
An Improved Divide-and-Conquer Algorithm for
Finding All Minimum k-Way Cuts�

Mingyu Xiao

School of Computer Science and Engineering
University of Electronic Science and Technology of China

Chengdu 610054, China
myxiao@gmail.com

Abstract. Given a positive integer k and an edge-weighted undirected
graph G = (V, E; w), the minimum k-way cut problem is to find a subset
of edges of minimum total weight whose removal separates the graph
into k connected components. This problem is a natural generalization
of the classical minimum cut problem and has been well-studied in the
literature.

A simple and natural method to solve the minimum k-way cut prob-
lem is the divide-and-conquer method: getting a minimum k-way cut
by properly separating the graph into two small graphs and then finding
minimum k′-way cut and k′′-way cut respectively in the two small graphs,
where k′ + k′′ = k. In this paper, we present the first algorithm for the
tight case of k′ = �k/2�. Our algorithm runs in O(n4k−lg k) time and can
enumerate all minimum k-way cuts, which improves all the previously
known divide-and-conquer algorithms for this problem.

Keywords: k-Way Cut, Divide-and-Conquer, Graph Algorithm.

1 Introduction

Let k be a positive integer and G = (V, E; w) a connected undirected graph
where each edge e has a positive weight w(e). A k-way cut of G is a subset of
edges whose removal separates the graph into k connected components, and the
minimum k-way cut problem is to find a k-way cut of minimum total weight.
The minimum k-way cut problem is a natural generalization of the classical
minimum cut problem and has great applications in the area of VLSI system
design, parallel computing systems, clustering, network reliability and finding
cutting planes for the travelling salesman problems.

The minimum 2-way cut problem is commonly known as the minimum cut
problem and can be solved in O(mn+n2 log n) time by Nagamochi and Ibaraki’s
algorithm [12] or Stoer and Wagner’s algorithm [19]. Another version of the
minimum 2-way cut problem is the minimum (s, t) cut problem, which asks us to

� The work was done when the author was a PhD student in Department of Computer
Science and Engineering, the Chinese University of Hong Kong.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 208–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Improved Divide-and-Conquer Algorithm 209

find a minimum cut that separates two given vertices s and t. The minimum (s, t)
cut problem can be solved in O(mn log n2/m) time by Goldberg and Tarjan’s
algorithm [4] and O(min(n2/3, m1/2)m log(n2/m) log U) time by Goldberg and
Rao’s algorithm [3], where U is the maximum capacity of the edge. Finding a
minimum cut or minimum (s, t) cut is a subroutine in our algorithms. In the
remainder of the paper, we use T (n, m) = ˜O(mn) to denote the running time of
computing a minimum cut or a minimum (s, t) cut in an edge-weighted graph.

For k = 3, Kamidoi et al. [8] and Kapoor [10] showed that the minimum
3-way cut problem can be solved by computing O(n3) minimum (s, t) cuts.
Later, Burlet and Goldschmidt [1] improved this result to O(n2) minimum cut
computations. He [6] showed that in unweighted planar graphs the minimum
3-way cut problem can be solved in O(n log n) time. Xiao [22] designed the first
polynomial algorithm for finding minimum 3-way cuts in hypergraphs.

Furthermore, Kamidoi et al. [8] and Nagamochi and Ibaraki [13] proved that
the minimum 4-way cut problem can be solved by computing O(n) minimum
3-way cuts. Nagamochi et al. [14] extended this result for minimum {5, 6}-way
cuts by showing that Tk(n, m) = O(nTk−1(n, m)), where k = 5, 6, and Tk(n, m)
is the running time of computing a minimum k-way cut. Those results lead to
˜O(mnk) time algorithms for the minimum k-way cut problem for k ≤ 6.

For general k, Goldschmidt and Hochbaum [5] proved that the minimum k-way
cut problem is NP-hard when k is part of the input and gave the first polyno-
mial algorithm for fixed k. The running time of their algorithm is O(nk2

T (n, m)).
Later, Kamidoi et al. [9] improved the running time to O(n4k/(1−1.71/

√
k)−34T

(n, m)). Karger and Stein [11] proposed a Monte Carlo algorithm with O(n2(k−1)

log3 n) running time. Recently, Thorup [20] designed an deterministic algorithm
with running time O(n2k), which is based on tree packing. Since this problem
is NP-hard for arbitrary k, it is also interesting to design approximation algo-
rithms for it. Saran and Vazirani[18] gave two simple approximation algorithms
with ratio of (2 − 2/k) and running time of O(nT (n, m)). Naor and Rabani [16]
obtained an integer program formulation of this problem with integrality gap 2,
and Ravi and Sinha [17] also derived a 2-approximation algorithm via the net-
work strength method. Zhao et al. [24] proved that the approximation ratio is
2 − 3/k for an odd k and 2 − (3k − 4)/(k2 − k) for an even k, if we compute a
k-way cut of the graph by iteratively finding and deleting minimum 3-way cuts in
the graph. Xiao et al. [23] determined the tight approximation ratio of a general
greedy splitting algorithm, in which we iteratively increase a constant number of
components of the graph with minimum cost. That result implies that the approx-
imation ratio is 2−h/k+O(h2/k2) for the algorithm that iteratively increases h−1
components.

Most deterministic algorithms for finding minimum k-way cuts, including the
two algorithms presented by Goldschmidt and Hochbaum [5] and Kamidoi et
al. [9], are based on a divide-and-conquer method. The main idea is to get a
minimum k-way cut by properly separating the graph into two small graphs and
then finding minimum k′-way cut and k′′-way cut respectively in the two small
graphs, where k′ + k′′ = k. We say that cut C = [X, X] is an (h, k − h)-cut of

210 M. Xiao

G, if there is a minimum k-way cut Ck = [Y1, · · · , Yh, Yh+1 · · · , Yk] of G such
that

⋃h
i=1 Yi = X and

⋃k
i=h+1 Yi = X. Once an (h, k − h)-cut C = [X, X] is

given, we only need to find a minimum h-way cut in induced subgraph G[X]
and a minimum (k − h)-way cut in induced subgraph G[X]. Goldschmidt and
Hochbaum [5] proved that there are a set S of at most k −2 vertices and a set T
of at most k − 1 vertices such that a minimum (S, T) cut is a (1, k − 1)-cut. By
enumerating all the possibilities of S and T , we have at most O(n2k−3) candidates
for (1, k − 1)-cuts. Goldschmidt and Hochbaum obtained an O(nk2

) algorithm
for the minimum k-way cut problem by recursively applying this method. There
are two ways to improve this method. First, we can reduce the sizes of S and T .
Second, we can try to make minimum (S, T) cut a more ‘balanced’ cut, in other
words, we want minimum (S, T) cut an (h, k − h)-cut such that h is close to k

2 .
Kamidoi et al. [9] proved that there are a set S of at most k − 2 vertices and a
set T of at most k −2 vertices such that a minimum (S, T) cut is a (p, k −p)-cut
with p = �(k −

√
k)/2� − 1, and then they got an O(n4k/(1−1.71/

√
k)−34T (n, m))

algorithm for the minimum k-way cut problem. In this paper, we show that there
are a set S of at most 2

⌊

k
2

⌋

vertices and a set T of at most k − 1 vertices such
that a minimum (S, T) cut is a (

⌊

k
2

⌋

,
⌈

k
2

⌉

)-cut. Based on this property, we obtain
an O(n4k−lg k) algorithm for finding all minimum k-way cuts. Previous results
as well as our result are summarized in the following table. Recently Thorup [20]
designed an even faster algorithm for the minimum k-way cut problem, which is
based on tree packing, but not the divide-and-conquer method.

Table 1. History of divide-and-conquer algorithms for the minimum k-way cut problem

Goldschmidt et al. [5] Kamidoi et al. [9] This paper
Bounds on |S| and |T | k − 2 and k − 1 k − 2 and k − 2 2 �k/2� and k − 1
The min (S, T) cut (1, k − 1)-cut (p, k − p)-cut, (�k/2� , �k/2�)-cut

p = �(k −
√

k)/2� − 1
Running time for the O(nk2

) O(n4k/(1−1.71/
√

k)−16) O(n4k−lg k)
min k-way cut problem

In this paper, we assume the original graph G = (V, E; w) is a connected
graph with more than k vertices. For an edge subset E′ ⊆ E, w(E′) denotes
the total weight of the edges in E′. Let X1, X2, · · · , Xl ⊂ V be l (2 ≤ l ≤ n)
disjoint nonempty subsets of vertices, then [X1, X2, · · · , Xl] denotes the set of
edges crossing any two different vertex sets of {X1, X2, · · · , Xl}. A 2-way cut
is also simply called a cut of the graph. Cut [X, X] is called an (S, T) cut, if
S ⊆ X and T ⊆ X. Sometimes a singleton set {s} is simply written as s and
w([X1, X2, · · · , Xl]) as w(X1, X2, · · · , Xl). The rest of the paper is organized as
follows: We first present the simple divide-and-conquer algorithm in Section 2.
Then we give the proofs of our structural results in Section 3. In the last section,
we conclude with some remarks.

An Improved Divide-and-Conquer Algorithm 211

2 The Divide-and-Conquer Algorithm

Let C = [X, X] be a cut. Recall that cut C is an (h, k − h)-cut of G if there is a
minimum k-way cut Ck = [Y1, · · · , Yh, Yh+1 · · · , Yk] of G such that X =

∑h
i=1 Yi

and X =
∑k

i=h+1 Yi. Let Ck = [Y1, · · · , Yk] be a minimum k-way cut and 1 ≤
h ≤ k − 1 an integer. By arbitrarily choosing h components {Yj1 , Yj2 , · · · , Yjh

}
of Ck, we get an (h, k − h)-cut [

⋃h
i=1 Yji ,

⋃h
i=1 Yji], which is called an (h, k − h)-

partition of Ck. Among all (h, k −h)-partitions, those with minimum weight are
called minimum (h, k − h)-partitions of Ck and the weight of them is denoted
by wh,k−h(Ck).

For an (h, k − h)-cut [X, X] of graph G, a minimum h-way cut [Y1, · · · , Yh] in
induced graph G[X] and a minimum (k − h)-way cut [Z1, · · · , Zk−h] in induced
graph G[X] together yields a minimum k-way cut [Y1, · · · , Yh, Z1, · · · , Zk−h] in
the original graph G. This suggests a recursive way to solve the minimum k-way
cut problem: find an (h, k − h)-cut [X, X] and recursively find minimum h-way
and (k − h)-way cuts respectively in G[X] and G[X].

However it is not easy to find an (h, k − h)-cut, even for h = 1. In Section 3,
we will prove that for each minimum (

⌊

k
2

⌋

,
⌈

k
2

⌉

)-partition [X, X] of each min-
imum k-way cut, there are a set S of at most 2

⌊

k
2

⌋

vertices and a set T of at
most k − 1 vertices such that a minimum (S, T) cut is [X, X] (See Theorem 2).
This minimum (S, T) cut is called the nearest minimum (S, T) cut of S and
can be found by using the same time of computing a maximum flow from S to
T . Theorem 2 enables us to obtain the following divide-and-conquer algorithm
to find minimum k-way cuts. We enumerate all possibilities of S and T and
find the nearest minimum (S, T) cuts in the graph. Then we get a family Γ

of at most
(

n
2� k

2 	
)

×
(

n
k−1

)

< n2� k
2 	+(k−1) (S, T) cuts by using the same num-

ber of maximum flow computations. By Theorem 2, Γ contains all minimum
(
⌊

k
2

⌋

,
⌈

k
2

⌉

)-partitions of all minimum k-way cuts. We then recursively find, for
each member of Γ , minimum

⌊

k
2

⌋

-way cut in G[X] and minimum
⌈

k
2

⌉

-way cut
in G[X]. The minimum ones among all k-way cuts we find will be returned as
our solution. The algorithm is described in Figure 1.

The correctness of algorithm Multiwaycut follows from Theorem 2. Now we
analyze the running time. When k = 2, we use Nagamochi et al.’s algorithm [15]
to find all minimum cuts directly, which runs in O(m2n + mn2 log n)=O(mT
(n, m)) time. When k > 2, we get the recurrence relation

C(n, k) ≤ n2�k
2	 + k − 1(C(n, �k

2) + C(n, �k
2�)) + n2�k

2	 + k − 1, (1)

where C(n, k) is the upper bound on the number of maximum flow computations
to be computed when algorithm Multiwaycut runs on an n-vertex graph and
an integer k. It is easy to verify that C(n, k) = O(n4k−lg k−3) satisfies (1) by
using the substitution method.

Theorem 1. All minimum k-way cuts can be found in O(n4k−lg k) time.

212 M. Xiao

Multiwaycut(G,k)

Input: A graph G = (V, E; w) with nonnegative edge weights and a positive
integer k ≤ |V |.
Output: The set R of all minimum k-way cuts and the weight W of the
minimum k-way cut.

1. If {k = 2}, then return the set of all the minimum cuts and the weight
directly.

2. Else {k ≥ 3},
Let W be +∞.
For each pair of disjoint nonempty vertex subsets S and T with
|S| ≤ 2

�
k
2

�
and |T | ≤ k − 1, do

Compute the nearest minimum (S, T) cut C = [X, X] of S.
If {|X| ≥

�
k
2

�
and |X| ≥

�
k
2

�
}, then

(R1, W1) ←− Multiwaycut(G[X],
�

k
2

�
).

(R2, W2) ←− Multiwaycut(G[X],
�

k
2

�
).

If {W > w(C) + W1 + W2}, then
W ←− w(C) + W1 + W2,
R ←− {C

�
F1

�
F2 | F1 ∈ R1, F2 ∈ R2}.

Else if {W = w(C) + W1 + W2}, then
R ←− R

�
{C

�
F1

�
F2 | F1 ∈ R1, F2 ∈ R2}.

Return (R, W).

Fig. 1. The Algorithm Multiwaycut(G,k)

3 Structural Properties

In this section, we prove the following key theorem, which is the foundation of
our divide-and-conquer algorithm.

Theorem 2. Let Ck be a minimum k-way (k ≥ 3) cut of a graph G and [A, B]
a minimum (

⌊

k
2

⌋

,
⌈

k
2

⌉

)-partition of Ck. Then there exits a set S ⊆ A of at most
2

⌊

k
2

⌋

vertices and a set T ⊆ B of at most k − 1 vertices such that the nearest
minimum (S, T) cut of S is [A, B].

To prove this theorem, we will derive some useful structural properties. Given
two disjoint vertex sets S and T , a minimum (S, T) cut separates the graph into
two components. One that contains S is called the source part and the other one
is called the sink part, which contains T . For most cases, there are more than
one minimum (S, T) cut. Among all minimum (S, T) cuts, the unique one that
makes the source part of the maximum cardinality is called the farthest minimum
(S, T) cut of S, and the unique one that makes the sink part of the maximum
cardinality is called the nearest minimum (S, T) cut of S. The farthest minimum
(S, T) cut of S is the same as the nearest minimum (T, S) cut of T . Ford and
Fullkerson [7] proved the uniqueness of the farthest and nearest minimum (S, T)
cuts by using the Max flow/Min cut theorem. We can easily get the farthest

An Improved Divide-and-Conquer Algorithm 213

and nearest minimum (S, T) cuts in linear time based on a maximum flow from
S to T . (Note that given a maximum flow, in the residual graph, let X be
the set of vertices who are connected with t. Then [V − X, X] is the farthest
minimum isolating cut for s). These two special minimum (S, T) cuts have been
discussed and used in the literature [7], [21], [5], [2]. Next, we give more structural
properties of them.

Lemma 1. Let [X1, X1] be the nearest minimum (S1, T) cut of S1 and [X2, X2]
the nearest minimum (S2, T) cut of S2, if S1 ⊇ S2, then X1 ⊇ X2.

Lemma 2. Let [X1, X1] be the farthest minimum (S, T1) cut of S and [X2, X2]
the farthest minimum cut (S, T2) of S, if T1 ⊇ T2, then X1 ⊆ X2.

Lemma 1 and Lemma 2 can be proved easily by using the uniqueness of the
nearest and farthest minimum (s, t) cuts.

Lemma 3. Let C1 = [X1, X1] be the nearest minimum (S1, T) cut of S1 and
C2 = [X2, X2] a minimum (S2, T) cut. If S1 ⊆ X2, then X1 ⊆ X2.

Proof. Let Z = X1 − X2, Y = X2 − X1, U = X1 ∩ X2, and W = X1 ∪ X2 (See
Figure 2). To prove X1 ⊆ X2, we only need to prove that Z = ∅. Assume to
the contrary that Z �= ∅. We show the contradiction that [X1 − Z, X1 + Z] is a
‘nearer’ minimum (S1, T) cut of S1 than C1 = [X1, X1]. Obviously, we only need
to prove that w(X1 − Z, X1 + Z) ≤ w(S1, T).

1S
T

1C

2C

U
Y

Z

W

Fig. 2. Illustration for the proof of Lemma 3

Since [U + Y + Z, W] is an (S2, T) cut and C2 = [X2, X2] a minimum (S2, T)
cut, we have

w(U + Y + Z, W) ≥ w(X2, X2).

It is clear that
[U + Y + Z, W] = [U + Y, W] + [Z, W]

and
[X2, X2] = [U + Y, W + Z] = [U + Y, W] + [U, Z] + [Y, Z].

We get
w(U, Z) + w(Y, Z) ≤ w(Z, W).

214 M. Xiao

Therefore, w(U, Y +W+Z) = w(U, Y +W)+w(U, Z) ≤ w(U, Y +W)+w(Z, W) ≤
w(U, Y + W) + w(Z, Y + W) = w(U + Z, Y + W) = w(C1).

We will use the following relation between two multi-way cuts, which was
proved by Xiao et al. in [23].

Proposition 1. Given an edge-weighted graph G, and integers h and k (2 ≤
h ≤ k), then for any minimum h-way cut Ch and any k-way cut Ck of G, the
following relation holds

w(Ch) ≤ (2k − h)(h − 1)
k(k − 1)

w(Ck). (2)

Kamidoi et al. [9] proved the following two important results

Proposition 2. Given an edge-weighted graph G and two integers h and k (1 ≤
h < k), let Ck be a minimum k-way cut in G and wh,k−h(Ck) the weight of the
minimum (h, k − h)-partitions of Ck, then

wh,k−h(Ck) ≤ 2h(k − h)
k(k − 1)

w(Ck). (3)

Proposition 3. Given a graph G = (V, E) with at least 4 vertices, two disjoint
nonempty subsets T and R of V , and an integer p ≥ 2, let {s1, s2, · · · , sp} =
S ⊆ V − T ∪ R be a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there
is a minimum (S ∪ R − {si}, T) cut [Xi, Xi] which satisfies (T ∪ {si}) ⊆ Xi. Let
Z =

⋂

1≤i≤p Xi, W =
⋃

1≤i<j≤p(Xi ∩ Xj), and Yi = Xi − W (i = 1, 2, · · · , p),
then C� = [Z, Y1, Y2, · · · , Yp, W] is a (p + 2)-way cut such that

w(C�) + w(Z, W) + w(Y1, Y2, · · · , Yp) ≤ w(X1, X1) + w(X2, X2). (4)

Based on Proposition 3, we can prove the following Lemma 4. The detailed proof
can be found in the full version of this paper.

Lemma 4. Given a graph G = (V, E) with at least 4 vertices, a nonempty subset
of vertices T ⊂ V , and an integer p ≥ 2, let {s1, s2, · · · , sp} = S ⊆ V − T be
a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there is a minimum
(S − {si}, T) cut [Xi, Xi] which satisfies (T ∪ {si}) ⊆ Xi. Let Z =

⋂

1≤i≤p Xi,
W =

⋃

1≤i<j≤p(Xi ∩ Xj), and Yi = Xi − W (i = 1, 2, · · · , p),

(a) : When Z �= ∅, then C� = [Z, Y1, Y2, · · · , Yp, W] is a (p + 2)-way cut such
that

w(C�) + w(Z, W) + w(Y1, Y2, · · · , Yp) ≤ 2w(V − T, T). (5)

(b) : When Z = ∅ and p ≥ 3, then C� = [Y1, Y2, · · · , Yp, W] is a (p + 1)-way cut
such that

w(C�) +
p − 3
p + 1

· w(Y1, Y2, · · · , Yp) ≤ p

p + 1
· 2w(V − T, T). (6)

An Improved Divide-and-Conquer Algorithm 215

2S

1S

...

pS

TZ

1 1[,]X X
2 2[,]X X

[,]p pX X

Fig. 3. Illustration for Proposition 3 and Lemma 4

Lemma 5. Given a graph G and an integer k ≥ 3, let wk be the weight of
a minimum k-way cut of G. For any cut [A, B] in G with weight w(A, B) <

k
2(k−1)wk (respectively, w(A, B) < k+1

2k−1wk), there exists a set S ⊆ A of at most
k − 1 (respectively, k) vertices such that the nearest minimum (S, B) cut of S is
[A, B].

Proof. Let k′ = k − 1 or k (for the two cases respectively), we only need to
consider the case that |A| ≥ k′ + 1 (when |A| < k′ + 1, we can just let S = A).
Our proof includes two phases. In the first phase, we prove that if the lemma
does not hold, then we can find a set S0 ⊆ A of k′+1 vertices such that, for each
nonempty subset S′

0 of S0, the nearest minimum (S′
0, B) cut C′ = [Z, Z] of S′

0
satisfying S′

0 ⊆ Z and (S0 − S′
0 + B) ⊆ Z. Then S0 is a vertex set that satisfies

the conditions in Lemma 4. In the second phase, based on S0, we will show that
there is a k-way cut with weight less than wk, which is a contradiction.

Phase 1: finding S0. We will give a procedure to select some vertices from A
into S. Initially, all the vertices in A are unmarked and S is an empty set. Once
a vertex is selected into S, we mark it. Sometimes a vertex in S0 will also be
removed from S, but this vertex is still remained as marked. First, we arbitrarily
select k′ + 1 vertices in A into S. For each nonempty subset S′ ⊂ S, we check
the nearest minimum (S′, B) cut C′ = [Z, Z] of S′. If (S − S′ + B) �⊂ Z, say
a ∈ (S − S′)

⋂

Z, we update S by removing a from S and adding an unmarked
vertex into S (When there are no more unmarked vertex in V −S, we just remove
a from S and stop the procedure). Once S is updated, we check all nonempty
subsets S′’s of S again. Since A is a finite set and in each iteration, one more
vertex is marked, we will find a set S of k′+1 vertices that satisfies the conditions
in Lemma 4 or no more unmarked vertex can be added into S. For the former
case, we just let S0 = S. For the later case, we show that S is a set of k′ vertices
such that the nearest minimum (S, B) cut of S is [A, B], and thus the lemma
holds. Let S(1), S(2), · · · , S(l0) be the updated sequence of S. Let C(l) = [Zl, Zl]
and C(l+1) = [Zl+1, Zl+1] be the nearest minimum (S(l), B) and (S(l+1), B) cuts
of S(l) and S(l+1) respectively. Since S(l) ⊂ Zl+1, we know that Zl ⊆ Zl+1 by

216 M. Xiao

Lemma 3. For each 1 ≤ l ≤ l0 − 1, we have Zl ⊆ Zl+1. Then all the marked
vertices will be in Zl0 , where [Zl0 , Zl0] = [A, B] is the nearest minimum (S(l0), B)
cut of S(l0). Furthermore, since S(l0) is obtained by removing a vertex a from
S(l0−1), we know that the size of S(l0) is k′.

Phase 2: finding a k-way cut with weight less than wk based on S0. Suppose
S0 = {s1, · · · , sk′ , sk′+1}. Let [Xi, Xi] be the nearest minimum (S − {si}, B)
cut (i = 1, · · · , k′ + 1), then [Xi, Xi] satisfies that (B ∪ {si}) ⊆ Xi. Let Z =
⋂

1≤i≤k′+1 Xi, W =
⋃

1≤i<j≤k′+1(Xi ∩Xj), and Yi = Xi −W (i = 1, · · · , k′ +1).
Next, we consider Z = ∅ and Z �= ∅ such two cases.

When Z = ∅, it follows from Lemma 4 that C� = [Y1, Y2, · · · , Yk′+1, W] is a
(k′ + 2)-way cut such that

w(C�) +
k′ − 2
k′ + 2

· w(Y1 + · · · + Yk′+1) ≤ k′ + 1
k′ + 2

· 2w(A, B). (7)

Since C� is a (k′ + 2)-way cut and k′ + 2 > k, by Proposition 1, we know that
there is a k-way cut Ck with weight

w(Ck) ≤ (2(k′ + 2) − k)(k − 1)
(k′ + 2)(k′ + 1)

w(C�). (8)

It follows from (7) and (8) that

w(Ck) ≤ (2(k′ + 2) − k)(k − 1)
(k′ + 2)(k′ + 1)

· k′ + 1
k′ + 2

2w(A, B).

In the case of w(A, B) < k
2(k−1)wk, we have k′ = k − 1. Then

w(Ck) ≤ (k + 2)(k − 1)
(k + 1)k

· k

k + 1
· 2w(A, B) <

(k + 2)k
(k + 1)2

wk < wk.

In the case of w(A, B) < k+1
2k−1wk, we have k′ = k. Then

w(Ck) ≤ (k + 4)(k − 1)
(k + 2)(k + 1)

· k + 1
k + 2

· 2w(A, B) <
2(k + 4)(k2 − 1)
(k + 2)2(2k − 1)

wk < wk.

We get a contraction that Ck is k-way cut with weight less than wk.

When Z �= ∅, it follows from Lemma 4 that C� = [Z, Y1, Y2, · · · , Yk′+1, W] is
a (k′ + 3)-way cut such that

w(C�) + w(Z, W) + w(Y1, · · · , Yk′+1) ≤ 2w(A, B). (9)

Suppose w(Yi0 , W) ≥ w(Yi1 , W) ≥ w(Yi2 , W) ≥ maxi�=i0,i1,i2{w(Yi)}. For the
case of w(A, B) < k

2(k−1)wk, we prove that Ck = [Z, Y−i0−i1 , W + Yi0 + Yi1] is a
k-way cut with weight less than wk, where Y−i0−i1 = {Y1, · · · , Yi0−1, Yi0+1, · · · ,
Yi1−1, Yi1+1, · · · , Yk′+1}. For the case of w(A, B) < k+1

2k−1wk, we prove that Ck =
[Z, Y−i0−i1−i2 , W +Yi0 +Yi1 +Yi2] is a k-way cut with weight less than wk, where
Y−i0−i1−i2 is defined by the same way as Y−i0−i1 .

An Improved Divide-and-Conquer Algorithm 217

In the case of w(A, B) < k
2(k−1)wk, we have k′ = k−1. Then Ck = [Z, Y−i0−i1 ,

W + Yi0 + Yi1] is a k-way cut. Since [Xi, Xi] is a minimum (S − {si}, B) cut, we
have w(Z, Yi) ≤ w(Yi, W) for each i ∈ {1, 2, · · · , k}. Therefore,

w(Yi0 + Yi1 , W) ≥ 2
2k

(
∑k

i=1
w(Yi, W) +

∑k

i=1
w(Z, Yi))

=
1
k

(w(C�) − w(Z, W) − w(Y1, · · · , Yk)).

By using this inequality and (9), we get

w(Ck) ≤ w(C�) − w(Yi0 + Yi1 , W)

≤ k − 1
k

w(C�) +
1
k

w(Z, W) +
1
k

w(Y1, · · · , Yk)

≤ k − 1
k

2w(A, B) <
k − 1

k

k

k − 1
wk = wk.

In the case of w(A, B) < k+1
2k−1wk, we have k′ = k. Clearly, Ck = [Z, Y−i0−i1−i2 ,

W + Yi0 + Yi1 + Yi2] is still a k-way cut. We get

w(Yi0 + Yi1 + Yi2 , W) ≥ 3
2(k + 1)

(
∑k+1

i=1
w(Yi, W) +

∑k+1

i=1
w(Z, Yi))

=
3

2(k + 1)
(w(C�) − w(Z, W) − w(Y1, · · · , Yk+1)).

By using this inequality and (9), we get

w(Ck) ≤ w(C�) − w(Yi0 + Yi1 + Yi2 , W)

≤ 2k − 1
2(k + 1)

w(C�) +
3

2(k + 1)
w(Z, W) +

3
2(k + 1)

w(Y1, · · · , Yk+1)

≤ 2k − 1
2(k + 1)

2w(A, B) <
2k − 1

2(k + 1)
2(k + 1)
2k − 1

wk = wk.

We have proved that, in both cases, there is a k-way cut with weight less than
wk. Thus, we have finished the proof.

Lemma 6. Given a graph G and an integer k ≥ 3, let wk be the weight of the
minimum k-way cut of G, then for any cut [A, B] in G with weight w(A, B) ≤

k
2(k−1)wk (respectively, w(A, B) ≤ k+1

2k−1wk), there exists a set S ⊆ A of at most
k − 1 (respectively, k) vertices such that the farthest minimum (S, B) cut of S
is [A, B].

In Lemma 6, the weight of the cuts can equal k
2(k−1)wk or k+1

2k−1wk and there
are the farthest minimum (S, B) cuts, instead of the nearest minimum (S, B)
cuts in Lemma 5. The proof of Lemma 6 just follows the proof of Lemma 5.
Note that since in Lemma 6 there are farthest minimum (S, B) cuts, we have
w(Xi, Xi) < w(V −T, T) for each i ∈ {1, 2, · · · , p}. Therefore, The equal signs in
(5) and (6) will not hold, which guarantees that the remaining part of the proof
of Lemma 5 is suitable for Lemma 6.

218 M. Xiao

Now we are ready to prove Theorem 2:

Proof. By Proposition 2, we have w(A, B) ≤ 2h(k−h)
k(k−1) wk, where h =

⌊

k
2

⌋

. Since
⌊

k
2

⌋ ⌈

k
2

⌉

≤ (k
2)2, we have w(A, B) ≤ k

2(k−1)wk and the equal sign does not hold
for odd k. By Lemma 5 and Lemma 6, we know that there is a set S ⊆ A of at
most 2

⌊

k
2

⌋

vertices such that the nearest minimum (S, B) cut of S is [A, B] and
there is a set T ⊆ B of at most k − 1 vertices such that the farthest minimum
(T, A) cut of T is [B, A]. We look at the nearest minimum (S, T) cut [X, X] of S.
Since [A, B] is the nearest minimum (S, B) cut of S and T ⊆ B, we have A ⊆ X
by Lemma 1. Since [B, A] is the farthest minimum (T, A) cut of T and S ⊆ A, we
have B ⊆ X by Lemma 2. Therefore, [X, X] = [A, B]. Thus, Theorem 2 holds.

Corollary 1. Given a graph G and an integer k ≥ 3, let wk be the weight of
the minimum k-way cut of G, then the number of cuts with weight less than

k
2(k−1)wk in G is bounded by n2k−2 and the number of cuts with weight less than
k+1
2k−1wk is bounded by n2k.

4 Discussion

In this paper, we presented a simple divide-and-conquer algorithm for finding
minimum k-way cuts. As we mentioned in Section 1, there are two possible ways
to improve the algorithm. One is to reduce the sizes of S and T , and the other
one is to make the minimum (S, T) cut be a more ‘balanced’ (h, k−h)-cut. In our
algorithm, h =

⌊

k
2

⌋

and this means our (h, k − h)-cuts are the most ‘balanced’.
Our questions are: For the most ‘balanced’ case, can we reduce the sizes of S and
T ? What are the lower bounds on the two sizes? Note that if we can reduce the
two sizes to k

2 , then the divide-and-conquer algorithm will run in O(n2k) time.
Nagamochi et al. [13], [14] proved that the minimum k-way cut problem can

be solved by computing O(n) minimum (k − 1)-way cuts for k ≤ 6. Does this
hold for general k? If so, then the minimum k-way cut problem can be solved in
˜O(mnk) time.

Karger and Stein [11] and Nagamochi et al. [15] have studied the bounds on
the number of small cuts, which motivates the following question: Can we give
nontrivial lower and upper bounds on the number of minimum k-way cuts? It is
easy to get a lower bound of O(nk). Note that in a cycle consisting of n edges
with equal weight, the number of minimum k-way cuts is

(

n
k

)

. Can better bounds
be achieved?

References

1. Burlet, M., Goldschmidt, O.: A new and improved algorithm for the 3-cut problem.
Operations Research Letters 21(5), 225–227 (1997)

2. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The
complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994)

3. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5),
783–797 (1998)

An Improved Divide-and-Conquer Algorithm 219

4. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM 35(4), 921–940 (1988)

5. Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem
for fixed k. Mathematics of Operations Research 19(1), 24–37 (1994)

6. He, X.: An improved algorithm for the planar 3-cut problem. J. Algorithms 12(1),
23–37 (1991)

7. Ford, J.R., Fullkerson, D.R.: Flows in networks. Princeton University Press, Prince-
ton (1962)

8. Kamidoi, Y., Wakabayashi, S., Yoshida, N.: A divide-and-conquer approach to the
minimum k-way cut problem. Algorithmica 32(2), 262–276 (2002)

9. Kamidoi, Y., Yoshida, N., Nagamochi, H.: A deterministic algorithm for finding
all minimum k-way cuts. SIAM Journal on Computing 36(5), 1329–1341 (2006)

10. Kapoor, S.: On minimum 3-cuts and approximating k-cuts using cut trees. In:
Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS,
vol. 1084. Springer, Heidelberg (1996)

11. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. Journal of
the ACM 43(4), 601–640 (1996)

12. Nagamochi, H., Ibaraki, T.: Computing edge connectivity in multigraphs and ca-
pacitated graphs. SIAM Journal on Discrete Mathematics 5(1), 54–66 (1992)

13. Nagamochi, H., Ibaraki, T.: A fast algorithm for computing minimum 3-way and
4-way cuts. Mathematical Programming 88(3), 507–520 (2000)

14. Nagamochi, H., Katayama, S., Ibaraki, T.: A faster algorithm for computing mini-
mum 5-way and 6-way cuts in graphs. In: Asano, T., Imai, H., Lee, D.T., Nakano,
S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627. Springer, Heidelberg
(1999)

15. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in an undi-
rected network. SIAM Journal on Discrete Mathematics 10(3), 469–481 (1997)

16. Naor, J., Rabani, Y.: Tree packing and approximating k-cuts. In: Proceedings of
the twelfth annual ACM-SIAM symposium on discrete algorithms (SODA 2001).
Society for Industrial and Applied Mathematics, Philadelphia (2001)

17. Ravi, R., Sinha, A.: Approximating k-cuts via network strength. In: Proceedings
of the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA
2002). Society for Industrial and Applied Mathematics, Philadelphia (2002)

18. Saran, H., Vazirani, V.V.: Finding k-cuts within twice the optimal. SIAM J. Com-
put. 24(1), 101–108 (1995)

19. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)
20. Thorup, M.: Minimum k-way cuts via deterministic greedy tree packing. In: Pro-

ceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC
2008) (2008)

21. Xiao, M.: Algorithms for multiterminal cuts. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications.
LNCS, vol. 5010. Springer, Heidelberg (2008)

22. Xiao, M.: Finding minimum 3-way cuts in hypergraphs. In: Agrawal, M., Du, D.-Z.,
Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978. Springer, Heidelberg (2008)

23. Xiao, M., Cai, L., Yao, A.C.: Tight approximation ratio of a general greedy splitting
algorithm for the minimum k-way cut problem (manuscript, 2007)

24. Zhao, L., Nagamochi, H., Ibaraki, T.: Approximating the minimum k-way cut in
a graph via minimum 3-way cuts. J. Comb. Optim. 5(4), 397–410 (2001)

	An Improved Divide-and-Conquer Algorithm for Finding All Minimum k-Way Cuts
	Introduction
	The Divide-and-Conquer Algorithm
	Structural Properties
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

