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Abstract. We consider the budget-constrained bidding optimization
problem for sponsored search auctions, and model it as an online
(multiple-choice) knapsack problem. We design both deterministic and
randomized algorithms for the online (multiple-choice) knapsack prob-
lems achieving a provably optimal competitive ratio. This translates back
to fully automatic bidding strategies maximizing either profit or revenue
for the budget-constrained advertiser. Our bidding strategy for revenue
maximization is oblivious (i.e., without knowledge) of other bidders’
prices and/or clickthrough-rates for those positions. We evaluate our
bidding algorithms using both synthetic data and real bidding data gath-
ered manually, and also discuss a sniping heuristic that strictly improves
bidding performance. With sniping and parameter tuning enabled, our
bidding algorithms can achieve a performance ratio above 90% against
the optimum by the omniscient bidder.

1 Introduction

Sponsored search auction is an effective way of monetizing search query activites
for search engine providers, while shifting the burden to advertisers/bidders to
figure out how to automate and optimize the keyword bidding process. In this
work we focus on the bid optimization problem under the budget constraint.
Formally, given an advertiser with a fixed budget over a fixed time horizon,
and a set of keywords that he is interested to bid on, we try to design bidding
strategies to address the following problem: For each keyword and each time
period, how much should the advertiser bid to obtain which position, so as to
maximize return on investment (ROI) of these auctions?

Keyword Bidding Models. For simplicity, assume that the default advertiser
has a budget B over a fixed time horizon, discretized into time periods 1, . . . , T .
He is interested in a single keyword with expected value-per-click V . The model
can be easily extend to the multiple-keyword case.
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There are bidders {1, · · · , N} at time t for this keyword and their bids are
sorted in decreasing order b1(t) > . . . > bN (t). There are S ad slots, and are
assigned to the top-S bids as follows: bidder s gets slot s; for each user click on
his ad, bidder s is charged a price bs+1, if s < S or a minimum fee bmin (e.g.
10¢). Each slot s has a clickthrough-rate (CTR), denoted α(s), which is defined
as the total number of clicks on an ad divided by the total number of impressions
(displays). Assuming other bidders have their bids fixed, the default advertiser
can obtain slot s by bidding slightly over bs(t); for each user click, he incurs a
cost of bs(t), obtains an expected revenue V and profit V − bs(t).

Online Knapsack Problems. Fix a keyword with positions 1, . . . , S. At time
t, X(t) is the number of clicks at period t, while bs(t) is the maximum bid
corresponding to position s. Winning position s at time t costs the advertiser
ws(t) and earns him a profit of vs(t) where

ws(t) ≡ bs(t)X(t)α(s), vs(t) ≡ (V − bs(t))X(t)α(s). (1)

For revenue maximization, vs(t) = V X(t)α(s). Let N(t) = {(ws(t), vs(t))|s =
1, . . . , S}, then winning position s at time t correspondes to selecting item
(ws(t), vs(t)) ∈ Nt. Since the default bidder has to decide either overbidding
bs(t) or not at time t, thus keyword bidding corresponds to the online multipe-
choice knapsack problem (Online-MCKP). The multiple-choice knapsack prob-
lem is a generalization of the classic knapsack problem, where there are multiple
item-sets and you can select at most one item from each item-set; the multiple-
choice constraint of MCKP corresponds to the sponsored search auction policy
where each advertiser can select to win at most one ad slot for each keyword at
each time.

Our Assumptions. We use competitive analysis to evaluate our bidding strate-
gies, comparing our result with the maximum profit attainable by the omniscient
bidder who knows the bids of all the other users ahead of time. In general, no
online algorithm can achieve any non-trivial competitive ratio (the ratio between
the output of the given algorithm and the offline optimum) for Online-KP [4].
Fortunately, in our setting, we make two reasonable assumptions on the knap-
sack items, which allow us to develop interesting online algorithms. These two
assumptions are:

(i)ws(t) � B; (ii)L ≤ vs(t)
ws(t)

≤ U, ∀t, ∀s. (2)

2 Results

In this work we model budget-constrained bidding optimization as variants of
online knapsack problems. In Section 3, we design a determinstic algorithm for
the online knapsack problem with two assumptions given above. The algorithm
has a competitive ratio ln(U/L)+1, and is robust again any adaptive adversary.
We also show a matching lower bound in section 3.1. Therefore our algorithm is
provably optimal in the worst-case sense. We also give a (ln(U/L)+2)-competitive
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online algorithm for the multiple-choice knapsack problem (MCKP), the classic
generalization of the knapsack problem which corresponds to the general bidding
optimization problem with multiple slots per keyword.

In Section 4, we translate the algorithms for online knapsack problems into
bidding strategies for sponsored search auctions, for both profit and revenue
maximization. For single-slot auctions, the corresponding strategies are oblivi-
ous, and thus work even if other bidders’ bids were not known. It also implies
that the strategy is an approximate dominant strategy in the sense that it is an
approximate best response to any bid profile of other bidders. For the multiple-
slot case, we translate the algorithm for Online-MCKP to bidding strategies for
both profit and revenue-maximizing bidding strategies. The profit maximizing
strategy is not oblivious and requires knowledge of other players’ bids and also
the CTRs of all slots. The revenue-maximizing strategy remains oblivious.

In Section 5, we report experimental results evaluating our bidding strategies
using both synthetic bidding data and real bidding data collected manually. We
modify our strategy by adding a sniping heuristic, and it performs much better
empirically while maintaining the same theoretical bounds. Our limited exper-
imental evaluation also suggests that parameter tuning helps to improve the
performance of our bidding algorithms. With both sniping and parameter tun-
ing enabled, our bidding algorithms (for both profit and revenue maximization)
achieve an output value which is consistently more than 90% of the optimum by
the omniscient bidder.

2.1 Related Work

Due to page limit as well as the vast amount of research literature in sponsored
search auctions, knapsack problems, and online algorithms, we will only discuss
previous work most relavant to ours.

Keyword Bidding. Sponsored search auctions have attracted a lot of attention,
for both auctioneer revenue maximization and advertiser bidding optimization.
Among all these work, Mehta etc al. [5] studied the auctioneer revenue maxi-
mization with budget-constrained bidders, using a trade-off function Ψ (compare
it to our threshold function) to grant queries to bidders, and the technique they
use is probably most similar to the threshold function we use.

Online Algorithms. Awerbuch et al. [2] studied the online call routing which
generalizes the online classical knapsack problem. More recently, Buchbinder
et al. [3] designed online algorithms for fractional versions of general packing
problems which imply an O(ln(U/L))-competitive algorithm for the online knap-
sack problem.

3 Online Knapsack Problems

Consider the online version of the classic 0/1 knapsack problem. The input se-
quence consists of a knapsack of capacity B and a stream of T items where item
t has value v(t) and weight w(t). We call the value-to-weight ratio v(t)/w(t) of
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item t its efficiency. The goal is to choose these items in an online fashion, i.e.,
making a decision as an item arrives and not revoking them later, so as to max-
imize the total value of selected items. For the online multiple-choice knapsack
problem, at each step a set of items Nt arrives and we need to choose at most
one item from each set.

We say that an online algorithm A has competitive ratio γ (or equivalently is
γ-competitive) if for any input sequence σ, we have OPT(σ) ≤ γ · A(σ), where
A(σ) is the (expected, if A is randomized) value obtained by A given σ, and
OPT(σ) is the maximum value which can be obtained by any offline algorithm
with the knowledge of σ.
We now give a deterministic algorithm for the online knapsack problem achiev-

ing the optimal bound of ln(U/L) + 1. In the remainder of the paper, e denotes
the base of the natural logarithm.

Algorithm. Online-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) be the fraction of capacity filled, pick element t iff

v(t)
w(t)

≥ Ψ(z(t)).

Observe that for z ∈ [0, c] where c ≡ 1/(1 + ln(U/L)), Ψ(z) ≤ L, thus the al-
gorithm will pick all items available until c fraction of the knapsack is filled. In
fact, we will assume henceforth Ψ(z) = L for z ∈ [0, c]. When z = 1, Ψ(z) = U ,
and since Ψ is strictly increasing, the algorithm will never over-fill the knapsack.

Theorem 1. Online-KP-Threshold has a competitive ratio of ln(U/L) + 1.

Proof. Fix an input sequence σ. Let the algorithm terminate filling Z fraction of
the knapsack and obtaining a value of A(σ). Let S and S∗ respectively be the set
of items picked by the Algorithm Online-KP-Threshold and the optimum.
Denote the weight and the value of the common items by W = w(S ∩ S∗) and
P = v(S ∩ S∗). For each item t not picked by the algorithm, its efficiency is
< Ψ(z(t)) ≤ Ψ(Z) since Ψ(z) is a monotone increasing function of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B − W)

Since A(σ) = P + v(S \ S∗), the above inequality implies that

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B − W )
P + v(S \ S∗)

. (3)

Since each item j picked in S must have efficiency at least Ψ(zj) where zj is
the fraction of the knapsack filled at that instant, we have

P ≥
∑

j∈S∩S∗

Ψ(zj)wj =: P1, (4)
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v(S \ S∗) ≥
∑

j∈S\S∗

Ψ(zj)wj =: P2. (5)

Since OPT(σ) ≥ A(σ), inequality (3) implies

OPT(σ)
A(σ)

≤ P + Ψ(Z)(B − W )
P + v(S \ S∗)

≤ P1 + Ψ(Z)(B − W )
P1 + v(S \ S∗)

(6)

Since P1 ≤ Ψ(Z)w(S ∩ S∗) = Ψ(Z)W , plugging in the values of P1 and P2,
we get

OPT(σ)
A(σ)

≤ Ψ(Z)∑
j∈S Ψ(zj)Δzj

(7)

where Δzj = zj+1 − zj = wj/B for all j.
Based on the assumption that the weights are much smaller than B, we can

approximate the summation via an integration (refer to the remark following
the proof). Thus,

∑

j∈S

Ψ(zj)Δzj ≈
∫ Z

0
Ψ(z)dz =

∫ c

0
Ldz +

∫ Z

c

Ψ(z)dz

= cL +
L

e

(Ue/L)Z − (Ue/L)c

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)
ln(U/L) + 1

.

Along with inequality (7), this completes the proof.

Remark: We can make the approximation made above precise. Since Ψ(z) is an
increasing function of z, we obtain

∑
j∈S Ψ(zj)Δzj ≥ (1 − ε0)

∫ Z

0 Ψ(z)dz where
ε0 = (maxj wj)/B is small constant. Thus, to be precise, the competitive ratio is
actually ln(Ue/L)· 1

1−ε0
. For simplicity, we ignore the factor 1−ε0 for subsequent

analysis.
Extension to Online-MCKP. One can extend the above algorithm to multi-
ple choice knapsack problems in the following way – at each step t, let Et ⊆ Nt

denote the items with efficiency at least Ψ(z(t)). Pick the item in Et with the
highest profit. Call this algorithm Online-MCKP-Threshold. The following
theorem can be proved similarly as above and we omit it from the extended
abstract.

Theorem 2. Online-MCKP-Threshold has a competitive ratio of (ln
(U/L) + 2).

3.1 A Matching Lower Bound

Theorem 3. The competitive ratio of any (possibly randomized) online algo-
rithm for the online knapsack problem is at least ln(U/L) + 1.
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Proof (Sketch). The proof constructs a distribution of input sequences and shows
that any deterministic algorithm against this distribution achieves a competitive
ratio at most ln(U/L) + 1. Based on Yao’s minimax lemma [6], the lower bound
is obtained. We describe the distribution here and defer the analysis to our
technical report.

Fix a parameter η > 0. Letkbe an integer such that (1+η)k = U/L, i.e., k =
ln(U/L)
ln(1+η) .The supportof the inputdistributionconsists of the instances I0, I1, · · · , Ik,
where I0 is a stream of B identical items each with weight 1 and value L. I1 is I0
followed by a stream of B identical items each with weight 1 and value (1 + η)L,
and in general Ij+1 is Ij followed by B items with weight 1 and value (1 + η)j+1L.
The distribution D is specified by giving probability pj to instance Ij where

pk :=
1 + η

(k + 1)η + 1
, pj :=

η

(k + 1)η + 1
, ∀ 0 ≤ j < k.

The ratio is obtained as η → 0.

4 Bidding Strategies for Keyword Auctions

In this section, we construct bidding strategies for either profit maximization or
revenue maximization. The difference in the two are in the parameter settings.
For simplicity and brevity, we start with the single-slot case and extend to the
multiple-slot case.

For profit maximization, recall that outbidding b(t) at time t gives an
efficiency of v(t)

w(t) = V
b(t) − 1 while for revenue maximization its V

b(t) . Thus, the
parameters U and L for revenue maximization strategies are: Ur := V

bmin
and

Lr := 1 respectively. For profit maximization Up = Ur − 1, though Lp could be
0. To take care of this, we introduce another parameter ε, such that we bid only
when the efficiency is bigger than ε. This makes Lp = ε but leads to an additive
loss in the performance guarantee.

The strategies are derived from the online algorithms: Bidder 0 outbids only
if the efficiency is bigger than the threshold. Since the threshold does not depend
on anything other than the fraction of knapsack filled, the strategies also depend
only on the fraction of budget spent. The strategies are formally stated as follows:

Bidding Strategy: Profit-Maximizing Single-Slot

Let Ψ(z) ≡ (Upe/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), then bid b0(t) = V

1+Ψ(z(t)) .

Bidding Strategy: Revenue-Maximizing Single-Slot

Let Ψ(z) ≡ (Ure)z(1/e).
At time t, if fraction of budget spent is z(t), then bid b0(t) = V

1+Ψ(z(t))

Notice that both strategies only need the fraction of budget spent and are thus
oblivious to the other parameters of the auction. We use Profit and Revenue to
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denote the profit and revenue earned by the above strategies respectively, and
OPTp and OPTr to denote the profit and revenue of an omniscient bidder. Then
we have the following theorem:

Theorem 4. (i) For single-slot profit maximization, for any ε > 0,

OPTp ≤ εB +
(

ln
(

(V − bmin)
εbmin

)
+ 1

)
Profit.

(ii) For single-slot revenue maximization, assuming that OPT does not overbid
at time t where b(t) > V ,

OPT ≤
(

ln
(

V
bmin

)
+ 1

)
Revenue.

The proof of Theorem 4(i) follows from Theorem 1 and the fact that all items with
efficiency ≤ ε has total value at most εB. Theorem 4 also suggests that different
ε values give different guarantees for Profit, thus we can choose ε appropriately
to maximize the guaranteed value of Profit. In practice, it turns out we can treat
L, the lower bound of all items’ efficiency, as a tunable parameter (essentially ig-
noring all items with efficiency less than L), and significantly improve the perfor-
mance of the bidding algorithm. We will dicuss this in Section 5.2. The proof of
Theorem 4(ii) follows from Theorem 1 setting L = 1. The assumption is valid if
the budget B is not exceedingly large. In practice, even if the advertiser wants to
maximize revenue, rarely is he willing to buy unprofitable keyword positions.

4.1 Multiple-Slot Bidding Strategies

For multiple-slot auctions we consider both profit-maximizing and revenue- max-
imizing cases. At each time period, bidder 0 has to decide which slot should
he outbid to win. The algorithm suggests bidding so as to get maximum profit
(revenue) while having a minimum efficiency. Unfortunately, bidding to get max-
imum profit requires knowledge of other bidders bids. On the other hand, as-
suming that clickthrough rates increase as we move up the slots, bidding higher
would only give a higher revenue.

The profit-maximizing bidding strategy is presented below. The parameters
are the same as in the single-slot case. Notice that the bidding strategy is still
oblivious of X(t), however now requires knowing the bids bs(t) and also α(s).

Bidding Strategy. Profit-Maximizing Multiple-Slot

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, let z(t) be fraction of budget spent,

Et ≡
{

s | bs(t) ≤ V

1 + Ψ(z(t))

}
,

bid bs(t) where
s = argmaxs∈Et

(V − bs(t))α(s).
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For revenue maximization, we can actually find the slot s in time t to maximize
the revenue. This is because, the revenue obtained on bidding bs(t) is V X(t)α(s).
Given that α(s) is a decreasing function, maximizing V X(t)α(s) is equivalent
to minimize s, i.e., to find the rank s as low as possible. Since the efficiency
condition imposes that the slot we win have bs(t) ≤ V

Ψ(z(t)) , our bid should be
exactly that. Thus we have a bidding strategy for revenue-maximizing multiple-
slot auctions which is exactly the same as that for single-slot auctions and has
the desirable property of obliviousness.

Similar to the performance guarantee of the single-slot bidding strategies in
Theorem 4, the above bidding strategies have performance guarantees, stated as
the following theorem:

Theorem 5. (i) For multiple-slot profit maximization, for any ε > 0,

OPTp ≤ εB +
(

ln
(

V
εbmin

)
+ 2

)
· Profit.

(ii) For multiple-slot revenue maximization,

OPTr ≤
(

ln
(

V
bmin

)
+ 2

)
· Revenue .

5 Experimental Exploration

In this section, we evaluate our bidding algorithms using both synthetic and real-
world data, and discuss two useful heuristics: sniping and parameter tuning.

5.1 Simulation and the Sniping Heuristic

We now discuss an experiment for single-slot auctions that points out a weakness
of the bidding strategy. We then modify the strategy which, although having
the same theoretical guarantee, performs much better empirically. As a negative,
the strategy does not remain oblivious any more: it requires knowledge of X(t),
the traffic function and also α, the clickthrough-rate of the slot.

Figure 1 shows the performance of our algorithm in a simulation against
bidders whose bids are random variables. The budget of the bidder is $1000
and value V = $8.00. Figure 1 shows our strategy obtains around 40% of that
obtained by the omniscient bidder (the theoretical bound is around 13%). The
advertiser stops overbidding very early, at around t = 200, and has an unspent
budget of $425.

At time t, suppose the fraction of budget remaining is y(t) = 1−z(t). Moreover
assume we know future click traffic X(τ)α for t < τ ≤ T . Thus the maximum
number of clicks in the remaining time is

∫ T

t
X(τ)α · dτ , and bidding at most

y(t)·B�
T
t

X(τ)α·dτ
from time t to T would avoid exhausting the budget. This suggests

the following modified strategy which in the toy example of Figure 1 almost
doubles the profit.
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Fig. 1. Performance comparison of various bidding strategies in presence of one other
bidder who bids a price uniform random in [4, 6]

Bidding Strategy: Profit-Maximizing Single-Slot with Sniping

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), bid

max

{
V

1 + Ψ(z(t))
,

(1 − z(t)) · B
∫ T

t X(τ)α · dτ

}
.

The following theorem shows that the sniping does not affect the worst-case
behavior of the strategies.

Theorem 6. The modified bidding strategy using sniping always obtains at least
as much profit as the original bidding strategy.

The above sniping heuristic can be generalized to the multiple-slot case as well.

Bidding Strategy: Multiple-Slot with Sniping

At time t, let z(t) denote fraction of budget spent, ρ = Ψ(z(t))
For each slot s, if ρ > vs(t)

ws(t) & bs(t) ≤ (1−z(t))B
α(s)

� T
t

X(τ)dτ
:

ρ = vs(t)
ws(t)

Et = {s | vs(t)
ws(t) ) ≥ ρ}

bid bs(t) where s = argmaxs∈Et
vs(t)
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5.2 Evaluation Using Real Bidding Data

Parameter Tunning. If the lower bound L in the online knapsack problem
is too small, we can replace it with a larger value L′ > L for the threshold
function Ψ . This essentially discards items with very low efficiency, and the loss is
minimal if the optimal solution consists of items with relatively high efficiency . It
turns out tuning the parameter L makes a significant performance improvement
empirically. If we choose L = 0.1 for profit maximization, we get less than 50%
performance without sniping and about 70% with sniping. However, with L
tuned and fixed for the non-sniping case, we get much better results.

Next we report some experimental results on evaluating bidding algorithms
for multiple-slot auctions using real bidding data. We scraped bidding data
from the now defunct Overture webpage [1] with continous crawling for about
two weeks, for one of the most dynamic and expensive keyword “auto insurance.”
There are totally T = 1842 distinct time periods in our collected data, and most
top-5 bids are larger than $10. For the experiments, we use B = 1000, and
three different values V = 8, 10, 12. We evaluated both the profit-maximizing
and revenue-maximizing strategies with and without sniping. For all these ex-
periments, we use U = V/bmin − 1 for profit maximization and U = V/bmin
for revenue maximization, and bmin = 0.9. The lower bound L is optimized
for each instance without sniping, and it remains the same for the sniping
version.

We summarize the experimental results in Table 5.2. For all the examples we
run, sniping improves the bidding performance significantly while exhausting the
budget. Table 5.2 seems to tell us, for almost all values, with parameter tuning
of L, the performance ratio (ALG/OPT) is around 70%-75% without sniping,
and 90%-95% with sniping.

Profit-Maximization Bidding Performance
V OPT ALG ALG/ budget ALG ALG/

OPT left (sniping) OPT
8 3779 2751 73% 225.5 3541 94%

10 4974 4059 82% 116.1 4607 93%
12 6169 4463 72% 240.8 5842 95%

6 Concluding Remarks

The algorithms in the paper can be extended to the general case where there
are multiple keywords and each keyword has multiple positions. The competitive
ratio would now have V replaced by Vmax, where Vmax is the maximum valuation
for all keywords. As an open problem, there is a gap of additive constant 1
between the lower and upper bounds for the competitive ratio of Online-MCKP,
and it will be nice to close the gap.
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