise new sus-
ceptible members of the network, even though this leads to burning through the
entire network and epidemic fade out through lack of susceptibles, and confers
an increased risk of extinction. Thus, the structural properties of the underlying
contact network may be sufficient to select diseases with differing transmission
characteristics.
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Fig. 2. Example evolution of simulated pathogen transmission rate on clustered (red,
φ ≈ 0.5 ) and unclustered (blue, φ ≈ 0) networks. Both networks have identical degree,
primary strain, size, and demographic parameters. The initial epidemic in each realisa-
tion is the first 10,000 cases, thereafter infection is imported at a constant probabilistic
rate, where imported strain properties reflect the history of strain characteristics for
that simulation.

6 Weighted Networks

Standard network models assume that all contacts within a network are equal:
infection spreads at the same rate along all links. In the absence of data to
the contrary, this is a reasonable simplifying assumption. However, day to day
experience tells us that we interact differently with different people; with some
we share an office throughout the working day; with some we share a house;
others we see for only a few minutes at a time. There are some of our contacts
whom we would expect to see daily and others that we might meet only once
a week. Moreover, in some cases interaction is close, perhaps involving physical
contact, whereas with others any interaction is distant.

To describe fully all the differences between links within a network is a Her-
culean task, but such differences can be summarised by the use of weighted
networks, i.e. those where two individuals are not merely ”linked” or ”unlinked”
but where links themselves are weighted according to the strength of the contact
[9,42,43]. For example, the weight of a link may represent the number of hours
spent together over the course of a week, or the number of days in a week on
which an interaction takes place.

Fig 3a shows the distribution of link weights in the network shown in Fig
1a where here the weight is the number of times over the course of the survey
individuals interacted. In a weighted network low-degree nodes may, through
having links of high weight, have a large number of interactions, albeit with a
small set of people. Fig 3b shows that, in this weighted network, where the rate
of disease transmission is proportional to the weight of a link, degree becomes
a much less effective predictor of infection risk whereas the total weight of all
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Fig. 3. a) The link weight distribution in the network in Fig 1a. b) Degree as predictor
of risk on this weighted network. c) Weight as a predictor of risk on this weighted
network (red) and in a model where transmission is unaffected by weight (blue).

links from a node is more useful (Fig 3c); in such a network an individual’s risk
of infection depends both on his degree and the strength of his interactions.

7 Other Considerations

Static networks provide a useful tool to describe interactions, but the social world
is not static: new connections form and others dissolve [21,25,26,44]. Dynamic
network modelling is a challenge to both modellers and data gatherers; without
detailed and careful surveys it will prove impossible to parameterise a dynamic
network model – even measuring a static network is extremely time consuming.

Even with the use of weighted or dynamic networks to give some representa-
tion of the variable nature of interactions, models must still make assumptions
about the transmission process within such networks; if all links are equal it
is reasonable to assume that all transmit infection at the same rate, but with-
out studying a real epidemic on a measured network it is difficult to assess the
relationship between time spent or proximity of contact and transmission prob-
ability; model validation requires detailed datasets that are seldom available.

8 Conclusions

Networks are useful tools for visualising patterns of human interactions. By em-
ploying these tools, and modelling approaches based upon them, more realistic
representations of social mixing can be included in epidemic models. To max-
imise their use requires accurate and complex data, but even without detailed
information network ideas can still be used to inform models.

The more complex a model becomes, and the more the assumptions of simpler
models are contested, the more it becomes clear how many approximations any
model must make; approximation is inevitable given the complexity of the world,
and the art of model making is to find a way to include the necessary details
whilst retaining tractability [27]. Issues such as network dynamics and weighted
links are complexities that place more demands on data collection, but may well
come to be seen as important considerations.
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Network data collection is traditionally a long, laborious, process, involv-
ing detailed questionnaires, interviews, and hours of data-entry [3,6,14,15]. It
is for this reason that most networks either only relate to small sub-populations,
or are derived as a by-product of other activities (such as contact tracing).
Consequently, there is often little information available apart from the pres-
ence/absence of links. More technologically intensive data collection methods
may change this, allowing far more information to be gathered from larger pop-
ulations; electronic proximity sensors can be used to describe close interactions
between individuals and therefore reveal a social network [5,45]. The science of
network-based epidemiology is relatively new and growing rapidly but its future
success depends on obtaining a better understanding of human behaviour.
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Abstract. The analogy between viral dynamics in humans and in
computers is a detailed and useful one. At first glance, the extension
to infectious disease epidemiology on human social networks and
communication in wireless networks is also a compelling analogy.
Mathematical epidemiology has a long history and seems to offer a
biological inspiration for communication network design. In this paper,
however, we argue that while epidemiology as a metaphor may hold
insights into communication networks, the relationship is not concrete
enough to permit us to adapt solutions from one domain to another.
Our conclusion is that it is certain new mathematics and methodologies,
rather than the results themselves, that are most likely to generalize
well to communication systems.

Keywords: epidemic, network, interaction-based, communication.

1 Introduction

1.1 Analogy and Metaphor

An analogy such as “computer virus is to computer as human virus is to human”
postulates an isomorphism between the interactions and thus the dynamics of
two different systems. For example, a human virus can only replicate by hijacking
the resources of its host. In particular, a virus relies on a host cell’s gene copying
mechanisms, the host’s energy and chemical resources, and the host’s exchange
of resources with the environment to copy and distribute its own genetic infor-
mation. Similarly, a computer virus cannot replicate outside a host computer,
and it uses the host’s operating system, applications, and communications net-
works to replicate and distribute itself. The name “computer virus” (as opposed
to, say, “computer bacterium”) was chosen precisely because of these parallels.1

We expect that two systems that are isomorphic in some regard will share
some behaviors. If we are lucky, solutions to problems arising in one system
can be translated to the other, perhaps with an appropriate adaptation to the

1 Wikipedia lists Fred Cohen as the author who first used the term in an academic
publication, and David Gerrold as the person who coined the term.
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specifics of the new context. In the context of a computer virus, we see vacci-
nation based on “antigens” – some sort of properties specific to the virus. We
also see diagnostic software that attempts to detect common strategies of hijack-
ing computer resources, for example specific unusual sequences of system calls,
and “antiviral treatments” aimed at blocking these strategies. There are also
diagnoses that depend on “symptoms” – systemic consequences of infection.

A metaphor is less concrete, and certainly not as strong as an isomorphism.
One would not expect to be able to map solutions directly from one side of the
metaphor to the other. At most, one might hope that solution methodologies
would be applicable in both domains. We argue below that the relationship
between disease transmission and message transmission is better thought of as
metaphor than analogy. We also indicate insights and mathematical approaches
that should generalize from one to the other and give a few examples of particular
analytical tools that offer promise in both domains.

1.2 Network Epidemiology

We begin by describing the specific kind of epidemiological model that provides
the best metaphor for communication networks. The origins of mathematical
epidemiology can be traced back at least as far as Bernoulli, who published
sophisticated investigations into smallpox vaccination, as described by Dietz
and Heesterbeek[1]. Modern epidemiological models have been dominated by
sets of coupled rate equations, known as compartmental models, dating from
the early 1900’s. These are generally attributed to Ross and MacDonald[2,3] in
the case of malaria or Kermack and McKendrick[4]. Compartmental models are
typically deterministic models for the mean fraction of a population in a given
state of health (the compartments) as a function of time. Probabilistic models,
in particular the chain binomial approach of Reed and Frost (as described, for
example, in [5]), have also contributed to a well developed theory for the final
size of epidemics and the dynamics of endemic disease. For a careful, up to date
description of these models, see Diekmann and Heesterbeek.[6]

In practice, both the compartmental and Reed-Frost models rely on the as-
sumption of mass action – that the number of new infections is proportional to
the product of the number currently infected and the number currently suscep-
tible. That is, the interactions among people that lead to disease transmission
are homogeneous.2

In contrast with these uniform-mixing models, researchers, including [7,8,9,10]
have developed network models of infectious disease transmission. A network
model of infectious disease includes entities that interact via a network to spread
disease. We will assume for the purposes of this paper that the entities are
individual people, although aggregations are certainly possible. In a network
model, each potential host is represented by a vertex, and edges between two

2 This assumption is relaxed somewhat in what are known as “structured population”
models, but only to the extent that the single mixing term is replaced by a small
mixing matrix.
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vertices represent contact between the hosts that creates a non-zero probability
of transmission. Associated with each vertex are two things:

1. a label that includes those features of the host relevant to the spread of
disease;

2. a model that represents the host’s state of health. This may be as simple as
a finite state machine distinguishing the susceptible state from the infectious
state.

Associated with each edge is a weight giving the probability of transmission
across the edge conditioned on the source being infectious. The probability of
transmission depends on the susceptibility and infectiousness of the people in-
volved, which may be drawn from a distribution conditioned on any of their
attributes, e.g. age or immunization status. The resulting network is in general a
directed, weighted graph. It is also, in general, time dependent. Time dependence
may be incorporated into edge labels or it may be represented by constructing
an explicit unfolding of the sequence of graphs. Here, we will focus on the union
of all the time dependent graphs on the assumption that the dynamics of disease
progression in the host is slow relative to the changes in the graphs.

Network models are particularly valuable in areas such as HIV/AIDS, where the
assumption of uniform mixing is clearly violated. As Lord Robert May has said,
“Much relevant work remains to be done in teasing apart the social, genetic, age-
related, and other complications that are smoothed out in the usual mass action
assumption.”[11] Network models can easily represent many kinds of heterogene-
ity (and correlations among them) that can be accommodated in compartmental
models only with difficulty, if at all. For example, arbitrary heterogeneity in sus-
ceptibility that is correlated with age can be represented easily by assigning each
person a susceptibility drawn from a distribution conditioned on age.More compli-
cated correlation structures such as demographically determined compliance rates
can be represented just as easily, as long as the data are available.

1.3 Information Diffusion across Communication Networks

The primary goal of algorithms/protocols for communication networks is rapid
information diffusion based solely on local information. Their effectiveness can
be measured by the total amount of information that is moved in the network
to accomplish the task, the time it takes for updates to be complete, the kind
of global information assumed (e.g. global clocks) and the nature of constraints
(e.g. only certain types of operations allowed). Depending on the specific re-
quirements; the goal of the information diffusion process might be:

– send specific information from a source s to a destination t, (routing
[12,13,14,15]);

– send information from a source s to a subset of nodes T ⊆ N (multicast,
updating replicated databases[16,17,18]);

– send information from source s to all nodes in the network (broadcast, rumor
spreading or worm propagation);
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1.4 Questions and Answers in Epidemiology

The central question of epidemic (as opposed to endemic) disease is: given
an initial distribution of infectious hosts, how will the disease spread through
the population? This can be broken into several parts, in increasing order of
difficulty:

1. How many hosts will have been infected when the outbreak dies out?
2. How many hosts are infected at any given time?
3. Which hosts are vulnerable, i.e. likely to be infected at any given time?
4. Which hosts are critical, i.e. contribute to the largest number of later infec-

tions, at any given time?

Compartmental models can answer the first and second of these questions, but
by their nature cannot address the third and fourth. They are thus most useful
for understanding the consequences of interventions applied broadly and early
in the course of an outbreak. Consider, for example, the canonical result of these
models: the existence of a phase transition at a critical value of the parameter R0,
known as the basic reproductive number. For R0 < 1, outbreaks die out before
spreading far; for R0 > 1, outbreaks become epidemic with high probability. The
parameter R0 represents a combination of both the transmission and also the
mixing rates. Formally, it is the expected number of people directly infected by
a single infectious person introduced into a population of susceptibles. Because
R0 depends on the fraction of the population that is immune, the sharp phase
transition leads immediately to the notion of herd immunity: disease cannot make
significant inroads into a herd as long as the fraction immune is large enough
that R0 < 1, and the required fraction is less than unity.

Nowadays however, we demand not simply a control strategy, but the optimal
control strategy under constrained resources obtained by targeting interventions
at the most vulnerable and/or critical people. This requires network models, in
which the topology of the interaction network, as well as the transmissibility of
the disease, is crucial. For instance, the vulnerable and critical vertices sought
in questions 3 and 4 above may be determined by network topology.

Unfortunately, network models resist analytical solution except in a few well-
known examples[19,20,21]: Erdős - Rényi random graphs; lattices or grids; trees;
scale-free networks3; and small world networks4. The problem is that solution
methodologies often assume people’s health states are independent, or that the
probability of infection is additive.[21,22] A complete categorization must take
into account global topology (as the small world property does) and not only
local topology (as encoded in the degree distribution). The reason is simple.
The probability that any vertex is infected depends on the joint probability
that its neighbors are infected. Given a configuration of neighbors’ states we
can calculate a probability of infection, but that probability must be weighted

3 Those whose vertex degrees are distributed according to a power-law with exponent
less than -1.

4 Those whose diameter grows only logarithmically with number of vertices.
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by the probability of the neighbors being in those states simultaneously. If the
joint distribution could be replaced by the product distribution – i.e. if the
events of infecting the neighbors were independent – then the likelihood that
any vertex is infected would be proportional to its weighted degree. However,
if two neighbors were both potentially infected by the same vertex, there is an
induced correlation between them. More generally, if there is a loop between
a vertex and the initial condition, its neighbors will not be independent and
degree will not necessarily be well-correlated with vulnerability. This can be
made precise in the concept of d-separability[23]. It is not surprising that d-
separability, an important concept in the analysis of Bayesian networks, is also
important here: a network epidemiological model can be thought of as a Bayesian
network representing the joint probability of infection of each vertex.

Enumeration of all the loops and their overlaps essentially gives a complete
description of the global topology of a network. But this is not feasible analyti-
cally for any realistic – i.e. asymmetric, irregular – network. Instead, we rely on
simulation to understand the behavior of network models in realistic networks.
One advantage of simulation is that detailed results are available for intermediate
times as well as for the long-time limit. Another advantage is that the simulation
can be controlled as it runs, so that it is possible to represent dynamic, adaptive
changes such as contact tracing and treatment. Indeed, it is hard to imagine
how compartmental models could ever represent individually targeted, adaptive
control strategies while maintaining analytical tractability.

2 Comparing and Contrasting Epidemiology and
Communication

The dynamics of communication over wireless networks and epidemiology over
social networks share many properties. In the following section we compare and
contrast the problems of transmitting an infectious disease across a social net-
work and transmitting messages across a wireless network. Specific aspects of
the wireless network problem, such as its robustness against worms or its use
in maintaining a distributed database, may exhibit more or less similarity with
epidemiology, but we confine our comments to the general case.

2.1 Similarities

Dynamics of the Transmission Process. In both domains, a global config-
uration that lists the states of every vertex contains all the information needed
to calculate the probability of any other configuration in the next instant. That
is, the dynamics are Markovian in configuration space. In principle, then, the
system’s dynamics are linear and are fully characterized by the Markov matrix.
However, configuration space (and hence the dimension of the Markov matrix)
is truly enormous: if each of N vertices could be in any of m states, then the
system can be in any of mN configurations.

It is more natural to think of the dynamics as a local flow among states
of individual vertices. But the dynamics in this representation are no longer
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linear. The flows that represent them are non-conservative. For example, random
walkers modeling these flows must allow for both creation – one host infecting
(or sending a packet to) more than one neighbor – and destruction – a host
failing to transmit the disease (or packet) at all.

Dynamics of the Network Itself. The dynamics of the networks themselves
also exhibit similarities in surprising detail. In both cases, of course, they are
time dependent. There may also be feedback between transmission and the net-
work structure. For example, a person whose neighbor becomes ill may break
off contact with him, and the probability of this act may vary depending on the
prevalence of disease in the network as a whole. Similarly, the content of a mes-
sage transmitted by the communication network may lead one of the receivers
to move, and this may depend on the density of messages in the network.

Existence of Solutions for Related, Simpler Problems. Shannon’s in-
formation theory and ideas such as channel capacity provide an old, canonical
solution to a simpler problem. Similarly, compartmental models provide old,
canonical solutions to epidemiological problems. As noted above, there are tra-
ditional solutions in percolation theory (i.e. network models) for certain regular
networks. These canonical solutions are often used to develop intuition about
the problem, but just as often they can lead to poor intuitions because the more
complex systems admit a greater variety of solutions.

Transmission Network vs Underlying Network. Each instance of an epi-
demic creates a trace or stain on the contact network – a subgraph representing
the observed web of transmission. Similarly the trace of packets from one or more
messages yields a subgraph of the communication network that participated in
the actual transmission of the messages. One way to view the network or proto-
col design problem is to fix properties of the desired transmission network, then
define a process that, given an underlying network with potentially very differ-
ent properties, constructs subgraphs with the desired properties. This refocuses
attention away from the properties of the underlying network and toward ways
to select random subgraphs biased toward desired structures.

2.2 Differences

Single Pathogen vs Multiple Messages: Flooding. In a communication
network, we are interested in supporting the ability to send multiple messages
simultaneously from different sources to different targets. In contrast, for an
epidemiological system we are chiefly interested in the ability of a single pathogen
to diffuse across the network. This has important implications for the efficacy of
different strategies. For example, because there is only a single genetic “message”
carried by a pathogen, infectious diseases have evolved to make use of what
amounts to flooding, i.e. transmitting themselves to every possible receiver. This
is an inefficient use of resources for communication networks.
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Single Pathogen vs Sequence of Packets: Timing. In order to transmit
disease, only a single infectious dose of a single type of pathogen needs to be
transmitted. Communication systems must not only deliver all the packets reli-
ably, they must take into account any overhead required to sort them into the
correct order as sequential parts of a message.

Time Scales and the Role of Mobility. The most obvious difference between
biological and electronic transmission is the speed of the latter. Routers can
forward packets orders of magnitude faster than humans forward pathogens.
Mobility plays an important role in epidemiology, since it is responsible for long-
range transmission, but it is likely to play an even greater role in communication
over wireless networks. At any instant, the social network consists of a set of
disjoint subgraphs, each of which is completely connected within itself. Mobility
changes the number and membership of the complete subgraphs. But because
incubation periods and the duration of infectivity are typically measured in days,
the propagation of disease is much slower than changes in network topology. Thus
the effects of mobility can be summarized in a static graph that is a union of the
instantaneous graphs. In contrast, in networks of mobile nodes, the topology of
the network typically changes on time scales that are slower than or comparable
to the propagation of messages.

Passive Carriers. Some pathogens (e.g. staphylococcus) are harbored by large
fractions of the population, but only result in illness under specific conditions.
The network models of epidemiology we describe here are perhaps not the best
representation of the spread of such pathogens. But communication networks
routinely rely on nodes to forward packets to distant destinations. This leads to
two types of interacting networks - the social contact network of a node, and the
underlying infrastructure network.

Subadditive Synergy vs Interference. Without careful synchronization, ra-
dios interfere with each other, even if they are sending the same packet. Thus
on one hand, simultaneous transmission of messages in a wireless network re-
duces the probability of successful transmission. On the other hand, multiple
simultaneous exposures to a single infectious agent in different infectious people
is likely to increase the probability of becoming infected, though subadditively.
The differences between destructive and constructive interference often change
the statement and difficulty of proving flow-based theorems.

Strong Coupling Limit. In the strong coupling limit, when the probability
of transmission is near unity, epidemiology reduces to finding the shortest path
between any vertex in the initially infected set and every vertex outside the set.
The network can be classified as robust or fragile depending on the distribution
of shortest path lengths between all pairs of vertices. In the same limit in a
communication network, however, each radio floods its neighbors with packets.
In this situation, no messages can reliably be communicated through the system.

Designed vs Evolved System: Role of Intention. The communication net-
work is typically constructed of components designed and optimized for the
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particular purpose of communicating, whereas human social networks are de-
signed to accomplish goals almost entirely unrelated to disease transmission.
Furthermore, the components of contact networks, i.e. people, have intentions
and their behavior is difficult or impossible to predict. Radios, by contrast, may
perform as expected or fail, but it is unlikely that they will broadcast in an
entirely unexpected way.5

Targets for Control: Protocol or Network. The analogy to the communica-
tions network’s protocol layer in epidemiology is the mechanism of transmission,
e.g. inhalation of aerosol or transfer of pathogen via direct contact. There is
perhaps also a physical layer in epidemiology representing access to media, e.g.
coating particles in a sneeze with virions. In any case, the primary target for
control in public health is the contact network itself. Public health measures
such as quarantine have the effect of removing edges or vertices from the contact
network. In contrast, efforts to improve communication network performance6

have often focused on the protocol stack and not network topology.

3 Useful Approaches from Epidemiology

3.1 Methodologies

As with any system of interacting components, the key to understanding global
behavior is our ability to derive global semantics from local syntactic rules. There
are, of course, many promising approaches to this problem, some of them also
inspired by biology. In this section we discuss the following examples of such
methodologies:

– A Mathematical Theory for Network Processes
– Simulation
– Characterizing Networks by Topology
– Designing Epidemiologically Inspired Algorithms

A Mathematical Theory for Network Processes. Formally, we model dy-
namics of social networks using discrete dynamical systems. We refer to our
model as a Stochastic Synchronous Dynamical System (SSyDS). Each SSyDS S
over a domain D is specified as a pair S = (G, F). Here, G(V, E) is an undi-
rected graph with n nodes, with each node having a state value from the domain
D. This graph represents the topological structure of the social network. The
set F = {f1, f2, . . . , fn} is a collection of stochastic interaction functions in the
system. Here, fi denotes the stochastic local transition function associated with
node vi, 1 ≤ i ≤ n. A configuration of an SSyDS is an n-vector (b1, b2, . . . , bn),
where bi ∈ D is the value of the state of node vi (1 ≤ i ≤ n).

5 Although this may be an interesting parallel to adversarial control of parts of a
network.

6 Or to attack it, such as with worms that generate unnecessary traffic.
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A single SSyDS transition from one configuration to another is obtained by
updating the state of each node synchronously using the corresponding local
transition function. For 1 ≤ i ≤ n, the inputs to the function fi are the state
values of node vi and those of the neighbors of vi. For each combination of
inputs to fi and each element θ of D, the function fi specifies the probability
that the next state value of vi is θ. (For each combination of inputs, the sum of
the probabilities assigned by fi over the values θ ∈ D must be 1.)

To further clarify the notion of stochastic local transition functions used here,
consider a node vi and let vi1 , vi2 , . . . , vir represent the neighbors of vi in G.
For any j and t, let st

j denote the state of node vj at time t. The local transition
function fi at node vi satisfies the following equation:

Pr{st
i = θ | st−1

i = θ′, st−1
i1

= θ1
i1 , . . . , s

t−1
ir

= θ1
ir

} = fi(θ′, θ1
i1 , . . . , θ

1
ir

, θ). (1)

Simulation. As discussed above, it is not feasible to compute the exact dynam-
ics, i.e. the ensemble of possible paths, in the full configuration space. Instead,
we use simulation to estimate likely individual paths through the space. Simu-
lation is required especially when parameter values for transmission lie near the
epidemic phase transition, when the networks are highly irregular, or when there
are large-scale topological structures in the network. Cases that do not fall into
one or more of these groups are generally unrealistic.

Over the past few years there has been substantial interest in developing
computational models for representing and understanding the spread of worms
in IP networks [24,25,26,27]. However, this work still uses the basic SIR con-
struct. High resolution models such as the network epidemic models incorporate
a number of important features, including: (i) demographic attributes of hosts
(e.g. whether the system is running MS windows or not), and (ii) the time that
nodes spend in the infected stage. As in the case of human epidemiology, high
resolution modeling allows us to study a wider variety of quarantining and mit-
igating policies and methods. For example, specific kinds of IP hosts within a
subnet can be turned off if a worm attack is detected. In contrast, homogeneous
mixing models cannot distinguish between individual IP hosts.

Worms that spread on Bluetooth enabled devices are relatively new. The pri-
mary difference between Bluetooth worms and older internet worms such as
code Red is that Bluetooth worms are inherently spatial in nature: an infected
bluetooth-enabled device can infect another bluetooth-enabled device if the two
are in close proximity to one another. In a recent article, Kleinberg [28] convinc-
ingly argues that the advent of short range wireless nodes can potentially bring
epidemiological models for transmission of diseases in biological systems and for
communication networks closer.

Characterizing Networks by Topology. One approach to characterizing
networks by the dynamics they support begins by determining the number and
boundaries of communities: regions of a network that are more highly connected
within themselves than they are to other communities. This is similar to the
classical clustering problem, and similar methodologies for solving it have been
proposed. Some are based on the max cut / min flow theorem. Others are based
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on the spectrum of the adjacency, Laplacian, or other closely related matrices.
Still others are based on global, computationally hard to evaluate, statistics such
as betweenness or expansion. It is crucial to develop good sampling techniques
and algorithms with provable error bounds for approximating these statistics.

Designing Epidemiologically Inspired Algorithms. Epidemiologically in-
spired algorithms are specifically designed to work in environments when network
connectivity is highly variable due to mobility or faults. Thus, these algorithms
can often be viewed as extreme forms of distributed algorithms: (i) they assume
no global knowledge and very little knowledge even about their neighbors; and
(ii) the decision to (re)-transmit information is usually based on the local state
at a node and information (packet) received from its neighbors (e.g. the time
packet has been alive, the number of hops, etc.)

Alternative Perspectives on the Problem. On a more speculative note,
evolutionary strategies that are beyond the scope of this paper represent method-
ologies for optimizing network diffusion that may generalize well from biology to
communication networks. For instance, the problem of communication across a
network, as is the case for infectious disease, is generally conceived in terms of
parasitism: how can we trick nodes of the network into directing their resources
towards conveying our information to our intended recipients? It may be that a
more productive paradigm, also drawn from the biological world, is symbiosis:
how can we arrange things so that delivering our information inherently benefits
the nodes involved, so that there is an active competition to deliver messages.

3.2 Some Specific Tools

In addition to these general principles or methodologies that appear likely to
be useful, we will mention here a few specific notions developed in the course
of epidemiological studies. Answering questions 3 and 4 in Sec. 1.4 requires
making precise the notions of vulnerability and criticality. We outline appropriate
definitions of these quantities here. Next we give examples of epidemiologically
inspired algorithms for updating replicated databases and for routing. Finally,
we describe a local way to measure the importance of global network topology
to the dynamics of a single vertex.

Stochastic Reachability. In deterministic discrete systems, we are familiar
with the notion of reachability: whether a configuration is reachable (in finite
time) from a given configuration. There is a natural generalization to stochas-
tic systems: the probability that a certain configuration will be reached (at a
particular time) from a given configuration. Given a dynamical system S, two
configurations I and B and a probability value p; the question is whether S
starting from I can reach B with a probability of at least p. An important vari-
ant of this problem is one in which the goal is to determine whether S starting
from I can reach B in at most t steps with a probability of at least p. The com-
putational complexity of these problems is known. Under reasonable complexity
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theoretic assumptions, reachability problems for stochastic systems are harder
than the corresponding problems for deterministic systems.[29]

It is also useful to sum this probability over certain sets of configurations. For
example, we might sum over all configurations B in which a particular vertex
is in a particular state. In an epidemiological model, this gives us, for instance,
the probability as a function of time that a person is infected given an initial
condition. This probability is the person’s vulnerability. The advantage of this
perspective is that it makes clear that vulnerability is a function of the per-
son, the time since the outbreak began, and the initial condition. The literature
often confuses this general notion of vulnerability with the time t = 1 vulnera-
bility, as in the common assertion that a vertex’s vulnerability is equivalent to
its weighted degree. At time t = 2, it is obvious that the correlation between
neighboring vertices’ degrees has an effect, and at longer times, the full global
topology becomes important as discussed above. The vulnerability of a vertex
serves as a useful measure (in the sense of weight) for calculating averages. That
is, it can be used to calculate mean age of infected people, etc. Aggregate val-
ues of vulnerability – averaged over vertices, initial conditions, and time – can
characterize the vulnerability of an entire network.

Criticality. Intuitively, vertex criticality compares what happens when a vertex
is present and when it is absent. This can easily be made precise, but, like
vulnerability, it will depend on the vertex, the initial condition, and the time that
elapses before the vertex is removed. Moreover, it will depend on the time that
has elapsed since removal when the comparison is made. As with vulnerability,
if we remove the vertex at time 0 and make comparisons after only a single
time step, then the criticality of a vertex is given by its weighted degree. The
identity of criticality and vulnerability in this very restricted domain has led to
an unfortunate confusion of the two distinct properties. It is clear from a more
careful definition that the two are not necessarily related.

Updating Replicated Databases. Demers et al. [16], were the first to con-
sider the use of epidemiologically inspired algorithms for updating databases.
For additional discussion, see [30,31]. Managing a replicated database using syn-
chronous methods is challenging when the underlying network is unstable or very
large. As a result asynchronous methods, and in particular epidemiologically in-
spired algorithms, are often used. For example, every time the value of an entry
changes at a node, it is locally propagated. Under reasonable assumptions about
global information, simple rules can be used to ensure local and global consis-
tencies. Maintaining serializability is more challenging. Agarwal et al. outline a
sophisticated approach to ensure consistency and serializability.

Routing. In contrast to the database update problem, the primary goal of
routing is to ensure that packets originating at a node s reach a given node
t. Networks with mobile nodes and sensor networks in which nodes might
be turned off (to conserve power) or fail, provide different kinds of chal-
lenges than database maintenance problems. Probabilistic local routing is a
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class of algorithms motivated by epidemiology; for recent papers and discus-
sion, see http://roland.grc.nasa.gov/~weddy/biblio/epidemic/. Our re-
cent work demonstrates that such algorithms are very competitive in highly
mobile environments such as vehicular ad-hoc networks and in delay tolerant
networks.

Generalized d(t)-separability. As discussed above, there exist several so-
lution techniques for network epidemiology under the assumption that vertex
states are independent, or whether the vertices are d-separable. For networks
with any interesting topology, especially when most edges are undirected, two
vertices are unlikely to be d-separable. There are two important questions that
are not addressed by d-separability, though:

1. How does the correlation of vertex states spread as a function of time?
2. How important is the correlation?

Answering the first requires looking beyond the static graph we have considered
for most of this paper. Instead, to study the separability of two vertices at time
t, consider a new graph made of t copies (or layers) of the vertices. In this new
graph, two vertices are connected by an edge directed from person S in layer lS
to person T in layer lT if and only if lT is the layer immediately below lS and
there is an edge from person S to person T in the original graph. This new graph
is a directed, acyclic graph, and it contains no directed paths longer than t. d-
separability in this graph answers the first question above. To answer the second
question, we pose the following hypothesis test: if there were no correlation,
we could write down the dynamics (in terms of stochastic reachability) in a
straightforward fashion. If we observe the simulated dynamics, we can determine
whether the null hypothesis of no correlation can be rejected. Moreover, even
without evaluating the statistical significance, we can determine how large an
effect the correlation has on any vertex at any time. Together, these ideas give
us a handle on an important question – does the topology of a given network
have an important effect on the outcome, and if so, how sensitive is the effect to
changes in the network structure?

4 Conclusion

We believe it is currently the intersection of simulation science, computer sci-
ence, and discrete mathematics that is driving development and generalization
of the most promising methodologies for studying network dynamics. While biol-
ogy, and in particular infectious disease epidemiology, has indeed inspired some
of these methodologies, the differences between problem domains is significant
enough to render solutions difficult to translate from one to the other. Instead,
it is the methodologies themselves and concepts such as reachability that can be
readily translated from epidmiology to communication networks.

This work was supported by the National Institute of General Medical
Sciences Models of Infectious Disease Agent Study (cooperative agreement
5U01GM070694).
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Abstract. Worms are stand-alone computer viruses which use networks
for their spreading among computing devices. The last few years have seen
the emergence of a new type of worms which specifically target portable
computing devices, such as smartphones and laptops. The novel feature of
these worms is that they do not necessarily require Internet connectivity
for their propagation but can spread directly from device to device using
a short-range communication technology, such as Bluetooth or WiFi. In
this paper we use a combination of large-scale simulations and mathemat-
ical modelling to explore epidemic spreading of wireless worms in fixed ad-
hoc networks. We show that the spreading of worms in these networks is
greatly affected by a combination of spatial correlations arising from net-
work topology and temporal correlations resulting from the interference-
limited nature of communications in thees networks. Standard mean-field
and network mean-field models from mathematical biology, which are
widely used to model worm epidemics in computer networks, are inade-
quate for describing worm epidemics in wireless adhoc networks but spa-
tial epidemic models provide a promising alternative.

Keywords: Wireless Computer Worms, Complex Networks, Epidemic
Spreading, Modelling and Simulations.

1 Introduction

Computer worms are self-replicating malicious software that can propagate in a
network without the need for any human intervention [1,2,3], and their spread-
ing in computer networks shows important similarities to the spread of epidemic
diseases in populations. The last few years have seen the emergence of a new
type of worms which specifically targets portable computing devices, such as
smartphones and laptops. The novel feature of these worms is that they do not
necessarily require Internet connectivity for their propagation. They can spread
directly from device to device using a short-range wireless communication tech-
nology [5,6]. Although these types of worms have not yet achieved widespread
penetration, prototypes have successfully exploited vulnerabilities in wireless
protocols including Bluetooth [4] and WiFi. With wireless networks becoming
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pervasive, many security experts predict that these networks will soon become
a main target of attacks by worms and other type of malware [5].

From the perspective of network theory, the underlying contact network along
which wireless worms spread is greatly different from the extensively studied ran-
dom graph and scale free networks [28,29,30]. Unlike these networks, which are
largely unconstrained by physical proximity, wireless networks are embedded in
a metric space where links between the nodes is a function of their spatial dis-
tance. While epidemics in random graphs and scale-free networks have been the
subject of much studies, investigations of epidemic processes in spatial networks
is still at its infancy [16,17,18].

In a recent paper [16] we studied worm epidemics in a class of wireless networks
which are created on the fly by devices equipped with, e.g., WiFi or Bluetooth,
the so-called wireless adhoc networks. Our studies had as their main focus sta-
tionary properties of epidemics in these networks, such as the epidemic threshold
and the epidemic prevalence. These properties were found to be greatly different
from the much studied properties of worm epidemics on the Internet. In this
paper we explore via a combination of modelling and stochastic simulations dy-
namic patterns of worm epidemics in fixed wireless adhoc networks. We perform
extensive Monte Carlo simulations of worm spreading for a range of node den-
sities, both in the absence and in the presence of an interactive immunisation
process.

We find that the dynamic patterns of epidemics in our networks are greatly
affected by a combination of spatial correlations arising from their spatial topol-
ogy and temporal correlations resulting from the interference-limited nature of
communications in these networks [8]. Due to these correlations the standard
mean-field models from mathematical biology and their recent extension to in-
clude network effects [9,10,12], become inadequate in describing worm epidemics
in wireless adhoc networks. On the other hand, we argue that spatial epidemic
models, such as those applied to plant diseases [19], provide a promising alter-
native.

The rest of this paper is organised as follows. In section 2 we describe our
models of network topology, medium access control and worm spreading in wire-
less ad hoc networks. In section 3 the relevant mean-field models of epidemics on
networks are reviewed. In section 4 we use the models developed in section 2 to
perform Monte Carlo simulation studies of worm propagation in adhoc networks
for a range of device densities, and for different worm attack scenarios. We close
this paper in section 5 with conclusions.

2 Modelling Preliminaries

2.1 Network Model

We consider a collection of nodes distributed in a two dimensional plane which
communicate using short-range radio transmissions. The received radio signal
strength at a device j resulting from a transmission by a device i decays with the
distance between the sender and the receiver due to a combination of free-space
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attenuation and fading effects. Phenomenologically this effect is described using
the so-called pathloss model [20], which ignores statistical fluctuations in the
signal strength due to, e.g., shadowing and multiple reflections. Consequently,
the mean value of the signal power at a receiving device j is related to the signal
power of the transmitting node i via the following equation:

P ij =
P i

crα
ij

. (1)

In the above equation rij is the Euclidean distance between node i and node
j, P i and P ij are the transmit power and the received power, respectively, and
c is a constant whose precise value depends on a number of factors including
the transmission frequency. For free space propagation α = 2, but depending on
the specific indoor/outdoor propagation scenario it is found empirically that α
can vary typically between 2 and 5. A data transmission by node i is correctly
received at node j, i.e. i can establish a communication link with j, provided
that:

P ij

ν
=

P i/crα
ij

ν
≥ βth. (2)

In the above equation βth is an attenuation threshold and ν is the noise level at
node j.

Condition (2) translates into a maximum transmission range for node i:

ri
t =

(
P i

cβthν

)1/α

, (3)

such that each device can establish wireless links with only those devices within
a circle of radius ri

t. A communication graph is then constructed by creating
an edge between node i and all other nodes in the plane that are within the
transmission range of i, and repeating this procedure for all nodes in the network.
Assuming that all devices use the same transmit power P , and a corresponding
transmission range rt, the topology of the resulting network can be described
as a two dimensional random geometric graph (RGG) [21,22]. Like Erdős-Rényi
random graphs (RG) [23], these graphs have a binomial degree distribution,
P (k), which peaks at an average value 〈k〉 and shows small fluctuations around
〈k〉. However, other properties of a RGG are radically different from a Erdős-
Rényi random graph. Most notably, these networks are characterised by a large
cluster coefficient, C = 0.59, which is a purely geometric quantity independent of
both node density and 〈k〉 [22,27]. Furthermore, it has been shown numerically
that the critical connectivity in these networks is at 〈k〉 = 4.52 [22], which is
much higher than the well-known 〈k〉 = 1 value in RG.

2.2 Medium Access Control

In WiFi networks access to the available frequency channels is controlled by a
coordination mechanism called the Medium Access Control (MAC) [24]. The
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function of the MAC is to ensure interference-free wireless transmissions of data
packets in the network. This is achieved by scheduling in time the transmissions
of nearby devices in such a way that devices whose radio transmissions may
interfere with each other do not get access to the wireless channel at the same
time. The presence of the MAC introduces novel spatio-temporal correlations in
the dynamics of data communications in these networks which are absent in the
Internet communications.

The MAC protocol used by WiFi-based wireless devices follows the IEEE
802.11 standard [24], which specifies a set of rules that enable nearby devices
coordinate their transmissions in a distributed manner. The IEEE 802.11 MAC
is a highly complex protocol and we do not attempt to fully model this protocol.
Instead we focus on the most relevant aspect of this protocol, the so-called
listen-before-talk (LBT) rule. This rule dictates that each device should check
the occupancy of the wireless medium before starting a data transmission and
refrain from transmitting if it senses that the medium is busy [16].

2.3 Worm Propagation Model

Following [16] we assume that wireless worms primarily utilise multihop forward-
ing for their propagation in adhoc networks, a mechanism which does not require
any Internet connectivity. With respect to an attacking worm we use the so-
called susceptible-infected (SI) and susceptible-infected-removed (SIR) models
from mathematical biology, adapted to the context of wireless communications.
We assume nodes in the network to be in one of the following three states: vul-
nerable, infected, or immune. Infected nodes try to broadcast the worm to their
neighbours at every possible opportunity. Vulnerable nodes can become infected
with probability λ when they receive a transmission containing a copy of the
worm from an infected neighbour. Finally, in the SIR version of the model, in-
fected nodes can get patched and become immune to the worm with probability
δ. We denote by S(t), I(t) and R(t) the population of vulnerable, infected and
immune nodes, respectively.

We note that temporal characteristics of the underlying system such as process-
ing delays are likely to have a significant effect on the propagation of worms. In
the current study we model the processing time required by a worm to complete
the infection of a node as a constant value of one clock tick, and assume that the
wireless transmission time of worm packets can be considered instantaneous (or
at least is much smaller than the processing time).

3 Mean-Field Theory of Epidemic Spreading on Networks

Ever since the first appearance of computer worms, attempts to understand and
model their propagation patterns has drawn on parallels with biology. Initially,
standard “homogeneous mixing” models from mathematical epidemiology were
adapted and used by researchers in order to analyse the propagation of worms
in computer networks [7].
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The homogeneous mixing hypothesis is equivalent to the assumption that the
underlying contact network along which a disease spread is a complete graph, i.e.
each member of the population can establish a contact with every other member
of the population, on a timescale which is much shorter than the timescale of
the epidemic. In the last few years, however, significant progress has been made
in understanding the impact of much more complex contact network topologies
on the properties of epidemics [8,11]. Consequently, new network “mean-field”
models have been put forward [9,10,12,13] which are capable of incorporating
some of the structure of the underlying networks in the dynamics.

In the case of a network where no correlations are present, the mean-field
equations for the SI model yield for the initial growth of the epidemic [14]

I(t) = I0

[
1 +

〈k〉 − 1
κ − 1

(et/τ − 1)
]

(4)

where
τ =

1
λ(κ − 1)

, (5)

and I0 is the initial population of infected nodes. Furthermore, κ = 〈k2〉/〈k〉 is
a parameter defining the level of fluctuations in the degree distribution of the
networks.

The above result implies an exponential initial growth rate of the epidemic.
Furthermore, it shows that the growth timescale of an epidemics decreases with
increased fluctuations in degree distribution. In networks with a Poisson degree
distribution we have κ = 〈k〉 + 1 and we obtain τ = (λ〈k〉)−1. On the other
hand, in the so-called power-law (or scale free networks), 〈k2〉 may diverge in
the infinite systems size limit implying an instantaneous initial growth of the
epidemic.

In the case of SIR epidemics the inclusion of the immunisation term δ does
not change the initial exponential growth dynamics given by Eq. (4). However,
the time-scale, τ , is found to be given by [14,10]

τ ∼ 1
λκ − (δ + λ)

. (6)

The above discussion results holds only in the case of uncorrelated networks.
Network correlations are usually encoded in the mean-field equations via the
correlation function P (k′|k) which gives the conditional probability that a node
with degree k is connected to a node with degree k′. In the presence of correla-
tions the mean-field equations become more complex. However, also in this case
it can be shown that the dominant behaviour of the epidemic growth is of the
exponential form [14,12]:

I(t) ∼ eΛmt, (7)

where Λm is the largest eigenvalue of the matrix C = {Ck,k′} with elements:

Ck,k′ = λk
k′ − 1

k′ P (k′|k) (8)
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4 Simulation Studies

We simulated the propagation of worms in wireless adhoc networks comprising
N devices spread in a L2 = 1000 × 1000 m2 area. The transmission range of
all devices was set at 65 m. This value is somewhere between the typical min-
imum and maximum range of the WiFi systems, and also guarantees network
connectivity for all device densities considered. For a given density, nodes were
distributed randomly and uniformly in the simulation cell. The resulting RGG
networks were constructed following the prescription of Sec. 2. 1, and periodic
boundary conditions were used in order to reduce finite-size effects. We verified
numerically that the the average degrees of the resulting networks were well-
described by

〈k〉 = πr2
t ρ, (9)

where ρ = N/L2 is the device density.
The above procedure generates wireless adhoc networks which have static

network topologies. In reality the topology of ad hoc network can be highly
dynamic due to the movement of nodes. However, the timescale at which the
topology of the network changes is usually much slower than the timescale of
worm propagation. This justifies our approach in using “frozen ” topologies to
study the spreading of worms in these networks. In the case of intermittently
connected mobile adhoc networks, however, node mobility need to be taken into
account [31].

The spreading dynamics was simulated on top of the above frozen networks
using Monte Carlo simulations. Each Monte Carlo run starts by infecting a single
randomly chosen node and proceeds following the rules described in Sec. 2.3 until
the stationary state in reached. The results were averaged over 500 Monte Carlo
runs and were also averaged over simulations starting from at least 5 different
initial infected seeds.
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Fig. 1. Time evolution of the number of infected device is shown for the spreading of
an unknown worm in networks consisting of N = 500 (left panel) and N = 3000 (right
panel) devices. Simulation results are shown both in the presence and in the absence
of MAC and are compared with the mean-field results.
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Fig. 2. The spreading of a worm epidemic in a wireless adhoc network is shown at (from
top to bottom and left to right) t = 1, 5, 10, 15 simulation timesteps. The network size
is N = 3000 and the parameters used are λ = 1 and δ = 1. Susceptible nodes are
shown in green, infected nodes in red and immunised nodes in blue.

4.1 The Spreading of Unknown Worms

First we consider the spread of an unknown worm in the network. In this case
none of the nodes is immune against the worm and we also assume that there is no
mechanism for interactive immunisation of nodes (i.e. δ = 0). In the simulations
reported here the infection rate was fixed at λ = 1. We refer the reader to [16] for
results obtained for other values of λ. Figure 1 displays the propagation dynamics
of the worm in our networks for device densities corresponding to N = 500 (left
panel) and N = 3000 (right panel). The simulation results were obtained both
in the presence of the MAC mechanism and in and idealised scenario where this
mechanism is not required (we call this zero MAC). For comparison, we have also
plotted the analytical results obtained from the mean-field SI model for these
networks. It can be seen that for the N = 500 network the simulated propagation
speed of the worm is significantly slower than the exponential growth predicted
by the mean-field theory. Switching off the MAC protocol and increasing the
density to N = 3000 somewhat increases the propagation speed. However, the
resulting curves are still well below the mean-field prediction.
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Fig. 3. Time evolution of the number of infected devices is shown for the N = 500
node networks for different patching rates
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Fig. 4. The maximum number of infected devices is shown as a function of the patching
rate the N = 500 metwork

The above results show that the slow growth of the epidemic on our networks
is the result of two distinct effects. Firstly, it is caused by spatial correlations in
our networks which are absent in, e.g., random graphs and scale-free networks.
Such correlations effects are beyond the mean-field theory but can be accounted
for in mathematical models of spatial epidemics [19]. Secondly, the presence
of the MAC introduces a new self-throttling effect [16,18] of adjacent infective
devices contending for accessing the shared wireless medium, which further slows
down the progress of the epidemic.

4.2 Interactive Immunisation

Next we consider the scenario where nodes are patched against the worm in
real-time while the worm is spreading in the network. These patches can be
downloaded onto the network using, for example, WiFi access points or via a
cellular link. Once a node downloads a patch it can send copies to other nodes in
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the adhoc network using multihop forwarding. In the following we shall assume
that nodes can be patched at a given rate δ through one or a combination of the
above mechanisms, without considering the patching mechanism itself in detail.

Fig. 2 shows, as an example, snapshots of the spatio-temporal patterns of the
worm epidemic for the N = 3000 network as obtained from our simulations.
These simulations were performed using λ = 1 and δ = 1 hence, apart from the
randomness introduced by network topology, they are deterministic. It can be
seen that starting from a single infected device in the centre of the simulation
cell, the epidemic spreads outwards along the network links, following a propa-
gation pattern which closely resembles the spreading of a disease in, e.g., a plant
population [25].

Figure 3 shows time evolution of the total number of infected devices, I(t),
in the network with N = 500 for different patching rates, δ, while the infection
rate is kept fixed at λ = 1. It can be seen that while patching does not have
a significant impact on the initial spreading rate, it mitigates very effectively a
large scale spread of the worm in the network. Even when nodes are immunised
at a relatively low rate of δ = 0.05, the maximum fraction of infected nodes is
reduced to < 60%. Further details of the impact of patching can be seen in Fig.
4 where the maximum fraction of infected nodes is plotted versus the patching
rate, both in the presence and absence of the MAC protocol. It can be seen that
this quantity decreases monotonically and rapidly with increased patching rate
in both cases. However, the impact of patching is much more pronounced when
the MAC protocol is switched on.

5 Conclusions

In this paper we investigated the outbreak of worm epidemics in wireless ad hoc
networks by means of modelling and simulations, and examined the effect of
interactive patching on preventing such worm epidemics. Performing our simu-
lation studies for a range of device densities we found that worms spread faster
in networks with a higher device density. For all densities considered, however,
the initial spreading rate is much slower than the exponential spreading rate
that has been observed in worm attacks on the Internet. Mean-field epidemi-
ological models on networks also predict an exponential growth rate and are
therefore inadequate for describing worm propagation in our networks. The dy-
namic patterns of worm epidemics in our networks show interesting similarities
to propagation patterns of spatial epidemics in, e.g., a plant population [19,6].
We are currently investigating how these analogies could be exploited in devis-
ing analytical models for the spreading of wireless epidemics [32]. In addition to
fully incorporating the network topology, in our simulations we also took into
account the limited bandwidth available to wireless nodes due the MAC con-
tention mechanism. We found that introducing this factor further slows down
the initial growth of the epidemic. This is due to a self-throttling mechanism
introduced by the MAC protocol which, to our knowledge, has no analogy in
biological systems.
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An important feature of worm epidemics in wireless networks, which was not
addressed in the current paper, is the role of device mobility [33]. However,
we have recently investigated the impact of mobility in the context of epidemic-
style information dissemination in highly dynamic vehicular adhoc networks [17].
These networks consist of isolated clusters that merge and disintegrate dynam-
ically as vehicles move around. We have found that epidemic spreading in such
intermittently connected wireless networks is greatly affected by mobility. It con-
sists of fast worm propagation within isolated network clusters alternated by
much slower inter-cluster worm propagation, which are mediated by vehicular
(or human) mobility.
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Abstract. The emergence of Delay Tolerant Networks (DTNs) has culminated in
a new generation of wireless networking. New communication paradigms, which
use dynamic interconnectedness as people encounter each other opportunistically,
lead towards a world where digital traffic flows more easily. We focus on human-
to-human communication in environments that exhibit the characteristics of so-
cial networks. This paper describes our study of information flow during epidemic
spread in such dynamic human networks, a topic which shares many issues with
network-based epidemiology. We explore hub nodes extracted from real world
connectivity traces and show their influence on the epidemic to demonstrate the
characteristics of information propagation.

Keywords: Time Dependent Networks, Connectivity Modelling and Analysis,
Network Measurement, Delay Tolerant Networks, Social Networks.

1 Introduction

Increasing numbers of mobile computing devices form dynamic networks in daily life.
In such environments, the nodes (i.e. laptops, PDAs, smart phones) are sparsely dis-
tributed and form a network that is often partitioned due to geographical separation
or node movement. We envision new communication paradigms, using dynamic inter-
connectedness between people and urban infrastructure, leading towards a world where
digital traffic flows in small leaps as people pass each other [15]. Delay Tolerant Net-
works (DTNs) [9] are a new communication paradigm to support such network envi-
ronments, and our focus is a type of DTN that provides intermittent communication for
humans carrying mobile devices: the Pocket Switched Network (PSN) [2].

Efficient forwarding algorithms for such networks are emerging, mainly based on
epidemic protocols where messages are simply flooded when a node encounters an-
other node. Epidemic information diffusion is highly robust against disconnection,
mobility and node failures, and it is simple, decentralised and fast. However, careful
tuning to achieve reliability and minimise network load is essential. Traditional naı̈ve
multiple-copy-multiple-hop flooding schemes have been empirically shown to work
well in dense environments, and they provide fair performance in sparse settings – such
as city-wide communications – in terms of delivery ratio and delay [2]. However, in
terms of delivery cost, the naı̈ve approach is far from satisfactory, because it creates
a large amount of unwanted traffic as a side-effect of the delivery scheme. To reduce
the overhead of epidemic routing, various approaches have been reported, ranging from

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 116–132, 2008.
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count-, timer- or history-based controlled flooding to location-based strategies (see Sec-
tion 7 for further details).

We have previously reported an approach that uses a logical connection topology, and
that uncovers hidden stable network structures, such as social networks [14] [34], from
the human connectivity traces. In PSNs, social networks could map to computer net-
works since people carry the computer devices. We have shown improved performance
by applying these extracted social contexts to a controlled epidemic strategy [13]. During
this work, we have realised that further understanding of network models is essential,
because the properties of human contact networks – such as community and weight of
interactions – are important aspects of epidemic spread. Recently, online-based social
networks have been studied; however, understanding network structures and models
hidden in pervasive dynamic human networks is a still-untouched research area.

Networks represent flows of information and make it possible to characterise the
complex systems of our world. A network is a map of interactions, because communi-
cation is fundamental in our society. These networks are often neither regular lattices,
nor are all units connected randomly, but the interaction patterns are complex. This pa-
per shows a preliminary study of patterns of information flow during epidemic spread
in complex dynamic human networks, which share many issues with network-based
epidemiology. Many studies have been conducted, and these are based either on sim-
ulation or a small collection of data. Our study uses real world data, and we believe
that it gives an interesting insight on real human interactions. We consider a model for
time paths based on graph evolution, called Time-Dependent Networks, in which links
between nodes depend on a time window. We explore epidemic change by exploiting
device connectivity traces from the real world and demonstrate the characteristics of
information propagation. We describe preliminary empirical results, but further mathe-
matical modelling work is outside the scope of this paper.

The rest of this paper is structured as follows. We introduce the experimental data
sets in Section 2, and then describe the complexity of real world connectivity data in
Section 3. We discuss the result of the epidemic spread experiments in Section 4, and
the influence of hub nodes for the epidemic spread in Section 5. We describe a summary
of community detection in Section 6, which is followed by the related work. Finally, we
conclude the paper with a brief discussion.

2 Real World Human Connectivity Traces

The quantitative understanding of human dynamics is difficult and has not yet been
explored in depth. The emergence of human interaction traces from online and perva-
sive environments allows us to understand details of human activities. For example, the
Reality Mining project [7] collected proximity, location and activity information, with
nearby nodes being discovered through periodic Bluetooth scans and location informa-
tion from cell tower IDs. Several other groups have performed similar studies. Most of
these [7] [6] [22] use Bluetooth to measure device connectivity, while others [12] rely on
WiFi. The duration of experiments varies from 2 days to over one year, and the num-
bers of participants vary. We have analysed various traces from the Crawdad database
[3] listed below, and Table 1 summarises the configuration.
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Fig. 1. Node Contact: BATH and MIT traces

MIT: in the MIT Reality Mining project [7], 100 smart phones were deployed to stu-
dents and staff at MIT over a period of 9 months. These phones were running software
that logged contacts.

UCSD: in the UCSD Wireless Topology Discovery [29], approximately 300 wireless
PDAs running Windows CE were used to collect WiFi access point information period-
ically for 11 weeks.

CAM: in the Cambridge Haggle project [18], 40 iMotes were deployed to 1st year and
2nd year undergraduate students for 11 days. iMotes detect proximity using Bluetooth.

INFC06: 78 iMotes were deployed at the Infocom 2006 conference for 4 days [2].

BATH: in the Cityware project, 9 Bluetooth scanners across the city of Bath were de-
ployed to monitor the presence of mobile devices within an approximate 10 metre radius
[23]. The co-location of a device pair is identified from the log data. Also part of devices
are equipped with a Bluetooth scanning program [22] and detected device information
is collected via GPRS. This leads to the construction of a connectivity graph for each
time unit.

Note that it is a complex task to collect accurate connectivity traces using Bluetooth
communication, as the device discovery protocol may limit detection of all the devices
nearby. Bluetooth inquiry can only happen in 1.28 second intervals. An interval of 4 ×
1.28 = 5.12 seconds gives a more than 90% chance of finding a device. However,
there is no data available when there are many devices and many human bodies around.

Table 1. Characteristics of the experiments

Experimental data set MIT UCSD CAM INFC06 BATH

Device Phone PDA iMote iMote PC

Network type Bluetooth WiFi Bluetooth Bluetooth Bluetooth

Duration (days) 246 77 11 3 5.5

Granularity (seconds) 300 600 120 120 Continuous

Number of Experimental Devices 97 274 36 78 7431



Wireless Epidemic Spread in Dynamic Human Networks 119

The power consumption of Bluetooth also limits the scanning interval, if devices have
limited recharging capability. The iMote connectivity traces in Haggle use a scanning
interval of approximately 2 minutes, while the Reality Mining project uses 5 minutes.
The advantage of BATH data is that scanning is done continuously. The ratio of devices
with Bluetooth enabled to the total number of devices is around 7%. Because of the
uniqueness of urban-scale human connectivity data, we focus on analysis using the
BATH trace in this paper. Fig. 1 depicts all contact points between two nodes along
the timeline in 3D form. The z-axis represents time, with 300 seconds per unit. This
depicts the same node pair encountering repeatedly, which is marked with circles. The
Bath data dictates 5 days repeating contact patterns, while the MIT trace shows as a
vertical line during 9 months.

3 Complexity of Real World Networks

In general, to understand the network structure one requires three key metrics: the aver-
age path length to show the distance between a pair of nodes, the cluster coefficient to
indicate how well nodes are clustered, and the degree distribution. In DTNs, the topol-
ogy changes every time unit and data paths, which may not exist at any one point in
time, potentially arise over time. Thus, existing metrics for static networks are diffi-
cult to apply. Previously, the characteristics of a pair of nodes – such as inter-contact
and contact distribution – have been explored in several studies [2] to which we refer
the reader for further background information. We also described the extraction of in-
formation related to levels of clustering or network transitivity, and strong community
structure in our previous work [34] [14].

As PSNs are formed by humans, it is assumed that social networks take a major
role in epidemic spread. Most social networks are neither random nor regular but com-
plex. The properties of nodes include fixed states, variable states, neighbour nodes and
network positions (i.e. centralities). Understanding a complex system requires not only
understanding of the elements in the system, but also of the patterns of interactions
between the elements. Thus, observing communication over the network is expected to
give some information about the network structure and, vice versa, the network structure
affects the communication. In this paper, we focus on information flow during epidemic
spread, including the impact of hub nodes. In the following subsections, we discuss var-
ious metrics that can be used in expressing dynamic time-dependent networks.

Table 2. Average Hops and Cluster Coefficient

Experimental traces Average Hop Count Cluster Coefficient

MIT 1.6 0.44

UCSD 2.2 0.41

CAM 1.2 0.66

INFC06 1.5 0.52

BATH 3.3 0.45
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Node
High weight edge

Low weight edge

Time unit = t

Time unit = t+1

Time unit = t+2

Fig. 2. Evolution of Connection Map and Edge Characteristics (UCSD Trace)

3.1 Node Distance and Clustering

The average shortest path length between any two randomly chosen people on the planet
(i.e. 6.5 billion people) is 6. This is easy to explain if social ties are highly random. How-
ever, real social networks are not random, as they exhibit a great deal of clustering, and
the average distance between two nodes is small. There are also shorcuts between clus-
tered groups. A network with small average degrees, high clustering, and small average
distances has been called a small world network by Watts [31]. Table 2 summarises the
average hop counts and cluster coefficient values for each trace. The cluster coefficient
value of the MIT trace – 0.44 – is the probability that, if node A knows nodes B and C,
nodes B and C know each other. The BATH trace, where proximity data is collected in
city scale, shows an average hop count of 3.3 and cluster coefficient value of 0.45.

3.2 Weighted Graph

The connectivity traces can be represented by weighted graphs – also called contact
graphs – in which the weight of an edge represents the contact duration and contact
frequency for the two end vertices. Understanding human interaction can then be tackled
in the domain of weighted network analysis. Possible outcomes from studying of the
weighted contact graphs include community detection and determining node centrality.
Many real world networks are weighted, but due to complexity, little analysis has been
done in this area. The seminal work is a weighted network analysis paper by Newman
[20]. A weighted graph can be converted into a multi-graph with many unit edges. Here,
we only consider symmetric edges. In reality, edges can be symmetric (undirected)
or asymmetric (directed), possibly with a different strength in either direction. Fig. 2
depicts network evolution over a period 15 minutes in the UCSD trace (taken from
our visualization work [35]). The network exhibits a small-world-like formation at first,
which breaks down into two groups, each forming a star topology. See Section 6 for
further community detection.

3.3 Node Centrality

Understanding a network and a node’s participation in the network is important. Cen-
trality measurements give insight into the roles and tasks of nodes in a network. The
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Fig. 3. Aggregated Degree Distribution
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Fig. 4. Degree Distribution: Gates in Bath Trace

centrality of a node in a network is a measure of the structural importance of that node.
Freeman defined several centrality metrics [10] and three of the best-known metrics are
described below:

Degree. centrality CD of a node a measures the number of direct connections d. It
indicates how active a node is in the network.

CD(a) = da (1)

Social networks in general exhibit small average degree compared to the number of
nodes, where people have limited connections to the other people. There are over 200
million web sites, with an average degree of only 7.5, and most sites with less than 10
links, but some sites have thousands of links. In time-dependent networks, the degree
centrality should ideally be calculated within an appropriate time-window (see further
discussion in Section 5). Fig. 3 depicts the degree distribution of BATH, INFC06 and
UCSD traces: the BATH and INFC06 traces exhibit a power-law distribution, whereas
the UCSD trace shows that most nodes have a similar degree. The UCSD data is based
WiFi and may not have as precise proximity information unlike the other traces. Fig. 4
shows the degree distribution at the scanner locations in the BATH trace that exhibit
power-law distribution.

Betweenness. centrality CB indicate that a node acts as a bridge between two nonadja-
cent nodes. Thus, a node with high betweenness potentially has control over these two
nonadjacent nodes. A high-betweenness node in the network may impact on the data
flow between two groups of nodes.

CB(a) =
∑
b<c

[gbc(a)/gbc] (2)

where gbc is the number of geodesics between b and c, and gbc(a) is the number of
geodesics between b and c that contain a. In other words, the betweenness centrality is



122 E. Yoneki, P. Hui, and J. Crowcroft

 0

 10

 20

 30

 40

 50

 0  100  200  300  400  500  600  700

La
rg

es
t F

ra
ng

m
en

t S
iz

e

5 Days activities in Bath Trace (time unit = 600 seconds)

 0

 10

 20

 30

 40

 50

 480  500  520  540  560  580  600

La
rg

es
t F

ra
ng

m
en

t S
iz

e

Tuesday in Bath Trace (time unit = 600 seconds)

Fig. 5. Largest Fragment in Timeunit (Bath Trace)

 2

 4

 6

 8

 10

 12

 11350

 11400

 11450

 11500

 11550

La
rg

es
t F

ra
gm

en
t S

iz
e

DAY Activity in MIT Trace (time Unit = 300 seconds)

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 11500

 12000

 12500

 13000

La
rg

es
t F

ra
gm

en
t S

iz
e

Week Activity in MIT Trace (time Unit = 300 seconds)

 5

 10

 15

 20

 25

 5000
 6000

 7000
 8000

 9000
 10000

 11000

 12000

 13000
La

rg
es

t F
ra

gm
en

t S
iz

e

Month Activity in UCSD Trace (time Unit = 300 seconds)

Fig. 6. Largest Fragment in Timeunit (MIT and UCSD Traces)

a sum over all pairs (b, c) of the proportion of geodesics linking the pair that contain
node a. Betweenness centrality in time-dependent networks may be calculated using
traffic simulation to establish the role of each node (see further discussion in Section 5).

Closeness. centrality CC indicates the visibility of a node in the network and sub-
network. Maximising closeness centrality yields the node with the shortest path to all
others and the best visibility. We have used closeness centrality to build an overlay over
the communities [34]. It is a measurement of how long it will take data to spread the
others in the community. The closeness centrality, CC(a), for a vertex a is inverse of
the sum of distances to all other nodes:

CC(a) = 1 /
∑

b

dab (3)

3.4 Dynamic Human Behaviour

Analysing the structural properties of growing networks could be relevant for social
networks. In each time unit ti, several nodes appear or disappear, and each selects or
deselects k possible counter parts from the existing networks. They join or leave the
network with probability p. Identifying the values k and p from the empirical trace de-
fines the form of network evolution. When p is large, over many time steps the network
transition is significant.

Fig. 5 depicts the size of the largest connected subgraph in each time unit, based
on the BATH trace, which shows the network dynamics over 4 days (Sunday through
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Wednesday). The snapshot on Tuesday depicts a single day’s activity, and distinct day-
and night-time dynamics can be observed. Fig. 6 shows the same dynamics, including
monthly periodicity, based on the MIT and UCSD traces. Note that the size of the largest
fragment in the BATH trace is slightly larger than in the MIT/UCSD traces, because
the BATH trace covers all devices in the city of Bath, wheres the MIT/UCSD traces
only consider a known group of 100–270 participants. The cause of larger fragment
sizes in the BATH trace raises an interesting question: are these due to temporal/spatial
connections or tighter social connections?

4 Epidemic Dynamics

Epidemiology can be used to deal with intermittent connectivity in DTN environments.
The small-world topology of interpersonal connection and its hierarchical structure
yields a two-level structure that has a strong impact on epidemic spread in a popula-
tion. DTNs bring a further complex new network structure, because devices can either
communicate through the communication mechanism like the Internet, or directly when
they are in the communication range using short-range wireless communication.

Pastor-Satorras has conducted an analytical and numerical study on a large-scale
dynamical model on epidemic spread in synthetic networks [26][25]. In this section, we
show various epidemic characteristics from our experiments using the real world traces.

4.1 SIS Model

For epidemic spread, we use the Susceptible-Infected-Susceptible (SIS) model. Each
node in the network represents an individual, and each link is a connection along which
the virus infection can spread from between individuals. The SIS model is defined as
follows:

1. Each node can be in one of two states:
– Susceptible (not currently infected)
– Infectious (infected)

2. The initial infectious nodes may be drawn from the following groups. These nodes
do not participate in epidemic propagation until they appear in the trace.

– Top percentile of the degree distribution
– 50th percentile of the degree distribution (i.e. average)
– Bottom percentile of the degree distribution

3. When a node is infectious, it can infect the other nodes with probability λ, where
λ = 1. At each time unit, if that node has a link with a susceptible node, the
susceptible node becomes infectious.

4. In each infectious node, the virus has a time-to-live (TTL). When the TTL expires,
the node reverts to the susceptible state.

Fig. 7 depicts how the infectious nodes change with time, based on the BATH trace,
and using the nodes in the top percentile of the degree distribution as the original in-
fectious nodes. When the TTL is set to 6 hours, we do not observe epidemic spread
at all; while, if the TTL is set to 1 day, the effect is similar to having an infinite TTL.
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Fig. 8 depicts the number of infectious nodes during epidemic spread. With a TTL of 12
hours, a circadian cycle can be observed, with an increase in the number of infectious
nodes during day-time and the virus dying out at night. However, the resilient epidemic
comes back during the next day. The trace is not long enough to see the trend towards
the end of Wednesday and we plan to conduct extended experiments that will yield
traces ranges from a month to a year in length.

We have conducted experiments to investigate the impact of selecting different
source nodes. As stated above, we base our selection on the distribution of node de-
grees. When the bottom percentile of this distribution (75 nodes) is selected to give
source nodes, epidemic spread only begins after 1 day, whereas starting with high de-
gree nodes causes epidemic spread to begin immediately. Once the epidemic spread has
begun, the spread proceeds at a similar rate in either case.

Fig. 7(b) shows three stages of epidemic spread during a 24-hour period. The stages
are (1) a rapid increase at first where propagation may take place within clusters, (2)
slow climbing when infectious nodes encounter external clusters, and (3) exhaustion of
infection as the epidemic spread hits the upper limit of infection. During the first stage,
linking between clusters may occur, and this accelerates the increase of infected nodes.
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This three stages can be observed in the MIT and UCSD traces (see Fig. 9 and Fig. 10).
Fig. 9(b) and Fig. 10(b) depict the second stage with an enlarged time unit scale.

5 Influence of Hub Nodes

In this section, we investigate hub nodes and their influence on epidemic spread using
the BATH trace. We have defined hubs based on the following centralities and extracted
the top 100 such hub nodes from the trace. We then ran the epidemic spread simulation
described in Section 4 but excluding the hub nodes, in order to observe how much in-
fluence they have on the spread.

DEGREE Hub: The total degree of each node over the entire duration of the trace
indicates the popularity of the node (Degree Centrality). With this metric, it is not
possible to distinguish two types of hubs: the node has high degree within a short
time window (party hub) or a larger time window (date hub) [11]. Most nodes inter-
act with only a few other nodes while a small number of hub nodes may have many
interactions.

In [13], we examined the degree per unit time (e.g. the number of unique nodes seen
per 6 hours). We chose a 6-hour time window based on our intuition that daily life is
divided into 4 main periods: morning, afternoon, evening and night. This is similar to
the approach described in [33]. However, it is sensitive to starting the time window at
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different absolute times of the day. As Fig. 5 shows, the day cycle could be a more
efficient time window in the urban space.

RANK Hub: The frequency that a node is used to relay data to other nodes indicates the
centrality of the node. We simulated flooding over the temporal graph extracted from
the trace and counted the number of times each node is used for relaying the data. We
exploited different counting schemes, such as counting any time a node relays data or
only when the node is on the shortest path from the source to the destination. Different
schemes result in a similar ranking. This metric is equivalent to Betweenness Centrality
in time-dependent networks.

CROSS Hub: The appearance of a node at different locations indicates that it has
Mobility Centrality. With the BATH trace, 9 locations are extracted and the rate of
appearance at each location is measured. Fig. 11 depicts the distribution of all nodes
with extracted centrality metrics. The y-axis shows a centrality metric on a logarithmic
scale.

5.1 Hub Nodes Similarity

Fig. 12 and Table 3 show the correlation between the sets of hub nodes using differ-
ent metrics. The coefficient values are greater than 0.95 in every case. The correla-
tion between RANK HUB and CROSS HUB has the highest value. Table 4 depicts the
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Table 3. Hub Nodes Correlation

Category All Nodes Top 100 Nodes Top 50 Nodes Top 30 Nodes

Rank/Degree 0.99 0.99 0.99 0.99

Degree/Cross 0.97 0.96 0.96 0.96

Corss/Rank 0.99 0.99 0.99 0.99

Table 4. Hub Node Membership Similarity

Top n Nodes Rank/Degree Rank/Cross Degree/Cross

100 0.79 0.43 0.44

70 0.92 0.41 0.41

50 1.00 0.43 0.49

30 1.00 0.46 0.46

10 1.00 0.33 0.33

membership similarity of hub nodes. The RANK HUB and DEGREE HUB sets share
many nodes, while the CROSS HUB set has only around 50% of nodes in common with
the DEGREE HUB or RANK HUB sets.

5.2 Inactivation of Hub Nodes

Fig. 13 depicts the impact of deactivating hub nodes during the epidemic spread. Fig. 13
shows inactivation of the top 50 nodes. Removing the top 50 DEGREE HUB or RANK
HUB nodes significant reduces the epidemic spread. Both DEGREE HUB and RANK
HUB nodes have a similar impact. On the other hand, removing the CROSS HUB nodes
does not show as dramatic an impact as does removing the other two types of hub
nodes. Randomly selected 1% of top 30% of high degree nodes are used as the source
of the infection. The result indicates the strong influence of hub nodes. We are further
investigating what differentiates static hubs from dynamic hubs in a pair interaction.
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Fig. 14. k-CLIQUE Community Detection in INFC06 Trace

6 Inferring Human Communities

People inherently form groups, yielding social structures in which prominent patterns
or information flow can be observed. We have worked on uncovering the structure and
dynamics of social communities from human connectivity traces, in which social groups
must be embedded [14] [34]. We have shown various community detection mechanisms
which can be applied to human connectivity traces in both a centralised and a decen-
tralised way.

Community detection in complex networks has attracted a lot of attention in recent
years. In the Internet, community structures correspond to autonomous systems. It is cru-
cial to construct efficient algorithms for identifying the community structure in a generic
network. Many community detection methods have been proposed and examined in the
literature (see the recent review papers by Newman [21] and Danon et al. [5]).

We have exploited different algorithms [13]. The k-CLIQUE method has been de-
signed for binary graphs, and we therefore need to threshold the edges of the contact
graphs in the traces [24], while Weighted Networks Analysis [20] can work on weighted
graphs directly without any threshold.

6.1 K-CLIQUE Community Detection

Palla et al. define a community as a union of all k-cliques (complete sub-graphs of size
k) that can be reached from each other through a series of adjacent k-cliques, where
two k-cliques are said to be adjacent if they share k − 1 nodes. As k is increased, the
k-clique communities shrink, but on the other hand become more cohesive since their
member nodes have to be part of at least one k-clique. An advantage of this approach
is that it allows overlapping communities, which is useful as, in human society, one
person may belong to multiple communities.

Fig. 14 depicts the detected communities in the INFC06 trace, when k = 5. Three
distinct communities are detected, which include two nodes that belong to two commu-
nities. Fig. 15(a) shows the detected communities with different k values and Fig. 15(b)
depicts the community size distribution when k = 5 in the BATH trace.

6.2 Inter- and Intra-gate Communities

It is known that the location is an important attribute for social community structure.
The BATH trace includes the location of scanners (i.e. Gate 1 to 9), and Fig. 16 depicts
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Fig. 16. Bath Trace: Communities in Gates

the appearance rate of community members at Gates 2, 4, 7 and 8. For example, the
members of community 17 (with solid circle) are observed at Gate 2, but almost never
at the other locations; whereas the members of communities 1 and 15 (with dashed
circle) appear at every gate. We refer to the former type of community as an Intra-
Community, and to the latter type as an Inter-Community. Intra-communities may have
a strong tie with the location, while inter-communities may indicate a group of people
moving together.

We ran a simulation to investigate the effect of deactivating 100 nodes of each
community type. Communities 1 and 15 were selected at random to represent inter-
communities, and 7 and 17 are selected as intra-communities. Removing intra-
communities causes an up-to-10% reduction in infectious nodes, while removing
inter-communities has no effect in this scenario. It is well known in social networks
that inter-relationship within a group is stronger than external links. The experiment
result indicates the characteristics of social networks.

The communities detected in the traces may be static social communities or transient
communities, such as a group of people who happen to be in the same location. Our
current approach does not distinguish between these two different community concepts
and further refinement of community concepts, along with membership management is
part of our ongoing work.

7 Related Work

The recent discovery of complex network properties in the structure of biological
and social systems [28] has brought different perspectives on real world networks.
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Traditionally, random networks have been studied extensively [8]. Random graphs are
usually constructed by randomly adding links to a static set of nodes. Random graphs
tend to have short paths between a pair of nodes. Recent work on random graphs has
provided mechanisms to construct graphs with specified degree distributions. Power-
law networks are networks where the probability that a node has a degree k is pro-
portional to k. Many real-world networks have been shown to be power-law networks,
including Internet topologies and social networks. Scale-free networks are a class of
power-law networks where the high-degree nodes tend to be connected to other high
degree nodes. Small world networks have a small diameter and exhibit high cluster-
ing [31]. Studies have shown that the Web, scientific collaboration on research papers,
film actors, and general social networks have small world properties []. It has become
clear that this pattern of interactions, which forms the network, plays a fundamental
role in understanding these systems.

Most forwarding algorithms in DTNs are based on epidemic routing protocols [30],
whereby messages are simply flooded when a node encounters another node. The opti-
misation of epidemic routing by reducing the number of copies of a message has been
explored. Many approaches calculate the probability of delivery to the destination node,
where the metrics are derived from the history of node contacts, spatial information and
so forth. The pattern-based Mobyspace Routing by Leguay et al. [17], location-based
routing by Lebrun et al. [16] and PROPHET Routing [19] fall into this category. The
Message Ferry approach of Zhao et al. [32] takes a different approach by controlling
the movement of each node. Recently, attempts to uncover hidden stable network struc-
ture in DTNs and social networks have emerged. For example, SimBet Routing [4] uses
ego-centric centrality and its social similarity. Messages are forwarded towards a node
with higher centrality to increase the possibility of finding the potential carrier to the
final destination.

Emerging wireless technologies are creating physical network in the actual physical
space along online communication (e.g. social network services, email). Understanding
this new pervasive network as a time-dependent dynamic human network is still an
open research area. Social relationships and interactions (i.e. social context) is gaining
importance. New results in the area of complex network theory [1] give new insight on
social networks.

8 Conclusions and Future Work

In this paper, we have shown our study of epidemic spread in dynamic human networks
from human connectivity traces. The human networks exhibit periodic activity. Daily
circulation is significant, and epidemic spread demonstrates that if the virus has over one
day of life, the spread rate reaches almost the same level as when the virus has infinite
life. Removing the top 100 hub nodes (using various definitions of “hub”) out of over
7500 nodes from consideration yields a significant reduction in the rate of epidemic
spread.

In the BATH trace, some communities exhibited strong ties to particular locations.
Therefore the local network structure could possibly form a type of small-world net-
work, and a small number of nodes could connect with external nodes, forming a scale
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free network. We are currently working to prove this assumption by constructing cor-
responding synthetic networks that can be compared with real world networks. Our
future work includes investigating an asymmetric communication model (i.e. forming a
directed graph) and defining new network measurement criteria such as time-dependent
centralities and cluster coefficient values. We are taking an empirical approach and
therefore obtaining accurate and fine grained trace data is essential. We are planning to
deploy several urban scale experiments for data collection and information diffusion.

Pervasive DTNs are dynamic, and we are particularly interested in how network
structure affects information flow, and vice versa: how the ongoing communication af-
fects the network structure. Pairwise communication and social structure need to be
integrated and modelled alongside dynamic interactions. The social network reflects
access to information and change of social activities can be seen as seeking better in-
formation access. Our ultimate goal is a complete understanding of human-to-human
network models in the urban space.
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Abstract. The dynamic behaviour of stochastic spreading processes on
a network model based on k-regular graphs is investigated. The contact
process and the susceptible-infected-susceptible model for the spread of
epidemics are considered as prototype stochastic spreading processes.
We study these on a network consisting of a mixture of 2- and 3-fold
coordinated randomly-connected nodes of concentration p and 1 − p, re-
spectively, with p varying between 0 and 1. Varying the parameter p
from p = 0 (3-regular graph of infinite dimension) to p = 1 (2-regular
graph - 1D chain) allows us to investigate their behaviour under such
structural changes. Both processes are expected to exhibit mean-field
features for p = 0 and features typical of the directed percolation uni-
versality class for p = 1. The analysis is undertaken by means of Monte
Carlo simulations and the application of mean-field theory. The quasi-
stationary simulation method is used to obtain the phase diagram for
the processes in this environment along with critical exponents. Predic-
tions for critical exponents obtained from mean-field theory are found
to agree with simulation results over a large range of values for p up to
a value of p = 0.95, where the system is found to sharply cross over to
the one-dimensional case. Estimates of critical thresholds given by mean-
field theory are found to underestimate the corresponding critical rates
obtained numerically for all values of p.

Keywords: Network Epidemics, SIS Model, Contact Process, Critical
Exponents.

1 Introduction

The spread of epidemics poses a threat to biological populations as well as to
computer networks and investigations into its dynamics and mechanisms are
therefore of great current interest. One common class of epidemic models con-
siders individuals to be in one of two possible states: susceptible (S) or infected
(I). In this paper, we consider both the Contact Process (CP) [1] and the SIS
model, two models of disease propagation via nearest neighbour contact, in which
a disease is passed on to healthy nearest neighbours stochastically at a rate λ
specific to the model while infected sites spontaneously recover at rate ε.
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These Markovian spreading processes have attracted wide attention in the
past due to their applicability to phenomena as diverse as autocatalytic chemical
reactions, spreading of rumours and transport in disordered media [2]. As the
rates λ and ε are varied, an epidemic will be in one of two distinct states: an
invasive regime (active state) in which it is present with a non-zero probability of
ultimate survival and one in which this probability is zero thus leading to a state
which allows no further evolution because the disease has died out (absorbing
state).

These two regimes are known to be connected by a continuous phase tran-
sition thereby rendering them of conceptual interest for investigations into this
kind of critical phenomenon of non-equilibrium statistical mechanics (see [3]
for a review). The critical behaviour for these models in one-, two- and three-
dimensional lattices has been investigated very accurately [4] and is found to be
characteristic of the Directed Percolation (DP) universality class. From a range
of studies, critical thresholds for the phase transition as well as critical exponents
of predicted power-law scaling relations are known to high precision.

With the growing interest in complex networks among the statistical physics
community in recent years [5,6], the question of the behaviour of dynamic processes
on such topologically disordered structures has arisen [7,8]. Particularlymotivated
by the fact that networked structures are ubiquitous in nature, the effects of these
environments on, for example, the spread of a disease are of immediate interest.
In a series of papers [9,10,11,12,13], the behaviour of the CP and the SIS model
on a range of networks has been considered and even comparisons with data of
computer virus outbreaks have been attempted [11]. As networks in general are
infinite-dimensional objects, the dynamical mean-field (MF) approximation is ex-
pected to become exact in these cases in principle renderingmany models tractable
by analytical means. Both Monte Carlo (MC) simulations and the MF approxi-
mation have been used in previous investigations and produced such astonishing
results as the absence of an epidemic threshold infection rate for infinite scale-free
networks [11].

In this paper, we propose to investigate the behaviour of the CP and the
SIS model as two paradigmatic stochastic spreading processes on networks of
k-regular graph topology. The model network considered in this investigation
consists of a mixture of 2- and 3-fold coordinated randomly-connected nodes of
concentration p and 1 − p, respectively. Varying the parameter p from p = 0
to p = 1 transforms the system from a 3-regular graph of infinite dimension to
a 2-regular graph, i.e. a 1D chain. While both the CP and the SIS model are
expected to exhibit mean-field features for p = 0, the processes effectively take
place in a one-dimensional environment for p = 1 which is a very well-studied
regime of the DP universality class. It is our aim to investigate the behaviour of
both the critical rates and accessible critical exponents for this crossover from
an infinite- to a one-dimensional case thereby probing the validity of the MF
approximation in this setting. The analysis is undertaken by means of Monte
Carlo simulations using the quasi-stationary (QS) simulation method [14] and
the application of mean-field theory [10].
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This paper is structured as follows. Section 2 outlines the definitions and
some properties of the processes considered. The MF approximation and the QS
simulation method are described in section 3. We present and discuss our results
in section section 4 and summarise our findings in section 5.

2 Background

As outlined in the previous section, both the CP and the SIS model are simple
toy models for the spread of an infectious disease by nearest-neighbour contact.
In these models defined on a network, nodes represent susceptible or infected
individuals surrounded by their neighbours connected via links along which the
epidemic may spread. Proliferation of the disease to nearest neighbour sites hap-
pens at a transmission rate λ while recovery is spontaneous at rate ε making the
sequence of events an individual can cycle through Susceptible → Infected →
Susceptible.

The CP and the SIS model are very similar, the difference being the exact
mechanism of the spreading of infection. In the case of the CP, a site attempts
to transmit its disease at rate λ/k to a randomly selected neighbour where k
denotes the number of nearest neighbours. If the selected neighbour is already
infected, proliferation fails. For the SIS model, transmission to any non-infected
neighbour happens, in contrast, at rate λ independent of the connectivity of the
nodes. Thus, the spreading mechanism in the CP effectively compensates for
the local connectivity present in the network through a suitable reduction of the
spreading rate through a particular link.

Once suitable initial states for all sites have been chosen, the above rules
dynamically evolve the spread of a disease in the network. A typical initial
condition is the state of a fully-infected system from which the system relaxes
very quickly. For very long times, and formally as time t → ∞ and for an infinite
number of sites in the network N → ∞, the system is expected to be in one of
two states: An active state in which there remains a finite density of infected
sites or an absorbing state in which the disease has died out and that therefore
admits no further time evolution. Depending on the value of the transmission and
recovery rates λ and ε, ultimately the system will be in one of the two possible
states. More precisely, there exists a continuous phase transition between these
regimes as one fixes one of the rates and varies the other. This transition takes
the system from a phase where the density of infected sites (order parameter)
ρ is zero to one where it continuously grows from zero as the transmission rate
(control parameter, assuming ε fixed) is increased.

Without loss of generality, one can perform a rescaling of time and set one
of the two rates to unity for convenience. In the following, the recovery rate is
assumed to be ε = 1 and the critical point is therefore characterised by a critical
transmission rate λc alone.

There exist a range of well-established scaling relations for various observ-
ables in these models of which we present those relevant for this investigation.
The density of infected sites in the thermodynamic limit as t → ∞, the order
parameter, is expected to scale as
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lim
t→∞〈ρ(t)〉 = ρ ∼ |λ − λc|β (1)

thereby defining the order parameter critical exponent β where 〈. . . 〉 denotes av-
eraging over realisations of the process. Order parameter fluctuations are known
to follow

V = N
(
ρ2 − ρ2

)
∼ |λ − λc|−γ (2)

Both the models under consideration are known to belong to the directed per-
colation (DP) universality class [2]. Accordingly, the critical exponents defined
above are those characteristic of this universality class. Above the upper critical
dimension, du = 4, of these models, fluctuations are expected to be Gaussian and
MF theory should be exact. Therefore, these processes taking place in infinite-
dimensional networks are expected to exhibit exponents predicted by mean-field
theory.

3 Methods

3.1 Mean-Field Approximation

Both the CP and the SIS model can be described by the master equation which
reflects the conservation of probability flow [3]. In the following, we will first
outline the case of the SIS model and then consider the extension to the simpler
case of the CP.

In the dynamical MF approximation, which neglects density fluctuations and
statistical correlations between the densities at different sites, and, for the mo-
ment, disregarding the structure of the network completely, the master equation
for the SIS model takes the form

∂tρ(t) = −ρ(t) + λ k (1 − ρ(t)) ρ(t) (3)

where ρ(t) denotes the density of infected sites at time t averaged over realisa-
tions of the process which is identical to the probability of a site of the system
to be infected at time t. This equation describes the rate of change of the aver-
age density in the network which is equal to the flow of density into and out of
any site with time and makes for the destruction and the creation terms above.
The destruction term due to the vanishing of infection at unit rate is propor-
tional to the density ρ(t). The creation term is due to the possible infection by
infected neighbouring sites in the case that the vertex under consideration is
not infected. Accordingly, it is proportional to the probability that a site is not
infected, (1 − ρ(t)), the probability that a neighbouring site is infected ρ(t), the
local connectivity k and the spreading rate λ.

The master equation (3) can be extended in order to take into account the
structure of the underlying network at the level of the node degree (connectivity)
distribution (as developed by Pastor-Satorras and Vespignani [9]). It is clear



Stochastic Spreading Processes on a Network Model 137

that, unless one assumes a homogeneous network with 〈k〉 ≈ k for all k, the
expression will decouple into a set of equations for the densities of infected
vertices characterised by a certain connectivity k, We can write for each k,

∂tρk = −ρk + λ k (1 − ρk(t)) Θk(t) , (4)

where Θk(t) is the probability that an edge emanating from a vertex of degree
k is connected to an infected site. The infection term as described above now
incorporates the probability that a site of degree k is connected to an infected
vertex Θk(t). One can interpret Θk(t) as the mean density of neighbouring in-
fected nodes and consequently kΘk(t) as the mean number of infected nearest
neighbours [9].

Networks which are Markovian are statistically described by their degree dis-
tribution P (k) and the conditional probability P (k′|k) that an edge of a node
of degree k is connected to a vertex of degree k′. For such systems, we can write

Θk(t) =
∑
k′

P (k′|k) ρk′ (t) (5)

where the sum runs over all degrees k′. For uncorrelated networks, which we will
exclusively consider in this investigation, this becomes [7]

Θ(t) =
∑
k′

k′P (k′) ρk′ (t)
〈k〉 (6)

which does not depend on k any longer. Substituting this expression into the
rate equation (4) and imposing stationarity (∂tρk = 0) one obtains

ρk =
kλΘ

1 + kλΘ
(7)

where ρk and Θ(λ) are the time-independent values for the mean density at sites
of degree k and the mean density of infected neighbouring sites. Multiplying by
P (k)k
〈k〉 and summing over k yields

1
λ

=
1

〈k〉
∑

k

P (k) k2

1 + kλΘ
≡ f(λΘ) (8)

where f(x) is a monotonically decreasing function of x. This equation only has a
(unique) solution for Θ(λ) different from zero for λ > λc where λc is the threshold
value for the transmission rate that makes Θ smallest. As by definition the mean
density of infected nearest neighbours Θ ≥ 0 in the active regime and f(x) is a
monotonically decreasing function we have (effectively setting Θ = 0

λSIS
c =

1
f(0)

=
〈k〉
〈k2〉 (9)

for the critical threshold [15].
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In order to obtain an expression for the order paramter we start by combining
equations (6) and (7) and arrive at a self-consistency equation for Θ (equivalent
to equation (8))

Θ =
∑

k

kP (k)
〈k〉

kλΘ

1 + kλΘ
(10)

that can in principle be solved for Θ which in turn allows one to obtain the order
parameter in the MF approximation from

ρ =
∑

k

ρk . (11)

Critical exponents can be extracted from MF theory by considering the leading
behaviour of the relevant expressions. For example, combining the last expression
Eq. (11) and Eq. (7) and expanding in λ − 〈k〉

〈k2〉 in analogy to the scaling form
ρ ∼ (λ−λc)β , one obtains the MF value for the order parameter exponent β = 1.
Similarly, one obtains γ = 0 for the corresponding fluctuations.

In the case of the CP where the effective spreading rate is inversely propor-
tional to the number of links connected to an infected site, Eq. (5) has to be
modified and reads

Θk(t) =
∑
k′

P (k′|k) ρk′ (t)
k′ (12)

which for uncorrelated networks leads to Θnc(t) = ρ(t)/〈k〉 where ρ is the average
density of infected sites averaged over degrees. Following the procedure as for
the SIS model, the critical threshold rate is found to be degree independent and
given by [12]

λCP
c = 1 (13)

while the critical exponents are identical to those for the SIS model.

3.2 Monte Carlo Simulation: Quasi-Stationary Simulation

Bothprocessesunderconsiderationcanbesimulatedeffectivelyvia time-dependent
Monte Carlo simulations. Once initial conditions have been chosen, the system
is evolved according to the appropriate rules with a simulation that selects pos-
sible events according to their prescribed rates and ensures that they happen in
exponentially-distributed time intervals.

In contrast to lattices, networks are characterised by the existence of long
range links. This implies that a dynamical process will very strongly feel the size
of the system in a finite representation of the network leading to much stronger
finite-size effects than experienced in lattices. While the most precise method of
determining the critical point in lattices is spreading from a single seed while
ensuring that the infection never reaches the boundary of the system, this is
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virtually impossible in networks. Thus, finite-size effects have to be systemat-
ically exploited in order to make a prediction about the infinite system using
networks of different sizes. This is possible using the finite-size scaling hypothe-
sis which predicts that values of observables in systems of size L are controlled
by the ratio L/ξ⊥, where ξ⊥ is the spatial correlation length. In order to use this
scaling behaviour, one requires a stationary average value of these observables
and analyses their values for different system sizes. Problematically, due to the
existence of the absorbing state no such true stationary state exists in a finite
system. Fortunately, the processes under consideration evolve such that some
observables attain quasi-stationary (QS) values.

Most notably, the density of infected sites averaged over surviving realisations
of the process 〈ρ(t)〉 exhibits this behaviour after an initial transient starting
from the initial state of a fully-infected system [2]. This quasi-stationary density
ρ is expected to scale systematically in accordance with the finite-size scaling hy-
pothesis. According to recent investigations into the finite-size scaling behaviour
above the upper critical dimension [16,13] the prediction is

ρ ∼ Ldβ/2 G
(
Ld/2(λ − λc)

)
= Nβ/2 G

(
N1/2(λ − λc)

)
(14)

where Ld = N , the number of sites in the system and G(x) an appropriate scaling
function. A similar expression with β replaced by γ is valid for the associated
fluctuations.

In principle the QS state can be investigated via a conventional simulation in
which the system is stochastically evolved in time from a fully-infected initial
condition. The density of infected sites conditioned on survival can then be
analysed and a temporal average over the duration of the QS state is an estimator
for ρ. This method is however plagued by a range of problems [17] which led de
Oliveira and Dickman to propose a simulation method which samples the QS
state directly [18].

In this QS simulation method, the absorbing state is eliminated and its prob-
ability weight is redistributed over the active states according to the history of
the process. It can then be shown that the true stationary state of the resulting
modified process corresponds to the quasi-stationary state of the original one.
This method is ideally suited for our study as a single realisation of the network
is investigated in one QS simulation run enabling us to analyse sample-to-sample
fluctuations between realisations and find a critical point by use of the scaling
relation Eq. (14).

4 Results and Discussion

4.1 MF Solution

The mean-field theory for the CP and the SIS model on networks can be applied
to our network with two types of nodes of connectivity k1 and k2 present with
probabilities P (k1) and P (k2) respectively. For the SIS mode, the self-consistency
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Fig. 1. The mean-field average density of infected sites for the SIS model on a binary
random network with k1 = 2, k2 = 3 for (from top to bottom) p=0, 0.5, 1

equation, Eq. 10, for the stationary value of Θ, the average density of infected
nearest neighbours, takes the form

〈k〉
λ

=
k2
1P (k1)

1 + k1λΘ
+

k2
2P (k2)

1 + k2λΘ
(15)

which can be solved for Θ giving

Θ =
1
2λ

(
λ − k1 + k2

k1k2

)
+

1
λ

√
1
4

(
λ − k1 + k2

k1k2

)2

+
〈k2〉λ − 〈k〉

k1k2〈k〉 (16)

where Θ is only defined for transmission rates λ > λc = 〈k〉
〈k2〉 as explained

above. Using the definition of the average stationary density ρ =
∑

k P (k)ρk

and finally substituting P (k1) = p and P (k2) = 1 − p, the order parameter in
the MF approximation is given by

ρ = λΘ

(
pk1

1 + k1λΘ
+

(1 − p)k2

1 + k2λΘ

)
(17)

The critical exponents given by the leading order contributions of the relevant
expressions are found to be the standard MF exponents [12] as outlined above.

This solution is plotted for the special case k1 = 2 and k2 = 3 with p varying
from 0 to 1 in Fig. 1. As expected, MF theory qualitatively reproduces the
features of the phase transition: There exists a critical rate λc below which the
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Fig. 2. The critical threshold λc obtained from MF theory (lines) and MC simulation
(circles and squares) for the CP (circles and solid line) and the SIS model (squares and
dashed line) for various values of p. Inset shows the critical exponents β (circles) and
γ (squares) as a function of p.

stationary density is zero while it grows continuously for values above. For the
CP, an analogous analysis yields a similar solution.

No direct comparison with numerical predictions for the order parameter is
shown in Fig. 1 because of severe finite-size effects for networks which shift
the simulation curve well above its true asymptotic position. We will however
compare the critical threshold rate as well as some critical exponents in the next
section.

4.2 Simulation Results

The critical thresholds λc for a range of values of p for both the CP and the SIS
model were obtained via the QS simulation method outlined above. We used
networks of sizes ranging from N = 256−32768 in QS simulation runs up to 108

time steps averaging over no less than 100 and up to a maximum of 1000 network
realisations (the latter were required to minimise errors in light of strong sample-
to-sample fluctuations for large values of p). The resulting critical thresholds are
shown in Fig. 2 along with the MF predictions obtained from Eqs. (9) and (13).
As expected from the definition of the two models, the CP threshold exceeds the
one of the SIS model for a particular value of p which can be attributed to the
reduction of the effective transmission rate by the local coordination number as
in Eq. (12). Also, in the two cases of homogeneous connectivity, p = 0 and p = 1,
the thresholds for the two models are expected to be simply related by a factor
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Fig. 3. The density of infection ρ (upper panel) and the corresponding fluctuations
V = N

�
ρ2 − ρ2

�
(lower panel) for various network sizes for the case p = 0.5 in the SIS

model. Solid lines are best-fit regression lines to the scaling forms defined in Eq. (14).

of 3 and 2 (equal to the connectivity), respectively, as can be seen from Fig. 2.
Note that the critical threshold for the SIS model in the quasi one-dimensional
case (p = 1), λc = 1.65, is almost identical to the threshold for the CP on the
3-regular random network (p = 0) λc = 1.63.

Turning to the MF predictions in comparison to the MC results, one notes
that they underestimate the true critical thresholds for all values of p and for
both models. The difference between the MF approximation and the simulation
results is more pronounced for the CP as compared to the SIS model.

The exponents β and γ were obtained by fitting data for the density of infected
sites ρ and the corresponding fluctuations V = N

(
ρ2 − ρ2

)
to the finite-size

scaling form of Eq. (14). A typical set of data points is shown in Fig. 3 for
the case p = 0.5 for the SIS model along with best-fit regression lines. Both
quantities as a function of network size N show power-law behaviour with the
expected MF exponents β/2 = 0.5 and γ = 0 indicating the validity of the MF
approximation for this case. These values of critical exponents are plotted in the
inset of Fig. 2. As p is further increased, strong sample-to-sample fluctuations
for values beyond p = 0.95 render a precise analysis very complicated. For p = 1,
the well-established 1D finite-size scaling exponents are recovered (β/ν⊥ = 0.253
for ρ(N) and γ/ν⊥ = 0.498 for V (N) [2]) as can be seen from the figure. In
the transition region, error bars for exponents are large and our results give
slight preference to the scenario of a discontinuous change in exponent values.
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However, we feel that a very rapid yet continuous change of exponents towards
the 1D values cannot be excluded.

5 Conclusion

We have investigated the CP and the SIS model, two paradigmatic stochastic
spreading processes, in a network model which interpolates smoothly between
an infinite-dimensional 3-regular random network and a linear chain through
the variation of a single parameter p. The MF approximation yields a prediction
for the critical threshold rate of an epidemic outbreak and critical exponents
associated with the corresponding absorbing state phase transition. For no value
of p does MF theory predict the true critical threshold as calculated from MC
simulations. The predictions for critical exponents agree perfectly with simula-
tions for a very wide range of p up to p = 0.95. Beyond this point, the analysis
is complicated by strong sample-to-sample fluctuations. For p = 1 one recov-
ers the established exponents for the one-dimensional case indicating a sudden
crossover. While not being able to investigate the nature of this transition pre-
cisly, our simulations favour the scenario of a discontinuous change in the scaling
exponents which reflects the abrupt change of the dimensionality of the network.
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sity Condor Grid. SVF acknowledges financial support from the EPSRC and the
Cambridge European Trust.
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17. Lübeck, S., Willmann, R.: Universal finite-size scaling behavior and universal dy-
namical scaling behavior of absorbing phase transitions with a conserved field.
Phys. Rev. E 68, 056102 (2003)

18. de Oliveira, M., Dickman, R.: How to simulate the quasistationary state. Phys.
Rev. E 71, 016129 (2005)



Weighted and Directed Network on Traveling
Patterns
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Abstract. The importance of weighted and directed networks is
brought into discussion. On this study we analyze the arrivals of in-
ternational tourism (edges) over 206 countries and territories (nodes)
around the world, on the year 2004. Using tools from network theory
we characterize the topology and weighted properties of the resulting
network. International tourist arrivals are analyzed over in strength and
out strength flows, resulting on a highly directed and heterogenetic net-
work. Remarkably the random network of connectivity is converted into
a power-law network of intensities. It is also shown how strategic posi-
tioning particularly benefit from market diversity and that interactions
among countries prevail on a technological and economic pattern, ques-
tioning the backbones of traveling driving forces. The network structure
may influence how tourism hubs, distribution of flows, and centralization
can be explored on strategic positioning.

Keywords: social networks, complex networks, traveling patterns, di-
rected and weighted networks.

1 Introduction

The movement of tourists on a worldwide scale is responsible for a traveling
mobility of hundred millions tourist arrivals every year, representing the largest
movement of humans ever out of their usual environment, strongly influencing
local, regional, national and international economies, being one of the fastest
growing economic sector. Tourism is a consequence and a dynamic force on the
integration of world trade and markets, forming the global economy. But how is
this integration evolving? The nature of the connecting flows among countries
add some understanding about the dynamics of this network. Regardless the
crucial role of tourism, there is a lack of quantitative considerations of its flows,
although it is essential for understanding the self-organization of human traveling
patterns, and global wealth net flows.

Research on social networks has around 50 years, empirical and theoretically,
partly because social life is relational [1,2]. These studies contributed much for
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the clarity of the importance of relational systems. Such networks are represented
as a set of nodes denoting people, companies, or other social actors, which are
joined by edges the patterns of the relational structure, representing friendships,
partnerships, collaborations, etc. A large variety of real world systems are struc-
tured in the form of networks, from social, biological, economic, infrastructure
and information networks [3,4,5,6,7,8,9], also airline connections [10], financial
relations [11,12,13], companies partnerships, ecological networks, movies actors,
world trade, WWW [14], scientific collaboration network [15], human acquain-
tance patterns [16], among others [17,18,19]. Network theory have been build up
largely from observation of the properties of many real world networks, and by
comparatione of their structures.

Different theoretical perspectives on tourism recognize clusters and networks
as one of the main competitive factors in tourism. It is increasing the amount of
research on whether network perspective can be used to conceptually understand
tourism networks. The conceptual and analytical framework of international
tourism networks has been studied and tourism researchers have been introducing
network analysis on measuring relationships and networks on tourism [20,21].

The international arrival of tourist is yearly measured by the World Tourism
Organization (WTO, the major intergovernmental body concerned with tourism)
over 208 countries and territories around the world [22], reaching a record of
763 million in 2004 (see Fig. 1). In this research we use techniques and indica-
tors of network approach to study international tourism on the year of 2004.
International tourist arrivals are analyzed to study inbound tourism and out-
bound tourism. Inbound tourism, involving the non-residents received by a des-
tination country from the point of view of that destination. Outbound tourism,
involving residents traveling to another country from the point of view of the
country of origin.

Most complex networks share common properties that have common under-
lying structural principles [4,7,14]. Firstly we analyze the centrality of nodes on

Fig. 1. Worldwide tourism departures and arrivals (a) on a country-to-country plot is
displayed with an exponential grey scale according to the intensity of connections, and
(b) tourist arrivals and departures in the European Union
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a network, as more competitive nodes are recognize for having better strategic
positions [9,23]. Centralization refers to the extent to which a network revolves
around a single node, and also to the propensity of the node to diffuse informa-
tion, knowledge or infections.

Degree centrality is one of the most used measures of node prominence [24],
and equals the number of edges connected to it. The statistical characterization
of real networks displays a large number of node degrees, k, and the appearance
of hubs, nodes with large degree [25]. Additionally these networks show a power-
law degree distribution, characterized by P (k) ∼ k−θ [7,14].

The techniques firstly applied to undirected and unweighted networks [19,18]
are lately adapted to weighted and/or directed networks [5,26,27]. On social
weighted networks is often relevant to assign a weight (strength) to each edge,
measuring how good or strong is a relationship [2,16].

On this chapter the worldwide tourists arrivals network is analyzed. This chap-
ter is organized as follows. The empirical analysis focuses on network topology
(section 2), weighted analyze (section 3) and degree-degree correlation (section
3.1). Conclusion are drawn on section 4.

2 Network Topology

We used the data gathered by WTO over these 208 where countries and territo-
ries are considered nodes, N, and an edge exists from node i to node j when there
are tourists from country i to country j. Notice that the network is directed, the
edge from i to j is different from the edge from j to i, respectively i → j and
j → i. On our case we have 5775 edges, L, – representing arrivals of tourists from
one country to another, on the year of 2004. On a directed network the nodes
have in and out degree, where the in degree of a node i, kin(i), is the number
of nodes directed to node i, and the out degree of i, kout(i), is the number of
nodes that i is directed to. The in degree of a country is an indicator of its at-
tractiveness has a destination country, destination attractiveness indicator, and
the out degree of a country is an indicator of its emanation has a tourism origin
country, destination emanation indicator.

On the average the shortest path length between countries is l = 1.84, and
the diameter is 4, which are small values in accordance with a small–world
effect l ∼ logN . This means that any two countries have a high probability of
being themselves connected, or that have very few intermediate country through
each a connection is present. The small-world property has strong influence on
the dynamics of the network, like spread of information, innovation, knowledge,
promotion, or any other propagation process. The tourism international network
is a giant component, so that all countries have a path or paths to any of the
other countries. The fact of being a giant network and having a small shortest
path length can imply fast transferring of knowledge and information.

An important statistical property to directed networks is reciprocity [9], mean-
ing on the tourism network the appetency to exchange tourists. The links in the
network are composed by 10% bidirectional links and 30% of asymmetric links. If
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Fig. 2. Log-normal plot of degree distribution, for (a) in degree P (> kin) and (b) out
degree P (> kout), with an exponential decay

country j has tourist arrivals from country i, then the probability that country i
has tourist arrivals from j is only 1

4 , so the network is significantly directed. Notice
also that 60% of all the pairs of countries are not connected to one another.

A fundamental aspect of real-world networks is the degree distribution [28],
representing the distribution of the number of links of nodes. In binomial ran-
dom graphs [7,8], nodes have similar degree, display an exponential network,
with P (k) ∼ exp(k), decreasing exponentially fast, although many real-world
networks have some nodes that are significantly more connected than others,
many of those are scale free, having connectivity distributions that decay as a
power law. A probable mechanism for this occurrence is preferential attachment
[28], meaning that nodes with high degree are preferential. Network’s topology
displays the degree distribution which applied to tourist arrivals - directed net-
work [29]- are studied two degree distribution functions, Pin(k) representing the
probability that a node has k nodes directed to itself, and Pout(k) representing
the probability that a node has a total of k edges to other nodes. Most networks
have a power-law degree distributions [28], with P (k) ∼ k−θ.

In our case, the in and out degree distributions decrease exponentially fast.
Their cumulative distribution functions are represented on Fig. 2 (a) and (b),
respectively Pin(k) and Pout(k). The topological network does not displaying
power-law behavior, similar result on [18]. Contrarily, in other examples, in social
[16], technological [14], economic [30], and biological networks [7], it was found
a power-law degree distribution.

3 Weighted Analysis

The weighed analysis is essential because of weights heterogeneity. The network
can be expressed by its adjacency matrix A = {aij}, dimension N × N , where
aij = 1 if and only if there is an edge from i to j, and aij = 0 otherwise. The
weighted adjacency matrix is W = {wij}, where wij equals the flow from i to
j. Notice that wij represents the weight of the edge i → j and wji represents
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Fig. 3. On the plot is showed the flow of tourists with a power-law behaviour with
P (w) ∼ w−γ where γ = 1.55, with dominance of hubs

the weight of the edge j → i, so wij and wji are different. The range of the
weights goes from 0 to 19.369.677 with an average value of 81.813, revealing a
high heterogeneity of weights. See Fig. 1.

The probability distribution function of the weights, P (w) ∼ w−γ has a
power–law behavior, with exponent γ = 1.55, see Fig. 3.

It is also relevant to study the strength of the nodes, which on a directed
network each node has in strength, sin(i) (eq. 1), and out strength, sout(i)
(eq. 2). It measures the strength of the nodes on relation to the total weight
of their connections. On the tourist arrivals network in strength represents the
inbound tourism, and out strength represents the outbound tourism. Strength is
a measure of centrality for weighted networks:

sin(i) =
∑

j∈υ(i)

wij , (1)

sout(i) =
∑

j∈υ(i)

wji. (2)

The in strength distribution and out strength distribution functions are also
fitted by a power-law, respectively P (sin) ∼ sγin

in and P (sout) ∼ sγout

out , where
γout = 1.95 and γin = 1.9, represented on Fig. 4.

Scale free networks, that follow a power-law distribution, have the ability to
change scale in order to meet any level of demand. Tourism, among economic
sectors has one of the fastest grow rates, and WTO forecasts that international
arrivals are expected to reach nearly 1.6 billion [22]. So, two consequences are
expected, the network is growing due to a scaling up, with an increase of flows
intensity and/or due to a scaling out by new connections between countries.

A power-law behavior of P (w), P (sin) and P (sout) have a strong structural
meaning of the network, describing the way weights, and strength centrality, in-
bound and outbound tourism, are distributed. The weights and strengths range
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Fig. 4. Inbound distribution (a) P (sin) ∼ sγin
in with γin = 1.9, and (b) outbound

distribution, P (sout) ∼ sγout
out with γout = 1.95

on a large spectrum of values, and the heavy-tailed distribution implies that
nodes have a certain probability of having large strength values, where the av-
erage of all intermediate values has no meaning.

The observations on topological and weighted network reveal different struc-
tural results, therefore the relation of topological and weighted flows is studied
in more detail, s(kin) and s(kout). The result is depicted on Fig. 5. On the in
function:

s(kin) = (kin)βin , (3)

where βin = 1.1. For β = 1 degree and weight are independent [19]. So S(kin)
and kin are close to independent, revealing a very small relation between them.
On the other side, s(kout):

s(kout) = (kout)βout , (4)

βout = 1.75, revealing a strong relation between out strength and out degree.
This means that outbound tourism increases with out degree.

Interestingly, when analyzing the diversity of the market and its strength,
comes out that inbound and outbound tourism have distinguished outcomes on
Fig. 5. Even so, both have a power-law behaviour, s(k) = kβ, and unavoidable
fluctuations. The diversification of outbound markets (> kout) has a strong and
positive increase on total outbound tourism s(kout) = kβout

out , with a power of
βout = 1.75, meaning that the flow grows 1.75 faster than the degree. On the re-
lation between the inbound tourism and its market diversification, s(kin) = kβin

in

with βin = 1.1, the relation is close to linear and it comes out that both quan-
tities carry almost the same information [19]. It is concluded that the outbound
tourism particularly benefits from market diversity.
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Fig. 5. Intensity plays an important role on network behaviour. The relation between
degree and strength is closely independent on (a) inbound tourism, s(kin) = kβin

in with
βin = 1.1 , but has a (b) strong relation on outbound tourism, s(kout) = kβout

out with
βout = 1.75.

3.1 Degree-Degree Correlations

We turn now to question in which sense do countries couple with one another.
Is it in some sort of random choice, or is there a preference on the way they link
with each others, meaning a choice that makes some connections more probable
than others. In a social context is usually observed an assortative mixing [31],
observed when the nearest neighbours of nodes with high degree have also high
degree. On economic, technological and biological context is generally observed
disassortative mixing, observed when the nearest neighbours of nodes with high
degree have low degree.

In evolving network, degree-degree correlations are almost always strong. To
measure the correlation on the network over degree, one may also study the
average nearest-neighbors degree. This measures the tendency of node i to be
connected to nodes with the same degree,

k′
nn(i) =

1
ki

∑
j∈υ(i)

kj , (5)

where υ(i) denotes the set of neighbors of i. Considering that our network is
directed, we correlate the in degree of node i with the out degree of its neighbors,

knn(i) =
1

kin
i

∑
j∈υ(i)

kout
j . (6)

We can also average the over nodes of the same degree:

knn(k) =
1

NP (k)

∑
ki=k

knn(i). (7)
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Fig. 6. Log-log plot of in degree – out degree correlations, over (a) in degree, both
unweighted knn(k) and weighted kw

nn(k) correlations, over kin. (b) Comparing weighted
and topological degree correlation. For low degrees kw

nn(k) < knn(k) and for high
degrees kw

nn(k) > knn(k). Low (high) degree nodes have their edges with large weight
directed from nodes with low (high) degree.

The assortativity mixing is represented by a growth of knn(k) with k and
disassortative mixing if represented by a decreasing of knn(k) with k. This hap-
pens when nodes with high degrees have mainly neighbors with low degree. The
international tourism network displays disassortative mixed. This behavior is
mostly detected on transportation networks, providing a pattern where the hubs
connect to the small degree nodes at the periphery of the network [31].

Degree-degree correlation for a weighted network is given by [18],

kw
nn(i) =

1
sin

i

∑
j∈υ(i)

wjik
out
j . (8)

kw
nn(k) measures the local weighted average of neighbors degree. The spectrum

of the worldwide tourist flows on topological (equation 7) and weighted degree-
degree correlations (equation 8) if represented on Fig. 6 (a).

For kw
nn(k) > knn(k) the edges with the larger weight are directed to the

neighbors with larger degrees, and kw
nn(k) < knn(k) the edges with the larger

weight are directed to the neighbors with lower degrees [18]. The weighted degree-
degree correlation is slightly decreasing (Fig. 6 (b)), following the same behavior
as the topological correlation, but with a slower slop. For low degrees kw

nn(k) <
knn(k) and for high degrees kw

nn(k) > knn(k), meaning that low degree nodes
have their edges with large weight directed from nodes with low degree, and high
degree nodes have their edges with large weight directed from nodes with high
degree.
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4 Conclusion

In this study was addressed the importance of weighted and directed measure-
ments, applied to the worldwide tourist arrivals network. The research shows a
power-law behaviour on the weights covering 4 orders of magnitude. It describes
short travelling range to long travels, on a global scale, surprisingly having affin-
ity correlations typical from technological and economic networks which question
the cultural backbone of tourism and travel. The scaling behavior of tourism
flows, on a power-law refers to the self-organization of world trends, where dis-
assortative correlations particularly reveal the influence of economic flows and
spread of technologic and knowledge across international borders. The power-law
nature of the weighted analyses contrary to the random topology opens a new
class of networks. This brings us to a more general question; on how highly het-
erogenic and directed real-world networks hide some sort of preferential growing
and hub-like structure on a random topological structure.
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10. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air trans-

portation network: Anomalous centrality, community structure, and cities global
roles. Proc. Natl. Acad. Sci. USA 102, 7794–7799 (2005)

11. Garlaschelli, G., Battiston, S.: The scale-free topology of market investments. Phys-
ica A 350, 491 (2005)

12. Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M.: Emergence of Com-
plexity in Financial Networks. Lecture Notes in Physics 650, 399 (2004)

13. Tibely, G., Onnela, J.-P., Saramaki, J., Kaski, K., Kertesz, J.: Spectrum, Intensity
and Coherence in Weighted Networks of a Financial Market. Physica A 370, 145–
150 (2006)

14. Albert, R., Jeong, H., Barabasi, A.-L.: Internet: Diameter of the World-Wide Web.
Nature 401, 130–131 (1999)
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Abstract. We show in this paper how communication networks can
form spontaneously in social insects through self-organisation. Differ-
ent models associated to food recruitment and clustering behaviour are
analysed giving rise to temporal and spatio-temporal patterns. The con-
ditions under which the response is optimised are also identified.
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1 Introduction

In this work we show how communication networks can form spontaneously
in social insects through a mechanism of self-organisation. We shall deal with
two representative situations in which ”wiring” of network nodes is associated,
succesively, to a process of decision making when a population is confronted to
several options; and a process giving rise to pattern formation. Actually, these
two processes share some common features such as:

– Competition between different sources of information.
– Amplifying interactions between constituting units reflected by the presence

of positive feedback loops.

As a result, their study can be carried out using similar methodologies. In each
case a key objective will be to establish the link between the characteristics
of single individuals, the collective response at the scale of the network and
the environmemental constraints. Furthermore, the conditions under which the
collective response can be optimized will be identified.

The philosophy our approach is as follows: We first identify from experimental
data the principal actors likely to play a role, and the nature of the interactions
present. We translate this information in the form of a mathematical model de-
scribing the evolution of the relevant variables on the basis of hypotheses made on
the underlying mechanisms. The model is analysed or simulated numerically us-
ing, typically, the tools of nonlinear science [1,2] and stochastic processes [3], and
the results are confronted to the observations. Once validated, the model is ex-
tended to new types of situations or used to design new experiments. Eventually,
the iterative process leads to a qualitative understanding and to a quantitative
characterisation of the phenomenon at hand.
� Present address: Uppsala University, Mathematics department, P.O. Box 480, SE-

751 06 Uppsala, Sweden.
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2 Collective Decision Making Associated with Food
Recruitment

Our first case study is collective decision-making associated with food recruitment
in ant colonies. In nature there exist two types of communication in social insects.
Direct interactions between individuals, like in bees [4,5,6] and interactions by
chemical means, like in ants [7,8,9]. We will be interested in this latter case.

The mechanisms of recruitment can be described in the following manner:
An ant discovers one food source, eats and returns to the nest laying down a
chemical substance known as pheromone. The resulting ”pheromone trail” has
two functions : alert the other individuals to get out the nest and lead them to
the food source.At each trip ants reinforce the trail and the source ends thus
being exploited in a collective manner.

As the case of the presence of only one source is not common in nature ant
colonies are usually confronted to the choice and the competition between mul-
tiple food sources. We first neglect individual and environmental variability and
focus on the nature of the ”traffic” established along the trails leading to the food
sources. The key point allowing us to model this situation is to realise that the
direct contacts between individuals can be neglected compared to their response
to the pheromone concentration present in a given trail. The principal variables
are thus the pheromone concentration Ci rather than the number of individuals
present on the various trails i at a given time. A generic model capturing the
main features of competition between the sources can then be written as [10,11].

dCi

dt
= φqi

(k + Ci)
�∑s

j=1 (k + Cj)
�

− νiCi i = 1, ...s (1)

The first, positive, term corresponds to the attractiveness of trail i over the
others. Its mathematical function has been applied and quantified for various ant
species, in particular Lasius niger [12,13,14], Linepitema humile [10,15], army
ants [16,17] and Messor pergandei [18,15]. Here φ is the flux of individuals getting
out the nest (related to the size of the colony), qi the quantity of pheromone
laid down by an ant on the trail i, k a concentration threshold beyond which
the pheromone is effective and � the sensitivity of the choice of a particular trail.
The latter parameter is also viewed as the strength of cooperativity between
individuals. The second, negative term corresponds to the disapperance of the
pheromone on the trail i through, for instance, evaporation (parameter νi),

Resolving eq. (1) in the simplest case of two sources in competition and using
the parameters associated with the species Lasius niger leads to the bifurcation
diagrams depicted in Figs 1a,b, according to whether the two sources have the
same or have different richness. For the case of equivalent sources, we see that
there is an equal exploitation of the two sources for small values of pheromone
deposition. After a threshold value the system switches to a preferred exploita-
tion of one or other source. For different sources there is a preferred exploitation
of the richest source for small values of q1. After a threshold value, the system
switches to the possibility to exploit the richest source or the poorest one.
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Fig. 1. Bifurcation diagrams of the steady-state solutions of equations (1) as a func-
tion of q1 in the case q2/q1 = 1 and q2/q1 = 0.5. Parameter values k = 6, ø =
0.01s−1, υ1 = υ2 = 1/2400s−1 and s = 2.
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Fig. 2. (a) State diagram representing the parameter regions of different modes of
exploitation of ressources in the case of ø/υ = 10. Parameter values as in Fig. 1a. (b)
Bifurcation diagram of the steady-state solutions of eq. (1) in the case of four equal
sources in competition. Parameter values as Fig. 1a.

In a more realistic situation where more than two sources are present, we have
been able to build the state diagram of the different strategies of exploitation.
Fig. 2a shows the number sources against a set of parameters. We see that for
small values of φ and high number of sources there is an equal exploitation of all
the sources. In intermediate values of the parameters and rather high number
of sources the colony selects with some probability one source or all sources.
For still higher values of the parameter but a low number of sources, the colony
finally selects one source preferentially. As an example, the bifurcation diagram
in the presence of four sources is shown in Fig. 2b.

3 Optimising the Exploitation of the Resources

We now extend the above scheme to account for variability. The question is,
whether by incorporating fluctuations in the framework of a situation where we
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Fig. 3. (a) Organigram of the Monte Carlo simulation
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Fig. 4. Probability histograms corresponding to the case of sources of equal richness
(a) and unequal sources (b). In (b), the left source is the richest one. Parameter values
as in Fig. 1b.

have two food sources of different richness in competition, we obtain access to
behaviours not amenable to a mean-field description.To this end we adopt a
Monte Carlo approach, in which the process of interest is simulated directly on
the basis of a certain set of rules [19,20].

Let us take for simplicity the case of two food sources. Fig. 3 summarises
the organigram of the simulation. The individuals get out of the nest with a
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Fig. 5. Selection rate of the richest source as a function of the parameter ø for q2/q1

= 0.75. Parameter values as in Fig. 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

q1

se
le

ct
io

n
ra

te
of

th
e

ri
ch

es
t

so
u
rc

e

q2
q1

= 0.25
q2
q1

= 0.75

Fig. 6. Selection rate of the richest source as a function of the parameter q1 for ø =
0.1s−1. Parameter values as in Fig. 1.

probability equal to phi. At the bifurcation point, the first ant has an equal
probability to go to the source 1 or 2. Suppose it goes to source one, then drops
a certain quantity of pheromone on the trail 1, which has a positive feedback on
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the concentration of pheromone on this trail. Now, time going on, the pheromone
evaporates, which constitutes a negative feedback. The second ant arriving at
the bifurcation point has now different probabilities to go to one of these sources.

We first try to reproduce the results of the mean field model by running the
simulation with the parameters used above. As can be seen from Fig. 4 there is
an agreement. The plots represent the probability histograms of the selection of
one particular source, the sources being here equal.

We now raise the question, whether there exist parameter ranges for which the
selection of the richest source when two sources of different richness are offered
to the colony can be optimised. First let us see the role of the size of the colony,
paremeter φ. Fig. 5 shows a plot of the selection of the richest source against this
parameter. We see that individuals from small colonies have to lay down more
pheromone to select the richest source. On the other hand individuals from big
colonies may lay down less pheromone to select the richest source and, moreover,
in a better way. This may provide a rationale for the well known fact that trail
recruitment in ants mainly occurs in large colonies.

But the key parameter of the study is the pheromone deposition. In the graph
of Fig. 6 where the selection of the richest source is plotted against the pheromone
deposition, we see the existence of an optimal value of the parameter for which
the exploitation is maximal. We also see that the maximal exploitation is higher
when the difference between the source quality is larger. This reflects the fact
that in this limit competition is less pronounced.

The existence of an optimal q shows that there exists a noise level that max-
imises the response in terms of efficiency-an at first sight counterintuitive result.

4 Clustering Behaviour and Pattern Formation

We now proceed to a second case study, the spatial pattern formation associated
with clustering behaviour in ant colonies [21]. The specific context chosen is
that of clustering of dead ants in preferred locations, to which one may refer
as ”cemeteries”. Ant corpses are dropped in the circumference of an arena of
a certain size. Living ants are entering in the arena through the center of it.
They pick the corpses and drop them in another area. The process ends up with
different clusters on the circumference, thereby giving rise to a pattern. Thanks
to a mean field model we have been able to identify the mechanisms presiding
in its formation.

The model pertains to the class of reaction-diffusion models and can be written
as

∂c

∂t
= Ω (c, a)

∂a

∂t
= −Ω (c, a) + D

∂2a

∂x2 (2)

As can be seen, it involves two variables, c (x, t), the density of corpses and
a (x, t), the density of carrying ants. D is a mobility coefficient and Ω (c, a) is
the sum of three different terms
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Fig. 7. Stability analysis of the homogeneous steady sate of eqs. (2). Solution of the
characteristic equation, providing the rate of growth of small perturbations, as a func-
tion of the wave number λ for two different experimental conditions. For parameter
values see [21].

Ω (c, a) = v

(
kda +

α1aφc

α2 + φc
− α3ρc

α4 + φc

)
(3)

corresponding, respectively to the spontaneous dropping, density-dependent
dropping and density dependent picking. Here, kd represents the spontaneous
dropping rate per laden ants, ρ, the density of non carrying ants , v, the mean
velocity of ants and α1, α2, α3, α4, empirical constants. φc is a nonlocal term
introducing a short range interaction between workers and corpses:

φc =
1

2∆

∫ x+∆

x−∆

c (z) dz (4)

where ∆ is a small radius of perception within which workers can detect corpses.
All The parameters have been measured from experiments. Resolving eq.(2)
leads to a unique, spatially uniform steady state solution(random deposition of
corpses). Testing the stability of this solution leads to the graph of Fig. 7 where
we see the existence of a finite range of unstable modes corresponding to positive
values of the solution of the characteristic equation(indicative of the growth
of small perturbations). In other words, for the two experimental conditions
shown here there is an instability leading to a spatially inhomogeneous solution
possessing a characteristic wavelength.



162 S.C. Nicolis

Fig. 8. Mean number of clusters (a cluster contains at least five corpses) as a func-
tion of time obtained from 20 integrations of the model equations (full lines) and from
experiments (average and SD are given for six experiments per condition in four experi-
mental conditions). The initial conditions(spatial distribution of corpses) are randomly
set around the value steady state cs. For parameter values see [21].

Finally we integrate the model and plot the number of clusters containing at
least five corpses against time. As can be seen from Fig. 8, for the two conditions
shown there is a very good agreement between experment and the model.

5 Conclusions

Amplifying communications play an important role in the organisation of animal
societies, particularly in social insects. Amplification implies the presence of a
nonlinear element in the dynamics. As seen in this work, one of the principal
manifestations of such nonlinearities is the emergence of complex self-organising
behaviours at a collective scale resulting from the interactions between individ-
uals each of which has access only to local information [22]. As a rule the popu-
lation has the choice between several options, a fact reflected by the multiplicity
of the solutions of the underlying evolution laws. This confers to the response a
marked plasticity against the environmental constraints. It is instructive to view
the collective organisation achieved in this way as a network, in which the nodes
are the values of the state variables at different spatial locations and the edges
(accounting for the way these nodes are wired) represent the interactions. In this
representation the wiring in the network associated to the problem considered
in Sec. 4 is a nearest neighbour and hence a short-range one, whereas in the
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problem of Secs 2 and 3 connections are mediated by the pheromone and are
thus long-ranged. In both cases the nonlinearities are manifested in the form of
feedback loops, connecting a node to itself either directly or through a circuit
involving other nodes.

Although obtained in the specific context of social insect biology, our results
are in many respects paradigmatic. As such, they are expected to apply to a
variety of other biological [22] or artificial processes [23]. Of special interest is the
possibility of building and controlling mixed societies composed of animals and
of artificial agents [24,25] with potentially far reaching applications in, among
others, agriculture and farming.
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Abstract. Termites are known for building some of the most elabo-
rate architectures observed in the animal world. We here analyse some
topological properties of three dimensional networks of galleries built by
termites of the genus Cubitermes. These networks are extremely sparse,
in spite of the fact that there is no building cost associated with higher
connectivity. In addition, more “central” vertices (in term of between-
ness or degree) are preferentially localised at spatial positions far from
the external nest walls (more than in a null network model calibrated to
exactly the same spatial arrangement of vertices). We argue that both
sparseness and the particular spatial location of “central” vertices may
be adaptive, because they provide an ecological advantage for nest de-
fence against the attacks from other insects.

Keywords: spatial networks, social insects, morphogenesys, complex
systems, patterns.

1 Introduction

Social insect societies have attracted much attention because of the complex level
of coordination and organization of their collective activities. These allow them
to perform complex tasks, such as finding the shortest path to a food source [9]
and building elaborate nests [12]. These abilities do not result from planning or
supervision, but emerge from the direct or indirect interactions between insects.
Social insect colonies are cooperative distributed systems [18] that have known
an extraordinary ecological success during the last 100 million years [13]. Under-
standing how social insect societies work can help us to design efficient artificial
distributed systems that at some level of description share similar needs and
constraints to those ruling social insect colonies.

Termites in particular are known for building some of the most amazing ar-
chitectures observed in the animal world. The mounds built by some species
can reach up to 6 meters of height against a size of the individual insect of the
order of the millimeter[10]. Even when the nest is comparatively small in size,
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it can present an extremely complex form and internal organization [6]. The
architectural refinement of these structures reflects their ecological importance.
In fact, the nests protect insects from dessiccation, and contribute to maintain a
stable internal environment [20,15,14]. The nest is also important for protecting
insects from attacks by a variety of natural enemies. Because of their biomass,
their chemical composition, the absence of a hard exoskeleton and their con-
centration in a single place, termites represent an interesting food resource for
several predators [11].

A nest is also a network of interconnected chambers and galleries inside which
all the displacements and the activities of insects take place. These networks are
completely self-organized and emerge from the work of thousands to millions
of individuals [19]. Because of their ecological importance, these networks may
present particular topological properties.

Nests built by the termite genus Cubitermes are constructions made out of
clay whose shape resembles that of a mushroom of 20-30 cm of height (figure
1-A). Inside, the nests are filled with chambers of similar size, interconnected
by openings and short corridors, (visible in figure 1-B, where the nest is repre-
sented in a virtually cut reconstruction). The diameter of corridors is constant
everywhere and just a little bit larger than the size of a “soldier” (soldiers are
large termites of the same species specialized for defence).

Chambers and corridors in these nests can be mapped respectively into ver-
tices and edges of a network. These are spatial networks, where each vertex
occupies a precise position in the three-dimensional space, and edges are real
physical connections. Each vertex in the network can be characterised by its
topological properties in relation to the network (degree, centrality, belonging to
a network motif), but also by the characteristics associated to its spatial posi-
tion or arrangement. For instance figure 1-D colors in red the vertices identifying
chambers adjacent to the external nest wall and in white the others. Henceforth

Fig. 1. A. Picture of one nest. B. Virtual cut of the nest. Chambers and corridors are
clearly visible. C. Virtual cast of the same nest. Only the chambers and corridors are
represented. D The connectivity network for the same nest. Each vertex corresponds
to a chamber and each edge to a corridor. Nodes coloured in red indicate that the
chamber is adjacent to the external nest surface.
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we will call accordingly “internal” those vertices that are not adjacent to the ex-
ternal nest wall and “peripheral” the vertices that are adjacent to the external
nest wall.

These attributes of a vertex only depend on the spatial position of the cham-
ber, not on its topological localization inside the network. In the present paper we
explore whether some network statistics correlate nevertheless with the internal
or peripheral location of the vertices.

The rest of the paper is organized as follows. Section 2 presents our nest
database and the segmentation process we developed to extract graphs from the
tomographies of the nests. Section 3 introduces some indicators which charac-
terize the properties of the nest transportation networks. In section 4 we define
a null comparison model for networks with similar spatial constraints to those
observed in our nests. Some strong effects of spatial embedding on network
topology are described in section 5, while section 6 compares more directly some
network properties of the real networks against the same properties in the null
model. The results are discussed from an ecological viewpoint in section 7.

2 Network Extraction

Six Cubitermes nests were used. The nests, labeled M9, M10, M11, M12, M18
and M19 belonged to private or public collections (Natural History Museums of
Paris and Toulouse) and originated from different locations in Central African
Republic and Cameroon. One of the nests, M19, was still under construction
when it was collected. This can be inferred from the fact that this nest still lacks
the cap that is visible on top of all “complete” nests (old nests can also have
more than one single cap, as is the case for nest M11 which has three caps).

Nests were imaged and reconstructed into 3-D virtual volumes using X-ray
tomography with a medical scanner. For every nest, we extract its transportation
network G = (V, E) (fig 1.D). In this network, a vertex v ∈ V represents a
physical chamber and an edge {vi, vj} ∈ E depicts a physical corridor between
chambers vi and vj . We can reconstruct the network G as follows. “Cores” were
defined as small empty regions located farther than about 1.5 mm from nest
walls (internal or external). Given the narrow diameter of the corridors (less
than ∼ 0.5 mm in radius) these cores never belong to a corridor, but either to
the space outside the nest or to a chamber. The chamber cores were identified
as the network vertices. They were then concurrently dilated to progressively fill
their surrounding empty space (stopping at walls). At some point, a dilated core
also crams into its outgoing corridors and gets in touch with the others dilated
cores coming from the other end of the corridor. In this case, an edge between
the vertices was created, corresponding to the physical corridor.

To obtain the virtual network corresponding to the case when all physically
adjacent chambers would be connected, the dilation of the same chamber cores
was repeated in the pure 3D-space up to the complete space filling (neglecting
now the nest walls). When two dilated cores got in touch, they were marked as
adjacent. The results of this automatic segmentation were verified and manually
corrected.
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3 Network Measures

The topological properties of the graph G=(V,E) associated with a gallery net-
work can be characterized by a variety of indicators [2]. We here focus on three
features: the network sparseness, the communication efficiency and the between-
ness centrality. Let us denote by ki the degree of the vertex vi ∈ V defined by
the number of edges incident to vi. The average degree 〈k〉 =

∑
ki/N indicates

the level of network sparseness (N is the total number of vertices).
We can also measure the patterns of connections involving more than one

vertex. In particular we compute path length and betweenness centrality. Let
dij be the number of edges on a shortest path between the vertices vi and vj

i.e. a path between vi and vj with a minimum edge number. The average path
length < L > on G is defined as follows:

< L >=
1
N

∑
vi,vj∈V

dij (1)

Average path length is a measure of network spread or compactness. For instance,
networks with low < L > can be efficiently navigated.

Normalized betweenness centrality CB(v) of vertex v is defined as follows:

CB(v) =
2

(N − 1)(N − 2)

∑
vi �=v �=vj∈V

σi,j(v)
σi,j

(2)

where σi,j is the number of shortest paths from vi to vj , and σi,j(v) is the number
of shortest paths from vi to vj that pass through v [1,3]. Vertices that have high
betweenness centrality scores lie on important communication paths, and for
this reason are important to guarantee fast displacements in the network.

Given the normalized betweenness centrality, one can compute the central
point dominance [8], which is a measure of the maximum betweenness of any
point in the graph: it will be 0 for complete graphs and 1 for “wheel” graphs (in
which there is a central vertex that includes all shortest paths). Let v∗ be the
vertex with the largest betweenness centrality; then, the central point dominance
is defined as

C′
B =

∑
vi∈V

CB(v∗) − CB(vi)
N − 1

(3)

4 Definition and Generation of Random Spatial Networks

The chambers of Cubitermes nests completely fill the space without leaving sig-
nificant gaps for the passage of long distance corridors. As a consequence, in
the corresponding transportation network, connections exist only between ver-
tices representing physically adjacent chambers. The classical models of random
graphs [7] are not well-suited here for a null comparison test because they do
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not take into account spatial constraints. We here propose a model which fits
the physical specifities of the termite nests.

Let us define the Maximal Embedded Graph (MEG) as the network GM =
(V, EM ) with the same set of vertices as in the gallery network G and where
there is an edge (vi, vj) ∈ EM if chambers vi and vj are adjacent (separated
by a single wall), independently whether they were also physically connected by
a corridor or not. When there are no long distance connections between non-
adjacent chambers (i.e. long chains in the associated graph), a MEG contains
the whole edge set allowed by the constraints of the spatial embedding. Hence,
all the possible networks compatible with these constraints can be generated as
subgraphs of a MEG. We here restrict ourselves to graph spanners of GM [16]
i.e. connected graphs G = (V, ES) with the same vertex set V , and an edge set
ES ⊂ EM subset of EM .

The topological assumptions required by our model have been checked in the
real Cubitermes nests. There are no long-range connections in these nests; all
the connections take place between physically adjacent chambers. In addition,
the edges of the real nests are a subset of the MEG edges in the vast majority
of the cases. These properties were verified for nests M9, M11, M12, M18 and
M19; in each of these nests around 99% of the edges were also edges of the MEG.
The remaining about 1% of the edges connected chambers adjacent at a corner,
and for this reason these edges were not marked as adjacent by the automatic
segmentation procedure. We added these edges to the MEG. Nest M10 displays
a different behaviour because termites have built some long-range corridors on
the external surface of the nest that link to distant chambers. For this reason,
nest M10 was not used in some of the analyses.

For each nest of our corpus,we have compared its internal topological properties
with those of 10000 random spanners of the MEG (for the same nest). These were
obtained by first generating random spanning trees [17] of GM , and then inserting
additional edges (chosen with uniform probability among the edges in GM ) until
we reach the same number of edges as in the observed gallery network G.

5 Effect of the Spatial Embedding on the Graph Average
Degree

In Cubitermes networks, the maximum degree of the vertices is limited by the
physical constraints: no vertex can have a higher degree than its associated
degree in the MEG. Consequently, the average network degree is smaller than
the average degree of GM . Figure 2-A reports for the six nests of the corpus, the
degree in the MEG and in the real network, showing that the average degree
of real networks is significantly smaller than the average degree of GM . This
indicates that the strong maximum limit to vertex connectivity imposed by
spatial embedding has hardly any effect on these networks. Indeed, real termite
networks have connectivity near the percolation threshold, suggesting that these
networks tend to minimize connectivity.
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Fig. 2. Left graph: Average degree (±SE) in GM (gray) and in real networks (black).
Middle graph: For all vertices in the six nests, the degree of the vertex in GM is binned
according to the degree of the same vertex in the real network, in the abscissae. Right
graph: The same as in the middle graph, but for the vertices of random spanners of
each nest. The reported data for the random spanners are computed on a subset of 100
spanners for each nest.

However, spatial embedding can affect connectivity indirectly. For instance
the degree of each vertex in the real network could correlate with its degree in
the MEG. This is actually observed in our networks: figure 2-B bins together
all the vertices with the same degree in the real networks (here, vertices from
different nests are not differentiated) and reports a box-plot of the corresponding
degree in GM . The two are clearly correlated. If the vertices in G were simply a
random sample from the vertices in GM , a similar result should be found also
for random spanners. The same statistics is reported for random spanners of
GM of each of the five nests in fig 2-C. The correlation of vertex degree with
the degree in GM is similar. However, real networks have a higher proportion of
nodes with high degree (10 or more) than random spanners (see numbers N in
the label associated to each box).

6 Effect of the Spatial Embedding on the Network
Centrality

The correlation of the vertex degrees in real networks and in the corresponding
GSs suggests that external vertices (representing chambers adjacent to the ex-
ternal nest surface, see page 167) should have lower degree than internal vertices,
for the sole effect of spatial constraints. This tendency should be shared both by
real networks and random spanners. However, we wonder if the same tendency
is stronger in real networks than in random spanners. In order to investigate this
issue, for each nest, we have computed two indicators for each vertex : (1) the
ratio k∗ between the degree the vertex has in the real nest and its average degree
for 10000 random spanners of GM defined on the same nest, (2) the ratio C∗

B

between its betweenness centrality in the real nest and its average betweenness
centrality for the random spanners. Internal and peripheral vertices are binned
separately. If real networks do not particularly tend to segregate central vertices
(in the network) across space, this ratio should be similar for both internal and
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Fig. 3. Left. box plots representing the ratio, for each vertex, of the degree that the
vertex has in the real network of galleries and its average degree in the spanners. In
black: internal vertices; in gray, peripheral vertices. Right. the same as in the left layer,
but with ratios of betweenness. The dashed line represents the expected ratio of 1 if
there were no differences between internal and peripheral vertices.

peripheral vertices. Figure 3-A reports the distribution of the ratio k∗ associated
with the degree for internal and peripheral chambers in the five nests. In all the
nests this ratio is higher in internal than in peripheral vertices. Higher degree
does not necessarily correlate with a higher betweenness. Figure 3-B reports the
distribution of the ratio C∗

B associated with the betweenness centrality. Again,
the ratio is always higher in internal than in peripheral vertices.

Table 1 reports some additional statistics of real gallery networks, and of the
random spanners for the same nest. Average path lengths in real networks are
shorter than in random spanners with the same average degree, indicating that
some optimization process is at work in termite gallery networks, which makes
these networks more efficient than random networks.

7 Discussion: An Ecological Perspective

Networks of chambers and galleries inside termite nests are one of the few de-
scribed examples of 3D self-organized spatial networks.

These networks are extremely sparse. In general, network sparseness is not
an advantageous feature because it decreases the efficiency of displacement, in-
creases the likelihood of traffic jams and decreases robustness to random failures
or occlusions.

As a candidate rationale, the sparseness may result from a cost associated
with adding new edges. In termite networks of galleries however, it is unlikely
that there is such a building cost. First it is sufficient to dig a hole in a thin
wall to obtain a new connection. Second, one of the nests, M19 which appeared
to be still under construction has more connections (higher average degree in
table 1) than the other nests. This indicates that the final topology is probably
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Table 1. The table reports some descriptors of the real networks of galleries for nests
M9, M11, M12, M18 and M19 (RN). The same descriptors are also reported (together
with standard errors) for 10000 random spanners of the same nests (rand). V: number of
vertices; E: number of edges; <k>: average node degre; <L>: characteristic path length;
<bet>: average node betweenness; betmax: maximum betweenness; CPD: central point
dominance.

nest V E <k> <L> <bet> betmax CPD

M9-RN 507 676 2.67 8.51 0.015 0.22 0.20
M9-rand 507 676 2.67 11.18±0.42 0.020±0.001 0.27±0.06 0.25±0.06

M11-RN 260 280 2.15 9.11 0.031 0.48 0.45
M11-rand 260 280 2.15 15.66±1.56 0.057±0.006 0.52±0.04 0.47±0.04

M12-RN 183 233 2.55 8.19 0.040 0.36 0.33
M12-rand 183 233 2.55 9.92±0.65 0.049±0.004 0.40±0.07 0.35±0.06

M18-RN 287 342 2.38 8.40 0.026 0.32 0.30
M18-rand 287 342 2.38 11.00±0.69 0.035±0.002 0.34±0.07 0.31±0.07

M19-RN 268 437 3.26 7.89 0.026 0.35 0.33
M19-rand 268 437 3.26 9.47±0.38 0.032±0.001 0.31±0.05 0.28±0.05

reached by removing already existing connections, implying that the cost would
be associated rather with edge removal than edge addition.

A better explanation of the sparseness of these networks could be their im-
portance for defence. Cubitermes termites (like several other termite genera) are
often attacked by ants that prey on the nests [5,11]. The reaction of Cubiter-
mes subarquatus in response to attacks by the ant Centromyrmex bequaerti is
accurately described [4]. In a first phase, if the ants find access to one cham-
ber, each corridor leading from that chamber to other chambers of the nest
is defended by a “soldier” termite. It is widely believed that the particular
diameter of the galleries, exactly the size of a soldier, is an adaptive feature
evolved to maximize the success of defence. Soldiers have specialized jaws and
phragmotic heads (large heads that in some termite and ant species are be
used to plug the nest entrance; Gr. φραγµoς � fence, barrier) that can effec-
tively block narrow termite tunnels against ant entry. An additional defence
strategy followed by termites consists in setting back to intact parts of the
nest and plugging with earth the galleries that are still open to the invaded
part.

The very low connectivity of the gallery network could hence present an high
adaptive defence value, since it is often sufficient to close a single corridor to
isolate an individual chamber, or a great part of the nest from outside. If this
holds true, then the connectivity should be even sparser at the periphery of the
nest (where defence ought to be the more efficient) than in the central part of
the nest (where transportation ougth to be the prime concern). This hypothesis
is clearly supported in the present case.
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Abstract. Transcriptional regulation is a key mechanism that allows cells to 
make the appropriate amount of proteins at the right time. This is mediated by 
transcription factors that respond to specific signals and regulate expression of 
the relevant genes. The set of all regulatory interactions in a cell can now be in-
vestigated and this is best represented as the transcriptional network where 
nodes represent transcription factors or target genes and edges represent  
regulatory interactions. In this manuscript, I will first discuss the current under-
standing of the organization of such networks from the model organisms E. coli 
and yeast. I will then demonstrate that such networks are extremely dynamic 
and adapt rapidly to changing environments. This will be illustrated by discuss-
ing the changes in the network structure in two different time scales: (i) those 
that occur during different cellular conditions and (ii) those that occur across 
different organisms living in diverse environments. 

Keywords: network, evolution, dynamics, transcription and gene regulation. 

1   Introduction  

Over the last century, research in the area of biology has revealed that proteins in a cell 
rarely function in isolation. Instead, they interact with other macromolecules to form 
complex networks to co-ordinate various processes both in space and time. Though 
taking a reductive approach to investigate biological systems has undoubtedly provided 
us with a wealth of information, to understand how a complex system such as a cell 
functions, one needs to go beyond individual proteins and start to investigate the set of 
all interactions mediated by the components in a cell. There are some systems in biology 
where it is now possible to investigate such questions and one such system, which will 
be the subject of this chapter, is the transcriptional regulatory network. 

Representing interactions between biological molecules as a network provides us 
with a conceptual framework that allows us to identify general principles that govern 
these complex systems [1]. A network is best represented as a graph that is made up 
of nodes, which denote the components, and links, which denote the interaction be-
tween the components. On the level of a whole cell, one could describe many differ-
ent types of biological networks [1]. For instance, (i) the protein interaction network 
where nodes represent proteins and links represent physical interaction between the 
proteins, (ii) metabolic networks where nodes represent small molecules and links 
represent direct enzymatic conversion between the small molecules and (iii) the  
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transcriptional regulatory network, where nodes represent transcription factors (TFs) 
or target genes (TGs) and directed edges represent regulatory interaction where the 
transcription factor regulates the expression of the target gene [2]. In this chapter, I 
will discuss transcriptional regulatory networks from the model prokaryote Es-
cherichia coli and the model eukaryote Saccharomyces cerevisiae. I will first describe 
the current understanding of the organization of such regulatory networks. I will then 
describe the general principles that emerge from the investigation of the changes in 
the structure of such transcriptional regulatory networks in two very different time 
scales: (i) the time scale of an individual generation, which is in the order of a few 
hours for most unicellular organisms, i.e., the changes in network structure within an 
organism during different cellular conditions and (ii) the time scale of evolution of 
new organisms, which is in the order of millions of years. i.e., the changes in network 
structure across different organisms.  

2   Organization of the Transcriptional Regulatory Network 

The transcriptional regulatory network is a representation of the blue print of gene 
expression program in an organism [2]. In the same way as in most complex systems, 
the transcriptional network is made up of a basic unit. The components of the basic 
unit consist of a transcription factor (TF) and a target gene (TG), with an edge be-
tween them denoting that the expression of the target gene is regulated by the factor 
(Fig 1a). The basic units do not occur in isolation but are interlinked to form small 
patterns of inter-connections. These small patterns of regulatory interactions referred 
to as network motifs form the building blocks of such networks (Fig 1b) [3, 4]. These 
motifs themselves are highly inter-connected and give rise to the transcriptional regu-
latory network, which is the set of all transcriptional interactions in a cell (Fig 1c).  
 

Transcription
Factor (TF)

Target Gene (TG)

Transcription
Factor (TF)

Target Gene (TG)

Local structure
(motifs)

Components
(genes & interactions)

Global structure
(scale-free topology)

a b c

 

Fig. 1. Structure of the transcriptional regulatory network. (a) The basic unit consists of a regu-
latory interaction (gray arrow) between a transcription factor (black circle) and a target gene 
(gray circle). (b) The basic unit form small patterns of regulatory interactions called network 
motifs. The three most commonly occurring motifs are shown here: Feed-forward motif (FFM, 
top), Single input motif (SIM, middle) and Multiple input motif (MIM, bottom). (c) The set of 
all transcriptional regulatory interactions is referred to as the transcriptional regulatory network. 
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Analysis of the topological properties of such networks has revealed that they can 
be investigated at least at two levels: (i) the local level, where such networks have 
been shown to form ordered patterns of interactions referred to as network motifs, 
which have been proposed to perform specific information processing tasks [5], and 
(ii) global level, where it has been shown that such networks have a scale-free topol-
ogy. Such a topology is characterized by the presence of a few transcription factors 
that regulate an unusually large number of target genes and a large number of tran-
scription factors which regulate only a small number of target genes and is believed to 
confer robustness to such networks [1].  

2.1   Local Network Structure 

A network motif is defined as a small pattern of inter-connections that recur at many 
different parts of the network at frequencies much higher than what is expected by 
chance when compared to random networks of similar size [5]. Analysis of the tran-
scriptional networks of E. coli and yeast has revealed the presence of three distinct 
motifs, each of which has distinct regulatory properties in the control of gene expres-
sion [5]. The three commonly occurring motifs in the transcriptional network are (i) 
Feed-forward motif (FFM; Fig 1b, top) where a top-level transcription factor regu-
lates both the intermediate-level TF and the target genes, and the intermediate-level 
TF regulates the target gene. If both TFs are activators, such a connectivity pattern 
might ensure that the target gene is expressed only when persistent signal is received 
by the top-level transcription factor. Since the concentration of the intermediate TF 
should be built up for the regulation of the final target gene, random fluctuations and 
noise in activation of the top-level TF is filtered and does not get propagated. (ii) 
Single input motif (SIM; Fig 1b, middle) where a single TF regulates the expression 
of several target genes simultaneously. Depending on the promoter strength of the 
regulated genes, it may respond to different concentration levels of the active TF. 
Therefore, if the concentration of the active TF changes with time, such a motif could 
set a temporal pattern in the regulation of the individual targets. (iii) Multiple input 
motif (MIM; Fig 1b, bottom) where multiple TFs simultaneously regulate the expres-
sion of multiple target genes. Since the TFs could potentially respond to different 
signals, such motifs could therefore integrate diverse signals and bring about differen-
tial expression of the relevant targets. Thus regulation of genes via such network 
motifs provides distinct ways of regulation of gene expression [5].  

2.2   Global Network Structure 

Analysis of unrelated networks of several complex systems has revealed that they 
display a scale-free topology [6]. Networks with such a topology are characterized by 
a power-law connectivity distribution. In other words, if one plots the distribution of 
the number of nodes making a particular number of links, one finds that the distribu-
tion can be best fitted using a power-law equation of the type y = axb. Such a distribu-
tion is indicative of the presence of few highly influential TFs that regulate expression 
of several genes and a large number of TFs which regulate a few genes. The highly 
influential TFs are referred to as global regulators, or regulatory hubs and their pres-
ence contributes to the inherent robustness of such a topology [7, 8].  
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Robustness is the ability of complex systems to function even when the structure of 
the system is perturbed significantly [9]. A scale-free topology is robust because ran-
dom inactivation of genes will most likely affect the TFs which regulate a few genes 
because these occur in very high numbers. This would still leave a central, highly 
connected sub-network that may still be functional. However, the downside of such a 
network structure is that they are vulnerable to targeted attacks of hubs. i.e., targeted 
removal of the very highly connected nodes will result in the collapse of the system in 
to small sets of isolated fragments that no longer interact with each other [7]. There-
fore, the highly connected proteins are believed to be crucial for the robustness and 
functioning of the regulatory network [7].  

3   Temporal Dynamics of Transcriptional Regulatory Networks 

Though investigations of regulatory networks in E. coli and yeast have uncovered key 
features of the local and global network structure [10-12], it should be realized that 
such features have been investigated largely on a static regulatory network. To inves-
tigate how the topology of the regulatory network changes within an organism across 
different conditions, we integrated gene expression data with the static regulatory 
network for yeast to obtain condition specific sub-networks [13]. This allowed the 
elucidation of active regulatory networks for five different conditions: cell cycle, and 
sporulation – both of which are developmental regulatory programs in a cell and DNA 
damage, stress response and diauxic shift – all three of which are regulatory programs 
that are important for survival (Fig 2a). Having identified the active sub-networks 
across the different conditions, we systematically investigated the changes in the local 
and global network topology to identify general principles behind the change in the 
topology of the active network structure. 

3.1   Temporal Dynamics of Local Network Structure 

Apart from the described functions of the network motifs, they also display distinct 
kinetic properties. The feed-forward motif is a slow-acting and indirect regulatory 
motif because this involves an intermediate-level TF for the regulation of the target 
genes. While the SIM and the MIM are fast acting and direct regulatory motifs be-
cause there are no intermediate TFs and hence the signal can be transmitted into a 
regulatory change relatively quickly [5]. Investigation of the active sub-networks 
across the different cellular conditions describing the two main types of regulatory 
program (development and survival) revealed a striking trend. The SIM motif was 
preferentially used in regulatory programs that enable survival and the FFM is prefer-
entially used in the networks that govern developmental changes such as sporulation 
and cell-cycle (Fig 2b). This make intuitive sense as during stress conditions, a fast 
transfer of signal would allow efficient response and hence contribute to survival of 
the organism. Whereas in developmental regulatory programs, such as cell-cycle or 
sporulation, the regulation of genes under a feed-forward motif ensures that the next 
stage in the process is not initiated until a persistent signal from the previous stage is 
received [13]. Taken together, this suggests that the network motifs that allow for 
execution of regulatory events with distinct kinetic profiles are preferentially used in 
the different transcriptional programs.  
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Fig. 2. Temporal dynamics of transcriptional regulatory network in yeast.  (a) The active tran-
scriptional regulatory network in a given cellular condition for the five major cellular processes 
is shown. These cellular conditions can be grouped into those that are involved in development 
and survival response. For each regulatory network that is active in a particular cellular condi-
tion, the transcription factors are shown in the top arc, the target genes are shown in the bottom 
arc and regulatory interactions are shown as a line connecting the two. (b) Preferential usage of 
network motifs in the regulatory programs governing development and survival. The numbers 
represent the fraction of active regulatory interactions forming a particular motif in that cellular 
condition. Feed-forward motif is preferentially used in developmental regulatory programs 
whereas single input motifs are used more frequently in transcriptional programs involved in 
survival. (c) Condition specific hubs under the five different conditions are shown. The gene 
name of the hubs is shown on the left. For each hub, the row to the right indicates the number of 
target genes regulated in each condition (column; CC: cell cycle; SP: sporulation; DS: diauxic 
shift; DD: dna damage; SR: stress response). Darker cells represent high number of regulated 
target genes. For instance, YMR016C is a transcription factor that regulates a large number of 
genes during cell cycle (black box under CC) but regulates almost no genes in the other condi-
tions (white boxes under SP, SR, DS, DD) (d) Network of regulation between TFs in yeast re-
veals the extensive inter-regulation between the permanent and condition-specific hubs. More 
inter-regulation among TFs in CC and SP suggest a hierarchy in gene regulation whereas much 
less inter-regulation between TFs during survival response suggests a much flatter hierarchy. 

3.2   Temporal Dynamics of Global Network Structure  

Since the structure of the active transcriptional network could vary when cellular 
conditions change, it is important to understand the differences in the global network 
structure. In particular, do the active networks still display a scale-free topology? Do 
different proteins emerge as global regulatory hubs or does the same protein remains 
as a hub across different conditions? Investigation of the global structure of the active 
sub-networks across the different conditions revealed that they all still display a scale-
free topology even when conditions change.  

Investigation of the regulatory hubs across the different conditions revealed an impor-
tant finding which is that there are two major classes of regulatory hubs: (i) permanent 
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hubs and (ii) condition-specific hubs. While the permanent hubs are those regulators that 
affect expression of several genes independent of the cellular condition, the condition 
specific hubs only regulate a large number of genes under specific cellular conditions. 
The latter are generally TFs that initiate a developmental program or trigger a cellular 
response (Fig 2c).  

An investigation of how often global regulatory hubs regulate each other revealed 
that there is an extensive inter-regulation between hubs that govern developmental 
regulatory programs (Fig 2d).  This suggests a hierarchy in gene regulation which 
might be important for execution of the distinct phases in a developmental program. 
However, very little inter-regulation between the hubs were noticed in the active net-
works that govern survival, clearly suggesting a much flatter hierarchical structure 
which transfers signals rapidly into changes in gene expression. Though such a strik-
ing difference existed between the two major cellular programs, extensive inter-
regulation between the condition-specific and permanent hubs were observed (Fig 
2d). Taken together, this suggests that the transcriptional network of an organism is an 
extremely dynamic structure which has the potential to initiate cellular processes by 
triggering key regulatory hubs to respond to distinct cellular cues governing processes 
such as development and survival.  

4   Evolutionary Dynamics of Transcriptional Regulatory Networks 

While the analysis of the dynamic nature of the network structure provides informa-
tion about the flexibility of network across different conditions, an investigation of 
which components are conserved between organisms provides us with a fundamental 
insight into how such complex regulatory systems evolve across different organisms. 
To understand the dynamics of changes in the network structure at the evolutionary 
time-scale, we used the E. coli transcriptional network and re-constructed sub-
networks which are evolutionarily conserved in over 170 different prokaryotic ge-
nomes [14]. These organisms live in very different environmental conditions and are 
related to E. coli at varying levels of evolutionary distance. This therefore provided us 
with the information to investigate how the local and global network structure 
changes over time and adapts to changing environmental conditions.  

4.1   Evolutionary Dynamics of Local Network Structure 

In theory, network motifs may evolve in two major ways. They may (i) be retained or 
lost as a single unit or (ii) individual components which make up the network motif 
may be retained or lost, resulting in a partial motif being conserved. Previous analysis 
of the evolution of the protein interaction network have shown that network motifs 
tend to be retained or lost as a unit as retaining partial motifs is unlikely to be of any 
functional advantage [15]. Our analysis of the evolution of network motifs in tran-
scriptional networks revealed that motifs are not retained or lost as whole units but 
individual components are retained or lost, thereby resulting in a partial motif being 
conserved [14]. A closer analysis of the patterns of loss and gain however suggested a 
very striking pattern, which is that by losing or gaining specific TFs, orthologous 
genes in different organisms can be embedded in different motifs and this change is 
dictated by the environment in which they live (Fig 3a).  
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Fig. 3. Evolutionary dynamics of transcriptional regulatory networks in prokaryotes.  (a) Loss 
or gain of TFs could result in the same gene being regulated under very different motif context. 
Light gray arrows represent absence of interaction. Light gray circles represent absence of a TF.  
(b) Organisms that are distantly related to E. coli, which is a γ proteobacteria, but share similar 
environments conserve network motifs. Whereas organisms that are closely related to E. coli 
but live in different environments rapidly lose components of network motifs. Light gray  
arrows represent absence of interaction. Light gray circles represent absence of a TF. (c) Condi-
tion specific hubs can be lost or replaced during evolution. In this representation of the  
network, TFs are shown in the centre of the concentric circles and TGs are shown around them. 
Lines represent regulatory interactions and the TFs in the larger concentric circles represent the 
hubs. The E. coli regulatory network is shown on the left and the conserved regulatory network 
in H. influenzae is shown on the right. Note the absence of NarL, a condition specific hub, in H. 
influenzae. 



 Evolutionary and Temporal Dynamics of Transcriptional Regulatory Networks 181 

An analysis of the conserved networks across the different organisms living under 
different environmental conditions revealed two interesting principles (i) evolutionar-
ily closely related organisms that have dissimilar environmental life-style do not con-
serve network motifs and (ii) evolutionarily very distant organisms that live in similar 
environments conserve network motifs (Fig 3b). In other words, the analysis revealed 
that organisms with similar lifestyle tend to conserve network motifs and may hence 
regulate orthologous target genes in a similar manner.  

4.2   Evolutionary Dynamics of Global Network Structure 

Since the local network structure displayed dynamic changes during the course of 
evolution, we investigated if the global network structure remains the same or differs 
in organisms living under different conditions. In principle, the global regulatory 
hubs, which are key elements in maintaining the overall network structure, could 
evolve in two possible ways: (i) the hubs could be conserved across the organisms 
simply because losing this may affect fitness and survival or (ii) the hubs could be lost 
or replaced by other regulators that may respond to a different signal in the environ-
ment. Previous studies on the protein interaction network have shown that hubs are 
essential proteins and removal can be deleterious to the organism [16]. Interestingly, 
for the transcriptional regulatory network, we identified that condition specific hubs 
can be lost or replaced during evolution (Fig 3c). Though such hubs can be lost or 
replaced in evolution, we observed that the conserved sub-networks still displayed a 
scale-free topology. 

This suggests an important principle which is that orthologous TFs in organisms 
living in different environmental conditions may confer very different fitness effect 
on the same organisms, i.e., very different adaptive values. Hence an orthologous 
protein which confers a higher fitness advantage due to efficient regulation under a 
particular environment is likely to emerge as a hub in one organism but not in the 
other which never experiences the same environment. Therefore, this would favor 
evolution of very different proteins as hubs in organisms living under different envi-
ronmental conditions. Consistent with this general prediction, an analysis of the ex-
perimentally derived transcriptional network of B. subtilis, a gram positive bacterium, 
and E. coli, a gram negative bacterium, revealed that very different proteins emerge as 
global regulatory proteins. Taken together, these findings suggest that the scale-free 
structure emerged independently in evolution with regulatory hubs evolving accord-
ing to requirements dictated by the environment of the organism. 

5   Conclusions 

In conclusion, by invoking the transcriptional regulatory network of living systems, I 
have discussed how such a representation allows us to investigate transcriptional 
regulation at a local level (in terms of the motifs) and the global level (in terms of the 
scale-free topology and regulatory hubs). By integrating gene expression data of five 
major regulatory programs which are involved in development or survival and by 
identifying the conserved parts of the networks across 170 prokaryotes living in dif-
ferent environmental conditions, I discussed the temporal and evolutionary dynamics 
of the local and global network structure.  
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At the local level of network structure, the temporal changes reveal that network 
motifs which display distinct kinetic properties are preferentially used in the different 
regulatory programs, which may allow for efficient response to changes in condition. 
On the evolutionary time scale, it was found that the environment and the life-style of 
an organism shape the regulatory motif content of an organism. At the global level of 
network structure, the analysis of temporal changes allowed the identification of per-
manent and condition specific hubs. Such hubs are not isolated, but regulate each 
other to allow for transition between the different regulatory programs by triggering 
the condition specific hubs. At the time-scale of the evolution of species, an analysis 
of the conservation of the global network structure revealed that condition-specific 
hubs can be lost and new hubs can emerge as dictated by the change in the environ-
ment. Taken together, these findings demonstrate that the transcriptional regulatory 
networks are very dynamic within the time-scale of an organism and evolve rapidly 
across organism within an evolutionary time-scale in order to efficiently respond to 
changing external or internal environments. 
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Abstract. Here we study the plausibility of a phase oscillators dynami-
cal model for time division for multiple access in wireless communication
networks. We show that emerging patterns of phase locking states be-
tween oscillators can eventually oscillate in a round-robin schedule, in a
similar way to models of pulse coupled oscillators designed to this end.
The results open the door for new communication protocols in a contin-
uous interacting networks of wireless communication devices.

Keywords: time division for multiple access, phase oscillators, round-
robin schedule.

1 Introduction

Nowadays, wireless communications have become pervasive. This form of telecom-
munication between elements forming a network has technically evolved to the
third generation of wireless systems, that incorporates the features provided by
broadband. With this evolution, wireless networks become a plausible candidate
for the main telecommunication mechanism in the next future. At the same time,
this technical advance comes along with new problems which requires the use
of innovative ideas to solve them. One of the problems we are aware, is that of
maintaining decongestion in single-hop networks, where time division for multi-
ple access (TDMA) strategies have been shown to be a good scheme for message
transmission [1]. TDMA is a channel access method for shared medium (usu-
ally radio) networks. It allows several users to share the same frequency channel
by dividing the signal into different timeslots. The users transmit in rapid suc-
cession, one after the other, each using his own timeslot. This allows multiple
stations to share the same transmission medium (e.g. radio frequency channel)
while using only the part of the bandwidth they require.

Between the algorithms that have been proposed to solve this problem, a bio-
inspired solution called desynchronization, has attracted our attention [2,3]. The
idea is to mimic some synchronization processes in biological systems, modeled
by pulse-coupled oscillators in networks. Within this scenario a mapping between
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wireless nodes in a network and pulse-coupled oscillators is possible, providing a
simple and elegant protocol for TDMA communication. Here, desynchronization
refers specifically to a state where nodes perfectly interleave periodic events to
occur in a round-robin schedule, in contrast with synchronization where all the
oscillators collapse their phase behavior.

The model presented in Ref. [2] recalls some results in lattices of coupled oscil-
lators where spatio-temporal pattern form in a ring of oscillators with inhibitory
unidirectional pulse-like interactions [4,5] inspired in the behavior of elementary
neural systems. The attractors of the dynamics are limit cycles where each os-
cillator fires once and only once in a cycle, and some of them correspond to the
desired behavior of round-robin schedule, that maintain order in the firing suc-
cession. The limit cycle structure of the attractors of pulse-coupled oscillators
system shown in [4,5], is akin to those limit cycle emergent in coupled phase
oscillators, in particular in the Kuramoto model [6,7]. Using this similarity on
the final states, between both descriptions, here we study the plausibility of a
self-organized algorithm between nodes communicating in a wireless network,
using the dynamics of phase oscillators. The results show that an equivalent de-
synchronized state is obtained for a finite set of initial conditions, in a continuous
interacting model. A reseting mechanism is proposed to account for the entry
and exit of nodes of the network, while maintaining the desynchronized state.

The paper is organized as follows. In Sect. II we review some of the results
known for a ring of pulse-coupled oscillators. In Sect. III we introduce the general
model of phase-coupled oscillators and in the next section we present our pro-
posal of phase oscillators continuously coupled through a function that depends
on the sinus of the phase difference of the two interacting (neighboring) units.
In Sect. V we analyze the stability of the fixed points of the collective dynamics,
whereas in Sect. VI we study the effect of adding or removing nodes to our sys-
tem, maintaining the prescribed schedule. Finally, in the last section, we present
a brief discussion of the results and provide some lines of future research.

2 Patterns in Pulse-Coupled Oscillators in a Ring

Generally speaking, coupled oscillators interact via mutual adjustment of their
amplitudes and phases. When coupling is weak, amplitudes are relatively con-
stant and the interactions could be described by phase models. In particular,
pulse-coupled oscillators account for some biological processes like heart pace-
maker cells, integrate and fire neurons, and other systems made of excitable
units. The instantaneous interactions that take place in a very specific moment
of its period makes the treatment of these systems more complicated from a
theoretical point of view. In any case, the richness of behaviors os these pulse-
coupled oscillatory systems include synchronization phenomena, spatio-temporal
pattern formation (traveling waves, chess-board structures, and periodic waves),
rhythm annihilation, self-organized criticality, etc. The reader is pointed to Ref.
[5] for references on this subject.
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In these models, the phase of each oscillator evolves linearly in time – usu-
ally all units having the same period. When reaching some precise value of the
phase the oscillator fires emitting a pulse that is received instantaneously by its
set of neighbors. At this point the neighbors change their phases according to
some specific function, called phase response curve. One should notice that this
response function plays the crucial role in the dynamics of the population. Since
two different time scales are in play, a continuous description makes no sense
and the usual way to describe mathematically the system is by means of maps.
A map represents the total evolution of driving (independent linear evolution
in the slow time scale) and firing (interaction between units through a pulse)
processes and the change in state after a complete map reflects the nature of the
dynamical behavior. Thus, we can observe the evolution towards the attractors
and analyze the stability of the fixed points.

In particular, in a set of works by the authors of the current paper, it was
theoretically analyzed the behavior of rings of oscillators subjected to a linear
phase response curve. In the first work [4] we dealt with unidirectional couplings
in the ring obtaining exact values of the fixed points of the dynamics. As we
said before, the stability of the fixed points is given by the return maps of the
driving plus firing process. We computed the bounds of the eigenvalues of the
matrix that describes the map and showed that any excitatory coupling (positive
linear phase response curve) has unstable fixed points and the only solution is
a synchronized state in which the oscillators collapse one by one. On the other
hand, for an inhibitory coupling (negative linear phase response curve) the fixed
points become stable, giving rise to spatio-temporal patterns where a constant
phase-difference between oscillators is achieved. In a second work [8] we extended
the previous result to a population of bidirectionally coupled units. Finally, in
a third work [5] we analyze in much more detail the patterns that appear for
inhibitory couplings (negative phase response curve). In particular, we were able
to find the probability of selecting a given pattern under arbitrary initial condi-
tions. In a ring of N oscillators there are (N − 1)! possible permutations of the
firing sequence, by keeping one of the oscillators as the initial firing one. But all
these possible sequences can give rise a smaller number of fixed points, which is
N − 1. Then these fixed points or patterns have some degeneracy that can be
computed analytically. From this degeneracy, it can be computed the probability
of pattern selection, that depends also on the coupling strength. For instance,
it can be easily found that, in the case of small coupling, the most probable
state is that with the maximum phase difference between neighbors, i.e. the
phase-opposition (antisynchronization) state, and as we increase the number of
oscillators the patterns distribution gets sharpened around this value. There is
an additional effect in the pattern selection for this construction. When the cou-
pling strength increases there are some fixed points that disappear, i.e. there are
no longer part of the available configuration space. Depending on the number of
oscillators and on the periodicity of the patterns, we could estimate the critical
value of the coupling strength for which the pattern disappears. This effect is,
of course, very important since it alters the distribution of the pattern selection.
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3 Coupled Phase Oscillators

In contrast to pulse -coupled oscillators, phase coupled oscillators are described
in a single time scale by a driving term plus an interaction between their (usually
relatives) phases

ϕ̇i(t) = fi(ϕi(t)) + σ
∑

j

g(ϕi(t), ϕj(t)) (1)

where ϕ stands for the phases, σ for the coupling strength, and f and g for
general functions of the specified arguments. The sum runs over the neighboring
units of oscillator i.

The behavior of 1D lattices of phase models is considerably complex, even
for nearest neighbor coupling. In the case of chains of oscillators, for example,
when coupling is local, oscillators at the ends get different inputs from those in
the middle so that phase locking may not even exist. As long as the differences
in the frequencies are small enough, there will be a phase-locked solution. In-
terestingly, nearest neighbor interaction chains can support very small gradients
when the coupling term has the form of the sinus of the phase difference (and, in
fact, any odd periodic function). However, if the coupling function contains even
components (that is, replace sin(ϕ) with sin(ϕ+δ)), then frequency gradients as
that are can be supported in nearest neighbor chains of coupled phase oscillators
[9,10].

One of the most useful connections between the description of pulse-coupled
oscillators and phase oscillators is exploited in the so-called transformation to
phase models [11]. Fulfilling the condition of weak coupling, and autonomous os-
cillatory behavior of the pulse oscillators, the entire network can be transformed
into a simpler phase model by a piece-wise continuous change of variables. The
interest of this mathematical equivalence is that many pulse-coupled systems
can be viewed as phase-coupled systems whose continuous description is more
amenable. Driven by this analogy we explore the performance of a simple set
of phase oscillators in a ring compared to the use of pulse-coupled oscillators
described in [2], for TDMA on wireless networks.

4 The Kuramoto Model in a Locally-Coupled Ring

We consider here a particular model of phase oscillators that was introduced
by Kuramoto [6]. In the original paper, Kuramoto analyzed a population of
oscillators with an all-to-all pattern of connectivity. In principle, each oscillator
has its own frequency drawn from a random distribution and is coupled via a
sine function to the rest of the population

dϕi

dt
= ωi + σ

∑
j

sin(ϕj − ϕi) i = 1, ..., N (2)

In most of the analysis the interesting issue has been the transition to the syn-
chronized state that appears above some critical value of the coupling strength
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∆ = 0 ∆ = 2π
10 ∆ = 2π
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∆ = 2π 3
10 ∆ = 2π 4
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Fig. 1. Stable configurations for a ring of 10 oscillators. Top: for δ = 0. Bottom: for
δ = π. The color of the node stands for the phases (white for ϕ = 0 to black for
ϕ = 2π), but only the phase difference between neighboring nodes is important. The
label at the center of each graph stands for the phase difference between neighboring
nodes.

σ [7]. However, our goal here is to analyze the stationary states that can appear
for a particular topology of the connections when all oscillators are driven by
the same frequency (that can be taken as 0 without loss of generality). Hence,
as the simples configuration, we consider a 1D ring of N oscillators, where each
unit is connected to its nearest neighbors, and have zero inner frequency

ϕ̇i = sin(ϕi+1 − ϕi + δ) + sin(ϕi−1 − ϕi + δ) ∀i = 1, ...N. (3)

Here we have also introduced an arbitrary phase shift δ that will play a key role
when considering the symmetries of the final stationary state.

A stationary solution ϕi+1 − ϕi = ∆, ∀i exists provided that ∆ = 2πm/N ,
being m ∈ N.1 In this case we should have for all the oscillators

ϕ̇i = 2 sin δ cos∆ (4)

i.e. the oscillators rotate at this effective frequency, all with the same value but
a fixed phase difference between neighbors is kept. In Fig. 1 we plot a ring
of 10 oscillators for a stationary phase difference corresponding to the cases
m = 0, 1, 2, 3, 4, 5 (the remaining cases correspond to the complementary ones
to these, because all results have to be understood as mod 2π).
1 Notice that the cases m and N −m are equivalent since it is a positive or a negative

phase difference and all phase differences are to be understood mod 2π.
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5 Linear Stability of the Attractors

Let us assume a small instantaneous perturbation to one of the nodes: ϕi →
ϕi + ε. Then the equation of motion for this oscillator becomes

ϕ̇i = sin(∆ + δ − ε) + sin(−∆ + δ − ε). (5)

Expanding the sinus functions we get up to linear order in ε

ϕ̇i = 2 sin δ cos∆ − 2ε cos δ cos∆. (6)

The derivative of the frequency with respect to the perturbation is dϕ̇i/dε =
−2 cos δ cos∆, providing the stability of the stationary solutions of the system.
Let us now look in detail to the different combinations of these terms, keeping
in mind that δ is a prescribed phase that breaks the symmetry of the problem.
We will consider only two cases (δ = 0 and δ = π), any case in between these
values only affects the effective frequency. Notice, however, that δ = π/2 is a
very particular case and the stability analysis requires a specific study that is
beyond the scope of the current work.

For the case δ = 0 all states with cos(∆) > 0 are stable, i.e. dϕ̇i/dε < 0, in
particular the synchronized state ∆ = 0. But there are also other possibilities
0 < m < N/4 for which the oscillators can end in a stable stationary state. Notice
that the case m = 1, which is a stable solution whenever N ≤ 4, corresponds to
the minimum phase difference between oscillators, that is the case of the round-
robin schedule mentioned in the Introduction. In Fig. 1 (top) we show the three
stable configurations for a ring of 10 oscillators with δ = 0.

For the case δ = π, new stable states appear, all those with N/4 < m ≤
N/2, and the synchronized state becomes unstable. For the particular case of 10
oscillators, we show the three stable configurations in the bottom of Fig. 1.

In general, we obtain a set of stable configurations where there can be sub-
sets of nodes which are partially synchronized. For instance, if N is even, there
always exists a configuration, stable for δ = π, for which the phase difference
between any two neighboring nodes is π and hence we have some sort of local
antisynchronization, which is the maximum phase difference between neighbor-
ing oscillators. Another interesting case is that of N being a prime number;
in this case all stable configurations are equivalent in the sense that there are
no two synchronized oscillators, and the round-robin schedule is maintained,
although not necessarily for neighboring nodes. Any stable configuration estab-
lishes a different order for the evolution of the oscillators. Although in the case
of phase-coupled oscillators the firing does not make any sense, it is important
to specify some value of the phase, for instance its maximum value 2π. Then any
configuration stands for the time sequence of the oscillators phases reaching the
value 2π.

The persistence of stable configurations where a round-robin scheduled is
satisfied, opens the door for a self-organized solution to the problem of TDMA
in wireless networks. However, there is still a problem concerning the inclusion
of new agents (oscillators) to the system. In the next section, we investigate the
effect of such new incorporations to the existing system.
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6 Variation on the Number of Nodes in the Network

First of all we are going to consider how the round-robin stationary state re-
sponds to the addition of a new oscillator. Then we have, as starting configura-
tion, a set of N − 1 nodes such that

ϕi = i ∗ (2π)/(N − 1) ∀i = 1, . . . , (N − 1) (7)

and now we add an incoming oscillator, that we label N . The phase of the
incoming oscillator is unknown. For this reason, as a first approximation, we
discretize the possible values of the incoming phase ϕN in the range [0, 2π]
and count the fraction of values of this set that leads to a new round-robin
configuration of N oscillators. In Fig. 2 we plot the fraction of values of the
initial phase ϕn that give rise either to the round-robin state, with N oscillators,
or to the synchronized state. We have not observed the emergence of other states,
although at this point we can not discard their existence as spurious states.

We notice that the round-robin state is very robust in the sense that it emerges
from the new configuration almost surely, although the time response is large
and it increases with the number of oscillators.
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Fig. 2. Fraction of values of the initial phase of the incoming oscillator that leads to a
round-robin configuration (top) and to a synchronized state (bottom), as a function of
the number of final nodes. In the inset we plot the fraction of configurations that give
rise to the synchronized state in log-log scale, to how fast it decreases with the system
size.



Phase Patterns of Coupled Oscillators 191

On the other hand, the fact of removing one node from a stable configuration
is also quite robust. The round-robin state is broken exclusively for a very small
number of oscillators. This is a deterministic case in which we fix all initial
phases such that ∆ = 1/(N+1) and the system evolves deterministically towards
∆ = 1/N for N larger than 6.

7 Discussion

We have presented a bio-inspired approach to the round-robin schedule of wire-
less networks, based on the synchronization of phase oscillators, particularly,
Kuramoto oscillators in a ring with nearest neighbors coupling. The study of
patterns of phase locking attractors shows that this continuous interaction model
could be also used as an alternative protocol for TDMA, comparable to the ap-
proach of pulse coupled oscillators presented in [2], although still to be developed
in deep. Upcoming experiments in complex topologies of phase oscillators show
that the number of possible phase locking patterns is hugely rich. We will present
a systematic study of the different stationary states, as well as their relative basis
of attraction in different topologies in a future work.
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Abstract. Desynchronization is a recently introduced primitive for sen-
sor networks: it implies that nodes perfectly interleave periodic events
to occur in a round-robin schedule. This primitive can be used to evenly
distribute sampling burden in a group of nodes, schedule sleep cycles, or
organize a collision-free TDMA schedule for transmitting wireless mes-
sages. Here we present a summary1 of Desync, a biologically-inspired
self-maintaining algorithm for desynchronization in a single-hop network.
We also describe Desync-TDMA, a self-adjusting TDMA protocol that
addresses two weaknesses of traditional TDMA: it does not require a
global clock and it automatically adjusts to the number of participating
nodes, so that bandwidth is always fully utilized.

Keywords: Desynchronization, self-organization, wireless sensor net-
works, pulse-coupled oscillators, medium access control.

1 Introduction

It is hard to find an aspect of our lives that soon will not be affected by wireless
sensor networks (WSNs). With the decreasing prices and sizes of processors and
sensors, it has become possible to embed computation into almost any environ-
ment. Recent applications have ranged from volcano monitoring [16] to detecting
enemy sniper gunfire [14]. The advent of these exciting new possibilities, how-
ever, has brought with it new challenges to our current programming model. In
many cases, it is becoming far too complex to write centralized code that can
gracefully scale while still handling the uncertain and dynamic conditions that
are so prevalent in these deployments.

Despite our difficulties, nature seems to thrive in this setting. Ants and ter-
mites, with no explicit communication, are able to manage resources, construct
complex structures, and forage for food. Fireflies, crickets, and frogs all synchro-
nize their flashings, chirpings, and croakings in mating calls. Birds flock together
and migrate large distances, instinctively knowing that winter’s cold will soon set
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in. These are all examples of self-organization, a paradigm in which individuals
make simple local decisions, but collectively, produce complex global behavior.
This approach can be quite powerful, as is clearly indicated by the impressive
scale and robustness that these biological systems achieve. Recently several stud-
ies have begun to extend these techniques to achieve event synchronization in
wireless sensor networks [6,16,3].

Here we focus on a related primitive, desynchronization, that is the logical op-
posite of synchronization; instead of nodes attempting to perform periodic tasks
at the same time, nodes perform their tasks as far away as possible from all other
nodes. Imagine not fireflies flashing in unison, but in a uniformly distributed,
round-robin fashion.

Desynchronization is a useful primitive for periodic resource scheduling. We
consider its use in implementing a time division multiple access (TDMA) medium
access control (MAC) protocol in which nodes use a round-robin schedule for
sending messages. In TDMA, scheduled nodes do not have to contend for the
shared medium nor worry about message collisions. It is especially attractive in
many settings where nodes are transmitting streams of data or there are real-
time constraints on message latency, as is common in wireless sensor networks
[15,5,12].

In this paper we discuss Desync, a recently introduced [1] biologically-inspired
algorithm for achieving desynchronization in a single-hop network. Given a set of n
nodes that generate events periodically with a common, fixed period T , the nodes
adjust such that the events are evenly distributed throughout the time period (i.e.
they are spaced at intervals of T/n). The algorithm is simple, decentralized, and
requires constant memory per node regardless of network size. Furthermore, if
nodes are added or removed, the system self-adjusts to re-equalize the event inter-
vals. Thus, Desync implements a self-maintaining desynchronization primitive.
Desync is then used to implement a self-organizing TDMA MAC protocol for
single-hop wireless networks, Desync-TDMA.

Desync-TDMA has two improvements over classic TDMA protocols: (1) it
does not require a global clock or other infrastructure overhead and (2) the
schedule automatically self-adjusts to the number of participating nodes so as to
fully utilize the bandwidth. Our experimental results show that Desync-TDMA
achieves over 90% bandwidth utilization (a 25% increase from the default Telos
MAC implementation) and less than 1% message loss in high traffic.

Section 2 discusses related work. Section 3 presents an overview of the Desync
and Desync-TDMA algorithms. Section 4 describes some of the experimental
results. Finally, we conclude in Section 5, discussing directions for future work.

2 Background and Related Work

2.1 Models of Synchronization in Biology

Many natural synchronizing systems, such as networks of neurons or swarms of
fireflies, are modeled as networks of pulse-coupled oscillators, where each node



194 J. Degesys et al.

in the network represents an adjustable oscillator that pulses at a fixed fre-
quency. Each oscillator observes other oscillators’ pulses (e.g. a neuron firing or
a neighboring firefly’s flash) and uses this information to adjust its own oscillator.
Ultimately, all oscillators pulse synchronously.

In a seminal paper, Mirollo and Strogatz proved that a complete network of
n pulse-coupled oscillators, using a simple oscillator-adjustment function, would
always converge to synchrony, irrespective of the initial state [8,13]. Recently, this
biological model has been extended and shown to be able to achieve decentralized
time synchronization and coordinated sensor control in wireless sensor networks
[6,16,3]. One of the key benefits of this model is its ability to adapt—the system
adjusts automatically to nodes entering and leaving the system, even though the
individual nodes are only using very simple, local rules. Thus, synchronization
in this model is self-maintaining.

In some natural systems, the goal is not synchronization, but patterned syn-
chronization. For example, in animal locomotion, limbs can be modeled by indi-
vidual oscillators that are coupled so as to produce different gaits [13]. Similarly,
in the intestines, a series of oscillators can be coupled to produce a systolic wave.
In these cases, the oscillators do not first synchronize and then negotiate a sched-
ule for the pulse pattern. Instead, they use different adjustment rules to directly
generate the desired pattern, with the advantage being that these adjustment
rules are also self-maintaining.

In our case of desynchronization, we are interested in the pattern in which all
of the oscillators pulse at evenly spaced intervals (the oscillators are completely
out of phase). We use the Mirollo and Strogatz framework to design a simple
oscillator adjustment rule that causes the system as a whole to converge to
desynchrony. As with the original model, the system self-adjusts to maintain
desynchronization; if new nodes are introduced, or current nodes removed, the
system automatically converges to a new state where the new set of nodes has
evenly spaced pulses. Protocols built on top of this primitive inherit the same
self-maintaining property.

2.2 Channel Sharing in Wireless Networks

In wireless networks, nodes share the medium in which they transmit messages. It
is the MAC protocol’s responsibility to mediate their transmissions. Any of these
protocols can usually be described as being either a contention-based protocol
or a schedule-based protocol [4].

In contention-based, carrier sense multiple access (CSMA) protocols, nodes
check the channel before transmitting, and if the channel is busy, they randomly
back off for a short time and try again. This method is simple, adaptive, and
frees nodes from having to maintain complex state about their environment.
As a result, CSMA is often used when the expected contention is low (i.e. few
nearby nodes transmitting) or when bursty traffic is expected.

In TDMA-based protocols, nodes use a round-robin schedule to transmit mes-
sages. Time is partitioned into fixed-size slots, and each node selects a time-slot
during which it may regularly send messages collision-free. Since each node gets



Self-organizing Desynchronization and TDMA on WSNs 195

an equally sized slot, fairness is ensured. Message latency is bounded since nodes
transmit at a fixed frequency.

TDMA is especially useful when nodes are transmitting streams of data, expe-
rience periods of high contention, have a high cost for message loss (e.g. energy
cost of retransmissions), or require real-time constraints on message latency.
These requirements are found in many sensor network applications due to their
emphasis on periodic monitoring and local, event-triggered traffic [15,5,12]. As
such, several TDMA protocols have been designed specifically for these settings
[4]. However, almost all traditional TDMA implementations still encounter the
following difficulties:

Overhead: Nodes must know when their slots begin and end, which usually
requires accurate time synchronization among nodes and a negotiation of the
slot schedule. The message overhead involved in maintaining these adds to the
energy consumption and implementation complexity [7].

Wasted Slots: Nodes are assigned exclusive time slots. This means that slots
go unused when nodes do not have data to send or have left the network. Thus,
it is important for the network to be able to reclaim this lost bandwidth.

In general, the complexity and cost of maintaining any TDMA schedule in
the face of node and traffic changes can often outweigh the benefits of fairness,
reliability, and high throughput. Hence, the default MAC protocols most used
by sensor motes are CSMA protocols [9,17].

In reality, there is no explicit need for nodes to agree upon a global time or to
maintain information about each others’ identities. Rather, TDMA only requires
nodes to desynchronize the timing of their transmissions. If nodes could self-
maintain desynchronization, then both weaknesses of TDMA would be addressed
simultaneously. For example, if a node does not need to transmit, it can go to
sleep and the remaining nodes will adjust to fully utilize the available bandwidth
without message collisions.

3 Algorithms

In this section, we first provide a description of the pulse-coupled oscillator
framework, introduced by Mirollo and Strogatz [8]. We then use this framework
to describe the Desync and Desync-TDMA algorithms.

3.1 Framework

Suppose there are n nodes that can communicate with each other (i.e. they are in
a fully-connected network). Each node performs a task periodically with a period
T . Thus, we can model each node as an oscillator with frequency ω = 1/T . Let
φi(t) ∈ [0, 1] denote the phase of node i at time t where the phases 0 and 1 are
identical and where 0 ≤ i ≤ n − 1. For example, if φi(t) = 0.75, then node i is
75% of the way through its cycle. Upon reaching φi(t) = 1, node i “fires” (or
“pulses”) indicating the termination of its cycle to the other nodes. Upon firing,
the node resets its phase to φi(t+) = 0.
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Fig. 1. Desync algorithm: (a) Global view of five nodes that are not yet desynchro-
nized. (b) From node B’s local phase neighborhood view: when A fires, the node that
fired immediately before it, node B, now knows both of its neighbors’ positions—it
heard C fire earlier and A just fired. Therefore, node B can now compute where it
should have been if it were positioned ideally, B′, and jump towards it. However, C has
since jumped to C′, unbeknownst to any other nodes. (c) The desynchronized state.
All nodes are at the midpoints; thus, no node jumps and the system is stable.

We can imagine the nodes as beads moving clockwise on a ring with period T
(Figure 1). When a node reaches the top, it fires. All nodes observe this firing,
and can use this information to jump forwards or backwards in phase. However,
nodes are otherwise oblivious of the phases of other nodes; they can not observe
the current state of the ring, only the firing events.

The goal is to have each node adjust the timing (phase) of its own firing such
that eventually the network is desynchronized. We define the desynchronized state
as the state in which all of the oscillators are evenly spaced around the phase ring.

3.2 DESYNC Algorithm

A simple algorithm for achieving desynchronization in a single-hop network is
Desync [1]. We assume that a firing event corresponds to a node broadcasting a
wireless firing message that all other nodes can hear. Intuitively, the algorithm
works as follows: each node adjusts its phase to be at the midpoint of the two
nodes before and after it on the ring. In order to achieve this, a node must pay
attention to the timing of the firings before and after its own. If each node can
fire closer to the midpoint, then over successive periods this jumping towards the
average will bring the system to a state in which all nodes are at the midpoints
of their neighbors. This is exactly the desynchronized state.

In the algorithm, node i keeps track of the times of two events: the firing that
occurs just before it fires (from node i + 1 (mod n)) and the firing that occurs
just afterwards (from node i − 1 (mod n)). We call the senders of those firing
messages the phase neighbors of node i. The firing times of the previous and next
neighbors are recorded relative to node i’s firing as ∆̃i+1 and ∆̃i, respectively.
In this way, node i can approximate the phases of its previous and next phase
neighbors as φ̃i+1(t) = φi(t) + ∆̃i+1 (mod 1) and φ̃i−1(t) = φi(t) − ∆̃i (mod 1).
Using this information, node i can then calculate the midpoint of its neighbors:
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φ̃mid(t) =
1
2

[
φ̃i+1(t) + φ̃i−1(t)

]
(mod 1) (1)

= φi(t) +
1
2

(
∆̃i+1 − ∆̃i

)
(mod 1) (2)

Note that in calculating Equation 1, the modular arithmetic used to compute
the approximations of the phase neighbors should be delayed to the end to yield
the appropriate midpoint. Once the midpoint is known, node i jumps towards
it:

φ′
i(t) = (1 − α)φi(t) + αφ̃mid(t) (3)

where α ∈ [0, 1] is a parameter that scales how far node i moves from its current
phase towards the desired midpoint. Thus, after hearing both neighbors fire,
node i instantaneously jumps from φi(t) to φ′

i(t). Note that if node i jumps
immediately when node i − 1 fires, the estimate is exact, i.e. ∆̃i = ∆i(t). This
adjustment is not apparent to other nodes until node i fires again. Furthermore,
node i’s neighbors will also make adjustments without node i’s knowledge.

To further illustrate this point, consider Figure 1(b) where there are three
nodes: A, B, and C. First, C fired followed by B, and now, A is about to fire. In
Figure 1(c), A fires; thus, B has enough information to make a jump. However,
at this point, C too has heard both of its neighbors, B and D, and has already
jumped to C′. Thus, by the time B makes its adjustment, it no longer knows the
true distance between C and B. It is in this way that nodes continually make
adjustments based on stale information. However, this system will still converge
to a desynchronized state.

This algorithm has several key features:

• Convergence to Desynchrony: Regardless of the initial state and number
of nodes, the system converges to a state in which all nodes are evenly spread
out with a spacing of T/n.

• Simple Implementation: Nodes only record the timing of two firing events
and are not concerned with the identity of the senders nor how many firings
occur in a given period. Therefore, nodes use constant memory, regardless
of network size and do not need to maintain any internal state on network
composition.

• Self-Adapting: If the number of nodes changes (a node is added or removed)
then the system is no longer desynchronized. This local imbalance causes
nodes closest to the disturbance to adjust their phases, eventually leading
the system back to a stable, desynchronized state. Nodes do not need to
explicitly monitor the network membership. Furthermore, single-node failures
are similarly accounted for in the normal operation of the algorithm. Thus,
the system ensures a fair sharing of the time period, T , even when the network
size changes or nodes experience faults.
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Fig. 2. Desync-TDMA slots: Here, we have unravelled the ring into a line segment.
The nodes in on the top line represent the current state in Figure 1(c) where node A
is firing. The TDMA slots associated with the next set of firings are defined by the
midpoints of the firings that occurred previously. Despite the information being old, if
the nodes update according to Equation 3, firings will always occur during the nodes’
TDMA slots.

3.3 DESYNC-TDMA Algorithm

In this section, we describe how one can implement TDMA using Desync. As
discussed in Section 2, TDMA-based protocols suffer from overhead and wasted
slots. Desync allows us to design a simple low-memory TDMA protocol that
automatically regulates slot sizes, fully utilizing bandwidth without incurring
any collision costs.

We define node i’s TDMA slot as beginning at the previously computed mid-
point between node i and its previous phase neighbor. Likewise, it ends at the
previously computed midpoint between node i and its next phase neighbor. In-
tuitively, nodes use earlier firings to compute the TDMA slots near the time of
their next firing. Figure 2 illustrates this slot definition.

Defining slots in this manner also guarantee that a node will never fire outside
its own slot. Note that if this were not the case, node i would be unable to send
its firing message as the channel would be occupied by the current slot owner’s
transmissions.
Desync-TDMA has the following characteristics:

The algorithm fully utilizes the channel regardless of the network’s
state of desynchronization. The algorithm defines a set of non-overlapping
slots that cover T , allowing nodes to send collision-free data, even while they are
desynchronizing.

The TDMA schedule seamlessly adapts to nodes entering or leaving.
When a node leaves, the neighboring nodes adjust their slot boundaries to fully
utilize the bandwidth. The slot sizes equalize over time as the system approaches
desynchronization, having the effect of leaving T fixed and increasing slot size.
Thus, if a node does not need to transmit again for multiple periods, it can
simply leave the protocol, sleep, and re-enter when it needs to send again. In the
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meantime, other nodes will have reaped the benefit of automatically acquiring
the sleeping node’s slot.

When a node enters the algorithm, it must first interrupt an existing node’s
data slot with its firing message. Here, the costs of entering for a node are the
latency of one time period and the lost bandwidth that results from the one
interrupted data slot. Other nodes remain oblivious to the entry and send data
uninterrupted.

The algorithm is self-contained. Nodes do not need to know the network size
or discover their neighbor IDs in order to create an initial schedule. The round-
robin schedule order emerges as a result of the order in which nodes enter the
process. Unlike other TDMA-style protocols, such as Z-MAC [11] and TRAMA
[10], nodes do not need to agree on global time nor rely on a time synchronization
protocol. While it is possible to write additional code to support each of these
additional tasks (discovering neighbor IDs reliably, renegotiating schedule orders,
electing leaders for global time consensus) this can add significant complexity to
the implementation.

4 Implementation

In this section, we investigate the performance of Desync-TDMA. The Desync-
TDMA algorithm was implemented on Telos wireless sensor motes.2

4.1 Experimental Setup

We constructed a single-hop network by placing 20 motes around a single desig-
nated base station. The base logged all messages transmitted by the other motes.
As the base station did not send any messages once the experiment started, it
was able to observe the algorithm without affecting its performance. For all
experiments, we used the same fixed parameters: T = 1 sec and α = 0.95.

4.2 Evaluation Metrics

We use two metrics to measure the performance of the system:

• Average desync error: We define error to be the average slot size deviation
from the desired slot size (T/n) for a given round.

• Normalized throughput: We define normalized throughput as the ratio be-
tween the measured data throughput (not including bandwidth used by firing
messages) and the maximum possible measured throughput of 62.8 Kbps.

4.3 Experimental Results

Figure 3 shows a single run of a fixed-size experiment for n = 10 motes. Plotted
are the times of each mote’s firing events relative to those of a single mote.
2 For a full description and discussion of the experiments, we refer the reader to the

original paper [1].
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Fig. 3. Running Desync on 10 sensor motes: the firing times during each round are
plotted relative to an arbitrarily chosen mote. The firing times stabilize to an even
spacing while preserving the initial firing order.
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Fig. 4. The average Desync error and total throughput are plotted over time. The
error decreases over time, but the total throughput remains high and roughly constant
regardless of the state of desynchronization.

As can be seen, the motes quickly and smoothly achieved desynchronization.
Figure 4 shows how the different performance metrics changed over time. The
average desync error decreased exponentially with time, reaching an error of
less than 1 ms within 18 rounds (note that the desired slot size is T/n = 100
ms). However, the total normalized throughput was high (∼ 92%) and roughly
constant throughout the experiment, regardless of the desynchronization error.

Figure 5 shows how the average desync error and normalized throughput var-
ied during the mote removal and addition experiment. At t = 135, when a mote
stopped transmitting, the resulting imbalance in slot-sizes caused a jump in error
of ∼ 25 ms, which decayed to less than 1 ms over the next 8 rounds. Likewise,
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Fig. 5. Motes Arrival and Departure experiments. 8 motes were started at t = 0. At
time t = 135 one mote left the system and stopped transmitting. At time t = 180 three
motes woke up and entered the system. The system minimizes loss of throughput and
rapidly re-equalizes slot sizes after addition or removal of motes.

an error of ∼ 40 ms was introduced when three new motes began transmitting
at t = 180, requiring 19 rounds to reduce to 1 ms. The total throughput was
slightly impacted at each event, suffering two-round throughput losses of 12.5%
and 10.6%, respectively, during the removal and addition events. Within two
rounds, the total throughput had returned to normal capacity.

Overall, this experiment shows that the cost of entry and exit for a mote is low
and the system is able to adapt quickly to recover bandwidth and re-equalize
slot sizes. The main costs are the single round latency that an entering mote
must wait before transmitting data and a temporary drop in fairness as the slot
sizes are re-equalized.

From these results we can conclude general trends: for Desync, the average
desync error decreases exponentially with time; for Desync-TDMA, the band-
width utilization is consistent, and message loss is near zero, regardless of the
state of desynchronization and number of transmitting motes. Thus, nodes can
easily enter and leave with a limited impact on total throughput.

4.4 Summary Discussion

Desync-TDMA is a fundamentally new way of thinking about TDMA schedul-
ing. Without explicit scheduling or time synchronization, Desync-TDMA is
able to provide excellent total throughput and collision-free transmission under
high loads, regardless of the state of desynchronization. Once desynchronized, it
guarantees fairness and predictable (stream-like) message latencies. When nodes
enter or leave, the system self-adjusts to accommodate the new nodes or to recap-
ture the unused slots. Furthermore, unlike hybrid-TDMA methods, no contention
is required for recapture.

However, Desync-TDMA also has some limitations and may not be ap-
propriate for all types of traffic. One important limitation is that a node pays
a “cost” when entering the system: (a) 1-round latency before being able to
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transmit data and (b) a smaller slot size for several rounds until the system
re-converges to the desynchronized state. A second limitation is that Desync-
TDMA provides nodes with equal slots which, although guaranteeing fairness,
can also lead to inefficient bandwidth usage. If a node does not have enough data
to fully utilize its slot, then the unused bandwidth is wasted. In hybrid proto-
cols such as Z-MAC, nodes can recover part of that bandwidth using CSMA
contention, but Desync-TDMA does not allow this. In the future, we plan to
extend the algorithm to provide variable slot sizes that can reflect each node’s
desired bandwidth.

5 Conclusion

We have discussed a recently-introducedprimitive, desynchronization alongwith a
self-organizing desynchronization algorithm for single-hop networks, Desync. As
an application of Desync, we also discussed Desync-TDMA, a self-organizing
TDMA protocol. Each is a useful algorithm in its own right: Desync provides the
ability to space out events in time, whereas Desync-TDMA constructs a method
to share a medium fairly by simply having the events correspond to changes in
ownership over the medium. There are several avenues of future work; however, a
critical next step is extending Desync-TDMA to multi-hop networks.

Determining a slot schedule in multi-hop topologies is a much more com-
plex problem for two reasons: nodes belong to intersecting and multiple-sized
neighborhoods and overlapping broadcast regions create hidden terminals. A
standard technique used in solving this problem is to color a constraint graph
in which all two-hop neighborhoods in the communication graph are fully con-
nected. Assigning each node in the graph its own color is equivalent to a global
desynchronization, whereas minimal coloring constructs the fairest distribution
of time amongst the nodes.

Our preliminary simulations suggest that Desync-TDMA converges on multi-
hop topologies and produces a slot size comparable to T/k2 (where k2 is the size of
the node’s 2-hop neighborhood subgraph). However, proving that the algorithm
converges on all multi-hop topologies and predicting the slot size and convergence
times is currently an open question.
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Sallai, J., Frampton, K.: Sensor Network-Based Countersniper System. In: SenSys
2004: Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (2004)

15. Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.: Monitoring volcanic
eruptions with a wireless sensor network. In: Proc. European Workshop on Wireless
Sensor Networks (EWSN) (January 2005)

16. Werner-Allen, G., Tewari, G., Patel, A., Nagpal, R., Welsh, M.: Firefly-Inspired
Sensor Network Synchronicity with Realistic Radio Effects. In: SenSys (2005)

17. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In: INFOCOM (2002)



Bio-Inspired Multi-agent Collaboration for
Urban Monitoring Applications�

Uichin Lee1, Eugenio Magistretti2, Mario Gerla1, Paolo Bellavista3,
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1 Introduction

Vehicular Ad Hoc Networks (VANETs) are becoming increasingly popular and rel-
evant to the industrydue to recentadvances in inter-vehicular communication tech-
nologies and decreasing cost of communication devices. Unlike a typical MANET,
the networking components in a vehicle have a plenty of computing and storage ca-
pacity. Thus, VANETs are considered one of the most promising forms ofMANETs
outside the military domain and have recently stimulated promising research rang-
ing from safe cooperative driving to entertainment support and distributed data
collection.

In this paper, we are interested in urban sensing for effective monitoring of
environmental conditions and social activities in urban areas using vehicular sen-
sor networks (VSNs). Differently from traditional wireless sensor nodes, vehicles
are not typically affected by energy constraints and can easily be equipped with
powerful processing units, wireless communication devices, GPS, and sensing
devices such as chemical detectors, still/video cameras, and vibration/acoustic
sensors. We particularly envision proactive urban monitoring services where ve-
hicles continuously monitor events from urban streets, maintain sensed data in
their local storage, process them (e.g. recognizing license plate numbers), and
route messages to vehicles in their vicinity to achieve a common goal (e.g. to
allow police agents to pursue the movements of specific cars). However, this re-
quires the collection, storage, and retrieval of massive amounts of sensed data. In
conventional sensor networks, data are dispatched to “sinks” and are processed
for further use (e.g., Direct Diffusion [1]), but that is not practical in VSNs due to
the sheer size of generated data. Moreover, it is impossible to filter data a priori
because it is usually unknown which data will be of use for future investigations.
Thus, the challenge is to find a completely decentralized VSN solution, with
low interference to other services, good scalability, and tolerance to disruption
caused by mobility and attacks.

To that purpose, we designed and implemented MobEyes, a novel middle-
ware that supports VSN-based proactive urban monitoring applications [2]. In
MobEyes, each sensor node performs event sensing, processing/classification of
sensed data, and periodically generates data summaries with extracted features
and context information tagged with timestamp and position information. Sum-
maries are then disseminated to other regular vehicles such that mobile agents,
e.g., police patrolling cars, move and opportunistically harvest summaries from
neighbor vehicles. As a result, agents can create a low-cost opportunistic index
which enables them to query the completely distributed sensed data storage,
thus answering questions such as: which vehicles were in a given place at a given
time? which route did a certain vehicle take in a given time interval?, and which
vehicles collected and stored the data of interest? Unlike MobEyes, CarTel [3]
utilizes opportunistic connectivity via roadside access points to send queries
about sensed data and to return replies “on-demand,” instead of “proactive”
data collection, which should be definitely preferred in presence of constraints
on query resolution latency.
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Multiple agents can collaborate in harvesting relevant data, processing them,
and searching for key information. It is critical to design a mechanism to effec-
tively coordinate and geographically separate the operation of multiple agents,
while allowing them to seek most productive fields in a totally distributed mat-
ter. However, multi-agent harvesting is a very challenging problem due to the
dynamic nature of the target environment (e.g. continuous creation and move-
ment of metadata) and the scale of operations (e.g. harvesting region ranging
over multiple city blocks) without a priori knowledge of the location of the criti-
cal information. Incidentally, we note that social animals (ranging from bacteria
to vertebrates) solve a similar problem of foraging to find a good food source
quite efficiently using a simple communication mechanism in a fully distributed
manner with lightweight and lazy coordination.

Given this observation, the primary goal of this paper is to design a novel
multi-agent coordination mechanism for MobEyes harvesting agents by taking in-
spirations from biological systems. We realize that each species may have inched
towards foraging optimality for specific tasks and various constraints (e.g., habi-
tat niches, animal size and speed, environment, etc.). Therefore we design a
mechanism by encompassing different animal foraging and behavioral ecology
strategies, instead of focusing on single animal species. The natural scene exam-
ples inspiring MobEyes multi-agent coordination include: (a) Foraging behavior
of Escherichia (E.) coli bacteria that operate in distinct modes of locomotion
based on the level of nutrient concentration [4,5]; (b) Lévy walk behavior of many
biological organisms and groups, e.g., albatrosses and fishing boats, to improve
food search over large-scale regions [6,7]; and (c) Stigmergy found in ants and
other social insects that use various types of pheromones to signal nest mates
with potential conflicts, e.g., a sort of “no entry” sign [8,9].

Based on this study, we propose a novel harvesting strategy, called datataxis
(á la chemotaxis of E. coli bacteria), that guides the agents to stay and acquire
metadata on “information patches,” the regions where newly created and not-
harvested metadata are concentrated (based on a simple metric for metadata
density estimation per road segment). MobEyes agents adapt their behavior by
following a 3-state transition diagram that sometimes forces them to change
their area of exploration by using Lévy walk-inspired movement patterns that
are considered suitable for the large scale of the typically targeted regions. To
avoid harvesting work duplication, agents exploit stigmergy-inspired techniques
for conflict resolution to prevent from useless concentration of agents in the same
region at the same time.

We validate the performance of our proposed data harvesting scheme via
extensive simulations where we use a realistic Manhattan mobility model and
compare the harvesting efficiency of our datataxis foraging (DTF) with random
walk foraging (RWF), biased random walk foraging (BRWF), and an idealized
preset pattern foraging (PPF). From this study, we show that the proposed
DTF balances the movement of multiple agents and distributes them effectively
without the need of centralized and intrusive coordination protocols.
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The remainder of the paper is organized as follows: Section 2 presents a back-
ground on the MobEyes urban sensing architecture; Section 3 reviews the forag-
ing behaviors in nature and presents our algorithm for multi-agent coordination;
Section 4 presents a simulation-based performance evaluation of various agent
coordination approaches; finally Section 5 concludes the paper.

2 MobEyes Vehicular Sensing Platforms

We present the MobEyes solution using one of its possible application scenar-
ios: collecting information from MobEyes-enabled vehicles about criminals who
spread poisonous chemicals in a particular section of the city (say, a subway sta-
tion). We assume that the criminals use vehicles for the attack. In this scenario,
MobEyes will help detect the criminal vehicles and permit tracking and capture.
Here, we assume that the vehicles participating in MobEyes are equipped with
cameras and chemical detection sensors. Vehicles continuously generate a huge
amount of sensed data, store it locally, and periodically produce short meta-
data chunks obtained by processing sensed data, e.g., license plate numbers or
aggregated chemical readings. Metadata chunks are aggregated in a summary
packet that is opportunistically disseminated to neighbor vehicles, thus enabling
metadata harvesting by the police to create a distributed metadata index which
permits to find a set of vehicles storing data of interest for forensic purposes
such as crime scene reconstruction and criminal tracking.

Any regular node periodically advertises a new summary packet with gener-
ated metadata to its current neighbors to increase the opportunities for agents
to harvest the summaries. A packet header includes a packet type, generator ID,
locally unique sequence number, packet generation timestamp, and generator’s
current position. Each packet is uniquely identified by the generator ID and its
sequence number pair, and contains a set of metadata locally generated during
a fixed time interval. Neighbor nodes receiving a packet store it in their local
metadata databases. Therefore, depending on the mobility and the encounters
of regular nodes, packets are opportunistically diffused into the network of ve-
hicles, yet metadata diffusion is time and location sensitive. MobEyes can be
configured to perform either single-hop passive diffusion (only the source adver-
tises its packet to current single-hop neighbors) or k-hop passive diffusion (the
packet travels up to k-hop as it is forwarded by j-hop neighbors with j < k).
Figure 1 depicts the case of two sensor nodes, C1 and C2, that encounter with
other sensor nodes while moving (the radio range is represented as a dotted
circle). A black triangle with timestamp represents an encounter. For ease of
explanation, we assume that there is only a single encounter, but in reality there
may be multiple encounters with any nodes that happen to come within the
dotted circles. C1 and C2 periodically advertise a new summary packet SC1,1
and SC2,1 respectively where the subscript denotes 〈ID, Seq.#〉. At time T − t4,
C2 encounters C1, and thus they exchange those packets. As a result, C1 carries
SC2,1 and C2 carries SC1,1.
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Fig. 1. MobEyes single-hop passive diffusion

In parallel with diffusion, MobEyes metadata harvesting may take place. The
MobEyes police agent collects summary packets from regular nodes by period-
ically querying its neighbors. The goal is to collect all the summary packets
generated in a specific region. Ideally, a police node should harvest only those
summary packets that it has not collected so far. To focus only on missing pack-
ets, a MobEyes authority node compares its list of summary packets with that of
each neighbor (i.e., a set difference problem), by exploiting a space-efficient data
structure for membership checking, i.e., a Bloom filter [10]. A MobEyes police
agent uses a Bloom filter to represent its set of already harvested and still valid
summary packets and includes this filter when broadcasting a harvest request
message [2]. Given this, each neighbor node prepares a list of missing packets.
After random back-off, one of the neighbors returns those missing packets to
the agent. The agent sends back an acknowledgment with a piggybacked list of
returned packets and, upon listening to or overhearing this, neighbors update
their lists of missing packets.

Note that each vehicle can piggyback the current position into its summary
advertisement, and thus, Last Encounter Routing (LER) can be supported at
no extra cost [11]. Enhanced LER with the carry-and-forward to address inter-
mittent connectivity plays a key role in MobEyes when an agent tries to retrieve
the actual data, or to send a dump request to the target vehicle.

3 Multi-agent Information Harvesting

Multiple agents can collaboratively search a given area of interest to collect de-
sired information more rapidly. We design an algorithm to coordinate and control
multiple agents to harvest target data as efficiently as possible. In particular, we
are interested in designing a simple algorithm that does not involve a tight, close
range control of agents’ movement, since the latter would incur heavy communi-
cation overhead. At the same time, we want the algorithm to be efficient; ideally,
we want our algorithm to perform similarly to a centralized coordination algo-
rithm, in terms of data harvesting efficiency (i.e., how fast can we collect all of
the interested data) and the control efficiency of agents’ movement (i.e., how
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much redundant data was collected by multiple agents). In addition, we want
the algorithm to be able to be self-organizing and adaptive to the dynamics of
the environment, such as the changes in the movement patterns, the densities,
and the data carried by VSN vehicles. Also some part of the network may exhibit
intermittent connectivity; hence, we require our algorithm to be delay tolerant
and robust to temporary disconnections.

3.1 Biological Inspirations for Data Harvesting

The main reason for us to look at biological inspiration comes from the ob-
servation that the animals and insects encounter a similar problem: they often
coordinate their efforts to effectively collect food without prior knowledge of food
sources; yet they are known to solve the problem quite effectively, if not opti-
mally [12]. Accordingly to the foraging theory, animals are presumed to search
for nutrients and obtain them in a way to maximize the ratio of energy intake
over the time spent for foraging. Foraging constraints also shape division of la-
bor in animal societies. This applies to both vertebrate societies where foraging
tends to be associated with hunting and is based on individual recognition, and
invertebrates (insect) societies which are characterized by a great deal of re-
dundancy. In this section, we review key foraging behaviors in nature that are
applied to tackle our problem.
Stigmergy: MobEyes data harvesting is directly related to the food foraging
problem solved by stigmergy [9]. Ants need to find routes to possibly ephemeral
food sources in an effective manner. Since it is not immediately obvious how long
the current site will remain as a valid foraging site, they have to solve a dynamic
problem of remembering a rewarding source while exploiting newly discovered
food sites. In many cases, the nutrients are distributed in patches, and the main
issue of foraging is finding such patches, deciding how long it will take before
depleting and leaving food sources. The foraging patterns in ants change with
increasing prey/food size, showing all stages intermediate between an individ-
ual and a mass exploitation of food resources. This suggests that social insects
process information and solve problems in a complex environment, while keep-
ing some parsimony at the level of the individuals’ decision rules [8]. It has been
known that ants can optimize their foraging by selecting the most rewarding
source via the following methods. Physical contacts and other forms of direct
communication, e.g., via sound or vibrations, are limited both spatially and tem-
porally; only neighbors in the vicinity can receive the signal. On the contrary,
pheromone trails are long lasting and can be considered a wide broadcast that
slowly dissipates in time. Different types of pheromones have evolved in ants.
First, there are long-lasting pheromones, used to maintain the spatial organi-
zation of ant networks, and volatile pheromones, used to quickly mark routes
leading to current food sources. For instance, the pygidial gland of the Poner-
ine Army Ant Leptogenys distinguenda produces a long-lasting trail pheromone
(that lasts about 25 minutes), which guides the ants back to the trail or the
colony when they are detached from the trail network [13]. Second, there is a
short-live repellent pheromone, which effectively serves as a no-entry signal.
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Chemotaxis of E. coli : Another biological foraging behavior that we consider
in the context of information harvesting is the chemotactic (foraging) behavior
of many bacteria, for example E. coli [4]. E. coli is representative of a large,
widespread class of bacteria, and is present everywhere in the environment and
also in the lower intestines of mammals including humans. E. coli gets its lo-
comotion from a set of rigid flagella that enables the bacteria to swim. When
their flagella turn clockwise, bacteria tumble and do not move to any particular
direction. On the other hand, when flagella turn counter-clockwise, the bacteria
will swim in a directional movement. The sensors of E. coli are receptor proteins
that are stimulated by the binding of molecules in the environment. Based on
the level of nutrients (or attractants) a bacterium will move in different modes.
More specifically, when an E. coli is in some substance without food or noxious
substances, its flagella will alternate between moving clockwise and counter-
clockwise so that the bacterium will alternate between tumbling and swimming.
This alternation will move the bacterium in random directions. We can consider
this movement mode a search for food. If the nutrients have homogenous con-
centration, the bacteria will exhibit a search behavior but with increased run
length of swimming and decreased tumble time. In effect, they will search for
nutrients more aggressively when they are in a nutrient environment. Finally,
when the bacteria detect a change in the concentration level of nutrition, they
will swim along the gradient of concentration toward the most nutrition rich
area, and spend less time tumbling. If somehow, an E. coli encounters a region
where nutrient gradient does not increase after the swim, it will return to the
baseline search mode to look for higher concentrations.
Lévy Walk: There is a growing agreement that foraging and movement pat-
terns of some biological organisms may have so-called “Lévy-flight” character-
istics. Lévy random walks, named after the French mathematician Paul Pierre
Lévy [6], are known to outperform Brownian random walks when the precise
location of the targets is not known a priori but their spatial distribution is uni-
form. A Lévy flight is comprised of random sequences of movement segments,
with lengths l, drawn from a probability distribution function having a power-
law tail, p(l) ∼ �−a where 1 < a < 3. Such a distribution is said to have a
“heavy” tail because large-length values are more prevalent than within other
random distributions, such as Poisson or Gaussian. Viswanathan et al. demon-
strated that a = 2 constitutes an optimal Lévy-flight search strategy for locating
targets that are distributed randomly and sparsely [14]. Under such conditions,
the Lévy search strategy minimizes the average distance traveled and presum-
ably the average energy expended before encountering a target. The strategy is
optimal and results in space filling paths, if the searcher is exclusively engaged in
searching, has no prior knowledge of target locations, and if the average spacing
between successive targets greatly exceeds the searcher’s perceptual range.

3.2 Bio-inspired Multi-agent Coordination in MobEyes

In MobEyes, vehicle mobility is exploited for effective and inexpensive meta-
data dissemination, i.e., regular cars carry-and-forward metadata to harvesting
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agents. Therefore, metadata are likely located where the number of vehicles is
greater. As an indicator of information concentration, we define the information
density as the number of metadata carriers, i.e., regular cars actually transport-
ing metadata, in a road segment. We note that our algorithm does not need to
depend on this specific metric and can work with any information density metric
that can be profitably measured. Like E. coli bacteria, our goal is to find a patch
that contains a large number of “useful” metadata carriers with information not
yet harvested by either the same or a cooperating harvesting agent. As a first
level approximation, a promising solution for agents is to mimic the foraging be-
havior of E. coli by estimating the gradient of information density and moving
to a direction where this gradient increases (á la the swim of E. coli in a solu-
tion with nutrient gradient), while performing a random search when there is
no specific gradient (á la the tumble of E. coli in a homogeneous environment).
We name this bio-inspired behavior of harvesting agents as datataxis (inspired
by the chemotaxis of E. coli).

The key for effective datataxis is to estimate vehicle density in a decentral-
ized way with minimum overhead. To achieve this goal, we propose to divide
any road into a set of uniquely identifiable unit distance segments (or “road
segments”). Any urban area can be represented as a set of road segments. While
MobEyes regular nodes are in a specific road segment, they estimate density
of that segment by simply counting the number of their neighbors: this per-
segment density estimation is advertised by the vehicles on that road segment
via the regular MobEyes summary broadcast process. Each vehicle only adver-
tises the density information for the road segment it is currently on. In that way,
the density information is locally computed and updated. Agents can collect
per-road segment density samples, by exploiting the regular MobEyes protocol
for summary harvesting, with no additional communication overhead.

However, the model of a simple E. coli behavior for all cooperating agents
is insufficient to realize effective harvesting of monitoring metadata in urban
environments. We have extensively explored bio-inspired coordination behav-
iors to identify, evaluate, and adopt the most suitable differentiated working
modes to obtain high harvesting coverage with minimum overhead. In our de-
sign, MobEyes agents operate in one of the following three modes: (a) the Lévy
Jump (LJ) mode, (b) the Biased Jump (BJ) mode, and (c) the Constrained
Walk (CW) mode. The LJ/BJ modes are considered as the exploration stage to
find the best possible location to start a more focused search, whereas the CW
mode can be considered as the exploitation stage where agents try to harvest as
much as possible by carefully and finely controlling their movements. Figure 2
presents a transition diagram consisting of the three possible states of operation
by MobEyes harvesting agents.

First of all, a MobEyes agent starts with the LJ mode and searches for dense
areas with vehicles. In the Lévy jump literature, it is known that the jump
distance following a power law distribution with the exponent of 2 is known to
be optimal for non-destructive foraging, i.e., a foraging scheme where agent can
“productively” visit the same place many times [15]. Recall that since vehicles
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Fig. 2. Agent state diagram

move in the urban grid, it may be very possible that after a while the same area
may become “productive” again. The key idea of the LJ mode is that agents can
choose a long distance with some probability, due to the heavy tail of the power
law distribution. Thanks to the long jumps, the area covered by the agents will
be much larger than the area that would have been covered by only random walk
movement patterns [15]. Since the network size is finite in our model, we use a
truncated Lévy jump distribution: f(d) = dmaxdmin

dmax−dmin

1
x2 where we set the dmax

as the network diameter and dmin as the communication range. The angle of a
jump from the current location is selected randomly. For each jump, the agent
steers its movement towards the road segment that minimizes the distance to
the new jump location. However, for a given location, it may not be feasible
to jump toward a certain direction. For instance, if an agent is located at the
bottom left corner of the network, a jump is feasible toward the first quadrant.
The key idea of a Lévy jump is to have a long jump with some probability
for efficient exploration. Thus, we modify the angle selection such that we only
consider the region that can span a chosen distance. In the previous example,
the jump direction is chosen from the first quadrant.

Once the agent finds a dense area above a certain threshold, the agent changes
its operation state to the BJ mode so that it can move toward that location. The
target location is the mid-point of the densest road segment, which is also set as
the reference point of the CW mode that will be used by the agent as described
below. The agent steers its movement towards the road segment that minimizes
the distance to the determined reference point (i.e., a simple greedy movement).

When entering the CW region (the circular area with center the reference
point and radius R), the agent switches its mode to the CW mode and starts
harvesting metadata within that region. The default choice in MobEyes is to au-
tomatically set the distance parameter R as a function of the number of agents
and the size of the overall search area. MobEyes supports two operating sub-
modes for an agent in the CW state. First, the agent follows the road segment
that maximizes the positive per-segment density change. In this case, since we
exclude the current road segment from the candidate road segment for the next
movement, it is possible that the rate change may be negative. If this occurs, the
harvesting agent chooses the road segment that minimizes the change. Second,
the agent can follow a biased random walk along a set of road segments in the
vicinity; the set consists of the segments with density greater than a configurable
threshold. If the explored urban area has the shape of a long strip, staying within
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a CW region could be inefficient. For this reason, the MobEyes agent periodically
performs short range jumps to explore the nearby area after CW duration Tcw,
thus changing its reference point. To avoid the worst case of continuous jumping
around a region where there is not much gain, after a configurable threshold,
the agent performs a long jump to a random direction, and switches its mode
to the LJ mode to collect the density information again as in the initial phase
(i.e., repeated low yield case). This behavior is repeated until the harvesting
procedure has ended.

One crucial issue in multi-agent harvesting is to coordinate the movements
of cooperating agents. Ideally, we want the agents to direct themselves in the
richest information areas while not stepping other agents’ toes. In other words,
each agent coverage area should be non-overlapping with the others and, when
agents encounter each other, one of them should be able to quickly move to a
different non-overlapping region. To this end, similar to the pheromone trail left
by ants, a harvesting agent leaves a trail on the regular vehicles while collecting
metadata. The trail information will contain the ID of the collecting agent and
the timestamp of data collection. Thus, agents can detect a conflict via meta-
data harvesting. For conflict resolution, an agent with lower ID will perform
a long jump to a random location that is outside the CW region of the con-
flicting agents. If it finds an information patch, the constrained random walk
begins; otherwise, the LJ mode will be initiated, and the overall process starts
over.

4 Evaluation

We evaluate the proposed metadata harvesting algorithm by simulation using
ns-2.1 Mobile nodes communicate using IEEE 802.11 with fixed bandwidth of
11Mbps and nominal radio range of 250m. Vehicles move in a fixed region of size
2400m × 2400m according to the Manhattan mobility model (MT) from [16].
In MT, nodes are moving on the streets defined by a map (Figure 3). At each
intersection, vehicles make independent decisions about the next direction; the
choice of direction (straight, left, right) is equally probable. We use 7x7 grids
(each grid segment is set to 300m to avoid interference between nearby streets).
We populate two horizontal streets, Street 2 and Street 6, with vehicles by con-
trolling transition probability (i.e., make left or right turns with probability 0.1,
and go straight with probability 0.8). When nodes reach the boundary of the
simulated region, they bounce back by inverting their direction (modeled by
forcing U-turn with probability 1). If this happens, we reset the node and treat
it as a new incoming node that carries no meta-data. We consider the number
of nodes N = 200, and the maximum speed v = 20m/s. We fix the speed of
harvesting agents to a constant (10m/s).

We evaluate the following foraging schemes by agents: (a) Random Walk For-
aging (RWF), (b) Biased Random Walk Foraging (BRWF), (c) Preset Pattern
Foraging (PPF), and (d) Datataxis Foraging (DTF). Agents in RWF randomly
1 http://www.isi.edu/nsnam/ns

http://www.isi.edu/nsnam/ns
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Fig. 3. Street map used for the Manhattan mobility model: Horizontal streets 2 and
6 (marked with thick solid lines) are initially populated (dense streets). The regular
mobility pattern (clockwise directional cycle marked by thick areas) is traveled by
agents in the PPF strategy.

choose road segments and harvest metadata from encountered vehicles. Agents
in BRWF operate similarly except that they choose road segments based on a
defined transition probability that is biased by knowledge about “food sources”
(i.e., Street 2 or 6). In PPF, we define a preset mobility pattern representing
that the agents are fully aware of the movement patterns of others, and thus, we
configured the agents to move around the rectangular path that includes Streets
2 and 6. The PPF foraging strategy represents the optimal agent movement in
our scenario since the agents will cover the most popular streets using this mo-
bility pattern. DTF implements our proposed scheme for agent movement while
harvesting metadata. An agent explores a region while in the Lévy Jump mode
to estimate meta-data density per road segment, and switches its mode to the
CW mode. After moving to an information patch, an agent stays there for 300s
(in CW mode). An agent performs short jumps within a CW region, where the
radius of the CW region is set to 600m. If it finds another region after the jump,
a conflict is detected, and it performs a long jump, where the maximum jump
range is set to 900m. The number of agents used in the simulation varies from 1
to 4 nodes.

We set the summary packet advertisement period of regular nodes and the
harvesting request period to 3s in all the simulations. A new summary is gen-
erated based on a Poisson process with rate λ = 1/10 (i.e., on average it is
generated every 10s). We measure the performance in terms of the total number
of harvested summary packets. If multiple agents are used, we also calculate
aggregate harvesting rate. When calculating the harvesting rate, we only count
the number of distinct summaries harvested. For a given scenario, we report the
average values of 30 runs, each of which takes 1500s (i.e., 25 minutes).

Simulation Results: Figure 4 reports the impact of the number of foragers
on harvesting performance, by showing the number of harvested summaries per
agent. In general, the graph shows that the value decreases as the number of
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agents increases because we only count unique summaries. We note that BRWF
shows only a slight improvement over RWF. This stems from the fact that once
the agents in BRWF deviate from the popular streets, it takes a long time for
them to return to productive areas. The performance of DTF is consistently
better than RWF and BRWF, and quite close to PPF. Recall that PPF is a
foraging strategy specifically and statically optimized to our target deployment
scenario and is expected to represent a quasi-optimal solution. Thus, we find that
our DTF algorithm is efficient, not far from the performance achievable via sta-
tic knowledge of the characteristics of the considered deployment environment.
Figure 5 shows the total number of distinct summaries harvested by all the
agents. In this plot we also find that the aggregate harvesting ratio of DTF is
much better than both RWF and BRWF, and very close to PPF.

5 Conclusion

In this paper, we presented a novel data-harvesting algorithm for urban monitor-
ing applications. The proposed algorithm has been designed based on biological
inspirations such as (a) foraging behavior of E. coli bacteria, (b) stigmergy found
in ants and other social insects, and (c) Lévy flights found in foraging and gen-
eral movement patterns. The proposed algorithm called datataxis enables the
MobEyes agents to move to “information patches” where new information con-
centration is high. This algorithm is guided by a practical metric based on local
efficient estimates of information density per road segment. In our data foraging
strategy, an agent starts with a random walk until it encounters an information
patch; then it performs a constrained walk to move toward a higher density re-
gion. When an agent encounters some other agents in the same region it moves
to another region by using a conflict resolution algorithm that has been inspired
by Lévy jump, so that harvesting agents’ work is not duplicated. Our simulation
results showed that datataxis effectively balances the movement of agents and
distributes them appropriately, performing better than other commonly used
harvesting strategies.
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Abstract. In this chapter, we present some of the biologically-inspired
approaches, developed within the context of the European project
BIONETS for enabling autonomic pervasive computing environments.
The set of problems addressed include networking as well as service man-
agement issues. The approach pursued is based on the use of evolution-
ary techniques — properly embedded in the system components — as a
means to achieve fully autonomic behaviour.

Keywords: pervasive computing, biologically-inspiread design para-
digms, protocol evolution, chemical computing.

1 Introduction

The Future Internet will be characterized by scale, heterogeneity, complexity
and dynamicity figures that call for novel approaches to the design and the
management of computing and communication systems. This will enforce a shift
from conventional “top-down” engineering approaches, in which systems’ blue-
prints are designed, optimized and engineered to perform a well-defined task, to
“bottom-up” approaches, in which systems will be provided with the necessary
means for growing and evolving in an unsupervised manner. The final goal is to
enable autonomic systems, which are able to self-manage themselves, requiring
human intervention only in the definition of the high-level goals to be pursued.

The BIONETS project (Biologically-inspired Autonomic Networks and
Services, www.bionets.eu), funded in the framework of the EC-FET initiative on
SituatedandAutonomicCommunications, targets the introductionofbiologically-
inspired approaches for designing and managing pervasive computing and
communication environments. The conceptual basis of the project is rooted in the
observation that nature has been successfully tackling the aforementioned prob-
lems (scale, heterogeneity, complexity and dynamicity), leading to complex ecosys-
tems which are able to self-sustain and to reach efficient equilibria in the absence
of a central control.
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In this chapter, we review some paradigms, inspired by natural (and in par-
ticular biological) systems’ functioning, which could be successfully applied to
architect pervasive computing/communications environments. We also discuss
some of the issues to be faced when trying to engineer such paradigms into tech-
nological artifacts, presenting some examples drawn from the research activities
carried out within the BIONETS project framework.

The remainder of the chapter is organized as follows. In Sec. 2 we discuss
the challenges stemming from Future Internet scenarios, highlighting the need
for embedding autonomic properties in computing/communication systems. In
Sec. 3 we survey some potentially useful paradigms, inspired by the opera-
tions and functioning of various natural (mostly biological) systems. In Sec. 4
we discuss issues related to the use of such paradigms for designing comput-
ing/communication systems, presenting two examples taken from project’s
activities. Sec. 5 concludes the paper discussing promising applications of the
presented paradigms.

2 Scenarios for Future Internet and the Need of
Autonomicity

If in the 80s and 90s the Internet was still conceived as an “information highway”,
i.e., a set of physical links where myriads of data and packets were flowing, car-
rying the most disparate information, things are changing rapidly. The change
concerns not just what users are doing with those data/packets, but the nature
of the system itself. On the one hand, the Internet has become a vital ganglion of
the globalised economy and society. On the other one, a lot is happening at the
edges of the Internet as we have known it. Progresses in microelectronics and nan-
otechnologies are about to lead to situations in which electronics (including ability
to communicate and to compute) gets embedded in a variety of common objects.
The net results is expected to be an invisible digital halo, surrounding users and
supporting them in their daily life. While this phenomenon is referred to in various
ways, depending from the viewpoint (from pervasive computing environments [1]
to smart spaces up to “Internet of things”), there is a general consensus that this
is the direction we are moving to. This trend is bringing with it a set of challenges
to current information and communication technologies and system architectures,
requiring radical changes in the approaches conventionally pursued.

The first and most apparent problem is scale. Scale in the number of poten-
tially connected devices as well as in the number of users and of services to be
supported. Are currently solutions adequate? Can we rely on Moore laws for
bandwidth/computing power/storage capacity to ensure we will be able to cope
with scale? The answer is probably negative. The reason lies in the fundamentals
of the current IP network architecture (which represents the backbone of almost
all networked systems), which rely on an address-oriented end-to-end paradigm,
assuming always-on connectivity. This incurs limitations in both the finiteness
of the address space as well as problems related to the scalability of connected
large-scale wireless networks.
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The second problem is heterogeneity. Again, this is rooted in the hourglass
model at the basis of the Internet TCP/IP protocol suite, where the IP acts as
a “glue” between various subsystems. It is probably necessary now to rethink
it, in such a way to accommodate heterogeneity and pluralism in the system, in
terms of both nodes [2] and network architecture [3].

The third problem is complexity. Network and service management and main-
tenance is becoming a harder and harder job, requiring an extremely large
amount of operators’ time, with the consequent negative fallouts on the eco-
nomic side. And with increase in scale and heterogeneity this is probably going
to become the real ceiling limiting the ability to produce innovation in the ICT
field.

The fourth problem is dynamicity. The ICT world is experiencing innova-
tions at an extremely high rate. New technologies and services are created and
disappear continuously, and new ways of profiting from the Internet are been
envisaged and introduced seamlessly. There is an increasing need to design ICT
systems which are able to be, in some sense, future-proof, i.e., able to plastically
adapt to changing environments, services and users needs.

These four challenges motivated the research on methods and tools for build-
ing autonomic communication systems [4], in much the same way it had been
proposed by IBM in the computing field [5]. The basic problem lies in the fact
that current ICT systems are conceived as static ones. The ability to adapt is
— in most cases — present, but in a limited form, and it is decided a priori in
the design phase. In some sense, adaptability is “hardwired” into the system’s
blueprint, which is, however, unable to adapt and change. Traditional “direct
engineering” approaches have the great advantage of engineering “by design”
the desired system behaviour, but, at the same time, they limit the ability of
systems to adapt or optimize to unforeseen scenarios.

The BIONETS project, on whose activities this chapter is mostly centred,
aims at addressing such issues by looking at how nature (and biology in par-
ticular) has led to the arising of complex ecosystems, able to achieve the self-
CHOP features of IBM’s autonomic computing manifesto (self-configuration,
self-healing, self-optimization, self-protection) [5] through open-ended evolution.

3 Nature-Inspired System Design Paradigms

Nature presents a variety of examples of systems that are able to successfully
deal with scale, heterogeneity and complexity figures similar to those expected
for pervasive computing environments. As far as dynamicity is concerned, things
are slightly different, in that many natural phenomena (e.g., evolution) take
effect over long time periods. On the other hand, in an artificial system the rate
at which such phenomena can be emulated depends heavily on the available
computing power.

In the early phase of the BIONETS project, a set of paradigms inspired by
biological, physical and social phenomena were identified and studied [6]. We
present in the following a short review of three of the most relevant paradigms
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identified: chemical computing, embryology and evolutionary game theory. With
respect to the aforementioned issues, chemical computing provides insight into
the design of computing systems able to continuously change to self-optimize
to current system conditions (dynamicity). Embryology may provide means
for applying evolutionary computation methods to extremely complex systems
(scalability, complexity), enabling at the same time run-time optimization (dy-
namicity). Evolutionary game theory provides means to analyze and design sys-
tems able to work unsupervised on the basis of local interactions (scalability,
complexity).

3.1 Chemical Computing

The term Chemical computing [7,8] refers to two distinct areas: (i) real chemical
computing: computing with real molecules, such as DNA computing; (ii) artificial
chemical computing: hardware and software architectures inspired by chemistry.
In the case of software, it refers to computation models following a chemical
metaphor, which run on regular von Neumann computers. The scope of this
section is restricted to the latter.

Chemical computing can be regarded as a branch of Artificial Chemistry [8],
the subfield of Artificial Life devoted to modelling the dynamics of chemical
phenomena in order to understand the origin and evolution of organizations
in general, and life in particular. The term artificial chemistry also refers to
the specific chemical model used, defined by the molecular species involved, the
reaction rules, and the algorithm for the reaction vessel.

Numerous artificial chemistry models have been proposed. A model in which
molecules are λ-calculus expressions is presented in [9], showing conditions for
the emergence of self-maintaining organizations out of an initial “soup” of ran-
dom molecules. The chemical reaction model is catalytic (i.e. reactants are con-
served after the reaction), and mass conservation is ensured by a dilution flux.
This line of research led to a theory of chemical organizations [10], with several
applications in biology and computer science.

We believe that chemical models have a great potential for on-line evolution
in autonomic systems. This can be illustrated by the following example: In [11]
Genetic Programming (GP) is applied to an algorithmic chemistry in which
instructions are drawn from a multiset and executed in random order. Starting
from a nearly unpredictable system, a few generations later programs exhibit
highly reproducible results. The system is therefore able to evolve programs that
are robust to random execution order. The authors point out the importance
of the concentration of instructions, rather than their sequence. Indeed, in the
solutions evolved, the concentrations of the instructions that are the most crucial
to the solution are higher, and instructions that are not relevant end up with
low or no concentration at all.

Chemical models raise many new questions as well. Methodologies for en-
gineering, programming or evolving chemical reaction networks are only now
emerging, for natural or artificial systems. Most of the models have a stochastic
nature, which makes them inherently non-deterministic, and also more complex
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than traditional top-down, human-made solutions. On the other hand, we be-
lieve that making progress in this area will greatly improve our understanding
of computational models close to biology, and of life in general.

3.2 Artificial Embryogenies

The application of ideas from embryology to artificial systems has been following
two main research directions. The first one is embryonics (embryology plus elec-
tronics), an approach to improve fault tolerance in evolvable hardware by using
a cellular architecture presenting dynamic self-repair and reproduction proper-
ties [12]. Approaches in this area have mostly focused on the use of artificial
stem cells, i.e., cells which are able to differentiate into any specific kind of cell
required for the organism to work. The systems devised in such way are based
on the following two principles:

– Each cell contains the whole genome, i.e., the complete set of rules necessary
for the organism to work and is totipotent, i.e., can differentiate into any
specific function.

– The system presents self-organizing properties. Each cell monitors its neigh-
borhood and may return to the stem cell state and differentiate into another
type of cell to repair a fault detected.

The flexibility to switch functionality adds another level of robustness with re-
spect to conventional approaches, as now not only cells with identical function-
ality can be used as backup or template to repair a failure, but also other cells
with differentiated functionality can be used to recreate a lost one.

The second one is artificial embryogeny [13], which aims at extending evo-
lutionary computing with a developmental process inspired by embryo growth
and cell differentiation, such that relatively simple genotypes with a compact
representation may express a wide range of phenotypes or behaviors. Indeed,
researchers have recognized that “conventional” EC techniques (like GA, GP,
Evolutionary Strategies, etc.) present scalability problems when dealing with
problems of relevant complexity. In artificial embryogenies the genotype does
not code the solution itself, but it codes recipes for building solutions (i.e., phe-
notypes). This can lead to a non-linear genotype-to-phenotype mapping, which
may also be affected by environmental variables. In this way, a genotype change
does not imply a direct change in the solution, but in the way solutions are de-
coded from the genotype and further grown from an initial “seed” (the embryo).

3.3 Evolutionary Games

In autonomic pervasive computing systems, users compete for resources; deci-
sions related to flow control, to routing, to accessing common channels etc. are
not under control of a central entity. Non-cooperative Game Theory [14] has nat-
urally become a very popular paradigm for modeling the decentralized decision
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making. The high complexity of dynamic computing, information and commu-
nication systems suggests that one should search for models and concepts that
involve large populations, dynamics, adaptation and evolution.

Equilibria concepts (the Nash and the correlated equilibrium, the Wardrop
equilibrium in road traffic engineering, and the Evolutionary Stable Strategy
in evolutionary games) describe relatively “static” situations, in which those
involved in the game are relatively satisfied: they cannot be better off by unilat-
erally deviating. We may expect however that many situations of competition
in autonomous complex networks are dynamic ones. Tools are needed to un-
derstand the evolution of competition, the way one converges to, or diverges
from, equilibria. Such understanding can then be very useful in designing mech-
anisms for evolution of services related to autonomic pervasive computing sys-
tems. The evolutionary game paradigm was created by J. Maynard Smith [15,16]
in a context of conflicts and competition among populations in biological com-
plex systems. It provides tools to describe the competition dynamics between
populations through differential equations that are called replicator dynamics
and which relate fitness of species with their growth rate [17].

The TCP congestion control protocol is an example of a distributed network
mechanism that allows flows to adjust their transmission rate in a completely
decentralized way. It has had many variants that differ from each other by the
degree of aggressiveness. The first protocols were the most aggressive ones and
have caused catastrophic events known as congestion collapse in the Internet.
These protocols have disappeared, replaced by the very gentle, non-aggressive
protocol, Tahoe, that has disappeared too. New TCP protocols keep appearing.
In [18], an elementary model from Evolutionary game theory, called the “Hawk
and Dove game” is used to predict both equilibrium behavior between aggressive
and friendly TCP versions, as well as non equilibrium behavior. It is shown that
depending on system’s parameters, one of two types of equilibrium can emerge:
(i) One in which the two types of TCP coexist (the actual percentage of each
one are given there) or (ii) One in which only the aggressive TCP survives.

A stability condition is then derived. An oscillatory behavior is identified
when the system is unstable. The oscillations are perceived as instability since
they do not allow the system to attain the equilibrium point that may well
exist under the same set of parameters. Oscillations in population sizes are also
found in the context of competition between species in biology. The difference
with biology is, however, that in networks we can use our understanding of
evolutionary behaviors to achieve stability and suppress oscillatory behavior.
Guidelines for achieving stable behavior have been proposed in [18] in terms of
delays in the system as well as some gain parameter that controls the rate of
adaptation. More sophisticated stability analysis can be found in [19,20].

4 Embedding Nature-Inspired Strategies

The paradigms presented in the previous section represent promising models for
building autonomic computing/communications systems. Nonetheless, for some
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of them (e.g., embryology), the current status of research does not allow direct
application to real-world problems. On the other hand, some of the applications
of nature-inspired techniques developed in BIONETS have relied on variants of
tools and techniques from evolutionary computation [21].

In this section, we report two case studies related to evolution of network
protocols. The aim of this section is to present some of the most relevant issues
to be faced when moving from the paradigm to the application, together with a
series of lessons learned from the experiments performed.

4.1 Case Study: Evolving Protocols with the Fraglets Language

In this section we report our experience with evolving network protocols using
the Fraglets language [22], a programming inspired by chemical computing, and
targeted at network protocols.

A fraglet [22] is a “virtual molecule”, that represents a computation fragment
as a string of symbols [s1 s2 ... sn]. A fraglet may contain data, reaction
rules involving two fraglets, or transformations of a single fraglet. Fraglets are
injected for execution into a virtual reaction vessel which contains a multiset of
fraglets.

The fraglets language has been designed for network protocols. For this pur-
pose the rule processing engine is based on the “tag matching” principle: fraglets
are processed according to their head symbol, which is consumed in the process,
similar to protocol header processing in network packet streams.

The fraglet instruction set includes a few reaction rules and several transfor-
mations. As an example, the match reaction rule has the form [match s tail1].
It reacts with any fraglet of the form [s tail2] (i.e. which starts with the match-
ing symbol s), and produces [tail1 tail2], i.e. the concatenation of the two tails.
Other examples of transformation rules are: dup which duplicates a symbol, and
exch which swaps two symbols.

The fraglets language had been originally proposed for the automatic synthe-
sis and evolution of protocol implementations [22]. However, no actual results
showing automatic evolution had been shown. We therefore performed some first
GP experiments to evolve reliable transmission protocols in fraglets [23]. After
several unsuccessful trials, feasible programs could finally be obtained via a prim-
itive form of homologous recombination, which consisted in inserting pre-defined
markers by hand at given points in the code, where recombination was allowed
to occur. With this simple technique the system was able to find the optimum
protocol for a given environment by combining existing marked modules.

The main weakness of [23] was its inability to actually produce any viable
novelty: only individuals that were recombinations of existing successful ones
were also successful. New individuals obtained by random mutation were either
infeasible or had poor performance. We then started investigating the reasons
for such difficulties in evolving fraglet programs, in contrast with the undeniable
success of standard GP techniques based on trees or linear programs. Fraglets are
also linear programs, therefore we had expected that it would be easy to evolve
fraglet programs as it is to evolve linear ones. However, the header matching
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pattern turns out to be extremely constraining to the evolution process: a random
mutation in a program could easily lead to tags never being matched. And in
many cases, one such tag would suffice to block the whole program.

Further obstacles to evolution were later discovered: for instance, when trying
to evolve programs out of a “primordial soup” of randomly generated fraglets, the
system most of the times ended up clogged by a mass of instructions that were
not executable, because a corresponding matching tag could never be found:
that was the case of a [match exch ...] or [match dup ...]. The fraglet
interpreter does not allow matching on rule keywords, therefore such fraglets
can neither match nor be eliminated (since a [match match] is not allowed
either). So they pollute the system forever.

Moreover, the original fraglets reaction algorithm contained a non-standard
“smallest” criterion: the probability of choosing a given reaction was proportional
to the smallest concentration among each of its reactants. The side effect of this
rule was that the balance of molecule concentrations did not have the desired
effect on the reaction probabilities that would be expected from a chemical
model. As a consequence, well-known techniques from systems biology (e.g.,
based on stoichiometric analysis or differential equations) could not be applied.
As a result, it was difficult to implement an effective code regulation mechanism
[24] aimed at enforcing good genotypes and eliminating bad ones, based on the
control of molecule concentrations. Some modest results on code regulation were
achieved [24], but the extension of that model to more complex cases clearly
showed limitations.

In spite of all these difficulties, we still believe that there is a potential in chem-
ical models for on-line program evolution, which remains unexplored: Chemical
programs are inherently parallel, robust to random execution order, and can
naturally support multiple alternative execution flows.

We are now in the process of fully redesigning the fraglets language: its mole-
cule format, instruction set and reaction algorithm, with three aims. First, pro-
grams should be fully self-modifiable: it should only be possible to generate rules
that may be later eliminated. Second, the language should become plainly suited
to GP, by maximizing the chance of obtaining valid programs, both syntactically
and semantically. Third, it should be possible to control the concentration of in-
structions using closed feedback loops which monitor the system, promote good
programs and eliminate bad ones.

With respect to the third goal above, we have enhanced fraglets with variants
of the Gillespie algorithm, a well-known algorithm for simulating the dynamics of
a real-world chemical reactor tank. Experiments with the new algorithm confirm
that concentration dynamics now match the expected chemistry patterns.

Concerning the first and second goals above (self-modification and GP orien-
tation), the modifications needed are so radical that the outcome might be an
entirely new language. The basic principles however stay the same: A program-
ming language based on the chemical reaction metaphor, in which programs
are expressed as a set of virtual molecules in the form of strings that can react
with each other. Virtual molecules express code and data in a uniform way. Since
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molecules may be long strings, it is important to choose reactants based on short
keys that can be quickly looked up in a hash table, making the implementation
of the chemical reaction algorithm feasible in terms of computation time. More-
over, each chemical reaction should take a short time to execute, like a thread
that is scheduled for execution for a short time and then preempted.

In the new language [25], random access to any position in a fraglet will be
allowed, and stack-based operations will be possible: one fraglet will be able to
act as a data repository for another, accessible as a vector or as a stack, upon
reaction. Since code and data are represented in a uniform way, the program
can produce further code by writing on the data structure, which can then be
executed by simply removing the head symbol. Rules will be able to act on
other rules, such that they can always be created and eliminated, leading to
fully self-modifiable code. A semantic will be assigned to each possible reaction
rule, such that it can always be executed in a valid way, no matter the amount
of parameters available and their types. This should enable smoother GP runs.

Given the key length restriction described above, the tag matching problem
will somehow remain: the alternative would be to consider every different string
as a separate molecular species, which would not be scalable. This problem
is intrinsic to any artificial polymer chemistry, in which chemical species may
be arbitrarily long molecular chains, and which assumes a well-stirred solution
(such that any molecule can potentially collide with any other). However the
problem might be significantly reduced if: first, any symbol may form a valid
key, including reserved keywords of the language, numbers, etc.: this enhances
the space of valid programs; second, the same key may be reused several times
during sequential operations: it is easier to automatically generate a program
sequence based on a single key, rather than a chain of interconnected keys as
currently required in fraglets.

4.2 Case Study: Evolutionary Epidemic Dissemination Mechanisms

Epidemic-style forwarding [26] has been proposed as an approach for achieving
message delivery in intermittently connected wireless ad hoc networks, also re-
ferred to as Delay-Tolerant Networks (DTNs) [27]. Such environments are char-
acterized by a high degree of dynamism and by the unpredictable nature of
the contact patterns, which make standard ad hoc wireless networks routing
protocols unsuitable. Epidemic-style forwarding in DTNs is based on a “store-
carry-forward” paradigm: a node receiving a message buffers it and carries it
around, passing it on to new nodes upon encounter. Each time a node encoun-
ters a peer not having a copy of one message it carries, the carrier may decide to
infect this new node by passing on a message copy. The message gets delivered
when the destination first meets an infected node.

In a DTN scenario, the choice of a forwarding scheme and of its set of running
parameters depend on a set of factors (mobility, traffic patterns etc.) which are
— in general — not known at design time, and may significantly change over
time and space. Standard adaptive techniques are limited in that they require
an a priori definition of the actions to be taken in response to some external
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stimuli. The mechanism proposed in [28], on the other hand, is based on the use
of concepts and tools from the Genetic Algorithms field.

In the proposed implementation, each node in the system employs its own
forwarding policy, determining the actions to be taken upon the reception of a
message destined to another node. The genotype in such system is represented
by an array of parameters, defining the system’s behavior. In the considered
case-study, we considered as relevant parameters the probability of forwarding a
message upon a contact with a susceptible node, as well as the maximum number
of hops traversed by a message. (In general, however, there is no limitation on
the number of parameters that can encoded.) Each genotype is associated with
a fitness level which describes its ability to contribute to the general system’s
functioning. Upon encountering, two nodes may exchange information on the
genotype current in use and the respective fitness level. Each node maintains a
pool which contains all available information on genotypes and associated fitness
levels. Such set of genotypes is used to generate new ones periodically, applying
standard GA operators (crossover and mutation) to two genotypes selected with
probability proportional to their fitness level.

Message delivery can be regarded as a distributed service, which require mul-
tiple entities to cooperate in order to achieve the desired goal. As a direct con-
sequence, there are two main difficulties to be handled. The first one is related
to the estimation of the fitness level associated to each genotype in use, which
needs to be performed locally relying on partial information only. The second
one is related to the fact that, in general, there is no way of controlling the
behavior of the (other) nodes contributing to the delivery process. There is also
a further subtlety which is worth being considered. In this case indeed, the evo-
lutionary process is deeply intertwined with the mechanisms used for achieving
communications (which represent a key component of a distributed evolutionary
framework). This coupling introduces a bias in the fitness estimation process,
which turns out to have a notable influence on the mechanism behaviour.

While the proposed mechanism has been shown, through extensive numerical
simulations, to perform well over a wide range of operating conditions, some
problems were encountered which represent as many lessons learned on the en-
gineering of distributed evolutionary mechanisms. The main issue to be faced is
the problem of mapping a global optimization problem to a distributed localized
one, in which many local entities perform each its own optimization process,
based on information available locally only. While in the proposed solution this
was done in a rather ad hoc way, there are good chances that results from game
theory can be used to provide a framework for this mapping from global opti-
mization to local decisions. Another issue of considerable impact is the definition
of suitable mechanisms for cascade fitness estimation in distributed services. In
the considered service, indeed, all intermediate nodes along the path followed by
the message from the source to the destination contribute to the performance
of the global service (end-to-end delivery). The fitness of the overall service is
computed by the two end-points, but the problem is then to decide how to re-
ward nodes along the delivery path. A general framework for such problem is
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still missing. Last, the proposed solution suffer from a bias in the estimation of
the delay. While this is a general sampling problem (due to the use of a finite
observation window), it turns out to have a rather considerable impact on the
behavior of the mechanism.

5 Conclusions

In this chapter, we have presented an overview of the bio-inspired lines of research
developed within the framework of the BIONETS project for building autonomic
pervasive communications/computing environments. Three of the most promis-
ing paradigms identified have been briefly presented, together with two examples
reporting the difficulties to be faced when moving to the application phase.

In general, much remains to be done in order to engineer autonomic pervasive
computing systems by applying bio-inspired approaches. The main limitations
appear to be related to the problems encountered when trying to reproduce in
a computable medium natural phenomena. While living eco-systems can indeed
be regarded as a special form of distributed computing, our ability to reproduce
such processes (with all their positive features) in a computing system is still
limited. Attempts to bridge research communities working on biology, ecology
and computer sciences appear to bring great potential for architecting the key
technologies to build the Future Internet.
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Abstract. This paper presents a biologically inspired routing protocol
called Self Selective Routing with preferred path selection (SSRP). Its
operation resembles the behavior of a biological ant that finds a food
source by following the strongest pheromone scent left by scout ants at
each fork of a path. Likewise, at each hop of a multi-hop path, a packet
using the Self Selective Routing (SSR) protocol moves to the node with
the shortest hop distance to the destination. Each intermediate node on
a route to the destination uses a transmission back-off delay to select
a path to follow for each packet of a flow. Neither an ant nor a packet
knows in advance the route that each will follow as it is decided at
each step. Therefore, when a route becomes severed by a failure, they
can dynamically and locally adjust their routing to traverse the shortest
surviving path. Preferred path selection reduces transmission delay by
essentially removing back-off delay for the node that carried the previous
packet of the same flow. The results reported here for both simulation
and execution of a MicaZ mote implementation, show that this is an
efficient and fault-tolerant protocol with small transmission delay, high
reliability and high delivery rate.

Keywords: routing, wireless sensor networks, route repair, ant colony
paradigm, link failure.

1 Introduction
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and CPU’s for processing applications and protocols. A significant number of
wireless sensor networks consist of battery-powered nodes able to operate unat-
tended. Such networks require autonomy of management (self-management),
fault-tolerance, and energy-efficiency in all aspects of their operation. These
properties are especially important for routing, since multi-hop communication
is a primitive wireless sensor network operation that is fault-prone as well as
energy-intensive. For instance, commonly observed in such networks are faulty
(or, potentially subverted) nodes and transient and asymmetric links caused by
wildly oscillating packet reception quality. Faulty nodes and transient links cause
severe packet loss and spontaneous network topology changes[1,2]. In terms of
energy usage by sensor network node components, radio operation is typically
the most costly, as evidenced by a study in [3] and typical hardware specifications
given in [4].

A traditional approach to multi-hop routing is to use routing tables that
indicate the neighbor to which a packet should be forwarded to reach a destina-
tion; prominent examples include AODV[5] and Directed Diffusion[6]. This fun-
damental approach, which emulates traditional wired network communication,
naturally requires nodes to constantly maintain individual neighbors states (e.g.,
active or sleeping) to support routing decisions. In operating conditions typical
for wireless sensor networks, such maintenance often requires significant over-
head, especially if fault-tolerance is to be supported. Hence, providing efficient
routing protocols that naturally accommodate and perform well in fault-prone
conditions is still an open and formidable challenge and is therefore the subject
of this paper.

This paper presents the biologically inspired family of Self Selective Routing
(SSR) protocols[7], which has been extended with preferred path selection, in-
troduced in this paper. In SSR, after a node currently possessing a packet trans-
mits it, all nodes that receive it decide which one will forward it. This decision
is made autonomously by each receiver based on their respective hop distances
to the destination using a transmission back-off delay to resolve potential ties.

In this paper, we discuss two novel mechanisms used by SRP, also called
SSR(v3), introduced here as compared to SHR [7], also called SSR(v2): (i) an
efficient and local repair of severed routes and (ii) preferred path selection. The
first mechanism allows a node that detected no responders to its transmission
broadcast to increase its hop distance to the destination. This increase enables
the currently traveling packet to retrace a part of its path. In an effort to make
the protocol more tunable, we have enabled the user to choose whether route
repair occurs in each packet, or in each node. Repairing the packet increases
the hop count only in the individual packet, and provides a temporary alternate
route that is desired in the case of transient failures. This method of repair
maintains the established topology of the network. Repairing the node increases
the hopcount in the node, and provides a permanent change to the network’s
topology that is desired in the case of permanent failures. The second method
introduced in this paper, allows the node that forwards the current packet to
select itself for forwarding the next packet in the flow with essentially no delay.
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This creates a protocol that is both delay efficient (minimal delay to forward a
packet in a normal case) and robust (another node will forward a packet if the
preferred node is down or has lost its link to the sender) at the same time.

There are other protocols that, like SSR, route on the premise of avoiding
neighbor state maintenance and letting receivers contend for forwarding packets.
However, they all require geographical location information, which SSR does not.
Three such protocols, GRAd[8], GRAB[9], and BLR[10] are not capable of a
route repair. Other protocols, GeRaF[11], IGF[12], PSGR[13] and SIF[14] define
eligibility regions for packet forwarding and therefore require detailed knowledge
of geographical placement of currently active nodes which is difficult to obtain
and maintain in wireless sensor networks.

2 Self Selective Routing

The SSR protocol has been inspired by the use of pheromones by the biological
ants to mark paths to guide other ants to food sources without memorizing or
prescribing a path explicitly[15,16]. Accordingly, the SSR protocol consists of
three phases: (i) an initial destination request flooding that finds the destination
node, (ii) a destination reply flooding that establishes hop distances between
each node and the given flow’s destination, and (iii) data transmission proper.

The destination request phase corresponds to the initial search for food in
which ant scouts randomly explore the environment. In the process, they mark
the branching paths with pheromones, which will later guide the ant scout back
to the home colony (retracing the path, an ant will follow the strongest marks
as they were most recently visited on the way out). Packets sent in this stage
are referred to as DREQ (Data Request) packets. The destination reply phase
corresponds to a walk back to the colony by an ant that found a food source.
Walking back, an ant will mark branches on the path home with pheromones
to distinguish the return path from other, unused paths. Packets sent in that
stage are called DREP (Data Reply) packets. This initial flooding is done once
at the sensor network deployment to all potential destinations (in wireless sensor
networks there is often only one destination, the base station, making the initial
two stages particularly simple). We used for this purpose the signal-strength
aware flooding technique described in [17] which also provides more details on
the these two initial stages. This paper focuses on data transmission stage itself.

2.1 Data Transmission in SSR

As shown in figure 1, the data transmission stage can be represented by a Finite
State Automaton (FSA) that defines the input, actions and output generated
in each state of a node in the network as it routes data (similar FSAs can be
defined for the destination request and reply stages). For example, when a node
receives a packet that it has not seen before, it immediately moves into the NEW
state, and depending on its input and status (e.g. data packet received by the
destination, data packet received by a node closer to the destination then the
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Fig. 1. State diagram for SSR(v3)

sender, acknowledgment packet received, etc) the node transitions itself into the
corresponding state and executes the associated actions (for clarity, not shown
in the figure).

When the source transmits a DATA packet, only neighbors that are closer
to the destination than the sender will react. Depending on the reacting nodes
proximity to the destination in relation to the sending node, it selects a trans-
mission back-off delay. That delay is uniformly distributed between 0 and λ/2
if the reacting node is one hop closer to the destination. If the reacting node
is more than one hop closer, the back-off delay is selected between 3λ/4 and
λ. This difference in back-offs ensures that the more reliable single hop closer
neighbors have priority over the less reliable multiple hop closer neighbors. λ is
a scaling factor that allows us to tune the probability of collision of the nodes’
responses. If, during the back-off delay, a DATA packet is received from a node
that is closer to the destination, the receiving node cancels the forwarding of the
DATA packet and moves to the Ignore state. When the transmission back-off
time expires, the node increments the packet’s actual hop count by one, sets the
expected hop count to its hop distance to the destination and then transmits
the packet.

After forwarding the packet, the node monitors the carrier to determine if
the packet has been forwarded. Lack of forwarding causes retransmissions, and
finally route repair which is accomplished by increasing the node or packet’s hop
distance to the destination by 2 and retransmitting.

To promote reliable links, we introduced a preferred path selection, in which
a node which forwarded the current packet will respond almost immediately to
a transmission of a new packet in the same flow. To simplify processing, these
nodes calculate their delay by dividing the regularly selected back-off delay by
625, while ensuring that it remains larger than the radio transition time. This
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results in a back-off delay between 20 and 160µs, given λ is 100ms. This minimiz-
ing of back-off delay ensures the node future self-selections, thereby stabilizing
repeatedly traversed paths. In the ant pheromone model, as ants move over dif-
ferent paths, and the once strongly scented but now less used paths begin to
fade, ants shift their routes to the paths that are most frequently used. In ref-
erence to the slow fading of the pheromone, we have chosen to not follow the
biological inspiration literally. Instead, we restore the full range back off delay
immediately after the preferred node fails to self-select, as such failure indicates
that the recently used node is no longer reliable. Despite its simplicity, the effect
of using the preferred path selection in SSR(v3) is very positive, as demonstrated
in the section below.

3 Performance Evaluation

Using both the SENSE wireless network simulator [18] and MicaZ sensor
motes [4], we performed a series of experiments to compare the performance
of SSR(v2) with the newly designed SSR(v3). Additionally, in the case of sim-
ulations, both protocols were compared with a traditional routing protocol,
AODV [5].

3.1 Simulations

We tested three different scenarios. The first one involved a single sink (base
station) collecting data from many sources, which is a typical sensor network
setting. The second scenario investigated transient failures, while the third one
evaluated the performance of the protocols under permanent failures. In failure
simulations, faults occurred with varying probabilities, while the sink network
simulation evaluated the performance with a varying number of sources.

The simulation topography consists of an 8 unit by 8 unit terrain populated
with 500 nodes placed randomly. Each node is stationary and has a single unit
nominal transmission range. The wireless medium is simulated with the free
space propagation model[20], and the radio modeled operation at 914 MHz with
1 Mb/s of bandwidth. Packet sizes were uniformly distributed around a mean
of 1000 bytes and were sent at uniformly distributed intervals with a mean
of 40 seconds. MAC broadcast was used in which a node senses the carrier and
broadcasts only if no other transmissions are detected. The average hop distance
between sources and their respective destinations is 7.8 hops.

Each simulation was executed eleven times, each time with a different random
number seed for a simulation time of 3,000 seconds per seed. The same 11 seeds
were used for all simulation sets. λ was set to 100ms for all simulations.

Single Sink Network. In a wireless sensor network, using a single sink is
common. For example, any network that contains a single base station is usually
configured that way. Such configuration may result in heavy traffic congestion
near the sink. Such congestion has the possibility of causing massive amounts of
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collisions, and could possibly stop the network from functioning at all. In sink
network simulations, we varied the number of sources transmitting to a single
sink from 10 to 100 to test the scalability of each protocol.

As is apparent in figure 2, a single sink network is where SSR(v3) shows its
worth, and where AODV breaks under its limitations. The protocols’ end-to-end
delays were so drastically different, that a logarithmic scale was necessary to plot
them together. As the density of sources increases from 70 to 100, which is 14%
to 20% of the nodes in the network transmitting, AODV required approximately
100 seconds to transfer a packet from the source to the destination. Although
SSR(v3) does increase its delay slightly, it still manages to keep that delay to
under 0.1 seconds, even with 100 nodes transmitting. Clearly, the preferred path
selection allows packets to move across the network quickly enough that a packet
reaches the destination before the following packet is transmitted, thus avoiding
any significant impact from congestion.

Fig. 2. Transmission delay, delivery ratio, and total MAC packets sent in the case of
a single sink network for three compared protocols: AODV, SSR(v2) and SSR(v3)

SSR(v3) is also superior in terms of delivery ratio. As sources increase to 100,
SSR(v3)’s delivery ratio decreases to near 90%, while AODV’s drops to nearly
55%. The reasons are the same as described earlier, where AODV succumbs
to the congestion around the sink node, while SSR(v3) is fast enough to avoid
significant congestion. Also in total MAC packets sent, SSR(v3) manages to use
less than 10% of the packets that AODV uses at 100 sources.

Failure Simulations. The failure sensitivity of SSR’s route repair routine can
be tuned by adjusting the number of retransmissions by the forwarding node
required to invoke route repair. By increasing this value, SSR can be successfully
employed in a network with a high rate of transient failures, but maintains
performance in a network with a high rate of permanent failures. In our tests, two
retransmissions were required to invoke route repair. Since a packet transmission
interval is 40 seconds, a node failure lasting less than 80 seconds on average would
not change the route from the source to the destination. As mentioned earlier,
the protocol is also tunable, because route repair can be executed temporarily
on individual packets, or permanently on the nodes.
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Transient Failures. There are several possible causes for transient node fail-
ures, such as error-prone links, power management induced duty cycles, or ex-
cessive packet collisions. Of these, the duty cycle induced failures are the least
disruptive since they may be coordinated with the networking protocol. The
presented simulation results are based on a random transient failure model, so
they exaggerate the effect of duty cycles on the protocols. In the transient failure
simulations, each node was assigned a mean active time and a mean sleep time.
The sum of these two times was fixed at 200 seconds. The time spent in each
mode was distributed exponentially about the mean value.

Fig. 3. Transmission delay, delivery ratio, and total MAC packets sent in the case of
transient failures for three compared protocols: AODV, SSR(v2) and SSR(v3)

As seen in figure 3, AODV has the worst transmission delay that increases
significantly with the transient failure rate. SSR(v3) has by far the smallest
delay of the three protocols, with a factor 10 advantage over AODV for the most
failure prone case. SSR(v3) has lower delays than AODV for all cases in which
transient failures are present. Both SSR(v2) and SSR(v3) only slightly increase
the incurred transmission delay when the transient failure rate is growing.

In terms of delivery ratio, AODV is the best, dropping from 100% in a reliable
case to 90% for 60% transient failure rate. SSR(v3) delivery ratio drops from
100% to 55% over the same region while SSR(v2)’s is slightly lower, dropping
from 90% to 50%. However, AODV requires a much larger number of MAC
packet transmissions than either SSR(v2) or SSR(v3). This is because to find a
new path, AODV’s route repair algorithm initiates a new route request phase,
causing a flood of packets from the point at which the route is severed. AODV
uses over 30 times more packets than SSR(v3). Hence, by implementing a sim-
ple replication scheme, in which each packet in SSR(v3) is sent 3 times, we
could bring the SSR(v3) delivery rate into a range that is more comparable with
AODV, while still keeping the number of MAC packets 10 times lower. The im-
pact of this huge difference in packets required will show itself primarily in the
energy consumption of the protocols.

Permanent Failures. In the permanent failure model, each node had a random
chance of failing. Nodes that fail had their failure start time uniformly distributed
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over the simulation time. In this scenario, trends observed for transient failures
continue but are less pronounced.

As seen in figure 4, as the number of node failures increase, the transmission
delay also increases while the delivery ratio generally decreases. SSR(v3) achieves
the lowest and most stable transmission delay of all three protocols. Even at 60%
failure rate, its delay is only slightly increased compared with its delay in the
reliable network, and is nearly 10 times better than that of AODV. Although
SSR(v3) delivery ratio is not 100% as is AODV, it still shows a 16% improvement
over SSR(v2), and stays at or above 96%. This improvement arises because any
node that tends to get entangled in external collisions will not be able to forward
packets consistently and therefore sooner or later it will be replaced in SSR(v3)
by a node that can, if such a node exists.

Fig. 4. Transmission delay, delivery ratio, and total MAC packets sent in the case of
permanent failures for three compared protocols: AODV, SSR(v2) and SSR(v3)

Again, the most significant difference between AODV and SSR arises in MAC
packet sent. As failures increase, the number of packets required for AODV
to maintain 100% delivery begins to quickly increase, while SSR(v3) maintains
practically the same number for all failure rates. Hence, for the same reasons
as discussed in transient failure simulations, the ratio of the numbers of MAC
packets used increases from an initial factor of 2 to a factor of 5 for the 60%
permanent failure rate.

SSR’s approach to route repair is clearly more local and efficient, as evidenced
by the plots. It should also be noted that under SSR(v2) and SSR(v3), the path
lengths and number of packets per hop remain nearly constant over the range
of permanent and transient failure rates. This demonstrates that priority-driven
opportunistic behavior of these protocols is highly accommodative to potentially
disruptive duty cycles and node failures.

3.2 Implementation on MicaZ Motes

We have implemented the new SSR(v3) protocol on MicaZ motes [4] using
TinyOS version 1.1.7 to compare performance of this implementation with the
implementation of SSR(v2) on the same hardware [19]. In the implementation,
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we used B-MAC with acknowledgments disabled to provide link layer function-
ality. DATA packets of 29 bytes were sent for 12.5 min at a rate of 5sec/packet in
an indoor environment. The radio power was set to -21dBm and a distance of 1m
provided a reliable delivery rate. However, with moderate probability some long
distance transient links also formed. Both compared protocols used the same λ
of 22ms.

Fig. 5. (a) Double line topology, (b) Route repair topology. Nodes have reliable con-
nections with their closest neighbors and transient connections with others. The base
indicates the direction in which all motes are oriented.

SSR(v2) was compared to SSR(v3) on two topologies. Double line topology,
shown in figure 5(a), has two motes at each hop eligible to forward the packet.
Route repair topology from figure 5(b), contains three unequal length and dis-
joint paths: a short, medium and long one. With these topologies, we tested
the repair capabilities of each protocol. During testing we blocked motes 12 and
13 in the network by placing a metal container over the motes after the first 5
minutes of the test.

As shown in table 1, in double line topology experiments, SSR(v3) provided
a large improvement in delivery rate, more than halving the percentage of lost
packets in SSR(v2). It also achieved a modest improvement in the end-to-end
delay compared to SSR(v2). On route repair topology both protocols performed
equally well.

To better understand these results, we plotted the time versus delay of each
successfully transmitted packet in both topologies for SSR(v3) (see figure 6).
Initially, packets frequently followed different length paths showing transient
nature of links in the experiment and therefore decreasing the effectiveness of
the preferred path selection. However, later on, the nodes with stable link tend
to persist longer on paths used for transmission, increasing the advantage of
SSR(v3) over SSR(v2). The failure of nodes 12 and 13 in the middle of a run
(around packet 160) on route repair topology prevents this effect from occurring,
resulting in similar performance of both protocols.

In the current implementation, both SSR(v2) and SSR(v3) allowed longer but
transient links to win self-selection. On the first glance, this seems to be beneficial
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Table 1. Experimental results for double line and route repair topologies

Double line Route repair

SSR(v2) SSR(v3) SSR(v2) SSR(v3)

Packets Sent 246 277 110 117
Packets Received 1070 1279 304 317
Packet Ratio (rec/sent) 4.33 4.61 2.74 2.69
Delivery Rate 47.3% 77.3% 77.3% 74.9%
End-to-end Delay 209 ms 174 ms 117 ms 122 ms
Average Hop Count 7.26 7.07 5.11 5.15

Fig. 6. Packet sequence number versus delay for SSR(v3) executed over the two
topologies

as such links may decrease the number of hops needed to reach destination.
However, closer inspection reveals that such links may increase the chance for
retransmissions because the long links have relatively small probability of being
overheard by the sender when they respond and transmit a packet towards the
destination.

4 Conclusion and Future Works

In this paper, we have presented SSR(v3), which naturally accommodates fault-
prone sensor network routing conditions and takes full advantage of the proper-
ties of the broadcast communication primitive of such networks. SSR provides
seamless route repair in cases of permanent or transient failures of nodes or links.
The preferred path selection introduced here allows the packet to traverse not
only the shortest path to the destination, but also the most reliable one. It also
preserves SSR(v2)’s ability to use other links if the preferred link is down. The
resulting significant decrease in the transmission delay and increase in delivery
ratio address the most important weaknesses of SSR(v2).
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In future work, we intend to extend the SSR family of protocols to address
issues of mobility and energy efficiency, both of which are common in wireless
sensor network applications. While SSR(v3) may currently accommodate mo-
bility, it is not yet explicitly optimized for it. Mobility shortens the time over
which hop distance tables remain valid. To retain SSR’s autonomic behavior, we
are researching how to efficiently update these tables based on local observations
of node movement. SSR can already accommodate topology changes caused by
energy-efficient topology control algorithms, such as ESCORT [21]. However, ex-
plicitly incorporating a topology control algorithm into SSR is still a challenge,
as it requires ensuring that the algorithm is not so aggressive that it overcomes
SSR’s ability to find eligible forwarders for every packet.
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10. Heissenbüttel, M., Braun, T., Bernoulli, T., Waelchli, M.: BLR: beaconless routing
algorithm for mobile ad hoc networks. Computer Communications Journal 27(11)
(2004)

11. Zori, M., Rao, R.R.: Geographic Random Forwarding (GeRaF) for ad hoc and
sensor networks: multihop performance. IEEE Trans. Mobile Computing 2(4), 337–
348 (2003)

12. Blum, B.M., He, T., Son, S., Stankovic, J.A.: IGF: a robust state-free communi-
cation protocol for sensor networks. Technical Report CS-2003-11, University of
Virginia, Charlottesville (2003)

http://www.xbow.com
http://www.faqs.org/rfcs/rfc3561.html
http://www.media.mit.edu/pia/Research/ESP/texts/poorieeepaper.pdf


240 B.K. Szymanski et al.

13. Xu, Y., Lee, W.-C., Xu, J., Mitchell, G.: PSGR: priority-based stateless geo-routing
in wireless sensor networks. In: Proc. IEEE Conf. Mobile Ad-hoc and Sensor Sys-
tems. IEEE Computer Society Press, Los Alamitos (2005)

14. Chen, D., Deng, J., Varshney, P.K.: A state-free data delivery protocol for multihop
wireless sensor networks. In: Proc. IEEE Wireless Communications and Networking
Conf. IEEE Computer Society Press, Los Alamitos (2005)

15. Cordon, O., Herrera, F., Stutzle, T.: A review on the Ant Colony Optimization
Metaheurstics: Basis, Models and New Trends. Mathware & Soft Computing 9
(2002)

16. Koenig, S., Szymanski, B.K., Liu, Y.: Efficient and Inefficient Ant Coverage Meth-
ods. Annals of Mathematics and Artificial Intelligence 31(1-4), 41–76 (2001)

17. Chen, G., Branch, J., Szymanski, B.K.: Local leader election, signal strength aware
flooding, and routeless routing. In: 5th IEEE Intern. Workshop Algorithms for
Wireless, Mobile, Ad-Hoc Networks and Sensor Networks WMAN 2005. IEEE
Computer Society Press, Los Alamitos (2005)

18. Chen, G., Branch, J.W., Pflug, M., Zhu, L., Szymanski, B.K.: SENSE: a wireless
sensor network simulator. Advances in Pervasive Computing and Networking, pp.
249–267. Springer, Heidelberg (2004)

19. Wasilewski, K., Branch, J., Lisee, M., Szymanski, B.K.: Self-healing routing: a
study in efficiency and resiliency of data delivery in wireless sensor networks. In:
Proc. Conference on unattended Ground, Sea, and Air Sensor Technologies and
Applications, SPIE Symposium on Defense & Security, April, Orlando, FL (2007)

20. Rappaport, T.S.: Wireless Communications: Principles and Practice. Prentice Hall,
Englewood Cliffs (1996)

21. Branch, J.W., Chen, G., Szymanski, B.K.: ESCORT: Energy-efficient Sensor net-
work Communal Routing Topology using signal quality metrics. In: Lorenz, P.,
Dini, P. (eds.) ICN 2005. LNCS, vol. 3420, pp. 438–448. Springer, Heidelberg (2005)



P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 241 – 254, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Biologically Inspired Approaches to Networks:  
The Bio-Networking Architecture and the Molecular 

Communication 

Tatsuya Suda, Tadashi Nakano, Michael Moore, Akhiro Enomoto, and Keita Fujii 

Information and Computer Science University of California, Irvine  
Irvine, CA 92697-3425, USA  

{suda,tnakano,mikemo,kfujii,enomoto}@ics.uci.edu 

Abstract. This article describes two branches of biologically inspired approaches 
to networks; biologically inspired computer networks and biologically inspired 
nanoscale biological networks. The first branch, biologically inspired computer 
networks, applies techniques and algorithms from biological systems to design 
computer networks. The second branch, biologically inspired nanoscale biological 
networks, applies techniques and algorithms from biological systems to design 
nanoscale biological networks. This paper describes these two branches of ap-
proaches proposed by the authors of this paper; biologically inspired computer 
networks (i.e., the Bio-Networking Architecture) and biologically inspired nano-
scale biological networks (i.e., the Molecular Communication). 

Keywords: biological inspiration, computer networks, nano-scale biological 
networks, bio-networking architecture, molecular communication. 

1   Introduction 

Information processing systems today are composed of a larger number of devices 
gathering, exchanging and processing information. In addition, system components 
(e.g., computational and sensing devices) are becoming smaller, potentially less reli-
able, and integrated directly into the environment, (e.g., sensor networks for environ-
mental monitoring, sensor networks imbedded in a human body). As a result, 
information processing systems today face challenges of scaling to a larger number of 
system components and adapting to dynamical changes in the environment and fail-
ures of system components. 

Observation of the biological world shows that a biological system is composed of 
a massive number of nano/micro-scale biological components that adapt to changes in 
the environment and failures of biological components. In biological systems, bio-
logical components self-organize into complex systems in a hierarchical manner, 
where a higher level structure is composed of a number of lower level components. 
For example, an organism is composed of multiple organs, each of which is composed 
of multiple cells. Components at each level communicate and coordinate through a 
variety of mechanisms (e.g. electric signals, molecule diffusion), allowing biological 
systems to adapt to environmental changes and component failures. 
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Design principles from biological systems may be, thus, applicable to designing 
today’s information processing systems that need to integrate large number of com-
ponents and that need to adapt to environmental changes and component failures. This 
paper describes two branches of biologically inspired approaches to network systems; 
(1) biologically inspired computer networks and (2) biologically inspired nanoscale 
biological networks. The first branch, biologically inspired computer networks, ap-
plies the principles found in biological systems to design computer networks. The 
second branch, biologically inspired nanoscale biological networks, applies the prin-
ciples to design nano to microscale biological networks.  

The remainder of this paper is organized as follows. Section 2 describes an exam-
ple of biologically inspired computer networks (i.e., the Bio-Networking Architec-
ture), and Section 3 describes an example of biologically inspired nanoscale networks, 
(i.e., Molecular Communication). Section 4 concludes this paper. 

2   Biologically Inspired Computer Networks: The Bio-Networking  
     Architecture 

Future computer networks are expected to be autonomous, scalable and adaptive. 
They autonomously operate with minimal human intervention. They scale to and 
support billions of nodes and users. They adapt to diverse user demands and dynami-
cally changing network conditions such as network failures. 

Key features of future networks mentioned above, i.e., autonomy, scalability 
and adaptability, have already been achieved in biological systems. For example, 
scalability is observed in large-scale social insect colonies (e.g., ant colonies) that 
contain millions of entities (e.g., worker ants), yet exhibit highly sophisticated and 
coordinated behaviors (e.g., division of labor in foraging and nest building). Social 
insect colonies also adapt to dynamically changing conditions (e.g., change in the 
amount of food in the ant colony) through local interaction of entities that adjust 
their behavior based on environmental conditions (e.g., more ants go out of a col-
ony and gather food when the food level in the colony becomes low.). Based on 
the observation that biological systems exhibit desirable features that are required 
for future networks, a number of researchers are currently investigating the feasi-
bility of applying biological concepts and principles to computer networks  
design [1-10]. 

The authors of this paper believe if a network and network applications are mod-
eled after biological concepts and principles, they satisfy key requirements such as 
autonomy, scalability and adaptability. Thus, the authors of this paper have designed a 
biologically inspired network, called the Bio-Networking Architecture [11, 12] where 
key biological concepts and principles (e.g., self-organization, emergence, redun-
dancy, natural selection, and diversity) are applied to design of networks and network 
applications. The following describes biological principles applied to the Bio-
Networking Architecture, and then describes the design of a middleware framework 
for the Bio-Networking Architecture. 
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2.1   Biological Concepts and Principles Applied in the Bio-Networking  
        Architecture  

A key concept in biological systems is emergent behavior. In biological systems, 
useful behavior often emerges through the collective, simple and autonomous behav-
iors of individual biological entities. For example, when a bee colony needs more 
food, a large number of bees will leave the hive and go to the flower patches in the 
area to gather nectar. When the bee colony is near its food storage capacity, only a 
few bees will leave the hive to gather nectar. This adaptive food gathering function 
emerges from the relatively simple and local interactions among individual bees. If a 
returning food gathering bee can quickly unload its nectar to a food storing bee, it 
means that the food storing bees are not busy and that there is little food in the hive. 
This food gathering bee then encourages other nearby bees to leave the hive and col-
lect nectar by doing the well-known “waggle dance.” If a returning food gathering bee 
must wait a long time to unload its nectar, it means that the food storing bees are busy 
and that there is plenty of food in the hive. This food gathering bee then remains in 
the hive and rests. Since the food gathering bee performs a localized interaction only 
between itself and the food storing bee, the interaction can scale to support the large 
or growing nutritional needs of a bee colony. The bee colony also exhibits other types 
of emergent behavior, such as self-organization, evolution, and survivability. Thus, 
emergent behavior is the formation of complex behaviors or characteristics through 
the collective, simple and autonomous behaviors or characteristics of individual  
entities. 

The Bio-Networking Architecture applies the concept of emergent behavior by im-
plementing network applications as a group of autonomous entities called the cyber-
entities (see Figure 1). This is analogous to a bee colony (an application) consisting of 
multiple bees (cyber-entities). Each cyber-entity implements a functional component 
related to the application and also follows simple behavior rules similar to biological 
entities (such as reproduction, death, migration, relationship establishment with other 
cyber-entities). In the Bio-Networking Architecture, useful application functionality 
emerges from the collaborative execution of application components (or services) 
carried by cyber-entities, and useful system behaviors and characteristics (e.g., self-
organization, adaptation, evolution, security, survivability) arise from simple behav-
iors and interaction of individual cyber-entities.  

  

 
Fig. 1. Cyber-entities and Network Applications 
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Another key biological concept applied in the Bio-Networking Architecture is evo-
lution. Evolution in biological systems occurs as a result of natural selection from 
diverse behavioral characteristics of individual biological entities. Through many 
successive generations, beneficial features are retained while detrimental behaviors 
become dormant or extinct, and the biological system specializes and improves itself 
according to long-term environmental changes, 

Within a biological system, diversity of behaviors is necessary for the system to 
adapt and evolve to suit a wide variety of environmental conditions. In the Bio-
Networking Architecture, different cyber-entities may implement the same behavior 
with different behavior policies to ensure a sufficient degree of diversity. For in-
stance, different cyber-entities may implement the migration behavior with different 
behavior policies (e.g., one cyber-entity with a migration policy of moving towards a 
user, and another cyber-entity with a migration policy of moving towards a cheap 
resource cost node). In the Bio-Networking Architecture, when a cyber-entity repro-
duces, mutation and crossover may occur in its behavior policy. This also ensures a 
sufficient degree of diversity. 

Within a biological system, food (or energy) serves as a natural selection mecha-
nism. Biological entities naturally strive to gain energy by seeking and consuming 
food. Similarly to an entity in the biological world, each cyber-entity in the Bio-
Networking Architecture stores and expends energy for living. Cyber-entities gain 
energy in exchange for performing a service, and they pay energy to use network and 
computing resources. The abundance or scarcity of stored energy affects various  
behaviors and contributes to the natural selection process in evolution in the Bio-
Networking Architecture. For example, an abundance of stored energy is an indica-
tion of higher demand for the cyber-entity; thus the cyber-entity may be designed to 
favor reproduction in response to higher levels of stored energy. A scarcity of stored 
energy (an indication of lack of demand or ineffective behaviors) may eventually 
cause the cyber-entity’s death.  

Reproduction to create diverse cyber-entity behaviors along with a mechanism for 
natural selection will result in the emergence of evolution to allow applications to 
adapt to long-term environmental change in the Bio-Networking Architecture. 

2.2   Middleware Framework of the Bio-Networking Architecture 

The Bio-Networking Architecture is a middleware framework that supports design 
and development of network applications. The Bio-Networking Architecture consists 
of interconnected Bio-Networking nodes as shown in Figure 2. A virtual machine 
capable of resource access control (such as the Java virtual machine) runs atop the 
native operating system. The Bio-Networking platform software, which provides an 
execution environment and supporting facilities for cyber-entities, runs using the 
virtual machine. The platform software also manages underlying resources such as 
CPU and memory.  

Cyber-entities that provide network applications run atop the platform software. A 
cyber-entity consists of three main parts: attributes, body, and behaviors. Attributes 
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Fig. 2. A Bio-Networking Node 
 

carry information regarding the cyber-entity (e.g., cyber-entity ID, description of a 
service it provides, cyber-entity type, stored energy level, and age). The body imple-
ments a service that a cyber-entity provides and contains materials relevant to the 
service (such as data, application code, or user profiles). For instance, a cyber-entity’s 
body may implement control software for a device, while another cyber-entity’s body 
may implement a hotel reservation service. A cyber-entity’s body that implements a 
web service may contain a web page data. Cyber-entity behaviors implement non-
service related actions that are inherent to all cyber-entities. Major behaviors of cyber-
entities are listed below: 

• Energy exchange and storage: Cyber-entities may gain/expend and store en-
ergy as described earlier. 

• Communication: Cyber-entities communicate with other cyber-entities to re-
quest a service, to provide a service, or to forward messages (e.g. discovery 
messages) to other cyber-entities. 

• Migration: Cyber-entities may migrate from bionet platform to platform. 
• Replication and reproduction: Cyber-entities may make copies of themselves 

(replication). Two parent cyber-entities may create a child cyber-entity (re-
production), possibly with mutation and crossover in child cyber-entity’s be-
havior policy.  

• Death: Cyber-entities may die because of old age or energy starvation. 
• Relationship establishment: Cyber-entities may establish relationships with 

other cyber-entities. 
• Discovery: Cyber-entities may discover other cyber-entities by sending a 

discovery message through their relationships. 
• Resource sensing: Cyber-entities may sense the type, amount, and unit cost 

of resources (e.g. CPU cycles and memory space) available on both a local 
and neighboring platforms. Each platform determines the unit cost of re-
sources provided on that platform based on their availability. 
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2.3   Current Status 

The Bio-Networking Architecture has been designed and implemented.  In order to 
demonstrate the usefulness of the Bio-Networking Architecture, various applications 
(e.g., Aphid, a Web Content Distribution Application [11]) have been implemented. 
Aphid cyber-entities accept requests for web pages and deliver them using the HTTP 
protocol. Simulation studies have been conducted to demonstrate that the Aphid  
exhibits unique and desirable features such as scalability, adaptability and survivabil-
ity/availability.Other network applications have also been implemented using the Bio-
Networking Architecture in [13]. In addition, the Bio-Networking Architecture has 
been implemented and empirically evaluated in [14]. Extensive simulation studies on 
evolvability of the Bio-Networking Architecture have been performed in [15]. 

3   Biologically Inspired Nanoscale Networks: Molecular  
     Communication 

With the current bionanotechnology, it is feasible to engineer biological systems (e.g., 
receptors, nano-scale reactions), as demonstrated through modification of DNA to 
produce new cell functionality. Techniques to engineer biological systems is now 
applicable to design nano-scale or micro  scale biological network systems. 

The authors of this paper have proposed and are currently designing molecular 
communication [16, 17]. Molecular communication is a new paradigm for communi-
cation between biological nanomachines over a short-range (a nano- and micro-scale 
range). Biological nanomachines are nano- and micro-scale devices that either exist in 
the biological world or are artificially created from biological materials and that per-
form simple functions such as sensing, logic, and actuation. As biological 
nanomachines (or nanomachines in short) are too small and simple to communicate 
through traditional communication mechanisms (e.g. through sending and receiving 
of radio or infrared signals), molecular communication provides a mechanism for 
nanomachines to encode information onto molecules and communicate information 
by propagating the information encoded molecules.  

Molecular communication represents a direct and precise mechanism for interact-
ing with biological nanomachines, and it may be used, for instance, in implant devices 
[18] to directly interact with human cells for human health monitoring. Molecular 
communication may also be useful in molecular computing. In the molecular comput-
ing area, researchers are currently creating molecular logic gates (e.g., an inverter and 
a NAND gate) and memory [19-24] using components from biological systems. 
Those molecular computing components may be interfaced through molecular com-
munication to perform more complex computing functionality. 

Section 3.1 introduces communication mechanisms that biological entities use, us-
ing two examples of how communication is performed within and between cells. 
Section 3.2 describes a molecular communication architecture. Section 3.3 presents a 
design of two molecular communication systems based on specific biological com-
munication mechanisms. 
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3.1   Biological Communication 

Biological nanomachines (e.g., cells) exhibit a wide variety of mechanisms for ex-
changing information at the nano and micron scales. Some specific biological mecha-
nisms include mechanisms for intracellular communication and intercellular 
communication [25].  

In intracellular communication, communication occurs between components within 
a single biological cell. For example, acetylcholine is transported within a neuron 
along the axon and then released, causing a response in the adjacent neurons that have 
a receptor for acetylcholine. A component of the cell emits molecules (e.g., vesicles 
containing acetylcholine), and molecules are carried by molecular motors. A molecu-
lar motor (e.g., kinesins and dyneins) is a protein or protein complex that transforms 
chemical energy (e.g., ATP hydrolysis) to mechanical movement of the molecular 
motor along a cytoskeletal track (e.g. microtubules).  

In intercellular communication, communication may occur through cell-cell chan-
nels called gap junctions. Gap junctions allow connected cells to share small mole-
cules such as Ca2+ (calcium ions) and inositol 1,4,5-trisphosphate (IP3), and therefore, 
enable coordinated actions among adjacent cells. For example, ciliated airway epithe-
lial cells communicate with each other through the diffusion of IP3 via gap junctions. 
A stimulated cell first increases the intracellular IP3 concentration, and this results in 
the release of Ca2+ from the intracellular calcium store. IP3 diffuses through gap junc-
tions to adjacent cells, resulting in the release of Ca2+ from intracellular stores in each 
of the adjacent cells. Diffusion of IP3 continues and thus propagates calcium waves 
over a number of cells. 

3.2   Molecular Communication Architecture 

Molecular communication may be described using a generic communication architec-
ture that consists of system components (information molecules, sender nanomachi-
nes, receiver nanomachies, environment) and communication processes of a 
molecular communication: encoding, sending, propagation, receiving and decoding 
(see Figure 3). 

 
Fig. 3. Molecular Communication Architecture 
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Molecular Communication System Components 

The generic molecular communication system consists of information molecules (i.e., 
molecules such as proteins or ions) that represent the information to be transmitted, 
sender nanomachines that emit the information molecules, receiver nanomachines 
that receive and react to information molecules, and the environment in which the 
information molecules propagate from the sender nanomachine to the receiver 
nanomachine (see Figure 3). It may also include transport molecules (e.g., myosin and 
dynein molecular motors) that transport information molecules through the environ-
ment using chemical energy, guide molecules (e.g. microtubules) that direct the 
movement of transport molecules, and interface molecules that encapsulate informa-
tion molecules and allow a variety of information molecules to bind to the same 
transport molecule (e.g. a vesicle that can store many types of molecules and bind to a 
transport molecule). 

The sender and receiver nanomachines may be, for instance, biological cells that 
use peptides, ions, or phosphates such as inositol-triphosphate as information mole-
cules (e.g. cells that communicate through calcium ions). The sender stores informa-
tion molecules and releases the information molecules according to some event (e.g. 
high concentration of an external signal molecule). For instance, calcium ions (infor-
mation molecules) may be pumped into a sender cell from the external environment 
and stored in the endoplasmic reticulum of a sender cell. A sender cell may then re-
lease the stored calcium ions (information molecules) when a ligand binds to a recep-
tor of a sender cell. The receiver cell includes calcium sensitive components to detect 
increased calcium concentration and reacts to the increased calcium concentration. 
For example, calcium ions bind to receptors of the receiver cell, resulting in neuron 
action potential or a cellular immune response such as inflammation. 

The information molecules propagate from the sender to the receiver in the envi-
ronment. The environment of molecular communication may be an aqueous medium 
with various ions and molecules dissolved in solution.  

Molecular Communication Processes 

The communication processes of molecular communication include encoding, send-
ing, propagation, receiving, and decoding (see Figure 3). 

Encoding is the process by which a sender translates information into information 
molecules that the receiver can capture or detect. Information may be encoded in a 
subcomponent of the information molecule (e.g. subsequence of a DNA sequence), or 
in characteristics of the information molecules. Information may also be encoded in 
the environment, for example, by having the sender emit molecules that modify the 
environment and by having a receiver detect the changes in the environment.  

Sending is the process by which the sender emits the information molecule into the 
environment. For example, a sender may emit ligands toward membrane receptors of 
nearby cells, resulting in the generation of calcium waves that propagate from cell to 
cell. Another example of sending is the sender emitting information molecules using 
peptide translation machinery. In this case, the information molecule may be a peptide 
sequence that is encapsulated into a vesicle, transported by molecular motor machin-
ery of the cell from the endoplasmic reticulum (a site of vesicle encapsulation) to the 
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cellular membrane (a site of vesicle exocytosis), and emitted outside of the sender cell 
using vesicle exocytosis.  

Propagation is the process by which information molecules move through the en-
vironment from a sender to a receiver. Propagation may occur through simple passive 
propagation (e.g. Brownian motion) in which the information molecules do not ac-
tively use energy to move through the environment. Propagation may also be con-
trolled by constraining the volume of the environment in which information 
molecules can move. For example, in propagation through gap junctions, propagation 
is limited to inside the cell and the gap junction and, thus, molecules do not propagate 
in all directions. Another example of controlled propagation is molecular motors that 
walk over rail molecules to transport information molecules. 

Receiving is the process by which the receiver captures carrier molecules propagat-
ing in the environment. The receiver may contain a selective receptor (e.g. a receptor 
that is sensitive to calcium ions or specific peptides) to capture the informatoin mole-
cule. The receiver may contain gap junctions that allow molecules (e.g. calcium ions) 
to flow into the cell without using receptors. Another option for receiving is to use 
fusion of vesicles (observed in vesicle transport) containing information molecules 
into the membrane of receivers. 

Decoding is the process by which the receiver, after receiving information mole-
cules, decodes the received information molecules into a reaction. The design of a 
reaction is dependent on the application. If biological cells are used as receivers, po-
tential reactions include enzyme-mediated reactions or protein synthesis. For instance, 
to report a detected information molecule, the receiver may express GFP (Green Fluo-
rescent Protein) in response to the received information molecules. 

3.3   Molecular Communication Systems 

The authors of this paper have designed two instances of molecular communication; 
one using intracellular communication mechanisms, and the other using intercellular 
communication mechanisms. The following illustrates the design of these two mo-
lecular communication systems.  

A Molecular Communication System Using Intracellular Communication 
Mechanisms 
 
In the molecular communication system using intracellular communication mecha-
nisms (see Figure 4) [26, 27], the sender nanomachine emits information molecules 
that are contained in an interface molecule. The interface molecule is a container that 
stores various information molecules. The interface molecule isolates information 
molecules inside from the propagation environment, and thus, it reduces interference 
from environmental noise. Transport molecules (e.g. molecular motors such as dynein 
or kinesin) propagate along guide molecules (e.g., microtubule) and transport inter-
face molecules (containing information molecules) from the sender to the receiver 
nanomachines. The network topology of guide molecules determines the direction 
that molecular motors move. Communication processes in this molecular communica-
tion system are described below. 
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Fig. 4. Molecular Communication Using Intracellular Communication Mechanisms 

Encoding: Sender nanomachines encode information on information molecules (e.g., 
DNA molecules, proteins, peptides). For example, nanomachines encode information 
on sequences of peptides and inject the peptides into vesicles. Vesicles can be loaded 
on molecular motors, and thus a variety of encoded molecules can be transmnitted. 

Sending: Sender nanomachines emit information molecules. The information mole-
cules are, then, attached to molecular motors. 

Propagation: Propagation is performed through molecular motors that move along 
rail molecules from sender nanomachines to receiver nanomachines in a directed 
manner. 

Receiving: Receiver nanomachines receive interface molecules from molecular mo-
tors using protein tags. When molecular motors approach receiver nanomachines, 
interface molecules (such as vesicles) may be fused into receiver nanomachines, re-
leasing information molecules into the receiver. 

Decoding: In decoding, receiver nanomachines invoke reactions in response to infor-
mation molecules. For example, peptides (e.g. neurotransmitters) transported through 
molecular motors in a neuron cause receiver neurons to generate an action potential. 

A Molecular Communication System Using Intercellular Communication 
Mechanisms 
 
In the molecular communication system using intercellular communication mecha-
nisms, a sender nanomachine (i.e., a cell) communicates with a receiver nanomachine 
(i.e., a cell) through a network of cells that passively propagate information molecules 
from a sender nanomachine to a receiver nanomachine (see Figure 5) [28]. The par-
ticular intercellular communication mechanisms used in this system is cell-cell cal-
cium signaling that is described in section 3.1. Communication processes in this 
molecular communication system are described below. 
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Fig. 5. Molecular Communication Using Intercellular Communication Mechanisms 

Encoding: Ca2+ waves are used to encode various cellular information such as muscle 
contraction, chemical secretion in biological systems. Similarly, in this molecular 
communication system, a sender nanomachine encodes various information onto Ca2+ 

waves by varying the properties of Ca2+ waves (e.g., frequency, amplitude, and dura-
tion of Ca2+ waves). Encoding in this system is, thus, the process of selecting the 
properties of Ca2+ waves (e.g., release of agonistic substances in certain amounts) that 
represent different information at the receiver nanomachines(s). 
Sending: A sender nanomachine releases chemical substances (e.g., Ca2+ and/or Ca2+ 
mobilizing molecules such as IP3)) in the manner decided in the encoding process. 
The released chemical substances stimulate a nearby cell to initiate the following 
propagation process. 
Propagation: A stimulated cell increases its Ca2+ level, and the increased Ca2+ level 
propagates from cell to cell through gap junctions. The network of cells may perform 
amplification of the Ca2+ level to increase the distance that the Ca2+ wave propagates. 
The network of cells may also perform switching by opening and closing gap junc-
tions so that the Ca2+ wave propagates to a specific receiver nanomachine(s). 
Receiving: Receiving is a process by which the receiver nanomachine detects cellular 
responses of the neighboring cell in the environment. For example, cells in the envi-
ronment receiving the propagating Ca2+ waves may release molecules into the envi-
ronment, and a receiver nanomachine detects the released molecules in the 
environment. 
Decoding: The receiver nanomachine invokes an application specific response corre-
sponding to the information molecule it receives. Possible decoding at a receiver 
nanomachine (e.g., a nanomachine based on a cell) includes differential gene expres-
sion, secretion of molecules, and generation of movement. 

3.4   Current Status  

The authors of this paper are currently designing and investigating the feasibility of 
the two molecular communication systems described in section 3.3. Other reearchers 
are also examining various designs of molecular communication [29, 30, 31]. 

Molecular communication is a new and emerging research area that is attracting a 
number of researchers. NSF has recently organized a workshop (in Feb, 2008) on 
molecular communication and discussed a number of research issues that need to be 
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addressed [32]  Some of the research issued identified include (1) representing infor-
mation such that nanomachines can understand and biochemically react (encoding), 
(2) selectively addressing destination receiver nanomachines by a sender 
nanomachine (sending), (3) controlling propagation of information molecules (propa-
gation), (4) selectively receiving information molecules at a receiver nanomachine 
(receiving), and (5) decoding of information molecules to cause desired chemical 
reaction and status change at a receiver (decoding). 

4   Conclusion 

This paper described biologically inspired approaches to two different classes of net-
works; computer networks and nanoscale biological networks. As an example of each 
approach, this paper described the work of the Bio-Networking Architecture and the 
Molecular Communication.  In the Bio-Networking Architecture, biological princi-
ples such as emergence and evolution are applied to design a broad range of network 
applications that need to scale to a large number of network components and that need 
to adapt to environmental changes. In the Molecular Communication, components 
and mechanisms from biological communication are used to design and implement 
nano and micro scale biological networks. In both approaches, biological inspiration 
is explored to construct scalable and adaptive networking systems. 
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Abstract. In this chapter we survey the most recent proposals for mod-
elling user mobility in mobile pervasive networks, and specifically in op-
portunistic networks. We identify two main families of models that have
been proposed. The first modelling approach is based on the observa-
tion that people tend to visit specific places in the physical space, which
therefore exert special attraction on them. The mechanics of user move-
ments are defined based on these attractions. The second approach is
based on the fact that people are social beings, and therefore they move
because they want to interact and meet with each other. Movements are
thus defined based on the social relationships established by users among
themselves. Both modelling approaches show good match with popular
traces available in the literature. However, we note that each approach
misses the other’s point: people actually move both because they are
attracted by other people, and because they spend time in preferred
physical places. Therefore, we describe a new mobility model (Home-cell
Community-based Mobility Model, HCMM) that takes both properties
into account, i.e., social relationships and attraction of physical places.
HCMM matches well-known statistical features of real human mobility
traces. Furthermore, it provides intuitive and easy-to-use knobs to con-
trol overall system statistical properties generated by users’ movements
(e.g., the average time spent by users inside or outside preferred places).

Keywords: opportunistic networks; mobility models.

1 Introduction

Modelling mobility of users is a topic witnessing renewed interest in the research
community over the last few years. As discussed in more detail in Section 2, this
comes hand-in-hand with the evolution of the legacy Mobile Ad hoc Networking
(MANET) paradigm towards the concept of opportunistic networking [26]. Op-
portunistic networks see disconnections and partitions originating from nodes’
mobility as very features of multi-hop ad hoc networks, rather than exceptions
to mask (as legacy MANETs do). In these networks data addressed to nodes
currently disconnected are not dropped (as in MANETs) but, according to the
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store-carry-and-forward paradigm [11], node movements are exploited to bridge
disconnections and bring data closer and closer to the intended destination. The
simplest approach to forwarding is that of flooding the network with copies of the
message, as in the case of Epidemic protocol [30]. Recently, more sophisticated
solutions have been proposed, that try to detect the way nodes move and exploit
these features for efficiently forward messages (see, for example, the HiBOp pro-
tocol in [35]). Whether mobility is used as an input for testing the performance
of the system or is also intrinsic to the way the forwarding algorithm works, a
clear understanding of user movements is in any case one of the cornerstones to
design efficient solutions for opportunistic networks.

The need for an accurate knowledge of user mobility has been partly fed by a
research stream looking at the statistical features of large traces either of mobile
users’ associations to WLANs, or to pair-wise contacts between users’ mobile
devices (see Section 2 for an extended reference list). Originally collected mainly
to study the usage patterns of WLANs (e.g., [22]), those publicly available traces
has been exploited to infer properties of the users’ mobility process (e.g., [2]).
Most notably, some of these studies have highlighted that legacy mobility models
adopted for MANET research (e.g., the Random Waypoint Model [7]) are not
realistic when compared with real traces (e.g., [17]). In turn, this has motivated
the definition of novel, more realistic, mobility models (e.g., [14]).

In this chapter, we present the state-of-the-art of mobility models for op-
portunistic networks, after discussing in more depth the driving forces that led
to renewed interest on this topic (see Section 2). We identify two main ap-
proaches along which to categorise models: i) models based on the attraction
exerted by physical places on users (see Section 3), and ii) models based on the
underlying social relationships between users (see Section 4). We discuss that
both approaches capture very important features of realistic mobility patterns.
However, we also highlight that each approach misses the other’s point. There-
fore, in Section 5 we discuss a recently proposed mobility model (the Home-cell
Community-based Mobility Model, HCMM) that joins together both modelling
approaches. To define users’ movements, HCMM takes into consideration both
the fact that people tend to spend time close to preferred physical locations, and
the fact that people move also to meet each other because they have social rela-
tionships. HCMM shows the same statistical features of well-known real-world
mobility traces, and provides simple handles to customise the mobility patterns.
Therefore, it is a valuable tool to investigate opportunistic networking systems
under realistic mobility conditions. Final remarks and open issues are discussed
in Section 6.

2 Driving Forces

At the origin of the work on mobility models for opportunistic networks, we can
identify two main driving forces. On the one hand, the very features of oppor-
tunistic networks themselves, i.e., the fact that mobility is a key parameter to
design networking protocols. On the other hand, the availability of large traces
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about usage of wireless networks, that has shown that previously adopted mobil-
ity models are not able to reproduce real traces’ features. These complementary
aspects are discussed separately in the following sections.

2.1 Mobility in Opportunistic Networks

As sketched in Section 1, unlike in MANETs, in opportunistic networks a con-
tinuous end-to-end path has not to be established prior to exchange messages
between a sender and a receiver. As shown in Figure 1, forwarding is gener-
ally multi-hop, and based on the store-carry-and-forward paradigm. Nodes store
messages they have to forward and carry them until encountering another node
deemed more suitable to bring the message (closer) to the eventual destination.
Such paradigm is much more suitable to pervasive networking environments with
respect to the legacy MANET assumptions. Mobile devices (phones, PDAs, etc.)
carried by users may be just sporadically connected to a common network, e.g.
because users turn them off, or they get out of reach of other nodes, or due
to the intrinsic variability and instability of wireless links. Furthermore, despite
the increasing penetration of 3G and WiFi networks, assuming that the core
infrastructure will be so extended to seamlessly cover any mobile device users
may carry on is not very realistic.

Fig. 1. Example of communication in opportunistic networks

In this scenario mobility plays a crucial role, as it permits to bridge discon-
nected clouds, and ultimately enable end-to-end communications despite con-
nectivity impairments. Motivated by this remark, there has been a significant
body of work focused on collecting traces of people contact patterns, in order to
understand whether mobile devices carried by users could enable communica-
tions along the opportunistic networking paradigm. These works do not directly
provide mobility models. However, they show distinctive features of opportunis-
tic networking environments induced by real users’ movements. Reproducing
similar properties should be a target of any mobility model for such scenarios.

Works in [27,28] report about traces collected from mobile devices carried
by a total of 20 students, selected from two separate classes. Students carried
the devices during their daily life for two-and-a-half weeks (the first group)
and eight weeks (the second group). Background software collected contacts
between users by automatically establishing a Bluetooth connection when two
users met. The goal of the study was to understand whether simple opportunistic
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routing schemes (such as Epidemic Routing) could actually work over such an
opportunistic network. Therefore, authors investigated properties such as node
reachability, transfer capacity, delivery probability and delay.

Similar traces have been collected in the framework of the Haggle project
(http://www.haggleproject.org). The analysis of these traces [8] has mainly
focused on two fundamental features, i.e., the distribution of contact duration
and inter-contact times, showing that both distributions can be well approxi-
mated with a power law over a significant time frame. Assuming that the ideal
distributions (i.e., without any effect due to the limited duration of the mea-
surement period) are actually Pareto, authors have found analytical conditions
on the distribution’s shape for simple routing protocols (such as Epidemic) to
provide finite average delays. Unfortunately, these conditions are not satisfied in
the traces they have collected.

The final example we mention in this class is the Reality Mining dataset [10].
This work is particularly interesting because authors show that it is possible to
derive indexes of the underlying social structure between people participating to
the data gathering experiment. As we will discuss in more detail in Section 4,
considering the underlying social structure to drive mobility is one of the most
interesting approaches in the state of the art.

2.2 WLAN Traces Datasets

Traces discussed in the previous section require the instrumentation of mobile
devices to log pair-wise contacts between users. While providing quite precise
pictures of connectivity patterns, they are costly to setup. Therefore, researchers
have worked to exploit another set of traces available in the literature (WLAN
association traces) to infer mobility patterns of mobile users. Clearly, WLAN
association is much more easy to log than real contacts between users. In the
WLAN case, two nodes are assumed to be in contact if they are associated to the
same access point at the same time. Sometimes, correcting techniques are used
to reduce the inaccuracy of this rough assumption [20]. Despite the unavoidable
approximations, this approach permits to use rich data sets to understand some
feature of user mobility patterns.

The original motivation of collecting these data sets was to understand the
usage of wireless LANs (see, for example, [22]). This impacts the kind of statistics
that can be extracted. Typical statistics (see, e.g., [2,24]) are the number of users
per AP, the number of APs visited by users, the fraction of time spent by users
under each AP, etc. From a mobility modelling standpoint, the most interesting
features of this work is the fact that users tend to spend a large fraction of the
time under a few APs. This clearly highlights that users are attracted towards
specific physical places, where they spend most of their time. This remark is
at the basis of a very interesting family of mobility models that we describe in
Section 3.

Several mobility models have been developed by exploiting WLAN traces.
For example, authors of ModelT [17] and ModelT++ [23] exploit WLAN traces
to model the registration patterns of users to APs. This is clearly not enough

http://www.haggleproject.org
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to build an accurate mobility model for opportunistic networks, but might be
“good enough” to study other types of pervasive networking environments. An-
other interesting finding of these papers is the fact that popular models used
for MANET research (e.g., RWP) cannot reproduce the same registration pat-
terns observed in the real traces. These works thus confirm the need of improved
models for opportunistic networking scenarios.

An interesting work in this class is presented in [15]. Authors assume that
two nodes are in contact if they are connected at the same time with the same
AP. Then, based on this assumption, the number of peers each mobile node
encounters during the trace collection period is computed, and a corresponding
graph (an edge is added if two nodes have met) is build . This graph, that
shows the overall connectivity opportunity of the network, reveals small-world
properties [32]. Similar properties appear also in the models used in the social
networks field. This is a strong indication about exploiting social network models
to define the basic mechanisms of users’ movements, which is a second trend
actually pursued in mobility model for opportunistic networks (see Section 4).

To conclude this section, it is worth mentioning a set of works that, starting
from WLAN traces, try to define users mobility models. Specifically, we men-
tion works in [20,33,34]. We do not describe them in detail because what they
provide is actually a set of distributions that fit some statistic (e.g., the speed
distribution) observed in the trace. While the fitting is usually extremely good
([34]), these papers do not propose a general mobility model that describes users
movements. Therefore, their applicability outside the specific environment they
have been derived from is not clear.

3 Location Driven

Models we describe in this section typically rely on WLAN traces as in the cases
reported in Section 2.2 (sometimes they actually use the same traces indeed).
However, they do not simply fit some distribution to model particular statistics
extracted from the traces. Instead, they start by proposing a general model of
how users move, and then show that the model – properly tuned – is able to
match statistics extracted from the traces. This approach is more valuable, as it
provides a comprehensive model of users’ behaviour, that can be used to study
opportunistic networks in arbitrary scenarios.

As mentioned in Section 1, the models we describe in this section capture
one very significant feature of human movements, i.e., the fact that people move
towards and spend time around (a few) preferred physical places, and do not
wander in the space at random. The importance of identifying physical places
where people preferentially roam is actually seen as one of the main pieces of
context that should be exploited to design pervasive applications, in general (see,
e.g., [18]).

The work in [16] proposes the Weighted Waypoint Mobility Model (WWP),
as a simple extension of the random waypoint model. In WWP users select
movements’ destinations among a set of possible waypoints, according to a
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distribution that reflects the users’ preference for waypoints. The probability
of selecting a waypoint depends on the previous waypoint (i.e., the location a
user is leaving), and the time of the day. The pause time in each waypoint is also
dependent on the time of the day. To provide a concrete application example,
authors tuned the waypoint transition and pause time distributions after survey-
ing the behaviour of students in USC campus. This model captures the fact that
locations are not equally preferable for users, and the fact that the time spent
in different places may depend on that place and on the time of the day. The
main limitations of this model are that it uses aggregate statistics to define the
behaviour of all users, thus resulting in all users behaving (statistically) exactly
the same. Furthermore, it does not consider social interactions between users,
which is one of the fundamental forces driving users movements.

The fact that users tend to visit preferentially specific places is also the basis
for the (richer) model in [12]. This model relies on the concept of mobility profile.
A profile is a set of places a user visits during a day. To reduce variability
across users, the model actually considers clusters of profiles, e.g., it clusters
together mobility profiles that differ for just a few places. Each user can follow
different representative profiles during different days. The model of their mobility
is therefore represented as a mixture of profiles (see [12] for the details about how
the mixtures can be evaluated). This approach clearly accounts for preferential
visits of users to specific places. However, the model is a bit involved, and does
not provide intuitive knobs to tune it in scenarios different from the traces it has
been tuned on.

A flexible and pretty intuitive model is presented in [14]. The main idea is
to assign a community to each user, as a physical place where users are likely
to spend a significant part of their time, and re-appear periodically (e.g., their
working place). Authors model single-user behaviour through two states: local
and roaming epochs. In local epochs users move (following a RWP-like model)
within their community, while in roaming epochs they are free to move in the
whole simulation space. Transitions between epochs is governed by a simple
two-state Markov chain. In the simplest version of the model, time is divided in
concentration movement periods (CMP) and normal movement periods (NMP).
Periods are of fixed length and regularly alternate. The parameters of the Markov
chain defining transitions between local and roaming epochs change between
CMPs and NMPs. The main idea is to model different periods of the day or
days of the week through the alternation of CMPs and NMPs. Indeed, people
behave (and move) quite differently, e.g., during working hours and leisure time.
The last enrichment authors propose is defining hierarchies of communities to
be used during roaming epochs: instead of wandering in the whole simulation
space, users select their destination (during roaming epochs) preferentially inside
regions physically close to their “home” community (in which they stay during
local epochs). By exploiting the same line of reasoning (i.e., definition of local
and roaming epochs, and division of time in alternating periods), the model can
be further enriched. For example, authors show that the model is able to predict
distinctive features of several well-known traces in the literature by using three
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time periods and a six-tier communities definition. A similar modelling approach
(even though the model is much less intuitive), is also used in [29]. While the
model in [14] is very flexible in defining user behaviour, it still does not permit
much customisation on a per-user basis. Furthermore, it is basically limited to
describing the users’ movements, without providing any insight about the basic
mechanics of users’ behaviour that result in the described movements. In the
end, this model does not shed light on the very features of people behaviour
that drive their movement patterns.

The last drawback we have highlighted is actually common to all models
discussed in this section and is, in our opinion, the main limitation of this body
of work. This limitation is overcome by the models we discuss in the next section.

4 Social Inspired

The set of models we describe in this section aim at characterising user move-
ments as a consequence of the social relationships people establish between each
other. This capture a second very important aspect of human mobility (be-
sides attraction towards physical places). People actually move (also) to interact
with each other, and such interactions are defined by the social “links” between
themselves. This remark actually opens a very interesting direction for mobility
models, that is being pursued over the last few years. There has been a lot of
work in the social network field to model networks of people on the basis of their
social interactions ([21,32,1,9], just to mention a few well-known examples). This
body of work could be highly leveraged to describe user behaviour and providing
sound mobility models emanating directly from it.

To the best of our knowledge, the first work proposing such approach was [13].
The most interesting idea of this model is organising users in groups (cliques),
where groups are identified according to the social network of relationships be-
tween users. Then, a physical location is assigned to each group, and users are
forced to follow a predefined periodic schedule to visit all locations representing
the groups they are part of. Despite resulting in a quite rigid model, this is the
first work exploiting social structures to organise users in groups, and define
their mobility patterns.

Much more complete and flexible models exploiting the same idea are pre-
sented, respectively, in [25], and [31]. In the following of the section we will
describe the former work only, as the latter follows pretty much the same ideas,
but provides less strong evidence about matching real traces.

The work in [25] describes the Community-based Mobility Model (CMM). In
CMM every node belongs to a social community (group). Nodes that are in the
same social community are called friends, while nodes in different communities
are called non-friends. Relationships between nodes are modelled through social
links (each link has an associated weight). At the system start-up all friends
have a link to each other. Also two nodes that are not friends can have a link,
according the rewiring probability (pr) parameter. Specifically, for each node,
each link towards a friend is rewired to a non-friend with pr probability. This
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definition of social communities and social links is pretty close to the caveman
model used in the social network field (see, e.g., [32]).

Social links are then used to drive node movements. Nodes move in a grid,
and each community is initially randomly placed in a square of the grid. Nodes’
movement is made up of two component: first, a node has to select the cell
towards which to move. A node selects the target cell according to the social
attraction exerted by each cell on the node. Attraction is measured as the sum
of the links’ weights between the node and the nodes currently moving inside
or towards the cell. The target cell is selected based on the probabilities defined
by cells’ attraction (i.e., if aj is the attraction of cell j, then the probability of
selecting that cell is aj/

∑
j aj). After selecting the target cell, the “goal” within

a cell (the precise point towards which the node will be heading) is selected
according to a uniform distribution. Finally, speed is also selected accordingly
to a uniform distribution within a user-specified range. CMM also allows for
collective group movements. Specifically, once every reconfiguration period nodes
of each group select a (different) cell and move to that cell. Reconfigurations are
synchronous across groups, i.e., all groups start moving to the new cell at the
same time. Therefore, during reconfigurations nodes of different groups may get
in touch.

CMM shows several interesting features. As in [13], users are organised in
groups according to social network models. However, the mechanisms driving
users movements are less static and much more sensible. In CMM users move-
ments are driven by their social relationships. Therefore, users spend most of
their time together with friends, even though they go once in a while “visit-
ing” people they have “less solid” social relationships with. Furthermore, CMM
includes also collective group movements (once every reconfiguration interval),
that can be exploited to model, for example, change of classes in University
campuses. Simulation results [25] have shown that CMM is able to reproduce
the main statistical features of pair-wise contacts between devices (specifically,
authors have compared the distributions of contact and inter-contact times pro-
vided by their model with traces used by [8], showing that they are in good
agreement).

To the best of our knowledge, CMM is the most flexible and complete example
of mobility model inspired by social network theories. However, despite consid-
ering relationships between people, CMM does not include the other important
aspect of human mobility, i.e., the attraction towards physical places. Therefore,
we have proposed a new mobility model taking into account both aspects.

5 Joining Social and Physical Attraction

Main concern about models seen in Section 3 and Section 4 is that they all
capture a real aspect of human mobility, but just a single one. Our belief is
that location attractions and social attractions are equally important drivers
of node mobility, and therefore both of them should be included in a mobility
model. In fact, using one and ignoring the other could lead to mobility patterns
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not representative of the most frequent mobility scenarios. For example, in [36]
we highlighted that in CMM nodes are prone to what we called the gregarious
behaviour : all nodes of a community follow the movements of the first node of
that community that has decided to exit the physical location where they were
all roaming. The condition for the gregarious behaviour to take place is that the
probability that all nodes remain in the home cell after the first node has moved
out approaches zero. In [37] we proved that this condition holds for the majority
(and most common) values of CMM’s configuration parameter, thus revealing
that the gregarious behaviour is not a mishap but a feature of the model. In
real life, users can actually act like this, e.g. when all colleagues follow the first
one who has suggested to go to the canteen, but, in the majority of situations,
not all friends follow the first friend who decides to go out of the community. In
conclusion, the gregarious behaviour does not hold in general.

Our work in [37] shows how to avoid the gregarious behaviour by joining
the concepts of CMM and the concept of preferential locations of nodes. The
resulting Home-cell Community-based Mobility Model (HCMM) maintains the
social model of CMM, but introduces a different way of computing attractions
and of making movement decisions. In HCMM each node is attracted by its home
cell (i.e. the cell to which its community is assigned after a reconfiguration),
based on the social attraction exerted on that node by all other nodes that are
part of its community, irrespective of their current physical locations. In a sense,
the attraction between nodes of the same group is transferred to the place where
they usually roam and, hence, are expected to be found (e.g. students go to the
Faculty building when they search for a professor, but here they may also find out
that he has his day off). Similarly, the social attraction towards an external cell is
evaluated based on the social relationships with nodes having their home in that
cell. When a node is in its home cell, the cell for the next movement is selected
as in CMM (but the attraction of the cells is constant within a reconfiguration
period due to the new algorithm for computing attractions). When a node is
outside its home cell, it will continue to roam within the external cell with a
probability pe, and it will go back home with probability 1 − pe. HCMM allows
us to model a kind of scenario in which nodes are attracted towards a place
(e.g., their office building) in which usually people of their group roam. Nodes
are also attracted outside that place because of social relationships between
groups, and spend some time in the foreign groups before heading back home.
HCMM reproduces a world where nodes are attracted toward specific locations,
but these are selected based on the friends which usually roam there, i.e in a
social-aware fashion. Thus, HCMM succeeds in merging location attractions and
social attractions.

When evaluating the performance of networking protocols under a specific
mobility pattern, one should be able to configure the underlying mobility model
for obtaining a desired behaviour. For example, the average time each node
remains within its home community (E [Tin]) and the average time it stays out-
side (E [Tout]) are key factors that strongly impacts the performance of routing
protocols for opportunistic networks. In fact, each round-trip movement is a
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Fig. 2. Average time a node roams within and outside its home cell as functions of q

time-disjointed connection between two potentially disconnected subnetworks.
Knowing E [Tin] and E [Tout] means knowing which is the effective connectivity
level available for the routing protocols or, in other word, which is the physical
upper bound on their performance. In [37] we found that, while in CMM these
values change during the evolution of the network, in HCMM are constant. This
means that, by initially tuning appropriately the configuration parameters, we
can obtain the desired statistical behaviour for E [Tin] and E [Tout]. In CMM this
is not possible because the average time a node is within or outside its home
cell varies with the state of the system, i.e, the number of nodes that are cur-
rently in each cell. Therefore, in CMM it is very hard to set model parameters
to achieve the desired nodes’ behaviour. These observations are confirmed by
Figure 2, which plots E [Tin] and E [Tout] for a generic node i under CMM and
HCMM as functions of q (with normalised time). q is the number of nodes of i’s
home cell that are currently outside and its value ranges from 1 to n − 1, where
n is the number of nodes initially assigned to the home cell (here n = 10).

HCMM has been shown to match realistic mobility patterns. In fact, simula-
tion results [37] indicate that contact time and inter-contact time distributions
for HCMM matches that of CMM model, which has the same pattern of the
traces used by [8].

6 Future Directions

In this chapter we have surveyed and discussed research efforts aimed at refining
traditional mobility models used for MANET research in the framework of op-
portunistic networking. Despite the results we have highlighted, we believe there
are still issues that need to be satisfactorily addressed.

Collection and analysis of real traces is one of the pillars of the new wave of
research on mobility models. However, recent papers [34,19,5] have clearly shown
that the understanding and analysis of popular traces has still to be refined.
Specifically, [5] has shown that the shape of important distributions (such as
the inter-contact times between users) changes depending on the size and length
in time of measurements. This is an important result that is likely to generate
significant further work, because it is still not clear how much the statistical
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properties extracted from available traces represent very features of humans
mobility, and how much they are artefacts of the measurement methodology.

Another issue related to traces exploitation is how to exploit them without
sticking too much to the specific settings they have been collected in. An in-
teresting initial work dealing with this issue has recently been published in [6].
In this paper authors propose a connectivity trace generator (CTG), that takes
as input real connectivity traces, and produces traces with similar connectivity
statistical properties, but with scaled parameters (e.g., the number of nodes).
Tools like CTG are required to make trace-based analyses general enough by
abstracting from the trace collection setup. This is required in order to achieve
general understanding of opportunistic networking systems, based on realistic
(but general enough) mobility patterns.

Finally, we believe that exploiting social networks results to describe users’
behaviour is a very promising idea that has just started to be explored. CMM and
HCMM are initial efforts in this direction. Models presented in this paper should
be further extended to include more complex (and realistic) users’ behaviour. For
example, users community are clearly not closed, but evolve over time following
the evolution of social relationships between people. Users belong to more than
one community, and may change the “home” community they belong to over
time (e.g., at a day scale). Grasping these features into simple and, possibly,
analytically tractable mobility models is a challenge for future works.
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Abstract. Recent theoretical and applied works have demonstrated
the appropriateness of wavelets for analysing signals containing non-
stationarity, unsteadiness, self-similarity, and non-Markovity. We applied
wavelets to study packet traffic in a packet switching network model, fo-
cusing on the spectral properties of packet traffic near phase transition
(critical point) from free flow to congestion, and considered different
dynamic & static routing metrics. We show that “wavelet power spec-
tra”and variance are important estimators of the changes occurring with
source load increasing from sub-critical, through critical, to super-critical
and it depends on the routing algorithm.

Keywords: OSI Network Layer; wavelet spectra, packet traffic,
congestion.

1 Introduction

The identification of the conditions of traffic congestion in the Internet and other
types of communication networks, such as wide area networks (WANs), local area
networks (LANs), wireless communication systems, ad-hoc networks, and sen-
sors networks, is an important area for data analysis and modeling. A general
paradigm of these networks is represented by the Packet Switching Network tech-
nology. A Packet Switching Network (PSN) is a data communication network
consisting of a number of nodes (i.e., routers and hosts) that are interconnected
by communication links; see [1], [2] and the references therein; see also [3], [4],
[5], [6], [7]). In this paper, we analyse packet traffic in a data communication
network model of the packet switching type using an ensemble of wavelet-domain
statistical methods. We apply these methodology to the analysis of the number
of packets in transit (NPT) from their sources to their destinations in our PSN
model [3], [8] for various routing algorithms and network connection topologies
when source loads are close to the critical ones, i.e., the phase transition points
from free flow to congestion. We characterize the critical point by the level of
packets production at sources in the PSN model. In our model we consider dy-
namic and static routing algorithms. Data exploratory analysis of PSN signals
showed some statistical difficulties: the mean is not independent by the vari-
ance, signals need to be denoised or thresholded, they are non stationary, and
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may have self similarity and multiscale properties. Many studies have indicated
the importance of capturing scaling properties when analysing and modeling
packet traffic [9], [10]; however, the influence of long-range dependence (LRD)
and marginal statistics still remains on unsure footing. Tackling these problems
will lead to improved understanding of the effects of network connection topol-
ogy, routing and cost parameters on packet traffic dynamics. With these topics
in mind we organise the paper as follows. In Section 2 we provide a brief de-
scription of our PSN model [3], [8]. Section 3 provides a justification for the
appropriateness of using wavelets in our study; and sections 4 and 5 reports on
results and conclusions.

2 Packet Switching Network Model

We study packet traffic behaviour of the PSN model, developed in [3], [8], and
implemented as a C++ simulator called Netzwerk-1 [11]. The PSN model is an
abstraction of the Network Layer of the ISO OSI Reference Model [1], [2] and
like in real networks is concerned primarily with packets and their routings; it
is scalable, distributed in space, and time discrete. We use the following naming
convention for various considered PSN model set-ups. We denote the PSN model
parameters by Lα

β(L, ecf, λ), where α = p (periodic) or np (non-periodic) stands
for periodicity of network connection topology Lα

β(L) isomorphic to a lattice of
type β (e.g., two-dimensional square or triangular lattice) with L nodes in the
horizontal and vertical directions. The parameter ecf represents an edge cost
function. The PSN model set-up is using ecf = ONE, or QS, or QSPO; the ecf
ONE assigns a value of ‘one’ to each edge in the lattice L. Thus, this results in
a static routing. The ecf QS assigns to each edge in the lattice L a value equal
to the length of the outgoing queue at the node from which the edge originates.
The ecf QSPO assigns a value that is the sum of the ecfs ONE and QS.
The routing decisions made using ecf QS or QSPO imply adaptive or dynamic
routing, where packets have the ability to avoid congested nodes during the PSN
model simulation. The parameter λ stands for the source load value. In the PSN
model each node performs the functions of a host and a router and maintains
one incoming and one outgoing queue which is of unlimited length and operates
according to a first-in, first-out policy. At each node, independently of the other
nodes, packets are created randomly with probability λ corresponding to the
source load. In the PSN model all messages are restricted to one packet carrying
only the following information: time of creation, destination address, and number
of hops taken. In the PSN model time is discrete and we observe its state at the
discrete times k = 0, 1, 2, . . . , T , where T is the final simulation time. The set-up
of the PSN model is initialized with empty queues and the routing tables are
computed. At each simulation step, the time-discrete, synchronous and spatially
distributed PSN model algorithm consists of the sequence of five operations:
(1) Update routing tables, (2) Create and route packets, (3) Process incoming
queue, (4) Evaluate network state, (5) Update simulation time; see [3] and [8]
for details. In the PSN model, for each family of network set-ups, which differ
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only in the value of the source load λ, values of λsub−c for which packet traffic is
congestion-free are called sub-critical source loads, while values λsup−c for which
traffic is congested are called super-critical source loads. The critical source load
λc is the largest sub-critical source load, i.e., the maximum source load, at which
the PSN network traffic is free from congestion Thus, λc is a phase transition
point from free flow to congested state of a network. In this paper we present
simulation results for PSN model set-ups with a network connection topology
that is isomorphic to Lp

Sq(16) (i.e., a two-dimensional periodic square lattice
with 16 nodes in the horizontal and vertical directions) and source load values:
SUBCSL (i.e., sub-critical source load λsub−c= λc-0.005), CSL (i.e., the critical
source load λc) and SUPCSL (i.e., sup-critical source load λsup−c= λc+0.005).
Depending on the analysis type we consider simulations with the final simulation
time T ∈ [8000, 12800]. For the considered PSN model set-ups the λc values are
as follows:λc = 0.115 for Lp

Sq(16, ONE, λ), λc = 0.120 for Lp
Sq(16, QS, λ) and

λc = 0.120 for Lp
Sq(16, QS, λ).

3 Wavelet-Domain Statistics

Wavelet theory has a profound impact on signal processing as it offers a rigorous
mathematical approach to the treatment of multiresolution. Benefits of carrying
out an analysis in the wavelet domain, rather than in the domain of original
observations, come from decorrelation and regularization considerations, as well
as dimension reduction properties of the wavelet transforms [9]. There is now
days a wealth of wavelets statistics that can be effective in analysing networks;
for sake of space we present the most interesting methodologies. Using wavelets
we study spectral properties of number of packets in transit from their sources to
their destinations in our PSN model for various routing algorithms and network
connection topologies when the mean flow density of packets into PSN model is
closed to the phase transition point [12]. [3], [4], [5], [6], [7], [9], [10], [13], [14].

3.1 Denoising, Thresholding

In statistics, the recovery of the underlying function from a noisy signal is gen-
erally modeled using regression models; several authors have proposed wavelet
estimators [15]. Consider the standard univariate regression: yi = f(xi) + εi,
where i = 1, ...., n, and εi are independent N(0, σ2) random variables; f is the
“true”function. Assuming that the noise in the wavelet transform is, at each
resolution level, Gaussian noise that is approximately stationary, we can refor-
mulate the problem in terms of wavelet coefficients: ŵjk = wjk + εjk, where
j is the level (j = 0, ....., J − 1), and k, the displacement (k = 0, ...., 2J − 1),
where n = 2J is the length of the signal. It is often reasonable to assume that
only a few large coefficients contain information about the underlying function,
while small coefficients can be attributed to noise. Shrinkage consists in attenuat-
ing or eliminating the smaller wavelet coefficients and reconstructing the profile
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using mainly the most significant wavelet coefficients and all the scaling coeffi-
cients. Several shrinkage approaches have been proposed. For example, the ‘hard’
threshold approach selects coefficients using a ‘keep or kill’ policy, while using
the ‘soft’ thresholding, the absolute values of coefficients are shrunk by a value
equal to the threshold. A meaningful approach we have challenged our data is
the data-dependent change-point statistics proposed by Ogden and Parzen [16].
Data-adaptive thresholds might become very important in analyzing traffic in
real networks because hypothesis testing procedures can be used to test the
appropriateness of various thresholds to the data under different assumptions.

3.2 Mean - Variance Stabilization

We found that for supercritical load signals the variance of the noise increases
with the mean of the signal (see Figure 1); therefore the straightforward appli-
cation of wavelet shrinkage is not appropriate. A possible approach consists of
transforming the problem to one where the variance of the noise is constant with
respect to the mean of the signal, i.e. apply a variance stabilization transform to
restore homoscedasticity. Fryzlewicz and Nason [17] proposed a Haar-Fisz (HF)
transform for Gaussianising and stabilizing the variance of sequences of Pois-
son counts. The HF transform is performed in linear computational time as a
computationally straightforward modification of the Discrete Haar Transform.

3.3 Detecting Self-similarity and Scaling Properties

Multiscale properties have been observed in packet traffic since the landmark
paper [13]. Meaningful approaches to detect fractal and self-similarity and scaling
property behaviours of the signal are the estimation of fBm and wavelet variance.
The wavelet variance, [18], is a scale-by-scale decomposition of the variance of
a signal. An estimate of the wavelet variance at a given scale is obtained by
summing the squares of the wavelet coefficients (usually only those not affected
by boundary conditions) and dividing by the number of them. When a bivariate
signal is available, summing, at a given level, cross-products of coefficients with
the same location will instead lead to an estimate of the wavelet covariance
at that level. The wavelet cross-covariance at a given level and lag ô can be
estimated by summing cross-products of coefficients at locations whose distance
from each other is equal to the given lag. Estimates of the wavelet correlation
and cross-correlation are obtained by dividing the-wavelet covariance and cross-
covariance by the product of the wavelet standard deviations. An approximate
100(1 − 2p)% confidence interval for the MODWT (maximal overlap discrete
wavelet transform) wavelet correlation at level j can be constructed, where p is
a significance level, see [19]. A key property to most of multiscale systems is the
self-similarity, which can be analysed by means of fractional brownian process
estimators. A Gaussian stochastic process, BH(t), with mean zero, BH(0) =
0, EBH(t)2 = σ2t2H for some σ > 0 and 0 < H < 1, and with stationary
increments is fractional Brownian motion (fBm) [20]. When H = 1/2, fBm is
reduced to Brownian motion. FBm BH(t) is an example of a self-similar process
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Table 1. Wavelet estimates of fractional Brownian motion of NPT signals of PSN
model set-ups specified in the first column. The second column provides estimates
based on second order discrete derivative (SODD). The third column provides wavelet
based estimates and the fourth column provides estimates based on the linear regression
in loglog plot of the variance of detail versus level.

PSN model set-up SODD b.e. Wavelet b.e. Regress b.e.
Lp

Sq(16, ONE, SUBCSL) 0.5000 0.4914 0.4652
Lp

Sq(16, ONE, CSL) 0.4859 0.4869 0.4280
Lp

Sq(16, ONE, SUPCSL) 0.4871 0.4926 0.4726
Lp

Sq(16, QS, SUBCSL) 0.4979 0.4991 0.4770
Lp

Sq(16, QS, CSL) 0.4940 0.4966 0.4884
Lp

Sq(16, QS, SUPCSL) 0.5096 0.5032 0.4565
Lp

Sq(16, QSPO, SUBCSL) 0.4753 0.4694 0.4554
Lp

Sq(16, QSPO, CSL) 0.4863 0.4875 0.4928
Lp

Sq(16, QSPO, SUPCSL) 0.5222 0.5176 0.4416

with exponent H , that is for any c ≥ 0, processes BH(ct) and cHBH(t) have
the same finite dimensional distributions and can serve as a stochastic model for
nonstationary fractal data [9]. A meaningful approach to detect self-similarity is
the estimation of the fBm. The main problem that occurs when using fBm as a
model is to properly estimate the H parameter. Many H estimators are available
and the choice of a method is a difficult issue. Among them, the wavelet based
is one of the most interesting since it naturally matches the structure of the
fBm process for two reasons. First, although fBm is nonstationary, its wavelet
transform is stationary. Second, even if fBm is long range dependant, its wavelet
coefficients are almost uncorrelated. From a practical point of view, two reasons
also can motivate the use of this method: its complexity is only O(N) and it is
known that the wavelet based estimator has interesting asymptotical properties.
Namely, for 1/f processes this estimator is efficient. From now on, we will focus
on properties of discrete processes denoted BH [i] (i.e., fBm with a starting
value BH [0] = 0, zero mean, Gaussian, with stationary increments and second
order nonstationary). [20]. In this paper we estimated the fBm of NPT signals
of various PSN model set-ups for source loads below, at and above the critical
loads, see Table 1. The results are obtained using wfbmesti in Matlab.

4 Results and Discussions

In this article we use wavelets to analyse time series of PSN model with differ-
ent traffic load, topology, and routing characteristics. Figure 1 shows the time
plots of the NPT (number of packets in transit) signals for the PSN model
set-up Lp

Sq(16, QSPO, λ),respectively, for the considered SUBCSL , CSL and
SUPCSL source loads. The time plots of NPT signals for PSN model set-up
Lp

Sq(16, ONE, λ), for λ=SUBCSL, CSL, SUPCSL, are in [12] and for PSN
model set-ups Lnp

Sq(16, ONE, λ) and Lnp
Sq(16, QS, λ), for λ = SUBCSL, CSL,
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Fig. 1. Time plots of the NPT signals for the PSN model set-ups Lp
Sq(16, QSPO, λ) for

λ = SUBCSL (blue graph), λ = CSL (green graph) and λ = SUPCSL (red graph)
in the time window (0, 8000)

SUPCSL, are in [14]. These plots show that there are remarkable differences
among the graphs of NPT signals corresponding, respectively, to SUBCSL (blue
graph), CSL (green graph) and SUPCSL (red graph) loads for PSN model set-
ups with the same type of ecf . Similar differences have been observed for other
PSN model set-ups not shown here, e.g., [12].

The differences in the nature of fluctuations among these graphs are even more
noticeable after detrending NPT signals. We detrend NPT signals corresponding
to SUBCSLs and CSLs, respectively, by removing from each NPT signal its
sample mean. The NPT signals corresponding to SUPCSLs are detrended by
removing, respectively, their upward linear trends first, follow by the removal of
the sample means from their residuals.

Since in congested network states mean and variance are not steady, therefore,
we conduct a Haar-Fisz (HF) transform on the DNPT signals. Our results (not
display here) show that the variation of calculated mean and variance has been
reduced for SUB and CSL source load values. Thus, HF transform is appearing
to be successful in decreasing of the range of variation for our dataset. Note that
HF transform does not change the shape of the series, but it narrows down the
range of variation. This fact implies that variance stabilization on the dataset
is improved compared with the original data. Therefore, we may conclude that
HF transform could be used as a classifier to separate free flow network states
from the congested ones by using HF transform on the DNPT series. We have
also carried out exploratory analysis of DNPT signals (not shown) for other PSN
model set-ups.

We show in each left column of Figures 2, 3 and 4, the scaled wavelet spec-
tra of DNPT signals of the set of PSN model parameterization considered here,



274 P. Liò et al.
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Fig. 2. Scaled wavelet power spectra corresponding to local maximum of global wavelet
power spectra within cone of influence (COI) of DNPT signals (left column) and HF
transformed DNPT signals (right column) of PSN model set-up Lp

Sq(16, ONE, λ) for
λ = SUBCSL in the first row, λ = CSL in the second row, λ = SUPCSL in the third
row

and in each right column of these figures the scaled wavelet spectra, respec-
tively, of the HF transformed DNPT signals. We provide results for PSN model
set-up Lp

Sq(16, ONE, λ) in Figure 2, for Lp
Sq(16, QS, λ) in Figure 3 and for

Lp
Sq(16, QSPO, λ) in Figure 4. In each of these figures the first row provides

results for λ = SUBCSL , the second one for λ = CSL, and the third one for
λ = SUPCSL.

We have carried out a comparative analysis of the static and adaptive routing
with respect to network load and topology. Wavelet spectral properties show
significant differences when load changes from SUBCSL to SUPCSL, and these
changes depend on the routing type, i.e. when static routing (ecf ONE) is
replaced by adaptive routing (ecf QS or QSPO ). Report on performances of
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Fig. 3. Scaled wavelet power spectra corresponding to local maximum of global wavelet
power spectra within cone of influence (COI) of DNPT signals (left column) and HF
transformed DNPT signals (right column) of PSN model set-up Lp

Sq(16, QS, λ) for
λ = SUBCSL in the first row, λ = CSL in the second row, λ = SUPCSL in the third
row

PSN model set-ups with different types of network topologies will be provided
elsewhere. As a summary, the spectral properties of number of packets in transit
change with the increase of source load values from sub-critical, through critical
to super-critical ones for each PSN model set-up (i.e., each selection of network
connection topology and edge cost function). Additionally, for each fixed network
connection topology they are dependent on the routing algorithm being used.

To determine the nature of the dependency in NPT signals we estimated the
Hurst parameter of the increment of DNPT signals using the discrete wavelet
transform method. The estimates were obtained using waveletFit in R and they
are listed in Table 2. Based on these estimates and their confidence intervals we do
not detect LRD in the increment of DNPT signals for PSN model set-ups
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Fig. 4. Scaled wavelet power spectra corresponding to local maximum of global wavelet
power spectra within cone of influence (COI) of DNPT signals (left column) and HF
transformed DNPT signals (right column) of PSN model set-up Lp

Sq(16, QSPO, λ) for
λ = SUBCSL the first row, λ = CSL the second row, λ = SUPCSL the third row

Fig. 5. Wavelet variance of DNPT signals of Lp
Sq(16, QSPO, λ) for λ = SUBCSL in

the left plot, λ = CSL in the middle plot and λ = SUPCSL in the right plot
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Table 2. Hurst exponents estimates (second column) with confidence intervals (third
column) of increment process of DNPT signals (going from 4096 to 12800) of PSN model
set-ups specified in the first column. The estimates were obtained using waveletFit in
R function.

PSN model set-up Hurst Exp. Est. Confidence Interval
Lp

Sq(16, ONE, SUBCSL) 0.46 (0.41, 0.5)
Lp

Sq(16, ONE, CSL) 0.45 (0.42, 0.48)
Lp

Sq(16, ONE, SUPCSL) 0.52 (0.47, 0.56)
Lp

Sq(16, QS,SUBCSL) 0.46 (0.38, 0.53)
Lp

Sq(16, QS,CSL) 0.44 (0.34, 0.54)
Lp

Sq(16, QS,SUPCSL) 0.51 (0.48, 0.54)
Lp

Sq(16, QSPO, SUBCSL) 0.40 (0.3, 0.49)
Lp

Sq(16, QSPO, CSL) 0.44 (0.34, 0.55)
Lp

Sq(16, QSPO, SUPCSL) 0.51 (0.48, 0.54)

Lp
Sq(16, ONE, SUBCSL), Lp

Sq(16, ONE, CSL) and Lp
Sq(16, QSPO, SUBCSL).

However, the results for Lp
Sq(16, ecf, SUBCSL) for λ = ONE, QS and QSPO

suggest possibility of LRD in our data. Since the normality test of D’Agostino of
increment NPT (INPT) signals showed that INPT signals are Gaussian, the Aug-
mented Dickey-Fuller unit root test showed that INPT signals are stationary (and
DNPT non-stationary) and the ’variance plot method’ showed that INPT signals
are self-similar we modeled NPT signals using fBm, Table 1. The Hurst parameter
estimates in Table 2, seems to be consistent (with some exceptions) with wavelet
estimates of fractional Brownian motion of NPT signals listed in Table 1.

Finally, we computed the wavelet variance, covariance and correlation of
DNPT signals. In Figure 5 we show the wavelet variance of DNPT signals of
Lp

Sq(16, QSPO, λ) for λ = SUBCSL in the left plot, for λ = CSL in the middle
plot and for λ = SUPCSL in the right plot. The wavelet variance of SUPCSL
signals (and the covariance of SUPCSL versus CSL or SUBCSL) moves to
higher scales for QSPO. We found a confirmation of this behaviour with a large
data set of SUBCSL, CSL, SUPCSL. This suggests that wavelet variance
analysis may become an insightful approach to detect LRD and phase transition
associated to abrupt changes in the PSNs due to increase in load.

5 Conclusions and Future Directions

This paper addresses a few methodological approaches to analysing performance
of packet traffic of PSNs. It demonstrates the applicability of these methodolo-
gies in a case study of simulation data of PSN model. In particular, it proposes
a comparison of packet traffic dynamics under different conditions, from free
flow to congestion. We study how this dynamics is affected by the coupling
of network connection topology with routing algorithms. We have shown that
wavelets power spectra are important estimators of the desiderable characteris-
tics of a PSN traffic. Clearly wavelet-based statistics opens a new direction in
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the analysis of networks signals. Future work will focus on multiscale properties
of wavelet analysis, and on dynamical properties of networks generated from
combinations of motifs, i.e. basic patterns of interconnections (small connected
subgraphs). We believe that this approach may also lead to insights on designing
modular and self-organized networks and identify hidden network communities
and unstable nodes.
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Abstract. One of the challenges in a military wireless sensor network is the de-
termination of an information collection infrastructure which minimizes battery
power consumption. The problem of determining the right information collection
infrastructure can be viewed as a variation of the network design problem, with
the additional constraints related to battery power minimization and redundancy.
The problem in its generality is NP-hard and various heuristics have been de-
veloped over time to address various issues associated with it. In this paper, we
propose a heuristic based on the mammalian circulatory system, which results in
a better solution to the design problem than the state of the art alternatives.

1 Introduction

Wireless sensor networks are an important aspect in military networks for tracking and
defending military installations. An array of sensors of many different modalities (in-
cluding acoustics, chemical, thermal, and video) are used in several military contexts,
including but not limited to defending sensitive installations like military bases or strate-
gic objectives, detect and track movements of enemy forces, monitor movements of ve-
hicles, etc. Sensors may also be mounted on airborne blimps or surveillance aircraft to
collect information while flying over an area under observation.

In the common and prevalent deployments of present day US military sensor net-
works, the sensors themselves tend be relatively static. Sensors may be mounted on
pre-selected locations, e.g. on the top of a set of buildings in an urban area, and connect
via wireless or wired links to a processing location, usually in a relatively safe loca-
tion. The sensors situated in locations that are relatively inaccessible may have wireless
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connectivity to the processing location either directly or indirectly through other sensor
nodes acting as relays. The sensors in such locations also tend to be running on batter-
ies, and need to maximize the battery longevity. On occasions, soldiers may reposition
the sensors to improve coverage, but such repositioning is relatively infrequent.

Another issue facing the military wireless sensor networks is that of reliability. Due
to the remote location of some of the sensors, especially those located at the perimeter
of the sensor field, or others that may be relatively easy to access by outsiders, a sensor
can be easily destroyed. Thus, the sensor nodes are susceptible to a high rate of failures.

While such a present day environment is very different than the more futuristic sce-
narios of smart dust [13] or fully mobile ah-hoc wireless networks, it still poses many
interesting technical challenges that remain unsolved. When a sensor network needs to
be deployed, the location of the sensor nodes is often determined by criteria such as ac-
cessibility, availability of power, location.s suitability for monitoring etc. The location
of each sensor can be determined relatively accurately using GPS technology. Once the
locations are determined, the team planning the layout of the sensor field needs to de-
termine the set of links among the different sensors that need to be enabled. The set of
links are chosen so as to get the information from the sensors to the central processing
location. The choice of the links determines the configuration of the sensor nodes for
communication purposes. Making the choices to have the best sensor network is the
wireless sensor network design problem.

The network design problem needs to be solved before the actual deployment of the
sensor network. During the actual deployment, soldiers install the sensors, and recon-
figure them so that the right links are active. The sensor network can then operate to
send the monitored information back to the processing locations, or to the intermediate
processing units.

In this paper, we consider the possible solutions to network design, and propose a
biologically inspired solution for the same. The biological approach of network design
is inspired by the blood circulation system in humans and other mammals. We also
demonstrate several advantages of the biologically inspired solution over the traditional
approaches for network design when used in the context of sensor networks.

We begin first with a formal statement of the problem in Section 2, followed by
a review of the state of the art techniques for network design in Section 3. This is
followed by a brief description of the circulation system in biology in Section 4. In
Section 5, we present the biologically inspired technique for network design and discuss
its advantages and disadvantages when compared to the traditional approaches. Finally,
we present our conclusions and identify avenues for further work.

2 Problem Formulation

Figure 1 demonstrates the problem of wireless sensor network design in a hypothetical
context. It considers a police station in the middle of a city in Afghanistan which needs
to be kept safe against potential insurgent attacks. Because the police station is located
in the middle of a crowded and commercially active area, the choices of locations at
which surveillance sensors can be placed for proper functional operation are limited.
For the problem formulation that we are considering, the modalities of the sensors are
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Fig. 1. Hypothetical Sensor Deployment

not significant, although they would be for the processing and fusion of information
received from the different sensors. Sensors placed at the locations shown in the figure
are the least likely to be vandalized, destroyed or disrupted, and are usually located on
top of houses overlooking commercial streets. The information from the various sen-
sors needs to be fed back to a processing center at the police station. Because of the
poor and unreliable electric infrastructure in the city, sensors run on batteries. This pro-
vides a constraint on the inbound receiving degree of any sensor node acting as a relay.
Reception of signals requires power expenditure because the receiver has to be tuned to
the frequency of the transmission. Due to the limited power budget, each of the sensor
nodes may be limited to be listening to one or two of the neighbors. As yet another part
of power saving cycle, the transmitters and receivers may need to sleep periodically
(duty-cycle) so that the battery life can be maximized. The processing center can be
assumed to be active all the time, and be running off an electric generator. While the
security forces can go out and reposition sensors and replace expired batteries, such
activities are time-consuming and dangerous.

In a graph theoretic formulation of the problem, we can consider the problem of
connecting the various nodes as shown in Figure 1. The figure also shows the possible
wireless links that can potentially exist between the different sensor nodes. The con-
nectivity links are shown as directed edges, since intervening buildings, differences in
building heights, and direction of the sensors could often cause situations where infor-
mation can be transmitted in one direction but not in the other. The goal is to select a
set of transmission edges so that each of the nodes is connected to the processing center
without violating the inbound degree constraints of any relay nodes.

The wireless sensor network design problem can be formulated in graph theoretical
terms. Given the location of N nodes marking the sensor locations in a graph, and a set
P of potential possible links between the different nodes, and an upper bound on the
inbound degree of nodes, select a subset E of P such that the graph characterized by the
set of edges E and N nodes is connected, and the inbound degree constraints of all of
the nodes in the system are maintained.
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Two additional attributes are important in the design of the military sensor networks,
namely reliability and energy efficiency. Since many elements of the sensor network are
running on batteries, one needs to minimize the number of transmissions and retrans-
missions needed to get the information over to a site for processing. The other constraint
is that of availability . since any node can be destroyed by hostile action, e.g. tamper-
ing by an insurgent, the network topology must be able to support node failures. The
requirements on constraints, power consumption and availability are often competing
with each other and all can not be optimized together.

Network design problems, even with many simplifying assumptions, are known to
be NP-hard [10], and this problem is no exception. As a result, the goal of network
design has always been to develop appropriate heuristics to solve the design problem.
In the next section, we look at some heuristics for network design that are known in the
current literature.

3 Current Approaches to the Solution

Network design has been an established problem in the broader networking domain with
several heuristics used in different schemes to address the topic of creating a suitable
graph. In its basic formulation, the solutions approaches were initially formulated in the
domain of wired t elecommunication networks.

The oldest method known to authors to connect nodes into a tree is the Esau-Williams
[3] algorithm. Other commonly used heuristics involve the use of a spanning tree algo-
rithm like Prim or Kruskal as an approximation and to add the constraints of capacity
or inbound degree as a filtering mechanism during the formation of the spanning tree.
A unified heuristic for tree formation is provided by Kershenbaum [9] as a general
case of the above. Connecting nodes into a general mesh network rather than a tree
by provided by the heuristics of clustering [2] and Cut-Set Saturation [5], with most
other schemes being a variations or combination of these two. The clustering approach
combines nearby nodes into a single super-node, and then finds a spanning tree that
can connect those clusters together while incorporating capacity and other constraints
as links are selected. The cut-set saturation approach calculates the utilization of links
based on anticipated traffic, and removes links with low utilizations and high costs in
the minimum cut-set till a mesh satisfying all constraints are obtained.

Another set of heuristics for designing the topologies on overlays in Internet [12]
consists of two basic approaches . The add approach and the drop approach. The add
approach starts with an empty graph and progressively adds edges chosen according to
some weighing function assigned to each link. Links are added until no more links can
be added without violating a constraint. The drop approach starts with all set of feasible
links and drops edges according to some weighing function assigned to each link. Links
are dropped until dropping a link results in a disconnection.

The above heuristics were developed for the design of telecommunication links, were
the cost of acquiring long distance transmission links was the dominating aspect of the
design process. In comparison, the cost of a link in the military wireless sensor network
is effectively zero, since the links basically communicate at zero cost for the life of
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the network. This fact renders the basic driving principle behind the telecommunication
network design ineffective.

Within the realm of sensor networks themselves, the focus of issue of network de-
sign has largely focused on maximization of coverage using mobile sensors. Several ap-
proaches for network design using mobile sensors can be found, including approaches
based on mathematical programming [8], geometric properties [1], hierarchical struc-
tures [11] and flat structures [6]. However, in the specific domain that is examined in
the context of this paper, based on static sensors with a predetermined location and
coverage, the algorithms are not really applicable.

Another related aspect considered in the literature is that of the routing protocols
developed for ad-hoc wireless networks [7]. The routes created by the protocols can
be viewed as selecting specific subset of feasible links for the purpose of communica-
tion. Usually, the paths selected for routing assume bidirectional links, and focus on
maintaining connectivity in the presence of mobility.

Although the various results available in prior literature can be adapted into heuris-
tics for design the wireless sensor network, they all suffer from various drawbacks in the
context of the military network deployments. As mentioned earlier, the telecommuni-
cation network designs are geared towards minimizing link costs. The mobile networks
are looking at coverage, an important role but something constrained significantly by
the topology of the network, and the routing protocols are optimized for a mobile envi-
ronment rather than trying to optimize the transmissions in a static network.

The problem of collecting information from a set of static points in the network, with
a high degree of resiliency and minimizing the number of translations can be viewed
as an analogue of the blood circulation system in the human body. The circulation
system provides oxygen (new configuration information) via arteries and brings back
the results via veins for oxygenation (information fusion) at the lungs. The movement is
synchronized by the pulsation of a single source (the heart), and such synchronization
can be used to minimize the number of message transmissions and save power due to
synchronization of duty-cycles of different nodes.

4 Overview of the Circulatory System

Before describing how to use the circulatory system approach to the wireless sensor
network design problem, let us take a quick look at the operation of the circulation
system.

The main components of the human (or mammal) circulatory system are the heart,
the blood, and the blood vessels. The blood vessels consist of arteries, capillaries and
veins. Arteries bring oxygenated blood to the tissues, and veins bring deoxygenated
blood back to the heart. The pulmonary arteries and veins are an exception since they
provide blood to the lungs for oxygenation. Blood passes from arteries to veins through
capillaries, which also provide oxygen and nutrition to the different cells.

The systems of fish, amphibians, reptiles, and birds show various stages of the evo-
lution of the circulatory system. In fish, the system has only one circuit, with the blood
being pumped through the capillaries of the gills and on to the capillaries of the body
tissues. In amphibians and most reptiles, a double circulatory system is used. In the first
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circuit, the blood is pumped to the lungs, where it acquires oxygen. It then returns to the
heart and enters the second circuit, going to the rest of the body, eventually returning
to the heart. Figure 3 illustrates a simplified model of the way the circulatory system
works in mammals.

The circulatory system is powered by the heart whose contractions and expansion
synchronize the pressure experienced by the entire system throughout the body. The
synchronization is illustrated by the fact that the heart rate can be measured by moni-
toring the pulse at any of the arteries or sub-arteries in the body.

From a mathematical perspective, the circulatory system can be seen as a composi-
tion of two graphs, one characterizing the pulmonary system which goes through the
lungs, and the other characterizing the circulation through the rest of the body. Each
graph is a directed graph and consists of several cycles that all go through the heart.
Any edge in the graph is part of a cycle going through the heart.

The circulatory system has many key characteristics that are desirable in the context
of military wireless sensor networks. The circulation system can be operated in a semi-
synchronized manner thereby reducing the number of transmissions that are required to
collect information in any cycle. The circulation system can be created with a branching
degree that is compatible with the constraints of the various sensor nodes. Furthermore,
one can augment the circulation system with backup cycles to account for failures of
nodes in the system.

In the next section, we describe the scheme for developing a circulation system ana-
logue for a given set of sensor node locations and analyze its properties.

5 The Circulatory System Approach

As mentioned earlier, the primary problem in the sensor network would be to find a
set of links that would create a system analogous to a circulation system in the sen-
sor network. The circulation system comprises of a series of cycles which all include
the processing center and branch at appropriately selected points. In this section, we
will discuss the following topics: (i) how to determine the interconnection topology
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Fig. 3. Circulatory topology construction for the example sensor network of Figure 1

modeled after the circulatory system, (ii) how to use the discovered topology to collect
information from all of the sensors, (iii) schemes to improve reliability and robust-
ness to failure, (iv) schemes for reducing the energy consumption of the network, and
(iv) analysis of the scheme in terms of its node degree, path length and energy savings
characteristics.

5.1 Constructing the Topology

Next we describe a distributed algorithm that each node runs in order to construct the
circular network topology. The algorithm has three phases. In the fist phase each node
determines its distance to the sink (the collecting node), measured in hops. This distance
corresponds to distance on the shortest path. There are many distributed protocols that
can be used in order to compute this distance. For instance, the sink can broadcast a
special message with a filed that indicates a hop count of zero. When a node receives
such a message it either drops it, if it has recently seen another message with a smaller
or equal hop count, or it rebroadcasts the message after increasing the message hop
count by one. The node’s distance from the sink is equal to the smallest hop count
message that the node has received. This process is repeated periodically in order to
accommodate changes in the network topology, such as the arrival of new nodes or
the departure of old ones. The frequency of this process is a faction of the network
dynamics. In a wireless sensor network where dynamics are minimal we expect that it
is repeated quite infrequently.

The actual topology is created in the second phase of the algorithm. Links are con-
structed in the following two stages: In the first stage, links are created between neigh-
boring nodes if they are in the same distance from the sink. In the case that three nodes
are connected in a clique the one additional link is dropped. This can be achieved by
running a localized algorithm that selects only the two links that form the Gabriel graph
[4] of the three nodes, that is dropping the less energy efficient link. As a result at the
end of this first step nodes that are in equal distance from the sink form a chain network.
Note, that it is not necessary true that all equal-distance nodes form just one chain. Thus,
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Table 1. Circulatory System Construction Algorithm

// Variables
: indicates if the node is the sink
: the set of neighbors that it is connected to

: the next hop to the sink on the shortest path
: the set of all current neighbors

: distance from the sink in hops

// Initializations

getNeighbors()
if then

end if

// Phase 1 : fi nd the shortest distance to the sink
for each in do

if then

end if
end for

// Phase 2 : add selected neighbors to the set of active links
for each in do

if then

end if
end for
if then

getRedundantLinks( )
else

if and isSelectedAsTrunk() then
for each in do

if nbr.isSelectedAsTrunk() then

end if
end for

end if
if then

end if
end if

// Phase 3 : merge degenerated paths if possible
if then

for each in do
if and then

break
end if

end for
end if

the network may have multiple chains of equal-distance nodes. Furthermore, a chain of
equal-distance nodes is not always closed, meaning that the chain may have a starting
and ending node.
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The second stage of of the second phase of the construction algorithm connects all
the chains of equal-distance nodes with the minimum number of links. This happens as
follow: If the chain is open, then the starting and the ending nodes create a link with
their neighbor that is one hop closer to the sink. In this way they become the uplink and
the downlink of the chain. We call a node that is either an uplink or downlink a trunk
node. If the chain is closed then two adjacent nodes are selected in order to become
the trunk nodes. The selection can be random, by running a leader election algorithms
between the nodes that form the chain, or it can be deterministic. In our construction
algorithm, the deterministic selection happens as follow. A node becomes an uplink if
its neighboring node that is one hop closer to the sink is an uplink, and if one of its
neighboring nodes that is in equal-distance to the sink can become a downlink. In a
similar way a node can become a downlink. Ties are solved in a localized fashion (node
with the higher ID wins). Also, the equal-distance trunk nodes is drop the link that exists
between them.

In a degenerated case, a node becomes both uplink and downlink when it does not
have any neighbors that are in equal distance to the collecting node. The third phase of
the construction algorithm is an optimization step that minimizes the number of degen-
erated cycles. The optimization is based on the following observation: Two degenerated
cycles can be merged if their edge nodes, i.e. the ones that do not have a link to a neigh-
bor that is in a longer distance to the sink, can be connected. Note that these two nodes
cannot be equal-distance nodes because in such a case they had already been connected
at the first stage of the second phase of the construction algorithm. Note that the same
optimization applies in the case of just one degenerated cycle. If the edge node of such
cycle happens to have a neighbor that does not have a link with it is because this neigh-
bor is one hop closer or further from the sink. In such a case the edge node will create
a link to that neighbor in order to eliminate the degenerated cycle.

The final outcome of the above algorithm is a network topology that mimics the cir-
culatory system. The trunk links correspond to arteries and veins and the chains that
connect equal distance nodes correspond to the capillaries. Table 1 provides the sketch
of the construction algorithm, while Figure 3 depicts the different phases of the con-
struction. Note that the only dashed line at the lower left corner graph corresponds to
the additional link created during the optimization phase.

5.2 Information Flow

While the construction algorithm determines the final topology of the network, it does
not specify the exact way that information flows into the network. The circulatory graph
is a directional graph, meaning that information flows only in one way in each link1.
Next we present a distributed algorithm that determines the direction of each each link
at the flow level. The main property of the resulting flow graph is that it does not contain
any loops, when the sink node is removed from the graph. In other words, the informa-
tion flow algorithm creates a directed acyclic graph (DAG) on top of the network. That

1 This does not necessarily mean that transmission happen only in one direction. Most of the
MAC protocols require bidirectional links, so at the MAC level links are bidirectional in the
circulatory graph.
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is, information generated from any node in the network flows at most once on each link
and information generated by the sink flows exactly once on each link. In order to create
the flow graph, we first define a partial order between trunk nodes that are at the same
distance from the sink (equal-distance nodes), on th shortest path tree. This way we will
be able to properly assign uplinks and downlinks without creating loops in the directed
graph.

But before introducing the ranking function used for the partial ordering we are going
to define the following term: the ancestor trunk node and the common ancestor trunk
nodes. An ancestor trunk node A of a trunk node T is a node that is closer to the
sink than T and which can reach T without having to go through other nodes that are
equal-distance to A or T . Note that a node cannot have more than two ancestor trunk
nodes that are in equal-distance. The common ancestor trunk nodes A1 and A1 of two
equal-distance trunk nodes T 1 and T 2 are two nodes so that: (i) A1 and A1 are also
equal-distance nodes, (ii) A1 and A1 are connected with a path that goes only through
equal-distance nodes, (iii) A1 is an ancestor trunk node of T 1, (iv) A1 is an ancestor
trunk node of T 2, and (v) A1 is a different nod than A2. Note that two trunk nodes T 1
and T 2 can have at maximum four pairs of common ancestor trunk nodes.

Given the above terminology we now define a partial order between two trunk
nodes that are in equal distance from the sink with the following ranking rule: A
truck node T 1 has a lower ranking from an equal-distance trunk node T 2, denoted
as rank(T 1) < rank(T 2), if their common ancestor trunk nodes, (A1,B1) and
(A2,B2) respectively, have the following ranking relation: rank(A1) < rank(A2) and
rank(A1) < rank(B2) or rank(A2) < rank(A2) and rank(A2) < rank(B2). In
the case that T 1 and T 2 are one hop away from the sink, the sink randomly assigns an
order between them. Then a trunk node becomes an uplink if it has a lower ranking than
the trunk node that is at the other end of the chain. Uplink indicates a direction from
the lower distance node to the higher distance one (the uplink node), and downlink the
reverse. Furthermore, the links that connect the equal-distance nodes have a direction
from the uplink to the downlink node.

5.3 Robustness to Failures

The circulatory network topology has the following nice property. It requires minimum
topology reconfiguration changes when a failure happens. In the case that the node
is not a trunk node the required changes are the following. The two neighbors of the
failed node will have to reconnect themselves with their neighbors that are one hop
closer to the sink (on the shortest path tree). Note that both of them will have such a
neighbor. Thus By connecting to their lower distance neighbor they become trunk nodes
more specifically an uplink if the node had an incoming link from the failed node, or a
downlink if the node had an outgoing link to the failed node. Note that if it happens that
one of them is already a trunk node, then it is already connected to its lower distance
neighbor, so no reconfiguration is required.

In the case that the failed node is a trunk node, the reconfiguration of it equal-distance
node is exactly the same as before. The only difference is in the case that the failed node
is connected also with with a higher distance node. In such a case the higher distance
node requests from its neighbor to change the direction of their link. Consequently the
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neighbor tries to add a downlink if the new link direction points toward it, or an uplink
otherwise. It can only succeed in case it has a neighbor that is at a shorter distance to
the sink. In contrast, if it cannot create an uplink or downlink it will repeat the same
procedure with its neighbor. Eventually, one of them will be able to create a downlink.
If not they become an isolated island given that there is no link that it can connect them
to the rest of the network.

The nice property of the above reconfiguration is that it tends to be very localized.
Thus failures in one part of the network do not usually affect other parts. In contrast in
the case of a shortest path tree topology the whole tree has to be recomputed every time
that one node fails.

5.4 Energy Savings

In order to reduce the number of transmissions needed in the circulatory graph, the col-
lection of sensor information by the processing center occurs in a polled manner. The
processing center periodically sends out a data collection request. This request is for-
warded along the circle, and at each stage the receiving sensor adds its measurement
information to the information received and forwards it along the path. When a node
has more than one inbound link in the circulatory graph, the node combines the infor-
mation received from both of the inbound links and transmits them in a single cycle
to the outbound node. When a node has more than one outbound link, it transmits the
information on both the outbound links. In several configurations, it may be possible
to combine the multiple outbound transmissions into a single multicast transmission,
provided the receivers are awake and available to receive the message.

Another level of energy savings can be obtained by means of duty-cycling and syn-
chronization of the message transmissions. If the frequency at which the polling cycle
happens is known to all of the nodes, e.g. by sending a message with this informa-
tion at the initiation of the transmission cycle, each node would know when to wake
up to receive the next message from the transmitter. In this mode of operation, each
of the sensor nodes is initialized to be up and receive a configuration message from
the previous node in the distribution hierarchy. The central processor node initiates the
transmission of the configuration message. The configuration message contains infor-
mation about the delay expected for the next message transmission. The receiving node
can sleep until some time before the next expected transmission. The amount of time to
sleep would be dependent on the frequency of the polling by the central processor node.

When a node has more than one inbound degree, it will get the configuration message
from more than one neighbor. It would need to wake up to receive both the messages.
However, when transmitting further, it can combine the messages from both sources
and send a single one message forward. This allows a larger time for the duty-cycling
of the transmitters/receivers further along the chain.

If the processing center sends out a polling message with a period of τ , and the max-
imum difference in the clock rate drift of any pair of neighbors is δ, and a message
transmission takes an average time of µ, then any node along the cycle need only be
awake to receive message for the (µ + 2δ/τ ) percentage of time. Messages in sensor
systems are typically short, and δ is typically significantly smaller than τ , thus signifi-
cant power savings can be obtained.
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Fig. 4. Example topologies for with 6 neighbors (top) and 8 neighbors (bottom)

In the proposed scheme, the message length increases as the message travels around
the loop. If the loop is of length λ, then the message in the beginning could be of size µ,
and of size µλ at the end of the message. If µλ is smaller than τ , then the duty-cycling
will still be beneficial in saving power. We would expect this assumption to be valid in
most military wireless sensor deployments.

5.5 Analysis

In this section we analytically compare the circulatory approach of network formation
against the shortest path tree, an approach that is usually adopted by current sensor
networks. We compare the two topologies against the following metrics:

– Node Degree: We compute the average node degree. We consider only the in-
degree given that out-degree is essentially always one due to the broadcast nature
of the wireless radio.

– Path Length : We compute the average and maximum path lengths that a message
has to follow in order to reach the sink.

– Node Lifetime We compute the time it takes for a node to exhaust its energy. We
assume that energy is consumed during both the transmitting and the receiving
phase.

For the analysis purposes we consider only regular topologies, such as the ones
shown in Figure 4. We assume that all nodes have the same transmission power. In
regular topologies a node is capable of communicating with C other nodes in its vicin-
ity. For example in an arrangement of nodes where neighbors form hexagons C equals
to 6, while in a grid topology C can be either 4 or 8, depending on the transmission
range. If i indicates the number of hops that a node needs in order to reach the sink,
then the number Ni of nodes that are in distance i from the sink is Ni = Ci. Thus in
the case of a shortest path tree topology the average node degree Dt

i of the nodes that
are i hops away from the sink is Dt

i = Ni+1/Ni, which leads to Dt
i = 1 + 1/i. In the
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case of circulatory paths the average node degree Dc
i is Dc

i = ((Ni − 1) + 2)/(Ni,
which leads to Dc

i = 1 + 1/Ci. Clearly, Dc
i < Dt

i if C > 1, which is always true
except from the degenerated case when the networks is a line. Figure 5 provides the
cumulative distribution function (CDF) for the node degree of the shortest path tree and
the circulation approach when C = 6 and the total number of nodes is 2790.

The path length distribution Lt
i for the shortest path tree is the same as the node

degree distribution, that is Lt
i = Ci. For the case of circulatory paths, if a node is at

distance i from the sink then the maximum path length is Lc
i,max = (C +1)i−1, while

the minimum distance is Lc
i,min = i. Thus, the average length of the paths for nodes

that are in i distance form the sink is Lc
i,avg = (Lc

i,max−Lc
i,min+1)(Lc

i,max+Lc
i,min/2

which leads to Lc
i,avg = ((C + 2)i − 1)C/2. Figure 6 gives the cumulative distribution

function (CDF) for the path lengths, for the same network.
In order to compute the network lifetime we assume that the message size depends

only on the number of reported events. That means that the total size of all messages
propagated into the network is proportional to the total number of events that have been
sensed. Also given that all nodes report events with the same frequency the energy
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consumed due to transmissions (and assuming no retransmissions) is the same in-
dependently of the network type (shortest path tree or circulatory paths). Thus the
only difference is due to the energy consumed while receiving the messages, and we
can safely assume that is proportional to the in-degree of a node. Thus the total en-
ergy consumed into the network during one duty cycle is: E =

∑
(Etx + Erx) =

EtxN + Erx

∑l
i=1 DiNi, where l is the maximum shortest path distance of a node

from the source. In the case of shortest path tree network the total consumed en-
ergy is Et = EtxN + EtrC(l2 + 3l)/2)), while for the circulatory network it is
Ec = EtxN + Etr(l + C(l2 + l)/2). Figure 7 shows the ration of energy consumed
into the shortest path tree network over the energy consumed into the circulatory net-
work during the same period of time, for the different network sizes. The three lines
correspond to a = 2, 5, 10 with Etx = aErx.

6 Conclusions and Future Work

This paper has attempted to provide a biologically inspired circulation model for solving
a practical network design problem that is encountered frequently in real-life military
wireless sensor networks. The proposed solution is efficient in maximizing the battery
power and reducing the number of transmission needed at any node. The solution is an
advancement into a field where the current state of the art heuristics are known to have
specific deficiencies.

Future work we plan to conduct in this area includes a comparison of the performance
of the heuristics against modifications of other design heuristics, and to attempt provable
bounds on the performance of the heuristics as compared to an enumerative approach.
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Abstract. Epidemics-inspired techniques have received huge attention
in recent years from the distributed systems and networking communi-
ties. These algorithms and protocols rely on probabilistic message repli-
cation and redundancy to ensure reliable communication. Moreover, they
have been successfully exploited to support group communication in dis-
tributed systems, broadcasting, multicasting and information dissemina-
tion in fixed and mobile networks. However, in most of the existing work,
the probability of infection is determined heuristically, without relying on
any analytical model. This often leads to unnecessarily high transmission
overheads.

In this paper we show that models of epidemic spreading in complex
networks can be applied to the problem of tuning and controlling the dis-
semination of information in wireless ad hoc networks composed of de-
vices carried by individuals, i.e., human-based networks. The novelty of
our idea resides in the evaluation and exploitation of the structure of the
underlying human network for the automatic tuning of the dissemination
process in order to improve the protocol performance. We evaluate the
results using synthetic mobility models and real human contacts traces.

Keywords: epidemic dissemination, human networks, mobile networks.

1 Introduction

Mobile human networks (i.e., ad hoc networks composed by devices carried by
individuals) can be frequently and temporarily disconnected. Traditional routing
protocol, including the basic flooding, fail to offer any sort of reliability when this
happens. Epidemic-style protocols instead, being store and forward approaches
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and inherently delay tolerant [11], allow for communication in dynamic and mo-
bile networks, also in presence of temporary disconnections or network partitions.
A desired feature of the protocols is the ability to control the information spread-
ing. For example, in emergency scenarios, when the network infrastructure has
failed, it may be sufficient to send the messages only to a percentage of the rescue
team members (e.g., 50% of the doctors). In other situations, there might be a
need to reach all the deployed emergency personnel with the minimum overhead
to avoid to collapse the network. Up to our knowledge, no solutions exploiting
the minimal necessary and sufficient number of replicated messages, given the
emergent network structure to guarantee a desired level of reliability exist.

The analogy between information dissemination in mobile systems and epi-
demics transmission in social systems is apparent. Information spreading can be
modelled with a simple model for disease spreading, the so-called SIR
(Susceptible-Infected-Recovered) model [2]: a host is initially Susceptible to new
information, then it becomes Infected when he actually receives it, and finally it
can stop the store-and-forward dissemination process becoming Recovered and,
therefore, immune to further infections. Epidemics-inspired techniques have re-
ceived huge attention in recent years from the distributed systems community [9].
These algorithms and protocols rely on probabilistic message replication and re-
dundancy to ensure reliable communication. Epidemic techniques were firstly
exploited to guarantee consistency in distributed databases [8]. More recently,
these algorithms have been applied to support group communication in distrib-
uted systems. In particular, several protocols have been proposed for broadcast-
ing, multicasting and information dissemination [10] in fixed networks.

A few attempts have been made to apply epidemic based techniques for in-
formation dissemination in mobile ad hoc networks [17,7,3]. However, existing
epidemic algorithms do not permit to control the spreading of the information
depending on the desired reliability and the network structure. This is partly
due to the fact that these approaches are fundamentally based on empirical ex-
periments and not on analytical models: the input parameters that control the
dissemination process are selected by using experimental results and are not
based on any mathematical model. This implies that the message replication
process cannot be tuned with accuracy in a dynamic way: for instance, it is not
possible to set the parameters of the dissemination process in order to reach
only a certain desired percentage of the hosts in a prefixed amount of time.
Moreover, these approaches do not exploit the information on the underlying
network topology [1,4,5]. The use of epidemic spreading models based on the
structure of the underlying network allows us to devise accurate mechanisms for
controlling the message replication process. In other words, the number of the
replicas in the network and their persistence can be tuned to achieve a desired
delivery ratio.

In [15] we have presented initial results based on the so-called SIS (Susceptible-
Infected-Susceptible), a model of disease spreading not considering the recovered
state. In this paper, we propose a refined version of the algorithm based on a SIR
model. The use of SIR, in coordination with the ability to decide to constrain
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the epidemy to a percentage of hosts, allows us to lower the message overhead
considerably with respect to both our previous work and other approaches, as
shown in our results section. We present an extended evaluation based on syn-
thetic models and real traces of connectivity of the Dartmouth College [14] and
National University of Singapore [16] campuses.

This paper is structured as follows. In Section 2 we describe the implementa-
tion of the middleware interface supporting the epidemic dissemination process.
Section 3 presents briefly the models of epidemic spreading in complex networks
that are at the basis of our dissemination algorithm. The implementation issues
are discussed in Section 4. The proposed dissemination algorithm is evaluated an-
alytically and by means of simulations in Section 5. Section 6 concludes the paper.

2 Primitives for Controlled Epidemic Dissemination

Our goal is to provide a set of primitives that allows developers to tune infor-
mation dissemination in human networks according to their specific application
requirements. Our aim is to ensure the spreading of information from a source
A to a certain percentage Ψ of the mobile hosts of the system in a given interval
time defined by a timeout t∗.

We introduce a primitive for probabilistic anycast communication as follows:

epcast(message,percentageOfHosts,time)

where message is the message that has to be sent to a certain percentage of hosts
equal to the value defined in percentageOfHosts in a bounded time interval
equal to time.

By using these basic primitives, more complex programming interfaces and
communication infrastructures can be designed, such as publish/subscribe sys-
tems or service discovery protocols.

The infectivity of the epidemics (i.e., the probability of being infected by a
host that is in the same radio range, like in human diseases spreading) can be
used to control the anycast probabilistic communication mechanism. Given a
percentage of hosts that has to be infected equal to Ψ , we are able to accurately
calculate the value of the infectivity in order to obtain an infection rate equal
to a proportion of the total number of the hosts in the network.

As we will discuss in the next section, these primitives rely on a probabilis-
tic algorithm based on the transmission of a minimal, and, at the same time,
sufficient, number of messages. Existing epidemic-style protocols usually achieve
100% delivery, but they waste resources by sending a large number of messages
on the network, whereas our approach succeeds to send only the amount of
messages necessary to inform the desired percentage of hosts in the given time.

3 Dissemination Techniques Based on Epidemic Models

In this section we introduce the mathematical models at the basis of the design
of the communication API presented in Section 2. In order to model the message
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model with equal conditions (γ = 0.05,
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replication mechanisms, we exploit mathematical models that have been devised
to describe the dynamics of infections in human populations [2]. The study of
mathematical models of biological phenomena has been pioneered by Kermack
and McKendrick in the first half of the last century. Very recently, researchers
in the area of complex networks theory have focused their attention on the
problem of modeling epidemics spreading in networks characterised by well-
defined structures [4,5].

According to the classic Kermack and McKendrick model, an individual can
be in three states: infected, (i.e., an individual is infected with the disease) suscep-
tible (i.e., an individual is prone to be infected) and removed (i.e., an individual
is immune, as it recovered from the disease). This kind of model is usually re-
ferred to as the Susceptible-Infective-Removed (SIR) model [2]. Removing the
possibility of permanently recovering from the disease a different version of the
model is obtained, according to which individuals can exist in only two possible
states, infected and susceptible. In the literature, this model is usually referred
to as Susceptible-Infective-Susceptible (SIS) model [2].

The SIR model can guarantee the same delivery of the SIS model with a
substantially lower number of messages as shown by the generic epidemic process
depicted in Figures 1 and 2. This is due to the fact that the model introduces the
possibility of having hosts that are recovered, i.e., hosts that will not participate
in spreading the infection after having receiving a message M and deleted it
from the buffer. In other words, in the SIR model the number of broadcasting
nodes decreases after a given peak of infected nodes; instead in the SIS model,
the number of broadcasting nodes at the end of the infection is (approximately)
equal to the number of nodes to be infected (i.e., desired percentage of nodes in
the +epcast primitive).

In the remainder of this paper we will substitute the term individual, used
by epidemiologists, with the term host. A host is considered infected if it holds
the message and susceptible if it does not. If the message is deleted from the
host, the host becomes recovered and cannot be infected by the same message
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anymore. The information is spreaded among all infectives and recovered, while
susceptibles are still unaware of that: it is now clear that the dissemination
results depend on both infectives and recovered hosts, since these are the actual
recipients of the messages that have been sent. It is useful to define a host as
reached if it is either an infective or a recovered, since in both cases it has already
received the message. Moreover it is worth noting that only infectives contribute
to message replication and spreading, while recovered hosts do not.

The main assumptions of our model are the following:

– all susceptibles in the population are equally at risk of infection from any
infected host (this hypothesis is usually defined by epidemiologists as homo-
geneous mixing);

– all infectives in the population have equal chances to recover;
– the infectivity of a single host, per message, is constant1;
– the initial number of the nodes in the network is known a priori by each

host2;
– every host collaborates to the delivery process and no malicious nodes are

present;
– each node has a buffer of the same size;
– the number of hosts is considered constant during the spreading of the in-

fection3;

Under the assumptions above, the system dynamics, in the case of a scenario
composed of N active hosts, can be approximately4 described by the following
system of non-linear differential equations [2]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t)
dt = −βS(t)I(t)

dI(t)
dt = βS(t)I(t) − γI(t)

dR(t)
dt = γI(t)

S(t) + I(t) + R(t) = N

(1)

where S(t), I(t), R(t) are respectively the number of susceptible, infectives and
removed hosts at time t, β is the average number of contacts with susceptible
1 Note that the infectivity per single message (i.e., a disease) is constant, but not per

single host. In other words, a host usually stores messages characterised by different
infectivities in its buffer.

2 The initial number of hosts can be usually estimated in occasion of sport events,
rallies, etc. for example by evaluating the seating capacity of the venues or the size
of the area when the event takes place. Statistical data are also usually available for
many application scenarios, such as number of passengers that uses a station or an
airport in a certain time of the day, etc. Alternatively, this number can be estimated
using distributed algorithms for the calculation of the approximated network size
such as [13].

3 This is a realistic assumption, since users usually require that the information will
be disseminated in a limited time.

4 This is rigorously justifiable in a network only for complete graphs in large population
limit. However, the model provides a good approximation also in scenarios composed
of a limited number of hosts.
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hosts that leads to a new infected host per unit of time per infective, and γ
is the average rate of removal of infectives per unit of time per infectives in
the population. The equations of the system state that the decaying rate of
susceptibles and the growth rate of infectives are affected only by the infectivity
β, the number of susceptibles S(t) and the number of infectives I(t); the decaying
rate of infectives and the relative growth of recovered is proportional to the
removal rate γ and the number of infectives I(t). The last equation states that
actually only two equation are needed to completely define the problem, since the
sum of the three classes is constant. We furthermore set the initial conditions:
S(0) = S0 = N − 1, I(0) = I0 = 1, and R(0) = R0 = 0, with the condition
I0 = 1 representing the first copy of the message that is inserted in its buffer by
the sender.

A numerical solution of the system (1) can be easily obtained by standard
ODE solver routines. This allows to compute the number of infectives and re-
covered at instant t as a function of the infectivity β and of the removal rate γ.
The value of γ is usually fixed by the local properties of the hosts 5. Instead, the
value of β, that is the fundamental parameter of the message replication algo-
rithm, can be tuned in order to have, after a specific length of time t∗, a number
of reached hosts (i.e., hosts that have received the message) equal to I(t∗)+R(t∗)
or, in other words, a fraction of reached hosts equal to (I(t∗) + R(t∗))/N .

In order to effectively exploit the model just described, the actual connectiv-
ity of each host should be kept into account. We will assume a mobile system
with a homogeneous network structure, described by a connectivity distribution
P (k), strongly peaked at an average value 〈k〉. This is a realistic assumption in
cases characterized by a high density of hosts, and where the movement is well
described as an uncorrelated random process, such as in large outdoor spaces
(i.e., squares, stations, airports or around sport venues) [12,15]. In this case,
the degree k of each node can be approximated quite precisely with the average
degree 〈k〉. In order to include the effect of the connectivity on the spreading,

the system (1) can be rewritten by substituting β with λ
〈k〉
N

[4]:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS(t)
dt = −λ

〈k〉
N

S(t)I(t)

dI(t)
dt = λ

〈k〉
N

S(t)I(t) − γI(t)
dR(t)

dt = γI(t)
S(t) + I(t) + R(t) = N

(2)

where λ represents the probability of infecting a neighbouring host during a unit
of time, and 〈k〉

N gives the probability of being in contact with a certain host. In
other words, in this model, by substituting β with λ 〈k〉

N , we have separated, in a
sense, the event of being connected to a certain host and the infective process [4].

5 If overflow phenomena do not occur (i.e., in the case of sufficiently large buffers),
the model can be simplified with γ = 0 and, therefore, no host will never become
recovered.
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In conclusion, the main idea is to calculate the value of λ as a function of
I(t∗)+R(t∗) and 〈k〉. It is also interesting to note that in homogeneous networks,
every host knows its value of k and, consequently, it has a good estimate of 〈k〉.
We will exploit this property to tune the spreading of message replicas in the
system.

4 Implementation

Every time the middleware primitive defined in Section 2 is invoked, the mid-
dleware calculates the value of the infectivity λ that is necessary and sufficient
to spread the information to the desired fraction of hosts in the specified time
interval (specified in the field percentageOfHosts of the epcast primitive), by
evaluating the current average degree of connectivity and the current removal
rate of messages from the buffer. The message identifiers, the value of the calcu-
lated infectivity, the timestamp containing the value specified in time expressing
its temporal validity are inserted in the corresponding headers of the message in
the infectivity field. Then, the message is inserted in the local buffer.

The epidemic spreading protocol is executed periodically with a period equal
to τ . With respect to the calculation of the message infectivity, we assume τ as
time unit in the formulae presented in Section 3. In other words, assuming, for
example, τ = 10, a timestamp equal to one minute corresponds to six time units.
The value of τ can be set by the application developer during the deployment of
the platform. Clearly, the choice of the values of τ influences the accuracy of the
model, since it relies on a probabilistic process. For this reason, given a minimum
value of timestamp equal to tMIN , developers should ensure τ << tMIN . The
number of rounds will be equal to t∗/τ . For the Law of the Large Numbers, we
obtain a better accuracy of the estimation of the evolution of the epidemics as
the number of rounds (i.e., from a probabilistic point of view, the number of
trials) increases.

Every τ seconds each infected host broadcasts the message and its neighbours
receive the message. If the message is not already present in their buffer they
store it with a probability λ: moreover, they will not store it if the message has
been already present in buffer in the past, although it is not present at current
time. This behaviour maps quite well the SIR epidemics model, since a node
receives a new message, actively spreads it for some time and then it deletes the
message from the buffer (i.e. to make room for new messages), never accepting
it again. Therefore, a node has to store the identifiers of all messages received
in a defined time window, which is a reasonable given the limited occupation of
the vector of the message identifiers.

5 Evaluation

5.1 Analytical Evaluation

An interesting quantitative parameter is the total number of messages needed to
disseminate messages to a certain percentage of hosts. A message is broadcasted
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by an infective host in every round: as soon as the host deletes the message it
does not accept the same message again.

Considering an infection process repeated for a number of times equal to r
number of rounds, indicating with tr the time length of the rth round, the total
number of replicas per single type of message can be estimated as follows:

Number Of Replicas =
∫ t=tr

t=0
I(t)dt (3)

From a graphical point of view, the number of copies is equal to the area
under the curves in Figure 1 and 2. A comparison between SIR- and SIS-based
protocols shows that while for both cases the formula 3 helds, in the former case
the total number of replicas sent is much lower. This is the result of the recovering
process, which enables hosts to stop message spreading when the epidemics is
already growing but, at the same time, still assures that the final result will be
guaranteed.

5.2 Experimental Evaluation

Description of the Simulation. In order to test the performance of these
techniques, we defined a square simulation area with a side of 1 km and a trans-
mission range equal to 200 m. The simulation was set to run several replicates for
each mobile scenario in order to obtain a statistically meaningful set of results
(with a maximum 5% error). All simulations are written in Python using Net-
workX 6, a package for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks. We analysed scenarios charac-
terised by different number of hosts (more precisely 64, 128, 256, 512). These
input parameters model typical deployment settings of mobile ad hoc networked
systems. We do not model explicitly the failures in the system, since we assume
that during the infection process, the number of hosts remains constant.

The movements of the hosts are generated using a Random Way-Point mo-
bility model [6]; every host moves at a speed that is randomly generated by
using a uniform distribution. The range of the possible speeds is [1, 6]m/s. We
selected this mobility model, since as discussed in [12], its emergent topology has
a Poisson degree distribution. Therefore, in this scenario, the properties of the
network can be studied with a good approximation by assuming a homogeneous
network model. The accuracy of the approximation increases as the density of
population increases, since, considering the finite and limited simulated time, we
obtain a scenario characterised by a time series of degree of connectivity values
with lower variance. Moreover, the so-called border effects, due to the host that
moves at the boundaries of the simulated scenarios, have less influence as the
density of population increases.

Each node uses a buffer of 5 messages, managed as a FIFO queue, and 20
different messages are sent in the initial round by random chosen nodes.
6 http://networkx.lanl.gov
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message vs population density with de-
sired reliability equal to 50

Analysis of Simulation Results. In this subsection we will analyse the results
of our simulations, discussing the performance of the proposed techniques. We
will study the variations of some performance indicators, such as the delivery
ratio and the number of messages sent as functions of the density of hosts (i.e.,
the number of the hosts in the simulation area).

Figures 3 and 4 show the delivery ratio (i.e., the desired percentage of hosts
in the epcast primitive) in terms of population density, for the case of a desired
percentage of hosts equal to 100 and 50, respectively, with t∗ = 10min. The
performance in terms of delivery ratio are close to the desired ones. Also in
this case, the better approximation of the assumption of homogeneous network,
obtained when the density of population increases, leads to better results (i.e.,
a more accurate estimation) for the case of 512 nodes.

The number of replicas per host per message are plotted in Figure 5 and 6.
These diagrams illustrate the scalability of our approach, since the number of
replicas is slightly decreasing when more nodes are added.
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Table 1. Comparation of performances on the real dataset of Dartmouth College traces

Type Desired fraction Delivered fraction Messages sent
epcast 0.50 0.43 17132
epcast 0.75 0.68 24738
epcast 1.00 0.90 32475

epcast(heterogeneous) 1.00 0.90 57342
Epidemic (β = 0.25) 1.00 0.64 95969
Epidemic (β = 0.50) 1.00 0.87 121873
Epidemic (β = 1.00) 1.00 0.92 155446

Evaluation with Dartmouth Traces. In order to evalute our approach on
real data we run simulations using a source of data describing how real users
move between different locations, i.e. wireless access points. A large amount of
traces for Darmouth College’s 802.11b campus network is available through the
CRAWDAD project [14].

We selected all the contacts between 9 am and 6 pm in a chosen work day,
discarding contacts with duration less than 60 seconds. Two users are connected
only if they are associated with the same access point during a time slot: epi-
demics spreading is therefore performed among users co-located with access
points. Our resulting data set had 2201 unique MACs and 11572 contacts with
all access points. We assume that each MAC address corresponds to a unique
user. The other simulation parameters are the same of the previous analysis. In
Table 1 we show the performances of our approach: the percentage of host ac-
tually reached is slight less than the desired fraction of population and this can
be explained by observing that these contacts are not always connected during
all the simulation time and may be easily absent from the underlying network.
In other words, the underpinning hypothesis of the epidemic spreading model
that we are using are only approximately satisfied. We run a simulation with a
standard epidemic approach where infectivity is not tuned using the SIR model
but it is set to 0.25, 0.50 and 1.00 respectively. It is interesting to note that the
number of messages is in all three cases higher; only the case with infectivity
equal to 1.00, the standard epidemic protocol is able to reach all the hosts. This
is also demonstrate how it is difficult to choose the right value of the infectivity
in a purely heuristic way to reach all the hosts of the system.

We run also some simulations using a dataset from the National University
of Singapore[16], which contains contact pattern of 22341 students inferred from
the information on class schedules and class rosters for the Spring semester of
2006. Two students are connected if they attend the same class during a time
slot. However, in this dataset a large fraction of students is not included in the
instantaneous underlying network, since they are not attending any class. The
result is that in this case the epidemics fails to start using our model based on
the assumption of homogeneous mixing. Additional virtual point of aggregation
can be included in the simulations, grouping a percentage of the students that
are not attending lectures during a particular timeslot: this modification ensures
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homogeneous mixing, providing good results for our algorithm. However, this is
only a conjecture given the nature of the traces.

Heterogeneous Networks. The results and the solutions discussed in this
paper rely on the assumption of homogeneous networks, that are emerging from
the random movements of the nodes. We now show that the proposed approach
can be extended to the general case of heterogeneous networks. These structures
are emerging in presence of small clusters of people or communities.

For heterogeneous networks the approximation k ≈ 〈k〉 is not valid. However,
the same probabilistic communication primitives introduced in Section 2 could
be used, with a different semantics. This relies on the following observations:
given k fluctuating in the range [kMIN , kMAX ], we observe that for a value of the
infectivity corresponding to k = kMIN , the obtained spreading of the infection
I(t∗, kMIN ) will always be greater than the one obtained with another k. In other
words, if kMIN is selected in the calculation of the value of the infectivity, the
value of Reliability can be considered approximately as a guaranteed lower
bound of the reliability level.

The value of kMIN can be dynamically retrieved and set by the middleware
by monitoring the connectivity of the hosts composing the mobile system. We
plan to investigate these adaptive mechanisms further in the future.

6 Concluding Remarks

In this paper we have shown how models of epidemic spreading in complex
networks can be applied effectively to the problem of disseminating information
to subset of hosts (or to all the hosts) in a wireless network, controlling at
the same time the number of the copies in the system. We have presented an
analytical and experimental evaluation of our approach using a synthetic random
model and real traces, showing the effectiveness of our approach.
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port of EPSRC through the CREAM Project. Salvo Scellato thanks UCL for the
financial support as Visiting Student.
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Abstract. Using wireless peer-to-peer interactions between portable de-
vices, it is possible to locally share information and maintain spatial-
temporal knowledge emanating from the surroundings. We consider the
prospects for unleashing ambient data from the surrounding environ-
ment for information provision using two biological phenomena: human
mobility and human social interaction. This leads to analogies with epi-
demiology and is highly relevant to future technology-rich environments.
Here, embedded devices in the physical environment, such as sensors
and wireless-enabled appliances, represent information sources that can
provide extensive situated information. In this paper we address a candi-
date scenario where isolated sensors in the environment provide real-time
data from fixed locations. Using simulation, we examine what happens
when information is greedily acquired and shared by mobile participants
through peer-to-peer interaction. This is assessed taking into account
availability of source nodes and the effects of mobility with respect to
temporal accuracy of information. The results reaffirm the need to con-
sider a range of mobility models in testing and validating protocols.

Keywords: Opportunistic networking, mobile peer-to-peer networking,
wireless.

1 Introduction

The introduction of nomandic wireless communication systems such as mobile
ad-hoc networks (MANETs) [4] and sensor networks has followed an interest-
ing pattern of development. Generally speaking, there has been an engineering
assumption that the end-to-end networking connectivity, as seen in wired net-
working, should be facilitated. Establishing and maintaining connectivity is the
goal of majority of protocols that have been developed in this area. This is a
considerable challenge since unlike wired networks, uncertainty on node density
and MANET node movement are present for the general deployment scenario.

Until relatively recently, network disconnectivity has been regarded as an in-
convenience to be overcome using approaches such as delay tolerant networking
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(e.g., [8]) rather than an inherent characteristic on which communication and
services could be based. Approaches such as opportunistic networking [14] and
mobile peer-to-peer (MP2P) networking [6] are embracing this alternative view
and provide new opportunities to embed communication more closely with hu-
man activity based on the assumption of transient interactions between devices
in the presence of natural disconnectivity.

In this paper we continue with this trend but consider providing services at
a system level rather than facilitating communication. Specifically we look at
the prospects for unleashing ambient data from the surrounding environment
for information provision using two biological phenomena: mobility and social
interaction. In this case the species is the human who carries a mobile wireless
device. As compared to simple species such as ants, which are now frequently
exploited for their emergent behaviour [5], humans exhibit much more complex
social behaviour based on lots of factors including their environment. To model
this as a first approximation, we consider a number of mobility scenarios that
may be encountered.

Using mobile peer-to-peer interactions, classifiable as the most general case of
opportunistic networking, it is possible to locally share information and maintain
spatial-temporal knowledge emanating from the surroundings. This represents
a paradigm shift from the conventional notion of a network where maintain-
ing/facilitating end-to-end connectivity is paramout. Instead, flexibility for the
user is increased since the information source and destination nodes need never
be connected at the same point in time. We assume that peer devices interact on
a strictly pairwise basis, without maintaining connectivity to any other node be-
yond the target peer. This provides a basic means by which peers may compare
and share information.

We apply this assuming that the information for sharing has temporal rele-
vance: that is, the quality of the information depletes with time such as is the
case for real-time sensor data, transport information and information concerning
the status/availability of environmental resources. This leads to analogies with
epidemiology where a disease may spread due to the physical locality of partici-
pants and their interactions. However, unlike epidemiology, we aim to maintain
the equivalent of infection through temporal updating from contact with peer
devices.

We focus on scenarios where there are fixed devices, termed information
sources, providing real-time information about a resource. Using simulation that
has basic features of the IEEE 802.15.4 wireless PAN standard, we consider the
characteristics of this paradigm and the temporal quality of information that
can be maintained. This is not currently known and is valuable to establishing
the types of scenarios for which services can be provided.

2 Related Literature

There are two general areas in which developments have been made. From the dis-
tributed data-base management perspective, the functionality for communication
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via mobile peer-to-peer interactionhas been assumed and the acquisition and shar-
ing of data has been considered for a range of scenarios (e.g., [24]) including sensors
(e.g., [25]). The notion of a “data mule” has also been introduced (e.g., [17]) for
data acquistion in sparse sensor deployments and economic models for the value
of information have been introduced [26]. Resource discovery has also been explic-
itly considered [3], as has the problem of searching across mobile peers [23]. How-
ever issues of data dissemination [16,7,12,10], co-operationand resource utilisation
[22,13] have currently reeived the most attention.

Beyond information provision, mobile peer-to-peer interactions have been con-
sidered has a general basis for communication applications such as messaging and
data transfer. This has been conducted in the network/engineering community
under the guise of opportunistic networking. The focus of most effort in this area
has been on mechanisms to emulate functionality seen in connected networks,
most notably routing. Focussing on opportunistic networks without any fixed
infrastructure, developments can be largely categorised as being dissemination-
based or context-based.

Dissemination-based routing seeks to diffuse a message all over the network.
The heuristic behind this policy is that, since there is no knowledge of a possible
path to the destination, nor an appropriate next-hop node, a message should
be widely dispersed. High levels of dispersion can lead to congestion [18] and
different attempts to control this have been made. These concern various ways
of controlling the maximum number of relay hops, as considered by epidemic
routing [20], “spray and wait” [19], the MV-protocol [1], the PROPHET protocol
[9] and network coding [21] which generally seek to limit flooding by exploiting
knowledge about contacts with destination nodes.

Context-based routing seeks to exploit more information about the context in
which nodes are operating so as to identify suitable next hops towards eventual
destinations. The underlying idea in this approach is that context can be used
to control redundant message duplication, but potentially at the cost of higher
delay. Additionally there is a higher computational cost in these approaches,
both from processing and memory requirements. Developments using context-
based strategies for routing include context-aware routing [11] and MobySpace
routing [8].

3 The Model

We assume that all nodes are equipped with IEEE 802.15.4 type transmission
capabilities and classify devices as being a fixed location information source
or nomadic (i.e., possibly mobile, depending on the scenario). The information
sources are assumed to provide real-time information about the status of a re-
source or an event.

A single isolated information source may represent a sensor or wireless-enabled
device situated in the environment (e.g., a vending machine). Multiple local
information sources represent the gateway points to a “backbone” network such
as the internet, from which the information source nodes pull information and
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Table 1. Global parameters

Parameter Description Setting
Channel Bit rate 250 kbps
Discovery Success rate 0.95
Transmission Success rate 0.95
Channel Set-up time 0.5
meta-data size 0.1 kb
artefact size 3 kb
transmission range 30 metres
simulation time step 0.1 seconds
simulated duration 15 minutes
region size 500m × 500m

make it available for distribution to mobile peers. In the case where multiple
information sources occur, for the purposes of this paper we assume that they
all provide copies of the same real-time updated information. We refer to the
information provided relative to the time at which it was created, and call this
an artefact. The description of an artefact (specifically its age) is defined by its
meta-data, which may be exchanged between nodes independent of the artefact.
We assume that each node has the storage sufficient for an artefact and at least
two pieces of meta-data and the processing capability to compare meta-data
from another node with its own.

We assume that the transmission technology applied is of the wireless personal
networking variety, such as IEEE 802.15.4, which can be embedded in motes
and other tiny wireless devices on a very cheap basis. We approximate protocol
behaviour by modelling the time taken for discovery and channel set-up between
peers (e.g., 0.5 seconds [15]). We assume that this occurs with 95% success.
Random selection of the discovered peer is assumed, and at any one point in
time, a node may maintain a link to at most one other node. A range of 30
metres is assumed, which is more conservative than specifications such as IEEE
802.15.4 to account for environmental impediments to transmission.

3.1 Information Exchange Protocol

To determine the potential quality of information from peer-to-peer interactions,
we apply a fully opportunistic protocol for artefact exchange. The protocol is
greedy in the sense that when a node is not engaged in a peer-to-peer interaction,
it is engaged in peer discovery as described above. Note that this is not a resource
efficient protocol and it is unlikely to be appropriate in practice. We are mod-
elling it here merely to scope the possible performance in terms of information
quality, that could be achieved.

Once a connection has been established and channel set-up is complete, the
pair of nodes A, B exchange meta-data which describes the age of their current
artefact or the absence of an artefact. The node initiating channel set-up, de-
noted A, initiates meta-data transmission and B replies. At this point each node
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can determine whether it is required to transmit or receive an update of the
artefact. An artefact update occurs if either: (i) precisely one of the nodes has
no artefact, in which case a copy of the artefact is transmitted; (ii) the nodes
have artefacts of different ages, in which case the older artefact is updated. To
maintain simplicity, transmissions are not acknowledged, and there is a 95%
success rate of a successful transaction between A and B (assuming the nodes
remain in transmission range).

3.2 Mobility Models

Mobility is important for MP2P networking because it governs the opportunities
for data exchange. A common criticism of ad-hoc network research has been the
lack of consideration of mobility when evaluating protocols (e.g., [2]) and the same
is true of existing research on MP2P applications. Therefore we assess the effects
of three different mobility models, namely random walk, random waypoint and
the Gauss Markov model.

– The Random Walk
Under this model, each mobile node chooses a direction and speed in which
to travel. The distance travelled along this trajectory is also chosen, in this
scenario as a fixed time value. When reaching the boundary of the simulation
region, a node bounces off the simulation border with an angle determined
by the incoming direction. This is applied in this paper adopting a constant
mobile node speed of 5km/h, while travelling in a uniformly random direction
for a duration of 30 seconds.

– The Random Waypoint Model
Under this model, each node chooses a destination from the simulation re-
gion, and also a speed, which is uniformly distributed in the domain [min-
speed,maxspeed]. When reaching the destination, the nodes remain static for
a period of time prior to departing to a new destination. This is applied
in this paper with minspeed of 4km/h and maxspeed of 8km/h, assuming a
waiting time uniformly selected from the range [10 seconds, 30 seconds].

– The Gauss Markov Model
As described in [2], this model overcomes the problem of linear movement
patterns using a single tuning parameter α, where 0 < α < 1. Each node
has a general direction and a general speed (called the mean direction and
mean speed) that are updated over a fixed interval t. Between updating
mean speed and mean direction, each node proceeds approximately in the
mean direction and approximately at the mean speed with local variations,
the magnitude of which is defined by α. The location of a node at iteration
i, denoted (xi, yi), is defined as:

xi = xi−1 + s̄ cos d̄ (1)
yi = yi−1 + s̄ sin d̄ (2)

where s̄ and d̄ are the current mean speed and current mean direction. After
each period of length t, new values are calculated for s̄ and d̄. Assuming this
occurs at some iteration i then the update for s̄ and d̄ is defined as follows:
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s̄ = αsi−1 + (1 − α)s̄ +
√

(1 − α2)sxi (3)

d̄ = αdi−1 + (1 − α)d̄ +
√

(1 − α2)dxi (4)

where si−1 and di−1 are the current speed and direction at iteration i − 1
and sxi and dxi are values taken from a Gaussian distribution. In this paper
we use α = 0.5 and allocate random initial starting values for s̄ and d̄, taking
s̄ in the range [1 km/h,10km/h]. If a node strays within a guard distance of
the region edge, such a node is given a new random direction, away from the
boundary. In this simulation a guard distance of 10 metres is applied.

3.3 Test Problem Scenarios

We adopt a 500m × 500m region, which is sufficiently large to represent a large
store, small shopping mall or city plaza. We specify the location(s) of up to three
information sources having the same transmission range as mobile nodes (30
metres for this problem). For demonstration purposes, we assume that 100 mobile
nodes are present, with starting positions selected on a uniform-random basis.
For all experiments performed, we consider the behaviour of node movement
and information acquisition based on 100 random trials. Each trial represents
15 minutes of system operation with an artefact only being held by the source
node at the start of each trial.

3.4 Performance Metrics

In order to assessment the quality of information that peers can maintain, we
define various metrics. Let Sj be the set of nodes at iteration j holding an
artefact. Let aij denote the age of the artefact held by node i, i ∈ Sj . Then
following is of interest:

– Time to receiving an artefact
This metric measures how quickly information becomes available to node i,
irrespective of the quality (i.e., age) of an artefact. For node i, this is defined
as j such that i ∈ Sj and i �∈ Sj−1. Related to this, for ns simulation steps
with nn nodes, the occupancy of nodes is defined as:

1
nsnn

∑
j=1,...,ns

|Sj |

– Profile of artefact ages
This metric assesses artefact ages throughout all ns steps in the simulation.
The total instances of artefacts aged x is defined as:∑

j=1,...,ns

|{i ∈ Sj : aij = x}|
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– Frequency of artefact updating
This metric measures the periods that artefacts remain at nodes without
updating. Assuming node i has an artefact, an update occurs at time step
j if and only if ai,j−1 > aij . Then the duration before the next update for
node i is d such that:

ai,j < ai,j+1 < · · · < ai,j+d > ai,j+d+1 (5)

4 Experimentation

We perform experiments to demonstrate the effect that different behaviour (i.e.,
mobility) has on the performance metrics. In this Section these are carried out
using a single information source. This is carried out assuming a single infor-
mation source with location (0, 250), that is on the mid-point of a boundary.
Figure 1 shows the difference on the spread of artefacts from the information
source under the three mobility models. The error bars indicate a 90% confi-
dence interval taken across a sample of 100 trials. It is notable that random way
point model provides the slowest dissemination of artefacts which is due to the
pause time invoked at destinations which reduces opportunities for artefact ex-
change. Under the random walk, approximately 50% of nodes receive an artefact
within 2600 simulation steps (4.3 minutes) where as under the Gauss Markov
assumptions on mobility, 3925 simulation steps are taken (6.5 minutes). Under
assumptions of the random waypoint model, 8875 simulation steps are taken
(14.8 minutes).

The profile of the set of artefact ages is displayed in Figure 2, with error
bars indicating a 90% confidence interval across 100 trials. For each mobility
model, the graph is characterised by a sharp initial peak indicating that the
most frequent artefact age is in the 0 - 20 age range, which is most prominent
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for random walk, Gauss Markov and random waypoint respectively. This occurs
from nodes local to the source acquiring information soon after it has been
released. Beyond this, each distribution exhibits a secondary local maxima (2240,
2737, 3100 respectively). The profile of the distributions are given in Table 2. As
the distributions are relatively flat, weak clustering around the average artefact
age is evident.

In Figure 3 the average frequency of durations between artefact updates is
presented across 100 trials. Note that this is shown using the range 0 - 50.
Beyond this range, there are very low frequencies evident throughout (all average
frequencies under 0.5 in the range 50 - 9000). Table 3 gives further statistics. In
particular, it is evident that duration is high variable between mobility scenario
as seen from the plots in Figure 3.
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Table 2. Statistics on artefact age profile (100 trials)

mobility total artefact percentiles from 100 Distribution of
scenario occupancy (%) aggregated trials average artefact age

1 5 50 95 99 (90% Confidence)
Random Walk 70.7 10 357 2169 4492 5785 2262.53 (±133.23)
Gauss Markov 46.7 516 1215 3305 3305 6612 3530.47 (±271.41)

Random Waypoint 14.9 633 1383 3081 5995 7382 3261.71 (±238.96)

Table 3. Statistics on duration between artefact updating (100 trials)

mobility percentiles from 100 Distribution of
scenario aggregated trials average duration

1 5 50 95 99 (90% Confidence)
Random Walk 6 9 12 2867 4255 576.90 (±51.92)
Gauss Markov 9 9 2172 7148 8349 2523.63 (±257.15)

Random Waypoint 9 9 4192 8492 8826 4074.44 (±302.70)
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Fig. 4. Number of nodes with an artefact while varying number of information sources
(100 trials)

4.1 Sensitivity to Information Sources

The number and location of information sources that are available in the region
significantly impact on the maintenance of temporal quality. This is demon-
strated by considering the the effects of four scenarios- a single information
source in the centre; a single information source off-set at location (0, 250); 2
information sources located at (125, 125) and (375, 375); 3 information sources
located at (125, 125), (250, 250) and (375, 375). All results are presented from
100 random trials with error bars showing a 90% confidence level. The gain in
performance is shown in Figures 4 and 5 assuming the Gauss Markov mobility
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Fig. 5. Profile of artefact ages (ai,j) over all time steps while varying number of infor-
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Table 4. Statistics on artefact age profile for the Gauss Markov model while varying
the number of Information Sources (100 trials)

Number of total artefact percentiles from 100 Distribution of
Information occupancy (%) aggregated trials average artefact age

Sources 1 5 50 95 99 (90% Confidence)
1 (off-set) 46.7 516 1215 3305 3305 6612 3530.47 (±271.41)
1 (centre) 81.1 6 40 751 1859 2438 823.65 (±63.33)

2 90.1 4 23 674 1736 2328 747.04 (±57.15)
3 90.7 2 12 450 1482 2075 540.68 (±41.06)

Table 5. Statistics on duration between artefact updating for the Gauss Markov model
while varying the number of Information Sources

Number of percentiles from 100 Distribution of
Information aggregated trials average duration

Sources 1 5 50 95 99 (90% Confidence)
1 (off-set) 9 9 2172 7148 8349 2523.63 (±257.15)
1 (centre) 6 6 18 1176 2077 217.80 (±18.77)

2 6 6 13 844 1520 152.94 (±10.71)
3 6 6 12 597 1240 103.40 (±8.46)

model. It is notable that an additional information sources beyond a single in-
stance provide improvement in both immediacy of acquisition and maintenance
of lower artefact ages. In the case of a single information source, there is sub-
stantial sensitivity to its location. Tables 4 and 5 further quantify the updating
and age profiles.
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5 Conclusions

While disconnectivity precludes applications dependent on a real-time quality of
service, it is commensurate information sharing. This paper has identified some
of the sensitivities that affect the potential temporal information quality that
can be sustained from mobile peer-to-peer interactions. These sensitivities are
significant and will influence operational protocols for peer-to-peer information
exchange. Further related issues arising include the effect of information het-
rogeneity and intelligent adaptibility for be-spoke deployment scenarios. These
need to correlate with diverse patterns of behaviour and interactions that humans
face in situated environments. Future research in this direction is supported by
the EU FP7 SOCIALNETS project (social networking for adaptive behaviour).
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Abstract. Random projection (RP) is a common technique for dimensionality
reduction under L2 norm for which many significant space embedding results
have been demonstrated. In particular, random projection techniques can yield
sharp results for Rd under the L2 norm in time linear to the product of the number
of data points and dimensionalities in question. Inspired by the use of symmetric
probability distributions in previous work, we propose a RP algorithm based on
the hyper-spherical symmetry and give its probabilistic analyses based on Beta
and Gaussian distribution.

Keywords: Randomised algorithm, dimensionality reduction, multi-dimensional
indexing.

1 Introduction

Dimensionality reduction is a common technique to simplify and accelerate large scale
data processing, especially for applications such as information retrieval and data visu-
alisation. In these applications, information retrieval in particular, documents are mod-
elled as points in a high dimensional space in which each dimension captures a certain
feature. For modern Web data, the number of dimensions could easily go beyond thou-
sands1. This causes significant overhead in processing and storage which suffers from
the so called “curse of dimensionality”.

For instance, the nearest neighbour query, the standard routine in multimedia
databases [12] and machine learning [4], often require either full scan over the data-
base or significant amount of index proportional to the dimensionality for efficient
evaluation [6]. Clearly, reduced dimensionality means simultaneous improvements in
terms of computational complexity throughout storage, indexing and query processing.
Moreover, from the systems point of view, an even more effective speedup comes from
fitting more indices or points into main memory which is orders of magnitude faster
than external storage, e.g., the hard disk.

In this paper, we present a family of randomised projection (RP) algorithms and
analyse its properties for dimensionality reduction problems under the L2 metric. One
of the main advantages of randomised algorithms are simplicity. Standard statistical

� Corresponding author.
1 For example, as we shall see later, LA Times documents from TREC 5 consist of 187K key-

words as document features after stemming.

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 319–331, 2008.
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methods such as singular value decomposition (SVD) or principle component analysis
require repeated iteration throughout the data and thus suffers time complexity polyno-
mial to the data dimensionality2. RP methods, on the other hand, require only seed val-
ues independent of the dataset and guarantee successful reduction in constant number
of trials with high probability. This is especially beneficial for WWW and multimedia
databases where the number of documents is so large that the cost to directly apply
some super-linear algorithms becomes prohibitive.

A common problem for all dimensionality reduction schemes is that the measure of
the document space varies from application to application. While the choice of such
measure is beyond the scope of this paper, we provide two arguments below to motivate
our use of L2 norm. Firstly, the L2 norm has been shown to be very expressive in
practice and is pivotal for many applications such as web page indexing [2]. Secondly,
and most importantly, algorithms constructed under L2 are more generalised than one
might expect initially. It can be shown that all norms are equivalent in the sense that they
could simulate each other with up to some constant factor distortion, due to a special
case of Weierstrass’ theorem.

Owing to the theoretical advantage of L2 norm, exact embedding algorithms from
arbitrary norms have then became an active field in which many elegant results have
been shown. For example, Bourgain showed that any n points in metric space can be
embedded in O(log n) dimensions under L2 norm [3]. For a comprehensive review of
this field, see [5].

For the rest of this paper, we first present the high level ideas of RP in section 1.1
followed by a summary of contributions. In section 2, we formally present the Beta
random projection and give derivations on its exact distributions and tail bounds.

1.1 Random Projection

In essence, a random projection is a function HA : Rd → Rk where Ad,k is a choice of
d-dimensional estimation vectors in Rd. Its objective is, given a set of points, to produce
a new image in Rk with estimation vectors such that the pair-wise distance simulates
those in Rd. Typically, the new image is a projection onto the subspace spanned by the
estimation vectors. One then may apply probabilistic arguments to estimate how much
distortion this transform could introduce.

This possibility is first shown in the 80s when Johnson and Lindenstrauss showed
that n points in Rd could be embedded into Rk with 1 ± ε factor distortion where
k = O(log n/ε2) [8]. To see this bound is tight, consider the case for dimensionality
reduction of 3 points each of which is of distance 1 to each other on a plane. It is not
possible to find an embedding of these three points on a line in which their pair-wise
distance could all be preserved. An optimal embedding could be to have three points
with coordinate 0, 1, 2 on a line, thus matching the bound with error equal to 1.

While the JL-embedding demonstrates the possibility of reduction, its proof is based
on geometric approximations and thus makes it difficult to comprehend and design algo-
rithms to discover such mappings. Indyk et al. [6] proposed that drawing the estimators

2 For example, the standard SVD algorithm would require O(d3) time steps to decompose a d
by d matrix due to its nature to find the optimal rank approximation.
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from d-dimensional Gaussian distribution could lead to simpler proofs and constant
factor improvements over the original JL-embedding bounds.

Later on, with an eye on the benefits of random projection, various work was pro-
posed to give additional properties such as volume preservation and to accelerate ran-
dom projection. Most notably, Achlioptas [1] demonstrated that one could yield as good
an embedding as by Indyk’s using sparse estimation vectors. Specifically, his estimators
are drawn from a sparse distribution in which each coordinate of the estimation vector
has equal probability of 1/6 to be either

√
3 or −

√
3 and 0 otherwise. This significantly

trims down the computational complexity, as 2/3 of the coordinates are expected to
be discarded. Surprisingly, this does not hurt the accuracy of the projection, at least
in theory. In fact, the bound of k is pushed down to 6

ε2/2−ε3/3 log n by using moment
methods in [1].

This sparse estimator approach is followed up by various further attempts to accel-
erate projection [10, 9] by trading off distortion with performance. Li et al. presented
projections based on even more sparse estimators [10] and another based on marginal
information [9]. Their results showed that further performance gain is possible by in-
curring some more distortion.

While sparse random projections are significantly faster in terms of computation,
however, there are some drawbacks when faced with certain datasets. Consider two
points u, v ∈ R100 with u = (1, 0, 0, · · · , 0) and v = (0, 0, · · · , 1). Dropping attributes
with probability 0.9 as in [10] would yield at least a 0.82k probability that the two points
have zero distance on a Rk projection. In fact, this problem would become more severe
as the dimensionality increases due to the fact that the probability that each “valid” coor-
dinate is dropped increases inversely proportioned to the square root of dimensionality.
Whilst one might argue that bad datasets could be just rare, real world datasets are, in
fact, much more sparse than one might expect. In TREC5, for example, only 0.084% of
the La Times term document matrix is non-zero and that of FBIS is 0.077%. In FreeDB,
an album database containing 21 million song names, 90% of the songs use less than 10
keywords out of a 13 thousand vocabulary and 98% use less than 20.

1.2 Contribution

In this paper, we present the hyper-spherical Beta random projection for vector spaces
under the L2 norm. Our estimation vectors are drawn from all unit vectors in Rd uni-
formly at random. Similar to the techniques used in Indyk and Achlioptas, the data
points are projected onto the k dimensional space spanned by the estimation vectors.
We show that k could in general be further improved from 12 log n

ε2−2ε3/3 to 8 log n−2 log 4π
ε2 .

Our key insight is to discover that, for an arbitrary vector, each such projection is in fact
a random variable based on the beta distribution and its original norm, hence the name
Beta random projection.

We later analyse the exact distributions of the distortion due to random projection.
We first give tight bounds for the case in which k is large enough 3 to apply the cen-
tral limit theorem (see section 2.1). For small k, we later present results based on beta

3 In practice, it suffices to have k larger than 30. We shall use this value for distinguishing
between the two approximations for the rest of the paper.
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distribution approximation in section 2.2. We show that hyper-spherical random projec-
tion yields more accurate projections in both cases.

2 Beta Random Projection

Let A be a k×d matrix in which Ai, a uniformly random point on the unit d-dimensional
sphere, is the i-th row of A. In practice, we generate each Ai by normalising each vector
drawn from Nd(0, 1) where Nd is a d-dimensional Gaussian distribution [11]. We define
the hyper-spherical random projection H(v; d, j) for any point v ∈ Rd as follows:

H(v; d, k) =

√
d

k
· A · v (1)

We endeavour to show that the lower bound of k could be improved up to 40% as
indicated by the theorem below.

Theorem 1. For any u, v ∈ S ⊂ Rd and |S| = n there exists a mapping H : Rd → Rk

such that

(1 − ε)|u − v| ≤ |f(u) − f(v)| ≤ (1 + ε)|u − v|

with probability at least 1 − n−1, when

k ≥ 8 log n−2 log 4π
ε2 ≥ 30 such that

√
kε ≥ 2.

Proof. It suffices to show that for any vector v, Pr[¬1 − ε ≤ |f(v)|2/|v|2 ≤ 1 + ε] ≤
2/n2, since we require this event to occur C(n, 2) times which is the number of all
distance pairs. Given Theorem 2 and Lemma 3, this amounts to solving for k such that

2√
πkε

e−
k
4 ε2 = 2/n2.

In the following, we first show the distortion distribution in the case when k is large
enough for central limit theorem in Theorem 2. For the case in which k is small, we
present the approximation by the Beta distribution in Theorem 3. We would like to note
that these two approximations is accurate in most cases, as we give the comparison
between the actual and approximated distributions in Appendix 4. Following each ap-
proximation results, we derive the probability bounds for the event that the distortion is
more than 1 ± ε.

2.1 Normal Approximation

In this section, we present the results for BRP with k large enough for treatise using the
Central Limit Theorem. The proof proceeds by first exercising the Lemma 7 that each
Ai · v in (1) would yield a distortion obeying Beta distribution 4. Then, we apply the
theorem to obtain the aggregate distortion as the number of projection increases.

4 We defer the proof of Lemma 7 until section 3 for smoother presentation.
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Theorem 2. There exists a random projection H : Rd → Rk under L2 norm such that
for any ε > 0, k ≥ 30 and v ∈ Rd,

Pr[1 − ε ≤ |H(v; d, k)|2
|v|2 ≤ 1 + ε] ≥ 2 · erf(

√
k

2
ε) (2)

where erf(z) ≡ 2√
π

∫ z

0 e−x2
dx is the error function.

Proof. (2) First, we rewrite (1) into H(v; d, k) =
√

d
k ·(b1, b2, b3, . . . , bk). Without loss

of generality, we assume an unit-vector v. From lemma 7, each bi is a random variable
such that b2

i ∼ β(1
2 , d−1

2 )|v|2. Let Y =
∑

b2
i , we rewrite (2) as

Pr[1 − ε ≤ |H(v; d, k)|
|v| ≤ 1 + ε] = Pr[(1 − ε)

k

d
≤ Y ≤ (1 + ε)

k

d
] (3)

Since k is large enough, we invoke Lemma 8, hence

Y ∼ N(
k

d
,

2k

d(d + 2)
)

Thus (3) can be rewritten as standard normal distribution as in (5). Integrating through
the standard normal distribution and taking into account the fact that the error function
is monotonically decreasing, we arrive at the claim.

Pr[(1 − ε)k
d ≤ Y ≤ (1 + ε)k

d ] (4)

= Pr[− k/d√
2k/(d(d+2))

ε ≤ Z ≤ k/d√
2k/(d(d+2))

ε] (5)

= 2 · erf
(

k
d/2( k

d(d+2))
1/2ε

)
(6)

≥ 2 · erf(
√

k
2 ε) (7)

��

Tail Bounds. Here, we would like to bound the probability of the event E that a vector’s
projection has more than ε factor distortion to its original. For ease of comparison, we
first present the sharp bounds given by Achlioptas in [1].

Lemma 1 (Achlioptas [1]). Let R be a k × d matrix where {rij} are i.i.d. random
variables following the discrete density Pr[rij =

√
3] = 1/6,Pr[rij = 0] = 2/3, and

Pr[rij = −
√

3] = 1/6. Let fA(v; k, d) = 1
k ·R ·v where v is an arbitrary vector in Rd.

Pr[¬E ] ≤ 2e−
k
4 ε2+ k

6 ε3

Below, we provide tail bounds for the case where the central limit theorem applies. Our
approach is based on Taylor expansion on the error function which exhibits different
convergence behaviour according to its argument

√
kε
2 . Thus, we separate the two cases

in Lemma 2 and 3.
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Lemma 2. Let d > k > 30,
√

kε < 2.

Pr[¬E ] ≤ exp(− 2√
π

√
kε +

1
6
(
√

kε)3)

Proof. Since Theorem 2 indicates Pr[E ] ≥ 2erf(
√

k
2 ε), and let z =

√
k

2 ε, we have

Pr[¬E ] ≤ 1 − 2erf(z) (8)

= 1 − 2 · 2√
π

(
z − z3

3 + z5

10 + . . .
)

(9)

≤ 1 − 2√
π

√
kε + 1

6 (
√

kε)3 (10)

(9) is the standard Taylor expansion. Exercising the fact that
√

kε < 2 (hence z < 1) ,
we arrive at the claim. For ease of comparison, observe that 1 − x ≤ e−x, our claim is
less than exp(− 2√

π

√
kε + 1

6 (
√

kε)3). ��

Lemma 3. Let d > k > 30,
√

kε ≥ 2.

Pr[¬E ] <
2√
πkε

e−
k
4 ε2

Proof. Let z =
√

k
2 ε. Since z ≥ 1, we can substitute the bound in Theorem 2 with

asymptotic series

erf(z) = 1 − e−z2

√
π

∞∑
i=0

−1i(2i − 1)!
2i

z−2i−1

Thus,

Pr[!E ] = 1 −
[
1 − e−z2

√
π

(z−1 − 1
2z−3 + 3

4z−5)
]

(11)

< 2√
πkε

e−
k
4 ε2 (12)

��

2.2 Beta Approximation

As the application does not always allow for k ≤ 30, we give results based on Beta
approximation in this section. Again, it can be shown that this approximation is precise
as the error bound is given in [7]. We verify this in practice later in Appendix 4, Figure
4. Below, we establish the aggregate distortion distribution followed by bounds for the
event that the distortion is larger than 1 ± ε.

Theorem 3. There exists a random projection H : Rd → Rk under L2 norm such that
for any ε > 0, 1 < k < 30, d � k and v ∈ Rd,

|H(v; d, k)|2
|v|2 ∼ β(

k

2
,
d

2
+ 1) (13)

where β(α, β) is the beta distribution with parameter α, β.
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Proof. (3) From Lemma 7, we know each (Ai · v)2 ∼ β(1
2 , d−1

2 ). Hence it remains to

calculate Y =
∑k

i=1(Ai · v)2.
To derive the distribution of Y , we invoke the beta-sum approximation below:.

Fact 4 (Johannesson and Giri [7]). Let S =
∑k

i=1 Xi where Xi are i.i.d. random
variables of β(α, β). The distribution of S can be approximated by:

β(e, f); e = Ff, f =
F

σ2(1 + F )3

where E =
∑

EXi, F = E
1−E , and σ2 =

∑
V ar(Xi).

Since d � k, then f ≈ d+2
2 Thus, we have Y ∼ β(k

2 , d
2 + 1).

Tail Bounds. Below, we show that the approximated probabilities for the case of small
k where the resulting distribution is approximated by the Beta distribution. Due to the
fact that beta distributions under our parameters exhibit significant skew, we bound the
right and left tails separately in lemmas 4 and 5. In lemma 5, it is unexpected to see that
it indicates that it is relatively unlikely to have a distortion less than the original. We
present a case in simulation to demonstrate this in Figure 5.

In the following analyses, we shall separate E into two for easy discussion. Let ER

be the right tail, the event that |H(v)|2/|v|2 ≥ 1 + ε, and EL be the left, the event that
|H(v)|2/|v|2 ≤ 1 − ε.

Lemma 4. Let d > 30 > k > 0 and ε > 0.

Pr[ER] ≤ 2√
πk

e−
k
2 (ε−ln(1+ε))

Proof. We denote the pdf of β(α, β) by f(z; α, β) = 1
B(α,β)z

α−1(1 − z)β−1.

We can thus bound the right tail as an integral of f over A = [(1 + ε)k
d , 1]:

Pr[ER] =
∫

A

f(u)du (14)

≤α

β

∞∑
t=1+ε,2+ε,...

f(t
α

β
) (15)

≤ 1
B(α, β)

∑ (
t
α

β

)α−1

(1 − t
α

β
)β−1 (16)

≤d
1

B(α, β)

(
α

β

)α ∑ tα−1

eαt
(17)

≤ Γ (α + β)
Γ (α)Γ (β)

(
α

β

)α ∑ 1
eα(t−ln t) (18)

≤ 1√
2πα

e−α(ε−ln(1+ε))(
1

1 − e−α/2 ) (19)
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Differentiating f(·) show that it reaches maxima at max{0, k−2
d+k−4} and then drops

exponentially, thus (15). Since d is large, (1+ε)k
d

d
2−1 → −(1+ε)k

2 . Via a little calculus,

we have (1 − (1 + ε)k
d )d/2−1 → e−(1+ε) k

2 and hence (17). Notice that t − ln t > t/2,
therefore the rate at which this summation increases must be faster than e−α/2. Taking
the first term of the original series, we have the the inequality (19). Observing that the
term in parenthesis is strictly less than 2, we arrive at the claim.

For the special case in which 0 ≤ ε ≤ 1, one could obtain an improved bound
over the classic result as in [1], via Taylor’s expansion for ln(1 + ε), ln(1 + ε) ≤
ε − ε2/2 + ε3/3. That is:

2√
2πα

e−α(ε2/2−ε3/3))

Lemma 5. Let d � 30 > k > 0, 0 ≤ ε < 1, and EL be the event that |H(v)|2/|v|2 ≤
1 − ε where 0 ≤ ε ≤ 1 and k(1 − ε) ≥ 1.

Pr[EL] ≤ 1
(k/2 − 1)!

(
1 − e−k(1−ε)/2

)

Proof. Let ρ = 1 − ε. Notice that as b → ∞ and cb → λ, then (1 − b)a → e−λ. Sub-
stituting x with t = (ρa/b)−1x, the basic beta-distribution pdf results in (21). Invoke
Lemma 6, we have (22). Cleaning the equation yields our proposition.

Pr[EL] =
1

B(a, b)

∫ (1−ε)a/b

0
xa−1(1 − x)b−1dx (20)

≤ 1
B(a, b)

ρa
(a

b

)a
∫ 1

0
ta−1e−ρatdt (21)

≤(b + a − 1) . . . b

(a − 1)!
ρa

(a

b

)a 1
aaρa

(
1 − e−ρa

)
(22)

≤ 1
(a − 1)!

(
1 − e−ρa

)
(23)

Lemma 6. Let a > 0, ρa ≥ 1, and 0 ≤ ρ ≤ 1.∫ 1

0
ta−1e−ρatdt ≤ 1

aaρa

(
1 − e−ρa

)

Proof. Since this integral does not have a closed form for arbitrary value of a, We prove
this by mathematical induction. Firstly, for a = 1, LHS is induced to 1−e−ρ

ρ by standard

calculus – the desired inequality holds. For a = 2, LHS ends up with 1−e−2ρ−2ρe−2ρ

4ρ2 ,
the hypothesis holds.

Assuming the claim holds for a = k, the inequality can be rewritten as below by
standard calculus.∫ 1

0
tk−1e−ρktdt = (ρk)−1

∫ ∞

ρk

tk−1
1 e−t1dt1 ≤ 1

kkρk
(1 − e−ρk)
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Similarly, the case for a = k + 1 can be written as (24) which, with some calculus,
becomes (25). Observe that tke−ρ(k+1)t is monotonically increasing. The additional
area due to changing the starting point ρ(k + 1) to ρk is at least ρ(ρk)ke−ρk. Expand-
ing the integral again, we can establish the inequality of (26). The terms in parenthesis
of (28) is strictly less than 1− e−ρ(k+1) after ρ ≥ 1/k, as suggested by partial differen-
tiatuion along ρ and checking the base case ρk = 1. Finally, we arrive at the claim after
cleaning up (28).

LHS =
∫ 1

0
tke−ρ(k+1)tdt (24)

=
1

ρ(k + 1)

∫ ∞

ρ(k+1)
tk2e−t2dt2 (25)

≤ 1
ρ(k + 1)

{
k

∫ ∞

ρk

tk−1
2 e−t2dt2 − (ρk)ke−ρkρ

}
(26)

≤ 1
ρk+1(k + 1)k+1 (27){

ρ(1 +
1
k

)k−1k(k + 1)(1 − e−ρk) − ρ2k+1(k(k + 1))ke−ρk

}
(28)

≤ 1
ρk+1(k + 1)k+1 (1 − e−ρ(k+1)) (29)

3 Distribution of the Inner Product

In this section, we demonstrate our observation that each inner product of Ai and the
points are, in effect, beta distributions with parameters (1/2, (d − 1)/2).

Lemma 7. Let X be an uniformly random point on the surface of the unit d-dimension
sphere and v ∈ Rd. Then, we have

(X · v)2

|v|2 ∼ β(
1
2
,
d − 1

2
)

where β(α, β) is the beta distribution.

Fig. 1. An illustration of the inner product on a 2D sphere, i.e., a circle
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Proof. (7) Without loss of generality, we consider the case in which v is an unit vec-
tor. Since the unit d-dimension sphere is symmetric and X spreads uniformly on its
surface, it suffices to consider the case in which X = (x1, x2, . . . , xd−1, t) and v =
(0, 0, . . . , 0, 1). Notice that x2

1 + x2
2 · · · + x2

d−1 = 1 − t2 which is a (d − 1)-dimension
hypersphere by definition.

We first give some intuitions on the proof. Consider each v is a hyperplane. Since
we sample uniformly random from the unit hypersphere, the probability distribution of
the inner product is essentially proportionate to the region of the surface that intersects
with the hyperplane. We illustrate the 2D case in Figure 1.

That is:

Pr[X · v ≤ t] = Pr[|xd| ≤ t|
d∑

j=1

x2
j = 1]

We can denote xi via hyper-spherical coordinates and choose t = cos ρ1, thus

x1 = sinρ1 cos ρ2

x2 = sinρ1 sin ρ2 cos ρ3

. . .

xd−1 = sin ρ1 . . . cos ρd

t = xd = cos ρ1

Thus the cdf reduces to the following region of area:

∫ ρ

−ρ

∫ π

0 . . .
∫ 2π

0

∏d−1
j=1 sind−1−j ρjdρj

Sd(1)

where Sd(1) denotes the surface area of the unit d-sphere. The above equations thus
reduce to

Pr[|X · v| ≤ t] = Pr[|X · v| ≤ cos ρ1]

= Γ (d/2)√
πΓ ( d−1

2 )
2

∫ ρ1

0 sind−2(ρ1)dρ1

= 1
β( 1

2 , d−1
2 )

∫
(1 − cos2 ρ1)

d−3
2 d cos ρ1

= 1
β( 1

2 , d−1
2 )

2t ·2 F1(1
2 , − d−3

2 ; 3
2 ; t2)

= 1
β( 1

2 , d−1
2 )

βt2(1
2 , d−1

2 )

= It2(1
2 , d−1

2 )

where 2F1(·) is the generalised hyper-geometric function, β(·) is the beta function,
βt2(·) is the incomplete beta function, and It2 (·) is the regularised beta function. By the
definition of beta distribution, we obtain the claim.
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4 Conclusion

In this paper, we present a novel random projection algorithm for dimensionality re-
duction under L2. We show analytically that our algorithm further improves previous
work by at least a constant factor. Also, our analyses demonstrates that the preferred
behaviour still holds for very small distortions and very few dimensions.

In the future, we would like to further characterise the effect of random projection
for highly correlated datasets and its applications in distributed indexing.
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11. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres.
Commun. ACM 2(4), 19–20 (1959)

12. Pentland, A., Picard, R., Sclaroff, S.: Photobook: Content-based manipulation of image data-
bases. In: SPIE Storage and Retrieval for Image and Video Databases, vol. II(2185) (February
1994)

Appendix

Lemma 8. Let B1, B2, . . . , Bk be i.i.d. random variables with distribution β(1
2 , d−1

2 ).
The sum of Bi, S =

∑k
i=1 Bi, has probability distribution

S − k/d√
2k/d(d + 2)

∼ N(0, 1)

where k ≥ 30 and N(0, 1) is the standard normal distribution.

Proof. (8) Each Bi is a random variable of beta distribution with mean 1/d and varia-
tion 2

d(d+2) . Since k is large enough, central limit theorem indicates that:

Y − k/d√
2k/d(d + 2)

∼ N(0, 1)

where N(0, 1) is the standard normal distribution.

Fig. 2. An illustration of the theoretical bound and each projection Ai · v where Ai is an uni-
formly random unit vector and v ∈ Rd obeys β( 1

2 , d−1
2 ). The gaps in each beginning x segments

are due to loss of floating point precision at the extreme ends of the hypersphere with respect
to v.
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Fig. 3. The effects of normal approximation. We could observe that the approximation is accurate.

Fig. 4. The effects of Beta approximation. We could see that the approximation accuracy degrades
a little as k approaches d. While the loss of precision is acceptable, it could be remedied by not
exercising the assumption that d 
 k in Theorem 3. This would only alter the value of k slightly
in all our bounds used, which explains the minor under-estimation as k increases.

Fig. 5. Simulated results for the distortion distribution for d=1000 and k=5 where 99.5% of the
data points are 0. Observe that there is an initial probability hike when x is very small. This is in
accordance to the probability predicted in Lemma 5.
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Abstract. We present a method for measuring the distance among
records based on the correlations of data stored in the corresponding
database entries. The original method (F. Bagnoli, A. Berrones and F.
Franci. Physica A 332 (2004) 509-518) was formulated in the context
of opinion formation. The opinions expressed over a set of topic origi-
nate a “knowledge network” among individuals, where two individuals
are nearer the more similar their expressed opinions are. Assuming that
individuals’ opinions are stored in a database, the authors show that it is
possible to anticipate an opinion using the correlations in the database.
This corresponds to approximating the overlap between the tastes of two
individuals with the correlations of their expressed opinions.

In this paper we extend this model to nonlinear matching functions,
inspired by biological problems such as microarray (probe-sample pair-
ing). We investigate numerically the error between the correlation and
the overlap matrix for eight sequences of reference with random probes.
Results show that this method is particularly robust for detecting simi-
larities in the presence of traslocations.

Keywords: knowledge network, microarray.

1 Introduction

Cluster analysis is used to classify a set of items into two or more mutually ex-
clusive groups based on combinations of internal variables. The goal of cluster
analysis is to organize items into groups in such a way that the degree of simi-
larity is maximized for the items within a group and minimized between groups.

Clustering problems arise in various domains of science, for example in opinion
formation, microarray analysis and antibody-antigens systems.

In opinion formation, one can assume that one’s opinion on a certain item
is given by the characteristics of the item, weighted by individual “tastes”. The
tastes result from past experiences, but they do not change abruptly from time to
time. In principle, tastes can be decomposed into independent “dimensions”. It is
rather difficult to identify such dimensions, as testified by the limited success of
market campaigns. However, it can be shown [1] that exploiting the correlations
among the expressed opinions, it is possible to deduce the distance between the
tastes of two individuals.

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 332–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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A DNA microarray is a collection of microscopic DNA spots of probes, com-
monly complementary to some region of a gene, arrayed on a solid surface by
covalent attachment to a chemical matrix. DNA arrays are commonly used for
expression profiling, namely monitoring expression levels of thousands of genes
simultaneously, or for comparative genomic hybridization. Gene expression mi-
croarray experiments can generate data sets with multiple missing expression
values. However, many algorithms for gene expression analysis require a com-
plete matrix of gene array values as input, and may lose effectiveness even with
a few missing values. Methods for imputing missing data are needed, therefore,
to minimize the effect of incomplete data sets on analyses, and to increase the
range of data sets to which these algorithms can be applied [2]. Moreover, com-
parison between a “forecasted” value based on correlations in the dataset, and
the measured one, can be considered a consistency “check” of the dataset itself.

Antibodies are proteins that are used by the immune system to identify and
neutralize foreign objects, such as bacteria and viruses. Classifying antibodies,
based on the similarity of their binding to the antigens, is essential for progress
in immunology and clinical medicine.

A striking feature of the natural immune system is its use of negative de-
tection in which “self” is represented (approximately) by the set of circulating
lymphocytes that fail to match self. This suggests the idea of a negative repre-
sentation, in which a set of data elements is represented by its complement set.
That is, all the elements not in the original set are represented (a potentially
huge number), and the data itself are not explicitly stored. This representation
has interesting information-hiding properties when privacy is a concern and it
has implications for intrusion detection. One of the example where this idea has
been concretised is the case of a negative database [3].

In a negative database, the negative image of a set of data records is represented
rather than the records themselves. Negative databases have the potential to help
prevent inappropriate queries and inferences. Under this scenario, it is desirable
that the database supports only the allowable queries while protecting the privacy
of individual records, say from inspection by an insider. A second goal involves dis-
tributed data, where one would like to determine privately the intersection of sets
owned by different parties. For example, two or more entities might wish to deter-
mine which of a set of possible ”items” (transactions) they have in commonwithout
reveling the totality of the contents of their database or its cardinality.

In this paper we use the microarray example to test the introduction of non-
linearities in the computation. Since in our model a datum is essentially stored
as the set of matching items plus the set of nonmatching ones, our results can
be applied both to positive and negative representation of data.

2 Matching Model

Let us first illustrate the problem summarizing the main results reported in [1].
Consider a population of M individuals experiencing a set of N products.

Assume that each product is characterized by an L-dimensional array
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a = (a(1), a(2), . . . , a(L)) of features, while each individual has the correspond-
ing list of L personal tastes on the same features b = (b(1), b(2), . . . , b(L)). The
opinion of individual m on product n, denoted by sm,n, is defined proportional
to the scalar product between bm and an: sm,n = λ(L) bm · an, where λ(L) is a
suitably chosen normalization factor. In general, λ(L) should scale as L−1 and
depend on the ranges of a and b.

In order to predict whether the person j will like or dislike a certain product
an, assuming to know an, it is sufficient to obtain the individual tastes of that
individual, i.e. the vector bj . The similarity between tastes of two individuals i
and j is defined by the overlap Ωij = bi · bj between the preferences bi and bj.

One can build a knowledge network among people, using the vectors bm as
nodes and the overlaps Ωij as edges. Maslov and Zhang [4] (MZ) assume that a
fraction p of these overlaps are known. They show that there are two important
thresholds for p in order to be able to reconstruct the missing information. The
first one is a percolation threshold, reached when the fraction of edges p is greater
than p1 = 1/M − 1 where M is the number of people. This means that there
must be at least one path between two randomly chosen nodes, in order to be
able to predict the second node starting from the first one.

Since vectors bn lie in an L dimensional space, and a single link “kills” only
one degree of freedom, a reliable prediction needs more than one path connecting
two individuals. Maslov and Zhang show that there is a “rigidity” threshold p2,
of the order of 2L/M , such that for p > p2 the mutual orientation of vectors in
the network is fixed, and the knowledge of the preferences of just one person is
sufficient to reconstruct those of all the other individuals.

In general one does not have access to individuals’ preferences, nor one knows
the dimensionality L of this space. In order to address this problem, the authors
define the correlation Cij between the opinions of agents i and j by

Cij =
∑N

n=1(sin − si)(sjn − sj)√∑N
n=1(sin − si)2

∑N
n=1(sjn − sj)2

, (1)

where si is the average of the opinion matrix S over column i. The elements Cij

can be conveniently stored in a M × M opinion correlation matrix C.
One can compute an accurate opinion anticipation s̃mn of a true value smn

using this formula:

s̃mn =
k

M

M∑
i=1

Cmisin (2)

where k is a factor that in general depends on L and on the statistical proper-
ties of the hidden components. However, if the components of an and bm are
independent random variables, k is independent of n and m, so it can be simply
chosen in order to have s̃mn defined over the same interval as smn.

For large values of N and M , the factor k can be identified with the number
of components L, and obtain an estimate for the average prediction error
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ε =

√
1

MN

∑
mn

(s̃mn − smn)2 � γL3/2

√
M +

√
N√

MN
, (3)

where
γ = λ(L)

√
〈a2〉〈b2〉. (4)

Formula (3) implies that the predictive power of Eq. (2) grows with MN and
diminishes with L. This fact is a consequence of the decay of the correlations
among opinions with L, so that more amount of information is needed in order
to perform a prediction as L grows. This condition can be compared with the
“rigidity” threshold p2 in the MZ analysis.

3 Test Case Microarray Inspired

In order to investigate the introduction of nonlinearities in the function used to
model the process of opinion formation, we considered the case of a microarray.

As mentioned in section 1, microarray experiments can suffer from the missing
values, and this fact represents a problem for many data analysis methods, which
require a complete data matrix. Although existing missing value imputation
algorithms have shown good performance to deal with missing values, they also
have their limitations. For example, some algorithms have good performance
only when strong local correlation exists in data, while some provide the best
estimate when data is dominated by global structure [5].

Here we modified the model described in the previous section to investigate
the relationship between the correlation and the overlap between sequences.

To do this we considered an alphabet of four symbols, namely A, T, G, C,
corresponding to the four nucleotides that constitute the DNA. We used this
alphabet to generate randomly M sequences of length L representing the probes
of the microarray1. Then we generated N samples of length W representing the
sequences to be hybridized on the microarray.

The correlation Cij between sample i and sample j is defined by

Cij =
∑M

k=1(mik − mi)(mjk − mj)√∑M
k=1(mik − mi)2

∑M
k=1(mjk − mj)2

i, j = 1, . . . , N, (5)

where mik is the maximum complementary match between sample i and probe
k without gaps.

The aim is to test the relationship between the correlation matrix C and
the overlap matrix Ω constructed using the following idea of similarity. We hy-
pothesized to infer the similarity between sequences based on the number of
subsequences of length L in common. For this reason we defined the overlap Ωij

between sequence i and sequence j as the number of subsequences of length L
that appear in the both sequences, divided by W − L + 1 for normalization.
1 The probes in real microarray are discriminated generally carefully chosen in order

to genes of interest.
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This matching function is nonlinear since the effect of a mismatch depends on
its position in the subsequence.

To test our hypothesis, we considered eight referential sequences:

Seq. 0: This is the first reference sequence, completely random of length W .
Seq. 1: Equal to sequence 0, except for a mutation in the middle (this mim-

ics the Affimetrix central mismatch mechanism for measuring the level of
random pairing).

Seq. 2: Equal to sequence 0, but shifted of one basis.
Seq. 3: Equal to sequence 0, with shift and central mutation.
Seq. 4: First half of sequence 4 is equal to the second half of sequence 0, and

vice versa.
Seq. 5: First half of sequence 0 is equal to the second half of sequence 0, the

rest is random.
Seq. 6: Another reference sequence.
Seq. 7: Sequences 6 and 7 contains the same “gene”, of length W/3, in different

positions.

4 Results

To check the validity of the model described in the previous section, we measured
the error εij for the pair of sequences i and j defined as the absolute value of the
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Fig. 1. The error ε̄ as a function of the length W of the samples, averaged over 40
realizations, N = 10, L = 30, M = 500. The plots of sequences 0-2 and 0-3 refer to the
right y-axis. One can observe that all errors diminish with W .
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Fig. 2. The error ε̄ as a function of the number of probes M , averaged over 40 realiza-
tions, N = 10, L = 20, W = 150. One can observe that errors do not vary with M .

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30 35 40
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

ε̄ ε̄

L

Seq. 0-1 (L)
Seq. 0-2 (R)
Seq. 0-3 (R)
Seq. 0-4 (L)
Seq. 0-5 (L)
Seq. 6-7 (L)

Fig. 3. The error ε̄ as a function of the length L of the probes, averaged over 100
realizations, N = 10, W = 200, M = 1000. The plots of ε̄02, ε̄03 and ε̄04 refer to the
right y-axis.
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difference between the correlation and the overlap, namely εij = |Cij −Ωij |. We
performed various simulations and than we calculated the average of the error
denoted by ε̄.

In figure 1 we plotted the error ε̄ vs W . One can see that for all the analysed
cases the error decreases, and this result agrees with those reported in [1] (the
parameter W here corresponds to M in the opinion formation model).

Figure 2 shows the behaviour of ε̄ with respect to M . The curves are approx-
imately constant, showing that the error is independent of M .

As one can see from figure 3, where we plotted the error vs L, ε̄ does not
follow a monotonous trend, except for the pair of sequences 0-4 for which the
value of ε̄ is almost constant and next to zero, and for ε̄01 which increases. For
what concerns the values of ε̄02, ε̄03 and ε̄05, one can detect that the errors
decrease until L � 10, because probes too short can hybridize in many positions
without a high specificity. Then they oscillate until L � 35, and for larger L the
errors increase. This last increase is due to the small coverage of the probes in
the sequence space, since we kept the number of sequences M fixed while the
sequence space grows as 4L.

5 Comments

We have proposed a method for measuring the distance among records based
on the correlations of data stored in the corresponding database. We applied
the method to the case of a microarray modifying the model introduced in [1]
with a nonlinear matching function. More precisely, we measured the similarity
between sequences based on the number of subsequences of length L (the length
of probes) in common.

We monitored the error for eight sequences of reference, with respect to M ,
W , and L. We find that the error is low in all cases, decreasing when W increase,
and independent of M . With respect to L we find that the model is more robust
for traslocation.

In conclusion we can say that the correlation matrix of our model can be
used to estimate the distance between sequences. Moreover we point out that
the same result can be found following the idea of negative database, namely
using the subsequences of length L not in common between two sequences.
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Abstract. We investigate the problem of autonomous agents processing
pieces of information that may be corrupted (tainted). Agents have the
option of contacting a central database for a reliable check of the status
of the message, but this procedure is costly and therefore should be used
with parsimony. Agents have to evaluate the risk of being infected, and
decide if and when communicating partners are affordable. Trustability
is implemented as a personal (one-to-one) record of past contacts among
agents, and as a mean-field monitoring of the level of message corrup-
tion. Moreover, this information is slowly forgotten in time, so that at
the end everybody is checked against the database. We explore the be-
havior of a homogeneous system in the case of a fixed pool of spreaders
of corrupted messages, and in the case of spontaneous appearance of
corrupted messages.

1 Introduction

One of the most promising area in computer science is the design of algorithms
and computer architectures closely based on our reasoning process and on how
the brain works. Human neural circuits receive, encode and analyze the “avail-
able information” from the environment in a fast, reliable and economical way.
The evolution of human cognition could be viewed as the result of a continuous
improvement of neural structures which drive the decision making processes from
the inputs to the final behaviors, cognitions and emotions. Heuristics are simple,
efficient rules, hard-coded by evolutionary processes or learned, which have been
proposed to explain how people make decisions, come to judgments, and solve
problems, typically when facing complex problems or incomplete information. It
is common experience that that much of human reasoning and decision making
can be modeled by fast and frugal heuristics that make inferences with limited
time and knowledge. For example, Darwin’s deliberation over whether to marry
provides an interesting example of such heuristic process [1,2].

Let us quickly review some widely accepted hypothesis about heuristics. In the
early 1970s, Daniel Kahneman and Amos Tversky (K&T) produced a series of
important papers about decisions under uncertainty [3,4,5,6,7]. Their basic claim
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was that in assessing probabilities, “people rely on a limited number of heuristic
principles which reduce the complex tasks of assessing probabilities and predicting
values to simpler judgmental operations”. Although K&T claimed that, as a gen-
eral rule, heuristics are quite valuable, in some cases, their use leads “to severe
and systematic errors”. One of the most striking features of their argument was
that the errors follow certain statistics and, therefore, they could be described
and even predicted. The resulting arguments have proved highly influential in
many fields, including computer science (and particularly in human-machine
interaction area) where the influence has stemmed from the effort to connect
algorithmic accuracy to speed of elaboration and, equally important, to the al-
gorithmic understanding of the human logic [7]. If human beings use identifiable
heuristics, and if they are prone to systematic errors, we might be able to design
computer architectures and algorithms to improve human-computer interaction
(and also to study human behavior).

K&T described three general-purpose heuristics: representativeness, avail-
ability and anchoring. People use the availability heuristic when they answer
a question of probability by relying upon knowledge that is readily available
rather than examine other alternatives or procedures. There are situations in
which people assess the frequency of a class or the probability of an event by the
ease with which instances or occurrences can be brought to mind. For example,
one may assess the risk of heart attack among middle-aged people by recalling
such occurrences among one’s acquaintances. Availability is a useful clue for as-
sessing frequency or probability, because instances of large classes are usually
reached better and faster than instances of less frequent classes. However, avail-
ability is affected by factors other than frequency and probability. This is a point
about how familiarity can affect the availability of instances. For people without
statistical knowledge, it is far from irrational to use the availability heuristic;
the problem is that this heuristic can lead to serious errors of fact, in the form
of excessive fear of small risks and neglect of large ones.

The representativeness heuristic is involved when people make an assessment
of the degree of correspondence between a sample and a population, an instance
and a category, an act and an actor or, more generally, between an outcome
and a model. This heuristic can be thought of as the reflexive tendency to as-
sess the similarity of characteristics on relatively salient and even superficial
features, and then to use these assessments of similarity as a basis of judgment.
Representativeness is composed by categorization and generalization: in order
to forecast the behavior of an (unknown) subject, we first identify the group to
which it belongs (categorization) and them we associate the “typical” behavior
of the group to the item. Suppose, for example, that the question is whether
some person, Paul, is a computer scientists or a clerk employed in the public ad-
ministration. If Paul is described as shy and withdrawn, and as having a passion
for detail, most people will think that he is likely to be a computer scientist and
ignore the “base-rate”, that is, the fact that there far more clerk employed in
public admin than computer scientists. It should be readily apparent that the
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representativeness heuristic will produce problems whenever people are ignoring
base-rates, as they are prone to do.

K&T also suggested that estimates are often made from an initial value, or
anchoring, which is then adjusted to produce a final answer. The initial value
seems to have undue influence. In one study, K&T asked subjects to say whether
the number that emerged from the wheel was higher or lower than the relevant
percentage. It turned out that the starting point, though clearly random, greatly
affected people’s answers. If the starting point was 65, the median estimate was
45%; if the starting point was 10, the median estimate was 25%.

Several of recent contributions on heuristic have put the attention on the
“dual-process” to human thinking [8,9,10,11,12]. According to these hypothesis,
people have two systems for making decisions. One of them is rapid, intuitive,
but sometimes error-prone; the other is slower, reflective, and more statistical.
One of the pervasive themes in this collection is that heuristics and biases can be
connected with the intuitive system and that the slower, more reflective system
might be able to make corrections. The dual-process idea has some links with
the experimental evidences of the presence of areas for emotions in the brain,
for instance of fear-type. These “emotional” areas may be triggered before than
the cognitive areas become involved.

We shall try to consider some of these concepts to model autonomous agents
that have the task of processing messages from sources that are not always
trustable. The agent is a direct abstraction of an human being, easily understand-
able by psychologists and biologist with the advantage of following a stochastic
dynamics that can be combined with other approaches like ODE [14,15,16,13,17].
Here we make the analogy between the diffusion of hoaxes, gossips, etc., and that
of computer viruses or worms.

The incoming information may be corrupted for many reasons: some agents
may be infected by malware and particularly viruses, some of them may be
programmed to provide false information or they may just be malfunctioning.
Let us suppose that the processing of a corrupted information will infect the
elaborated message, so that the corruption “percolates and propagates” into the
connection network, unless stopped. We assume that an agent may contact a
central database for inquiring about the reliability of a message, but this checkout
is costly, at least in terms of the time required for processing the information.
Therefore, an agent is confronted with two opportunities: either trust the sender,
accept the message and the risk or passing false information and process it in
a short time, or contact the central database, be sure of the correctness of the
message but also waste more time (or other resources such as bandwidth) in
elaborating it. This is analogous to the passport check when crossing a boundary:
customers may either trust the identity card and let people pass quickly, or check
them against a database, slowing down the queue.

This paper, which is motivated by the fact that human heuristics may be used
to improve the efficiency of artificial systems of autonomous decision-makers
agents, is structured as follows. In Section 2, we introduce a model where the
above mentioned heuristics are implemented. Section 3 focuses on equilibrium
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and asymptotic conditions in the absence of infection. In Section 4, we describe
the different scenarios which are considered (no infection, quenched infection and
annealed infection); numerical results for different value of control parameters
under infection are reported in Section 5. A discussion about the psychological
implications of the model and conclusions are drawn in Section 6.

2 Model

Let us consider a scenario with N agents, identified by the index i = 1, . . . , N .
Each agent interacts with other K randomly chosen agents. The connections
indicate messages transferred. In principle, one can have input connections with
himself (meaning further processing of a given piece of information) and multi-
ple connections with a given partner (more information transferred). An agent
receives information from its connecting inputs, elaborates it and send the result
to its output links. Let us assume for simplicity that this occurs in a synchro-
nous way and at discrete time steps t. The information however can be tainted
(corrupted), either maliciously (virus, sabotage, attack) or because it is based
on incorrect data.

If an information is tainted, and it is accepted for processing, it contaminates
the output. All agents have the possibility of checking the correctness of the
incoming messages against a central database, but this operation is costly (say,
in terms of time), and therefore heuristics are used to balance between cost and
the risk of being infected.

An agent i has a dynamical memory for the reliability of its partners j, −1 ≤
αij ≤ 1; this memory is used to decide if a message is acceptable or not. The
greater αij > 0, the more the partner is considered reliable, the reverse for
αij < 0. However, the trusting on an individual is not an absolute value, it has
to be compared with the perception of the level of the infection. Let us denote by
0 ≤ Ai ≤ 1 the perception of the risk i.e., the perceived probability of message
contamination, of individual i. A simple yet meaningful way of combining risk
perception with uncertainty is to assume that each individual i decides according
with its previous knowledge (αij) if |αij | > Ai and checks against the database
(i.e., get to know the truth) otherwise. If Ai is large, the agent i will check many
messages against the database, the reverse for small values of Ai.

After checking the database, one knows the truth about his/her partner. This
information can be used to increase or decrease αij and also to compute Ai.
In particular, if the check is positive (negative), αij increases (decreases) of a
given amount vα. Finally Ai in increased by a quantity vAni/ci, where ci is
the cost (total number of checks for a given time step) and ni the number
of infected discovered. The idea is that Ai represents the perceived “average”
level of infection, corresponding to the “risk perception” of being infected. We
shall limit here to fixed and homogeneous responses, in an more realistic case,
different classes of agents or individuals will react differently, according to their
“programming” and their past experiences, to a given perception of the infection
level.
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Some of these quantities change smoothly in time. There is an oblivion mech-
anism on αij and Ai, implemented with the parameters rα and rA, respectively,
such that the information stored τ time steps before the present time has weight
(1 − r)τ . New information is stored with weight r. This mechanism emulates a
finite memory of the agent, without the need of managing a list.

The observable quantities are the total number of infected individuals, I, the
cost of querying the database, C and the number of errors E, which are given
by the number of tainted accepted messages and not-tainted refused messages.

In this model, we are only interested in the correctness of the message, not
in its content. Actually, a real message should be considered as a set of ’atomic’
parts, each of which can be analyzed, eventually with their relations, in order
to judge the reliability of the message itself. For instance, the spam detection
mechanism is often based on a score assigned to patterns (e.g., MONEY, SEX,
LOTTERY) appearing in the message. Therefore, a more accurate model should
represent messages as vectors or lists of items. We deal here with a simple scalar
approximation.

We try to include the human heuristics in this simple model by means of A
(representativeness) and αij (availability). The oblivion mechanism can more-
over be considered the parameter corresponding to the “anchoring” experiences.
In our present model, there is only one variable connected to affordability (from
completely trustable to completely not trustable), and the categorization pro-
cedure consists essentially in trying to assess the placement of an individual on
this axis. The trustability of an individual (αij) depends on the past interac-
tions. Since A represents the average level of infectivity, the trustability of an
individual is evaluated against it, in order to save the cost (or the time) of the
check against the central database.

3 Relaxation to Equilibrium and Asymptotic State
without Infection

In order to put into evidence the emerging features of our model, let us first
study the case without infection. Without “stimulation”, the threshold Ai is
fixed, and takes the value vA for all individuals. The only dynamical variables
are the αij .
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Fig. 1. The asymptotic distribution P (α) for a < 2r (a = 0.006 and r = 0.01) (a);
a = 2r (a = 0.01 and r = 0.005) (b); a > 2r (a = 0.02 and r = 0.005) (c)
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Starting from a peaked (single-valued) distribution of αij , the model ex-
hibits oscillatory patterns and long transients towards an equilibrium distribu-
tion (Fig. 1). We found that by increasing the connectivity K, the peaks become
thinner and higher, following a linear relationship. The affinities αij in the as-
ymptotic state have a non trivial distribution, ranging from 0 to 2v. Let us call
P (α) the probability distribution of α. From numerical simulation (see Fig. 1),
one can see that P (α) can be divided into two branches, P1(α) for 0 ≤ α ≤ v
and P2(α) for v ≤ α ≤ 2v. The evolution of P (α) is given by the combination of
two phases: control against the database, that in the mean field approach occurs
with probability a = K/N for all α ≤ v (and therefore for P1), and the oblivion
mechanism, that multiplies all α by (1 − rα). Combining the two effects, one
finds for the asymptotic state

P1(α) =
1 − a

1 − rα
P1

(
α

1 − rα

)
, (1)

P2(α) =
a

1 − rα
P1

(
α

1 − rα
− v

)
+

1
1 − rα

P2

(
α

1 − rα

)
. (2)

From Eq. (1), one gets easily that P1(α) ∝ αx, with

x =
ln(1 − a)
ln(1 − rα)

− 1 � a

rα
− 1.

In particular, the value x = 1 (Fig. 1-b) corresponds to a = 2rα. We were not
able to express the asymptotic distribution P2(α) in terms of known functions.

The process of relaxation to the equilibrium is in general given by oscillations,
whose period is related to rα. A rough estimation can be obtained by considering
that a pulse of agents with the same value of α = 2v will experience the oblivion
at an exponential rate (1−rα)T , until α = v, after which a fraction a of the pulse
is re-injected again to the value α = 2v. The condition for the pseudo-periodicity
(for the fraction a of agents) is

2v(1 − rα)T = v,
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Fig. 2. Relaxation to equilibrium for the cost C for N = 500, rα = 0.005 and K = 5
(a = 0.01) (left); K = 50 (a = 0.1) (right)
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from which the period T can be estimated

T � − ln(2)
ln(1 − rα)

� ln(2)
rα

in the limit of small rα.
Since the re-injected fraction is given by a, the larger is its value, the larger

the oscillations and the slower is the relaxation to the asymptotic distribution,
as is shown in Fig. 2. One can notice that the period is roughly the same (same
value of rα), but the amplitude of oscillations is much larger in the plot to the
right (larger a).

Since a = K/N , these large oscillations make difficult to perform measure-
ments on the asymptotic state on small populations, but large values of N require
longer simulations. One may say that the model is intrinsically complex.

The asymptotic cost is given by C∞ = a
∫ vα

0 P1(α) ∝ av
a/rα
α . As one can see

from Fig. 1, there is a cost even in the absence of infection, since the agents have
to monitor the level of infection against the database. The lower values of the
cost are associated to values of rα smaller than a.

4 Infectivity Scenarios

The source of infection may be quenched, i.e., a fraction p of the population
always emits tainted messages, or annealed, in which case the fraction p of the
spreaders is changed at each time step. Let us first study the case of a pulse of
infection (with p = 1) in the asymptotic state and a duration ∆t = 20. For large
values of the asymptotic cost, The infection is removed in just a few time steps,
as shown in Fig. 3.

For smaller values of the cost, the fate of the infection is related to the scenario
(quenched or annealed infectors). If the infection level is small, and the infectors
are quenched, the rising of the corresponding αij efficiently isolate the contagion.
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Fig. 4. Temporal behavior of the cost C, infection i and error level E for K = 2,
n = 500 (a = 0.004), r = 0.001. Left: vA = 10−3 (eradication). Right: vA = 10−4

(endemic infection). The pulse occurs at time 5000.

In the case of a “pulse” of infection, or for annealed infectors, the fate of the
contagion is mainly ruled by the quantity Ai. If Ai grows rapidly (vA sufficiently
large), a temporary increase of the cost is enough to eradicate the epidemics,
see Fig. 4. In the opposite case, the infection becomes endemic even for non-
persistent infectors: it is maintained by the spreading mechanism. The increment
used in the following investigations is small enough so that we can observe the
persistence of the infection.

If the infectors are persistently renewed, the contagion cannot get eradicated
but only kept under control. The role of the two heuristics is different in the two
cases.

The representativeness heuristic (αij) is the optimal strategy to detect agents
which are constantly less reliable than the others (quenched case), but it is com-
pletely useless in the annealed case. The availability heuristic (Ai), considering
at each time step the average infection of the system, is able to control the spread
of infection in the annealed case.

The oblivion mechanism, related to the anchoring heuristic, is a the key pa-
rameter governing the speed of adaptation to variable external conditions. It
controls the oscillations of the cost (Fig. 2) and it is fundamental to minimize
the computational load of the control process. The oblivion of αij (representa-
tiveness parameter) controls the computational cost at the equilibrium in both
cases. High values of rα correspond to a conservative behavior of the system, in
this case a large computational cost and a corresponding low number of infected
and errors characterized the equilibrium. Low values of rα correspond to the
dissipative behavior for which the system minimizes the computational cost but
allows large fluctuations of infected and high values of errors.

5 Dynamical Behavior

We run extensive numerical simulations and recorded the asymptotic cost C,
number of infected people I, and errors E as function of the oblivion parameters
(rα and rA), the probability and the pulse of infection (p), and the density of
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Fig. 5. Cost C, Infection level I and Errors E vs. time t for two different values of the
parameter rα, rα = 10−3 (a,c,d,e); rα = 10−4 (b,f), different values of p, p = 0, (a,b);
p = 10−2 (d,e,f); p = 10−6, (c) and for some value of the connectivity (K = 5 for plots
(a,b,c,d,f), K = 30 for plot (e)) and population N = 500.

contacts (K). In these simulation we kept vA = 10−6 in order to stay in the
endemic phase, and therefore rA did not play any role.

Fig. 5 shows the effect of infection with different values of rα and contact
density for for K = 5 and N = 500. Plots (a) and (b) show the oscillatory
patterns without infection (p = 0) for rα = 10−3 (a), rα = 10−4 (b). The obliv-
ion rα (in the presence of infection) changes both the oscillatory frequency (as
studies in the previous section) and the oscillatory delay before convergence to
a basic fluctuation pattern. Note that increasing rα the frequency of the oscil-
lations increases. When rα = 0.0001, (a), the period T is T = ln 2104 ≈ 7000;
for rα = 0.001, (b), T ≈ 700). By adding infection (annealed version), we ob-
tain a quicker convergence the basal fluctuation equilibrium (c). We found that
the time to reach the basic fluctuation equilibrium does not depend on the in-
fection probability and the level of the fluctuation remain unchanged even for
long runs (d). Plots (e) and (f) show that with the same value of the infection
probability, increasing the density of contacts produces larger fluctuations, a
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quicker convergence of the cost (K = 30 for plot (e) with respect to K = 5 for
all others). The two scenarios have different oblivion (rα = 10−3 (e), rα = 10−4

(f)). Then, increasing p, the frequency of the oscillations remains the same but
the peaks broaden.

6 Discussion and Conclusions

In this paper we have been modeled the cognitive mechanisms known as avail-
ability and representativeness heuristics. The role of the first one in the human
decision making process seems to be to produce a probability estimation of an
event based on the relative observed (registered) frequency distribution. The
second heuristic, representativeness, acts inferring certain attributes from others
easier-to-detect. Both heuristics are liable or ”noise affected”, but surely they
represent a very fast way to analyze environmental data using little quantity of
memory and time. But the very interesting aspect, and not underlined enough
in literature, is the role of the cooperation between heuristics. The co-occurrence
of their activities could be coordinate also in the human cognition, but of course
it is very interesting from a computational point of view.

We supposed that the availability heuristic corresponds to a mean field esti-
mation of the “risk”, while representativeness partially maintains the memory
of the previous interactions with the others. In the quenched and annealed sce-
narios we can capture the effect of the heuristics coordination. The quenched
scenario considers the case of “systematic spreaders” where same agents emits
at each time step a tainted message. In this case the availability heuristic would
fails to minimize cost and infection if representativeness was absent.

On the contrary in the annealed scenario the spreaders are completely cho-
sen at random at each time step. In this extreme case there is no information
contained in the previous history of the system, and representativeness heuristic
became completely useless. In this situation the only available information is the
rate of infection, and availability heuristic is the most efficient way to minimize
both cost and risk of infection.

The oblivion mechanism associated to the two heuristics determines both the
cost of the control process and a sort of its reactivity. In average the cost, which
represents the number of operations/computation to cope the task, is propor-
tional to the oblivion value, the number of infected and errors are inversely
proportional to the oblivion. If the cost as so as it happens in the biological do-
main, is considered as a quantity which the system has to minimized, it means
that will exist an optimal value of both oblivion parameters for each possible
condition. The reactivity of the control process could be defined as the time
needed from the system to reduce to zero a new infection. In our model the
oblivion of both the two heuristics appears to control also the size of “cost oscil-
lations”. We found that the larger the oblivion level, the lower the oscillations
and the time needed to reach the asymptotic equilibrium.

Our simulations show that under the infection, the cost reaches its asymptotic
value much earlier than without infection. This suggests that a low value of
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infection level may even provide some advantages for the quick dumping of the
oscillatory behavior resulting in an improved cost predictability.

The investigation of heuristics exploits a major overlap between artificial in-
telligence (AI), cognitive science and psychology. The interest in heuristics is
based on the assumption that humans process information in ways that comput-
ers can emulate and heuristics may provide the basic bricks for bridging from
brains to computers . Our model framework approach is quite general and offers
some points of reflections on how the study of complex systems may become help
developing new areas of AI. In the past years the AI community has debated as
to whether the mind is best viewed as a network of neurons (connectionism), or
as a collection of higher-level structures such as symbols, schemata, heuristics,
and rules, i.e., emphasizing the role of symbolic computation. Nowadays the
symbolic representations to produce general intelligence is in slightly decline but
the “neuron ensemble” paradigm has also shifted towards more complex models
particularly taking into account and combining findings from both fNMR and
cognitive psychology fields ( [19,20]).

Here we show that the incorporation of simple heuristics in a small network
of agents leads to a rich and complex dynamics.Our model does not take into
account mutation and natural selection which is of key importance for the emer-
gence of complex behavior in animal societies and in the brain development (see
for example Pinker and the follow up debate [21]).

A multi-agent model, where each agent represent a message/modifying per-
son/neuron, can serve as a very natural abstraction of communication networks,
and hence be easily used by psychologists as well as computer scientists. Such
a model also allows the tracking of single agent fates so that communities with
low member numbers are easily dealt with and these models also provide for
much more detailed analysis compared to average population approaches like
continuous differential equations.

Heuristics may have even greater value in case of environmental challenges,
i.e. organisms need to adapt quickly to environmental fluctuations, for example
starvation and high competition, they must be able to make inferences that are
fast, frugal, and accurate. These real-world requirements lead to a new concep-
tion of what proper reasoning is: ecological rationality. Fast and frugal heuristics
that are matched to particular environmental structures allow organisms to be
ecologically rational. The study of ecological rationality thus involves analyzing
the structure of environments, the structure of heuristics, and the match between
them.
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Abstract. Biological computation may or may not be Turing Complete, but it is 
clearly organized differently from traditional von Neumann architectures. Com-
putation (whether in a brain or an ant colony) is distributed, self-organising, 
autonomous and embodied in its environments. Systemic computation is a 
model of computation designed to follow the “biological way” of computation: 
it relies on the notion that systems are transformed through interaction in some 
context, with all computation equivalent to controlled transformations. This 
model implies a distributed, stochastic architecture, and in this work it is pro-
posed that a physical implementation of this architecture could be achieved 
through the use of wireless devices produced for sensor networks. A useful, 
fault-tolerant and autonomous computer could exploit all the features of sensor 
networks, providing benefits for our understanding of “natural computing” and 
robust wireless networking. 

Keywords: biological computing, systemic computation, sensor networks, natural 
computation. 

1   Introduction 

Nature is full of examples of biological computation that adapt to their environments 
and show remarkable tolerance to damage or faults. Whether an ant colony, immune 
system or brain, these complex natural systems evolved by learning to survive their 
hazardous environments, resulting in highly adaptive and robust structures that rely 
on large numbers of simpler elements interacting in order to achieve a higher purpose. 

Computer science and engineering has long sought to create devices with similar 
properties. While several levels of redundancy, or provably correct implementations, 
or careful dependability risk assessments may provide useful levels of protection, no 
human-designed method approaches the efficiency or fault tolerance of nature. Yet 
with computers increasingly taking on critical roles in our lives, whether in autopilots, 
stock markets, power or food distribution, the creation of fault tolerant computation is 
seen as increasingly important. 

In an attempt to exploit desirable natural properties within a computer (e.g., see table 
1), in 2005 a novel model of computation called systemic computation was developed 
[2]. The result of considerable research into bio-inspired computation and biological 
modelling, the model has been developed into a working computer architecture [2,3]. A 
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parallel systemic computer based on this architecture is designed to run on hundreds or 
preferably thousands of processors, with all computation emerging through interactions, 
just as the overall result of biological processes emerges through the interaction of thou-
sands of simpler elements. A systemic computer should share some of the same  
capabilities of biological systems and provide fault-tolerant computation through self-
organising, parallel and distributed processing. 

Table 1. Features of conventional vs natural computation. Increasingly researchers are aiming 
to create computers with more of the properties of natural systems. 

Conventional Natural 
Deterministic Stochastic 
Synchronous Asynchronous 
Serial Parallel 
Heterostatic Homoestatic 
Batch Continuous 
Brittle Robust 
Fault intolerent Fault tolerant 
Human-reliant Autonomous 
Limited Open-ended 
Centralised Distributed 
Precise Approximate 
Isolated Embodied 
Linear causality Circular causality 
Simple Complex 

To date, two simulations of this architecture have been developed, with corre-
sponding machine and programming languages, compilers and graphical visualiser 
[2,3]. Research is ongoing in the improvement of the PC-based simulator, refining the 
systemic computation language and visualiser. However, the systemic computation 
model defines a highly parallel, distributed form of computer. While simulations on 
conventional computers enable the improvement of the model and associated pro-
gramming tools [3], a demonstration of, for example, fault tolerance would be heavily 
restricted by the conventional underlying architecture and operating system. The same 
drawbacks are true for larger scale simulations using networked PCs, Beowulf or 
GRID computing – the brittleness of underlying operating systems and network pro-
tocols could not be circumvented using higher-level code [14]. 

Consequently, this work proposes the use of clusters of numerous, and potentially 
smaller, simpler processors, organised at the lowest level possible according to the 
bio-inspired architecture and communication protocol of systemic computation. Sys-
temic computing views interactions between the environment and the device as part 
of the computation and essential for self-adaptation, so the ideal platform should also 
enable a large variety and diversity of senses from environment to computer. Thus the 
use of wireless sensor network technology is ideal for such a computer.  

Wireless sensor networks and ubiquitous computing are becoming one the most 
popular areas of computer science research today, with over 20 conferences each year 
dedicated to the field. There are regular predictions that pinhead-sized wireless com-
puters will one day be in every product, that they will cost just a few pence to make, 
and that the future of the Internet will be ubiquitous computing. Whether the predic-
tions come true or not, it seems highly likely that such ubiquitous devices will become 
cheaper, faster and more prevalent in the near future. With this in mind, a computer 
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architecture able to exploit large clusters of very simple wireless devices is desirable, 
for the fields of ubiquitous computing and bio-inspired computing. 

2   Systemic Computation 

“Systemics” is a world-view where traditional reductionist approaches are supplemented 
by holistic, system-level analysis of the interplay between components and their environ-
ment at many different levels of abstractions [16]. Systemic Computation takes this ap-
proach [2,3], aiming to provide a more “natural” or bio-inspired model of computation 
compared to conventional von Neumann architectures. It uses the following assertions: 

• Everything is a system 
• Systems can be transformed but never destroyed. 
• Systems may comprise or share other nested systems (see figure 1). 
• Systems interact, and interaction between systems may cause transformation of those 

systems, where the nature of that transformation is determined by a contextual system. 
• All systems can potentially act as context and affect the interactions of other sys-

tems, and all systems can potentially interact in some context. 
• The transformation of systems is constrained by the scope of systems and systems 

may have partial membership within the scope of a system. 
• Computation is transformation. 

Systemic computation has been shown to be Turing Complete [2] and thus is di-
rectly equivalent to other models of computation. For example, it can also be regarded 
as a form of bigraph model [2,18]. Although the origins of systemic computation 
come from studies of natural systems, each system may be viewed as equivalent to an 
asynchronous bigraph node, and schemata (see later) may be viewed as dynamic links 
between nodes. Because of this, systemic computation may be rewritten in bigraph 
form (and also may benefit from expression in π-calculus [17,18]) for future theoreti-
cal investigations. In addition, some useful systemic computation transformation 
functions resemble those widely used in membrane computing and brane calculus 
[15], while in approach, it is comparable to the ideas of cellular automata [11] (but 
influenced by the views of Varela [22]).  

Instead of the traditional centralised view of computation, here all computation is 
distributed. There is no separation of data and code, or functionality into memory, 
ALU, and I/O. Everything in systemic computation is composed of systems, which 
may not be destroyed, but may transform each other through their interactions, akin to 
collision-based computing [12]. Two systems interact in the context of a third system, 
which defines the result of their interaction. This is intended to mirror all conceivable 
natural processes, e.g: 

• molecular interactions (two molecules interact according to their shape, within a 
specific molecular and physical environment) 

• cellular interactions (intercellular communication and physical forces imposed be-
tween two cells occurs in the context of a specific cellular environment) 

• individual interactions (evolution relies on two individuals interacting at the right 
time and context, both to create offspring and to cause selection pressure through 
death) 
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Fig. 1. Systemic computation calculation: PRINT((A1-A2)*(A3-A4)). Left: graph-based nota-
tion. Right: the tree of scope memberships for this calculation. (Systemic computation also 
permits networks of memberships that may be difficult to draw, e.g. “print” could be placed in 
the scope of “A1” in addition to “main”, without being in the scope of “c1”). 

Systems have some form of “shape” (i.e., distinguishing properties and attributes 
and may encompass anything from morphology to spatial position) that determines 
which other systems they can interact with, and the nature of that interaction. The 
“shape” of a contextual system affects the result of the interaction between systems in 
its context. This encompasses the general concept that a resultant transformation of 
two interacting systems is dependent on the context in which that interaction takes 
place. A different context will produce a different transformation. Since everything in 
systemic computation is a system, context must be defined by a system. 

In order to represent these notions computationally, the notions of schemata and 
transformation functions are used. The “shape” of a system in this model is the com-
bination of schemata and function, so specific regions of that “shape” determine the 
meaning and effect of the system when behaving as a context or interacting. Thus, 
each system comprises three elements: two schemata that define the possible systems 
that may interact in the context of the current system, and the transformation function, 
which defines how the two interacting systems will be transformed.  

Systemic computation also exploits the concept of scope. In all interacting systems 
in the natural world, interactions have a limited range or scope, beyond which two 
systems can no longer interact (for example, binding forces of atoms, chemical gradi-
ents of proteins, physical distance between physically interacting individuals). In 
cellular automata this is defined by a fixed number of neighbours for each cell. Here, 
the idea is made more flexible and realistic by enabling the scope of interactions to be 
defined and altered by another system. Interactions between two systems may result 
in one system being placed within the scope of another (akin to the pino membrane 
computing operation [15]), or being removed from the scope of another (akin to the 
exo membrane computing operation [15]). So just as two systems interact according 
to (in the context of) a third system, so their ability to interact is defined by the scope 
they are all in (defined by a fourth system). Scope is designed to be infinitely recur-
sive so systems may contain systems containing systems and so on. Scopes may over-
lap or have fuzzy boundaries; any systems can be wholly or partially contained within 
the scopes of any other systems. Scope also makes this form of computation tractable 
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in simulation by reducing the number of interactions possible between systems to 
those in the same scope. 

Most systemic computation forms a complex interwoven structure made from sys-
tems that affect and are affected by their environment. This resembles a molecule, a 
cell, an organism or a population, depending on the level of abstraction used in the 
program. Fig. 1 illustrates the organisation of a real systemic computation, showing 
the use of structure enabled by scopes. Systems can be implemented using representa-
tions similar to those used in genetic algorithms and cellular automata. In implemen-
tations to date, each system comprises three binary strings: two schemata that define 
sub-patterns of the two matching systems and one coded pointer to a transformation 
function. Two systems that match the schemata have their own binary strings trans-
formed according to the appropriate transformation function. A simple example of a 
(partially interpreted) system string (where S1 is the first schema and S2 is the second 
schema of a system) might be: 

“0???????  [S11=SUM(S11,S12); S21=SUM(S21,S22); S21=0; S22=0 ] 0???????” 

meaning: for every two systems with most significant bit of “0” that interact in the 
context of this system, add their two S1 values, storing the result in S1 of the first 
system and add the two S2 values, storing the result in S2 of the first system, then set 
S1 and S2 of the second system to zero. Given a pool of inert data systems, able to 
interact but with no ability to act as context, for example (where NOP means “no 
operation”): 

“00010111 NOP 01101011” and “00001111 NOP 00010111” 

after a sufficient period of interaction, the result will be a single system with its S1 
and S2 values equal to the sum of all S1 and S2 values of all data systems, with all 
other data systems having S1 and S2 values of zero. (The program performing exactly 
this operation was described in [2].) 

Systems within the same scope are currently presented to each other randomly just 
as most interactions in the natural world have a stochastic element. The computation 
proceeds asynchronously and in parallel, distributed amongst all the separate systems, 
structurally coupled to its environment, with parallelism and embodiment providing 
the same kind of speedup seen in biological systems. Computation is continuous (and 
open-ended) with homeostasis of different systems maintaining the program.  

Work to date has resulted in the creation of two systemic computation compilers 
(one for PCs, one for Macs), a language and visualiser. Several systemic programs 
have been written, showing that simulations of this parallel computer can perform 
tasks from investigations of neurogenesis to a self-adaptive genetic algorithm solving 
a travelling salesman problem. Work on the language and refinements to systemic 
computation and its use for modelling are underway. 

3   Illustration of Systemic Computation 

In [3], a genetic algorithm was implemented in order to demonstrate how a systemic 
computer can be programmed to evolve solutions to the travelling salesman problem 
in a very simple way. It was further demonstrated that a very simple extension to the 
systemic program converted the standard genetic algorithm into a self-adaptive ver-
sion able to modify its own genetic operators. 
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Here we provide a summary of the systemic program as illustration. A genetic algo-
rithm uses a population of solutions (in this case, for the TSP) which are evaluated and 
then the better solutions are used as parents to generate a new population of solutions 
that inherit features from both parents. Thus in a GA, solutions interact in two ways: 
they compete for selection as parents, and once chosen as parents, pairs produce new 
offspring. The use of contextual systems (which determine the effects of solution inter-
action) for the genetic operations is thus highly appropriate, as shown in Fig 2. These 
perform selection and reproduction, enabling a pair of solutions to reproduce, replacing 
the worst parent with a better offspring. If alternate methods of reproduction are to be 
investigated, more genetic operator systems are simply added into the computation 
space with the evolving solutions. To enable self-adapting operators, new ‘genetic op-
erator adapter’ systems are added (fig 3), which act as context for interactions between 
operators, enabling the program to adjust and adapt the type and number of genetic 
operators being applied to a population, based on the success rate of the operators. 

 

Fig. 2. An operator acts as a context for two interacting solutions 

 

Fig. 3. A self-adaptive approach to the TSP using a GA on a SC architecture: a genetic operator 
adapter is added to the current interaction scheme to adapt genetic operators during  
computation 

4   Wireless Systemic Computation 

From the illustration in the previous section it should be evident that all functional 
and data parts of a systemic computer can be adapted (evolved), with the built-in 
redundancy of multiple systems spread over multiple processors. If a sufficiently 
flexible adaptive systemic computer is trained in an environment where a rich amount 
of information is available via sensors and where the different resources of the 
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computer are likely to be temporarily or permanently disabled, then the computer will 
adapt its own organisation and processing to maintain functionality despite the dam-
age. In other words, given an entire computer that can evolve itself like a genetic 
algorithm, and given a fitness function (feedback providing a measure of how well the 
computer is currently performing), the computer will adjust itself, exploiting any 
useful sensor data that may correlate with forthcoming damage, to maximise its per-
formance. (Although a program or systemic structure could conceivably be evolved 
from scratch using this approach, here we focus on the creation of predefined compu-
tation capable of learning to exploit all useful information and resources available in 
order to maintain its functionality.) Fault tolerant evolved programs have been dem-
onstrated in previous work using a similar evolutionary method [14], but these were 
severely limited by the brittle nature of the underlying operating system and single 
processor (only 0.05% damage to the binary executable was survivable 10% of the 
time by the best evolved method, compared to total failure for any damage to ordinary 
code) [14]. In the computer architecture introduced here, there would be a minimal 
conventional operating system with almost all processing performed over many proc-
essors using the systemic computation model. 

A typical systemic model of wireless sensor motes in an environment would treat 
each mote as a system that uses subsystems of sensors and wireless communicators to 
transfer data sub-subsystems from environment to mote and from mote to mote. A 
single mote would have subsystems of, for example, camera, wireless communicator, 
internal processing systems, and adaptive systems, which adapt the internal process-
ing systems. For example, consider the architecture for a systemic computer collating 
visual data gathered from multiple cameras in order to perform basic movement track-
ing and transmit the processed information to a base station. If a data system holds 
one frame of image data (containing overlapping subsystems of columns and rows, 
containing systems corresponding to individual pixels), then systems performing data 
transformation functions such as contrast adjustment or edge detection can enable the 
parallel manipulation of the data. With no distinction between data and function, 
motes may pass data or functional systems between themselves, and they may trans-
form or rearrange the organisation of data or functions during processing. This  
enables both data and functionality to be moved to and shared amongst different proc-
essors, reorganising in a simple and ‘natural’ manner. 

Since any system can be a member of any other system, it is possible for transfor-
mation functions (context systems) to reside in the memory of other motes while 
affecting the transformation of systems in the current mote. All systems can poten-
tially be moved between motes, and memberships of systems within systems can be 
altered at any time. Linking these changes to systems corresponding to sensor inputs 
(such as low battery warning, high temperature, high vibration, excessive noise),  
and evolving the self-adaptive systems, the configuration of the program and  
multi-processor architecture could automatically adjust itself to maximise fitness (by 
minimising disruption to the desired end result). 

4.1   Hardware Implementation Overview 

The underlying motivations of this work are to produce a practical architecture suit-
able for use as a real computer (not a theoretical analysis akin to bigraphs or brane 
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calculus, despite the surface similarities). Four implementation-specific features en-
able systemic computers to be tailored to a given application: 

(i) the word-length / coding method, 
(ii) the transformation function set / schemata matching method 
(iii) the order of system interactions and 
(iv) the scope definition method. 

 
 

schemata code table  transformation function table 
Code Value code value  bits   Meaning 
0 000 n 11?  0..6 function identifier 
' 000 o 1?0  7..10 schemata 1 matching threshold 
A 001 p 1?1  11..14 schemata 2 matching threshold 
B 00? q 1??  15 NOT 
C 010 r ?00    
D 011 s ?01  scope table 
E 01? t ?0?  System 1 2 3 4 
f 0?0 u ?10  1 0 0 0 0 
g 0?1 v ?11  2 0 0 0.5 0 
h 0?? w ?1?  3 1 0 0 0 
i 100 x ??0  4 1 0 0 0 
j 101 y ??1       
k 10? z ???  Where ? means “don’t care”. 
l 110 1 111   
M 111     

Fig. 4. Graphical representation of one system with function “ADD” (top). Method of coding 
used in systems to enable two 16-character schemata to define 48-character systems to be 
matched, and to enable one 16-character transformation function to define function, matching 
thresholds and NOT operator (middle). Schemata code table (bottom left) defines the codes 
used in schemata, the transformation function table (middle right) gives the meaning of the 16-
bit number. A scope table is given (bottom right), indicating non-fuzzy scopes where systems 3 
and 4 are completely within system 1, and fuzzy scope where system 2 is half within system 3. 

In the implementation described here, (i) schemata and transformation functions 
are defined by strings of 16 characters of alphabet 29, resulting in each system being 
48 characters long;1 (ii) some thirty transformation functions have been implemented, 
using partial matching against thresholds; (iii) system interactions occur randomly 
except where a system is changed, in which case changed systems are chosen for 
subsequent interaction first; (iv) scopes are held globally in a system scope table. 

                                                           
1 The word-length is user-definable; here 16 characters was chosen. 
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In more detail: integers are coded using pure binary coding. A wildcard (defined by 
any character not a 1 or 0) enables the schemata of systems to define partial matches. 
Triplets of system string characters are coded using ASCII values 96 to 122 (charac-
ters: ` to z), fig 4. In this way a 16-character schemata string is used to define a 48-
character system, enabling each system to define the two (types of) systems it could 
transform with complete precision. Two matching threshold values enable the accu-
racy of the required match to be defined, with a NOT operator inverting the matching 
requirements (i.e., systems have to match the schemata correctly for the function not 
to be carried out). Scopes may implemented globally (per device) in a scope table 
with column entries defining which of the systems are contained within the systems 
listed in the rows, fig 4 (other scope representations using pointers are also possible). 
The numeric value of each entry defines the degree of membership of each system in 
the parent, enabling partial or fuzzy membership. Hamming distance is used to calcu-
late the difference between schemata and systems, and compared against the function 
threshold values. 

The procedure determining the order in which system interactions takes place in a 
systemic computer is equivalent to the fetch-execute cycle of a conventional com-
puter. In this design, interaction order is random (context and two interacting systems 
determined by pseudo-random number generator seeded by current time), with two 
exceptions: 

(i) when picking the parent system which contains the currently interacting systems, 
only scope systems containing 3 or more systems are chosen; when picking con-
text systems, only those that define a function not equivalent to NOP (no opera-
tion) are chosen. 

(ii) any system changed by a function is added to a queue; if the queue is not empty, 
the system at the front is picked with a higher probability as one of the systems 
which may interact in the current cycle, with context and second system being 
picked from within the same parent system. 

The content-sensitive selection improves efficiency, ensuring that most context 
systems will perform some transformation to the two interacting systems. The use of a 
queue provides speedup when the same system is used more than once in a computa-
tion, ensuring that changed systems are more likely to engage in subsequent interac-
tions, enabling a cascade or diffusion effect through all other computations that may 
be required to the same system. Systems are held as a fixed numbered array in mem-
ory; as systems are never lost, this array structure and order is never modified. The 
use of a scope table enables systems to be moved between scopes using negligible 
computation time and zero change to system ordering in memory. (The implementa-
tion would be modified for a hardware-level implementation: systems could be held 
as non-addressable shifting memory chains passing through multiple schema match-
ing stations; systems could also hold their scope information locally in much the same 
way that schemata are stored.) 

 4.2   Hardware Choices 

While wireless microsensors of just a few millimetres in size have now been demon-
strated, today some of the smallest commercially available “motes” are the 
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MICA2DOTs, at 25mm in diameter. These devices have highly limited memory (64K 
Flash memory), slow 8 bit processors (16Mhz) and slow communications. Systemic 
computing is designed to operate with such limited hardware, but the lack of SDRAM 
severely limits the lifetime and speed of repeated memory storage. So in order to 
achieve a more practical computing performance, in this work we suggest that hard-
ware such as the slightly larger Imote2 would be a viable choice. The Imote2 is a 
high-performance wireless node, with an onboard Intel PXA271 XScale processor 
running at up to 416Mhz, 32Mb SDRAM and a USB interface. It is anticipated that 
10 or more Imote2 motes working together would compare favourably with modern 
3Ghz dual-core PCs in terms of processor speed, while future motes are likely to 
retain this performance, but at millimetre scales. (Alternative solutions include the 
"Atific Helicopter" Multi-Radio Wireless Sensor Network Development Kit, which 
provides the ability to implement a hardware parallel architecture. This device has 
four parallel independent digital radio modules, Altera Cyclone EP1C20F324C6 
FPGA and preinstalled 8051 MCU reference design for a jump start.) Mounted in a 
single desktop-sized housing with outer shielding to minimise impact on wireless 
networks around it, the small size of the devices would allow a compact, fully con-
nected, multi-processor computer to be achievable today. 

As described above, systemic computation relies on the notion of systems (stored 
as binary strings) interacting with each other. The current model uses two schemata 
per system, each 16 characters in length, with alphabet 29. Each of the 29 possible 
character values is a compressed definition of one triplet of characters, each with an 
alphabet of 3 (0,1, or wildcard). In this way 16 characters defines a schema of 48 
characters in length, and this schema (of alphabet size 3) can match a 48-character 
system (that has an alphabet size of 29). In hardware this means that four bits are 
needed for each character of the schemata. To enable a reasonably rich instruction set 
and enable the internal storage of several parameter values, four bits can also be used 
for each character of the kernel (middle functional part). So 192 bits are needed for 
each system. The memory of each mote will be filled with these 192-bit systems. 
However, since everything in systemic computation is a system, so the very motes 
themselves are regarded as systems. Thus each mote will contain many interacting 
systems, motes themselves may interact as systems, and motes may behave as scopes 
or contexts for other motes or systems. 

TinyOS, the freely available operating system developed by Berkeley, enables a 
low-overhead wireless network to be maintained on the Imote2 devices (for example 
using Direct Diffusion, a common data-centric transmission protocol). To enable the 
operation of the systemic computation architecture, it must be implemented by an 
extension to the TinyOS operating system. This involves the following operations: (i) 
Maintenance of scope tables (which system is within the scope of which other sys-
tem); (ii) interaction protocol (which systems interact with each other within the cur-
rent mote); (iii) system transmission (which systems are expelled from the scope of 
the current system, or mote, and which are absorbed into another system, or mote); 
(iv) transformation function set (how two systems are transformed in a given context, 
e.g. a low-level transformation such as binary addition, or a higher-level transforma-
tion such as a mathematical operation over several parameters). 

It is anticipated that the proposed asynchronous and parallel communications may 
cause interference and packet loss making transmission of systems unreliable.  
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Protocols to ensure that a transmitted system has been successfully received and 
stored by one and only one mote will be necessary. For example, the mote receiving a 
system and “absorbing” it must do so in one “system exchange” with the sender of the 
system, making that system unavailable to all other motes. Following the principles of 
systemic computation, this equates to two (wireless mote) systems interacting and 
modifying each other through the exchange of an internal system (data). Since the 
entire available memory of motes will always be full of systems (whether they are 
actively used for processing or not), the gain of a new system must involve the loss of 
an existing one and vice versa, so all transmissions between motes must be mutual 
exchanges of systems. 

5   Summary 

Natural computation points the way to many attractive properties in computing. Fault 
tolerance, self-organisation, embodied and distributed computers, that operate accord-
ing to natural principles may well be the future of reliable information processing. In 
this work the notion of systemic computation was introduced, and a summary of the 
architecture for a “biological computer” using wireless sensor network hardware was 
provided. While still at the design stage, this form of “natural” distributed wireless 
computation already shows promise in simulation, with adaptability, fault tolerance 
and autonomous behaviour emerging naturally from the novel architecture [2][3]. 
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Abstract. Sensor and Actor Networks (SANETs) represent a specific
class of massively distributed systems in which classical communication
protocols often fail due to scalability problems. New control paradigms
are needed in this place. This paper outlines biological communication
techniques as known cellular biology, which are known as cellular signal-
ing pathways. We show the adaptation of these principles to the world of
SANETs by discussing a rule-based control system for network-centric
communication and data processing. This system is able to perform data
pre-processing such as data aggregation or fusion as well as data-centric
communication based on rules that are distributed throughout the entire
network. First simulation results demonstrate that this system is able to
outperform classical routing approaches in specific SANET scenarios.

Keywords: sensor and actor networks, self-organization, bio-inspired
networking, rules-based sensor network, cellular signaling.

1 Introduction

Recent advances in microelectronics enabled the development of even smaller
and cheaper devices that are primarily used in the domain of Wireless Sensor
Networks (WSNs). At the beginning of this research, the envisioned scenario
has been smart dust [1], i.e. the deployment of millions of tiny sensor nodes that
cooperate on monitoring a given area. Whereas this scenario has not yet become
reality, a multitude of algorithms for operation of massively distributed sensor
systems have been developed. Based on the research the need for network-centric
data preprocessing has been identified as a key challenge due to the observation
that communication is much more expensive in terms of energy requirements
compared to local processing. Similarly, Sensor and Actor Networks (SANETs)
introduced further challenges and requirements. SANETs represent a specific
class of sensor networks enriched with network-inherent actuation facilities [2].
In addition to the requirements known from sensor networks, actuation devices,
usually named actors [3], are included into the scenario. This requires real-time
operation in massively distributed systems and coordination capabilities on a
higher abstraction layer.

In this paper, we present a system for network-centric operation in WSNs
and SANETs that we named Rule-based Sensor Network (RSN). This system
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is the result from studies in the context of bio-inspired networking – precisely,
in the context of cellular signaling cascades. In the following, we summarize the
requirements in the domain of massively distributed systems and introduce the
biological background. Then, we present RSN in detail and conclude with two
first application scenarios.

1.1 Requirements in Massively Distributed Systems

Whereas other application domains exist, we concentrate on WSNs and SANETs.
Starting with the first domain, we can identify scalability and energy efficiency
as the most challenging characteristics. Self-organizing algorithms have been de-
veloped relying for example on clustering and aggregation techniques to improve
scalability and network lifetime [4]. In SANETs, coordination aspects need to be
solved for sensor-actor coordination as well as for actor-actor coordination [3].
This includes additional communication constraints for network-wide coordina-
tion or, at least, local decision taking strategies that lead to an emergent behavior
on a higher abstraction layer. Additionally, real-time constraints need to be con-
sidered as demanded by feedback control in sensor-actor coordination. Some of
these challenging requirements are addressed by RSN. This approach basically
provides the building blocks for developing network-centric operation and control
techniques needed in massively distributed systems such as SANETs.

DNA

Signal
(information)

Gene transcription
results in the 
formation of a specific 
cellular response to 
the signal

Receptor

Fig. 1. Cellular signaling refers to the specific reaction according to received signaling
molecules; shown is the multilevel transcription of a received protein

1.2 Biologically Inspired Operation

In the last few years, bio-inspired networking has become a new trend for address-
ing yet unsolved problems by adapting solutions known in nature [5]. Whereas
a broad range of techniques and methods have been studied (e.g., the artificial
immune system, swarm intelligence, and evolutionary algorithms), we focus in
this paper on a rather new domain, the adaptation of communication and co-
ordination techniques from cellular signaling. Figure 1 sketches the principles of
cellular information exchange. Information particles, e.g. proteins, are received
by a cell according to the specific binding to a locally expressed receptor (or even
a set of receptors) [6]. The activation of the receptor initiates a signaling cascade
in which new proteins are created or activated and, finally, a cellular response
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can be observed, which represents the specific reaction of the cell according to
the received information. Thus, cellular processes are regulated by interactions
between various types of molecules, e.g. proteins. A key challenge for biology in
the 21st century is to understand the structure and the dynamics of the complex
intercellular web of interactions that contribute to the structure and function of
a living cell [7]. To uncover these structural design principles, network motifs
have been defined as patterns of interconnections occurring in complex networks
at numbers that are significantly higher than those in randomized networks [8].

Init measurement

Input Outcome

Computational
expensive process

If value > threshold

Enforce
action A

Enforce
action B

Enforce
action C

If Va > Ta If Vb > Tb

Aggregate Va + Vb Enforce actuation

Feed forward motifs Single input motifs Multi-input motifs

Fig. 2. Typical network motifs in integrated cellular networks

The concept of network motifs is depicted in Figure 2. Please note that this
is only a small sample of network motifs in integrated cellular networks [8]. The
three basic building blocks of complex networks are shown in this figure to-
gether with application examples relevant in SANETs. Feed-forward motifs rep-
resent network-inherent mechanisms for controlling (expensive) processes. This
can also be seen as an amplification technique. Single-input motifs allow to ini-
tiate multiple reactions on a single stimulus. Furthermore, multi-input motifs
are depicted. The basic concept is twofold. First, inhibitory or controlling effects
can be achieved as two stimuli are required to continue in the signaling cascade.
Secondly, if the threshold, i.e. the multiple simultaneous stimuli, is exceeded, a
number of parallel actions can be initiated at once.

2 RSN – Rule-Based Sensor Network

Inspired by the capabilities of cellular signaling, i.e. the specific reaction to
received information and the possibility to build signaling networks defining
complex reaction pattern, we developed a rule-based programming system for
application in SANETs. The primary design goals were a small footprint to en-
able the application of RSN on small embedded systems, easily transferable code,
flexibility, and scalability for network-wide operations (basically, RSN provides
the tools and concepts but the specific application needs to be designed prop-
erly as well). The rule-system greatly helps in designing distributed algorithms
for use in self-organizing massively distributed systems. Additionally, RSN was
inspired by early rule-based systems that have been developed in the context of
active networking solutions [9]. Examples are the mobile object system [10] and
communicating rules [11].
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2.1 Basic Concept

The key objectives motivating the development of RSN were improved scalability
and real-time support for operation in SANETs. RSN is based on the following
three design objectives:

– Data-centric communication – Each message carries all necessary informa-
tion to allow data specific handling and processing without further knowl-
edge, e.g. about the network topology.

– Specific reaction on received data – A rule-based programming scheme is
used to describe specific actions to be taken after the reception of particular
information fragments.

– Simple local behavior control – We do not intend to control the overall sys-
tem but focus on the operation of the individual node instead. Simple state
machines have been designed, which control each node (being either sensor
or actor).

These goals are achieved by using a simple rule system that enables the node
to process received messages and to initiate adequate state and message specific
operations. Thus, all received messages are stored in a buffer (source set). Pe-
riodically, after a configurable timeout ∆t, all messages in the source set are
processed by the instructions defined by the rules. Every rule has the form
if CONDITION then { ACTION } as depicted in Figure 3. Each rule specifically
selects messages from the source set to apply the corresponding action. Details
about the actions and further RSN parameters are described in the following.

S

Source set Destination set

CONDITION

ACTION

D   S

Fig. 3. Each rule selects a number of messages form the source set (CONDITION) and
applies a (set of) actions to the selected messages (ACTION)

2.2 Available Actions

The following actions have been implemented in the current version of RSN.
Basically, the following categories of actions can be distinguished: rule execution,
i.e. operations on the received messages; node control, i.e. control of the local
node behavior (e.g., addition of sensors); and simulation control, i.e. actions
needed for experiment control without influence on the node behavior.

Rule Execution. The following actions are meant to be used for network-
centric processing of messages. All these actions work on the source message
set that has been created by the condition element, i.e. by selecting messages
according to a well-defined specific pattern. Examples for the application of the
described actions are provided in the next section.
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– !stop – Early termination of the rule execution. Depending on the current
state (i.e., the number and kind of received messages), it may be necessary
to stop the current processing of the rule set. The next iteration will start
with the first available rule.

– !drop – Erases all messages in the current set. Needs to be called if messages
have been successfully processed.

– !dropDuplicates – All duplicates are discarded according to a unique iden-
tifier in each message. This command is needed to emulate for example
standard gossiping algorithms.

– !return – A new message is created and appended to the source message
set.

– !returnAll – Copies of all messages in the current set are created and stored
in the source message set.

– !send – A new message is created and submitted to the lower layer protocol
for transmission to neighboring nodes.

– !sendAll – Copies of all messages in the current set are created and sub-
mitted to the lower layer protocol for transmission to neighboring nodes.

– !actuate – A message is sent to locally connected actuators.

Node Control. Besides the actions for message processing, actions have been
integrated to control the local node behavior. Such node control actions allow to
enable/disable locally attached sensors and actuators as well as to modify the
current rule set, i.e. the local programming of a node.

– !controlSensor – A control message is sent to all attached sensors. Ac-
cording to the submitted attributes in $control, the behavior of the sensors
can be controlled: rsnSensorEnable and rsnSensorDisable enable or dis-
able the sensor, rsnSensorSetType updates the type field of the sensor, and
rsnSensorSetMeasuringInterval changes the sampling frequency.

– !controlActuator – Similarly, this command controls locally attached ac-
tuators. The attribute $control defines the action: the actuator is enabled
or disabled by rsnActuatorEnable and rsnActuatorDisable, respectively,
and rsnActuatorSetType updates the type field of the actuator.

– !controlManagement – The management plane defines the rule set itself.
Again, the $control attribute is used to specify the intended action: the
rule interpretation can be started or stopped by rsnManagementEnable and
rsnManagementDisable, respectively, the rule set can be replaced in order
to modify the behavior of this node using rsnManagementFromRsnString or
rsnManagementFromRsnFile, and the evaluation interval can be configured
by rsnManagementSetEvaluationInterval.

Simulation Control. The following actions have been integrated for simplified
control of simulation experiments. These actions are not working on a given set
of messages. Nevertheless, it is possible to initiate these actions based on the
current state of the node, e.g. after the reception of a specific message.
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– !recordAll – Statistics are recorded for all messages in the current working
set. In particular, the following information are stored: ID of the current
node, ID of the node that generated the message, node specific ID of the
message, globally unique ID of a message, hop count, current time, and
delay (elapsed time since message creation).

– !endSimulation – This action terminates an experiment. In our OMNeT++
based implementation, the simulation core is notified accordingly.

2.3 Variables and Variable Handling

All the described conditions and actions work on a set of message parameters
or local variables describing the state of the node. In the following, some of the
most important variables are introduced. Additionally, selected statistical pre-
processing techniques for data aggregation have been integrated into the current
version of RSN in order to enable selected application examples. In the follow-
ing section, we describe and analyze two application examples that inherently
benefit from the network-centric preprocessing features provided by RSN.

Message Attributes. Each message is specifically encoded to allow receiving
nodes to determine the meaning of the message and the necessary behavior.
This encoding can be changed according to the application scenario. Possible
parameters (currently used in the RSN implementation) are listed in Table 1.

Table 1. Currently implemented message attributes

Attribute Description
$name Descriptive name of the message
$type Type of the message; describes the content
$position Position of the source node
$hopCount Number of traversed nodes
$priority Importance factor of this message
$length Length of the message
$creationTime Timestamp describing the creation of the message
$value Message type specific value
$text Further informative text, e.g. to qualify the value

Node Attributes. Each node can store and update state information locally.
In the context of self-organization, this refers to the local state of an autonomous
system. Such information can be updated according to received messages or by
other local observations. Table 2 lists the currently implemented node attributes.

Preprocessing Features. Data aggregation is an important issue in massively
distributed systems. Usually, statistical measures are used to describe results
received from several nearby nodes. RSN supports such data aggregation tech-
niques by providing a set of preprocessing techniques as summarized in Table 3.
All the listed operations process the messages in the current working set.
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Table 2. Currently implemented node attributes

Attribute Description
:count Number of messages in the current working set
:totalMessageCount Number of all messages received by the node
:hostName ID of the current host
:position Position of the node
:random Random value for probabilistic decisions

Table 3. Implemented preprocessing features

Command Description
@minimum Minimum of the selected value
@maximum Maximum of the selected value
@sum Sum of the selected value
@average Average of the selected value
@median Median of the selected value
@count Number of the selected value

2.4 Implementation

We implemented RSN in form of a C++ library. This library contains all func-
tionality that is necessary to process RSN statements. RSN statements are
formulated in a flexible script language. We integrated the RSN library into
the OMNeT++ simulation framework in order to execute intensive tests and
experiments with different algorithms for data aggregation, probabilistic data
communication, and distributed actuation control. OMNeT++ 3.3 is a discrete
event simulation environment free for non-commercial use. We also used the
INET Framework 20060330, a set of simulation modules released under the GPL.
Scenarios in OMNeT++ are represented by a hierarchy of reusable modules writ-
ten in C++. Their relationships and communication links are stored as Network
Description (NED) files. Simulations are either run interactively in a graphical
environment or executed as command-line applications.

The developed simulation model is depicted in Figure 4 (left). A single node
is depicted consisting of a number of modules. Bottom-up, a wireless commu-
nication module is included (WLAN) as well as the rsnRouting module that
is currently represented by a simple broadcast module (routing issues can be
handled by RSN). The rsnManagement contains all core functions of RSN, i.e.
message handling and rule processing. Finally, the rsnDispatcher module inter-
connects attached rsnSensor and rsnActuator modules with the rsnManagement.

3 Applicability of RSN

We evaluated the applicability of RSN in two scenarios. First, we explored
network-centric data aggregation as an option to improve the efficiency of prob-
abilistic data communication (gossiping). Secondly, we investigated the capabil-
ities of network-centric actuation control in SANETs in terms of scalability and
real-time behavior.
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Fig. 4. Simulation model of RSN: integration in OMNeT++ and example setup

3.1 Data Aggregation Scenario

Aggregation as a major building block for efficient and scalable data commu-
nication and preprocessing in WSNs and SANETs because communication is
much more expensive (in terms of energy consumption) compared to processing.
In particular, we investigated a typical probabilistic communication approach
using RSN: gossiping [12]. The principles are shown in the following RSN pro-
gram. If a message travels further than DIAMETER, it will be discarded. In the
first 4 hops, the message is flooded. In all other cases, the message is forwarded
according to a random experiment.

if $hopCount >= DIAMETER then {
!drop;

}
if ANY ($hopCount < 4 || :random > GOSSIP-PROB) then {

!sendAll;
}
!drop;

We prepared two scenarios as discussed in [12]. In the first scenario, 100
nodes are distributed on a grid – one corner node is generating 300 messages to
be transmitted by the network. Thus, the probability to duplicate messages is
very high (according to the initial flooding for the first four hops). In the second
scenario, three nodes are turned off in order to build a small linear network at the
sending corner node as depicted in Figure 4 (right). Figure 5 shows the number
of messages forwarded by a host. Obviously, the nodes close to the source are
getting overloaded while distant nodes receive the messages with a pretty low
probability.

Then, we installed a simple aggregation rule that controls the transmission of
a single message if multiple messages have been received. The results are depicted
in Figure 6. This time, much less duplicates are transmitted and, thus, the load
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Fig. 6. Gossiping scenario with data aggregation: 100 nodes in a grid (left); linear
network at the sending node (right)

of the network is reduced. At the same time, the dispersion of the messages in the
network is increased. Unfortunately, the gossiping algorithm drops all messages
(including aggregated ones) with the same probability. Thus, additional rules
need to be implemented that correct this behavior, e.g. by defining priorities for
aggregated and non-aggregated messages.

if :count > 1 then {
!send($hopCount := @minimum of $hopCount,

$value := @average of $value);
!drop;

}

3.2 Network-Centric Actuation

In the following, we present an excerpt from extensive simulations to study
network-centric actuation using RSN published in [13]. We compared network-
centric actuation control with a classical base station scenario. For the latter
one, we used the Dynamic MANET on Demand (DYMO) routing protocol to
transmit messages from sensor nodes to a base station and the results back to
one out of four available actors. In the RSN scenario, the sensor nodes have
been configured with the following program – it represents a simple version of
gossiping.
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if $hopCount >= DIAMETER then {
!drop;

}
if :random <= GOSSIP-PROB then {
!sendAll;

}
!drop;

The actors have an even simpler programming. For each received message,
they check whether the THRESHOLD (set to 50, 70, and 90, respectively) has been
exceeded and, if necessary, local actuation is initiated.

!recordAll;
if $value > THRESHOLD then {
!actuate($type:=rsnActuatorLightSource,

$value:=@average of $value);
}
!drop;

A number of simulations have been executed with the primary objective to an-
alyze the following characteristics of both evaluated communication and control
approaches:

– Real-time support, i.e. the overall latency between measuring a value higher
than the particular threshold and the time the message successfully arrived
at the actuators. In this context, also the path length is of interest, which
is directly proportional to the end-to-end latency and to the message loss
probability.

– Overhead, i.e. the number of messages that need to be processed by all the
nodes to transmit the necessary data messages. This includes protocol over-
head from routing protocols as well as overhead due to duplicated messages
for gossiping approaches.

First, the latency of the application messages has been analyzed. We mea-
sured the time from creating a sensor message until it was successfully received
by the actor. Because only messages exceeding a given threshold are of inter-
est for the actors, we just analyzed the latency after identifying the message
as matching this criterion. In Figure 7 (left and middle), results for the RSN
scenario are shown in form of boxplots. The graphs differentiate between the
deployment scenarios (we evaluated grid and random deployment) and the gos-
siping probability (set to 0.2, 0.5, and 0.8, respectively). If only the reception of
the first copy of the message is considered, the end-to-end delay slightly oscil-
lates around 1.4ms. The measured maximum is at about 16ms. The results are
nevertheless only meaningful, if all sensor messages can be differentiated, e.g.
by a unique id. If this is not possible, the reception of further copies cannot be
distinguished form the first one. The measurement results taking this effect into
account slightly oscillate around 2.2ms with a maximum peak at 33ms.
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Fig. 7. End-to-end latency. Left (RSN): time until the first copy of a message arrives;
middle (RSN) time until any copy arrives; right (base station): end-to-end latency as
observed from the application.

If we compare these results to the base station scenario as shown in Figure 7
(right), we obviously see that the delays in this scenario are significantly higher
(median: 20ms, mean: 55ms, and max: 5.700ms). There are two reasons for this
behavior. First, the mean path length is essentially longer as discussed below
and, secondly, the on-demand routing protocol takes some time for setting up
the routing path before being able to transmit a message. This effect is shown by
the comparison between the 60 s and 600 s message generation setups. The route
timeout of DYMO has been configured to 120 s. Thus, in the 600 s scenario,
almost always the route towards the base and towards the actor nodes will
timeout and needs to be reestablished. Further results and more details are
available in [13].

4 Conclusion

In this paper, we investigated techniques for network-centric data processing
in WSNs and SANETs. Based on a sketched overview to cellular information
processing, we developed RSN, a rule-based system for sensor network program-
ming. The application range of this approach is manifold; we outlined the ad-
vantages based on two examples: data aggregation for optimized probabilistic
communication and network-centric actuation control.

The main advantages of RSN are the small footprint of rules and the simple
local programming of nodes – making self-organization possible even in large
scale sensor and actor networks. In particular, this system allows the quick and
heterogeneous reprogramming of (individual) nodes. Therefore, network-centric
optimization of the placement of computational intensive rules becomes possible
– some concepts can be adapted from the database community: the data stream
query optimization problem. Our future work in the context of RSN includes fur-
ther evaluation of aggregation techniques, the implementation on sensor nodes
for ”real world” experiments, and intensified investigations of reprogramming
techniques.
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Abstract. Emerging pervasive computing technologies such as sensor
networks and RFID tags can be embedded in our everyday environment
to digitally store and elaborate a variety of information. By having appli-
cation agents access in a dynamic and wireless way such distributed in-
formation, it is possible to enforce a notable degree of context-awareness
in applications, and increase the capabilities of interacting with the phys-
ical world. In particular, biologically inspired field-based data structures
such as gradients and pheromones are suitable to represent information
in a variety of pervasive computing applications. This paper discusses
how both sensor networks and RFID tags can be used to that purpose,
outlining the respective advantages and drawbacks of these technologies.

Keywords: Field-based coordination, Ad-hoc networks, RFID infras-
tructures, Bio-inspired computing.

1 Introduction

Environment-mediated interaction (aka stigmergic interaction [1]) plays an im-
portant role in nature. Indeed, the spreading and sensing of pheromones in an
environment to organize the activities of ant colonies, the process of morpho-
genesis as enforced by diffusion of chemicals in the embryo, the movement of
masses induced by gravitational fields, are all examples of stigmergic interac-
tions [2]. In the last few years, however, stigmergic models of interactions have
been recognized as very powerful to facilitate interactions in dynamic distributed
systems. Indeed, stigmergic models of interactions, whether relying on synthetic
pheromones, on diffusion of digital chemicals, or on spreading of virtual compu-
tational fields, are being proposed to facilitate the enforcement of adaptive inter-
action patterns in dynamic distributed systems and to promote self-organization
and self-adaptation of activities [1,3,4].

In the case of agents situated in a computational environment (e.g., the Web,
a P2P network, or the Grid), supporting the interaction of agents with such an
environment is a rather natural process. Simply, multiagent systems are com-
putational entities the same as the environment, and once proper data formats

P. Liò et al. (Eds.): BIOWIRE 2007, LNCS 5151, pp. 376–386, 2008.
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and interaction protocols are established, the access to the computational envi-
ronment (and possibly the exploitation of such environment as an infrastructure
in which to store the units of stigmergic interactions) becomes rather easy: the
“sensors” and the “effectors” that the agents may use to interact reduce to a set
of APIs or programming constructs.

The problem is totally different in the case of a physical environment. In this
case, to access the physical environment, agents must be somehow be capable of
perceiving and affecting physical properties. To this extent, an agent (whether
in the form of an autonomous robot, or of an embedded controller, or of some
software running on a mobile devices) must be necessarily supported by some
hardware sensors and effectors to properly interact with the world.

Traditionally, most approaches for physically situated agents, assume that
agents are augmented with the necessary capabilities for sensing and effecting
the physical world. For instance, in the case of autonomous robots, traditional
approaches assume that the robot itself is equipped with video-cameras, temper-
ature sensors, location sensors (e.g., GPS), and robotic hands. Such approach
tends to notably increase the internal complexity of agents. In fact, agents not
only have to perform the computational activities associated to deciding how to
accomplish a goal, but have also to take care of properly internalizing and inter-
preting the data coming form the associated sensors, and of properly controlling
their effectors to actualize their actions.

Another drawback of the above approach is that the physical environment
can hardly be used to support stigmergic models of interactions, unless one
adopt rather tricky solutions. If the environment is purely physical, in fact,
stigmergic interactions should occur by physically affecting the properties of the
environment. For example, to mimic the behavior of ants, robots would be forced
to actually pollute the environment with some kind of marker, and would have
to be equipped with sensor to perceive such marks [5].

The advent of pervasive computing technologies dramatically changes this
scenarios. The availability of small-scale and low-cost devices that can be dis-
tributed in physical environment in a non intrusive way, that can be devoted to
sense (or affect) specific properties in the environment, and that enable to inter-
act with them in a wireless way (a capability to be easily provided to agents),
enables agents to externalize all the activities devoted to interpret and control
their physical activities. Simply, sensing and effecting the environment reduces
in properly accessing some digital services. The result is in a notable reduction
of complexity in agents, both at the hardware and at the software level.

In addition, the presence in an environment of embedded computational re-
sources, as those that can be provided by the embedded computing devices,
can be fruitfully exploited as an infrastructure to support stigmergic models
of interactions. In fact, stigmergy can take place without actually affecting the
physical environment, but simply by exploiting the distributed embedded re-
sources as stores for those data structures that are at the basis of stigmergy,
e.g., pheromones, fields, etc.
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Clearly, depending on the specific technologies and devices adopted, the inter-
actions with the environment and the support of stigmergic coordination models
can be more or less facilitated. In the following of this paper, we analyze in de-
tail two different classes of devices (sensor networks (in Sect. 2) and RFID tags
(int Sect. 3), discuss how they can be exploited, and outline their respective
advantages and drawbacks.

2 Ad-Hoc and Sensor Network

Future pervasive computing scenarios comprise a huge number of heterogeneous
devices interacting with each other to achieve complex distributed applications.
Sensor networks and networks of handheld computers could be employed in a
variety of applications including environmental monitoring [6,7], navigation [8],
and human interaction support [9].

In general terms, sensor networks are an ideal platform to augment the phys-
ical environment with digital information.

– Sensors can store data to represent some kind of contextual information.
Moreover, they can deliver such data to agents (e.g., users with PDA) passing
nearby.

– Sensors can perform computations to support and facilitate the agents’
fruition to that data. For example, sensors can propagate and diffuse data
across the network. They can automatically delete old and possibly corrupted
information. They can combine and transform data to let it become more
expressive and easy to use.

Other than providing contextual information coming from the “outside”
world, sensor network can also be used to store and convey information produced
by the agent themselves. Moreover, relying on the sensor networking capabilities
it is possible to spread distributed data structures across the environment.

In particular, we can imagine that each component of the system (software
agent, wireless device, embedded sensor, etc.) is capable of generating and prop-
agating field-like data structures that convey some information about their con-
text. Agents can perceive these fields and react accordingly. The idea is that
components are simply driven by these force fields as if they were particles un-
der the action of a gravitational field.

Field-based data structures are distributed data structures encoding specific
aspects of the application components’ operational environment. These fields
are propagated across a network by a component in order to represent and
“communicate” its own activities. Field data structures are easily accessible by
the components and provide easy-to-use context information (i.e., the overlays
are specifically conceived to support their access and fruition).

The strength of these overlay data structures is that they can be accessed
piecewise as the application components visit different places of the distributed
environment. This lets the components to access the right information at the
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right location. In addition, overlay data structures decouple components’ activ-
ities from the underlying network dynamism. Components interacting and per-
ceiving their operational environment by means of these overlay data structure
can disregard the underlying physical network and its dynamics.

To clarify these concepts let us focus on the problem of coordinating the
movements of some autonomous components (i.e., agents) in a distributed envi-
ronment [10]. Hereafter we will use the term agent to refer to any autonomous
real-world or software entity with computing and networking capability (e.g., a
user carrying on a Wi-Fi PDA, a robot, or a modern car). In particular, we focus
on the simple application of having two persons, provided with a PDA, moving
across an environment instrumented with an ad-hoc network infrastructure. The
goal of the application is to allow one person to be guided by the PDA, to follow
the other person. A simple solution based on overlay data structures is the let
the person to-be-followed to spread in the environment (i.e., ad-hoc network)
a data structure that increases an integer value by one at every hop as it gets
farther from the source. This creates a sort of gradient that can be followed
downhill by the other person to complete the application [10] (see Fig. 1(a)). If
the person to-be-followed moves, it is important that the overlay data structure
adjust its shape accordingly, so that the gradient leads to that person anyway
(see Fig. 1(b)). The power of this approach is that the overlay data structure
provides expressive contextual information tailored for that specific task. The
agent running on the PDA does not need to know any map of the environment,
nor it has to execute complex algorithms to decide where to go. It just blindly
follows the overlay data structure.

Beside this exemplary application, overlay data structures are general purpose
and can be applied in a wide range of application scenarios, ranging from robotics
to network routing [10,11].

2.1 Pros and Cons

The power of this approach is that the distributed data structure provides ex-
pressive contextual information tailored for that specific task. The agent running
on the PDA does not need to know any map of the environment, nor it has to
execute complex algorithms to decide where to go. It just blindly follows the
field data structure. All the complexity of the application is moved away form
from the agents and diverted into the environment-infrastructure.

Sensor networks are a powerful technology to support environment abstrac-
tions in multi-agent systems. In the long run, once current technological problems
will be properly addressed, it will be the leading infrastructure of environment
applications. Its main strength is that it is an active infrastructure: sensor nodes
can run (distributed) algorithms to process data as required. For example, sensor
nodes can proactively delete old information or run algorithm to aggregate data
on needs. At present, however, this is also sensor network main weakness. Nodes
suffer, in fact, from battery-exhaustion problems, they are costly and failure
prone.
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(a)

(b)

Fig. 1. (a) A gradient data structure enables an agent to follow another one. (b) The
data structure is updated to reflect the new agent position.

2.2 Related Work

A number of recent proposals address the problem of defining supporting envi-
ronments for the development of adaptive, dynamic, context-aware distributed
applications, suitable for pervasive computing.

The TinyLime middleware [12] proposes accessing the environmental data
collected by a sensor network via an associative tuple-based mechanisms. When
a user with a mobile device “walks-through” a network of distributed sensors,
all the data collected by the in-range sensors automatically feeds a local tuple
space of the mobile device, which thus can perceive sensorial data collected by
sensors simply by reading in the local tuple space.

ObjectPlaces [13] is an interesting middleware infrastructure that offers sup-
port to exchange and share information among nodes in mobile and ad-hoc net-
works. Specifically, in ObjectPlaces, agents communicate indirectly through the
exchange of objects that can be temporarily stored across suitable object-places
(that are virtual containers stored in the ad-hoc network itself). Agents invoke op-
erations to add and remove objects, or to observe the content of a specific object-
place (via a pattern-matching process). Agents can also create object-places
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dynamically, and link them together to form a graph-like environment connecting
related object-places.

TOTA [10] and Smart Messages [14] are two architectures for computation
and communication in large networks of embedded systems. Communication is
realized by sending “smart tuples” in the network, i.e., tuples which include code
to be executed at each hop in the network path. These models comply with the
general idea of putting intelligence in the network by letting tuples and messages
execute hop-by-hop small chunk of code to determine their propagation.

Lime [15] and XMIDDLE [16] exploits transiently tuple spaces as the basis
for interaction in dynamic network scenario. Each mobile device, as well as each
network nodes, owns a private tuple space. Upon connection with other devices
or with network nodes, the privately owned tuple spaces can merge in a federated
tuple space, to be used as a common data space to exchange information.

3 RFID Technology

Advances in miniaturization and manufacturing have yielded postage-stamp
sized radio transceivers called Radio Frequency Identification (RFID) tags that
can be attached unobtrusively to objects as small as a toothbrush. The tags
are wireless and battery free. Each tag is marked with an unique identifier and
provided with a tiny memory, up to some KB for advanced models, allowing to
store data. Tags can be purchased off the shelf, cost roughly 0.20 Euro each and
can withstand day-to-day use for years (being battery-free, they do not have
power-exhaustion problems). Suitable devices, called RFID readers, can access
RFID tags by radio, either for read and write operations. The tags respond or
store data accordingly using power scavenged from the signal coming from the
RFID reader. RFID readers divide into short- and long-range depending on the
distance within which they can access RFID tags. Such distance may vary from
few centimeters up to some meters. Deploying RFID technology requires that a
number of places in the environment (e.g. doors, corridors, etc.) or objects (e.g.
beds, washing machines, etc.) are tagged with RFID tags. Tagging a place or an
object involves sticking an RFID tag on it, and making a database entry mapping
the tag ID to a name. It is worth emphasizing that current trends indicate that
within a few years, many household objects and furniture may be RFID-tagged
before purchase, thus eliminating the overhead of tagging [17]. Moreover, some
handheld devices start to be provided with RFID read and write capabilities
(the Nokia 5140 phone can be already equipped with a RFID reader [18]).

The set of RFID tags deployed across the environment can be regarded as an
infrastructure to store and deliver digital information.

From a general perspective, accessing the RFID tags nearby is a powerful
source of context information. For example, RFID tags can reveal the location
of agents in that tags can be associated to uniquely identified places. So reading
the tag associated with “Prof. Smith desk” can let an agent infer its location
as “Prof. Smith office”. More in general, the knowledge of RFID tags (and thus
objects) nearby can possibly identify a specific application context (e.g. reading
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a LCD-projector tag, and a microphone tag can let the agent infer of being in a
meeting room).

In addition, given the fact that RFID tags can be written on-the-fly, agents
can use the tags as a distributed shared memory with which to exchange in-
formation. For example, RFID tags can be accessed as if they were distributed
tuple spaces [19,20]. A particulary significant development of this idea is related
to spreading pheromone-inspired distributed data structures across the tags in
the environment. The basic scenario consists of human users and robots carry-
ing handheld computing devices, provided with a RFID reader, and running an
agent-based application. The agent, unobtrusively from the user, continuously
detects in range tags as the user roams across the environment. Moreover, the
agent controls the RFID reader to write pheromone data structures (consisting
at least in a pheromone ID) in all the tags encountered. This process creates
a digital pheromone trail distributed across the tags. More formally, let us call
L(t) the set of tags being sensed at time t. It is easy to see that the agent can
infer that the user is moving if L(t) �= L(t-1) (see Fig. 2).

 

 

L(t-1) L(t)  

User at time t-1 User at time t

Fig. 2. When the user moves, its agent gets in range with a different set of location-tags
(here represented as white rectangles), and recognizes the motion

If instructed to spread pheromone O, the agent will write O in all the L(t)-
L(t-1) tags as it moves across the environment. For the majority of applications a
pheromone trail, consisting of only an ID, is not very useful. Like in ant foraging,
most applications involve agents to follow each other pheromone trails to reach
the location where the agents that originally laid down the trail were directed
(or, on the contrary, to reach the location where they came from). Unfortunately,
an agent crossing an-only-ID-trail would not be able to choose in which direction
the agent that laid down that trail was directed. From the agent point of view,
this situation is like crossing a road without knowing whether to turn left or
right.

To overcome this problem, the agent stores in the tags also an ever increasing
hop-counter associated with O - we will call this counter C(O). In particular,
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if an agent decides to spread pheromone O at time t, the agent reads also the
counter C(O) in the L(t) set (if C(O) is not present, the agent sets C(O) to a fixed
value zero). Upon a movement, the agent will store O and C(O)+1 in the tags
belonging to L(t+1) that do not have O or have a lower C(O). In addition, the
basic pheromone idea requires a pheromone evaporation mechanism to discard
old - possibly corrupted - trails. To this end we store in the tag also a value T(O)
representing the time where the pheromone O has been stored. (see Fig. 3)
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Fig. 3. Writing of pheromone information in RFID tags

To read pheromones, an agent trivially accesses neighbor RFID tags reading
their memories. Since RFID read operations are quite unreliable, the agent ac-
tually performs a reading cycle merging the results obtained at each iteration.
Given the result, the agent will decide how to act on the basis of the perceived
pheromone configuration. To realize pheromone evaporation, after reading a tag,
an agent checks, for each pheromone, whether the associated timestamp is, ac-
cordingly to the agent local time, older than a certain threshold T. If it is so, the
agent deletes that pheromone from the tag. This kind of pheromone evaporation
leads to two key advantages:

1. Since the data space in RFID tags is severely limited, it would be most useful
to store only those pheromone trails that are important for the application
at a given time; old, unused pheromones can be removed.

2. If an agent does not carry its personal digital assistant or if it has been
switched off, it is possible that some actions will be undertaken without
leaving the corresponding pheromone trails. This cause old-pheromone trails
to be possibly out-of-date, and eventually corrupted. In this context, it is of
course fundamental to design a mechanism to reinforce relevant pheromones
not to let them evaporate.

With this regard, an agent spreading pheromone O, will overwrite
O-pheromones having an older T(O). From these considerations, it should be
clear that the threshold T has to be tuned for each application, to represent
the time-frame after which the pheromone is considered useless or possibly cor-
rupted.
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3.1 Pros and Cons

The main point in favor of this approach is its extremely low cost since it uses
technologies (RFID) that are likely to be soon embedded in the scenario inde-
pendently of this application. Relying on such an implementation, a wide range
of application scenarios based on pheromone interaction can be realized ranging
from multi-robot coordination [21], to monitoring of human activities [22].

The main problem with this approach is related to current limitations of
RFID technology. Accessing tags for reading and writing operations can fail for
a number of hardly controllable issues (electromagnetic disturbances, metallic
objects nearby, interferences and collisions, etc.). Moreover, in the next section,
we will present and discuss some limitations in our RFID implementation of the
pheromone evaporation mechanism.

3.2 Related Work

Several proposals, as well as ours, consider the idea of having mobile devices
integrated with a RFID reader, thus having the capability of accessing RFID
tags around, as sorts of digital contextual information stores. However, rather
than considering the possibility of storing new information in RFID tags and
enforcing coordination through them, most approaches exploit RFID tags only
for reading pre-existent environmental/contextual information. For instance, the
system described in [23] proposes associating location information with tags (e.g.,
”I am the tag of the living room”) that can be read by mobile robots carrying
on a RFID reader to roughly localize themselves.

The system described in [22] exploits RFID tags for inferring information
about contextual activity in an environment. Users are assumed to wear an
RFID reader connected with a Wi-Fi portable device so that, when the user
moves and acts in the environment, the type and the sequence of tags read by
the reader can suggest what the user is doing. For example, reading the tag
associated to the user boss and of a video projector can let infer that the user
is in a sort of important meeting with his/her boss

Pheromones spread in the environment can enable a group of users (both
humans and robotics) to coordinate their respective movements. An exemplary
application would be distributed environment exploration. Users could decide
to explore a specific area if there are not pheromones pointing in that direction
(the area is truly unexplored). In this context, it is important to remark that
this approach clearly requires the presence of RFID tags before pheromones can
be spread. If the environment does not contain tags at all, this approach could
not be used. However, on the one hand, RFID tags are likely to be soon densely
present in everywhere (embedded in tiles, bricks, furniture, etc.). On the other
hand, it is possible to conceive solutions where agents physically deploy RFID
tags while exploring the environment to be used for subsequent coordination. For
instance, future development in plastic (and printable) RFID technology [24] let
us envision the possibility of enriching an agent with a simple RFID printer to
dynamically print in pavements, walls, or any type of surface, RFID tags.
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4 Conclusion and Future Work

This paper presented the role of sensor network and RFID-based infrastructures
to support environment abstraction and field-based coordination in pervasive
computing scenarios. These infrastructures not only allow agents to acquire con-
text information, but also can serve as suitable media to support their coordi-
nation activities.

Our future work in this direction is twofold. On the one hand, we will try
to solve technological problems related to current hardware limitations. On the
other hand, we will try to apply such mechanisms and abstractions to several
pervasive computing scenarios.
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Abstract. In this paper we explore some of the connections between
cooperative game theory and the utility maximization framework for
routing and flow control in networks. Central to both approaches are
the allocation of scarce resources between the various users of a net-
work and the importance of discovering distributed mechanisms that
work well. The specific setting of our study is ad-hoc networks where a
game-theoretic approach is particularly appealing. We discuss the under-
lying motivation for the primal and dual algorithms that assign routes
and flows within the network and coordinate resource usage between the
users. Important features of this study are the stochastic nature of the
traffic pattern offered to the network and the use of a dynamic scheme
to vary a user’s ability to send traffic. We briefly review coalition games
defined by a characteristic function and the crucial notion of the Shap-
ley value to allocate resources between players. We present a series of
experiments with several test networks that illustrate how a distributed
scheme of flow control and routing can in practice be aligned with the
Shapley values which capture the influence or market power of individual
users within the network.

1 Introduction

In this paper we explore some of the connections between cooperative game the-
ory and the utility maximization framework for routing and flow control in net-
works. Central to both approaches are the allocation of scarce resources between
the various users of a network and the importance of discovering distributed
mechanisms that work well.

The specific setting of our study is ad-hoc networks and we examine the
scheme proposed in [5].

The paper is organized as follows. In Sect. 2 we explain the basic model and
quantites of interest largely following the notation used in [5]. We discuss the
underlying motivation for the primal and dual algorithms that assign routes
and flows within the network and coordinate resource usage between the users.
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Important features of this study are the stochastic nature of the traffic pattern
offered to the network and the use of a dynamic scheme to vary a user’s ability
to send traffic. We also review coalition games defined by a characteristic func-
tion and the crucial notion of the Shapley value to allocate resources between
participants.

Section 3 presents a series of experiments with several test networks that
illustrate how a distributed scheme of flow control and routing can in practice
be aligned with the Shapley values which capture the influence or market power
of individual users within the network.

2 Models

In this section we outline the basic models and quantities of interest. The essen-
tial features follow those given in [5].

2.1 Basic Models

Let N be the set of nodes and let R be a set of routes. For each j ∈ N
write RS(j) ⊂ R for the set of routes which start at j and RD(j) ⊂ R for
the set of routes which end at j.

For each source s we will denote by xs the flow starting at s which flows at
rate yr on route r ∈ RS(s) with

xs =
∑

r∈RS(s)

yr . (1)

Then the amount of flow, cj , through a node j ∈ N is given by

cj =
∑

r:j∈r∧r∈RS(j)∪RD(j)

yr +
∑

r:j∈r∧r �∈RS(j)∪RD(j)

2yr (2)

where the first term aggregates all flows either starting or ending at j and where
the second term aggregates all flows transiting both in and out of node j (and
thus contribute twice to the quantity cj). A node is constrained by some capac-
ity, Cj , for aggregate flow so that

cj ≤ Cj ∀j ∈ N . (3)

Similarly, we suppose that receiving and transmitting flows by a node con-
sumes electrical power and we write γj for the power consumed at node j which
we express in terms of the flows as

γj =
∑

r∈RS(j)

yre
T
jr +

∑
r∈RD(j)

yre
R +

∑
r:j∈r∧r �∈RS(j)∪RD(j)

yr

(
eR + eT

jr

)
. (4)

Here we suppose that the power consumed at node j by a flow of rate yr is yre
R

for receiving and yre
T
jr for forwarding from j to the next node along the route r
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after node j. We further suppose that receiving power consumption does not
depend on the identity (and hence location) of the transmitter whereas trans-
mitting does depend on the identity of the receiver. The total power consumed
at node j is constrained by a quantity Γj , that is

γj ≤ Γj ∀j ∈ N . (5)

2.2 Optimization Framework

Here we shall describe how flows xs are determined given the constraints on
bandwidth Cj and power consumption Γj .

We shall suppose the existence of prices µjr for use of node j by a unit amount
of flow on route r and determine flows xs and yr by a primal algorithm such
that

xs =
∑

r∈RS(s)

yr =
ws

minr∈RS(s)
∑

j∈r µjr
(6)

for given quantities ws and with the proviso that yr is only positive on routes r
that attain the minimum in the denominator of the expression on the right-
hand side. Thus, the action is to select flows such that the rate of spend-
ing, xs

∑
j∈r µjr , is minimal over the choice of routes r ∈ RS(s) and has value ws

per unit time.
The underlying rationale for this primal algorithm is that of proportional

fairness which adopts a maximization of utility with the specific choice U(x) =
w log x as the utility function [4,7,10].

The prices µjr are intended to depend on current flows xs in order to align
demand for resources of bandwidth and power with their provision given in
term of the quantities Cj and Γj . The dependence is through separate prices for
bandwidth and power written µB

j and µP
j , respectively. Specifically, we write

µjr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eT
jrµ

P
j + µB

j j is the source for route r (so r ∈ RS(j))(
eR + eT

jr

)
µP

j + 2µB
j j is a transit node for route r

(so j ∈ r ∧ r �∈ RS(j) ∪ RD(j))
eRµP

j + µB
j j is the destination for route r (so r ∈ RD(j)) .

(7)
All the flows xs, yr and the various prices µjr, µ

B
j , µP

j will further depend on
time and we use this dependence to specify the dual algorithm in which prices
are adjusted over time according to the following equations

d

dt
µB

j (t) =
κµB

j (t)
Cj

(cj − Cj) (8)

d

dt
µP

j (t) =
κµP

j (t)
Γj

(γj − Γj) (9)

where κ is a small positive constant.
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2.3 Coalition Games and Shapley Values

We now turn to coalition games and their use in resource allocation problems.
We suppose that a game is composed of a collection of N players corresponding
to the source nodes in the ad-hoc network and that for each subset or coalition
of players S ⊆ N there is a payoff v(S) given by the characteristic function.
The characteristic function, v : P(N) �→ R, determines the maximum payoff
that the coalition S can guarantee themselves by coordinating the actions of its
members, whatever the other players decide. See [8,9] for further discussion of
coalition games and the Shapley value approach.

We shall assume that v(∅) = 0 and that v(·) is superadditive, that is

v(S ∪ T ) ≥ v(S) + v(T ) (10)

whenever S ∩ T = ∅.
An important notion for allocating the value v(N) of the full coalition amongst

the players is given by the Shapley value φi(v) defined by

φi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i}) − v(S)) . (11)

It may shown that the vector of Shapley values (φi(v) : i ∈ N) forms an
imputation. That is, they are an assignment of the value v(N) between the
players where the assignment to player i is at least as great as they could obtain
independently of the other players so that∑

i∈N

φi(v) = v(N) (12)

φi(v) ≥ v({i}) , ∀i ∈ N . (13)

Note that to compute the Shapley values we require the characteristic func-
tion v(S) to be determined for each of the 2N possible coalitions of the full set
of players N . In our experiments described later in Sect. 3 we have 10 players
and so there are 210 = 1024 possible coalitions to consider.

The primal and dual algorithms are motivated by the underlying utility max-
imization framework and there is a large body of work that now supports that
approach. A recent survey of this approach is given in [3]. The central notions
are economic ones and relate to competitive Walrasian equilibria in exchange
markets [8,10]. A connection between the non-cooperative notions of compet-
itive equilibria and the cooperative notion of a Shapley value is through the
value equivalence theorem of [2]. This work establishes how in a continuum set-
ting of many small players the allocations associated with the Shapley values
are the same as the competitive allocations. The approach we take studies these
allocations in ad-hoc networks with a finite numbers of players.
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The value equivalence theorem builds on earlier work that establishes a core
equivalence theorem relating in a similar continuum setting the competitive
allocations to those in the core of the game [1,8]. In general, the core of a
cooperative game in characteristic form is the (possibly empty) set of imputa-
tions (xi : i ∈ N) such that∑

i∈S

xi ≥ v(S) ∀S ⊂ N . (14)

We do not study the core further in this paper but instead concentrate on the
use of the Shapley values.

2.4 Stochastic Features

The experiments discussed in Sect. 3 add stochastic features to the model dis-
cussed so far. We shall suppose that each source node s is controlled by a Markov
process Ds(t) that assigns the destination node for the current flow starting at s.
We also allow Ds(t) to take a further state, labelled 0, indicating that there is
no current flow associated with source node s. Thus, Ds(t) ∈ {0, 1, . . . , N} \ {s}
and Ds(t) = d (d �= 0) means that the user s has flow starting at s and ter-
minating at d. If Ds(t) = 0 then the user s is currently inactive and necessar-
ily xs(t) = 0. As the Markov processes (Ds(t) : s ∈ N) change state then so
do the sets RS(·) and RD(·) describing the sets of routes corresponding to the
random source-destination pairs.

In our experiments the random holding times in the different states are in-
dependent exponentially distributed random variables with a common parame-
ter λ. The permitted transitions of Ds(t) are such that from the inactive state
(Ds(t) = 0) the source will select any destination from {1, 2, . . . , N}\{s} equally
likely. In the active state (Ds(t) �= 0) the only transition is to the inactive state.
Thus a source alternates between inactive and active periods with a destination
node chosen uniformly at random for each successive active period.

The stochastic effects of the traffic patterns changing over time will accord-
ingly imply a continual adjustment of flows and prices using the joint primal
and dual algorithms. In our experiments we have further adopted the simplifica-
tion that routes chosen (by the least cost primal algorithm) do not subsequently
change during an active period even though prices may fluctuate to an extent
that the chosen routes are nolonger least cost ones.

Thus, the primal algoirthm of equation (6) is revised to

xs(t) =
ws(t)

minr∈RS(s)
∑

j∈r µjr(t)
(15)

if Ds(t) �= 0 and xs(t) = 0 if Ds(t) = 0. The routes r for which yr > 0 are
determined by the minimum above when the flow initially becomes active and
are then maintained without change throughout the active period.
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2.5 Dynamic Schemes

A net balance of transit costs earned over those paid is maintained by the quan-
tity, bs(t), defined for each s ∈ N by

d

dt
bs(t) =

∑
r∈RS(s)

yr(t)µsr(t) − ws(t) (16)

with the initial condition bs(0) = 1. The first term measures revenue from
transit fees per unit time and the second term, ws(t), as already noted, is
the spending rate of source node s on its transit costs incurred by its flow
of xs(t) =

∑
r∈RS(s) yr(t). Here we allow the possibility that spending rates

will vary over time as the function ws(t).
Furthermore, we assume that each source node has an initial endowment,

bs(0), of one unit.

3 Experiments

Having reviewed the basic theory and choice of mechanisms which underly our
model we now explore through a number of experiments the joint behaviour of
the ad-hoc network.

Figure 1 shows the set of 10 nodes, here labelled N = {A, B, . . . , J}, placed
uniformly at random in a square of side 100 units as considered in [5]. Edges
are shown between pairs of distinct nodes that are a Euclidean distance of no
more than 56 units apart. The purpose of these edges is to define the set of
routes available for flow. A possible flow must be along a route corresponding
to a path in the network. The network shown in Fig. 1 is connected but we
shall also consider subnetworks defined by subsets of nodes (and just the edges
incident to nodes within the subset). It is possible for such subnetworks to fail
to be connected (the choice of distance threshold 56 controls which subnetworks
are disconnected). In our experiments we have taken that for a disconnected
subnetwork the flows are set to x(t) = 0 throughout the subnetwork. Other
possibilites could include considering connected components separately.

We shall also consider in our experiments the effect of movement by the nodes
to new locations. Figure 2 shows a new network where node B has moved from
a location on the extreme of the network to a new location determined by the
centroid of the remaining 9 nodes.

In the experiments we have taken the following choice of parameters. The gain
parameter in the primal and dual algorithms is κ = 0.05, the power coefficients
are eR = 0.001 and eT = 0.0001 × d where d is the Euclidean distance from
the transmitting node to the receiver. The bandwidth capacity is Cj = 10 and
the power constraint is Γj = 0.5. The distributions of the holding times for
the active and inactive periods are independent exponential distributions with
means λ−1 = 0.5 seconds.

In the next section we shall discuss the choice of the spending rate parame-
ter, ws(t), for the primal algorithm and discuss two important classes of scheme:
a static case and a dynamic case.
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Fig. 1. A network of 10 nodes N =
{A, B, . . . , J} located uniformly at ran-
dom in a square of side 100 units. An
edge is shown between each pair of
nodes separated by a Euclidean dis-
tance of at most 56 units.
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Fig. 2. A second network of 10
nodes N = {A, B, . . . , J}: compared to
the first network B has now moved to
the centroid of the remaining 9 nodes
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Fig. 3. Node balances over time with a static choice of ws(t) = 0.3. The labels in the
right hand margin identify the node(s). The node balances show clear trends: some
increasing and some decreasing.

3.1 Static Schemes

We now describe a series of experiments with a static choice of spending rate
parameter fixed over time at a value ws(t) = 0.3 the same for each source node.

Figure 3 shows the net balance bs(t) over time for a simulation of dura-
tion 10,000 seconds. All the balances show either clear increasing trends or clear
decreasing trends according to whether the spending rate of 0.3 units per second
is above or below the rate of earning from transit fees charged to other flows.

Such inbalances between spending and earning reflect a disparity between the
market power of the users and the allocation obtained. We demonstrate this by
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Table 1. Sample means and standard deviations of node throughputs calculated from
50 independent replicates

Node A B C D E F G H I J

Mean 4.15 4.16 5.50 6.76 7.56 3.75 6.17 8.16 5.38 7.70
Standard deviation 0.02 0.02 0.03 0.03 0.05 0.02 0.04 0.05 0.02 0.06

considering the observed throughputs under the static scheme with the Shapley
values constructed from a characteristic function formed from the system-wide
throughput of the subcoalitions S ⊂ N for each of the 210 = 1024 possible
subcoalitions of the 10 nodes.

The specific details of the Shapley value calculation are described as follows.
First, for each subcoalition, S, of users the subnetwork was tested for connected-
ness. If the subnetwork was disconnected then we set v(S) = 0. For the connected
subnetworks we set

v(S) = max
S′⊆S

X(S′) (17)

where X(S′) was the observed system-wide throughput of subnetwork S′. Note
that X(S′) = 0 if S′ is disconnected. The use of the maximum over all subcoali-
tions S′ was to ensure the superadditivity property of the characteristic function.
In some subnetworks, S, it was observed that X(S′) > X(S) for S′ ⊂ S which
prevents taking v(S) = X(S) for the characteristic function.

The definition in equation (17) thus admits the coordinated action of the
players of the subcoalition to drop a player if that would strictly increase system-
wide throughput even if this wasn’t the observed behaviour of the scheme when
simulated. Further performance metrics besides system-wide throughput could
easily be incorporated into the definition of the quantity X(·). See [6] for an
alternative means of ensuring the superadditivity property which has important
connections with the game-theoretic notion of a stable set of imputations.

The random quantity, X(S), was estimated in our experiments by a long-
run average over the randomly varying traffic patterns driven by the Markov
processes (Ds(t) : s ∈ N). Table 1 shows the sample means and sample standard
deviations of the node throughputs from 50 independent simulation replicates.
The standard deviations show little variability in the estimates of the mean.

Figures 4 and 5 show the correspondence between the observed throughputs
and the Shapley values and in each case the proportion of throughput or of
the sum of the Shapley values, v(N) =

∑
i∈N φi(v) is given. As just noted it is

possible for the system-wide throughput to be less than v(N) and so we consider
proportions only throughout our comparisons.

Figure 4 shows the Shapley values and observed throughputs according to the
locations of the nodes. It is clear that nodes at extreme locations (such as B,
C, E and H) receive far larger shares of the system-wide throughput than is
allocated by the share of the Shapley value. Conversely, nodes close to the centre
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Fig. 4. Shapley values and observed
values for the proportion of through-
puts by node with static choice
of ws(t) = 0.3. The radius of the circles
measure either the proportion of the
Shapley value or the observed through-
put.
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Fig. 5. Scatter plot of observed val-
ues and Shapley values with the static
choice of ws(t) = 0.3. The near hori-
zontal dashed line is a least squares fit
to the data points.

of the network (such as A, F and I) receive smaller shares of the system-wide
throughput than those allocated according to the Shapley value.

These effects are also apparent from Fig. 5 which shows a scatter plot of the
shares of the throughputs and Shapley values. Also shown here is the dashed
line given by least squares fit to the data which is far from diagonal.

The dynamic models of the next set of experiments attempt to correct this
bias which favours nodes at the extreme of the network with little market power
in preference to those near the centre of the network with the largest Shapley
values.

3.2 Dynamic Schemes

Here we take the spending rate parameters as the functions of the balance bs(t)
given by

ws(t) = αbs(t) (18)

for a constant α ∈ (0, 1). For the experiments discussed here we took α = 0.3.
In this way a larger balance feeds through to a higher spending rate and if the
net balance drops the spending rate is reduced accordingly.

Figure 6 shows the net balances under the dynamic scheme. All balances start
at bs(0) = 1 given by the initial endowment and then evolve over time to fluctuate
about constant levels. The sum of the net balances,

∑
s∈N bs(t) = N = 10

remains fixed over time since all spending by one node is earnt by other nodes.



396 R.J. Gibbens and P.B. Key

0 2000 4000 6000 8000 10000

0.0

0.5

1.0

1.5

2.0

2.5

Simulation time (sec)

B
al

an
ce

,b

B, C

E

H

G

A, J

F

D

I

Node

Fig. 6. Node balances over time with a dynamic choice of ws(t) = αbs(t). The labels in
the right hand margin identify the node(s). Here node balances fluctuate about values
without any long-term trend to increase or decrease. The lines shown are smoothed
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αbs(t). There is a much closer corre-
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and the observed throughputs in the
dynamic case.
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From Fig. 6 we can see that nodes B and C have net balances bs(t) that
converge to zero while node I has the highest net balance. Figures 7 and 8 show
the shares of system-wide throughput and of Shapley value obtained under the
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Fig. 9. Shapley values and observed
values after node B has moved to the
centroid
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Fig. 10. Scatter plot of the propor-
tion of Shapley values and observed
throughputs after node B has moved
to the centroid

Table 2. Estimated node throughputs under the dynamic scheme in the two networks

Node A B C D E F G H I J

B at extreme 5.81 0.01 0.02 9.06 2.27 4.81 8.25 3.45 8.76 10.02
B at centroid 5.86 11.16 0.02 10.51 2.19 3.52 9.05 3.28 11.56 9.92

dynamic scheme. We can see that there is a much closer correspondence between
the observed share of the throughput obtained by each player and that given
by the Shapley value approach. Thus market power and outcomes have been
more closely aligned than under the static scheme. The line of least squares fit
to the dynamic data is very close to the diagonal line and the departures from
the diagonal line are more modest than for those in the static scheme.

Figures 9 and 10 show the dynamic scheme in operation in the second net-
work where node B is nolonger on the periphery of the network but placed
at the centroid of the remaining 9 nodes. The figures show that the shares of
the system-wide throughput and of the Shapley value are quite tighly aligned
around the diagonal line in Fig. 10. In [5], the authors considered a trajectory for
node B which started at the extreme position and passed through the centroid
position and then on towards the upper boundary of the square. The system-
wide throughput increases as B moves along this trajectery towards the centroid.
In our experiments the throughput increased from 52.45 to 67.07. In both net-
work scenarios the allocations obtained by the dynamic scheme closely align
with Shapley values and thus the market power of the node. Table 2 shows the
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node throughputs obtained under the dynamic scheme in the two networks and
reveals that the majority of the additional system benefit arising as B moves to
the more favourable position at the centroid accrues to B itself.

4 Conclusions

In this paper we have studied the scheme for resource allocation given in [5] for
ad-hoc networks and have explored the connections between this scheme and
notions from cooperative game theory. The Shapley value is one such notion
that has enabled a broader understanding of how resource allocation takes place
with this scheme.

Further work remains to investigate how widely these connections between
cooperative game theory and the underlying utility maximization framework for
flow control and routing in networks can be extended.

Acknowledgements. RJG acknowledges support from the UK EPSRC grant ref-
erence GR/S86266/01 and the International Technology Alliance in Network and
Information Science (ITA).
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Abstract. We analyze the security vulnerabilities of some well-known
topology maintenance protocols (TMPs) for wireless sensor networks.
These protocols aim to increase the lifetime of the sensor network by
only maintaining a subset of nodes in an active or awake state. The de-
sign of these protocols assumes that the sensor nodes will be deployed in
a trusted, non-adversarial environment, and does not take into account
the impact of attacks launched by malicious insider or outsider nodes.
We describe three attacks against these protocols that may be used to
reduce the lifetime of the sensor network, or to degrade the functionality
of the sensor application by reducing the network connectivity and the
sensing coverage that can be achieved. Further, we describe countermea-
sures, inspired by biological systems and processes, that can be taken to
increase the security and fault-tolerance of the protocols.

Keywords: Wireless Networks, Security, Bio-Inspired.

1 Introduction

Topology maintenance protocols (TMPs), such as SPAN [1], ASCENT [2], PEAS
[3], and CCP [4] are critical to the operation of wireless sensor networks. These
protocols aim to increase the lifetime of the sensor network by only maintaining
a subset of nodes in an active or awake state, while turning off redundant nodes.
There have to be enough active nodes to maintain the connectivity of the network
as well as to obtain sensing coverage in the area where the sensor network is
deployed.

The various topology maintenance protocols that have been proposed in the
literature differ in their objectives as well as in the approaches that are used to
achieve their objectives. For example, SPAN and ASCENT attempt to maintain
network connectivity, but do not guarantee sensing coverage. On the other hand,
PEAS and CCP are designed to address both connectivity and the application’s
coverage requirements in a configurable fashion.

All these protocols involve some form of coordination and message exchange
between neighboring nodes in order to elect coordinators and determine sleep
schedules. These protocols were designed assuming a non-adversarial, trusted
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environment. Consequently, they are vulnerable to security attacks in which
malicious nodes send spoofed or false messages to their neighbors in an effort to
defeat the objectives of the protocol.

Attacks on the topology maintenance protocols can be carried out either by
entities that are external to the network (outsider attacks) or by compromised
nodes (insider attacks). Insider attacks are a particularly challenging problem
for sensor networks because many sensor applications involve deploying nodes
in an unattended environment, thus leaving them vulnerable to capture and
compromise by an adversary. Unlike outsider attacks, insider attacks cannot
be prevented by authentication mechanisms since the adversary knows all the
keying material possessed by the compromised nodes.

In this paper, we analyze the security vulnerabilities of ASCENT, a well-
known topology maintenance protocol.

We describe three types of attacks that can be launched against this protocols:
sleep deprivation attacks that increase the energy expenditure of sensor nodes
and thus reduce the lifetime of the sensor network; snooze attacks that result in
inadequate sensing coverage or network connectivity; and network substitution
attacks in which multiple attackers collude to take control of part of the sensor
network.

Furthermore, we describe countermeasures that can be taken to increase the
robustness of the protocols and the resilience to such attacks. The proposed
countermeasures are inspired by biological systems and processes.

We previously analyzed TMP vulnerabilities and we proposed countermea-
sures for a static non-mobile network based on authentication and cryptography
mechanisms in [5]. To the best of our knowledge, the only research work that
has pointed out the security issues on topology maintenance protocols is [6].
In another related work [7], Stajano and Anderson introduced the problem of
the sleep deprivation for Wireless Ad-hoc Networks, but not in the context of
topology maintenance protocols.

In this paper, we have analyzed the security vulnerabilities of topology main-
tenance protocols for wireless sensor networks. The main contributions of the
paper are:

– The description of how the sleep deprivation, the snooze and the network
substitution attacks can be launched against ASCENT, a well-known pro-
tocol for sensor networks. Although not discussed in this paper, protocols
such as PEAS, CCP, GAF [8], CEC [9], AFECA [10], and SPAN [1] are also
vulnerable to these attacks.

– The proposal of biologically inspired countermeasures that can be applied
to make the protocols robust against these attacks.

The rest of this paper is organized as follows: Section 2 discusses the threat
model and the different kinds of adversaries we expect to encounter in sensor
networks. Next, in Section 3 we present a taxonomy of the attacks that can
be launched against topology maintenance protocols. Section 4 presents a brief
overview of the ASCENT protocol and discusses the specific attacks against the
protocol. In Section 5 we discuss the bio-inspired countermeasures for the TMP
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protocols. Finally, Section 6 concludes this paper and points out several future
research directions.

2 Threat Model

In this section, we describe our assumptions with respect to the sensor network
and the behavior and capabilities of an adversary.

Due to the wireless nature of communications in sensor networks, we assume
that the adversary can eavesdrop on the communications of other nodes and can
also inject data packets into the network.

We assume that the nodes are not tamper-proof. Thus, if the adversary cap-
tures a node, all the information including cryptographic keys stored in the node
is compromised. Furthermore, the adversary can clone the identity of a compro-
mised device, and can store the information obtained from that node in other
malicious nodes.

Finally, we assume that the adversary can deploy malicious nodes, and that
these nodes can collude together to attack the system.

2.1 Attacker Classification

We may classify the attacker into various categories based on both its hardware
capabilities and on its knowledge of the cryptographic keys that are used to
provide authenticated and/or confidential communication.

Laptop-Class Vs Node-Class Attackers. A laptop-class attacker uses a
relatively powerful device as compared to a sensor node. An attacker with these
capabilities has access to greater battery, storage and computational resources
than a typical sensor node, e.g. a Berkeley MICA mote [11]. It may also use
a high-power radio transmitter and a very sensitive antenna that could allow
the attacker to eavesdrop on the entire network and to transmit messages with
enough power to be heard by any node.

On the other hand, a node-class attacker uses one or more devices with the
same capabilities as legitimate sensor nodes. Therefore, it is only able to listen
to or transmit messages within a limited range, and it faces constraints such as
limited battery power, small memory and a relatively slow CPU.

Outsider Vs Insider Attackers. An outsider attacker has no more knowl-
edge than the definition of the protocols that are used in the network and the
information that is gathered by eavesdropping on network communications. It
has no access to cryptographic keys or data that are used to secure the network.
For example, it does not possess any credentials that enable it to authenticate
itself to the other nodes.

In contrast, an insider is an attacker that has all the information used by a
node to be a legitimate member of the network, such as its cryptographic keys.
It can be a captured node, but also a device, such a node-class or laptop-class, in
which the attacker has stored information retrieved from a compromised node.
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3 Attacks on Topology Maintenance Protocols

The use of topology maintenance protocols introduces new vulnerabilities in
sensor networks. In particular, an adversary can launch new kinds of attacks by
exploiting the ability of these protocols to increase or decrease the number of
active nodes. In the following discussion, we present three different attacks on
topology maintenance protocols.

Sleep Deprivation Attack. In this type of attack, the adversary tries to induce
a node in a specific area to remain active. This attack has two effects. First,
by increasing the energy expenditure of sensor nodes, it reduces the estimated
lifetime of the network. Second, in the case of a densely populated area, it can
lead to increased energy consumption due to congestion and contention at the
data link layer.

Snooze Attack. In this type of attack, the adversary forces the nodes to remain
in the sleeping state. This kind of attack can be applied to the whole network
or to a subset of nodes. In the latter case, the adversary can launch an attack
to jeopardize the connectivity of the network or to reduce the sensing coverage
in a region. For example, an adversary can selectively turn off nodes that are
monitoring an intruder’s path through an area in which a sensor field has been
deployed for surveillance.

Network Substitution Attack. In this type of attack, the adversary takes
control of the entire network or a portion of it by using a set of colluding ma-
licious nodes. The adversary deploys a set of nodes that are included in the set
that has been elected by the topology maintenance protocol to maintain net-
work connectivity or the sensing of the area. Once the protocol has chosen the
malicious nodes as its working nodes, the portion of the network under attack
is totally in the hands of the adversary.

When the adversary controls a portion of the network, it can carry out other
attacks such as traffic analysis and selective or complete packet dropping. This
attack cannot be easily detected because the adversary can maintain network
connectivity and keep it operating as usual. For example, if the application is
supposed to receive readings from sensors at a certain frequency, the adversary
can send false readings at the same rate and avoid detection.

4 Analysis of ASCENT

4.1 Brief Review of ASCENT

ASCENT [2] adaptively elects a set of active nodes that stay awake all the time
and perform multi-hop packet routing, whereas the rest of the nodes remain
passive and periodically check whether they should become active. Each node
decides to be active or passive by using a local measurement of its connectivity



Bio-Inspired TMPs for Secure Wireless Sensor Networks 403

degree (number of active neighbors) and a measurement of its data loss (DL)
rate.

The protocol is based on the idea that the DL rate of the network should not
be higher than the specified loss threshold (LT), and the number of active nodes
in a communication range should not exceed the neighbor threshold (NT). A
node is considered an active neighbor if its neighbor link loss is below a specified
threshold. Each node adds a unitary monotonically increasing sequence number
to each piece of data and control packet that is transmitted. This allows for
neighbor link loss detection when a sequence number is skipped. Similarly, a
separate sequence number is used to detect lost application data packets. Note
that the DL rate is estimated on the basis of application data packets, and that
control packets are not taken into consideration in its calculation.

Nodes can be in one of four states: ACTIVE, SLEEP, PASSIVE, or TEST:

– ACTIVE: The node works until its energy is depleted. If it measures a DL
rate greater than LT, the active node broadcasts a HELP MESSAGE to its
neighbors.

– SLEEP: In this state, the node turns off its radio and sleeps for a time Ts.
When Ts expires, the node moves into the PASSIVE state.

– PASSIVE: The intuition behind the PASSIVE state is to collect information
regarding the state of the network without causing interference with other
nodes. The passive node turns its radio on and sets the network interface in
promiscuous mode to overhear all the packets that are transmitted by the
neighbors. When a node enters this state, it sets up a timer Tp and sends a
NEW PASSIVE NODE ANNOUNCEMENT message. This message is used
by active nodes to estimate the density of the nodes in the neighborhood.
Active nodes transmit this density estimate to any new passive node. When
Tp expires, the passive node enters the SLEEP state. If the number of active
neighbors is below the NT before Tp expires, and either the DL rate is higher
than the LT, or the DL is below the LT but the node has received a HELP
MESSAGE from an active neighbor, then the passive node enters the TEST
state.

– TEST STATE: A node in this state probes the network to see whether
adding itself may improve connectivity. The test node starts by exchanging
data and routing control messages with its neighbors. It sets up a timer Tt

and sends a NEIGHBOR ANNOUNCEMENT message. If a node in TEST
state receives a NEIGHBOR ANNOUNCEMENT message from a node with
higher ID, then it goes back to PASSIVE state. When Tt expires, the node
enters the ACTIVE state. If the number of active neighbors is above NT
before Tt expires, or if the average DL rate is higher than the average DL
rate before the node entered the TEST state, then the node moves into the
PASSIVE state.

The timers Tp and Tt are fixed. However, the value of Ts is dynamically
adjusted using the estimated node density in the neighborhood. It increases as
the node density increases.
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4.2 Attacks on ASCENT

We now describe Snooze, Network Substitution, and Sleep Deprivation attacks
on ASCENT. A node that enters the active state in ASCENT does not go back
to sleep for any reason, so an attacker is not able to put it in sleeping mode. The
aim of the snooze attacks we describe is to keep nodes that are not in ACTIVE
state either in PASSIVE or in SLEEP state. These attacks only become effective
when the initial set of active nodes fail. This is because these nodes will not
be replaced by new nodes leaving the area of the network that is under attack
without a sufficient number of active nodes. Therefore, if the attacker wants to
disable the network at time T, it has to start the attack before T and wait
for active nodes in the area to start running out of battery power. Thus, the
attacker cannot simply launch the attack when he wants to turn off the network
because some legitimate nodes will continue to work. Further, it could be difficult
to choose when to start the attack that would disable the network at time T
because the attacker may not be able to estimate the remaining battery power
of the nodes that are in active state.

Snooze Attack Using Impersonation. The adversary impersonates multiple
active nodes so that the legitimate nodes estimate the number of active neighbors
to be greater than NT. Thus, all the nodes that are in TEST state enter the
PASSIVE state, and all the nodes in PASSIVE state transition to the SLEEP
state. Although the adversary cannot affect nodes in ACTIVE state, when these
nodes fail they are not replaced by new nodes, and this causes incremental
degradation of the connectivity and sensing coverage of the network.

This attack is more effective when launched by a laptop-class attacker. In
fact, a laptop-class adversary only has to impersonate NT identities to launch
an attack against all the nodes in the network, while a node-class adversary has
to impersonate NT nodes to simply launch an attack against its neighbors.

Snooze Attack Using NEIGHBOR ANNOUNCEMENT Messages.
The adversary periodically broadcasts a NEIGHBOR ANNOUNCEMENT mes-
sage with an ID that is higher than the identifiers of all the legitimate nodes of
the network. This induces all the nodes that are in TEST state to think that they
have a neighbor with higher ID in TEST mode. Each legitimate node in TEST
state will go into SLEEP mode. This way all the nodes that are not already ac-
tive can be kept in the SLEEP state by the adversary. Thus, when active nodes
fail they are not replaced by new nodes, leading to incremental degradation of
the connectivity and sensing of the network.

This attack can be launched either by a laptop-class attacker or by a node-
class attacker. In the former case, the adversary can attack the entire network
by simply sending the message periodically throughout the network. In the lat-
ter case, the malicious node can launch the attack against all its neighbors.
In order to minimize its energy consumption, the malicious node can wait for
the NEIGHBOR ANNOUNCEMENT message of a neighbor, and then send a
NEIGHBOR ANNOUNCEMENT message with higher ID to make the node go
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back to sleep. The adversary can deploy a set of malicious nodes to launch the
attack in a selected part of the network and to block communication or sensing
coverage in the target area.

Both of the previous Snooze attacks can be made more effective by increasing
the time interval for which a legitimate node remains in SLEEP state. In AS-
CENT, a node adjusts the timer Ts on the basis of the neighbor density estimates
it receives from the active nodes, and the time interval increases as node density
does. The attacker can send false NEW PASSIVE NODE ANNOUNCEMENT
messages with different IDs in an effort to lead active nodes to increase their
estimates of the node density, or it can announce a high node density directly
to the other nodes.

Network Substitution Attack. In this attack, the adversary has to deploy
enough nodes to form a connected network and so that any legitimate node in the
area being attacked is within the transmission range of at least one malicious
node. After their deployment, all the malicious nodes launch a snooze attack
using NEIGHBOR ANNOUNCEMENT messages. When the currently active
nodes run out of power, the adversary controls the part of the network that has
been attacked because no new nodes will enter the TEST or ACTIVE states.
The only services that are available in the attacked area are the ones provided
by the malicious nodes.

Sleep Deprivation Attack. Under normal operating circumstances, the num-
ber of active nodes selected by ASCENT suffices to keep the data loss rate be-
low the LT that is specified by the application. However, the adversary can use
HELP messages to increase the number of active nodes and reduce the efficiency
of ASCENT as follows.

First, the adversary simulates an increase in the data loss rate by sending u
several messages which contain sequence numbers that differ by more than 1.
This leads node u to compute an erroneous estimate of the data loss rate. The
adversary then sends a HELP message, and if a node u has less than NT active
neighbors it will then transition to the TEST state. Once u enters the TEST
state, the adversary can manipulate the sequence numbers of the messages it
sends to convince u that the data loss rate has decreased. Consequently, u will
then transition to the active state.

If u has more than NT active neighbors, the adversary has to simulate a de-
crease in the number of active neighbors of u first. The adversary can then carry
out the attack on the above mentioned data loss rate in order to bring u to the
ACTIVE state. To simulate a decrease in the number of active neighbors of u,
the adversary starts sending u a sequence of messages in which the adversary
maliciously skips a few numbers in the sequence every time a message is sent in
order to simulate an increase in the neighbor link loss. In particular, the adver-
sary forges the sender identifier of each message to convince u that many links
are lossy. At this point u, follows the ASCENT protocol and starts decreasing
the number of its active neighbors due to the increase in the measured neighbor
link loss. In particular, when the number of active neighbors is less than NT,
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the adversary can convince u to go into ACTIVE state by repeating the attack
explained above.

Thus, the adversary can induce most of its neighbors to transition to the
ACTIVE state. This attack can be performed either by a laptop-class attacker
or by a node-class attacker. Even if the adversary has to apply the attack to its
neighbors one by one, it does not need to repeat the attack periodically because
nodes in ACTIVE state do not go back to sleep. Thus, the adversary only incurs
an energy expenditure once for each node that is attacked.

5 Bio-Inspired Solutions

In this section, we propose the countermeasures to the TMP protocol vulnera-
bilities described in the Section 3. We have studied several biological systems,
such as the quorum sensing in bacteria [12] and the immune system [13], and we
took inspiration for our solutions from the interesting properties and behaviours
of these systems. In particular, the countermeasures are inspired by the robust-
ness and the resilience of the immune system, and by the free cooperation and
equipotency of its participants in quorum sensing protocols.

In the immune system the adversary must be recognized and should be forced
to interact with cells able to neutralized it, while in the TMP we can say that
the adversary must not be able to interact with the nodes of the network; in this
way the nodes cannot be attacked. It appears to us that the heterogeneity of the
system, typical of the immune system, could be a countermeasure also for the
attacks to the TMP. In fact, if an attacker comes within the range of a network
with heterogeneous devices then the attacker can interact only with a subset of
the nodes but not with the entire network. As a consequence, if the adversary
launches an attack then only a subset of nodes are vulnerable to the attack, and
the functioning of the network as a whole could be granted by the remaining
nodes.

We proposed the following classification of the heterogeneous networks:

– Heterogeneous Hardware Network (HHN): nodes are manufactured
with different hardware devices. They could have communications system
with non-compatible technologies, as for example different radio frequency
systems, acoustic systems and optical systems; or they can be differentiated
based on the interpretation of data, as for example using big-endian or little-
endian systems.

– Heterogeneous Protocols Network (HPN): nodes use multiple proto-
cols for the same service. For example, the nodes could be loaded with one
protocol from a set, or they can be loaded with a set C of protocols to use
during the network lifetime.

With nodes loaded with a single TMP protocol from the set of possible choices
and with hardware heterogeneity we obtained different networks where nodes
take part to only a network during their lifetime. These solutions are logically
equivalent to multiple networks with different behaviours and where the nodes
of a network do not interact with the nodes of another network.
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More interesting solutions are obtained with the HPN methods, where the
nodes are loaded with a set of TMPs. For example, applying the above techniques
to the TMPs we can image the following scenarios:

– Uniform Selection: the node choice of the TMP protocol is uniform
distributed:

• Uniform TMP Selection (UTS): a set C of TMP is used in the
network and each node is able to take part to each TMP of the set
C. Each node divides the time into slot and in each slot S the node
randomly chooses, according to a uniform distribution, which TMP to
follow during S.

• Uniform Results Selection (URS): each node takes part to all the
protocols chosen for the network, but each time a node is in a state-
transition test it takes a decision based on the result of a single TMP,
randomly selected.

– Weighted Selection: the node choice is not uniformly distributed over the
set of possible choices but each choice has a different weight. We can further
divide this solution in two sub-cases:

• Weighted TMP Selection (WTS): each node divides time into slots
and in each slot S selects the TMP to follow during S; each TMP has
a different probabilities to be chosen. In this solution, assuming that a
TMP has a greater probability to be chosen with respect to the other
TMPs then, for each slot S, there is a great number of nodes running
the same TMP. The sum of all the probabilities must be equal to 1; note
that in the case the probabilities of the TMPs selection are all equal,
then we have a UTS. The probabilities can be statically chosen before
the nodes deployment or they can change dinamically. In the latter case,
it is necessary to design secure techniques to update these probabilities
because such update could be exploited by the adversary to attack the
network. For example, an adversary could induce a node to favour a
specific TMP, in this way when all the nodes are running the same TMP,
then the adversary can jeopardized a big part of the network with an
attack to a single protocol. Note that if the adversary is successful in
the previous technique then the network heterogeneity could result as
an advantage for the attacker; in fact the adversary could select, from
all the protocols in use in the network, the better one, and exploit it for
the attack.

• Weighted Results Selection (WRS): each node takes part to all
the TMP but it makes its state-transition decision selecting the results
of only one single TMP. This solution employs a function that assigns
weights to the results obtained with the TMPs, and each node follows the
result with higher weight. If multiple results has the same higher weight,
then the node uses the random selection as a tie breaking mechanism.

As application examples we describe some of the above techniques applied
using Peas and ASCENT. In the following solutions each node of the network is
loaded with the Peas and ASCENT code.
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Uniform TMP Selection with Peas and ASCENT (UTS Peas ASCENT).

Each node u, that is not in Sleeping state, divides the time into slot S. At the
beginning of each slot the node randomly chooses the TMP to execute during S.
During S node u follows Peas with probability 1/2 and ASCENT with probabil-
ity 1/2. When u goes to Sleeping it starts a timer Ts and it moves from Sleeping
only when Ts expires, during the Sleeping period the division of time into slot
does not take place neither the TMP selection. When Ts expires the node wakes
up and flips the coin to select the TMP to execute during the incoming S. To
avoid that the nodes become unstable and they move from a TMP to another
without completing state-transition tests, we can: fix the length of S such that
it completely contains the TMPs state-transition tests or, in case u is in the
middle of a test when S finishes, we can force u to select the same TMP of the
previous slot, in this way the node can complete the state-transition.

Uniform Result Selection with Peas and ASCENT (URS Peas ASCENT).

At the same time, each node u takes part both to Peas and to ASCENT. However,
after each state-transition test the node chooses with equal probability (that is
1/2 in our example) the results of a protocol or of the other. On the contrary
of the TMP Selection solutions, node u executes either Peas or ASCENT and,
after it gathers the results, the node chooses which protocol to comply with; in
this solution an eavesdropper cannot establish which protocol is executed by the
node for the state-transition decision before the transition itself takes place.

Weighted TMP Selection with Peas and ASCENT (WTS Peas ASCENT).

This solution is similar to UTS Peas ASCENT but the TMP choice is not
uniformly distributed over the two protocols, the choice of a TMP has a weight
different to the other. In each slot S a node u chooses Peas with probability Pp

and ASCENT with probability Pa, where Pp �= Pa and Pp + Pa = 1.

Weighted Result Selection with Peas and ASCENT (WRS Peas ASCENT).

Each node executes either Peas or ASCENT. It is defined a function to assign
scores to the results of the protocols state-transition tests. When state-transition
tests end, the node changes its state complying with the results with the higher
score. In case of a tie it is randomly choose one.

6 Conclusion and Future Works

Based on our analysis of some TMPs, we can make the following general ob-
servations with respect to the security considerations in the design of topology
maintenance protocols:

– TMPs should be designed so that a node makes its state-transition deci-
sions, e.g., a decision regarding whether to sleep or remain active, based on
input from multiple neighbor nodes in order to be resilient to false messages
injected by malicious nodes.
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– TMPs should be designed so that state-transition decisions are revisited
periodically. For example, without a periodic check of a node’s eligibility
to be in a sleeping or active state, it becomes possible for an adversary to
launch a resource-consumption attack that results in a node staying in the
active state until its energy is depleted.

Among the bio-inspired solutions we have proposed, the most secure solutions
are the Uniform/Weighted Result Selection. In fact, in the other proposals, the
Uniform/Weighted TMP Selection solutions, although both the protocols are ex-
ecuted, an eavesdropper can understand which protocol is used by node u during
the state-transition tests. After node u has selected a protocol P, it only executes
the tests of P, thus listening to the node communication an adversary can infer
the protocol P that u is executing. On the contrary, with Uniform/Weighted Re-
sult Selection solutions a node u executes the tests of all the protocols and after
the tests, node u chooses which protocol to comply with. In these solutions, the
adversary cannot infer the TMP used by node u for its state-transition decision
before the transition itself takes place.

This work is an initial foray into the design of secure TMP based on Bio-
Inspired systems.

In the near future, we plan to build a test-bed to evaluate two new TMPs
for Heterogeneous Protocols Networks (HPNs). The goal is to increase the re-
silience of the network designing the two protocols strictly coupled together so
that they maximized the effectiveness of the HPN. For this scope, we are defin-
ing a set of functions to measure the effort required to launch the attacks and
to measure the efficiency of the attacks; the functions can be used to evalu-
ate and compare different HPNs. In particular we are studying three functions:
AttackCost, AttackEffect and AttackLength. The first measures the energy
needed to launch the attacks, the second quantify the consequence of the at-
tacks in terms of network performance degradations and the last measures how
long it takes for the attack to be effective. The best HPN will have an high
value from the AttackCost function and low values from the AttackEffect and
AttackLength functions.
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Abstract. In recent years, the field of anonymity and traffic analysis
have attracted much research interest. However, the analysis of subse-
quent dynamics of attack and defense, between an adversary using such
topology information gleaned from traffic analysis to mount an attack,
and defenders in a network, has recieved very little attention. Often an
attacker tries to disconnect a network by destroying nodes or edges, while
the defender counters using various resilience mechanisms. Examples in-
clude a music industry body attempting to close down a peer-to-peer
file-sharing network; medics attempting to halt the spread of an infec-
tious disease by selective vaccination; and a police agency trying to de-
capitate a terrorist organisation. Albert, Jeong and Barabási famously
analysed the static case, and showed that vertex-order attacks are ef-
fective against scale-free networks. We extend this work to the dynamic
case by developing a framework to explore the interaction of attack and
defence strategies. We show, first, that naive defences don’t work against
vertex-order attack; second, that defences based on simple redundancy
don’t work much better, but that defences based on cliques work well;
third, that attacks based on centrality work better against clique de-
fences than vertex-order attacks do; and fourth, that defences based on
complex strategies such as delegation plus clique resist centrality attacks
better than simple clique defences. Our models thus build a bridge be-
tween network analysis and traffic analysis, and provide a framework for
analysing defence and attack in networks where topology matters. They
suggest definitions of efficiency of attack and defence, and may even ex-
plain the evolution of insurgent organisations from networks of cells to a
more virtual leadership that facilitates operations rather than directing
them. Finally, we draw some conclusions and present possible directions
for future research.

Keywords: Scale-free networks, robustness, covert groups, topology,
security.

1 Introduction

Many modern conflicts turn on connectivity. In conventional war, much effort is
expended on disrupting the other side’s command, control and communications
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by jamming or destroying her facilities. Counterterrorism operations involve a
similar effort but with different tools: traffic analysis to trace communications,
coupled with surveillance of the flows of money, material and recruits, followed
by the arrest and interrogation of individuals who appear to be significant nodes.
Terrorists are aware of this, and take measures to prevent their networks being
traced. Usama bin Laden described his strategy on the videotape captured in
Afghanistan as ‘Those who were trained to fly didn’t know the others. One group
of people didn’t know the other group’ (see [14], which describes the hijackers’
networks).

Connectivity matters for social dominance too, as a handful of leading indi-
viduals do much of the work of holding a society together. Subverting or killing
these leaders is likely to be the cheapest way to make an invaded country submit.
When the Norman French invaded England in the eleventh century, they killed
or impoverished most of the indigenous landowners; when the Turks, and then
the Mongols, invaded India, they killed both landowners and priests; when Eng-
land suppressed the Scottish highlands after the 1745 uprising, landowners were
induced to move to Edinburgh or London; and in many of the dreadful events of
the last century, rulers targeted the elite (Russian kulaks, Polish officers, Tutsi
schoolteachers, . . . ).

Moving from politics to commerce, the music industry spends a lot of money
attempting to disrupt peer-to-peer file-sharing networks. Techniques range from
technical attacks to aggressive litigation against individuals believed to have
been running major nodes.

Networks of personal contacts are important in other applications too. In
public health, for example, it often happens that a small number of individuals
account for much of the transmission of a disease. Thus Senegal has been more
effective at tackling the spread of HIV/AIDS than other African countries, as
they targeted prostitutes [19]. In fact, interest in social networks has grown
greatly over the last 15 years in the humanities and social sciences [20,9].

Recent advances in the theory of networks have provided us with the math-
ematical and computational tools to understand such phenomena better. One
striking result is that a network much of whose connectivity comes from a small
number of highly-connected nodes can be very efficient, but at the cost of ex-
treme vulnerability. As a simple example, if everyone in the county communicates
using one telephone exchange, and that burns down, then everyone is isolated.

This paper starts to explore the tactical and strategic options open to combat-
ants in such conflicts. What strategies can one adopt, when building a network,
to provide good trade-offs between efficiency and resilience? We are particularly
interested in complex networks, involving thousands or millions of nodes, which
are so complicated (or under such dispersed control) that the resilience rules can
only be implemented locally, rather than by a central planner who deliberately
designs a network with multiple redundant backbones.

Is it possible, for example, to create a virtual high-degree node, by combining
a number of nodes which appear on external inspection to have lower degree?
For example, a number of individuals might join together in a ring, and use some
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covert communications channel to route sensitive information round the ring in
a manner shielded from casual external inspection. There is a loose precedent in
Chaum’s ‘dining cryptographers’ construction [10], in which a number of cryp-
tographers pass messages round a ring in such a way as to mask, from insiders,
the source and destination of encrypted traffic. Can we build a similar con-
struction, but in which the fact of systematic message routing is concealed from
outsiders, with the result that the participants appear to be ‘ordinary’ nodes
making a modest contribution in the network, rather than important nodes that
should be targeted for close inspection and/or destruction?

2 Previous Work

There has been rapid progress in recent years in understanding how networks
can develop organically, how their growth influences their topology, and how the
topology in turn affects both their capacity and their robustness. There is now
a substantial literature: for a book-length introduction, see Watts [21], while
literature surveys are [1,17].

Early work by Erdös and Renyi modelled networks as random graphs [11,7];
this is mathematically interesting but does not model most real-world networks
accurately. In real networks, path lengths are generally shorter; it is well known
that any two people are linked by a chain of maybe half a dozen others who are
pairwise acquainted – known as the ‘small-world’ phenomenon. This idea was
popularised by Milgram in the 60s [16]. An explanation started to emerge in
1998 when Watts and Strogatz produced the alpha model. Alpha is a parameter
that expresses the tendency of nodes to introduce their neighbours to each other;
with α = 0, each node is connected to its neighbours’ neighbours, so the network
is a set of disconnected cliques, while with α = ∞, we have a random graph.
They discovered that, for critical values of α, a small-world network resulted.
The alpha model is rather complex to analyse, so they next introduced the
beta network: this is constructed by arranging nodes in a ring, each node being
connected to its r neighbours on either side, then replacing existing links with
random links according to a parameter β; for β = 0 no links are replaced, and
for β = 1 all links have been replaced, so that the network has again become
a random graph [22]. The effect is to provide a mix of local and long-distance
links that models observed phenomena in social and other networks.

How do networks with short path lengths come about in the real world?
The simplest explanation involves preferential attachment. Barabási and Albert
showed in 1999 how, if new nodes in a network prefer to attach to nodes that
already have many edges, this leads to a power-law distribution of vertex order
which in turn gives rise to a scale-free network [6], which turns out to be a more
common type of network than the alpha or beta types. In a social network, for
example, people who already have many friends are useful to know, so their
friendship is particularly sought by newcomers. In friendship terms, the rich get
richer. There are many economic contexts in which such dynamics are also of
interest [13].
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The key paper for our purposes was written by Albert, Jeong, and Barabási in
2000. They observed that the connectivity of scale-free networks, which depends
on the highly-connected nodes, comes at a price: the destruction of these nodes
will disconnect the network. If an attacker removes the best-connected nodes one
after another, then past some threshold point the size of the largest component
of the graph collapses [2].

Later work by Holme, Kim, Yoon and Han in 2002 extended this from attacks
on vertices to attacks on edges; here, the attacker removes edges connecting
high-degree nodes, and again, past some critical point, the network becomes
disconnected [15]. They also suggested using centrality – technically, this is the
‘betweenness centrality’ of Freeman [12] – as an alternative to degree for attack
targeting. (A node’s centrality is, roughly speaking, the proportion of paths
on which it lies.) Computing centrality is harder work for the attacker than
observing vertex degree, but it enables him to attack networks (such as beta
networks) where there is little or no variability in vertex order. Finally, in 2004,
Zhao, Park and Lai modelled the circumstances in which a scale-free network
can suffer cascading breakdown from the successive failure of high-connectivity
nodes [23]. These ideas find some resonance in the field of strategic studies: for
example, Soviet doctrine called for destroying a third of the enemy’s network,
jamming a further third, and hoping that the remaining third would collapse
under the increased weight of traffic.

3 Naive Defences Don’t Work

Given the obvious importance of the subject, and the fact that the Albert-Jeong-
Barabási paper appeared in 2000, one obvious question is why there has been no
published work since on how a network can defend itself against a decapitation
attack. Here is one possible explanation: the two obvious defences don’t work.

One of these is simply to replenish destroyed nodes with new nodes, and
furnish them with edges according to the same scale-free rule that was used to
generate the network initially. One might hope that some equilibrium would be
found between attack and defence.

The other obvious defence is to replenish destroyed nodes, but to wire their
edges according to a random graph model. In this way, we might hope that,
under attack, a network would evolve from an efficient scale-free structure into
a less efficient but more resilient random structure. In a real application, this
might happen either as a result of nodes learning new behaviour, or by selective
pressure on a node population with heterogeneous connectivity preferences: in
peacetime the nodes with higher degree would become hubs, while in wartime
they would be early casualties.

Nice as these ideas may seem in theory, they do not work at all well in practice.
Figure 1 shows first (solid line) how the vertex-order attack of Albert, Jeong and
Barabási works against a simulated network with no replenishment, then with
random replenishment, then with scalefree replenishment. In the vanilla case the
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Fig. 1. Naive defences against vertex-order decapitation attack

attack takes two rounds to disconnect the network; with random replenishment
it takes three, and with scale-free replenishment it takes four.

It seems that, to defend against these kinds of decapitation attacks on net-
works, we will need smarter defence strategies. But how should these be evolved,
and what sort of framework should we use to evaluate them?

4 A Model of Repeated Attack and Defense

Previous researchers considered disruptive attacks on networks to be a single-
round game. Such a model is suitable for applications such as a conventional war,
in which the attacker has to expend a certain amount of effort to destroy the
defender’s command, control and communications, and one wishes to estimate
how much; or a single epidemic in which a certain amount of resource must be
spent to bring the disease under control.

However, there are many applications in which attack and defense evolve
through multiple rounds: terrorism and music-sharing are only two examples. We
now develop a framework for considering this more general case. Our ideas are
inspired from evolutionary game theory developed by Axelrod and others [3,4].
This theory studies how games of multiple rounds differ from single-round games,
and it has turned out to have significant explanatory power in applications from
ethology to economics.
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We now formalise a model in which a game is played with a number of rounds.
Each round consists of attack followed by recovery. Recovery in turn consists of
two phases: replenishment and adaptation.

In the attack phase, the attacker destroys a number of nodes (or, in a variant,
of edges); this number is his budget. He selects nodes for destruction according
to some rule, which is his strategy. For example, he might at each round destroy
the ten nodes with the largest number of edges connected to them. He executes
this strategy on the basis of information about the network topology.

In the replenishment phase, the defending nodes recruit a number of new
nodes, and go through a phase of establishing connections – again, according to
given strategies and information.

In the adaptation phase, the defending nodes may rewire links within each
connected component of the network, in accordance with some defensive strategy.
The adaptation phase is applied once at the start of the game, before the first
round of attack; thereafter the game proceeds attack – replenish – adapt.

An attack strategy is more efficient, for a given defense strategy, if an attacker
using it requires a smaller budget to disrupt the network. Similarly, a defense
strategy is more efficient if, for a given attack strategy, it compels the attacker
to expend a higher budget to achieve network disruption. (We will clarify this
later once we have presented and discussed a few simulations.)

We assume initially that the attacker has perfect information about the net-
work topology, and that her goal is simply to partition the network – that is,
divide it into two or more nontrivial disjoint components. We assume that the
defender has only local information, that it, each node shares the information
available to those nodes with which it is connected. Thus, for example, if the
attacker manages to split the network into two components, there is no way for
them to reconnect. We also start off by assuming that the defence strategy af-
fects only the adaptation phase, as only once nodes have connected to a network
can they be programmed to follow it; so the replenishment phase is exogenous.

A further initial assumption is that the attack and defence budgets are roughly
equal. By this we will mean that for each node destroyed in the attack phase,
one node will be replaced in the resource addition phase. Thus the network will
neither grow or shrink in absolute size and we can concentrate on connectivity
effects. We will discuss other possible assumptions later, but the static budgets
and global attack / local defence assumptions will get us started.

5 Defence Evolution – First Round

To analyse the vulnerability of a network, the selection of network elements
(nodes or edges) destroyed in each round is the attacker’s choice and constitutes
her strategy. The attacker wishes to maximize the network damage caused per
unit of work.

We will start off by considering a static attacker, using what we know to be
a reasonable attack (vertex-order), and examine how the defence strategy can
adapt. Then we will see what better attacks can be found against the best defence
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we found. Then we will look for a defence against the best attack we found in
the last round, and so on. There is no guarantee that the process converges
– there may be a specialised attack that works well against each defence, and
vice versa – but if evolutionary games on networks behave like more traditional
evolutionary games, we may expect to find some strategies that do well overall,
as ‘tit for tat’ does in multi-round prisoners’ dilemma. We may also expect to
gain useful insights in the process.

5.1 Defense Strategy 1 – Random Replenishment

Our first defensive strategy is the simplest of all, and is one of the naive defences
introduced in the above section. New nodes are joined to the graph at random.
We assume that each attack round removes r nodes, and the replenishment
round adds exactly r nodes, each of which is joined to the surviving vertices
with probability p. r remains constant for each run of the simulation, while p
increases from k/(N − r) to k/(N − 1) as the replenishment proceeds. In this
strategy, the defender does nothing in the adaptation phase.

This models the case where new recruits to a subversive network simply con-
tact any other subversives they can find; no attempt is made to reshape the
network in response to the capture of leaders but the network is simply allowed
to become more amorphous.

5.2 Defense Strategy 2 – Dining Steganographers

Our second defensive strategy is more sophisticated, and is inspired by the the-
ory of anonymous communication as developed by computer scientists, most
notably Chaum [10]. A node that acquires a high vertex order, and thus could
be threatened by a vertex-order attack, splits itself into n nodes, arranged in a
ring. The rings have two functions. First, they provide resilience: a ring broken
at one point still supports communications between all its surviving nodes, and
it is the simplest such structure. Second, nodes can route covert traffic between
appropriate input and output links, and use encryption and other information-
hiding mechanisms to conceal the traffic. This model was originally presented in
Chaum’s seminal ‘dining cryptographers’ paper cited above, so we might refer
to it as the ‘dining steganographers’. The collaborating nodes in each ring can-
not conceal the existence of communication between them, as the cover traffic is
visible to the attacker. However, from the attacker’s viewpoint it is not obvious
that these n nodes are acting as a virtual supernode.

Our focus here is on the effects of network topology, rather than on the higher-
layer mechanisms that actually implement the covertness property and that pro-
vide any confidentiality of content or of routing data. We assume a world in which
there is sufficient encrypted traffic (SSL, SSH, DRM, . . . ) that encrypted traf-
fic is not of itself suspicious so long as it is wrapped in a common ciphertext
type. The attacker’s input consists of traffic data collected from the backbone
or from ISPs, and her output consists of decisions to send police officers to raid
the premises associated with particular IP addresses. Her problem is this: given
an observed pattern of communications, whom should she investigate first?
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The precise mechanism of ring formation in our simulation is as follows. A
vulnerable node decides to create a ring and recruits for the purpose a further
n − 1 nodes from the new nodes introduced in the most recent replenishment
round, or, if they are inadequate, from among its immediate neighbours. Existing
ring members cannot be recruited, so rings may not overlap. Finally, recruits to
a ring relinquish any existing links with the rest of the network, and the ring-
forming node shares its external links uniformly among all the members of the
ring.

5.3 Defense Strategy 3 – Revolutionary Cells

Our third defensive strategy is inspired by cells of revolutionaries, along the
model favoured historically by a number of insurgent organisations. A node that
acquires a high vertex order splits itself into n nodes, all linked with each other,
with the previous outside connections split uniformly between them. In graph-
theoretic language, each supernode is a clique.

As in ring formation, a node that considers itself vulnerable is allowed to
split itself into a clique of nodes. The new nodes are drawn either from the pool
of new nodes, or, if they are insufficient, from low-vertex-order neighbours of
the clique-forming node. As before, this node’s external edges are distributed
uniformly among members, while other member nodes’ former external edges
are deleted.

Simulations – First Set. For our first set of simulations, we consider a scalefree
network of N = 400 nodes. We use a Barabási-Albert network created by the
following algorithm:

1. Growth: Starting with m0 = 40 nodes, at each round we add m = 10 new
nodes, each with 3 edges.

2. Preferential Attachment: The probability that a new node connects to node
i is Π(ki) = ki/

∑
j kj where ki is the degree of node i.

Having created the scalefree network, we then ran each of the above defensive
strategies against a vertex-order attack.

Results. The results of the initial three simulations are given in Figure 2.
The red graph in Figure 2 provides a calibration baseline. As seen in the

above section, random replenishment without adaptation is ineffective: within
three rounds the size of the largest connected component has fallen by a half,
from 400 nodes to well under 200.

The green graph shows that rings give only a surprisingly short-term defence
benefit. They postpone network collapse from about two rounds to about a dozen
rounds. Thereafter, the network is almost completely disconnected. In fact, the
outcome is even worse than with random replenishment.

Cliques, on the other hand, work well. A few vertices are disconnected at each
attack round, but as the cyan graph shows, the network itself remains robustly
connected. This may provide some insight into why, although rings have seemed
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Fig. 2. Vertex order decapitation attack in rings, cliques and with no adaptation

attractive to theoreticians, those real revolutionary movements that have left
some trace in the history books have used a cell structure instead.

6 Attack Evolution – First Round

Having tried a number of defence strategies and found that one of them – cliques
– is effective, the next step is to try out a number of attack strategies to see if
any of them is effective against our defences, and in particular against cliques.

Of the attack strategies we tried against a clique defence, the best performer is
an attack based on centrality. We used the centrality algorithm of Brandes [8] to
select the highest-centrality nodes for destruction at each round. As before, our
calibration baseline is random replenishment. For this, the red and black graphs
show performance against vertex-order and centrality attacks respectively. Both
are equally effective; within two or three rounds the size of the largest connected
component has been halved.

The green and blue graphs show that the same holds for rings: the network
collapses completely after about a dozen rounds. Centrality attacks are very
slightly more effective but there is not much in it.

The most interesting results from these simulations come from the magenta
and cyan graphs, which show how cliques behave. Cyan shows, as before, a
vertex-order attack with severity m = 10 being ineffective against a clique de-
fence. Magenta shows the effect on such a network of a centrality attack. Here
the largest connected component retains about 400 nodes until the network
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suddenly partitions at 14 rounds, whereafter a largest-component size of about
200 is maintained stably.

Some insight into the internal mechanics can be gleaned from Figure 4. This
shows the average inverse geodesic length. To calculate this, for each node, we find
the length of the shortest path to each other node, and take the inverse (we take
the length to be infinite, and thus the inverse to be zero, if the nodes are in dis-
joint components). We average this value over all n(n−1)/2 pairs of nodes. This
value falls sharply for defense without adaptation, and falls steadily for defense
with rings. These falls reflect increasing difficulty in internode communication.
With cliques, the vertex-order attack has little effect, while the centrality attack
makes steadily increasing progress on a graph of 400 vertices, until it achieves
partition and reduces the largest component to about 200 vertices. But it makes
only slow progress thereafter.

6.1 Clique Sizes

We next ran a simulation comparing how well defense works when using different
sizes of rings and cliques. Ring size appears to make little difference; rings are
just not an effective defence other than in the very short term. However, varying
the clique size yields the results displayed in Figure 5.

This shows that under a centrality attack, the performance of the defense
increases steadily with the size of the clique. There is still a phase transition
after about 14 rounds or so after which the largest connected component becomes
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significantly smaller, but the size of this equilibrium component increases steadily
from about 150 with clique size 8 to almost 300 at clique size 20.

7 Defence Evolution – Second Round

Now that we know centrality attacks are powerful, we have tried a number of
other possible defences. The most promising at present appears to be a com-
pound defence based on cliques and delegation.

The idea behind delegation is fairly simple. A node that is becoming too
well-connected selects one of its neighbours as a ‘deputy’ and connects it to a
second neighbour, with which it then disconnects. This reflects normal human
behaviour even in peacetime: busy leaders pass new recruits on to colleagues.
In wartime, and with an enemy that might resort to vertex-order attacks, the
incentive to delegate is even greater. Thus a terrorist leader who gets an offer
from a wealthy businessman to finance an attack might simply introduce him
to a young militant who wants to carry one out. The leader need now maintain
communications with at most one of the two.

Delegation on its own is rather slow; it takes dozens of rounds for delegation to
‘immunise’ a network against vertex-order attack. If a vanilla scale-free network
is going to be exposed to either a vertex-order or centrality attack from the next
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fenses against centrality attack

round, then drastic action (such as clique formation) is needed at once; else it
will be disconnected within two or three rounds. Slower defences like delegation
can however play a role, provided they are started from network formation or a
reasonable time period (say 20 rounds) before the attack begins.

It turns out that the delegation defence, on its own, is rather like the rings of
dining steganographers. Network fragmentation is postponed (about 14 rounds
with the parameters used here) though not ultimately averted.

What is interesting, however, is this. If we form a network and immunise
it by running the delegation strategy, then run a clique defence as well from
the initiation of hostilities, this compound strategy works rather better than
ordinary cliques. Figure 6 shows the simulation results.

Figure 7 may give some insight into the mechanisms. Delegation results in
shorter path lengths under attack: it postpones and slows down the growth of
path length that otherwise results from hub elimination. As a result, equilibrium
is achieved later, and with a larger minimum connected component.

8 Conclusions and Future Work

In this paper, we have built a bridge between network science and traffic analysis.
For some years, people have discussed what sort of communications topologies

might be ideal for covert communication in the presence of powerful adversaries,
and whether network science might be of practical use in covert conflicts – whether
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to insurgents or to counterinsurgency forces [5,18]. Our workmakes a start on deal-
ing with this question systematically.

Albert, Jeong and Barabási showed that although a scalefree network pro-
vides better connectivity, this comes at a cost in robustness – an opponent can
disconnect a network quickly by concentrating its firepower on well-connected
nodes. In this paper, we have asked the logical next questions. What sort of
defence should be planned by operators of such a network? And what sort of
framework can be developed in which to test successive refinements of attack,
defense, counterattack and so on?

First, we have shown that naive defences don’t work. Simply replacing dead
hubs with new recruits does not slow down the attacker much, regardless of
whether link replacement follows a random or scale-free pattern.

Moving from a single-shot game to a repeated game provides a useful framework.
It enables concepts of evolutionary game theory to be applied to network problems.

Next, we used the framework to explore two more sophisticated defensive
strategies. In one, potentially vulnerable high-order nodes are replaced with rings
of nodes, inspired by a standard technique in anonymous communications. In the
other, they are replaced by cliques, inspired by the cell structure often used in
revolutionary warfare. To our surprise we found that rings were all but useless,
while cliques are remarkably effective. This may be part of the reason why cell
structures have been widely used by capable insurgent groups.

Next, we searched for attacks that work better against clique defences. We
found that the centrality attack of Holme et al does indeed appear to be more
powerful, although it can be more difficult to mount as evaluating node central-
ity involves knowledge of the entire topology of the network. Centrality attacks
may reflect the modern reality of counterinsurgency based on pervasive commu-
nications intelligence and, in particular, traffic analysis.

Now we are searching for defences that work better against centrality attacks.
A promising candidate appears to be the delegation defence, combined with
cliques. This combination may in some ways reflect the reported ‘virtualisation’
strategies of some modern insurgent networks.

Another promising direction would be to consider the role of communities in
the robustness of networks. For instance, social networks can be both scale-free
and navigable by random walks if they are divided into communities. Hence, it
might be more prudent for an attacker to take on the network community by
community rather than removing important nodes at a network level, we leave
further investigation in this direction to future work.

Above all, this work provides a systematic way to evolve and test security
concepts relating to the topology of networks. Clearly the coevolution of attack
and defense can be taken much further. Further work includes testing:

1. networks that grow or shrink, maybe with endogenous replenishment (cur-
rent recruitment a function of past operational success)

2. imperfectly informed attackers, such as policemen who have access to the
records of some but not all phone companies or email service providers, or
who must use purely local measures of centrality
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3. perfectly informed defenders, who can coordinate connectivity globally
4. budget tradeoffs – for example, a defender might be able to hide specific

edges but only at some cost to his replenishment budget
5. heterogeneous networks, with subpopulations having different robustness

preferences
6. dynamic strategies that detect opponents’ strategies and respond
7. different attacker goals. For example, some say that the Iraqi rebel leader

Al-Zarqawi is not bin Laden’s subordinate but his competitor. So an attack
objective might be not just partition, but to divide the opposition into groups
of less than a certain size. When attacking an ad-hoc sensor network, the goal
might be to reduce the effective bandwidth, and there might be interaction
with routing algorithms.

Preliminary though it is, we suggest that this work has broad potential ap-
plicability – from making the Internet more resilient against natural disasters
and malicious attacks, to the question of how best to disrupt (or design) subver-
sive networks.
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