
An Efficient Scaling Algorithm for the
Minimum Weight Bibranching Problem

Maxim A. Babenko�

Moscow State University
max@adde.math.msu.su

Abstract. Let G = (V G, AG) be a digraph and let S � T be a biparti-
tion of V G. A bibranching is a subset B ⊆ AG such that for each node
s ∈ S there exists a directed s–T path in B and, vice versa, for each
node t ∈ T there exists a directed S–t path in B.

Bibranchings generalize both branchings and bipartite edge covers.
Keijsper and Pendavingh proposed a strongly polynomial primal-dual
algorithm that finds a minimum weight bibranching in O(n′(m+n log n))
time (where n := |V G|, m := |AG|, n′ := min(|S| , |T |)).

In this paper we develop a weight-scaling O(m
√

n log n log(nW))-
time algorithm for the minimum weight bibranching problem (where W
denotes the maximum magnitude of arc weights).

1 Introduction

In a directed graph G, the sets of nodes and arcs are denoted by V G and AG,
respectively. A similar notation is used for paths, cycles, and etc.

Consider a digraph G and a fixed bipartition S � T of V G. A subset B ⊆ AG
is called a bibranching if the following conditions are met:

– for each s ∈ S, set B contains a directed path from s to some node in T ;
– for each t ∈ T , set B contains a directed path from some node in S to t.

Bibranchings were introduced in [Sch82]. In the present paper we study the
minimum weight bibranching problem, which is formulated as follows:

(BB) Given G, S, T , and arc weights w : AG → R+, find a bibranching B
whose weight w(B) is minimum.

Hereinafter we assume that every real-valued function f : U → R is additively
extended to the family of subsets of U (denoted by 2U) by f(A) :=

∑
a∈A f(a).

In particular, w(B) denotes the sum of weights of arcs in B.
Minimum weight bibranchings provide a common generalization to a pair of

well-known combinatorial problems. Firstly, if S = {s} then (BB) asks for a
minimum weight s-branching (a directed tree rooted at s that covers all nodes
of G). An O(m + n log n) algorithm for the latter task is known [GGSR86]
� Supported by RFBR grants 05-01-02803 and 06-01-00122.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 232–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient Scaling Algorithm 233

(here n := |V G| and m := |AG|; we are assuming throughout the paper that
n ≤ m ≤ n2). Another special case arises when graph G only contains S–T
arcs (but no T –S, S–S, or T –T arcs). Then the definition of a bibranching
reduces to that of a bipartite edge cover. The minimum weight bipartite edge
cover problem (call it (EC) for brevity) seems to be harder: no strongly polyno-
mial o(mn)-algorithm is known so far. Problem (EC) can be solved by finding a
maximum weight bipartite matching in O(n′(m + n log n)) time [FT87] (where
n′ := min(|S| , |T |)). Keijsper and Pendavingh [KP98] generalized the latter
shortest-path augmentation method to solve (BB) in the same time bound.

On the other hand, many optimization problems may be solved faster if
weights are known to be integral. The corresponding algorithms are based on
scaling technique and achieve time bounds that are, in a sense, better than of
their strongly-polynomial counterparts. A typical example is a scaling algorithm
for bipartite matching problems [GT89], which runs in O(m

√
n log(nW)) time

(hereinafter W denotes the maximum magnitude of weights). The latter ap-
proach can also be adopted to solve (EC) and leads to an algorithm with the
same time bound.

Similar ideas are also applicable to general min-cost flow problems [GT87].
However, when the structure of dual solutions becomes non-trivial (i.e. when one
needs exponentially many dual variables) the algorithm and its complexity anal-
ysis may become much more involved. A good example is the minimum weight
perfect matching problem in general (non necessarily bipartite) graphs, which is
solved by Gabow and Tarjan in O(m

√
nα(m, n) log n log(nW)) time [GT91].

Since (BB) involves solving a linear program with inequalities corresponding
to all possible subsets of S and T , our approach is of no exception. We present an
O(m

√
n log n log(nW))-time weight scaling algorithm for (BB). It is based on

the general notion of ε-optimality (see, e.g., [GT87]), the augmentation proce-
dure from [KP98], and attracts some additional combinatorial ideas to deal with
dual solutions during scaling steps. Also, a variant of the blocking augmentation
technique [Din80] is employed.

Note that the complexity of our algorithm coincides (up to a logarithmic
factor) with that of the best known scaling algorithm [GT89] for solving a special
case of (BB), namely (EC).

The rest of the paper is organized as follows. Section 2 gives the needed
formal background and introduces the linear programming formulation of (BB).
Section 3 and Section 4 outline a high-level description of the algorithm. Section 5
bounds the number of primal and dual steps performed by the algorithm. Due
to lack of space some technical proofs and implementation details are omitted
and will appear in the full version of the paper.

2 Preliminaries

First, we need some additional definitions and notation. Let G be a digraph and
X be a subset of nodes. Then δin

G (X) (resp. δout
G (X) and γG(X)) denotes the set

of arcs entering X (resp. leaving X and having both endpoints in X). When it is

234 M.A. Babenko

clear from the context which graph G is meant, it is omitted from the notation.
Also, when X = {v} we drop curly braces and write just δin(v) and δout(v).

For a graph G and a subset X ⊆ V G let G[X] denote the subgraph of G
induced by X (i.e. the graph obtained from G by removing all nodes in V G−X).

Consider a bipartition S � T of V G. For a subset X ⊆ S we put δ(X) :=
δout(X), similarly for X ⊆ T we put δ(X) := δin(X). If a ∈ δ(X) then arc a is
said to cover X . For a set A ⊆ AG, the set of nodes covered by A is defined as
the union of the sets of nodes covered by the individual elements of A. Clearly,
(BB) prompts for a minimum weight subset B ⊆ AG that covers every subset
in 2S ∪ 2T .

Let us introduce an important notion of graph contraction. To contract a set
U ⊆ V H in a graph H means to replace nodes in U by a single complex node (also
denoted by U). Arcs in γ(V H − U) are not affected, arcs in γ(U) are dropped,
and arcs in δin(U) (resp. δout(U)) are redirected so as to enter (resp. leave) the
complex node U . The resulting graph is denoted by H/U . Note that this graph
may contain multiple parallel arcs. We identify arcs in H/U with their pre-images
in H . If H ′ is obtained from H by an arbitrary sequence of contractions, then
H ′ = H/U1/ . . . /Uk for a certain family of disjoint subsets U1, . . . , Uk ⊆ V H
(called the maximal contracted sets). Each node in H ′ corresponds to a subset
of nodes in H : nodes v ∈ V H − (U1 ∪ . . . ∪ Uk) correspond to singletons {v},
complex nodes correspond to sets Ui.

For a set A ⊆ AG, we shall write ASS , AST , and ATT to denote the sets
of S–S, S–T , and T –T arcs in A, respectively. Note that any minimum weight
bibranching need not contain T –S arcs (as their removal preserves the required
connectivity and can only decrease the total weight). Hence, we shall assume
that graph G contains no T –S arcs.

We call a bibranching B canonical if every its proper subset B′ ⊂ B is not a
bibranching. The following observations are easy:

Fact 1. For each bibranching B there exists and can be found in O(m) time a
canonical bibranching B′ ⊆ B.

Fact 2. Any canonical bibranching contains at most n arcs.

Consider the following linear program:

(P) minimize
∑

(w(a)x(a) : a ∈ AG)
subject to x : AG → R+,

x(δ(X)) ≥ 1 for each X ∈ 2S ∪ 2T .

The program dual of (P) is:

(D) maximize
∑ (

π(X) : X ∈ 2S ∪ 2T
)

subject to π : 2S ∪ 2T → R+,
wπ(a) ≥ 0 for each a ∈ AG.

Here wπ := w − ϑπ are the reduced weights of arcs w.r.t. π, and the function
ϑπ : AG → R+ is defined by

ϑπ(a) :=
∑

(π(X) : a covers X) .

An Efficient Scaling Algorithm 235

It is known [Sch03] that (P) describes the upper convex hull of the incidence
vectors of all bibranchings in G. Hence, finding a bibranching of the minimum
weight (under the assumption w ≥ 0) amounts to finding a 0,1-solution to (P).

Weak duality for (P) and (D) implies that
∑

a w(a)x(a) ≥
∑

X π(X) holds for
every pair of admissible solutions x and π. By strong duality, the latter turns into
equality if x and π are optimal. Moreover, (P) is known [Sch03] to be totally dual
integral, that is, if all weights w are integers then there exists an optimal dual
solution π that is integer. Hence, the polyhedron determined by (P) is integral.

The complementary slackness conditions for (P) and (D) (giving an optimality
criterion for solutions x and π to these programs) are viewed as:

(1) if x(a) > 0 for a ∈ AG then wπ(a) = 0;

(2) if π(X) > 0 for X ∈ 2S ∪ 2T then x(δ(X)) = 1.

For a set B ⊆ AG and a function π : 2S ∪ 2T → R+ we say that B is π-
consistent if π(X) > 0 implies |B ∩ δ(X)| ≤ 1 for each X ∈ 2S ∪2T . Consistency
is closely related to the complementary slackness conditions, in particular, if B
is a bibranching then its π-consistency is just (2).

Fact 3. For an arbitrary function π : 2S ∪2T → R+ and a set B ⊆ AG one has

ϑπ(B) ≥
∑

(π(X) : B covers X) .

Additionally, if B is π-consistent then the above inequality turns into equality.

3 Algorithm

Recall that a family F of subsets is called laminar if for any X, Y ∈ F one either
has X ⊆ Y , or Y ⊆ X , or X ∩ Y = ∅. Also, let supp (f) denote the support set
of a function f , i.e. {x | f(x)
= 0}.

The algorithm maintains a laminar family F ⊆ 2S ∪2T and a function π : 2S ∪
2T → Z+. For X ∈ F , the shell S(X) of X is the graph obtained from G[X]
by contracting all proper maximal subsets Y ⊂ X , Y ∈ F . Let G denote the
graph obtained by contracting all maximal sets of F in G. Put S (resp. T) to be
the image of S (resp. T) in G under these contractions. Let S0

π(X) denote the
subgraph of S(X) consisting of arcs a with wπ(a) = 0.

For a set of nodes Y in G (or in S(X) for X ∈ F) we write Ỹ to denote the
corresponding pre-image subset in V G. When Y = {y} we write just ỹ instead
of {̃y}.

We introduce the following set of properties:

(D1) F is laminar and supp (π) ⊆ F ;
(D2) S0

π(X) is strongly connected for each X ∈ F ;
(D3) wπ(a) ≥ 0 for all a ∈ AG.

Property (D3) is just the feasibility of a dual solution π while (D1) and (D2)
introduce some additional structural requirements for π.

236 M.A. Babenko

Next, the algorithm maintains a subset B ⊆ AG, which will be referred to as
a partial bibranching. Consider the following properties:

(P1) set BSS (resp. BTT) forms a directed out- (resp. in-) forest in G[S] (resp.
in G[T]), each arc in BST covers a pair of roots of the said forests;

(P2) if a ∈ BSS ∪ BTT then wπ(a) = 0; if a ∈ BST then wπ(a) ≤ 1;
(P3) if v ∈ V G is covered by more than one arc in B then π(ṽ) = 0 (c.f. (2)).

Here by an in- (resp. out-) forest we mean an acyclic set of arcs X such that
for each node v at most one arc in X enters (resp. leaves) v. If no arc in X enters
(resp. leaves) node v then v is said to be a root of X .

Property (P1) is required mostly by technical reasons that will become evident
later. Property (P2) may be regarded as a relaxation of (1) and (P3) directly
corresponds to (2).

The algorithm employs bit scaling and works as follows. Let w0 : AG → Z+
denote the input weight function. The algorithm starts with w := 0, π := 0,
F := ∅ and puts B to be an arbitrary bibranching in G obeying (P1) (the latter
can be found in O(m) time by an obvious routine). In case B does not exist, the
algorithm halts.

Each scaling step takes a weight function w from the previous iteration, a
bibranching B ⊆ AG in G, a function π, and a collection F altogether obeying
properties (D1)–(D3), (P1)–(P3). The weights w(a) are doubled and some of
them are increased by 1 (namely, those having 1 at the corresponding position
of the binary representation of w0(a)). Changing weights w may lead to violation
of the above properties so the goal of the scaling step is to restore them. The
necessary details will be given in Section 4.

Lemma 1. Suppose that the current scaling step is complete, so properties
(D1)–(D3), (P1)–(P3) hold for F , π, and B. Also, let B be a bibranching
in G. Then there exists a canonical π-consistent bibranching B in G such that:
(i) w(B) ≤ w(B), (ii) wπ(a) = 0 for each a ∈ BSS ∪ BTT ; and (iii) wπ(a) ≤ 1
for each a ∈ BST .

Proof. Firstly, with the help of Fact 1 set B is turned into a canonical bibranch-
ing in G by removing some arcs. Next, let X ∈ F be one of the maximal con-
tracted sets in V G. We describe procedure Expand(X) that extends B into the
shell S(X). For simplicity’s sake suppose X ⊆ S, the other case is symmetric.
Remove X from F thus partly uncontracting graph G. Let X ′ denote the set
of nodes in new G arising from X during this uncontraction. Let R denote the
set of nodes in X ′ that are covered by arcs in B. One has R
= ∅ since B was
a bibranching before set X got removed from F . We grow an out-forest F in
the subgraph G[X ′] such that: (i) R is the set of roots of F ; (ii) V F = X ′; (iii)
wπ(a) = 0 holds for each a ∈ AF . Property (D2) shows that this forest always
exists. Now we add the arcs of F to B. Clearly, the new set B is a canonical
bibranching in G.

Applying Expand to the elements of F (in an appropriate order) one gets a
bibranching B in G that obeys the required properties.

An Efficient Scaling Algorithm 237

Weights w are iteratively scaled, as explained above, until achieving the equality
w = w0. Totally it takes �log W � scaling steps. Next, we put t := �log n�+1 and
perform t additional scaling steps, doubling w each time. Finally, the algorithm
applies Lemma 1 to construct the final bibranching in G.

Let us prove that this general scheme is correct. Put Π :=
∑

X π(X) and
estimate the weight of an optimal bibranching as follows.

Lemma 2. Property (D3) implies w(B) ≥ Π for any bibranching B in G.

Proof. By definition B covers each subset in 2S ∪2T . Hence, by Fact 3 and (D3)
one has w(B) = wπ(B) + ϑπ(B) ≥

∑
X π(X) = Π , as required.

Lemma 3. If B is a canonical bibranching in G and properties (P2) and (P3)
hold (for G := G, B := B) then w(B) ≤ Π + n.

Proof. By Fact 2, Fact 3, and property (P2) one has w(B) = wπ(B)+ϑπ(B) ≤
n +

∑
X π(X) = n + Π .

Theorem 4. The algorithm constructs a minimum weight bibranching.

Proof. Let B, w, and π denote the corresponding objects after the last scaling
step. Put B to be a canonical bibranching obtained from B by Lemma 1. Let
Bmin be a minimum weight bibranching (w.r.t. w or, equivalently, w0). One may
assume by Fact 1 that Bmin is canonical. Lemma 2 and Lemma 3 imply that
w(Bmin) ≥ Π and w(B) ≤ Π + n, so w(Bmin) ≤ w(B) ≤ w(Bmin) + n. Recall,
each of the last t scaling steps doubles arc weights. Since all initial weights w0
are integers, w(a) is divisible by 2t for each a ∈ AG. Hence, so is w(B). The
choice of t implies n < 2t, therefore w(B) = w(Bmin), so B is optimal.

4 Scaling Step

Each scaling step consists of the following four stages: doubling stage, shell stage,
ST stage, and TS stage.

First, the doubling stage is executed: arc weights w are multiplied by 2 and
some of them are increased by 1, as described in Section 3. Also, duals π are
doubled. Put F := supp (π) and B := ∅ (hence, any previous bibranching is
discarded). As earlier, let G denote the graph obtained from G by contracting
all maximal sets in F . Obviously, properties (D1), (D3), (P1)–(P3) now hold.
One needs to solve the following two tasks:

– restore property (D2) by ensuring that graphs S0
π(X), X ∈ F , are strongly

connected;
– construct a bibranching B in G obeying properties (P1)–(P3).

The shell stage is executed to deal with (D2). The algorithm scans the sets
in F choosing an inclusion-wise minimal unscanned set at each iteration. Let
X ∈ F be the current set to be scanned. Procedure Normalize-Shell(X) is
called to adjust duals π and ensure (D2) for X or remove X from supp (π) (and
hence also from F).

238 M.A. Babenko

Suppose X ⊆ S, the case X ⊆ T is analogous. Normalize-Shell performs a
series of iterations similarly to the minimum weight branching algorithm [Edm67,
GGSR86].

More precisely, it maintains a directed out-forest FS containing all nodes
of X and consisting of some arcs a with wπ(a) = 0. Initially V FS := V S(X)
and AFS := ∅. If S(X) is a single node graph then property (D2) is restored
for X , Normalize-Shell(X) terminates. Otherwise, an arbitrary tree W in FS

is picked. Let r be the root of W . Suppose that all arcs leaving r (in S(X)) have
positive reduced weights. Put

μ1 := min
(
wπ(a) : a ∈ δout

S(X)(r)
)

, μ2 := π(X), μ := min(μ1, μ2).

Adjust the duals as follows:

π(r̃) := π(r̃) + μ,
π(X) := π(X) − μ.

These adjustments decrease the reduced weights of all arcs in S(X) leav-
ing r by μ. Also, r̃ is added to supp (π). By the choice of unscanned sets for
Normalize-Shell, property (D2) holds for r̃ and all its subsets in F . Set r̃ is
also marked as scanned, so Normalize-Shell is never called for it.

If π(X) = 0 holds after the adjustment then set X vanishes from supp (π),
we remove X from F and halt Normalize-Shell(X). We also say that set X
dissolves during the execution of the shell stage.

Now suppose that there is an arc a ∈ δout
S(X)(r) such that wπ(a) = 0. Two

cases are possible. Firstly, a may connect W with another tree W ′ in FS . Then,
a is added to FS thus linking W and W ′. Secondly, a may connect r to a node
in the very same tree W . In this case, a cycle of arcs with zero reduced weights
is discovered. Let Y be the set of nodes of this cycle (in S(X)). Algorithm
contracts Y in S(X), adds Ỹ to F , and proceeds to the next iteration.

Once Normalize-Shell(X) is called for all sets X ∈ F (in an appropriate
order), property (D2) gets restored. Normalization procedure for a subset X ⊆ T
is the same except for it considers sets δout rather than δin.

The remaining part of the scaling step builds a bibranching B in G that
satisfies properties (P1)–(P3). Firstly, the ST stage is executed. It starts with
B = 0 and applies a certain augmenting path approach aiming to update B so
that it covers all subsets in 2S . Next, S and T parts are exchanged and a similar
TS stage is executed, thus completing the scaling step. We shall only describe
the ST stage since the TS stage is essentially symmetric.

Similarly to the shell stage, a directed out-forest FS obeying V FS = S is
maintained in graph G. The latter forest satisfies the following conditions:

(F1) wπ(a) = 0 holds for all a ∈ AFS ;
(F2) wπ(a) > 0 holds for each root node r ∈ S and an S–S arc a leaving r;
(F3) BSS ⊆ AFS ;
(F4) if a node v ∈ S is not covered by B then v is a root of FS .

An Efficient Scaling Algorithm 239

Forest FS is initially constructed by putting V FS := S and AFS := BSS (the
latter set forms a directed out-forest according to (P1)). Next, Normalize-
Forest routine is applied to ensure (F2) and (F4). The latter works as follows.
If (F2) fails for a root node r and an S–S arc a leaving r then two cases are
possible. Firstly, a may connect a tree W of FS rooted at r with another tree W ′

in FS . Then, a is added to FS thus linking W and W ′. Secondly, a may connect
r to a node in the very same tree W . In this case, a cycle consisting of arcs with
zero reduced weights is discovered. Let Y denote the set of nodes of this cycle
(in G). The algorithm puts B := B \ γ(Y), AFS := AFS \ γ(Y), contracts Y in
G, and adds Ỹ to F . Note that at this point π(Ỹ) = 0 holds.

Next, if (F4) fails for a node v ∈ S, then v is not a root of FS and v is not
covered by B. To fix this, an arc a ∈ AFS that covers v is fetched and added
to B. Property (F1) implies the validity of (P2). Also, v is covered by exactly
one arc in B after the augmentation, so (P3) holds.

This completes the description of Normalize-Forest.
Once forest FS obeying (F1)–(F4) is constructed, the algorithm builds an

auxiliary digraph H . Put V H := V G and proceed as follows:

– if a
∈ B is an S–T arc with wπ(a) = 0 then add a to H (these arcs are called
forward);

– if a ∈ B is an S–T arc with wπ(a) = 1 then add a to H but change its
direction to the opposite (these arcs are called backward).

A node v ∈ S is said to be initial if B does not cover v. By (F4) only root
nodes of FS may be initial. A node v is called final if any of the following cases
applies:

1. v ∈ T and π(ṽ) = 0;
2. v ∈ T and v is covered by a T–T arc of B (the latter is unique by (P1));
3. v ∈ T and v is not covered by B;
4. v ∈ S and v is an inner node of FS ;
5. v ∈ S and v is covered by at least two S–T arcs of B.

A path in H connecting an initial node to a final node (with all intermediate
nodes neither initial nor final) is called augmenting. Suppose for a moment that
there exists an augmenting path P in H from an initial node s to a final node t. In
this case, a primal step is possible. We construct a set A(P) ⊆ AH as follows.
First, we add arcs that correspond to arcs of P (both forward and backward).
Second, we perform adjustments to account for the type of node t. In cases (1),
(3), and (5) we do nothing. In case (2) we add to A(P) the unique arc in BTT

that covers t. In case (4) we add to A(P) the unique arc in FS that leaves t.
The augmentation of B along P is performed by putting B := B�A(P) (here

� denotes the symmetric difference).

Lemma 4. The augmentation of B along P preserves properties (P1)–(P3),
(D1)–(D3), and (F1)–(F4). The set of nodes covered in V G by B strictly in-
creases. The set of initial nodes strictly decreases. The set of final nodes does
not increase. The arc set of H decreases by AP .

240 M.A. Babenko

The proof is carried out by a straightforward case-splitting, so we leave details
to the reader.

Note, that in order to achieve the desired time bound one cannot recompute
path P from scratch each time. Taking into account the monotonicity of the
sets of initial and final nodes, and the arc set of H , the blocking augmentation
technique is applied (see, e.g., [Din80]). The latter computes, one by one, a
sequence of augmenting paths and stops when there are no such paths left.
The total running time of this routine is O(m). Each of these paths is used for
augmenting B, as explained above.

A dual step is carried out when no more augmenting paths can be found.
Let S0 (resp. T 0) denote the set of nodes in S (resp. T) that are reachable from
initial nodes. Calculate the value of the adjustment parameter μ as follows:

μ1 := min
(
π(ṽ) : v ∈ T 0

)
,

μ2 := min
(
wπ(a) : a = (u, v) ∈ AG, u ∈ S0, v ∈ S

)
,

μ3 := min
(
wπ(a) : a = (u, v) ∈ AG, u ∈ S0, v ∈ T − T 0

)
,

μ4 := min
(
1 − wπ(a) : a = (u, v) ∈ B, u ∈ S − S0, v ∈ T 0

)
,

μ := min(μ1, μ2, μ3, μ4).

Clearly, (P2) implies that μ ≥ 0. Also, μ4 ∈ {0, 1, ∞} (moreover, case μ4 = 0 is
not possible, see Lemma 5 below).

A dual update is performed as follows:

π(ṽ) := π(ṽ) + μ for each v ∈ S0,
π(ṽ) := π(ṽ) − μ for each v ∈ T 0.

If the dual π(ṽ) of some complex node v ∈ T 0 drops to zero then the algorithm
calls Expand(ṽ) to remove ṽ from F , uncontract (partly) graph G, and extend
B into the shell of ṽ.

Also, suppose wπ(a) = 0 holds for some a = (u, v) ∈ AG, u ∈ S0, v ∈ S
after the update. Then, node u must be a root of FS and property (F2) fails.
Procedure Normalize-Forest is called to restore it.

One can see the following:

Lemma 5. If no augmenting path exists in H then 0 < μ < ∞. The dual step
preserves properties (P1)–(P3), (D1)–(D3), and (F1)–(F4), does not change the
set of initial nodes, and does not decrease the set of reachable nodes.

If an augmenting path arises after these changes, the dual step completes and
a primal step is executed. Otherwise, the next value of μ is calculated and the
process of changing π proceeds.

The algorithm changes B, π, and F by executing primal and dual steps al-
ternatively. It stops when B covers all nodes in S. Then, parts S and T are
exchanged and the TS stage runs until B covers both S and T . This way, the
requested bibranching B is constructed, the scaling step completes.

An Efficient Scaling Algorithm 241

5 Complexity Analysis

In this section we present a sketch of the efficiency analysis. Our immediate goal
is to prove an O(

√
n) bound for the number of primal and dual steps during each

scaling step. Hereinafter w, π0, F0, and G0 denote the corresponding objects after
the doubling stage. Similarly, we use notation π1, F1, and G1 when referring to
the state immediately after the shell stage.

Lemma 6. There exists a canonical π1-consistent bibranching B1 ⊆ AG obey-
ing wπ1(B1) ≤ 6n.

Proof. Let B0 be a bibranching in G0 that was constructed by the previous
scaling step (or just an arbitrary bibranching in G for the first invocation of the
scaling step). By removing an appropriate set of arcs from B0, one may assume
that B0 is canonical, see Fact 1. Property (P2) and the structure of the doubling
stage imply that wπ0(a) ≤ 3 holds for each a ∈ B0.

We now gradually transform graph G0 into G1 and, simultaneously, B0 into
a bibranching B1 in G1 such that wπ1(B1) is small and (P3) holds for B := B1,
π := π1. We denote the current graph by G and the current bibranching by B.
Initially, put G := G0 and B := B0. The difference between G0 and G1 is that
some maximal sets in supp (π0) could have dissolved during the shell stage. The
corresponding dissolved nodes, therefore, are replaced by certain subgraphs.

We enumerate the nodes of G0, let v be the current one. If ṽ /∈ supp (π0) then
v is a simple node (ṽ = {v}), it remains simple in G1. No change is applied to G
and B. Note that the reduced weights of arcs covering v are not changed during
the shell stage and, thus, do not exceed 3.

Next, suppose ṽ ∈ supp (π0). We assume that ṽ ⊆ S (the other case is sym-
metric). Property (P3) implies that in G0 node v is covered by a unique arc,
say a ∈ B0. Let the tail of arc a in G be w. Applying (D2) iteratively, we con-
struct an out-tree W in G such that: (i) W is rooted at w; (ii) V W = ṽ; (iii) if
X ∈ supp (π0) and X ⊆ ṽ then X is covered by exactly one arc in A := AW ∪{a};
(iv) every arc a ∈ AW was of zero reduced weight prior to the doubling stage.
Clearly, wπ1(a) ≤ 3 holds for every a ∈ A.

Update G and B as follows. First, uncontract ṽ completely and add AW
to B. Since node w is reachable from every node in ṽ by arcs in AW , it follows
that B remains a bibranching. Next, contract the maximal sets X ∈ supp (π1)
such that X ⊆ ṽ and update B accordingly. Let v denote the image of ṽ under
these contractions. (It is possible that the whole set ṽ gets contracted again,
this happens when ṽ ∈ supp (π1); in this case ṽ did not dissolve during the call
Normalize-Shell(ṽ).)

The above contractions may remove some arcs from B (more precisely, exactly
those arcs whose head and tail nodes are simultaneously contained in the same
maximal contracted set). However, B remains a bibranching since contraction
of an arbitrary subset of S- or T -part of the graph preserves the required con-
nectivity. Finally, we apply Fact 1 and remove all redundant arcs from B (in an
arbitrary way) turning it into a canonical bibranching.

242 M.A. Babenko

Recall that initially v was covered by the unique arc a. Now v is expanded
into some set of nodes, namely v, and some arcs from γ(ṽ) are added to B.
Canonicity implies that every node in v is covered by a unique arc from B. This
way, (P3) follows for B.

Let us estimate the total reduced weight of all newly added arcs in B. To
this aim, we bound wπ1(A) (since B receives some subset of arcs from A and
reduced weights of the omitted arcs are non-negative). We consider the following
two subfamilies of supp (π0) and supp (π1):

F0 := {X ∈ supp (π0) | X ⊆ ṽ} , F1 := {X ∈ supp (π1) | X ⊆ ṽ} .

During Normalize-Shell, each time the dual variable corresponding to a set
X ∈ 2S (resp. X ∈ 2T) is increased by μ, the dual variable corresponding to
some other set Y ∈ 2S (resp. Y ∈ 2T) is decreased by the same value μ. Hence,

∑
(π0(X) : X ∈ F0) =

∑
(π1(X) : X ∈ F1) .

Also, by Fact 3 it follows that

wπ0(A) = w(A) − ϑπ0(A) = w(A) −
∑

(π0(X) : X ∈ F0) ,
wπ1(A) = w(A) − ϑπ1(A) ≤ w(A) −

∑
(π1(X) : X ∈ F1) .

Therefore,
wπ1(A) ≤ wπ0(A) ≤ 3 |A| = 3 |ṽ| .

The above procedure is applied to each node v ∈ V G0 and eventually stops
with G = G1. The final set B is denoted by B1. Let us estimate its reduced
weight wπ1(B1). First, B1 gets at most n arcs that cover simple nodes in G0;
each of those arcs has a reduced weight not exceeding 3. Second, each complex
node v ∈ V G0 generates a set of arcs with total reduced weight not exceeding
3 |ṽ|. Summing these bounds, one gets:

wπ1(B1) ≤ 3n + 3n = 6n.

Finally, to get the desired bibranching B1 in G we apply Expand routine and
extend B1 into the maximal contracted sets of G1. This step only adds arcs of
zero reduced weight wπ1 . Hence, wπ1(B1) = wπ1(B1) ≤ 6n holds.

Lemma 7. Let π : 2S ∪ 2T → R+ be an arbitrary function and B ⊆ AG be an
arbitrary π-consistent arc set satisfying properties (D3) and (P2) (for G := G,
B := B). Then

Δ(π, π1, B) :=
∑(

π(X) − π1(X) : X is not covered by B
)

≤ 6n + wπ(B).

Proof. Consider the duals π1 (at the moment just before the ST stage) and the
canonical bibranching B1 constructed in Lemma 6. Put

Q :=
∑

a∈AG

(
χB1(a) − χB(a)

)(
wπ1(a) − wπ(a)

)
.

An Efficient Scaling Algorithm 243

(Here χU denotes the incidence vector of an arc set U , i.e. the function that
equals 1 on U and 0 on AG − U .)

Taking into account equalities wπ = w − ϑπ and wπ1 = w − ϑπ1 one gets

Q =
∑

a∈AG

(
χB1(a) − χB(a)

)(
ϑπ(a) − ϑπ1(a)

)
=

= ϑπ(B1) + ϑπ1(B) − ϑπ1(B1) − ϑπ(B).

Since B is π-consistent and B1 is π1-consistent and covers each set in 2S ∪2T ,
Fact 3 implies

Q ≥
∑(

π(X) : X is covered by B1
)

+
∑(

π1(X) : X is covered by B
)

−

−
∑(

π1(X) : X is covered by B1
)

−
∑(

π(X) : X is covered by B
)

=

=
∑(

π(X) : X is not covered by B
)

−

−
∑(

π1(X) : X is not covered by B
)

=

=
∑(

π(X) − π1(X) : X is not covered by B
)
.

On the other hand,

Q =
∑

a∈AG

(
χB1(a) − χB(a)

)(
wπ1(a) − wπ(a)

)
≤

≤
∑

a∈AG

χB1(a)wπ1 (a) + χB(a)wπ(a) ≤

≤ wπ1(B1) + wπ(B) ≤ 6n + wπ(B).

Now the claim follows by transitivity.

Lemma 8. Each scaling step executes O(
√

n) primal and dual steps.

Proof. Let B ⊆ AG denote the current partial bibranching in the current
graph G at some intermediate moment during the ST or the TS stage.

Firstly, we prove that wπ(B) ≤ n. Indeed wπ(B) does not exceed the number
of S–T arcs in B (by property (P2)). The latter can only increase by 1 on each
primal step. The total number of primal steps does not exceed n (since each of
these steps increases the set of covered nodes).

Next, we proceed similarly to Lemma 1, apply Expand routine, and extend
B to a π-consistent set B ⊆ AG. This set obeys wπ(B) = wπ(B) ≤ n.

Consider the sum Δ(π, π1, B). Let X be a set such that π(X) < π1(X). It fol-
lows from the structure of the algorithm that B covers X . Indeed, when the dual
π(ṽ) decreases (for v ∈ V G), B covers v for otherwise v is a reachable final node of
type (3) and the dual adjustment is not possible. Also, if B covers v then B covers
ṽ and all its subsets. Therefore, all terms in Δ(π, π1, B) are non-negative.

Let us deal with the positive terms. Consider the ST stage. Initially, all nodes
in S are not covered by B. Then, during the course of the algorithm the number

244 M.A. Babenko

of uncovered nodes in S decreases. Let k dual steps be performed so far. For
each i (1 ≤ i ≤ k) let Di

1, . . . , D
i
li

be the subsets of S that correspond to all
uncovered nodes di

1, . . . , d
i
li

in S during the i-th dual step. For each fixed i,
the sets Di

1, . . . , D
i
li

are pairwise disjoint. Altogether, these sets form a laminar
family

D :=
{
Di

j | 1 ≤ i ≤ k, 1 ≤ j ≤ li
}

.

Each uncovered node di
j was initial (at the corresponding moment of time)

and, hence, reachable. Therefore, π(Di
j) was increased during the corresponding

dual step.
Moreover, for each set Di

j , i < k, 1 ≤ j ≤ li, there are exactly two possibilities:
(i) node di

j gets covered during the upcoming primal step and, hence, Di′

j′∩Di
j = ∅

for each i′ > i and 1 ≤ j′ ≤ li′ ; or (ii) node di
j gets incorporated into some

contracted set at the next dual step, hence, Di
j ⊆ Di+1

j′ for some 1 ≤ j′ ≤ li+1.
This way, sets Di

j form a forest F and for each its tree H with root Di
j the leafs

of H (these are some sets of the form D1
j , 1 ≤ j ≤ l1) are on the same depth i,

which is equal to the height of H . Let H1, . . . , Hlk denote the set of trees in F
rooted at Dk

1 , . . . Dk
lk

. All these trees are of height k. Also, for each 1 ≤ i ≤ k

and 1 ≤ j ≤ lk there exists a set Di
j in tree Hj such that B does not cover Di

j .
Therefore, each tree Hj adds a positive term of value

∑
μ to Δ(π, π1, B) (where∑

μ denotes the sum of the dual adjustments μ performed by the algorithm).
Now summing over all trees H1, . . . , Hlk one gets

Δ(π, π1, B) ≥
∑

μ · lk, (3)

On the other hand, by Lemma 7 it follows that

Δ(π, π1, B) ≤ 6n + wπ(B) ≤ 7n (4)

Since each dual step changes duals by at least 1, we conclude that k · lk ≤ 7n.
Hence, after �√n� dual steps at most O(

√
n) nodes in S may remain uncovered.

To cover these remaining nodes O(
√

n) primal steps are sufficient (as each such
step decreases the number of uncovered nodes by 1).

Next, consider the state after k dual steps in the TS stage and let, as earlier,
π and B ⊆ AG denote the current duals the current partial bibranching, respec-
tively. Put B ⊆ AG to be the result of expanding B. We have shown earlier that
there are no negative terms in Δ(π, π1, B). Moreover, the very same argument
(with S and T exchanged) applies, so one can construct subsets Di

j ⊆ T similarly
to the ST stage. Since each of these sets Di

j corresponds to an uncovered node
at some intermediate moment and the algorithm can only decrease duals of sets
that are covered, it follows that none of π(Di

j) is changed during the ST stage.
Thus, (3) and (4) hold for the TS stage as well, and the latter completes after
executing O(

√
n) primal and dual steps.

Taking the above Lemma 8 into account and applying the ideas from [Edm67,
GGSR86, FT87, KP98] one can implement the shell stage to run in O(m log n)

An Efficient Scaling Algorithm 245

time and both ST and TS stages to take O(m
√

n log n) time (the log n factor
in the above estimates comes from the complexity of priority queue operations,
maintenance of F , and computation of reduced arc weights; we employ binary
heaps and dynamic trees [ST83] for these purposes). Recall (see Section 3) that
the total number of scaling steps is �log W �+ �log n�+1 = O(log(nW)). Hence,
we conclude as follows:

Theorem 5. The running time of the algorithm is O(m
√

n log n log(nW)).

Acknowledgements

The author is thankful to Petr Mitrichev (Faculty of Mechanics and Mathemat-
ics, Moscow State University) and also to the anonymous referees for helpful
comments and suggestions.

References

[Din80] Dinic, E.: Algorithm for solution of a problem of maximum flow in net-
works with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1980)

[Edm67] Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B,
233–240 (1967)

[FT87] Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM 34(3), 596–615 (1987)

[GGSR86] Gabow, H., Galil, Z., Spencer, T., Tarjan, R.: Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Com-
binatorica 6(2), 109–122 (1986)

[GT87] Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by succes-
sive approximation. In: STOC 1987: Proceedings of the nineteenth annual
ACM conference on Theory of computing, pp. 7–18 (1987)

[GT89] Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems.
SIAM J. Comput. 18(5), 1013–1036 (1989)

[GT91] Gablow, H., Tarjan, R.: Faster scaling algorithms for general graph
matching problems. J. ACM 38(4), 815–853 (1991)

[KP98] Keijsper, J., Pendavingh, R.: An efficient algorithm for minimum-weight
bibranching. J. Comb. Theory, Ser. B 73(2), 130–145 (1998)

[Sch82] Schrijver, A.: Min-max relations for directed graphs. Ann. Discrete
Math. 16, 261–280 (1982)

[Sch03] Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
[ST83] Sleator, D., Tarjan, R.: A data structure for dynamic trees. Journal of

Computer and System Sciences 26(3), 362–391 (1983)

	An Efficient Scaling Algorithm for the Minimum Weight Bibranching Problem
	Introduction
	Preliminaries
	Algorithm
	Scaling Step
	Complexity Analysis
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

