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Abstract. In the framework of parameterized complexity, one of the
most commonly used structural parameters is the treewidth of the input
graph. The reason for this is that most natural graph problems turn
out to be fixed parameter tractable when parameterized by treewidth.
However, Graph Layout problems are a notable exception. In particular,
no fixed parameter tractable algorithms are known for the Cutwidth,
Bandwidth, Imbalance and Distortion problems parameterized by
treewidth. In fact, Bandwidth remains NP-complete even restricted to
trees. A possible way to attack graph layout problems is to consider struc-
tural parameterizations that are stronger than treewidth. In this paper
we study graph layout problems parameterized by the size of the mini-
mum vertex cover of the input graph. We show that all the mentioned
problems are fixed parameter tractable. Our basic ingredient is a classical
algorithm for Integer Linear Programming when parameterized by
dimension, designed by Lenstra and later improved by Kannan. We hope
that our results will serve to re-emphasize the importance and utility of
this algorithm.

1 Introduction

Parameterized complexity can be thought of as a “multivariate” approach to
complexity analysis and algorithm design. In addition to the overall input size
n, a secondary measurement k, the parameter, is also considered. In the parame-
terized complexity framework the central notion is fixed parameter tractability
(FPT), defined to be solvability in time f(k)nc, where f is some arbitrary func-
tion and c is a constant. For further details and an introduction to parameterized
complexity we refer to [8,11,27].

In the framework of parameterized complexity, an important aspect is the
choice of parameter for a problem. Exploring how one parameter affects the
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Table 1. Problem Definitions

Problem Name Objective Function Problem Definition
Bandwidth fbw(π) = max

uv∈E
|π(u) − π(v)| bw(G)= min

π
fbw(π)

Cutwidth fcw(π) = max
1≤i≤n

|∂(Vi)| cw(G)= min
π

fcw(π)

Imbalance fim(π) =
n�

i=1
|Lπ(vi) − Rπ(vi)| im(G)= min

π
fim(π)

Distortion
1 fdi(π) = max

uv∈E

π(v)−1�
i=π(u)

D(vi, vi+1) di(G)= min
π

fdi(π)

complexity of different parameterized or unparameterized versions of the prob-
lem, often leads to non trivial combinatorics and better understanding of the
problem. In general there are two kinds of parameterizations. In the first kind
the parameter reflects the value of the objective function in question. The second
kind, structural parameterizations, measure the structural properties of the in-
put. A well developed structural parameter is the treewidth of the input graph.
A celebrated result in this direction is that every problem expressible in monadic
second order logic can be solved in time O(f(t) · n) for graphs of treewidth at
most t [7]. Even though many problems become tractable when the treewidth of
the input graph is bounded, there are quite a few that do not. For an example
Bandwidth remains NP-complete even for trees. In these cases it is interesting
to consider parameterizations which enforce more structure on the input than
the treewidth. In this direction Fellows and Rosamond investigated how differ-
ent problems behave when parameterized by the max leaf number of the input
graph [10].

In this paper we consider parameterizing by the vertex cover number (vc(G))
of the graph. The vertex cover number of a graph G is the size of smallest set of
vertices such that every edge has at least one end-point in this set. We study the
graph layout problems Cutwidth, Bandwidth, Imbalance and Distortion

parameterized by vc(G). In a graph layout problem, we are given a graph G =
(V, E) as input and asked to find a permutation π : V → {1, 2, . . . , n} that
minimizes a certain problem specific objective function of π. In order to define
the problems considered we need to introduce some notation. A permutation
π : V → {1, 2, . . . , n} orders the vertex set into v1 <π v2 <π . . . <π vn. For every
i, the set Vi is {v1, . . . , vi} and ∂(Vi) = {uv | uv ∈ E, u ∈ Vi, v ∈ V \ Vi}. We
define Lπ(v) to be {u | u ∈ N(v), u <π v} and Rπ(v) is {u | u ∈ N(v), v <π u}
where N(v) = {u: uv ∈ E} is the neighborhood of v. For a pair of vertices u and
v, the shortest path distance between u and v is denoted by D(u, v). The precise
definitions of the problems studied in the paper are given in Table 1.

Many problems in different domains can be formulated as graph layout prob-
lems. These include optimization of networks for parallel computer architectures,
VLSI design, numerical analysis, computational biology, graph theory, scheduling

1 The presented definition is equivalent to the original definition of distortion for
embedding into line. Details are given in the section about Distortion.
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and archaeology. In particular an algorithm for Imbalance is used as a starting
point for many algorithms in graph drawing [19,20,28,30]. On the other hand
Bandwidth is equivalent to the problem of minimizing bandwidth of a sparse
symmetric square matrix which is useful for the storage and manipulations of
these matrices, including Gaussian elimination [5,24]. Cutwidth was proposed
as a model to minimize the number of channels in a circuit [1,25], and recently
it has found applications in protein engineering [3], network reliability [21], au-
tomatic graph drawing [26], information retrieval [4], and as a subroutine in the
cutting plane algorithm for TSP [17]. The problem of Distortion, or rather low
distortion embeddings of a graph metric into simple metric spaces has proved
to be a useful tool in designing algorithms in various fields. A long list of appli-
cations given in [14] includes approximation algorithms for graph and network
problems, such as sparsest cut, minimum bandwidth, low-diameter decomposi-
tion and optimal group steiner trees, and online algorithms for metrical task
systems and file migration problems.

Our Contributions

– We show that Cutwidth, Bandwidth, Imbalance and Distortion pa-
rameterized by the vertex cover number of the input graph are FPT. Notice
that even though a graph G with vc(G) ≤ k has treewidth at most k, this
can not be directly applied to obtain our results. The reason for this is that
graph layout problems parameterized by treewidth have proven hard to cope
with. In particular, the parameterized complexity of Cutwidth parameter-
ized by treewidth is a non trivial problem left open in [29]. Bandwidth is
NP-complete for trees and the parameterized complexity of Imbalance and
Distortion with treewidth as parameter is unknown.

– A classical result in parameterized algorithms is that p-Variable Inte-

ger Linear Programming Feasiblity (p-ILP) is FPT. This powerful
result, first proved by Lenstra in [23]2 and later improved by Kannan [18],
is very rarely used in parameterized complexity. The only previously known
examples of applications of this result in parameterized algorithms is in an
FPT algorithm for the Closest String problem [13] and in an EPTAS
for Min-Makespan-Scheduling problem [2]. In fact, Niedermeier has ex-
plicitly asked for more applications of the result that p-ILP is FPT. In this
context we quote Niedermeier [[27], Page Number:184]

“. . . it remains to investigate further examples besides Closest

String where the described ILP approach turns out to be applicable.
More generally, it would be interesting to discover more connections
between fixed-parameter algorithms and (integer) linear program-
ming. . . . ”

We extensively use this result in all our algorithms, thus giving more exam-
ples of its applicability.

2 This paper received Fulkerson Prize in 1985 for an outstanding contribution in the
area of discrete mathematics.
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We would like to point out that an improved version of the Lenstra/Kannan algo-
rithm for p-ILP designed by Frank and Tardos [12] uses space polynomial in p and
input size.Weapply this togiveapolynomial spaceFPTalgorithmforBandwidth

parameterized by vc(G). This gives an interesting distinction between vc(G) and
treewidth parameterizations, because almost all algorithms for graphs of bounded
treewidth apply dynamic programming and thus need exponential space.

In Section 2, we give a brief introduction to integer linear programming para-
meterized by the number of variables. Sections 3, 4, 5 and 6 contain FPT algo-
rithms for Imbalance, Cutwidth, Bandwidth and Distortion respectively.
The reader is encouraged to read the section on Imbalance before proceeding to
the later sections because this section contains a description of general scheme
used in all our algorithms. Finally we conclude with some remarks and open
problems in Section 7.

2 Integer Linear Programming with Few Variables

Integer linear programming (ILP) is the framework in which we will eventually
formulate all the problems studied. In this section we describe the required
results in this direction.

p-Variable Integer Linear Programming Feasiblity (p-ILP): Given
matrices A ∈ Z

m×p and b ∈ Z
m×1, the question is whether there exists

a vector x̄ ∈ Z
p×1 satisfying the m inequalities, that is, A · x̄ ≤ b. The

number of variables p is the parameter.

Lenstra [23] showed that p-ILP is FPT with running time doubly exponential
in p. Later, Kannan [18] provided an algorithm for p-ILP running in time pO(p).
The algorithm uses Minkowski’s Convex Body theorem and other results from
Geometry of Numbers. A bottleneck in this algorithm was that it required space
exponential in p. Using the method of simultaneous Diophantine approximation,
Frank and Tardos [12] describe preprocessing techniques, using which it is shown
that Lenstra’s and Kannan’s algorithms can be made to run in polynomial space.
They also slightly improve the running time of the algorithm. For our purposes,
we use this algorithm.

Theorem 1 ([18],[23],[12]). p-Variable Integer Linear Programming

Feasiblity can be solved using O(p2.5p+o(p) ·L) arithmetic operations and space
polynomial in L. Here L is the number of bits in the input.

Later, a randomized algorithm for p-ILP was provided by Clarkson, we refer to
[6] for further details. The result of Lenstra was extended by Khachiyan and
Porkolab [22] to semidefinite integer programming. In their work, they show
that if Y is a convex set in Rk defined by polynomial inequalities and equations
of degree at most d ≥ 2, with integer coefficients of binary length at most l,
then for fixed k, the problem of computing an optimal integral solution y∗ to
the problem min {yk | y(y1, . . . , yl) ∈ Y ∪ Zk} admits an FPT algorithm. Their
algorithm was further improved by Heinz [16] in the specific case of minimizing
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a polynomial F̂ on the set of integer points described by an inequality system
Fi ≤ 0, 1 ≤ i ≤ s where the Fi’s are quasiconvex polynomials in p variables
with integer coefficients. This algorithm generalizes Lenstra’s algorithm. In our
algorithms we need the optimization version of p-ILP rather than the feasibility
version. We proceed to define the minimization version of p-ILP.

p-Variable Integer Linear Programming Optimization (p-Opt-

ILP): Let matrices A ∈ Z
m×p, b ∈ Z

m×1 and c ∈ Z
1×p be given. We

want to find a vector x̄ ∈ Z
p×1 that minimizes the objective function

c · x̄ and satisfies the m inequalities, that is, A · x̄ ≥ b. The number of
variables p is the parameter.

Now we are ready to state the theorem we will use in the later sections.

Theorem 2. [�]3 p-Opt-ILP can be solved using O(p2.5p+o(p) · L · log (MN))
arithmetic operations and space polynomial in L. Here, L is the number of bits
in the input, N is the maximum of the absolute values any variable can take,
and M is an upper bound on the absolute value of the minimum taken by the
objective function.

3 Imbalance: The Inner Order Is Irrelevant

The solutions to all the problems considered in this paper follow the same basic
scheme. The case of Imbalance is the simplest exhibition of this theme, and our
algorithm for Imbalance will act as a template for the other algorithms to follow.
We now proceed to give an FPT algorithm for the Imbalance problem parame-
terized by the size of the minimum vertex cover of the input graph. Our input
consists of a graph G = (V, E), and a vertex cover C = {c1, . . . , ck} of size k.

Fixing the order of appearce of vertices in C: We are looking for a per-
mutation π : V → {1, 2, . . . , n} for which fim(π) is minimized. In order to do
this, we loop over all possible permutations of the vertex cover C and for each
such permutation πc, find the best permutation π of V that agrees with πc. We
say that π and πc agree if for all ci, cj ∈ C we have that ci <π cj if and only of
ci <πc cj . In other words, the relative ordering π imposes on C is precisely πc.
Thus, at a cost of a factor of k! in the running time we can assume that there
exists an optimal permutation π such that c1 <π c2 <π . . . <π ck.

Definition 1. Let πc be an ordering of C such that c1 <πc c2 <πc . . . <πc ck.
We define Ci to be {c1, c2, . . . , ci} for every i such that 1 ≤ i ≤ k.

Types of Vertices: Let I be the independent set V \ C. We associate a type
with each vertex in I. A “type” is simply a subset of C.

Definition 2. Let I be the independent set V \ C. The type of a vertex v in I
is N(v). For a type S ⊆ C the set I(S) is the set of all vertices in I of type S.

Notice that two vertices of the same type are indistinguishable up to automor-
phisms of G, and that there are 2k different types.
3 Proofs of results marked with [�] will appear in the long version of the paper.
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Inner Order: Observe that every vertex of I is either mapped between two
vertices of C, to the left of c1 or to the right of ck by a permutation π. For a
permutation π we say that a vertex v is at location 0 if v <π c1 and at location
i if i is the largest integer such that ci <π v. The set of vertices that are at
location i is denoted by Li. We define the inner order of π at location i to be
the permutation defined by π restricted to Li.

The task of finding an optimal permutation can be divided into two parts.
The first part is to partition the set I into L0, . . . , Lk, while the second part
consists of finding an optimal inner order at all locations. One should notice
that partitioning I into L0, . . . , Lk amounts to deciding how many vertices of
each type are at location i for each i. For most layout problems, figuring out
the right partitioning turns out to be more difficult than determining the inner
orders once the partitioning is known. For Imbalance, this turns out to be
particularly true as the inner orders in fact are irrelevant. The reason for this is
that permuting the inner order of π at location i does not change the imbalance
of any single vertex where the imbalance of a vertex v is |Lπ(v)−Rπ(v)|. Finding
the optimal ordering of the vertices thus reduces to finding the right partition
of I into L0, . . . , Lk. We formalize this as an instance of p-Opt-ILP.

ILP Formulation: For a type S and location i we let xi
S be a variable that

encodes the number of vertices of type S that are at location i. Also, for every
vertex ci in C we have a variable yi that represents the imbalance of ci. In order
to represent a feasible permutation, all the variables must be non-negative. Also
the variables xi

S must satisfy that for every type S,
∑k

i=0 xi
S = |I(S)|. For

every vertex ci of the vertex cover let ei =
∣
∣|N(ci) ∩ Ci−1| − |N(ci) ∩ (C \

Ci)|
∣
∣ be a constant. Finally for every ci ∈ C we add the constarint yi = ei +

∣
∣
∑

{S⊆C|ci∈S}
( ∑i−1

j=0 xj
S −

∑k
j=i xj

S

)∣
∣.

One should notice that the last set of constraints is not a set of linear con-
straints. However, we can guess the sign of y′

i = ei +
∑

{S⊆C|ci∈S}
( ∑i−1

j=0 xj
S −

∑k
j=i xj

S

)
for every i in an optimal solution. This increases the running time by

a factor of 2k. For every i we let ti take the value 1 if we have guessed that
y′

i ≥ 0 and we let ti take the value −1 if we have guessed that y′
i < 0. We

can now replace the non-linear constraints with the linear constraints yi = tiy
′
i

for every i. Finally, for every type S and location i, let zi
S be the constant∣

∣|S ∩ Ci| − |S ∩ (C \ Ci)|
∣
∣. We are now ready to formulate the integer linear

program.

min
k�

i=1

ti · yi +
�

S⊆C

zi
S · xi

S

such that
�

i

xi
S = |I(S)| for all i ∈ {0, . . . , k}, S ⊆ C

yi = tiei +
�

{S⊆C|ci∈S}

��i−1
j=0 tix

j
S −

�k
j=i tix

j
S

�
for all i ∈ {1, . . . , k}

xi
S, yi ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C
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Since the value of fim(π) is bounded by n2 and the value of any variable in
the integer linear program is bounded by n, Theorem 2 implies that this integer
linear program can be solved in FPT time, thus implying the following theorem.

Theorem 3. The Imbalance problem parameterized by the vertex cover num-
ber of the input graph is fixed parameter tractable.

4 Cutwidth: The Inner Order Is Known

In the Cutwidth problem, we are to find the permutation of the vertices of
the input graph that minimizes fcw(π), the maximum cut in the permutation.
We proceed to give an FPT algorithm for minimizing fcw(π) in graphs with
small vertex covers. The input is a graph G = (C ∪ I, E) with C being a vertex
cover of size k. We define the rank of a vertex v with respect to a vertex set S
to be rank(S, v) = |N(v) \ S| − |N(v) ∩ S|. Notice that |∂(S ∪ v)| = |∂(S)| +
rank(S, v).

Just as for the Imbalance problem, we guess the order c1 <πc . . . <πc ck

of the vertices in C in an optimal permutation π. We consider the inner order
of Li for some i between 0 and k. Suppose π(ci) = s, then, for any t with
s < t ≤ s + |Li| we have that |∂(Vt)| = |∂(Vs)| +

∑t
j=s+1 rank(Vj−1, vj). Since

the set of vertices in the locations form an independent set, rank(Vj−1, vj) =
rank(Ci, vj) for every j between s + 1 and t. This gives the equation |∂(Vt)| =
|∂(Vs)| +

∑t
j=s+1 rank(Ci, vj).

Hence if we start with an optimal permutation π and reorganize the inner
order at each location i to sort the vertices by rank with respect to Ci in non-
decreasing order, we get another optimal ordering with a fixed inner order for
each location. In such orderings the largest values of |∂(Vi)| occur either at
i = π(cj) − 1 or at i = π(cj) for some j between 1 and k. Since the rank of
a vertex v ∈ I with respect to Ci only depends on i and the type of v, we
can use this together with the fact that |∂(Vt)| = |∂(Vs)| +

∑t
j=s+1 rank(Ci, vj)

in order to give an integer linear programming formulation for the Cutwidth

problem.
For every type S and location i we introduce a variable xi

S that tells us
the number of vertices of type S that are at location i. For every i between 1
and k we add a variable yi which encodes rank(Vπ(ci)−1, ci) and the constant
ei = |N(ci) ∩ (C \ Ci)| − |N(ci) ∩ Ci−1|. For every type S and location i we
also compute the constant ei

S that indicates the rank of a vertex of type S with
respect to Ci. Finally we need a variable c that represents the cutwidth of G.
For the constraints, as for the Imbalance problem, we need to make sure the
variables xi

S represent a valid partitioning of I into L0, . . . , Lk. Finally we need
constraints to encode the rank of the vertex cover vertices and the connection
between the partitioning of I and the cutwidth c. This yields the following integer
linear program:
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min c

such that
∑

i

xi
S = |I(S)| for all S ⊆ C

yi = ei +
∑

{S⊆C|ci∈S}

( k∑

j=i

xj
S −

i−1∑

j=0

xj
S

)
for all i ∈ {0, . . . , k}

c ≥
i∑

j=0

yj +
i−1∑

j=0

∑

S⊆C

ej
S · xj

S for all i ∈ {1, . . . , k}

c ≥
i−1∑

j=0

yj +
i−1∑

j=0

∑

S⊆C

ej
S · xj

S for all i ∈ {1, . . . , k}

xi
S ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C

Since the value of fcw(π) is bounded by n2 and the value of any variable in
the integer linear program is bounded by n2, Theorem 2 implies that this integer
linear program can be solved in FPT time, yielding the following theorem.

Theorem 4. The Cutwidth problem parameterized by the minimum vertex
cover of the input graph is fixed parameter tractable.

5 Bandwidth: The Inner Order Is Structured I

In the Bandwidth problem the aim is to minimize the function fbw(π) =
maxuv∈E |π(u) − π(v)|. As for the previous cases we guess the ordering c1 <πc

. . . <πc ck of the vertices in C in an optimal permutation π. Since we now are
looking for the optimal permutation π that agrees with this ordering of the ver-
tices in C, we observe that for a vertex v ∈ I the only relevant neighbours in C
are the leftmost and rightmost neighbour. We can thus delete the edges from v
to all other neighbours of v. After this reduction every vertex in I has degree at
most 2, and thus the number of different types is bounded by k2 rather than 2k.

For Bandwidth, we are not able to determine the inner orders a priori,
contrary to the situation we had for Cutwidth. Instead we will show that there
is an optimal permutation where the inner orderings have a specific structure.
We say that an interval [a, b] on the integer line is uniform if all vertices π maps
to [a, b] have the same type. A zone is an inclusion maximal uniform interval, and
for a layout π of the vertices of G, the zonal dimension of π at location i, ζi(π),
is the number of zones inside [π(ci) + 1, π(ci+1) − 1]. The zonal dimension of π
is ζ(π) = maxk

i=0 ζi(π). Our approach consists of two parts. First we show that
there is an ordering π minimizing bandwidth such that ζ(π) ≤ k2(2k + 1) + 2k.
We then use this to show that Bandwidth parameterized by the size of the
minimum vertex cover of the input graph is fixed parameter tractable.

Lemma 1. [�] For a graph G = (C ∪ I, E), there is an optimal bandwidth or-
dering π with ζ(π) ≤ k2(2k + 1) + 2k.
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So, how can one use Lemma 1 to give an integer linear program for the Band-

width problem? The trick is to guess the correct values of ζi(π) for every i and
guess which type of vertices appears in each zone. We can do this at a cost of a
factor (3k3)k+1(k2)3k3

= kO(k3) in the running time. Note that the zones are or-
dered from left to right. We can now set up an integer linear program where the
variables encode how many vertices there are in each zone. Let xi be a variable
that encodes the number of vertices in zone number i from the left. For each
type S ⊆ C such that I(S) is nonempty, we let Z(S) be the set of integers such
that for each i ∈ Z(S) we have guessed that the vertices in the zone i have type
S. Let lS and rS be the smallest and largest numbers in Z(S) respectively. Now,
for an integer 1 ≤ i ≤ k we let ei be the number of zones guessed to be to the
left of ci. Finally, for an integer i between 1 and k and a type S we define the
constant t1(i, S) to be the number of vertices from C to the right of zone number
lS and to the left of ci. Similarly, let t2(i, S) be the number of vertices from C
to the left of zone number rS and to the right of ci. Having made the discussed
guesses, we can formulate the Bandwidth problem as an integer linear program
as follows:

min b

such that
∑

i∈Z(S)

xi = |I(S)| for all S ⊆ C : I(S) 	= ∅

b ≥ j − i − 1 +
ej∑

q=ei+1

xq for all cicj ∈E

b ≥ t1(i, S) +
ei∑

j=lS

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 	= ∅, ci ∈S

b ≥ t2(i, S) +
rS∑

j=ei+1

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 	= ∅, ci ∈S

xi ≥ 0 for all i ∈ {0, . . . , k}

(1)

Because the value of fbw(π) is bounded from above by n and the value of any
variable in the integer linear program is bounded by n, Theorem 2 implies that
this integer linear program can be solved in FPT time, yielding the following
theorem.

Theorem 5. [�] The Bandwidth problem parameterized by the size k of the
minimum vertex cover of the input graph can be solved in time kO(k3)n and
polynomial space.

6 Distortion: The Inner Order Is Structured II

In this section we consider the parametrized complexity of embedding graph
metrics into the real line, parameterized by the size of the minimum vertex
cover of the input graph. Given an undirected graph G = (V, E), a natural
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metric associated with G is M(G) = (V, D) where the distance function D is the
shortest path distance between u and v for each pair of vertices u, v ∈ V . Given
a graph metric M and another metric space M ′ (like real line) with distance
functions D and D′, a mapping f : M → M ′ is called an embedding of M into
M ′. The mapping f has contraction cf and expansion ef if for every pair of
points p, q in M , D(p, q) ≤ D′(f(p), f(q)) · cf and D(p, q) · ef ≥ D′(f(p), f(q))
respectively. A mapping f has distortion d if (ef ·cf ) is at most d. We say that f
is non-contracting if cf is at most 1. A non-contracting mapping f has distortion
d if ef is at most d. As observed by several authors before [9,15], the problem
of finding a minimum distortion embedding of a graph metric into the line can
be expressed as a problem of finding the permutation π : V → {1, 2, . . . , n} that
minimizes fdi(π) = maxuv∈E

∑π(v)−1
i=π(u) D(vi, vi+1).

Lemma 2 ([9]). A graph G = (V, E) has a distortion d embedding f into the
real line if and only if there is a permutaion π : V → {1, 2, . . . , n} such that
fdi(π) ≤ d.

For a permutation π and two vertices u and v such that u <π v we define
Dπ(u, v) =

∑π(v)−1
i=π(u) D(vi, vi+1). If v <π u then Dπ(u, v) is defined to be Dπ(v, u).

We give a fixed parameter tractable algorithm for the Distortion problem pa-
rameterized by the size of the minimum vertex cover of the input graph. Our
approach is similar to, albeit more involved than, the algorithm presented for
the Bandwidth problem. As for the previous problems, we iterate over all k!
ways to order the vertices of C into c1 <πc . . . <πc ck. We proceed to show that
there is an optimal permutation π such that ζ(π) ≤ (4k + 1)22k

.

Lemma 3. [�] For a graph G = (C ∪ I, E), there is an optimal distortion or-
dering π with ζ(π) ≤ (4k + 1)22k

.

Using Lemma 3 we can give an algorithm for the Distortion problem simi-
lar to the algorithm for Bandwidth. The algorithm proceeds excactly as for
Bandwidth with the only differences being that the zonal dimension is much
larger, and that one has to be careful to introduce constants that encode the
distance between two consecutive vertices in the ILP. Notice that since the zonal
dimension is not polynomial in k for the Distortion problem, we do not obtain
a polynomial space algorithm.

Theorem 6. The Distortion problem parameterized by the minimum vertex
cover of the input graph is fixed parameter tractable.

7 Conclusion and Discussions

In this paper we considered parameterization by vertex cover number of the
graph, a structural parameter stronger than the treewidth. This enabled us to
show that graph layout problems Cutwidth, Bandwidth, Imbalance and
Distortion are FPT parameterized by vertex cover number of the graph. This
is in contrast to the parameterization by treewidth for which the paramterized
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complexity of these problems is open. The structural parameterization of vertex
cover number also brought forward the technique of bounded variable integer
linear programming to importance. We believe that this (underused) powerful
result will become one of the basic tools in classifying whether a problem is FPT,
as well as in designing practical algorithms, because p-ILP is well solved for p
up to 1000.

One may wonder whether there exists a problem which is not FPT for graphs
of bounded vertex cover number. This in indeed the case, as List Coloring

remains W [1]-hard even for graphs of bounded vertex cover number. An im-
portant graph layout problem is Optimal Linear Arrangement where the
objective is to minimize the sum of |∂Vi|. We can show that this problem is in
XP by giving an algorithm of time complexity nf(k) when parameterized by the
vertex cover number of the input graph. The main difficulty we face in encoding
this problem as ILP is that the objective function is not linear, but quadratic.
Hence in this direction the following questions still remain unanswered.

– Is Optimal Linear Arrangement FPT parameterized by the vertex cover
number of the input graph?

– Is Cutwidth FPT parameterized by the treewidth of the input graph?
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