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Abstract. To achieve effective distributed components, we rely on an
active object model, from which we build asynchronous and distributed
components that feature the capacity to exhibit various valuable prop-
erties, as confluence and determinism, and for which we can specify the
behaviour.

We will emphasise how important it is to rely on a precise and formal
programming model, and how practical component systems can benefit
from theoretical inputs.

1 Introduction

Component models and frameworks have been in use for some years now. This
is especially the case for distributed components that attempt to handle the
inherent complexity of managing distributed systems. However, underlying lan-
guages do not seem to feature a strong and adequate programming model with
respect to concurrent and distributed behaviour. The communications between
distributed entities often take place with a weak semantics. For instance in Java
RMI (Remote Method Invocation), the framework does not specify if the servers
are executing the incoming calls in parallel or one after another. In C, C# and
Java, the concurrency primitives are very low level, with a recognised difficulty to
master the correctness of programs, even at the level of a simple, non-distributed
program. When you put the two together, distribution and concurrency, the com-
position does not hold a clear, easy to grasp, semantics. One has to deal with
the complexity of such under-specified features, and the behavioural combina-
tory explosion that occurs when put together.

Moreover, managing parallel and distributed software is now a basic require-
ment of any programming language. The slowing down of Moore’s law, leading
to the advent of multi-core processors, is dramatically increasing the pressure on
programmers to introduce parallel decomposition in their applications, leading to
both distribution and concurrency. Such solution-domain parallelism amplifies the
intricacy of code-level behaviour, leading to even vaguer behaviour. The approach
taken here is to limit concurrency to concurrent accesses between remote loca-
tions: visible concurrency is limited to the one entailed by distribution. However,
at the middleware level, several threads have been introduced to introduce paral-
lelism, with the application still behaving as if the activity was both the unit of
distribution and of concurrency (each active object runs a single service thread).

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 133–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



134 D. Caromel, L. Henrio, and E. Madelaine

These shortcomings prevent us from having a clear semantics at the level of
programming the distributed interactions, and in turn preclude from having pre-
cise semantics at the component level. When it comes to composite components,
composing primitive components made of programming-language code, the se-
mantics issue is even tenser as the imprecision composes into more imprecision.
How would it be possible to promote properties at the level of compositions,
when we do not have them straight at the inner level? This article advocates the
strong need of a simple and sound programming model integrating distribution,
concurrency, and parallelism, in order to benefit from soundness and properties
at the level of distributed components.

This paper starts by presenting an active object model featuring asynchronous
communications with first-class futures — futures that can be transmitted be-
fore having their values. This model is implemented in the ProActive Parallel
Suite, available as Open Source within the ObjectWeb Open Source community
(http://proactive.ow2.org). An interactive environment, developed as Eclipse
plugins, eases the visualisation and control of applications. The next section
presents ASP, a generalisation of the ProActive model. Together with a formal
semantics, theoretical results on determinacy are detailed. The following section
introduces asynchronous distributed components that rely on active objects:
primitive components are made of active objects, and the membranes of com-
posite are specified and implemented with active objects as well. An on-going
work aiming at defining a joint European component model for Grid comput-
ing (GCM) will be summarised. Finally, the paper concludes with challenges at
hand with component systems, especially work related to capturing behavioural
properties: current work aiming at specifying the architectural and behaviour of
components, and guaranteeing their correct behaviour by model-checking meth-
ods will be introduced.

Along the course of this article, we would first like to demonstrate how impor-
tant it is to rely both on practical and theoretical approaches in order to tackle
the complexity of today’s large-scale distributed systems. The second statement
has more to do with a technical orientation: active objects provide a powerful
sound foundation for both understanding and programming distributed compo-
nent systems.

2 Asynchronous Distributed Objects

In order to deal with components, a precise and adequate programming model
is needed to adequately build primitive programs to be used as building blocks
at composition time. The paper [5] defines ProActive, an object-oriented pro-
gramming model for concurrent, parallel, and distributed systems.

2.1 Principles

We summarise here the key features of the ProActive programming model:

– asynchronous calls, for the sake of hiding latency and decoupling client-server
interactions,
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– first-class futures, for the sake of passing the results of asynchronous calls
to other distributed objects without forcing useless synchronisations, also
avoiding deadlocks – futures are indeed single assignment variables,

– wait-by-necessity, for the sake of using as much as possible data-flow syn-
chronisations of parallel entities,

– collective synchronisation operations, for the sake of manipulating synchro-
nisations as first-class entities, e.g., blocking on the availability of all futures
in a vector,

– service primitives, for the sake of programming in a flexible manner the inner
synchronisation of activities,

– typed asynchronous groups, for the sake of enabling asynchronous remote
method invocations on a group of entities, also a way towards parallel com-
ponent invocation.

The communication paradigm of ProActive is strongly similar, and somehow
inspired by, the actor paradigm [2]. Indeed, active objects communicating by
requests and serving them one after the other are similar to actor communicat-
ing by messages received in a mailbox and treating them one after the other.
More precisely, the active object paradigm can be described as follows. Only
active objects can be referenced remotely. A method call on an active object
is asynchronous; such a call is stored as a request in a request queue. After a
while the active object decides to serve the request1 and evaluates a result for it.
While the result is not computed yet, a future [24,31] represents the result of an
asynchronous method call. When the result has been computed, it is returned
to all the objects holding a reference to the corresponding future.

More recently, programming paradigms relatively similar to ProActive have
been developed in different contexts, among them one can distinguish Creol
[25,19] and AmbientTalk [20]. Also, X10 [18] can be considered as closed to the
ProActive language except that activities in X10 are multi-threaded and X10
does not support futures to our knowledge; whereas ProActive is conceived to
have mono-threaded activities which ensures most of its properties and simplifies
the programming of active objects.

The features above propose a disciplined way to manage parallelism, and many
user operations are achieved in a parallel way without the burden to explicitly
build complex synchronisations. Nevertheless, the programming model features
a few fundamental properties:

– no interleaving within user code, each primitive component (resp. each active
object) is mono-threaded, both concurrency and distribution are the result
of the component (resp. active object) composition.

– no sharing of objects between concurrent threads,
– no call-backs, they are replaced by the use of future, which makes programs

better structured

1 Each active object either specifies its service policy using the Serve primitive, or
uses the default FIFO policy.
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Parallelism of operations seems to conflict with the property of not having
interleaving within user code. Indeed, parallelism usually leads to interleaving
of actions when conducted within a single address space. However, we rely here
on the design and implementation of parallel operations within the middleware
that have no consequences, whatsoever, for the user. This parallelism is risk-
free, intrinsically acting towards confluence, because it does not produce any
observable interleaving. Several harmless optimisations are indeed located at
various places within ProActive’s implementation, e.g., group communications,
future updates with automatic continuation. They are increasingly becoming
more important with the advent of multi-core processors.

2.2 Environment

The ProActive implementation comes with an environment for deploying, mon-
itoring, and managing distributed applications, based on active objects. For ex-
ample, Fig. 1 shows a screenshot of IC2D, an application for monitoring the
execution of a ProActive application.

Fig. 1. Screenshot: monitoring a distributed application

Fig. 2 shows a screenshot of the ProActive scheduler. The scheduler is an
application written in ProActive that is also part of the ProActive environ-
ment, and can be used as a tool administrating the deployment and the main-
tenance of a list of jobs over various platforms and infrastructures (Grid or P2P
infrastructure).
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Fig. 2. Screenshot: ProActive scheduler

3 Calculus: Asynchronous Sequential Processes (ASP)

The ASP [17,16] calculus provides a generalisation of the ProActive program-
ming model. It relaxes a few implementation decisions, and provides under-
standing, and proofs of confluence and determinacy for asynchronous distributed
systems. The ASP calculus, is an extension of the impς-calculus [1,23] with two
primitives (Serve and Active) to deal with distributed objects.

We present here the semantics of ASP in a slightly different version – but
equivalent – from our previous publications [17,16]. This new version mainly
comes with a more compact syntax. The resulting semantics is more compact
than the one presented in our previous publications, but a little further from the
implementation concerns. We hope this shorter version will make the semantic
rules easier to read. The equivalence between the two versions is trivial, because
this new semantics expresses, almost exactly, the same rules on a different syntax.

Concerning related works, futures have been formalised in several settings,
generally functional-based [29,19,21]; those developments rely on explicit
creation of futures by a thread creation primitive, in a concurrent but not
distributed setting. Research on languages ensuring confluence has a long history,
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the results which are the closest to the ones on ASP are probably the Process
Networks [26] and linear types [27].

3.1 Syntax

We first define a syntax for ASP programs: the terms defined as source code that
correspond to the ProActive code are defined in Fig. 3, excluding the underlined
terms. Compared to the impς-calculus we added a parameter to methods; we
added a primitive Active for creating an activity (i.e., a location containing: an
active object, some passive ones, plus a queue for incoming requests); we also
added Serve that filters the unserved receive requests (that are in the queue),
and takes the first one corresponding to the filter given as argument.

a, b ∈ L ::= x variable,

| [li = bi; mj = ς(xj , yj)aj ]
i∈1..n
j∈1..m object definition,

| a.li field access,
| a.li := b field update,
| a.m(b) method call,
| clone(a) shallow copy,
|Active(a,m) activates a. m defines the service policy
|Serve(M) serves a request among

the set M of method labels,
M = {m1, . . . , mk}

| ι location in store
|α activity reference

| f future reference

Fig. 3. Sequential syntax for ASP (underlined terms only occur at run-time)

In the following, li range over field labels, mj over method names, xi and yi

over variables, and a and b over terms.
Run-time syntax is also shown in Figure 3, but this time both underlined

and non-underlined terms are included. Dynamically, one can refer to existing
futures, activities or locations in a local store. Thus, we add three new distinct
name spaces: activities (α, β, γ ∈ Act), locations (ι), and futures (fi), and we let
run-time syntax refer to them. Note that locations are local to an activity.

Substitution of variables by locations are denoted: {{xi ← ι′i∈1..n
i }}, and have

the usual semantics (i.e., the substitution of the variable x do not enter the
binder ς(x, t) or ς(t, x)).

3.2 Store and Values

An object is said to be entirely evaluated if it is of the form: [li = ιi; mj =
ς(xj , yj)aj ]i∈1..n

j∈1..m], that is all its field have been evaluated and allocated in the
store. o range over evaluated objects. A value is an evaluated object, a reference
to a future, or a reference to an activity: v ::= o | α | fi
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A store is a mapping from locations to values: (ιi → vi)i∈1..p, it is used to
store objects, and modify them. It allows the expression of the imperative nature
of ASP. We let σα, σβ , . . . range over stores.

Let σ + σ′ update the values defined in σ′ by those defined in σ. It is defined
on dom(σ) ∪ dom(σ′) by

(σ+σ′)(ι) = σ(ι) if ι ∈ dom(σ)
σ′(ι) otherwise

Let θ ::= {{ιi ← ι′i∈1..n
i }} range over renaming of locations; σ{{ιi ← ι′i∈1..n

i }} is
the store σ where each occurrence of ιi is replaced by ι′i.

We define a function Merge which merges two stores (it creates a new store,
merging independently σ and σ′ except for ι which is taken from σ′):

Merge(ι, σ, σ′) = σ′θ + σ
θ = {{ι′ ← ι′′ | ι′ ∈ dom(σ′) ∩ dom(σ)\{ι}, ι′′ fresh}}

copy(ι, σ) designates the deep copy of store σ starting at location ι. That is the
part of store σ that contains the object σ(ι) and, recursively, all (local) objects
that it references.

Moreover, the following operator copies the part of the store σ starting at the
location ι at the location ι′ of the store σ′:

Copy&Merge(σ, ι ; σ′, ι′) � Merge(ι′, σ′, copy(ι, σ){{ι← ι′}})
Those operators are used in the semantics for ASP given in Table 2.
For simplicity of notations, ι0 is a reserved location in each store where the

active object of the activity is stored.

3.3 Structure of Activities

When a request is finished, a result has been calculated for it. The corresponding
value is associated to the future identifier for the request: fi → ι means that ι
is the location of the value associated with the future f . We denote by F the
list of computed futures; it is a list mapping future identifiers to value locations:
F ::= (fi → ιi)i∈I where I ⊆ N.

A current request is a term being evaluated together with the future to which
it will be associated: a→ fi means that a is being evaluated, and when a result
will be computed it will be associated with the future fi. C is a list of current
requests: C ::= (ai → fi)i∈J where J ⊆ N.

A pending request is a request that has been received but not served yet. It
is denoted by [mj ; ι; fi] and consists of:

– the name of the target method mj (invoked method),
– the location of the argument passed to the request ι,
– the future identifier fi which will be associated to the result.

R is a list of current requests: R ::= [mi; ιi; fi]i∈K where K ⊆ N.
:: denotes the concatenation of lists, and appending an element to a list.
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Fig. 4. Example of an ASP parallel configuration

An activity is simply formed of a name (α), a store (σα), and a request list
containing finished, current, and pending requests (F · C · R) denoted by S.

S ::= F · C ·R
A parallel configuration is a set of activities:

P, Q ::= α[Sα; σα] ‖ β[Sβ ; σβ ]‖ . . .

Each future identifier is unique: it either belongs to the computed, current, or
pending requests of a unique activity. Activities are unique too: there is a single
activity with a given name. In practice the unicity of future (resp. activity)
identifiers can be ensured by choosing as identifier a composition of the creator
of the future2 (resp. of the activity) with a unique local identifier. Note that
activity names and future identifiers only appear at runtime and are used as
references to activities or futures, e.g., for sending a request to an activity or
receiving a reply from a future.

Configurations are identified modulo the reordering of activities. Figure 4
shows a parallel configuration of the ASP calculus. It shows two activities
2 To better identify the request one might rather choose the identifier of the activity

that treats the request.
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α and β, bold ellipses are active objects, squares at the bottom are the requests
(S), the bold square being the current requests (C), on the left are computed
futures (F ), and on the right pending requests (R). Future references are dia-
monds (and dotted arrows), whereas activity references are bold arrows, simple
arrows are local references.

3.4 Contexts

Reduction contexts are expressions with a single hole (•) expressing the part in
the term where the reduction occurs. We define three reduction contexts:

– one that gives the reduction point in a sequential term,
– one that picks one of the futures an activity has computed, abstracting away

the rest of the request list,
– one that gives the (unique) reduction point in the request list.

We first define sequential reduction contexts, allowing to pick the part of a
term that is to be evaluated: they simply express a left-to-right call by value
evaluation:

R ::= • | [li = ιi, lk = R, lk′ = bk′ ; mj = ς(xj , yj)aj ]
i∈1..k−1,k′∈k+1..n
j∈1..m

|R.m |R.m(b) | ι.m(R) |R.l := b | ι.l := R| clone(R)| Active(R, m)

A future value context extracts one future value, corresponding to a finished
request:

Rf ::= F :: • ::F ′ · C ·R
A parallel reduction context extracts the current request actually served.

Rc ::= F · (R→f)::C · R

Actually, several requests are being served at the same moment, but only
one is active. More precisely, when during the service of a request, a Serve
primitive is encountered, the service is interrupted, and is stored and a new
request, specified by the Serve primitive is served. The former current request
will be restored when the new current one will be finished. The single point of
reduction inside an activity is Rc.

We denote byR[a] the term obtained by syntactically replacing the hole in the
reduction context R, by the term a; note that this substitution allows variables
to be captured by a binder. Similarly, we use Rf [f � ι], and Rc[a].

3.5 Sequential Semantics

Table 1 recalls the semantics of the impς-calculus, in the form of a small-step
operational semantics.

It has been slightly modified to take into account the second parameter of
methods. The semantics do not have to take into account reduction contexts
because they will already be used in the parallel semantics.
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Table 1. Sequential reduction

storealloc:

o is of the form [li = ιi; mj = ς(xj , yj)aj ]
i∈1..n
j∈1..m] ι �∈ dom(σ)

(o, σ) →S (ι, {ι → o} :: σ)

field:

σ(ι) = [li = ιi; mj = ς(xj , yj)aj ]
i∈1..n
j∈1..m k ∈ 1..n

(ι.lk, σ) →S (ιk, σ)

invoke:

σ(ι) = [li = ιi; mj = ς(xj, yj)aj ]
i∈1..n
j∈1..m k ∈ 1..m

(ι.mk(ι′), σ) →S (ak{{xk ← ι, yk ← ι′}}, σ)

update:

σ(ι) = [li = ιi; mj = ς(xj , yj)aj ]
i∈1..n
j∈1..m k ∈ 1..n

o′ = [li = ιi; lk = ι′; lk′ = ιk′ ; mj = ς(xj , yj)aj ]
i∈1..k−1,k′

∈k+1..n
j∈1..m

(ι.lk := ι′, σ) →S (ι, {ι → o′} + σ)

clone:

ι′ �∈ dom(σ)

(clone(ι), σ) →S (ι′, {ι′ → σ(ι)} :: σ)

3.6 An Operational Semantics for the ASP Calculus

This section defines the semantics of the ASP calculus. The rules of Table 2
present the formal operational small step semantics of ASP, we explain briefly
each of the rules below:

local performs a local reduction: each activity can perform a step of reduction
as specified in Table 1, except that a reference to a future cannot be cloned.

newact creates a new activity. m is the service method (first method executed).
For simplicity, and because it is not restrictive in practice, m should have no
argument. One could specify for example a FIFO service policy as follows:

Repeat(a) � [repeat = ς(x)a; x.repeat()].repeat()
FifoService � Repeat(Serve(M))

whereM is the set of all method labels defined by the concerned active object.
Note that the reference to the created activity (γ) is stored in a new location,
and thus σα(ι) is still a passive object.

request sends a new request to an active object. It sends a deep copy of the
parameter (at location ι′), and associates a new future f to this request.serve
serves a new request. The current reduction is stopped and stored into the list
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Table 2. Parallel reduction(unused variables are grayed)

local:

(a, σ) →S (a′, σ′) �ι,
`
a = clone(ι) ∧ σ(ι) = fi

´

α
ˆ
Rc[a], σ

˜
‖ P −→ α

ˆ
Rc[a

′]; σ′
˜
‖ P

newact:

γ fresh activity ι′ �∈dom(σ) σ′={ι′ �→γ}::σ σγ=Copy&Merge(σ, ι ; ∅, ι0)

α
ˆ
Rc[Active(ι, m)]; σ

˜
‖ P −→ α

ˆ
Rc[ι

′]; σ′
˜
‖ γ

ˆ
∅ · (ι0.m([])�∅) · ∅; σγ

˜
‖ P

request:

σα(ι) = β ι′′ �∈ dom(σβ) f fresh future ιf �∈ dom(σα)
σ′

β = Copy&Merge(σα, ι′ ; σβ , ι′′) σ′

α = {ιf �→f}::σα

α
ˆ
Rc[ι.m(ι′)]; σα

˜
‖ β

ˆ
S; σβ

˜
‖ P −→ α

ˆ
Rc[ιf ]; σ′

α

˜
‖ β

ˆ
S::[m; ι′′; f ]; σ′

β

˜
‖ P

serve:

m ∈ M ∀[m′; ι′; fl] ∈ R, m′ /∈ M

α
ˆ
F · R[Serve(M)]�fi::C · R::[m; ι; fk]::R′; σ

˜
‖ P −→

α
ˆ
F · ι0.m(ι)�fk::R[[]]�fi::C · R::R′; σ

˜
‖ P

endservice:

ι′ �∈ dom(σ) σ′ = Copy&Merge(σ, ι ; σ, ι′)

α
ˆ
F · ι�f ::C · R; σ

˜
‖ P −→ α

ˆ
F ::f� ι · C · R; σ′

˜
‖ P

reply:

σα(ι) = f σ′

α = Copy&Merge(σβ, ιf ; σα, ι)

α
ˆ
S; σα

˜
‖ β

ˆ
Rf [f � ιf ]; σβ

˜
‖ P −→ α

ˆ
S; σ′

α

˜
‖ β

ˆ
Rf [f � ιf ]; σβ

˜
‖ P

request where α = β:

σ(ι)=α ι′′, ιf �∈ dom(σ) f fresh future
σ′=Copy&Merge(σ, ι′ ; {ιf �→f}::σ, ι′′)

α
ˆ
Rc[ι.m(ι′)]; σ

˜
‖ P −→ α

ˆ
Rc[ιf ]::[m; ι′′; f ]; σ′

˜
‖ P

reply where α = β:

σ(ι) = f σ′ = Copy&Merge(σ, ιf ; σ, ι)

α
ˆ
Rf [f � ιf ]; σ

˜
‖ P −→ α

ˆ
Rf [f � ιf ]; σ′

˜
‖ P

of current requests (future fi, expression R[[]]), and the oldest request satisfying
the labels specified in M is treated (future fk, method m). If no such request is
found, the activity is stuck until a matching request is found in the request queue.

endservice occurs when the evaluation of a request is finished. It associates
in the list of computed results, the current request response to the current future.
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The evaluation that had been stopped at the beginning of the request is auto-
matically restored (the second current request becomes first).

reply updates the value of a future. It can occur at any time provided an
activity refers to a future for which the value has been computed by an(other)
activity.

Note that futures remain in the F list, even when all the references to the future
have been updated. No notion of garbage collection has been specified for futures
in ASP, but it would be easy to adapt existing garbage collection techniques
here.

3.7 Properties of the ASP Calculus

Overall, the ASP calculus provides a framework for understanding asynchronous
distributed objects, and expressing the various potential implementation strate-
gies that can be implemented in an active object middleware like ProActive. It
allows the developer to study which implementation choices can be made without
compromising the strong properties of determinacy ensured by the model.

Here we call determinism the fact that a program will always produce the same
result (the same configuration), that is no concurrent actions have an impact on
the program behaviour. More than determinism properties, our objective is to
clearly identify the interferences that can be source of non-determinism. Conse-
quently and more generally, we call partial confluence properties, the properties
stating in which conditions two executions of the same programs will lead to the
same result, i.e., to the same configuration. Determinism relies on a notion of
equality between configurations: configurations are identified modulo alpha con-
version3, and modulo the dereferencing of futures already calculated (roughly,
the same configuration before and after the application of a reply rule is consid-
ered as identical).

Here are the main properties that were disclosed thanks to the formal ASP
model:

– future updates can occur at any time, in any order, as such the delivery of
replies can be implemented with an infinity of strategies, in any order,

– the execution of a system is characterised by the order of request senders.

Those properties are further used in order to characterise several sets of de-
terministic types of programs:

– determinacy of programs based on a dynamic property: a non-deterministic
program is a program which can lead to a point where two activities can
send at the same time a request to the same third activity;

– determinacy of programs communicating over trees (i.e., programs for which
the dependence between activities form a tree).

3 Alpha-conversion is applied on futures and variables, and activity names are chosen
deterministically to simplify the correct formulation of confluence properties.
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The determinism properties clearly result from the absence of shared memory
between active objects, and the single-threaded nature of ASP. The interested
reader could refer to [16] for a detailed descriptions of ASP properties, details
on the equivalence relation on ASP terms, and some proofs.

The difficulty when trying to prove properties on specific programs is to stat-
ically approximate activities, method calls, and potential services. Shifting to
components will provide a statically defined topology: the component structure
defines the distribution/concurrency structure.

These properties have massively been used in the development of the ProAc-
tive library, for example when implementing future update strategies – as futures
can be updated at any time, or fault-tolerance mechanism – as the above prop-
erties give a minimal characterisation of a given execution. Globally, the impact
of the formal definition and proven properties of the ASP calculus upon the real
implementation of the ProActive middleware has proven to be very strong, and
influenced both correctness and efficiency.

4 Components

We would like to define a component in a broad sense as:

a software module, with a standardised description of what it needs
and provides, its accepted parameters for configuration, and to be ma-
nipulated by tools for composition and deployment.

The GCM (Grid Component Model) has been defined in [11,30] by the Core-
Grid European Network of Excellence. The GCM is defined as an extension of the
Fractal [12] component model, and provides the same basic structure (Figure 5).
The main additions that have been made to Fractal in the GCM are 1-to-many

Fig. 5. A Fractal component
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and many-to-1 communications, distribution, adaptive component control, and
autonomic support.

A reference implementation of the GCM has been implemented in ProActive,
overall the components depict the following characteristics:

– Primitive components featuring server and client interfaces,
– Composite components, allowing the hierarchical composition of primitive

and composite components to build large and structured configurations,
– Interface specification including external languages such as: Java Interface,

C++ .h, Corba IDL, WSDL, etc.
– Specification of Grid aspects such as: parallelism, distribution, virtual nodes,

performance needs, QoS, etc.
– Multicast and Gathercast interfaces to manipulate parallel behaviours at the

level of interface specification rather than hidden in the code,
– Component controllers, i.e., consider a controller as a sub-component, to

provide dynamic adaptation of the component control,
– Autonomic components, the ability for a component to adapt to situations

without relying on the outside.

Moreover, the GCM favors asynchronous method calls. By default, commu-
nications to the server interfaces are supposed to be non-blocking, as proposed
in the ProActive implementation. Even in the case of methods returning non-
void values, the caller is not supposed to be blocked during the method service.
Together with the first-class futures, described above in the framework of ProAc-
tive and ASP, it provides the capacity to build both structured and asynchronous
component configurations.

In the ProActive/GCM implementation, a primitive component is an active
object together with passive ones, meaning that the component is the unit of
concurrency and distribution. Indeed, as identified before, one of the difficulties
towards deterministic distributed programs was to statically approximate activi-
ties, topologies, distributed method calls, and services. Shifting to configurations
defined through components, and providing a statically defined topology, makes
this static approximation a lot easier, very precise (e.g., activities and topolo-
gies are known exactly), and very practical. Indeed, the programmer has usually
a clear idea about his program topology, therefore trying to discover it makes
things unnecessarily complex and non-decidable. Instead of using the topology
provided by the programmer, we take a stand to help the programmer achieve
what he is willing to do, rather than trying to tell him from scratch the proper-
ties of his programs. Concurrency and behaviour are much easier to analyse as
the distribution and remote communications are explicit: distribution is given
by the component structures, and remote communications are exactly the ones
following component bindings. Such explicitly-defined topology and dependen-
cies also help a lot when analysing the behaviour of a component in isolation
from its environment, and enhance the reusability of components.

Using the properties proved on the ASP calculus, it becomes possible to iden-
tify deterministic components in practice, first based on the detection of deter-
ministic primitive components, further with the characterisation of deterministic
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composition of primitive components. Overall, components provide a convenient
abstraction for statically ensuring determinism.

5 VerCors: Behavioural Specification of Distributed
Components

The effort described in [9,10] aims at behavioural specification and verification of
asynchronous distributed systems; particularly, it deals with asynchronous dis-
tributed components based on active objects. That includes dealing with ProAc-
tive/GCM components as defined in the section above, specifying the structure
and the visible behaviour of components, and generating behavioural models.
The objective is then to check properties on this behaviour, using model-checking
techniques.

The behavioural model generation is based on compositional modelling of
primitive components using Parameterized Networks of Labelled Transition Sys-
tems (pNets [7,6]). pNets is a new model, created as a low-level formalism for
expressing behavioural semantics of distributed systems, and as a compact and
powerful internal format for verification frameworks. It has a hierarchical struc-
ture, where basic behaviours are (parameterized) labelled transition systems,
and composition of subsystems is expressed by generic constructions in term of
(parameterized) synchronisation vectors. Parameters are used to express value
passing messages, but also parameterized topologies of systems. As such the
pNets model unifies and extends the value-passing CCS of Ingolfsdottir and
Lin [28], and the synchronisation networks of Arnold and Nivat [4]. In [6], we
have shown how to use pNets for building models of active objects and of dis-
tributed components. The models define abstractions for the domains of the
application parameters. This way, the models are suitable for use with various
model-checking engines, either directly with engines able to deal with parame-
terized systems, or with finite-state model-checkers. The latter requires another
abstraction of parameters, in which we define finite partitions of the domains.
through another abstraction, using finite partitions of parameter domains, per-
mitting the generation of finite state-spaces.

In a nutshell, while relying heavily on the results from the ASP formalisation,
the approach adopted to achieve successful specification is rather practical. We
use several sources of information from which we build the behavioural mod-
els: architecture described through ADL (Architecture Description Language)
or through graphical diagrams, and behaviour using State Machine diagrams or
static analysis of program source code.

The key features and properties coming from ASP that we model, and use, in
the behavioural specification framework are:

– the synchronisation by wait-by-Necessity,
– the active objects without shared memory,
– the lack of user- and code-level concurrency and parallelism,
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Fig. 6. VerCors Component Editor

– the atomicity of the rendez-vous protocol,
– the insensitiveness of programs w.r.t. distribution/location of activities

within address spaces (JVMs).

On the practical side, we are building a specification and verification toolset
for Fractal/GCM component systems called VerCors [8], that is freely available
for research purposes in our website4, and that is able to handle mid-size ex-
amples. For example in [13] we show how to find behavioural problems, and
how to prove properties for a distributed cashdesks system built from over 15
components in 4 or 5 hierarchical layers, with a dozen parameter variables. At
specification level, the VerCors platform includes diagram editors (Figure 6)
for the architectural and behavioural definition of components [3]. From these
diagrams, we build pNet models reflecting the behavioural semantics of the com-
ponents in terms of communication between components; this includes control-
and data-flow within components. This approach this allows us to build and to
analyse behaviours of many levels of the ProActive/GCM framework; from ac-
tive objects and hierarchical components, to non-functional features (deployment
and reconfiguration) and group communication.

The model-checking part is done using existing and efficient engines (currently
from the CADP toolset [22]). We generate explicit state-spaces both in a dis-
tributed and in a by-necessity (on-the-fly) manner. The properties addressed are
temporal logic formulas, potentially including all safety properties in the regular
μ-calculus. Simpler properties are directly accessible to the non-specialist user,
4 http://www.inria.fr/sophia/oasis/index.php?page=vercors

http://www.inria.fr/sophia/oasis/index.php?page=vercors
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including deadlock analyses, or reachability of predefined sets of events, typically
deployment errors.

We are currently in the process of designing a specification language called
Java Distributed Components (JDC)[15]. From JDC, we will allow the generation
of both the behavioural models and the skeleton code of the implementation of
components. This ensures, by construction, the correctness of the specification
relatively to the implementation, and relieves us partially from the imprecision
entailed by static analysis techniques.

We are also working on the inclusion of first class futures [14], and on the
implementation in the platform of some specific infinite-state model-checking
algorithms.

6 Conclusion: Practice in the ProActive Middleware

The ProActive middleware proposes a full-fledged environment with the pro-
gramming of primitive code, the composition of such codes into composite com-
ponents, the deployment on various practical infrastructures, and Graphical User
Interface (Eclipse Plugin) to help programming, debugging and testing.

One of ProActive’s key features is the combination of systematic asynchronous
method-call, together with wait-by-necessity and first-class futures. At the level
of components, it translates into the strong properties of large assemblage not
being blocked by synchronous calls.

Within the GCM, collective operations, so far achieved at the level of pro-
gramming, are being abstracted into elements of the interface. This shift first
represents an achievement in terms of readability, and reuse. Second, functional
methods can be used in various contexts, standard non-collective code and at
the same time in powerful group interactions. Moreover, it also achieves an im-
portant rising with respect to the level of abstraction used by the programmer:
interface versus the old API style for controlling parallelism, multicasting and
synchronisations. Finally, it permits typing of collective behaviour.

From an historical stand, modules then objects then components, components
could be viewed as moving backward in programming evolution. We are moving
to a more static topology, while we have shifted from module (static assemblage)
to objects where the inter-connection between pieces of code is rather purely
dynamic. With components, the interconnection is static, and can only move
back to dynamicity using controllers at execution, like binding controllers. In
other words, only some specific entities of the architecture authorises to master
dynamicity. From this point of view, components can be viewed as dynamicity
under control!

Why does it scale? Thanks to a few key features like typed, asynchronous
(connection-less) communications – somehow RMI+JMS unified, with messages
rather than long-living interactions.

Why does it compose? First, because it scales! Indeed one would not be
able to scale up to very large component configurations without the benefits
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of asynchronous method invocations. Second, the model composes because of
its typed nature: remote method invocations typed with interfaces. One would
not be able to check large systems without some of the guaranties given by a
static type system. The absence of unstructured call-backs and ports makes a
tremendous difference with respect to verifying a component system.

As much as possible, we try to use static relations provided by component
configurations, avoiding a great deal of static analysis. We believe dynamicity
has to be mastered in the future with appropriate controllers, such as binding
controllers. As an envisioned perspective, specific properties demonstrated on
such controllers can be further used into a dynamically evolving system to prove
global properties needed in complex, adaptive reconfigurations.

To conclude, the strategy embraced for verifying real applications is to let
the user provide as much information as possible rather than trying to discover
non-decidable facts about the programs. We believe that it is impossible to tell
the user what he is doing, but instead it is possible to verify automatically on
his behalf what he thinks he is doing. Rather checking than guessing what the
user is doing, that could summarise our current approach.

This paper presented ASP, a formal model to check general properties at the
language level, VerCors, a behavioural specification platform allowing to model-
check properties on specific applications, and ProActive/GCM, a middleware
for active objects and distributed component implementing the corresponding
programming model and benefiting from those formal specifications and verifi-
cations. Globally, our objective is to provide safe and efficient distributed hier-
archical components that are easy to program, and to be able to guarantee the
behaviour both of the middleware, and of the applications.
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