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Abstract. The Algebra of Connectors AC(P ) is used to model struc-
tured interactions in the BIP component framework. Its terms are con-
nectors, i.e. relations describing synchronization constraints between the
ports of component-based systems. Connectors are structured combina-
tions of two basic synchronization protocols between ports: rendezvous
and broadcast. They are generated from the ports of P by using a binary
fusion operator and a unary typing operator. Typing associates with
terms (ports or connectors) synchronization types: trigger or synchron.

In a previous paper, we studied interaction semantics for AC(P ) which
defines the meaning of connectors as sets of interactions. This seman-
tics reduces broadcasts into the set of their possible interactions and
thus blurs the distinction between rendezvous and broadcast. It leads
to exponentially complex models that cannot be a basis for efficient im-
plementation. Furthermore, the induced semantic equivalence is not a
congruence.

For a subset of AC(P ), we propose a new causal semantics that does
not reduce broadcast into a set of rendezvous and explicitly models the
causal dependency relation between triggers and synchrons. The Algebra
of Causal Trees CT (P ) formalizes this subset. It is the set of the terms
generated from interactions on the set of ports P , by using two opera-
tors: a causality operator and a parallel composition operator. Terms are
sets of trees where the successor relation represents causal dependency
between interactions: an interaction can participate in a global interac-
tion only if its parent participates too. We show that causal semantics
is consistent with interaction semantics. Furthermore, it defines an iso-
morphism between CT (P ) and the set of the terms of AC(P ) involving
triggers.

Finally, we define for causal trees a boolean representation in terms
of causal rules.

1 Introduction

Component-based design is based on the separation between coordination and
computation. Systems are built from units processing sequential code insulated
from concurrent execution issues. The isolation of coordination mechanisms al-
lows a global treatment and analysis.
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One of the main limitations of the current state-of-the-art is the lack of a
unified paradigm for describing and analyzing information flow between com-
ponents. Such a paradigm would allow system designers and implementers to
formulate their solutions in terms of tangible, well-founded and organized con-
cepts instead of using disparate coordination mechanisms such as semaphores,
monitors, message passing, remote call, protocols etc. A unified paradigm should
allow a comparison of otherwise unrelated architectural solutions and could be
a basis for evaluating them and deriving implementations in terms of specific
coordination mechanisms.

A number of paradigms for unifying interaction in heterogeneous systems have
been studied in [1,2,3]. In these works, unification is achieved by reduction to a
common low-level semantic model. Interaction mechanisms and their properties
are not studied independently of behavior.

We propose a new causal semantics for the Algebra of Connectors studied in
[4]. This algebra considers connectors as the basic concept for modelling coordi-
nation between components.

The term “connector” is widely used in the component frameworks literature
with a number of different interpretations. In general, connectors have two main
aspects: in the data flow setting, connectors define the way data is transferred be-
tween components; alternatively, in what we call control flow setting, connectors
rather define synchronization constraints leaving aside or completely abstracting
the data flow.

Control flow connectors are often specified in an operational setting, usually
a process algebra. In [5], a process algebra is used to define an architectural
type as a set of component/connector instances related by a set of attachments
among their interactions. In [6], a connector is defined as a set of processes, with
one process for each role of the connector, plus one process for the “glue” that
describes how all the roles are bound together. A similar approach is developed
by J. Fiadeiro and his colleagues in a categorical framework for CommUnity [7].

All the above models define connectors that can exhibit complex behavior.
That is, computation is not limited to the components, but can be partly per-
formed in the connectors. In [8], an algebra of connectors is developed that
allows, in particular, an algebraic translation of the categorical approach used
in CommUnity. This algebra allows stateless connectors to be constructed from
a number of basic ones.

Reo [9,10] is a channel-based exogenous coordination model, which presents
both data and control flow aspects. It uses connectors compositionally built out
of different types of channels formalized in data-stream semantics and inter-
connected by using nodes. The connectors in Reo allow computation, but it is
limited to the underlying channels. The nodes of connectors realize coordination
between these channels.

Our approach is closest to that of [8], as it focuses on stateless connectors
in a control flow setting. We consider connectors as relations between ports
with synchronization types, which allows one to describe complex coordination
patterns with an extremely small set of basic primitives. Thus, our main subject,
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in this paper, is structuring interactions among components. Although, in the
composed system, data exchange can take place upon synchronisation, this is
out of the scope of this paper.

In a previous paper [4], we studied an interaction semantics for the Algebra
of Connectors AC(P ), which is used to model interactions in the BIP component
framework [11,12]. Terms of AC(P ) are connectors. The interaction semantics
defines the meaning of a connector as the set of the interactions it allows.

AC(P ) is defined from a set P of ports. Its terms represent sets of interactions
which are non empty sets of ports. Within a connector, an interaction can take
place in two situations: either an interaction is fired when all involved ports are
ready to participate (strong synchronization), or some subset of ports triggers the
interaction without waiting for other ports. Thus, connectors are generated from
the ports of P by using a binary fusion operator and a unary typing operator.
Typing associates with terms (ports or connectors) synchronization types: trigger
or synchron. Trigger and synchron terms form connectors as described below.

A Simple (or flat) connector is an expression of the form p′1 . . . p′kpk+1 . . . pn,
where primed ports p′i are triggers, and unprimed ports pj are synchrons. For
a flat connector involving the set of ports {p1, . . . , pn}, interaction semantics
defines the set of its interactions by the following rule: an interaction is any non
empty subset of {p1, . . . , pn} which contains some port that is a trigger; otherwise
(if all the ports are synchrons), the only possible interaction is the maximal one,
that is p1 . . . pn. As usual, we abbreviate {p1, . . . , pn} to p1 . . . pn.

In particular, two basic synchronization protocols can be modelled naturally:
1) rendezvous, when all the related ports are synchrons, and the only possible
interaction is the maximal one containing all ports of the connector; 2) broad-
cast, when the port that initiates the interaction is a trigger, all other ports are
synchrons, and possible interactions are those containing the trigger. Connec-
tors, representing these two protocols for ports s, r1,r2, and r3, are shown in
Fig. 1(a, b). Triangles represent triggers, and circles represent synchrons.
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Fig. 1. Connectors and causal trees representing a rendezvous (a, e), a broadcast (b, f),
an atomic broadcast (c, g), and a causal chain (d, h)
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Hierarchical connectors are expressions composed of typed ports and/or typed
sub-connectors. Fig. 1(c) shows a connector realizing an atomic broadcast from
a port s to ports r1, r2, and r3. The port s is a trigger, and r1, r2, r3 are strongly
synchronized in a sub-connector, itself typed as a synchron. The corresponding
AC(P ) term is s′[r1r2r3], and the possible interactions are: s and sr1r2r3. Here
the term in brackets [·] is a sub-connector typed as a synchron. Primed brackets
[·]′ denote a sub-connector typed as a trigger. The connector shown in Fig. 1(d) is
a causal chain of interactions initiated by the port s. The corresponding AC(P )
term is s′[r′1[r

′
2r3]], and the possible interactions are s, sr1, sr1r2, sr1r2r3 : a trig-

ger s alone or combined with some interaction from the sub-connector r′1[r
′
2r3],

itself a shorter causal chain.
As shown in the above examples, interaction semantics reduces a connector

into the set of its interactions. This leads to exponentially complex representa-
tions. Furthermore, it blurs the distinction between rendezvous and broadcast as
each interaction of a broadcast can be realized by a rendezvous. In [4], we have
shown that this also has deep consequences on the induced semantic equivalence:
broadcasts may be equivalent to sets of rendezvous but they are not congruent.

The deficiencies of interaction semantics have motivated the investigation of
a new causal semantics for a subset of connectors of AC(P ), formalized as the
Algebra of Casual Trees CT (P ). This semantics distinguishes broadcast and ren-
dezvous by explicitly modelling the causal dependency relation between triggers
and synchrons in broadcasts. The terms of CT (P ) represent sets of interactions,
generated from atomic interactions on the set of ports P , by using two operators:

– A causality operator → which defines the causal relationship. The term
a1 → a2 → a3 is a causal chain meaning that interaction a1 may trigger
interaction a2 which may trigger interaction a3. The possible interactions
for this chain are a1, a1a2, a1a2a3.

– An associative and commutative parallel composition operator ⊕. A causal
tree can be considered as the parallel composition of all its causal chains.
For instance, the term a1 → (a2⊕a3) is equivalent to (a1 → a2)⊕ (a1 → a3)
(both describing the set of four interactions: a1, a1a2, a1a3, and a1a2a3).

Terms of CT (P ) are naturally represented as sets of causal trees where → cor-
responds to the parent/son relation. Fig. 1(e− h) shows the causal trees for the
four connectors discussed above.

The main results of the paper are the following:

– We define causal semantics for AC(P ) in terms of causality trees, as a func-
tion AC(P ) → CT (P ). Causal semantics is sound with respect to interaction
semantics. An important result is that the algebra of causal trees CT (P ) is
isomorphic to classes of causal connectors ACc(P ) and causal sets of inter-
actions AIc(P ). A causal set of interactions is closed under synchronization.
A causal connector has a trigger in each sub-connector (including itself). We
have shown that the equivalence and the congruence of AC(P ) coincide for
the set of causal connectors ACc(P ).
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– We define for causal trees, CT (P ) a boolean representation by using causal
rules. Terms are represented by boolean expressions on P . The boolean val-
uation of port p is interpreted as the presence/absence of a port in an in-
teraction. This representation is used for their symbolic manipulation and
simplification as well as for performing boolean operations on connectors. It
is applied for the efficient implementation of BIP, in particular, to compute
the possible interactions for a given state.

The paper is structured as follows. Sect. 2 provides a succinct presentation of
the basic semantic model for BIP and in particular, its composition parameter-
ized by interactions. Sect. 3 presents the Algebra of Connectors, AC(P ), and its
global interaction semantics. Sect. 4 presents a semantics for AC(P ) in terms of
the Algebra of Causal trees, CT (P ). It also shows how a boolean representation
for connectors can be obtained from their representation as causal trees.

2 The BIP Component Framework

BIP is a component framework for constructing systems by superposing three
layers of modelling: Behavior, Interaction, and Priority. The lower layer consists
of a set of atomic components representing transition systems. The second layer
models interactions between components, specified by connectors. These are re-
lations between ports equipped with synchronization types. Priorities are used
to enforce scheduling policies applied to interactions of the second layer.

The BIP component framework has been implemented in a language and
a tool-set. The BIP language offers primitives and constructs for modelling
and composing layered components. Atomic components are communicating au-
tomata extended with C functions and data. Their transitions are labelled with
sets of communication ports. The BIP language also allows composition of com-
ponents parameterized by sets of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for generating C++ code
from BIP programs. The generated C++ code can be compiled for execution on
a dedicated platform (see [11,13]).

We provide a succinct formalization of the BIP component model focusing on
the operational semantics of component interaction.

Definition 1. For a set of ports P , an interaction is a non-empty subset a ⊆ P
of ports. To simplify notation we represent an interaction {p1, p2, . . . , pn} as
p1p2 . . . pn.

Definition 2. A transition system is a triple B = (Q, P,→), where Q is a set
of states, P is a set of ports, and →⊆ Q × 2P × Q is a set of transitions, each
labelled by an interaction.

For any pair of states q, q′ ∈ Q and interaction a ∈ 2P , we write q
a→ q′, iff

(q, a, q′) ∈→. When the interaction is irrelevant, we simply write q → q′.
An interaction a is enabled in state q, denoted q

a→, iff there exists q′ ∈ Q
such that q

a→ q′.
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Fig. 2. A system with four atomic components

In BIP, a system can be obtained as the composition of n components, each
modelled by a transition system Bi = (Qi, Pi,→i), for i ∈ [1, n], such that their
sets of ports are pairwise disjoint: for i, j ∈ [1, n] (i �= j), we have Pi ∩ Pj = ∅.
We take P =

⋃n
i=1 Pi, the set of all ports in the system.

The composition of components {Bi}n
i=1, parameterized by a set of interac-

tions γ ⊆ 2P is the transition system B = (Q, P,→γ), where Q =
⊗n

i=1 Qi and
→γ is the least set of transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi �= ∅ ⇒ qi
a∩Pi→ i q′i)

(q1, . . . , qn) a→γ (q′1, . . . , q′n)
, (1)

where qi = q′i for all i ∈ [1, n] such that a∩Pi = ∅. We write B = γ(B1 . . . , Bn).
Notice that an interaction a ∈ γ is enabled in γ(B1, . . . , Bn), only if, for each

i ∈ [1, n], the interaction a ∩ Pi is enabled in Bi; the states of components that
do not participate in the interaction remain unchanged.

Several distinct interactions can be enabled at the same time, thus introducing
non-determinism in the product behavior. This can be restricted by means of
priorities [4,13]. Here, we omit formal definition of priorities, as we only use the
maximal progress rule, which is implicitly assumed throught the paper: whenever
two interactions, a and a′, such that a � a′, are possible, we always choose a′.

Example 1 (Sender/Receivers). Fig. 2 shows a component γ(S, R1, R2, R3) ob-
tained by composition of four atomic components: a sender, S, and three re-
ceivers, R1, R2, R3 with a set of interactions γ. The sender has a port s for
sending messages, and each receiver has a port ri (i = 1, 2, 3) for receiving them.
The following table specifies γ for four different interaction schemes.

Interaction scheme Interactions

Rendezvous sr1r2r3

Broadcast s, sr1, sr2, sr3, sr1r2, sr1r3, sr2r3, sr1r2r3

Atomic Broadcast s, sr1r2r3

Causal Chain s, sr1, sr1r2, sr1r2r3
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Rendezvous means strong synchronization between S and all Ri. This is speci-
fied by a single interaction involving all the ports. This interaction can occur
only if all the components are in states enabling transitions labelled respec-
tively by s, r1, r2, r3.

Broadcast means weak synchronization, that is a synchronization involving S
and any (possibly empty) subset of Ri. This is specified by the set of all
interactions containing s. These interactions can occur only if S is in a state
enabling s. Each Ri participates in the interaction only if it is in a state
enabling ri.

Atomic broadcast means that either a message is received by all Ri, or by
none. Two interactions are possible: s, when at least one of the receiving
ports is not enabled, and the interaction sr1r2r3, corresponding to strong
synchronization.

Causal chain means that for a message to be received by Ri it has to be
received by all Rj , for j < i. This interaction scheme is common in reactive
systems.

Example 2 (Modulo-8 counter). Fig. 3 shows a model for the Modulo-8 counter
presented in [14], obtained by composition of three Modulo-2 counter compo-
nents. Ports p, r, and t correspond to inputs, whereas q, s, and u correspond
to outputs. It can be easily verified that the interactions pqr, pqrst, and pqrstu
happen, respectively, every second, fourth, and eighth occurrence of an input
interaction through the port p.
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p pq

p q

r rs

r s

t tu

t u

p, pqr, pqrst, pqrstu

Maximal progress: p ≺ pqr ≺ pqrst ≺ pqrstu

Fig. 3. Modulo-8 counter

Notice that the composition operator can express usual parallel composition
operators [4], such as the ones used in CSP [15] and CCS [16]. By enforcing
maximal progress, priorities allow to express broadcast.

3 The Algebra of Connectors

In this section, we introduce the algebra of connectors AC(P ), which formalizes
the concept of connector, supported by the BIP language [11]. For the sake of
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simplicity, we consider the subset of terms of AC(P ) that do not involve union,
that is the subset of monomial connectors (cf. [4]).

3.1 The Algebra of Interactions

We introduce the algebra of interactions AI(P ), used to define the interaction
semantics of AC(P ).

Let P be a set of ports, such that 0, 1 �∈ P . Recall (Def. 1) that an interaction
is a non-empty subset a ⊆ P . We abbreviate {p1, p2, . . . , pn} to p1 p2 . . . pn.
Syntax. The algebra of interactions AI(P ), is defined by the following syntax

x ::= 0 | 1 | p ∈ P | x · x | x + x , (2)

where + and · are binary operators, respectively called union and synchroniza-
tion. Synchronization binds stronger than union.

Axioms

1. Union + is idempotent, associative, commutative, and has an identity ele-
ment 0;

2. Synchronization · is associative, commutative, has an identity element 1, and
an absorbing element 0; synchronization distributes over union. Furthermore,
it is idempotent for monomial terms (terms without +).

Semantics. The semantics of AI(P ) is given by the function ‖ · ‖ : AI(P ) →
22P

, defined by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
{
{p}
}
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

{
a1 ∪ a2

∣∣∣ a1 ∈ ‖x1‖, a2 ∈ ‖x2‖
}
,

(3)

for p ∈ P , x, x1, x2 ∈ AI(P ). Terms of AI(P ) represent sets of interactions
between the ports of P .

Remark 1. In Def. 1, interactions are non-empty subsets of P , i.e. a ∈ 2P \ {∅}.
In the following, we lift this restriction. Thus, 1 ∈ AI(P ) represents a singleton
subset {∅} ⊆ 2P (cf. (3)). The term 0 ∈ AI(P ) corresponds to an empty subset
of 2P and does not represent any interaction. Thus interactions correspond to
non-zero monomial terms of AI(P ).

Proposition 1 ([4]). The axiomatization of AI(P ) is sound and complete, that
is, for any x, y ∈ AI(P ), x = y iff ‖x‖ = ‖y‖.

Example 3 (Sender/Receiver continued). The second column of Table 1 shows
the representation in AI(P ) for the four interaction schemes of Ex. 1.
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Table 1. AI(P ), AC(P ), and CT (P ) representations of four basic interaction schemes

AI(P ) AC(P ) CT (P )

Rendezvous s r1 r2 r3 s r1 r2 r3 s r1 r2 r3

Broadcast s (1 + r1) s′ r1 r2 r3 s → (r1 ⊕ r2 ⊕ r3)

(1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3) s′ [r1 r2 r3] s → r1 r2 r3

Causal Chain s (1 + r1 (1+ s′ [r′1 [r′2 r3]] s → r1 → r2 → r3

+ r2 (1 + r3)))

3.2 Correspondence with Boolean Functions

AI(P ) can be bijectively mapped to the free boolean algebra B[P ] generated by
P . We define a mapping β : AI(P ) → B[P ] by setting:

β(0) = false , β(x + y) = β(x) ∨ β(y) ,

β(1) =
∧
p∈P

p , β(pi1 . . . pik
) =

k∧
j=1

pij ·
∧
i�=ij

pi ,

for pi1 , . . . , pik
∈ P , and x, y ∈ AI(P ), where in the right-hand side the elements

of P are considered to be boolean variables. We denote by false (resp. true) the
least (resp. greatest) element in B[P ]. For example, consider the correspondence
table for P = {p, q} shown in Table 2.

Table 2. Correspondence between AI({p, q}) and boolean functions with two variables

AI(P ) B[P ]

0 false

1 p q p q p q p q p q p q

p + 1 q + 1 p q + 1 p + q p + p q q + p q q p p q ∨ p q p q ∨ p q p q

p + q + 1 p q + p + 1 p q + q + 1 p q + p + q p ∨ q p ∨ q p ∨ q p ∨ q

p q + p + q + 1 true

The mapping β is an order isomorphism, and consequently techniques specific
to boolean algebras can be applied to the boolean representation of AI(P ) (e.g.
BDDs).

Any interaction a ∈ 2P defines a valuation on P with, for each p ∈ P , p = true
iff p ∈ a. Notice that the constant valuation false is associated to the interaction
1, which corresponds to the empty set of ports ∅ ∈ 2P (cf. Rem 1 and Table 2).
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Definition 3. An interaction a ∈ 2P satisfies a formula R ∈ B[P ] (denoted
a |= R) iff the corresponding boolean valuation satisfies R. A term x ∈ AI(P )
satisfies R (denoted x |= R) iff all interactions belonging to x satisfy R, that is

x |= R
def⇐⇒ ∀a ∈ ‖x‖, a |= R .

Remark 2. Let R1 and R2 be two equivalent formulae. They are satisfied by the
same interactions:

∀a ∈ 2P , a |= R1 ⇐⇒ a |= R2 .

Proposition 2. An interaction belongs to the set described by an expression
x ∈ AI(P ) if and only if it satisfies β(x), that is

‖x‖ =
{

a ∈ 2P
∣∣∣ a |= β(x)

}
. (4)

Remark 3. As ‖0‖ = ∅, according to Def. 3, it satisfies all formulae in B[P ], and
in particular 0 |= false . This is the only term in AI(P ) satisfying the constant
predicate false. Recall (Rem 1) that 0 �∈ 2P .

The advantage of AI(P ) over its boolean representation is that it provides a more
intuitive description of sets of interactions. For example, the term p+pq ∈ AI(P )
represents the set of interactions {p, pq} for any set of ports P containing p
and q. The boolean representation of p + pq depends on P : if P = {p, q} then
β(p + pq) = p, whereas if P = {p, q, r, s} then β(p + pq) = p r s.

Synchronization of two interactions in AI(P ) is by simple concatenation,
whereas for their boolean representation there is no simple context-independent
composition rule.

Example 4. Let P = {p, q, r, s}. The representation of p is β(p) = p q r s, the
representation of q is β(q) = p q r s, and the representation β(pq) = p q r s of the
synchronization pq is obtained by combining the “positive” variables p and q
from β(p) and β(q) respectively with the “negative” variables r and s belonging
to both.

To formalize the above example, let x, y ∈ AI(P ) be two terms represented
respectively by boolean functions

β(x) =
∧

p∈Px

p ·
∧

q∈Qx

q , and β(y) =
∧

p∈Py

p ·
∧

q∈Qy

q , (5)

where Px, Py ⊆ P and Qx, Qy ⊆ P are respectively the sets of positive and
negative variables in β(x) and β(y), then the synchronization xy corresponds to

β(xy) =
∧

p∈Px∪Py

p ·
∧

q∈Qx∩Qy

q (6)

In the general case, when the boolean representations of x and y contain
multiple summands of the form (5), the representation of their synchronization
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xy can be obtained by applying the above operation pairwise to the summands
of β(x) and β(y) and taking the sum of the obtained conjunctions.

On the other hand, the interactions belonging to the intersection of x and y,
that is to ‖x‖ ∩ ‖y‖, are clearly characterized by β(x) ∧ β(y).

Thus, we have a correspondence between AI(P ) equipped with union, syn-
chronization, and intersection, and B[P ] equipped with disjunction, the operation
above described by (5) and (6), and conjunction.

3.3 Syntax and Interaction Semantics for AC(P )

Syntax. Let P be a set of ports, such that 0, 1 �∈ P . The syntax of the algebra
of connectors, AC(P ), is defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x ,

(7)

for p ∈ P , and where · is a binary operator called fusion, and brackets [·] and
[·]′ are unary typing operators.

Fusion is a generalization of synchronization in AI(P ). Typing is used to form
connectors: [·]′ defines triggers (which can initiate an interaction), and [·] defines
synchrons (which need synchronization with other ports).

Definition 4. In a system with a set of ports P , connectors are elements of
AC(P ).

Notation. We write [x]α, for α ∈ {0, 1}, to denote a typed connector. When
α = 0, the connector is a synchron, otherwise it is a trigger.

In order to simplify notation, we will omit brackets on 0, 1, and ports p ∈ P ,
as well as ‘·’ for the fusion operator.

The algebraic structure of AC(P ) inherits most of the axioms of AI(P ).
Axioms

1. Fusion · is associative, commutative, distributive, idempotent, and has an
identity element [1].

2. Typing satisfies the following axioms, for x, y, z ∈ AC(P ) and α, β ∈ {0, 1}:
(a) [0]′ = [0],

(b)
[
[x]α

]β
= [x]β .

Semantics. The semantics of AC(P ) is given by the function | · | : AC(P ) →
AI(P ), defined by the rules (we use the product symbol ’

∏
’ to denote fusion)

|p| = p , (8)∣∣∣∣∣
n∏

i=1

[xi]

∣∣∣∣∣ =
n∏

i=1

|xi| , (9)
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∣∣∣∣∣∣
n∏

i=1

[xi]′ ·
m∏

j=1

[yj ]

∣∣∣∣∣∣ =
n∑

i=1

|xi|
∏
k �=i

(
1 + |xk|

) m∏
j=1

(
1 + |yj|

)
, (10)

for p ∈ P ∪ {0, 1} and x, x1, . . . , xn, y1, . . . , ym ∈ AC(P ). The sum in (10) is the
union operator of AI(P ).

Example 5. Consider a system consisting of two Senders with ports s1, s2, and
three Receivers with ports r1, r2, r3. The meaning of s′1 s′2 r1 [r2 r3] is

|s′1 s′2 r1 [r2 r3]| =
(10)
= |s1| (1 + |s2|) (1 + |r1|) (1 + |r2 r3|) + |s2| (1 + |s1|) (1 + |r1|) (1 + |r2 r3|)
(9)
=
(
|s1| (1 + |s2|) + |s2| (1 + |s1|)

)
(1 + |r1|) (1 + |r2| |r3|)

(8)
=
(
s1 (1 + s2) + s2 (1 + s1)

)
(1 + r1) (1 + r2 r3) ,

which corresponds to the set of the interactions containing at least one of s1 and
s2, and possibly r1 and a synchronization of both r2 and r3.

Proposition 3 ([4]). The axiomatization of AC(P ) is sound, that is, for x, y ∈
AC(P ), the equality x = y implies |x| = |y|.

Example 6 (Sender/Receiver continued). The third column of Table 1 shows the
connectors for the four interaction schemes of Ex. 1.

Notice that AC(P ) allows compact representation of interactions and, more-
over, explicitly captures the difference between broadcast and rendezvous. The
typing operator induces a hierarchical structure.

Example 7 (Modulo-8 counter continued). In the model shown in Fig. 4, the
causal chain pattern is applied to connectors p, q r, s t, and u. Interactions are
modelled by a single structured connector p′

[
[q r]′ [[s t]′ u]

]
:

∣∣∣p′ [[q r]′
[
[s t]′ u

]]∣∣∣ = p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter of Fig. 3.
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Fig. 4. Modulo-8 counter
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Definition 5. Two connectors x, y ∈ AC(P ) are equivalent (denoted x � y), iff
they have the same sets of interactions, i.e. x � y if and only if |x| = |y|.

Notice that, in general, two equivalent terms are not congruent. For example,
p′ � p, but p′q � p + pq �� pq, for p, q ∈ P . Furthermore, the following terms
are equivalent, but not congruent: pqr, p[qr], and [pq]r, as different sets of in-
teractions are obtained, when these terms are fused with a trigger. For instance,
s′[pq]r � s + spq + sr + spqr, whereas s′p[qr] � s + sp + sqr + spqr.

Definition 6. We denote by ‘∼=’ the largest congruence relation contained in �,
that is the largest relation satisfying

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) � E(y/z) , (11)

where x, y ∈ AC(P ), z �∈ P , E(x/z), and (resp. E(y/z)) denotes the expression
obtained from E by replacing all occurrences of z by x (resp. y).

Theorem 1 ([4]). For x, y ∈ AC(P ), we have x ∼= y iff the three following
conditions hold simultaneously

1. x � y,
2. x · 1′ � y · 1′,
3. #x > 0 ⇔ #y > 0,

where, for x =
∏n

i=1[xi]αi , we denote by #x the number of triggers in this fusion,

that is #x
def
= #{i ∈ [1, n] |αi = 1}.

Corollary 1. For x, y ∈ AC(P ), holds [x]′ [y]′ ∼=
[
[x]′ [y]′

]′
.

4 Causal Semantics for Connectors

In this section, we propose a new causal semantics for AC(P ) connectors. This
allows us to address two important points:

1. (Congruence). As we have shown in the previous section, the equivalence
relation � on AC(P ) is not a congruence. The causal semantics allows us
to define a subset ACc(P ) � AC(P ) of causal connectors such that a) ev-
ery equivalence class on AC(P ) has a representative in ACc(P ); and b) the
equivalence � and congruence ∼= relations coincide on ACc(P ).

2. (Boolean representation). In [4], we showed that efficient computation of
boolean operations (e.g. intersection, complementation) is crucial for efficient
implementation of some classes of systems, e.g. synchronous systems. In
this section, we present a method for computing boolean representations
for AC(P ) connectors through a translation into the algebra of causal trees
CT (P ). The terms of the latter have a natural boolean representation as sets
of causal rules (implications). This boolean representation avoids complex
enumeration of the interactions of connectors entailed by the method in
Sect. 3.2.
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The key idea for causal semantics is to render explicit the causal relations
between different parts of the connector. In a fusion of typed connectors, trig-
gers are mutually independent, and can be considered parallel to each other.
Synchrons participate in an interaction only if it is initiated by a trigger. This
introduces a causal relation: the trigger is a cause that can provoke an effect,
which is the participation of a synchron in an interaction.

There are essentially three possibilities for connectors involving ports p and q:

1. A strong synchronization pq.
2. One trigger p′q, i.e. p is the cause of an interaction and q a potential effect,

which we will denote in the following by p → q.
3. Two triggers p′q′, i.e. p and q are independent (parallel), which we will denote

in the following by p ⊕ q.

This can be further extended to chains of causal relations between interactions.
For example, (p⊕q) → rs → t corresponds to the connector p′q′ [ [rs]′ t]. It means
that any combination of p and q (i.e. p, q, or pq) can trigger an interaction in
which both r and s may participate (thus, the corresponding interactions are p,
q, pq, prs, qrs, and pqrs). Moreover, if r and s participate then t may do so,
which adds the interactions prst, qrst, and pqrst.

Causal trees constructed with these two operators provide a compact and clear
representation for connectors that shows explicitly the atomic interactions (p, q,
rs, and t in the above example) and the dependencies between them. They also
allow to exhibit the boolean causal rules, which define the necessary conditions
for a given port to participate in an interaction. Intuitively, this corresponds to
expressing arrows in the causal trees by implications.

A causal rule is a boolean formula over P , which has the form p ⇒
∨n

i=1 ai,
where p is a port and ai are interactions that can provoke p. Thus, in the above
example, the causal rule for the port r is r ⇒ ps ∨ qs, which means that for the
port r to participate in an interaction of this connector, it is necessary that this
interaction contain either ps or qs.

A set of causal rules uniquely describes the set of interactions that satisfy it
(cf. Sect. 3.2), which provides a simple and efficient way for computing boolean
representations for connectors by transforming them first into causal trees and
then into a conjunction of the associated causal rules.

In the following sub-sections we formalize these ideas.

4.1 Causal Trees

Syntax. Let P be a set of ports such that 0, 1 �∈ P . The syntax of the algebra
of causal trees, CT (P ), is defined by

t ::= a | t → t | t ⊕ t , (12)

where a ∈ AI(P ) is 0, 1, or an interaction from 2P , and → and ⊕ are respectively
the causality and the parallel composition operators. Causality binds stronger
than parallel composition.
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Although the causality operator is not associative, for t1, . . . , tn ∈ CT (P ), we
abbreviate t1 → (t2 → (. . . → tn) . . .)) to t1 → t2 → . . . → tn. We call this
construction a causal chain.

Axioms

1. Parallel composition, ⊕, is associative, commutative, idempotent, and its
identity element is 0.

2. Causality, →, satisfies the following axioms:
(a) t → 1 = t,
(b) t1 → (1 → t2) = t1 → t2,
(c) t → 0 = t,
(d) 0 → t = 0.

3. The following axioms relate the two operators:
(a) (t1 → t2) → t3 = t1 → (t2 ⊕ t3),
(b) t1 → (t2 ⊕ t3) = t1 → t2 ⊕ t1 → t3,
(c) (t1 ⊕ t2) → t3 = t1 → t3 ⊕ t2 → t3.

Semantics. The interaction semantics of CT (P ) is given by the function | · | :
CT (P ) → AI(P ), defined by the rules

|a| = a , (13)

|a → t| = a
(
1 + |t|

)
, (14)

|t1 ⊕ t2| = |t1| + |t2| + |t1| |t2| , (15)

where a is an interaction of 2P , and t, t1, t2 ∈ CT (P ), and the rules induced by
axioms (3a) and (3c). The set semantics of a causal tree t ∈ CT (P ) is obtained

by applying the semantic function ‖ · ‖ : AI(P ) → 22P

to |t|. We denote ‖t‖ def
=

‖ |t| ‖.

Example 8 (Causal chain). Consider interactions a1, . . . , an ∈ 2P and a causal
chain a1 → a2 → . . . → an. Iterating rule (14), we then have

|a1 → a2 → . . . → an| = a1

(
1 + |a2 → . . . → an|

)
= a1 + a1a2

(
1 + |a3 → . . . → an|

)
= . . .

= a1 + a1a2 + . . . + a1a2 . . . an .

Proposition 4. The axiomatization of CT (P ) is sound with respect to the se-
mantic equivalence, i.e. for t1, t2 ∈ CT (P ), t1 = t2 implies |t1| = |t2|.

Remark 4. According to the axioms of CT (P ) any causal tree can be represented
as a parallel composition of its causal chains (see Fig. 5). Thus an interaction
belonging to a causal tree is a synchronization of any number of prefixes (cf.
Ex. 8) of the corresponding causal chains, i.e. branches of this tree.
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Fig. 5. A causal tree is the parallel composition of its causal chains

Example 9 (Sender/Receiver continued). The fourth column of Table 1 shows
the causal trees for the four interaction schemes of Ex. 1.

Example 10 (Modulo-8 counter continued). The connector applied to the three
Modulo-2 counter components in Ex. 7 consists of a causal chain pattern applied
to rendezvous connectors p, q r, s t, and u. Thus, the corresponding causal tree
is clearly p → qr → st → u. In general, the transformation of AC(P ) connectors
into causal trees is presented in the section below.

Definition 7. Two causal trees t1, t2 ∈ CT (P ) are equivalent, denoted t1 ∼ t2,
iff |t1| = |t2|.

4.2 Correspondence with AC(P )

In order to provide the transformation from AC(P ) to CT (P ), we introduce two
helper functions root : CT (P ) → AI(P ) and rest : CT (P ) → CT (P ) defined by

root(a) = a , rest(a) = 0
root(a → t) = a , rest(a → t) = t ,

root(t1 ⊕ t2) = root(t1) + root(t2) , rest(t1 ⊕ t2) = rest(t1) ⊕ rest(t2) ,

for a ∈ 2P and t, t1, t2 ∈ CT (P ). In general t �= root(t) → rest(t). The equality
holds only if t is of the form a → t1, for some interaction a and t1 ∈ CT (P ).

We define the function τ : AC(P ) → CT (P ) associating a causal tree with a
connector. By Cor. 1, any term can be rewritten to have at most one trigger.
Therefore, the following three equations are sufficient to define τ :

τ

(
[x]′

n∏
i=1

[yi]

)
= τ(x) →

n⊕
i=1

τ(yi) , (16)

τ

(
n∏

i=1

[xi]′
)

=
n⊕

i=1

τ(xi) , (17)

τ

(
n∏

i=1

[yi]

)
=

m⊕
j=1

(
aj →

n⊕
i=1

rest
(
τ(yi)

))
, (18)

where x, x1, x2, y1, . . . , yn ∈ AC(P ), and, in (18), aj are such that
m∑

j=1

aj =
n∏

i=1

root
(
τ(yi)

)
.
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Example 11. Consider P = {p, q, r, s, t, u} and p′q′
[
[r′s][t′u]

]
∈ AC(P ). We have

τ
(
p′q′
[
[r′s][t′u]

])
= τ

([
p′q′
]′[

[r′s][t′u]
])

= τ(p′q′) → τ
(
[r′s][t′u]

)
= (p ⊕ q) →

(
rt → (s ⊕ u)

)
.

We also define the function σ : CT (P ) → AC(P ), associating connectors to
causal trees:

σ(a) = [a] , (19)
σ(a → t) = [a]′ [σ(t)] , (20)

σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (21)

Proposition 5. The functions σ : CT (P ) → AC(P ) and τ : AC(P ) → CT (P ),
satisfy the following properties

1. ∀x ∈ AC(P ), |x| = |τ(x)|,
2. ∀t ∈ CT (P ), |t| = |σ(t)|,
3. τ ◦ σ = id,
4. σ ◦ τ � id (that is ∀x ∈ AC(P ), σ(τ(x)) � x).

The above proposition says that the diagram shown in Fig. 6 is commutative
except for the loop AC(P ) τ→ CT (P ) σ→ ACc(P ) ↪→ AC(P ).

In this diagram, ACc(P ) � AC(P ) is the set of causal connectors, which is the
image of CT (P ) by σ. Note that any connector has an equivalent representation
in ACc(P ). Similarly, AIc(P ) � AI(P ) is the set of causal interactions, the
image of CT (P ) by the semantic function | · |. The following proposition provides
a characteristic property of the set of causal interactions.

Proposition 6. The set of the causal interactions is closed under synchroniza-
tion, that is x ∈ AIc(P ) iff ∀a, b ∈ ‖x‖, ab ∈ ‖x‖.

As mentioned above, the semantic equivalence � on AC(P ) is not a congru-
ence. Prop. 7 and Cor. 2 below state that the restriction of � to ACc(P ) is a
congruence. By definition of ACc(P ), each equivalence class � on AC(P ) has a
representative in ACc(P ).

AC

ACc

AI

AIc

CT





������
������

������

� �

�� ��

| · |

| · |

| · |

τ

σ

Fig. 6. A diagram relating the algebras
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Proposition 7. ∀t1, t2 ∈ CT (P ), t1 ∼ t2 ⇒ σ(t1) ∼= σ(t2).

Corollary 2. The AC(P ) equivalence restricted to ACc(P ) is a congruence, that
is, for x1, x2 ∈ ACc(P ), x1 � x2 implies x1

∼= x2.

4.3 Boolean Representation of Connectors

Definition 8. A causal rule is a B[P ] formula E ⇒ C, where E (the effect) is
either a constant, true, or a port variable p ∈ P , and C (the cause) is either a
constant (true or false) or a disjunction of interactions, i.e.

∨n
i=1 ai where, for

all i ∈ [1, n], ai are conjunctions of port variables.

Causal rules without constants can be rewritten as formulas of the form p ∨∨n
i=1 ai and, by distributivity of ∧ over ∨, are conjunctions of dual Horn clauses,

i.e. disjunctions of variables whereof at most one is negative.
In line with Def. 3, an interaction a ∈ 2P satisfies the rule p ⇒

∨n
i=1 ai, iff

p ∈ a implies ai ⊆ a, for some i ∈ [1, n], that is, for a port to belong to an
interaction, at least one of the corresponding causes must belong there too.

Example 12. Let p ∈ P , a ∈ 2P , and x ∈ AI(P ). Three particular types of
causal rules can be set apart:

1. For an interaction to satisfy the rule true ⇒ a, it is necessary that it contain
a.

2. Rules of the form p ⇒ true are satisfied by all interactions.
3. An interaction can satisfy the rule p ⇒ false only if it does not contain p.

Remark 5. Notice that a1 ∨a1 a2 = a1, and therefore causal rules can be simpli-
fied accordingly:

(p ⇒ a1 ∨ a1 a2) � (p ⇒ a1) . (22)

We assume that all the causal rules are simplified by using (22).

Definition 9. A system of causal rules is a set R = {p ⇒ xp}p∈P t , where

P t def
= P ∪{true}. An interaction a ∈ 2P satisfies the system R (denoted a |= R),

iff a |=
∧

p∈P t(p ⇒ xp). We denote by |R| the union of the interactions satisfying
R :

|R| def
=

∑
a|=R

a .

A causal tree t ∈ CT (P ) is equivalent to a system of causal rules R iff |t| = |R|.

We associate with t ∈ CT (P ) the system of causal rules

R(t)
def
= {p ⇒ cp(t)}p∈P t , (23)

where, for p ∈ P t, the function cp : CT (P ) → B[P ] is defined as follows. For
a ∈ 2P (with p �∈ a) and t, t1, t2 ∈ CT (P ), we put

cp(0) = false , (24)
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cp(p → t) = true , (25)
cp(pa → t) = a , (26)
cp(a → t) = a cp(t) , (27)

cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2) , (28)

Similarly, we define ctrue(t) by

ctrue(0) = false ,

ctrue(1 → t) = true ,

ctrue(a → t) = a ,

ctrue(t1 ⊕ t2) = ctrue(t1) ∨ ctrue(t2) .

Remark 6. It is important to observe that, for any t ∈ CT (P ), the system of
causal rules R(t), defined by (23), contains exactly one causal rule for each
p ∈ P t (i.e. each p ∈ P and true). For ports that do not participate in t, the
rule is p ⇒ false. For ports that do not have any causality constraints, the rule
is p ⇒ true.

Proposition 8. For any causal tree t ∈ CT (P ), |t| = |R(t)|.

p

q qs

r

�
��

�
��

�
��

Fig. 7. Graphical representation of the causal tree t = p → (q → r ⊕ qs)

Example 13. Consider the causal tree t = p → (q → r ⊕ qs) shown in Fig. 7.
The associated system R(t) of causal rules is

{true ⇒ p , p ⇒ true , q ⇒ p , r ⇒ pq , s ⇒ pq} .

Notice that cq(t) = p
(
cq(q → r) ∨ cq(qs)

)
= p ∨ ps = p.

The corresponding boolean formula is then

(true ⇒ p) ∧ (p ⇒ true) ∧ (q ⇒ p) ∧ (r ⇒ pq) ∧ (s ⇒ pq) = p q ∨ p r s .

5 Conclusion

The paper provides a causal semantics for the algebra of connectors. This se-
mantics leads to simpler and more intuitive representations which can be used
for efficient implementation of operations on connectors in BIP. In contrast to
interaction semantics equivalence, the induced equivalence is compatible with
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Fig. 8. A graphical representation of the relations between different algebras

the congruence on AC(P ). Causal semantics allows a nice characterization of
the set of causal connectors, which is isomorphic to the set of causal trees. The
set of causal connectors also corresponds to the set of causal interactions, which
are closed under synchronization. The relation between the different algebras is
shown in Fig. 8.

The Algebra of Causal Trees, CT (P ), breaks with the reductionist view of
interaction semantics as it distinguishes between symmetric and asymmetric
interaction. It allows structuring of global interactions as the parallel compo-
sition of chains of interactions. This is a very intuitive and alternate approach
to interaction modeling especially for broadcast-based languages such as syn-
chronous languages. Causal trees are very close to structures used to represent
dependencies between signals in synchronous languages, e.g. [17]. This opens
new possibilities for unifying asynchronous and synchronous semantics.

CT (P ) can be extended in a straightforward manner to incorporate guards,
necessary for conditional interaction. It is a basis for computing boolean repre-
sentations for connectors, adequate for their symbolic manipulation and compu-
tation of boolean operations. These can be used for efficient implementations of
component-based languages such as BIP.
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