
Frank S. de Boer
Marcello M. Bonsangue
Susanne Graf
Willem-Paul de Roever (Eds.)

 123

L
N

C
S

 5
3

8
2

6th International Symposium, FMCO 2007
Amsterdam, The Netherlands, October 2007
Revised Papers

Formal Methods
for Components
and Objects

Lecture Notes in Computer Science 5382
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Frank S. de Boer Marcello M. Bonsangue
Susanne Graf Willem-Paul de Roever (Eds.)

Formal Methods
for Components
and Objects
6th International Symposium, FMCO 2007
Amsterdam,TheNetherlands,October 24-26, 2007
Revised Papers

13

Volume Editors

Frank S. de Boer
Centre for Mathematics and Computer Science, CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: F.S.de.Boer@cwi.nl

Marcello M. Bonsangue
Leiden University, Leiden Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: marcello@liacs.nl

Susanne Graf
VERIMAG
2Avenue de Vignate, Centre Equitation, 38610 Grenoble-Gières, France
E-mail: Susanne.Graf@imag.fr

Willem-Paul de Roever
Christian-Albrechts University Kiel
Institute of Computer Science and Applied Mathematics
Hermann-Rodewald-Straße 3, 24118 Kiel, Germany
E-mail: wpr@informatik.uni-kiel.de

Library of Congress Control Number: 2008940690

CR Subject Classification (1998): D.2, D.3, F.3, D.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-92187-7 Springer Berlin Heidelberg NewYork
ISBN-13 978-3-540-92187-5 Springer Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12582655 06/3180 5 4 3 2 1 0

Preface

Large and complex software systems provide the necessary infrastructure in all
industries today. In order to construct such large systems in a systematic manner,
the focus in development methodologies has switched in the last two decades from
functional issues to structural issues: both data and functions are encapsulated
into software units which are integrated into large systems by means of various
techniques supporting reusability and modifiability. This encapsulation principle
is essential to both the object-oriented and the more recent component-based
software engineering paradigms.

Formal methods have been applied successfully to the verification of medium-
sized programs in protocol and hardware design. However, their application to
the development of large systems requires more emphasis on specification, mod-
eling and validation techniques supporting the concepts of reusability and mod-
ifiability, and their implementation in new extensions of existing programming
languages like Java.

The 6th Symposium on Formal Methods for Components and Objects was
held in Amsterdam, The Netherlands, during October 24–26, 2007. It was real-
ized as a concertation meeting of European projects focussing on formal methods
for components and objects. This volume contains the contributions submitted
after the symposium by the speakers of each of the following European IST
projects involved in the organization of the program jointly with the bilateral
NWO/DFG project MobiJ:

– The IST-FP6 project Mobius aiming at developing the technology for estab-
lishing trust and security for the next generation of global computers, using
the proof-carrying code paradigm. The contact persons are Martin Hofmann
(Ludwig Maximilians University Munich, Germany) and Gilles Barthe
(IMDEA Software, Spain).

– The IST-FP6 project SelfMan on self-management for large-scale distributed
systems based on structured overlay networks and components. The contact
person is Peter Van Roy (Université Catholique de Louvain, Belgium).

– The IST-FP6 project GridComp and the FP6 CoreGRID Network of Excel-
lence on grid programming with components. The contact person is Denis
Caromel (INRIA Sophia-Antipolis, France).

– The Real-time component cluster of the Network of Excellence on Embed-
ded System Design ARTIST. This cluster focuses on design processes and
architectures for real-time embedded systems. The contact person is Albert
Benveniste (INRIA / IRISA, France)

– The IST-FP6 project CREDO on modelling and analysis of evolutionary
structures for distributed services. The contact person is Frank de Boer
(CWI, The Netherlands).

VI Preface

The proceedings of the previous editions of FMCO have been published as
volumes 2852, 3188, 3657, 4111, and 4709 of Springer’s Lecture Notes in Com-
puter Science. We believe that these proceedings provide a unique combination
of ideas on software engineering and formal methods which reflect the expanding
body of knowledge on modern software systems.

Finally, we thank all authors for the high quality of their contributions, and
the reviewers for their help in improving the papers for this volume.

September 2008 Frank de Boer
Marcello Bonsangue

Susanne Graf
Willem-Paul de Roever

Organization

The FMCO symposia are organized in the context of the project Mobi-J, a
project founded by a bilateral research program of The Dutch Organization
for Scientific Research (NWO) and the Central Public Funding Organization for
Academic Research in Germany (DFG). The partners of the Mobi-J projects are:
the Centrum voor Wiskunde en Informatica, the Leiden Institute of Advanced
Computer Science, and the Christian-Albrechts-Universität Kiel.

This project aims at the development of a programming environment which
supports component-based design and verification of Java programs annotated
with assertions. The overall approach is based on an extension of the Java lan-
guage with a notion of component that provides for the encapsulation of its
internal processing of data and composition in a network by means of mobile
asynchronous channels.

Sponsoring Institutions

The Dutch Organization for Scientific Research (NWO)
The Dutch Institute for Programming research and Algorithmics (IPA)
The Centrum voor Wiskunde en Informatica (CWI), The Netherlands
The Leiden Institute of Advanced Computer Science (LIACS), The Netherlands

Table of Contents

The MOBIUS Project

The MOBIUS Proof Carrying Code Infrastructure (An Overview) 1
Gilles Barthe, Pierre Crégut, Benjamin Grégoire,
Thomas Jensen, and David Pichardie

Certification Using the Mobius Base Logic . 25
Lennart Beringer, Martin Hofmann, and Mariela Pavlova

Safety Guarantees from Explicit Resource Management 52
David Aspinall, Patrick Maier, and Ian Stark

Universe Types for Topology and Encapsulation . 72
Dave Cunningham, Werner Dietl, Sophia Drossopoulou,
Adrian Francalanza, Peter Müller, and Alexander J. Summers

COSTA: Design and Implementation of a Cost and Termination
Analyzer for Java Bytecode . 113

Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and
Damiano Zanardini

The GridCOMP Project

Active Objects and Distributed Components: Theory and
Implementation . 133

Denis Caromel, Ludovic Henrio, and Eric Madelaine

The SELFMAN Project

Self Management for Large-Scale Distributed Systems: An Overview of
the SELFMAN Project . 153

Peter Van Roy, Seif Haridi, Alexander Reinefeld,
Jean-Bernard Stefani, Roland Yap, and Thierry Coupaye

The ARTIST Project

Causal Semantics for the Algebra of Connectors (Extended Abstract) . . . 179
Simon Bliudze and Joseph Sifakis

Multiple Viewpoint Contract-Based Specification and Design 200
Albert Benveniste, Benôıt Caillaud, Alberto Ferrari,
Leonardo Mangeruca, Roberto Passerone, and Christos Sofronis

X Table of Contents

The CREDO Project

Coordination: Reo, Nets, and Logic . 226
Dave Clarke

An Object-Oriented Component Model for Heterogeneous Nets 257
Einar Broch Johnsen, Olaf Owe, Joakim Bjørk, and Marcel Kyas

Coordinating Object Oriented Components Using Data-Flow
Networks . 280

Mohammad Mahdi Jaghoori

Author Index . 313

The MOBIUS Proof Carrying Code Infrastructure
(An Overview)

Gilles Barthe1, Pierre Crégut3, Benjamin Grégoire2, Thomas Jensen4,
and David Pichardie4

1 IMDEA Software, Madrid, Spain
2 INRIA Sophia-Antipolis Méditerranée, France

3 France Télécom, France
4 INRIA Rennes Bretagne, Fance

Abstract. The goal of the MOBIUS project is to develop a Proof Carrying
Code architecture to secure global computers that consist of Java-enabled mobile
devices. In this overview, we present the consumer side of the MOBIUS Proof
Carrying Code infrastructure, for which we have developed formally certified,
executable checkers. We consider wholesale Proof Carrying Code scenarios, in
which a trusted authority verifies the certificate before cryptographically signing
the application. We also discuss retail Proof Carrying Code, where the verification
is performed on the consumer device.

1 Introduction

MOBIUS [BBC+06] is a European integrated project developing basic technologies
to ensure reliability and security in global computers formed of a host of Java-enabled
devices, such as phones, PDAs, PCs, which provide a common runtime environment for
a vast number of mobile applications. Its aim is to give users independent guarantees
of the safety and security of mobile applications, using the concept of security through
verifiable evidence emphasized by the Proof Carrying Code (PCC) paradigm [Nec97].
The fundamental view behind PCC is that mobile code components come equipped with
a certificate that can be checked efficiently and independently by the code consumer to
ensure that that downloaded components issued by the producer respects its policy.

PCC complements standard security infrastructures such as PKI, which only guaran-
tee the origin and the integrity of code, and makes an appropriate basis for security of
global computers; however, there remain significant challenges to generalize its use in
security architectures for global computing, in particular:

– Need for comprehensive policies: PCC has mostly been used to enforce safety
properties of applications, including type safety, and memory management safety.
One goal of the MOBIUS project is to show the adequacy of PCC for enforcing
basic security policies such as non-interference and resource control, and for the
verification of functional properties of applications.

– Need for enhanced PCC tools: programming logics and type systems are the two
basic enabling technologies for PCC. However, developing programming logics
and type systems in the context of a full-blown, object-oriented, programming

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 1–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 G. Barthe et al.

language such as Java raises a number of challenging issues about efficiency,
scalability, and trustworthiness of the PCC infrastructure itself. One goal of the
MOBIUS project is to develop efficient and scalable mechanisms to generate and
to check certificates, and to prove formally that the security-critical part of the PCC
infrastructure is correct.

The purpose of this article is to present intermediate achievements of the project with
respect to its goal of achieving efficient and trustworthy PCCs tools. We consider two
scenarios, wholesale and retail Proof Carrying Code, and detail for each scenario how
to achieve reliable certificate checking.

2 Proof Carrying Code

The purpose of this section is to recall existing approaches to Proof Carrying Code, and
to present the main characteristics of the MOBIUS approach.

2.1 Type-Based Proof Carrying Code

The most successful instance and widely deployed application of PCC technology
to date, namely the use of stackmaps in lightweight bytecode verification, uses type
systems as its enabling technology.

A primer on bytecode verification. Bytecode verification [Ler03] is a central element of
the Java security architecture. Its purpose is to check that applets are correctly formed
and correctly typed, and that they do not attempt to perform malicious operations during
their execution. To this end, the bytecode verifier (BCV) performs a structural analysis
and a static analysis of bytecode programs.

The structural analysis checks the absence of basic errors such as calling a method
that does not exist, jumping outside the scope of the program, or not respecting modifiers
such as final. While simple to enforce, these checks are important and failing to
enforce them may open the door to attacks [Gow04].

The second analysis is a static analysis of the program and is meant to ensure
that programs execute in adherence with a set of safety properties, and in particular
that values are used with their correct type (to avoid forged pointers). This second
pass of bytecode verification is implemented as a data-flow analysis using Kildall’s
algorithm [Kil73]. The analysis aims at computing solutions of data-flow equations
over a lattice derived from the subtyping relation between JVM types, and from a typed
virtual machine which operates on the same principles as the standard JVM except for
two crucial differences: the typed virtual machine manipulates types instead of values,
and executes one method at a time. In a nutshell, the algorithm manipulates so-called
stackmaps that store, for each program point, an abstract state (stack type) that is the
least upper bound of the abstract states that have been previously reached at this program
point. The stackmap is initialized to the initial state of the method being verified for
the first program point, and to a default state for the other program points. One step
of execution proceeds by iterating the execution function of the virtual machine over
the stackmap. A non-default state is chosen and the result of the execution of the typed

The MOBIUS Proof Carrying Code Infrastructure 3

virtual machine on this state is propagated to its possible successors (by taking pointwise
the least upper bound of the computed and stored abstract states types). Termination of
the analysis is guaranteed since the set of states does not have infinite ascending chains,
and the state stored in the history structure is increasing.

Lightweight bytecode verification. In the context of devices with limited resources,
applications are verified off-device and, in case of a successful verification, signed and
loaded on-device. Such a solution is not optimal in the sense that it leaves a crucial
component of the security architecture outside of the perimeter of the device.

In order to remedy this deficiency, there are several proposals for circumscribing
the trusted computing base to the device using on-device bytecode verification. The
KVM overcomes this deficiency by relying on on lightweight bytecode verification
(LBCV) [Ros03], a variant of bytecode verification whose objective is to minimize
computations by requiring that the program comes equipped with the solution to the
dataflow equations. Thus, the role of the lightweight verifier is confined to checking
that the solution is correct, which can be performed in one pass. More technically, a
certificate in lightweight bytecode verification is a function that attaches a stackmap to
each junction point in the program, where a junction point is a program point with more
than one predecessor, i.e., a program point where the results of execution potentially
need to be merged. Instead of performing the merging, a lightweight bytecode verifier
will merely verify that for each program point the stackmap computed by dataflow
analysis, using the stackmaps of its predecessors, is compatible with the stackmap
provided by the certificate, and continues its computation with the latter. In this way, a
lightweight bytecode verifier essentially checks that the candidate fixpoint is indeed
a fixpoint, and that it relates suitably to the program. Such a procedure minimizes
computations since one just needs to check that the stackmap is indeed a fixpoint.
This, as already mentioned, can be done in a single pass over the program, while
simultaneously computing a stackmap for program points that are not junction points.
Lightweight bytecode verification is sound and complete with respect to bytecode
verification, in the sense that if a program P equipped with a certificate c is accepted by
a LBCV, then P is accepted by a BCV, and conversely, if P is accepted by a BCV, then
there exists a certificate c (that can be extracted directly from the fixpoint computed by
the BCV) such that P equipped with the certificate c is accepted by a LBCV.

Although lightweight bytecode verification is currently limited to verifying basic typ-
ing and initialisation properties of downloaded code, there is technological potential for
verifying a much richer set of program properties that are useful to further secure a code.
Abstraction-carrying code (ACC) [APH05] is a generalization of bytecode verification
approach to PCC which is based throughout on the use of abstract interpretation [CC77]
as enabling technology. The use of abstract interpretation allows ACC to generate cer-
tificates which encode complex properties, including traditional safety issues but also
resource-related properties like, e.g., resource consumption. Intuitively, the abstract in-
terpreter implements a logic dedicated to a particular verification, making it possible to
develop efficient and dedicated checkers that manipulate condensed certificates.

Figure 1 shows the overall PCC architecture and protocol for certificates based on
type systems or abstract interpretation.

4 G. Barthe et al.

Code Producer Code Consumer

Compiler
Source

Program Execution

OK
Byte Code

Verifier

Typed
Byte Code

(incl. Certificate)

Fig. 1. PCC architecture and protocol for type-based certificates. Compilers add type information
to byte code, which therefore includes a certificate. The code consumer type checks the code
before executing it. Only the type checker (byte code verifier) is part of the trusted computing
base.

2.2 Logic-Based Proof Carrying Code

The original PCC infrastructure proposed by Necula and Lee, which is described in
Figure 2, is built upon several elements:

A formal logic for specifying and verifying policies. The specification language is used
to express requirements on the incoming component, and the logic is used to verify
that the component meets the expected requirements. Requirements are typically
expressed as pre-conditions, post-conditions or invariants.

A verification condition generator (VCGen). The VCGen produces, for each compo-
nent and safety policy, a set of proof obligations whose provability will be sufficient
to ensure that the component respects the safety policy.

A proof checker. Certificates provide a formal representation of proofs, and are used to
convey to the code consumer efficiently verifiable evidence that the code it receives
satisfies its specification. The proof checker verifies that the certificate does indeed
establish the proof obligations generated by the VCGen.

Although it builds upon ideas from program verification, which in its full generality
requires interactive proofs, PCC is transparent for end-users, and does not require the
code consumers to build proofs; rather, it requires code consumers to check proofs,
which is fully automatic. Second, logic-based PCC is general and can be used for
different policies; in particular, the VCGen and the proof checker are independent of the
policy. Besides, the only restriction on the security policy is that it should be expressible
in the formal logic, which is often very expressive.

Certifying compilation and proof-transforming compilation. One fundamental issue
to be addressed by any practical deployment of logic-based PCC is the generation of
certificates. If logic-based certificates are to be used to verify basic safety properties
of code, and it is expected that large classes of programs carry a certificate, then it
is important that certificates are generated automatically. Certifying compilers [NL98]
extend traditional compilers with a mechanism to generate automatically certificates
for sufficiently simple safety properties, exploiting the information available about a
program during its compilation to produce a certificate that can be checked by the proof

The MOBIUS Proof Carrying Code Infrastructure 5

Code Producer Code Consumer

Compiler

VCGen

Prover

Byte Code

Certificate

Source
Program Execution

Verification
Conditions

VCGen

Verification
Conditions

Proof
Checker

OK

Fig. 2. PCC architecture and protocol. Code producers generate verification conditions by ap-
plying the VCGen to the compiled bytecode program. The conditions are then proved by the
prover, resulting in a PCC certificate. Like producers, consumers apply the VCGen to bytecode.
The certificate must contain sufficient information to allow the proof checker to discharge these
conditions. Only after successful checking, the code is executed.

checker. The certifying compiler does not form part of the Trusted computing Base
(TCB); nevertheless, it is an essential ingredient of PCC, since for specific properties it
reduces the burden of verification on the code producer side.

MOBIUS also develops proof-transforming compilers as a means to generate cer-
tificates interactively for more complex properties that cannot be established automat-
ically. The primary objective of proof-transforming compilation is to provide a means
to generate a certificate of the bytecode program using interactive program verification
environments for source code programs [BGP08, MN07].

2.3 Foundational Proof Carrying Code

The verification infrastructure on the consumer side is the central element in the PCC
security architecture, and it is therefore of utmost importance to achieve the highest
guarantees that its design and implementation are correct. However, providing a correct
implementation of a verification infrastructure for a realistic language is a significant
challenge. Thus, subtle errors may arise both at the conceptual level (e.g. by formulating
unsound proof rules), or at an implementation level (e.g. by omitting some checks). In
order to prevent such flaws that could be exploited by malicious code, Appel [App01]
suggests to pursue a foundational approach in which the adherence of the program
against the policy is formally justified using a model of the code semantics formalized
in a proof assistant. This foundational approach offers several advantages:

1. small TCB: Foundational Proof Carrying Code (FPCC) considerably reduces the
TCB, since the verification condition generator is formally proved sound w.r.t. the
operational semantics. In addition, FPCC provides the highest level of guarantee
for the correctness of the certificate checking infrastructure;

2. uniform support for verification methods: since all justifications are ultimately
given in terms of the operational semantics, FPCC naturally supports a vast range
of security policies (more precisely policies that can be expressed in terms of the

6 G. Barthe et al.

program semantics) and the use of different verification methods, such as type
systems and program logics.

The MOBIUS Proof Carrying Code architecture is heavily inspired from FPCC, but
departs significantly from it in the way certificates are generated and checked. FPCC
is deductive by nature, i.e. typing rules are proved as lemmas and combined using
the rules of logic. In contrast, the MOBIUS infrastructure exploits the computational
power of the underlying proof assistant and relies on a tight integration between
deduction and computation to ensure scalability of proof checking. In particular, the
MOBIUS architecture uses intensively computational reflection, whose goal is to
replace deduction by computation, and which provides an effective means to carry
computation-intensive proofs for facts that cannot be established by purely deductive
means. In Section 2.3, we illustrate the reflective proof carrying code used in MOBIUS
by considering a verification condition generator and an information flow checker that
have been implemented in a reflective style, and that have been verified formally. Since
we provide proof objects of their semantical correctness, the verifiers are removed from
the TCB (as is the case for FPCC), which now only contains the Coq type checker and
the semantics of the JVM. At last, the table below summarizes the TCB of the different
PCC approaches presented in this section.

PCC approach TCB components
Type-based PCC Byte code lightweight verifier

Logic-based PCC VCGen + Proof checker
Foundational PCC Coq type checker + semantics of JVM

3 Informal Development

The purpose of this section is to provide a brief introduction to the proof assistant
Coq [Coq04], and an overview of the approach pursued within MOBIUS.

Coq is a general purpose proof assistant based on the Calculus of Inductive Con-
structions, a dependent type theory that supports higher-order logic. Coq features a
specification language that is sufficiently expressive to model programming language
semantics, program analysis and verification. Section 4 describes Bicolano, which
provides a formalisation of the Java Virtual Machine as a state transition relation
exec:program→state→state→Prop. Following the approach of FPCC, we use
this semantics to prove the correctness of certificate checkers.

One essential feature of Coq is its support for writing executable specifications, which
can be extracted to a functional programming language, or run inside the system itself.
In the latter case, Coq warrants the use of computations to prove properties of programs,
and allows to combine deduction and computation, in particular to rely on computation
in place where deductive reasoning is too cumbersome.

For example, the Coq system can be used in the following manner to prove the
correctness and execute (in the system itself) type-based certificate checkers, as reported
in Section 5.2:

The MOBIUS Proof Carrying Code Infrastructure 7

– program a computable function check:program→bool that is a verification
procedure for a safety property on program;

– formalise rigorously the safety predicate Safe:program→Prop with respect to
the semantics of the language given by Bicolano;

– prove that check is indeed a correct verification procedure. That is, build a term
check_correct of type ∀ p, check p = true →Safe p.

Then, to prove Safe p for a particular program p, if we know that check p re-
duces to true, we can simply use check_correct p (refl_equal true) where
(refl_equal true) is a proof of true = true. Indeed, the conversion rule of
Coq allows to change the type of a term by an equivalent one, and thus the term
(refl_equal true) is also a proof that check p = true because check p reduces
to true, so true=true is convertible with check p = true.

The above technique, called reflection, is also of interest to reason about program cor-
rectness, as illustrated in Section 5.3. Consider for example that we have a verification
condition generator that computes a sufficient condition for safety:

Parameter vcg : program → form
Parameter interp : form → Prop
Parameter vcg_correct : ∀ p, interp (vcg p) → Safe p.

where form is an inductive definition of formulae, and interp is an interpretation of
the formulae in the logic of Coq. Then, we can prove program safety for p with the
term vcg_correct p c, where c is a proof of interp (vcg p). One can improve
the overall efficiency of the approach by combining vcg with an executable simplifier
for formulae:

Parameter smp: form → form
Parameter smp_correct : ∀ f, interp (smp f) → interp f.

In this case, the proof of safety of p will be of the form po_correct p c, where
c is a proof of interp (smp (vcg p)) and po_correct is the correctness lemma
obtained by composition of smp_correct and vcg_correct.1

Proofs by reflection are efficient and yield smaller certificates (of course, the proof
term check_correct may be large, but the proof is only done and type-checked once,
and is shared by all the instantiations). However, proofs by reflection are not appropriate
for PCC scenarios where the consumer infrastructure is subject to resource constraints,
as considered in Section 6. Rather than using a complete proof assistant as a checker
and a logic as the language for proof certificates, it is possible to design a lightweight
form of PCC where the certificate checker is a functional program extracted from Coq.
Intuitively, the extraction mechanism in Coq produces Caml programs from Coq terms
by eliding those parts of the terms that do not have computational content. Such parts
are only necessary to ensure the well typing of the Coq term (and by the same the

1 Our approach introduces an inductive representation of formulae (known as a deep embedding
in the literature) in the above example. In fact, it is often possible to use a shallow embedding
and model proof obligation generation as a Prop-valued function, but our presentation is
based on a deep embedding for efficiency reasons (in particular, the use of a simplifier is more
natural for a deep embedding).

8 G. Barthe et al.

correctness of the corresponding programs) but are not necessary to reduce the term to
normal form (to evaluate programs).

In particular, we can use the extraction mechanism to obtain a certified Caml
implementation of the procedure check above. The correction of the Coq extraction
mechanism ensures that the extracted Caml checker satisfy the same soundness property
as its Coq ancestor. While this approach is effective for several program verification
techniques (as for examples static analysis based or type system based), it is not
completely adapted for verifying programs using proof obligations since the checker
does not return a boolean but a formula which should be proved. To be able to apply the
extraction scenario to proof obligations the simplifier of formula should be sufficiently
powerful to reduce valid formulas to the trivial one true (i.e. the simplifier should be a
certified automatic prover).

4 Bicolano

The soundness of all the MOBIUS Proof Carrying Code infrastructure requires a
formal specification of the JVM. This specification is formalised in the Coq proof
assistant [Coq04] and is called Bicolano.

Bicolano is situated at the bottom of the trusted base of the MOBIUS PCC infras-
tructure. It is a formal description of the Java Virtual Machine (JVM), giving a rigorous
mathematical description of Java bytecode program executions. It closely follows the
official description of the JVM [LY99] as provided by Sun. Since the correctness of
Bicolano is not formally provable, the close connection with the official specification is
essential to gain trust in the specification.

This requirement results in two important design decisions for Bicolano. First, we
formalize a small step semantics to relate consecutive JVM states during program
execution, as it is done in the official description. Second, we try to keep our description
of the JVM at the same level of detail as in the official specification. Nevertheless
some simplifications have been made with respect the official documentation, some
of which are motivated by the fact that we concentrate on the Connected Limited
Device Configuration (CLDC), which is the primary Java configuration for mobile
devices [Sun03].

Figure 3 presents the global architecture of the development. At the core of Bicolano
is the axiomatic base that describes the notion of program, and specifies the semantic
domains and machine arithmetic that we use. We use the Coq module system to
model these different components. The operational semantics is defined on top of
this axiomatic base. We define a small step and a big step semantics, and we prove
equivalence between these. Finally, to show that the axiomatisations that we use
are consistent, we give concrete instantiations of the different modules that allow to
represent particular bytecode programs. The instantiations can also be used to obtain
executable verifiers.

4.1 Axiomatic Base

The starting point of Bicolano is an axiomatisation of program syntax, semantic domains
and machine arithmetic. For simplicity, we adopt a post-linking view of programs: in

The MOBIUS Proof Carrying Code Infrastructure 9

Domain.v Numeric.v

Semantic domains Machine arithmetic

Axiomatic base

Program with lists

ImplemProgramWithList.v

Operational semantics

ImplemDomain.v ImplemNumeric.v

Semantic domains Machine arithmetic

Implementation

Program with maps

ImplemProgramWithMap.v

Equivalence proof

EquivSmallAndBigStep.v

Small step

SmallStep.v

Big step

BigStep.v

Program syntax

Program.v

Fig. 3. Bicolano architecture

particular, we only handle complete programs and hence is not able to deal with dynamic
linking. This choice simplifies the specification considerably, because a large part of
the description in the official Sun specification is related to linking. Furthermore, we
omit some of the numerical domains: 64 bits values (double and long) and float
numbers are not considered.

Program syntax. The syntax of a JVM program is modelled abstractly, using signatures
of the Coq module system to achieve a cleaner separation of concerns in the formalisa-
tion of the semantics. The whole set of axioms is put in a module type named PROGRAM.
This axiomatisation is based on various abstract data types:

Parameter Program Class Interface Method Field
Var MethodSignature FieldSignature PC : Set.

Note that some notions, such as methods and fields, are modelled in two forms: the
standard form and the signature form. Such a distinction is necessary because bytecode
instructions do not contain direct pointers to methods or fields.

Each abstract type has a list of accessors to manipulate them. We group the accessors
of a given type in the same sub-module type. Here we give an example of Program
accessors:

(∗ ∗ C o n t e n t s o f a Java program ∗)
Module Type PROG_TYPE.

(∗ ∗ a c c e s s o r t o a c l a s s f rom i t s q u a l i f i e d name ∗)
Parameter class : Program → ClassName → option Class.

10 G. Barthe et al.

Parameter name_class_invariant1 : ∀ p cn cl,
class p cn = Some cl → cn = CLASS.name cl.

(∗ ∗ a c c e s s o r t o an i n t e r f a c e from i t s q u a l i f i e d name ∗)
Parameter interface : Program →

InterfaceName → option Interface.
Parameter name_interface_invariant1 : ∀ p cn cl,

interface p cn = Some cl → cn = INTERFACE.name cl.

End PROG_TYPE.
Declare Module PROG : PROG_TYPE.

Notice that the Program structure contains several internal invariants like
name_class_invariant1. These are properties that we require to hold for any
instantiation of the module, and that can be assumed in the operational semantics.

The axiomatisation of programs ends with a list of definitions using the previous
notions such as subtyping and method lookup.

Semantic domains. Semantic domains are axiomatised in a module type named
SEMANTIC_DOMAIN. Each sub-domain is specified in a sub-module type. For example,
the set of local variables is specified as follows.

Module Type LOCALVAR.
Parameter t : Set.
Parameter get : t → Var → option value.
Parameter update : t → Var → value → t.
Parameter get_update_new : ∀ l x v,

get (update l x v) x = Some v.
Parameter get_update_old : ∀ l x y v,

x<>y → get (update l x v) y = get l y.
End LOCALVAR.
Declare Module LocalVar : LOCALVAR.

The most complex axiomatisation of this file concerns the heap, for which we provide
an axiomatic treatment based on the work of Poetzsch-Heffter and Müller [PHM98].

Module Type HEAP.
Parameter t : Set.

Inductive AddressingMode : Set :=
| StaticField : FieldSignature → AddressingMode
| DynamicField : Location →

FieldSignature → AddressingMode
| ArrayElement : Location → Int.t → AddressingMode.

Inductive LocationType : Set :=
| LocationObject : ClassName → LocationType
| LocationArray : Int.t → type → LocationType.

Parameter get : t → AddressingMode → option value.
Parameter update : t → AddressingMode → value → t.

The MOBIUS Proof Carrying Code Infrastructure 11

Parameter typeof : t → Location → option LocationType.
Parameter new : t → Program →

LocationType → option (Location * t).
...

The abstract type of heaps (called t inside the module type HEAP) has two accessors
get and typeof and two modifiers update and new. These functions are based on
the notions of AddressingMode and LocationType. AddressingMode gives the
kind of entry in the heap: a field signature for static fields, a location together with a
field signature for field values of objects, and a location together with an integer for
the element of an array. The definition get gives access to the value attached to an
indicated address. The definition typeof gives the type associated with a location (if
there is any). This type is either a class name for objects or a length and a type of
elements for arrays. The definition update allows to modify a value at a given address.
Finally, the definition new allows to allocate a new object or a new array.

4.2 Operational Semantics

Bicolano proposes two different operational semantics for sequential JVM bytecode: a
small step and a big step, for which equivalence is proved formally.

Small step semantics. The small step semantics follows exactly the reference se-
mantics given in the official specification. It consists of an elementary relation
named step between states of the virtual machine. A standard state is of the form
(St h (Fr m pc s l) sf) where h is a heap; (Fr m pc s l) is the current frame
composed of the current method m, the current program point pc, the local variables l
and the operand stack s; and finally sf is the call stack. An exceptional state is of the
form (StE h (FrE m pc loc l) sf) where all elements are similar to those found
in a standard state, except the location of the exception object loc, which replaces the
operand stack. Exceptional states occur when an exception is thrown, but control has
not yet reached the corresponding exception handler.

The step relation is given by an inductive relation. We give here a fragment
describing the semantics of the getfield instruction.

Inductive step (p:Program) : State.t → State.t → Prop :=
...
| getfield_step_ok : ∀ h m pc pc’ s l sf loc f v cn,

instructionAt m pc = Some (Getfield f) →
next m pc = Some pc’ →
Heap.typeof h loc = Some (Heap.LocationObject cn) →
defined_field p cn f →
Heap.get h (Heap.DynamicField loc f) = Some v →

step p (St h (Fr m pc (Ref loc::s) l) sf)
(St h (Fr m pc’ (v::s) l) sf)

...

12 G. Barthe et al.

This case reads as follows: if the current instruction (given by instructionAt m pc)
is Getfield f then a normal execution step is possible under several conditions: the
next program counter is valid (next m pc = some pc’), the current operand stack is
non empty and starts with a reference of class name cn such that the field signature f is
defined in the class named cn. Under these conditions, the value v of the field f in the
object pointed by the location loc is pushed on top of the operand stack. We omit here
the second case where the top of the operand stack is null and an exceptional state is
created.

The definition of this relation closely follows the definition given in the official
specification. Together with the axiomatisation presented above, it forms the trusted
base of Bicolano.

Big step semantics. Since JVM states contain a frame stack to handle method invoca-
tions, it is often convenient to use an equivalent semantics where method invocations
are performed in one big step transition for showing the correctness of static analyses
and program logics. Therefore we introduce a new semantics relation:

IntraStep (p:Program) : Method →
IntraNormalState → IntraNormalState + ReturnState → Prop

This relation denotes transitions of a method between two internal states, i.e. JVM states
that only contain one frame (instead of a frame stack), or between an internal state and a
return state, i.e. a pair of a heap and a final result (a JVM value or an exception object in
case of termination by an uncaught exception). While small-step semantics uses a call
stack to store the calling context and retrieve it during a return instruction, the big step
semantics directly calls the full evaluation of the called method from an initial state to
a return value and uses it to continue the current computation.

We have formally proved the correctness of the big step semantics with respect to the
reference small step semantics, by showing that the notion “evaluation of method m in
program p from states s terminates with the final value ret” coincides in both semantics.

Semantics of programs with safety annotations. We rely on preliminary exception
analyses to reduce the control flow graph of applications. Curbing the explosion in the
control flow graph is essential for maintaining a minimum of precision in an information
flow analysis or reducing the size of verification conditions. This is especially a problem
in a language like Java because a large number of bytecode instructions are defensive,
i.e they perform dynamic verifications (such as testing nullity of pointers that must be
dereferenced or testing if index are between the bounds of arrays they try to access)
on the current state before executing the instruction. When these verifications fail at
execution time, a JVM exception is thrown and the control flow is redirected towards an
adequate handler of the current method, if it has one, or the current method is stopped
and the exception is recursively handled by the next method in the call stack. If the call
stack is empty the program halts with an uncaught exception. Exceptions substantially
complicate the control flow graph. Moreover, in most Java applications, JVM exceptions
are not intentionally manipulated by the programmer and only the normal branch of

The MOBIUS Proof Carrying Code Infrastructure 13

these instructions are executed in practice. Part of these unreachable branches can be
detected by static analysis. Bicolano uses a notion of safety annotations that allows
to execute a static exception checker before any other verification tool and hence let
such verification tools benefit from these control flow simplifications at a semantic
level.

Safety annotations are exploited in an instrumented semantics, where extra properties
taken from annotation information are assumed in the premise of the transition rules.
Annotations take the form of flags safe attached to program points where the pre-
analyser predict that no exception may be thrown here. Exceptions hence only happen
at program points which are not annotated as safe. We also equip each method with
an over-approximation of the set of exceptions that can be raised from it without being
caught (building such an over-approximation is feasible since we consider complete
programs). Assuming the annotations are correct, it is straightforward to prove that
each judgment of the big step semantics implies the corresponding judgment of the
instrumented big step semantics.

This pre-verification technique fits well in a PCC approach, as explained in Figure 4.
Annotations are first generated by an exception analyser and then transmitted with
the program. Using lightweight verification techniques, they are then checked on the
consumer side by fixpoint verification. With this scheme, any verification tool can then
safely reason on the annotated semantics of the program.

program

consumerproducer

Exception
analyser

Certifying
verifier

Exception
checker

Certificate
checker

diagnostic

annotations

certificate

Fig. 4. Hybrid certificate with safety annotations

4.3 Implementations of Module Interfaces

Bicolano also provides implementations of the different modules used in the formal-
ization of the JVM. These implementations serve two purposes: they guarantee that the
axiomatizations are consistent, and they can also be used to get executable verifiers (in
which case efficiency is important). We currently propose two different implementations
of these modules; one is based on lists and is more readable whereas the second is based
on maps and is more efficient.

14 G. Barthe et al.

5 Reflective Proof Carrying Code for Wholesale Checking

The purpose of this section is to present the first MOBIUS scenario, and to elaborate on
the presentation of Section 3.

5.1 Scenario and Requirements

In wholesale Proof Carrying Code, mobile code transits through a trusted intermediary,
e.g. a mobile phone operator. As explained in Figure 5, PCC is used by code producers
(that are external to the phone operators and untrusted by them) with proofs which
establish that the application is secure. The operator then digitally signs the code before
distributing it to the code consumers (the customers, who rely on the operator).

This scenario for “wholesale” verification by a code distributor effectively combines
the best of both PCC and trust, and brings important benefits to all participating actors.
For the end user in particular, the scenario does not add PCC infrastructure complexity
to the device, but still allows effective enforcement of advanced security policies.

From the point of view of phone operators, the proposed scenario enables achieving
the required level of confidence in applications developed by third parties, since they
can reproduce the program verification process performed by producers, but completely
automatically and thus with low cost. Furthermore, Foundational Proof Carrying Code is
an appropriate approach, since it brings the highest guarantees and there are no stringent
restrictions on resource (memory, CPU, bandwidth) consumption.

From the software producer perspective, the scenario removes the bottleneck of the
manual approval/rejection of code by the operator. This results in a significant increase
in market opportunity. Of course, this comes at a cost: producers have to verify their
code and generate a certificate before shipping it to the operator, in return for access
to a market with a large potential and which has remained rather closed to independent
software companies.

5.2 Information Flow Lightweight Type Checker

As a first instance of the reflective Proof Carrying Code approach developed in
MOBIUS, we present a lightweight type checker [BPR07] that enforces confidentiality
of JVM applications with the same modularity principles as Java bytecode verification:
provided class files are suitably extended with appropriate security annotations, a
program can be checked method by method without fixpoint iterations.

More concretely, we suppose that the levels of confidentiality of data is abstracted
into a lattice of security levels (a level k1 is lower than a level k2, written k1 � k2, if k1
is less confidential as k2), and that programs are equipped with security annotations
(whose type is named secure_annots in the rest of the section), indicating the
confidentiality level of each method local variables, method returns (if any) and class
fields. Each method is also equipped with a security environment se that tracks the
potential indirect flows (when the execution of a given instruction indirectly depends on
a branching instruction involving confidential information) and assigns a security level
to each program point. In order to abstract the operand stacks, the type system computes
for each program point a stack of security levels. This information is reconstructed
thanks to stackmaps, in the same spirit that those that are used in bytecode verification.

The MOBIUS Proof Carrying Code Infrastructure 15

Producer 1

Producer 2 Consumer 2

Producer P
Consumer C

Phone Operator/

 Manufacturer

Consumer 1PKI
PCC

Fig. 5. The MOBIUS scenario

The semantic property enforced by the type checker is a non-interference property,
which ensures that there is no flow of information from secret to public data [SM03].
It depends on a security level kobs that determines the observational capabilities of
the attacker. Essentially, the attacker can observe fields, local variables, and return
values whose level is below kobs. This is modeled with a notion of equivalence ∼in

(for program inputs) and ∼out (for program outputs) between Bicolano memory states.
These relations depends on the security annotations of a program. A program is non-
interferent if for each method m, two terminating runs of m with ∼in -equivalent
inputs, i.e. inputs that cannot be distinguished by an attacker, yield ∼out -equivalent
results, i.e. results that cannot be distinguished by the attacker. Formally, the security
condition is expressed relative to the Bicolano big step semantics, which is captured
by judgments of the form hin , a ⇓m r, hout , meaning that executing the method m
with initial heap hin and parameters a yields the final heap hout and the result r.
The semantic notion of non-interference is then expressed in Coq with a predicate
non_interferent:program→secure_annots→Prop that models the following
property on a program p

∀m, hin , a, r, hout , h
′
in , a′, r′, h′

out

hin , a ⇓m r, hout

h′
in , a′ ⇓m r′, h′

out

(hin , a) ∼in (h′
in , a′)

⎫⎬
⎭ ⇒ (hout , r) ∼out (h′

out , r
′)

The type checker operates on annotated programs, and is parametrized by control
dependence region (CDR) that approximate the scope of branching instructions, i.e.
the set of instructions that execute under the scope of a given branching instruction.
CDRs are required to detect indirect flows and to enforce global constraints that prevent
assignments of public information to occur under guards that depend on confidential
data. Formally, a point j is in a control dependence region of a branching points i if j
is reachable from i (in the current method), and there may be an execution path from
i to a return point which do not contain j. Although CDRs can be computed using
post-dominators, we follow a lightweight verification approach and require the CDR to
be transmitted with the program and develop a CDR checker.

16 G. Barthe et al.

Both the type system and the CDR analyzer operate on annotated programs. The
annotations are used to minimize the size of regions, and are essential to guarantee
some precision in the analysis: indeed, the ability of an information flow type system
to accept a program directly depends on the number of branching instructions in this
program. Each access to a confidential object may reveal its nullity to an attacker if
NullPointer exceptions are not explicitly caught in the program. In such cases the
type system has to be restrictive on the operations that may modify a public part of the
memory after this access. This restriction is not necessary if the nullity case is provably
unreachable.

The typing rules are designed to prevent information leakage through imposing
appropriate constraints. In a nutshell, typing rules are of the form below (we omit here
the special case of return instructions):

P [i] = ins constraints
se, i � st⇒ st′

where st, st′ are stacks of security levels before and after the execution of the instruction
ins found at point i in program P , and se is the security environments of the current
method. For the special case of the getfield instruction the rule looks like this one

P [i] = getfield f ¬Safe(i)⇒ ∀j ∈ region(i), k ≤ se(j)

st ′ =
{

(ft(f)
 se(i)) :: st if Safe(i)
liftk((ft(f)
 se(i)) :: st) otherwise

se, i � k :: st ⇒ st ′

The instruction getfield f at program point i is typable if the current type stack is
of the form k :: st with k the security level of the object which is read. The constraint
∀j ∈ region(i), k ≤ se(j) imposes that all points j in the control dependence region of
i have a security environment se(j) whose confidentiality is equal or greater than level
k because reaching one of the program points region(i) may depend on the nullity of
the read object. Safe(i) represents here the safety annotation that predicts the absence
of NullPointer exception if the predicate holds and is inconclusive otherwise. The
previous constraint is only imposed if Safe(i) does not hold, otherwise the current point
i is not a branching point. The next stack type depends also on Safe(i). If the predicate
holds, we pop the top of the stack and push a security level at least greater than the level
ft(f) of field f and the level k of the location (to prevent explicit flows) and at least
greater than se(i) for implicit flows. If the predicate does not hold, we use the same
stack type but lift it. Here liftk is the point-wise extension to stack types of λl. k
 l.
It is necessary to perform this lifting operation to avoid implicit flows through operand
stack leakage.

Finally, the checker we formalize in Coq is of type
iflow_check : program →secure_annots →iflow_annots →bool

As indicated above, annotations are composed of safety annotations, control dependence
regions and security environments and stackmaps of security levels. The checker
successively checks these different annotations and finally ensures that the program
is typable according to the information flow typing rules and the security annotations
that express its security policy. The soundness theorem establishes the soundness of the
checker with respect to the non-interference policy.

The MOBIUS Proof Carrying Code Infrastructure 17

iflow_check_correct :
∀ p policy annot,
iflow_check p policy annot = true → non_interferent p policy

This checker is fully executable, and can be run inside Coq to obtain a foundational
proof of the confidentiality of a program, as described in Section 3. Alternatively, it can
be extracted into a stand-alone Caml type checker and executed on-device as described
in Section 6.

5.3 Verification Condition Generator

As another instance of reflective Proof Carrying Code, we present a verification
condition generator (VCgen) that can be used to ensure functional and non-functional
properties of programs. The VCgen operates on annotated programs, and returns a set
of proof obligations whose validity ensures that the program meets its specification.
More precisely, program annotations are contained in a method specification table, that
assigns to every method a pre- and a post-condition, and a local specification table, that
attaches to some program points an assertion (in general a loop invariant) that should
be valid each time the program execution reaches them; the annotations are logical
formulae that may refer to the current and initial states (heap and operand stack), and in
the case of the postcondition to the termination mode and the result.

The semantic property ensured by the VCgen is expressed using the Coq predicate
correct:program→funct_annots→Prop modeling the following property on an
annotated program p:

∀m,hin , a, r, hout,[hin , a ⇓m r, hout ∧ pre m (hin , a) ⇒ post m ((hin , a), (r, hout))]

The validity of the proof obligations ensures that, upon termination of the execution
of a method m, the post-condition post m of m will hold, provided the method was
called in a initial state satisfying the pre-condition pre m. There are two kinds of proof
obligations: to ensure the coherence of the annotations at a global level, e.g. that the
specification respects behavioral subtyping [LW94], and to ensure the coherence of the
annotations for each method. The latter are computed using a weakest precondition
calculus, and ensure that the the annotation is valid each time the program execution
reaches an annotated program point i (a local annotation is attached to i, or i is an
exit point). In order to be effective, the weakest precondition calculus assumes that the
methods are sufficiently annotated. Under such a condition, the weakest precondition
wpi at program point k is defined using the general scheme:

wpi(k)(s0, s) =
∧

l∈succ(k)

C(k,l)(s)⇒ P(k,l)(wpl(k), s0, s)

where s0 is the initial state (initial heap and arguments) C(k,l)(s) is the condition
that needs to be satisfied by s in order for the execution to go from k to l in one
step, and P(k,l)(wpl(l), s0, s) is a predicate transformer updating s in correspondence
with the instruction at k and applying it to the weakest precondition of the successor
j (wpl(j)).

18 G. Barthe et al.

Computing P(k,l)(wpl(k), s0, s). The function wpl(k) simply searches the local anno-
tation table; if k is annotated the precondition is the annotation else it is wpi(k), so the
two functions are defined using a mutual recursion. For the getfield instruction the
rule is:

P [k] = getfield f

φ =
{

wpl(l, s0, (h′, v′ :: [], ρ)) if Handler(k,NullPointer) = l
m.post(s0, h′, v′) otherwise

wpi(k)(s0, (h, v :: os, ρ)) =
v �= null⇒ wpl(k + 1)(s0, (h(v.f) :: os, ρ))
∧v = null⇒ ∀h′ v′, New(h,NullPointer) = (h′, v′)⇒ φ

In the rule above, (h, v :: os, ρ) represents the current state, h stands for the heap,
v :: os is the operand stack and ρ is the mapping from local variables to their
values. For a getfield instruction, the stack should be not empty. If the top value
v is not null, the instruction executes normally pushing the field value of f in the
top of the stack. If the top value is null, a runtime exception v′ is created, leading
to a new heap h′ (New(h,NullPointer) = (h′, v′)). In that case, two cases can
appear. The exception may be caught (Handler(k,NullPointer) = l), and the
execution continues to the program counter l, in which case the postcondition of k is
the precondition of l. Otherwise, the exception is uncaught and the method terminates
abruptly, in which case the postcondition of k is the exceptional postcondition of the
method m.post applied to the initial state, the final heap h′ and the raised exception
v′. Since the exception handler is statically known, the precondition of the getfield
is a conjunction of two postconditions.

Computing C(k,l)(s). The function C(k,l) uses safety information to eliminate impos-
sible branches: if the program point k is annotated as safe and Safe(k) is incompatible
with the condition C(k,l) the new condition is simply False, and then the simplifier can
remove the trivially true proposition False ⇒ P(k,l)(wpl(k), s0, s) from the conjunc-
tion corresponding to wpi(k)(s0, s).

Here the VCgen uses information provided by static analyses. It is also possible
[GS07] to transfer the part of the assertions contained in the specification to the analysis,
so that the analysis can produce more accurate results which can be used by the VCgen
to simplify the proof obligations, leading to a kind of cross fertilization between the
static analyses and the VCgen.

Correctness. Finally, the VCgen we implement in Coq is of type

vcgen:program→funct_annots→Prop

(strictly speaking, it takes as additional argument a proof that the program is well-
annotated). Its correctness lemma is:

vcgen_correct : ∀ p annot, vcgen p annot → correct p annot

The verification condition generator is executable, and can be run inside Coq, as
described in Section 3.

The MOBIUS Proof Carrying Code Infrastructure 19

6 Certified Static Analysis as Lightweight Proof Carrying Code

The purpose of this section is to present the first MOBIUS scenario, and to elaborate on
the presentation of Section 3.

6.1 Scenario and Requirements

Rather than using a complete proof assistant as a checker and a logic as the language
for proof certificates, it is possible to rely on a lightweight form of PCC, inspired from
ACC, where the code consumer checks the certificate itself.

Compared to the “wholesale” scenario, this scenario does not require a PKI infras-
tructure and a trusted third party, as the checking phase can be done directly on the end-
user device. This form of retail PCC is beneficial to the trusted intermediary, for which
the cost of digital signatures can be prohibitive—it is not unusual to have hundreds of
versions of a single application, because of the fragmentation of execution platforms,
networks and internationalization—and to the code consumers, who may be offered an
opportunity to customize policies they want to be enforced.

These embedded verifiers are part of the trusted computing base, and should therefore
be validated with respect to Bicolano–implementing a verifier is simpler than imple-
menting an analyser but it is still error prone. The formal framework for this validation
is certified abstract interpretation [BJP06b], which proposes an unified framework to
specify both an analysis to infer program invariant and a checker to verify them. The
correctness of the checker is proved formally in Coq. This results in a proof-carrying
code architecture—outlined in Figure 6—where both correctness proofs and actual pro-
gram certificates arise from abstract interpretation. In this architecture, a verified fixpoint
checker is combined with an untrusted fixpoint engine that the code producer uses to
produce the stackmaps. Stackmaps are further reduced by a (still untrusted) fixpoint
compression technique, yielding the final stackmap for the program. On the code con-
sumer side, the verification proceeds in two stages. The first stage is off-device and only
takes place when the consumer must update his on-device verifier. The consumer first
receives a proposed fixpoint checker together with a proof of its semantic correctness.
He combines this proof with a formalisation of the language semantics and the targeted
security policy (here given by Bicolano) and then checks the proof off-device with the
type checker of the Coq kernel. Once the proof has been checked, the code consumer
extracts the fixpoint verifier using Coq’s program extraction mechanism and installs it on
the device. This extracted verifier can then be used to verify (on-device) the stackmaps
accompanying a piece of downloaded software.

6.2 Embedding the Verifiers: Design Choices

There are several technical choices to make for porting a checker to a mobile handset:

– at least three underlying OS could be used: Windows Mobile, Symbian or Linux;
– the extraction from Coq could target Scheme, Objective Caml, Haskell or F# (for

Windows mobile phones).

20 G. Barthe et al.

semantics
+

policy
Security

certificate
extracted
verifier

untrusted
fixpoint

compressor

untrusted
fixpoint solver

certified
verifier

Coq kernel
+ Coq extraction

certified
verifier

Safe

Device

certificate

fixpoint

Program

Producer Consumer

Fig. 6. A PCC architecture based on certified abstract interpretation

Because Bicolano makes a heavy use of functors, it seems natural to use Objective Caml
as target language because Objective Caml also natively support this feature. To ease
the porting process of the Objective Caml back-end, we have selected two Linux-based
devices: a Nokia 770 tablet, an open Linux-based “web-appliance” with a very easy to
use development environment and a Motorola A780 phone that runs a closed version
of Linux (Montavista). Both are based on an ARM application processor. The resource
constaints of the mobile handset (the operating system only leaves 1.5Mb of RAM to
share among all the applications) are very typical of medium-end smartphones.

One main technical difficulty is adapting the Objective Caml compiler due to the lack
of hardware floating-point support on the limited processors of those devices. We have
chosen to disable completely the support for floating point as the code extracted from
Coq does not need it.

6.3 Embedding the Verifiers: Case Study

In order to illustrate the feasibility of verifying the results of an analysis on-device,
we have considered the interval analysis from [BJPT07]. The analysis operates on a
restricted instruction set, which is sufficiently expressive to program a simple search
algorithm, which is shown below with its annotations, consisting of linear relations be-
tween variables. The annotations provide pre- and post-conditions as well as invariants
between local variables and parameters. With these invariants it is possible to prove e.g.,
that all accesses to buffers (arrays) happens within their bounds and do not overflow to
the surrounding memory.

/ / PRE : True
static int bsearch(int key, int[] vec) {

/ / (I ′1) |vec0| = |vec| ∧ 0 ≤ |vec0|

The MOBIUS Proof Carrying Code Infrastructure 21

int low = 0, high = vec.length - 1;
/ / (I ′2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

/ / (I ′3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

/ / (I ′4) |vec| − |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧
/ / 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0| − high− 1 ≥ 0

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

/ / (I ′5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|
}

/ / (I ′6) 0 ≤ |vec0|
return -1;

} / / POST : −1 ≤ res < |vec0|
The invariants given here are already compressed using an automatic pruning technique.
As an example the original invariant (I5) was:

/ / (I5) key0 = key∧|vec0| = |vec|∧−2+3 ·low ≤ 2 ·high+mid∧−1+2 ·low ≤
high + 2 · mid ∧ −1 + low ≤ mid ≤ 1 + high ∧ high ≤ low + mid ∧ 1 + high ≤
2 ·low+mid∧1+low+mid ≤ |vec0|+high∧2 ≤ |vec0|∧2+high+mid ≤ |vec0|+low

As invariant reconstruction can be expensive, the optimal amount of information to
supply to the checker is (I ′

2) and (I ′
5) so that checking is limited to verifying the

inclusion of polyhedrons. Notice that (I ′
2) would have been sufficient if the checker

could compute a convex hull of two polyhedron. As this is a rather expensive operation,
the MOBIUS project has developed a technique for producing extremely compact and
easily verifiable certificates of polyhedra inclusion, which often can replace a convex
hull computation—see [BJPT07] for details.

6.4 Case Study: Benchmarks

Time measurements in figure 7 are given for the interval analysis [BJP06b] on the Mo-
torola handset. The certified function Coq.BytecodeChecker.cheker is iterated
100 times to avoid problems with the resolution of the timer. Parsing time is negligible.
Those figures show that the phone is roughly ten times slower than the machine used in
[BJP06b]. Time measurements in figure 8 are given for ten iteration of the polyhedral
checker of [BJPT07].

6.5 Research Agenda

We intend to improve these preliminary experiments along three directions:

program Bubble Convolution Floyd HeapSort Polynom QuickSort
Sort Product Wharshall Product

Time 3.92 2.94 8.49 49.48 5.77 56.91

Fig. 7. Benchmarks of the interval-based array bound checker

22 G. Barthe et al.

program BSearch FFT HeapSort Jacobi LU QuickSort Random SparseCompRow
Time 0.30 5.65 0.97 0.23 3.02 34.86 1.70 0.14

Checks made 4 29 12 5 30 12 24 2
% Checked 100 78 100 50 44 100 82 33

Fig. 8. Benchmarks of the polyhedral array bound checker

– property coverage: many of the properties that are relevant for security can be
checked by static analysis. We intend to study the feasibility of embedding verifiers
for a resource analysis that counts the number of calls to a given method, and also
for a points-to analysis. The latter is used by several other analysis (eg to resolve
virtual method dispatch statically) and which can be used directly to compute an
approximation of the arguments of all the calls to dangerous methods (see [CA05]
or [LL05]);

– language coverage: the language recognised by the checker must be extended
to accommodate a more complete fragment of the CLDC/MIDP specification. It
involves extending the instruction set to a large subset of CLDC bytecodes and
refining the semantics of Bicolano to account for at least the intricate details of
method dispatch, object initialisation and exception handling. Furthermore, t he
MIDP libraries with their links to the native platform must be taken into account.
Such an extension opens several software engineering challenges in terms of
modularity and maintainability.

– constraints: the code of the checker must fit on constrained devices such as mobile
phones. Benchmarks have shown that the CPU load is reasonable on very small
examples but that we must improve the size of the representation of the bytecode
handled by the checker before we extend our analysis to the complete bytecode
instruction set. A modified version of the Bicolano representation of the JVM
bytecode is under development. Other ideas such as mapping Coq integer types
to native Objective Caml integers during the extraction of the checker (as used in
[Chl0x]) should also be considered.

7 Conclusion

This article presents two PCC scenarios explored in MOBIUS, and their associated
infrastructures for checking certificates. Both approaches rely on proof assistants to
ensure the trustworthiness of certificate checkers: we advocate the use of reflective
PCC for wholesale scenarios, and the use of certified certificate checkers for retail
scenarios. In parallel to developing certified certificate checkers, the MOBIUS project
has been actively investigating certificate generation: relevant material is available from
the project web page:

http://mobius.inria.fr

Acknowledgments. This work is supported by the Integrated Project MOBIUS, within
the Global Computing II initiative.

The MOBIUS Proof Carrying Code Infrastructure 23

References

[APH05] Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 380–397. Springer,
Heidelberg (2005)

[App01] Appel, A.W.: Foundational proof-carrying code. In: Halpern, J. (ed.) Logic in
Computer Science, p. 247. IEEE Press, Los Alamitos (2001)

[BBC+06] Barthe, G., Beringer, L., Crégut, P., Grégoire, B., Hofmann, M., Müller, P., Poll,
E., Puebla, G., Stark, I., Vétillard, E.: MOBIUS: Mobility, ubiquity, security. In:
Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 10–29.
Springer, Heidelberg (2007)

[BGP08] Barthe, G., Grégoire, B., Pavlova, M.: Preservation of proof obligations from java
to the java virtual machine. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 83–99. Springer, Heidelberg (2008) (to appear,
2008)

[BJP06a] Besson, F., Jensen, T., Pichardie, D.: A PCC architecture based on certified abstract
interpretation. In: Emerging Applications of Abstract Interpretation. Elsevier, Am-
sterdam (2006)

[BJP06b] Besson, F., Jensen, T., Pichardie, D.: Proof-Carrying Code from Certified Abstract
Interpretation and Fixpoint Compression. Theoretical Computer Science 364(3),
273–291 (2006); Extended version of [BessonP06]

[BJPT07] Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational
program analysis. Research Report 6333, IRISA (September 2007)

[BPR07] Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java
bytecode verifier. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 125–140.
Springer, Heidelberg (2007)

[CA05] Crégut, P., Alvarado, C.: Improving the security of downloadable Java applications
with static analysis. In: Bytecode Semantics, Verification, Analysis and Transfor-
mation. Electronic Notes in Theoretical Computer Science, vol. 141. Elsevier, Am-
sterdam (2005)

[CC77] Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252 (1977)

[Chl0x] Chlipala, A.: Modular development of certified program verifiers with a proof
assistant. Journal of Functional Programming (to appear)

[Coq04] Coq development team. The Coq proof assistant reference manual V8.0. Technical
Report 255, INRIA, France (March 2004),
http://coq.inria.fr/doc/main.html

[Gow04] Gowdiak, A.: Java 2 Micro Edition (J2ME) security vulnerabilities. In: Hack In The
Box Conference, Kuala Lumpur, Malaysia (2004)

[GS07] Grégoire, B., Sacchini, J.: Combining a verification condition generator for a
bytecode language with static analyses. In: Barthe, G., Fournet, C. (eds.) TGC 2007
and FODO 2008. LNCS, vol. 4912, pp. 23–40. Springer, Heidelberg (2008)

[Kil73] Kildall, G.A.: A unified approach to global program optimization. In: Principles of
Programming Languages, pp. 194–206. ACM Press, New York (1973)

[Ler03] Leroy, X.: Java bytecode verification: algorithms and formalizations. Journal of
Automated Reasoning 30(3-4), 235–269 (2003)

[LL05] Livshits, V., Lam, M.: Finding security vulnerabilities in java applications with
static analysis. In: USENIX Security Symposium (2005)

24 G. Barthe et al.

[LW94] Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16(6) (1994)

[LY99] Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Sun
Microsystems, Inc. (1999),
http://java.sun.com/docs/books/vmspec/

[MN07] Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt
termination. In: SAVCBS 2007: Proceedings of the 2007 conference on Specifi-
cation and verification of component-based systems, pp. 39–46. ACM, New York
(2007)

[Nec97] Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119. ACM Press, New York (1997)

[NL98] Necula, G.C., Lee, P.: The design and implementation of a certifying compiler. In:
Programming Languages Design and Implementation, vol. 33, pp. 333–344. ACM
Press, New York (1998)

[PHM98] Poetzsch-Heffter, A., Müller, P.: Logical foundations for typed object-oriented
languages. In: Gries, D., De Roever, W. (eds.) Programming Concepts and Methods
(PROCOMET), pp. 404–423 (1998)

[Ros03] Rose, E.: Lightweight bytecode verification. Journal of Automated Reasoning 31(3-
4), 303–334 (2003)

[SM03] Sabelfeld, A., Myers, A.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communication 21, 5–19 (2003)

[Sun03] Sun Microsystems Inc., 4150 Network Circle, Santa Clara, California 95054. Con-
nected Limited Device Configuration.Specification Version 1.1. JavaTM 2 Platform,
Micro Edition (J2METM) (March 2003)

Certification Using the Mobius Base Logic

Lennart Beringer1, Martin Hofmann1, and Mariela Pavlova2

1 Institut für Informatik, Universität München
Oettingenstrasse 67, 80538 München, Germany

{beringer,mhofmann}@tcs.ifi.lmu.de
2 Trusted Labs, Sophia-Antipolis, France

Mariela.Pavlova@trusted-labs.fr

Abstract. This paper describes a core component of Mobius’ Trusted
Code Base, the Mobius base logic. This program logic facilitates the
transmission of certificates that are generated using logic- and type-based
techniques and is formally justified w.r.t. the Bicolano operational model
of the JVM. The paper motivates major design decisions, presents core
proof rules, describes an extension for verifying intensional code proper-
ties, and considers applications concerning security policies for resource
consumption and resource access.

1 Introduction: Role of the Logic in Mobius

The goal of the Mobius project consists of the development of proof-carrying
code (PCC) technology for the certification of resource-related and information-
security-related program properties [16]. According to the PCC paradigm, code
consumers are invited to specify conditions (“policies”) which they require trans-
mitted code to satisfy before they are willing to execute such code. Providers of
programs then complement their code with formal evidence demonstrating that
the program adheres to such policies. Finally, the recipient validates that the
obtained evidence (“certificate”) indeed applies to the transmitted program and
is appropriate for the policy in question before executing the code.

One of the cornerstones of a PCC architecture is the trusted computing base
(TCB), i.e. the collection of notions and tools in whose correctness the recipi-
ent implicitly trusts. Typically, the TCB consists of a formal model of program
execution, plus parsing and transformation programs that translate policies and
certificates into statements over these program executions. The Mobius architec-
ture applies a variant of the foundational PCC approach [2] where large extents
of the TCB are represented in a theorem prover, for the following reasons.

– Formalising a (e.g. operational) semantics of transmitted programs in a the-
orem prover provides a precise definition of the model of program execution,
making explicit the underlying assumptions regarding arithmetic and logic.

– The meaning of policies may be made precise by giving formal interpretations
in terms of the operational model.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 25–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 L. Beringer, M. Hofmann, and M. Pavlova

– Theorem provers offer various means to define formal notions of certificates,
ranging from proof scripts formulated in the user interface language (includ-
ing tactics) of the theorem prover to terms in the prover’s internal represen-
tation language for proofs (e.g. lambda-terms).

In particular, the third item allows one to employ a variety of certificate notions
in a uniform framework, and to explore their suitability for different certificate
generation techniques or families of policies. In contrast to earlier PCC systems
which targeted mostly type- and memory-safety [2,27], policies and specifica-
tions in Mobius are more expressive, ranging from (upper) bounds on resource
consumption, via access regulations for external resources and security specifica-
tions limiting the flow of information to lightweight functional specifications [16].
Thus, the Mobius TCB is required to support program analysis frameworks
such as type systems and abstract interpretation, but also logical reasoning
techniques.

Fig. 1. Core components of the MOBIUS TCB

Figure 1 depicts the components of the Mobius TCB and their relations. The
base of the TCB is formed by a formalised operational model of the Java Vir-
tual Machine, Bicolano [30], which will be briefly described in the next section.
Its purpose is to define the meaning of JVML programs unambiguously and to
serve as the foundation on which the PCC framework is built. In order to ab-
stract from inessential details, a program logic is defined on top of Bicolano. This
provides support for commonly used verification patterns such as the verification

Certification Using the Mobius Base Logic 27

of loops. Motivated by verification idioms used in higher-level formalisms such as
type systems, the JML specification language, and verification condition genera-
tors, the logic complements partial-correctness style specifications by two further
assertion forms: local annotations are attached to individual program points and
are guaranteed to hold whenever the annotated program point is visited during
a program execution. Strong invariants assert that a particular property will
continue to hold for all future states during the execution of a method, includ-
ing states inside inner method invocations. The precise interpretation of these
assertion forms, and a selection of proof rules will be described in Section 3.

We also present an extension of the program logic that supports reasoning
about the effects of computations. The extended logic arises uniformly from a
corresponding generic extension of the operational semantics. Using different
instantiations of this framework one may obtain domain-specific logics for rea-
soning about access to external resources, trace properties, or the consumption
of resources. Polices for such domains are difficult if not impossible to express
purely in terms of relations between initial and final states. The extension is
horizontal in the sense of Czarnik and Schubert [20] as it is conservative over
the non-extended (“base”) architecture.

The glue between the components is provided by the theorem prover Coq, i.e.
many of the soundness proofs have been formalised. The encoding of the pro-
gram logics follow the approach advocated by Kleymann and Nipkow [25,29] by
employing a shallow embedding of formulae. Assertions may thus be arbitrary
Coq-definable predicates over states. Although the logic admits the encoding of
a variety of program analyses and specification constructs, it should be noted
that the architecture does not mandate that all analyses be justified with respect
to this logic. Indeed, some type systems for information flow, for example, are
most naturally expressed directly in terms of the operational semantics, as al-
ready the definition of information flow security is a statement over two program
executions. In neither case do we need to construct proofs for concrete programs
by hand which would be a daunting task in all but the simplest examples. Such
proofs are always obtained from a successful run of a type system or program
analysis by an automatic translation into the Mobius infrastructure. Examples
of this method are given in Sections 4 and 5.2.

Outline. We give a high-level summary of the operational model Bicolano [30],
restricted to a subset of instructions relevant for the present paper, in Section
2. In Section 3 we present the program logic. Section 4 contains an example of a
type-based verification and shows how a bytecode-level type system guaranteeing
a constant upper bound on the number of heap allocations may be encoded in
the logic. The extended program logic is outlined in Section 5, together with an
application concerning a type system for numeric correspondence assertions [34].
We first discuss some related work.

1.1 Related Work

The basic design decisions for the base logic were presented in [8], and the reader
is referred to loc.cit. for a more in-depth motivation of the chosen format of

28 L. Beringer, M. Hofmann, and M. Pavlova

assertions and rules. In that paper, we also presented a type-system for con-
stant heap space consumption for a functional intermediate language, such that
typing derivations could be translated into program logic derivations over an
appropriately restricted judgement form. In contrast, the type system given in
the present paper works directly on bytecode and hence eliminates the language
translation from the formalised TCB.

The first proposal for a program logic for bytecode we are aware of is the one
by Quigley [31]. In order to justify a rule for while loops, Quigley introduces
various auxiliary notions for relating initial states to intermediate states of an
execution sequence, and for relating states that behave similarly but apply to
different classes. Bannwart and Müller [4] present a logic where assertions ap-
ply at intermediate states and are interpreted as preconditions of the assertions
decorating the successor instructions. However, the occurrence of these local
specifications in positive and negative positions in this interpretation precludes
the possibility of introducing a rule of consequence. Indeed, our proposed rule
format arose originally from an attempt to extend Bannwart and Müller’s logic
with a rule of consequence and machinery for allowing assertions to mention ini-
tial states. Strong invariants were introduced by the Key project [6] for reasoning
about transactional safety of Java Card applications using dynamic logics [7].

Regarding formal encodings of type systems into program logics, Hähnle et
al. [23], and Beringer and Hofmann [9] consider the task of representing infor-
mation flow type systems in program logics, while the MRG project focused on
a formalising a complex type system for input-dependent heap space usage [10].

Certified abstract interpretation [11] complements the type-based certificate
generation route considered in the present paper. Similar to the relationship
between Necula-Lee-style PCC [27] and foundational PCC by Appel et al. [2],
certified abstract interpretation may be seen as a foundational counterpart to
Albert et al.’s Abstraction-carrying code [1]. Bypassing the program logic, the
approach chosen in [11] justifies the program analysis directly with respect to
the operational semantics. A generic framework for certifying program analyses
based on abstract interpretation is presented by Chang et al. [14]. The possibility
to view abstract interpretation frameworks as inference engines for invariants and
other assertions in program logics in general was already advocated in one of the
classic papers by Cousot & Cousot in [18].

Nipkow et al.’s VeryPCC project [33] explores an alternative foundational ap-
proach by formally proving the soundness of verification condition generators. In
particular, [32] presents generic soundness and completeness proofs for VCGens,
together with an instantiation of the framework to a safety policy preventing
arithmetic overflows. Generic PCC architectures have recently been developed
by Necula et al. [15] and the FLINT group [22].

2 Bicolano

Syntax and States. We consider an arbitrary but fixed bytecode program P
that assigns to each method identifier M a method implementation mapping

Certification Using the Mobius Base Logic 29

instruction labels l to instructions. We use the notation M(l) to denote the
instruction at program point l in M , and initM , sucM (l), and parM to denote
the initial label of M , the successor label of l in M , and the list of formal
parameters of M , respectively. While the Bicolano formalisation supports the
full sequential fragment of the JVML, this paper treats the simplified language
given by the basic instructions

basic(M, l) ≡M(l) ∈

⎧⎨
⎩

load x, store x, dup, pop, push z,
unop u, binop o, new c, athrow,
getfield c f, putfield c f, getstatic c f, putstatic c f

⎫⎬
⎭

and additionally conditional and unconditional jumps ifz l and goto l, static and
virtual method invocations invokestatic M and invokevirtual M , and vreturn.

Values and states. The domain V of values is ranged over by v, w, . . . and com-
prises constants (integers z and Null), and addresses a, . . . ∈ A. States are built
from operand stacks, stores, and heaps

O ∈ O = V list S ∈ S = X ⇀fin V h ∈ H = A⇀fin C × (F ⇀fin V)

where X , C and F are the domains of variables, class names, and field names,
respectively. In addition to local states comprising operand stacks, stores, and
heaps,

s, r ∈ Σ = O × S ×H,

we consider initial states Σ0 and terminal states T

s0 ∈ Σ0 = S ×H t ∈ T ::= NormState(h, v) + ExcnState(h, a)

These capture states which occur at the beginning and the end of a frame’s exe-
cution. Terminal states t are tagged according to whether the return value repre-
sents a pointer to an unhandled exception object (constructor ExcnState(., .)) or
an ordinary return value (constructor NormState(., .)). For s0 = (S, h) we write
state(s0) = ([], S, h) for the local state that extends s0 with an empty operand
stack. For parM = [x1, . . . , xn] and O = [v1, . . . , vn] we write parM �→ O for
[xi �→ vi]i=1,...,n. We write heap(s) to access the heap component of a state s,
and similarly for initial and terminal states. Finally, lv(.) denotes the local vari-
able component of a state and getClass(h, a) extracts the dynamic class of the
object at location a in heap h.

Operational judgements. Bicolano defines a variety of small-step and big-step
judgements, with compatibility proofs where appropriate. For the purpose of
the present paper, the following simplified setup suffices1 (cf. Figure 2):

1 The formalisation separates the small-step judgements for method invocations from
the execution of basic instructions and jumps, and then defines a single recursive
judgement combining the two. See [30] for the formal details.

30 L. Beringer, M. Hofmann, and M. Pavlova

Non-exceptional steps. The judgement �M l, s⇒norm l′, r describes the (non-
exceptional) execution of a single instruction, where l′ is the label of the next
instruction (given by sucM (l) or jump targets). The rules are largely stan-
dard, so we only give a rule for the invocation of static methods, InvsNorm.

Exceptional steps. The judgement �M l, s ⇒excn h, a describes exceptional
small steps where the execution of the instruction at program point M, l in
state s results in the creation of a fresh exception object, located at address
a in the heap h. In the case of method invocations, a single exceptional step
is also observed by the callee if the invoked method raised an exception that
could not be locally handled (cf. rule InvsExcn).

Small step judgements. Non-exceptional and handled exceptional small steps
are combined to the small step judgement �M l, s⇒ l′, r using the two rules
NormStep and ExcnStep. The reflexive transitive closure of this relation
is denoted by �M l, s⇒∗ l′, r.

Big-step judgements. The judgement form �M l, s ⇓ t captures the execu-
tion of method M from the instruction at label l onwards, until the end of
the method. This relation is defined by the three rules Comp, Vret and
Uncaught.

Deep step judgements. The judgement �M l, s ⇑ r is defined similarly to
the big-step judgement, by the rules D-Refl, D-Trans D-Invs, and D-

Uncaught. This judgement associates states across invocation boundaries,
i.e. r may occur in a subframe of the method M . This is achieved by rule D-

Invs which associates a call state of a (static) method with states reachable
from the initial state of the callee. A similar rule for virtual methods is
omitted from this presentation.

Small and big-step judgements are mutually recursive due to the occurrence of
a big-step judgement in hypotheses of the rules for method invocations on the
one hand and rule Comp on the other.

3 Base Logic

This section outlines the non-resource-extended program logic.

3.1 Phrase-Oriented Assertions and Judgements

The structure of assertions and judgements of the logic are governed by the
requirement to enable the interpretation of type systems as well as the rep-
resentation of core idioms of JML. High-level type systems typically associate
types (in contexts) to program phrases. Compiling a well-formed program phrase
into bytecode yields a code segment that is the postfix of a JVM method, i.e. all
program points without control flow successors contain return instructions. Con-
sequently, judgements in the logic associate assertions to a program label which
represents the execution of the current method invocation from the current point
(i.e. a state applicable at the program point) onwards. In case of method termi-
nation, a partial-correctness assertion (post-condition) applies that relates this

Certification Using the Mobius Base Logic 31

InvsNorm

M(l) = invokestaticM ′

M′ initM′ , ([], parM′ �→ O, h) ⇓ NormState(k, v)

M l, (O@O′, S, h) ⇒norm sucM (l), (v :: O′, S, k)

InvsExcn

M(l) = invokestaticM ′

M′ initM′ , ([], parM′ �→ O, h) ⇓ ExcnState(k, a)

M l, (O@O′, S, h) ⇒excn k, a

NormStep

M l, s⇒norm l

′, r

M l, s⇒ l′, r

ExcnStep

M l, (O, S, h) ⇒excn k, a
getClass(k, a) = e Handler(M, l, e) = l′

M l, (O,S, h) ⇒ l′, ([a], S, k)

Comp

M l, s⇒ l′, s′
M l′, s′ ⇓ t

M l, s ⇓ t Vret
M(l) = vreturn

M l, (v :: O,S, h) ⇓ NormState(h, v)

Uncaught

M l, s⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

M l, s ⇓ ExcnState(h, a)

D-Refl
M l, s ⇑ s D-Trans

M l, s⇒ l′, s′
M l′, s′ ⇑ s′′

M l, s ⇑ s′′

D-Invs

M(l) = invokestaticM ′
M′ initM′ , ([], parM′ �→ O, h) ⇑ s

M l, (O@O′, S, h) ⇑ s

D-Uncaught

M l, s⇒excn h, a getClass(h, a) = e Handler(M, l, e) = ∅

M l, s ⇑ ([a], ∅, h)

Fig. 2. Bicolano: selected judgements and operational rules

current state to the return state. As the guarantee given by type soundness re-
sults often extends to infinite computations (e.g. type safety, i.e. absence of type
errors), judgements furthermore include assertions that apply to non-terminating
computations. These strong invariants relate the state valid at the subject la-
bel to each future state in the current method invocation. This interpretation
includes states in subframes, i.e. in method invocations that are triggered in the
phrase represented by the subject label.

Infinite computations are also covered by the interpretation of local annota-
tions in JML, i.e. assertions occurring at arbitrary program points which are to
be satisfied whenever the program point is visited. The logic distinguishes these
explicitly given annotation from strong invariants as the former ones are not
necessarily present at all program points. A further specification idiom of JML
that has a direct impact on the form of assertions is \old which refers to the
initial state of a method invocation and may appear in post-conditions, local
annotations, and strong invariants.

Formulae that are shared between postconditions, local annotations, and
strong invariant, and additionally only concern the relationship between the sub-
ject state and the initial state of the method may be captured in pre-conditions.

32 L. Beringer, M. Hofmann, and M. Pavlova

Thus, the judgement of the logic are of the form G � {A}M, l {B} (I) where
M, l denotes a program point (composed of a method identifier and an instruc-
tion label), and the assertions forms are as follows, where B denotes the set of
booleans.

Assertions. A ∈ Assn = Σ0 ×Σ → B occur as preconditions A and local
annotations Q, and relate the current state to the initial state of the current
frame.

Postconditions. B ∈ Post = Σ0 ×Σ × T → B relate the current state to the
initial and final state of a (terminating) execution of the current frame.

Invariants. I ∈ Inv = Σ0 ×Σ ×Σ → B relate the initial state of the current
method, the current state, and any future state of the current frame or a
subframe of it.

The component G of a judgement represents a proof context and is represented
as an association of specification triples (A, B, I) ∈ Assn×Post×Inv to program
points.

The behaviour of methods is described using three assertion forms.

Method preconditions. R ∈ MethPre = Σ0 → B are interpreted hypothet-
ically, i.e. their satisfaction implies that of the method postconditions and
invariants but is not directly enforced to hold at all invocation points.

Method postconditions. T ∈ MethSpec = Σ0 × T → B constrain the be-
haviour of terminating method executions and thus relate only initial and
final states.

Method invariants. Φ ∈ MethInv = Σ0 ×Σ → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial
state of a method frame to any state that occurs during its execution.

A program specification is given by a method specification table M that asso-
ciates to each method a method specification S = (R, T, Φ), a proof context G,
and a table Q of local annotations Q ∈ Assn. From now on, letM denote some
arbitrary but fixed specification table satisfying dom M = dom P .

3.2 Assertion Transformers

In order to notationally simplify the presentation of the proof rules, we define
operators that relate assertions occurring in judgements of adjacent instructions.
The following operators apply to the non-exceptional single-step execution of
basic instructions.

Pre(M, l, l′, A)(s0, r) = ∃ s. �M l, s⇒norm l′, r ∧A(s0, s)
Post(M, l, l′, B)(s0, r, t) = ∀ s. �M l, s⇒norm l′, r → B(s0, s, t)

Inv(M, l, l′, I)(s0, r, t) = ∀ s. �M l, s⇒norm l′, r → I(s0, s, t)

These operators resemble WP-operators, but are separately defined for pre-
conditions, post-conditions, and invariants.

Certification Using the Mobius Base Logic 33

Exceptional behaviour of basic instructions is captured by the operators

Preexcn(M, l, e, A)(s0, r) = ∃ s h a. �M l, s⇒excn h, a ∧ getClass(h, a) = e ∧
r = ([a], lv(s), h) ∧A(s0, s)

Postexcn(M, l, e, B)(s0, r, t) = ∀ s h a. �M l, s⇒excn h, a→ getClass(h, a) = e→
r = ([a], lv(s), h)→ B(s0, s, t)

Invexcn(M, l, e, I)(s0, r, t) = ∀ s h a. �M l, s⇒excn h, a→ getClass(h, a) = e →
r = ([a], lv(s), h)→ I(s0, s, t)

In the case of method invocations, we replace the reference to the operational
judgement by a reference to the method specifications, and include the construc-
tion and destruction of a frame. For example, the operators for non-exceptional
execution of static methods are

Presinv(R, T, A, [x1, . . . , xn])(s0, s) =
∃ O S h k v vi. (R([xi �→ vi]ni=1, h)→ T (([xi �→ vi]ni=1, h), (k, v))) ∧

s = (v :: O, S, k) ∧A(s0, ([v1, . . . , vn]@O, S, h))
Postsinv(R, T, B, [x1, . . . , xn])(s0, r, t) =
∀ O S k k v vi. (R([xi �→ vi]ni=1, h)→ T (([xi �→ vi]ni=1, h), (k, v))) →

r = (v :: O, S, k)→ B(s0, ([v1, . . . , vn]@O, S, h), t)
Invsinv(R, T, I, [x1, . . . , xn])(s0, s, r) =
∀ O S k k v vi. (R([xi �→ vi]ni=1, h)→ T (([xi �→ vi]ni=1, h), (k, v))) →

s = (v :: O, S, k)→ I(s0, ([v1, . . . , vn]@O, S, h), r)

The exceptional operators for static methods cover exceptions that are raised
during the execution of the invoked method but not handled locally. Due to
space limitations we omit the operators for exceptional (null-pointer exceptions
w.r.t. the invoking object) and non-exceptional behaviour of virtual methods.

3.3 Selected Proof Rules

An addition to influencing the types of assertions, type systems also motivate the
use of a certain form of judgements and proof rules. Indeed, one of the advantages
of type systems is their compositionality i.e. the fact that statements regarding
a program phrase are composed from the statements referring to the constituent
phrases, as in the following typical proof rule for a language of expressions

� e1 : int � e2 : int
� e1 + e2 : int

.

Transferring this scheme to bytecode leads to a rule format where hypothetical
judgements refer to the control flow successors of the phrase in the judgement’s
conclusion. In addition to supporting syntax-directed reasoning, this orienta-
tion renders the explicit construction of a control flow graph unnecessary, as no
control flow predecessor information is required to perform a proof.

34 L. Beringer, M. Hofmann, and M. Pavlova

Figure 3 presents selected proof rules. These are motivated as follows.

Instr

basic(M, l) SC 1 SC 2 l′′ = sucM (l)
G
 {Pre(M, l, l′′, A)}M, l′ {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))

∀ l′ e. Handler(M, l, e) = l′ →
G
 {Preexcn(M, l, e,A)}M, l′ {Postexcn(M, l, e,B)} (Invexcn(M, l, e, I))
∀ s0 s h a. (∀ e. getClass(h, a) = e → Handler(M, l, e) = ∅) →

M l, s⇒excn h, a→ A(s0, s) → B(s0, s, (h, a))
G
 {A}M, l {B} (I)

Goto

M(l) = Goto l′ SC 1 SC 2

G
 {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))
G
 {A}M, l {B} (I)

If0

M(l) = ifz l′ SC 1 SC 2 l′′ = sucM (l)
G
 {Pre(M, l, l′, A)}M, l′ {Post(M, l, l′, B)} (Inv(M, l, l′, I))

G
 {Pre(M, l, l′′, A)}M, sucM (l) {Post(M, l, l′′, B)} (Inv(M, l, l′′, I))
G
 {A}M, l {B} (I)

InvS

M(l) = invokestaticM ′ M(M ′) = (R,T, Φ) SC 1 SC 2

∀ s0 O S h O′ r vi. (R(parM′ �→ O, h) → Φ((parM′ �→ O, h), r)) →
A(s0, (O@O′, S, h)) → I(s0, (O@O′, S, h), r)

A1 = Presinv(R,T,A, parM′) B1 = Postsinv(R,T,B, parM′)
G
 {A1}M, sucM (l) {B1} (Invsinv(R,T, I, parM′))

∀ l′ e. Handler(M, l, e) = l′ →
G
 {Preexcn

sinv (R,T,A, e, parM′)}M, l′ {Postexcn
sinv (R,T,B, e, parM′)}

(Invexcn
sinv (R,T, I, e, parM′))

∀ s0 O S h O′ k a. (R(parM′ �→ O, h) → Φ((parM′ �→ O, h), (k, a))) →
(∀ e. getClass(k, a) = e → Handler(M, l, e) = ∅) →
A(s0, (O@O′, S, h)) → B(s0, (O@O′, S, h), (k, a))

G
 {A}M, l {B} (I)

Ret

M(l) = vreturn SC 1 SC 2

∀ s0 v O S h. A(s0, (v :: O, S, h)) → B(s0, (v :: O, S, h), (h, v))
G
 {A}M, l {B} (I)

Conseq

G
 {A′} � {B′} (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s0 s r. I ′(s0, s, r) → I(s0, s, r)

G
 {A} � {B} (I)

Ax

G(�) = (A,B, I) ∀ s0 s. A(s0, s) → I(s0, s, s)
∀Q. Q(�) = Q→ (∀ s0 s. A(s0, s) → Q(s0, s))

G
 {A} � {B} (I)

Fig. 3. Program logic: selected syntax-directed rules

Certification Using the Mobius Base Logic 35

Rule INSTR describes the behaviour of basic instructions. The hypothetical
judgement for the successor instruction involves assertions that are related to
the assertions in the conclusion by the transformers for normal termination. A
further hypothesis captures exceptions that are handled locally, i.e. those ex-
ceptions e to which the exception handler of the current method associates a
handling instruction (predicate Handler (M, l, e) = l′). Exceptions that are not
handled locally result in abrupt termination of the method. Consequently, these
exceptions are modelled in a side condition that involves the method postcondi-
tion rather than a further judgemental hypothesis.

Finally, the side conditions SC 1 and SC 2 ensure that the invariant I and the
local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s)→ I(s0, s, s)
SC 2 = ∀Q. Q(M, l) = Q→ (∀ s0 s. A(s0, s)→ Q(s0, s))

In particular, SC 2 requires us to prove any annotation that is associated with
label l. Satisfaction of I in later states, and satisfaction of local annotations Q′

of later program points are guaranteed by the judgement for sucM (l).
The rules for conditional and unconditional jumps include a hypotheses for

the control flow successors, and the same side conditions for local annotations
and invariants as rule Instr. No further hypotheses or side conditions regarding
exceptional behaviour are required as these instructions do not raise exceptions.
These rules also account for the verification of loops which on the level of byte-
code are rendered as jumps. Loop invariants can be inserted as postconditions
B at their program point. Rule Ax allows one to use such invariants whereas
according to Definition 1 they must be established once in order for a verification
to be valid.

In rule InvS, the invariant of the callee, namely Φ (more precisely: the sat-
isfaction of Φ whenever the initial state of the callee satisfies the precondition
R), and the local precondition A may be exploited to establish the invariant I.
This ensures that I will be satisfied by all states that arise during the execution
of M ′, as these states will always conform to Φ. The callee’s post-condition T
is used to construct the assertions that occur in the judgement for the succes-
sor instruction l′. Both conditions reflect the transfer of the method arguments
and return values between the caller and the callee. This protocol is repeated in
the hypothesis and the side condition for the exceptional cases which otherwise
follow the pattern mentioned in the description of the rule Instr.

A similar rule for virtual methods is omitted. The rule for method returns,
Ret, ties the precondition A to the post-condition B w.r.t. the terminal state
that is constructed using the topmost value of the operand stack.

Finally, the logical rules Conseq and Ax arise from the standard rules by
adding suitable side conditions for strong invariants and local assertions.

3.4 Behavioural Subtyping and Verified Programs

We say that method specification (R, T, Φ) implies (R′, T ′, Φ′) if

36 L. Beringer, M. Hofmann, and M. Pavlova

– for all s0 and t, R(s0)→ T (s0, t) implies R′(s0)→ T ′(s0, t) , and
– for all s0 and s, R(s0)→ Φ(s0, s) implies R′(s0)→ Φ′(s0, s)

Furthermore, we say that M satisfies behavioural subtyping for P if whenever
P contains an instruction invokevirtual M ′ with M(M ′) = (S′,G′,Q′), and M
overrides M ′, then there are S, G and Q with M(M) = (S,G,Q) such that S
implies S′. Finally, we call a derivation G � {A}M, l {B} (I) progressive if it
contains at least one application of a non-logical rule.

Definition 1. P is verified with respect to M, notation M � P , if

– M satisfies behavioural subtyping for P , and
– for all M , M(M) = (S,G,Q), and S = (R, T, Φ)
• a progressive derivation G � {A}M, l {B} (I) exists for any l, A, B, and

I with G(M, l) = (A, B, I), and
• a progressive derivation G � {A}M, initM {B} (I) exists for

A(s0, s) ≡ s = state(s0) ∧R(s0)
B(s0, s, t) ≡ s = state(s0)→ T (s0, t)
I(s0, s, r) ≡ s = state(s0)→ Φ(s0, r).

As the reader may have noticed, behavioural subtyping only affects method spec-
ifications but not the proof contexts G or annotation tables Q. Technically, the
reason for this is that no constraints on these components are required in order to
prove the logic sound. Pragmatically, we argue that proof contexts and local an-
notations tables of overriding methods indeed should not be related to contexts
and annotation tables of their overridden counterparts, as both kinds of tables
expose the internal structure of method implementations. In particular, entries
in proof contexts and annotation tables are formulated w.r.t. specific program
points, which would be difficult to interprete outside the method boundary or
indeed across different (overriding) implementations of a method.

The distinction between progressive and non-progressive derivations prevents
attempts to justify a proof context or method specification table simply by ap-
plying the axiom rule to all entries. In program logics for high-level languages,
the corresponding effect is silently achieved by the unfolding of the method body
in the rule for method invocations [29]. As our judgemental form does not permit
such an unfolding, the auxiliary notion of progressive derivations is introduced.
In our formalisation, the separation between progressive and other derivations
is achieved by the introduction of a second judgement form, as described in [8].

3.5 Interpretation and soundness

Definition 2. The triple (Q, B, I) is valid at (M, l) for (s0, s) if

– for all r, if �M l, s ⇓ t then B(s0, s, t)
– for all l′ and r, if �M l, s⇒∗ l′, r and Q(l′) = Q, then Q(s0, r), and
– for all r, if �M l, s ⇑ r then I(s0, s, r).

Certification Using the Mobius Base Logic 37

Note that the second clause applies to annotations Q associated with arbitrary
labels l′ in method M that will be visited during the execution of M from (l, s)
onwards. Although these annotations are interpreted without recourse to the
state s, the proof of Q(s0, r) may exploit the precondition A(s0, s).

The soundness result is then as follows.

Theorem 1. For M � P let M(M) = (S,G,Q), G � {A}M, l {B} (I) be a
progressive derivation, and A(s0, s). Then (Q, B, I) is valid at (M, l) for (s0, s).

In particular, this theorem implies that for M � P all method specifications
in M are honoured by their method implementations. The proof of this result
may be performed in two ways. Following the approach of Kleymann and Nip-
kow [25,29,3], one would first prove that the derivability of a judgement entails
its validity, under the hypothesis that contextual judgements have already been
validated. For this task, the standard technique involves the introduction of
relativised notions of validity that restrict the interpretation of judgements to
operational judgements of bounded height. Then, the hypothesis on contextual
judgements is eliminated using structural properties of the relativised validity.
An alternative to this approach has been developed by Benjamin Gregoire in
the course of the formalisation of the present logic. It consists of (i) defining a
family of syntax-directed judgements (one judgement form for each instruction
form, inlining the rule of consequence), (ii) proving that propertyM� P implies
that the last step in a derivation of G � {A}M, l {B} (I) can be replaced by an
application of the syntax-directed judgement corresponding to the instruction at
M, l (in particular, an application of the axiom rule is replaced by the derivation
for the corresponding code blocks from G), and (iii) proving the main claim of
Theorem 1 by treating the three parts of Definition 2 separately, each one by
induction over the respective operational judgement.

4 Type-Based Verification

In this section we present a type system that ensures a constant bound on the
heap consumption of bytecode programs. The type system is formally justified
by a soundness proof with respect to the MOBIUS base logic, and may serve as
the target formalism for type-transforming compilers.

The requirement imposed on programs is similar to that of the analysis pre-
sented by Cachera et al. in [13] in that recursive program structures are denied
the facility to allocate memory. However, our analysis is presented as a type
system while the analysis presented in [13] is phrased as an abstract interpre-
tation. In addition, Cachera et al.’s approach involves the formalisation of the
calculation of the program representation (control flow graph) and of the infer-
ence algorithm (fixed point iteration) in the theorem prover. In contrast, our
presentation separates the algorithmic issues (type inference and checking) from
semantic issues (the property expressed or guaranteed) as is typical for a type-
based formulation. Depending on the verification infrastructure available at the
code consumer side, the PCC certificate may either consist of (a digest of) the

38 L. Beringer, M. Hofmann, and M. Pavlova

typing derivation or an expansion of the interpretation of the typing judgements
into the MOBIUS logic. The latter approach was employed in our earlier work
[10] and consists of understanding typing judgements as derived proof rules in
the program logic and using syntax-directed proof tactics to apply the rules
in an automatic fashion. In contrast to [10], however, the interpretation given
in the present section extends to non-terminating computations, albeit for a far
simpler type system.

The present section extends the work presented in [8] as the type system is
now phrased for bytecode rather than an intermediate functional language and
includes the treatment of exceptions and virtual methods.

Bytecode-level type system. The type system consists of judgements of the form
�Σ,Λ � : n, expressing that the segment of bytecode whose initial instruction is
located at � is guaranteed not to allocate more than n memory cells. Here, �
denotes a program point M, l while signatures Σ and Λ assign types (natural
numbers n) to identifiers of methods and bytecode instructions (in particular,
when those are part of a loop), respectively.

C-New
n ≥ 1 M(l) = New C
Σ,Λ M, sucM (l) : n− 1

Σ,Λ M, l : n

C-Instr

n ≥ 1 basic(M, l) ¬M(l) = New C
Σ,Λ M, sucM (l) : n
∀ l′ e. Handler(M, l, e) = l′ →
Σ,Λ M, l

′ : n− 1

Σ,Λ M, l : n

C-If
n ≥ 0 M(l) = ifz l′
Σ,Λ M, l

′ : n
Σ,Λ M, sucM (l) : n

Σ,Λ M, l : n

C-Invoke

M(l) ∈ {invokestaticM ′, invokevirtualM ′} Σ(M ′) = k
n ≥ 1 k ≥ 0
Σ,Λ M, sucM (l) : n

∀ l′ e. Handler(M, l, e) = l′ →
Σ,Λ M, l
′ : n− 1

Σ,Λ M, l : n+ k

C-Ret
M(l) = vreturn

Σ,Λ M, l : 0
C-Sub

Σ,Λ � : n n ≤ k

Σ,Λ � : k

C-Assum
Λ(�) = n

Σ,Λ � : n

Fig. 4. Type system for constant heap space

The rules are presented in Figure 4. The first rule, C-New, asserts that the
memory consumption of a code fragment whose first instruction is new C is the
increment of the remaining code. Rule C-Instr applies to all basic instructions
(in the case of goto l′ we take sucM (l) to be l′), except for new C – the predicate
basic(m, l) is defined as in Section 3.3. The memory effect of these instructions
is zero, as is the case for return instructions, conditionals, and (static) method
invocations in the case of normal termination. For exceptional termination, the
allocation of a fresh exception object is accounted for by decrementing the type

Certification Using the Mobius Base Logic 39

for the code continuation by one unit. The rule C-Assum allows for using the
annotation attached to the instruction if it matches the type of the instruction.

A typing derivation �Σ,Λ � : k is called progressive if it does not solely contain
applications of rules C-Sub and C-Assum. Furthermore, we call P well-typed for
Σ, notation �Σ P , if for all M and n with Σ(M) = n there is a local specification
table Λ such that a progressive derivation �Σ,Λ M, initM : n exists, and for all
� with Λ(�) = k we have a progressive derivation �Σ,Λ � : k.

Type checking and inference. The tasks of checking and automatically finding
(inference) of typing derivations are not our main concern here. Nevertheless, we
discuss briefly how this can be achieved.

For this simple type system checking a given typing derivation amounts to
verifying the inequations that arise as side conditions. Furthermore, given Σ, Λ
a corresponding typing derivation can be reconstructed by applying the typing
rules in a syntax-directed fashion. In order to construct Σ, Λ as well (type in-
ference) one writes down a “skeleton derivation” with indeterminates instead of
actual numeric values and then solves the arising system of linear inequalities.
Alternatively, one can proceed by counting allocation statements along paths
and loops in the control-flow graph.

Our main interest here is, however, the use of existing type derivations however
obtained in order to mechanically construct proofs in the program logic. This
will be described now.

Interpretation of the type system. The interpretation for the above type system
is now obtained by defining for each number n a triple �n� = (A, B, I) consisting
of a precondition A, a postcondition B, and an invariant I, as follows.

�n� ≡

⎛
⎝λ (s0, s). True,

λ (s0, s, t). |heap(t)| ≤ |heap(s)|+ n,
λ (s0, s, r). |heap(r)| ≤ |heap(s)|+ n

⎞
⎠

Here, |h| denotes the size of heap h and heap(s) extracts the heap component
of a state. We specialise the main judgement form of the bytecode logic to

G � � {n} ≡ let (A, B, I) = �n� in G � {A} � {B} (I).

By the soundness of the MOBIUS logic, the derivability of a judgement G � � {n}
guarantees that executing the code located at � will not allocate more that n
items, in terminating (postcondition B) and non-terminating (invariant I) cases,
provided that M � P holds. For (A, B, I) = �n� we also define the method
specification

Spec n ≡ (λ s0. True, λ (s0, t). B(s0, state(s0), t), λ (s0, s). I(s0, state(s0), s)),

and for a given Λ we define GΛ pointwise by GΛ(�) = �Λ(�)�.
Finally, we say that M satisfies Σ, notation M |= Σ, if for all methods M ,

M(M) = (Spec n,GΛ, ∅) holds precisely if Σ(M) = n, where Λ is the context as-
sociated with M in �Σ P . Thus, method specification tableM contains for each

40 L. Beringer, M. Hofmann, and M. Pavlova

method the precondition, postcondition and invariant from Σ, the (complete)
context determined from Λ, and the empty local annotation table Q.

We can now prove the soundness of the typing rules with respect to this inter-
pretation. By induction on the typing rules, we first show that the interpretation
of a typing judgement is derivable in the logic.

Proposition 1. For M |= Σ let M be provided in M with some annotation
table Λ such that �Σ,Λ M, l : n is progressive. Then GΛ �M, l {n}.

From this, one may obtain the following, showing that well-typed programs
satisfy the verified-program property:

Theorem 2. Let M |= Σ and �Σ P , and let M satisfy behavioural subtyping
for P . Then M � P .

Discussion. In order to improve the precision of the analysis, a possibility is
to combine the type system with a null-pointer analysis. For this, we would
specialise the proof rules for instructions which might throw a null-pointer ex-
ception. At program points for which the analysis guarantees absence of such
exceptions, we may then use a specialised typing rule. For example, a suitable
rule for the field access operation is the following.

C-Getfld1
getField(m, l) refNotNull(m, l) �Σ,Λ m, sucm(l) : n

�Σ,Λ m, l : n

Program points for which the analysis is unable to discharge the side condition
refNotNull(m, l) would be dealt with using the standard rule. Similarly, instruc-
tions that are guaranteed not to throw runtime exceptions (like load x, store x,
dup) may be typed using the optimised rule

C-noRTE
�Σ,Λ m, sucm(l) : n noExceptionInstr(m, l)

�Σ,Λ m, l : n

We expect that justifying these specialised rules using the program logic would
not pose major problems, while the formal integration with other program anal-
yses (such as the null-pointer analysis) is a topic for future research.

5 Resource-Extended Program Logic

In this section we give a brief overview of an extension of the MOBIUS base
logic as described in Section 3 for dealing with resources in a generic way. The
extension addresses the following shortcoming of the basic logic:

Resource consumption. Specific resources that we would like to reason about
include instruction counters, heap allocation, and frame stack height. A
well-known technique for modelling these resources is code instrumentation,
i.e. the introduction of (real or ghost) variables and instructions manipulat-
ing these. However, code instrumentation appears inappropriate for a PCC

Certification Using the Mobius Base Logic 41

environment, as it does not provide an end-to-end guarantee that can be un-
derstood without reference to the program at hand. In particular, the over-
all satisfaction of a resource property using code instrumentation requires
an analysis of the annotated program, i.e. a proof that the instrumenta-
tion variables are introduced and manipulated correctly. Furthermore, the
interaction between additional variables of different domains, and between
auxiliary variables and proper program variables is difficult to reason about.

Execution traces. Here, the goal is to reason about properties concerning a
full terminating or non-terminating execution of a program, for example
by imposing that an execution satisfies a formula expressed in temporal
logics or a policy given in terms of a security automaton. Such specifications
may concern the entire execution history, i.e. be defined over a sequence of
(intermediate) Bicolano states, and are thus not expressible in the MOBIUS
base logic.

Ghost variables are heavily used in JML, both for resource-accounting pur-
poses as well as functional specifications, but are not directly expressible in
the base logic.

In this section we extend the base logic by a generic resource-accounting mech-
anism that may be instantiated to the above tasks. In addition to the work
reported here, we have also performed an analysis of the usage made of ghost
variables in JML, and have developed interpretations of ghost variables in na-
tive and resource-extended program logics [24]. In particular, loc.cit. contains a
formalised proof demonstrating how resource counting using ghost variables in
native logics may be effectively eliminated, by translating each proof derivation
into a derivation in the resource-extended logic.

5.1 Semantic Modelling of Generic Resources

In order to avoid the pitfalls of code instrumentation discussed above, a semantic
modelling of resource consumption was chosen. The logic is defined over an ex-
tended operational semantics, the judgements of which are formulated over the
same components as the standard Bicolano operational semantics, plus a further
resource-accounting component [20]. The additional component is of the a priori
unspecified type ACT, and occurs as a further component in initial, final, and
intermediate states. In addition, we introduce transfer functions that update the
content of this component according to the other state components, including
the program counter. The operational semantics of the extended framework is
then obtained by embedding each non-extended judgement form in a judgement
form over extended states and invoking the appropriate transfer functions on
the resource component. While these definitions of the operational semantics
are carried out once and for all, the implementation of the transfer functions
themselves is programmable. Thus, realisations of the framework for particular
resources may be obtained by instantiating the ACT to some specific type and
implementing the transfer functions as appropriate. The program logic remains
conceptually untouched, i.e. it is structurally defined as the logic from Section 3,

42 L. Beringer, M. Hofmann, and M. Pavlova

but the definitions of assertion transformers and rules, and the soundness proof,
are adapted to extended states and modified operational judgements.

In comparison to admitting the definition of ad-hoc extensions to the program
logic, we argue that the chosen approach is better suited to the PCC applications,
as the consumer has a single point of reference where to specify his policy, namely
the implementation of the transfer functions.

5.2 Application: Block-Booking

As an application of the resource-extended program logic, we consider a scenario
where an application repeatedly sends some data across a network provided that
each such operation is sanctioned by an interaction with the user. In order to
avoid authorisation requests for individual send operations, a high-level language
might contain a primitive auth(n) that asks the user to authorise n messages in
one interaction. A reasonable resource policy for the code consumer then is to
require that no send operation be carried out without authorisation, and that
at each point of the execution, the acquired authorisations suffice for servicing
the remaining send operations. (For simplicity, we assume that refusal by the
user to sanction an authorisation request simply blocks or leads to immediate
non-termination without any observable effect.)

We note that as in the case of the logic loop constructs from the high-level
language are mapped to conditional and unconditional jumps that must be typed
using the corresponding rules.

We now outline a bytecode-level type and effect system for this task, for
a sublanguage of scalar (integer) values and unary static methods. Effects τ
are rely-guarantee pairs (m, n) of natural numbers: a code fragment with this
effect satisfies the above policy whenever executed in a state with at least m
unused authorisations, with at least n unused authorisations being left over upon
termination. The number of authorisations that are additionally acquired, and
possibly used, during the execution are unconstrained. Types C, D, . . . are sets
of integers constraining the values stored in variables or operand stack positions.
Judgements take the form Δ, η, Ξ �Σ,Λ � : C, τ , with the following components:

– the abstract store Δ maps local variables to types
– the abstract operand stack η is represented as a list of types
– Ξ is an equivalence relation relation ranging over identifiers ρ from dom Δ∪

dom η where dom η is taken to be the set {0, . . . , |η| − 1}. The role of Ξ is
to capture equalities between values on the operand stack and the store.

– instruction labels � = (M, l) indicate the current program point, as before
– the type C describes the return type
– the effect τ captures the pre-post-behaviour of the subject phrase with re-

spect to authorisation and send events
– the proof context Λ associates sets of tuples (Δ, η, Ξ, C, τ) to labels l (im-

plicitly understood with respect to method M).
– the method signature table Σ maps method names to type signatures of the

Certification Using the Mobius Base Logic 43

form ∀i∈I. Ci
(mi,ni)−−−−−→ Di. Limiting our attention to static methods with

a single parameter, such a poly-variant signature indicates that for each i

in some (unspecified) index set I, the method is of type Ci
(mi,ni)−−−−−→ Di,

i.e. takes arguments satisfying constraint Ci to return values satisfying Di

with (latent) effect (mi, ni).

In addition to ignoring virtual methods (and consequently avoiding the need for
a condition enforcing behavioural subtyping of method specifications), we also
ignore exceptions. Finally, while our example program contains simple objects
we do not give proof rules for object construction or field access. We argue that
this impoverished fragment of the JVML suffices for demonstrating the concept
of certificate generation for effects, and leave an extension to larger language
fragments as future work.

For an arbitrary relation R, we let Eq(R) denote its reflexive, transitive and
symmetric closure. We also define the operations Ξ − ρ, Ξ + ρ and Ξ[ρ := ρ′]
on equivalence relation Ξ and identifiers ρ and ρ′, as follows.

Ξ − ρ ≡ Ξ \ {(ρ1, ρ2) | ρ = ρ1 ∨ ρ = ρ2}
Ξ + ρ ≡ Ξ ∪ {(ρ, ρ)}

Ξ[ρ := ρ′] ≡ Eq((Ξ − ρ) ∪ {(ρ, ρ′)})

The interpretation of position ρ in a pair (O, S) is given by �x�(O,S) = S(x)
and �n�(O,S) = O(n). The interpretation of a triple Δ, η, Ξ in a pair (O, S) is
given by the formula

�Δ, η, Ξ�(O,S) =

⎧⎪⎪⎨
⎪⎪⎩

dom Δ ⊆ dom S ∧ |η| = |O| ∧
∀x ∈ dom Δ. S(x) ∈ Δ(x) ∧
∀i < |η|. O(i) ∈ η(i) ∧
∀(ρ, ρ′) ∈ Ξ. �ρ�(O,S) = �ρ′�(O,S)

With the help of these operations, the type system is now defined by the rules
given in Figure 5. Due to the formulation at the bytecode level, the authorisation
primitive does not have a parameter but obtains its argument from the operand
stack.

The rule for conditionals, E-If, exploits the outcome of the branch condition
by updating the types of all variables associated with the top operand stack
position in Ξ. This limited form of copy propagation will be made use of in the
verification of an example program below.

In the rule of consequence, E-Sub, subtyping on types is denoted by C <:
D and given by subset inclusion, and is extended to abstract stores (notation
Δ <: Δ′) and abstract operand stacks (notation η <: η′) in a pointwise fashion.
Sub-effecting is given by the reflexive closure of the rule

k ≥ m + d l ≤ n + d

(m, n) <: (k, l)
.

44 L. Beringer, M. Hofmann, and M. Pavlova

E-Send
M(l) = send Δ, η,Ξ
Σ,Λ M, sucM (l) : D, (m− 1, n)

Δ, η,Ξ
Σ,Λ M, l : D, (m,n)

E-Auth

M(l) = auth ∀i ∈ C. i ≥ k
Δ, η,Ξ − |η|
Σ,Λ M, sucM (l) : D, (m+ k, n)

Δ,C :: η,Ξ
Σ,Λ M, l : D, (m,n)

E-Goto
M(l) = goto l′ Δ, η,Ξ
Σ,Λ M, l

′ : D, (m,n)
Δ, η,Ξ
Σ,Λ M, l : D, (m,n)

E-If

M(l) = ifz l′ Ξ ′ = Ξ − |η|
Δ1 = Δ[x �→ Δ(x) ∩ (Z \ {0})](|η|,x)∈Ξ

η1 = η[i �→ η(i) ∩ (Z \ {0})](|η|,i)∈Ξ ∧ 0≤i<|η|
Δ2 = Δ[x �→ Δ(x) ∩ {0}](|η|,x)∈Ξ

η2 = η[i �→ η(i) ∩ {0}](|η|,i)∈Ξ ∧ 0≤i<|η|
Δ1, η1, Ξ

′
Σ,Λ M, sucM (l) : (m,n) Δ2, η2, Ξ
′
Σ,Λ M, l

′ : D, (m,n)
Δ,C :: η,Ξ
Σ,Λ M, l : D, (m,n)

E-Store

M(l) = store x Ξ ′ = (Ξ[x := |η|]) − |η|
Δ[x �→ C], η, Ξ ′
Σ,Λ M, sucM (l) : D, (m,n)

Δ,C :: η,Ξ
Σ,Λ M, l : D, (m,n)

E-Load

M(l) = load x Ξ ′ = Ξ[|η| := x]
Δ,Δ(x) :: η,Ξ ′
Σ,Λ M, sucM (l) : D, (m,n)

Δ, η,Ξ
Σ,Λ M, l : D, (m,n)

E-Push
M(l) = push c Δ, {c} :: η,Ξ + |η|
Σ,Λ M, sucM (l) : D, (m,n)

Δ, η,Ξ
Σ,Λ M, l : D, (m,n)

E-Binop

M(l) = binop ⊕ C = {z|z = x ⊕ y, x ∈ C1, y ∈ C2}
Δ,C :: η, ((Ξ − |η|) − (|η| + 1)) + |η|
Σ,Λ M, sucM (l) : D, (m,n)

Δ,C1 :: C2 :: η,Ξ
Σ,Λ M, l : D, (m,n)

E-InvS

M(l) = invokestaticM ′ Σ(M ′) = ∀i∈I. Ci τi−→ Di k ∈ I
Ξ ′ = (Ξ − |η|) + |η| Δ,Dk :: η,Ξ ′
Σ,Λ M, sucM (l) : D, (nk, n)

Δ,Ck :: η,Ξ
Σ,Λ M, l : D, (mk, n)

E-Vret
M(l) = vreturn

Δ,D,Ξ
Σ,Λ M, l : D, (0, 0)
E-Ax

(Δ, η, Ξ,D, τ) ∈ Λ(l)
Δ, η,Ξ
Σ,Λ M, l : D, τ

E-Sub

Δ′, η′, Ξ ′
Σ,Λ � : C, τ ′

Δ <: Δ′ η <: η′

C <: D τ ′ <: τ Ξ ′ ⊆ Ξ
Δ, η,Ξ
Σ,Λ � : D, τ

E-Univ

∀ O S. �Δ, η, Ξ�(O,S) = False

Δ, η,Ξ
Σ,Λ M, l : D, (m,n)

Fig. 5. Type and effect system for block-booking

Certification Using the Mobius Base Logic 45

The final rule, E-Univ, allows us to associate an arbitrary effect and result
type to a code segment under the condition that the constraints Δ, η, Ξ on the
initial state are unsatisfiable. The main use of this rule is in cases where branch
conditions render one branch dead code.

In order to prove the soundness of the type system in the extended program
logic, we instantiate the parameter ACT to the type of finite words over the set
{send}∪{auth(z) | z ≥ 0} and implement the transfer functions such that each
execution of the primitives send and auth results in appending the appropriate
action to the trace - in case of authorisation events, the number z is obtained
by inspecting the topmost value of the operand stack.

We interpret a judgement Δ, η, Ξ �Σ,Λ M, l : D, (m, n) as the logic statement

�Λ�M � {λ s0. True}M, l {�(Δ, η, Ξ, m, n, D)�} (�(Δ, η, Ξ, m)�),

with the following components. The postcondition �(Δ, η, Ξ, m, n, D)� is

λ (s0, (O, S, h, X), (h, v, Y)). �Δ, η, Ξ�(O,S) →
(∃Z. v ∈ D ∧ Y = XZ ∧ |Z|auth + m ≥ |Z|send + n).

For any terminating execution starting in an initial store and operand stack
conforming to the abstractions Δ and η, and respecting the equivalence relation
Ξ, this property guarantees that the return value satisfies D. Furthermore, the
sub-traces for authorisation and send events (obtained by projecting from the
trace Z of all events encountered during the execution of the phrase) satisfy
the inequality interpreting the effect.

A similar explanation holds for the definition of the invariant �(Δ, η, Ξ, m)�,

λ (s0, (O, S, h, X), (O′, S′, h′, X ′)). �Δ, η, Ξ�(O,S) →
(∃Z. X ′ = XZ ∧ |Z|auth + m ≥ |Z|send).

The local proof context �Λ�M is given by

[(M, l) �→ (True, �(Δ, η, Ξ, m, n, D)�, �(Δ, η, Ξ, m)�)]Λ(l)=(Δ,η,Ξ,D,(m,n)),

i.e. by translating the entries of Λ pointwise. Finally, each specification entry

Σ(M) = ∀i∈I. Ci
(mi,ni)−−−−−→ Di results in an entry M(M) = (R, T, Φ) in the

bytecode logic specification table, where

R(s0) = True
T ((S, h, X), (h, v, Y)) = ∀i ∈ I.S(arg) ∈ Ci →

(∃ Z. v ∈ Di ∧ Y = XZ ∧
|Z|auth + mi ≥ |Z|send + ni)

Φ((S, h, X), (O, S′, h′, X ′)) = ∀i ∈ I.S(arg) ∈ Ci →
(∃ Z. X ′ = XZ ∧ |Z|auth + mi ≥ |Z|send)

where arg is the formal parameter. Based on this interpretation, certificate gener-
ation may now be obtained by deriving the typing rules from the program logic

46 L. Beringer, M. Hofmann, and M. Pavlova

and introducing appropriate notions of progressive derivations and well-typed
programs (in the absence of virtual methods: without a behavioural subtyping
condition), in a similar way as in Section 4. The formalisation of this is left as
future research.

5.3 Example

We assume two builtin integer-valued functions size_string yielding the num-
ber of SMS messages required to send a given string, and size_book which gives
the size of an address book. Figure 6 presents Java-style pseudocode for sending
a given string to all addresses of a given address book after requiring the neces-
sary permissions. The program first computes the total number of SMS messages

public interface Parameters {

int p=...; //some constant >= 0

}

class BlockBooking {

static void send () {...};

static void auth (int p) {...};

void block_send(Java.lang.String s, addrbook b) {

int n = size_string(s);

int m = size_book(b);

int nb_sms = n * m;

int j = 0;

int sent = 0;

while (nb_sms - sent > 0) {

if j > 0 {

//current authorisations suffice

send();

sent = sent + 1;

j = j - 1

} else {

//acquire p new authorisations

auth (Parameters.p);

j = Parameters.p;

}

}

return 0;

}

}

Fig. 6. Program for sending a message using authorisation chunks of size p

and then sends the messages where authorisations are acquired in blocks of size
p, for arbitrary fixed p ≥ 0. The primitives for sending and authorising messages
are modelled as additional (static) methods.

Certification Using the Mobius Base Logic 47

0 aload 1 //variable s

1 invokestatic sizestring

4 istore 3 //variable n

5 aload 2 // variable b

6 invokestatic sizebook

9 istore 4 //variable m

11 iload 3

12 iload 4

14 imul

15 istore 5 //variable nbms

17 iconst 0

18 istore 6 //variable j

20 iconst 0

21 istore 7 //variable sent

23 iload 5

25 iload 7

27 isub

28 ifle 64

31 iload 6

33 ifle 54

36 invokestatic send

39 iload 7

41 iconst 1

42 iadd

43 istore 7

45 iload 6

47 iconst 1

48 isub

49 istore 6

51 goto 23

54 iconst 3 // parameter p

55 invokestatic auth

58 iconst 3

59 istore 6

61 goto 23

64 iconst 0

65 ireturn

Fig. 7. Bytecode for method BlockBooking.block send

Figure 7 shows the bytecode for method block_send, which comprises six
basic blocks. In order to verify that this method does not send more messages
than authorised, we derive the typing

[s �→ C, b �→ D], [], ∅ �Σ,Λ block send, 0 : {0}, (0, 0)

where C and D are arbitrary and

Σ ≡ [sizestring �→ {(C, 0, 0,Z)}, sizebook �→ {(D, 0, 0,Z)}]
Λ ≡ [23 �→ {specd | 0 ≤ d}]

specd ≡ (Δd, [], Ξd, {0}, (d, 0))
Δd ≡ [n �→ Z, m �→ Z, nbsms �→ Z, j �→ {d}, sent �→ Z≥0]
Ξd ≡ {(n, n), (m, m), (nbsms, nbsms), (j, j), (sent, sent)}.

The proof context Λ contains a single entry, namely a polyvariant loop invari-
ant for instruction 23. The invariant contains one entry for each 0 ≤ d, where
the index specifies precisely the content of variable j and links this value to
the pre-effect. The equivalence relation relevant at this program point contains
merely the reflexive entries for all (integer) variables. The verification of the
above judgement applies the rules syntax-directedly for instructions 0, . . . , 21,
and then applies the axiom rule for label 23, guarded by an application of rule
E-Sub.

48 L. Beringer, M. Hofmann, and M. Pavlova

The overall verification complements the verification of the above judgement
with a justification of the context Λ, by providing a progressive derivation for
the loop invariant. Again, this verification proceeds syntax-directedly through
the loop, terminating in (subtyping-protected) applications of the rule E-Ax.
At the point where method send is invoked (instruction label 36) a case-split is
performed on the condition d = 0. If this condition holds, a vacuous statement is
obtained as the invocation occurs in the branch j > 0, and our invariant ensures
that j contains the value d. The vacuity is detected as the entry for j in Δ
is ∅ at that point: the load instruction at label 36 inserts (0, j) into Ξ, hence
the type associated with j in the fall-through-hypothesis of the branch at label
33 (in particular: at label 36) is {d} ∩ (Z \ {0}) = ∅ where the term {d} was
propagated unmodified to instruction 36 from instruction 23. Consequently, the
case d = 0 may be immediately discharged by an invocation of rule E-Univ. The
case d > 0 admits the application of the proof rule E-Send, and the remainder
of the branch is again proven in a syntax-directed fashion.

Type checking and inference. Again, we briefly discuss these issues for this sys-
tem. The type system is generic in that types may be arbitrary sets of integers.
In order to support effective typechecking and inference one must of course re-
strict these sets themselves and also the sets of types that arise in annotations
and method specifications. A popular and for our intended application sufficient
way consists of restricting types to convex polyhedra specified by a system of
linear inequalities and to confine sets of types to those arising by intersecting a
fixed convex polyhedron with a hyperplane specified by one or more additional
parameters. Notice that the types in our running example are all of this form.

When we make this restriction (formally by applying the subtyping rule im-
mediately after each rule to bring the types back into the polyhedral format)
then type checking amounts to checking inclusion of convex polyhedra which can
be efficiently performed by linear programming. Furthermore, Farkas’ Lemma
also furnishes short, efficiently computable, and efficiently checkable certificates
[21,28]. Indeed, since any convex polyhedron is the intersection of hyperplanes,
deciding containment of convex polyhedra reduces to deciding whether a con-
vex polyhedron H = {x | Ax ≤ b} is contained in a hyperplane of the form
P = {x | cT x ≤ d}. This, however, is the case iff max{cT x | x ∈ H} ≤ d;
a linear programming problem. Now, the latter inequality can be certified by
providing a vector r ≥ 0 (componentwise) such that rT A = cT and rT b ≤ d.
For then, whenever x ∈ H , i.e., Ax ≤ b then cT x = rT Ax ≤ rT b ≤ d. Farkas’
lemmas asserts that such a vector r exists whenever max{cT x | x ∈ H} ≤ d.
Given its existence we can efficiently compute it by minimising yT b subject to
yT A = cT and y ≥ 0.

Regarding automatic type inference as opposed to type checking one has to
find unknown convex polyhedra specified by fixpoint equations. Besson et al. [12]
report that this can be done by iteration using widening heuristics from [19]. The
range and efficiency remains, however, unexplored in loc. cit. In our particular
application we expect constraints to be sufficiently simple so that these heuristics

Certification Using the Mobius Base Logic 49

or those proposed in [26] will be successful. Inference of the equivalence relations
Ξ can be achieved by employing standard copy-propagation techniques known
from compiler constructions.

6 Discussion

We have described the use of the Mobius base logic as a unified backend for both
program analyses and type systems. The Mobius base logic has been formally
proved sound with respect to the Bicolano formalisation of the JVM. Compared
to direct soundness proofs of type systems and analyses with respect to Bicolano
the use of the Mobius base logic as an intermediary offers two distinctive advan-
tages. First, the soundness proof of the Mobius base logic already does much of
the work that is common to soundness proofs, in particular inducting on steps in
the operational semantics and stack height. The Mobius logic is more transpar-
ent and allows for proof by invariant and recursion. Secondly, the standardised
format of assertions in the Mobius base logic makes it easier to compare results
of different type systems and analyses and also to assess whether the asserted
property coincides with the intuitively desired property.

The resource extension to both Bicolano and the Mobius base logic allows for
direct specification and certification of resource-related intensional properties
without having to go through indirect observations such as values of ordinary
program variables that are externally known to reflect some resource behaviour.
This is particularly important in the PCC scenario where providers and users of
specifications and certificates do not coincide and might have different objectives.

Similarly, the strong invariants enhance the expressive power of the Mobius
base logic compared to standard Hoare logics in that resource behaviour of non-
terminating programs is appropriately accounted for. In this way, the usual
strong guarantees of type systems and program analyses may be adequately
reflected in the logic.

We have demonstrated this use of the Mobius base logic on one of the Mobius
case studies: a block-booking scheme whose deployment could avoid the inflation
of permission requests that lead to social vulnerabilities.

Acknowledgements. This work was funded in part by the Information Society
Technologies programme of the European Commission, Future and Emerging
Technologies under the IST-2005-015905 MOBIUS project. This paper reflects
only the author’s views and the Community is not liable for any use that may
be made of the information contained therein. We are grateful to all members
of the MOBIUS Working Group on work package 3, in particular Benjamin
Gregoire, David Pichardie, Aleksy Schubert and Randy Pollack, for the numerous
discussions on program logics, JML, and types, and on formalising these in
theorem provers. The constructive feedback from the reviewers helped us to
improve content and presentation of the paper.

50 L. Beringer, M. Hofmann, and M. Pavlova

References

1. Albert, E., Puebla, G., Hermenegildo, M.V.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 380–397. Springer, Hei-
delberg (2005)

2. Appel, A.W.: Foundational proof-carrying code. In: Halpern, J. (ed.) Logic in Com-
puter Science, p. 247. IEEE Press, Los Alamitos (invited talk, 2001)

3. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program
logic for resource verification. In: Slind, K., Bunker, A., Gopalakrishnan, G.C.
(eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 34–49. Springer, Heidelberg (2004)

4. Bannwart, F.Y., Müller, P.: A program logic for bytecode. In: Spoto, F. (ed.) Byte-
code Semantics, Verification, Analysis and Transformation. Electronic Notes in
Theoretical Computer Science, vol. 141, pp. 255–273. Elsevier, Amsterdam (2005)

5. Barthe, G., Fournet, C. (eds.): TGC 2007 and FODO 2008. LNCS, vol. 4912.
Springer, Heidelberg (2008)

6. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS, vol. 4334. Springer, Heidelberg (2007)

7. Beckert, B., Mostowski, W.: A program logic for handling JAVA cARD’s trans-
action mechanism. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 246–260.
Springer, Heidelberg (2003)

8. Beringer, L., Hofmann, M.O.: A bytecode logic for JML and types. In: Kobayashi,
N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 389–405. Springer, Heidelberg (2006)

9. Beringer, L., Hofmann, M.: Secure information flow and program logics. In: IEEE
Computer Security Foundations Workshop. IEEE Press, Los Alamitos (2007)

10. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certifica-
tion of heap consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS,
vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

11. Besson, F., Jensen, T., Pichardie, D.: Proof-Carrying Code from Certified Abstract
Interpretation and Fixpoint Compression.Theoretical Computer Science (2006)

12. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational
program analysis. Inria Research Report 6333 (2007)

13. Cachera, D., Jensen, T.P., Pichardie, D., Schneider, G.: Certified memory usage
analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 91–106. Springer, Heidelberg (2005)

14. Chang, B., Chlipala, A., Necula, G.: A framework for certified program analysis
and its applications to mobile-code safety. In: Emerson, E.A., Namjoshi, K.S. (eds.)
VMCAI 2006. LNCS, vol. 3855, pp. 174–189. Springer, Heidelberg (2005)

15. Chang, B., Chlipala, A., Necula, G., Schneck, R.: The open verifier framework for
foundational verifiers. In: Morrisett, J., Fähndrich, M. (eds.) Proceedings of TLDI
2005: 2005 ACM SIGPLAN International Workshop on Types in Languages Design
and Implementation, pp. 1–12. ACM Press, New York (2005)

16. MOBIUS Consortium. Deliverable 1.1: Resource and information flow security re-
quirements (2006), http://mobius.inria.fr

17. MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and pro-
gram logic (2006), http://mobius.inria.fr

18. Cousot, P., Cousot, R.: Automatic synthesis of optimal invariant assertions: math-
ematical foundations. In: ACM Symposium on Artificial Intelligence & Program-
ming Languages, Rochester, NY; ACM SIGPLAN Not 12(8), 1–12 (1977)

Certification Using the Mobius Base Logic 51

19. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the Fifth ACM Symposium on Principles
of Programming Languages, pp. 84–97 (1978)

20. Czarnik, P., Schubert, A.: Extending operational semantics of the java bytecode.
In: Barthe, Fournet [5], pp. 57–72

21. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking.
Journal of the ACM 52(3), 365–473 (2005)

22. Feng, X., Ni, Z., Shao, Z., Guo, Y.: An open framework for foundational proof-
carrying code. In: Proc. 2007 ACM SIGPLAN International Workshop on Types in
Language Design and Implementation (TLDI 2007), pp. 67–78. ACM Press, New
York (2007)

23. Hähnle, R., Pan, J., Rümmer, P., Walter, D.: Integration of a security type system
into a program logic. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006.
LNCS, vol. 4661, pp. 116–131. Springer, Heidelberg (2007)

24. Hofmann, M., Pavlova, M.: Elimination of ghost variables in program logics. In:
Barthe, Fournet [5], pp. 1–20

25. Kleymann, T.: Hoare Logic and VDM: Machine-Checked Soundness and Complete-
ness Proofs. PhD thesis, LFCS, University of Edinburgh (1998)

26. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: Proc. ACM POPL 2004, pp. 330–341 (2004)

27. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp.
106–119. ACM Press, New York (1997)

28. Nelson, G.: Techniques for program verification. Technical Report CSL-81-10, Xe-
rox PARC Computer Science Laboratory (June 1981)

29. Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 103–119.
Springer, Heidelberg (2002)

30. Pichardie, D.: Bicolano – Byte Code Language in Coq. Summary appears in [7]
(2006), http://mobius.inia.fr/bicolano

31. Quigley, C.L.: A Programming Logic for Java Bytecode Programs. In: Basin, D.A.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 41–54. Springer, Heidelberg
(2003)

32. Wildmoser, M.: Verified Proof Carrying Code. PhD thesis, Institut für Informatik,
Technische Universität München (2005)

33. Wildmoser, M., Nipkow, T., Klein, G., Nanz, S.: Prototyping proof carrying code.
In: Levy, J.-J., Mayr, E.W., Mitchell, J.C. (eds.) Theoretical Computer Science,
pp. 333–347. Kluwer Academic Publishing, Dordrecht (2004)

34. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: RSP:
IEEE Computer Society Symposium on Research in Security and Privacy (1993)

Safety Guarantees from Explicit Resource Management

David Aspinall, Patrick Maier, and Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, The University of Edinburgh, Scotland
{David.Aspinall,Patrick.Maier,Ian.Stark}@ed.ac.uk

Abstract. We present a language and a program analysis that certifies the safe
use of flexible resource management idioms, in particular advance reservation
or “block booking” of costly resources. This builds on previous work with
resource managers that carry out runtime safety checks, by showing how to
assist these with compile-time checks. We give a small ANF-style language
with explicit resource managers, and introduce a type and effect system that
captures their runtime behaviour. In this setting, we identify a notion of dynamic
safety for running code, and show that dynamically safe code may be executed
without runtime checks. We show a similar static safety property for type-safe
code, and prove that static safety implies dynamic safety. The consequence is
that typechecked code can be executed without runtime instrumentation, and is
guaranteed to make only appropriate use of resources.

1 Introduction

Safe management of resources is a crucial aspect of software correctness. Bad resource
management impacts reliability and security. The more expensive a resource or the
more complex its usage pattern, the more important is good management. For example,
a media player could crash badly, leaving the hardware in a messy state, if its mem-
ory management was governed by the overly optimistic assumption that every request
for memory will succeed. Malware on a mobile phone can defraud an unaware user
by maliciously sending text messages to premium rate numbers, if there is no effec-
tive management of network access [12]. On current mobile platforms such as Java
MIDP 2.0, management of network access is commonly left to the user, but users can
easily be deceived by social engineering attacks.

Unfortunately, current programming languages do not provide special mechanisms
for resource management. Therefore, programmers can only hope that their applications
are resource safe, or use necessarily imprecise analyses to try to show this. For
example, there are type systems that over-approximate (hopefully tightly) the memory
requirements of an application [6], and static analyses that over-approximate the number
of text messages being sent by an application [7].

These approaches may fail if a dynamic set of resources must be managed, as with
bulk messaging where the user wants to send a text message to a number of recipients
selected from an address book. Because of the cost of sending text messages, the user
must authorise each recipient (i. e., their phone number) explicitly. This could happen
individually, just before each message is being sent, or collectively, before sending the

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 52–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Safety Guarantees from Explicit Resource Management 53

send bulk ::
λ let (r) = res from nums (nums) in

let (m) = init () in
let (m’,r’) = enable (m,r) in
let (n) = size (r’) in
if n then let () = consume (m’) in

ret ()
else let (m”) = send msgs (msg,nums,m’) in

let (m’”) = assertEmpty (m”) in
let () = consume (m’”) in
ret () :

(msg:str, nums:str[]) → ()

res from nums ::
λ let (i) = length (nums) in

let (r) = empty () in
let (r’) = res from nums’ (nums,r,i) in
ret (r’) :

(nums:str[]) → (r’:res{})

res from nums’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (c) = fromstr (num) in
let (r c) = single (c,1) in
let (r”) = sum (r, r c) in
let (r’) = res from nums’ (nums,r”,i’) in
ret (r’)

else let (r’) = id (r) in
ret (r’) :

(nums:str[], r:res{}, i:int) → (r’:res{})

send msgs ::
λ let (i) = length (nums) in

let (m’) = send msgs’ (msg,nums,m,i) in
ret (m’) :

(msg:str, nums:str[], m:mgr) → (m’:mgr)

send msgs’ ::
λ if i then let (i’) = sub (i,1) in

let (num) = read (nums,i’) in
let (m”) = send msg (msg,num,m) in
let (m’) = send msgs’ (msg,nums,m”,i’) in
ret (m’)

else let (m’) = id (m) in
ret (m’) :

(msg:str, nums:str[], m:mgr, i:int) → (m’:mgr)

send msg ::
λ let (c) = fromstr (num) in

let (r) = single (c,1) in
let (m’,m r) = split (m,r) in
let (m r’) = assertAtLeast (m r,r) in
let () = prim send msg (msg,num) in
let () = consume (m r’) in
ret (m’) :

(msg:str, num:str, m:mgr) → (m’:mgr)

prim send msg ::
λ . . . :
(msg:str, num:str) → ()

Fig. 1. Bulk messaging application

first message. Collective authorisation, or block booking of resources, is preferable but
requires detailed resource management, keeping track of the (multi-)set of authorised
resources – in this case the permitted phone numbers.

In this paper, we present a language-based mechanism that provides programmers
with a safe way to control complex resource usage patterns using a notion of resource
manager. Figure 1 shows the code of a bulk messaging application using resource
managers in our intermediate-level functional programming language. The language
and functions used will be explained in full detail in Section 2; for now, we just give
an outline of operation. The function send bulk calls send msgs to send the message
msg to the phone numbers stored in the array nums. Along with these two arguments
send msgs takes a resource manager m’ which encapsulates the resources that have been
authorised (during the call to enable) to send the messages. For each phone number
in nums, send msgs calls the wrapper function send msg, passing along a resource
manager. Prior to calling the primitive send function prim send msg, the wrapper checks
(using assertAtLeast) whether its input manager m contains the resource required to
send a message to num; if the resource is not present, the program will abort with a
runtime error, otherwise send msg removes the resource from the manager (using split),
and returns the modified manager as m’.

The bulk messaging application is (dynamically) resource safe by construction, as
the resource managers will trap attempts to abuse resources. The resource manager

54 D. Aspinall, P. Maier, and I. Stark

abstraction works in tandem with a static analysis, so that programs which can be
proved resource safe statically can be treated more efficiently at runtime by removing
the dynamic accounting code. In Section 3.2, we prove resource safety statically for the
bulk messaging application.

Our contribution is two-fold. In Section 2, we develop a functional programming
language for coding complex resource idioms, such as block booking resources in
the bulk messaging application. The language is essentially a first-order functional
language in administrative normal form (ANF) [10] with a novel type system serving
two purposes. First, the type system names input and output parameters of functions
and avoids shadowing of previously bound names, thus admitting to view functions as
relations (expressed by logical formulae) between their input and output parameters.
Second, the language includes a special, linear type for resource managers, where
linearity serves as a means of introducing stateful objects into an otherwise pure
functional language. Resource managers track what resources a program is allowed
to use, and the operational semantics causes the program to go wrong (i. e., abort with
a runtime error) as soon as it attempts to abuse resources. This induces a notion of
dynamic resource safety, which holds if a program never attempts to abuse resources. In
this case, accounting is not necessary. As our first result, we show that erasing resource
managers does not alter the semantics of dynamically resource safe programs.

Decisions about which resources programs may use are typically guided by resource
policies. From the point of view of a program, a policy is simply an oracle determining
what resources to grant; and we abstract this as a non-deterministic operation on
resource managers. This covers many concrete policy mechanisms, both static (e. g.,
Java-style policy files) or dynamic (e. g., user interaction); see [3] for more on the
interaction of resource managers and policies.

In Section 3 we present our second contribution, an effect type system for deriving
relational approximations of functions. These approximations are expressed as pairs of
constraints in a first-order logic, specifying a pre- and postcondition (or rather, state
transforming action) of a given function, similar to Hoare type theory [11]; note that
the use of logical formulae as effects is the rationale behind choosing a programming
language where functions have named input and output parameters. Typability of
functions in the effect type system induces a notion of static resource safety. As our
second result, we prove a soundness theorem stating that static implies dynamic resource
safety. As a corollary, we show that resource managers can always be erased from
statically resource safe programs. Proofs have been omitted due to lack of space.

2 A Programming Language for Resource Management

We introduce a simple programming language with built-in constructs for handling
resource managers. The language is essentially a simply-typed first-order functional
language in ANF [10], with the additional features that functions take and return tuples
of values, function types name input and output arguments, scoping avoids shadowing,
and the type of resource managers enforces a linearity restriction on its values. The first
three of these features are related to giving the language a relational appeal: for the
purpose of specifying and reasoning logically, functions ought to be viewed as relations

Safety Guarantees from Explicit Resource Management 55

〈fundecl〉 ::= 〈prodtype〉 → 〈prodtype〉 (built-in function)
| λ〈exp〉 : 〈prodtype〉 → 〈prodtype〉 (λ-abstraction)

〈exp〉 ::= if 〈val〉 then 〈exp〉 else 〈exp〉 (conditional)
| let (〈var〉,. . .,〈var〉) = 〈fun〉 (〈val〉,. . .,〈val〉) in 〈exp〉 (function call)
| ret (〈var〉,. . .,〈var〉) (return)

〈val〉 ::= 〈const〉 | 〈var〉
〈prodtype〉 ::= (〈var〉:〈type〉,. . .,〈var〉:〈type〉)

〈type〉 ::= 〈datatype〉 | mgr

〈datatype〉 ::= unit | int | str | res | res{} | 〈datatype〉[]

Fig. 2. BNF grammar

between input and output parameters. The fourth feature is a means of introducing state
into a functional language.

The choice for such a language has been inspired by Grail [2], another first-order
functional language in ANF. Moreover, Appel [1] argues that ANF, the intermediate
language used by many compilers for functional languages, and SSA, the intermediate
representation used by most compilers for imperative languages, are essentially the same
thing. Therefore, our language should capture the essence of first-order programming
languages, whether functional or imperative.

2.1 Syntax and Static Semantics

Grammar. Figure 2 shows the grammar of the programming language. The nontermi-
nals 〈fun〉, 〈var〉 and 〈const〉 represent functions, variables and constants, respectively.
A program Π is a partial function from 〈fun〉 to 〈fundecl〉, i. e., Π maps functions to
function declarations, which are either type declarations for built-in functions or λ-
abstractions (with type annotations serving as variable binders). We use the notation
Π(f) = [λ . . .]σ → σ′ if we are only interested in the type of f , regardless whether f
is built-in or a λ-abstraction. By dom(Π), we denote the domain of Π . We denote the
restriction of Π to the built-in functions by Π0, i. e., Π(f) is a λ-abstraction if and only
if f ∈ dom(Π) \ dom(Π0). We assume that Π0 declares exactly the functions that are
shown in Figure 4.

The grammar of expressions e ∈ 〈exp〉 and values v ∈ 〈val〉 is quite standard for
a first-order functional language in ANF. Throughout, functions operate on tuples of
values, which is reflected by the syntax for function call and return. The sets of free
and bound (by the let-construct) variables of an expression e, denoted by free(e) and
bound(e) respectively, are defined in the usual way.

Datatypes τ ∈ 〈datatype〉 comprise the unit type, integers, strings, resources,
multisets of resources, and arrays. A type τ ∈ 〈type〉 is either a datatype or the special
type of resource managers, denoted mgr. See Section 2.2 for the interpretations
of types. A tuple (x1:τ1,. . .,xn:τn) ∈ 〈prodtype〉 is a product type if the variables
x1, . . . , xn are pairwise distinct. Product types appear to associate types to variables,
but they really associate variables and types to positions in tuples. A pair of product

56 D. Aspinall, P. Maier, and I. Stark

types of the form (x1:τ1,. . .,xm:τm) → (x′
1:τ

′
1,. . .,x

′
n:τ ′

n) forms a function type if the
variable sets {x1, . . . , xm} and {x′

1, . . . , x
′
n} are disjoint. We call the product types to

the left and right of the arrow argument type and return type, respectively. As an example
consider the type of the function send msg from Figure 1. It states that send msg takes
two strings and a resource manager and returns a resource manager, while at the same
time binding the names of the formal input parameters msg, num and m and announcing
that the formal output parameter will be m’.

Static typing. A type environment Γ is a functional association list of type declarations
of the form x:τ , where x is a variable and τ a type. Being functional implies that
whenever Γ contains two type declarations x:τ and x:τ ′ we must have τ = τ ′.
Therefore, Γ can be seen as a partial function mapping variables to types. By dom(Γ),
we denote the domain of this partial function, and for x ∈ dom(Γ), we may write Γ (x)
for the unique type which Γ associates to x. We write type environments as comma-
separated lists, the empty list being denoted by ∅. The restriction Γ |X of Γ to a set of
variables X , is defined in the usual way and induces a partial order� type environments,
where Γ ′ � Γ iff Γ ′|dom(Γ) = Γ .

We call a type environment Γ = x1:τ1, . . . , xn:τn linear if the variables x1, . . . , xn

are pairwise distinct. Note that such a linear type environment Γ may be viewed as
a product type σ = (x1:τ1,. . .,xn:τn), and vice versa. Occasionally, we will write
Π(f) = [λ . . .]Γ → Δ to emphasise that argument and return types of the function f
are to be viewed as linear type environments.

Figure 3 shows the typing rules for the programming language. The judgement
C; Γ � v : τ expresses that the value v has type τ in type environment Γ and context
C, where a context is a set of variables (generally the set of variables occurring in
some super-expression of v). Note that (T-const) restricts program constants to the unit
value, integers and strings, which are the interpretations of the types unit, int and str,
respectively (see Section 2.2). All other types are abstract in the sense that their values
can only be accessed through built-in functions.

The judgement C; Γ �Π e : σ means that the expression e has product type σ in
type environment Γ , context C and program Π . If the program is understood we may
write C; Γ � e : σ. There are three things worth noting about expression typing. First,
although the type system is linear, weakening and contraction are available to all types
but mgr, rendering mgr the sole linear type of the language. Second, the side condition
of (T-let) ensures that let-bound variables do not shadow any variables in the context
(which is generally a superset of the set of variables occurring in the let-expression).
Third, the rule (T-ret) matches the variables in the return expression to the variables in
the product type, thus enforcing that an expression uniformly uses the same variables
to return its results (even though these return variables may be let-bound in different
branches of the expression). Note that (T-ret) is the only rule to exploit type information
about variables. Finally, the judgement Γ � e : σ (or Γ �Π e : σ if we want to stress the
program Π) means that e has product type σ in a linear type environment Γ .

The judgement Π � f states that f is a well-typed λ-abstraction in program Π .
Note that the syntax of λ-abstractions does not appear to bind variables, yet it does bind
the variables hidden in the argument type. Note also that the restriction on function

Safety Guarantees from Explicit Resource Management 57

Typing of values C;Γ
 v : τ

(T-var)
C; x:τ
 x : τ

if x ∈ C (T-const)
C; ∅
 d : τ

if

j
d ∈ τ ∧
τ ∈ {unit, int, str}

Typing of expressions C;Γ
 e : σ

(T-weak)
C;Γ
 e : σ

C;Γ, x:τ
 e : σ
if

j
x ∈ C ∧
τ �= mgr

(T-contr)
C;Γ, x:τ, x:τ
 e : σ
C;Γ, x:τ
 e : σ

if τ �= mgr

(T-if)
C;Γ
 v : int C;Γ ′
 e1 : σ C;Γ ′
 e2 : σ

C;Γ, Γ ′
 if v then e1 else e2 : σ
(T-xch)

C;Γ, Γ ′
 e : σ
C;Γ ′, Γ
 e : σ

(T-ret)
C;Γ1
 x1 : τ1 . . . C;Γn
 xn : τn

C;Γ1, . . . , Γn
 ret (x1,. . .,xn) : (x1:τ1,. . .,xn:τn)

(T-let)

Π(f) = [λ . . .](z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ

′
n)

C;Γ1
 v1 : τ1 . . . C;Γn
 vm : τm
C ∪ {x′1, . . . , x′n};Γ ′, x′1:τ ′1, . . . , x′n:τ ′n
 e′ : σ′′

C;Γ1, . . . , Γm, Γ ′
 let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′ : σ′′ if (∗)

where (∗)
j
x′1, . . . , x

′
n pairwise distinct ∧

x′1, . . . , x
′
n /∈ C ∪ dom(Γ ′)

Typing of expressions Γ
 e : σ

(T-lin)
dom(Γ);Γ
 e : σ

Γ
 e : σ
if Γ linear

Well-typedness of λ-abstractionsΠ
 f

(T-lam)

Π(f) = λe : (x1:τ1,. . .,xm:τm) → σ′

x1:τ1, . . . , xm:τm
 e : σ′

Π
 f

Fig. 3. Typing rules (for a fixed program Π)

types means that the return variables of the body of a λ-abstraction must be disjoint
from its argument variables. Finally, we call a program Π well-typed if Π � f for all
f ∈ dom(Π) \ dom(Π0).

Lemma 1. Let e be an expression (referring to an implicit program Π), Γ a type
environment and σ a product type.

1. If Γ � e : σ then free(e) ⊆ dom(Γ) and bound(e) ∩ dom(Γ) = ∅.
2. If Γ � e : σ and X ⊇ free(e) then Γ |X � e : σ.

2.2 Interpretation of Types and Effects of Built-in Functions

Constraints. To provide a formal semantics for the built-in functions, we introduce
a many-sorted first-order language L with equality. Sorts of L are the datatypes of
the programming language (note that this excludes the type mgr). Formulae of L are
formed from atomic formulae using the usual Boolean connectives ¬, ∧, ∨,⇒ and⇔
(in decreasing order of precedence), and the quantifiers ∀x:τ and ∃x:τ , where x ∈ 〈var〉
is a variable and τ ∈ 〈datatype〉 a sort. Atomic formulae are the Boolean constants
� and ⊥, or are constructed from terms using the binary equality predicate ≈ (which

58 D. Aspinall, P. Maier, and I. Stark

is available for all sorts), the binary inequality predicate ≤ on sort int or the binary
inclusion predicate ⊆ on sort res{}. Terms are constructed from variables in 〈var〉 and
the term constructors, which are introduced below, alongside associating the sorts to
specific interpretations.

Sort unit is interpreted by the one-element set {�}. Its only constant is �. There are
no function symbols.

Sort int is interpreted by the integers with infinity. Constants are the integers plus∞.
Function symbols are the usual − : int → int and +, ·, /, % : int × int → int
(where / and % denote integer division and remainder, respectively).

Sort str is interpreted by the set of strings (over some fixed but unspecified alphabet).
Constants are all strings. The only function symbol is ++ : str × str → str
(concatenation).

Sort res is interpreted by an arbitrary infinite set (whose elements are termed re-
sources). There are no constants, and fromstr : str → res, an embedding of
strings into resources, is the only one function symbol.

Sort res{} is interpreted by multisets of resources. It features the constant ∅ (empty
multiset) and the function symbols ∩,∪,! : res{}×res{}→ res{} (intersection,
union and sum of multisets, respectively), | | : res{} → int (size of a multiset),
count : res{}× res → int (counting the multiplicity of a resource in a multiset)
and { : } : res × int → res{} (constructing a “singleton” multiset containing a
given resource with a given multiplicity and nothing else).

Sort τ [] is interpreted by integer-indexed arrays of elements of sort τ , where an integer-
indexed array is a function from an initial segment of the natural numbers to τ .
This sort features the constant null (array of length 0) and the function symbols
len : τ []→ int (length of an array), [] : τ []× int→ τ (reading at a given index)
and [:=] : τ []× int× τ → τ [] (updating a given index with a given value). Note
that the values of a[i] and a[i:=v] are generally unspecified if the index i is out of
bounds (i. e., i<0 or i≥ len(a)). As an exception, for i = len(a), the array a[i:=v]
properly extends a, i. e., len(a[i:=v]) = len(a) + 1. This models vectors that can
grow in size.

Treating the type mgr as an alias for the sort res{}, type environments can be seen as
associating sorts to variables. Given a type environment Γ and constraint φ ∈ L, we
write Γ � φ if φ is well-sorted w. r. t. Γ ; note that this entails free(φ) ⊆ dom(Γ), where
free(φ) is the set of free variables in φ.

Substitutions. A substitution μ maps variables x ∈ 〈var〉 to values μ(x) ∈ 〈val〉
(which are variables again or constants, not arbitrary terms). We denote the domain
of a substitution μ by dom(μ). Given a type environment Γ , we write Γμ for the type
environment that arises from substituting the variables in Γ according to μ. This is
defined recursively: ∅μ = ∅ and (Γ, x:τ)μ equals Γμ, x:τ if x /∈ dom(μ), or Γμ, μ(x):τ
if μ(x) ∈ 〈var〉, or Γμ if μ(x) ∈ 〈const〉. Note that Γμ need not be linear even if
Γ is. Given a formula φ such that Γ � φ, we write φμ for the formula obtained by
substituting the free variables of φ according to μ, avoiding capture. Note that Γ � φ
implies Γμ � φμ.

Safety Guarantees from Explicit Resource Management 59

Valuations. Let Γ be a type environment. A Γ -valuation α maps variables x ∈ dom(Γ)
to elements α(x) in the interpretation of the sort Γ (x); we call α a valuation if we
do not care about the particular type environment Γ . We denote the domain of α by
dom(α). Note that dom(α) ⊆ dom(Γ) but not necessarily dom(α) = dom(Γ); we
call α a maximal Γ -valuation if dom(α) = dom(Γ). Given a Γ -valuation α and a set
of variables X , we denote the restriction of α to X by α|X ; note that dom(α|X) =
dom(α) ∩X . Restriction induces a partial order � on Γ -valuations, where α′ � α iff
α′|dom(α) = α. Given n pairwise distinct variables xi ∈ dom(Γ) and corresponding
elements di in the interpretation of Γ (xi), we write α{x1 �→ d1, . . . , xn �→ dn} for the
Γ -valuation α′ that maps the xi to di and all other x ∈ dom(α) to α(x). In the special
case dom(α) = ∅, we may drop α and simply write {x1 �→ d1, . . . , xn �→ dn}.

Entailment. Let φ, ψ ∈ L be constraints such that Γ � φ and Γ � ψ. Given a Γ -
valuation α with free(φ) ⊆ dom(α), we write α |= φ if α satisfies φ. We write |= φ
if α |= φ for all Γ -valuations α with free(φ) ⊆ dom(α), and we write φ |= ψ if
α |= φ implies α |= ψ for all Γ -valuations α with free(φ) ∪ free(ψ) ⊆ dom(α).
Entailment induces a theory T = {φ | free(φ) = ∅ ∧ � |= φ}, with respect to which
entailment can be reduced to unsatisfiability. Note that unsatisfiability w. r. t. T is not
even semi-decidable as T contains Peano arithmetic. Thus for reasoning purposes, we
will generally approximate T by weaker theories.

Effects. Let f be a built-in function with Π(f) = Γ → Δ (viewing argument and
return types of f as type environments Γ and Δ, respectively.) An effect for f is a pair
of constraints φ and ψ such that Γ � φ and Γ, Δ � ψ. (Note that Γ → Δ being a
function type implies dom(Γ) ∩ dom(Δ) = ∅, hence Γ, Δ is a type environment.) We
write φ→ ψ to denote such an effect, and we call φ its precondition and ψ its action.

An effect environment maps the built-in functions f ∈ dom(Π0) to effects for f .
Figure 4 displays the effect environment Θ0, providing an axiomatic, relational seman-
tics for all f ∈ dom(Π0). This semantics ties most built-in functions to corresponding
logical operators in a straightforward way; note the non-trivial preconditions for divi-
sion, reading and writing arrays, and constructing singleton multisets. The effects of
functions operating on resource managers warrant some explanation.

init returns an empty manager m′.
enable non-deterministically adds some sub-multiset of r to manager m, returning

the result in manager m′; the complement of the added multiset is returned in r′.
In an implementation [3] the multiset to be added to m would be chosen by some
policy, perhaps involving security profiles or user input; we use non-determinism
to abstractly model such policy mechanisms.

split splits the multiset held by manager m and distributes it to the managers m′
1 and

m′
2 such that m′

2 gets the largest possible sub-multiset of r.
join adds the multisets held by managers m1 and m2, returning their sum in m′.
consume is an explicit destructor for manager m and all its resources; the linear type

system means that calls to consume are necessary even if m is known to be empty.
assertEmpty acts as identity on managers, but subject to the precondition that m is

empty; it will be treated specially by the programming language semantics.

60 D. Aspinall, P. Maier, and I. Stark

f Π0(f) Θ0(f)

idτ (x:τ) → (x′:τ) � → x′ ≈ x

eqτ (x1:τ,x2:τ) → (i′:int) � → i′ ≈ 1 ∧ x1 ≈ x2 ∨ i′ ≈ 0 ∧ x1 �≈ x2

add � → i′ ≈ i1 + i2

sub � → i′ ≈ i1 + (−i2)
mul (i1:int,i2:int) → (i′:int) � → i′ ≈ i1 · i2

div i2 �≈ 0 → i′ ≈ i1 / i2

mod i2 �≈ 0 → i′ ≈ i1 % i2

leq � → i′ ≈ 1 ∧ i1 ≤ i2 ∨ i′ ≈ 0 ∧ i1 � i2

conc (w1:str,w2:str) → (w′:str) � → w′ ≈ w1 ++ w2

fromstr (w:str) → (c′:res) � → c′ ≈ fromstr(w)

nullτ () → (a′:τ []) � → a′ ≈ null

lengthτ (a:τ []) → (i′:int) � → i′ ≈ len(a)
readτ (a:τ [],i:int) → (x′:τ) 0 ≤ i ∧ i < len(a) → x′ ≈ a[i]
writeτ (a:τ [],i:int,x:τ) → (a′:τ []) 0 ≤ i ∧ i ≤ len(a) → a′ ≈ a[i:=x]

empty () → (r′:res{}) � → r′ ≈ ∅
single (c:res,i:int) → (r′:res{}) i ≥ 0 → r′ ≈ {c:i}
inter � → r′ ≈ r1 ∩ r2

union (r1:res{},r2:res{}) → (r′:res{}) � → r′ ≈ r1 ∪ r2

sum � → r′ ≈ r1 � r2

size (r:res{}) → (i′:int) � → i′ ≈ |r|
count (r:res{},c:res) → (i′:int) � → i′ ≈ count(r, c)

include (r1:res{},r2:res{}) → (i′:int) � → i′ ≈ 1 ∧ r1 ⊆ r2 ∨ i′ ≈ 0 ∧ r1 � r2

init () → (m′:mgr) � → m′ ≈ ∅
enable (m:mgr,r:res{}) → (m′:mgr,r′:res{}) � → r′ ⊆ r ∧ m � r ≈ m′ � r′

split (m:mgr,r:res{}) → (m′
1:mgr,m′

2:mgr) � → m′
2 ≈ m ∩ r ∧ m ≈ m′

1 � m′
2

join (m1:mgr,m2:mgr) → (m′:mgr) � → m′ ≈ m1 � m2

consume (m:mgr) → () � → �
assertEmpty (m:mgr) → (m′:mgr) m ≈ ∅ → m′ ≈ m

assertAtLeast (m:mgr,r:res{}) → (m′:mgr) r ⊆ m → m′ ≈ m

Fig. 4. Types and effects of built-in functions. The subscripts τ indicate families of functions
indexed by τ ∈ 〈datatype〉, except for idτ , which is indexed by τ ∈ 〈type〉.

assertAtLeast acts as identity on managers, but subject to the precondition that the
manager m contains the multiset r; will be treated specially by the programming
language semantics.

To facilitate the presentation of programming language semantics, we capture the logical
semantics of effects directly in terms of valuations. Given a built-in function f with
Π0(f) = Γ → Δ and Θ0(f) = φ→ ψ, we define Eff Π0

Θ0
(f) to be the set of maximal

(Γ, Δ)-valuations such that α ∈ Eff Π0
Θ0

(f) if and only if α |= φ ∧ ψ.

2.3 Small-Step Reduction Semantics

We present a stack-based reduction semantics (which is essentially a continuation
semantics) for our programming language. We will show that reduction preserves the

Safety Guarantees from Explicit Resource Management 61

resources stored in resource managers, thanks to linearity. Throughout this section, let
Π be a fixed well-typed program.

Stacks. We call a tuple 〈x1, . . . , xn|α, e〉 a frame if x1, . . . , xn is a list of pairwise
distinct variables, α is a valuation and e is an expression such that

– dom(α) ∩ {x1, . . . , xn} = ∅ and
– dom(α) ⊆ free(e) ⊆ dom(α) ∪ {x1, . . . , xn}.

The roles of e (redex) and α (providing values for the free variables of e) should be
clear. The xi are only present if the frame is suspended waiting for a function to return
in which case the xi act as slots for the return values. A pre-stack is either � or ε or
F :: S, where F is a frame and S is a pre-stack. (Pre-stacks essentially correspond to
continuations in an abstract machine interpreting λ-terms in ANF [10].) A stack (or Π-
stack if we want to emphasise the program Π) is a pre-stack of the form � or 〈|α, e〉 ::S.
We call � the error stack. A stack of the form 〈|α, ret (x1,. . .,xn)〉::ε is called terminal.
If F :: S is a stack then F is its top frame.

Reduction. Figure 5 presents the rules generating the reduction relation�Π on stacks.
We denote the reflexive-transitive closure of�Π by�∗

Π . As usual Π may be omitted
if it is understood. Note that reduction performs an eager garbage collection in that it
deallocates unused variables immediately by restricting the valuation α in the post stack
to the free variables of the expression e.

Reduction is deterministic, except for calls to the built-in function enable.

Proposition 2. For all stacks S0 there is at most one stack S1 such that S0 � S1,
unless S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉 :: S′

0.

Typed stacks. Reduction is untyped since type information is not needed at runtime.
However, various properties of reduction are best stated if the type of variables is
known. Therefore, we annotate stacks with type environments and conservatively extend
reduction to typed stacks.

Given a frame 〈x1, . . . , xn|α, e〉, we call 〈x1, . . . , xn|α, e〉Γ a typed frame if Γ is a
linear type environment such that

– dom(Γ) = dom(α) ∪ {x1, . . . , xn},
– α is a Γ -valuation, and
– Γ � e : σ for some product type σ.

A typed pre-stack is �, or ε, or F ::ε where F is a typed frame, or F ::F ′ :: S′ where S′ is a
typed pre-stack and F = 〈x1, . . . , xm|α, e〉Γ and F ′ = 〈x′

1, . . . , x
′
n|α′, e′〉Γ ′

are typed
frames such that Γ � e : (z′

1:Γ
′(x′

1),. . .,z′
n:Γ ′(x′

n)) for some variables z′
1, . . . , z

′
n.

A typed stack is typed pre-stack of the form � or 〈|α, e〉Γ :: S. Given a typed frame
F = 〈x1, . . . , xn|α, e〉Γ , we denote its underlying frame 〈x1, . . . , xn|α, e〉 by F �. We
extend this notation to typed (pre-)stacks, writing S� for the (pre-)stack underlying the
typed (pre-)stack S.

The following proposition shows that reduction does not break the invariants main-
tained by typed stacks.

62 D. Aspinall, P. Maier, and I. Stark

(R-ret)
α′′ = α′{x′1 �→ α(x1), . . . , x′n �→ α(xn)}

〈|α, ret (x1,. . .,xn)〉 :: 〈x′1, . . . , x′n|α′, e′〉 :: S � 〈|α′′|free(e′), e′〉 :: S

(R-lettl1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′

α′ = {z1 �→ α(v1), . . . , zm �→ α(vm)}
〈|α, let (x′1,. . .,x′n) = f (v1,. . .,vm) in ret (x′1,. . .,x′n)〉 :: S� 〈|α′|free(e), e〉 :: S

(R-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ e′ �= ret (x′1,. . .,x
′
n)

α′ = {z1 �→ α(v1), . . . , zm �→ α(vm)}
〈|α, let (x′1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S

� 〈|α′|free(e), e〉 :: 〈x′1, . . . , x′n|α|free(e′), e
′〉 :: S

(R-let2)

Π0(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ

′
n)

αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf
α′ = α{x′1 �→ α′

f (z′1), . . . , x′n �→ α′
f (z′n)}

〈|α, let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′〉 :: S � 〈|α′|free(e′), e′〉 :: S

(R-let�2)

Π0(f) = (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty, assertAtLeast}
αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

〈|α, let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′〉 :: S � �

(R-if1)
α(v) �= 0

〈|α, if v then e1 else e2〉 :: S � 〈|α|free(e1), e1〉 :: S

(R-if2)
α(v) = 0

〈|α, if v then e1 else e2〉 :: S � 〈|α|free(e2), e2〉 :: S

Fig. 5. Small-step reduction relation � (for a fixed program Π). Application of valuations α
extends to values v ∈ 〈val〉 in the natural way, i. e., α(v) = v if v is a constant.

Proposition 3. Let Ŝ0 be a typed stack and S1 a stack. If Ŝ�
0 � S1 then there is a typed

stack Ŝ1 such that Ŝ�
1 = S1.

The proposition justifies the view of reduction on typed stacks as a conservative
extension of the reduction relation defined in Figure 5, where reduction on typed stacks
is defined by Ŝ0 �Π Ŝ1 if and only if Ŝ�

0 �Π Ŝ�
1; as usual Π may be omitted if it is

understood.
We call a stack S0 stuck if there is no stack S1 such that S0 � S1, and S0 is

neither terminal nor the error stack. Our next result shows that reduction on typed
stacks will get stuck only at calls to built-in functions (other than assertEmpty and
assertAtLeast), and only if the preconditions of these calls fail. As the effects listed
in Figure 4 reveal, reduction will get stuck only upon attempts to divide by 0, access
arrays out of bounds or construct singleton multisets with negative multiplicity.

Proposition 4. Let Ŝ be a typed stack. If Ŝ� is stuck then it is of the form

〈|α, let (x′
1,. . .,x

′
n) = f (v1,. . .,vm) in e′〉 :: S′ ,

Safety Guarantees from Explicit Resource Management 63

f ∈ dom(Π0) \ {assertEmpty,assertAtLeast}, and there is no α′
f ∈ Eff Π0

Θ0
(f)

such that α′
f � αf , where αf is defined as in rule (R-let2).

Preservation of resources. Given a typed frame F = 〈x1, . . . , xn|α, e〉Γ , we define the
multiset res(F) of resources in F by res(F) =

⊎{α(x) | x ∈ dom(α), Γ (x) = mgr}.
We extend res to typed non-error stacks by defining res(ε) = ∅ and res(F :: S) =
res(F)! res(S). Proposition 5 states resource preservation: The sum of all resources in
the system remains unchanged by reduction, unless the built-in functions enable and
consume are called. The former admits increasing (but not decreasing) the resources,
whereas the latter behaves the other way round. Obviously, resource preservation de-
pends on the linearity restriction on type mgr, otherwise resources could be duplicated
by re-using managers.

Proposition 5. Let S0 and S1 be typed stacks such that S0 � S1 �= �.

1. If S0 is of the form 〈|α, let (m′,r′) = enable (m,r) in e〉Γ :: S′
0 then res(S0) ⊆

res(S1).
2. If S0 is of the form 〈|α, let () = consume (m) in e〉Γ :: S′

0 then res(S0) ⊇
res(S1).

3. In all other cases, res(S0) = res(S1).

2.4 Erasing Resource Managers

According to the reduction semantics, a call to assertEmpty or assertAtLeast
either does nothing1 or goes wrong, and calling one of these two tests is the only way
to go wrong. Hence, if we know that a program cannot go wrong (and Section 3 will
present a type system for proving just that) then we can erase all calls to these built-ins
(or rather, replace them by true no-ops) and obtain an equivalent program.

In fact, we can do more than that. Once the assertion built-ins are gone, it is
even possible to remove the resource managers themselves. By the design of the
programming language (in particular, the choice of built-in operations on resource
managers) the contents of resource managers cannot influence the values of variables
of any other type. Informally, this justifies replacing the resource managers themselves
by variables of type unit whenever we know that a program cannot go wrong. Erasing
resource managers also means that the built-in functions acting on managers can be
replaced by simpler ones on unit: all of which are no-ops, except for enable itself.2

The remainder of the section formalises this intuition.
Figure 6 shows the necessary program transformations to erase resource managers.

Most fundamentally, erasure maps the manager type mgr to the unit type unit.
Erasure on types determines erasure on product types, type environments, programs
and valuations (where erasure uniformly maps the values of mgr-variables to �, the
only value of type unit), which in turn determines erasure on typed stacks. As outlined

1 Due to the linearity restriction on resource managers these functions must copy the input
manager to an output manager; a true no-op would violate resource preservation.

2 We do keep the calls in place, so that erasure preserves the structure of programs; this simplifies
reasoning, and does not preclude optimising away no-op calls at a later stage.

64 D. Aspinall, P. Maier, and I. Stark

Erasure τ◦ of types τ

τ◦ = unit if τ = mgr
τ◦ = τ otherwise

Erasure σ◦ of product types σ

(x1:τ1,. . .,xn:τn)
◦ = (x1:τ

◦
1 ,. . .,xn:τ

◦
n)

Erasure Γ ◦ of type environments Γ

∅◦ = ∅
(Γ, x:τ)◦ = Γ ◦, x:τ◦

ErasureΠ◦ of programs Π

dom(Π◦) = dom(Π)
Π◦(f) = λe : σ◦ → σ′◦ ifΠ(f) = λe : σ → σ′

Π◦(f) = σ◦ → σ′◦ ifΠ(f) = σ → σ′

Erasure Θ◦
0 of effect environment Θ0

dom(Θ◦
0) = dom(Θ0)

Θ◦
0(enable) = �→ r′ ⊆ r

Θ◦
0(f) = �→� if

j
f ∈ {init, split, join, consume} ∪

{assertEmpty,assertAtLeast}
Θ◦

0(f) = Θ0(f) otherwise

Erasure α◦ of Γ -valuations α

dom(α◦) = dom(α)
α◦(x) = � if Γ (x) = mgr
α◦(x) = α(x) otherwise

Erasure S◦ of typed stacks S

�◦ = � ε◦ = ε (〈x1, . . . , xn|α, e〉Γ :: S)◦ = 〈x1, . . . , xn|α◦, e〉Γ◦
:: S◦

Fig. 6. Erasure of resource managers

above, erasure on effect environments trivialises the effect of resource manager built-
ins, except enable, and preserves the effects of all built-ins not operating on managers.
The effect of enable after erasure is to non-deterministically choose a sub-multiset of
r and return its complement in r′. This reflects the fact that calls to enable provide
points of interaction for the policy (e. g., the user) to decide how many resources the
system is granted. Erasing resource managers does not mean that policy decisions are
fixed, it just removes the managers’ book keeping about those decisions.

Lemma 6. Let Π be a well-typed program and S a typed Π-stack. Then Π◦ is a well-
typed program and S◦ a typed Π◦-stack.

Erasure makes trivial the effects of assertEmpty and assertAtLeast, and in
particular, replaces their precondition by �. Thus a program cannot go wrong after
erasure, as rule (R-let�2) will never apply.

Proposition 7. Let Π be a well-typed program and S a Π◦-stack S. Then S ��∗
Π◦ �.

The next result states that the small-step reduction relation �Π of a program Π is
almost bisimulation equivalent to the reduction relation �Π◦ of its erasure. In fact,

Safety Guarantees from Explicit Resource Management 65

it shows that the relation R = {〈S, S◦〉 | S is a Π-stack} would be a bisimulation if
�Π could not reduce stacks to the error stack �. Put differently, if Π cannot go wrong
then �Π and�Π◦ are bisimulation equivalent. The proof of this theorem is by case
analysis on the reduction relation�Π of the unerased program. As a corollary, we get
that reachability in the erased program is essentially the same as reachability in the
unerased one, provided that the unerased program cannot go wrong.

Theorem 8. Let Π be a well-typed program and Ŝ0 a typed Π-stack with Ŝ0 ��Π �.

1. For all typed Π-stacks Ŝ1, if Ŝ0 �Π Ŝ1 then Ŝ◦
0 �Π◦ Ŝ◦

1 .
2. For all typed Π◦-stacks S1, if Ŝ◦

0 �Π◦ S1 then there is a typed Π-stack Ŝ1 such
that Ŝ0 �Π Ŝ1 and Ŝ◦

1 = S1.

Corollary 9. Let Π be a well-typed program and S0 a typed Π-stack. If S0 ��∗
Π � then

{S◦ | S0 �∗
Π S} = {S | S◦

0 �∗
Π◦ S}.

What distinguishes erasure of resource managers from other erasure results (e. g.,
type erasure during compilation, Java generics erasure) is that here, erasure does not
completely remove a language construct. Instead, it removes the book keeping but
retains the semantically important bit that deals with dynamic policy decisions.

2.5 Big-Step Relational Semantics

The reduction semantics presented in Section 2.3 is good for showing preservation
properties, like the preservation of resources. However, it does not easily yield a
relational view on functions, relating input and output parameters. This is achieved
by a relational semantics, which we will prove equivalent to the reduction semantics.
Contrary to the reduction semantics, which was originally untyped and had type
environments added conservatively, the relational semantics will be typed from the start.
(Types do not hurt here, as the relational semantics is not geared towards execution.)

Throughout this section, we assume that Π is a well-typed program. A state β is
either the error state � or a normal state 〈Γ ; α〉, where Γ is a linear type environment
and α a maximal Γ -valuation. Given an expression e, a normal state 〈Γ ; α〉 and a state
β′, we define the judgement e, 〈Γ ; α〉 ⇓Π β′ (or e, 〈Γ ; α〉 ⇓ β′ if Π is understood)
by the rules in Figure 7 if dom(Γ) ∩ bound(e) = ∅ and there are Γe and σ such that
Γ � Γe and Γe � e : σ. The intended meaning of e, 〈Γ ; α〉 ⇓ β′ is that evaluating
expression e in state 〈Γ ; α〉 may terminate and result in state β′.

The reduction semantics deallocates variables once they become unused (an eager
garbage collection, so to say), which is essential for the linear variables as otherwise
resource preservation would not hold. However, the intermediate values of variables are
thus lost. In contrast, the relational semantics names and records all intermediate values,
even the linear ones, as e, 〈Γ ; α〉 ⇓ 〈Γ ′; α′〉 implies Γ ′ � Γ and α′ � α.

By definition, violations of resource safety manifest themselves in reductions ending
in the error stack, and hence reductions which diverge or get stuck cannot violate
resource safety. Therefore, resource safety is not affected by the fact that the relational
semantics ignores such reductions. Under this proviso, Proposition 10 shows the
equivalence of reduction and relational semantics.

66 D. Aspinall, P. Maier, and I. Stark

Evaluation of expressions e, 〈Γ ;α〉 ⇓ β′

(E-ret)
ret (x1,. . .,xn), 〈Γ ;α〉 ⇓ 〈Γ ;α〉

(E-let1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ

′
n) Γf = z1:τ1, . . . , zm:τm

αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} e, 〈Γf ;αf 〉 ⇓ 〈Γ ′
f ;α′

f 〉
Γ ′ = Γ, x′1:τ ′1, . . . , x′n:τ ′n α′ = α{x′1 �→ α′

f (z′1), . . . , x′n �→ α′
f (z′n)}

e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let�1)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ Γf = z1:τ1, . . . , zm:τm
αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} e, 〈Γf ;αf 〉 ⇓ �

let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ �

(E-let2)

Π(f) = (z1:τ1,. . .,zm:τm) → (z′1:τ
′
1,. . .,z

′
n:τ

′
n)

αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} α′
f ∈ Eff Π0

Θ0
(f) α′

f � αf
Γ ′ = Γ, x′1:τ ′1, . . . , x′n:τ ′n α′ = α{x′1 �→ α′

f (z′1), . . . , x′n �→ α′
f (z′n)}

e′, 〈Γ ′;α′〉 ⇓ β′′

let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ β′′

(E-let�2)

Π(f) = λe : (z1:τ1,. . .,zm:τm) → σ′ f ∈ {assertEmpty,assertAtLeast}
αf = {z1 �→ α(v1), . . . , zm �→ α(vm)} ∀α′

f ∈ Eff Π0
Θ0

(f) : α′
f � αf

let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′, 〈Γ ;α〉 ⇓ �

(E-if1)
e1, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) �= 0

(E-if2)
e2, 〈Γ ;α〉 ⇓ β′

if v then e1 else e2, 〈Γ ;α〉 ⇓ β′ if α(v) = 0

Fig. 7. Big-step evaluation relation (for a fixed program Π)

Proposition 10. Let 〈Γ ; α〉 and 〈Γ ′; α′〉 be states. Let e be an expression such that
dom(Γ) = free(e) and Γ � e : σ for some product type σ. Then

1. e, 〈Γ ; α〉 ⇓ � if and only if 〈|α, e〉Γ :: ε�∗ �, and
2. e, 〈Γ ; α〉 ⇓ 〈Γ ′; α′〉 if and only if there is a typed stack 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

::ε
such that 〈|α, e〉Γ :: ε�∗ 〈|α′′, ret (x1,. . .,xn)〉Γ ′′

::ε and Γ ′ � Γ ′′ and α′ � α′′.

3 Effect Type System

In this section, we will develop a type system to statically guarantee dynamic resource
safety, i. e., the absence of reductions to the error stack �. We will do so by annotating
functions with effects and then extending the notion of effect to a judgement on
expressions, which we will define by a simple set of typing rules.

Safety Guarantees from Explicit Resource Management 67

3.1 Effect Type System

We extend the notion of effect φ→ ψ from built-in functions to λ-abstractions. To be
precise, φ→ψ is an effect for f if Γ � φ and Γ, Δ � ψ, where Π(f) = [λ . . .]Γ → Δ,
regardless of whether f is built-in or a λ-abstraction. In line with this extension, an
effect environment Θ maps all functions f ∈ dom(Π) to effects Θ(f) for f .

In order to derive the effects of λ-abstractions, we generalise effects to effect types
for expressions and develop a type system for inductively constructing such effect types.
Effects relate input and output parameters of functions by logical formulae. Likewise,
effect types shall relate input and output parameters of expressions. Here, the input
parameters of an expression are its free variables; the output parameters are those
variables that are not free yet but will become free during reduction, i. e., the (let-)bound
variables. Formally, an effect type Γ ; φ→Δ; ψ is a pair of constraints φ and ψ together
with a pair of type environments Γ and Δ such that dom(Γ)∩dom(Δ) = ∅ and Γ � φ
and Γ, Δ � ψ. We call φ and ψ precondition and action, and Γ and Δ input and output
(parameters), respectively. Given an expression e, we say that an effect type Γ ; φ→Δ; ψ
is an effect type for e if dom(Γ) ∩ bound(e) = ∅.

We say that an effect type Γ ; φ→Δ; ψ is stronger than an effect type Γ ′; φ′→Δ′; ψ′,
denoted by Γ ; φ→ Δ; ψ ⊇ Γ ′; φ′ → Δ′; ψ′, if φ′ |= φ and (φ′ ∧ ψ) |= ψ′, i. e., the
stronger effect type Γ ; φ→ Δ; ψ has a weaker precondition but stronger action. The
stronger-than relation ⊇ is a quasi-order, i. e., reflexive and transitive, and induces an
equivalence relation on effect types, the as-strong-as relation, which we denote by ≡.
Note that for every effect type Γ ; φ→Δ; ψ is as strong as an effect type Γ ′; φ→Δ′; ψ
with linear type environments Γ ′ and Δ′.

Figure 8 presents the typing rules for deriving effect types. There, the judgement
Θ �Π e : Γ ; φ→Δ; ψ states that expression e has effect type Γ ; φ→ Δ; ψ in the
context of program Π and effect environment Θ. If Π is understood, we may omit it
and write Θ � e : Γ ; φ→Δ; ψ instead. The judgement Π, Θ � f means that the effect
type ascribed to a λ-abstraction f by Θ and Π is consistent with the effect type derived
for the body of f . We say that Θ is an admissible effect environment for a program Π
if Π, Θ � f for all λ-abstractions f ∈ dom(Π) \ dom(Π0).

Lemma 11. Let e be an expression, Θ an effect environment (referring to an implicit
program Π) and Γ ; φ→Δ; ψ an effect type. If Θ � e : Γ ; φ→Δ; ψ then Γ ; φ→Δ; ψ
is an effect type for e.

Theorem 12 states soundness of effect typing w. r. t. the big-step relational semantics.
The proof is by double induction on the derivation of relational semantics judgements
over the derivation of effect type judgements. As a corollary, we get that reduction
starting from a state that satisfies the precondition can’t go wrong, hence resource
managers can be erased. In fact, the untyped reductions in the erased program match
exactly the typed reductions in the original program.

Theorem 12. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ; φ→Δ; ψ an effect type such that Θ � e : Γ ; φ→Δ; ψ.
Let 〈Γ ; α〉 and β′ be states such that e, 〈Γ ; α〉 ⇓ β′ (which implies Γe � e : σ for some
Γe, σ). If α |= φ then β′ = 〈Γ ′; α′〉 for some Γ ′ and α′ such that α′ |= φ ∧ ψ. (In
particular, if α |= φ then β′ �= �.)

68 D. Aspinall, P. Maier, and I. Stark

Typing of expression effects Θ
 e : Γ ;φ→Δ;ψ

(ET-weak)
Θ
 e : Γ ;φ→Δ;ψ
Θ
 e : Γ ′;φ′ →Δ′;ψ′ if

j
dom(Γ ′) ∩ bound(e) = ∅ ∧
Γ ;φ→Δ;ψ ⊇ Γ ′;φ′ →Δ′;ψ′

(ET-ret)
Θ
 ret (x1,. . .,xn) : ∅;�→ ∅;�

(ET-if)
Θ
 e1 : Γ ; v �≈ 0 ∧ φ→Δ;ψ Θ
 e2 : Γ ; v ≈ 0 ∧ φ→Δ;ψ

Θ
 if v then e1 else e2 : Γ ;φ→Δ;ψ

(ET-let)

Π(f) = [λ . . .]Γ → Δ Γ = z1:τ1, . . . , zm:τm Δ = z′1:τ ′1, . . . , z′n:τ ′n
Θ(f) = φ→ ψ μ = {z1 �→ v1, . . . , zm �→ vm, z

′
1 �→ x′1, . . . , z

′
n �→ x′n}

Θ
 e′ : Γ ′,Δ′;φ′ ∧ ψ′ →Δ′′;ψ′′

Θ
 let (x′1,. . .,x′n) = f (v1,. . .,vm) in e′ : Γ ′;φ′ →Δ′, Δ′′;ψ′ ∧ ψ′′ if (∗)

where (∗)
j

dom(Γ ′) ∩ {x′1, . . . , x′n} = ∅ ∧
Γμ;φμ→Δμ;ψμ ⊇ Γ ′;φ′ →Δ′;ψ′

Well-typedness of λ-abstraction effectsΠ,Θ
 f

(ET-lam)
Π(f) = λe : Γ → Δ Θ(f) = φ→ ψ Θ
 e : Γ ;φ→Δ;ψ

Π,Θ
 f

Fig. 8. Typing rules for effect types (for a fixed programΠ)

Corollary 13. Let Θ be an admissible effect environment for a well-typed program Π .
Let e be an expression and Γ ; φ→Δ; ψ an effect type such that Θ �Π e : Γ ; φ→Δ; ψ.
Let α be a maximal Γ -valuation, and let Ŝ0 = 〈|α|free(e), e〉Γ |free(e) :: ε be a typed
Π-stack (which implies Γ |free(e) �Π e : σ for some σ). If α |= φ then

1. Ŝ0 ��∗
Π � and

2. for all (untyped) Π◦-stacks S, Ŝ◦�
0 �∗

Π◦ S if and only if there is a typed Π-stack
Ŝ such that Ŝ0 �∗

Π Ŝ and Ŝ◦� = S. (In particular, Ŝ◦�
0 ��∗

Π◦ �.)

3.2 Example: Bulk Messaging Application

To illustrate the use of the effect type system, we revisit the example from Figure 1. The
interesting bits of code are in the functions send bulk and send msg.

The function send bulk first builds up a multiset of resources r by converting the
strings representing phone numbers in nums into resources. Next it attempts to authorise
the use of all resources by having enable add r to an empty resource manager m. If this
fails, i. e., the multiset r’ returned by enable is of non-zero size, send bulk terminates
(after destroying m’ and whatever resources it holds).3 If authorising all resources
succeeds, send bulk calls send msgs to actually send the messages while checking

3 A more sophisticated version of the application could deal more gracefully with enable
granting only part of the requested resources. This would require more complex code to inspect
the multisets r and r’ (but not the resource manager m’).

Safety Guarantees from Explicit Resource Management 69

f Θ(f)

send bulk � → �
res from nums � → r ≈ bagof (mapfromstr(nums))

res from nums’
0 ≤ i ≤ len(nums) ∧ r’ ≈ bagof (mapfromstr(subarray(nums, i, len(nums))))

→ r ≈ bagof (mapfromstr (nums))
send msgs bagof (mapfromstr (nums)) ⊆ m → m ≈ m’ � bagof (mapfromstr (nums))

send msgs’
0 ≤ i ≤ len(nums) ∧ bagof (mapfromstr (subarray(nums, 0, i))) ⊆ m

→ m ≈ m’ � bagof (mapfromstr(subarray(nums, 0, i)))
send msg count(m, fromstr(num)) ≥ 1 → m ≈ m’ � {|fromstr(num):1|}
prim send msg � → �

∀a : len(mapfromstr (a)) ≈ len(a)
∀a∀i : 0 ≤ i < len(a) ⇒ mapfromstr(a)[i] ≈ fromstr(a[i])

∀a∀j∀k : 0 ≤ j ≤ k ≤ len(a) ⇒ len(subarray(a, j, k)) = k + (−j)
∀a∀j∀k∀i : 0 ≤ j ≤ k ≤ len(a) ∧ 0 ≤ i < len(subarray(a, j, k)) ⇒ subarray(a, j, k)[i] = a[j + i]

∀a : |bagof (a)| ≈ len(a)
∀a : len(a) ≈ 1 ⇒ bagof (a) ≈ {a[0]:1}
∀a∀k : 0 ≤ k ≤ len(a) ⇒ bagof (a) ≈ bagof (subarray(a, 0, k)) � bagof (subarray(a, k, len(a)))

Fig. 9. Bulk messaging application: admissible effect environment Θ and axiomatisation of
theory extension; for the sake of readability sort information is suppressed in the axioms

that the manager m’ contains the required resources. After that, send bulk checks that
send msgs has used up all resources by asserting that the returned manager m” is empty;
failing this assertion will trigger a runtime error. Finally, send bulk explicitly destroys
the empty manager m’” and terminates.

The function send msg sends one message, checking whether the resource manager
m holds the resource required. It does so by converting the string num into a singleton
multiset of resources r. Then it splits the manager m into m’ and m r, so that m r contains
at most the resources in r. Next, send msg asserts that m r contains at least r; failing
this assertion will trigger a runtime error. Succeeding the assertion, send msg calls the
primitive send function, destroys the now used resource by consuming m r’, and returns
the remaining resources in the manager m’.

The bulk messaging example is statically resource safe, as witnessed by the admissi-
ble effect environment displayed in Figure 9. Of particular interest is the effect�→�
ascribed to the main function send bulk. This least informative effect expresses nothing
about the function itself but implies the absence of runtime errors via Corollary 13.

The effects require an extension of the theory T (see Section 2.2) by three new
functions, axiomatised in Figure 9. The function map maps an array of strings to an
array of resources, subarray takes an array and cuts out the sub-array between two
given indices, and bagof converts an array of resources to a multiset (containing the
same elements with the same multiplicity). Note that the axiomatisation of bagof is not
complete4 but sufficient for our purposes.

Effect type checking, e. g., for checking admissibility of the effect environment Θ
from Figure 9, requires checking the side condition of the weakening rule (ET-weak),

4 A complete axiomatisation of bagof is possible in the full first-order theory of multisets and
arrays but it is much more complicated and unusable in practise.

70 D. Aspinall, P. Maier, and I. Stark

which involves checking logical entailment w. r. t. to an extension of the theory T . Due
to the high undecidability of T , we actually check entailment w. r. t. (an extension of)
an approximation of T ; in particular, we approximate multiplication and division by
uninterpreted functions. For the bulk messaging example, we used an SMT solver [4]
that can handle linear integer arithmetic and arrays. We added axioms for multisets and
the axioms in Figure 9. Due to an incomplete quantifier instantiation heuristic, we had
to instantiate a number of these axioms by hand, yet eventually, the solver was able to
prove all the entailments required by the weakening rules.

Even though arising from a single example, we believe that the extension of the
theories of multisets and arrays with the functions subarray and bagof is quite generic
and could prove useful in many cases.

4 Conclusion

We have presented a programming language with support for complex resource man-
agement, close to the standard SSA/ANF forms of compiler intermediate languages [1].
By construction, programs are dynamically resource safe in that any attempts to abuse
resources are trapped. We have extended the language with an effect type system which
guarantees the for well-typed programs no such attempts occur: we have static resource
safety. In addition, for such programs the bookkeeping required by dynamic resource
management can be erased.

Related Work. Many tools and methods have been proposed to assist with resource
management at runtime, e.g., in Java, the JRes [9] and J-Seal [8] frameworks. Generally,
these aim to enable programs to react to fluctuations of resources caused by an
unpredictable environment. Our aim, however is to track the flow of resources through
the program, where the environment can influence the availability of resources only
at well-understood points of interaction with the program and with clear availability
policies. This offers the chance for more precise resource control whose behaviour can
be predicted statically.

This paper builds on previous work [3] with a Java library implementing resource
managers and focusing on the dynamic aspects of resource management policies. This
Java library supports essentially the same operations on resource managers as our
functional language, except that state is realised by destructive updates instead of linear
types. While [3] does not provide a static analysis to prove static resource safety, it does
outline how dynamic accounting could be erased if static resource safety were provable.
Our work here shows one way to do just that.

Our approach is in line with a general trend of providing the programmer with
language-based mechanisms for security and additional static analyses (often using type
systems) which use these mechanisms. This combination provides a desirable graceful
degradation: if static analysis succeeds in proving certain properties, then the program
may be optimised without affecting security. Yet, even if the analyses fail the language
based mechanisms will enforce the security properties at runtime.

The context of our work is the MOBIUS project [5] on proof-carrying code (PCC) for
mobile devices. Our effect type system is very simple and in principle well-suited for a
PCC setting where checkers themselves are resource bounded. However, the weakening

Safety Guarantees from Explicit Resource Management 71

rule relies on checking logical entailment in a first-order theory, which is undecidable
in general. Therefore, a certificate for PCC need not only provide a type derivation tree
but also proofs (in some proof system) for the entailment checks in the weakening rule.
The development of a suitable such proof system is a topic for further research, as is the
investigation of decidable fragments of relevant first-order theories.

Acknowledgements. This work was funded in part by the Sixth Framework programme
of the European Community under the MOBIUS project FP6-015905. This paper
reflects only the authors’ views and the European Community is not liable for any use
that may be made of the information contained therein. Ian Stark was also supported
by an Advanced Research Fellowship from the UK Engineering and Physical Sciences
Research Council, EPSRC project GR/R76950/01.

References

[1] Appel, A.W.: SSA is functional programming. SIGPLAN Notices 33(4), 17–20 (1998)
[2] Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program logic

for resources. Theoret. Comput. Sci. 389(3), 411–445 (2007)
[3] Aspinall, D., Maier, P., Stark, I.: Monitoring external resources in Java MIDP. Electron.

Notes Theor. Comput. Sci. 197, 17–30 (2008)
[4] Barrett, C., de Moura, L., Stump, A.: Design and results of the 2nd annual satisfiability

modulo theories competition. Form. Meth. Syst. Des. 31(3), 221–239 (2007)
[5] Barthe, G., Beringer, L., Crégut, P., Grégoire, B., Hofmann, M., Müller, P., Poll, E.,

Puebla, G., Stark, I., Vétillard, E.: MOBIUS: Mobility, ubiquity, security. In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 10–29. Springer, Heidelberg
(2007)

[6] Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic certification of
heap consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp.
347–362. Springer, Heidelberg (2005)

[7] Besson, F., Dufay, G., Jensen, T.P.: A formal model of access control for mobile interactive
devices. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 110–126. Springer, Heidelberg (2006)

[8] Binder, W., Hulaas, J., Villazón, A.: Portable resource control in Java. In: Proc. OOPSLA
2001, pp. 139–155. ACM, New York (2001)

[9] Czajkowski, G., von Eicken, T.: JRes: A resource accounting interface for Java. In: Proc.
OOPSLA 1998, pp. 21–35. ACM, New York (1998)

[10] Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with continu-
ations. In: Proc. PLDI 1993, pp. 237–247. ACM, New York (1993)

[11] Nanevski, A., Ahmed, A., Morrisett, G., Birkedal, L.: Abstract predicates and mutable
ADTs in Hoare type theory. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
189–204. Springer, Heidelberg (2007)

[12] Unknown: Redbrowser. A, J2ME trojan. Identified in February 2006 as Redbrowser. A
(F-Secure), J2ME/Redbrowser.a (McAfee), Trojan. Redbrowser. A (Symantec), Trojan-
SMS.J2ME.Redbrowser.a (Kaspersky Lab)

Universe Types for
Topology and Encapsulation

Dave Cunningham1, Werner Dietl2, Sophia Drossopoulou1,
Adrian Francalanza3, Peter Müller2, and Alexander J. Summers1

1 Imperial College London
{david.cunningham04,s.drossopoulou,alexander.j.summers}@imperial.ac.uk

2 ETH Zurich
{Werner.Dietl,Peter.Mueller}@inf.ethz.ch

3 University of Southampton
af1@ecs.soton.ac.uk

Abstract. The Universe Type System is an ownership type system for
object-oriented programming languages that hierarchically structures the
object store; it is used to reason modularly about programs.

We formalise Universe Types for a core subset of Java in two steps:
We first define a Topological Type System that structures the object
store hierarchically into an ownership tree, and demonstrate soundness
of the Topological Type System by proving subject reduction. Motivated
by concerns of modular verification, we then present an Encapsulation
Type System that enforces the owner-as-modifier discipline; that is, that
object updates are initiated by the owner of the object.

The contributions of this paper are, firstly, an extensive type-theoretic
account of the Universe Type System, with explanations and complete
proofs, and secondly, the clean separation of the topological from the
encapsulation concerns.

1 Introduction

Imperative object-oriented programming languages, such as C++, Java and C#,
use references to build object structures and share state. Aliasing allows multiple
references to the same object and gives much of the power of object-oriented pro-
gramming. However, it makes several other programming aspects more difficult,
including reasoning about programs, garbage collection and memory manage-
ment, code migration, parallelism and the analysis of atomicity.

To address these issues, different ownership type systems have been proposed:
ownership types [6,9,10], ownership domains [1], Universe Types [15,26] and
similar other type systems [2,18]. All have in common that they organise the
heap as an ownership tree where each object is owned by at most one other
object. It is common practice to depict ownership through a box in an object
graph, where all objects that share the same owner are within the box of the
owning object. For example, in Figure 1 the dashed box around object 1 of class
Bag indicates that it owns objects 2 and 13, while object 2 of class Stack owns

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 72–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Universe Types for Topology and Encapsulation 73

objects 3, 4 and 5. Objects that are not owned by any other object, such as 1, 6
and 9 are contained within the outermost dashed box labelled root, which gives
us a tree.

However, different ownership type systems enforce different encapsulation poli-
cies, that is, put different restrictions on what references between objects might
exist or limit the use of certain references. Ownership types enforce the owner-
as-dominator policy, guaranteeing that every reference chain from an object in
the root context to an object o goes through o’s owner. Ownership domains al-
low the declaration of flexible encapsulation policies by special link declarations.
Universe Types enforce the owner-as-modifier discipline that ensures that all
modifications of an object are initiated by the object’s owner.

root

1: Bag

13: Stack 2: Stack

3: Node

4: Node

5: Node

6: Object

7: Object

8: Object

9: Object

10: Bag

11: Stack

12: Node

state

top

next

next

value

value

value

state

top
value

Fig. 1. Depicting object ownership and references in a heap

The hierarchic heap topology and the different encapsulation policies can
be exploited in different ways: Andreae et al. [2] speed up garbage collection,
because, if the owner-as-dominator policy is enforced, as soon as an owner is
unreachable, all owned objects are unreachable, too. Flanagan et al. [18] and
Boyapati et al. [5] can guarantee that a program will not have races, because
locking an object implicitly locks all owned objects. Cunningham et al. [11]
show that Universe Types can be used to guarantee race free programs. Clarke
et al. [9] use ownership types to calculate the effects of computations, and thus
determine when they do not affect each other. Banerjee et al. [3] use the owner-
as-dominator policy to prove representation independence of data structures.
Müller et al. [27] use the hierarchic topology for defining modular verification
techniques of object invariants.

Universe Types [26,15] were developed to support modular reasoning about
programs. The type system is one of the simplest possible in the family of owner-
ship type systems. There are three Universe Modifiers: rep, peer and any, which
denote the relative placement of objects in the ownership hierarchy. The qualifier

74 D. Cunningham et al.

rep (short for representation) expresses that the object is owned by the currently
active object, while peer expresses that the object has the same owner as the
currently active object. The qualifier any abstracts over the object’s position in
the hierarchy and does not give any static information about the owner.

1 class Bag {
2 rep Stack state ;
3 impure void add(any Object o) { this . state .push(o); }
4 pure Bool isEmpty() { return (this . state .top == null); }
5 }
6

7 class Stack {
8 rep Node top;
9 impure void push(any Object o) {

10 this .top := new rep Node(o, this.top) ;
11 }
12 impure any Object pop() {
13 any Object o := null ;
14 if (this .top != null) {
15 o := this .top. value ;
16 this .top := this .top.next;
17 }
18 return o;
19 }
20 }
21

22 class Node {
23 any Object value ;
24 peer Node next;
25 Node(any Object v, peer Node n) { value := v; next := n; }
26 }

Fig. 2. Code augmented with Universe Modifiers

An example appears in Figure 2. The Stack field state in class Bag is declared
as rep and indeed, we see that in Figure 1 the Stack objects 2 and 11 are owned
by Bag objects 1 and 10, respectively; similarly, in class Node the field next is
declared as peer, and indeed the Node objects 3, 4 and 5 have the same owner.
The field value in class Node is declared as any Object and can therefore refer
to any object in the hierarchy. In that sense, the Universe Modifier any plays a
similar role to that played by the any ownership parameter in [24].

The code in Figure 2 also augments methods with the keywords pure, qual-
ifying methods without side-effects, and impure, for methods that might af-
fect the state of the program; these purity annotations are used to guarantee
encapsulation.

In contrast with those ownership type systems that enforce the owner-as-
dominator policy [1,2,6,10], Universe Types do not restrict references into the

Universe Types for Topology and Encapsulation 75

boxes, as long as they are carried out through any references. Thus, a reference
from 3 to 12 would be legal through the field value, because this field has the
type any Object.

Nevertheless, Universe Types can be used to impose encapsulation, in the
sense of guaranteeing that the state of an object can only be modified when
the object’s owner is one of the currently active objects. This owner-as-modifier
discipline [15] is checked by the type system by forbidding all field updates on
any references and requiring that only pure methods can be called when the
receiver is an any reference. The owner-as-modifier discipline supports modular
reasoning by restricting the objects whose invariants can be broken [23,27].

In this paper we give a formal, type theoretical description of Universe Types.
We distinguish the Topological Type System from the Encapsulation Type Sys-
tem, and describe the latter on top of the Topological System. The reasons for
this distinction are:

– the distinction clarifies the rationale for the type systems;
– some systems, such as those required for race detection, atomicity and dead-

lock detection, only require the topological properties;
– one might want to add an encapsulation part onto a different Topological

Type System or use different encapsulation policies.

Universe Types were already introduced and proven sound [26], but the de-
scription was in terms of proof theory, rather than the type theoretic machinery
we adopt in this report; they were further described in the context of JML [15,22].
Extensions to Universe Types, such as the addition of generics [14], already use
the type theoretic approach, but do not separate topology and encapsulation.

This paper thus aims to fill a gap in the Universe Types literature, by giving
a full type theoretical account of the basic type system, proofs, sufficient exam-
ples, explanations, and elucidate the distinction between the Topological and the
Encapsulation System. We describe Universe Types (UT) for a small Java-like
language, which contains classes, inheritance, fields, methods, dynamic method
binding and casts.

The rest of the paper is organised as follows: we introduce our base language
in Section 2, followed by a discussion of Universe Modifiers and owners in Sec-
tion 3. In Section 4 we give the operational semantics for our language. Section 5
presents the Topological Type System and states subject reduction. Section 6
covers the Encapsulation Type System. Section 7 discusses related work and
Section 8 concludes. Finally, Appendix A gives supporting results and proofs.

2 Source Language

UT models a subset of Java supporting class definitions, inheritance, field look-
up and update, method invocations and casting. On top of this core subset,
we augment types with Universe Modifiers and method signatures with purity
annotations.

76 D. Cunningham et al.

Universe Modifiers were originally defined [26] as the set {rep, peer, readonly}.
In this paper, we present a generalisation of this approach. Firstly, we replace
the modifier readonly with the modifier any, since the name readonly applies
only to the intentions of the Encapsulation System, but not to the Topological.
Secondly, we extend the set of modifiers with two new values: self and lost, which
do not occur in source programs but are key in the operation of the Topological
Type System we will present in Section 5.

Universe Modifiers are attached to object references, and provide relative in-
formation about the location (that is, position in the heap topology) of the
referred-to object with respect to the current object. More specifically:

– rep states that the referred object constitutes part of the current object’s
direct representation. Stated otherwise, the current object owns the object
pointed to by the reference.

– peer states that the referred object constitutes part of the same represen-
tation to which the current object belongs. Stated otherwise, the current
object and the object pointed to by the reference are owned by the same
object.

– self is a specialisation of peer, referring to the current object.
– any does not provide information about the location of the referred object. It

is a ‘don’t care’ modifier: such a reference may refer to objects with arbitrary
owners.

– lost does not provide information about the location of the referred object. It
is a ‘don’t know’ modifier: it is used when the type system cannot accurately
describe the location of the object1.

Example 2.1 (Comparing any and lost). We illustrate the difference between
any and lost using the example from Figure 2 and a reference node of type any
Node. The field access node.value has type any Object because the declared type
of field value uses the any modifier and therefore permits references to arbitrary
objects; the field doesn’t care about the location of the value object. Consequently,
an update of value is statically safe regardless of the owners of the receiver and
the right-hand side. In particular, the update node.value := y is legal provided that
y’s class is a subclass of Object. Conversely, the field access node.next has type
lost Node because the declared type of the field requires that the next node and
the current node have the same owner. We do not statically know the owner of
node as its Universe Modifier is any. Hence, we cannot express that the next field
has the same owner. Since we don’t know the accurate ownership information
for node.next, the field update node.next := z is potentially unsafe and has to be
rejected by the type system, as we cannot ensure the topology of the heap would
be preserved.
1 As we said earlier, Lu and Potter’s any ownership parameter [24] is the counterpart

to our any Universe Modifier. Their unknown ownership parameter corresponds to
our lost Universe Modifier—however, the main motivation for unknown is to preserve
effective ownership rather than topology. Furthermore, our Universe Modifiers any
and lost introduce a form of existential types [25].

Universe Types for Topology and Encapsulation 77

The example above also illustrates that lost variables cannot be assigned mean-
ingful values, therefore our language does not permit any explicit occurrences of
lost in the program. Analogously, variables with modifier self can only be aliases
of this and so do not add expressibility. For these reasons, when writing source
programs we only make use of Universe Modifiers from the set {rep, peer, any}.

The syntax of our source language is given in Figure 3. We assume three
countably infinite, distinct sets of names: one for classes, c ∈ Idc, one for fields,
f ∈ Idf , and another for methods, m ∈ Idm. A program P is defined in terms
of three partial functions, F , M and MBody, and a relation over class names ≤c;
these functions and relations are global. F associates field names accessible2 in
a class to types, M associates method names accessible in a class to method
signatures and MBody associates method names accessible in a class to method
bodies. The reflexive, transitive relation ≤c denotes subclassing.

Types, denoted by t, constitute a departure from standard Java. They consist
of a pair, u c, where class names c are preceded by Universe Modifiers u. Source
types, denoted by s are the subset of types t which are allowed to occur in source
programs; i.e., they feature only Universe Modifiers from the set {rep, peer, any}.
Method signatures also deviate slightly from standard Java. They consist of
a triple, denoted as p : s1 (s2) where s2 is the type of the (single) method
parameter, s1 is the return type of the method and p is a purity annotation,
ranging over the set {pure, impure}. An extension to multiple method parameters
is straightforward because each argument can be type-checked independently.

F : Idc × Idf ⇀ SrcType
M : Idc × Idm ⇀ MethSig

MBody : Idc × Idm ⇀ SrcExpr
≤c : Idc × Idc → Bool

e ∈ SrcExpr ::= this | x | null | new s | (s) e
| e.f | e.f := e | e.m(e)

u ∈ Universe Modifiers ::= rep | peer | self | any | lost
s ∈ SrcType ::= rep c | peer c | any c
t ∈ Type ::= s | self c | lost c
MethSig ::= p : s (s)

p ∈ Purity Tag ::= pure | impure

Fig. 3. Syntax of source programs. The arrow ⇀ indicates partial mappings.

Source expressions, denoted by e, are a standard subset of Java. They consist
of the self reference this, parameter identifier x, the basic value null, new object
creation new s, casting (s) e, field access e.f , field update e.f := e and method
invocation e.m(e).

2 By “accessible”, we mean those which are either defined in the class or inherited from
a superclass. We do not formalise visibility; all declarations are implicitly public.

78 D. Cunningham et al.

3 Universe Modifiers and Owners

Universe Types structure the heap as an ownership tree. Every object a in a
heap is owned by a single owner, o, which is either another object in the heap or
the root of the ownership tree, root. The direct representation of an object in a
heap h is defined to be all the objects it owns (i.e., is the owner of). Ownership is
required to be acyclic. When we do not want to refer to a particular heap, we find
it convenient to refer to objects as pairs with their owners (a, o). For example,
(1, root) and (2, 1), meaning 1 owned by root and 2 owned by 1, respectively.

We recall that the Universe Modifiers self, peer and rep are interpreted with
respect to the current object and do not mean anything without this viewpoint.
One can assign a Universe Modifier to an object (a′, o′) with respect to another
object (a, o) using the judgement

(a, o) � (a′, o′) : u (1)

which is defined as the least relation satisfying the rules in Figure 4. It states
that, from the point of view of a (owned by o), a′ (owned by o′) has Universe
Modifier u. The lost and any modifiers can always be assigned because they do
not express any ownership information.

(a, o)
 (a, o) : self
(Self)

(, o)
 (, o) : peer
(Peer)

(a,)
 (, a) : rep
(Rep)

(,)
 (,) : lost
(Lost)

(,)
 (,) : any
(Any)

Fig. 4. Assigning Universe Modifiers to objects

Example 3.1 (Universe Modifiers and objects). In the heap shown in Fig-
ure 1, from the point of view of 2 (owned by 1) object 3 (owned by 2) has Universe
Modifier rep that is

(2, 1) � (3, 2) : rep (2)

Similarly, we can derive
(3, 2) � (4, 2) : peer (3)

Each object can view itself as self or peer:

(2, 1) � (2, 1) : self (2, 1) � (2, 1) : peer (4)

Also, we can assign any to any object from any viewpoint using rule (Any):

(3, 2) � (6, root) : any (2, 1) � (3, 2) : any (3, 2) � (4, 2) : any (5)

Universe Types for Topology and Encapsulation 79

3.1 Universe Ordering

We define the following reflexive ordering for Universe Modifiers u ≤u u′:

u ≤u u self ≤u peer ≤u lost rep ≤u lost lost ≤u any

It states that peer and rep are smaller (more precise) than lost, self is similarly
a specialisation of peer, and any is the least specific modifier. The ‘don’t care’
modifier any is treated as more general than the ‘don’t know’ modifier lost; this
is because we want to be able to assign to an any field even those objects whose
location cannot be expressed in the type system.

Lemma 3.2 states that the Universe ordering relation (≤u) is consistent with
the judgement of Figure 4. Thus, any object that is assigned rep, peer or self can
also be assigned Universe Modifier any or lost, and any object that is assigned self
can be assigned Universe Modifier peer, as we have already seen in Example 3.1.

Lemma 3.2 (Universe object judgements respect Universe ordering)

(a, o) � (a′, o′) : u
u ≤u u′

}
=⇒ (a, o) � (a′, o′) : u′

Proof. By a simple case analysis of (a, o) � (a′, o′) : u. �

Example 3.3 (Subtyping and Universe Modifiers). We illustrate how the
Universe Modifiers of the fields in the classes of Figure 2 characterise the refer-
ences in Figure 1. For instance, the Stack object 2 has the rep top field correctly
assigned to Node 3, since from (2) above we know that 3 has Universe Modifier
rep with respect to 2. In fact, this reference can only point to (Node) objects 3,
4 and 5 since these are the only objects owned by object 2. Similarly, Node 3
has the peer next field correctly assigned to Node 4, which is owned by the same
owner as 3; see (3) above. Trivially, the any value field of Node 3 assigned to
Object 6 also respects the Universe Modifier because of (5) above. It can however
point to any object in the heap since any type t is a subtype of any Object.

3.2 Viewpoint Adaptation

The ownership information given by Universe Modifiers is relative with respect
to a particular viewpoint. To adapt Universe Modifiers from one viewpoint to
another, we define an operation u1 � u2 called viewpoint adaptation [14]. This
operation takes two Universe Modifiers u1 and u2, and yields a new Universe
Modifier, as defined in Figure 5. The resulting modifier can be intuitively de-
scribed as follows: “if a1 sees a2 as u1, and a2 sees a3 as u2, then a1 sees a3 as
u1 � u2”3. If there is no modifier to explicitly describe this relationship, then
the operation yields the modifier lost. For example, rep � rep = lost, since there
is no modifier to explicitly express that a referred object is in the ‘transitive
3 For readers familiar with work on Ownership Types, this operation is vaguely anal-

ogous with the notion there of substitution.

80 D. Cunningham et al.

u2

u1 � u2 self peer rep any lost

u1

self self peer rep any lost
peer lost peer lost any lost
rep lost rep lost any lost
any lost lost lost any lost
lost lost lost lost any lost

Fig. 5. Viewpoint adaptation

representation’ of the current object. Also note that the modifiers any and lost
do not depend on a viewpoint. Therefore, if u2 is any or lost, the result will again
be any or lost, respectively.

In Lemma 3.4, we show that the intuition of � is sound with respect to
the interpretation of Universe Modifiers as object ownership in a heap, that is,
judgement (1). We also show how we can recover information from a Universe
Modifier u � u′, so long as it is not lost.

Lemma 3.4 (Sound viewpoint adaptation)

(a1, o1) � (a2, o2) : u1
(a2, o2) � (a3, o3) : u2

}
=⇒ (a1, o1) � (a3, o3) : u1 � u2

(a1, o1) � (a2, o2) : u1
(a1, o1) � (a3, o3) : u1 � u2
u1 � u2 �= lost

⎫⎬
⎭ =⇒ (a2, o2) � (a3, o3) : u2

Proof. By a case analysis of u1 and u2 and inspection of Figures 4 and 5. The
argument for the second part depends essentially on the fact that, if there exists
a u2 such that u1 � u2 �= lost then it is unique (in other words, u1 � u2 = u1 �
u′

2 �= lost implies that u2 = u′
2). This can be seen by inspection of Figure 5. �

Example 3.5 (Viewpoint adaptation). From judgements (2) and (3) from
Example 3.1, using Lemma 3.4, we derive

(2, 1) � (4, 2) : rep (6)

because rep � peer = rep. Conversely, from (2) and (6), using Lemma 3.4 and
rep = rep � peer �= lost, we recover (3)

(3, 2) � (4, 2) : peer

4 Operational Semantics

We give the semantics of our Java subset in terms of a small-step operational
semantics. We assume a countably infinite set of addresses, ranged over by a, b.

Universe Types for Topology and Encapsulation 81

a, b ∈ Addr : N
o ∈ Owner ::= a | root
v ∈ Value ::= a | null

flds ∈ Flds : Idf ⇀ Value

h ∈ Heap : Addr⇀ (Owner × Idc × Flds)
σ ∈ StackFrame : (Addr × Value)

e ∈ RunExpr ::= v | this | x | frame σ e | e.f | e.f := e
| e.m(e) | new s | (s) e

E[·] ::= [·] | E[·].f | E[·].f := e | a.f := E[·]
| E[·].m(e) | a.m(E[·]) | (s) E[·]

Fig. 6. Syntax of runtime expressions

At runtime, a value, denoted by v, may be either an address or null. Owners,
denoted by o, can be either an address or the special owner root.

Runtime expressions are described in Figure 6. During execution, expressions
may contain addresses as values; they may also contain the keyword this and the
parameter identifier x. Thus, a runtime expression is interpreted with respect to
a heap, h, which gives meaning to addresses, and a stack frame, σ, which gives
meaning to the keyword this and parameter identifier x. Evaluation contexts E
define expressions with ‘holes’ [17]; they are used in the semantics to permit
reductions to take place below the top level of the expression.

A heap is defined in Figure 6 as a partial function from addresses to objects.
An object is denoted by the triple (o, c,flds). Every object has an immutable
owner o, belongs to a class c, and has a state, flds, which is a mutable field map
(a partial function from field names to values). In the remaining text we use the
following heap operations:

owner(h, a) def= h(a)↓1 class(h, a) def= h(a)↓2
fields(h, a) def= h(a)↓3 h(a.f) def= fields(h, a)(f)

h[(a, f) �→ v] def= h
[
a �→

(
owner(h, a), class(h, a), fields(h, a)[f �→ v]

)]
The first three operations extract the components making up an object, where
↓i is used for the i-th projection. The fourth operation is merely a shorthand
notation for field access in a heap. The fifth operation is heap update, updating
the field f of an object mapped to by the address a in the heap h to the value v.

A stack frame σ is a pair (a, v), of an address and a value. The address
a denotes the currently active object referred to by this whereas v denotes the
value of the parameter x. We find it convenient to define the following operations
on stack frames:

σ(this) def= σ↓1 σ(x) def= σ↓2
For evaluating method calls, we require to push and pop new address-value pairs
onto the stack. To model this, runtime expressions also include the expression

82 D. Cunningham et al.

frame σ e, which denotes that the sub-expression e is evaluated with respect to
the inner stack frame σ.

We employ a further operation called heap extension, written alloc(h, σ, s),
which extends a heap h with a new mapping from a fresh address a to a newly-
initialised object of type s; it is defined by the following function:

alloc(h, σ, u c) def= (h′, a) if u ∈ {rep, peer}
where

a /∈ dom(h)
h′ = h[a �→ (o, c,flds)]

o =
{

σ(this) if u = rep
owner(h, σ(this)) if u = peer

flds = {f �→ null | F (c, f) = }

The owner is initialised according to the Universe Modifier specified in the type
s and the current stack frame σ. The above function is partial: it is only defined
for Universe Modifiers rep and peer since the owner of a new object cannot be
determined if the Universe Modifier is any. The values of the fields of class c,
and all its superclasses, are initialised to null.

Expressions e are evaluated in the context of a heap h and a stack frame σ.
We define the small-step semantics

σ � e, h� e′, h′ (7)

in terms of the reduction rules in Figure 7. We will use �∗ to indicate a consec-
utive sequence of (zero or more) small-step reductions.

σ
 x, h� σ(x), h
(rVar)

h′ = h[(a, f) �→ v]
σ
 a.f := v, h� v, h′

(rAssign)

σ
 this, h� σ(this), h
(rThis)

e = MBody(class(h, a),m)

σ
 a.m(v), h� frame (a, v) e, h
(rCall)

(h′, a) = alloc(h, σ, s)
σ
 new s, h� a, h′

(rNew)
σ
 e, h� e′, h′

σ
 E[e], h� E[e′], h′
(rEvalCtx)

h, σ
 a : s
σ
 (s) a, h� a, h

(rCast)
σ′
 e, h� e′, h′

σ
 frame σ′ e, h� frame σ′ e′, h′
(rFrame1)

σ
 a.f, h� h(a.f), h
(rField)

σ
 frame σ′ v, h� v, h
(rFrame2)

Fig. 7. Small-step operational semantics

Most of the rules in Figure 7 are straightforward. When creating a new object
(rNew) the alloc(h, σ, s) function defined above determines the new heap h′

and fresh address a. In (rCall), a method call creates a new stack frame σ′

Universe Types for Topology and Encapsulation 83

to evaluate the body of the method, where σ′(this) is the receiver object a and
σ′(x) is the value passed by the call, v. Once a frame evaluates to a value v, we
discard the sub-frame and return to the outer frame, as shown in (rFrame2).
We also note that the rule (rEvalCtx) dictates the evaluation order of an
expression, based on the evaluation contexts E[·] defined in Figure 6. The type
judgement in rule (rCast) expresses that the object at address a has type s;
see Subsection 5.3. Note that the source expression null is identical to the value
null, which makes a special rule dispensable.

Example 4.1 (Runtime execution). Let h denote the heap depicted in Fig-
ure 1 and the current stack frame be σ = (2, 9). Then, if we consider the program
in Figure 2, and execute the expression this .push(7) we get the following reduc-
tions4, where the rule names on the side indicate the main reduction rule applied
to derive the reduction. We simplify the example slightly, by not mentioning the
use of context rules (rEvalCtxt) and (rFrame1).

σ �this .push(7), h � 2.push(7), h (rThis)
� frame σ′ this .top:= new rep Node(x, this.top), h (rCall)
� frame σ′ 2.top:= new rep Node(x, this.top), h (rThis)
� frame σ′ 2.top:= new rep Node(7, this.top), h (rVar)
� frame σ′ 2.top:= new rep Node(7, 2.top), h (rThis)
� frame σ′ 2.top:= new rep Node(7, 3), h (rField)
� frame σ′ 2.top:= 14, h′ (rNew)
� frame σ′ 14, h′[(2, top) �→ 14] (rAssign)
� 14, h′[(2, top) �→ 14] (rFrame2)

where σ′ = (2, 7), h′ = h ! {14 �→ (2, Node, {value �→ 7, next �→ 3})}, and 14 is
a fresh address in the heap h.

5 Topological System

In this section, we define the Topological Type System for UT. The formalism
is based on earlier work [26,15], but has some differences: as we said in the
introduction, we focus here on the hierarchical topology imposed by Universe
Types, but do not enforce the owner-as-modifier discipline at this stage—this
is dealt with in Section 6. The main result of this section is Topological Subject
Reduction, stating that a type assigned to an expression and the ownership
hierarchical heap structure are preserved during execution.

4 In order to follow the Java code of Figure 2, the reductions use an object constructor
that immediately initialises values to the parameters passed. This is more advanced
than the simpler new construct considered in our language, which initialises all the
fields of a fresh object to null. These details are however orthogonal to the deter-
mination of the owner of the object upon creation, which is the relevant issue for
our work. Similarly, we return the value of the method body even if the method is
declared to be void.

84 D. Cunningham et al.

5.1 Subtyping and Viewpoint Adaptation

As was already stated in Section 2, types, t, are made up of two components:
a Universe Modifier u and a class name c. Using the Universe ordering ≤u of
Section 3.1 and subclassing ≤c, we define the subtype relation as:

u c ≤ u′ c′ def= u ≤u u′ and c ≤c c′ (8)

We extend � defined in Section 3.2 for Universe Modifiers, to an operator on
a Universe Modifier and a type, and that produces a type, denoted by u � t:

u � (u′ c) def= (u � u′) c

We use this auxiliary operator whenever we need to change the viewpoint of the
types.

5.2 Static Types

We type-check UT source expressions with respect to a type environment Γ ,
which keeps type information for this and the method parameter x. The types in
a method signature are meant to be interpreted with respect to this, the currently
active object. We assign the self Universe Modifier to Γ (this) when type-checking
method bodies and note that self � u = u for all u.

The use of a specific self Universe Modifier is a variation from previous models
of the Universe Type System [14,15,26] and of other ownership type systems. In
the work on Universe Types, the expression this was treated separately, view-
point adaptation was omitted for access through this, and additional checks had
to be made to ensure the protection of the representation of an object. This spe-
cial treatment of the this expression can also be compared to the static visibility
constraint of Ownership Types [10], which ensures that a type that contains rep
is only accessible by this. Even when not enforcing the static visibility constraint,
the this parameter in a type needs to be treated specially upon type application
[1,4]. The use of a special self ownership modifier makes the special role of the
current object more explicit, while at the same time simplifying the overall sys-
tem5. For example, attempting to update the representation of another object
using a peer reference results in lost ownership information, i.e., peer � rep = lost
and the update is forbidden. On the other hand, updating the representation of
the current object preserves ownership information, i.e., self � rep = rep and an
update is allowed.

Definition 5.1 (Type environment). A type environment Γ consists of a
pair of types, (t, t′), assigning types to the currently active object this and the
parameter x, respectively. We define the following operations on Γ :

Γ (this)
def
= Γ↓1 Γ (x)

def
= Γ↓2

5 Note that in the works mentioned on Ownership Types [10,1,4], types such as
A<this> or A<self> do not correspond with our Universe Modifier self (which indi-
cates the current receiver): their types would instead be represented in our system
by the type rep A.

Universe Types for Topology and Encapsulation 85

The source expression type judgement takes the form

Γ � e : t

denoting that expression e has type t with respect to the type environment Γ .
Note that we do not restrict t to source types; although only source types may
be written explicitly in the program, an inferred Universe Modifier may well be
lost, for example. The judgement is defined as the least relation satisfying the
rules given in Figure 8. We sometimes find it convenient to use the shorthand
judgement notation

Γ � e : u Γ � e : c

whenever components of the type judgement are not important, that is Γ � e : u
and Γ � e : c, respectively. Most of the rules are standard, with the exception of
the type rules (Field), (Assign) and (Call), which use the auxiliary operation
u � t to adapt types from one viewpoint to another. For example, consider the
rule for field lookup (Field). The first premise says that e can be assigned class
c, and that from the current point of view, e’s position in the heap topology can
be described by Universe Modifier u. The second premise states that the field
f is declared in class c as having source type s. Since the Universe Modifier of
s describes the location of the field with respect to the point of view of e, to
assign a type for this field from the current point of view, we take into account
e’s relative position; that is, we adapt the type s with respect to u.

Example 5.2 (Type viewpoint adaptation). If Γ � this.top : rep Node and
field next in class Node has type peer Node, then using (Field), the dereference
this.top.next has type rep � (peer Node) = rep Node, that is

Γ � this.top.next : rep Node

Conversely, we use (Assign) to check that when

Γ � this.top : rep Node and Γ � new rep Node : rep Node

then the assignment this.top.next := new rep Node respects the field type assigned
to next in class Node. For this calculation we use

F (Node, next) = peer Node
rep � peer = rep �= lost

The source expression type judgement allows us to define well-formed classes
by requiring consistency between subclasses. In particular, we require that field
types in a subclass match those in any superclasses in which the same fields
are present (this requirement is trivially met if fields cannot be overridden),
and method signatures in subclasses are specialisations of the signatures of
overridden methods. In addition to the usual variance on argument and return
types, we allow pure methods to override impure methods (but not the opposite).

86 D. Cunningham et al.

Γ
 null : t
(Null)

Γ
 x : Γ (x)
(Var)

Γ
 this : Γ (this)
(This)

Γ
 e : t
Γ
 (s) e : s

(Cast)

u ∈ {rep, peer}
Γ
 new u c : u c

(New)

Γ
 e : t′

t′ ≤ t
Γ
 e : t

(Sub)

Γ
 e : u c
F (c, f) = s
Γ
 e.f : u � s (Field)

Γ
 e : u c
F (c, f) = s
u � s �= lost
Γ
 e′ : u � s

Γ
 e.f := e′ : u � s
(Assign)

Γ
 e : u c
M (c,m) = : sr (sx)
u � sx �= lost
Γ
 e′ : u � sx

Γ
 e.m(e′) : u � sr
(Call)

Fig. 8. Source type system

Furthermore, we require that method bodies are consistent with their signatures.
A program P is well-formed if all the defined classes are well-formed:

Definition 5.3 (Well-formed classes and programs)
∀c′ . (c ≤c c′ ∧ F (c′, f) = s) =⇒ F (c, f) = s
∀c′ . (c ≤c c′ ∧ M (c′, m) = p′ : s′

r (s′
x))

=⇒ M (c, m) = p : sr (sx)
where sr ≤ s′

r and s′
x ≤ sx

and p′ = pure⇒ p = pure
∀m . M (c, m) = : sr (sx) =⇒ (self c, sx) � MBody(c, m) : sr

� c
(WFClass)

� P ⇐⇒ (∀c ∈ Idc . � c)

5.3 Runtime Types

We define a type system for runtime expressions. These are type-checked with
respect to the stack frame σ, which contains actual values for the current receiver
this and the parameter x. Since runtime expressions also contain addresses, we
also need to type-check them with respect to the current heap, so as to retrieve
the class membership and owner information for addresses.

The runtime Universe Type System allows us to assign Universe Types to
runtime expressions with respect to a particular heap h and stack frame σ,
through a judgement of the form

h, σ � e : t

It is defined as the least relation satisfying the rules in Figure 9. Once again,
we use the shorthand notation h, σ � e : u and h, σ � e : c whenever the other
component of t in the judgement is not important. In the rule (tAddr), the

Universe Types for Topology and Encapsulation 87

type of an address in a heap is derived from the class of the object and the
Universe Modifier obtained using judgement (1) of Section 3. The three rules
(tField), (tAssign) and (tCall) use viewpoint adaptation in the same way
as their static-expression counterparts in Figure 8. The new rule (tFrame) also
uses viewpoint adaptation to adapt the type of the sub-expression, obtained with
respect to the local stack frame, to the current frame’s viewpoint.

h, σ
 null : t
(tNull)

h, σ
 σ(x) : t
h, σ
 x : t

(tVar)

h, σ
 σ(this) : t
h, σ
 this : t

(tThis)

h, σ
 e : t
h, σ
 (s) e : s

(tCast)

h, σ
 e : t′

t′ ≤ t
h, σ
 e : t

(tSub)

u ∈ {rep, peer}
h, σ
 new u c : u c

(tNew)

class(h, a) = c
(σ(this),owner(h, σ(this)))
 (a,owner(h, a)) : u

h, σ
 a : u c
(tAddr)

h, σ
 e : u c
F (c, f) = s

h, σ
 e.f : u � s (tField)

h, σ
 e : u c F (c, f) = s
u � s �= lost
h, σ
 e′ : u � s

h, σ
 e.f := e′ : u � s
(tAssign)

h, σ
 e : u c
M (c,m) = : sr (sx)
u � sx �= lost
h, σ
 e′ : u � sx

h, σ
 e.m(e′) : u � sr
(tCall)

h, σ′
 e : t
h, σ
 σ′(this) : u

h, σ
 frame σ′ e : u � t
(tFrame)

Fig. 9. Runtime type system

Lemma 5.4 shows that viewpoint adaptation respects the judgements of the
runtime type system. The viewpoint adaptations of Lemma 5.4 trivially hold for
the case v = null since rule (tNull) immediately yields the desired judgements.
The proof is relegated to Appendix A.

Lemma 5.4 (Determining the relative Universe Types of values)

(i) If h, σ � a : u and h, (a,) � v : t then h, σ � v : u � t
(ii) If h, σ � a : u and h, σ � v : u � t and u � t �= lost then, for any value v′

we have h, (a, v′) � v : t

Example 5.5 (Relative viewpoints in a heap). In Figure 1, using (2) and
(3) from Example 3.1 and rule (tAddr) we derive

h, (2,) � 3 : rep Node and h, (3,) � 4 : peer Node

From Lemma 5.4(i) we immediately derive

h, (2,) � 4 : rep Node

88 D. Cunningham et al.

Conversely, using h, (2,) � 3 : rep Node, h, (2,) � 4 : rep Node as well as
Lemma 5.4(ii), we can recover h, (3,) � 4 : peer Node.

We now have enough machinery to define well-formed addresses, heaps and stack
frames (Definition 5.7). An address is well-formed in a heap whenever its owner
is valid (that is, it is another address in the heap or root) and the types of
its fields respect the types of the fields defined in F . A heap is well-formed,
denoted as � h, if transitive ownership always includes root (this implies that
the ownership relation is acyclic, since each address has one owner and root has
no owner) and all its addresses are well-formed. Finally, a stack frame is well-
formed with respect to a heap if the receiver address it contains is defined in the
heap (we make no requirements about the argument on the stack, since these are
enforced where necessary by the type system). We use owner+(h, o) to denote
the transitive closure of owner(h, o).

Definition 5.6 (Transitive ownership)

owner+(h, o)
def
=

{
{owner(h, o)} ∪ owner+(h,owner(h, o)) if o �= root
∅ if o = root

Definition 5.7 (Well-formed addresses, heaps and stack frames)

owner(h, a) ∈ (dom(h) ∪ {root})
class(h, a) = c
∀f . F (c, f) = s =⇒ h, (a,) � h(a.f) : s

h � a
(WFAddr)

∀a . a ∈ dom(h) =⇒
{

root ∈ owner+(h, a)
h � a

� h
(WFHeap)

σ(this) ∈ dom(h)
h � σ

(WFStack)

We conclude the subsection by showing the correspondence between the source
type system and runtime type system. Lemma 5.8 below states that, with respect
to a suitable stack frame σ, where σ(this) and σ(x) match the respective type
assignments in Γ , a well-typed source expression is also a well-typed runtime
expression.

Lemma 5.8 (Source typing to runtime typing)

Γ � e : t
h, σ � x : Γ (x)
h, σ � this : Γ (this)

⎫⎬
⎭ =⇒ h, σ � e : t

Proof. By induction on the structure of the derivation Γ � e : t, considering the
last rule applied. Comparing the two type systems, all cases follow by straight-
forward induction except for the rules (Var) and (This). These are guaranteed
by the conditions on σ. �

Universe Types for Topology and Encapsulation 89

5.4 Subject Reduction

In this subsection, we present the first main result of the paper. It states that
if a well-typed runtime expression e reduces with respect to a stack frame σ,
and a well-formed heap h, then the resulting expression preserves its type (with
respect to the new heap), and the resulting heap preserves its well-formedness
as well as the well-formedness of the stack frame. Because our definition of
well-formed heaps imposes strong topological constraints in correspondence with
the Universe Modifiers in the program, this result means in particular that the
implied topology is preserved during execution.

Theorem 5.9 (Topological Subject Reduction)
For well-formed programs, the following property holds:

� h
h � σ
h, σ � e : t
σ � e, h� e′, h′

⎫⎪⎪⎬
⎪⎪⎭ =⇒

⎧⎨
⎩
� h′

h′ � σ
h′, σ � e′ : t

Proof. We build up to this result by first proving a number of intermediary lem-
mas concerning the evolution of the heap under reduction and extracting object
information from types (see Appendix A). The owner and class components of
an object in a heap are immutable during execution (Lemma A.2). During exe-
cution, we never remove existing addresses from the heap (Lemma A.3). Earlier
in Section 4, we discussed how reduction rules make use of two operations to
update a heap in the form of alloc(h, σ, s) and h[(a, f) �→ v]. Lemma A.4 shows
that the heap extension operation creates a new object with the requested type
in the heap. Lemma A.6 states that under appropriate conditions, heap update
and heap extension operations preserve heap well-formedness. Lemma A.7 states
that the type judgement h, σ � a : u c implies that the class of a in h is a subclass
of c and that a has Universe Modifier u from the current viewpoint σ(this). We
relegate these five lemmas to Appendix A. The proof uses also Lemma 5.4 and
Lemma 5.8 from Section 5.3. The main cases of the Subject Reduction proof are
given in Appendix A. �

6 Encapsulation System

In Section 5, we showed how the Topological Type System guarantees that the
topology of the objects in the heap agrees with the one described by the Universe
Types. In this section, we enhance the Topological Type System and obtain the
Encapsulation Type System. We show that the latter system guarantees the
owner-as-modifier discipline [15], which localises the effects of execution in a
heap with respect to the currently active object.

We prove two related theorems: the Encapsulation Theorem (6.8) guarantees
that an encapsulated expression can only modify objects transitively owned by

90 D. Cunningham et al.

the owner of the current receiver, while the Owner-as-Modifier Theorem (6.14)
guarantees that execution of an encapsulated expression starting from the initial
configuration may update an object only when the object’s owner is on the call
stack. Notice that although related, the two theorems do not follow from each
other.

In terms of our running example, the Encapsulation Theorem guarantees that
execution of a method by receiver 13 can modify—at most—objects 2, 3, 4, 5
and 13. On the other hand, the Owner-as-Modifier Theorem guarantees that
execution of an encapsulated expression starting from the initial configuration
may modify 13 only while 1 is on the stack.

6.1 Encapsulation Types

For the subsequent discussion we find it convenient to define contexts C[·] which
are generally used to describe the field updates and method calls present within
an expression. These are more liberal than the evaluation contexts E[·] previously
defined, which are used to specify where evaluation should next take place. For
example, x.f.m(·) is a C[·], but not an E[·] context. Like E[·] contexts, C[·]
contexts, are restricted to not include frame expressions, which allows us to
express relationships between the sequence of stack frames in the expression
(e.g., see rule (Enc) in Definition 6.2 below).

Definition 6.1 (Frame-free contexts)

C[·] ::= [·] | C[·].f | C[·].f := e | e.f := C[·]
| C[·].m(e) | e.m(C[·]) | (s) C[·]

We will write pure(c, m) to mean that m is declared to be pure in c:

pure(c, m) def= M (c, m) = pure : ()

The Encapsulation Type System imposes extra restrictions so as to enforce the
owner-as-modifier discipline and to guarantee restrictions on the effect of method
calls. We define an encapsulation judgement for expressions, Γ �enc e, reflecting
the expression restrictions needed to enforce the owner-as-modifier discipline.
These restrictions state that for an expression e to respect encapsulation, it can
only assign to and call impure methods on the current object, on rep receivers
or on peer receivers. To determine (conservatively) when a method is actually
pure, we require a purity judgement for expressions Γ �pure e. An expression
e is pure by this judgement if it never assigns to fields and only calls meth-
ods declared to be pure. We use this very strict notion of purity to simplify the
rules. Weaker purity requirements [14,30] suffice to enforce the owner-as-modifier
discipline.

Universe Types for Topology and Encapsulation 91

Definition 6.2 (Purity and encapsulation for source expressions)

Γ � e : t
∀C, e1, e2, f . e �= C[e1.f := e2]
∀C, e1, e2, m . e = C[e1.m(e2)] =⇒ ∃c . Γ � e1 : c ∧ pure(c, m)

Γ �pure e
(Pure)

Γ � e : t
∀C, e1, e2, f . e = C[e1.f := e2] =⇒ ∃u . Γ � e1 : u ∧

u ∈ {peer, rep}
∀C, e1, e2, m . e = C[e1.m(e2)] =⇒ ∃u, c . Γ � e1 : u c ∧

(u ∈ {peer, rep} ∨ pure(c, m))
Γ �enc e

(Enc)

Note that if an expression is considered pure, it automatically respects encapsu-
lation; i.e., Γ �pure e⇒ Γ �enc e.

In terms of our example code (Figure 2), suppose Γ = (self Bag, any Object).
Then we can derive Γ �enc this.state.push(x), since the expression is typeable,
contains no field updates and the only method call has this.state as receiver,
where Γ � this.state : rep Stack.

A class is well-formed with respect to encapsulation, denoted as �enc c, if
and only if all pure methods have bodies that are pure, and all impure methods
have bodies that are encapsulated, according to the corresponding definitions
above. We recall that according to Definition 5.3, a method declared to be pure
can only be overridden by another method declared to be pure. A program P is
well-formed with respect to encapsulation if all its classes are encapsulated.

Definition 6.3 (Encapsulated well-formed classes and programs)

∀m . M (c, m) = pure : sr (sx) =⇒
(self c, sx) �pure MBody(c, m)

∀m . M (c, m) = impure : sr (sx) =⇒
(self c, sx) �enc MBody(c, m)
�enc c

(WFEncClass)

�enc P ⇐⇒ (� P ∧ ∀c ∈ Idc . �enc c)

Example 6.4 (Comparing Topological and Encapsulation Systems).We
compare the Topological Type System and the Encapsulation Type System in the
context of Example 2.1 (that is, the program from from Figure 2 and a variable
node of type any Node). We explained in Example 2.1 that the update node.value
:= y is valid in the Topological Type System provided that y’s class is a subclass
of Object. Since the viewpoint-adapted type of field value is not lost, the condi-
tions of rule (Assign) in Figure 8 are satisfied. However, the encapsulation rule
(Enc) in Definition 6.2 forbids the update through the any reference node.

92 D. Cunningham et al.

We also define encapsulation and purity judgements for runtime expressions
subject to a heap h and a stack frame σ; these judgements are denoted as
h, σ �enc e and h, σ �pure e, respectively. Encapsulation and purity for runtime
expressions impose similar requirements to those for source expressions but add
an extra clause for frame expressions. In particular, encapsulation for frames,
h, σ �enc frame σ′ e′, requires that the receiver in σ′, that is σ′(this), is a self,
peer or rep of that in σ. This condition is expressed through the predicate h �
σ′ $enc σ, defined below.

Definition 6.5 (Frame encapsulation)

h � σ′ $enc σ
def
= ∃u ∈ {peer, rep} . h, σ � σ′(this) : u

Definition 6.6 (Purity and encapsulation for runtime expressions)

h, σ � e : t
∀C, e1, σ1 . e = C[frame σ1 e1] =⇒ h, σ1 �pure e1
∀C, e1, e2, f . e �= C[e1.f := e2]
∀C, e1, e2, m . e = C[e1.m(e2)] =⇒ ∃c . h, σ � e1 : c ∧ pure(c, m)

h, σ �pure e
(rPure)

h, σ � e : t
∀C, e1, σ1 . e = C[frame σ1 e1] =⇒

(h � σ1 $enc σ ∧ h, σ1 �enc e1) ∨ h, σ1 �pure e1
∀C, e1, e2, f . e = C[e1.f := e2] =⇒

∃u . h, σ � e1 : u ∧ u ∈ {peer, rep}
∀C, e1, e2, m . e = C[e1.m(e2)] =⇒

∃u, c . h, σ � e1 : u c ∧ (u ∈ {peer, rep} ∨ pure(c, m))
h, σ �enc e

(rEnc)

We can show that the source and runtime notions of purity and encapsulation
are closely related.

Lemma 6.7 (Source encapsulation to runtime encapsulation)

Γ �pure e
h, σ � x : Γ (x)
h, σ � this : Γ (this)

⎫⎬
⎭ =⇒ h, σ �pure e

Γ �enc e
h, σ � x : Γ (x)
h, σ � this : Γ (this)

⎫⎬
⎭ =⇒ h, σ �enc e

Proof. Using Lemma 5.8. �
We now state the Encapsulation Theorem. It says that if an expression respects
encapsulation (with respect to some h, σ), then during its execution it will only
update objects that form part of the representation of the owner of the currently
active object.

Universe Types for Topology and Encapsulation 93

Theorem 6.8 (Encapsulation)

�enc P
h, σ �enc e
σ � e, h�∗ e′, h′

a ∈ dom(h)
owner(h, σ(this)) �∈ owner+(h, a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ h(a) = h′(a)

In terms of our running example, the Encapsulation Theorem guarantees, that
execution of a method by receiver 2 (i.e., σ(this) = 2) will not modify the objects
1, 6, 7, 8, 9, 10, 11 and 12. It may, however, modify the fields in 2, 3, 4, 5
and 13.

On the other hand, consider the further Stack object 13, which is also owned
by 1; execution of a method by 13 would be allowed to update the fields of 2,
3, 4 and 5, for instance, by calling an impure method on 2, which in turn would
update the fields of 2, 3, 4 and 5. These updates are permissible, according to
our theorem, because 1, the owner of 13, is among the transitive owners of 2, 3,
4 and 5.

Before we can prove Theorem 6.8, we need to introduce a number of auxiliary
lemmas. In the following lemma we show that execution preserves purity and
encapsulation, and that the execution of pure expressions preserves the contents
of allocated objects.

Lemma 6.9 (Preservation of purity and encapsulation)
For any program such that �enc P , if σ � e, h� e′, h′ then:

1. If h, σ �pure e then
(a) h′, σ �pure e′

(b) a ∈ dom(h)⇒ h′(a) = h(a)
2. If h, σ �enc e then

(a) h′, σ �enc e′

Proof. See Appendix A. �

The following definition of extended runtime contexts, D[·], allows for contexts
within any number of nested calls: An expression e can be decomposed as e =
D[frame σ e′] if and only if it contains a nested method call with receiver and
argument as described by σ and method body e′6.

Definition 6.10 (Extended runtime contexts)

D[·] ::= E[·] | E[frame σ D[·]]

6 D[·] contexts are more liberal than E[·] contexts, however no such relation exists
between D[·] and C[·] contexts. For example, x.f.m(·) is a C[·] but not a D[·] context,
while a.m(frame σ ·) is a D[·] but not a C[·] context.

94 D. Cunningham et al.

Lemma 6.11 guarantees that the execution of an encapsulated expression e can
only modify an object a if it is directly mentioned in one of the nested calls
(e = D[frame σ′ E[a.f := v]] or e = E[a.f := v], and furthermore, a must be
a rep or peer of the receiver of the nested call which causes the modification. In
terms of our running example, if execution of an encapsulated expression were
to modify object 2, then one of the objects 1, 2 or 13 will be either the outermost
receiver, or the receiver in one of the stack frames in the expression itself.

Lemma 6.11 (Encapsulated expressions have limited write effects)
If �enc P , and h, σ �enc e, and σ � e, h � e′, h′, and h(a) �= h′(a) for some
a ∈ dom(h), then there exist σ′, f, v, D[·], and E[·] such that

1. e = D[frame σ′ E[a.f := v]] or (σ′ = σ and e = E[a.f := v])
and

2. h, σ′ � a : rep or h, σ′ � a : peer

Proof. The proof proceeds by induction on the derivation of σ � e, h � e′, h′

considering cases for the last rule applied in the derivation, and using the preser-
vation of encapsulation (Lemma 6.9), and the definition of encapsulated expres-
sions (Definition 6.6). In Appendix A we outline some interesting cases. �

Lemma 6.12 guarantees that for an encapsulated expression e, the outermost
receiver (σ(this)), is either a peer, or a transitive owner of any of the receivers of
non-pure method calls in e. In terms of our running example, if an expression e
were encapsulated from the point of view of σ and contained a method call with
receiver 2, i.e., if h, σ �enc . . . frame (2, . . .) . . ., then the outermost receiver, i.e.,
σ(this), will be either 13, 2 or 1.

Lemma 6.12 (Owners of receivers precede them on the stack)

�enc P
h, σ �enc e
e = D[frame σ′ e′]
σ′ = (a,)

⎫⎪⎪⎬
⎪⎪⎭ =⇒

h, σ′ �pure e′

or
owner(h, σ(this)) ∈ owner+(h, a)

Proof. By induction on the definition of D[·] (c.f., Definition 6.10). We freely use
the fact that any evaluation context E[·] is trivially an expression context C[·]
(note that neither kind of context contain frames).

(Case: D[·] = E[·]) Then e = E[frame σ′ e′]. By Definition 6.6, we obtain that
either h, σ′ �pure e′ (in which case we are done) or h � σ′ $enc σ. In the
latter case, by Definition 6.5, we obtain that either σ(this) = owner(h, a)
or owner(h, σ(this)) = owner(h, a). In either case, owner(h, σ(this)) ∈
owner+(h, a) as required.

(Case: D[·] = E[frame σ′′ D′[·]]) Then e = E[frame σ′′ D′[frame σ′ e′]. By
Definition 6.6, we obtain that either h, σ′ �pure e′ (in which case we are done)
or both h � σ′ $enc σ and h, σ′ �enc e′. By induction, we obtain that either
h, σ′ �pure e′ (and we are done) or owner(h, σ′(this)) ∈ owner+(h, a). By

Universe Types for Topology and Encapsulation 95

combining this latter statement with h � σ′ $enc σ, we can show that
owner(h, σ(this)) ∈ owner+(h, a) by a similar argument to the previous
case. �

Using the lemmas above, we can now prove the encapsulation theorem itself.

Theorem 6.8 (Encapsulation)

�enc P
h, σ �enc e
σ � e, h�∗ e′, h′

a ∈ dom(h)
owner(h, σ(this)) �∈ owner+(h, a)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒ h(a) = h′(a)

Proof. We prove the equivalent assertion that �enc P , and h, σ �enc e, and σ �
e, h�∗ e′, h′, and a ∈ dom(h), and h(a) �= h′(a) imply that owner(h, σ(this)) ∈
owner+(h, a). The proof proceeds by induction over the length of the reduction
of σ � e, h�∗ e′, h′.

The base case trivially holds, since we have an execution of length zero, and
thus h = h′.

For the inductive step, we have σ � e, h�∗ e′′, h′′ � e′, h′. By application of
Lemma 6.9 we obtain h′′, σ �enc e′′.

1st Case h(a) �= h′′(a). The assertion follows from the inductive hypothesis.
2nd Case h(a) = h′′(a). Because of the assumption that h(a) �= h′(a) we ob-

tain h′′(a) �= h′(a). Therefore, by the fact that h′′, σ �enc e′′ and Lemma 6.11,
we obtain that there exist D[·], E[·], σ′ such that

(h′′, σ′ � a : rep or h′′, σ′ � a : peer)
and

(e′′ = D[frame σ′ E[a.f := v]] or (σ′ = σ and e′′ = E[a.f := v])).

The first part of the conjunction gives owner(h′′, σ′(this)) ∈ owner+(h′′, a),
while the latter, together with the fact that h′′, σ �enc e′′ and application of
Lemma 6.12 gives that owner(h′′, σ(this)) ∈ owner+(h′′, σ′(this)). The last
two assertions give that owner(h′′, σ(this)) ∈ owner+(h′′, a), and because
a and σ(this) were already defined in h, and owners do not change during
execution, we also obtain that owner(h, σ(this)) ∈ owner+(h, a). �

6.2 Owner-as-Modifier Discipline

The owner-as-modifier discipline [15] guarantees that any update to the field of
an object is initiated by the object’s owner. By “initiated”, we mean that the
owner is still on the stack when the modification takes place. This guarantee can
only be made if we consider executions starting at the root of our heap topology,
otherwise there is no guarantee that the call-stack will reflect the hierarchy of
the heap topology.

We formalise the notion of an initial heap and stack as follows: hinit indicates
an initial heap which only contains one object (belonging to root) at address 1,
while σinit indicates an initial stack, where σinit = (1, null).

96 D. Cunningham et al.

Theorem 6.14 states formally the owner-as-modifier guarantee. In terms of our
running example, any modification of the fields of, say, the object 4 is, according
to the owner-as-modifier discipline, guaranteed to happen only while 2 is on the
stack or the outermost receiver (i.e., either a direct or an indirect caller).

We first prove Lemma 6.13 below, which guarantees that, if we consider re-
ductions that begin from an initial heap and stack, then the resulting sequence
of stack frames has the property that: either the corresponding expression is
pure (in which case the frame may result from a call in an arbitrary position in
the heap topology, via an any or a lost reference), or else all of the (transitive)
owners (except root which is not an object anyway) of the receiver in the stack
frame, are receivers in a preceding stack frame. Note that this is subtly differ-
ent from the requirements on the sequence of stacks imposed by the judgement
hinit, σinit �enc e, which says that if a stack frame is in the sequence, then it will
conform to the restrictions imposed by the h �$enc relation.

Applying Lemma 6.13 to our running example, execution of an encapsulated
expression starting from the initial configuration and leading to an impure ex-
pression containing a method call with receiver 12, is guaranteed to have a
method call with receiver 10, enclosing the earlier method call.

Lemma 6.13 (All owners are preserved on the stack)

�enc P
hinit, σinit �enc e
σinit � e, hinit �∗ e′, h′

e′ = D[frame σ′′ e′′]
a ∈ owner+(h′, σ′′(this)) \ {root, 1}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=⇒

h′, σ′′ �pure e′′

or
∃D′[·], D′′[·], σ such that

D[·] = D′[frame σ D′′[·]],
and

σ(this) = a

Proof. By induction on the length of the reduction σinit � e, hinit �∗ e′, h′. For
the base case, i.e., when e = e′, we use induction over the structure of D[·]. For
the inductive step, i.e., when σinit � e, hinit �∗ e′′, h′′ �∗ e′, h′ by case analysis
over the last step in the derivation. �

We now state the owner-as-modifier guarantee, and prove it using the lemma
from above, the preservation of encapsulation (Lemma 6.9), and the fact that
encapsulated expressions have limited write effects (Lemma 6.11).

Theorem 6.14 (Owner-as-modifier)

�enc P
hinit, σinit �enc e
σinit � e, hinit �∗ e′, h′ � e′′, h′′

a ∈ dom(h′)
h′(a) �= h′′(a)
a′ = owner(h′, a) �= root

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=⇒

σinit(this) = a′

or
∃D[·], D′[·], σ, e′′′ such that

e′ = D[frame σ D′[e′′′]],
and

σ(this) = a′

Proof. If a′ = 1, then we are done by construction of σinit. Therefore, we can
proceed assuming that a′ /∈ {root, 1}.

Universe Types for Topology and Encapsulation 97

The first three premises and Lemma 6.9 give that h′, σinit �enc e′. This, to-
gether with the fourth and fifth premises, and Lemma 6.11 give that there exist
f , v, D1[·], E1[·], σ′ such that

(h′, σ′ � a : rep or h′, σ′ � a : peer)
and

(e′ = D1[frame σ′ E1[a.f := v]] or (σ′ = σinit and e′ = E1[a.f := v])).
The second part of the conjunction above gives the following two cases:

1st Case σ′ = σinit and e′ = E1[a.f := v]. Then, because h′, σinit �enc e′, using
the definition of encapsulated expressions, we obtain that h′, σinit � a : rep
(which gives that a′ = 1, in which case we are done), or h′, σinit � a : peer,
(which gives that a′ = root, and then we are done again).

2nd Case e′ = D1[frame σ′ E1[a.f := v]]. The first part of our conjunction
from earlier on gives that either σ′(this) = a′, or owner(h′, σ′(this)) = a′.
2.1st Case σ′(this) = a′. We choose σ = σ′, and D[·] = D1[·], and D′[·] =

E1[·], and e′′′ = a.f := v. This concludes the case.
2.2nd Case owner(h′, σ′(this)) = a′. Because a′ /∈ {root, 1} we can apply

Lemma 6.13, and obtain that there exist further contexts D3[·], D4[·],
and frame σ, such that D1[·] = D2[frame σ D3[·]], and σ(this) = a′.
We now choose D[·] = D2[·], and D′[·] = frame σ D3[·], and e′′′ =
frame σ′ E1[a.f := v], and conclude the case. �

7 Related Work

Over the past ten years, there have been a large number of publications on own-
ership and ownership type systems. In this section, we discuss work that is most
closely related to the focus of this paper, namely the separation of ownership
topologies from encapsulation policies and the formalisation of ownership type
systems.

Most ownership type systems combine the enforcement of an ownership topol-
ogy and an encapsulation policy. Ownership Types [10] and its descendants
[4,6,8,9,29] enforce an ownership topology as well as the owner-as-dominator
encapsulation policy, which guarantees that every reference chain from an ob-
ject in the root context to an object goes through the object’s owner. Similarly,
Universe Types [14,15,26,28] enforce an ownership topology as well as the owner-
as-modifier encapsulation policy, which guarantees that every modification of an
object is initiated by the object’s owner. In this paper, we showed how to sepa-
rate the Topological System from the Encapsulation System. This separation is
facilitated by distinguishing between the ‘don’t care’ modifier any and the ‘don’t
know’ modifier lost because the Topological Type System treats them differently.

Ownership domains [1] was the first ownership system that separated the
ownership topology from the encapsulation policy. This is achieved by allow-
ing programmers to distinguish between private and public ownership domains
and to declare links between ownership domains. While the Encapsulation Type

98 D. Cunningham et al.

System presented in this paper enforces a fixed encapsulation policy, it is possible
to combine our Topological System with various encapsulation policies.

Dietl and Müller [16] encoded ownership types on top of Dependent Classes
[19]. Dependent Classes are used to enforce the ownership topology, whereas
encapsulation has to be enforced separately.

Most ownership type systems have been formalised for a small programming
language similar to the one used in this paper. The formalisation of OGJ [29] is
based on Java generics. Ownership information is encoded in the type parame-
ters, which makes the formalisation simple.

Dynamic ownership [23] as available in Spec# uses ghost state to encode
the ownership topology and the Boogie verification methodology to enforce an
encapsulation policy similar to the one of Universe Types. The Topological Type
System presented in this paper can be combined with the Boogie methodology.

Type checkers for the Universe Type System are implemented in the JML
tools [12,22] and as a pluggable type system for Scala [13].

In this work, in keeping with most works on Universe or Ownership Types,
each object is owned directly by at most one other object, and the ownership
hierarchy forms a tree. This view can, however, be generalised to allow several
direct owners, and the ownership hierarchy to form a DAG [7].

8 Conclusion

We presented UT, a new formalisation of the Universe Type System, which is
given in two steps: first presenting a Topological Type System that builds the
ownership topology and then augmenting it to the Encapsulation Type System.
The two-step formalisation permits a gentler presentation of the mathematical
machinery we develop and primarily allows for separation of concerns when
extending this work, as some extensions and applications of Universe Types do
not require encapsulation properties. Both of these factors facilitate the adoption
of the work as a starting point for further work.

We introduced the distinction between the ‘don’t care’ modifier any and the
‘don’t know’ modifier lost. We proved subject reduction (for both the Topological
and the Encapsulation Type System) for a small-step operational semantics of
a subset of Java. Like UT most ownership type systems have been formalised
on paper. We also formalised a version of Universe Types including arrays in
Isabelle and proved type safety [21]. The main difference is that there we use a
big-step semantics, whereas here we use a small-step semantics.

This formalisation of the Universe Type System is the basis for various future
extensions. We plan to extend our work on Generic Universe Types [14] to also
separate topology from encapsulation. We are also planning to improve the ex-
pressiveness of Universe Types by adding path-dependent types. Adapting the
type system to Java bytecode is other future work. This will permit the use of
Universe Types for the verification of mobile bytecode in a Proof-Carrying-Code
architecture such as the one proposed by the Mobius project [20].

Universe Types for Topology and Encapsulation 99

Acknowledgements

We thank our reviewer for extensive feedback and many useful suggestions.
This work was funded in part by the Information Society Technologies pro-

gram of the European Commission, Future and Emerging Technologies under the
IST-2005-015905 MOBIUS project, and the EPSRC grant Practical Ownership
Types for Objects and Aspect Programs, EP/D061644/1.

References

1. Aldrich, J., Chambers, C.: Ownership domains: Separating aliasing policy from
mechanism. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25.
Springer, Heidelberg (2004)

2. Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., Zhao, T.: Scoped types and
aspects for real-time java. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 124–147. Springer, Heidelberg (2006)

3. Banerjee, A., Naumann, D.: Representation independence, confinement, and access
control. In: Principles of Programming Languages (POPL), pp. 166–177. ACM
Press, New York (2002)

4. Boyapati, C.: SafeJava: A Unified Type System for Safe Programming. PhD thesis,
MIT (2004)

5. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, New York (2002)

6. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In:
Principles of programming languages (POPL), pp. 213–223. ACM Press, New York
(2003)

7. Cameron, N., Drossopoulou, S., Noble, J., Smith, M.: Multiple Ownership. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pp. 441–460. ACM Press, New York (2007)

8. Clarke, D.: Object Ownership and Containment. PhD thesis, University of New
South Wales (2001)

9. Clarke, D., Drossopoulou, S.: Ownership, Encapsulation and the Disjointness of
Types and Effects. In: Object-oriented programming, systems, languages, and ap-
plications (OOPSLA), pp. 292–310. ACM, New York (2002)

10. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In:
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
vol. 33(10), pp. 48–64. ACM Press, New York (1998)

11. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universe Types for Race Safety.
In: Verification and Analysis of Multi-threaded Java-like Programs (VAMP), pp.
20–51 (2007)

12. Dietl, W.: JML2 Eclipse plug-in,
http://pm.inf.ethz.ch/research/universes/tools/eclipse/

13. Dietl, W.: Universe type system tools for Scala,
http://pm.inf.ethz.ch/research/universes/tools/scala/

14. Dietl, W., Drossopoulou, S., Müller, P.: Generic universe types. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 28–53. Springer, Heidelberg (2007)

100 D. Cunningham et al.

15. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT) 4(8), 5–32 (2005)

16. Dietl, W., Müller, P.: Ownership type systems and dependent classes. In: Founda-
tions of Object-Oriented Languages (FOOL) (2008)

17. Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.: A syntactic theory of
sequential control. Journal of Theoretical Computer Science 52, 205–237 (1987)

18. Flanagan, C., Qadeer, S.: Types for atomicity. In: Types in Language Design and
Implementation (TLDI), pp. 1–12. ACM Press, New York (2003)

19. Gasiunas, V., Mezini, M., Ostermann, K.: Dependent classes. In: Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pp. 133–152.
ACM Press, New York (2007)

20. Global Computing Proactive Initiative. Mobius: Mobility, Ubiquity and Security.
IST-15905, http://mobius.inria.fr/

21. Klebermaß, M.: An Isabelle formalization of the Universe Type System. Master’s
thesis, Technical University Munich and ETH Zurich (2007),
http://pm.inf.ethz.ch/projects/student docs/Martin Klebermass/

22. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML reference manual. De-
partment of Computer Science, Iowa State University (2008),
http://www.jmlspecs.org

23. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)

24. Lu, Y., Potter, J.: Protecting Representation with Effect Encapsulation. In: Prin-
ciples of programming languages (POPL), pp. 359–371. ACM Press, New York
(2006)

25. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.
Program. Lang. Syst. 10(3), 470–502 (1988)

26. Müller, P.: Modular Specification and Verification of Object-Oriented Programs.
LNCS, vol. 2262. Springer, Heidelberg (2002)

27. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered
object structures. Science of Computer Programming 62, 253–286 (2006)

28. Müller, P., Rudich, A.: Ownership transfer in Universe Types. In: Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pp. 461–478.
ACM Press, New York (2007)

29. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic Java.
In: Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pp. 311–324. ACM Press, New York (2006)

30. Salcianu, A., Rinard, M.C.: Purity and side effect analysis for java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005)

A Supporting Results and Proofs

Lemma A.1 (Owners are defined in well-formed heap). If � h and a ∈
dom(h) then (owner+(h, a) \ {root}) ⊆ dom(h).

Proof. By induction on the definition of owner+(h, a) using the rule (WFAddr).
�

Universe Types for Topology and Encapsulation 101

Lemma A.2 (Object owner and class preservation)

(i)
h(a) = (o, c,)
(h′, a′) = alloc(h, σ, t)

}
=⇒

{
h′(a) = (o, c,)
owner+(h′, a) = owner+(h, a)

(ii)
h(a) = (o, c,)
h′ = h[(a′, f) �→ v]

}
=⇒

{
h′(a) = (o, c,)
owner+(h′, a) = owner+(h, a)

(iii) h(a) = (o, c,)
σ � e, h� e′, h′

}
=⇒

{
h′(a) = (o, c,)
owner+(h′, a) = owner+(h, a)

Proof.

(i) Immediate from the definition of alloc(h, σ, t), noting it is not possible
that a′ = a since a ∈ dom(h) and a′ �∈ dom(h).

(ii) Follows from the definition of h[(a′, f) �→ v], in which the owner and class
information is explicitly preserved.

(iii) By induction on the derivation of σ � e, h� e′, h′, using parts (i) and (ii).
�

Lemma A.3 (Heap domain inclusion)

(i) If (h′, a) = alloc(h, σ, t) then a /∈ dom(h) and dom(h′) = dom(h) ∪ {a}
(ii) If a ∈ dom(h) and h′ = h[(a, f) �→ v] then dom(h′) = dom(h)
(iii) If σ � e, h� e′, h′ then dom(h) ⊆ dom(h′)

Proof.

(i) Immediate from the definition of alloc(h, σ, t).
(ii) Immediate from the definition of h[(a, f) �→ v].
(iii) By induction on the derivation of σ � e, h� e′, h′, using parts (i) and (ii).

�

Lemma A.4 (Soundness of object creation)

u ∈ {rep, peer}
h � σ
(h′, a) = alloc(h, σ, u c)

⎫⎬
⎭ =⇒ h′, σ � a : u c

Proof. By case analysis of u, the definition of alloc(h, σ, u c) and using rule
(tAddr). �

Lemma A.5 (Heap operations preserve value types). If h, σ � v : t then

(i) If (h′, a) = alloc(h, σ, t′) then h′, σ � v : t

(ii) If h′ = h[(a, f) �→ v′] then h′, σ � v : t

102 D. Cunningham et al.

Proof. There are two sub-cases:

v = null: we can still derive the type judgement using (tNull).
v = b: Neither of the operations change the ownership and class information of

an existing object in a heap, as we saw in Lemma A.2. Thus we can still
derive h′, σ � b : t in both cases, using (tAddr). �

Lemma A.6 (Heap operations and well-formedness). If � h and h � σ
then

(i) If u ∈ {rep, peer} and (h′, a) = alloc(h, σ, u c) then � h′

(ii) If h, σ � a : u c, F (c, f) = s and h, (a,) � v : s then � h[(a, f) �→ v]

Proof.

(i) First, we notice that by Lemma A.3(i) and Lemma A.2(i) we know:

a /∈ dom(h) ∧ dom(h′) = dom(h) ∪ {a} (9)
∀b ∈ dom(h). class(h′, b) = class(h, b) (10)

∀b ∈ dom(h). owner(h′, b) = owner(h, b) (11)
∀b ∈ dom(h). owner+(h′, b) = owner+(h, b) (12)

We aim to show � h′ by rule (WFHeap, Definition 5.7). By the assumption
� h, and the form of the rule (which is the only rule which can derive such
judgements), we must have:

b ∈ dom(h)⇒ root ∈ owner+(h, b) (13)
∀b ∈ dom(h). h � b (14)

We show the second premise of (WFHeap) first; i.e., that ∀b ∈
dom(h′). h′ � b. To show this, we consider two cases for b:

(b �= a): Then by (9), we know b ∈ dom(h). By (14) we have h � b. From the
form of (WFAddr), and using (10) and (11), it suffices to prove (where
class(h′, b) = class(h, b) = c) that F (c, f)=s ⇒ h′, (a,) � h′(a.f) : s.
Since h � b, we know that F (c, f)=s⇒ h, (b,) � h(b.f) : s. We complete
the case by applying Lemma A.5(ii).

(b = a): We show that the premises of (WFAddr) hold, directly to deduce
h′ � b. Since h � σ, we have in particular that σ(this) ∈ dom(h). By
Lemma A.1, we also know that either owner(h, σ(this)) ∈ dom(h) or
owner(h, σ(this)) = root. From the definition of alloc(h, σ, u c) we can
then show owner(h′, a) ∈ (dom(h) ∪ {root}) ⊆ (dom(h′) ∪ {root}).
Furthermore, by Lemma A.4, we know that h′, σ � a : u c as required.

To show the first premise of (WFHeap), suppose that b ∈ dom(h′). By
(9), we know that either b ∈ dom(h) or b = a. In the former case, we have
(by (13) and (12)), root ∈ owner+(h, b) = owner+(h′, b) as required. In

Universe Types for Topology and Encapsulation 103

the latter case, from the argument above we know that owner(h′, a) ∈
(dom(h) ∪ {root}) Therefore by (13) and the definition of owner+(a, h′),
we know that root ∈ owner+(a, h′) as required. Thus we have all the
premises needed to apply the rule (WFHeap) and obtain � h′.

(ii) Let h′ = h[(a, f) �→ v] in what follows. We aim to deduce � h′ by rule
(WFHeap). By Lemma A.3(ii) we know that dom(h′) = dom(h). By
Lemma A.2(ii), we therefore also know that the ownership and class in-
formation defined in h is exactly that defined in h′. Therefore, given the
assumption � h, and considering the premises of the rules (WFHeap) and
(WFAddr), it suffices to prove that:

a′ ∈ dom(h′)
class(h′, a′) = c′

F (c′, f ′) = s′

⎫⎬
⎭ =⇒ h′, (a′,) � h′(a′.f ′) : s′

We now consider two cases.
Firstly, if either a �= a′ or f �= f ′, then by definition of h[(a, f) �→ v],
we have h′(a′.f ′) = h(a′.f ′). Therefore h′, (a′,) � h′(a′.f ′) : s′ follows
from the assumption � h (examining the premises of (WFHeap) and
(WFAddr)).
On the other hand, if both a = a′ and f = f ′ then c′ = class(h′, a′) =
class(h, a) = c and so s′ = F (c′, f ′) = F (c, f) = s. Therefore, it suffices to
prove h′, (a,) � h′(a.f) : s. This follows from applying Lemma A.5(ii) to
the assumption h, (a,) � v : s, noting that by definition of h[(a, f) �→ v]
we have h′(a.f) = v. �

Lemma A.7 (Extracting information from address type judgements)
If h, σ � a : u c then

(i) a ∈ dom(h)
(ii) class(h, a) ≤c c
(iii) (σ(this),owner(h, σ(this))) � (a,owner(h, a)) : u

Proof. By induction on the derivation of h, σ � a : u c, specifically using the
rules (tADDR), (tSUB) and Lemma 3.2. �

Lemma A.8 (Extracting information from method type judgements)
If h, σ � e1.m(e2) : t then there exist u1 and c1 such that:

(i) h, σ � e1 : u1 c1
(ii) M (c1, m) = p : sr(sx)
(iii) u1 � sx �= lost
(iv) h, σ � e2 : u1 � sx

Note that we make no requirements on how u1 and c1 are related to t; our
assumption simply insists that the call is typeable somehow.

Proof. By induction on the derivation of h, σ � e1.m(e2) : t, specifically using
the rules (tCALL) and (tSUB). �

104 D. Cunningham et al.

Lemma A.9 (Viewpoint adaptation preserves subtyping)

s ≤ s′ =⇒ u � s ≤ u � s′

Proof. By case analysis of u and the relation u1 ≤u u2. �

Lemma 5.4 (Determining the relative Universe Types of values)

(i) If h, σ � a : u and h, (a,) � v : t then h, σ � v : u � t
(ii) If h, σ � a : u and h, σ � v : u � t and u � t �= lost then, for any value v′

we have h, (a, v′) � v : t

Proof. Uses Lemma A.7(iii) to extract Universe determination judgement for
addresses. We have two cases for v:

– If v = null then we can trivially derive any type judgement using (tNull).
– If v = b we use Lemma A.7(iii) to extract Universe judgements for the

addresses a and b. Then we apply Lemma 3.4 and the rule (tADDR) to
obtain the desired judgement. �

Theorem 5.9 (Topological Subject Reduction). If a program is well-
formed, then

� h
h � σ
h, σ � e : t
σ � e, h� e′, h′

⎫⎪⎪⎬
⎪⎪⎭ =⇒

⎧⎨
⎩
� h′

h′ � σ
h′, σ � e′ : t

Proof. By induction over the structure of

h, σ � e : t (15)

The most interesting cases are when the last rules used to derive (15) are
(tField),(tAssign) and (tCall), which we show here. We leave the other cases
for the interested reader. In all cases, the conclusion h′ � σ follows straightfor-
wardly, using Lemmas A.3 and A.7 as necessary.

(tField): From the premise of the rule we know

e = e1.f (16)
t = u � s′ (17)

h, σ � e1 : u c (18)
F (c, f) = s′ (19)

From (16) we know the reduction was derived using either (rField) or
(rEvalCtxt).
(rField): we know:

e1 = a (20)
h′ = h (21)

e′ = h(a.f) = v (22)

Universe Types for Topology and Encapsulation 105

From (18) and (20), and applying Lemma A.7(i), we know that

a ∈ dom(h) (23)

From � h, the premises of the rule (WFHeap) and (23), we know in
particular that

h � a (24)

From (24) and the premise of (WFAddr), along with (19) and (22) we
deduce

h, (a,) � v : s′ (25)

By (21), (20), (18), (25) and Lemma 5.4 we obtain

h, σ � v : u � s′

The resultant heap h′ is trivially shown to be well-formed from the as-
sumption � h and (21).

(rEvalCtxt): we know:

e′ = e′
1.f (26)

σ � e1, h� e′
1, h

′ (27)

By � h, (18), (27) and the inductive hypothesis we know

h, σ � e′
1 : u c (28)
� h′ (29)

By (28), (19), (17), (26) and (tField) we derive our first required con-
clusion

h, σ � e′ : t

and (29) gives us the second required conclusion.
(tAssign): From the premises of the rule we know

e = e1.f := e2 (30)
h, σ � e1 : u c (31)

F (c, f) = s (32)
u � s �= lost (33)

h, σ � e2 : u � s (34)

From the structure of e, (30), we know the reduction could have been derived
using either (rAssign) or (rEvalCtxt). We here consider the former case,
(rAssign), and leave the (easier) latter case for the interested reader. From
(rAssign) we know:

e1 = a (35)
e2 = e′ = v (36)

h′ = h[(a, f) �→ v] (37)

106 D. Cunningham et al.

Applying Lemma 5.4(ii), using (35), (31), (36), (34), (33), we obtain

h, (a,) � v : s (38)

By the assumption � h, (35), (31), (32), (38) and Lemma A.6 we get

� h[(a, f) �→ v]

Also, by (36) and (34) we obtain

h, σ � e′ : u � s (39)

and by (39) and Lemma A.5 we get

h[(a, f) �→ v], σ � e′ : u � s

as required.
(tCall): From the premises of this rule we know

e = e1.m(e2) (40)
h, σ � e1 : u1 c1 (41)

M (c1, m) = p : sr
1 (sx

1) (42)
u1 � sx

1 �= lost (43)
h, σ � e2 : u1 � sx

1 (44)
t = u1 � sr

1 (45)

From the structure of e derived from (40), we know the reduction could have
been derived using either (rCall) or (rEvalCtx). We here consider the
case for (rCall) and leave the other case for the interested reader. From
(rCall) and its assumption we know

e1 = a and e2 = v (46)
h′ = h (47)

σ′ = (a, v) (48)
ca = class(h, a) (49)

eb = MBody(ca, m) (50)
e′ = frame σ′ eb (51)

From (47) and the assumption � h we know that the resulting heap is well-
formed. Thus from (51), (45) we only need to show that

h, σ � frame σ ′eb : u1 � sr
1 (52)

The rest of the proof is dedicated to showing this.
From (41), (46), (49) and Lemma A.7 we derive

ca ≤ c1 (53)

Universe Types for Topology and Encapsulation 107

From (53), (42), the premises of the rule (WFClass) and the assumption
of well-formed programs, giving � ca, we derive

M (ca, m) = p : sr (sx) (54)
sr ≤ sr

1 (55)
sx
1 ≤ sx (56)

Also, by (50), (54), � ca and the premises of (WFClass) we derive

Γ � eb : sr (57)
where Γ = (self ca, sx) (58)

Since σ′(this) = a (using (48)), we can use the rule (Self) (of Figure 4) to
derive

(σ′(this),owner(h, σ′(this))) � (a,owner(h, a)) : self (59)

Using (49), (59) and (tAddr) we derive

h, σ′ � a : self ca (60)

Also, using Lemma 5.4(ii) with (46), (48), (41), (44), we get

h, σ′ � v : sx
1 (61)

and by (61), (56) and (tSub) we derive

h, σ′ � v : sx (62)

By (48), (57), (58), (60), (62) and Lemma 5.8 we derive

h, σ′ � eb : sr (63)

and by (63), (41), (46),(48) and (tFrame) we get

h, σ � frame σ′ eb : u1 � sr (64)

From (55) and Lemma A.9 we derive

u1 � sr ≤ u1 � sr
1 (65)

and thus by (64), (65) and (tSub) we get

h, σ � frame σ′ eb : u1 � sr
1

as required by (52).
�

Lemma 6.9 Preservation of purity and encapsulation. For any program
such that �enc P , if σ � e, h� e′, h′ then:

108 D. Cunningham et al.

1. If h, σ �pure e then
(a) h′, σ �pure e′

(b) a ∈ dom(h)⇒ h′(a) = h(a)
2. If h, σ �enc e then

(a) h′, σ �enc e′

Proof. The proof proceeds by induction on the derivation of

σ � e, h� e′, h′ (66)

considering cases for the last rule applied in the derivation. We show here the
interesting cases and leave the simpler ones for the interested reader.

(rAssign): Then we know

e = (b.f := v) (67)
e′ = v (68)

h′ = h[(b, f) �→ v] (69)

From (67) we know h, σ ��pure e. So we do not need to consider case (1). To
show case (2), we assume

h, σ �enc b.f := v (70)

By using (70) and unravelling Definition 6.6, we obtain that (for some type
t):

h, σ � e : t (71)

By applying the Topological Subject Reduction Theorem 5.9 and using (68),
we therefore know

h, σ � v : t (72)

Combining this with (69), we obtain h′, σ � v : t, and then apply Defini-
tion 6.6 to obtain h′, σ �enc v as required.

(rCall): Let c′ = class(h, b). Then we know

e = b.m(v) (73)
e′ = frame (b, v) eb (74)
eb = MBody(c′, m) (75)

h′ = h (76)

We consider the two cases we need to show in turn:
1. (h, σ �pure e): From Definition 6.6 we know that:

h, σ � b.m(v) : t (77)
h, σ � b : c (78)

pure(c, m) (79)

Universe Types for Topology and Encapsulation 109

Using the rule (Self) of Figure 4, and the rule (tAddr) we can derive

h, (b, v) � b : self c′ (80)

Applying rule (tThis), we can then deduce

h, (b, v) � this : self c′ (81)

From the assumption �enc P we know �enc c and thus by (75) and
Definition 6.3 we can write:

M (c, m) = pure : sr (sx) (82)

By (78) and Lemma A.7, we deduce

c′ ≤c c (83)

By Definition 5.3 and (82) and (83), we obtain:

M (c′, m) = pure : s′
r (s′

x) (84)
sx ≤ s′

x (85)
s′

r ≤ sr (86)

From the assumption �enc P we know �enc c′ and thus by (75) and
Definition 6.3 we know that:

(self c′, s′
x) �pure eb (87)

Returning to (77), and applying Lemma A.8, we obtain (for some u′′,
c′′):

h, σ � b : u′′ c′′ (88)
M (c′′, m) = p : s′′

r (s′′
x) (89)

u′′ � s′′
x �= lost (90)

h, σ � v : u′′ � s′′
x (91)

We can now take (88), (90) and (91) and apply Lemma 5.4(ii) to obtain:

h, (b, v) � v : s′′
x (92)

By (88) and Lemma A.7, we deduce

c′ ≤c c′′ (93)

Combining this with Definition 5.3 and (89), we obtain in particular:

s′′
x ≤ s′

x (94)

110 D. Cunningham et al.

By (92), (94), Lemma A.9 and (tSub), we obtain

h, (b, v) � v : s′
x (95)

From this, we apply the rule (tVar) to obtain

h, (b, v) � x : s′
x (96)

and as a result of Lemma 6.7, (87), (81) and (96) we get:

h, (b, v) �pure eb (97)

By (77), (66), (74) and the Topological Subject Reduction Theorem 5.9
we get

h, σ � frame (b, v) eb : t (98)

and hence by (97), (98), (74), (76), and Definition 6.6 we obtain

h′, σ �pure e′

which completes the case.
2. (h, σ �enc e): From Definition 6.6 we know we have two sub-cases. The

first sub-case states that the method called is pure and the proof then
progresses as the previous case for h, σ �pure e. Therefore, it suffices to
consider the case when, for some u ∈ {peer, rep} and source types sr, sx,
we have:

h, σ � b : u c (99)
h, σ � b.m(v) : t (100)

M (c, m) = impure : sr (sx) (101)

Since the method m is declared impure in c, and we have assumed �enc P
(and thus �enc c), it follows from (75) and Definition 6.3 that we know

(self c, sx) �enc eb (102)

By similar argument to the previous case, we can deduce from (99) and
(100) that

h, (b, v) � this : self c (103)
h, (b, v) � x : sx (104)

and thus by (103), (104), (102) and Lemma 6.7 we get

h, (b, v) �enc eb (105)

From (99) we derive (see Definition 6.5):

h � (b, v) $enc σ (106)

Universe Types for Topology and Encapsulation 111

Also, by (100), (66), (74) and the Topological Subject Reduction we
know

h, σ � frame (b, v) eb : t (107)

Thus by (107), (106), (105), (74), (76). and Definition 6.6 we conclude

h′, σ �enc e′

as required.
(rFrame2): 1. (h, σ �pure e): Similar to the following case.

2. (h, σ �enc e): From the rule we know

e = frame σ′ v (108)
e′ = v (109)
h′ = h (110)

From Definition 6.6 we know that either h, σ′ �pure v or

h, σ � frame σ′ v : t (111)
h � σ′ $enc σ (112)

h, σ �enc v (113)

By (111), (66), the Topological Subject Reduction Theorem 5.9 and (109)
we get

h, σ � v : t (114)

and by (114), (76), and Definition 6.6 we obtain

h′, σ �enc v

as required. �

Lemma 6.11 (Encapsulated expressions have limited write effects)
If �enc P , and h, σ �enc e, and σ � e, h � e′, h′, and h(a) �= h′(a) for some
a ∈ dom(h), then there exist σ′, f, v, D[·], and E[·] such that

1. e = D[frame σ′ E[a.f := v]] or (σ′ = σ and e = E[a.f := v]).
and

2. h, σ′ � a : rep or h, σ′ � a : peer

Proof. The proof proceeds by induction on the derivation of σ � e, h � e′, h′

considering cases for the last rule applied in the derivation We show here the
interesting cases:

(rAssign): Then, because h(a) �= h′(a), we know that there exists a field f , and
value v such that e = (a.f := v), and h′ = h[(a, f) �→ v]. From the latter, the
encapsulation property, and the conditions of Definition 6.6 we know there
exists u ∈ {self, rep, peer} such that: h, σ � a : u. We choose σ′ = σ and
E[·] = [·], and the rest follows easily.

112 D. Cunningham et al.

(rCall): Then h′ = h, and thus the case is vacuous.
(rFrame2): Then h′ = h, and thus the case is vacuous.
(rFrame1): Then we know that there exist σ1, e1 and e′

1, such that e =
frame σ1 e1, and σ1 � e1, h � e′

1, h
′, and e′ = frame σ1 e′

1. By applica-
tion of the induction hypothesis, we obtain that there exists a σ′, f, v, D1[·],
and E1[·] such that
1. h, σ′ � a : rep or h, σ′ � a : peer

and
2. e1 = D1[frame σ′ E1[a.f := v]], or (σ′ = σ1 and e1 = E1[a.f := v]).

The second part of the conjunction above gives two cases:
1st Case e1 = D1[frame σ′ E1[a.f := v]]. We then choose E[·] = E1[·],

and D[·] = frame σ1 D1[frame σ′ E1[·]], and the rest follows.
2nd Case σ′ = σ1 and e1 = E1[a.f := v]. We then choose E[·] = E1[·],

and D[·] = frame σ1 E[·], and the rest follows. �

COSTA: Design and Implementation of a Cost
and Termination Analyzer for Java Bytecode

E. Albert1, P. Arenas1, S. Genaim2, G. Puebla2, and D. Zanardini2

1 DSIC, Complutense University of Madrid, E-28040 Madrid, Spain
2 CLIP, Technical University of Madrid, E-28660 Boadilla del Monte, Madrid, Spain

Abstract. This paper describes the architecture of costa, an abstract
interpretation based cost and termination analyzer for Java bytecode.
The system receives as input a bytecode program, (a choice of) a resource
of interest and tries to obtain an upper bound of the resource consump-
tion of the program. costa provides several non-trivial notions of cost,
as the consumption of the heap, the number of bytecode instructions exe-
cuted and the number of calls to a specific method. Additionally, costa

tries to prove termination of the bytecode program which implies the
boundedness of any resource consumption. Having cost and termination
together is interesting, as both analyses share most of the machinery
to, respectively, infer cost upper bounds and to prove that the execu-
tion length is always finite (i.e., the program terminates). We report
on experimental results which show that costa can deal with programs
of realistic size and complexity, including programs which use Java li-
braries. To the best of our knowledge, this system provides for the first
time evidence that resource usage analysis can be applied to a realistic
object-oriented, bytecode programming language.

1 Introduction

Research about automatic cost analysis goes back to the seminal work by Weg-
breit in 1975 [29], which proposes to analyze the performance of a program
by deriving closed-form expressions for its execution behavior. This approach
consists of two phases.

(1) In the first phase, given a program and the description of some cost measure,
a set of equations is produced, which captures the cost of the program in
terms of the size of its input data. Such equations are generated by con-
verting the iteration constructs (loops and recursion) of the program into
recurrence, and by inferring size relations which approximate how the size
of arguments varies between calls. This set of equations can be regarded as
a set of Recurrence Relations (RR for short).

(2) The aim of the second phase is to obtain a non-recursive representation
(solution) of the equations, known as closed-form solution. In most cases, it
is not possible to find an exact solution, and the closed-form corresponds to
an upper bound.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 113–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 E. Albert et al.

There are a good number of cost analysis frameworks for a wide variety of
programming languages, including functional, logic and imperative [23,14,3]. De-
spite such a large amount of work, applying cost analysis to realistic languages,
and programs with realistic size and complexity, is still an open issue, and, there
is a lack of working tools.

Termination analysis [10,19] can be regarded as another kind of resource usage
analysis, and it has also been studied in the context of several programming
languages. Termination analysis tries to prove that a program cannot infinitely
run by considering its iterative and recursive structures and by proving that the
number of times they can be executed in a program run is bounded. Putting
cost and termination analysis together in the same tool makes sense because of
the tight relation between them: proving termination implies that the amount
of resources used at runtime is finite. In practical terms, cost and termination
analysis share most of the system machinery, as they need to consider and infer
roughly the same information about the program. We will use the term resource
usage analysis (RUA) to refer to either cost or termination analyses.

The present paper describes the design and implementation features of costa,
a tool which is, to the best of our knowledge, the first RUA tool for an object-
oriented, stack-based programming language, namely, Java bytecode [21]. The
goal of the system is to infer the cost of a program with respect to some cost
measure, and to prove its termination. costa sets up an accurate RR from the
bytecode in an efficient way (phase 1 above) and is connected to a termination
prover [1] and to an upper bound solver [2] to carry out phase 2. costa can
currently work with different cost models, formalizing the idea of what a resource
is, and how it is consumed at runtime: the number of instructions, Minst ; the
heap consumption in bytes,Mheap; the number of calls to a given method,Mcalls

(e.g., the library method for sending text messages in mobile phones).
The system allows the user to decide whether the analysis has to consider

libraries as part of the analyzed program, i.e., if it must go and analyze the
library code, or take cost information in the form of cost interfaces. Interfaces
are needed when some code is not available, or is written in another language.
However, they can only be used if it is guaranteed that the external code will not
generate call-backs to the user code. In the absence of interfaces, the system gives
symbolic names to the cost of libraries, and they remain as unknown functions
in the upper bound. These options make costa a flexible RUA tool, as we show
in the next example.

Example 1. Figure 1 shows the Java and bytecode of the running example, whose
most relevant feature is the use of Java libraries. The Java code at the top is only
shown for clarity, since costa works directly on the bytecode. At the left-middle,
we depict the bytecode of the method inter, which computes the intersection of a
linked list l and an array a, both non-sorted and containing objects which imple-
ment the interface java.lang.Comparable. The class CompList is user-defined, and
implements a linked list of Comparable elements in the standard way. The result
of the intersection is stored in a java.util.ArrayList object al. The method main
(right-middle) allocates memory for a, l and al by means of their constructors.

COSTA: Design and Implementation of a Cost and Termination Analyzer 115

public static void inter(CompList l,Comparable[] a,
ArrayList al){

while (l!=null){
for (int i=0; i<a.length; i++)

if (a[i].compareTo(l.data)==0) al.add(l.data);
l=l.next;

}}

public static void main (String[] args){
Comparable[] a = new Integer[12];
ArrayList al = new ArrayList();
CompList l = new CompList();
loadArray(a);
loadList(l);
inter(l,a,al);}

0 aload 0
1 ifnull 50
4 iconst 0
5 istore 3
6 iload 3
7 aload 1
8 arraylength
9 if icmpge 42
12 aload 1
13 iload 3
14 aaload
15 aload 0
16 getfield #2

//CompList.data

19 invokeinterface #3
//Comparable.compareTo

24 ifne 36
27 aload 2
28 aload 0
29 getfield #2

//CompList.data

32 invokevirtual #4
//ArrayList.add

35 pop
36 iinc 3, 1
39 goto 6
42 aload 0
43 getfield #5

//CompList.next

46 astore 0
47 goto 0
50 return

0 bipush 12
2 anewarray #6

//Integer

5 astore 1
6 new #7

//ArrayList

9 dup
10 invokespecial #8

//ArrayList

13 astore 2
14 new #9

//CompList

17 dup
18 invokespecial #10

//CompList

21 astore 3
22 aload 1
23 invokestatic #11

//loadArray

26 aload 3
27 invokestatic #12

//loadList

30 aload 3
31 aload 1
32 aload 2
33 invokestatic #13

//inter

36 return

With libraries

Minst (inter)=(l+1)∗(a∗(13+c6+c2)+6+
max{12+c6, 11+c6+c2})+1

Minst (main)=24∗(123+c5)+2∗c5+541
Mheap(inter)=(l+1)∗(a∗(c6+c2)+c6+c2)
Mheap(main)=26∗c5+612

Only user-defined code

Minst (inter)=(l+1)∗(a∗(13+c6+c2)+6+
max{12+c6, 11+c6+c2})+1

Minst (main)=24∗(13+c6+c2)+48+2∗max{9, 8+c6}
+2∗c3+12∗(10+c3)+c4+c1

Mheap(inter)=(l+1)∗(a∗(c6+c2)+c6+c2)
Mheap(main)=24∗(c6+c2)+2∗c6+14∗c3+c4+56+c1

Fig. 1. The running example, with upper bounds computed for different cost models

Afterwards, calls to static methods loadArray and loadList fill, resp., the array
and the list with objects of the library class java.lang.Integer, also implementing
java.lang.Comparable. For brevity, the code of both static (user-defined) meth-
ods, which terminate and have constant cost, is omitted. Note that parameters
a and l of inter are non-null and have constant length, and al is also non-null.
At the bottom, we show the upper bounds computed by costa for main and
inter, with the cost modelsMinst andMheap. Variables a and l in the solutions
denote, resp., the length of the array a and the maximal path-length (Sec. 5)
of l. The left column is computed by analyzing all required library methods.
In the right column, library methods are not analyzed; instead, their cost ap-
pears as c1, . . . , c6, where c1 and c2 stand for, resp., java.util.ArrayList.ArrayList
and java.util.ArrayList.add, and c3, . . . , c6 stand for Integer.Integer, Object.Object,
System.arraycopy and Comparable.compareTo, all from java.lang. When analyzing
libraries, upper bounds for main depend only on the cost of c5, which corre-
sponds to the native Java method arraycopy invoked within ArrayList.add inside
inter. When we analyze inter independently of main, c2 and c6 are not analyzed,
as the objects have not been created and their class is not statically known.
When libraries are not considered, c5 is not reached. While c1 and c2 are in-
voked, resp., in main and inter, c3 originates from loadList and loadArray, which
create Integer objects by invoking their constructor. Due to inheritance, c4 is
also required. In Mheap , inter does not consume any heap locations by itself,

116 E. Albert et al.

as it does not allocate any object. Yet, analysis considers the heap usage of c2
and c6, which could allocate memory. �

2 Architecture of the Cost and Termination Analyzer

Figure 2 shows the overall architecture of the costa analyzer. The dashed frames
represent the two main phases of the analysis: (i) the transformation of the
bytecode into a suitable internal representation; and (ii) the actual resource
usage analysis. Input and output of the system are depicted on the left: costa

takes a Java bytecode program JBC and a description of the cost model, and
yields as output an upper bound UB of its cost, and information TERM about
termination. Ellipses (as CFG) represent what the system produces at each
intermediate stage of the analysis; rounded boxes (as CFG build) indicate the
main steps of the analysis process; square boxes (as class analysis), which are
connected to the main steps by dashed arrows, denote auxiliary analyses which
allow to obtain more precise results or to improve efficiency.

During the first phase, depicted in the upper half of the figure, the incoming
JBC is transformed into a rule-based representation (RBR), through the con-
struction of the control flow graph (CFG). The purpose of this transformation
(Sec. 3) is twofold:

(1) to represent the unstructured control flow of the bytecode into a procedural
form (e.g., goto statements are transformed into recursion); and

(2) to have a uniform treatment of variables (e.g., operand stack cells are rep-
resented as local variables).

Several optimizations are performed on the rule-based representation to enable
more efficient and accurate subsequent analyses: in particular, class analysis
is used to approximate the method instances which can be actually called at
a given program point in case of virtual invocation; loop extraction makes it
possible to effectively deal with nested loops by extracting loop-like constructs
from the control flow graph; stack variables elimination, constant propagation
and static single assignment make the rest of the analyses simpler, more efficient

JBC

class
analysis

CFG
RBR RBR’

ABS
TERM

RR

SIZE

UB

loop
extract ion

stack variables el imination
constant propagation

static single assignment

nul l i ty
sign slicing

cost
model

CFG
build

RBR
build RBR

opt im

abstract
compilat ion

RR
build

size
analysis

PUBS
solver

Fig. 2. Architecture of costa

COSTA: Design and Implementation of a Cost and Termination Analyzer 117

and precise. Essentially, the construction of the RBR turns out to be effective
for developing a (compositional) RUA (Sec. 3.5).

In the second phase, depicted in the lower half of the figure, the system per-
forms cost and termination analysis on the RBR. Abstract compilation, which
is helped by auxiliary static analyses, prepares the input to size analysis, whose
aim is to find interesting relations between execution states (Sec. 5). As usual in
object-oriented languages, nullity analysis improves the accuracy of size analy-
sis, together with class analysis, which was performed previously. Finally, sign
analysis helps in dealing with operations on integers. Afterwards, costa sets up
a Recurrence Relation (RR) for the selected cost model. The latter is given as an
input, selected among the available models. It is also trivial to define new cost
models in the system by just associating a cost to each bytecode instruction. For
the purpose of cost, the system performs slicing of the RBR in order to remove
those variables which are useless to cost analysis. Up to this point, phase (1)
in Sec. 1 has basically been achieved. In order to deal with phase (2), costa

integrates the dedicated upper bound solver of [2,1], which finds closed-form
solutions for RRs and proves termination (Sec. 6).

3 From the Bytecode to the Rule-Based Representation

Unlike other bytecode analyses performed directly on the CFG, in order to study
cost and termination, an essential step is to transform the JBC into an appro-
priate recursive rule-based representation. Basically, this will facilitate the task
of identifying loops (necessary for termination), and producing a recurrence re-
lation from (the RBR of) the bytecode which represents its cost.

3.1 The Java Bytecode Language

A (sequential) JBC program consists of a set of class files, one for each class. A
class file contains information about its name, the class it extends, and the fields
and methods it defines. Each method has a unique signature m containing the
class where it is defined, its name and its type. The bytecode associated to m is
a sequence 〈pc1:b1, . . . , pcn:bn〉, where each bi is a bytecode instruction and pci

is its address. Local variables are denoted by 〈l0, . . . , lk−1〉, where l0 is the this
reference (explicit in JBC) and l1, . . . , ln, with n < k, are the formal parameters
of m. Similarly, each field f has a unique signature, containing its name and the
name of the class it belongs to. It is out of the scope of this paper to provide a
thorough description of the JVM (see the specification [21] for details).

Example 2. Let us explain some instructions in Fig. 1 related to object-oriented
features. Indexes 0, . . . , 3 in the bytecode correspond, resp., to parameters l, a, al
and the local variable i. As the method is static, there is no this reference. The
instruction 15: aload 0 pushes the reference to l on the stack. Next instruction,
16: getfield #2;, fetches the field data from l: the top of the stack l is popped, and
#2 is used to build an index of the runtime constant pool (RCP) of the class
where the reference to the name is stored. When this reference is fetched, it is

118 E. Albert et al.

pushed on the stack. As another example, 19: invokeinterface #3 pops a[i] and
l.data from the stack, and searches the closest method with the correct signature,
by looking up first in the class of the dispatching object, and then going up in
the inheritance chain. As before, #3 is used to search the name of the method
in the RCP. The method result is then pushed on the stack. �

The execution environment of the JVM consists of a stack of activation records
and a heap. Each activation record contains a program counter, a local operand
stack, and a table of local variables. The heap is a global data structure which
contains objects (and arrays) allocated by the program. Each method invocation
generates a new activation record according to its signature, number and type
of local variables, and maximum size of operand stack. Different activation may
contain references to the same objects in the heap.

3.2 Generation of Control Flow Graphs Guided by Class Analysis

The control flow of JBC is unstructured. Conditional and unconditional jumps
are allowed, as well as other implicit sources of branching such as virtual method
invocation and exception throwing. The notion of Control Flow Graph (CFG) fa-
cilitates reasoning about programs in unstructured languages. costa transforms
the bytecode of a method into CFGs by using techniques from compiler theory.
In particular, the instruction sequence is split into maximal sub-sequences of
non-branching instructions, which form the basic blocks (nodes) of the initial
graph. Basic blocks of a method m are given a unique identifier mi , where i
is an index, and are connected by guarded edges which describe all possible
transitions.

Guarded edges are introduced by considering the last bytecode instruction of
each block, and represent the condition for the control going from one block to
another one. Edges take the form 〈mi �→mj, φij〉, where mi and mj are the source
and destination nodes, and φij is a boolean condition. Branching instructions
include conditional jumps, dynamic dispatching and exceptions.

Example 3. Figure 3 depicts the CFGs of method inter (Ex. 1). The edge from
inter1 to inter2 takes the form 〈inter1 �→inter2, ifnonnull〉, indicating that the top
of the stack must be non-null for the control going from pc 1 (last instruction of
inter1) to 4 (first one of inter2). Guards which are always true are left implicit. �

Virtual invocation implies that more than one method can be executed at a
given program point. In practice, computing a precise approximation of the
reachable methods is not trivial, and asking the user to provide such information
is not practical. As customary in the analysis of OO languages, costa uses class
analysis [25] in order to precisely approximate this information. First, the CFG
of the initial method is built, and class analysis is applied in order to approximate
the possible runtime classes at each program point. This information is used to
resolve virtual invocations. Methods which can be called at runtime are loaded,
and their corresponding CFGs are constructed. Class analysis is applied to their
body to include possibly more classes, and the process continues iteratively.

COSTA: Design and Implementation of a Cost and Termination Analyzer 119

inter0

entry

i fcmpl t

(N)

(N)

i fnull
 loop_exit(3)

i fcmpge

(T)

(E)

i fnonnull

(OB)(N)

i fne

ifeq

(I)(N)

 call_loop(1)
 50 return

 0 aload_0
 1 ifnull 50

 4 iconst_0
 5 istore_3
 call_loop(3)
 42 aload_0
 43 getf ield
 46 astore_0
 47 goto 0

 6 iload_3
 7 aload_1
 8 arraylength
 9 if_cmpge 42

 36 iinc 3,1
 39 goto 6

 12 aload_1
 13 iload_3
 14 aaload
 15 aload_0
 16 getf ield
 19 invokeinterface
 22 ifne 36

 27 aload_2
 28 aload_0
 29 getf ield
 32 invokevirtual
 35 pop

 loop_exit(1)

(N)

(N)

(E)

inter5

inter1

inter2

inter3

inter4

inter6

Fig. 3. CFGs for the Java bytecode program in Fig. 1 after loop extraction

Once a fixpoint is reached, it is guaranteed that all reachable methods have
been loaded, and the corresponding CFGs have been generated. To handle realis-
tic programs, we implemented a simple class analysis which does not keep class in-
formation at the level of reference variables, but just computes the set of reachable
classes from any point in the program. This simple class analysis turned out to be
crucial for the overall practicality of the analyzer, especially to analyze methods
which are defined in the Object class as those found in most libraries. The simple
class analysis used drastically reduces the number of methods to be analyzed while
remaining quite efficient in practice. In the running example, class analysis detects
that only one instance (the one in java.lang.Integer) of compareTo and add can be
called resp. at bytecodes 19 and 32, so that virtual invocations invokeinterface and
invokevirtual can be actually considered as non-branching.

As regards exceptions, costa handles internal exceptions (i.e., those asso-
ciated to bytecodes as stated in the JVM specification), exceptions which are
thrown (bytecode athrow) and possibly propagated back in methods, as well as
finally clauses (even if they are compiled using the bytecode jsr). Exceptions are
handled by adding edges to the corresponding handlers. When the type of the
exception is not statically known, as it happens when exceptions come from calls
to methods, mutually exclusive edges are generated, which capture all possible
instantiations. In order to infer resource usage, costa provides the options of
ignoring only internal exceptions, all possible exceptions or considering them all.
In Fig. 3, exceptions are not explicitly shown as edges; instead, they are indi-
cated by marks (*) (see Ex. 4 and 5) in bytecodes producing them. For instance,
bytecode 8 might generate a (N) exception if a is null in the call (of a.length).

3.3 Compositional Analysis by Means of Loop Extraction

A subsequent loop extraction transformation is applied to the initial CFG in
order to separate sub-graphs corresponding to loops. Loop extraction has been

120 E. Albert et al.

well studied in the area of program decompilation [6] and it has been proposed in
termination analysis [1]; yet, to the best of our knowledge, its use in cost analysis
is new. It is crucial when the program contains nested loops, since it allows
analyzing the program compositionally, in the sense that it is possible to reason
on the termination and cost by taking one loop at a time. This is important for
finding ranking functions, which are required to bound the number of iterations
of loops (an essential piece of information for both cost and termination). costa

implements an existing efficient algorithm [26] to identify the loops, and modifies
it to have loops which, in addition to having a single entry, also have a single exit.
The latter condition is required to avoid multiple return branches from loops, and
is allowed when additional exits correspond to exceptions which can be caught
and thrown by the caller. Whenever a loop is extracted, the corresponding sub-
graph is replaced by a new instruction call loop(j, o), where j is a fresh integer
identifier, and o (often omitted for brevity) is the set of local variables of m which
are modified by the execution of the loop. Besides, a new CFG is generated
for each sub-graph, whose entry block has mj as its identifier. Hence, after
extracting the loops, there is one CFG which corresponds to the entry of m, and
the remaining CFGs correspond to loops.

Example 4. Figure 3 shows the CFGs of inter after applying loop extraction.
The middle graph corresponds to the loop called in inter0 by call loop(1), while
the inner loop (right graph) is called from inter2. The (E) mark indicates that an
exception can be generated in the loop and propagated back to the caller block.
loop exit(j) denotes the normal exit from loops, which transfers the control to
the bytecode following call loop (bytecode 50, in the case of the outer loop).
Exceptional exits from loops are omitted for brevity. �

3.4 Rule-Based Representation

As already mentioned, for a method m and its CFGs, the system obtains a rule-
based representation (RBR) for m whose purpose is twofold: 1) to transform
iteration into recursion; and 2) to flatten the operand stack, in the sense that its
content is represented as a series of local variables. The latter is possible because,
in valid bytecode, the stack height can be statically decided. This is done in one
pass on the CFGs, where the stack height is computed at the entry and exit
of each block, and saved. The formal translation from a CFG to the rule-based
representation can be found in previous work [3,1]. In the present paper, the
CFG is different, as class analysis and loop extraction have been introduced in
costa. This results in a more accurate and compositional representation.

Intuitively, the system computes the rule-based representation of a JBC pro-
gram by producing, for each basic block mj of its associated CFGs, a rule which:

(1) contains the set of bytecode instructions within the basic block with the vari-
ables (local and stack) it operates on, appearing explicitly in the instructions;

(2) if there is a method invocation within the instructions, includes a call to the
corresponding rule; and

COSTA: Design and Implementation of a Cost and Termination Analyzer 121

(3) at the end, contains a call to a continuation rule mc
j . The definition of

a continuation must include mutually exclusive rules to cover all possible
continuations from the block, guarded by the respective conditions.

Example 5. When analyzing libraries, and by taking into account exceptions,
the RBR for inter contains 59 rules. Let us show the rules associated to block
inter4 in the CFG. For clarity, exception rules are not shown but we just annotate
with ”%” the instructions susceptible of throwing exceptions. For them, there
are rules in the RBR which capture the corresponding behavior.

inter4(〈l, a, al, i〉, 〈i〉) := aload(a, s1), iload(i, s2),
aaload(s1, s2, s1), % NullPointerException, IndexOutOfBoundsException

aload(l, s2),
getfield(CompList.data, s2, s2), % NullPointerException

nop(invokeinterface(compareTo(〈s1, s2〉, 〈s1〉))),
Integer compareTo(〈s1, s2〉, 〈s1〉),

% NullPointerException and exceptions coming from invocation

nop(ifne(s1)), interc4(〈l, a, al, i, s1〉, 〈i〉).
interc4(〈l, a, al, i, s1〉, 〈i〉) := guard(ifeq(s1)), inter5(〈l, a, al, i〉, 〈i〉).
interc4(〈l, a, al, i, s1〉, 〈i〉) := guard(ifne(s1)), inter6(〈l, a, al, i〉, 〈i〉).

It can be seen that there are two possible continuations (rule interc4), depending
on the result of comparing the method output with zero. The comparison is
the bytecode ifne, which is wrapped in a nop mark, meaning that the bytecode
must be ignored at this point, but its cost must be taken into account later. The
continuation rule may call inter5 or inter6, depending on which condition holds
at the entry, as made explicit by guards before the calls. �

3.5 Optimizations on the Rule-Based Representation

Several automatic transformations can be done on the RBR, to improve both
accuracy and efficiency of the rest of the analysis. Basically, optimizations aim
at removing variables to have a simpler program representation.

Static Single Assignment. A Static Single Assignment [13] (SSA) transfor-
mation is performed on the bytecodes of the RBR. SSA enables simple, yet effi-
cient, denotational program analyses. For example, an instruction iadd(s0, s1, s0)
is transformed into iadd(s0, s1, s

′
0) where s′

0 refers to the value of s0 after the
instruction. Our implementation of SSA keeps, for each rule, a mapping from
variable names (as they appear in the rule) to new variable names (constraint
variables). E.g., the rule for block inter3 takes the following form after SSA:

inter3(〈l, a, al, i〉, 〈i′〉) := iload(i, s1), aload(a, s2), arraylength(s2, s′
2),

nop(ifcmpge(s1, s′
2)), interc3(〈l, a, al, i, s1, s′

2〉, 〈i′〉).

Stack Variable Elimination. While SSA introduces new variables, it also
enables the removal of a large number of stack variables which correspond to
intermediate states. costa unifies stack elements, local variables and constants
occurring in instructions which move data to and from the stack, as iload, iconst,

122 E. Albert et al.

istore and ireturn. These unifications reduce the number of (distinct) variables
which occur in the rule. After stack variable elimination, rule inter3 becomes:

inter3(〈l, a, al, i〉, 〈i′〉) := iload(i, i), aload(a, a), arraylength(a, a),
nop(icmpge(i, a)), interc3(〈l, a, al, i, i, a〉, 〈i′〉).

Note that the unification in arraylength does not mean that the length of a
is written in a. Actually, this kind of unification is only meant to make size
analysis easier. Most stack variables can be removed. In most cases, only those
stack variables associated to operations on the heap, such as aaload(s1, s2, s

′
1),

and the return value of methods, as s1 (s′
1 after SSA) in inter5, are kept in the

RBR. Also, arguments which are duplicated in all possible call patterns to a rule
can be filtered out. Rules inter3 and interc3 are transformed into:

inter3(〈l, a, al, i〉, 〈i′〉) := iload(i, i), aload(a, a), arraylength(a, a),
nop(ifcmpge(i, a)), interc3(〈l, a, al, i〉, 〈i′〉).

interc3(〈l, a, al, i〉, 〈i′〉) := guard(ifcmplt(i, a)), inter4(〈l, a, al, i〉, 〈i′〉).
interc3(〈l, a, al, i〉, 〈i′〉) := guard(ifcmpge(i, a)), loop exit(3)(〈l, a, al, i〉, 〈i′〉).

Note that iload, aload and arraylength in the SSA form of rule inter3 have no effect
here, and can be ignored by size analysis. However, they are not removed since
their cost has to be taken into account when generating the recurrence relation.

Inter-Block Constant Propagation. The above optimizations only achieve
intra-block constant propagation, as variables are unified with values within the
scope of a rule (i.e., a block), but are not propagated to other rules. Clearly,
inter-block constant propagation is interesting in terms of both accuracy (more
knowledge about values) and efficiency (less variables to consider). costa does
a simple, yet effective constant propagation post-process, where constants are
propagated forward to continuation rules. In a nutshell, when a block call is
found, the current calling pattern is stored and, if it is guaranteed that such block
is only invoked from that point, constants in the calling pattern are propagated
to its body. For instance, the call pattern to inter3 from call loop(3) takes 0 for
the counter i. However, this block is also invoked from inter6, so that the value
cannot be propagated. For correctness, constant propagation must be stopped as
soon as variables whose value is being propagated are assigned a new value. This
is automatically dealt with by using unification in the SSA transformation above.

4 Context-Sensitive (Pre-)Analyses to Improve Accuracy

costa implements two context-sensitive analyses based on abstract interpreta-
tion [11]: nullity and sign. The aim of these analyses is to improve the accuracy
(and efficiency) of subsequent steps. Both analyses infer information from indi-
vidual bytecodes, and propagate it via a standard, top-down fixpoint computa-
tion. They are designed to achieve good performance by implementing abstract
operations using bitmaps, which allow accessing and updating the analysis in-
formation in constant time.

4.1 Nullity Analysis

A simple nullity analysis is performed on the RBR in order to keep track of non-
null objects. For instance, the bytecode new(si) allows to assign the abstract

COSTA: Design and Implementation of a Cost and Termination Analyzer 123

value non-null to si. Afterwards, this information can be propagated by means
of bytecodes like astore(si, lj), which copies the non-null abstract value of si

into lj . The results of nullity analysis often allow to remove rules corresponding
to NullPointerException, essentially those guarded by guard(ifnull(si)). Nullity
analysis is very effective when methods are analyzed context-sensitively. For
instance, in the main program in Fig. 1, which calls inter with non-null lists
l and al, and a non-null array a, nullity analysis of inter guarantees that no
NullPointerException can be thrown when accessing fields or invoking methods
belonging to the arguments of inter. Thus, bytecode instructions annotated with
(N) in Fig. 3 will not generate exception branches. This is clearly beneficial both
in terms of precision and efficiency of the remaining analysis steps.

4.2 Sign Analysis

Sign analysis keeps track of the sign of variables. The abstract domain contains
the elements ≥, ≤, >, <, = 0, �= 0, � and ⊥, partially ordered in a lattice.
Domain operations can be efficiently implemented with bitmaps (three bits for
each abstract value). For instance, sign analysis of const(si, V) evaluates the
integer value V and assigns the corresponding abstract value = 0, > or < to
si, depending, resp., on if V is zero, positive or negative [11]. Information from
arithmetic bytecode instructions is inferred as expected.

Knowing the sign of data allows to remove RBR rules associated to arithmetic
exceptions which are guaranteed never to be thrown. In addition, sign informa-
tion plays a crucial role in cost analysis, as it allows obtaining accurate upper
bounds for logarithmic methods. E.g., consider a method with a simple recur-
sive call of the form void m(int n) { .. m(n/2);..} for which we want to measure
number of instructions executed. According to the JVM specification, without
knowing the sign of n, it is not possible to know whether n/2 will be rounded to
the next (if negative) or previous (if positive) integer. Therefore, unless accurate
sign information is available, it is not possible to obtain a logarithmic upper
bound for m; instead, a less accurate (linear) upper bound is found.

After this step, a post-process on the RBR unfolds intermediate rules which
correspond to unique continuations. This iterative process finishes when a con-
tinuation is not unique, or when direct recursion is reached.

5 Size Analysis of Java Bytecode

From the RBR, size analysis takes care of inferring the relations between the
values of variables at different points in the execution. To this end, the notion
of size measure is crucial. The size of a piece of data at a given program point
is an abstraction of the information it contains, which may be fundamental to
prove termination and infer cost. The costa system uses several size measures:

– Integer-value maps an integer value to its value (i.e., the size of an integer
is the value itself). It is typically used in loops with an integer counter to
approximate the number of iterations by detecting how the size of the counter
changes at each pass through the loop body.

124 E. Albert et al.

– Path-length [18] maps an object to the length of the maximum path reachable
from it by dereferencing. E.g., null has size 0 and, in a non-null reference x,
the size of x is 1 plus the maximum path-length of fields in x which are in
turn references. Therefore, for a non-cyclic data structure x, the size of x
is greater than the size of any reference field of x, i.e., the size of a data
structure decreases as fields are dereferenced. This measure can be used to
predict the behavior of loops which go through objects, since the path-length
is supposed to strictly decrease through the loop.

– Array-length maps an array to its length and is used to predict the behavior
of loops which traverse arrays.

Sec. 5.1 shows how it is possible to improve the efficiency of size analysis by
simplifying the abstract compilation removing useless information. Finally, a
description of the actual size analysis is given in Sec. 5.2 and 5.3.

5.1 Slicing of Useless Variables

When looking at the RBR, it is sometimes possible to note that some variables
are not relevant for the specific purpose of getting cost information, and can
therefore be removed in order to make the analysis more efficient and the solving
process more feasible [4]. In this sense, a variable is relevant if it directly or
indirectly affects some guards, i.e., the control flow (thus, potentially, the cost),
or is needed by the cost model (e.g., in our example,Mheap needs the length of an
array created by newarray to infer the allocated memory). Non-relevant variables
can be removed from the RBR. As an example, an accumulator variable, which
only stores partial results of a computation (e.g., the sum of the elements of a
list, where a temporary variable is updated during the loop) is essential to the
semantics, but can be removed since, in general, does not affect the cost.

To this end, a variant of backward program slicing [27] is used, where variables
are removed instead of program statements. The slicing criterion consists of the
variables occurring in guards or needed by the cost model, which are propagated
backwards through the rules by means of a simple dependency calculus, so that
variables which directly or indirectly affect the criterion are kept in the slice. As
a result, variables which cannot affect the cost are removed.

Unlike in normal slicing, soundness is not an issue here: removing variables
which are actually relevant may result in a loss of precision, but the correct-
ness of (upper bound) cost and termination results is preserved. In fact, losing
precision would make the upper bound bigger (possibly infinite, meaning that
it was impossible at all to infer the cost of the program), or make it impossible
to prove termination, but such result would not lose correctness (since a bigger
upper bound is correct whenever a smaller one is correct, and not proving ter-
mination is trivially correct). Because of this, the treatment of calls to methods
or loop rules can be simplified: when a call to m is found, relevant variables
of m are taken (i.e., those which affect its cost), but relevant variables in the
caller rule are not propagated through the call (context-insensitivity). Such a slic-
ing on the rules is unsound, and different with respect to a previous, analogous

COSTA: Design and Implementation of a Cost and Termination Analyzer 125

algorithm [4], where this information is correctly dealt with (context-sensitivity).
This results in a less precise and unsound, but more efficient and importantly,
scalable slicing.

5.2 Abstract Compilation

The purpose of size analysis is to detect how the size of variables changes
during execution [14]. For example, when analyzing a loop where an integer
counter i goes from 0 to a threshold, as in the inner loop of Ex. 1, size analy-
sis w.r.t. Integer-value should see that the size of i in the n-th iteration of the
loop is greater by 1 than its size in the n−1-th iteration. This information is
essential for inferring how many times the loop body will be executed, which is
a crucial piece of information in cost and termination analyses. Each bytecode,
call or guard is abstracted by linear constraints on the size of its variables: for
example, iadd(s0, s1, s

′
0) will be abstracted by the constraint s′

0=s1+s0, meaning
that the size of s0 after executing the instruction is the sum of the size of s0 and
s1 before. Similarly, getfield(f, s0, s

′
0) is abstracted by s0>s′

0, meaning that the
(Path-length) output size is less than the input size, due to the field access. This
only holds if non-cyclicity of s0 can be proven; otherwise, no information can
be obtained, and an empty constraint is produced. We refer to [18] for details
on path-length and its requirements. This step results in an abstract constraint
program, or simply abstract compilation, which approximates the cost and termi-
nation behavior of the original program w.r.t. the chosen size abstractions. E.g.,
rules inter3 and interc3, after RBR optimizations, are abstract-compiled into:

inter3(〈l, a, al , i〉, 〈i′〉) := {} � interc3(〈l, a, al , i〉, 〈i′〉)
interc3(〈l, a, al , i〉, 〈i′〉) := {i<a} � inter4(〈l, a, al , i〉, 〈i′〉)
interc3(〈l, a, al , i〉, 〈i′〉) := {i≥a} � loop exit(3)(〈l, a, al , i〉, 〈i′〉)

Expressions in brackets are constraints which describe the behavior of the byte-
codes. Abstract rules for the loops in the example are:

inter2(〈l, a, al , i〉, 〈l′′, i′′′〉) := {i′=0, l>l′} � inter3(〈l, a, al , i′〉, 〈i′′〉),
inter1(〈l′, a, al , i′′〉, 〈l′′, i′′′〉)

inter6(〈l, a, al , i〉, 〈i′〉) := {i′=i+1} � inter3(〈l, a, al , i′〉, 〈i′〉)
The first rule corresponds to the outermost loop, which calls the inner loop with
i = 0. Note that, provided l is non-cyclic and does not share memory locations
in the heap with other variables, size analysis finds a size decreasing in the outer
loop. Moreover, by applying the Integer-value measure, it is inferred that i (the
counter of the internal loop) increases by one between the input of rule inter6
and that of inter3 (the condition of the loop). In both cases, a useful size relation
has been found, thus allowing the subsequent cost analysis to understand the
behavior of loops.

5.3 Bottom-Up Fixpoint Computation

Linear constraints replacing parts of the program can be propagated via a stan-
dard, bottom-up fixpoint computation, in order to combine the information

126 E. Albert et al.

about single rules. The goal of this global analysis is to have size relations on
variables between the input of a rule (i.e., a block in the CFG) and that of
another one which can be (directly or indirectly) called by the first one.

In practice, we can often take a trivial over-approximation where for any
rules there is no information, i.e., p(x, y)← true. This is often enough to prove
termination and find upper bounds on the cost of many programs, and results
in a more efficient implementation. It is enough in our example, but not in cases
where the call modifies the data structure over which a loop of the caller goes.
For instance, it would be needed in the example if methods invoked within the
loop (either compareTo or add) modify the length of l or the value of i. However,
experiments suggest that this is not very likely to occur in imperative programs.

6 Inferring Cost and Termination

Once the bytecode program has been transformed into its RBR (Sec. 3 and 4),
and size relations have been inferred (Sec. 5), all the pieces are available to prove
termination and infer a closed-form upper bound for the cost of the bytecode.
To this purpose, costa first sets up a recurrence relation system (RR) which
captures the cost of the rule-based program and its termination behavior in
terms of the input values, and, afterwards, uses a generic RR solver [2] to obtain
an upper bound and prove termination.

6.1 Setting Up Recurrence Relations

Setting up a RR from the bytecode culminates the phase 1 of cost analysis
(Sec. 1). In particular, for each rule in the RBR, costa generates a cost equation
of the form rp(xp) = exp + [cj(xj)+]rq(xq), ϕ by using the abstract rule to
generate ϕ, and the original rule together with the selected cost model to generate
exp (i.e., the cost expression has to represent the cost of the bytecodes in the
rule w.r.t. the model). Here, the optional cj is the cost of a method invoked from
within a rule. Variables x are the set of corresponding variables relevant to the
cost. Essentially, the equation states that, for given (abstract) values vp such
that ϕ |= ∧xp = vp, a possible cost for rp(vp) is exp[xp �→ vp] plus the sum of the
costs of cj(vj) and rq(vq), where values vj and vq are obtained from vp and the
constraints. For example, inMinst , the RR for inter comes to be (as in Ex. 1, c2
is the cost of add, while c6 is the cost of compareTo):

inter(l, a) = 1 + r1(l, a), {}
r1(l, a) = 2 + r2(l, a, l), {}
r2(l, a, l) = 6 + r3(a, 0) + r1(l′, a), {l > l′, l′ ≥ 0, a ≥ 0}
r2(0, a, 0) = 0, {}
r3(a, i) = 4 + r4(a, i, i, a), {}

r4(a, i, i, a) = 6 + c6 + r5(a, i, s1), {a > i}
r4(a, i, i, a) = 0, {a ≤ i}
r5(a, i, s1) = r6(a, i), {s1 �= 0}
r5(a, i, s1) = 4 + c2 + r6(a, i), {s1 = 0}
r6(a, i) = 2 + r3(a, i′), {i′ = i+ 1}

COSTA: Design and Implementation of a Cost and Termination Analyzer 127

Consider the outer loop: the execution of r1 (corresponding to block inter1) costs
2 bytecodes plus the cost of r2. In r2, 6 bytecodes are executed (those in block
inter2) in the loop body, so that the cost is 6 plus that of the call r3 to the inner
loop, and of r1. This goes on until a call to r2(0, a, 0) ends the loop. Note that r1
is called by r2 with the first argument decreased, which guarantees termination.
The above RR has been simplified by eliminating intermediate equations by
means of unfolding, as costa actually does.

6.2 Finding Closed-Form Upper Bounds and Proving Termination

RRs have a great potential: they are not limited to any complexity class, and can
be used for counting different resources. However, unless a closed-form solution
describing the cost of a program only in terms of its input variables is found (i.e.,
with no references to other equations), RRs turn out not to be practical (see the
applications pointed out in Sec. 9). This is the so-called phase 2 in Sec. 1.

Basically, a RR is a non-deterministic constraint functional program which
allows to use generic tools both to find closed-form solutions and to prove ter-
mination. Non-determinism might occur due to the loss of precision inherent
to (static) size analysis. This means that, for given input values vp, the query
Cp(vp) may result in several solutions. It can be seen in the above example that
size relations are inexact: e.g., size analysis has inferred that the size of a data
structure l0 decreases, but does not tell how much. In such cases, size relations
cannot be applied; instead, they are kept in the cost equations. Yet, it is guaran-
teed that (1) one of the solutions corresponds to the actual cost of the rule-based
program; and (2) if Cp(vp) has a finite number of solutions and does not lead to
any infinite computations, then the original bytecode program terminates for any
corresponding concrete input. Due to the non-decidable and non-deterministic
features of RRs, in most cases, it is not possible to obtain an exact solution (see
[2]). Rather, the aim is to obtain non-asymptotic1 upper bounds.

Upper bounds. RR are independent of the language in which the original
program was written. This traditionally has allowed relying on existing com-
puter algebra systems (e.g., Maple, Mathematica, Maxima) to carry out phase
2 of cost analysis. In our case, costa is connected to an existing upper bound
solver [2], which is especially designed to handle RR output by automatic cost
analysis. The differences between a RR and a standard recurrence equation sys-
tem are explained in detail in that work. The solver is available on the web
(http://www.cliplab.org/Systems/PUBS). It is independent of the language
the RR is obtained from, and handles a large set of complexity classes, such as
logarithmic, linear, polynomial, and exponential. In the example, the obtained
upper bound isMinst (inter), shown in Fig. 1. Details of the solving process are
rather technical, and are outside the scope of this paper [2].

Termination from RR. As already mentioned, proving termination involves
guaranteeing that a finite upper bound for the system exists, even if it cannot be

1 I.e., which hold for every input value, not only for values greater than a threshold.

128 E. Albert et al.

found explicitly. As a RR is a non-deterministic constraint functional program,
well-studied techniques used for proving termination in such languages can be
directly adapted to our setting. The solver actually proves termination on the
above representation by using semantic-based techniques, relying on binary un-
folding combined with ranking functions, as those in [10]. In the example, it is
able to prove termination of inter alone, and also of main. Termination on the
non-deterministic constraint functional representation implies, in turn, termina-
tion of the Java bytecode program, as proven in previous work [1].

7 Experimental Results

The costa system is implemented in Prolog and, as an external component, it
uses the Parma Polyhedra Library [8] for manipulating linear constraints and
it is connected to the solver of [2,1] to find upper bounds and prove termina-
tion. In contrast to previous experimental work on cost analysis, a main goal
of our experiments is to be able to analyze realistic programs which are not
hand-crafted but rather are taken from different benchmark suites, namely from
the own Java libraries and the book [15] and do not use predefined assertions
but rather analyze all necessary code. The first benchmark, compInter, is our
running example which, as we have seen through the paper, uses several classes
and interfaces from the Java libraries. The next set of benchmarks stackRev,
josephus and arrayMax appear in [15] and all of them use Java libraries. The
next three benchmarks are Java libraries: java.util.ArrayList, java.lang.Character
and java.lang.Integer.

Table 1 shows the efficiency and accuracy of costa on the above examples.
For each benchmark, we have two rows: the upper one corresponds to the case
where we analyze only user-defined code, and the lower row includes the analysis
of all required library methods. The column #M shows the number of methods
to be analyzed for each benchmark. We can observe that the benchmarks are
reasonably large, up to 529 methods analyzed for arrayList (with libraries). The
experiments have been performed on an Intel Core 2 Duo 1.86GHz with 2GB

Table 1. costa Analysis Times and Results for Benchmarks using Libraries

Bench #M CFG #R Null Sign #Rr AC SA #T #UB
compInter 5 84 146 28 36 113 76 1124 5 5

19 4600 1997 908 1104 293 216 1828 19 19
stackRev 17 436 496 104 96 332 248 1536 17 17

27 1848 602 112 112 390 300 1856 27 27
josephus 23 924 986 260 280 780 520 11713 23 23∗

89 6752 2993 1112 1364 2187 1732 16049 77 8
arrayMax 3 120 163 24 28 137 96 536 3 3

34 3096 1096 344 476 786 588 4504 29 1
ArrayList 34 8917 1649 308 332 1381 1096 3124 33 30

529 51567 15828 6400 6704 11413 9137 63120 26 23
Character 43 14337 758 116 160 684 364 1684 43 43∗

166 53971 2829 560 464 2464 1544 2296 166 166
Integer 52 24054 2059 784 928 1704 3008 5468 46 43∗

217 49043 8758 5320 6488 4963 11029 29198 103 18

COSTA: Design and Implementation of a Cost and Termination Analyzer 129

of RAM. Times are in milliseconds and measure the runtime of each of the
phases undertaken by the analyzer. In particular, columns CFG, Null, Sign,
AC and SA show, resp., the time of building the CFG, nullity analysis, sign
analysis, abstract compilation and size analysis. We argue that analysis times
are reasonable given the large size of the benchmarks. Only size analysis is
comparatively more expensive. Interestingly, it is often not required in order
to prove termination nor to infer upper bounds, in particular, when the loops
conditions do not depend on the return value from a method. In the table, we
mark the upper bounds with “*” in the three cases when size analysis is required.
Columns #R and #Rr show the number of rules in the RBR of the bytecode
program, resp., prior to nullity and sign analysis and after applying them (as
explained in Sec. 4). It can be observed that the reduction is significant in all
benchmarks. This is crucial for both the efficiency and accuracy of the analysis.

The last two columns #T and #UB indicate, resp., the number of methods
for which we are able to prove termination and infer an upper bound forMinst .
We believe our results are quite encouraging. We have proved termination and
obtained upper bounds for all methods in compInter, stackRev and Character.
As expected, obtaining upper bounds for Minst is strictly more difficult than
proving termination: if we fail to find a well-founded decreasing measure for a
loop which ensures its termination, we also fail to bound the number of iterations
of such loop. Most of the examples where costa fails, e.g., in arrayMax and
josephus with libraries, contain loops whose number of iterations depends on
the values of fields. This is currently not supported by our size analysis and,
moreover, we are not aware of any analysis that can infer such information. In
other examples, PUBS [2] fails to find an upper bound because the RR obtained
is too large. This happens for some methods in arrayMax, josephus and ArrayList.

Regarding the language, there are some features of Java bytecode that costa

does not support such as non-sequential, native code, dynamic code generation
and reflection. costa can still deal with some of them (like native code) by
giving symbolic names to their cost, as we have shown along the paper. All in
all, we believe that our experiments thus far allow us to conclude that RUA can
be applied to a realistic programming language, and to programs with a realistic
size and complexity.

8 Related Work

Since the advent of mobile code, Java bytecode analysis has become an active
research area, and a number of tools are now available, e.g., the Soot framework
[28] and the generic analyzer Julia [24]. Soot is a framework to develop analyses
of Java bytecode, and already includes points-to, purity and dynamic data struc-
ture analysis. Similarly to costa, such systems transform bytecode into a proce-
dural representation. Indeed, intermediate representations are common practice
in JBC analysis (see also BoogiePL [20]). The main differences w.r.t. our rule-
based representation are: (1) though Soot also performs SSA when generating
the Shimple representation, neither Shimple nor BoogiePL do the optimizations

130 E. Albert et al.

described in Sec. 3.5: our system can eliminate, in one pass, almost all stack
variables in the RBR and, besides, slice out variables which do not affect the
cost; this results in a more efficient subsequent size analysis. (2) Neither Soot
nor BoogiePL perform loop extraction, which is important for compositionality
in cost analysis. Julia provides a generic analysis engine where sharing, class,
nullity, information flow, escape and static initialization analyses have been in-
tegrated. None of these systems include resource usage analysis, though Julia
implements some components (in particular class, nullity, sharing and cyclicity
analyses) which are required by size analysis (Sec. 5).

Focusing on cost analysis, important effort has been devoted to adapt the
general framework by Wegbreit [29] to different languages and programming
paradigms. A main goal in this line is defining a setting where RRs can be gen-
erated from different languages. In the context of Java bytecode, a cost analysis
framework is presented in [3] which shows that standard cost analysis can be
performed on Java bytecode. Moreover, the framework has been instantiated
to heap consumption inference [5]. Essentially, it proposes to (1) transform the
bytecode into a high-level recursive representation; and (2) perform size analysis
on it to generate the RR. This work has heavily influenced the design of costa,
which follows the same basic steps. However, though providing convincing argu-
ments for the feasibility of cost analysis in a bytecode language, this work has
not yet provided the components needed for the design and implementation of a
scalable and realistic resource analyzer. In particular, the recursive representa-
tion lacked class analysis (Sec. 3.2), loop extraction (Sec. 3.3) and optimizations
in Sec. 3.5, which are fundamental to design a manageable bytecode represen-
tation to infer resource usage. The removal of useless variables is the subject
of previous work [4], but that algorithm is less efficient, as already discussed in
Sec. 5.1. As regards the cost process itself, it lacked the analysis steps described
in Sec. 4.1 and 4.2, and did not perform abstract compilation to implement the
size analysis (Sec. 5.3). All the new components presented in this paper are re-
quired to achieve efficient and accurate cost and termination analyses, and apply
them to realistic benchmarks.

9 Discussion and Applications

The costa system provides a platform for integrating resource usage analysis
for Java bytecode by providing the notion of resource as a black box component.
The analyzer follows the traditional approach to cost analysis, i.e., generating
and solving recurrence relations. This approach is very powerful, as it is not
restricted to any complexity class, and can be used to measure several interesting
resources. Also, a unique feature of costa is that it works at the bytecode level,
which makes it possible to obtain more accurate upper bounds w.r.t. the source
level, as compiler optimizations at the level of the JVM are already accounted
for. Java bytecode analysis implies problems typically occurring in those arising
in the object-oriented paradigm. Our approach handles these issues, and can be
applied in the usual fields related to resource usage analysis:

COSTA: Design and Implementation of a Cost and Termination Analyzer 131

Granularity Control [14,16]. Parallel computers have currently become main-
stream with multicore processors. In parallel systems, knowledge about the cost
of different procedures in the object code can be used to guide the partitioning,
allocation and scheduling of parallel processes.

Performance Debugging and Validation [17]. This is a direct application
of cost analysis, where the analyzer checks assertions about the efficiency of the
program, written by the programmer. Assertions possibly refer to source code,
but can be easily translated to be understandable by the bytecode analyzer.
Likewise, analysis results obtained on the bytecode are somehow closer to the
actual runtime behavior, and can be easily related to the Java program.

Resource Bound Certification [12,7,9]. It refers to the certification of safety
properties involving cost requirements, i.e., that the untrusted code adheres to
specific bounds on resource consumption. This is a key point in the design of
Proof-Carrying code [22] architectures, where the user wants some guarantees
that running the code will not take too much an amount of resources. Previous
work deals with linear bounds [12,7], semi-automatic techniques [9], or source
code [17]. Our approach shows that it is possible to automatically generate cost-
bound certificates for realistic mobile, Java bytecode languages.

Acknowledgments. This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of
Education (MEC) under the TIN-2005-09207 MERIT project, and the Madrid
Regional Government under the S-0505/TIC/0407 PROMESAS project.
S. Genaim was supported by a Juan de la Cierva Fellowship awarded by MEC.

References

1. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation Analysis of Java Bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic Inference of Upper
Bounds for Recurrence Relations in Cost Analysis. In: Alpuente, M., Vidal, G.
(eds.) SAS 2008. LNCS, vol. 5079, pp. 221–237. Springer, Heidelberg (2008)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421. Springer,
Heidelberg (2007)

4. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: RemovingUseless Vari-
ables in Cost Analysis of Java Bytecode. In: Proc. SAC.ACM Press, New York (2008)

5. Albert, E., Genaim, S., Gomez-Zamalloa, M.: Heap Space Analysis for Java Byte-
code. In: ISMM 2007 (October 2007)

6. Allen, F.: Control flow analysis. In: Proceedings of a symposium on Compiler op-
timization, pp. 1–19 (1970)

7. Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., Stark, I.: Mobile Resource
Guarantees for Smart Devices. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L.,
Muntean, T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 1–26. Springer, Heidelberg
(2005)

132 E. Albert et al.

8. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

9. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.: Enforcing resource
bounds via static verification of dynamic checks. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, pp. 311–325. Springer, Heidelberg (2005)

10. Codish, M., Taboch, C.: A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming 41(1), 103–123 (1999)

11. Cousot, P., Cousot, R.: Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
1977, pp. 238–252. ACM, New York (1977)

12. Crary, K., Weirich, S.: Resource Bound Certification. In: POPL 2000, pp. 184–198.
ACM, New York (2000)

13. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph.
TOPLAS 13(4) (1991)

14. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS 15(5) (1993)
15. Goodrich, M.T., Tamassia, R.: Data Structures and Algorithms in Java, 3rd edn.

John Wiley, Chichester (2004)
16. Hermenegildo, M., Albert, E., López-Garćıa, P., Puebla, G.: Abstraction Carrying

Code and Resource-Awareness. In: Proc. of PPDP 2005. ACM Press, New York
(2005)

17. Hermenegildo, M., Puebla, G., Bueno, F., López Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Comp. Progr. 58(1–2) (2005)

18. Hill, P.M., Payet, E., Spoto, F.: Path-length analysis of object-oriented programs.
In: EAAI 2006, ENTS. Elsevier, Amsterdam (2006)

19. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL 2001, pp. 81–92. ACM, New York (2001)

20. Lehner, H., Müller, P.: Formal translation of bytecode into BoogiePL. In: Bytecode
2007, ENTCS, pp. 35–50. Elsevier, Amsterdam (2007)

21. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Reading (1996)

22. Necula, G.: Proof-Carrying Code. In: POPL 1997, pp. 106–119. ACM Press, New
York (1997)

23. Sands, D.: A näıve time analysis and its theory of cost equivalence. Journal of
Logic and Computation 5(4) (1995)

24. Spoto, F.: Julia: A generic static analyser for the java bytecode. In: FTfJP 2005.
(2005)

25. Spoto, F., Jensen, T.: Class analyses as abstract interpretations of trace semantics.
ACM Trans. Program. Lang. Syst. 25(5), 578–630 (2003)

26. Zou, W., Wei, T., Mao, J., Chen, Y.: A new algorithm for identifying loops in
decompilation. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
170–183. Springer, Heidelberg (2007)

27. Tip, F.: A Survey of Program Slicing Techniques. J. of Prog. Lang. 3 (1995)
28. Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -

a Java optimization framework. In: CASCON 1999, pp. 125–135 (1999)
29. Wegbreit, B.: Mechanical Program Analysis. Comm. of the ACM 18(9) (1975)

Active Objects and Distributed Components:
Theory and Implementation

Denis Caromel, Ludovic Henrio, and Eric Madelaine

INRIA Sophia-Antipolis, I3S, Université de Nice Sophia-Antipolis, CNRS
{denis.caromel,ludovic.henrio,eric.madelaine}@sophia.inria.fr

Abstract. To achieve effective distributed components, we rely on an
active object model, from which we build asynchronous and distributed
components that feature the capacity to exhibit various valuable prop-
erties, as confluence and determinism, and for which we can specify the
behaviour.

We will emphasise how important it is to rely on a precise and formal
programming model, and how practical component systems can benefit
from theoretical inputs.

1 Introduction

Component models and frameworks have been in use for some years now. This
is especially the case for distributed components that attempt to handle the
inherent complexity of managing distributed systems. However, underlying lan-
guages do not seem to feature a strong and adequate programming model with
respect to concurrent and distributed behaviour. The communications between
distributed entities often take place with a weak semantics. For instance in Java
RMI (Remote Method Invocation), the framework does not specify if the servers
are executing the incoming calls in parallel or one after another. In C, C# and
Java, the concurrency primitives are very low level, with a recognised difficulty to
master the correctness of programs, even at the level of a simple, non-distributed
program. When you put the two together, distribution and concurrency, the com-
position does not hold a clear, easy to grasp, semantics. One has to deal with
the complexity of such under-specified features, and the behavioural combina-
tory explosion that occurs when put together.

Moreover, managing parallel and distributed software is now a basic require-
ment of any programming language. The slowing down of Moore’s law, leading
to the advent of multi-core processors, is dramatically increasing the pressure on
programmers to introduce parallel decomposition in their applications, leading to
both distribution and concurrency. Such solution-domain parallelism amplifies the
intricacy of code-level behaviour, leading to even vaguer behaviour. The approach
taken here is to limit concurrency to concurrent accesses between remote loca-
tions: visible concurrency is limited to the one entailed by distribution. However,
at the middleware level, several threads have been introduced to introduce paral-
lelism, with the application still behaving as if the activity was both the unit of
distribution and of concurrency (each active object runs a single service thread).

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 133–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

134 D. Caromel, L. Henrio, and E. Madelaine

These shortcomings prevent us from having a clear semantics at the level of
programming the distributed interactions, and in turn preclude from having pre-
cise semantics at the component level. When it comes to composite components,
composing primitive components made of programming-language code, the se-
mantics issue is even tenser as the imprecision composes into more imprecision.
How would it be possible to promote properties at the level of compositions,
when we do not have them straight at the inner level? This article advocates the
strong need of a simple and sound programming model integrating distribution,
concurrency, and parallelism, in order to benefit from soundness and properties
at the level of distributed components.

This paper starts by presenting an active object model featuring asynchronous
communications with first-class futures — futures that can be transmitted be-
fore having their values. This model is implemented in the ProActive Parallel
Suite, available as Open Source within the ObjectWeb Open Source community
(http://proactive.ow2.org). An interactive environment, developed as Eclipse
plugins, eases the visualisation and control of applications. The next section
presents ASP, a generalisation of the ProActive model. Together with a formal
semantics, theoretical results on determinacy are detailed. The following section
introduces asynchronous distributed components that rely on active objects:
primitive components are made of active objects, and the membranes of com-
posite are specified and implemented with active objects as well. An on-going
work aiming at defining a joint European component model for Grid comput-
ing (GCM) will be summarised. Finally, the paper concludes with challenges at
hand with component systems, especially work related to capturing behavioural
properties: current work aiming at specifying the architectural and behaviour of
components, and guaranteeing their correct behaviour by model-checking meth-
ods will be introduced.

Along the course of this article, we would first like to demonstrate how impor-
tant it is to rely both on practical and theoretical approaches in order to tackle
the complexity of today’s large-scale distributed systems. The second statement
has more to do with a technical orientation: active objects provide a powerful
sound foundation for both understanding and programming distributed compo-
nent systems.

2 Asynchronous Distributed Objects

In order to deal with components, a precise and adequate programming model
is needed to adequately build primitive programs to be used as building blocks
at composition time. The paper [5] defines ProActive, an object-oriented pro-
gramming model for concurrent, parallel, and distributed systems.

2.1 Principles

We summarise here the key features of the ProActive programming model:

– asynchronous calls, for the sake of hiding latency and decoupling client-server
interactions,

Active Objects and Distributed Components: Theory and Implementation 135

– first-class futures, for the sake of passing the results of asynchronous calls
to other distributed objects without forcing useless synchronisations, also
avoiding deadlocks – futures are indeed single assignment variables,

– wait-by-necessity, for the sake of using as much as possible data-flow syn-
chronisations of parallel entities,

– collective synchronisation operations, for the sake of manipulating synchro-
nisations as first-class entities, e.g., blocking on the availability of all futures
in a vector,

– service primitives, for the sake of programming in a flexible manner the inner
synchronisation of activities,

– typed asynchronous groups, for the sake of enabling asynchronous remote
method invocations on a group of entities, also a way towards parallel com-
ponent invocation.

The communication paradigm of ProActive is strongly similar, and somehow
inspired by, the actor paradigm [2]. Indeed, active objects communicating by
requests and serving them one after the other are similar to actor communicat-
ing by messages received in a mailbox and treating them one after the other.
More precisely, the active object paradigm can be described as follows. Only
active objects can be referenced remotely. A method call on an active object
is asynchronous; such a call is stored as a request in a request queue. After a
while the active object decides to serve the request1 and evaluates a result for it.
While the result is not computed yet, a future [24,31] represents the result of an
asynchronous method call. When the result has been computed, it is returned
to all the objects holding a reference to the corresponding future.

More recently, programming paradigms relatively similar to ProActive have
been developed in different contexts, among them one can distinguish Creol
[25,19] and AmbientTalk [20]. Also, X10 [18] can be considered as closed to the
ProActive language except that activities in X10 are multi-threaded and X10
does not support futures to our knowledge; whereas ProActive is conceived to
have mono-threaded activities which ensures most of its properties and simplifies
the programming of active objects.

The features above propose a disciplined way to manage parallelism, and many
user operations are achieved in a parallel way without the burden to explicitly
build complex synchronisations. Nevertheless, the programming model features
a few fundamental properties:

– no interleaving within user code, each primitive component (resp. each active
object) is mono-threaded, both concurrency and distribution are the result
of the component (resp. active object) composition.

– no sharing of objects between concurrent threads,
– no call-backs, they are replaced by the use of future, which makes programs

better structured

1 Each active object either specifies its service policy using the Serve primitive, or
uses the default FIFO policy.

136 D. Caromel, L. Henrio, and E. Madelaine

Parallelism of operations seems to conflict with the property of not having
interleaving within user code. Indeed, parallelism usually leads to interleaving
of actions when conducted within a single address space. However, we rely here
on the design and implementation of parallel operations within the middleware
that have no consequences, whatsoever, for the user. This parallelism is risk-
free, intrinsically acting towards confluence, because it does not produce any
observable interleaving. Several harmless optimisations are indeed located at
various places within ProActive’s implementation, e.g., group communications,
future updates with automatic continuation. They are increasingly becoming
more important with the advent of multi-core processors.

2.2 Environment

The ProActive implementation comes with an environment for deploying, mon-
itoring, and managing distributed applications, based on active objects. For ex-
ample, Fig. 1 shows a screenshot of IC2D, an application for monitoring the
execution of a ProActive application.

Fig. 1. Screenshot: monitoring a distributed application

Fig. 2 shows a screenshot of the ProActive scheduler. The scheduler is an
application written in ProActive that is also part of the ProActive environ-
ment, and can be used as a tool administrating the deployment and the main-
tenance of a list of jobs over various platforms and infrastructures (Grid or P2P
infrastructure).

Active Objects and Distributed Components: Theory and Implementation 137

Fig. 2. Screenshot: ProActive scheduler

3 Calculus: Asynchronous Sequential Processes (ASP)

The ASP [17,16] calculus provides a generalisation of the ProActive program-
ming model. It relaxes a few implementation decisions, and provides under-
standing, and proofs of confluence and determinacy for asynchronous distributed
systems. The ASP calculus, is an extension of the impς-calculus [1,23] with two
primitives (Serve and Active) to deal with distributed objects.

We present here the semantics of ASP in a slightly different version – but
equivalent – from our previous publications [17,16]. This new version mainly
comes with a more compact syntax. The resulting semantics is more compact
than the one presented in our previous publications, but a little further from the
implementation concerns. We hope this shorter version will make the semantic
rules easier to read. The equivalence between the two versions is trivial, because
this new semantics expresses, almost exactly, the same rules on a different syntax.

Concerning related works, futures have been formalised in several settings,
generally functional-based [29,19,21]; those developments rely on explicit
creation of futures by a thread creation primitive, in a concurrent but not
distributed setting. Research on languages ensuring confluence has a long history,

138 D. Caromel, L. Henrio, and E. Madelaine

the results which are the closest to the ones on ASP are probably the Process
Networks [26] and linear types [27].

3.1 Syntax

We first define a syntax for ASP programs: the terms defined as source code that
correspond to the ProActive code are defined in Fig. 3, excluding the underlined
terms. Compared to the impς-calculus we added a parameter to methods; we
added a primitive Active for creating an activity (i.e., a location containing: an
active object, some passive ones, plus a queue for incoming requests); we also
added Serve that filters the unserved receive requests (that are in the queue),
and takes the first one corresponding to the filter given as argument.

a, b ∈ L ::= x variable,
| [li = bi;mj = ς(xj , yj)aj]i∈1..n

j∈1..m object definition,
| a.li field access,
| a.li := b field update,
| a.m(b) method call,
| clone(a) shallow copy,
|Active(a,m) activates a. m defines the service policy
|Serve(M) serves a request among

the set M of method labels,
M = {m1, . . . ,mk}

| ι location in store
|α activity reference
| f future reference

Fig. 3. Sequential syntax for ASP (underlined terms only occur at run-time)

In the following, li range over field labels, mj over method names, xi and yi

over variables, and a and b over terms.
Run-time syntax is also shown in Figure 3, but this time both underlined

and non-underlined terms are included. Dynamically, one can refer to existing
futures, activities or locations in a local store. Thus, we add three new distinct
name spaces: activities (α, β, γ ∈ Act), locations (ι), and futures (fi), and we let
run-time syntax refer to them. Note that locations are local to an activity.

Substitution of variables by locations are denoted: {{xi ← ι′i∈1..n
i }}, and have

the usual semantics (i.e., the substitution of the variable x do not enter the
binder ς(x, t) or ς(t, x)).

3.2 Store and Values

An object is said to be entirely evaluated if it is of the form: [li = ιi; mj =
ς(xj , yj)aj]i∈1..n

j∈1..m], that is all its field have been evaluated and allocated in the
store. o range over evaluated objects. A value is an evaluated object, a reference
to a future, or a reference to an activity: v ::= o | α | fi

Active Objects and Distributed Components: Theory and Implementation 139

A store is a mapping from locations to values: (ιi → vi)i∈1..p, it is used to
store objects, and modify them. It allows the expression of the imperative nature
of ASP. We let σα, σβ , . . . range over stores.

Let σ + σ′ update the values defined in σ′ by those defined in σ. It is defined
on dom(σ) ∪ dom(σ′) by

(σ+σ′)(ι) = σ(ι) if ι ∈ dom(σ)
σ′(ι) otherwise

Let θ ::= {{ιi ← ι′i∈1..n
i }} range over renaming of locations; σ{{ιi ← ι′i∈1..n

i }} is
the store σ where each occurrence of ιi is replaced by ι′i.

We define a function Merge which merges two stores (it creates a new store,
merging independently σ and σ′ except for ι which is taken from σ′):

Merge(ι, σ, σ′) = σ′θ + σ
θ = {{ι′ ← ι′′ | ι′ ∈ dom(σ′) ∩ dom(σ)\{ι}, ι′′ fresh}}

copy(ι, σ) designates the deep copy of store σ starting at location ι. That is the
part of store σ that contains the object σ(ι) and, recursively, all (local) objects
that it references.

Moreover, the following operator copies the part of the store σ starting at the
location ι at the location ι′ of the store σ′:

Copy&Merge(σ, ι ; σ′, ι′) �Merge(ι′, σ′, copy(ι, σ){{ι← ι′}})

Those operators are used in the semantics for ASP given in Table 2.
For simplicity of notations, ι0 is a reserved location in each store where the

active object of the activity is stored.

3.3 Structure of Activities

When a request is finished, a result has been calculated for it. The corresponding
value is associated to the future identifier for the request: fi → ι means that ι
is the location of the value associated with the future f . We denote by F the
list of computed futures; it is a list mapping future identifiers to value locations:
F ::= (fi → ιi)i∈I where I ⊆ N.

A current request is a term being evaluated together with the future to which
it will be associated: a→ fi means that a is being evaluated, and when a result
will be computed it will be associated with the future fi. C is a list of current
requests: C ::= (ai → fi)i∈J where J ⊆ N.

A pending request is a request that has been received but not served yet. It
is denoted by [mj ; ι; fi] and consists of:

– the name of the target method mj (invoked method),
– the location of the argument passed to the request ι,
– the future identifier fi which will be associated to the result.

R is a list of current requests: R ::= [mi; ιi; fi]i∈K where K ⊆ N.
:: denotes the concatenation of lists, and appending an element to a list.

140 D. Caromel, L. Henrio, and E. Madelaine

α
β

Future to a
pending request

Reference to an
active object

f

f2

f3

Future corresponding
to the current termFuture

Future values

Request
parameter

The storeσβ

aβ

Active object

foo

current term

Legend:

Active object Active object reference

Future reference

Passive object

Current term

Local reference
Request parameter

foo Request on method foo

Current
request

Pending
requests

Future
value

Activity

α

Fig. 4. Example of an ASP parallel configuration

An activity is simply formed of a name (α), a store (σα), and a request list
containing finished, current, and pending requests (F · C · R) denoted by S.

S ::= F · C ·R

A parallel configuration is a set of activities:

P, Q ::= α[Sα; σα] ‖ β[Sβ ; σβ]‖ . . .

Each future identifier is unique: it either belongs to the computed, current, or
pending requests of a unique activity. Activities are unique too: there is a single
activity with a given name. In practice the unicity of future (resp. activity)
identifiers can be ensured by choosing as identifier a composition of the creator
of the future2 (resp. of the activity) with a unique local identifier. Note that
activity names and future identifiers only appear at runtime and are used as
references to activities or futures, e.g., for sending a request to an activity or
receiving a reply from a future.

Configurations are identified modulo the reordering of activities. Figure 4
shows a parallel configuration of the ASP calculus. It shows two activities
2 To better identify the request one might rather choose the identifier of the activity

that treats the request.

Active Objects and Distributed Components: Theory and Implementation 141

α and β, bold ellipses are active objects, squares at the bottom are the requests
(S), the bold square being the current requests (C), on the left are computed
futures (F), and on the right pending requests (R). Future references are dia-
monds (and dotted arrows), whereas activity references are bold arrows, simple
arrows are local references.

3.4 Contexts

Reduction contexts are expressions with a single hole (•) expressing the part in
the term where the reduction occurs. We define three reduction contexts:

– one that gives the reduction point in a sequential term,
– one that picks one of the futures an activity has computed, abstracting away

the rest of the request list,
– one that gives the (unique) reduction point in the request list.

We first define sequential reduction contexts, allowing to pick the part of a
term that is to be evaluated: they simply express a left-to-right call by value
evaluation:

R ::= • | [li = ιi, lk = R, lk′ = bk′ ; mj = ς(xj , yj)aj]
i∈1..k−1,k′∈k+1..n
j∈1..m

|R.m |R.m(b) | ι.m(R) |R.l := b | ι.l := R| clone(R)| Active(R, m)

A future value context extracts one future value, corresponding to a finished
request:

Rf ::= F :: • ::F ′ · C ·R
A parallel reduction context extracts the current request actually served.

Rc ::= F · (R→f)::C · R

Actually, several requests are being served at the same moment, but only
one is active. More precisely, when during the service of a request, a Serve
primitive is encountered, the service is interrupted, and is stored and a new
request, specified by the Serve primitive is served. The former current request
will be restored when the new current one will be finished. The single point of
reduction inside an activity is Rc.

We denote byR[a] the term obtained by syntactically replacing the hole in the
reduction context R, by the term a; note that this substitution allows variables
to be captured by a binder. Similarly, we use Rf [f � ι], and Rc[a].

3.5 Sequential Semantics

Table 1 recalls the semantics of the impς-calculus, in the form of a small-step
operational semantics.

It has been slightly modified to take into account the second parameter of
methods. The semantics do not have to take into account reduction contexts
because they will already be used in the parallel semantics.

142 D. Caromel, L. Henrio, and E. Madelaine

Table 1. Sequential reduction

storealloc:
o is of the form [li = ιi;mj = ς(xj , yj)aj]i∈1..n

j∈1..m] ι �∈ dom(σ)

(o, σ) →S (ι, {ι → o} :: σ)

field:
σ(ι) = [li = ιi;mj = ς(xj , yj)aj]i∈1..n

j∈1..m k ∈ 1..n

(ι.lk, σ) →S (ιk, σ)

invoke:
σ(ι) = [li = ιi;mj = ς(xj, yj)aj]i∈1..n

j∈1..m k ∈ 1..m

(ι.mk(ι′), σ) →S (ak{{xk ← ι, yk ← ι′}}, σ)

update:
σ(ι) = [li = ιi;mj = ς(xj , yj)aj]i∈1..n

j∈1..m k ∈ 1..n
o′ = [li = ιi; lk = ι′; lk′ = ιk′ ;mj = ς(xj , yj)aj]i∈1..k−1,k′

∈k+1..n
j∈1..m

(ι.lk := ι′, σ) →S (ι, {ι → o′} + σ)

clone:
ι′ �∈ dom(σ)

(clone(ι), σ) →S (ι′, {ι′ → σ(ι)} :: σ)

3.6 An Operational Semantics for the ASP Calculus

This section defines the semantics of the ASP calculus. The rules of Table 2
present the formal operational small step semantics of ASP, we explain briefly
each of the rules below:

local performs a local reduction: each activity can perform a step of reduction
as specified in Table 1, except that a reference to a future cannot be cloned.

newact creates a new activity. m is the service method (first method executed).
For simplicity, and because it is not restrictive in practice, m should have no
argument. One could specify for example a FIFO service policy as follows:

Repeat(a) � [repeat = ς(x)a; x.repeat()].repeat()
FifoService � Repeat(Serve(M))

whereM is the set of all method labels defined by the concerned active object.
Note that the reference to the created activity (γ) is stored in a new location,
and thus σα(ι) is still a passive object.

request sends a new request to an active object. It sends a deep copy of the
parameter (at location ι′), and associates a new future f to this request.serve

serves a new request. The current reduction is stopped and stored into the list

Active Objects and Distributed Components: Theory and Implementation 143

Table 2. Parallel reduction(unused variables are grayed)

local:
(a, σ) →S (a′, σ′) �ι,

`
a = clone(ι) ∧ σ(ι) = fi

´
α

ˆ
Rc[a], σ

˜
‖ P −→ α

ˆ
Rc[a′]; σ′

˜
‖ P

newact:
γ fresh activity ι′ �∈dom(σ) σ′ ={ι′ �→γ}::σ σγ=Copy&Merge(σ, ι ; ∅, ι0)

α
ˆ
Rc[Active(ι,m)];σ

˜
‖ P −→ α

ˆ
Rc[ι′];σ′

˜
‖ γ

ˆ
∅ · (ι0.m([])�∅) · ∅; σγ

˜
‖ P

request:
σα(ι) = β ι′′ �∈ dom(σβ) f fresh future ιf �∈ dom(σα)

σ′

β = Copy&Merge(σα, ι
′ ; σβ , ι

′′) σ′

α = {ιf �→f}::σα

α
ˆ
Rc[ι.m(ι′)];σα̃ ‖ β

ˆ
S;σβ

˜
‖ P −→ α

ˆ
Rc[ιf]; σ′

α

˜
‖ β

ˆ
S::[m; ι′′; f]; σ′

β

˜
‖ P

serve:
m ∈ M ∀[m′; ι′; fl] ∈ R, m′ /∈ M

α
ˆ
F · R[Serve(M)]�fi::C ·R::[m; ι; fk]::R′;σ

˜
‖ P −→

α
ˆ
F · ι0.m(ι)�fk::R[[]]�fi::C · R::R′;σ

˜
‖ P

endservice:
ι′ �∈ dom(σ) σ′ = Copy&Merge(σ, ι ; σ, ι′)

α
ˆ
F · ι�f ::C · R;σ

˜
‖ P −→ α

ˆ
F ::f� ι · C · R;σ′

˜
‖ P

reply:
σα(ι) = f σ′

α = Copy&Merge(σβ, ιf ; σα, ι)

α
ˆ
S;σα

˜
‖ β

ˆ
Rf [f � ιf]; σβ

˜
‖ P −→ α

ˆ
S;σ′

α

˜
‖ β

ˆ
Rf [f � ιf];σβ

˜
‖ P

request where α = β:

σ(ι)=α ι′′, ιf �∈ dom(σ) f fresh future
σ′ =Copy&Merge(σ, ι′ ; {ιf �→f}::σ, ι′′)

α
ˆ
Rc[ι.m(ι′)];σ

˜
‖ P −→ α

ˆ
Rc[ιf]::[m; ι′′; f]; σ′

˜
‖ P

reply where α = β:
σ(ι) = f σ′ = Copy&Merge(σ, ιf ; σ, ι)

α
ˆ
Rf [f � ιf];σ

˜
‖ P −→ α

ˆ
Rf [f � ιf]; σ′

˜
‖ P

of current requests (future fi, expression R[[]]), and the oldest request satisfying
the labels specified in M is treated (future fk, method m). If no such request is
found, the activity is stuck until a matching request is found in the request queue.

endservice occurs when the evaluation of a request is finished. It associates
in the list of computed results, the current request response to the current future.

144 D. Caromel, L. Henrio, and E. Madelaine

The evaluation that had been stopped at the beginning of the request is auto-
matically restored (the second current request becomes first).

reply updates the value of a future. It can occur at any time provided an
activity refers to a future for which the value has been computed by an(other)
activity.

Note that futures remain in the F list, even when all the references to the future
have been updated. No notion of garbage collection has been specified for futures
in ASP, but it would be easy to adapt existing garbage collection techniques
here.

3.7 Properties of the ASP Calculus

Overall, the ASP calculus provides a framework for understanding asynchronous
distributed objects, and expressing the various potential implementation strate-
gies that can be implemented in an active object middleware like ProActive. It
allows the developer to study which implementation choices can be made without
compromising the strong properties of determinacy ensured by the model.

Here we call determinism the fact that a program will always produce the same
result (the same configuration), that is no concurrent actions have an impact on
the program behaviour. More than determinism properties, our objective is to
clearly identify the interferences that can be source of non-determinism. Conse-
quently and more generally, we call partial confluence properties, the properties
stating in which conditions two executions of the same programs will lead to the
same result, i.e., to the same configuration. Determinism relies on a notion of
equality between configurations: configurations are identified modulo alpha con-
version3, and modulo the dereferencing of futures already calculated (roughly,
the same configuration before and after the application of a reply rule is consid-
ered as identical).

Here are the main properties that were disclosed thanks to the formal ASP
model:

– future updates can occur at any time, in any order, as such the delivery of
replies can be implemented with an infinity of strategies, in any order,

– the execution of a system is characterised by the order of request senders.

Those properties are further used in order to characterise several sets of de-
terministic types of programs:

– determinacy of programs based on a dynamic property: a non-deterministic
program is a program which can lead to a point where two activities can
send at the same time a request to the same third activity;

– determinacy of programs communicating over trees (i.e., programs for which
the dependence between activities form a tree).

3 Alpha-conversion is applied on futures and variables, and activity names are chosen
deterministically to simplify the correct formulation of confluence properties.

Active Objects and Distributed Components: Theory and Implementation 145

The determinism properties clearly result from the absence of shared memory
between active objects, and the single-threaded nature of ASP. The interested
reader could refer to [16] for a detailed descriptions of ASP properties, details
on the equivalence relation on ASP terms, and some proofs.

The difficulty when trying to prove properties on specific programs is to stat-
ically approximate activities, method calls, and potential services. Shifting to
components will provide a statically defined topology: the component structure
defines the distribution/concurrency structure.

These properties have massively been used in the development of the ProAc-
tive library, for example when implementing future update strategies – as futures
can be updated at any time, or fault-tolerance mechanism – as the above prop-
erties give a minimal characterisation of a given execution. Globally, the impact
of the formal definition and proven properties of the ASP calculus upon the real
implementation of the ProActive middleware has proven to be very strong, and
influenced both correctness and efficiency.

4 Components

We would like to define a component in a broad sense as:

a software module, with a standardised description of what it needs
and provides, its accepted parameters for configuration, and to be ma-
nipulated by tools for composition and deployment.

The GCM (Grid Component Model) has been defined in [11,30] by the Core-
Grid European Network of Excellence. The GCM is defined as an extension of the
Fractal [12] component model, and provides the same basic structure (Figure 5).
The main additions that have been made to Fractal in the GCM are 1-to-many

Fig. 5. A Fractal component

146 D. Caromel, L. Henrio, and E. Madelaine

and many-to-1 communications, distribution, adaptive component control, and
autonomic support.

A reference implementation of the GCM has been implemented in ProActive,
overall the components depict the following characteristics:

– Primitive components featuring server and client interfaces,
– Composite components, allowing the hierarchical composition of primitive

and composite components to build large and structured configurations,
– Interface specification including external languages such as: Java Interface,

C++ .h, Corba IDL, WSDL, etc.
– Specification of Grid aspects such as: parallelism, distribution, virtual nodes,

performance needs, QoS, etc.
– Multicast and Gathercast interfaces to manipulate parallel behaviours at the

level of interface specification rather than hidden in the code,
– Component controllers, i.e., consider a controller as a sub-component, to

provide dynamic adaptation of the component control,
– Autonomic components, the ability for a component to adapt to situations

without relying on the outside.

Moreover, the GCM favors asynchronous method calls. By default, commu-
nications to the server interfaces are supposed to be non-blocking, as proposed
in the ProActive implementation. Even in the case of methods returning non-
void values, the caller is not supposed to be blocked during the method service.
Together with the first-class futures, described above in the framework of ProAc-
tive and ASP, it provides the capacity to build both structured and asynchronous
component configurations.

In the ProActive/GCM implementation, a primitive component is an active
object together with passive ones, meaning that the component is the unit of
concurrency and distribution. Indeed, as identified before, one of the difficulties
towards deterministic distributed programs was to statically approximate activi-
ties, topologies, distributed method calls, and services. Shifting to configurations
defined through components, and providing a statically defined topology, makes
this static approximation a lot easier, very precise (e.g., activities and topolo-
gies are known exactly), and very practical. Indeed, the programmer has usually
a clear idea about his program topology, therefore trying to discover it makes
things unnecessarily complex and non-decidable. Instead of using the topology
provided by the programmer, we take a stand to help the programmer achieve
what he is willing to do, rather than trying to tell him from scratch the proper-
ties of his programs. Concurrency and behaviour are much easier to analyse as
the distribution and remote communications are explicit: distribution is given
by the component structures, and remote communications are exactly the ones
following component bindings. Such explicitly-defined topology and dependen-
cies also help a lot when analysing the behaviour of a component in isolation
from its environment, and enhance the reusability of components.

Using the properties proved on the ASP calculus, it becomes possible to iden-
tify deterministic components in practice, first based on the detection of deter-
ministic primitive components, further with the characterisation of deterministic

Active Objects and Distributed Components: Theory and Implementation 147

composition of primitive components. Overall, components provide a convenient
abstraction for statically ensuring determinism.

5 VerCors: Behavioural Specification of Distributed
Components

The effort described in [9,10] aims at behavioural specification and verification of
asynchronous distributed systems; particularly, it deals with asynchronous dis-
tributed components based on active objects. That includes dealing with ProAc-
tive/GCM components as defined in the section above, specifying the structure
and the visible behaviour of components, and generating behavioural models.
The objective is then to check properties on this behaviour, using model-checking
techniques.

The behavioural model generation is based on compositional modelling of
primitive components using Parameterized Networks of Labelled Transition Sys-
tems (pNets [7,6]). pNets is a new model, created as a low-level formalism for
expressing behavioural semantics of distributed systems, and as a compact and
powerful internal format for verification frameworks. It has a hierarchical struc-
ture, where basic behaviours are (parameterized) labelled transition systems,
and composition of subsystems is expressed by generic constructions in term of
(parameterized) synchronisation vectors. Parameters are used to express value
passing messages, but also parameterized topologies of systems. As such the
pNets model unifies and extends the value-passing CCS of Ingolfsdottir and
Lin [28], and the synchronisation networks of Arnold and Nivat [4]. In [6], we
have shown how to use pNets for building models of active objects and of dis-
tributed components. The models define abstractions for the domains of the
application parameters. This way, the models are suitable for use with various
model-checking engines, either directly with engines able to deal with parame-
terized systems, or with finite-state model-checkers. The latter requires another
abstraction of parameters, in which we define finite partitions of the domains.
through another abstraction, using finite partitions of parameter domains, per-
mitting the generation of finite state-spaces.

In a nutshell, while relying heavily on the results from the ASP formalisation,
the approach adopted to achieve successful specification is rather practical. We
use several sources of information from which we build the behavioural mod-
els: architecture described through ADL (Architecture Description Language)
or through graphical diagrams, and behaviour using State Machine diagrams or
static analysis of program source code.

The key features and properties coming from ASP that we model, and use, in
the behavioural specification framework are:

– the synchronisation by wait-by-Necessity,
– the active objects without shared memory,
– the lack of user- and code-level concurrency and parallelism,

148 D. Caromel, L. Henrio, and E. Madelaine

Fig. 6. VerCors Component Editor

– the atomicity of the rendez-vous protocol,
– the insensitiveness of programs w.r.t. distribution/location of activities

within address spaces (JVMs).

On the practical side, we are building a specification and verification toolset
for Fractal/GCM component systems called VerCors [8], that is freely available
for research purposes in our website4, and that is able to handle mid-size ex-
amples. For example in [13] we show how to find behavioural problems, and
how to prove properties for a distributed cashdesks system built from over 15
components in 4 or 5 hierarchical layers, with a dozen parameter variables. At
specification level, the VerCors platform includes diagram editors (Figure 6)
for the architectural and behavioural definition of components [3]. From these
diagrams, we build pNet models reflecting the behavioural semantics of the com-
ponents in terms of communication between components; this includes control-
and data-flow within components. This approach this allows us to build and to
analyse behaviours of many levels of the ProActive/GCM framework; from ac-
tive objects and hierarchical components, to non-functional features (deployment
and reconfiguration) and group communication.

The model-checking part is done using existing and efficient engines (currently
from the CADP toolset [22]). We generate explicit state-spaces both in a dis-
tributed and in a by-necessity (on-the-fly) manner. The properties addressed are
temporal logic formulas, potentially including all safety properties in the regular
μ-calculus. Simpler properties are directly accessible to the non-specialist user,
4 http://www.inria.fr/sophia/oasis/index.php?page=vercors

Active Objects and Distributed Components: Theory and Implementation 149

including deadlock analyses, or reachability of predefined sets of events, typically
deployment errors.

We are currently in the process of designing a specification language called
Java Distributed Components (JDC)[15]. From JDC, we will allow the generation
of both the behavioural models and the skeleton code of the implementation of
components. This ensures, by construction, the correctness of the specification
relatively to the implementation, and relieves us partially from the imprecision
entailed by static analysis techniques.

We are also working on the inclusion of first class futures [14], and on the
implementation in the platform of some specific infinite-state model-checking
algorithms.

6 Conclusion: Practice in the ProActive Middleware

The ProActive middleware proposes a full-fledged environment with the pro-
gramming of primitive code, the composition of such codes into composite com-
ponents, the deployment on various practical infrastructures, and Graphical User
Interface (Eclipse Plugin) to help programming, debugging and testing.

One of ProActive’s key features is the combination of systematic asynchronous
method-call, together with wait-by-necessity and first-class futures. At the level
of components, it translates into the strong properties of large assemblage not
being blocked by synchronous calls.

Within the GCM, collective operations, so far achieved at the level of pro-
gramming, are being abstracted into elements of the interface. This shift first
represents an achievement in terms of readability, and reuse. Second, functional
methods can be used in various contexts, standard non-collective code and at
the same time in powerful group interactions. Moreover, it also achieves an im-
portant rising with respect to the level of abstraction used by the programmer:
interface versus the old API style for controlling parallelism, multicasting and
synchronisations. Finally, it permits typing of collective behaviour.

From an historical stand, modules then objects then components, components
could be viewed as moving backward in programming evolution. We are moving
to a more static topology, while we have shifted from module (static assemblage)
to objects where the inter-connection between pieces of code is rather purely
dynamic. With components, the interconnection is static, and can only move
back to dynamicity using controllers at execution, like binding controllers. In
other words, only some specific entities of the architecture authorises to master
dynamicity. From this point of view, components can be viewed as dynamicity
under control!

Why does it scale? Thanks to a few key features like typed, asynchronous
(connection-less) communications – somehow RMI+JMS unified, with messages
rather than long-living interactions.

Why does it compose? First, because it scales! Indeed one would not be
able to scale up to very large component configurations without the benefits

150 D. Caromel, L. Henrio, and E. Madelaine

of asynchronous method invocations. Second, the model composes because of
its typed nature: remote method invocations typed with interfaces. One would
not be able to check large systems without some of the guaranties given by a
static type system. The absence of unstructured call-backs and ports makes a
tremendous difference with respect to verifying a component system.

As much as possible, we try to use static relations provided by component
configurations, avoiding a great deal of static analysis. We believe dynamicity
has to be mastered in the future with appropriate controllers, such as binding
controllers. As an envisioned perspective, specific properties demonstrated on
such controllers can be further used into a dynamically evolving system to prove
global properties needed in complex, adaptive reconfigurations.

To conclude, the strategy embraced for verifying real applications is to let
the user provide as much information as possible rather than trying to discover
non-decidable facts about the programs. We believe that it is impossible to tell
the user what he is doing, but instead it is possible to verify automatically on
his behalf what he thinks he is doing. Rather checking than guessing what the
user is doing, that could summarise our current approach.

This paper presented ASP, a formal model to check general properties at the
language level, VerCors, a behavioural specification platform allowing to model-
check properties on specific applications, and ProActive/GCM, a middleware
for active objects and distributed component implementing the corresponding
programming model and benefiting from those formal specifications and verifi-
cations. Globally, our objective is to provide safe and efficient distributed hier-
archical components that are easy to program, and to be able to guarantee the
behaviour both of the middleware, and of the applications.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, New York (1996)
2. Agha, G.: An overview of actor languages. ACM SIGPLAN Notices 21(10), 58–67

(1986)
3. Ahumada, S., Apvrille, L., Barros, T., Cansado, A., Madelaine, E., Salageanu,

E.: Specifying Fractal and GCM Components With UML. In: Proc. of the XXVI
International Conference of the Chilean Computer Science Society (SCCC 2007).
IEEE, Los Alamitos (2007)

4. Arnold, A.: Finite transition systems. Semantics of communicating sytems.
Prentice-Hall, Englewood Cliffs (1994)

5. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Composing, Deploying, for the Grid. In: Grid Computing: Software
Environments and Tools. Springer, Heidelberg (2005)

6. Barros, T., Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural mod-
els for distributed Fractal components. Annals of Telecommunications (to appear,
2008); Research Report INRIA RR-6491, https://hal.inria.fr/inria-00268965

7. Barros, T., Boulifa, R., Madelaine, E.: Parameterized models for distributed java
objects. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235,
pp. 43–60. Springer, Heidelberg (2004)

Active Objects and Distributed Components: Theory and Implementation 151

8. Barros, T., Cansado, A., Madelaine, E., Rivera, M.: Model checking distributed
components: The Vercors platform. In: 3rd workshop on Formal Aspects of Com-
ponent Systems, Prague, Czech Republic, ENTCS (September 2006)

9. Barros, T., Henrio, L., Madelaine, E.: Behavioural models for hierarchical compo-
nents. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 154–168. Springer,
Heidelberg (2005)

10. Barros, T., Henrio, L., Madelaine, E.: Verification of distributed hierarchical com-
ponents. In: International Workshop on Formal Aspects of Component Software
(FACS 2005). Macao, ENTCS (October 2005)

11. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: Gcm: A grid extension to fractal for autonomous distributed components. An-
nals of Telecommunications (to appear, 2008)

12. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal
component model and its support in java. Softw., Pract. Exper. 36(11-12), 1257–
1284 (2006)

13. Cansado, A., Caromel, D., Henrio, L., Madelaine, E., Rivera, M., Salageanu,
E.: A Specification Language for Distributed Components Implemented in
GCM/ProActive. In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.)
The Common Component Modeling Example. LNCS, vol. 5153. Springer, Heidel-
berg (2008), http://agrausch.informatik.uni-kl.de/CoCoME

14. Cansado, A., Henrio, L., Madelaine, E.: Transparent First-class Futures and Dis-
tributed Components. In: 5th workshop on Formal Aspects of Component Systems,
Malaga, Spain, ENTCS (September 2008)

15. Cansado, A., Henrio, L., Madelaine, E.: Unifying Architectural and Behavioural
Specifications of Distributed Components. In: 5rd workshop on Formal Aspects of
Component Systems, Malaga, Spain, ENTCS (September 2008)

16. Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer, Heidelberg
(2005)

17. Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pp. 123–134. ACM Press, New York (2004)

18. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOPSLA 2005: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems, languages, and applications,
pp. 519–538. ACM, New York (2005)

19. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

20. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming in AmbientTalk. In: Thomas, D. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 230–254. Springer, Heidelberg (2006)

21. Flanagan, C., Felleisen, M.: The semantics of future and an application. Journal
of Functional Programming 9(1), 1–31 (1999)

22. Garavel, H., Lang, F., Mateescu, R.: An overview of CADP 2001. European Asso-
ciation for Software Science and Technology (EASST) Newsletter 4, 13–24 (2002)

23. Gordon, A.D., Hankin, P.D., Lassen, S.B.: Compilation and equivalence of im-
perative objects. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science 17, 74–87 (1997)

152 D. Caromel, L. Henrio, and E. Madelaine

24. Halstead Jr., R.H.: Multilisp: A language for concurrent symbolic computation.
ACM Transactions on Programming Languages and Systems (TOPLAS) 7(4), 501–
538 (1985)

25. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoretical Computer Science 365(1–2), 23–66 (2006)

26. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing 1974: Proceedings of the IFIP Congress, pp.
471–475. North-Holland, New York (1974)

27. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In: Con-
ference Record of the 23rd ACM SIGACT-SIGPLAN (POPL 1996), St. Petersburg,
Florida, January 21–24, pp. 358–371. ACM Press, New York (1996)

28. Lin, H.: Symbolic transition graph with assignment. In: Montanari, U., Sassone,
V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 26–29. Springer, Heidelberg (1996)

29. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus with
futures. Theoretical Computer Science 364(3), 338–356 (2006)

30. OASIS team and other partners in the CoreGRID Programming Model Virtual
Institute. Innovative features of gcm (with sample case studies): a technical survey.
Technical report, Deliverable D.PM.07 (September 2007)

31. Yonezawa, A., Shibayama, E., Takada, T., Honda, Y.: Modelling and programming
in an object-oriented concurrent language ABCL/1. In: Yonezawa, A., Tokoro, M.
(eds.) Object-Oriented Concurrent Programming, pp. 55–89. MIT Press, Cam-
bridge (1987)

Self Management for
Large-Scale Distributed Systems:

An Overview of the SELFMAN Project

Peter Van Roy1, Seif Haridi2, Alexander Reinefeld3, Jean-Bernard Stefani4,
Roland Yap5, and Thierry Coupaye6

1 Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
2 Royal Institute of Technology (KTH), Stockholm, Sweden

3 Konrad-Zuse-Zentrum für Informationstechnik (ZIB), Berlin, Germany
4 Institut National de Recherche en Informatique et Automatique (INRIA),

Grenoble, France
5 National University of Singapore (NUS)

6 France Télécom Recherche et Développement, Grenoble, France

Abstract. As Internet applications become larger and more complex,
the task of managing them becomes overwhelming. “Abnormal” events
such as software updates, failures, attacks, and hotspots become frequent.
The SELFMAN project is tackling this problem by combining two tech-
nologies, namely structured overlay networks and advanced component
models, to make the system self managing. Structured overlay networks
(SONs) developed out of peer-to-peer systems and provide robustness,
scalability, communication guarantees, and efficiency. Component models
provide the framework to extend the self-managing properties of SONs
over the whole system. SELFMAN is building a self-managing trans-
actional storage and using it for two application demonstrators: a dis-
tributed Wiki and an on-demand media streaming service. This paper
provides an introduction and motivation for the ideas underlying SELF-
MAN and a snapshot of its contributions midway through the project.
We explain our methodology for building self-managing systems as net-
works of interacting feedback loops. We then summarize the work we
have done to make SONs a practical basis for our architecture: using an
advanced component model, handling network partitions, handling fail-
ure suspicions, and doing range queries with load balancing. Finally, we
show the design of a self-managing transactional storage on a SON.

1 Introduction

It is now possible to build applications of a higher level of complexity than ever
before, because the Internet has reached a higher level of reliability and scale
than ever before using computing nodes that are more powerful than ever before.
Applications that take advantage of this complexity cannot be managed directly
by human beings; they are just too complicated. In order to build them, they
need to manage themselves. In that way, human beings only need to manage the
high-level policies.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 153–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 P. Van Roy et al.

The SELFMAN project is tackling one part of this application space: large-
scale distributed systems based on structured overlay networks. Overlay net-
works are already self managing in the lower layers: they self organize around
failures to provide efficient and reliable routing and lookup. We are building a
service architecture on top of the overlay network using an advanced component
model. To make it self managing, the service architecture is designed as a set
of interacting feedback loops. We are building one major service, a distributed
transactional storage, that we are using to build two application demonstrators:
a distributed Wiki and a media streaming application.

In the rest of this paper, we motivate the need for self-managing systems and
we give an overview of our ideas and contributions. The paper is structured as
follows:

– Section 2: Motivation for self-managing systems. We give a brief history
of system theory and cybernetics. We then explain why programs must be
structured as systems of interacting feedback loops.

– Section 3: Presentation of the SELFMAN project. We present SELFMAN’s
decentralized service architecture and its demonstrator applications.

– Section 4: Understanding and designing feedback structures. We explain
some techniques for analyzing feedback structures and we give two realistic
examples taken from human biology: the human respiratory system and the
human endocrine system. We infer some design rules for feedback structures
and present a tentative architecture and methodology for building them.

– Section 5: Introduction to structured overlay networks. We explain the basic
ideas of SONs and the low-level self-management operations they provide.
We then explain how they need to be extended for self-managing systems.
We have extended them in three directions: to handle network partitions,
failure suspicions, and range queries.

– Section 6: The transaction service. From our application scenarios, we have
concluded that transactional storage is a key service for building self-managing
applications. We are building the transaction service on top of a SON by us-
ing symmetric replication for the storage and a modified version of the Paxos
uniform consensus algorithm for nonblocking atomic commit.

– Section 7: Conclusions and further work. We recapitulate the progress that
has been made midway through the project and summarize what remains to
be done.

2 Motivation

2.1 Software Complexity

Software is fragile. A single bit error can cause a catastrophe. Hardware and
operating systems have been reliable enough in the past so that this has not
unduly hampered the quantity of software written. Hardware is verified to a high
degree. It is much more reliable than software. Good operating systems provide
strong encapsulation at their cores (virtual memory, processes) and this has been

Self Management for Large-Scale Distributed Systems 155

polished over many years. New techniques in fault tolerance (e.g., distributed
algorithms, Erlang) and in programming (e.g., structured programming, object-
oriented programming, more recent methodologies) have arguably kept the pace
so far. In fact we are in a situation similar to the Red Queen in Through the
Looking-Glass: running as hard as we can to stay in the same place [7].

In our view, the next major increase in software complexity is now upon
us. The Internet now has sufficient bandwidth and reliability to support large
distributed applications. The number of devices connected to the Internet has in-
creased exponentially since the early 1980s and this is continuing. The computing
power of connected devices is continuously increasing. Many new applications are
appearing: file sharing (Napster, Gnutella, Morpheus, Freenet, BitTorrent, etc.),
information sharing (YouTube, Flickr, etc.), social networks (LinkedIn, Face-
Book, etc.), collaborative tools (Wikis, Skype, various Messengers), MMORPGs
(Massively Multiplayer On-line Role-Playing Games, such as World of Warcraft,
Dungeons & Dragons, etc.), on-line vendors (Amazon, eBay, PriceMinister, etc.),
research testbeds (SETI@home, PlanetLab, etc.), networked implementations of
value-added chains (e.g., in the banking industry). These applications act like
services. In particular, they are supposed to be long-lived. Their architectures
are a mix of client/server and peer-to-peer. The architectures are still rather
conservative: they do not take full advantage of the new possibilities.

The increase in complexity brings with it a host of problems that must be
overcome. For example, one problem is that software errors cannot be eliminated
[2,41]. We have to cope with them. There are many other problems: scale (large
numbers of independent nodes), partial failure (part of the system fails, the rest
does not), security (multiple security domains) [20], resource management (con-
flicting demands for limited resources), performance (harnessing multiple nodes
or spreading load), and global behavior (emergent behavior of the system as a
whole). Of all these problems, global behavior is particularly relevant because it
is often the primary reason that the system was built. Experiments show that
large networks exhibit global behavior that is not easily predicted by the behav-
iors of the individual nodes (e.g., the power grid [11]). An important question is
therefore how to design a system with a desired global behavior.

2.2 Self-managing Systems

What solution do we propose for building a complex software system that over-
comes these problems and that has a desired global behavior? For inspiration, we
go back fifty years, to the first work on cybernetics and system theory: designing
systems that regulate themselves [40,4,5]. A system is a set of components (called
subsystems) that are connected together to form a coherent whole. Can we pre-
dict the system’s behavior from its subsystems? Can we design a system with
desired behavior? These questions are particularly relevant for the distributed
systems we are interested in. No general theory has emerged yet from this work.
We do not intend to develop such a theory in SELFMAN. Our aim is narrower:
to build self-managing software systems. Such systems have a chance of cop-
ing with the new complexity. Our work is complementary to [19], which applies

156 P. Van Roy et al.

Fig. 1. Randomness versus complexity (taken from Weinberg [38])

control theory to design computing systems with single feedback loops. We are
interested in distributed systems with many interacting feedback loops.

Self management means that the system should be able to reconfigure it-
self to handle changes in its environment or its requirements without human
intervention but according to high-level management policies. In a sense, hu-
man intervention is lifted to the level of the policies. Typical self-management
operations include adding/removing nodes, performance tuning, failure detec-
tion & recovery, intrusion detection & recovery, software rejuvenation. It is clear
that self management exists at all levels of a system: the single node level, the
network routing level, the service level, and the application level. For large-scale
systems, environmental changes that require recovery by the system become nor-
mal and even frequent events. “Abnormal” events (such as failures) are normal
occurrences.

Figure 1 (taken from [38]) classifies systems according to two axes: their com-
plexity (the number of components and interactions) and the amount of random-
ness they contain (how unpredictable the system is). There are two shaded areas
that are understood by modern science: machines (organized simplicity) and ag-
gregates (unorganized complexity). The vast white area in the middle is poorly
understood. We extend the original figure of [38] to emphasize that computing
research is the vanguard of system theory: it is pushing inwards the boundaries
of the two shaded areas. Two subdisciplines of computing are particularly rele-
vant: programming research (developing complex programs) and computational
science (designing and simulating models). In SELFMAN we do both: we design
algorithms and architectures and we simulate the resulting systems in realistic
conditions.

Self Management for Large-Scale Distributed Systems 157

2.3 Designing Self-managing Software Systems

Designing self-managing systems means in large part to design systems with
feedback loops. Real life is filled with variations on the feedback principle. For
example:

– Bending a plastic ruler: a system with a single stable state. The ruler resists
with a force that increases with the degree of bending, until equilibrium is
reached (or until the ruler breaks: a change of phase). The ruler is a simple
self-adaptive system with a single feedback loop.

– A clothes pin: a system with one stable and one unstable state. It can be kept
temporarily in the unstable state by pinching. When the force is released, it
will go back to (a possibly more complex) stable state.

– A safety pin: a system with two stable states, open and closed. Within each
stable state the system is adaptive like the ruler. This is an example of a
feedback loop with management (see Section 4): the outer control (usually
a human being) chooses the stable state.

In general, anything that has continued existence is managed by a feedback loop.
Lack of feedback means that there is a runaway reaction (an explosion or an
implosion). This is true at all size scales, from the atomic to the astronomic. For
example, binding of atoms to form a molecule is governed by a negative feedback
loop: when perturbed it will return to equilibrium (or find another equilibrium).
A star at the end of its lifetime collapses until it finds a new stable state. If
there is no force to counteract the collapse, then the star collapses indefinitely
(at least, until it goes beyond our current understanding of physics). If the star
is too heavy to become a neutron star, then it becomes a black hole, which in
our current understanding is a singularity.

Most products of human civilization need an implicit management feedback
loop, called “maintenance”, done by a human. For example, changing lightbulbs,
replacing broken windows, or tanking a car. Each human mind is at the center of
an enormous number of these feedback loops. The human brain has a large ca-
pacity for creating such loops; they are called “habits” or “chores”. Most require
very little conscious awareness. Repetition has caused them to be programmed
into the brain below consciousness. However, if there are too many feedback
loops to manage then the brain is overloaded: the human complains that “life is
too complicated”! We can say that civilization advances by reducing the number
of feedback loops that have to be explicitly managed [39]. A dishwashing ma-
chine reduces the work of washing dishes, but it needs to be bought, filled and
emptied, maintained, replaced, etc. Is it worth it? Is the total effort reduced?

Software is in the same situation as other products of human civilization. In
the current state, most software products are very fragile: they require frequent
maintenance by a human. This is one of the purposes of SELFMAN: to reduce
this need for maintenance by designing feedback loops into the software. This
is a vast area of work; we have decided to restrict our efforts to large-scale
distributed systems based on structured overlay networks. Because they have
low-level self management built in, we consider them an ideal starting point.

158 P. Van Roy et al.

SONs have greatly matured since the first work in 2001 [36]; current SONs
are (almost) ready to be used in real systems. We are adapting them in two
directions for SELFMAN. First, we are extending the SON algorithms to handle
important network issues that are not handled in the SON literature, such as
network partitioning (see Section 5). Second, we are rebuilding the SON using
a component model [1]. This is needed because the SON algorithms themselves
have to be managed and updated while the SON is running, for example to add
new basic functionality such as load balancing or new routing algorithms. The
component model is also used for the other services we need for self management.

3 The SELFMAN Project

The SELFMAN project is building a decentralized service architecture and two
demonstrator applications that use the architecture. In this section we introduce
the service architecture and the demonstrator applications. We also mention two
important inspirations of SELFMAN: IBM’s Autonomic Computing Initiative
and the Chord system. Section 4.3 explains how the service architecture is used
as a basis for self management.

3.1 Decentralized Service Architecture

SELFMAN is based on the premise that there is a synergy between structured
overlay networks (SONs) and component models:

– SONs already provide low-level self-management abilities. We are reimple-
menting our SONs using a component model that adds lifecycle management
and hooks for supporting services. This makes the SON into a substrate for
building services.

– The component model is based on concurrent components and asynchronous
message passing. It uses the communication and storage abilities of the SON
to enable it to run in a distributed setting. Because the system may need
to update and reorganize itself, the components need introspection and re-
configuration abilities. We have designed a process calculus, Oz/K, that has
these abilities in a practical form [25].

This leads to a simple service architecture for decentralized systems: a SON lower
layer providing robust communication and routing services, extended with other
basic services and a transaction service. Applications are built on top of this
service architecture. The transaction service is important because many realistic
application scenarios need it (see Section 3.2).

The structured overlay network is the base. It provides guaranteed connectiv-
ity and fast routing in the face of random failures (Section 5). It does not protect
against malicious failures: our current design is limited in that we must consider
the network nodes as trusted. We are exploring how to modify the overlay net-
work to better address security issues; one possibility is to use a small-world
network [17]. We assume that untrusted clients may use the overlay as a basic

Self Management for Large-Scale Distributed Systems 159

service, but cannot modify its algorithms. See [45] for more on security for SONs
and its effect on SELFMAN.

We have designed and implemented robust SONs based on the DKS, Chord#,
and Tango protocols [13,32,8]. These implementations use different styles and
platforms, for example DKS is implemented in Java and uses locking algorithms
for node join and leave. Tango is implemented in Oz and uses asynchronous
algorithms for managing connectivity (Section 5.2). We have also designed an
algorithm for handling network partitions, which is an important failure mode for
structured overlay networks. Network partitioning is handled by a merge algo-
rithm that combines the partitioned subrings back into a single ring (Section 5.1).

The transaction service uses a replicated storage service for reliability (Sec-
tion 6) and implements optimistic concurrency control. It uses a modified version
of the Paxos consensus algorithm to implement nonblocking atomic commit [15].
This algorithm is based on a majority of correct nodes and eventual leader de-
tection (the so-called partially synchronous model). It should therefore be able
to cope with failures as they occur on the Internet.

Table 1. Requirements for selected self-managing applications

Application Self-* Properties Components Overlays Transactions
Distributed Wiki ++ + ++ ++

P2P Media Streaming ++ + ++
M2M Messaging ++ ++ + +

J2EE Application Server ++ ++ +

3.2 Demonstrator Applications and Guidelines

The design of the self-management architecture was guided by four application
scenarios [12]. Table 1 lists these scenarios and what they need in four areas:
self-* properties, components, overlay networks (decentralized execution), and
transactions. Two pluses (++) mean strong need and one plus (+) means some
need. An empty space means no need for that area. All these applications have
a strong need for self-management support. Out of these four scenarios, we are
building two application demonstrators:

– A distributed Wiki application (specified by the Zuse Institute Berlin). This
is a Wiki (a user-edited set of interlinked Web pages) that is distributed over
a SON using transactions with versioning and replication, supporting both
editing and search. Our prototype of this application won first prize in the
First IEEE International Scalable Computing Challenge (SCALE 2008) [30].

– An on-demand media streaming application (specified by Peerialism). This
application provides distributed live media streams with quality of service
to large and dynamically varying numbers of customers. Dynamic reconfig-
uration is needed to handle the fluctuating structure. This application will
become a product of the Peerialism company.

160 P. Van Roy et al.

The table shows two other applications that were initially considered but sub-
sequently dropped: a machine-to-machine messaging application (specified by
France Télécom) and a J2EE application server (specified by Bull). The messag-
ing application was dropped because of resource limitations in the project. The
application server was dropped because it does not have any requirements for
decentralized execution.

At the end of the project we will provide a set of guidelines and general
programming principles for building self-managing applications. One important
principle is that these applications are built as a set of interacting feedback
loops. A feedback loop, where part of the system is monitored and then used
to influence the system, is an important basic element for a system that can
adjust to its surroundings. As part of SELFMAN, we are carefully studying
how to build applications with feedback loops and how feedback interacts with
distribution.

3.3 Related Work

The SELFMAN project is related to two important areas of work:

– IBM’s Autonomic Computing Initiative [21]. This initiative started in 2001
and aims to reduce management costs by removing humans from low-level
system management loops. The role of humans is then to manage policy and
not to manage the mechanisms that implement it.

– Structured overlay network research. The most well-known SON is the Chord
system, published in 2001 [36]. Other important early systems are Ocean
Store and CAN. Inspired by popular peer-to-peer applications, these systems
led to much active research in SONs, which provide low-level self manage-
ment of routing, storage and smart lookup in large-scale distributed systems.

There is other important related work in ambient and adaptive computing and
in biophysics on how biological systems regulate and adapt themselves. For ex-
ample, [23] shows how systems consisting of two coupled feedback loops behave
in a biological setting.

4 Understanding and Designing Feedback Structures

A self-managing system consists of a large set of interacting feedback loops.
We want to understand how to build systems that consist of many interacting
feedback loops. Systems with one feedback loop are well understood, see, e.g.,
the book by Hellerstein et al [19], which shows how to design computing systems
with feedback control, for example to maximize throughput in Apache HTTP
servers, TCP communication, or multimedia streaming. The book focuses on
regulating with single feedback loops. Systems with many feedback loops are
quite different. To understand them, we start by doing explorations both in
analysis and synthesis: we study existing systems (e.g., biological systems) and
we design decentralized systems based on SONs.

Self Management for Large-Scale Distributed Systems 161

Subsystem

Monitoring agentActuating agent

Calculate corrective action

Fig. 2. A feedback loop

A feedback loop consists of three parts that interact with a subsystem (see
Figure 2): a monitoring agent, a correcting agent, and an actuating agent. The
agents and the subsystem are concurrent components that interact by sending
each other messages. We call them “agents” because they can be considered as
independent entities in the feedback loop; an agent can of course have subcom-
ponents. As explained in [37], feedback loops can interact in two ways:

– Stigmergy: two loops monitor and affect a common subsystem.
– Management: one loop directly controls another loop.

How can we design systems with many feedback loops that interact both through
stigmergy and management? We want to understand the rules of good feedback
design, in analogy to structured and object-oriented programming. Following
these rules should give us good designs without having to laboriously analyze
all possibilities. The rules can tell us what the global behavior is: whether the
system converges or diverges, whether it oscillates or behaves chaotically, and
what states it settles in.

We start by studying existing feedback loop structures that work well, in both
biological and software systems. We then try to understand these systems by
analysis and by simulation. Many feedback systems and feedback patterns have
been investigated in the literature [24,29,37]. Section 4.1 gives two nontrivial
examples from biology. Section 4.2 then presents one approach to analyze these
kinds of systems. Section 4.3 outlines a tentative methodology for designing
feedback structures. Finally, we address the issue of multiple users that may have
conflicting goals. Section 4.4 explains one approach, called collective intelligence,
to manage users with conflicting goals.

4.1 Feedback Structures in the Human Body

We investigate two feedback loop structures that exist in the human body: the
human respiratory system and the human endocrine system. We then make some
observations on the computational architecture of the human endocrine system.

Human respiratory system. Figure 3 (taken from [37]) shows the human respira-
tory system, which has four feedback loops: three are arranged in a management
hierarchy and the fourth interacts with them through stigmergy. This design
works quite well. Laryngospasm can temporarily interfere with the breathing
reflex, but after a few seconds it lets normal breathing take over. Conscious con-
trol can modulate the breathing reflex, but it cannot bypass it completely: in the

162 P. Van Roy et al.

Fig. 3. The human respiratory system

worst case, the person falls unconscious and normal breathing takes over. We
can already infer several design rules from this system: one loop managing an-
other is an example of data abstraction, loops can avoid interference by working
at different time scales, and since complex loops (such as conscious control) can
have an unpredictable effect (they can be either stabilizing or unstabilizing) it
is a good idea to have an outer “fail-safe” management loop. Conscious control
is a powerful problem solver but it needs to be held in check.

Human endocrine system. The respiratory system is a simple example of a feed-
back loop structure that works; we now give a more complex biological exam-
ple, namely the human endocrine system (shown in part in Figure 4) [10]. The
endocrine system regulates many quantities in the human body. It uses chem-
ical messengers called hormones which are secreted by specialized glands and
which exercise their action at a distance, using the blood stream as a diffusion
channel. By studying the endocrine system, we can obtain insights in how to
build large-scale self-regulating distributed systems. There are many feedback
loops and systems of interacting feedback loops in the endocrine system. It pro-
vides homeostasis (stability) and the ability to react properly to environmental
stresses. Much of the regulation is done by simple negative feedback loops. For
example, the glucose level in the blood stream is regulated by the hormones
glucagon and insulin. In the pancreas, A cells secrete glucagon and B cells se-
crete insulin. An increase in blood glucose level causes a decrease in the glucagon
concentration and an increase in the insulin concentration. These hormones act
on the liver, which releases glucose in the blood. Another example is the calcium

Self Management for Large-Scale Distributed Systems 163

(somatotropin)

Central
nervous
system

Hypothalamus
pituitary
Anterior

neuro−
hormones

Target
tissues

Adrenal
cortex

Gonads
(testes &
ovaries)

Thyroid

Liver &
other tissues

Target

Target

Target

tissues

tissues

tissues

triiodothyronine,

tropin
thyro−

gonado−
tropins

tropin
cortico−

hormones
pituitary

thyroxine

Target glands

factors

androgens

growth

estrogens,

hormones
(all) steroid

system
Immune

stresses
emotional

Physical and

(inhibit)

(inhibit)(inhibit)

Hormone secretion is inhibited by high local concentration
Hormones are consumed by target tissues
Carrier proteins in bloodstream buffer the hormone (reduce variations)
Estrogens increase and androgens decrease the carrier proteins
Many hormones have pulsed secretion, regulated by melatonin (pineal gland)

growth
hormone

Fig. 4. The hypothalamus-pituitary-target organ axis (in human endocrine system)

level in the blood, which is regulated by parathyroid hormone (parathormone)
and calcitonine, also in opposite directions, both of which act on the bone. The
pattern here is of two hormones that work in opposite directions (push-pull).
This pattern is explained by [23] as a kind of dual negative feedback loop (an
NN loop) that improves regulation.

More complex regulatory mechanisms exist in the endocrine system, e.g., the
hypothalamus-pituitary-target organ axis. Figure 4 shows its main parts as a
feedback structure. This figure is derived from the medical description in [10].
This system consists of two superimposed groups of negative feedback loops
(going through the target tissues and back to the hypothalamus and anterior pi-
tuitary), a third short negative loop (from the anterior pituitary to the hypotha-
lamus), and a fourth loop from the central nervous system. The hypothalamus
and anterior pituitary act as master controls for a large set of other regulatory
loops. Furthermore, the nervous system affects these loops through the hypotha-
lamus. This gives a time scale effect since the hormonal loops are slow and the
nervous system is fast. The nervous system’s input allows to react quickly to
external events.

Figure 4 shows only the main components and their interactions; there are
many more parts in the full system. There are more interacting loops, “short cir-
cuits”, special cases, interaction with other systems (nervous, immune). Negative
feedback is used for most loops, saturation (like in the Hill equations introduced
in Section 4.2) for others. Realistic feedback structures can be complex. Evolu-
tion is not always a parsimonious designer! The only criterion is that the system
has to work.

Computational architecture. We can say something about the computational ar-
chitecture of the human endocrine system. There are components and communi-
cation channels. Components can be both local (glands, organs, clumps of cells)
or global (diffuse, over large parts of the body). Channels can be point-to-point

164 P. Van Roy et al.

or broadcast. Point-to-point channels are fast, e.g., nerve fibers from the spinal
chord to the muscle tissue. Broadcast is slower, e.g., diffusion of a hormone
through the blood circulation. Buffering is used to reduce variations, e.g., the
carrier proteins in the bloodstream act as buffers by storing and releasing hor-
mones. Regulatory mechanisms can be modeled by interactions between compo-
nents and channels. Often there are intermediate links (like the carrier proteins).
Abstraction (e.g., encapsulation) is almost always approximate. This is an im-
portant difference with digital computers. Biological and social abstractions tend
to be leaky; computer abstractions tend not to be. This can have a large effect on
the design. In biological systems security is done through a separate mechanism
that is itself leaky, namely the human immune system. In computer systems, the
security architecture tries to be as nonleaky as possible, although this cannot be
perfect because of covert channels.

4.2 Analysis of Feedback Structures

How can we design a system with many interacting feedback loops, like the
systems of Figure 3 and 4? Mathematical analysis of interacting feedback loops
is quite complex, especially if they have nonlinear behavior. Can we simplify the
system to have linear or monotonic behavior? Even then, analysis is complex.
For example, Kim et al [23] analyze biological systems consisting of just two
feedback loops interacting through stigmergy. They admit that their analysis
only has limited validity because the coupled feedback loops they analyze are
parts of much larger sets of interacting feedback loops. Their analysis is based
on Matlab simulations using the Hill equations, first-order nonlinear differential
equations that model the time evolution and mutual interaction of molecular
concentrations. The Hill equations model nonlinear monotonic interaction with
saturation effects. We give a simple example using two molecular concentrations
X and Y . The equations have the following form (taken from [23]):

dY

dt
=

VX(X/KXY)H

1 + (X/KXY)H
−KdY Y + KbY

dX

dt
=

VY

1 + (Y/KY X)H
−KdXX + KbX

Here we assume that X activates Y and that Y inhibits X . The equations
model saturation (the concentration of a molecule has an upper limit) and ac-
tivation/inhibition with saturation (one molecule can affect another, up to a
point). We see that X and Y , when left on their own, will each asymptotically
approach a limit value with an exponentially decaying difference. Figure 5 shows
a simplified system where X activates Y but Y does not affect X . X has a dis-
crete step decrease at t0 and a continuous step increase at t1. Y follows these
changes with a delay and eventually saturates. The constants KdY and KbY

model saturation of Y (analogous constants exist for X). The constants VX ,
KXY , and H model the activation effect of X on Y . We see that activation and
inhibition have upper and lower limits.

Self Management for Large-Scale Distributed Systems 165

Fig. 5. Example of a biological system where X activates Y

By simulating these equations, Kim et al determine the effect of two coupled
feedback loops, each of which can be positive or negative.

– A positive loop is bistable or multistable; it is commonly used in biological
systems for decision making. Two coupled positive loops cause the decision
to be less affected by environmental perturbations: this is useful for biological
processes that are irreversible (such as mitosis, i.e., cell division).

– A negative loop reduces the effect of the environment; it is commonly used
in biological systems for homeostasis, i.e., to keep the biological system in
a stable state despite environmental changes. Negative loops can also show
oscillation because of the time delay between the output and input. Two cou-
pled negative loops can show stronger and more sustained oscillations than
a single loop. They can implement biological oscillations such as circadian
(daily) rhythms.

– A combined positive and negative loop can change its behavior depending
on how it is activated, to become more like a positive or more like a negative
loop. This is useful for regulation.

These results are interesting because they give insight into nonlinear monotonic
interaction with saturation. They can be used to design structures with two
coupled feedback loops.

Many patterns of feedback loops have been analyzed in this way. For example,
[29] shows how to model oscillations in biological systems by cycles of feedback
loops. The cycle consists of molecules where each molecule activates or inhibits
the next molecule in the cycle. If the total effect of the cycle is a negative feedback
then the cycle can give oscillations. If a cycle shows oscillatory behavior, then
its topology (the molecules involved and their interaction types) can be recon-
structed from the observed behavior. Many other patterns have been analyzed
as well in biological systems, but there is as yet no general theory for analyzing
these feedback structures. In SELFMAN we are interested in investigating the
kinds of equations that apply to software. In software, the feedback structures
may not follow the Hill equations. For example, they may not be monotonic.
Nevertheless, the Hill equations are a useful starting point because they model
saturation, which is an interesting form of nonlinearity.

166 P. Van Roy et al.

4.3 Feedback Structures for Self Management

From the examples given in the previous sections and elsewhere [4,5,37,38,40], we
can give a tentative methodology for designing feedback structures. We assume
that the overall architecture follows the decentralized structure given in Section
3.1: a set of loosely-coupled services built on top of a structured overlay network.
We build the feedback structure within this framework. We envisage the following
three layers for a self-managing system:

1. Components and events. This basic layer corresponds to the service architec-
ture of Section 3.1: services based on concurrent components that interact
through events [1,9]. There can be publish/subscribe events, where any com-
ponent that subscribes to a published type will receive the events. There is a
failure detection service that is eventually perfect with suspect and resume
events. There can be more sophisticated services, like the transaction service
mentioned in Section 3.1 and presented in more detail in Section 6.

2. Feedback loop support. This layer supports building feedback loops. This is
sufficient for cooperative systems. The two main services needed for feedback
loops are a pseudoreliable broadcast (for actuating) and a monitoring layer.
Pseudoreliable broadcast (called best-effort broadcast in [16]) guarantees
that nodes will receive the message if the originating node survives [13].
Monitoring detects both local and global properties. Global properties can
be calculated from local properties using a gossip algorithm [22] or using
belief propagation [42]. The broadcast and monitoring services are used to
implement self management abilities.

3. Multiple user support. This layer supports competitive systems (users with
conflicting goals). This is a general problem that requires a general solution.
If the users are independent, one possible approach is to use collective intel-
ligence techniques (see Section 4.4). These techniques guarantee that when
each user maximizes its private utility function, the global utility will also
be maximized. This approach does not work for Sybil attacks (where one
user appears as multiple users to the system). No general solution to Sybil
attacks is known. A survey of partial solutions is given in [45]. We cite two
of these solutions. One possibility is to validate the identities of users using
a trusted third party. Another possibility is to use algorithms designed for
a Byzantine failure model, which can handle multiple identical users up to
some upper bound. Both solutions give significant performance penalties.

We now discuss two important issues that affect feedback structures: simple
versus complex components (how much computation each component does) and
time scales (different time scales can be independent). A complex component
does nontrivial reasoning, but in most cases this reasoning is only valid in part
of the system’s state space and should be ignored in other parts. This affects
the architecture of the system. At different time scales, a system can behave
as separate systems. We can take advantage of this to improve the system’s
behavior.

Self Management for Large-Scale Distributed Systems 167

Complex components. A self-managing system consists of many different kinds
of components. Some of these can be quite simple (e.g., a thermostat). Others
can be quite complex (e.g., a human being or a chess program). We define a
component as complex if it can do nontrivial reasoning. Some examples are a
human user, a computer chess program, a compiler that translates a program
text, a search engine over a large data set, and a problem solver based on SAT
or constraint algorithms.

Whether or not a component is simple or complex can have a major effect
on the design of the feedback structure. For example, a complex component
may introduce instability that needs fail-safe protective mechanisms (see, e.g.,
the human respiratory system) or mechanisms to avoid “freeloaders” (see Sec-
tion 4.4). Many systems have both simple and complex components. We have
seen regulatory systems in the human body which may have some conscious
control in addition to simpler components. Other systems, called social systems,
have both human and software components. Many distributed applications (e.g.,
MMORPGs) are of this kind.

A complex component can radically affect the behavior of the system. If the
component is cooperative, it can stabilize an otherwise unstable system. If the
component is competitive, it can unstabilize an otherwise stable system. All four
combinations of {simple,complex} × {cooperative,competitive} appear in prac-
tice. With respect to stability, there is no essential difference between human
components and programmed complex components; both can introduce stabil-
ity and instability. Human components excel in adaptability (dynamic creation
of new feedback loops) and approximate pattern matching (recognizing new sit-
uations as variations of old ones). They are poor whenever a large amount of
precise calculation is needed. Programmed components can easily go beyond hu-
man intelligence in such areas. Whether or not a component can pass a Turing
test is irrelevant for the purposes of self management.

How do we design a system that contains complex components? If the com-
ponent is external to the designed system (e.g., human users connecting to a
system) then we must design defensively to limit the effect of the component on
the system’s behavior. We need to protect the system from the users and the
users from each other. For example, the techniques of collective intelligence can
be used, as explained in Section 4.4. Getting this right is not just an algorithmic
problem; it also requires social engineering such as incentive mechanisms [31].

If the component is inside the system, then it can improve system behavior but
fail-safe mechanisms must be built in to limit its effect. For example, conscious
control can improve the behavior of the human respiratory system, but it has a
fail-safe to avoid instability (see Section 4.1). In general, a complex component
will only enhance behavior in part of the system’s state space. The system must
make sure that the component cannot affect the system outside of this part.

Time scales. Feedback loops that work at different time scales can often be
considered to be completely independent of each other. That is, each loop is
sensitive to a particular frequency range of system behavior and these ranges are
often nonoverlapping. Wiener [40] gives an example of a human driver braking an

168 P. Van Roy et al.

automobile on a surface whose slipperiness is unknown. The human “tests” the
surface by small and quick braking attempts, which allows to infer whether the
surface is slippery or not. The human then uses this information to modify how to
brake the car. This technique uses a loop at a short time scale to gain information
about the environment, which is then used to improve the performance at a long
time scale.

4.4 Managing Multiple Users through Collective Intelligence

Large systems often have multiple users with conflicting goals. One promising
technique to handle this situation is called collective intelligence [43,44]. It can
give good results when the users are independent (no Sybil attacks or collusion).
The basic question is how to get selfish agents to work together for the common
good. Let us define the problem more precisely. We have a system that is used
by a set of agents. The system (called a “collective” in this context) has a
global utility function that measures its overall performance. The agents are
selfish: each has a private utility function that it tries to maximize. The system’s
designers define the reward (the increment in private utility) given to each of the
agent’s actions. The agents choose their actions freely within the system. The
overall goal is that agents acting to maximize their private utilities should also
maximize the global utility. There is no other mechanism to force cooperation.
This is in fact how society is organized. For example, employees act to maximize
their salaries and work satisfaction and this should benefit the company.

A well-known example of collective intelligence is the El Farol bar problem
[3], which we briefly summarize. People go to El Farol once a week to have fun.
Each person picks which night to attend the bar. If the bar is too crowded or
too empty it is no fun. Otherwise, they have fun (receive a reward). Each person
makes one decision per week. All they know is last week’s attendance. In the
idealized problem, people don’t interact to make their decision, i.e., it is a case
of pure stigmergy. What strategy should each person use to maximize his/her
fun? We want to avoid a “Tragedy of the Commons” situation where maximizing
private utilities causes a minimization of the global utility [18].

We give the solution according to the theory of collective intelligence. Assume
we define the global utility G as follows:

G =
∑
w

W (w)

W (w) =
∑

d

φd(ad)

This sums the week utility W (w) over all weeks w. The week utility W (w) is the
sum of the day utilities φd(ad) for each weekday d where the attendance ad is the
total number of people attending the bar that day. The system designer picks
the function φd(y) = αdye−y/c. This function is small when y is too low or too
high and has a maximum in between. Now that we know the global utility, we
need to determine the agents’ reward function. This is what the agent receives

Self Management for Large-Scale Distributed Systems 169

from the system for its choice of weekday. We assume that each agent will try to
maximize its reward. For example, [43] assumes that each agent uses a learning
algorithm where it picks a night randomly according to a Boltzmann distribution
following the energies in a 7-vector. When it gets its reward, it updates the 7-
vector accordingly. Real agents may use other algorithms; this one was picked
to make it possible to simulate the problem.

How do we design the agent’s reward function R(w), i.e., the reward that the
agent is given each week? There are many bad reward functions. For example,
Uniform Division divides φd(y) uniformly among all ay agents present on day y.
This one is particularly bad: it causes the global utility to be minimized. One
reward that works surprisingly well is called Wonderful Life:

RWL(w) = W (w) −Wagent absent(w)

Wagent absent(w) is calculated in the same way as W (w) but where the agent
is absent (dropped from the attendance vector). We can say that RWL(w) is
the difference that the agent’s existence makes, hence the name Wonderful Life
taken from the title of the Frank Capra movie [6]. We can show that if each agent
maximizes its reward RWL(w), the global utility will also be maximized. Let us
see how we can use this idea for building collective services. We assume that
agents try to maximize their rewards. For each action performed by an agent,
the system calculates the reward. The system is built using security techniques
such as encrypted communication so that the agent cannot “hack” its reward.

This approach does not solve all the security problems in a collaborative sys-
tem. For example, it does not solve the collusion problem when many agents get
together to try to break the system. For collusion, one solution is to have a mon-
itor that detects suspicious behavior and ejects colluding users from the system.
This monitor is analogous to the SEC (Securities and Exchange Commission)
which regulates and polices financial markets in the United States. Collective
intelligence can still be useful as a base mechanism. In many cases, the default
behavior is that the agents cannot or will not talk to each other, since they do
not know each other or are competing. Collective intelligence is one way to get
them to cooperate.

5 Structured Overlay Networks

Structured overlay networks are a recent development of peer-to-peer networks.
In a peer-to-peer network, all nodes play equal roles. There are no specialized
client or server nodes. There have been three generations of peer-to-peer net-
works, which are illustrated in Figure 6:

– The first generation is a hybrid: all client nodes are equal but there is a
centralized node that holds a directory. This is the structure used by the
Napster file-sharing system.

– The second generation is an unstructured overlay network. It is completely
decentralized: each node knows a few neighbor nodes. This structure is used

170 P. Van Roy et al.

Fig. 6. Three generations of peer-to-peer networks

by systems such as Gnutella, Kazaa, Morpheus, and Freenet. Lookup is done
by flooding: a node asks its neighbor, which asks its neighbors, up to a fixed
depth. There are no guarantees that the lookup will be successful (the item
may be just beyond the horizon) and flooding is highly wasteful of net-
work resources. Improved versions of this structure use a hierarchy with two
kinds of peer nodes: normal nodes and super nodes. Super nodes have higher
bandwidth and reliability than normal nodes. This alleviates somewhat the
disadvantages.

– The third generation is the structured overlay network. A well-known early
example of this generation is Chord [36]. The nodes are organized in a struc-
tured way called an exponential network. Lookup can be done in logarithmic
time and will guarantee to find the item if it exists. If nodes fail or new
nodes join, then the network reorganizes itself to maintain the structure.
Since 2001, many variations of structured overlay networks with different
advantages and disadvantages have been designed: Chord, Pastry, Tapestry,
CAN, P-Grid, Viceroy, DKS, Chord#, Tango, etc. In SELFMAN we build
on our previous experience in DKS, Chord#, and Tango.

Structured overlay networks provide two basic services: name-based communica-
tion (point-to-point and group) and distributed hash table (also known as DHT,
which provides efficient storage and retrieval of (key,value) pairs). Routing is
done by a simple greedy algorithm that reduces the distance of a message be-
tween the current node and the destination node. Correct routing means that
the distance converges to zero in finite time.

Almost all current structured overlay networks are organized in two levels, a
ring complemented by a set of fingers:

– Ring structure. All nodes are connected in a simple ring. The ring must
always be connected despite node joins, leaves, and failures.

– Finger tables. For efficient routing, extra routing links called fingers are
added to the ring. They are usually exponential, e.g., for the fingers of one
node, each finger jumps twice (or some other multiple) as far as the pre-
vious finger. The fingers can temporarily be in an inconsistent state. This
only affects efficiency, not correctness. Within each node, the finger table is
continuously converging to a correct content.

Self Management for Large-Scale Distributed Systems 171

Ring maintenance is a crucial part of the SON. Peer nodes can join and leave
at any time. Peers that crash are like peers that leave but without notification.
Temporarily broken links create false suspicions of failure.

We give three examples of structured overlay network algorithms developed in
SELFMAN that are needed for important aspects of ring maintenance: handling
network partitioning (Section 5.1), handling failure suspicions (Section 5.2), and
handling range queries with load balancing (Section 5.3). These algorithms can
be seen as dynamic feedback structures: they converge toward correct or opti-
mal structures. The network partitioning algorithm restores a single ring in the
case when the ring is split into several rings due to network partitioning. The
failure handling algorithm restores a single ring in the case of failure suspicion
of individual nodes. The range query algorithm handles multidimensional range
queries. It has one ring per dimension. When nodes join or leave, each of these
rings is adjusted (by splitting or joining pieces in the key space) to maintain
balanced routing.

5.1 Handling Network Partitioning: The Ring Merge Algorithm

Network partitioning is a real problem for any long-lived application on the
Internet. A single router crash can cause part of the network to become isolated
from another part. SONs should behave reasonably when a network partition
arrives. If no special actions are taken, what actually happens when a partition
arrives is that the SON splits into several rings. We need to detect when a
split happens and merge the rings back into a single ring when communication
is restored [34]. Protocols such as DKS automatically behave as multiple rings
when a partition occurs, but they do not automatically merge. We need to extend
the protocol with a merge algorithm.

The merge algorithm consists of two parts. The first part detects when the
merge is needed. When a node detects that another node has failed, it puts the
node in a local data structure called the passive list. It periodically pings nodes
in its passive list to see whether they are in fact alive. If so, it triggers the ring
unification algorithm. This algorithm can merge rings in O(n) time for network
size n. We also define an improved gossip-based algorithm that can merge the
network in O(log n) average time.

Ring unification happens between pairs of nodes that may be on different
rings. The unification algorithm assumes that all nodes live in the same identifier
space, even if they are on different rings. Suppose that node p detects that node
q on its passive list is alive. Figure 7 shows an example where we are merging the
black ring (containing node p) and the white ring (containing node q). Then p
does a modified lookup operation (mlookup(q)) to q. This lookup tries to reduce
the distance to q. When it has reduced this distance as much as possible, then
the algorithm attempts to insert q at that position in the ring using a second
operation, trymerge(pred,succ), where pred and succ are the predecessor and
successor nodes between which q should be inserted. The actual algorithm has
several refinements to improve speed and to ensure termination.

172 P. Van Roy et al.

Fig. 7. The ring merge algorithm

5.2 Handling Failure Suspicions: The Relaxed Ring Algorithm

A typical Internet failure mode is that a node suspects another node of failing.
This suspicion may be true or false. In both cases, the ring structure must
be maintained. This can be handled through the relaxed ring algorithm [26].
This algorithm maintains the invariant that every peer is in the same ring as its
successor. Furthermore, a peer can never indicate another peer as the responsible
node for data storage: a peer knows only its own responsibility. If a successor node
is suspected of having failed, then it is ejected from the ring. However, the node
may still be alive and point to a successor. This leads to a structure we call
the relaxed ring, which looks like a ring with “bushes” sticking out (see Figure
8). The bushes appear only if there are failure suspicions. At all times there is
a perfectly connected ring at the core of the relaxed ring. The relaxed ring is
always converging toward a perfect ring. The number of nodes in the bushes
existing at any time depends on the churn (the rate of change of the ring, the
number of failures and joins per time).

5.3 Handling Multidimensional Range Queries with Load Balancing

Efficient data lookup is at the heart of peer-to-peer computing. Many SONs,
including DKS and Tango, use consistent hashing to store (key,value) pairs in a
distributed hash table (DHT). The hashing distributes the keys uniformly over

Self Management for Large-Scale Distributed Systems 173

Fig. 8. The relaxed ring structure

Node n y x

Routing-
table

Successors
are the
nodes
adjacent
to these
markers.

Fig. 9. Two-dimensional routing tables in SONAR

the key space. Unfortunately, this scheme is unable to handle queries with partial
information (such as wildcards and ranges) because adjacent keys are spread over
all nodes. In this section, we argue that using DHTs is not a good idea in SONs.
We support this argument by showing how to build a practical SON that stores
the keys in lexicographic order. We have developed a first protocol, Chord#,
and a generalization for multidimensional range queries, SONAR [32].

174 P. Van Roy et al.

In SONAR the overlay has the shape of a multidimensional torus, where
each node is responsible for a contiguous part of the data space. A uniform
distribution of keys on the data space is not necessary, because denser areas get
assigned more nodes. To support logarithmic routing, SONAR maintains, per
dimension, fingers to other nodes that span an exponentially increasing number
of nodes. Figure 9 shows an example in two dimensions. Most other overlays
maintain such fingers in the key space instead and therefore require a uniform
data distribution (e.g., which is obtained using hashing). SONAR, in contrast,
avoids hashing and is therefore able to perform range queries of arbitrary shape
in a logarithmic number of routing steps, independent of the number of system-
and query-dimensions.

6 Transactions over Structured Overlay Networks

For our three decentralized application scenarios, we need a decentralized trans-
actional storage. We need transactions because the applications need concurrent
access to shared data. We have therefore designed a transaction algorithm over
SONs. We are currently simulating it to validate its assumptions and measure
its performance [27,28]. Implementing transactions over a SON is challenging
because of churn (rate of node leaves, joins, and crashes and subsequent reor-
ganizations of the SON) and because of the Internet’s failure model (crash stop
with imperfect failure detection).

The transaction algorithm is built on top of a reliable storage service. We
implement this using replication. There are many approaches to replication on a
SON. For example, we could use file-level replication (symmetric replication) or
block-level replication using erasure codes. These approaches all have their own
application areas. Our algorithm uses symmetric replication [14].

��

���

��������
����	

���������

���������

���������

���

���

�����	��

Fig. 10. Transaction with replicated manager and participants

Self Management for Large-Scale Distributed Systems 175

To avoid the problems of failure detection, we implement atomic commit using
a majority algorithm based on a modified version of the Paxos algorithm [15]. In
a companion paper, we have shown that majority techniques work well for DHTs
[35]: the probability of data consistency violation is negligible. If a consistency
violation does occur, then this is because of a network partition and we can use
the network merge algorithm of Section 5.1.

A client initiates a transaction by asking its nearest node, which becomes a
transaction manager. Other nodes that store data are participants in the trans-
action. Assuming symmetric replication with degree f , we have f transaction
managers and each other node participating gives f replicated participants. Fig-
ure 10 shows a situation with f = 4 and two nodes participating in addition
to the transaction manager. Each transaction manager sends a Prepare message
to all replicated participants, which each sends back a Prepared or Abort mes-
sage to all replicated transaction managers. Each replicated transaction manager
collects votes from a majority of participants and locally decides on abort or com-
mit. It sends this to the transaction manager. After having collected a majority,
the transaction manager sents its decision to all participants. This algorithm has
six communication rounds. It succeeds if more than f/2 nodes of each replica
group are alive.

7 Conclusions and Future Work

The SELFMAN project is using self-management techniques to build large-scale
distributed systems. This paper gives a snapshot of the SELFMAN project at its
halfway point. We explain why self management is important for software design
and we give some first results on how to design self-managing systems as feedback
loop structures. We are using structured overlay networks (SONs) as the basis
of large-scale distributed self-managing systems. We adapt SONs to a practical
setting by extending them to handle network partitioning, failure suspicions,
and range queries with load balancing. We are building a transactional storage
service running over the SON to support two realistic application scenarios: a
distributed Wiki and an on-demand media streaming application. In the rest
of the project, we will complete the transactional store and the demonstrator
applications and we will evaluate the self-management abilities of our system.
The final result will be a set of guidelines on how to build decentralized self-
managing applications.

Acknowledgements

This work is funded by the European Union in the SELFMAN project (contract
34084) and in the CoreGRID network of excellence (contract 004265). SELF-
MAN is a specific targeted research project (STREP) in the Information Society
Technologies (IST) Strategic Objective 2.5.5 (Software and Services) of the Eu-
ropean Sixth Framework Programme [33]. Peter Van Roy is the coordinator of

176 P. Van Roy et al.

SELFMAN. He acknowledges all SELFMAN partners for their insights and re-
search results, some of which are summarized in this paper. He also acknowledges
Mahmoud Rafea for encouraging him to look at the human endocrine system
and Mohamed El-Beltagy for introducing him to collective intelligence.

References

1. Arad, C., Roverso, R., Haridi, S., Jaradin, Y., Mejias, B., Van Roy, P., Coupaye, T.,
Dillenseger, B., Diaconescu, A., Harbaoui, A., Jayaprakash, N., Kessis, M., Lefeb-
vre, A., Leger, M.: Report on architectural framework specification. SELFMAN
Deliverable D2.2a (June 2007), www.ist-selfman.org

2. Armstrong, J.: Making Reliable Distributed Systems in the Presence of Software
Errors. Ph.D. dissertation, Royal Institute of Technology (KTH), Stockholm, Swe-
den (November 2003)

3. Arthur, W.B.: Complexity in economic theory: Inductive reasoning and bounded
rationality. The American Economic Review 84(2), 406–411 (1994)

4. Ross, W.A.: An Introduction to Cybernetics. Chapman & Hall Ltd., London,
(1956), pcp.vub.ac.be/books/IntroCyb.pdf

5. von Bertalanffy, L.: General System Theory: Foundations, Development, Applica-
tions, George Braziller (1969)

6. Capra, F.: It’s a Wonderful Life. Liberty Films (1946)
7. Carroll, L.: Through the Looking-Glass and What Alice Found There (1872) (Dover

Publications reprint 1999)
8. Carton, B., Mesaros, V.: Improving the Scalability of Logarithmic-Degree DHT-

Based Peer-to-Peer Networks. In: 10th International Euro-Par Conference, pp.
1060–1067 (August 2004)

9. Collet, R., Lienhardt, M., Schmitt, A., Stefani, J.-B., Van Roy, P.: Report on formal
operational semantics (components and reflection). SELFMAN Deliverable D2.3a
(November 2007), www.ist-selfman.org

10. Encyclopaedia Britannica. Article Human Endocrine System (2005)
11. Fairley, P.: The Unruly Power Grid, IEEE Spectrum (October 2005)
12. France Télécom, Zuse Institut Berlin, and Peerialism AB. User requirements,

SELFMAN Deliverable D5.1 (November 2007), http://www.ist-selfman.org
13. Ghodsi, A.: Distributed K-ary System: Algorithms for Distributed Hash Tables,

Ph.D. dissertation, Royal Institute of Technology (KTH), Stockholm, Sweden (Oc-
tober 2006)

14. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-
peer systems. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005. LNCS, vol. 4125, pp. 74–85. Springer, Heidelberg (2007)

15. Gray, J., Lamport., L.: Consensus on transaction commit. In: ACM Trans.
Database Syst., pp. 133–160. ACM Press, New York (2006)

16. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer, Berlin (2006)

17. Halim, F., Wu, Y., Yap, R.: Security Issues in Small World Network Routing.
In: Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO 2008) (October 2008)

18. Hardin, G.: The Tragedy of the Commons. Science 162(3859), 1243–1248 (1968)
19. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-

puting Systems. Wiley-IEEE Press (2004)

Self Management for Large-Scale Distributed Systems 177

20. Hoglund, G., McGraw, G.: Exploiting Online Games: Cheating Massively Dis-
tributed Systems. Addison-Wesley Software Security Series (2008)

21. IBM. Autonomic computing: IBM’s perspective on the state of information tech-
nology (2001) researchweb.watson.ibm.com/autonomic

22. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The Peer Sampling
Service: Experimental Evaluation of Unstructured Gossip-Based Implementations.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer,
Heidelberg (2004)

23. Kim, J-R, Yoon, Y., Cho, K.-H.: Coupled Feedback Loops Form Dynamic Motifs
of Cellular Networks. Biophysical Journal 94, 359–365 (2008)

24. Kobayashi, T., Chen, L., Aihara, K.: Modeling Genetic Switches with Positive
Feedback Loops. J. theor. Biol. 221, 379–399 (2003)

25. Lienhard, M., Schmitt, A., Stefani, J.-B.: Oz/K: A Kernel Language for
Component-Based Open Programming. In: Sixth International Conference on Gen-
erative Programming and Component Engineering (GPCE 2007) (October 2007)

26. Mejias, B., Van Roy, P.: A Relaxed Ring for Self-Organising and Fault-Tolerant
Peer-to-Peer Networks. In: XXVI International Conference of the Chilean Com-
puter Science Society (SCCC 2007) (November 2007)

27. Moser, M., Haridi, S.: Atomic Commitment in Transactional DHTs. In: Proc. of
the CoreGRID Symposium. Rennes, France (August 2007)

28. Moser, M., Haridi, S., Schütt, T., Plantikow, S., Reinefeld, A., Schintke, F.: First
report on formal models for transactions over structured overlay networks. SELF-
MAN Deliverable D3.1a (June 2007), www.ist-selfman.org

29. Pigolotti, S., Krishna, S., Jensen, M.H.: Oscillation patterns in negative feedback
loops. Proc. National Academy of Sciences 104(16) (April 2007)

30. Plantikow, S., Reinefeld, A., Schintke, F.: Transactions for distributed wikis on
structured overlays. In: Clemm, A., Granville, L.Z., Stadler, R. (eds.) DSOM 2007.
LNCS, vol. 4785, pp. 256–267. Springer, Heidelberg (2007)

31. Salen, K., Zimmerman, E.: Rules of Play: Game Design Fundamentals. MIT Press,
Cambridge (2003)

32. Schütt, T., Schintke, F., Reinefeld, A.: Range Queries on Structured Overlay Net-
works. Computer Communications 31, 280–291 (2008)

33. SELFMAN: Self Management for Large-Scale Distributed Systems based on Struc-
tured Overlay Networks and Components, European Commission 6th Framework
Programme (June 2006), http://www.ist-selfman.org

34. Shafaat, T.M., Ghodsi, A., Haridi, S.: Dealing with Network Partitions in Struc-
tured Overlay Networks. Journal of Peer-to-Peer Networking and Applications (to
appear, 2008)

35. Shafaat, T.M., Moser, M., Ghodsi, A., Schütt, T., Haridi, S., Reinefeld, A.: On
Consistency of Data in Structured Overlay Networks. In: CoreGRID Integration
Workshop. Heraklion, Greece. LNCS. Springer, Heidelberg (2008)

36. Stoica, I., Morris, R., Karger, D.R., Frans Kaashoek, M., Balakrishnan, H.: Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In: SIGCOMM
2001. pp. 149–160 (2001)

37. Van Roy, P.: Self Management and the Future of Software Design. In: Third In-
ternational Workshop on Formal Aspects of Component Software (FACS 2006),
ENTCS. vol. 182, pp. 201–217 (June 2007)

38. Weinberg, G. M.: An Introduction to General Systems Thinking: Silver Anniversary
Edition. Dorset House (2001) (original edition 1975)

39. Whitehead, A.N.: Quote: Civilization advances by extending the number of impor-
tant operations which we can perform without thinking of them

178 P. Van Roy et al.

40. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the
Machine. MIT Press, Cambridge (1948)

41. Wiger, U.: Four-Fold Increase in Productivity and Quality – Industrial-Strength
Functional Programming in Telecom-Class Products. In: Proceedings of the 2001
Workshop on Formal Design of Safety Critical Embedded Systems (2001)

42. Wikipedia, the free encyclopedia. Article Belief Propagation (March 2008),
http://en.wikipedia.org/wiki/Belief propagation

43. Wolpert, D.H., Wheeler, K.R., Tumer, K.: General principles of learning-based
multi-agent systems. In: Proc. Third Annual Conference on Autonomous Agents
(AGENTS 1999). pp. 77–93 (May 1999)

44. Wolpert, D. H., Kevin, R., Wheeler, Tumer, K.: Collective intelligence for control
of distributed dynamical systems. Europhys. Lett. (2000)

45. Yap, R., Halim, F., Wu, Y.: First report on security in structured overlay networks.
SELFMAN Deliverable D1.3a (November 2007), www.ist-selfman.org

Causal Semantics for the Algebra of Connectors
(Extended Abstract)

Simon Bliudze and Joseph Sifakis

VERIMAG, Centre Équation, 2 av de Vignate, 38610, Gières, France
{bliudze,sifakis}@imag.fr

Abstract. The Algebra of Connectors AC(P) is used to model struc-
tured interactions in the BIP component framework. Its terms are con-
nectors, i.e. relations describing synchronization constraints between the
ports of component-based systems. Connectors are structured combina-
tions of two basic synchronization protocols between ports: rendezvous
and broadcast. They are generated from the ports of P by using a binary
fusion operator and a unary typing operator. Typing associates with
terms (ports or connectors) synchronization types: trigger or synchron.

In a previous paper, we studied interaction semantics for AC(P) which
defines the meaning of connectors as sets of interactions. This seman-
tics reduces broadcasts into the set of their possible interactions and
thus blurs the distinction between rendezvous and broadcast. It leads
to exponentially complex models that cannot be a basis for efficient im-
plementation. Furthermore, the induced semantic equivalence is not a
congruence.

For a subset of AC(P), we propose a new causal semantics that does
not reduce broadcast into a set of rendezvous and explicitly models the
causal dependency relation between triggers and synchrons. The Algebra
of Causal Trees CT (P) formalizes this subset. It is the set of the terms
generated from interactions on the set of ports P , by using two opera-
tors: a causality operator and a parallel composition operator. Terms are
sets of trees where the successor relation represents causal dependency
between interactions: an interaction can participate in a global interac-
tion only if its parent participates too. We show that causal semantics
is consistent with interaction semantics. Furthermore, it defines an iso-
morphism between CT (P) and the set of the terms of AC(P) involving
triggers.

Finally, we define for causal trees a boolean representation in terms
of causal rules.

1 Introduction

Component-based design is based on the separation between coordination and
computation. Systems are built from units processing sequential code insulated
from concurrent execution issues. The isolation of coordination mechanisms al-
lows a global treatment and analysis.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 179–199, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 S. Bliudze and J. Sifakis

One of the main limitations of the current state-of-the-art is the lack of a
unified paradigm for describing and analyzing information flow between com-
ponents. Such a paradigm would allow system designers and implementers to
formulate their solutions in terms of tangible, well-founded and organized con-
cepts instead of using disparate coordination mechanisms such as semaphores,
monitors, message passing, remote call, protocols etc. A unified paradigm should
allow a comparison of otherwise unrelated architectural solutions and could be
a basis for evaluating them and deriving implementations in terms of specific
coordination mechanisms.

A number of paradigms for unifying interaction in heterogeneous systems have
been studied in [1,2,3]. In these works, unification is achieved by reduction to a
common low-level semantic model. Interaction mechanisms and their properties
are not studied independently of behavior.

We propose a new causal semantics for the Algebra of Connectors studied in
[4]. This algebra considers connectors as the basic concept for modelling coordi-
nation between components.

The term “connector” is widely used in the component frameworks literature
with a number of different interpretations. In general, connectors have two main
aspects: in the data flow setting, connectors define the way data is transferred be-
tween components; alternatively, in what we call control flow setting, connectors
rather define synchronization constraints leaving aside or completely abstracting
the data flow.

Control flow connectors are often specified in an operational setting, usually
a process algebra. In [5], a process algebra is used to define an architectural
type as a set of component/connector instances related by a set of attachments
among their interactions. In [6], a connector is defined as a set of processes, with
one process for each role of the connector, plus one process for the “glue” that
describes how all the roles are bound together. A similar approach is developed
by J. Fiadeiro and his colleagues in a categorical framework for CommUnity [7].

All the above models define connectors that can exhibit complex behavior.
That is, computation is not limited to the components, but can be partly per-
formed in the connectors. In [8], an algebra of connectors is developed that
allows, in particular, an algebraic translation of the categorical approach used
in CommUnity. This algebra allows stateless connectors to be constructed from
a number of basic ones.

Reo [9,10] is a channel-based exogenous coordination model, which presents
both data and control flow aspects. It uses connectors compositionally built out
of different types of channels formalized in data-stream semantics and inter-
connected by using nodes. The connectors in Reo allow computation, but it is
limited to the underlying channels. The nodes of connectors realize coordination
between these channels.

Our approach is closest to that of [8], as it focuses on stateless connectors
in a control flow setting. We consider connectors as relations between ports
with synchronization types, which allows one to describe complex coordination
patterns with an extremely small set of basic primitives. Thus, our main subject,

Causal Semantics for the Algebra of Connectors 181

in this paper, is structuring interactions among components. Although, in the
composed system, data exchange can take place upon synchronisation, this is
out of the scope of this paper.

In a previous paper [4], we studied an interaction semantics for the Algebra
of Connectors AC(P), which is used to model interactions in the BIP component
framework [11,12]. Terms of AC(P) are connectors. The interaction semantics
defines the meaning of a connector as the set of the interactions it allows.
AC(P) is defined from a set P of ports. Its terms represent sets of interactions

which are non empty sets of ports. Within a connector, an interaction can take
place in two situations: either an interaction is fired when all involved ports are
ready to participate (strong synchronization), or some subset of ports triggers the
interaction without waiting for other ports. Thus, connectors are generated from
the ports of P by using a binary fusion operator and a unary typing operator.
Typing associates with terms (ports or connectors) synchronization types: trigger
or synchron. Trigger and synchron terms form connectors as described below.

A Simple (or flat) connector is an expression of the form p′
1 . . . p′

kpk+1 . . . pn,
where primed ports p′

i are triggers, and unprimed ports pj are synchrons. For
a flat connector involving the set of ports {p1, . . . , pn}, interaction semantics
defines the set of its interactions by the following rule: an interaction is any non
empty subset of {p1, . . . , pn} which contains some port that is a trigger; otherwise
(if all the ports are synchrons), the only possible interaction is the maximal one,
that is p1 . . . pn. As usual, we abbreviate {p1, . . . , pn} to p1 . . . pn.

In particular, two basic synchronization protocols can be modelled naturally:
1) rendezvous, when all the related ports are synchrons, and the only possible
interaction is the maximal one containing all ports of the connector; 2) broad-
cast, when the port that initiates the interaction is a trigger, all other ports are
synchrons, and possible interactions are those containing the trigger. Connec-
tors, representing these two protocols for ports s, r1,r2, and r3, are shown in
Fig. 1(a, b). Triangles represent triggers, and circles represent synchrons.

� � � �
s r1 r2 r3

����
� � �

s r1 r2 r3

���� � � �

�

s
r1 r2 r3

����
�����

�
����

�

s
r1 r2 r3

(a) (b) (c) (d)

sr1r2r3

s

r1 r2 r3

�
�� �
�
��

s

r1 r2 r3
�

s

r1

r2

r3

	

	

	

(e) (f) (g) (h)

Fig. 1. Connectors and causal trees representing a rendezvous (a, e), a broadcast (b, f),
an atomic broadcast (c, g), and a causal chain (d, h)

182 S. Bliudze and J. Sifakis

Hierarchical connectors are expressions composed of typed ports and/or typed
sub-connectors. Fig. 1(c) shows a connector realizing an atomic broadcast from
a port s to ports r1, r2, and r3. The port s is a trigger, and r1, r2, r3 are strongly
synchronized in a sub-connector, itself typed as a synchron. The corresponding
AC(P) term is s′[r1r2r3], and the possible interactions are: s and sr1r2r3. Here
the term in brackets [·] is a sub-connector typed as a synchron. Primed brackets
[·]′ denote a sub-connector typed as a trigger. The connector shown in Fig. 1(d) is
a causal chain of interactions initiated by the port s. The corresponding AC(P)
term is s′[r′

1[r
′
2r3]], and the possible interactions are s, sr1, sr1r2, sr1r2r3 : a trig-

ger s alone or combined with some interaction from the sub-connector r′
1[r

′
2r3],

itself a shorter causal chain.
As shown in the above examples, interaction semantics reduces a connector

into the set of its interactions. This leads to exponentially complex representa-
tions. Furthermore, it blurs the distinction between rendezvous and broadcast as
each interaction of a broadcast can be realized by a rendezvous. In [4], we have
shown that this also has deep consequences on the induced semantic equivalence:
broadcasts may be equivalent to sets of rendezvous but they are not congruent.

The deficiencies of interaction semantics have motivated the investigation of
a new causal semantics for a subset of connectors of AC(P), formalized as the
Algebra of Casual Trees CT (P). This semantics distinguishes broadcast and ren-
dezvous by explicitly modelling the causal dependency relation between triggers
and synchrons in broadcasts. The terms of CT (P) represent sets of interactions,
generated from atomic interactions on the set of ports P , by using two operators:

– A causality operator → which defines the causal relationship. The term
a1 → a2 → a3 is a causal chain meaning that interaction a1 may trigger
interaction a2 which may trigger interaction a3. The possible interactions
for this chain are a1, a1a2, a1a2a3.

– An associative and commutative parallel composition operator ⊕. A causal
tree can be considered as the parallel composition of all its causal chains.
For instance, the term a1 → (a2⊕a3) is equivalent to (a1 → a2)⊕ (a1 → a3)
(both describing the set of four interactions: a1, a1a2, a1a3, and a1a2a3).

Terms of CT (P) are naturally represented as sets of causal trees where → cor-
responds to the parent/son relation. Fig. 1(e− h) shows the causal trees for the
four connectors discussed above.

The main results of the paper are the following:

– We define causal semantics for AC(P) in terms of causality trees, as a func-
tion AC(P)→ CT (P). Causal semantics is sound with respect to interaction
semantics. An important result is that the algebra of causal trees CT (P) is
isomorphic to classes of causal connectors ACc(P) and causal sets of inter-
actions AIc(P). A causal set of interactions is closed under synchronization.
A causal connector has a trigger in each sub-connector (including itself). We
have shown that the equivalence and the congruence of AC(P) coincide for
the set of causal connectors ACc(P).

Causal Semantics for the Algebra of Connectors 183

– We define for causal trees, CT (P) a boolean representation by using causal
rules. Terms are represented by boolean expressions on P . The boolean val-
uation of port p is interpreted as the presence/absence of a port in an in-
teraction. This representation is used for their symbolic manipulation and
simplification as well as for performing boolean operations on connectors. It
is applied for the efficient implementation of BIP, in particular, to compute
the possible interactions for a given state.

The paper is structured as follows. Sect. 2 provides a succinct presentation of
the basic semantic model for BIP and in particular, its composition parameter-
ized by interactions. Sect. 3 presents the Algebra of Connectors, AC(P), and its
global interaction semantics. Sect. 4 presents a semantics for AC(P) in terms of
the Algebra of Causal trees, CT (P). It also shows how a boolean representation
for connectors can be obtained from their representation as causal trees.

2 The BIP Component Framework

BIP is a component framework for constructing systems by superposing three
layers of modelling: Behavior, Interaction, and Priority. The lower layer consists
of a set of atomic components representing transition systems. The second layer
models interactions between components, specified by connectors. These are re-
lations between ports equipped with synchronization types. Priorities are used
to enforce scheduling policies applied to interactions of the second layer.

The BIP component framework has been implemented in a language and
a tool-set. The BIP language offers primitives and constructs for modelling
and composing layered components. Atomic components are communicating au-
tomata extended with C functions and data. Their transitions are labelled with
sets of communication ports. The BIP language also allows composition of com-
ponents parameterized by sets of interactions as well as application of priorities.

The BIP tool-set includes an editor and a compiler for generating C++ code
from BIP programs. The generated C++ code can be compiled for execution on
a dedicated platform (see [11,13]).

We provide a succinct formalization of the BIP component model focusing on
the operational semantics of component interaction.

Definition 1. For a set of ports P , an interaction is a non-empty subset a ⊆ P
of ports. To simplify notation we represent an interaction {p1, p2, . . . , pn} as
p1p2 . . . pn.

Definition 2. A transition system is a triple B = (Q, P,→), where Q is a set
of states, P is a set of ports, and →⊆ Q× 2P ×Q is a set of transitions, each
labelled by an interaction.

For any pair of states q, q′ ∈ Q and interaction a ∈ 2P , we write q
a→ q′, iff

(q, a, q′) ∈→. When the interaction is irrelevant, we simply write q → q′.
An interaction a is enabled in state q, denoted q

a→, iff there exists q′ ∈ Q
such that q

a→ q′.

184 S. Bliudze and J. Sifakis

�

�

� �

�

� �

�

� �

�

�
s

s

r1

r1

r2

r2

r3

r3

Interactions: γ

Priorities: π

Fig. 2. A system with four atomic components

In BIP, a system can be obtained as the composition of n components, each
modelled by a transition system Bi = (Qi, Pi,→i), for i ∈ [1, n], such that their
sets of ports are pairwise disjoint: for i, j ∈ [1, n] (i �= j), we have Pi ∩ Pj = ∅.
We take P =

⋃n
i=1 Pi, the set of all ports in the system.

The composition of components {Bi}ni=1, parameterized by a set of interac-
tions γ ⊆ 2P is the transition system B = (Q, P,→γ), where Q =

⊗n
i=1 Qi and

→γ is the least set of transitions satisfying the rule

a ∈ γ ∧ ∀i ∈ [1, n], (a ∩ Pi �= ∅ ⇒ qi
a∩Pi→ i q′

i)
(q1, . . . , qn) a→γ (q′

1, . . . , q
′
n)

, (1)

where qi = q′
i for all i ∈ [1, n] such that a∩Pi = ∅. We write B = γ(B1 . . . , Bn).

Notice that an interaction a ∈ γ is enabled in γ(B1, . . . , Bn), only if, for each
i ∈ [1, n], the interaction a ∩ Pi is enabled in Bi; the states of components that
do not participate in the interaction remain unchanged.

Several distinct interactions can be enabled at the same time, thus introducing
non-determinism in the product behavior. This can be restricted by means of
priorities [4,13]. Here, we omit formal definition of priorities, as we only use the
maximal progress rule, which is implicitly assumed throught the paper: whenever
two interactions, a and a′, such that a � a′, are possible, we always choose a′.

Example 1 (Sender/Receivers). Fig. 2 shows a component γ(S, R1, R2, R3) ob-
tained by composition of four atomic components: a sender, S, and three re-
ceivers, R1, R2, R3 with a set of interactions γ. The sender has a port s for
sending messages, and each receiver has a port ri (i = 1, 2, 3) for receiving them.
The following table specifies γ for four different interaction schemes.

Interaction scheme Interactions

Rendezvous sr1r2r3

Broadcast s, sr1, sr2, sr3, sr1r2, sr1r3, sr2r3, sr1r2r3

Atomic Broadcast s, sr1r2r3

Causal Chain s, sr1, sr1r2, sr1r2r3

Causal Semantics for the Algebra of Connectors 185

Rendezvous means strong synchronization between S and all Ri. This is speci-
fied by a single interaction involving all the ports. This interaction can occur
only if all the components are in states enabling transitions labelled respec-
tively by s, r1, r2, r3.

Broadcast means weak synchronization, that is a synchronization involving S
and any (possibly empty) subset of Ri. This is specified by the set of all
interactions containing s. These interactions can occur only if S is in a state
enabling s. Each Ri participates in the interaction only if it is in a state
enabling ri.

Atomic broadcast means that either a message is received by all Ri, or by
none. Two interactions are possible: s, when at least one of the receiving
ports is not enabled, and the interaction sr1r2r3, corresponding to strong
synchronization.

Causal chain means that for a message to be received by Ri it has to be
received by all Rj , for j < i. This interaction scheme is common in reactive
systems.

Example 2 (Modulo-8 counter). Fig. 3 shows a model for the Modulo-8 counter
presented in [14], obtained by composition of three Modulo-2 counter compo-
nents. Ports p, r, and t correspond to inputs, whereas q, s, and u correspond
to outputs. It can be easily verified that the interactions pqr, pqrst, and pqrstu
happen, respectively, every second, fourth, and eighth occurrence of an input
interaction through the port p.

�

�

�
� �

�

�
� �

�

�
�

p pq

p q

r rs

r s

t tu

t u

p, pqr, pqrst, pqrstu

Maximal progress: p ≺ pqr ≺ pqrst ≺ pqrstu

Fig. 3. Modulo-8 counter

Notice that the composition operator can express usual parallel composition
operators [4], such as the ones used in CSP [15] and CCS [16]. By enforcing
maximal progress, priorities allow to express broadcast.

3 The Algebra of Connectors

In this section, we introduce the algebra of connectors AC(P), which formalizes
the concept of connector, supported by the BIP language [11]. For the sake of

186 S. Bliudze and J. Sifakis

simplicity, we consider the subset of terms of AC(P) that do not involve union,
that is the subset of monomial connectors (cf. [4]).

3.1 The Algebra of Interactions

We introduce the algebra of interactions AI(P), used to define the interaction
semantics of AC(P).

Let P be a set of ports, such that 0, 1 �∈ P . Recall (Def. 1) that an interaction
is a non-empty subset a ⊆ P . We abbreviate {p1, p2, . . . , pn} to p1 p2 . . . pn.
Syntax. The algebra of interactions AI(P), is defined by the following syntax

x ::= 0 | 1 | p ∈ P | x · x | x + x , (2)

where + and · are binary operators, respectively called union and synchroniza-
tion. Synchronization binds stronger than union.

Axioms

1. Union + is idempotent, associative, commutative, and has an identity ele-
ment 0;

2. Synchronization · is associative, commutative, has an identity element 1, and
an absorbing element 0; synchronization distributes over union. Furthermore,
it is idempotent for monomial terms (terms without +).

Semantics. The semantics of AI(P) is given by the function ‖ · ‖ : AI(P)→
22P

, defined by

‖0‖ = ∅, ‖1‖ = {∅}, ‖p‖ =
{
{p}

}
,

‖x1 + x2‖ = ‖x1‖ ∪ ‖x2‖,
‖x1 · x2‖ =

{
a1 ∪ a2

∣∣∣ a1 ∈ ‖x1‖, a2 ∈ ‖x2‖
}
,

(3)

for p ∈ P , x, x1, x2 ∈ AI(P). Terms of AI(P) represent sets of interactions
between the ports of P .

Remark 1. In Def. 1, interactions are non-empty subsets of P , i.e. a ∈ 2P \ {∅}.
In the following, we lift this restriction. Thus, 1 ∈ AI(P) represents a singleton
subset {∅} ⊆ 2P (cf. (3)). The term 0 ∈ AI(P) corresponds to an empty subset
of 2P and does not represent any interaction. Thus interactions correspond to
non-zero monomial terms of AI(P).

Proposition 1 ([4]). The axiomatization of AI(P) is sound and complete, that
is, for any x, y ∈ AI(P), x = y iff ‖x‖ = ‖y‖.

Example 3 (Sender/Receiver continued). The second column of Table 1 shows
the representation in AI(P) for the four interaction schemes of Ex. 1.

Causal Semantics for the Algebra of Connectors 187

Table 1. AI(P), AC(P), and CT (P) representations of four basic interaction schemes

AI(P) AC(P) CT (P)

Rendezvous s r1 r2 r3 s r1 r2 r3 s r1 r2 r3

Broadcast s (1 + r1) s′ r1 r2 r3 s→ (r1 ⊕ r2 ⊕ r3)
(1 + r2) (1 + r3)

Atomic Broadcast s (1 + r1 r2 r3) s′ [r1 r2 r3] s→ r1 r2 r3

Causal Chain s (1 + r1 (1+ s′ [r′1 [r′2 r3]] s→ r1 → r2 → r3

+ r2 (1 + r3)))

3.2 Correspondence with Boolean Functions

AI(P) can be bijectively mapped to the free boolean algebra B[P] generated by
P . We define a mapping β : AI(P)→ B[P] by setting:

β(0) = false , β(x + y) = β(x) ∨ β(y) ,

β(1) =
∧
p∈P

p , β(pi1 . . . pik
) =

k∧
j=1

pij ·
∧
i�=ij

pi ,

for pi1 , . . . , pik
∈ P , and x, y ∈ AI(P), where in the right-hand side the elements

of P are considered to be boolean variables. We denote by false (resp. true) the
least (resp. greatest) element in B[P]. For example, consider the correspondence
table for P = {p, q} shown in Table 2.

Table 2. Correspondence between AI({p, q}) and boolean functions with two variables

AI(P) B[P]

0 false

1 p q p q p q p q p q p q

p+ 1 q + 1 p q + 1 p+ q p+ p q q + p q q p p q ∨ p q p q ∨ p q p q

p+ q + 1 p q + p+ 1 p q + q + 1 p q + p+ q p ∨ q p ∨ q p ∨ q p ∨ q
p q + p+ q + 1 true

The mapping β is an order isomorphism, and consequently techniques specific
to boolean algebras can be applied to the boolean representation of AI(P) (e.g.
BDDs).

Any interaction a ∈ 2P defines a valuation on P with, for each p ∈ P , p = true
iff p ∈ a. Notice that the constant valuation false is associated to the interaction
1, which corresponds to the empty set of ports ∅ ∈ 2P (cf. Rem 1 and Table 2).

188 S. Bliudze and J. Sifakis

Definition 3. An interaction a ∈ 2P satisfies a formula R ∈ B[P] (denoted
a |= R) iff the corresponding boolean valuation satisfies R. A term x ∈ AI(P)
satisfies R (denoted x |= R) iff all interactions belonging to x satisfy R, that is

x |= R
def⇐⇒ ∀a ∈ ‖x‖, a |= R .

Remark 2. Let R1 and R2 be two equivalent formulae. They are satisfied by the
same interactions:

∀a ∈ 2P , a |= R1 ⇐⇒ a |= R2 .

Proposition 2. An interaction belongs to the set described by an expression
x ∈ AI(P) if and only if it satisfies β(x), that is

‖x‖ =
{

a ∈ 2P
∣∣∣ a |= β(x)

}
. (4)

Remark 3. As ‖0‖ = ∅, according to Def. 3, it satisfies all formulae in B[P], and
in particular 0 |= false . This is the only term in AI(P) satisfying the constant
predicate false. Recall (Rem 1) that 0 �∈ 2P .

The advantage ofAI(P) over its boolean representation is that it provides a more
intuitive description of sets of interactions. For example, the term p+pq ∈ AI(P)
represents the set of interactions {p, pq} for any set of ports P containing p
and q. The boolean representation of p + pq depends on P : if P = {p, q} then
β(p + pq) = p, whereas if P = {p, q, r, s} then β(p + pq) = p r s.

Synchronization of two interactions in AI(P) is by simple concatenation,
whereas for their boolean representation there is no simple context-independent
composition rule.

Example 4. Let P = {p, q, r, s}. The representation of p is β(p) = p q r s, the
representation of q is β(q) = p q r s, and the representation β(pq) = p q r s of the
synchronization pq is obtained by combining the “positive” variables p and q
from β(p) and β(q) respectively with the “negative” variables r and s belonging
to both.

To formalize the above example, let x, y ∈ AI(P) be two terms represented
respectively by boolean functions

β(x) =
∧

p∈Px

p ·
∧

q∈Qx

q , and β(y) =
∧

p∈Py

p ·
∧

q∈Qy

q , (5)

where Px, Py ⊆ P and Qx, Qy ⊆ P are respectively the sets of positive and
negative variables in β(x) and β(y), then the synchronization xy corresponds to

β(xy) =
∧

p∈Px∪Py

p ·
∧

q∈Qx∩Qy

q (6)

In the general case, when the boolean representations of x and y contain
multiple summands of the form (5), the representation of their synchronization

Causal Semantics for the Algebra of Connectors 189

xy can be obtained by applying the above operation pairwise to the summands
of β(x) and β(y) and taking the sum of the obtained conjunctions.

On the other hand, the interactions belonging to the intersection of x and y,
that is to ‖x‖ ∩ ‖y‖, are clearly characterized by β(x) ∧ β(y).

Thus, we have a correspondence between AI(P) equipped with union, syn-
chronization, and intersection, and B[P] equipped with disjunction, the operation
above described by (5) and (6), and conjunction.

3.3 Syntax and Interaction Semantics for AC(P)

Syntax. Let P be a set of ports, such that 0, 1 �∈ P . The syntax of the algebra
of connectors, AC(P), is defined by

s ::= [0] | [1] | [p] | [x] (synchrons)

t ::= [0]′ | [1]′ | [p]′ | [x]′ (triggers)

x ::= s | t | x · x ,

(7)

for p ∈ P , and where · is a binary operator called fusion, and brackets [·] and
[·]′ are unary typing operators.

Fusion is a generalization of synchronization in AI(P). Typing is used to form
connectors: [·]′ defines triggers (which can initiate an interaction), and [·] defines
synchrons (which need synchronization with other ports).

Definition 4. In a system with a set of ports P , connectors are elements of
AC(P).

Notation. We write [x]α, for α ∈ {0, 1}, to denote a typed connector. When
α = 0, the connector is a synchron, otherwise it is a trigger.

In order to simplify notation, we will omit brackets on 0, 1, and ports p ∈ P ,
as well as ‘·’ for the fusion operator.

The algebraic structure of AC(P) inherits most of the axioms of AI(P).
Axioms

1. Fusion · is associative, commutative, distributive, idempotent, and has an
identity element [1].

2. Typing satisfies the following axioms, for x, y, z ∈ AC(P) and α, β ∈ {0, 1}:
(a) [0]′ = [0],

(b)
[
[x]α

]β

= [x]β .

Semantics. The semantics of AC(P) is given by the function | · | : AC(P) →
AI(P), defined by the rules (we use the product symbol ’

∏
’ to denote fusion)

|p| = p , (8)∣∣∣∣∣
n∏

i=1

[xi]

∣∣∣∣∣ =
n∏

i=1

|xi| , (9)

190 S. Bliudze and J. Sifakis

∣∣∣∣∣∣
n∏

i=1

[xi]′ ·
m∏

j=1

[yj]

∣∣∣∣∣∣ =
n∑

i=1

|xi|
∏
k �=i

(
1 + |xk|

) m∏
j=1

(
1 + |yj|

)
, (10)

for p ∈ P ∪ {0, 1} and x, x1, . . . , xn, y1, . . . , ym ∈ AC(P). The sum in (10) is the
union operator of AI(P).

Example 5. Consider a system consisting of two Senders with ports s1, s2, and
three Receivers with ports r1, r2, r3. The meaning of s′

1 s′
2 r1 [r2 r3] is

|s′
1 s′

2 r1 [r2 r3]| =
(10)
= |s1| (1 + |s2|) (1 + |r1|) (1 + |r2 r3|) + |s2| (1 + |s1|) (1 + |r1|) (1 + |r2 r3|)
(9)
=

(
|s1| (1 + |s2|) + |s2| (1 + |s1|)

)
(1 + |r1|) (1 + |r2| |r3|)

(8)
=

(
s1 (1 + s2) + s2 (1 + s1)

)
(1 + r1) (1 + r2 r3) ,

which corresponds to the set of the interactions containing at least one of s1 and
s2, and possibly r1 and a synchronization of both r2 and r3.

Proposition 3 ([4]). The axiomatization of AC(P) is sound, that is, for x, y ∈
AC(P), the equality x = y implies |x| = |y|.

Example 6 (Sender/Receiver continued). The third column of Table 1 shows the
connectors for the four interaction schemes of Ex. 1.

Notice that AC(P) allows compact representation of interactions and, more-
over, explicitly captures the difference between broadcast and rendezvous. The
typing operator induces a hierarchical structure.

Example 7 (Modulo-8 counter continued). In the model shown in Fig. 4, the
causal chain pattern is applied to connectors p, q r, s t, and u. Interactions are
modelled by a single structured connector p′

[
[q r]′ [[s t]′ u]

]
:

∣∣∣p′
[
[q r]′

[
[s t]′ u

]]∣∣∣ = p + p q r + p q r s t + p q r s t u .

These are exactly the interactions of the Modulo-8 counter of Fig. 3.

�

�

�
�

� �

�

�

�
�

� �

�

�

�
�

� �

p pq r rs t tu

p q r s t u
�

����

�

��������

�

Fig. 4. Modulo-8 counter

Causal Semantics for the Algebra of Connectors 191

Definition 5. Two connectors x, y ∈ AC(P) are equivalent (denoted x (y), iff
they have the same sets of interactions, i.e. x (y if and only if |x| = |y|.

Notice that, in general, two equivalent terms are not congruent. For example,
p′ (p, but p′q (p + pq �(pq, for p, q ∈ P . Furthermore, the following terms
are equivalent, but not congruent: pqr, p[qr], and [pq]r, as different sets of in-
teractions are obtained, when these terms are fused with a trigger. For instance,
s′[pq]r (s + spq + sr + spqr, whereas s′p[qr] (s + sp + sqr + spqr.

Definition 6. We denote by ‘∼=’ the largest congruence relation contained in (,
that is the largest relation satisfying

x ∼= y =⇒ ∀E ∈ AC(P ∪ {z}), E(x/z) (E(y/z) , (11)

where x, y ∈ AC(P), z �∈ P , E(x/z), and (resp. E(y/z)) denotes the expression
obtained from E by replacing all occurrences of z by x (resp. y).

Theorem 1 ([4]). For x, y ∈ AC(P), we have x ∼= y iff the three following
conditions hold simultaneously

1. x (y,
2. x · 1′ (y · 1′,
3. #x > 0⇔ #y > 0,

where, for x =
∏n

i=1[xi]αi , we denote by #x the number of triggers in this fusion,

that is #x
def
= #{i ∈ [1, n] |αi = 1}.

Corollary 1. For x, y ∈ AC(P), holds [x]′ [y]′ ∼=
[
[x]′ [y]′

]′
.

4 Causal Semantics for Connectors

In this section, we propose a new causal semantics for AC(P) connectors. This
allows us to address two important points:

1. (Congruence). As we have shown in the previous section, the equivalence
relation (on AC(P) is not a congruence. The causal semantics allows us
to define a subset ACc(P) � AC(P) of causal connectors such that a) ev-
ery equivalence class on AC(P) has a representative in ACc(P); and b) the
equivalence (and congruence ∼= relations coincide on ACc(P).

2. (Boolean representation). In [4], we showed that efficient computation of
boolean operations (e.g. intersection, complementation) is crucial for efficient
implementation of some classes of systems, e.g. synchronous systems. In
this section, we present a method for computing boolean representations
for AC(P) connectors through a translation into the algebra of causal trees
CT (P). The terms of the latter have a natural boolean representation as sets
of causal rules (implications). This boolean representation avoids complex
enumeration of the interactions of connectors entailed by the method in
Sect. 3.2.

192 S. Bliudze and J. Sifakis

The key idea for causal semantics is to render explicit the causal relations
between different parts of the connector. In a fusion of typed connectors, trig-
gers are mutually independent, and can be considered parallel to each other.
Synchrons participate in an interaction only if it is initiated by a trigger. This
introduces a causal relation: the trigger is a cause that can provoke an effect,
which is the participation of a synchron in an interaction.

There are essentially three possibilities for connectors involving ports p and q:

1. A strong synchronization pq.
2. One trigger p′q, i.e. p is the cause of an interaction and q a potential effect,

which we will denote in the following by p→ q.
3. Two triggers p′q′, i.e. p and q are independent (parallel), which we will denote

in the following by p⊕ q.

This can be further extended to chains of causal relations between interactions.
For example, (p⊕q)→ rs→ t corresponds to the connector p′q′ [[rs]′ t]. It means
that any combination of p and q (i.e. p, q, or pq) can trigger an interaction in
which both r and s may participate (thus, the corresponding interactions are p,
q, pq, prs, qrs, and pqrs). Moreover, if r and s participate then t may do so,
which adds the interactions prst, qrst, and pqrst.

Causal trees constructed with these two operators provide a compact and clear
representation for connectors that shows explicitly the atomic interactions (p, q,
rs, and t in the above example) and the dependencies between them. They also
allow to exhibit the boolean causal rules, which define the necessary conditions
for a given port to participate in an interaction. Intuitively, this corresponds to
expressing arrows in the causal trees by implications.

A causal rule is a boolean formula over P , which has the form p ⇒ ∨n
i=1 ai,

where p is a port and ai are interactions that can provoke p. Thus, in the above
example, the causal rule for the port r is r ⇒ ps ∨ qs, which means that for the
port r to participate in an interaction of this connector, it is necessary that this
interaction contain either ps or qs.

A set of causal rules uniquely describes the set of interactions that satisfy it
(cf. Sect. 3.2), which provides a simple and efficient way for computing boolean
representations for connectors by transforming them first into causal trees and
then into a conjunction of the associated causal rules.

In the following sub-sections we formalize these ideas.

4.1 Causal Trees

Syntax. Let P be a set of ports such that 0, 1 �∈ P . The syntax of the algebra
of causal trees, CT (P), is defined by

t ::= a | t→ t | t⊕ t , (12)

where a ∈ AI(P) is 0, 1, or an interaction from 2P , and→ and ⊕ are respectively
the causality and the parallel composition operators. Causality binds stronger
than parallel composition.

Causal Semantics for the Algebra of Connectors 193

Although the causality operator is not associative, for t1, . . . , tn ∈ CT (P), we
abbreviate t1 → (t2 → (. . . → tn) . . .)) to t1 → t2 → . . . → tn. We call this
construction a causal chain.

Axioms

1. Parallel composition, ⊕, is associative, commutative, idempotent, and its
identity element is 0.

2. Causality, →, satisfies the following axioms:
(a) t→ 1 = t,
(b) t1 → (1→ t2) = t1 → t2,
(c) t→ 0 = t,
(d) 0→ t = 0.

3. The following axioms relate the two operators:
(a) (t1 → t2)→ t3 = t1 → (t2 ⊕ t3),
(b) t1 → (t2 ⊕ t3) = t1 → t2 ⊕ t1 → t3,
(c) (t1 ⊕ t2)→ t3 = t1 → t3 ⊕ t2 → t3.

Semantics. The interaction semantics of CT (P) is given by the function | · | :
CT (P)→ AI(P), defined by the rules

|a| = a , (13)

|a→ t| = a
(
1 + |t|

)
, (14)

|t1 ⊕ t2| = |t1|+ |t2|+ |t1| |t2| , (15)

where a is an interaction of 2P , and t, t1, t2 ∈ CT (P), and the rules induced by
axioms (3a) and (3c). The set semantics of a causal tree t ∈ CT (P) is obtained

by applying the semantic function ‖ · ‖ : AI(P)→ 22P

to |t|. We denote ‖t‖ def
=

‖ |t| ‖.

Example 8 (Causal chain). Consider interactions a1, . . . , an ∈ 2P and a causal
chain a1 → a2 → . . .→ an. Iterating rule (14), we then have

|a1 → a2 → . . .→ an| = a1

(
1 + |a2 → . . .→ an|

)
= a1 + a1a2

(
1 + |a3 → . . .→ an|

)
= . . .

= a1 + a1a2 + . . . + a1a2 . . . an .

Proposition 4. The axiomatization of CT (P) is sound with respect to the se-
mantic equivalence, i.e. for t1, t2 ∈ CT (P), t1 = t2 implies |t1| = |t2|.

Remark 4. According to the axioms of CT (P) any causal tree can be represented
as a parallel composition of its causal chains (see Fig. 5). Thus an interaction
belonging to a causal tree is a synchronization of any number of prefixes (cf.
Ex. 8) of the corresponding causal chains, i.e. branches of this tree.

194 S. Bliudze and J. Sifakis

=

a

b e

c d

�
��
�
��

�
��
�
��

a

b

c

�

�

⊕

a

b

d

�

�

⊕

a

e
�

Fig. 5. A causal tree is the parallel composition of its causal chains

Example 9 (Sender/Receiver continued). The fourth column of Table 1 shows
the causal trees for the four interaction schemes of Ex. 1.

Example 10 (Modulo-8 counter continued). The connector applied to the three
Modulo-2 counter components in Ex. 7 consists of a causal chain pattern applied
to rendezvous connectors p, q r, s t, and u. Thus, the corresponding causal tree
is clearly p→ qr → st→ u. In general, the transformation of AC(P) connectors
into causal trees is presented in the section below.

Definition 7. Two causal trees t1, t2 ∈ CT (P) are equivalent, denoted t1 ∼ t2,
iff |t1| = |t2|.

4.2 Correspondence with AC(P)

In order to provide the transformation from AC(P) to CT (P), we introduce two
helper functions root : CT (P)→ AI(P) and rest : CT (P)→ CT (P) defined by

root(a) = a , rest(a) = 0
root(a→ t) = a , rest(a→ t) = t ,

root(t1 ⊕ t2) = root(t1) + root(t2) , rest(t1 ⊕ t2) = rest(t1)⊕ rest(t2) ,

for a ∈ 2P and t, t1, t2 ∈ CT (P). In general t �= root(t) → rest(t). The equality
holds only if t is of the form a→ t1, for some interaction a and t1 ∈ CT (P).

We define the function τ : AC(P) → CT (P) associating a causal tree with a
connector. By Cor. 1, any term can be rewritten to have at most one trigger.
Therefore, the following three equations are sufficient to define τ :

τ

(
[x]′

n∏
i=1

[yi]

)
= τ(x)→

n⊕
i=1

τ(yi) , (16)

τ

(
n∏

i=1

[xi]′
)

=
n⊕

i=1

τ(xi) , (17)

τ

(
n∏

i=1

[yi]

)
=

m⊕
j=1

(
aj →

n⊕
i=1

rest
(
τ(yi)

))
, (18)

where x, x1, x2, y1, . . . , yn ∈ AC(P), and, in (18), aj are such that
m∑

j=1

aj =
n∏

i=1

root
(
τ(yi)

)
.

Causal Semantics for the Algebra of Connectors 195

Example 11. Consider P = {p, q, r, s, t, u} and p′q′
[
[r′s][t′u]

]
∈ AC(P). We have

τ
(
p′q′

[
[r′s][t′u]

])
= τ

([
p′q′

]′[
[r′s][t′u]

])

= τ(p′q′)→ τ
(
[r′s][t′u]

)
= (p⊕ q)→

(
rt→ (s⊕ u)

)
.

We also define the function σ : CT (P) → AC(P), associating connectors to
causal trees:

σ(a) = [a] , (19)
σ(a→ t) = [a]′ [σ(t)] , (20)

σ(t1 ⊕ t2) = [σ(t1)]′ [σ(t2)]′ . (21)

Proposition 5. The functions σ : CT (P) → AC(P) and τ : AC(P) → CT (P),
satisfy the following properties

1. ∀x ∈ AC(P), |x| = |τ(x)|,
2. ∀t ∈ CT (P), |t| = |σ(t)|,
3. τ ◦ σ = id,
4. σ ◦ τ (id (that is ∀x ∈ AC(P), σ(τ(x)) (x).

The above proposition says that the diagram shown in Fig. 6 is commutative
except for the loop AC(P) τ→ CT (P) σ→ ACc(P) ↪→ AC(P).

In this diagram, ACc(P) � AC(P) is the set of causal connectors, which is the
image of CT (P) by σ. Note that any connector has an equivalent representation
in ACc(P). Similarly, AIc(P) � AI(P) is the set of causal interactions, the
image of CT (P) by the semantic function | · |. The following proposition provides
a characteristic property of the set of causal interactions.

Proposition 6. The set of the causal interactions is closed under synchroniza-
tion, that is x ∈ AIc(P) iff ∀a, b ∈ ‖x‖, ab ∈ ‖x‖.
As mentioned above, the semantic equivalence (on AC(P) is not a congru-
ence. Prop. 7 and Cor. 2 below state that the restriction of (to ACc(P) is a
congruence. By definition of ACc(P), each equivalence class (on AC(P) has a
representative in ACc(P).

AC

ACc

AI

AIc

CT

������
������

������

� �

�� ��

| · |

| · |

| · |

τ

σ

Fig. 6. A diagram relating the algebras

196 S. Bliudze and J. Sifakis

Proposition 7. ∀t1, t2 ∈ CT (P), t1 ∼ t2 ⇒ σ(t1) ∼= σ(t2).

Corollary 2. The AC(P) equivalence restricted to ACc(P) is a congruence, that
is, for x1, x2 ∈ ACc(P), x1 (x2 implies x1 ∼= x2.

4.3 Boolean Representation of Connectors

Definition 8. A causal rule is a B[P] formula E ⇒ C, where E (the effect) is
either a constant, true, or a port variable p ∈ P , and C (the cause) is either a
constant (true or false) or a disjunction of interactions, i.e.

∨n
i=1 ai where, for

all i ∈ [1, n], ai are conjunctions of port variables.

Causal rules without constants can be rewritten as formulas of the form p ∨∨n
i=1 ai and, by distributivity of ∧ over ∨, are conjunctions of dual Horn clauses,

i.e. disjunctions of variables whereof at most one is negative.
In line with Def. 3, an interaction a ∈ 2P satisfies the rule p ⇒ ∨n

i=1 ai, iff
p ∈ a implies ai ⊆ a, for some i ∈ [1, n], that is, for a port to belong to an
interaction, at least one of the corresponding causes must belong there too.

Example 12. Let p ∈ P , a ∈ 2P , and x ∈ AI(P). Three particular types of
causal rules can be set apart:

1. For an interaction to satisfy the rule true ⇒ a, it is necessary that it contain
a.

2. Rules of the form p⇒ true are satisfied by all interactions.
3. An interaction can satisfy the rule p⇒ false only if it does not contain p.

Remark 5. Notice that a1 ∨a1 a2 = a1, and therefore causal rules can be simpli-
fied accordingly:

(p⇒ a1 ∨ a1 a2) � (p⇒ a1) . (22)

We assume that all the causal rules are simplified by using (22).

Definition 9. A system of causal rules is a set R = {p ⇒ xp}p∈P t , where

P t def
= P ∪{true}. An interaction a ∈ 2P satisfies the system R (denoted a |= R),

iff a |= ∧
p∈P t(p⇒ xp). We denote by |R| the union of the interactions satisfying

R :
|R| def

=
∑
a|=R

a .

A causal tree t ∈ CT (P) is equivalent to a system of causal rules R iff |t| = |R|.

We associate with t ∈ CT (P) the system of causal rules

R(t)
def
= {p⇒ cp(t)}p∈P t , (23)

where, for p ∈ P t, the function cp : CT (P) → B[P] is defined as follows. For
a ∈ 2P (with p �∈ a) and t, t1, t2 ∈ CT (P), we put

cp(0) = false , (24)

Causal Semantics for the Algebra of Connectors 197

cp(p→ t) = true , (25)
cp(pa→ t) = a , (26)
cp(a→ t) = a cp(t) , (27)

cp(t1 ⊕ t2) = cp(t1) ∨ cp(t2) , (28)

Similarly, we define ctrue(t) by

ctrue(0) = false ,

ctrue(1→ t) = true ,

ctrue(a→ t) = a ,

ctrue(t1 ⊕ t2) = ctrue(t1) ∨ ctrue(t2) .

Remark 6. It is important to observe that, for any t ∈ CT (P), the system of
causal rules R(t), defined by (23), contains exactly one causal rule for each
p ∈ P t (i.e. each p ∈ P and true). For ports that do not participate in t, the
rule is p ⇒ false. For ports that do not have any causality constraints, the rule
is p⇒ true.

Proposition 8. For any causal tree t ∈ CT (P), |t| = |R(t)|.

p

q qs

r

�
��
�
��

�
��

Fig. 7. Graphical representation of the causal tree t = p→ (q → r ⊕ qs)

Example 13. Consider the causal tree t = p → (q → r ⊕ qs) shown in Fig. 7.
The associated system R(t) of causal rules is

{true ⇒ p , p⇒ true , q ⇒ p , r ⇒ pq , s⇒ pq} .

Notice that cq(t) = p
(
cq(q → r) ∨ cq(qs)

)
= p ∨ ps = p.

The corresponding boolean formula is then

(true ⇒ p) ∧ (p⇒ true) ∧ (q ⇒ p) ∧ (r ⇒ pq) ∧ (s⇒ pq) = p q ∨ p r s .

5 Conclusion

The paper provides a causal semantics for the algebra of connectors. This se-
mantics leads to simpler and more intuitive representations which can be used
for efficient implementation of operations on connectors in BIP. In contrast to
interaction semantics equivalence, the induced equivalence is compatible with

198 S. Bliudze and J. Sifakis

���
���

������ACc
AC

CT CR AIc
AI

Fig. 8. A graphical representation of the relations between different algebras

the congruence on AC(P). Causal semantics allows a nice characterization of
the set of causal connectors, which is isomorphic to the set of causal trees. The
set of causal connectors also corresponds to the set of causal interactions, which
are closed under synchronization. The relation between the different algebras is
shown in Fig. 8.

The Algebra of Causal Trees, CT (P), breaks with the reductionist view of
interaction semantics as it distinguishes between symmetric and asymmetric
interaction. It allows structuring of global interactions as the parallel compo-
sition of chains of interactions. This is a very intuitive and alternate approach
to interaction modeling especially for broadcast-based languages such as syn-
chronous languages. Causal trees are very close to structures used to represent
dependencies between signals in synchronous languages, e.g. [17]. This opens
new possibilities for unifying asynchronous and synchronous semantics.
CT (P) can be extended in a straightforward manner to incorporate guards,

necessary for conditional interaction. It is a basis for computing boolean repre-
sentations for connectors, adequate for their symbolic manipulation and compu-
tation of boolean operations. These can be used for efficient implementations of
component-based languages such as BIP.

References

1. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: An integrated electronic system design environment.
IEEE Computer 36(4), 45–52 (2003)

2. Balasubramanian, K., Gokhale, A., Karsai, G., Sztipanovits, J., Neema, S.: Devel-
oping applications using model-driven design environments. IEEE Computer 39(2),
33–40 (2006)

3. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity: The Ptolemy approach. Proceedings of the
IEEE 91(1), 127–144 (2003)

4. Bliudze, S., Sifakis, J.: The algebra of connectors — Structuring interaction in BIP.
In: Proceeding of the EMSOFT 2007. Salzburg, Austria, pp. 11–20. ACM SigBED
(October 2007)

5. Bernardo, M., Ciancarini, P., Donatiello, L.: On the formalization of architectural
types with process algebras. In: SIGSOFT FSE. pp. 140–148 (2000)

Causal Semantics for the Algebra of Connectors 199

6. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: ICSE, pp. 374–384. IEEE Computer Society, Los Alamitos (2003)

7. Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2004)
8. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.

Comput. Sci. 366(1), 98–120 (2006)
9. Arbab, F.: Reo: a channel-based coordination model for component composition.

Mathematical Structures in Computer Science 14(3), 329–366 (2004)
10. Arbab, F.: Abstract behavior types: a foundation model for components and their

composition. Sci. Comput. Program. 55(1-3), 3–52 (2005)
11. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in

BIP. In: 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM 2006). pp. 3–12 (invited talk) (September 2006)

12. Sifakis, J.: A framework for component-based construction. In: 3rd IEEE Interna-
tional Conference on Software Engineering and Formal Methods (SEFM05). pp.
293–300 (September 2005) (keynote talk)

13. BIP, http://www-verimag.imag.fr/∼async/BIP/bip.html
14. Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language.

Computer Languages 27, 61–92 (2001)
15. Hoare, C.A.R.: Communicating Sequential Processes, 1985. Prentice Hall Interna-

tional Series in Computer Science. Prentice-Hall, Englewood Cliffs (1985)
16. Milner, R.: Communication and Concurrency. International Series in Computer

Science. Prentice-Hall, Englewood Cliffs (1989)
17. Nowak, D.: Synchronous structures. Inf. Comput. 204(8), 1295–1324 (2006)

Multiple Viewpoint Contract-Based Specification and
Design�

Albert Benveniste1, Benoı̂t Caillaud1, Alberto Ferrari2, Leonardo Mangeruca2,
Roberto Passerone2,3, and Christos Sofronis2

1 IRISA / INRIA, Rennes, France
{albert.benveniste,benoit.caillaud}@irisa.fr

2 PARADES GEIE, Rome, Italy
{alberto.ferrari,leonardo,rpasserone,
christos.sofronis}@parades.rm.cnr.it

3 University of Trento, Trento, Italy
roberto.passerone@unitn.it

Abstract. We present the mathematical foundations and the design methodology
of the contract-based model developed in the framework of the SPEEDS project.
SPEEDS aims at developing methods and tools to support “speculative design”,
a design methodology in which distributed designers develop different aspects of
the overall system, in a concurrent but controlled way. Our generic mathemat-
ical model of contract supports this style of development. This is achieved by
focusing on behaviors, by supporting the notion of “rich component” where di-
verse (functional and non-functional) aspects of the system can be considered and
combined, by representing rich components via their set of associated contracts,
and by formalizing the whole process of component composition.

1 Introduction

Several industrial sectors involving complex embedded systems design have recently
experienced drastic moves in their organization—aerospace and automotive being typ-
ical examples. Initially organized around large, vertically integrated companies sup-
porting most of the design in house, these sectors were restructured in the 80’s due to
the emergence of sizeable competitive suppliers. OEMs performed system design and
integration by importing entire subsystems from suppliers. This, however, shifted a sig-
nificant portion of the value to the suppliers, and eventually contributed to late errors
that caused delays and excessive additional cost during the system integration phase.

In the last decade, these industrial sectors went through a profound reorganization
in an attempt by OEMs to recover value from the supply chain, by focusing on those
parts of the design at the core of their competitive advantage. The rest of the system
was instead centered around standard platforms that could be developed and shared by
otherwise competitors. Examples of this trend are AUTOSAR in the automotive indus-
try [1], and Integrated Modular Avionics (IMA) in aerospace [2]. This new organization

� This research has been developed in the framework of the European IP-SPEEDS project num-
ber 033471.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 200–225, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multiple Viewpoint Contract-Based Specification and Design 201

requires extensive virtual prototyping and design space exploration, where component
or subsystem specification and integration occur at different phases of the design, in-
cluding at the early ones [3].

Component based development has emerged as the technology of choice to address
the challenges that result from this paradigm shift. In the particular context of (safety
critical) embedded systems with complex OEM/supplier chains, the following distin-
guishing features must be addressed. First, the need for high quality, zero defect, soft-
ware systems calls for techniques in which component specification and integration is
supported by clean mathematics that encompass both static and dynamic semantics—
this means that the behavior of components and their composition, and not just their port
and type interface, must be mathematically defined. Second, system design includes
various aspects—functional, timeliness, safety and fault tolerance, etc.—involving dif-
ferent teams with different skills using heterogeneous techniques and tools. Third, since
the structure of the supply chain is highly distributed, a precise separation of respon-
sibilities between its different actors must be ensured. This is addressed by relying on
contracts. Following [4] a contract is a component model that sets forth the assumptions
under which the component may be used by its environment, and the corresponding
promises that are guaranteed under such correct use.

The semantic foundations that we present in this paper are designed to support this
methodology by addressing the above three issues. At its basis, the model is a language-
based abstraction where composition is by intersection. This basic model can then be
instantiated to cover functional, timeliness, safety, and dependability requirements per-
formed across all system design levels. No particular model of computation and com-
munication is enforced, and continuous time dynamics such as those needed in physical
system modeling is supported as well. In particular, executable models such as state
transition systems and hybrid automata can be used for the description of the behaviors.
On top of the basic model, we build the notion of a contract, which is central to our
methodology, by distinguishing between assumptions and promises. This paper focuses
on developing a generic compositional theory of contracts, providing relations of con-
tract satisfaction and refinement called dominance, and the derivation of operators for
the correct construction of complete systems.

Our key contribution is the handling of multiple viewpoints. We observe that combin-
ing contracts for different components and combining contracts for different viewpoints
attached to the same component requires different operators. Thus, in addition to tradi-
tional parallel composition, and to enable formal multi-viewpoint analysis, our model
includes boolean meet and join operators that compute conjunction and disjunction of
contracts. To be able to blend both types of operations in a flexible way, we introduce a
new operator that combines composition and conjunction to compute the least specific
contract that satisfies a set of specifications, while at the same time taking their inter-
action into account. The operators are complemented by a number of relations between
contracts and their implementations. Of particular interest are the notion of satisfaction
between an implementation and its contract, and relations of compatibility and consis-
tency between contracts. Specifications are also introduced to model requirements or
obligations that must be checked throughout the design process. Our second contribu-
tion consists in organizing these relations in a design and analysis methodology that

202 A. Benveniste et al.

spans a wide range of levels of abstraction, from the functional definition to its final
hardware implementation.

The rest of paper is organized as follows. We first review and discuss previous work
related to the concept of contract in the context of our contribution in Section 2. We then
introduce our model by first motivating our choices, and then by defining formally the
notions of component, contract, their implementations and specification in Section 3.
In addition, in the same section, we introduce and discuss a number of operators and
relations that support the incremental construction and verification of multi-viewpoint
systems. After that, we discuss the design methodology in Section 4. Finally, Section 5
presents an illustrative example of the use of the model.

2 Related Work

The notion of contract has been applied for the first time by Meyer in the context of
the programming language Eiffel [5]. In his work, Meyer uses preconditions and post-
conditions as state predicates for the methods of a class, and invariants for the class
itself. Preconditions correspond to the assumptions under which the method operates,
while postconditions express the promises at method termination, provided that the as-
sumptions are satisfied. Invariants must be true at all states of the class regardless of
any assumption. The notion of class inheritance, in this case, is used as a refinement,
or subtyping, relation. To guarantee safe substitutability, a subclass is only allowed to
weaken assumptions and to strengthen promises and invariants.

Similar ideas were already present in seminal work by Dijkstra [6] and Lamport [7]
on weakest preconditions and predicate transformers for sequential and concurrent pro-
grams, and in more recent work by Back and von Wright, who introduce contracts [8]
in the refinement calculus [9]. In this formalism, processes are described with guarded
commands operating on shared variables. Contracts are composed of assertions (higher-
order state predicates) and state transformers. This formalism is best suited to reason
about discrete, untimed process behavior.

Dill presents an asynchronous model based on sets of sequences and parallel com-
position (trace structures) [10]. Behaviors (traces) can be either accepted as successes,
or rejected as failures. The failures, which are still possible behaviors of the system,
correspond to unacceptable inputs from the environment, and are therefore the comple-
ment of the assumptions. Safe substitutability is expressed as trace containment between
the successes and failures of the specification and the implementation. The conditions
obtained by Dill are equivalent to requiring that the implementation weaken the as-
sumptions of the specification while strengthening the promises. Wolf later extended
the same technique to a discrete synchronous model [11]. More recently, De Alfaro
and Henzinger have proposed Interface Automata which are similar to synchronous
trace structures, where failures are implicitly all the traces that are not accepted by
an automaton representing the component [12]. Composition is defined on automata,
rather than on traces, and requires a procedure to restrict the state space that is equiva-
lent to the process called autofailure manifestation of Dill and Wolf. The authors have
also extended the approach to other kinds of behaviors, including resources and asyn-
chronous behaviors [13,14]. A more general approach along the lines proposed by Dill

Multiple Viewpoint Contract-Based Specification and Design 203

and Wolf is the work by Negulescu with Process Spaces [15], and by Passerone with
Agent Algebra [16], both of which extend the algebraic approach to generic behaviors
introduced by Burch [17]. In both cases, the exact form of the behavior is abstracted,
and only the properties of composition are used to derive general results that apply to
both asynchronous and synchronous models. An interesting aspect of Process Spaces
is the identification of several derived algebraic operators. In contrast, Agent Algebra
defines the exact relation between concepts such as parallel composition, refinement
and compatibility in the model.

Our notion of contract supports speculative design in which distributed teams de-
velop partial designs concurrently and synchronize by relying on the notions of rich
component [4] and associated contracts. We define assumptions and promises in terms
of behaviors, and use parallel composition as the main operator for decomposing a de-
sign. This choice is justified by the reactive nature of embedded software, and by the
increasing use of component models that support not only structured concurrency, ca-
pable of handling timed and other non-functional properties, but also heterogeneous
synchronization and communication mechanisms. Contracts in [8] are of a very dif-
ferent nature, since there is no clear indication of the role (assumption or promise) a
state predicate or a state transformer may play. We developed our theory on the basis
of assertions, i.e., languages of traces or runs (not to be confused with assertions in [8],
which are state predicates).

Our contracts are intended to be abstract models of a component, rather than imple-
mentations, which, in our context, may equivalently be done in hardware or software.
Similarly to Process Spaces and Agent Algebra, we develop our theory on the basis of
languages of generic “runs”. However, to attain the generality of a metamodel, and to
cover non-functional aspects of the design, we also develop a concrete model enriched
with real-time information that achieves the expressive power of hybrid systems. Be-
haviors are decomposed into assumptions and promises, as in Process Spaces, a repre-
sentation that is more intuitive than, albeit equivalent to, the one based on the successes
and failures of asynchronous trace structures. Unlike Process Spaces, however, we ex-
plicitly consider inputs and outputs, which we generalize to the concept of controlled
and uncontrolled signals. This distinction is essential in our framework to determine the
exact role and responsibilities of users and suppliers of components. This is concretized
in our framework by a notion of compatibility which depends critically on the particular
partition of the signals into inputs and outputs. We also extend the use of receptiveness
of asynchronous trace structures, which is absent in Process Spaces, to define formally
the condition of compatibility of components for open systems.

Our refinement relation between contracts, which we call dominance to distinguish it
from refinement between implementations of the contracts, follows the usual scheme of
weakening the assumption and strengthening the guarantees. The order induces boolean
operators of conjunction and disjunction, which resembles those of asynchronous trace
structures and Process Spaces. To address mutliple viewpoints for multiple components,
we define a new fusion operator that combines the operation of composition and con-
junction for a set of contracts. This operator is introduced to make it easier for the user to
express the interaction between contracts related to different viewpoints of a component.

204 A. Benveniste et al.

The model that we present in this paper is based on execution traces, and is there-
fore inherently limited to representing linear time properties. The branching structure
of a process whose semantics is expressed in our model is thus abstracted, and the
exact state in which non-deterministic choices are taken is lost. Despite this, the equiv-
alence relation that is induced by our notion of dominance between contracts is more
distinguishing than the traditional trace containment used when executions are not rep-
resented as pairs (assumptions, promises). This was already observed by Dill, with the
classic example of the vending machine [10], see also Brookes et al. on refusal sets [18].
There, every accepted sequence of actions is complemented by the set of possible re-
fusals, i.e., by the set of actions that may not be accepted after executing that particular
sequence. Equivalence is then defined as equality of sequences with their refusal sets.
Under these definitions, it is shown that the resulting equivalence is stronger than trace
equivalence (equality of trace sets), but weaker than observation equivalence [19,20].
A precise characterization of the relationships with our model, in particular with regard
to the notion of composition, is deferred to future work.

3 Model Overview

In the SPEEDS project, a major emphasis has been placed on the development of
a model that supports concurrent system development in the framework of complex
OEM-supplier chains. This implies the ability to support abstraction mechanisms and
to work with multiple viewpoints that are able to express both functional (discrete and
continuous evolutions) and non-functional aspects of a design. In particular, the model
should not force a specific model of computation and communication (MoCC).

The objective of this paper is to develop a theory and methodology of component
based development, for use in complex supply chains or OEM/supplier organizations.
Two broad families of approaches can be considered for this purpose:

– Building systems from library components. This is perhaps the most familiar case
of component based development. In this case, emphasis is on reuse and adaptation,
and the development process is largely in-house dominated. In this case, compo-
nents are exposed in a simplified form, called their interface, where some details
may be omitted. The interface of components is typically obtained by a mechanism
of abstraction. This ensures that, if interfaces match, then components can be safely
composed and deliver the expected service.

– Distributed systems developmentwith highly distributed OEM/supplier chains. This
second situation raises the additional and new issue of splitting and distributing re-
sponsibilities between the different actors of the OEM/supplier chain, possibly in-
volving different viewpoints. The OEM wants to define and know precisely what
a given supplier is responsible for. Since components or sub-systems interact, this
implies that each entity in the area of interaction must be precisely assigned for
responsibility to a given supplier, and must remain out of control for others.

Thus each supplier is given a design task in the following form: A goal, also called
guarantee or promise, is assigned to the supplier. This goal involves only entities the
supplier is responsible for. Other entities, which are not under the responsibility of this

Multiple Viewpoint Contract-Based Specification and Design 205

supplier, may still be subject to constraints that are thus offered to this supplier as as-
sumptions. Assumptions are under the responsibility of other actors of the OEM/supplier
chain, and can be used by this supplier for achieving its own promises. This mechanism
of assumptions and promises is structured into contracts, which form the essence of
distributed systems development involving complex OEM/supplier chains.

3.1 Components and Contracts

Our model is based on the concept of component. A component is a hierarchical entity
that represents a unit of design. Components are connected together to form a system
by sharing and agreeing on the values of certain ports and variables. A component may
include both implementations and contracts. An implementation M is an instantiation
of a component and consists of a set P of ports and variables (in the following, for sim-
plicity, we will refer only to ports) and of a set of behaviors, or runs, also denoted by M ,
which assign a history of “values” to ports. This model essentially follows the Tagged-
Signal model introduced by Lee and Sangiovanni [21], which is shown appropriate for
expressing behaviors of a wide variety of models of computation. However, unlike the
Tagged-Signal model, we do not need a predetermined form of behavior for our basic
definitions, which will remain abstract. Instead, the way sets of behaviors are repre-
sented in specific instances will define their structure. For example, an automata based
model will represent behaviors as sequences of values or events. Conversely, behaviors
in a hybrid model will consist of alternations of continuous flows and discrete jumps.
Our basic definitions will not vary, and only the way operators are implemented is af-
fected. This way, our definitions are independent of the particular model chosen for the
design. Thus, because implementations and contracts may refer to different viewpoints,
we refer to the components in our model as heterogeneous rich components (HRC).

We build the notion of a contract for a component as a pair of assertions, which ex-
press its assumptions and promises. An assertion E is a property that may or may not
be satisfied by a behavior. Thus, assertions can again be modeled as a set of behaviors
over ports, precisely as the set of behaviors that satisfy it. Note that this is unlike pre-
conditions and postconditions in program analysis, which constrain the state space of a
program at a particular point. Instead, assertions in our context are properties of entire
behaviors, and therefore talk about the dynamics of a component. An implementation
M satisfies an assertion E whenever they are defined over the same set of ports and all
the behaviors of M satisfy the assertion, i.e., when M ⊆ E.

A contract is an assertion on the behaviors of a component (the promise) subject
to certain assumptions. We therefore represent a contract C as a pair (A, G), where A
corresponds to the assumption, and G to the promise. An implementation of a com-
ponent satisfies a contract whenever it satisfies its promise, subject to the assumption.
Formally, M ∩ A ⊆ G, where M and C have the same ports. We write M |= C when
M satisfies a contract C. Satisfaction can be checked using the following equivalent
formulas, where ¬A denotes the set of all runs that are not runs of A:

M |= C ⇐⇒ M ⊆ G ∪ ¬A ⇐⇒ M ∩ (A ∩ ¬G) = ∅

There exists a unique maximal (by behavior containment) implementation satisfying a
contract C, namely MC = G ∪ ¬A. One can interpret MC as the implication A⇒ G.

206 A. Benveniste et al.

Clearly, M |= (A, G) if and only if M |= (A, MC), if and only if M ⊆ MC . Because
of this property, we can restrict our attention to contracts of the form C = (A, MC),
which we say are in canonical form, without losing expressiveness. The operation of
computing the canonical form, i.e., replacing G with G ∪ ¬A, is well defined, since
the maximal implementation is unique, and it is idempotent. Working with canonical
forms simplifies the definition of our operators and relations, and provides a unique
representation for equivalent contracts.

In order to more easily construct contracts, it is useful to have an algebra to express
more complex contracts from simpler ones. The combination of contracts associated to
different components can be obtained through the operation of parallel composition, de-
noted with the symbol ‖. If C1 = (A1, G1) and C2 = (A2, G2) are contracts (possibly
over different sets of ports), the composite C = C1 ‖ C2 must satisfy the guaran-
tees of both, implying an operation of intersection. The situation is more subtle for
assumptions. Suppose first that the two contracts have disjoint sets of ports. Intuitively,
the assumptions of the composite should be simply the conjunction of the assumptions
of each contract, since the environment should satisfy all the assumptions. In general,
however, part of the assumptions A1 will be already satisfied by composing C1 with
C2, acting as a partial environment for C1. Therefore, G2 can contribute to relaxing the
assumptions A1. And vice-versa. Formally, this translates to the following definition.

Definition 1 (Parallel Composition). Let C1 = (A1, G1) and C2 = (A2, G2) be con-
tracts. The parallel composition C = (A, G) = C1 ‖ C2 is given by

A = (A1 ∩A2) ∪ ¬(G1 ∩G2), (1)

G = G1 ∩G2, (2)

This definition is consistent with similar definitions in other contexts [12,10,15]. C1 and
C2 may have different ports. In that case, we must extend the behaviors to a common
set of ports before applying (1) and (2). This can be achieved by an operation of inverse
projection. Projection, or elimination, in contracts requires handling assumptions and
promises differently, in order to preserve their semantics.

Definition 2 (Elimination). For a contract C = (A, G) and a port p, the elimination
of p in C is given by

[C]p = (∀p A, ∃p G) (3)

where A and G are seen as predicates.

Elimination trivially extends to finite sets of ports, denoted by [C]P , where P is the
considered set of ports. For inverse elimination in parallel composition, the set of ports
P to be considered is the union of the ports P1 and P2 of the individual contracts.

Parallel composition can be used to construct complex contracts out of simpler ones,
and to combine contracts of different components. Despite having to be satisfied si-
multaneously, however, multiple viewpoints associated to the same component do not
generally compose by parallel composition. Take, for instance, a functional viewpoint
Cf and an orthogonal timed viewpoint Ct for a component M . Contract Cf specifies
allowed data pattern for the environment, and sets forth the corresponding behavioral

Multiple Viewpoint Contract-Based Specification and Design 207

property that can be guaranteed. For instance, if the environment alternates the values
T,F,T, . . . on port a, then the value carried by port b never exceeds a given value x.
Similarly, Ct sets timing requirements and guarantees on meeting deadlines. For exam-
ple, if the environment provides at least one data per second on port a (1ds), then the
component can issue at least one data every two seconds (.5ds) on port b. Parallel com-
position fails to capture their combination, because the combined contract must accept
environments that satisfy either the functional assumptions, or the timing assumptions,
or both. In particular, parallel composition computes assumptions that are too restric-
tive. Figure 1 illustrates this. Figure 1(a) shows the two contracts (Cf on the left, and
Ct on the right) as truth tables. Figure 1(b) shows the corresponding inverse projection.
Figure 1(d) is the parallel composition computed according to our previous definition,
while Figure 1(c) shows the desired result. We would like, that is, to compute the con-
junction * of the contracts, so that if M |= Cf *Ct, then M |= Cf and M |= Ct. This
can best be achieved by first defining a partial order on contracts, which formalizes a
notion of substitutability, or refinement.

d)

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

<x

>x

>1ds
TFT !TFT

>x

<x

<1ds >1ds <1ds

>.5ds

>.5ds

<.5ds

<.5ds

TFT !TFT

>x

<x

TFT !TFT

>x

<x

<1ds>1ds

<.5ds

>.5ds

<1ds>1ds

<.5ds

>.5ds

Af Gf At Gt

Af lifted Gf lifted At lifted Gt lifted

a)

b)

c)

Fig. 1. Truth tables for the synchronization of categories. The four diagrams on the top are the
truth tables of the functional category Cf and its assumption Af and promise Gf , and similarly
for the timed category Ct. Note that these two contracts are in canonical form. In the middle,
we show the same contracts lifted to the same set of variables b, db, x, dx, combining function
and timing. On the bottom, the two tables on the left are the truth tables of the greatest lower
bound Cf �Ct. For comparison, we show on the right the truth tables of the parallel composition
C1 ‖ C2, revealing that the assumption is too restrictive and not the one expected.

208 A. Benveniste et al.

Definition 3 (Dominance). We say that C = (A, G) dominates C′ = (A′, G′), written
C $ C′, if and only if

A ⊇ A′, and

G ⊆ G′,

and the contracts have the same ports.

Dominance amounts to relaxing assumptions and reinforcing promises, therefore
strengthening the contract. Clearly, if M |= C and C $ C′, then M |= C′.

Given the ordering of contracts, we can compute greatest lower bounds and least
upper bounds, which correspond to taking the conjunction and disjunction of contracts,
respectively.

Definition 4 (Bounds). For contracts C1 = (A1, G1) and C2 = (A2, G2) (in canoni-
cal form), we have

C1 * C2 = (A1 ∪A2, G1 ∩G2), (4)

C1
 C2 = (A1 ∩A2, G1 ∪G2). (5)

The resulting contracts are in canonical form. Conjunction of contracts amounts to tak-
ing the union of the assumptions, as required, and can therefore be used to compute the
overall contract for a component starting from the contracts related to multiple view-
points.

The operations of parallel composition and conjunction are related by the result be-
low, which allows the designer to relate in a precise way the designs obtained by fol-
lowing different implementation flows:

Theorem 1. Let C, C1 and C2 be contracts. Then,

(C *C1) ‖ (C * C2) $ C * (C1 ‖ C2)

when both sides of the inequality are defined.

Proof. Let C = (A, G), C1 = (A1, G1) and C2 = (A2, G2) be contracts. Then, by (1),
(2) and (4),

C * (C1 ‖ C2) = (A ∪ (A1 ∩A2) ∪ ¬(G1 ∩G2), G ∩G1 ∩G2).

Similarly,

(C * C1) ‖ (C * C2) = ((A ∪A1) ∩ (A ∪A2) ∪ ¬(G ∩G1 ∩G2), G ∩G1 ∩G2).

Clearly,
¬(G1 ∩G2) ⊆ ¬(G ∩G1 ∩G2).

In addition,
A ∪ (A1 ∩A2) = (A ∪A1) ∩ (A ∪A2).

The result then follows by definition of dominance.

Multiple Viewpoint Contract-Based Specification and Design 209

The left hand side of the formula of Theorem 1 yields the contract obtained by first
combining viewpoints for each component and then composing the components. On
the other hand, the right hand side of the same formula yields the contract obtained by
applying the converse flow. Thus, the theorem expresses that component centric design
(left hand side) results in less flexibility in the implementations than a viewpoint centric
design (right hand side) would do.

3.2 System Obligations

Contracts are not the only way a designer would like to express system’s requirements.
System obligations are typically high level requirements that the designer would like
to hold without considering any environment nor assumption. System obligations are
useful for both overall system requirements and for overall properties of the computing
platform.

System obligations are formally defined as assertions, i.e., sets of behaviors. An im-
portant point is that system obligations should be checked on contracts as early as possi-
ble in the design flow, because this significantly reduces the analysis effort, required to
prove or disprove the obligation, and the design effort, required to revise the contract if
the obligation is not met. To formalize this idea we introduce the conformance relation:
a contract C = (A, G) conforms to a system obligation B if A ∩G ⊆ B.

With each contract C = (A, G) we can associate an obligation, that we call the
contract obligation, defined as BC = A ∩ G. Hence, a contract conforms to a system
obligation if its contract obligation is contained in (i.e., it is stronger than) the system
obligation. There is a simple relationship between the maximal implementation MC of
contract C and the corresponding contract obligation BC , namely A ∩MC = BC and
MC = BC ∪ ¬A. Indeed:

A ∩MC = A ∩ (G ∪ ¬A) = A ∩G = BC

BC ∪ ¬A = A ∩G ∪ ¬A = A ∩G ∪ ¬A ∩G ∪ ¬A = G ∪ ¬A = MC

The formulation of the conformance relation in terms of the contract obligation suggests
an extension of the notion of conformance to contracts: a contract C2 conforms to a con-
tract C1 if BC2 ⊆ BC1 . This definition ensures that conformance is transitive, thereby
implying that contract C2 conforms to any system obligation which C1 conforms to.
Conformance is compositional with respect to parallel composition. This follows from
the fact that BC1||C2 = BC1 ∩ BC2 , i.e., the contract obligation associated with the
parallel composition of C1 and C2 is the intersection of their contract obligations. This
can be shown by using equations (1) and (2) of parallel composition. Contracts and
system obligations are specifications that are intended to guide the designer(s) towards
a consistent system’s implementation. Hence, in the design process we intend to relate
implementations to contracts and system obligations. In particular, implementations are
used in the contexts defined by contracts and are meant to satisfy all system obligations.
In more precise terms, given an implementation that satisfies a contract that conforms
to a system obligation, we want that such an implementation also satisfy in some sense
to the system obligation. To formalize this we say that an implementation M satisfies
a system obligation B through a contract C = (A, G) if A ∩M ⊆ B. It can be read-
ily observed that if an implementation M satisfies a contract C = (A, G), and if C
conforms to a system obligation B, then M satisfies B through C.

210 A. Benveniste et al.

Conformance and dominance between contracts are complementary, in the sense
that one does not imply the other. Nevertheless, there is a strong relationship between
the two. Specifically, given two contracts, C1 = (A1, G1) and C2 = (A2, G2), if C2
dominates C1, then C2 conforms to C1 if and only if A2 ⊆ A1∪¬G2, as shown below:

G2 ⊆ G1 ⇒ A2 ∩G2 ⊆ G1 and A2 ⊆ A1 ∪ ¬G2 ⇐⇒ A2 ∩G2 ⊆ A1

Note that the condition A2 ⊆ A1 ∪¬G2 requires that if a given behavior is not allowed
by the contract C1 (i.e., is not in A1), but is possible in C2 (i.e., is in G2), then it must
be disallowed also by contract C2 (i.e., is not in A2). This condition together with the
dominance relation is called strong dominance.

3.3 The Asymmetric Role of Ports

So far we have ignored the role of ports and the corresponding splitting of responsibil-
ities between the implementation and its environment, see the discussion above. Such
a splitting of responsibilities avoids the competition between environment and imple-
mentation in setting the value of ports and variables.

Intuitively, an implementation can only provide promises on the value of the ports it
controls. On ports controlled by the environment, instead, it may only declare assump-
tions. Therefore, we will distinguish between two kinds of ports for implementations
and contracts: those that are controlled and those that are uncontrolled. Uncontrollabil-
ity can be formalized as a notion of receptiveness: for E an assertion, and P ′ ⊆ P a
subset of its ports, E is said to be P ′-receptive if and only if for all runs σ′ restricted
to ports belonging to P ′, there exists a run σ ∈ E such that σ′ and σ coincide over
P ′. In words, E accepts any history offered to the subset P ′ of its ports. This closely
resembles the classical notion of inputs and outputs in programs and HDLs; it is more
general, however, as it encompasses not only horizontal compositions within a same
layer, but also cross-layer integration such as the integration between application and
execution platform performed at deployment.

In some cases, different viewpoints associated with the same component need to
interact through some common ports. This motivates providing a scope for ports, by
partitioning them into ports that are visible (outside the underlying component) and
ports that are local (to the underlying component). The above discussion can be sum-
marized as a profile π = (vis, loc,u, c), which partitions a set of ports P into subsets
such that

P = vis ! loc = {visible} ! {local}
P = u ! c = {uncontrolled} ! {controlled}

Thus, in addition to sets of runs, components, implementations and contracts can be
characterized by a profile over a set of ports P . As before, for a contract C = (A, G) or
an implementation M , the sets A, G and M are constrained to include only runs over P .

The satisfaction and the dominance relations are easily extended to take profiles
into account, by simply insisting that the implementations and the contracts that are
put in relation have the same profile. Consequently, conjunction (the greatest lower
bound) can only be taken between contracts over the same profiles. If two contracts
have different profiles, then an operation of inverse projection is required. However, the

Multiple Viewpoint Contract-Based Specification and Design 211

resulting profiles must be consistent regarding which ports are controlled and which are
uncontrolled, and local. This restriction highlights the fact that the logical operations
that we have defined are relative to contracts that refer to the same components, and
which must therefore treat controlled and uncontrolled ports in the same way.

The situation is different for parallel composition. Here, we enforce the property that
each port should be controlled by at most one contract. Hence, parallel composition is
defined only if the sets of controlled ports of the contracts are disjoint. However, one
contract may regard one port as controlled, and the other as uncontrolled. In this case,
we are simply stating that the controlling contract determines the value of the port for
the other contract. Thus, in the composite contract, a port is controlled exactly when
it is controlled by one of the component contracts. Uncontrolled ports of the contracts
remain uncontrolled in the composite provided that they are not already controlled by
the other contract. A similar reasoning is applied to visible and local ports. In this case,
however, we distinguish between the composition of contracts for the same component,
and contracts for different components. In the first case, local ports have no effect on
the composition, since the scope of local ports extends to the entire component. In the
second case, instead, the set of local ports of one contract must be disjoint from the set
of ports of the other contract.

More formally, for contracts C1 = (π1, A1, G1) and C2 = (π2, A2, G2) for the same
underlying component, parallel composition is defined if and only if c1 ∩ c2 = ∅, and
in that case is the contract C = (π, A, G) defined by:

vis = vis1 ∪ vis2,
loc = (loc1 ∪ loc2)− (vis1 ∪ vis2),

c = c1 ∪ c2,
u = (u1 ∪ u2)− (c1 ∪ c2),

The formulas are the same for contracts of different components, where composition is
defined only if loc1 ∩ P2 = loc2 ∩ P1 = ∅.

3.4 Consistency and Compatibility

The notion of receptiveness and the distinction between controlled and uncontrolled
ports is at the basis of our relations of consistency and compatibility between contracts.
Our first requirement is that an implementations M with profile π = (vis, loc,u, c) be
u-receptive, formalizing the fact that an implementation has no control over the values
of ports set by the environment. For a contract C we say that C is

– consistent if G is u-receptive, and
– compatible if A if c-receptive.

The sets A and G are not required to be receptive. However, if G is not u-receptive,
then the promises constrain the uncontrolled ports of the contract. In particular, the
contract admits no receptive implementation. This is against our policy of separation
of responsibilities, since we stated that uncontrolled ports should remain entirely under

212 A. Benveniste et al.

the responsibility of the environment. Corresponding contracts are therefore called
inconsistent.

The situation is dual for assumptions. If A is not c-receptive, then there exists a se-
quence of values on the controlled ports that are refused by all acceptable environments.
However, by our definition of satisfaction, implementations are allowed to output such
sequence. Unreceptiveness, in this case, implies that a hypothetical environment that
wished to prevent a violation of the assumptions should actually prevent the behavior
altogether, something it cannot do since the port is controlled by the contract. There-
fore, unreceptive assumptions denote the existence of an incompatibility internal to the
contract, that cannot be avoided by any environment.

The notion of consistency and compatibility can therefore be extended to pairs of
contracts. We say that two contracts C1 and C2 are consistent or compatible whenever
their parallel composition is consistent or compatible.

Consistency and compatibility may not be preserved by Boolean operations and by
parallel composition. For example, one obtains an inconsistent contract when taking the
greatest lower bound of two contracts, one of which promises that certain behaviors will
never occur in response to a certain input, while the other promises that the remaining
behaviors will not occur in response to the same input. This is because the contracts
control the same ports, and composition of promises is by intersection. Similarly, as-
sumptions may become unreceptive as a result of taking the least upper bound. We do
not generally use least upper bounds, so we do not elaborate further on this situation.
In general, however, the conjunction of compatible contracts is still compatible, since
assumptions compose by union.

Another form of inconsistency may arise when taking parallel composition. In this
case, certain input sequences may be prevented from happening because they might
activate unstable zero-delay feedback loops. The resulting behaviors may have no rep-
resentations in our model, thus resulting in an empty promise. This problem can be
avoided by modeling the oscillating behaviors explicitly (perhaps using a special value
that denotes oscillation) [11]. We assume that this kind of inconsistency is taken care of
by the user or by the tools.

Assumptions may also become unreceptive as a result of a parallel composition even
if they are not so individually. This is because the set of controlled ports after a com-
position is strictly larger than before the composition. In particular, ports that were
uncontrolled may become controlled, because they are controlled by the other contract.
In this case, satisfying the assumptions is the responsibility of the other contract, which
acts as a partial environment. If the assumptions are not satisfied by the other contract,
then the assumptions of the composition become unreceptive. That is, a hypothetical
environment that wished to prevent a violation of the assumptions should actually pre-
vent the behavior altogether, something it cannot do since the port is controlled by one
of the contract. Therefore, unreceptive assumptions denote the existence of an internal
incompatibility within the composition.

Finally, we point out that the operation of transforming a contract to its canonical
form preserves consistency (and compatibility), since the promises G are replaced by
their most permissive version G ∪ ¬A.

Multiple Viewpoint Contract-Based Specification and Design 213

3.5 Fusion

When several viewpoints and several components are present in a system, combining
conjunction and parallel composition may not be trivial. To overcome the problem, we
define a unique operator, which combines the operations of conjunction and parallel
composition, and results in an overall contract for a system. We call this operation a
fusion of contracts. The fusion operator takes a finite set of contracts (Ci)i∈I as operand,
and a set of ports Q to be eliminated, because internal to the component. The fusion of
(Ci)i∈I with respect to Q is defined by

[[(Ci)i∈I]]Q =*J⊆I

[
‖j∈JCj

]
Q

, (6)

where J ranges over the set of all subsets of I for which composition is defined and,
after the composition, no input is contained in Q. In other words, fusion considers only
compositions of contracts for which internal connections have been fully established
and discharged, and therefore talk only about the global input to output behavior. To
guarantee the maximal flexibility in fusion, the subsets J are also chosen to be maximal
with respect to containment. By doing so, we avoid considering partial compositions
which, when taking the conjunction, restrict the range of accepted environments, and
therefore strengthen the assumptions.

Certain particular cases are of interest. For instance, when Q = ∅, the fusion reduces
to the greatest lower bound: [[(Ci)i∈I]]∅ = *i∈ICi. Likewise, if for i = 1, 2,

∀Q (Ai ∪ ¬G) ⊇ ∀Q (A1 ∪A2) (7)

then fusion reduces to the parallel composition operator: [[(Ci)i∈{1,2}]]Q = [C1 ‖ C2]Q.
Condition (7) says that the restriction to Q of each contract is a valid environment for
the restriction to Q of the other contract. This situation corresponds to two compo-
nents that interact through ports in Q, which are subsequently hidden from outside.
In practice, fusion computes the parallel composition of contracts attached to different
sub-components of a composite, whereas contracts attached to the same composite that
involve the same inputs and outputs (including their direction) fuse via the operation of
conjunction. The general case lies in between and is given by formula (6).

4 Methodology

The aforementioned relations and operations among contracts set the basis for compo-
sition and manipulation of components composed of contracts belonging to more than
one viewpoint. Moreover, we provide a methodology to orchestrate the usage of the
relations and give guidelines to the user on how to design and verify her model against
a number of requirements/constraints that follow the laws presented in the previous
sections.

We distinguish between the Design and the Analysis methodology. The former de-
fines the design steps that the user can take for the evolution of her system, while the
latter specifies the relations that should be established (or re-established) depending on
the corresponding design step.

214 A. Benveniste et al.

Fig. 2. Abstract view of the design methodology

An abstract representation of the design methodology is shown in Figure 2. Initially,
from a set of requirements, we derive a system model composed of rich components
and a (initially empty) set of relations between them. From this point, the user may take
a number of steps, perform analysis to enhance this set of relations or to perform design
space exploration. The latter is subject of future work.

We detail on the design steps later on, after we specify the different elements of the
design.

4.1 Elements of the Design

We distinguish between four categories of design elements, as defined in Section 3:
contracts, implementations, system obligations, and relations. A rule of thumb to dis-
tinguish the relations is that consistency, compatibility and dominance relations are
established between two contracts; the satisfaction relation between an implementation
and a contract; and the conformance relation between a contract and a system obliga-
tion. As part of the design methodology, we consider an organization of those elements
in three design spaces and furthermore in layers. These are: the implementation space,
the contract space and the system obligation space. Relations (since they are not syn-
tactic elements of the model) are represented as “connections” between elements of the
same or different spaces. For example, dominance “connects” two elements within the
contract space, while satisfaction “connects” one element from the contract and one
from the implementation space. Note that a relation may “connect” an element with
itself, as in the case of the compatibility relation.

Each space may be further subdivided into layers. In the context of the SPEEDS
project, only the layering of the contract space is relevant, because the main purpose
of the HRC model is to represent contracts. However, a layering of the obligation and
implementation spaces is also possible.

Multiple Viewpoint Contract-Based Specification and Design 215

Fig. 3. Organization of spaces and layers

Figure 3 shows a possible layering of the contract space in the case of automotive
applications. Here we identify three layers: 1) the functional layer, corresponding to de-
scribing the basic functional requirements and guarantees; 2) the Engine Control Unit
(ECU) layer, that sets forth the high level timing and architecture assumptions and guar-
antees; and 3) the Hardware (HW) layer, corresponding to a more detailed description
of the individual platform components. In addition, mapping an element from one layer
to an element from another will create an element that does not belong to either of the
operands’ layers. Thus, we have three extra layers for all the possible mappings, as de-
picted in Figure 4; one layer for the mapping of Function to ECU, one for the mapping
of ECU to HW and one for the mapping of all the layers.

4.2 Design Steps

A design step is an evolution of the development of the design, which can be seen
also as the evolution of the design in time. We use the elements defined in the previous
section to define the basic design steps that a user can follow during design. In principle,
a design step is defined as a tuple of source and target rich components. Moreover,
we specify a number of relations that are “required” between the elements of the rich
components participating in the step.

A design step is said to be validated if the required relations hold. This validation
is performed using high-level analysis services which are being developed within the
SPEEDS project, and include tools that can check satisfaction, dominance, compat-
ibility and consistency for a variety of models (from pure discrete to hybrid) using
both formal and semi-formal (simulation with dynamic property checking) techniques.
Moreover, we introduce the notion of valid rich component, that is a rich component
whose contract is compatible, consistent, it is satisfied by its implementation and con-
forms to its obligations.

216 A. Benveniste et al.

Fig. 4. Layers derived when mapping elements from different layers

When a design step is validated, and if the source rich components are valid, then
also the target components are valid, which means that the resulting component can be
used “safely” in place of the originating one, i.e., we can substitute without losing any
verification and validation results obtained previously.

We subdivide the design steps in two categories:

1. Design steps on single rich components. The first category contains design steps
which specify or modify only one element of a rich component, resulting in a new rich
component where the remaining elements are unchanged.

Let RC = {B, C, M} be the source and RC′ = {B′, C′, M ′} the target rich com-
ponents, where B, B′ are the system obligations, C, C′ the contracts and M, M ′ the
implementation.1 The design steps and the corresponding relations for their validation
are described below.

System obligation modification design step is when C = C′ and M = M ′, whereas
B �= B′. For the validation of this step there are two options:

– verify that B′ ⊆ B
or

– verify that C′ conforms to B ∪ ¬B′

Contract modification design step is when B = B′ and M = M ′, whereas C �= C′.
For the validation of this step there are two options:

– verify that C′ strongly dominates C
or

– verify that C′ is compatible, consistent, conforms to C and M ′ satisfies it
Implementation modification design step is when B = B′ and C = C′, whereas

M �= M ′. For the validation of this step there are two options:
– verify that M ′ refines M

or
– verify that M ′ satisfies C

The above steps are called “modifications” even though we may not have prior defi-
nition of the “modified” element, in which case, we consider the trivial element.

1 Even though a rich component may have more than one contract or system obligation, their
composition results into a unique one, and thus, without loss of generality, we consider this
assumption for the rest of the document.

Multiple Viewpoint Contract-Based Specification and Design 217

2. Design steps on multiple rich components. The second category contains those
design steps having more than one source or more than one target rich components. Let
RCn = {Bn, Cn, Mn} for n ∈ [1..κ] be κ source and RC′

m = {B′
m, C′

m, M ′
m} for

m ∈ [1..λ] be λ target rich components.

Decomposition design step: For the decomposition we have κ = 1 and λ ≥ 2.
Let RC′′ = {B′′, C′′, M ′′} be the parallel composition of all rich components
RC′

m for m ∈ [1..λ]. For the validation of this step there are two options:
– verify that C′′ strongly dominates C1

or
– verify that C′′ is compatible, consistent, conforms to C1 and M ′′ satisfies C1

Composition design step: For the composition we have κ ≥ 2 and λ = 1.
Since parallel composition preserves (strong) dominance, satisfaction and refine-
ment, no verification task is needed for integration.

Mapping design step: Mapping is a composition (fusion) of design elements from
different modeling layers and therefore we refer the reader to the discussion for
composition.

Using the design steps. The above design steps are all possible actions that can ad-
vance the system design and are the “bricks” to build the design methodology. The
design methodology that we follow uses these building blocks in a viewpoint centric
approach. This means that we should not apply any contract prior to performing decom-
position. In that way, and following Theorem 1, we retain a greater level of flexibility
for the implementations that should satisfy the decomposed components. We can see
this in Figure 5, where component RC, containing two contracts Cr and Cf, from the
real time and functional viewpoints respectively, has two possible decompositions: rich

Fig. 5. Two possible decompositions of RC

218 A. Benveniste et al.

components RC′ and RC′′. Therefore, we propose decomposition to RC′′, where the
real-time viewpoint is not applied (composed) to the decomposed components.

Note that the relations between the different elements of this decomposition should
hold according to the definition of the decomposition design step above, if we want to
have a valid design step. Thus, since we have no implementation or system obligation
in our example, the following must hold: Cf1 ‖ Cf2 $ Cf.

5 Illustrative Example

Our approach aims at supporting component based development of heterogeneous em-
bedded systems with multiple viewpoints, both functional and non-functional. The
following simple example illustrates this for the case of functional, timed, and safety
viewpoints. The top level view of our system is shown in Figure 6. It consists of a sys-
tem controller that can let the underlying plant “start”, “stop”, or “work” (signals r, s,
and w). The system controller promises that the mean amount of work performed by
the plant does not exceed a maximum and that the work is not paused for too long. A
human operator may decide to reinitialize the controller by sending the “reset” message
z. The system controller, which is the part of the system under design, must conform to
the following obligations:

Protocol obligation: “work” requests can be sent only after a “start” and before
a “stop”. A “stop” must follow a “start” or a “work” request.

Longest idle time obligation: a “work” request must follow a “start” or a
previous request at most after τmax seconds.

Maximum mean work obligation: from the last operator “reset”, the amount
of “work” requests per unit of time must not be greater than 1/ξ.

Figure 7 shows the automata that specify the obligations. For this example, the notation
[g]s/a denotes a transition. It is a triple consisting of a guard g, a triggering event
s, and an action a. Action a may, in turn, assign some variables and/or emit some
output(s). The idle time and mean work obligations are specified in terms of hybrid
automata. These hybrid automata use a timer x bound to physical time, thus satisfying
the differential equation ẋ = 1 (x increases with constant speed 1).

The system controller is decomposed into several components as shown on Figure 8.
It consists of a simple controller that is responsible for sending the “start”, “stop”, and
“work” signals to the underlying plant. The controller is deployed over a computing

Human

Operator
System Controller Plantz

w

s

r

out

Fig. 6. System view

Multiple Viewpoint Contract-Based Specification and Design 219

idle working

Longest idle time obligation

Maximum mean work obligation

Protocol obligation

r

s

w

ẋ := 1

ẋ := 1

[x ≤ τmax]w/x := 0r/x := 0

z/x := 0,m := 0 [m/x ≤ 1/ξ]w/m := m+ 1

Fig. 7. System obligations

computing platform

controllersupervisorz w

s

r

o

c

f

Fig. 8. The decomposition of the system controller

platform subject to “failure” f . This component guarantees that the underlying plant re-
ceives “work” requests within a maximum amount of time. The supervisor component,
instead, limits the “work” requests sent by the controller (the plant has limited capacity)
by moving the controller into a “blocked” mode. This is achieved by mimicking the to-
ken bucket mechanism used for traffic shaping in communication networks: every unit
of time, the supervisor accumulates a token for doing “work”; every request of “work”
reduces the token amount by ξ. The supervisor monitors the flow of w’s. When they get
too frequent, i.e., no token is available, an “overloaded” message o is sent to the con-
troller, stopping it from emitting further w requests. Only after an appropriate amount
of time, long enough to let a token accumulate, does the supervisor emit a clear “c”

220 A. Benveniste et al.

message to the controller to enable the emitting of additional w requests. The supervisor
resets the accumulated tokens when the human operator sends the “reset” message z.

This system involves three viewpoints: functional, Quality of Service (QoS) of timed
nature, and safety. The contracts for the different viewpoints are depicted in Figures 9–
11. For each contract, we show its assumption (top) and promise (bottom). Assumptions
are specified as observers, meaning that the corresponding diagrams define the negation

workingidle

functional
viewpoint

viewpoint
QoS

trivial assumption

[h > τn]

r

o

c

r

s

w

c

o

ḣ := 1

[h ≤ τn]w/h := 0

r/h := 0

w

⇓

⇓

Fig. 9. The two contracts Cfunct and CQoS specifying the two viewpoints of the controller. The

assumption is put on top of the promise and both are separated by the implication symbol ⇓ .

safety
viewpoint

no guarantee

f

Fig. 10. The contract Csafety specifying the contract of the computing platform

Multiple Viewpoint Contract-Based Specification and Design 221

ẋ = 1, ḣ = 1

QoS supervisor

ξ

x w w

time

z

controller is blocked

[x ≥ ξ and

z/x := 0

w

w,o

w

z/x := 0

w

ξ

w w

o c o c o c; o c c coo

c

z/c, x := 0

[x < ξ]/o

h := 0
[x ≥ ξ]w/x := x− ξ,

h < τn]/c

⇓

Fig. 11. Contract Cs of the supervisor and its behaviour

of these assumptions. In these diagrams, the circles filled in black denote not accepting
states.

Figure 9 depicts the set of contracts associated to the controller. The first contract
Cfunct describes the functional aspect under trivial assumption. The promise of the
contract CQoS indicates that there exist two modes: nominal, corresponding to normal
operation, and blocked, in which w’s are not emitted. Contract CQoS relates to timing.
This contract assumes that, if the controller is blocked, it will move to the nominal
mode (by receiving an event c) at most τn seconds after the last “work” request. If not,
the observer will move to a non accepting state. When in nominal mode, the controller
guarantees that the time interval between two successive “work” requests is at most τn

seconds. The timer h is dedicated to computing the elapsed time for both assumption
and promise.

222 A. Benveniste et al.

Contract Csafety , shown in Figure 10, is attached to the computing platform and as-
serts an assumption of no failure. The failure f is abstracted and considered as input to
the platform itself. The promise is not provided and can be thought as “any” possible
behavior (i.e., the “universe”). If a failure event arrives, then the assumption moves to a
non accepting state, meaning that nothing could be guaranteed about the provided be-
havior of the platform. This kind of contracts is useful to introduce assumptions without
altering the guarantees of the system.

Figure 11 depicts the QoS contract for the supervisor, which is in charge of avoiding
system collapse that may occur when an excessive amount of “work” is supplied to the
plant. The assumption says that no w must occur when the system is in the overloaded
state. The promise is specified in terms of a hybrid automaton. This hybrid automaton
uses two clocks x and h bound to physical time, thus satisfying the differential equation
ẋ = 1, ḣ = 1. Timer x is used to implement the token bucket mechanism, while timer
h is used to guarantee that a w request will be delayed by at most τn seconds. When
action w occurs, timer x decreases and, if w occurs too frequently, in the long range x
eventually reaches ξ, which causes the emission of message o and switches the mode
to “blocked”, where latency is at most the smallest between ξ and τn. At some point,
when x is again greater than ξ, a cleaning message c is sent to the controller to switch
to mode “nominal”. It is guaranteed that the sending of c is at most τn seconds after
the last “work” command. It is also guaranteed that, if the operator sends a reset by an
event z, then the system resets the timer value x and after ξ seconds the system turns
back to its nominal mode.

Contract conformance to the system obligations
As introduced in Section 3.2, system obligations are compositional, i.e., if a contract C1
conforms to a system obligation B1 and a contract C2 conforms to a system obligation
B2, then the parallel composition between C1 and C2 conforms to the system obliga-
tion B1 ∩ B2. This property allows us to “allocate” system obligations (see Fig. 7) to
components in order to check conformance of the corresponding contracts separately,
thereby reducing the complexity of the verification task. In order for this check to be
successful it is necessary that the system obligation’s interface be part of the allocated
component’s interface. For example, the protocol obligation relates r, s and w, that are
outputs of the controller component (see Fig.8). Hence, we can allocate the protocol
obligation to the controller for the conformance check. Similarly, the longest idle time
obligation relates r and w, so that it can also be allocated to the controller component
for the conformance check.

Conversely, the maximum mean work obligation relates z and w. Hence, this obliga-
tion can either be allocated to the supervisor, because z and w are supervisor’s inputs,
or to the parallel composition of the supervisor with the controller, because w is also a
controller’s output. In the former case, the verification task is simpler, because it does
not require the parallel composition of the supervisor and the controller. Nonetheless,
the conformance check may fail in this case because w is controlled by the controller
and not by the supervisor, so that the parallel composition might in the end be necessary
to verify conformance to the system obligation.

To illustrate how the conformance check works, we show that the controller’s con-
tract conforms to the protocol and the longest idle time obligations. Let us first consider

Multiple Viewpoint Contract-Based Specification and Design 223

workingidle

safety and functional
viewpoint

f

s

w

r

�

⇓

Fig. 12. Composed contract of the functional and safety viewpoints of the system controller

ẋ := 1

[x ≤ τmax]w/x := 0r/x := 0

c

o

r/h := 0

[h > τn]w
[x > τmax]w

¬B

[h ≤ τn]w/h := 0

A ∩G ḣ := 1

Fig. 13. Controller’s contract obligation and negation of the corresponding system obligation

the protocol obligation. Observe that the controller’s promise (Fig. 9) is equal to the
protocol obligation. Conformance of a contract to a system obligation requires that
the contract’s promise subject to the contract’s assumption (also called the contract
obligation) is contained in the system obligation. In formulas: A ∩ G ⊆ B, where
(A, G) denotes the contract and B denotes the system obligation. Since the controller’s
promise is equal to the protocol obligation, then the controller’s contract conforms to
the protocol obligation for any assumptions. This shows that the controller’s contract
conforms to the protocol obligation even after composition with the safety viewpoint
(Figs. 10 and 12).

Let us now consider the longest idle time obligation. The conformance check of the
controller’s contract to this obligation is not as trivial as in the case of the protocol obli-
gation. To verify conformance in this case we need to compute the contract obligation
A ∩ G and check the containment relation with the longest idle time obligation. To
do so we can check that A ∩ G ∩ ¬B = ∅. The contract obligation and the negation
of the longest idle time obligation are shown in Fig. 13. To compute the negation of
the longest idle time obligation, we first complete the obligation’s specification with its
non-accepting states (not shown for clarity reasons). Since the resulting automaton is

224 A. Benveniste et al.

deterministic, its negation can be computed by exchanging accepting and non-accepting
states. If we now take the intersection of the two automata shown in Fig. 13 we obtain an
automaton that has no accepting states if we assume τn ≤ τmax, representing therefore
the empty assertion. This proves that conformance is met.

6 Conclusion

We have presented mathematical foundations for a contract-based model for embed-
ded systems design. Our generic mathematical model of contract supports “speculative
design”. This is achieved by focusing on component behavior, via compositions of con-
tracts, with which diverse (functional and non-functional) aspects of the system can
be expressed. This enabled a formalization of the whole process of component and
multiple viewpoint composition through the general mechanism of contract fusion. A
key contribution of our approach is that the incremental consideration of components
and viewpoints can be handled with flexibility — whether through a component or a
viewpoint centric methodology. The formalism and the design methodology has been
illustrated through a multi viewpoint example.

Future work includes the development of effective algorithms to handle contracts,
coping with the problems raised by complementation. Taking complements is a delicate
issue: hybrid automata are not closed under complementation; in fact, no model class is
closed under complementation beyond deterministic automata. To account for this fact,
various countermeasures can be considered.

First, the designer has the choice to specify either E or its complement ¬E (e.g., by
considering observers). However, the parallel composition of contracts requires manip-
ulating both E and its complement ¬E, which is the embarrasing case. To get compact
formulas, our theory was developed using canonical forms for contracts, systemati-
cally. Not enforcing canonical forms provides room for flexibility in the representation
of contracts, which can be used to avoid manipulating both E and ¬E at the same time.
A second idea is to redefine an assertion as a pair (E, Ē), where Ē is an approximate
complement of E, e.g., involving some abstraction. In doing so, one of the two char-
acteristic properties of complements, namely E ∩ Ē = ∅ or E ∪ Ē = �, do not hold.
However, either necessary of sufficient conditions for contract dominance can be given.
The above techniques are the subject of ongoing work and will be reported elsewhere.

Acknowledgments

The authors would like to acknowledge the entire SPEEDS team for their contribution
to the project and to the ideas presented in this paper.

References

1. Damm, W.: Embedded system development for automotive applications: trends and chal-
lenges. In: Proceedings of the 6th ACM & IEEE International conference on Embedded
software (EMSOFT 2006), Seoul, Korea, October 22–25 (2006)

Multiple Viewpoint Contract-Based Specification and Design 225

2. Butz, H.: The Airbus approach to open Integrated Modular Avionics (IMA): technology,
functions, industrial processes and future development road map. In: International Workshop
on Aircraft System Technologies, Hamburg (March 2007)

3. Sangiovanni-Vincentelli, A.: Reasoning about the trends and challenges of system level de-
sign. Proc. of the IEEE 95(3), 467–506 (2007)

4. Damm, W.: Controlling speculative design processes using rich component models. In: Fifth
International Conference on Application of Concurrency to System Design (ACSD 2005),
St. Malo, France, June 6–9, pp. 118–119 (2005)

5. Meyer, B.: Applying ”design by contract”. IEEE Computer 25(10), 40–51 (1992)
6. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM 18(8), 453–457 (1975)
7. Lamport, L.: win and sin: Predicate transformers for concurrency. ACM Transactions on

Programming Languages and Systems 12(3), 396–428 (1990)
8. Back, R.J., von Wright, J.: Contracts, games, and refinement. Information and communica-

tion 156, 25–45 (2000)
9. Back, R.J., von Wright, J.: Refinement Calculus: A systematic Introduction. Graduate Texts

in Computer Science. Springer, Heidelberg (1998)
10. Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Cir-

cuits. ACM Distinguished Dissertations. MIT Press (1989)
11. Wolf, E.S.: Hierarchical Models of Synchronous Circuits for Formal Verification and Substi-

tution. PhD thesis, Department of Computer Science, Stanford University (October 1995)
12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth Annual

Symposium on Foundations of Software Engineering, pp. 109–120. ACM Press, New York
(2001)

13. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur,
R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

14. Henzinger, T.A., Jhala, R., Majumdar, R.: Permissive interfaces. In: Proceedings of the 13th

Annual Symposium on Foundations of Software Engineering (FSE 2005), pp. 31–40. ACM
Press, New York (2005)

15. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877.
Springer, Heidelberg (2000)

16. Passerone, R.: Semantic Foundations for Heterogeneous Systems. PhD thesis, Department
of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA
94720 (May 2004)

17. Burch, J., Passerone, R., Sangiovanni-Vincentelli, A.: Overcoming heterophobia: Modeling
concurrency in heterogeneous systems. In: Proceedings of the 2nd International Conference
on Application of Concurrency to System Design, Newcastle upon Tyne, UK, June 25–29
(2001)

18. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. Journal of the Association for Computing Machinery 31(3), 560–599 (1984)

19. Engelfriet, J.: Determinacy → (observation equivalence = trace equivalence). Theoretical
Computer Science 36, 21–25 (1985)

20. Brookes, S.D.: On the relationship of CCS and CSP. In: Dı́az, J. (ed.) ICALP 1983. LNCS.
vol. 154. Springer, Heidelberg (1983)

21. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of com-
putation. IEEE Transactions on Computer Aided Design of Integrated Circuits and Sys-
tems 17(12), 1217–1229 (1998)

Coordination: Reo, Nets, and Logic�

Dave Clarke

CWI, Amsterdam, The Netherlands
dave@cwi.nl

Abstract. This article considers the coordination language Reo, a Petri
net variant called zero-safe nets, and intuitionistic temporal linear logic
(ITLL). The first part examines the semantics of the coordination lan-
guage Reo in relation to zero-safe nets. Although the external presenta-
tions of the two models are quite different, the difference in underlying
semantics is rather small. In fact, Reo connectors can be compositionally
encoded into zero-safe nets. This means that the tools and techniques de-
veloped for Petri nets over the last 30 years, such as various extensions
to the zero-safe nets model, such reconfigurable and dynamic nets, can
be adapted to the Reo setting. The second part re-examines the idea
of using linear logic as a basis for coordination languages. Specifically,
we argue that intuitionistic temporal linear logic (ITLL) can encode the
semantics of Reo and zero-safe nets, by encoding their notion of transac-
tion. Moreover, by adapting the encoding and exploring the additional
connectives of ITLL, it can form the basis of an expressive coordina-
tion language which goes beyond these models, by introducing means
for explicitly reasoning about choices made by the environment and by
providing more fine-grained control over the timing of interaction.

1 Introduction

Pundits of coordination languages and models argue that concurrent, compo-
nent-based software should be broken into two independent parts: the entities
performing computation (components), and the entities coordinating the data
flow and resource usage between the components. This was crystallised into the
equation [23]:

Concurrent Programming = Computation + Coordination.

To date numerous coordination models have been proposed, each realising the
philosophy in a different manner [4,37]. The ones we are interested in in this pa-
per endeavour to schedule collections of actions together into multi-party trans-
actions, in the sense that either some desired set of actions occur together or
none of them do, possibly at the exclusion of other collections of actions. The
following variant of the well-known holiday booking example illustrates well what
we are after. Consider the following:
� This work is in the context of the EU project IST-33826 CREDO: Modeling and

analysis of evolutionary structures for distributed services (http://credo.cwi.nl)

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 226–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coordination: Reo, Nets, and Logic 227

a flight to Rio
a hotel on the beach
a dune-buggy

or
a flight to Zurich
a hotel on the mountain
a 4x4

or stay home.

The goal is to book, with suitably matching dates, either all the entries in the
first box and none of the entries in the second box, or all the entries in the
second box and none of those in the first box, or nothing at all (the third box).
Our assumption is that various components (or services) providing the basic
functionality for booking flights, hotels, dune buggies, 4x4s, etc. exist, and the
task of the coordinator is to plug these together in such a way to achieve the
desired goal.

In order to discuss the kind of coordination we are interested in this paper,
we first need to establish some terminology. We consider coordination not sim-
ply as a one-off event, but rather as an ongoing activity. Conceptually, time is
partitioned into a number of contiguous epochs, which we consider as the units
of coordination, meaning that the coordinator attempts to achieve something
within each epoch, and that, from the perspective of an external observer, no
finer granularity of time is observable. From the perspective of the coordinator,
a lot may occur within an epoch.

We say that a set of actions A is atomic wrt to another set of actions B if
and only if (1) either all of A occur or none of A within an epoch; and (2) the
actions A are not interleaved with the actions in B within that epoch. The
actions A are said to be mutually exclusive with the actions B. It is clear that
this notion of atomic can be broken into two part. Indeed, this is how atomicity
is conceived in the coordination language Reo [6]. In Reo, and in this article, the
notion of synchrony is associated with (1), that is, a set of actions are considered
synchronous if and only if they either all occur or none of them occurs within
an epoch. The notion of asynchrony or mutual exclusion is associated with (2),
that is, two sets of actions A and B are asynchronous if and only if if some a ∈ A
occurs within an epoch, then no element of B can occur within that epoch, and
vice versa. Simply put, two events that necessarily occur within the same epoch
are considered to be synchronous, and two events that necessarily occur within
different epochs are considered to be asynchronous. Synchrony can be also be
equated with a primitive notion of transaction.

Using this terminology, we say that the actions underlying the Rio-holiday are
synchronous, the actions underlying the Zurich-holiday are synchronous, and the
Rio-holiday is asynchronous with the Zurich-holiday.

We will work with the following definition of coordination:

coordination is the task of (continuously/repeatedly) scheduling groups
of dependent actions within temporal epochs.

In this definition, ‘scheduling’ captures both that actions may be scheduled to
occur or to not occur—or perhaps even that they occur and are rolled-back.
Furthermore, ‘dependent’ captures that one action may have temporal or data

228 D. Clarke

dependencies on another action, so even though all actions are conceptually con-
sidered to happen at the same time (synchronously), there may be a sequential
ordering among them, though only the fact that they occur within the same
epoch is relevant for our purposes.

The two coordination models considered in this paper are Reo [6] and zero-safe
nets [15]. These models, more or less, employ the notions defined above, coor-
dinating by grouping together actions into synchronous epochs at the exclusion
of other possibilities. In both cases, the possibilities in different epochs changes
due to state changes of the primitive elements of the coordination model.

Reo. Reo is a channel-based coordination designed by Farhad Arbab, and de-
veloped extensively by his group at CWI [6]. In Reo component connectors are
built by plugging together primitive channels.1 In Reo, channels come in a va-
riety of behavioural variants, but one characteristic persistent across the entire
set is that some channels are synchronous, as defined above, whereas others
are asynchronous; other channels admit variants of these possibilities or change
their behaviour depending upon their state. Channels in Reo can be composed
to express a wide range of possible behaviours. Composition occurs at nodes—a
collection of coincident channel ends—, which consist of a number of channel
ends writing data into the node, and a number of ends taking data from the
node. The node selects one possible data item written to it at the exclusion of
all others, and duplicates it to all the ends taking data synchronously—thus all
ends must be capable of accepting the data. Nodes have the policy that they
cannot buffer data, it must be passed onward. The power of Reo comes from
the combination of synchronous and mutual exclusion constraints of channels
and nodes, resulting in the propagation of synchrony and exclusion across a con-
nector. This means, for example, that if two primitives require that their ports
a, b, c and d, e, respectively, are synchronised, and they are plugged together,
joining c and d, then the synchronisation propagates over the composite of the
two primitives, meaning that a, b, c(= d), e will all by synchronised. If action f
is mutually exclusive with a, then it will be mutually exclusive with b, c(= d),
and e as well after the composition.

Synchronisation and mutual exclusion constraints restrict the possible ways
that data can flow through a connector. As we shall see, this means that data
cannot simply flow through a connector; rather, only some of the possible ways
data can flow are valid. Consider the example in Figure 1(a). Primitives 1(Anpr),
3(moB), and 7(stC) are replicators. They move the data synchronously from
A, m and s, respectively, to npr, oB, and tc. Primitives 2(nm) and 6(rs) are
lossy sync channels. They move data synchronously from n and r to m and s,
respectively, or simply lose the data at n and r respectively. Primitive 5(otq) is
a merger. It non-deterministically chooses between moving data from o to q or
from t to q. Finally, primitive 4(pq) is a synchronous drain. It will remove data
from p and q synchronously. The semantics of this connector can be understood
as the following ‘token game’: the goal is to move a token from boundary node
1 We sometimes write primitive instead of channel to de-emphasise the requirement

that they have two ends.

Coordination: Reo, Nets, and Logic 229

A

B

C

n

m

o

p q

r

s

t

(a)

A

B

C

n

m

o

p q

r

s

t

(b)

A

B

C

n

m

o

p q

r

s

t

(c)

Fig. 1. (a) An exclusive router in Reo. (The numbering of primitives will be used later).
(b) Valid data flow. (c) Stuck data flow.

A so that (1) moving it through the connector obeys all the above-mentioned
rules imposed by the primitives, (2) no token gets stuck on an internal node
{n, m, o, p, q, s, r, t}, and (3) no primitive is used more than once, so that (4) the
token possibly ends up on B and/or C or is lost.

Two of the possible ‘plays’ are presented in Figures 1(b) and 1(c). The dashed
(blue) line marks the path of the token(s) moved through the connector. In the
first case, choices were made satisfying the rules of the game, and thus this
corresponds to a correct behavioural possibility of the connector. In the second
case, we were over-zealous and allowed the data to pass through both lossy syncs
nm and rs, because the merger can choose only one item from o and t, hence
the token will get stuck on, for example, o, and thus the behavioural possibility
indicated (copying data from A to B and C) is invalid. After playing with the
various possibilities for this connector, the conclusion should be that it is possible
to move the token on A to either B or C, exclusively. This connector is in fact
called an exclusive router.

Zero-safe Nets. Coordination in zero-safe nets [15] is achieved in a different way.
Zero-safe nets are a variant of Petri nets which includes certain places called zero
places. These places cannot be observed, meaning that any transition involving
a marking of such a place is internal. In contrast, normal places are called stable.
Only markings of stable places are observable. The basic firing of transitions of
a zero-safe net is the same as for an ordinary Petri net. The main difference is
that the semantics is expressed as two levels. The micro-level is more or less the
same as in an ordinary Petri net, except that a micro-step may involve multiple
firings. Precisely, it may involve the movement of any number of tokens into
and out of zero places, but a token that is moved into a stable place may not
be moved out of it again. This way a series of micro-steps makes up a so-called
macro-step, which models a transaction between observable states. The internal
transitions can be seen as synchronising the observable ones. As usual, choice in
a Petri net is modelled by the competition between different transitions for the
same token.

Figure 2(a) presents and example zero-safe net solving the dining philoso-
phers problem (adapted from Bruni et. al. [15]). A token may be moved from

230 D. Clarke

Fig. 2. (a) A Zero-safe Petri net solving the dining philosophers problem. Stable places
are represented using large circles. Zero places are represented using small circles.
(b) A successful transaction. Notice that it involves multiple internal steps. A stuck
configuration would result, for example, if the far right hand choice had selected the
fork.

fork (a stable place) to one of the zero places between the choice and the take
transitions. A take transition will fire only if both connected zero places and the
hungry place have tokens. The transition from having two forks (on the table) to
eating involves a number of internal transitions. Only combinations of internal
transitions that do not get stuck are considered to be valid transactions. Thus,
in this example, the two choice transitions need to coordinate in order to ensure
that the transaction succeeds (Figure 2(b)).

This Work. On the surface, the coordination models Reo and zero-safe nets do
not look particularly close. We show that they are surprisingly similar by casting
their semantic models into a common, simple framework. The semantics of Reo
and zero-safe nets are cast in terms of transitions between elements of a pair of
monoids. The monoids respectively represent the stable parts of a configuration
(states of buffers or stable places) and the internal parts of a configuration (the
nodes or the zero places), and transitions represent the synchronous flow of data
through Reo primitives or the firing of Petri net transitions. A common set of
operational rules gives the semantics for the two models, and the difference is
ultimately is in the details of the monoid used. After casting Reo’s and zero-safe
nets’ semantics into a common semantic framework, we show that Reo connectors
can be compositionally encoded into zero-safe nets. This result applies to causal
Reo models which do not include any notion of context dependence, priority or
maximal progress. This creates the opportunity for transferring tools, theoretical
results, and implementation techniques for Petri nets to Reo.

The second part of the paper explores the idea of using intuitionistic temporal
linear logic [26] as a meta-language for describing coordination models that have
a transactional flavour. We then use the logic to encode both Reo and zero-safe
nets. Transitions are encoded as linear formula describing the transfer of data
between ports and state changes. In addition, the temporal modalities of the
logic are used to control in which epochs events may, must and cannot occur.
For example,�m⊗z−◦©�m′⊗z′, states that connector in state (or stable place)
m in the presence of data on node z (or in zero place z) can by synchronously

hungry hungry

drop

taketake

drop

thinking thinking

eatingeating

fork fork

hungryhungry

choice choicechoice choice

(a)

hungry hungry

drop

take

drop

thinking thinking

eatingeating

fork fork

hungryhungry

choice choicechoice choice

(b)

Coordination: Reo, Nets, and Logic 231

transformed into state (or stable place) m′, which cannot be used until the
next step or thereafter, and data on node (or in zero place) z, which must be
consumed in this epoch. The �− modality on the m represents that connector
m (or place) may or may not be used in the epoch, and the absence of such a
modality on z states that it must be used within the epoch. The semantics of Reo
and zero-safe nets are soundly encoded as proofs of judgements of a certain shape,
which succeed in either consuming all formulæ that must be consumed within
an epoch or by delaying the consumption of formulæ until another epoch. The
encoding consists of encoding the common operational framework and showing
how the firing of primitive elements can be encoded. A side benefit of using
an intuitionistic logic is that our model of Reo does not suffer from causality
problems which blight most other models of Reo. Finally, we describe how the
additional connectors of ITLL can express coordination patterns beyond those
expressible in Reo and zero-safe nets, by exploiting the game-like nature of the
logic to express choices made by the environment, in contrast to the choices
made by the coordinator, and by varying the use of the temporal modalities to
change both the specification of the epoch in which an even occurs and who
decides when it occurs.

Caveat. Many semantic models for Reo have been presented in the literature
to address more complex classes of connectors possessing mechanisms such as
context dependency [18]. In this article, we take the simplest published semantics
of Reo as our basis [8], though the semantics we present does not suffer from any
causality problems, so is somewhat closer in spirit to the operational semantics
of Mousavi et. al. [35]. In any case, there is no natural semantics for Reo—Reo
makes sense only when given a semantic model, and an encoding of channel
semantics and composition in that model—so we pursue but a reasonable model
of Reo.

Organization. The paper is organized as follows: Section 2 presents a unified
semantic framework into which both Reo’s and zero-safe nets’ semantics are
cast, and shows how Reo can be encoded into zero-safe nets. Section 3 describes
intuitionistic temporal linear logic. Section 4 describes how both Reo and Zero-
safe nets are encoded into ITLL. Section 5 explores ITLL as a coordination model.
Section 6 describes related work. Section 7 concludes the paper.

2 Unified Semantic Framework

One of the goals of this paper is to compare the coordination language Reo
and zero-safe nets. We do so by casting both formalisms into a common se-
mantic framework. An appropriate, simple framework was developed by Bruni
et. al. [13] for studying zero-safe nets, which extends the well-known ‘Petri nets
are monoids ’ approach [34]. Typically, the monoids are so-called place monoids
modelling the markings of places—essentially, the monoids are multi-sets, with
multi-set union as the multiplication operation. The variant adapted for zero-
safe nets considers the net as two monoids, one for stable places and one for zero
places.

232 D. Clarke

Here we model Reo simply by choosing different (partial) monoids as the basis
of the semantics, while keeping the same operational rules as for zero-safe nets.
By making the monoid partial, we are able to both place an upper bound on the
placement of tokens, modelling the requirement in Reo that nodes (temporarily)
have at most one token, and to track the fact that each Reo primitive can fire
at most once per epoch.

The semantics is based on a two reduction relations, macro-step reduction
⇒Δ ⊆ M ×M and mirco-step reduction →Δ ⊆ (M × Z) × (M × Z), between
configurations capturing the state of a system, where the configurations are
elements of M and M×Z, respectively, and M and Z are monoids. Both relations
are determined by a set of primitive firings Δ ⊆ (M × Z)× (M × Z), described
below. External configurations M represent externally observable states. Internal
configurations in M×Z represent, in addition, the internal, unobservable states.
M denotes the stable part of a configuration, which persists between epochs,
and is externally observable. Z denotes the internal or unobservable part of a
configuration. States in Z are used in internal steps to coordinate externally
observable transitions, but do not themselves persist from one epoch to another.
Thus, macro-steps capture what occurs from one epoch to another epoch as
far as the outside world is concerned, whereas micro-steps capture what occurs
within an epoch in order to make a macro-step happen—the coordination. One
can think of the macro-step semantics as an extensional description of behaviour,
and the micro-step semantics as an intensional description of behaviour.

In Reo, M records the states of the primitive connectors, whereas Z records
the data flow on nodes, as the semantics of Reo do not permit data to be (ob-
servably) buffered on nodes. The chosen monoids (Section 2.2) will ensure that
each primitive can be only in one state and can only fire once per epoch, and
that only one data item is permitted on a node.

In zero safe nets, M records the markings of the stable places, whereas Z
records the zero-safe places. Only stable places can form part of external config-
urations. The stable places may change at most once during each epoch. More
precisely, each stable token in a zero-safe net may be moved out of a stable place
and, eventually, into another stable place at most once per epoch. The zero
places are used to coordinate the activities occurring within an epoch. These
may be used an arbitrary number of times, and can be fired either sequentially
or in parallel.

We now present a generic operational semantics which can be used to give the
semantics to Reo and zero-safe nets. The semantic rules are parameterised both
by two monoids and a set of transitions, Δ ⊆ (M ×Z)× (M×Z), describing the
firing of primitives (such as channels and nodes in Reo and transitions in zero-
safe nets). Each element of Δ is written as (m, z) [〉(m′, z′), where m, m′ ∈M and
z, z′ ∈ Z, stating that there is a transition taking internal configuration (m, z)
to internal configuration (m′, z′). Note that only transitions between internal
configurations are provided (though z and z′ may be 0, and hence not involve
internal states). These form the basis for micro-steps; macro-steps are derived
from them using the rules of the operational semantics.

Coordination: Reo, Nets, and Logic 233

(firing)

(m, z) [〉(m′, z′) ∈ Δ m′′ ∈M z′′ ∈ Z
(m ◦m′′, z · z′′) →Δ (m′ ◦m′′, z′ · z′′)

(parallel)

(m1, z1) →Δ (m′
1, z

′
1) (m2, z2) →Δ (m′

2, z
′
2)

(m1 ◦m2, z1 · z2) →Δ (m′
1 ◦m′

2, z
′
1 · z′2)

(concatenation)

(m1, z) →Δ (m′
1, z

′′) (m2, z
′′) →Δ (m′

2, z
′)

(m1 ◦m2, z) →Δ (m′
1 ◦m′

2, z
′)

(commit)

(m, 0Z) →Δ (m′, 0Z)
m⇒Δ m

′

Fig. 3. Operational Semantics Rules. A transition is defined only when each of its
constituents parts is defined. (M, ◦, 0M) and (Z, ·, 0Z) are monoids (Section 2.1).

Figure 3 presents the generic operational semantic rules for the micro- and
macro-steps of a system represented by monoids M and Z and primitive transi-
tion relation Δ. The rule (firing) describes how a primitive firing embeds into
the rule format. The rule also can capture parts of a configuration that do not
change during a particular micro-step. The rule (parallel) describes two inde-
pendent micro-steps firing in parallel, in different parts of the connector/net.
The rule (concatenation) describes the sequential composition of two series of
micro-steps. The two mirco-step sequences typically deal with different parts of
the configuration. This rule acts as a coordinator for the various actions which
may occur in parallel. The rule (commit) describes macro-steps as a series of
micro-steps starting from an external configuration and ending in an external
configuration. At the beginning and end of an epoch, the Z component must
equal the unit element of the monoid, meaning, in zero-safe nets, that there are
no elements on zero-places, and, in Reo, that no data is buffered in nodes.

Some advantages of the monoid-based semantics are that it can define the se-
mantics of a system in a piecemeal fashion and that it can express non-interleaved
concurrency. For example, a part of a Reo connector (or zero-safe net) may be de-
scribed by configuration (m1, z1) and another part by (m2, z2). The configuration
(m1◦m2, z1 ·z2) describes the combination of these two connector (net) parts, as-
suming that it is defined. If we have micro-step transitions (m1, z1)→Δ (m′

1, z
′
1)

and (m2, z2)→Δ (m′
2, z

′
2), the transition (m1 ◦m2, z1 · z2)→Δ (m′

1 ◦m′
2, z

′
1 · z′

2)
may be possible in the larger connector, depending on certain conditions.

2.1 Partial Commutative Monoids

The generic semantic rules presented above are parameterized by two partial
commutative monoids—we will typically just say monoid for partial commutative
monoid. We now define these and present a number of example monoids used in
this paper. But first, some notation.

Notation 1. Recall that AB = {f : B → A} describes the set of functions from
B to A, and that B ⇀ A is the partial functions from B to A. If f : B ⇀ A,
we write dom(f) to be the part of B for which f is defined, i.e., dom(f) = {b ∈
B | f(b) is defined}.

Given a set C and a C-indexed collection of sets Qc∈C, define the partial
dependent function space C ⇀⇀ Qc∈C to be the subset of the partial functions

234 D. Clarke

C ⇀
⊎

c∈C Qc such that if c ∈ dom(f), then f(c) ∈ Qc. Such a function maps
each defined c to a member of Qc.

Let Data be a non-empty set representing the data domain.

Definition 1 (Partial Commutative Monoid). A partial commutative
monoid M◦ = (M, ◦, 1) consists of a set M , an unit element 1 ∈ M , and a
partial function ◦ : M ×M ⇀ M , obeying the following axioms:

– (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity)
– a ◦ b = b ◦ a (commutativity)
– a ◦ 1 = 1 ◦ a = a (neutral element)

Definition 2 (Product). Given two monoids M◦ = (M, ◦, 1M) and N · =
(N, ·, 1N), their product, M◦ ×N · is defined as M◦ ×N · = (M ×N, •, 1M×N)
where:

– (m, n) • (m′, n′) = (m ◦m′, n · n′), whenever both components are defined,
and undefined otherwise; and

– 1M×N = (1M , 1N).

The following two monoids help define semantics for Petri nets. The first mod-
els the number of tokens on each place in the net, whereas the second models
coloured tokens in coloured variants.

Definition 3 (Place Monoid). Given a set of places P, define the monoid
PM (P) = (NP , ·, 0) as:

– (p1 · p2)(x) = p1(x) + p2(x), and
– 0(x) = 0.

Definition 4 (Coloured Place Monoid). Given a set of places P, define the
monoid CPM (P) = (P → (Data → N), ·, 0) with

– (p1 · p2)(x) = λd.(p1(x)(d) + p2(x)(d)), and
– 0(x) = λd.0.

Typically, we would require that the function located at each place has finite
support—meaning that each place holds a finite multiset of data items.

The following three monoids are used to define the semantic of Reo. The first
two model data on nodes: the black-and-white node monoid models the case
where data values have no significance (they are signals), whereas the coloured
node monoid models the case where the data values are of interest. In both
cases, elements of the monoid represent a partial mapping of nodes to data
values representing the value stored on the node (or just whether it has data
in the B/W case). The key point to note is that composition is undefined for
two elements of the monoid that give a data value for the same node. The state
monoid is similar to the coloured node monoid, in that it describes a partial
function; the main difference is that each element of the domain of the function
has its own codomain. The domain C is used to represent the primitives and each
component Qc of the codomain

⋃
c∈C Qc represents the state set of components

c. Again, only one state per connector is permitted, so the composition operation
is also partial.

Coordination: Reo, Nets, and Logic 235

Definition 5 (B/W Node Monoid). Given a set of nodes N , define the
monoid NM (N) = (2N , ·, ∅) with

– n1 · n2 =
{

n1 ∪ n2, if n1 ∩ n2 = ∅
undefined, otherwise

Definition 6 (Coloured Node Monoid). Let N be a set of nodes. A coloured
node monoid is a triple CNM (N) = (N ⇀ Data, ·, 0), where

– f1 · f2 =
{

f1 ∪ f2, if dom(f1) ∩ dom(f2) = ∅
undefined , otherwise

– 0 is the nowhere defined function.

Definition 7 (State Monoid). Let C be a set, and for each c ∈ C, let Qc be
a non-empty set. Define the monoid SM (C, Qc∈C) = (C ⇀⇀ Qc∈C , ·, 0) where:

– f1 · f2 =
{

f1 ∪ f2, if dom(f1) ∩ dom(f2) = ∅
undefined , otherwise

– 0 is the nowhere defined function.

2.2 Semantics of Reo

Much of the hard work has now been done to give an operational semantics to
Reo connectors. We need simply to instantiate the monoids M and Z, and pro-
vide transitions for primitives. We present two variants, a ‘black and white’ one
which ignores data and only sends signals through connectors, and a ‘coloured’
one which considers data as well.

Let Port be a denumerable set of port names. Let i, o, a, b, . . . range over
elements of Port and I, O, A, B, . . . range over subsets of Port .

A Reo primitive P is a 5-tuple P = (Q, q, I, O, Δ), where Q is a set of states,
q ∈ Q is the initial state, I, O ⊆ Port are the sets of input and output ports,
respectively, and Δ defines the transition relation. The transitions depend upon
whether the model we are interested in is black and white or coloured.

B/W. Initially, transitions will be of the form Δ ⊆ (Q×2I)×(Q×2O), satisfying
the requirement that if (q, A) [〉(r, B) ∈ Δ, then A ∩ B = ∅, for causality
reasons. The transition (q, A) [〉(r, B) states that in state q the connector
can synchronously accept input on ports A (excluding ports I \ A), and
output on ports B (excluding ports O \B).
Now let M = SM (1, Q) and Z = NM (I∪O), where 1 is a one element set. It
is clear that the following embeddings exists Q× 2I ↪→ Q× 2I∪O ↪→M ×Z,
and similarly for Q× 2O. Thus we consider the transitions Δ in the desired
format as Δ ⊆ (M × Z)× (M × Z) using these embeddings.

Coloured. This time transitions have the form Δ ⊆ (Q× (I ⇀ Data)) × (Q×
(O ⇀ Data)), where for (q, f) [〉(r, g) ∈ Δ we again require that dom(f) ∩
dom(g) = ∅, for causality reasons. The transition (q, f) [〉(r, g) states that
in state q the connector can synchronously accept input on ports dom(f)
(excluding ports I \ dom(f)), and output on ports dom(g) (excluding ports

236 D. Clarke

O \ dom(g)). Partial functions f and g describe the actual data that flows.
Now let M = SM (1, Q) and Z = CNM (I ∪ O). Given the embeddings
Q× (I ⇀ Data) ↪→ Q× (I ∪O ⇀ Data) ↪→M × Z, and similarly for O, we
can consider the transitions Δ in the desired format as Δ ⊆ (M×Z)×(M×Z)
using these embeddings.

Figure 4 presents the firing relations for a number primitives. These consist
of Reo’s selection of channels, mergers and replicators (to model Reo’s n-m
nodes), and takers and writers, to model boundary interaction. We assume that
the channels are defined over port set {a, b}, and that mergers and replicators
are defined over port set {a, b, c}.

Primitive Arity States Init. B/W Trans. Coloured Trans.

Sync {a} → {b} {◦} ◦ (◦, a) [〉(◦, b) (◦, a �→ d) [〉(◦, b �→ d)
SyncDrain {a, b} → ∅ {◦} ◦ (◦, ab) [〉(◦, 1) (◦, a �→ d+ b �→ d′) [〉(◦, 1)
SyncSpout ∅ → {a, b} {◦} ◦ (◦, 1) [〉(◦, ab) (◦,1) [〉(◦, a �→ d+ b �→ d′)
AsyncDrain {a, b} → ∅ {◦} ◦ (◦, a) [〉(◦,1) (◦, a �→ d) [〉(◦, 1)

(◦, b) [〉(◦,1) (◦, b �→ d) [〉(◦, 1)
AsyncSpout ∅ → {a, b} {◦} ◦ (◦,1) [〉(◦, a) (◦,1) [〉(◦, a �→ d)

(◦,1) [〉(◦, b) (◦,1) [〉(◦, b �→ d)
LossySync {a} → {b} {◦} ◦ (◦, a) [〉(◦, b) (◦, a �→ d) [〉(◦, b �→ d)

(◦, a) [〉(◦,1) (◦, a �→ d) [〉(◦, 1)
FIFO1 {a} → {b} {◦, •} ◦ (◦, a) [〉(•,1) (◦, a �→ d) [〉(•(d),1)

(•,1) [〉(◦, b) (•(d),1) [〉(◦, b �→ d)
Merger {a, b} → {c} {◦} ◦ (◦, a) [〉(◦, c) (◦, a �→ d) [〉(◦, c �→ d)

(◦, b) [〉(◦, c) (◦, b �→ d) [〉(◦, c �→ d)
Replicator {a} → {b, c} {◦} ◦ (◦, a) [〉(◦, bc) (◦, a �→ d) [〉(◦, b �→ d+ c �→ d)

Fig. 4. Some Reo Primitives. ab denotes the set {a, b}. a �→ d + b �→ d′ is a function
mapping a to d and b to d′.

A Reo connector is simply a set of primitives P = (Qn, qn, In, On, Δn)n∈N ,
where N is used to name the primitives, subject to the conditions (1) for all
a ∈ Port , if a ∈ In and a ∈ Im, for n, m ∈ N , then n = m, and, similarly,
if a ∈ On and a ∈ Om, for n, m ∈ N , then n = m; and (2) for all a ∈ Port ,
if a ∈ In then there is at most one m �= n such that a ∈ Om, and if a ∈ On, then
there is at most one m �= n such that a ∈ Im. Condition (1) ensures that the
input/output ports are unique for each primitive, and condition (2) ensures that
the ports are primitive ports are plugged together 1:1, output to input—that is,
if a ∈ On ∩ Im, then output port a of n is plugged into input port a of m.

The semantics of a Reo connector is given by taking the two monoids M =
SM (N, Qn∈N) and Z = NM (

⋃
n∈N(In∪On)) (or Z = CNM (

⋃
n∈N (In∪On)) for

coloured models) and the transition relation Δ =
⋃

n∈N Δn, where each primitive
firing (q, A) [〉(r, B) (or (q, f) [〉(r, g)) is embedded in the obvious fashion.

Figure 5 gives an example derivation for the connector presented in Figure 1.

Coordination: Reo, Nets, and Logic 237

(Firing)

(1, A) [〉(1, npr)
(13, A) → (13, npr)

(Concat)

(Firing)

(2, n) [〉(2, 0)
(2, npr) → (2, pr) (∗)
(2567, npr) → (2567, pqC)

(4, pq) [〉(4, 0)
(4, pqC) → (4, C)

(Firing)

(24567, npr) → (24567, C)
(Concat)

(1234567, A) → (1234567, C)
(Concat)

where (*) is

(Concat)

(Firing)

(6, r) [〉(6, s)
(6, pr) → (6, ps)

(7, s) [〉(7, tC)
(7, ps) → (7, ptC)

(Firing)

(67, pr) → (67, ptC)

(5, t) [〉(5, q)
(5, ptC) → (5, pqC)

(Firing)

(567, pr) → (567, ptC)
(Concat)

Fig. 5. Derivation for Exclusive Router (Figure 1). The primitives are all stateless, so
the M (first) component really just records which primitives are used. The Z (second)
component records the data flow.

2.3 Zero-Safe Nets

We directly give the semantics of zero-safe nets in terms of monoids, borrowing
from (a compressed version of) the development of Bruni et. al. [15].

Definition 8 (Zero-safe net). A zero-safe net is a tuple N = (S, T, F, uin, Z)
where

– S is the set of places, a, a′, . . .;
– T is the set of transitions t, t′, . . . (with S ∩ T = ∅);
– F ⊆ (S × T) ∪ (T × S) is called the flow relation; the elements of the flow

relation are called arcs, and we write x F y for (x, y) ∈ F ;
– a finite multiset uin : S → N is the initial marking of N ; and
– the set Z ⊆ S is the set of zero places.

The places M = S \Z are called the stable places. A stable marking is a multiset
of stable places, and the initial marking uin must be stable.

A marking for a Petri net with places S is a map S → N indicating the number
of tokens at each place—this can equally be seen as a multiset of places. Each
transition, t ∈ T , connects some places •t = {s ∈ S | s F t} with some places
t• = {s ∈ S | t F y}. Transitions generate a firing relation Δ ⊆ (S → N)× (S →
N) such that f [〉 g ∈ Δ if and only if

f(s) =
{

1, if s ∈ •t
0, otherwise and g(s) =

{
1, if s ∈ t•

0, otherwise

for some t ∈ T . This could be easily extended to deal with weighted transitions.
We can view markings in S → N equivalently as functions from (M× Z)→ N

or as (M → N) × (Z → N), giving the stable and the zero markings. Thus the
firing relation Δ ⊆ (S → N) × (S → N) can trivially be seen as a relation

238 D. Clarke

(a) (b)

Fig. 6. (a) Synchronous chain ‘coordinating’ actions (FIFO-buffers) (b) Again in zero-
safe nets

Δ ⊆ ((M → N) × (Z → N)) × ((M → N) × (Z → N)), which is a relation
between the product of two place monoids, namely, PM (M)×PM (Z), so, finally,
Δ ⊆ (PM (M)×PM (Z))×(PM (M)×PM (Z)). Thus, the two monoids underlying
the semantic model for zero-safe nets are M = PM (M) and Z = PM (Z), where,
as mentioned above, M are the stable places and Z are the zero places. The
remainder of the operational semantics is given by the rules in Figure 3.

It is an easy exercise to work out the derivations corresponding to the be-
haviour demonstrated in Figure 2.

A coloured variant can be easily described, simply by replacing PM (M) ×
PM (Z) by CPM (M)× CPM (Z) and redefining the firing relation Δ.

2.4 Comparision of Reo and Zero-Safe Nets

On the surface, Reo and zero-safe nets look quite different, but delving a little
deeper into their semantics reveals that they are in fact very similar in many
respects. In fact, we can encode Reo into zero-safe nets.

– Both models enforce a notion of transaction in that valid, externally observ-
able macro-steps consist of a sequence of internal micro-steps, and that not
all possible sequences of micro-steps result in a valid macro-step.

– Reo’s nodes are akin to zero-safe places and its primitives’ states are stable,
that is, they are part of the observable configuration. A FIFO buffer behaves
similarly to a (bounded/1-safe) place in a Petri net.

– Choice in Reo is handled by merger and primitives such as asynchronous
drains (which can in fact be encoded using a merger). Choice in Petri nets
is handled by multiple transitions from a place competing for the token.

– Replication in Reo is handled by replicators. Replication in Petri nets is
handled by multiple target places of a transition.

– A chain of synchronous channels must fire sequentially at the micro level,
within an epoch. This is very similar to how a chain of zero-safe places
would fire sequentially. Replication (via replicators or Petri transition) can
then be used to coordinate activities, respecting the sequential ordering. Par-
allel reductions occur in Reo as in zero-safe nets in independent parts of a
connector. In both cases, the topology of the connector/net guides the se-
quential/parallel micro-step reduction. Figure 6 illustrates the idea for both
Reo and zero-safe nets.

Coordination: Reo, Nets, and Logic 239

– The semantics of Reo primitives are expressed externally as a set of transi-
tions, whereas the nature of zero-safe networks is predefined, based on the
variant of Petri-net under consideration.

– The major difference between the two is that in any macro-step (epoch), a
Reo primitive can participate at most once. Equally, in Reo data may flow
through each node at most once in an epoch. On the other hand, a zero-safe
net permits each transition to fire an arbitrary number of times in an epoch
(though this is easy to control, as we show below).

– In zero-safe nets, places can hold an arbitrary number of tokens. Reo nodes
(equivalent to zero-safe places) can hold only one token. Variants of Petri
nets exist where places hold at most one token (called 1-safe). Such a variant
is closer to Reo.

In order to establish a correspondence between the two models, in one direc-
tion at least, we need to demonstrate how to restrict zero places so that they
can be used at most once per epoch. This is quite simple, and is illustrated in
Figure 7. The stable place is used to ensure that the zero place can fire only
once, as the token leaves the stable place when the token enters the zero place,
and re-enters the stable place when the token leaves the zero place. After these
two steps, the stable place can no longer participate in the epoch.

Figure 8 presents the encoding of each of Reo’s primitives into zero safe nets.
Each encoded connector uses the above trick to ensure that it fires only once
per epoch. The labelled zero places represent the boundary/interface ports of
the connectors. Composition of two encoded Reo connectors consists of super-
imposing the two zero places corresponding to the boundary nodes—that is, the
two Reo ends plugged together to form a node are encoded as the same zero
place.

Encoding more general Reo primitives based on their semantic description is
straightforward, as we simple follow the patterns used in the encodings above.
The encoding of FIFO1 demonstrates how to encode a state machine, the en-
codings of AsyncDrain and LossySync demonstrate how to encode choice, and
the encodings of the Sync∗ demonstrate how to encode synchronisation. Thus,
we argue, Reo can be compositionally encoded in terms of zero-safe nets by
encoding Reo’s primitives, and then composing them.

Now that Reo can be encoded into zero-safe nets, extensions to the zero-safe
model such as dynamic and reconfigurable nets [13] can be applied in the context
of Reo. Exploring these directions is left for future work. Indeed, reconfiguration
of Reo connectors, in particular, when the reconfiguration is caused by dynamic
behaviour in the connector, is already an active area of research [17,31].

In the other direction, encoding zero-safe nets into Reo is not possible in
general. This is simply because places in zero-safe nets may hold more than one
token, and thus zero-safe nets can model multiple interactions on a given port
within a single epoch.

Finally, observe that the Reo and zero-safe nets could easily be combined
into a single model, simply by taking the product of both their normal and zero
components, and by adding non-trivial additional firing rules to link the Reo

240 D. Clarke

Fig. 7. Ensuring that zero places fire at most once per epoch

Sync SyncDrain SyncSpout

a b a

b

a

b

AsyncDrain AsyncSpout LossySync

a

b

a

b

a

b

FIFO1 Merger Replicator

a b

a

b

c
a

b

c

Fig. 8. Zero-safe net Encodings of Standard Reo Primitive. Labelled places represent
Reo’s ports (ends). Other places are used to ensure that the primitive fires at most
once per epoch, plus the buffer for FIFO1 (Compare behaviours with those described
in Figure 4).

connector and the zero-safe net, that is, by having transitions from MReo×Mzsn

to ZReo × Zzsn. This approach is at present being explored to connect Reo and
workflow language YAWL [41].

Coordination: Reo, Nets, and Logic 241

3 Intuitionistic Temporal Linear Logic

We now shift focus away from the Reo and zero-safe nets, and introduce intu-
itionistic temporal linear logic (ITLL)2 both as a meta-language for reasoning
about the sort of coordination models we are interested in, and as a vehicle for
enabling more refined behavioural descriptions beyond those expressible in Reo
or zero-safe nets. For example, neither of these models can make the distinc-
tion between internal and external choice, whereas in ITLL the formula A& B
expresses an internal choice, and formula A⊕B expresses external choice.

Intuitionistic temporal linear logic (ITLL) is an extension of linear logic [24],
explored by Hirai [26], that includes linear variants of the temporal modalities
�−,©−, and �−. ITLL is a resource conscious logic with modalities for reason-
ing about how resource usage changes over time. ITLL has been used to reason
about timed Petri nets [25], for modelling agent choices, agent interaction [38,39],
and agent negotiation [33], and as a logic programming language [9].

For now, we will consider the following fragment of ITLL (additional connec-
tives will be discussed later):

A ::= a | 1 | A⊗A | A−◦A | A& A | A⊕A | �A | ©A

where a ranges over primitive formulæ. In general, we use lower case letters to
range over primitive formulæ and upper case letters to range over formulæ.

Our interpretation of ITLL is that formulæ can describe epochs of time, where
within each epoch, formulæ describe resource usage in a linear fashion. Ulti-
mately, we associate coordination (or ability-to-coordinate) with the ability to
perform proofs of a certain form. Thus, we base this interpretation on a standard
reading of proofs. The standard understanding of the game semantics underlying
linear logic formulæ [12], adapted to account for the temporal connectives, has
guided our interpretation. The connectives can be read as follows:

a availability of single resource a, now
1 no resources, now

A⊗B availability of (resources) A and B, now
A−◦B availability of a one-time converter of (resources) A to B, now
A&B an internal choice between (resources) A and B, now
A⊕A an external choice between (resources) A and B, now
�A (resource) A is available any time, exactly once
©A (resource) A is available in the next epoch, exactly once

It is important to note that �A does not mean the same as its linear temporal
logic (LTL) counterpart. To be compatible with linear logic, Hirai linearised (in
the sense of linear logic) the meaning of �A: A can be used any time, but only
once. Note that we have no exponentials (!A), though we do suggest how they

2 A distinguishing feature of intuitionistic linear logic is that judgements allow only
a single conclusion. Furthermore, it lacks the par connective among others which
require multiple conclusions.

242 D. Clarke

can be used as an alternative in our encodings. Further interpretation of ITLL
from a coordination perspective will be given in Section 5.

The proof rules for ITLL are presented in Figure 9. Let Γ denote a possibly
empty sequence of formulæ. Let �Γ = �A,�B, Similarly for©Γ . Rules are
labelled to indicate whether the connective is introduced on the left or right of
the turnstile �, so, for example, −◦l labels the rule introducing −◦ on the left.

A � A Ax
Γ � A A,Δ � B

Γ,Δ � B Cut
Γ,A,B,Δ � C
Γ,B,A,Δ � C Ex

Γ � A B,Δ � C
Γ,A−◦B,Δ � C −◦l Γ,A � B

Γ � A−◦B −◦r

Γ,A,B � C
Γ,A⊗B � C ⊗l

Γ � A Δ � B
Γ,Δ � A⊗B ⊗r

Γ,A � C
Γ,A&B � C &

1l

Γ,B � C
Γ,A&B � C &

2l

Γ � A Γ � B
Γ � A&B

&
r

Γ,A � C Γ,B � C
Γ,A⊕B � C ⊕l

Γ � A
Γ � A⊕B ⊕1r

Γ � B
Γ � A⊕B ⊕2r

Γ � C
Γ,1 � C 1l � 1

1r

A,Γ � B
�A,Γ � B �l

�Γ ′ � A
�Γ ′ � �A �r

�Γ,Γ ′′ � A
�Γ ′,©Γ ′′ � ©A ©

Fig. 9. The proof rules for intuitionistic temporal linear logic

The first five rows of rules are standard. From a coordination perspective, the
computation interpretation of the rules &l and ⊕l reveals the difference between
the two choice connectives. &l will enable a proof using A& B to go through
even if only one of A or B is suitable. The interpretation is the the prover (the
coordinator) can choose which. On the other hand, ⊕l requires that both A
and B in A ⊕ B can make the proof go through. The coordinator needs to be
able to produce an appropriate proof in both cases for coordination to succeed,
modelling that the choice can be made externally. This is consistent with existing
interpretations of linear logic [1].

Rule �l enables a resource to be used at any time (�A) to be used now (A).
Rule �r, which we do not use directly, states that a result that depends only on
resources that can be used at any time can itself be used anytime. Rule© states
that reasoning about future epochs (such as the next one) is done by shifting
the future (next state) resources to the present state (removing the©) and then
reasoning as per usual. This requires that there are no now resources, only �−
and ©− ones.

In the encodings of Reo and zero-safe nets presented later in this section, the
proof rules for ITLL are used as the workhorse handling details of the semantic

Coordination: Reo, Nets, and Logic 243

framework, whereas the specific firing rules for the primitives are encoding as
externally specified axioms. Let Σ denote a set of axioms of the form Γ � A. We
write Γ �Σ A to denote judgements in the proof system extended with axioms
Σ and the following rule:

(Γ � A) ∈ Σ
Γ �Σ A

Σ-axiom

Note that proving judgement Π �Σ B is equivalent to proving Σ∗, Π � B
in the logic extended with the standard axioms for exponentials along with
adaptations of the proof rules above (see [26]), where Σ∗ converts each (Γ �
A) ∈ Σ into the formula !(Γ ⊗−◦A), and Γ ⊗ is the formulæ in Γ connected by
an ⊗. Thus, if Γ = A1, . . . , An, then Γ ⊗ = A1 ⊗ · · · ⊗ An, and if Γ = ε, then
Γ ⊗ = 1.

3.1 Semantics of ITLL

Hirai [25] presented semantics of ITLL as an adaptation of the original phase
space semantics of Girard [24]. No game semantics exists for ITLL. Nonetheless,
we can (and have) drawn from game semantics for linear logic when giving our
intuitive interpretation of ITLL’s connectives. The open question remains: what
are the game semantics for full ITLL. Here we provide only some intuition, leaving
the complete treatment of game semantics for ITLL for future work.

In games semantics for linear logic [12], one telling feature is the difference be-
tween the choice connectives−&− and−⊕− is who makes the choice. In the first
case, the player needs to only win one of the possible games encoded in the choice
in order to win the game. In the second case, the player can only win the game
if he can win both games encoded in the choice, as the opponent makes the
choice. To extend to deal with the temporal modalities, we anticipate the fol-
lowing changes. Games are played over multiple epochs. ©A is interpreted as a
game that is played in the following epoch. �A is a game for which the player
(coordinator) can chose which epoch the game corresponding to A is played
in — the moves are thus, ‘play now’ and ‘play later’, when cast in terms of a
game played ‘now’. Similarly, �A is the dual, which means that the opponent
(environment) makes the choice when to play the game. Finally, for a player to
win a game (= valid/provable judgement), she needs to win every epoch (until
the game peters out).

4 Encodings

After investing the effort to cast the semantics of Reo and zero-safe nets into a
uniform framework, encoding them into ITLL is quite easy: we need to encode the
general framework and then the primitives for each system. The basic assump-
tion we run with is that the elements of the respective monoids can be encoded
as primitive formulæ or tensor products (⊗) of such formuæ. We typically do

244 D. Clarke

not insert explicit conversions between the elements of the monoid and their
representation as formulæ. We demonstrate the soundness of our encoding, but
do not give a completeness result. There are two reasons: (1) completeness simply
would not hold for the entire class of monoids we consider, though we expect
that it will hold for monoids which are not partial and are sufficiently free; and
(2) we do not know whether a cut elimination result holds for ITLL, yet this
seems to be crucial for proving completeness.

4.1 Encoding Configurations

The encoding of a configuration depends whether it is on the left or right hand
side of the arrow.

Given a reduction (m, z) →Δ (m′, z′), where m, m′ ∈ M and z, z′ ∈ Z, the
configuration on the left-hand side is encoded as (�m)⊗ ⊗ z⊗, (or equivalently,
as a sequent of form (�m), z, without the separating ⊗), and the configuration
on the right-hand side is encoded as (©�m′)⊗ ⊗ (z′)⊗. Note that the primitive
firings themselves are encoded slightly differently, as we shall see in Section 4.2

The reading of (�m)⊗ ⊗ z⊗ is that (1) any of the elements in m can be used
at any time, and (2) all of the elements in z must be used in this step. Similarly
(©�m′)⊗⊗ (z′)⊗ states, in addition, that (3) in the next step, but not now, any
of the elements of m′ can be used at any time. The part involving z′ is analogous
to (2).

When encoding the left and right hand sides of m⇒Δ m′, the encodings can
be simplified to (�m)⊗ and (©�m′)⊗.

4.2 Encoding a Primitive Firing

Each primitive firing (m, z) [〉(m′, z′) ∈ Δ is encoding as an axiom as follows:

[[(m, z) [〉(m′, z′)]] = m, z � (©�m′)⊗ ⊗ (z′)⊗

Proofs for a system with primitive firing relation Δ are carried out in the logic
Γ �Σ A, where Σ = [[Δ]].

Example 1. The transition from a Reo replicator (◦, a) [〉(◦, bc) would be encoded
as an axiom: ◦, a � ©�◦ ⊗ b⊗ c.

An alternative approach is to encode the state-machines as a single formula,
using an exponential:

[[Δ]] = !([[(m1, z1) [〉(m′
1, z

′
1)]] & · · ·&[[(mn, zn) [〉(m′

n, z′
n)]])

where Δ = {(m1, z1) [〉(m′
1, z

′
1), . . . , (mn, zn) [〉(m′

n, z′
n)}

[[(m, z) [〉(m′, z′)]] = m⊗ ⊗ z⊗−◦(©�m′)⊗ ⊗ (z′)⊗

In this format, the above example would be expressed as !(◦⊗a−◦©�◦⊗b⊗c).

Coordination: Reo, Nets, and Logic 245

4.3 Encoding the Semantic Rules into ITLL

We now show how to encode the semantic rules from Figure 3 into ITLL proof
fragments. This is the essence of soundness. In our encodings, we will use the
exchange rule implicitly on both sides of the turnstile, which implies an implicit
use of Cut. We also use −∗ to mark multiple applications of a rule or pattern.

Firing. The rule:

(firing)

(m, z) [〉(m′, z′) ∈ Δ m′′ ∈M z′′ ∈ N
(m ◦m′′, z · z′′)→Δ (m′ ◦m′′, z′ · z′′)

is encoded as proof:

(m, z �Σ (©�m′)⊗ ⊗ (z′)⊗) ∈ Σ
m, z �Σ (©�m′)⊗ ⊗ (z′)⊗

Σ-axiom

�m,z �Σ (©�m′)⊗ ⊗ (z′)⊗
�∗
l

(1)

�m′′ �Σ (©�m′′)⊗
(2)

z′′ �Σ (z′′)⊗

�m,�m′′, z, z′′ �Σ (©�m′)⊗(©�m′′)⊗ ⊗ (z′)⊗ ⊗ (z′′)⊗
⊗∗
r

where (1) is multiple occurrences of the following proof, one for each atom ma,
joined using ⊗r:

�ma �Σ �ma
Ax

�ma �Σ ©�ma
©

and (2) is similar, but simpler.

Parallel. The rule:

(parallel)

(m1, z1)→Δ (m′
1, z

′
1) (m2, z2)→Δ (m′

2, z
′
2)

(m1 ◦m2, z1 · z2)→Δ (m′
1 ◦m′

2, z
′
1 · z′

2)

is encoded as proof fragment:

�m1, z1 �Σ (©�m′
1)

⊗ ⊗ (z′
1)

⊗ �m2, z2 �Σ (©�m′
2)

⊗ ⊗ (z′
2)

⊗

�m1,�m2, z1, z2 �Σ (©�m′
1)

⊗ ⊗ (©�m′
2)

⊗ ⊗ (z′
1)

⊗ ⊗ (z′
2)

⊗ ⊗r

Concatenation. The rule:

(concatenation)

(m1, z)→Δ (m′
1, z

′′) (m2, z
′′)→Δ (m′

2, z
′)

(m1 ◦m2, z)→Δ (m′
1 ◦m′

2, z
′)

is encoded as proof fragment:

�m1, z �Σ (©�m′
1)

⊗ ⊗ (z′′)⊗
�m2, z

′′ �Σ (©�m′
2)

⊗ ⊗ (z′)⊗

�m2, (z′′)⊗ �Σ (©�m′
2)

⊗ ⊗ (z′)⊗ ⊗∗
l

�m1,�m2, z �Σ (©�m′
1)

⊗ ⊗ (©�m′
2)

⊗ ⊗ (z′)⊗ Cut

246 D. Clarke

Commit. The rule:
(commit)

(m, 0)→Δ (m′, 0)
m⇒Δ m′

is encoded as proof fragment:

lr � 1
�m,1 �Σ (©�m′)⊗ ⊗ 1

(©�m′)⊗ �Σ (©�m′)⊗ Ax

(©�m′)⊗,1 �Σ (©�m′)⊗ 1l

(©�m′)⊗ ⊗ 1 �Σ (©�m′)⊗ ⊗l

�m,1 �Σ (©�m′)⊗ Cut

�m �Σ (©�m′)⊗ Cut

An interesting aspect of this encoding is that the main coordination rule
(Concatenation) corresponds to Cut. Cut elimination in proof theory often is
thought of as communication or interaction. Not all proofs go through, how-
ever, so coordination is more accurately thought of as constrained interaction,
as suggested by Wegner [43].

The result we have established is the soundness of our encoding. Specifically,
we have the following:

Theorem 1. Let Σ = [[Δ]].

1. If (m, z)→Δ (m′, z′), then �m, z �Σ (©�m′)⊗ ⊗ (z′)⊗.
2. If m⇒Δ m′, then �m �Σ (©�m′)⊗.

More generally, we have show that ITLL is expressive enough to encode both Reo
and zero-safe nets. In the next section, we demonstrate through example that
ITLL is more expressive.

5 Coordination via ITLL

We have thus far presented, in very general sense, how ITLL can encode the co-
ordination patterns expressible in Reo and in zero-safe nets. Doing so explored
only a fraction of ITLL’s expressiveness. We now further explore ITLL, mainly
focussing on the various pieces of the coordination puzzle, such as the behaviour
or protocol of parties involved in coordination, and on variants of how coordina-
tion is done in Reo and in zero-safe nets, in particular, with regard to the role
of epochs. We assume in addition that two parties are involved in a particular
interaction: the coordinator, whose choices are controllable, and the environment
(or the rest), whose choices are uncontrollable.3 After presenting a number of

3 We ignore the data flowing through connectors/nets—thus we are working in the
‘black-and-white’ models. Adding colour raises no difficult issues. For example, the
filter over a binary domain that accepts only zeros is modelled by: Σ = {Filter ⊗
a(0) � b(0) ⊗©�Filter , Filter ⊗ a(1) � ©�Filter}, where a(0) means that datum
0 is on node a.

Coordination: Reo, Nets, and Logic 247

variations, we pull all the pieces together into a SoC protocol which would form
the essence of a coordinator for the holiday booking problem presented in the
introduction.

Choice. ITLL can express choice in two different ways: choices made by the
coordinator and choices made by the environment. (This is well-known, and is
particularly well exemplified in the game semantics of linear logic [12].) Formulæ
of the form A& B express a choice between A and B that can made by the
coordinator, whereas formulæ of the form A⊕B express that the choice between
A and B is made by the environment.

Progress of Time. ITLL can also express the occurrence of events within epochs.
Recapping, a formula of the form A without a preceding modality expresses
that A must be dealt with in the current epoch. �A expresses an action that
the coordinator may choose to deal with A in the current epoch. ©A states
that A must be dealt with in next epoch. Combinations of these are possible.
For example, ©�A states that the coordinator may deal with A in some future
epoch (but not now), and �©A states that the coordinator may deal with A
in a future epoch, though the decision must be made one epoch in advance.
©7�©7A states that any time after 7 epochs the coordinator may decide, 7
epochs in advance, to deal with A.

Note that a dual to �− exists [26]: �A states that the environment decides
some time when A must be dealt with.4 �A behaves very much like �A, except
that the choice is made by the environment instead of the coordinator.

State Machines (Revisited). An encoding of state machines was hinted at above.
It is in fact an adaptation of an existing encoding [29, for example]. The difference
here is that we use the modalities to control when transitions may or may not
be taken.

An example state machine, in the encoding described above, with 4 states
(s, t, u, v) and 4 external actions (A, B, C, D) is encoded as axioms:5

s

t

u

A

D C

B

v D

Σ =
{

s−◦(A⊗©�t &C⊗©�u), t−◦B⊗©�s,
u−◦D⊗©�v, v−◦D⊗©�s

}

The current state of such an automaton is recorded as a formula of the form �s,

4 The rules for �− introduction and elimination are:

�Γ,A � �B

�Γ,�A � �B
� → Γ � A

Γ � �A
→ �

5 There are a number of equivalent ways of presenting our axioms. For example, we
could write (s � t& u) ∈ Σ or (1 � s−◦ t& u) ∈ Σ or even (1 � s−◦ t), (1 � s−◦u) ∈
Σ or (s � t), (s � u) ∈ Σ. We typically choose the single formula representation
s−◦ t& u.

248 D. Clarke

meaning that a transition from s can be taken at a time chosen by the coordina-
tor. This particular automaton implements the regular expression (AB | CDD)∗

over events, where each event occurs in a different epoch. The fact that the
events occur in different epochs is given by the form of the next-state formulæ,
namely, ©�s. Hence, the automaton is disabled after performing a transition
in any given epoch, but it is re-enabled in the next epoch. All Reo primitives
would have state machines of this form.

We can change the formulæ describing the state machine behaviour in a num-
ber of ways:

– The next state formula can be modified from©�s to �s, giving a transition
such as t−◦B ⊗ �s, to model that the primitive in state t, after making a
transition to state s, may optionally perform an additional transition from
state s in the given epoch.

– The next state formula can be simply s, giving a transition such as t−◦B⊗s,
which means that the primitive, after moving from state t to state s, would
be forced to perform another transition in this epoch.
(Applying the two previous the two previous variations to the semantics
of a Reo primitive would give primitives that could perform interactions
involving more than one step within a given epoch [20]. We will give an
example shortly.)

– The choice in transition s−◦(A ⊗ ©�t &C ⊗ ©�u) is determined by the
coordinator, as −&− is used. An alternative is to use − ⊕ −, as follows
s−◦(A ⊗ ©�t ⊕ C ⊗ ©�u), meaning that the choice is made externally.
This can model, for example, interaction with an external component.

Naturally, other variations are possible.

Boundary Interactions. In Reo, a component interacts with a connector by is-
suing a write or a take (read) to a port, which is subsequently satisfied by the
connector (unless the writer/taker times-out). We can model these in ITLL in a
number of ways (showing only a writer, as a taker is quite similar; and ignoring
time-out):

1. A Writer has two states {Writing,NotWriting} and the following axioms:

Writing −◦ a⊗©(�Writing ⊕NotWriting)
NotWriting −◦©(�Writing ⊕NotWriting)

Notice that the next state formula �Writing ⊕ NotWriting forces the envi-
ronment to choose whether the component will be writing or not. When the
component is writing, coordinator can determine whether to allow the write
to succeed when it chooses. When the component is not writing, the decision
whether to write must be made again in the following epoch, determined by
the second axiom.
The initial state is represented by �Writing ⊕ NotWriting, forcing the en-
vironment to make a choice in the first epoch.

Coordination: Reo, Nets, and Logic 249

If we were also considering data, the formula stating that data flows on
channel a, namely a, would be replaced by

⊕
d∈Data a(d) to denote that

there is a value on the channel and that it is externally selected.
2. An alternative encoding of a Writer exploits �− to handle the fact that the

decision to perform a write is determined by the environment, after which
the coordinator decides when the write succeeds (via �−):

Writing −◦ a⊗©NotWriting
NotWriting −◦��Writing

In this case, the initial state is NotWriting, which is effectively ��Writing.

The mode of interaction between the coordinator and the environment need
not be restricted to that which is assumed by Reo. For example, interacting by
making method calls to standard objects, or by calling web services, are equally
useful alteratives, yet distinct from Reo’s. In these circumstances the interaction
originates with the coordinator, not the environment.

A service/method that takes input described by A and produces output de-
scribed by B can be modelled by a formula as simple as A−◦B. This, however,
makes the assumptions that service is guaranteed to produce a result and that
the coordinator must wait for the result. A more asynchronous invariant is mod-
elled by the formula A−◦�B or even A−◦��B. The choice of which model to
adopt depends upon the desires of the system builder; the choice of ITLL formula
to model the mode of interaction determines the dependency of the coordination
on the environment.

Other modes of interaction can be (at least partially) described using ITLL—
one way message sends, compulsory interactions, interrupts. A complete study
of ITLL’s expressiveness and limitations would be very interesting.

User Interaction. ITLL formulæ can capture the essence of synchronous user
interaction, which, when combined with the extended Reo we are hinting at,
permits coordination of multi-action events that include user interaction, such
as obtaining the user’s approval of a particular holiday package. A simple formula
expressing user interaction is:

User ⊗ Q−◦(Yes⊕ No)⊗©�User

User is the (single, uninteresting) state. When asked a question on port Q, a
reply can be supplied on either port Yes or port No, where the choice is made
by the environment (or user). The question is asked and its answer is given all
in the same epoch.

The test to see whether a coordinator can handle both the Yes and No answers
is whether certain judgements (of the shape described in Theorem 1) are prov-
able. When the proof does not go through, this means that during coordination-
time a choice can be made that the coordinator cannot handle. Roll-back or
some sort of recovery would be required when this occurs.

It is worth taking pause to consider whether this kind of user interaction can
be handled in Reo. The short answer is that it cannot. External components in

250 D. Clarke

Reo perform either a single write or take in each epoch—this is the only kind
of event that the coordinator has to deal with. Any (inter)action that involves
multiple steps must be dealt with over multiple epochs in Reo, even though the
steps conceptually belong to the same action. Existing implementations of Reo
cannot handle a channel whose choices are made externally, within a single epoch
(though an attempt was made in the implementation Reolite [16]). Thus the
ability to perform multi-step actions, possibly involving external choices, within
an epoch goes beyond what Reo can do. Yet, in our opinion, these possibilities
makes better use of the abstractions (synchrony and asynchrony) provided by
Reo, by enabling more interesting interaction to occur during an atomic step.

A Service-Oriented Computing Protocol. We pull together the ideas presented
in this section to give a more realistic example, which ties in with our original
holiday booking example. The left hand side of the Figure 10 presents a connector
whose job is to monitor a transaction (adopting a simplified version of the WS-

Transaction protocol [22]), so that it can be incorporated into a larger Reo
connector. An informal description of its behaviour is given by the ‘automaton’
on the right hand side of Figure 10. This automaton is initiated by a try action
(try to perform transaction), which results, eventually, in a success or fail action,
the choice of which is made by the environment. Afterwards, the transaction
can be reset (which also causes a no action) or, in the case that it is successful,
committed (which also causes a yes action). The choice of whether to reset or
commit is made by the coordinator.

The key here is that success/failure is externally determined. In order to have
this controlled by Reo (or a zero-safe net), we make all steps occur within a
single epoch, which would, for example, allow the combination of two or more
WC-Transactors to form proper transactions which occur atomically within a
synchronous slice of time (i.e., epoch).

The ITLL encoding consists of the following formulæ, where the initial state
is Init : the nodes marked with bold font are on boundary with the user, whereas
the others are used to interact with the underlying transaction

Σ =

⎧⎪⎪⎨
⎪⎪⎩

Init ⊗ try−◦ t, ps ⊗ commit−◦yes⊗©�Init ,
t−◦ s⊕ f, ps ⊗ reset−◦no⊗©�Init ,
s−◦ success⊗ ps , pf ⊗ reset−◦no⊗©�Init ,
f −◦ fail⊗ pf

⎫⎪⎪⎬
⎪⎪⎭

A more compressed variant would replace the t−◦ s ⊕ f , s−◦ success ⊗ ps , and
f −◦ fail⊗ pf by t−◦(success⊗ ps)⊕ (fail⊗ pf).

The Reo-like connector presented in Figure 11(a) combines two WC-
Transactors so that either both transactions are committed or neither are. The
choice

⊗
in the middle selects whether to commit or reset both WC-Transactors,

giving priority to committing (indicated by !).6 The simple connector in Fig-
ure 11(b) enforces that either exactly one yes (using the merger) or two nos
6 Priority was not discussed in this paper. Our work on 3-colouring deals with this

fairly effectively [18]. A full treatment of priority in Reo, especially in the present
setting, is a whole new kettle of worms that we prefer to leave on the back-burner.

Coordination: Reo, Nets, and Logic 251

WC-TransactorTry

Yes

No

Commit Reset

Success Fail

1 2

5

6

try

commit/Yes
reset/No

failreset/No
external
choice

internal
choice

success

eventually

eventually

Fig. 10. Coordinator for simplified model of WS-Transaction protocol. There are
7 ports to this coordinator, grouped in the following logical units: try initiates part
of a transaction; success & fail are the results reported by the component being
controlled; commit & reset commits to the result (only on success), or resets (either
on success or failure); and yes & no reports whether the transaction succeeded and is
committed to.

result, thus ensuring that either one holiday package is booked or none is. This
example could be extended with data and user interaction to gain the user’s ap-
proval of the chosen holiday, but clearly more work would be required to make
it completely realistic. In any case, the present example cannot handled by Reo
as it exists now, unless the transaction handling is implemented over multiple
epochs, and thus failing to fully exploit synchrony.

6 Related Work

Many semantic models for Reo have been presented [7,8,18,35], though all of
them, apart from the operational semantics of Mousavi et. al. [35], suffer from
causality problems. This problem is avoided in operational models such as the
one presented here. The problem is that most models have a non-constructive,
classical semantics which would give a semantics to certainly loops stating that
data flows in the loop, even though the loop has no source of data. Only the
connector colouring model [18] deals with priority. Our semantics is superior to
Mousavi et. al.’s on the following counts: the semantics of primitives such as
channels are not built into our rules, thus we have only 4 rules compared to 16;
we more cleanly deal with the treatment of data on nodes and the fact that data
flow may occur only in a part of connector; and, perhaps most importantly, our
rule format enables an easier comparison with existing systems. On the other
hand, Mousavi et. al.’s semantics have a globally defined notion of maximal
progress for filtering possible behaviours, which we do not consider here.

Many, many variants of Petri nets exists, far too many to review here. Bruni
et. al. [13] show how the zero-place approach can be applied to coloured, recon-
figurable, and dynamic nets. Given the close correspondence between Reo and
zero-safe nets, it would be be fruitful for the development of Reo to transfer these

252 D. Clarke

Try

WC-Transactor

Reset

WC-Transactor

1
Success

1
Fail

Commit

1

Success
1
Fail

Yes

No

1

!

Yes

No

Yes

No

(a) Zurich

No

Yes
Try

(a) Rio

No

Yes
Try

Fig. 11. (a) Combining Two WC-Transactors. The 1 connectors either always offer
or accept a signal, depending upon the direction of the arrow.

N
denotes an exclusive

router, which makes a choice of sending the data to exactly one of its outputs. ! indicates
priority. A three-way variant of this can be constructed to implement the coordination
for each of the holiday options (ignoring the actual data). (b) The connector combines
two instances of the connector in (a), enforcing that either exactly one yes or two no
results, thus ensuring that either one holiday package is booked or none is.

ideas into Reo. More generally, Bruni et. al. [14] present a modular high-level
account of the relationship between, in our terms, the mirco- and macro-step lev-
els, demonstrating that the naturalness of the two-level approach to describing
transactions.

A large volume of literature considers the relationship between Linear Logic
and Petri nets (and other concurrency models) [21,10,42,28, among others]. We
adapted a simple encoding of Petri nets to use the temporal modalities of ITLL
to model epochs. The closest work to ours, in this respect, is Hirai’s thesis and
subsequent article [26,25]. Hirai reasons about Timed Petri nets [11] (a model
wherein transitions have a waiting time during which they are unusable), whereas
we encode zero-safe nets (and Reo), which have a more transactional flavour. A
different study of Petri nets uses the logic of bunched implications (BI) [36,40].
From a semantic perspective, it makes a lot of sense to adapt this approach to
our domain, as one semantic model of BI involves partial commutative monoids.
We would be interested to see what BI could bring to our application domain.

Hirai [26,25] also briefly considers variants of process encodings into ITLL.
Specifically, he observes that ©�− can be used to model synchronous message
passing, which, he claims, is not expressible in linear logic. Specifically, he com-
pares the pair of linear logic ‘processes’ !(p−◦(m⊗ p)) and !(q−◦(m−◦ q)) with
the ITLL processes !(p−◦(m ⊗ ©�p)) and !(q−◦(m−◦©�q)). In both cases,
the first process sends an m message to the second one, repeatedly. In the LL
encoding, the m is sent asynchronously, as both parts of m⊗ p proceed in par-
allel. In contrast, m is sent and received in the ITLL encoding, as the recursive
call to p cannot occur until the next step. Even though we are using the same

Coordination: Reo, Nets, and Logic 253

ingredients, our encoding (or our reading) is quite different, as we equate syn-
chrony with what occurs (necessarily) within some epoch. In fact, we would say
that the first case expresses entirely synchronous processes—that is, their entire
development occurs within an epoch—whereas the second expresses synchrony
for message m, asynchronously with any subsequent behaviour. Because of the
different granularity, we typically exploit the parallelism inherent in −⊗−, rather
than worry about the asynchrony it introduces.

Küngas [33] and Pham et. al. [38] uses temporal linear logic to model the
choices of agents and agent negotiation. Both articles make use of the well-
known the distinction between internal (−&−) and external (− ⊕ −) choice.
Formalæ express agent choices and time-sliced resource usage (such as printers).
Küngas also models a kind of promise by formula such as ©A−◦B, meaning
that the offer to do A in the next step is traded for B now. Küngas uses par-
tial evaluation (via a technique called partial deduction) to give more efficient
programs (applicable to the ideas presented here), but also to derive offers, so
that agents can negotiate the use of resources. Pham et. al. includes reductions
corresponding to the choices made by the various choice makers. This feature
would be useful in our setting to express the dynamics in the models we con-
sidered beyond Reo and zero-safe nets. Both papers only use the ©− modality,
whereas we suggest uses for the whole spectrum.

Kanovich and Ito [30] present an alternative (and earlier) formulation of ITLL.
Hirai [26] extends Kanovich and Ito’s formulation with the modal storage oper-
ator (that is, the exponential !), and removes possible infinite derivations which
were at odds with the notion of passage of time—specifically, Zeno’s paradox
could arise.

ITLL has also been used as the basis for a logic programming language [9]. The
main goal was to give a more fine-grained control over resources than is possible
in linear logic programming languages, and to enable complex data structures
which are not entirely available all the time, and thus can be the target for more
efficient implementations.

Linear logic has been used as the basis for the coordination language LO
(Linear Objects) [5]—though this can equally be seen as a way of combining logic
and object-oriented programming—and, its successor, CLF (the Coordination
Language Facility) [3]. Both languages have a very strong logic programming
flavour and rely on a notion of transaction, so are close in spirit to our logical
encoding. Their base language, however, does not have temporal modalities, so
they cannot make as fine-grained distinctions as we can.

Several authors [32, for example] have used linear logic to analyse and syn-
thesise planning problems. This corresponds to our intuition that in both Reo
and in zero-safe networks one cannot just send the data optimistically through
channels or push tokens through the network and hope to arrive at a suitable
(external) configuration. Either backtracking, planning or constraint solving [19]
is required.

Alexiev [2] presents a now-dated overview of many applications of Linear
Logic. One of the key points that he makes is that “everything is connected

254 D. Clarke

to everything else.” This is certainly made no less true by the present article.
Kamide [27] presents linear and affine logics extended with temporal, spatial
and epistemic modalities. This looks like very fertile ground for exploring further
extensions to coordination language, perhaps even taking on a more agent-like
character.

7 Conclusion and Future Work

In this article, we cast both the coordination language Reo and zero-safe nets
into a common semantic framework. The key difference between the two models
is the choice of monoids used in the framework, demonstrating that, although the
two models differ significantly on the surface, they are very similar underneath.
In fact, Reo can be compsitionally encoded into zero-safe nets. We then encoded
both systems into intuitionistic temporal linear logic (ITLL), to explore its ap-
plicability as unifying framework for coordination languages. We illustrated this
by encoding both Reo and zero-safe nets into ITLL. The meaning of the logical
formulæ used in the encodings provided useful intuition into the meaning of con-
figurations and reductions in the respective semantics. In both cases, the reading
corresponds to our intuitive understanding of the language being modelled.

In the latter part of the paper, we explored the remainder of ITLL, and demon-
strated, mostly through examples, the range of possible behaviour that can be
expressed in ITLL, but in neither Reo nor zero-safe nets. In particular, we de-
scribed more complex per epoch behaviour, choices attributable to different play-
ers (the coordinator vs. the environment), and optional and compulsory actions.
None of these distinctions can be made in Reo or in zero-safe nets.

This work merely scratches the surface of an interesting and useful connec-
tion between Reo, zero-safe nets, and ITLL. We hope that this paper will serve
as a source of ideas for further developing Reo and the coordination languages
that will follow it. A detailed game-semantic study of ITLL is warranted in order
to fully elucidate the ideas presented here. In particular, such a model would
provide not only a semantics for Reo, but of all the extensions described in
Section 5. Additional ideas we would like to investigate include increasing the
expressiveness to cover notions such as co-operation, wherein the actual possibil-
ities for a choice may be limited by both the coordinator and the environment,
but the actual choice is determined by both; the distinction between reversible
and irreversible actions; groups and operations on them; and many more.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput.
Sci. 111(1-2), 3–57 (1993)

2. Alexiev, V.: Applications of linear logic to computation: An overview. Logic Journal
of IGPL 2(1), 77–107 (1994)

3. Andreoli, J.-M., Freeman, S., Pareschi, R.: The Coordination Language Facility:
coordination of distributed objects. Theory and Practice of Object Systems 2(2),
77–94 (1996)

Coordination: Reo, Nets, and Logic 255

4. Andreoli, J.-M., Hankin, C., Le Metayer, D. (eds.): Coordination Programming:
Mechanisms, Models and Semantics. Imperial College Press (1996)

5. Andreoli, J.-M., Pareschi, R.: Linear objects: logical processes with built-in inher-
itance. New Generation Computing 9 (1991)

6. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. in Comp. Science 14(3), 329–366 (2004)

7. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003)

8. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61(2), 75–113
(2006)

9. Banbara, M., Kang, K.-S., Hirai, T., Tamura, N.: Logic programming in a fragment
of intuitionistic temporal linear logic. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 315–330. Springer, Heidelberg (2001)

10. Bellin, G., Scott, P.J.: On the pi-calculus and linear logic. Theoretical Computer
Science 135, 11–65 (1994)

11. Bestuzheva, I.I., Rudnev, V.V.: Timed Petri nets: Classification and comparative
analysis. Automation and Remote Control 51(10), 1308–1318 (1990)

12. Blass, A.: A game semantics for linear logic. Annals of Pure and Applied Logic 56,
151–156 (1992)

13. Bruni, R., Melgratti, H.C., Montanari, U.: Extending the zero-safe approach to
coloured, reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg,
G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 291–327.
Springer, Heidelberg (2004)

14. Bruni, R., Meseguer, J., Montanari, U.: Tiling transactions in rewriting logic. In:
WRLA 2002, Rewriting Logic and Its Applications. Electronic Notes in Theoretical
Computer Science, vol. 71, pp. 90–109 (April 2004)

15. Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual
token approaches. Information and Computation 156(1-2), 46–89 (2000)

16. Clarke, D.: Reolite implementation (December 2005),
http://www.cwi.nl/∼dave/reolite

17. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundam.
Inform. 82(4), 361–390 (2008)

18. Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and con-
text dependency. Science of Computer Programming 66(3), 205–225 (2007)

19. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Deconstructing Reo. In: FOCLASA
2008. ENTCS (July 2008) (to appear)

20. Diakov, N., Arbab, F.: Adaptation of software entities for synchronous exogenous
coordination: An initial approach. In: Proceedings of The Second International
Workshop on Coordination and Adaptation of Software Entities, W-CAT 2005
(July 2005)

21. Engberg, U.H., Winskel, G.: Linear logic on Petri nets. In: de Bakker, J.W., de
Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp. 176–229.
Springer, Heidelberg (1994)

22. Cabrera, L.F., et al.: Web Services Atomic Transaction (WS-AtomicTransaction).
MSDN Library (November 2004)

23. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
mun. ACM 35(2), 97–107 (1992)

24. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

256 D. Clarke

25. Hirai, T.: Propositional temporal linear logic and its application to concurrent
systems. EICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences (Special Section on Concurrent Systems Technology) E83-
A(11), 2219–2227 (2000)

26. Hirai, T.: Temporal Linear Logic and Its Application. PhD thesis, The Graduate
School of Science and Technology, Kobe University, Japan (September 2000)

27. Kamide, N.: Linear and affine logics with temporal, spatial and epistemic logics.
Theoretical Computer Science 252, 165–207 (2006)

28. Kanovich, M.I.: Linear logic as a logic of computations. Annals of Pure and Applied
Logic 67(1–3), 183–212 (1994)

29. Kanovich, M.I.: Linear logic automata. Annals of Pure and Applied Logic 78, 147–
188 (1996)

30. Kanovich, M.I., Ito, T.: Temporal linear logic specifications for concurrent processes
(extended abstract). In: Twefth Annual IEEE Symposium on Logic in Computer
Science, pp. 48–57 (1997)

31. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connec-
tors triggered by dataflow. In: Electronic Communications of the EASST: Graph
Transformation and Visual Modeling Techniques, vol. 10 (2008)

32. Küngas, P.: Analysing AI planning problems in linear logic – a partial deduction
approach. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp.
52–61. Springer, Heidelberg (2004)

33. Küngas, P.: Temporal linear logic for symbolic agent negotiation. In: Zhang, C.,
W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS, vol. 3157, pp. 23–32.
Springer, Heidelberg (2004)

34. Meseguer, J., Montanari, U.: Petri nets are monoids. Information and Computa-
tion 88, 105–155 (1990)

35. Mousavi, M.R., Sirjani, M., Arbab, F.: Formal semantics and analysis of component
connectors in Reo. Electronic Notes in Computer Science 154(1), 83–99 (2006)

36. O’Hearn, P.W., Yang, H.: Petri net semantics of bunched implications(October
1999) (unpublished) (available from Peter’s webpage)

37. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Zelkowitz,
M. (ed.) The Engineering of Large Systems. Advances in Computers, vol. 46, pp.
329–400. Academic Press, London (1998)

38. Pham, D.Q., Harland, J., Winikoff, M.: Modelling agent’s choices in temporal linear
logic. In: Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT
2007. LNCS, vol. 4897, pp. 140–157. Springer, Heidelberg (2008)

39. Pham, D.Q., Harland, J.: Temporal linear logic as a basis for flexible agent inter-
actions. In: Durfee, E.H., Yokoo, M., Huhns, M.N., Shehory, O. (eds.) 6th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2007), IFAAMAS (2007)

40. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)

41. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

42. Watkins, K., Cervasato, I., Pfenning, F., Walker, D.: A concurrent logical frame-
work: The propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004)

43. Wegner, P.: Coordination as constrained interaction. In: Ciancarini, P., Hankin, C.
(eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 28–33. Springer, Heidelberg
(1996)

An Object-Oriented Component Model
for Heterogeneous Nets�

Einar Broch Johnsen, Olaf Owe, Joakim Bjørk, and Marcel Kyas

Department of Informatics, University of Oslo, Norway
{einarj,olaf,joakimbj,kyas}@ifi.uio.no

Abstract. Many distributed applications can be understood in terms of compo-
nents interacting in an open environment. This interaction is not always uniform
as the network may consist of subnets with different quality: Some
components are tightly connected with order preservation of communicated mes-
sages, whereas others are more loosely connected such that overtaking of mes-
sages and even message loss may occur. Furthermore, certain components may
communicate over wireless networks, where sending and receiving must be syn-
chronized, since the wireless medium cannot buffer messages. This paper pro-
poses a formal framework for such systems, which allows high-level modeling
and formal analysis of distributed systems where interaction is managed by a
variety of nets, including wireless ones. We introduce a simple modeling lan-
guage for object-oriented components, extending the Creol language. An oper-
ational semantics for the language is defined in rewriting logic, which directly
provides an executable implementation in Maude.

1 Introduction

Object-oriented modeling languages [3, 11, 22] aim for a high level of abstraction, and
typically capture systems in a platform independent manner, as advocated by model-
driven architecture [24]. Consequently, these languages abstract from low-level com-
munication details such as, e.g., the specific properties of the communication medium
components use. However modern distributed applications often require a certain qual-
ity of service, which cannot be modeled when perfect channels are assumed; e.g., a
maximum latency or a minimum throughput. In practice, the properties of a specific
connection may even evolve during execution. In particular, connections to other com-
ponents may appear or disappear, and network components may be shared between sev-
eral applications with different requirements. Consequently, the quality of a connection
between two components may vary over time, and connections to components with the
same functional interface may vary significantly in bandwidth or robustness. In many
cases, the behavioral properties of the modeled system depend on the specific proper-
ties of the net. For such systems, it is desirable to enable cross-layer designs [23] by
reflecting aspects of the (low-level) connectivity in the high-level modeling language.

In this paper, we develop a light-weight, timed component model with an executable
semantics. We present a kernel language, extending our previous work on Creol [11,12].

� This research is in the context of the EU project IST-33826 CREDO: Modeling and analysis
of evolutionary structures for distributed services (http://credo.cwi.nl).

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 257–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

258 E.B. Johnsen et al.

Creol is a modeling language for distributed concurrent objects communicating by
means of asynchronous method calls. However, this previous work did not address the
communication medium in which the concurrent objects live. In this paper, we intro-
duce language primitives to reflect links with different qualities. This allows us to model
communication in heterogeneous nets; these are nets in which some components may
be tightly and reliably connected whereas others may be loosely connected through
unreliable or wireless links. This allows certain aspects of the connection quality be-
tween components to be taken into account during the analysis of a model. Further-
more, a component may decide on its actions depending on how it is connected to other
components. In particular we consider radio communication as well as multicast and
broadcast communication, in order to integrate object-oriented modeling with wireless
networks. The language abstracts from many implementation details; e.g., it uses a func-
tional sublanguage for side-effect free expressions and execution may be highly non-
deterministic. The language has an operational semantics defined in rewriting logic [15]
and it is executable on the Maude platform [5], which supports various forms of analy-
sis such as simulation and breadth-first search through the execution space. To illustrate
the language and analysis using Maude’s simulation support, an example of a simple
sensor network is given.

The paper is structured as follows: Section 2 discusses modeling of network aspects,
Sect. 3 presents the modeling language, and Sect. 4 provides an example based on
wireless medical sensors. Sect. 5 defines the operational semantics of the language,
Sect. 6 discusses related and future work, and Sect. 7 concludes the paper.

2 Modeling of Network Information

This paper considers modeling of distributed systems that communicate over different
links, and introduces a novel framework where such systems may be modeled and simu-
lated, and where system properties may be subjected to formal analysis. When modeling
a distributed system, the model should not only describe the components and their be-
haviors, but also how the different communication media involved are composed, since
media properties often affect the overall properties of the system. However, it is not
desirable to address all aspects of the network and communication details in a high-
level model . We will here focus on safety properties such as “the sender is aware of
sent messages that have arrived”, but also certain liveness properties such as “a mes-
sage will arrive at its destination in at most n hops”. This means that certain aspects of
the communication and network media must be formalized, for instance whether com-
munication preserves the order, whether communication is immediate or delayed, and
whether message may get lost. Such factors typically affect overall system properties.

In particular, we consider here tight, loose, and wireless links. A tight link between
two nodes provides a reliable communication channel that guarantees FIFO ordering
of messages sent between the linked objects. A typical example is a serial line link be-
tween the two nodes, or a TCP/IP connection. A loose link between two nodes is still
reliable but it does not guarantee the FIFO ordering; rather some messages take more
time than others. A wireless link provides synchronous transmission of messages, but

An Object-Oriented Component Model for Heterogeneous Nets 259

Name Description and Examples Simple Model

Host Layers

7. Application Web browser, file transfer, mail transfer 3. Application
6. Presentation Data representation (MIME, XML) and

encryption
2. Transport5. Session Interhost communication (RPC, iSCSI)

4. Transport End-to-end connections & reliability
(TCP, UDP)

Media Layers

3. Network Path determination & logical addressing
(IP)

1. Media
2. Data link Physical addressing (802.3 (Ethernet),

802.11a/b/g MAC/LLC (Wireless))
1. Physical Media (100BASE-TX (Ethernet), IEEE

802.11a/b/g PHY (Wireless)), signal, bi-
nary coding

Fig. 1. Network layering model

simultaneous messages may be lost if they are within reach of each other (message
collision). A message is received if the sender sends, the message does not collide
in transmission, and the receiver receives at the same time; otherwise the message is
lost. (Remark that the models considered in this paper are non-deterministic but not
probabilistic.) A network built from tight links is called a tight network. Analogously,
we define loose networks and wireless networks. A network may have parts that are
loose, tight, and wireless. A loose network may have parts that are tight, but not vice
versa. We say that a tight link is better than any other link.

Our model is based on the Open System Interconnection Basic Reference Model
(ISO/IEC 7498) [26], OSI model for short. This is considered as one of the standard
models for describing networks and applications. It allows application level program-
ming without knowledge of the underlying network protocols. However, the abstrac-
tions provided by the OSI model sometimes make it difficult to exploit the capabilities
of the underlying network and protocols. For example, applications in wireless networks
often have specific requirements on memory and energy use and still need to guarantee
their service with a certain quality. Such applications call for cross-layer designs, where
the abstractions of the OSI model are weakened with APIs that enable the control of as-
pects of the lower layers (cf. [23] and below). In addition, by using different protocols
over the same net, one may obtain different network qualities, such as lossy and fast
versus non-lossy and slow, or FIFO and slow versus reordering and fast. In both cases a
model design for a given application may benefit from some low-level network (proto-
col) knowledge, and possibly also from the reprogramming abilities of certain network
related aspects. By using the same language for the application level modeling and the
network related aspects, such as the programming of network protocols and wireless
radio controllers, one may obtain a uniform model with desired properties.

This paper considers a simplified version of the OSI model, which we compare
to the original ISO/OSI model (see Fig. 1). Our model allows application level pro-
gramming as well as the programming of network protocols and wireless radio con-
trollers. Details that are not relevant for high-level modeling and analysis are abstracted
away, while other details are included, such as the presence of communication buffers,

260 E.B. Johnsen et al.

Syntactic
categories.
C, I,m in Names
n in Network
t in Label
g in Guard
p in MtdCall
s in Stm
x in Var
e in Expr
o in ObjExpr
b in BoolExpr

Definitions.
IF ::= interface I {x : I}{inherits I}

begin {with I Sg} end
CL ::= classC{x : I}{inheritsC}{implements I}

begin {var x : I{= e}} {with I}M end
M ::= Sg == {var x : I{= e};} s
Sg ::= op m ({in x : I}{out x : I})

n ::= loose |tight |wless
g ::= b | t? |g∧g |g∨g
p ::= m(e) |o.m(e)
s ::= (s) | s;s | x := e | x := t.get | x := new C{(e)}{in o} |tick(n)
| if b then s {else s} fi |while b do s od |await g
| {t :=}!p | {x :=}p |await x := p | !o.m(e) | !all : I.m(e)

swless ::= send |receive
snet ::= link o n o |unlink o n o

Fig. 2. The language syntax. Overlined terms such as e, x, and s, denote lists over the correspond-
ing syntactic categories and curly brackets denote optional elements. Additional constructs for
low-level wireless programming are given by swless, and for network connections by snet .

ordering properties, immediateness of transmission, radio transmission synchronization
and messages collision of wireless messages. Our model consists of three levels:

1. the media layer is represented by rules in the operational semantics, formalizing
the transport of messages in the different nets and which is partly “programmable”
in that link and unlink statements allow to establish and sever links between
components, as well as synchronization of radio sending and receiving,

2. the transport layer is partly represented by rules of the operational semantics (for-
malizing the meaning of “tight” and “loose”) and partly programmable by language
primitives allowing; e.g., the programming of routing in wireless systems,

3. the application level represents top level programs. At this level the actual under-
lying net is invisible, in the sense that one may use the same high-level commu-
nication primitives, including broadcast and multicast primitives regardless of the
actually used network.

The chosen primitives enable cross-layer designs of wireless network applications,
which arise from the necessity to adapt properties of lower layers to the applications
under design [23]. Such designs allow to adapt the network for better quality of ser-
vice [19] or to optimize its energy consumption [10]. The framework may be adjusted
to cater for other communication properties, such as message loss and packet size.

3 A Modeling Language for Components in Heterogeneous Nets

We introduce an executable modeling language for components in heterogeneous net-
works, based on the object-oriented language Creol [11, 12]. Creol proposes impera-
tive programming constructs for distributed concurrent objects, based on asynchronous
method calls and processor release points. Asynchronous method calls may be seen

An Object-Oriented Component Model for Heterogeneous Nets 261

as triggers of concurrent activity, resulting in new processes in the called object. Ob-
jects are dynamically created instances of classes, which are organized in an inheritance
hierarchy. Concurrent objects encapsulate an execution thread and an internal process
queue. Active behavior, triggered by a run method, is interleaved with passive behavior
by means of the processor release points. The modeling language includes a standard
expression language for values of basic data types, which will not be explained in de-
tail. Objects have unique identities (names); communication takes place between named
objects, and object identities may be exchanged between objects. Object variables are
typed by interfaces. The language is strongly typed: invoked methods are supported by
the called object (when not null), such that formal and actual parameters match.

In contrast, the modeling language considered in this paper targets network com-
ponents in heterogeneous networks. It combines object-oriented components and defi-
nitions of actual networks; including tight, loose and wireless networks, and dynamic
network changes. Technically, we extend the concurrent object communication model
of Creol with representations of components and networks, incorporate a notion of (lo-
cal and global) time, and introduce multicasts and forms of broadcast. Finally we define
primitives for dealing with the special needs of wireless networks inside this model.

Network components. In order to model the units of the heterogeneous network, we in-
troduce a light-weight notion of multi-object network components. The objects inside a
component are tightly connected and communicate directly with each other. A compo-
nent supports all interfaces supported by its objects; thus the caller may a call a method
on a component if the called method supported by some object in that component. In
case several objects in the component support the called method, one of these is chosen
non-deterministically. However, if the caller knows the identity of a preferred object
inside the component, the caller may call that object directly.

Component creation has the syntax x := new C(e) where C is the class name and
e the list of actual class parameters, if any. In fact, this statement creates a network
component consisting of a single object. Both components and objects have identity:
for an object identity o, the expression component(o) gives the component identity of
o (for a component identity c, component(c) = c). The statement x := new C(e) in o
creates a new (object) instance of C inside the component o.

Basic statements. The basic language syntax is given in Fig. 2. A program consists
of interface and class declarations. Classes CL contain definitions of attributes x (with
initial values) and methods M. A method contains a list of statements s, which may ac-
cess class attributes, locally defined variables, and the formal parameters of the method
(given by the keywords in and out). An interface IF contains method signatures Sg
associated with a cointerface I, denoting the (minimal) type of a client of IF (given
by a with clause). Both classes and interfaces may also contain parameters and inherit
other classes and interfaces, respectively. Finally, a class implements a list of interfaces.
In order to allow type correct call-backs, a method may use the implicit caller param-
eter, which supports the cointerface of the method. Input parameters, as well as the
self-reference this, are ready-only. Note that remote attribute access is not permitted, so
method interaction is the only means of communication in the language. Assignment
and if- and while-constructs are standard. We assume that purely local operations
take no time; local delays may be captured by the statement tick(n), for n time units.

262 E.B. Johnsen et al.

In the statement await g, the guard g is used to control processor release and may
consist of Boolean conditions and return tests (see below). If g evaluates to false in the
active process, the process is suspended and the execution thread becomes idle. When
the execution thread is idle, any enabled process may be chosen from the local process
queue. Therefore explicit signaling is not part of the language. The run method of an
object is called upon creation, and initiates active behavior. Release points in the run
method allow processes in the process queue to be handled.

Communication. After making an asynchronous method call t :=!o.m(e), the caller
may proceed with its execution without waiting for the method reply. Here o is an
object expression and e are (data value or object) expressions. The tag t will be as-
signed a unique tag value identifying the call (relative to the current object), which
may later be used to refer to that call in two different ways. First the guard await t?
suspends the active process unless a return to the call associated with t has arrived.
Second the return values are accessed by the blocking reply statement x := t.get, once
a return has arrived. We identify certain special cases of these communication prim-
itives: For local calls the dot-notation and o is omitted; e.g., t :=!m(e). If no return
value is desired by the caller, the tag may be omitted; e.g., !o.m(e). The sequence
t :=!o.m(e); x := t.get gives a blocking call, abbreviated x := o.m(e), whereas the
call sequence t :=!o.m(e); await t?; x := t.get gives a non-blocking call, abbrevi-
ated await x := o.m(e). A multicast !o.m(e) is an asynchronous method call with a
set of target objects. The multicast is sent simultaneously to all callees. A broadcast
all : I.m(e) is an asynchronous method invocation which targets all objects of a cer-
tain interface I. For strong typing, I must provide a declaration of the invoked method.
The use of these communication primitives is illustrated below and in Sect. 4.

Heterogeneous nets. In a given model, the network connecting the components need
not be uniform. Actual nets are defined by means of a number of direct links between
components, which may have different characteristics. In this paper, we consider three
basic forms of links: wireless, loose, and tight. In order to model the heterogeneous
net, links are declared by the statements link o wless u, link o loose u, and
link o tight u (for sets of component expressions o and u). These statements re-
spectively add wless, loose, or tight links from each each component in o to
each component in u. Correspondingly, links are explicitly broken by, e.g., the state-
ment unlink o wless u. Remark that (wired) loose or tight links go both ways, but
this is not generally the case for wireless links. Furthermore, links to self are redundant.

Example 1. Initial links may be made inside the run method of a class System from
which the initial components are created.

op run ==
var a,b,c,d : Any;
a:= new Class1; b:= new Class2; c:= new Class3; ...
link a wless b,c;
link b,c,d wless a,b,c,d;

Here a must use b or c to communicate with d, but d may communicate directly with a.

Wireless communication. A wireless component needs radio functionality to handle the
sending and receiving of messages. In order to control the timing of this sending and

An Object-Oriented Component Model for Heterogeneous Nets 263

receiving precisely, we model the radio functionality in a separate radio object in the
wireless component. Therefore a component acting in wireless media will consist of at
least two active objects; the main processing unit and the radio object. It is the task of the
radio object to make wireless messages available for regular processing by the objects
inside the component. The objects themselvesact as if they work in a wired network,
using the standard primitives for communication. A component acting in a wireless net
must be able to wait for and to send a message in a given time interval. We use two
explicit non-blocking primitives to capture wireless sending and receiving: receive
to receive a wireless message and make it available to the component’s objects, and
send to send the first pending wireless message.

Example 2. A cycle of the radio unit of a wireless component could be to receive, then
send, receive again, and finally sleep. Instead of defining a controller in the sensor’s
central processing unit, we use the radio’s run method to control the cycle.

class Radio(sendtime:Nat, sleeptime:Nat, cycle:Nat, sync:Nat)
implements Controllable

begin var on:Bool := true, timer: Nat := 0
op run == while on do
await (clock - sync) rem cycle = 0; *** synchronize
timer:= clock;
while clock < timer + sleeptime do
if clock = timer + sendtime then send else receive fi od od

with Any
op turnoff == on := false
op turnon == on := true
op reset (in time: Nat) == sync := time
op setSend (in time: Nat) ==

if time < sleeptime then sendtime := time fi
op setSleep(in time:Nat) ==

if sendtime<time<cycle then sleeptime := time fi
end

When the radio is turned on, the cycle consists of an active phase where the radio is
sending in a specified interval (here of length 1 time unit) and otherwise receiving,
followed by a sleeping phase. In addition there are methods to turn the radio on and
off, to adjust the sending and sleeping intervals, and for synchronizing the radio cycle.
These methods form an interface, Controllable, allowing external control of the radio.
When sleeping, the processor is released and invocations of the radio methods may be
processed. For simplicity, we here assume a fixed cycle length (set at creation time).

4 Example: A Model of a Wireless Sensor Network

A typical biomedical sensor network consists of a number of sensors, a sink, and users.
The example in Fig. 3 has five sensors and one sink connected by wireless links. The
sink sends signals which are sufficiently strong for all sensors to receive them. The sen-
sors, which could be inside patients, run on battery, and save power by reducing their
signal strength, which again limits their range. Hence some sensors are not directly con-
nected with the sink and depend on other sensors to forward their messages. The sink
is connected to the end users by a tight network. The interfaces of the system compo-
nents are given in Fig. 4. The Forwarder interface declares a forward operation, and

264 E.B. Johnsen et al.

s1: Sensor

s2: Sensor

s3: Sensor

s4: Sensor

s5: Sensor

sink: Sink user: User

link types
tight

wireless

Fig. 3. Typical sensor network

is inherited by both the Sink and the Sensor interfaces. Methods of Forwarder
have Forwarder as cointerface (given by the with clause) because a Forwarder
object should communicate with another Forwarder object. The Sensor interface
adds a method for updating the distance to the sink, which is accessible only to sink
objects, as Sink is the cointerface. The User interface declares a newData method
for receiving data from the sink.

The run method of the System class constructs the system model by creating all
objects and setting up the initial network (not given here). A sensor component is cre-
ated as in

s1:= new TempSensor(10); r1:= new Radio(t1,6,10,1) in component(s1);

and similarly for the sink component, ensuring that the sending intervals of the differ-
ent radios are disjoint, by appropriate radio parameter values. It also reconfigures the
network at runtime to simulate the patients’ movements. For example, we express that
sensor s5 moves too far to reach the sink after 200 time units by severing the link:

await clock > 200; unlink s5 wless sink;

The sensors, sink, and users are described by the classes TempSensor, Sink, and
User in Fig. 4. The sensors operate in cycles with a period given by the class parameter
interval. In each cycle a sensor reads the current temperature by calling an instance
of the TempMeter interface, using a non-blocking call. The TempMeter interface
models access to the hardware.

After reading the temperature, the sensor sends a message with the temperature to
all reachable components that implement the Forwarder interface by the statement

!all:Forwarder.forward(this, distToSink + 2, 1, clock, temp)

Here, reachable means that there is a direct link from the caller to the callee. If there is
more than one link from the two components, the best link is selected. If the link is tight,
the message will move directly from the caller’s out-queue to the callee’s in-queue. If
the link is wireless then the radio unit transports the message.

An Object-Oriented Component Model for Heterogeneous Nets 265

interface Forwarder begin with Forwarder op forward(...) end
interface Sensor inherits Forwarder

begin with Sink op setDistToSink(...) end
interface Sink inherits Forwarder begin ... end
interface User begin with Sink op newData(...) end

class TempSensor(interval:Nat) implements Sensor
begin var forwarded:List[Oid*Nat] := emp, distToSink:Nat := 10,

distUpdTime:Nat := 0, timer:Nat, temp:Int, tempm:TempMeter
op run == tempm := new TempMeter in component(this);
while true do timer := clock; await temp := tempm.getTemp();
!all:Forwarder.forward(this, distToSink + 2, 1, clock, temp);
await clock > timer+interval od

with Sink
op setDistToSink(in time:Nat, dist:Nat) ==
if distUpdTime < time ∨(distUpdTime = time ∧ dist < distToSink)
then distToSink := dist; distUpdTime := time fi

with Forwarder
op forward(in origin:Oid,htl:Nat,steps:Nat,timestamp:Nat,data:Int)==
if not((origin, timestamp) in forwarded) ∧ origin �= this ∧

htl > distToSink then if length(forwarded) > 9
then forwarded := after(forwarded, length(forwarded)-9) fi;

forwarded := forwarded �(origin, timestamp);
!all:Forwarder.forward(origin, htl-1, steps+1, timestamp, data) fi

end

class Sink() implements Sink
begin var forwarded:List[Oid*Nat*Int] = emp
with Forwarder
op forward(in origin:Oid, htl:Nat, steps:Nat,

timestamp:Nat, data:Int) ==
!origin.setDistToSink(timestamp, steps);
if not((origin, timestamp) in forwarded) then

if length(forwarded) > 9
then forwarded := after(forwarded, length(forwarded)-9) fi;

forwarded := forwarded �(origin, timestamp);
!all:User.newData(origin, timestamp, data) fi

end

class User(criticalLow:Nat, criticalHigh:Nat) implements User
begin var allData: List[Oid*Nat*Nat*Int] := emp;
op alarm()...
with Sink
op newData(in origin:Oid, timestamp:Nat, data:Int) ==

var i:Nat := 1;
if data < criticalLow ∨data > criticalHigh then alarm() fi;
while i <= length(allData)

∧ index(index(allData, i),1) �= origin do i := i+1 od;
while i <= length(allData)

∧ index(index(allData, i),1) = origin
∧ index(index(allData, i),2) < timestamp do i := i+1 od;

allData :=
insertAtIndex(allData, i, (origin, timestamp, clock, data))

end

Fig. 4. Model of the temperature sensor, the sink, and a user. We here use � for list append.

266 E.B. Johnsen et al.

In class Sink, the forward method has the following parameters: origin gives
the identity of the sensor that has provided the data; htl (hops to live) gives the number
of remaining hops the message should live; steps gives the number of hops this mes-
sage has taken so far; timestamp stores the time when the origin sent this message;
and data is the temperature measured in degrees centigrade. When a sensor receives a
forward call, it adds the message to forwarded and forwards the call to all reach-
able forwarders, unless the message has already forwarded. The length of forwarded
is limited to ten entries, a common limit of, e.g., biomedical sensors.

The distance to the sink from a sensor may be measured by the minimum number of
hops needed. Because sensors may move, this distance may change. When the sink gets
a message, it sends the number of hops taken by this message to the original sender,
using setDistToSink. If the data are new to the sink, they are broadcasted to all
users. The user stores data in a list allData, which is sorted by sensor name and
sending time to simplify queries. Observe that none of the remote calls made in any
class are blocking; consequently, the system is deadlock free (assuming that local calls
always terminate).

5 Operational Semantics

The operational semantics of the language is defined using rewriting logic (RL) [15]. A
rewrite theory is a 4-tuple R = (Σ ,E,L,R), where the signature Σ defines the function
symbols of the language, E defines equations between terms, L is a set of labels, and
R is a set of labeled rewrite rules. A state configuration in RL will be modeled as a
multiset of terms representing local system states, of given types. These types are spec-
ified in (membership) equational logic (Σ ,E), the functional sublanguage of RL which
supports algebraic specification in the OBJ [9] style. RL extends algebraic specifica-
tion techniques with transition rules: The dynamic behavior of a system is captured by
rewrite rules, supplementing the equations which define the term language. Assuming
that all terms can be reduced to normal form, rewrite rules transform terms modulo the
equations of E . A rewrite rule t −→ t ′ if c may be seen as a local transition rule allow-
ing an instance of the pattern t to evolve into the corresponding instance of the pattern
t ′, where the optional condition c is a conjunction of rewrites and equations which must
hold for the main rule to apply. If several rules can be applied to distinct subconfigu-
rations, they can be executed in a concurrent rewrite step. As a result, concurrency is
implicit in rewriting logic semantics. Rules in RL may be formulated at a high-level
of abstraction, similar to a compositional operational semantics. In fact, RL provides
a semantic framework unifying equational and operational semantics [16]. Many con-
currency models have been successfully represented in RL [15,5]; including Petri nets,
CCS, Actors, and Unity. RL also offers its own model of object orientation [5].

In RL, objects are commonly represented by terms 〈o : C |a1 : v1, . . . ,an : vn〉 where
o is the object’s identity, C is its class, the ai’s are the names of the object’s fields, and
the vi’s are the corresponding values [5]. We adopt this form of presentation and define
the elements of our semantics as RL objects. When auxiliary functions are needed,
these are defined in equational logic and evaluated in between transitions [15]. White-
space is used as the associative and commutative constructor of multisets with identity

An Object-Oriented Component Model for Heterogeneous Nets 267

element empty, whereas semicolon is used as the associative constructor of lists, also
with identity element empty. Variables of the operational semantics are written in upper
case letters, whereas variables of the modeling language (as well as auxiliary functions)
are written in lower case letters. As before, variables for lists or multisets are written M
for semantic construct M.

5.1 Configurations, Local and System Transitions

The modeling language considered in this paper depends on a notion of time. For timed
distributed systems, time is either modeled by a global clock (or equivalently, local
clocks which evolve with the same rate), or by local clocks. For simplicity we use a
so-called fictitious clock model [1] based on a global clock, which allows us to ignore
clock synchronization between objects. In this clock model, the clock value is just a
number that serves to group simultaneous events. The values need not correspond to
values of real clocks, and are therefore usually chosen to be natural numbers that count
steps. Effects such as radio broadcast are confined to a particular instance of time, and
disappear as soon as time advances. Local clocks coordinate the objects’ behavior with
the global progress of time, enforcing the invariant that an object may only make a step
when the local time is less than or equal to the global time. The global clock advances
as soon as its value is less than the values of all local clocks.

A state configuration, of sort Configuration, is a multiset which consists of objects,
classes, interfaces, queues, messages, and links. The empty configuration is denoted
empty. A basic link is written [O N O′], where O and O′ range over object identities
and N over networks (i.e., wless, tight, and lossy). In order to capture the global clock
in RL, we let a term @C clock(N)@ of sort System include a configuration C with at
least one object and a (global) clock, denoted clock(N), where the variable N ranges
over natural numbers. There are three different kinds of rewrite rules:

– Code execution rules correspond to the different program statements;
– Transport rules move messages between objects, components, and the network;
– System level rules manage low-level activities such as global clock update and table

lookup for classes and interfaces

Remark that code execution and transport rules apply to local configurations and allow
concurrent execution, whereas system level rules apply to the whole system.

Components consist of tightly connected objects, and are represented by a naming
discipline: a component name may be extracted from every object identity by a func-
tion component : Oid → Cid, where the component name is of sort Cid (a subsort of
Oid). The objects with the same component name form a component. From outside a
component, one may then refer to an object by its identity or by its component name.
A component O has one in-queue object 〈O: InQu | EvQ: M〉, where the queue M is
FIFO ordered, and one out-queue object 〈O: OutQu | EvQ: M′, Tag: K〉, where M′ has
a simple form of priority ordering and the tag K (together with the object identity) is
used to uniquely identify outgoing messages. (Other forms of priority queues could be
considered in more specialized settings; e.g., LIFO out-queues would give priority to
fresh messages.) The queues have the same name as the component, and provide (a
controlled form of) shared data structures for the component’s objects. The queues may

268 E.B. Johnsen et al.

interact with the net at the same time as internal actions inside the component’s objects.
The specific message processing depends on the different networks linked to an object.
Remark that by using the same component name for all objects in a component, we need
no further encapsulation syntax for components. In many cases, including the examples
in this paper, full object names are not needed and component names suffice.

A concurrent object is represented by 〈O : C | Pr: Q, PrQ: Q, Att: V 〉, where O is the
object identity, of sort Oid, C the class name, Pr the active process (which includes code
and local variables), PrQ a multiset of suspended processes with unspecified queue or-
dering, and Att the object state variables, including some predefined system variables
such as clock which represents the local clock of the object. A process is modeled as
a pair consisting of code and local state, (S,W), where S is a statement list and W is
a state mapping from (local) variable names to values, using + for concatenation (and
overwriting) and _ �→ _ for constructing variable-to-value associations. The suspended
processes in the process queue represent remaining parts of method activations. Pro-
grams have read-only access to the clock, so the programmer may not assign to the
clock variable. Let [[E]]V denote the evaluation of an expression E in the state V .

Example. A wireless sensor may have one radio object O2 responsible of sending
and receiving wireless messages in interaction with the network, together with a main
object O1 doing the main computations. Such a component may have the form:

〈O : InQu |EvQ: M〉 〈O : OutQu |EvQ: M
′
, Tag: K〉

〈O1 : C |Pr: Q1, PrQ: Q1, Att: V 1〉 〈O2: Radio |Pr: Q2, PrQ: Q2, Att: V 2〉

where component(O1) = component(O2) = O, and a class Radio defines active behav-
ior controlling the wireless sending and receiving of messages (see Section 4).

In a class 〈C :Cl | Ifc: I, Inh: C, Par: Y , Att: V , Mtds: P〉, C is the class name, Ifc
is the list of interfaces supported by the class, Inh is the list of superclasses, Par the
list of class parameters, Att a list of attributes with initial values, and Mtds a multiset of
methods (including the initialization method init and a method run defining active object
behavior). The attributes include a system variable token used for unique naming of
generated objects. When an object needs a method, it is loaded from the Mtds multiset
of the object’s class. Similarly, in an interface 〈I : Ifc | Inh: I〉 I is the name, I the
inherited interfaces. The inheritance list is used for broadcasts at run-time to determine
all (connected) objects of a given super-interface. Method and cointerface declarations
in an interface are used for type checking purposes and may be ignored at run-time.

Heterogeneous networks are represented by sets of links. We let Link be a subsort
of Config, thereby allowing (multi)sets of links directly in the configuration, with terms
[O N O′] (where N denotes a net; i.e., either wless, tight, or loose). We assume that the
transmission strength in a wireless link may vary, in contrast to a wired link. Conse-
quently, wireless links are directed and not symmetric, whereas wired connections are
both symmetric and transitive. In the multiset of links, duplicates as well as links to self
are ignored (i.e., we have the equations CN CN = CN and [O N O] U = U , where CN
denotes some link and O a component). The link statements described in Sect. 3 result
in changes of link configurations.

We define a function bestcon : Oid Oid Configuration→ Net+ to identify the best
connection between two objects, exploiting the transitivity and symmetry of wired

An Object-Oriented Component Model for Heterogeneous Nets 269

(BIND)

@ 〈O : C |PrQ: Q〉 〈O : InQu |Ev: invoc m(E); M 〉U @
= @ 〈O : C |PrQ: Q; bind(m,E,C,U) 〉 〈O : InQu |Ev: M〉U @
if supports (C, m, U)

(GUARD)

〈O : C |Pr: (await G ; S, W), PrQ: Q, Att: V 〉 〈O : InQu |Ev: M 〉
−→〈O : C |Pr: (S, W), PrQ: Q, Att: V 〉 〈O : InQu |Ev: M 〉
if enabled(G, (V +W), M)

(SUSPEND)

〈O : C |Pr: (S, W), PrQ: Q, Att: V 〉 〈O : InQu |Ev: M 〉
−→〈O : C |Pr: idle , PrQ: Q; (S, W), Att: V 〉 〈O : InQu |Ev: M 〉
if not enabled(S, (V +W), M)

(PRQ-READY)

〈O : C |Pr: idle, PrQ: (S, W); Q, Att: V 〉 〈O : InQu |Ev: M 〉
−→〈O : C |Pr: (S, W), PrQ: Q, Att: V 〉 〈O : InQu |Ev: M 〉
if enabled(S, (V +W), M)

(IDLESTEP)

〈O : C |Pr: idle, PrQ: Q, Att: V 〉 〈O : InQu |Ev: M 〉 clock(T)
−→〈O : C |Pr: idle, PrQ: Q, Att: advance(V) 〉 〈O : InQu |Ev: M 〉 clock(T)
if not enabled(Q,V ,M) and [[clock]]V = T

Fig. 5. Rules for process queue handling. In the rules we omit object fields not relevant for the
rule. Note that matching is modulo associativity, commutativity, and identity for the multiset
constructor, and modulo associativity and identity for the list constructor.

networks. The sort Net+ extends the sort Net with the constant noNet and we define
bestcon(O,O′,U) = noNet if there is no connection path from (the component of) O
to (the component of) O′. Otherwise, the connection between the two objects is tight
if there is a connection path from O to O′ consisting of tight direct connections only;
loose if there is one or more loose direct connections in the path; and wless if there is
a wireless connection between O and O′. Objects in the same component are always
tightly connected:

bestcon(O,O′, U) = tight if component(O) = component(O′)

For example, bestcon(o1, o3, [o1 wless o3][o1 tight o2][o3 loose o2]) = loose,
whereas bestcon(o1, o3, [o1 wless o3][o1 tight o2]) = wless.

Messages. There are three different kinds of message bodies MB: these have the form
invoc m(par) for invocation messages, where m is the name of the called method and
par are actual parameters; comp (par) for completion messages; and error (name) for
error messages, capturing network errors or other kinds of errors. The actual parame-
ters include system generated parameters such as the caller identity and tag value. With
full header information, a message has the form MB from O to O by NET, where O
is the sender object, O the destination (either a single object or a list of objects), and
NET is the network to be used: loose, tight, wless, or noNet. For simplicity, we omit
sender information from messages inside out-queues and keep only message bodies
inside in-queues. The network information of a message is determined when the mes-
sage is placed in the out-queue (by means of an equation taking the total network into
consideration). Remark that messages by noNet cannot be sent.

270 E.B. Johnsen et al.

5.2 The Rewrite Rules

The operational semantics ensures that clock values increase, and that the global clock
is less than or equal to each local clock. The global clock is updated by the rule (CLOCK)

in Fig. 6, in which the variable U ranges over configurations, clockmin gives the small-
est local clock value in U , and refresh removes any remaining receive statements and
wireless messages from the configuration (since such messages are not persistent). The
function clockmin is defined by the following equations (where OB denotes an object):

clockmin(OB OB′ U) = min(clockval(OB), clockmin(OB′ U))
clockmin(OB U) = clockval (OB) otherwise
clockval(〈O : C |. . . Att: V 〉) = [[clock]]V

Note that in RL, equations marked by otherwise only apply when no other equations
are applicable [5]. In general, an object may only compute when its local clock value
equals the global clock. Thus a rule modeling object behavior typically has the form

object clock(T) −→object′ clock(T) if clockval (object) = T

where object is a pattern representing an object (possibly with its associated in-queue)
and object ′ is the resulting object state, typically with local time increased. In particular
the rule (IDLESTEP) in Fig. 5 increases the local time of objects that are idle; i.e., objects
with no active process in which no processes in the process queue are enabled. Simi-
larly, the rule (NO REPLY) in Fig. 6 increases local time when the active process is blocked
(i.e., x:=t.get) with no matching label value in the in-queue. In addition, all com-
munication statements increase the local clock (see Fig. 6); e.g., send, receive, method
calls, return, link, and unlink.

The principle that local computation requires the local and global clock values to be
the same, may be relaxed for internal object actions; i.e., by allowing local actions of
object which do not involve any interaction (affected by or affecting other objects). For
example, assignments to local and state variables do not need to depend on the global
clock. Thus, the assignment rule, which may be given by

(ASSIGN)

〈O : C |Pr: (X :=E; S,W), Att: V 〉
−→ if X in V then 〈O : C |Pr: (S,W), Att: V +(X �→[[E]](W+V))〉

else 〈O : C |Pr: (S,W+(X �→[[E]](W+V))), Att: V 〉 fi

does not increase the local time. The tick(n) statement evaluates as an assignment on
the local clock; i.e., clock := clock + n. The rules for if and while (omitted here),
as well as guards and process queue handling do not involve clocks, except (IDLESTEP)

(given in Fig. 5). The (BIND) rule additionally uses the class hierarchy to bind methods,
and the supports function checks if a class supports a method in a given class hierarchy.

To simplify, object names in the rules are abstracted to component names. This al-
lows a direct matching by names (O = O′) rather than matching by component name
(as in component(O) = component(O′)). Note that method binding based on compo-
nent names is non-deterministic when the component has several objects supporting the
method. With this simplification, all remote calls are made to components. For many
practical purposes, including the sensor example, this simplification works well.

An Object-Oriented Component Model for Heterogeneous Nets 271

(CLOCK)
@ clock(T) U @ −→@ clock(clockmin(U)) refresh(T, U) @
if T <clockmin(U)

(NET)
@ 〈O : OutQu |Ev: M; (MB to O′); M′ 〉U @
= @ 〈O : OutQu |Ev: M; (MB to O′ by bestcon(O,O′,U)); M′〉U @

(NONET) 〈O : OutQu |Ev: M; (MB to O′ by noNet)〉
= 〈O : OutQu |Ev: M; (error(“noNet”) to O by tight)〉

(MULTIMSG1)
〈O : OutQu |Ev: M; (MB to (O′ ; O))〉
= 〈O : OutQu |Ev: M; (MB to O′); (MB to O)〉

(MULTIMSG2) 〈O : OutQu |Ev: M; (MB to empty)〉 = 〈O : OutQu |Ev: M 〉

(MULTIMSG3)
@ 〈O : OutQu |Ev: M; (MB to all: I)〉U @
= @ 〈O : OutQu |Ev: M; (MB to all(O, I,U))〉U @

(MULTICAST)

〈O : C |Pr: (!O.m(E) ; S,W), Att: V 〉 〈O : OutQu |Ev: M, Tag: K 〉 clock(T)
−→〈O: C |Pr: (S,W), Att: advance(V) 〉
〈O : OutQu |Ev: M; invoc m(O,K,[[E]](V+W)) to [[O]](V+W)), Tag: K+1 〉
clock(T) if [[clock]]V = T

(UNICAST)

〈O : C |Pr: (L:=!O.m(E) ; S,W), Att: V 〉 〈O : OutQu |Ev: M, Tag: K 〉 clock(T)
−→〈O : C |Pr: (L :=K; S,W), Att: advance(V) 〉
〈O : OutQu |Ev: M; invoc m(O,K,[[E]]V+W) to [[O]]V+W)),Tag: K+1 〉 clock(T)
if [[clock]]V = T

(BROADCAST)

〈O : C |Pr: (! all: I.m(E) ; S,W), Att: V 〉 〈O : OutQu |Ev: M, Tag: K 〉
clock(T)
−→〈O : C |Pr: (S,W), Att: advance(V) 〉
〈O : OutQu |Ev: M; invoc m(O,K,[[E]](V+W)) to all: I, Tag: K+1 〉 clock(T)

if [[clock]]V = T

(RETURN)

〈O : C |Pr: (return(E) ; S,W), Att: V 〉 clock(T) 〈O : OutQu |Ev: M, Tag: K 〉
−→〈O : C |Pr: (S,W), Att: advance(V) 〉 clock(T)
〈O : OutQu |Ev: M ; comp ([[(label,E)]]V+W) to [[caller]]W), Tag: K 〉
if [[clock]]V = T

(REPLY)

〈O : C |Pr: (X :=L? ; S,W), Att: V 〉 clock(T)
〈O : InQu |Ev: M; comp(K,E); M′ 〉
−→〈O : C |Pr: (X :=E; S,W), Att: advance(V) 〉 clock(T)
〈O : InQu |Ev: M; M′ 〉
if [[clock]]V = T and K = [[L]](V+W))

(NO REPLY)

〈O : C |Pr: (X :=L? ; S,W), Att: V 〉 clock(T) 〈O : InQu |Ev: M 〉
−→〈O : C |Pr: (X :=L? ; S,W), Att: advance(V) 〉 clock(T) 〈O : InQu |Ev: M 〉
if [[clock]]V = T and not inqueue([[L]](V+W), M)

Fig. 6. Rewrite equations and rules for message processing

272 E.B. Johnsen et al.

(TIGHT1)
〈O : OutQu |Ev: (MB to O′ by tight); M〉 〈O′ : InQu |Ev: M′〉
= 〈O : OutQu |Ev: M〉 〈O′ : InQu |Ev: M′; MB〉

(TIGHT2)
(M1 to O1 by wless); (M2 to O2 by N)
= (M2 to O2 by N); (M1 to O1 by wless) if not N = wless

(LOOSE1) 〈O : OutQu |Ev: (MB to O′ by loose); M〉
= 〈O : OutQu |Ev: M〉 (MB from O to O′ by loose)

(LOOSE2) (MB from O to O′ by loose) 〈O′ : InQu |Ev: M〉 −→〈O′ : InQu |Ev: M; MB〉

Fig. 7. Tight and loose networks

Basic Statements and Creation. The rules for basic statements, such as skip, if,
while, link, and unlink, are straightforward (see Fig. 9). The rule for object cre-
ation creates a new object and associated queues. In case of a new object in a given
component, the component identity is reused for the new object and no further queues
are created. Local calls are defined by remote calls to self (by the obvious equation).
For simplicity, the rules for reentrance are ignored in this paper.

Network processing. The rewrite rules for network processing are given in Fig. 6. In the
equation (NET), the network determines how to send messages. Notice that the equation
is on the total system, such that all possible connections are considered. The equation
represents network actions, realized by hardware or the operating system. Equation
(NONET) reflects that messages to noNet cannot be sent. Such messages may represent
serious communication failures and should be communicated to the caller. In our frame-
work this is indicated by an error message. Message sending to multiple destinations
is defined by means of messages to single destinations in equation (MULTIMSG1), and by
ignoring messages sent to empty destination lists in (MULTIMSG2). The rules for tight and
loose networks are given in Fig. 7. A tight network from o to o′ is defined by a trans-
port equation (TIGHT1) which takes the first message from the out-queue of o marked by
“tight”, directly into the in-queue of o′. We let wired messages in out-queues have pri-
ority over wireless ones, as stated in equation (TIGHT2). Loose networks are modeled by
using an equation to move messages from an out-queue into the configuration, and by
a (nondeterministic) rule taking a message from the configuration into the appropriate
in-queue ((LOOSE2)). Messages over loose nets are automatically sent to the network (i.e.,
placed in the configuration multiset) by the equation (LOOSE1).

Communication. Messages in the out-queue are created by call and return statements
in the associated objects. We consider uni-cast, multicast, and broadcast; the rules are
given in Fig. 6. Of these, only labeled uni-casts allow the caller to request a result of the
call. We have seen that blocking (synchronous) methods calls are understood in terms
of labeled asynchronous method calls: t :=!o.m(e) where o is an object expression.
The label value provides a way of identifying the call and the reply. In rule (UNICAST),
a labeled call has only one callee, which ensures that there is a unique reply. A call’s
result value is communicated in rule (RETURN) as a completion message, caused by a

An Object-Oriented Component Model for Heterogeneous Nets 273

(WSEND1)

〈O : C |Pr: (send ; S,W), Att: V 〉 clock(T)
〈O : OutQu |Ev: (MB to O′ by wless) ; M〉
= 〈O : C |Pr: (S,W), Att: advance(V) 〉 clock(T) 〈O : OutQu |Ev: M〉
(MB from O to O′ by wless) if [[clock]]V = T

(WSEND2)

〈O : C |Pr: (send ; S,W), Att: V 〉 clock(T) 〈O : OutQu |Ev: empty 〉
−→〈O : C |Pr: (S,W), Att: advance(V) 〉 clock(T) 〈O : OutQu |Ev: empty 〉
if [[clock]]V = T

(COLLIDE) (M1 from O1 to O by wless) (M2 from O2 to O by wless)
= (error(“collision”) from null to O by wless)

(RECEIVE)

@ 〈O : C |Pr: (receive ; S,W), Att: V 〉 〈O : InQu |Ev: M〉
(M from O′ to O by wless) [O’ wless O] clock(T) U @
= @ 〈O : C |Pr: (S,W), Att: advance(V) 〉 〈O : InQu |Ev: M ; M〉 [O’ wless O]
clock(T) U @ if [[clock]]V = T otherwise

(REFRESH1) refresh (T, (MB from O to O′ by wless) U) = refresh (T, U)

(REFRESH2)
refresh (T,〈O : C |Pr: (receive; S,W), Att: V 〉U)
= 〈O : C |Pr: (S,W), Att: advance(V)〉 refresh(T,U) if [[clock]]V = T

(REFRESH3) refresh (T, U) = U otherwise

Fig. 8. Wireless communication

return statement in the callee, where caller and label are the implicit local parameters
identifying the caller and the tag. A blocking reply statement is captured by the rule
(REPLY), when the corresponding completion has arrived. Otherwise, the rule (NO REPLY)

ensures that the local clock progresses. A similar rule ensures the progress of the local
clock when an object is idle without any enabled process in the queue.

Unlabeled calls may have multiple destinations, given by a list O of object expres-
sions. These are captured by rule (MULTICAST), where advance(V) is defined by V +
(clock �→ [[clock]]V + 1). We let semicolon denote both concatenation and append, for
sequences of statements as well as of messages. Notice that the caller O and tag-value
K are added as implicit parameters. Broadcast, captured by the rule (BROADCAST), is re-
stricted to all objects of a given interface, using the notation all : I. This restriction is
needed to maintain strong typing. A broadcast message MB to all : I should arrive (in
a single copy) to all I-objects in the system which are connected to O. The all : I ex-
pression is expanded by means of the equation (MULTIMSG3) on the total system, using a
function all to collect all objects of interface I (or better) in a configuration:

all (O, I,U 〈O′ : C |...〉) = O′; all(O, I,U)
if supports (C, I,U) and bestcon(O,O′,U) �= noNet

all (O, I,U) = empty otherwise

Here, supports (C, I,U) checks whether class C implements interface I, or a subinterface
of I, in the configuration U .

274 E.B. Johnsen et al.

(LINK)

〈O : C | Pr: (W , (link E NW E’); S), Att: V 〉
−→〈O :C | Pr: (W , S), Att: V 〉

component([[E]]V+W) NW component([[E ′]]V+W)

(UNLINK)

〈O : C | Pr: (W , (unlink E NW E’); S), Att: V 〉 [O’ NW O’’]
−→〈O :C | Pr: (W , S), Att: V 〉
if component([[E]]V+W) = O’ and component([[E ′]]V+W) = O’’

(IF-EL)

〈O : C | Pr: (W , if E then S1 else S2 fi ; S), Att: V 〉
−→if [[E]]V+W)) then 〈O :C |Pr: (W , S1 ; S), Att: V 〉

else 〈O : C | Pr: (W , S2 ; S), Att: V 〉 fi

(WHILE)

〈O : C | Pr: (W , while E do S1 od ; S2)〉
−→〈O :C | Pr: (W , (if E then
(S1 ; while E do S1 od) else skip fi); S2)〉

(NEW1)

@ 〈O :C | Pr: (W , (X :=new C’ (E); S)), Att: V 〉U @
−→@ 〈O :C | Pr: (W , (X :=O’); S), Att : V+(token �→[[token]]V +1)〉U
〈O’ : C’ | Pr: init (C’ [[E]]V+W , U), PrQ: empty,

Att : (clock �→ [[clock]]V)+(this�→O’)+inherit(C’ ([[E]]V+W ,U))〉
〈O’ : InQu | Ev: noMsg〉 〈O’ :OutQu | Tag: 1, Ev: noMsg〉@
if O’ := newId(O, [[token]]V)

(NEW2)

@ 〈O :C | Pr: (W , (X :=new C’ (E) in E); S), Att : V 〉U @
−→@ 〈O :C | Pr: (W , (X :=O’); S), Att : V+(token �→[[token]]V +1)〉U
〈O’ : C’ | Pr: init (C’ [[E]]V+W ,U), PrQ: empty,

Att : (clock �→ [[clock]]V)+(this�→O’)+ inherit(C’ ([[E]]V+W ,U))〉@
if O’ := component([[E]]V+W)

Fig. 9. Rules concerning basic statements and object creation. The function newId is used to cre-
ate new object identities (composed by the parent object and a counter). The auxiliary functions
inherit and init are used to define multiple inheritance and initial code. An if-clause of the form
O′ := E represents a let expression.

5.3 Wireless Sending and Receiving

The two language primitives send and receive model synchronized wireless com-
munication. Their operational semantics, given in Fig. 8, depends on the refresh func-
tion, used in the (CLOCK) rule, which erases wireless messages and receive statements as
time passes. The equation (WSEND1) defines the semantics of sending; the first wireless
message in the out-queue is sent, making the from-part of the message header explicit.
When there is no message to send, a send message is skipped in rule (WSEND2). Recall
that wireless messages in a network (i.e., configuration) disappear when global time
advances. This is captured by an equation (REFRESH1) on the refresh function used in the
global clock rule. Two wireless messages with the same destination which occur in the
configuration at the same time, cause a collision and destroy each other. We model this
by an equation (COLLIDE), which results in an error message. The equation detects colli-
sions of two or more messages. The receiving itself is modeled by an equation (RECEIVE).
Here, the otherwise-clause implies that the equation should have lower priority than

An Object-Oriented Component Model for Heterogeneous Nets 275

(COLLIDE). Therefore, the left hand side considers the system state and includes all possi-
ble matches of the (COLLIDE) rule. The rule also checks that there is a wless connection,
since it may have been disconnected after the message was sent. By advancing the local
clock, we ensure that two wireless messages cannot be received at the same time.

Notice that the condition on the clocks implies that the receiving of a message hap-
pens at the same time as its sending, thereby modeling synchronous transmission. Recall
that refresh applies whenever the global local is advanced, which should also happen
when the local time of receiving objects is equal to the global time. We therefore add
an equation for this case

clockval(〈O : C |Pr: (receive ; S,W), Att: V 〉) = [[clock]]V + 1

and otherwise use the previous equation for clockval.

5.4 Simulation and Search

The operational semantics outlined above is executable on the RL platform Maude [5],
and thus form the basis for an analysis tool for the modeling language of Sect. 3. We il-
lustrate this by showing how to perform some simple simulations of the wireless sensor
network example of Sect. 4 in Maude.

The model of Sect. 4 focuses on the behavior of the components. A special class
System is used to set up the system model by creating components and establishing
the links between components. The initial System object can later be used to modify
these links, thus changing the topology of the network.

Interesting behaviour of the communication medium may be investigated by simu-
lating the system given in Fig. 4; e.g., can message overtaking occur in this net? By
message overtaking, we mean that a message arrives at the user before an older one
from the same sender. This may happen, if an additional link from the sensor s1 to
the sink in the network of Fig. 3 is introduced at runtime and the interval between
two measurements is sufficiently short. To exhibit this behaviour, the following code is
added to the run method of the System class:

await (clock > int(25)); connect s1 wless sink;

Now the link between s1 and the sink is added when the local clock has reached 25
time units. Simulating the system will then show that a later message may overtake an
earlier message, because the earlier message is waiting to be forwarded at sensor s2,
while the later message is sent directly to the sink via the newly established link.

Maude also allows to search in a breadth-first manner through all possible executions
from a given initial state. The state space of concurrent and distributed systems is huge,
usually growing exponentially in the number of components. In order to make search-
ing feasible, abstractions that reduce the state space are needed, preferably by elimi-
nating components. For example, objects of class TempSensor may be replaced by
equations for forwarding messages, moving these from in-queues to out-queues while
updating the “step” and the “hops to live” attributes. This way, simple searches about
communication patterns may be perfortmed while abstracting from the internal func-
tionality of the sensors.

276 E.B. Johnsen et al.

6 Related and Future Work

Our approach is based on modelling with active objects. Active objects have been used
to model mobile ad-hoc networks, which are similar to our biomedical sensor networks,
in [7]. However, in contrast to our work, cross-layer design is not considered, because
no means for reasoning about the network are provided.

Formal automata models have been used analyse protocols and channels. The prop-
erties of communication media are usually modelled as automata, too. For example,
Nancy Lynch models communication media by processes in [14]. A lossy channel is
modeled by a process that randomly drops messages. In contrast to these approaches,
which apply ad-hoc techniques to model various kinds of links and networks, our mod-
elling language fully integrates into the modelling language a set of primitives to de-
scribe dynamically evolving network topologies.

TinyOS [6] is a popular operating system for wireless sensor nodes. The associ-
ated programming language nesC [8] takes an approach similar to ours: Programs in
nesC are structured in components. However, the number of components in nes C is
statically fixed and each component ressembles a single Creol objects. In contrast, our
components may be created dynamically and contain a number of concurrent objects.
In nesC tasks correspond to our processes and are cooperatively scheduled, because
sensor nodes usually do not permit dynamic scheduling. In contrast, our approach ab-
stracts from particular scheduling schemes; in fact, our models could be refined with
application-specific schedulers (see [21]). This may be starting point for a development
technique for applications which target TinyOS. We are currently investigating the re-
lationship between our models and nesC programs in more detail.

For the analysis of networks, the current state of the art focuses on discrete event
simulation software, such as OMNet++ [25], that defines accurate models of wireless
communication networks and channels. These simulators target the quantitative aspects
of the model, such as throughput figures, whereas we are mainly concerned with func-
tional aspects, e.g., the correctness of the deployed protocol and sensor functionality.

Verisim [2] is a simulator similar to OMNet++, which is used to validate functional
properties of wireless networks. Verisim allows models from discrete event simulations
to be used directly, and integrates well with established design methods. Monte-Carlo
simulation is used to record traces of events, which may be queried using a special
language. In contrast, our approach is based on a simple, high-level modeling language
with a formal semantics. Furthermore, the integration with Maude makes it possible to
customize the simulation strategy, as well as to apply search techniques to the models.

Ölveczky and Thorvaldsen [18] have shown how Real-Time Maude [17] can be ap-
plied to model and analyse advanced wireless sensor network algorithms, using, e.g.,
Monte Carlo simulations for performance evaluation for networks with up to 800 nodes.
Rodriguez [20] has similarly used Real-Time Maude to analyse flooding in WSN pro-
tocols. These papers focus on the modeling and analysis of protocol algorithms. Our
work complements this approach by emphasising sensor functionality and behavior, as
well as heterogeneous media. However, we intend to investigate how their techniques
for simulation may apply in our setting.

Compared to earlier work on Creol [11, 12], the main contribution of this paper is
the extension to heterogeneous networks and the introduction of language abstractions

An Object-Oriented Component Model for Heterogeneous Nets 277

suitable for a unified modeling of network components and different kinds of networks.
In particular, the extension consists of the notion of network components with tightly
connected objects sharing in- and out-queues, specification of different and dynamic
networks architectures, including wireless networks and radio programming, multi- and
broadcasts, as well as the extension to a timed semantics. The proposed primitives are
useful to establish connections at the network level but may also be exploited at the
application level, for instance in service-oriented architectures [4].

Since our approach allows the radio level to be programmed inside the modeling
language, we may experiment with different radio solutions. For instance, the active
radio object used in the example of Sect. 4 may be replaced by a passive radio model.
This can be done by letting the sensor class inherit a passive radio class, and letting the
sensor object control the radio sender and receiver. Furthermore our approach may be
adjusted to allow more realistic models of wireless communication by considering fac-
tors like battery capacity, power consumption of sending and receiving, signal strength,
and location. Stochastic modeling, however, is less trivial, but might be addressed using
the probabilistic Maude tool [13] as a basis for the operational semantics.

7 Concluding Remarks

The main contribution of this paper is a modeling framework for heterogeneous net-
works. The framework allows the unified modeling of network components in differ-
ent kinds of networks, as well as network changes. In particular, we consider wireless
networks and radio communication, as well as loosely and tightly connected wired net-
works. Our approach extends the object-oriented paradigm by suggesting novel lan-
guage abstractions related to heterogeneous networks, using Creol as an underlying
language for concurrent and distributed objects. The extended language may be used
for high-level application programming (without knowledge of the particular network
available) as well as for network-aware programming such as radio controllers. Our
framework is based on formal methods and may serve as a basis for reasoning about
system properties and semantical analysis. The formal semantics of the language is
presented through a high-level operational semantics, defined in rewriting logic. The
operational semantics is executable, allowing simulation and formal analysis by means
of the Maude tool. The language is demonstrated through an example of a wireless
sensor network, and some initial simulations and analysis have been performed.

The value of a formal framework as a basis for intuitive understanding of a language
and towards practical modeling and reasoning, depends crucially on the simplicity of
the semantics. The presented operational semantics consists of 32 rules or equations,
apart from auxiliary function definitions. This covers the semantics of basic statements
and object-oriented issues such as object creation, inheritance, late binding, and (asyn-
chronous) method calls and replies, as well as extensions for heterogeneous networks,
including broad- and multicast, timing (with global and local clocks), programming
and re-programming of network links, and primitives for wireless receiving and send-
ing. The semantical simplicity may also be taken as an argument for the appropriateness
of the proposed abstractions and their integration within the object-oriented paradigm.

278 E.B. Johnsen et al.

The long term goal of this work is to adapt the object-oriented paradigm to the set-
ting of modern distributed systems by exploring suitable language abstractions and con-
structs that at the same time support simplicity both in reasoning and in semantics. The
present paper may be seen as a first step in the direction of high-level, object-oriented,
and formal modeling of heterogeneous systems where properties of the different net-
works are directly modeled.

Acknowledgments. We are grateful for comments by Wolfgang Leister and Xuedong
Liang on sensor network modeling and analysis.

References

1. Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Huizing, C., de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–
106. Springer, Heidelberg (1992)

2. Bhargavan, K., Gunter, C.A., Kim, M., Lee, I., Sokolsky, O., Viswanathan, M.: Verisim:
Formal analysis of network simulations. IEEE Transaction on Software Engineering 28(2),
129–145 (2002)

3. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading (1999)

4. Clarke, D., Johnsen, E.B., Owe, O.: Concurrent Objects à la Carte. In: Correctness, Concur-
rency, and Components: Festschrift for Willem-Paul de Roever. LNCS. Springer, Heidelberg
(to appear, 2008)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.:
Maude: Specification and programming in rewriting logic. Theoretical Computer Sci-
ence 285, 187–243 (2002)

6. Culler, D.E., Hill, J.L., Buonadonna, P., Szewczyk, R., Woo, A.: A network-centric approach
to embedded software for tiny devices. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT
2001. LNCS, vol. 2211, pp. 114–130. Springer, Heidelberg (2001)

7. Dedecker, J., Belle, W.V.: Actors for mobile ad-hoc networks. In: Yang, L.T., Guo, M.,
Gao, G.R., Jha, N.K. (eds.) EUC 2004. LNCS, vol. 3207, pp. 482–494. Springer, Heidel-
berg (2004)

8. Gay, D., Levis, P., von Behren, J.R., Welsh, M., Brewer, E.A., Culler, D.E.: The nesC lan-
guage: A holistic approach to networked embedded systems. In: Proc. Conf. on Programming
Language Design and Implementation PLDI 2003, pp. 1–11. ACM, New York (2003)

9. Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In:
Goguen, J.A., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic Specification
in Action, Advances in Formal Methods, ch. 1, pp. 3–167. Kluwer Academic Publishers,
Dordrecht (2000)

10. Goldsmith, A.J., Wicker, S.B.: Design challenges for energy-constrained ad hoc wireless
networks. IEEE Wireless Communications 9(4), 8–27 (2002)

11. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent
objects. Software and Systems Modeling 6(1), 35–58 (2007)

12. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science 365(1–2), 23–66 (2006)

13. Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for probabilistic dis-
tributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003.
LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)

An Object-Oriented Component Model for Heterogeneous Nets 279

14. Lynch, N.A.: Distributed Algorithms. The Morgan Kaufmann Series in Data Management
Systems. Morgan Kaufmann Publishers, Inc, San Francisco (1996)

15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science 96, 73–155 (1992)

16. Meseguer, J., Rosu, G.: Rewriting logic semantics: From language specifications to formal
analysis tools. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 1–44.
Springer, Heidelberg (2004)

17. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic.
Theoretical Computer Science 285(2), 359–405 (2002)

18. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling and analysis of the OGDC wireless sensor
network algorithm in Real-Time Maude. Theoretical Computer Science (to appear, 2008)

19. Raisinghani, V.T., Iyer, S.: Cross-layer design optimizations in wireless protocol stacks.
Computer Communications 27(8), 720–724 (2004)

20. Rodríguez, D.E.: On modelling sensor networks in Maude. In: Denker, G., Talcott, C. (eds.)
Proc. 6th Intl. Workshop on Rewriting Logic and its Applications (WRLA 2006). Electronic
Notes in Theoretical Computer Science, vol. 176, pp. 199–213. Elsevier, Amsterdam (2007)

21. Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., Johnsen, E.B.: Testing concurrent
objects with application-specific schedulers. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun,
H. (eds.) ICTAC 2008. LNCS, vol. 5160, pp. 319–333. Springer, Heidelberg (2008)

22. Smith, G.: The Object-Z Specification Language. In: Advances in Formal Methods, Kluwer
Academic Publishers, Dordrecht (2000)

23. Srivastava, V., Motani, M.: Cross-layer design: A survey and the road ahead. IEEE Commu-
nications Magazine 43(12), 112–119 (2005)

24. Mellor, A.U.S.J., Scott, K., Weise, D.: Model-driven architecture. In: Bruel, J.-M., Bellah-
sène, Z. (eds.) OOIS 2002. LNCS, vol. 2426, pp. 233–239. Springer, Heidelberg (2002)

25. Varga, A.: Omnet++. IEEE Network Interactive 16(4) (July 2002)
26. Zimmermann, H.: OSI reference model—the ISO model of architecture for open system

interconnection. IEEE Transactions on Communication 28(4), 425–432 (1980)

Coordinating Object Oriented Components
Using Data-Flow Networks

Mohammad Mahdi Jaghoori	

CWI, Amsterdam, The Netherlands
jaghouri@cwi.nl

Abstract. We propose a framework for component-based modeling of
distributed systems. It provides separation of concerns between compu-
tation (in object oriented components), coordination (via connectors)
and dynamic reconfiguration (by the network manager). This framework
builds upon the object oriented modeling language Creol for modeling
the components, and uses the ideas of Reo for exogenous coordination
using data-flow networks.

1 Introduction

Internet and systems distributed over internet, such as service oriented software,
are nowadays becoming more popular. This brings about the need for modeling
and analysis of these systems before implementation. The growing size of such
systems favors use of high level languages supporting component-based design
techniques. Internet based software usually consists of loosely coupled compo-
nents, possibly provided by different parties, interacting with each other.

Components-based software development has been proposed by several au-
thors as a solution to the increasing complexity of software development. Com-
ponents are assumed to be individual and independent units of functionality
and deployment and thus to turn them into an application, a mechanism for
component composition is needed.

In this paper, we propose a framework for component-based modeling based
on Creol [10]. The basic concept of standard Creol is to provide a formal object-
oriented solution for modeling distributed systems. Creol objects have their own
processors and communicate by asynchronous method calls. Although Creol is
suitable for distributing objects over different processors, it does not in itself sepa-
rate the coordination issues from computation. Nonetheless, we can translate our
component models to standard Creol allowing us to use all the techniques devel-
oped for Creol. Furthermore, we get the formal semantics of the model for free.

Our work is on integrating the data-flow network modeling to an object ori-
ented modeling language, namely Creol, by providing a syntax for modeling
components consisting of objects. For modeling a distributed system in this
framework, three different perspectives should be considered. First of all, one
� This work has been funded by the European IST-33826 STREP project CREDO on

Modeling and Analysis of Evolutionary Structures for Distributed Services.

F.S. de Boer et al. (Eds.): FMCO 2007, LNCS 5382, pp. 280–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coordinating Object Oriented Components Using Data-Flow Networks 281

should define the components in the system. The inside of a component is mod-
eled as a number of (standard Creol) objects communicating by message passing.
Every component implements some facades, which in turn declare (disjoint) sets
of ports. The objects inside the component may read, write or wait for a signal
on the ports. The computation inside a component does not depend on how
ports will be connected; hence, allowing the modeling of reusable off-the-shelf
components.

The second perspective focuses on the exogenous coordination of components
and their communication. At this level, as proposed in [15], a software component
is considered a static abstraction (black box) with plugs (called ports here).
We use connectors to connect components. A connector has a fixed number
of connector-ends, which can be plugged into component ports. In other words,
component ports are to be bound to connector-ends. Connectors are independent
of any specific components. We have developed a library of mobile connectors
for some basic coordination patterns. A connector is mobile in the sense that its
ends can move during execution, i.e., connect different components at different
times. Mobility together with dynamic creation of connectors (and components)
provide the means for a dynamically reconfigurable network, in a similar way as
modeled in π-calculus [14].

The third perspective of modeling addresses reconfiguration. Reconfiguration
policies are defined in network managers. In addition to ports, a component fa-
cade specifies the events it may raise, e.g., a request/announcement for a specific
service. Events are handled by the network manager. As a result of a sequence
of events (possibly from different components), the network manager may recon-
figure the network (by creating new connectors and/or changing port bindings).
For a given system, one or more network managers can be developed model-
ing different reconfiguration policies. This shows the level of decoupling in the
component based framework.

1.1 Related Work

The object based modeling languages based on method calls [1,10,20] are more
suitable for modeling and analysis of the internals of the components rather than
the communication between independently developed components. On the other
hand, languages like [2,5,8] consider components as black boxes and focus only
on the interactions between them. In our model, these aspects can be modeled
and analyzed separately as well as integrated into a Creol model and analyzed
together as a whole.

The data flow networks in our model are inspired from Reo [2]. We can com-
pare our work with the implementations of Reo mobile channels (MoCha) in
Java [17] and π-calculus [18]. Mocha, like our framework, allows for modeling
component behavior as a separate issue from coordination. The main difference
is that we also propose a syntax for modeling components. In addition, we allow
for modeling dynamic reconfigurations in the network.

We can also compare our work with JCSP [21,22] as both bring channel based
communication to the world of object oriented languages. The difference is in the

282 M.M. Jaghoori

fact that JCSP processes are connected by and synchronize upon a small set of
primitives - such as message-passing channels and multiway events. However, we
allow construction of complex connectors (independently from the components)
which provide exogenous coordination.

Another difference with the two works above is the underlying concurrency
model is different, i.e., multi-threaded Java vs. concurrent objects in Creol. One
may also use Creol features like dynamic upgrades [23] or its executable seman-
tics [10].

Among other component-based modeling frameworks are BIP [4] and Ptolemy
II [6]. BIP provides an algebraic formalization of connectors, wherein atomic
components are modeled as a set of transitions. Ptolemy II, implemented in
Java, is aimed at modeling heterogeneous components. In Ptolemy, the compo-
nents communicate by contacting the receiver object of one another, whereas in
our model components are exogenously coordinated. Furthermore, we use an op-
erational formalization of components and connectors using the object oriented
language Creol.

1.2 Paper Structure

In the next section, the basics of Creol and Reo are described. Then we explain
how Creol can be lifted up to the level of component-based modeling in Sec-
tion 3. Section 3.1 covers the syntax proposed for modeling the components.
Section 3.2 describes how coordination can be modeled using connectors. A case
study demonstrates the typical use of the framework in Section 4. Section 5
concludes the paper.

2 Preliminaries

2.1 Creol

The basic concept of the Creol modeling language is to provide a formal object-
oriented solution for modeling distributed systems. The (simplified) syntax of
Creol is given in Fig. 1. A complete presentation of the formal semantics of
Creol (given in rewrite logic) in [10] is beyond the scope of this paper. Here we
overview some Creol characteristics.

Creol objects have dedicated processors and communicate by asynchronous
method calls. The caller can choose to wait for an answer, thus simulating syn-
chronous method calls. Creol objects are typed by interfaces, whereas classes can
implement as many interfaces as necessary. The notion of co-interfaces can be
used to restrict who can call the operations provided in interfaces. As a result,
the callee can communicate with the caller in a type-safe way.

Fig. 2 shows a very simple Creol model. The Simple interface defines a callMe
operation that can be called only by instances of type Simple, while the response
operation does not require any co-interface. The run method in a class defines its
active behavior; thus the class Easy starts with calling its own callMe operation.

Coordinating Object Oriented Components Using Data-Flow Networks 283

IF ::= interface N{(Par)}?{inherits Inh}?

begin {with N Msig+}? end
Inh ::= {N {(E)}?}+

,

Par ::= {{v}+
, : N }+

,

Msig ::= op N{({in Par}? {out Par}?)}?

CL ::= class N{(Par)}?

{implements Inh}? {inherits Inh}?

begin Vdcl?{{with N }? Mtd}∗ end
Vdcl ::= var {{v}+

, : N {= e}?}+
,

Mtd ::= {Msig == {Vdcl ; }? S}+

g ::= b | t? | ¬g | g ∧ g
p ::= x.m | m
S ::= ε | s;S
s ::= (S) | V := E | skip

| v := new N(E) | !p(E)
| t!p(E) | t?(V) | p(E;V)
| if b then S else S end
| await g | await t?(V)
| await p(E;V) | release

Fig. 1. BNF grammar for Creol. Curly brackets are used as meta parenthesis, super-
script ? for optional parts, superscript * for repetition zero or more times, whereas
{...}+

, denotes repetition one or more times with , as delimiter. Identifiers N denote
interface, class, type, or method names. Capitalized terms such as E, V , and S, denote
lists of the syntactic categories of the corresponding lower-case terms [10,11].

1 interface Simple begin

2 with Simple op cal lMe
3 with Any op r e sponse
4 end

6 class Easy implements Simple begin

7 op run == await this . cal lMe ()
8 with Simple op cal lMe == ! ca l l er . r e sponse ()
9 with Any op r e sponse == skip

10 end

Fig. 2. A simple Creol model

It ‘awaits’ until the requested operation is accomplished (synchronous method
call with releasing the processor). The this keyword can be used to refer to the
same object. The caller keyword refers to the object calling the current method,
and it is typed by the co-interface used. The callMe method calls the caller back
asynchronously (denoted by the ! sign).

Each object in Creol, shows reactive behavior upon receiving messages. As
an object receives a message, a new process is created inside the object for
responding to the message. The processes inside an object are interleaved. Any
of the enabled processes can be scheduled to run (nondeterministically) when the
current process finishes. Alternatively, the currently executing process may, at its
own discretion, release the processor (at some predefined processor release point
using the await keyword) allowing other enabled processes to start execution.

Releasing processor can be unconditional (via the release command) or guarded
by boolean expressions. These guards can also test whether an asynchronous call
has been accomplished. This is handled implicitly by the semantics with a

284 M.M. Jaghoori

completion notification. An example of a release point is ‘await this.callMe()’ in
Fig. 2. In general, the caller may expect a return value, thus simulating
synchronous method calls. Notice that waiting for a return value without releasing
the processor blocks the objects, disallowing other processes in the object to use
the processor.

To make a system run, one should provide the initialization script. In the
Creol convention, one can have a class for the initialization. This is similar to
the class containing the main method in Java.

Creol is backed by its formal operational semantics and its strong typing al-
lows for dynamic class upgrades [23]. Since Creol semantics is given in rewrite
logic [13], Creol specifications can be readily executed and analyzed on the
Maude [7] platform. Maude is a rewrite engine that can perform analysis like
simulation, model checking, etc., on transition systems specified using rewrite
logic.

2.2 Reo: A Coordination Language

Reo is a model for building component connectors in a compositional manner.
It allows for modeling the behavior of such connectors, formally reasoning about
them, and once proven correct, automatically generating the so-called glue code
from the specification. Reo’s notion of components and connectors is depicted
in Figure 3, where component instances are represented as boxes, channels as
straight lines, and connectors are delineated by dashed lines. Each connector in
Reo is, in turn, constructed compositionally out of simpler connectors, which are
ultimately composed out of primitive channels.

C4

C5

C6C2

C3

C1C4

C5

C6C3

C2

C1C2

C3

C1

(c) two 3�way connectors and a 6�way connector(a) a 3�way connector (b) a 6�way connector

Fig. 3. Components and Connectors

Reo is a compositional approach to defining component connectors. Reo con-
nectors (also called circuits) are constructed in the same spirit as logic and
electronics circuits: take basic elements (e.g., wires, diodes and transistors) and
connect them. Basic connectors in Reo are channels. Each channel has exactly
two ends, which can be a sink end or a source end. A sink end is where data flows
out of a channel, and a source end is where data flows in a channel. It is possi-
ble that the channel ends of a channel are both sink or both source. A channel

Coordinating Object Oriented Components Using Data-Flow Networks 285

must support a certain set of primitive operations, such as I/O, on its ends;
beyond that, Reo places no restriction on the behavior of a channel. This allows
an open-ended set of different channel types to be used simultaneously together
in Reo, each with its own policy for synchronization, buffering, ordering, com-
putation, data retention/loss, etc.

Channels are connected to make a circuit. Connecting channels is putting
channel ends together in a node. So, a node is a set of channel ends. A node in
Reo has a certain semantics: for all the source channel ends on a node, a fork
operation takes place which is copying the outgoing data to all the channel ends
(replicator); for all the sink channel ends on a node, a merge operation takes
place which is a nondeterministic choice between incoming data (merger).

3 Mobile Connectors Framework

In this section, we explain how components and mobile connectors can be mod-
eled in Creol. Fig. 4(a) shows the class diagram of the general framework. We
have extended the standard notation of class diagrams with a dotted arrow with
black head () between two interfaces (shown as ovals) which represents the
required co-interfaces. This arrow should not be confused with dashed arrows
(with white heads) showing that a class implements an interface (cf. Fig. 8).

As shown in Fig. 4(a), every component must implement the Component in-
terface to have access to connector ends. In the next subsection, we provide
an abstract syntax for modeling a component hiding these details. A component
modeled using these abstractions can be automatically translated into the model
in Fig. 4(a).

Then we explain modeling mobile connectors, which are the basic elements
for constructing a reconfigurable network. Connectors can transfer data between
components and/or synchronize their actions.

Each connector provides a fixed number of connector-ends, to which com-
ponent ports can be bound. Fig. 4.(b) shows the object diagram of a connector

ConnectorEnd
connect(;)

disconnect(;)

Connector
create(;ce)

Network
Manager

Component

*

1

ports
* 1

(a) General class diagram (b) Object diagram for a connector

Fig. 4. The general model of the framework

286 M.M. Jaghoori

with three ends. We model each connector-end with an object, while the behavior
of the connector is provided by another object. Connector-end objects are sim-
ilar to the buttons of a coffee machine, where the coffee machine resembles the
connector object. The output of the machine depends on the button pressed,
i.e., the machine needs to distinguish between its input buttons to be able to
produce the correct behavior. Similarly, since a connector needs to distinguish
between the connector-ends, we have used one object per connector-end.

This object scheme is especially necessary because of the mobility of the con-
nector, i.e., the components attached to each connector may change dynamically.
For a connector, however, the connector-end objects do not change during its
whole life time. Therefore, the connector object only needs to establish the proper
synchronization and data flow paths among its fixed connector-end objects.

3.1 Component View

A component provides one or more facades. Facades encapsulate the internal
behavior of a component, in the same way as interfaces encapsulate the internals
of a class. A facade declares a set of ports and events. Fig. 5 shows the extensions
to Creol syntax for defining facades and components. Furthermore, a class can
be defined to be inside (the facade of) a component to be able to raise events
and access the ports of that component.

A port is essentially just a reference to a connector-end and is used for com-
munication with other (anonymous) components. The actual binding of ports (to
connector-end objects) is beyond component’s control. In addition to commu-
nicating with other components, components may raise events. Event examples
include a request/announcement for a specific service, reporting a time-out for a
given request, or simply acknowledging that a request accomplished successfully.
These events guide possible reconfigurations of the context-aware network. Since
components have no explicit reference to the network manager, an event can be
raised by the abstract command raise event.

There are three types of ports. Objects inside a component may read from in-
ports, write to outports and wait for synchronization on syncports. These actions
are performed synchronously. Apart from these basic operations, ports can only
appear as parameters of events. Whenever necessary, the component requests
its ports to be bound by raising a proper event (at the so called reconfiguration

Fcd ::= facade N{(Par)}?

{inherits Inh}?

begin {Pdcl}∗ {Edcl}∗ end
Pdcl ::= port {{v}+

, : N }+
,

Edcl ::= {sync event}? N

{({in Par}? {out Par}?)}?

CL ::= class N{(Par)}?

{inside N}? . . .
Cmp ::= component N

{implements Inh}?

begin {N := new N(E)}+ end

S ::= . . . | raise event N(E{; V }?)

Fig. 5. Extended syntax for modeling the component view. The type of a port variable
in Pdcl can only be inport, outport or syncport. Triple dots are used to avoid repeating
the parts similar to Fig. 1.

Coordinating Object Oriented Components Using Data-Flow Networks 287

points). Ports cannot be used elsewhere, e.g., cannot be assigned explicitly as
normal variables in the code, or may not be sent around as message parameters.

Events are by default asynchronous. However, some events especially those
expecting some return values (e.g., reconfiguration points) can be declared syn-
chronous (using the keyword sync event).

Fig. 6 shows the facade of a component in a peer2peer system. This exam-
ple is explained in detail in Section 4. The facade Peer inherits the ports and
(synchronous) events defined in ServerSide and ClientSide facades. In addition,
Peer adds two asynchronous events. A peer component (providing a client and a
server side) can use the ports and raise the events declared in these facades.

Having defined the facade and the internal interfaces of a component, one can
implement the internal classes to provide the functionality of the component.
A concrete component is obtained by instantiating these classes. Fig. 7 shows
a Node component based on the classes in Appendix B implementing the Peer
facade. Notice that the classes used in this component are defined to be inside
a Peer. Section 4 elaborates more on this example.

A class can have access to the ports defined in a facade only if it defined to
be inside that facade. Notice that a class can be inside only one facade. A class
can raise an event only if it is inside a facade declaring that event. Section 3.4
will explain how facade and component definitions can be translated to normal
Creol syntax adhering to the diagram in Fig. 4.

3.2 Coordination View

Coordination is modeled in a network consisting of connectors. In general, ev-
ery connector should provide a create() method that can be called by the net-
work manager (as the co-interface). This method should create the necessary
connector-end objects and return the list of their references.

The behavior of a connector is completely independent of the components and
the rest of the system. This makes them suitable for reuse. A library of connectors
has been developed and Appendix A includes the Creol code for some of these
connectors.

From the connectors point of view, a connector-end object represents the
component port(s) attached to that end. However, more than one component
ports may be attached to a connector-end (i.e., have a reference to the object).
This sharing is handled by the connector-end object by forwarding only one
request to the connector object at a time.

Connectors may offer three types of connector-ends. Source and Sink connector-
ends are used for writing to and reading from a connector, respectively. A Signal
connector-end is used when only a signal is to be provided. For example, a
Synchronizer connector (see Fig. 8) provides (rendezvous) synchronization be-
tween (the components attached to) its Signal connector-ends.

The ConnectorEnd interface contains connect and disconnect operations to be
implemented by all types of connector-ends. A component may use the connect
operation to have exclusive access to a connector-end. If more than one compo-
nent try to connect to one connector-end, nondeterministically one of them will

288 M.M. Jaghoori

1 facade Cl i en tS ide
2 begin

3 port myReq : outport
4 port myAns : inpor t
5 sync event openCl ient (in k : Data , r e q i : outport , an s i : inpor t
6 out reqo : outport , anso : inport , f : Boolean)
7 sync event c l o s eC l i e n t (in r e q i : outport , an s i : inpor t
8 out reqo : outport , anso : inpor t)
9 end

1 facade ServerS ide
2 begin

3 port exReq : outport
4 port exAns : inpor t
5 sync event openServer (in r e q i : inport , an s i : outport
6 out reqo : inport , anso : outport)
7 sync event c l o s eS e rv e r (in r e q i : inport , an s i : outport
8 out reqo : inport , anso : outport)
9 end

1 facade Peer inherits Cl i en tS ide , Se rve rS ide
2 begin

3 r e g i s t e r (in keyL i s t : L i s t [Data]) // async even t

4 update (in keyL i s t : L i s t [Data]) // async even t

5 end

Fig. 6. The facade of a component in peer2peer system

eR mR

eA mA

srv cl

user

store

1 component Node1 implements Peer begin

2 s t o r e := new DataStore (”1” , ”Data one”)
3 c l := new ClientImp (s tore , myReq , myAns)
4 srv := new ServerImp (s tore , exReq , exAns)
5 user := new Tester1 (c l)
6 end

Fig. 7. A concrete component definition and its component-object diagram

Coordinating Object Oriented Components Using Data-Flow Networks 289

ConnectorEnd
connect()

disconnect()

Connector
create(;ce)

CSink CSignalCSource

Sink
take(;d)

Signal
wait(;)

Source
write(d;)

WConnector
write(d;)

RConnector
take(;d)

SConnector
wait(;)

Merger

11

2

1

Synchronizer

1

*

Fig. 8. Class diagram for connector interfaces

WChannel RChannel SChannel

Connector
create(;ce)

WConnector
write(d)

RConnector
take(;d)

SConnector
wait()

Channel
create(;e1,e2)

DarinChannel SyncChannel

Fig. 9. Class diagram for channels with two ends

be selected (by the Creol scheduler). Other connect messages will be granted
after the first one disconnects.

Each connector-end sub-type introduces its specific operation. The write on
a Source takes an input, a take on a Sink produces an output, while the wait
operation on a Signal has no parameter. Accordingly, connectors should provide

290 M.M. Jaghoori

(a subset of) the same operations. For instance, the WConnector interface pro-
vides a write operation to a Source connector-end. In Fig. 8, this is reflected
with a co-interface (dotted arrow) relation. Therefore, a connector with source
ends needs to implement the WConnector interface. Similarly, a connector with
sink (resp. signal) ends needs to implement the RConnector (resp. SConnector)
interface, which in turn provides a take (resp. wait) operation.

A channel is a special connector with exactly two ends. This fact is reflected
in the model by overloading the create method (cf. Fig. 9). Since channels have
exactly two ends, this method returns exactly two connector-ends instead of a
list. Channel interfaces can be used for modeling the equivalents for Reo chan-
nels. Similar to connectors, the Channel interface has three sub-types for different
operations.

To define connectors and channels, one needs to implement the proper inter-
faces shown in Fig. 8 and 9. A merger has two sources and one sink. It propa-
gates the data on one of its two input sources onto its output sink. Therefore,
it should provide write and read capabilities (by implementing WConnector and
RConnector). A drain channel only has two sources and only needs to implement
the WChannel interface.

3.3 Network Manager

The network manager is the entity responsible for reconfigurations in the net-
work. It is context-aware in the sense that it performs reconfigurations based on
the events raised by the components. A network manager must provide event
handlers for all of the events defined in the facades of the components in the
model. This can be implemented in different ways providing different strategies.

with NetworkManager
op c r e a t e (out ce : L i s t [ConnectorEnd]) ==

s i g := new CSignal (this) ;
snk := new CSink (this) ;
s r c := new CSource (this) ;
ce := n i l |− s r c |− snk |− s i g

Fig. 10. A typical create method

The list of event declarations in a facade is a contract between components
and the network manager. This list, in fact, shows the event handlers that must
be implemented in the network manager. A special event initPorts is implicitly
sent by all components upon creation. This event informs the network manager
of a new component in the system whose ports may need to be initialized. Note
that a facade does not include the initPorts event, which must be handled by
the network manager.

Coordinating Object Oriented Components Using Data-Flow Networks 291

Unlike connectors and components, a network manager is designed specifically
for a particular system. It creates the necessary connectors by calling their create
methods (Fig. 11.a). Each connector returns the list of its connector-ends to the
network manager. A typical create method is shown in Fig. 10.

The network manager, knowing the components and having the references to
the connector-ends, binds component ports to connector-ends properly. Fig. 11.b
depicts a specific configuration of the system. Later on, as the system evolves,
and after certain (complementary) events are raised (possibly by different com-
ponents), the network configuration may change. This takes place by reassigning
connector-end references to the ports of components. The network manager can
change port bindings in response to events raised at reconfiguration points, i.e.,
events that have ports as parameters.

3.4 Translation to Creol

The model provided in the higher-level syntax (in Section 3.1) can be translated
to normal Creol syntax such that the Creol interpreter can be used to run (simu-
late, analyze, etc.) the model. This also shows the formal semantics of our model
in terms of Creol’s operational semantics. The algorithm for translation is given
below.

– ‘facade N(P)’ results in:
• interface N(mgr:NetworkManager, P)
∗ each event is changed into an operation with cointerface ‘Any’

• class N Boundary(mgr:NetworkManager, P) implements N(mgr, P)
∗ change ports to var declaration.
∗ add op run == await mgr.initN(;allPorts)
∗ implement each event as forwarding the message to the network man-

ager.
– ‘component M(P) implements N’ results in:
• class M Boundary(mgr:NetworkManager, P) inherits N Boundary(mgr, P)
∗ ‘V := new T (Args)’ generates ‘var V : T’

• add a run method
∗ every ‘V := new T (Args)’ is added.

– ‘class C(P) inside N’ results in:
• class C(b:N Boundary, P)
• change raise event to ‘await b.’ (for sync events) or ‘ ! b.’ (for async

events)

In a nutshell, events are translated to operations and ports to connector-end
references (inport to Sink, outport to Source, and syncport to Signal). Notice
that this step is transparent to the modeler. A boundary class will be auto-
matically generated for each facade and each component concrete definition (cf.
Fig. 7). For instance, Fig. 12 shows the boundary for the client side facade. A
similar boundary class is created for any facade in the model. This boundary
class initializes the ports defined in that facade. It also provides the definitions
for operations corresponding to events.

292 M.M. Jaghoori

(a) Network initialization

(b) Running network configuration

Fig. 11. Network Manager. Components are viewed as black boxes here.

Fig. 12 shows the boundary class for Node1 (cf. Fig. 7). One instance of the
boundary class will be created per instance of the component. A boundary object
creates the objects as specified in the component definition (see the run method
in Fig. 12, compared to Fig. 7). It also receives all the events raised (by the
internal objects), and forwards them to the network manager. This ensures that

Coordinating Object Oriented Components Using Data-Flow Networks 293

1 interface Cl i en tS ide (mgr : NetworkManager)
2 inherits Component(mgr)
3 begin

4 with Any op openCl ient (in k : Data , r e q i : Source , an s i : Sink
5 out reqo : Source , anso : Sink , f : Boolean) ;
6 with Any op c l o s eC l i e n t (in r e q i : Source , an s i : Sink
7 out reqo : Source , anso : Sink) ;
8 end

10 class ClientS ide Boundary (mgr : NetworkManager)
11 implements Cl i en tS ide (mgr)
12 begin

13 var myReq : Source
14 var myAns : Sink
15 op run ==
16 await mgr . i n i tC l i e n t S i d e (;myReq ,myAns) ;
17 with Any op openCl ient (in k : Data , r e q i : Source , an s i : Sink
18 out reqo : Source , anso : Sink , f : Boolean) ==
19 await mgr . openCl ient (k , r eq i , an s i ; reqo , anso , f)
20 with Any op c l o s eC l i e n t (in r e q i : Source , an s i : Sink
21 out reqo : Source , anso : Sink) ==
22 await mgr . c l o s eC l i e n t (r eq i , an s i ; reqo , anso)
23 end

1 class Node1 Boundary (mgr : NetworkManager)
2 inherits PeerBoundary(mgr)
3 begin

4 var s t o r e : Store
5 var c l : C l i en t
6 var srv : Server
7 var user : User
8 op run ==
9 s t o r e := new DataStore (”1” , ”Data one” , this) ;

10 c l := new ClientImp (s tore , myReq , myAns , this) ;
11 srv := new ServerImp (s tore , exReq , exAns , this) ;
12 user := new Tester1 (c l , this)
13 end

Fig. 12. Boundary classes for ClientSide facade and a Node component

294 M.M. Jaghoori

the ‘caller’ of all events from the same component remains unique. In other
words, if each object (inside the component) was set up to send an event directly
to the manager, the caller of the events would be different objects, whereas the
manager should see them coming from one component.

The implementation of the classes inside a component must be changed such
that a reference to the boundary object, say ‘b’, is provided as a parameter to the
class definitions. The boundary object is, in turn, provided (as parameter) with
a reference to the network manager, to which it sends the raised events. Finally,
raising an event should be replaced with a call to the boundary object; i.e.,
raise event will become ‘await b.’ for sync events, and ‘ ! b.’ for async events.

4 Case Study

Peer-to-peer networks are now a commonly used way of sharing data. In such
networks, each node shares some data and in return can (search for and) get
the data on other nodes. We model a hybrid p2p architecture (like that of Nap-
ster [19]) in which there is a central server (called the broker) that keeps track of
(the keywords for) the data in every node. Each node, upon creation, registers
its data with the broker. Later it may query the broker for some new data (using
their keywords), and the broker connects it to the node who has the data.

1 interface Store
2 begin

3 with Cl i en t op add (in key : Data , i n f o : Data)
4 with Server op f i n d (in key : Data out i n f o : Data)
5 end

6 /∗ ∗∗/
7 interface Cl i en t (s t o r e : Store , req : outport , ans : inpor t)
8 begin

9 with User op s ea rch (in key : Data out r e s u l t : Data)
10 end

11 /∗ ∗∗/
12 interface User (c l : C l i en t)
13 begin

14 end

15 /∗ ∗∗/
16 interface Server (s t o r e : Store , req : inport , ans : outport)
17 begin

18 end

Fig. 13. Interfaces of objects inside a Peer component

Coordinating Object Oriented Components Using Data-Flow Networks 295

1 interface Broker inherits NetworkManager
2 begin

3 with Peer async event r e g i s t e r
4 (in keyL i s t : L i s t [Data])
5 with Peer async event update
6 (in keyL i s t : L i s t [Data])
7 with Peer sync event openServer
8 (in r e q i : inport , an s i : outport
9 out reqo : inport , anso : outport)

10 with Peer sync event c l o s eS e rv e r
11 (in r e q i : inport , an s i : outport
12 out reqo : inport , anso : outport)
13 with Peer sync event openCl ient
14 (in k : Data , r e q i : outport , an s i : inpor t
15 out reqo : outport , anso : inport , f : Boolean)
16 with Peer sync event c l o s eC l i e n t
17 (in r e q i : outport , an s i : inpor t
18 out reqo : outport , anso : inpor t)
19 end

Fig. 14. The Broker interface

4.1 A Peer Component

The facade of a peer component, including a server and a client side, was defined
in Fig. 6, Section 3.2. A component implementing Peer may raise events inherited
from ClientSide or ServerSide, as well as ‘ register ’ and ‘update’ declared in Peer
itself. In this model, openClient/ closeClient and openServer/closeServer are recon-
figuration points; because, every time a node asks for some data (as a client) or
services a request (as a server), it is possibly connected to different nodes, i.e.,
its port bindings may (or may not) be updated. Note that in reconfiguration
points, ports are used as in/out parameters of the event.

We consider four interfaces for the internal objects of peer components
(Fig. 13). The ‘User’ object represents the interface of the component to a user
who can ask for new pieces of data; and, in turn, it drives the ‘Client’ object. The
client object uses the two ports myReq and myAns from the ClientSide facade.
As a client, a node writes its request on myReq and expects the result on myAns.
The local store is updated upon acquiring the requested data using the ‘add’
operation in the ‘Store’ interface.

Each node also shares its data; i.e., it can service the requests from other
nodes. A component implementing the ServerSide facade, reads a request (‘key’
to some data) from exReq and writes the data corresponding to the given key

296 M.M. Jaghoori

eR mR

N1
eA mA

eR mR

N2
eA mA

eR mR

N3
eA mA

(a) Two nodes requesting data from the same node with the SimpleBroker

eR mR

N1
eA mA

eR mR

N2
eA mA

eR mR

N3
eA mA

X

(b) Two nodes providing the requested data with the AlternateBroker

Fig. 15. Peer-to-peer network configurations

on exAns. A server, therefore, needs to query the local data store for existing
information. The implementation of these classes is given in Appendix B.

The final step in defining the components is to instantiate the objects inside
a component. The Clinet and Server objects are the same. The Store objects are
initialized with different data. Different implementations of the User interface
can be used for testing the model. Fig. 7 shows the definition of a component
Node1 which is based on a specific implementation of User in the class Tester1.
Components Node2 and Node3 are defined similarly using Tester2 and Tester3
classes as User. The implementation of these classes is given in Appendix B.

4.2 Network Manager and System Setup

A network manager must provide event handlers for the events defined in the
facade of the components (Peer in this example). Fig. 14 shows the Broker in-
terface that handles all the events that a Peer may raise. This interface can be
implemented in different ways providing different strategies. A simple broker
connects the requesters with at most one provider (possibly using a shared con-
nection shown in Fig. 15.a), while an alternate broker may connect a requester
to all the nodes that can provide the requested data (Fig. 15.b). Appendix B
includes the implementation of SimpleBroker.

To make the whole system run, one should provide the initialization script.
As in the Creol convention, one can have a class for the initialization. The only
things needed are to instantiate a network manager, and some components.

Coordinating Object Oriented Components Using Data-Flow Networks 297

1 class NetOne begin

2 op i n i t ==
3 var mgr : Broker ;
4 var n1 : Peer ;
5 var n2 : Peer ;
6 var n3 : Peer ;
7 mgr := new SimpleBroker ;
8 n1 := new Node1 (mgr) ;
9 n2 := new Node2 (mgr) ;

10 n3 := new Node3 (mgr)
11 end

Fig. 16. The system setup

Fig. 16 shows a possible system setup using the simple broker. For simplicity,
one instance of each component type is created.

After translating to normal Creol syntax (cf. Section 3.4) and generating the
Maude code for the model (using Creol compiler), one can perform different kinds
of analyses in Maude. The simplest analysis is to run (simulate) the model. As
defined in the tester classes in Appendix B.1, the data store in node one should
get data ‘2’ and similarly the data store in node three gets data ‘1’ and ‘2’, in
addition to their initial data.

As explained before, one can run NetOne (see Fig. 16) to see how the sim-
ple broker implementation works. To do so one can execute the command
‘rew[100000] init main(”NetOne”, emp) .’ in Maude. By examining the Maude out-
put, we can see that using the simple broker, the nodes will finally receive the
requested data.

5 Conclusions and Future Work

In this paper, we presented a framework for component-based modeling of dis-
tributed systems with dynamic reconfigurable networks using mobile connectors
in Creol. Components communicate anonymously, i.e., they allow the connectors
to exogenously decide how they should communicate with other components in
the system. The task of network reconfiguration is left to the network manager.
This separates the issues of modeling (and analysis of) computation, coordina-
tion, and reconfiguration.

Components and connectors are modeled independently and can be reused
in other system models. We have implemented a library of connectors. These
connectors provide a variety of basic coordination schemes and can be used in
modeling different systems. Nevertheless, the framework is not restricted to the
currently implemented set of connectors and can be expanded by introducing
new connectors.

298 M.M. Jaghoori

However, a network manager should be modeled specifically for each system.
The network is context aware, in the sense that reconfigurations depend on
the events raised by components. Different network managers can be designed
modeling different reconfiguration policies. In addition to automatic discovery of
services (from a component’s point of view), the framework allows for modeling
different ways to connect the components.

One can use all characteristics of Creol in modeling the inside of a component,
for example dynamic class upgrades. In the end, the component-based model
can be translated to standard Creol. Thus we obtain an executable high-level
modeling language, and can use all the techniques developed for analyzing Creol.

5.1 Future Work

The first thing to consider is adding a type-system. We are working on protocol
types as an extension of session types [9]. A protocol type should be attached to
each facade specifying abstractly how ports in that facade will be used. The object
manipulating the ports in that facade should be type correct with respect to this
protocol. This allows analyzing the network based on the protocol types of the
participating components without looking into the component implementations.

We are working on allowing components to create ports dynamically when
needed. For example, a service provider should preferably create new ports upon
request, so that more requests can be serviced in parallel. Protocol types for each
facade can be used to ensure type-safety.

In this paper, we focused on implementing the components as pliant entities. It
remains to do more research on systematic implementation of network managers.
One approach is to study a high-level way of specifying the network manager, for
example by broadcast and late binding of anonymous messages, implemented for
instance using Maude reflective programming techniques, so as to avoid keeping
redundant information about all objects and components.

Another trend for future work is real time modeling. Timing constraints such
as time-out on performing a network operation can be added to the model. On
the other hand, schedulability of real time tasks on each component is being
studied.

Acknowledgement

I would like to thank Frank de Boer, Tom Chothia, the anonymous reviewers
and others who provided ideas and comments on developing this framework.

References

1. Agha, G.: The structure and semantics of actor languages. In: Proc. the REX
Workshop, pp. 1–59 (1990)

2. Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14, 329–366 (2004)

Coordinating Object Oriented Components Using Data-Flow Networks 299

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: Proc. Software Engineering and Formal Methods (SEFM 2006), pp. 3–12.
IEEE Computer Society, Los Alamitos (2006)

4. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.
In: Proc. Embedded software (EMSOFT 2007), pp. 11–20. ACM Press, New York
(2007)

5. Bowles, J.K.F., Moschoyiannis, S.: Concurrent logic and automata combined: A
semantics for components. ENTCS 175(2), 135–151 (2007)

6. Cervin, A., Eker, J.: The control server: A computational model for real-time con-
trol tasks. In: Proc. Real-Time Systems ECRTS 2003, pp. 113–120. IEEE Computer
Society Press, Los Alamitos (2003)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theoretical
Computer Science 285(2), 187–243 (2002)

8. Cook, W.R., Misra, J.: Computation orchestration, a basis for wide-area comput-
ing. Software and Systems Modeling 6(1), 83–110 (2007)

9. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

10. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

11. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for dis-
tributed concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

12. Lau, K.-K., Wang, Z.: A survey of software component models (second edi-
tion).Technical Report CSPP-38, School of Computer Science, The University of
Manchester (2006)

13. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

14. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Nierstrasz, O., Dami, L.: Component-oriented software technology. In: Object-
oriented software composition, pp. 3–28. Prentice Hall, Englewood Cliffs (1995)

16. Unified modeling language: Superstructure, version 2.0, http://www.omg.org
17. Scholten, J.G., Arbab, F., de Boer, F.S., Bonsangue, M.M.: Mobile channels, im-

plementation within and outside components. ENTCS 66(4) (2002)
18. Scholten, J.G., Arbab, F., de Boer, F.S., Bonsangue, M.M.: Mocha-pi, an exoge-

nous coordination calculus based on mobile channels. In: Proc. the 2005 ACM
Symposium on Applied Computing, pp. 436–442. ACM Press, New York (2005)

19. Shirky, C.: Listening to Napster. In: Peer-to-Peer: Harnessing the power of disrup-
tive technologies. O’Reilly, Sebastopol (2001)

20. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of
reactive systems using Rebeca. Fundamamenta Informaticae 63(4), 385–410 (2004)

21. Welch, P.H., Brown, N., Moores, J., Chalmers, K., Sputh, B.: Integrating and
extending JCSP. In: Proc. Communicating Process Architectures (CPA 2007), pp.
349–370. IOS Press, Amsterdam (2007)

22. Welch, P.H., Martin, J.M.R.: A CSP model for Java multithreading. In: Proc.
Software Engineering for Parallel and Distributed Systems (PDSE), pp. 114–122
(2000)

300 M.M. Jaghoori

23. Yu, I.C., Johnsen, E.B., Owe, O.: Type-safe runtime class upgrades in creol. In:
Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 202–217.
Springer, Heidelberg (2006)

A Connectors Implementation

In this appendix, the Creol implementation of the three connector-end types are
given. In addition, the implementation details of some connectors are explained.
These implementations are based on the class diagram in the main paper in
Fig. 8.

Each instance of a ConnectorEnd, upon creation, should be supplied with a
reference to the connector object to which it belongs. This parameter is special-
ized in sub-types of ConnectorEnd to sub-types of Connector. On the other hand,
instances of Source (similarly Sink or Signal), at creation, must be provided as
parameter, a reference to a WConnector (RConnector or SConnector, respectively).
In other words, the sub-types of the ConnectorEnd interface, specialize their pa-
rameters. This allows them to have access to proper operations of the connectors.

In order to prevent requests of different components from being mixed, a
connector-end should propagate to the connector only one request at a time.
This is achieved by using a blocking synchronous call such as cnct.write(d;).
After the current request finishes, nondeterministically, one of the suspended
requests is chosen and propagated to the connector1.

If one component needs to perform a sequence of actions on a connector-end
atomically, it can first request an uninterruptible connection to the connector-
end (via the connect method). In this case, the variable cc holds the identity of
(i.e., a reference to) the currently connected component. After this connection
is made, the connector-end, suspends any requests from other components, un-
til the connected component explicitly disconnects (via the disconnect method).
When no component is connected, cc is null, which allows any request from any
component to be accepted. Note that the implementation of the disconnect oper-
ation allows only the currently connected component to perform this operation.

The implementation of Sink and Signal is essentially the same as Source. Fig. 17
depicts how to implement these connector-ends. The main difference is replac-
ing the call to write with take and wait for sink and signal, respectively. Other
issues, for example, the connect and disconnect operations, which are not shown
in Fig. 17, are completely the same in all three types of connector-ends.

Sync Channel. The synchronous channel is the simplest connector. This con-
nector has a source and a sink connector-ends. It allows any data written to its
source to be taken from its sink. The actions on its ends need be synchronized.

Fig. 18 shows the implementation of the synchronous channel. As shown in
the figure, the channel implements the two forms of the create method, i.e., the
one for general connectors and the one specific to channels. For returning the

1 A nondeterministic choice made by Creol scheduler from the enabled processes.

Coordinating Object Oriented Components Using Data-Flow Networks 301

1 class CSource (cnct : WConnector) implements Source (cnct)
2 begin

3 var cc : Component := nu l l

5 with Component op wr i t e (in d : Data) ==
6 await (cal ler=cc | | cc=nu l l) ;
7 cnct . wr i t e (d ;) ;

9 with Component op connect ==
10 await cc=nu l l ;
11 cc := cal ler

13 with Component op d i s connec t ==
14 i f (cal ler = cc) then

15 cc := nu l l
16 end

17 end

19 class CSink (cnct : RConnector) implements Sink (cnct)
20 begin

21 var cc : Component := nu l l
22 with Component
23 op take (out d : Data) ==
24 await (cal ler=cc | | cc=nu l l) ;
25 cnct . take (; d)
26 // connect and d i sconnec t are the same as Source

27 end

29 class CSignal (cnct : SConnector) implements S igna l (cnct)
30 begin

31 var cc : Component := nu l l
32 with Component
33 op wait ==
34 await (cal ler=cc | | cc=nu l l) ;
35 cnct . wait (;)
36 // connect and d i sconnec t are the same as Source

37 end

Fig. 17. The implementation of connector-ends

302 M.M. Jaghoori

1 class SyncChannel implements RChannel , WChannel
2 begin

3 var end1 : ConnectorEnd
4 var end2 : ConnectorEnd
5 var dd : Data
6 var ready : Boolean

8 op i n i t == ready := f a l s e

10 with Sink op take (out d : Data)==
11 await ready ;
12 d := dd ;
13 ready := f a l s e // synchron i ze wi th ‘ wri te ’

15 with Source op wr i t e (in d : Data)==
16 dd := d ;
17 ready := t rue ;
18 await ˜ ready // wai t f o r next take

20 with NetworkManager
21 op c r e a t e (out e1 : ConnectorEnd , e2 : ConnectorEnd)==
22 end1 := new Source (this) ;
23 end2 := new Sink (this) ;
24 e1 := end1 ;
25 e2 := end2

27 with NetworkManager
28 op c r e a t e (out ce : L i s t [ConnectorEnd])==
29 end1 := new Source (this) ;
30 end2 := new Sink (this) ;
31 ce := n i l |− end1 |− end2

33 end

Fig. 18. Synchronous channel

connector-ends as a list, it first creates the connector-ends by calling the channel-
standard create operation. This implementation of the create operations is the
same in all channels with a source and a sink connector-ends.

A variable of type Data (namely dd) is used to store the value written to the
source end. Using the type Data enables passing values of any type. The boolean

Coordinating Object Oriented Components Using Data-Flow Networks 303

variable ready is used for synchronizing the actions on the two ends. The write
action sets this variable indicating that there is some data available. This makes
is possible for the take action to proceed (if there is a take action pending). After
the take succeeds, it resets the ready flag, enabling the write to continue. On the
other hand, if a take action happens first, it cannot proceed until the next write
action appears.

Note that each connector-end propagates only one action at a time. There-
fore, the connector is not concerned about situations where two write (or take)
actions arrive consecutively on the same connector-end before the previous one
has succeeded. Furthermore, for synchronization, we have used an extra flag
(ready) rather than using a constraint on the value of dd. This allows passing
any value (including ‘null’) as data along the channel.

Replicator. A replicator connector has one source and can have any number of
sinks. It replicates the data written to its source on all its sink ends. The actions
on all connector-ends need to be synchronized. It is interesting to note that by
using a simple sync channel, and letting many components have a reference to
the sink end, no replication takes place. In that case, each component attached
to the sink end, has a chance to synchronize with the source end, and take the
data. Nevertheless, only one component (from those sharing the reference) can
participate in this procedure at a time. In other words, the take operations are
serialized instead of being synchronized.

Fig. 19 shows the implementation of a replicator. The parameter n to the class
shows the number of the sink ends; so, the connector has n+1 ends in total. A
naive solution to the problem of synchronizing all the sinks is to let each sink
set its corresponding flag and wait until all flags are set. With this approach,
only the last sink can continue, and as soon as it resets its flag, other sink will
remain suspended. Instead, every sink, except the last one, should set its flag to
true and wait until it is reset, which is in fact reset by the last sink.

All the calls to the take operation, except the last one, need to wait for the
last call (at line 27). The last call knows that it’s the last, by checking if all the
elements of the arrive flag are set. It then waits for the source end. After that,
releases all the sinks (by resetting all the elements of arrive) as well as the source
(by resetting the ready flag). On the other hand, the source can proceed with
the write operation, only after the last sink arrives (i.e., all sinks arrive).

The last sink also makes a copy of the data (line 25), because after synchro-
nization, the source may overwrite the data (dw), as a result of the next write
action, before other sinks had a chance to read the previous value (which is now
kept in dr and read in line 29). It is worth noting again that each connector-end
propagates only one request at a time, thus the consecutive requests from the
same end are not confused.

This connector has a parametric number of sink ends. Therefore, one needs
to write a recursive function for creating ‘n’ sinks. Note that in Creol while and
for loops are not allowed. A similar function is defined in all connectors with
parametric number of connector-ends. This function is called synchronously so
that all the connector-ends are created in one step.

304 M.M. Jaghoori

1 class SyncRepl icator (n : Nat) implements WConnector , RConnector
2 begin

3 var sinkEnd : L i s t [ConnectorEnd] := n i l
4 var a r r i v e : L i s t [Boolean] := n i l
5 var s r c : ConnectorEnd := nu l l
6 var dw, dr : Data := nu l l
7 var ready : Boolean := f a l s e
8 op createNSink (in m: Nat)==
9 var s : Sink ;

10 i f (m > 0) then

11 s := new CSink (this) ;
12 sinkEnd := sinkEnd |− s ;
13 a r r i v e := (a r r i v e |− (f a l s e)) ;
14 createNSink (m−1;)
15 end

17 with Sink op take (out d : Data) ==
18 var i : Nat ;
19 i := index (sinkEnd , ca l l er) ;
20 a r r i v e [i] := t rue ;
21 i f (a r r i v e = true) then

22 await ready ; ready := f a l s e ;
23 a r r i v e := f a l s e ; dr := dw
24 else

25 await a r r i v e [i] = f a l s e // wai t f o r the l a s t s ink

26 end ;
27 d := dr

29 with Source op wr i t e (in d : Data) ==
30 dw := d ; ready := t rue ;
31 await ˜ ready // wai t f o r next take

33 with NetworkManager
34 op c r e a t e (out ce : L i s t [ConnectorEnd])==
35 s r c := new CSource (this) ;
36 createNSink (n ;) ;
37 ce := s r c −| sinkEnd
38 end

Fig. 19. Synchronous Replicator

Coordinating Object Oriented Components Using Data-Flow Networks 305

1 class NMerger (n : Nat) implements WConnector , RConnector
2 begin

3 var s r cL i s t : L i s t [Source] := n i l
4 var snk : Sink := nu l l
5 var ready : Boolean := f a l s e
6 var wr i t t en : Boolean := f a l s e
7 var dd : Data := nu l l

9 op createNSource (in m: Nat)==
10 var s : Source ;
11 i f (m > 0) then

12 s := new CSource (this) ;
13 s r cL i s t := s r cL i s t |− s ;
14 createNSource (m−1;)
15 end

17 with Sink op take (out d : Data)==
18 ready := t rue ;
19 await wr i t t en ;
20 wr i t t en := f a l s e ;
21 d := dd

23 with Source op wr i t e (in d : Data)==
24 await ready ;
25 ready := f a l s e ;
26 dd := d ;
27 wr i t t en := t rue

29 with NetworkManager
30 op c r e a t e (out ce : L i s t [ConnectorEnd])==
31 createNSource (n ;) ;
32 snk := new CSink (this) ;
33 ce := s r cL i s t |− snk

35 end

Fig. 20. General nondeterministic merger

Nondeterministic Merger. A nondeterministic merger can have any number
of inputs (source ends), but has one output (sink end). Whenever a take appears
on the sink, it should synchronize with exactly one of the sources, if there is some

306 M.M. Jaghoori

data available on the source (a write action pending). If more than one source
is ready, one of them should be chosen nondeterministically. The data from the
chosen source will flow to the sink. Besides, the write action on that source and
the take on the sink will succeed.

Creol supports a binary choice operator, which nondeterministically chooses
one of its enabled operands. It would suspend (and possibly release the processor)
if none is enabled. The main problem is that in the general case, the number of
entities participating in the choice is not statically known. Therefore, the choice
operator cannot be used.

To solve the problem of general nondeterministic choice between dynamic
number of entities, we make use of the nondeterministic choice of Creol scheduler
from among enabled processes. To this end, we make all available writers into a
process, one of which succeeding to synchronize with the reader.

Fig. 20 shows the implementation of this connector. In this implementation, n
is the number of source ends. When a source tries to write, it is suspended until
the ready flag becomes true. When there is a take action, the ready flag is set to
true. This enables exactly one writer process, because immediately afterwards,
the writer resets the ready flag back to false.

The sink can continue when some data is written. This is indicated by the
written flag. If there are more than one writer pending, the Creol scheduler selects
one nondeterministically. If there is no writer available, the sink waits until the
first source provides some data.

The current implementation of Creol uses a completely nondeterministic choice
between the processes in an object. It is interesting to note that when Creol al-
lows defining schedulers for objects, one can use a particular scheduler for the
merger object to implement different policies in making its choice, e.g., to have
priorities in its choice.

B Peer to Peer Implementation

B.1 Sample Components Implementing Peer

The implementation of a component, among other things, includes the imple-
mentation of its internal objects (i.e., classes implementing the interfaces of the
internal objects). The interfaces of these objects are given in Fig. 13.

The client provides the search operation for the user interface. It can be in-
voked with a given key. The openClient and closeClient events are reconfiguration
points in the Client. After the openClient, the client expects to be connected to
(at least) one node that has the requested data. It then writes the ‘key’ for the
required data on the ‘req’ port and expects the result on the ‘ans’ port. Finally,
it updates the local store by adding the new (key,ans) pair of data. If no node
has the data, the manager returns a ‘false’ and the client does not continue with
the session.

From openClient until closeClient , the current process must enter a critical
region. That is to disallow concurrent ‘search’ operations. Suppose the first search
is waiting for a server to read the ‘key’. If another search can be interleaved, it

Coordinating Object Oriented Components Using Data-Flow Networks 307

1 class ClientImp (s t o r e : Store , req : outport , ans : i npor t)
2 inside Peer implements Cl i en t (s tore , req , ans)
3 begin

4 var busy : Boolean
5 op i n i t == busy := f a l s e

7 with User op search (in key : Data out r e s u l t : Data) ==
8 var found : Boolean ;
9 await ˜ busy ;

10 busy := true ;
11 raise event openCl ient (key , req , ans ; req , ans , found) ;
12 i f (found) then

13 await req . wr i t e (key ;) ;
14 await ans . take (; r e s u l t) ;
15 ! s t o r e . add (key , r e s u l t)
16 end ;
17 raise event c l o s eC l i e n t (req , ans ; req , ans) ;
18 busy := f a l s e

20 end

1 class ServerImp (s t o r e : Store , req : inPort , ans : outPort)
2 inside Peer implements Server (s tore , req , ans)
3 begin

4 var busy : Boolean
5 op i n i t == busy := f a l s e

7 op run ==
8 var key , r e s u l t : Data ;
9 await ˜ busy ;

10 busy := true ;
11 raise event openServer (req , ans ; req , ans) ;
12 await req . take (; key) ;
13 await s t o r e . f i nd (key ; r e s u l t) ;
14 await ans . wr i t e (r e s u l t ;) ;
15 raise event c l o s e S e r v e r (req , ans ; req , ans) ;
16 busy := f a l s e ;
17 ! run ()

19 end

308 M.M. Jaghoori

1 class DataStore (key : Data , i n f o : Data)
2 inside Peer implements Store
3 begin

4 var i n f oL s t : L i s t [Data]
5 var infoKey : L i s t [Data]

7 op i n i t ==
8 in f oL s t := empty |− i n f o ;
9 infoKey := empty |− key

11 op run ==
12 raise event r e g i s t e r (infoKey)

14 with Cl i en t op add (in key : Data , i n f o : Data) ==
15 in f oL s t := in f oL s t |− i n f o ;
16 infoKey := infoKey |− key ;
17 raise event update (infoKey)

19 with Server op f i nd (in key : Data ; out i n f o : Data) ==
20 i n f o := nth (in foLst , index (infoKey , key))
21 end

1 class Tester1 (c l : C l i en t) inside Peer implements User (c l)
2 begin

3 op run ==
4 var r ep ly : Data ;
5 await ! c l . s earch (”2” ; r ep ly)
6 end

8 class Tester2 (c l : C l i en t) inside Peer implements User (c l)
9 begin

10 end

12 class Tester3 (c l : C l i en t) inside Peer implements User (c l)
13 begin

14 op run ==
15 var r ep ly : Data ;
16 ! c l . s earch (”0”) ;
17 ! c l . s earch (”1”) ;
18 ! c l . s earch (”2”)
19 end

Coordinating Object Oriented Components Using Data-Flow Networks 309

may reconfigure the network and change the port assignments. This results in
the first search taking the answer from a wrong connection.

After the openServer event is performed, a server is connected to a client. The
server receives a key to some data on ‘req’ port. It then finds the data associated
to the key, and writes the answer onto ‘ans’ port. To find the data, the server
queries the store object. After servicing a request, the server invokes its ‘run’
method again to be able to service other requests. Since a server has a fixed
number of ports, it can service one request at a time.

The store keeps the data residing in the current node. The implementation is
provided with a (key, info) pair as the initial data in the node. It first tries to
register (the keys to) its local data at the broker. Later the client can add the
new acquired data to the store (‘add’ operation). Then the store should update
the broker’s information. A server can try and find some data in the store (‘find’
operation).

The user represents the entity who invokes the search on the client. Three
different implementations of the User interface are provided in this example.
By putting these implementations in different Peer components, one can make
different components behave differently. The three implementations are to be
used as test cases. One can provide different implementations to test the model.

B.2 Broker Implementation

In a simple broker, (the client side of) the requesting node and (the server side
of) the providing node are connected by synchronous channels. One channel is
used to connect the ‘req’ ports and another channel connects the ‘ans’ ports.
Therefore, a client is connected to at most one server. Fig. ?? shows the imple-
mentation of a simple broker with this policy.

When a node is added to the system, it requests initialization. For a server, in
initServer , the simple broker creates two synchronous channels for the new node,
and assigns the server side ports (exReq and exAns) accordingly (see Fig. 15.a).
When a node raises an openClient event, along with the desired keyword, the
network manager finds the node who has the data (matching the given key) and
assigns the client side ports (myReq and myAns) of the requester to point to the
channels of the node with the data.

Fig. 15.a shows a particular configuration of 3 nodes, where both nodes N1
and N2 try to read some (possibly different) data from N3. The network manager
is not shown in this figure. But as can be seen, each node has two pairs of in-
/outports, and a pair of synchronous channels are associated to the server side
ports. The dashed arrows are used to show references to the connector-ends.

The requesting node sends its keywords to the channel, which is taken by
the node on the other end (the server object) via its extReq port. And then
the response goes from the extAns port of the latter to the myAns port of the
former. Note that, even if more than one node is trying to request some data
from the same node (as in Fig. 15.a), each node gets the correct data, due to
the synchronous nature of the channels.

310 M.M. Jaghoori

1 class SimpleBroker implements Broker
2 begin

3 var nodeList : L i s t [Peer]
4 var dataL i s t : L i s t [L i s t [Data]]
5 var s r c L i s t : L i s t [Source]
6 var snkL i s t : L i s t [Sink]

8 op i n i t ==
9 nodeList := n i l ;

10 dataL i s t := n i l ;
11 s r c L i s t := n i l ;
12 snkL i s t := n i l

14 // f i nd in d a t a l i s t

15 op f i n dF i r s t (in key : Data ; out ind : Nat) ==
16 subFindFirs t (1 , key , dataL i s t ; ind)

18 op subFindFirs t (in k : Nat , key : Data , l s t : L i s t [L i s t [Data]]
19 out ind : Nat) ==
20 i f l s t = n i l then

21 ind := 0
22 else

23 i f has (head (l s t) , key) then

24 ind := k
25 else

26 subFindFirs t (k+1, key , t a i l (l s t) ; ind)
27 end

28 end

30 with Peer op i n i t C l i e n t (out myReq : Source , myAns : Sink) ==
31 skip

33 with Peer op i n i t S e r v e r (out exAns : Source , exReq : Sink) ==
34 var c1 : Source ;
35 var k1 : Sink ;
36 var temp : SyncChannel ;
37 temp := new SyncChannel ; temp . c r e a t e (; c1 , exReq) ;
38 temp := new SyncChannel ; temp . c r e a t e (; exAns , k1) ;

Fig. 21. A simple Broker implementation

Coordinating Object Oriented Components Using Data-Flow Networks 311

39 nodeList := nodeList |− cal ler ;
40 dataL i s t := dataL i s t |− n i l ;
41 s r c L i s t := s r c L i s t |− c1 ;
42 snkL i s t := snkL i s t |− k1

44 with Peer op r e g i s t e r (in l s t : L i s t [Data]) ==
45 dataL i s t := r ep l a c e (dataList , index (nodeList , cal ler) , l s t)

47 with Peer op update (in l s t : L i s t [Data]) ==
48 dataL i s t := r ep l a c e (dataList , index (nodeList , cal ler) , l s t)

50 with Peer op openServer (in r e q i : Sink , an s i : Source
51 out reqo : Sink , anso : Source) ==
52 reqo := r e q i ; anso := ans i

54 with Peer op c l o s e S e r v e r (in r e q i : Sink , an s i : Source
55 out reqo : Sink , anso : Source) ==
56 reqo := r e q i ; anso := ans i

58 with Peer op openCl ient (in k : Data , r e q i : Source , an s i : Sink
59 out reqo : Source , anso : Sink , f : Boolean) ==
60 var i : Nat ;
61 f i n dF i r s t (k ; i) ;
62 i f i = 0 then

63 f := f a l s e
64 else

65 f := true ;
66 reqo := nth (s r cL i s t , i) ;
67 anso := nth (snkList , i)
68 end

70 with Peer op c l o s eC l i e n t (in r e q i : Source , an s i : Sink
71 out reqo : Source , anso : Sink) ==
72 reqo := r e q i ; anso := ans i

74 end

Fig. 21. (continued)

Author Index

Albert, Elvira 113
Arenas, Puri 113
Aspinall, David 52

Barthe, Gilles 1
Benveniste, Albert 200
Beringer, Lennart 25
Bjørk, Joakim 257
Bliudze, Simon 179

Caillaud, Benôıt 200
Caromel, Denis 133
Clarke, Dave 226
Coupaye, Thierry 153
Crégut, Pierre 1
Cunningham, Dave 72

Dietl, Werner 72
Drossopoulou, Sophia 72

Ferrari, Alberto 200
Francalanza, Adrian 72

Genaim, Samir 113
Grégoire, Benjamin 1

Haridi, Seif 153
Henrio, Ludovic 133
Hofmann, Martin 25

Jaghoori, Mohammad Mahdi 280
Jensen, Thomas 1
Johnsen, Einar Broch 257

Kyas, Marcel 257

Madelaine, Eric 133
Maier, Patrick 52
Mangeruca, Leonardo 200
Müller, Peter 72

Owe, Olaf 257

Passerone, Roberto 200
Pavlova, Mariela 25
Pichardie, David 1
Puebla, German 113

Reinefeld, Alexander 153

Sifakis, Joseph 179
Sofronis, Christos 200
Stark, Ian 52
Stefani, Jean-Bernard 153
Summers, Alexander J. 72

Van Roy, Peter 153

Yap, Roland 153

Zanardini, Damiano 113

