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Abstract. We give an efficient local search algorithm that computes a
good vertex coloring of a graph G. In order to better illustrate this local
search method, we view local moves as selfish moves in a suitably defined
game. In particular, given a graph G = (V, E) of n vertices and m edges,
we define the graph coloring game I'(G) as a strategic game where the
set of players is the set of vertices and the players share the same action
set, which is a set of n colors. The payoff that a vertex v receives, given
the actions chosen by all vertices, equals the total number of vertices
that have chosen the same color as v, unless a neighbor of v has also
chosen the same color, in which case the payoff of v is 0. We show:

— The game I'(G) has always pure Nash equilibria. Each pure equi-
librium is a proper coloring of GG. Furthermore, there exists a pure
equilibrium that corresponds to an optimum coloring.

— We give a polynomial time algorithm A which computes a pure Nash
equilibrium of I'(G).

— The total number, k, of colors used in any pure Nash equilibrium
(and thus achieved by A) is k < min{Az +1, ”'5‘”, 1+‘/§+8m ,n—a+
1}, where w, « are the clique number and the independence number
of G and As is the maximum degree that a vertex can have subject
to the condition that it is adjacent to at least one vertex of equal or
greater degree. (A2 is no more than the maximum degree A of G.)

— Thus, in fact, we propose here a new, efficient coloring method that
achieves a number of colors satisfying (together) the known general
upper bounds on the chromatic number x. Our method is also an
alternative general way of proving, constructively, all these bounds.

— Finally, we show how to strengthen our method (staying in polyno-
mial time) so that it avoids “bad” pure Nash equilibria (i.e. those
admitting a number of colors k far away from x). In particular, we
show that our enhanced method colors optimally dense random g-
partite graphs (of fixed ¢) with high probability.
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1 Introduction

Overview. One of the central optimization problems in Computer Science is
the problem of wvertex coloring of graphs: given a graph G = (V, E) of n vertices,
assign a color to each vertex of G so that no pair of adjacent vertices gets the
same color and so that the total number of distinct colors used is minimized.
The global optimum of vertex coloring (the chromatic number) is, in general,
inapproximable in polynomial time unless a collapse of some complexity classes
happens [7]. In this paper, we propose an efficient vertex coloring algorithm that
is based on local search: Starting with an arbitrary proper vertex coloring (e.g.
the trivial proper coloring where each vertex is assigned a unique color), we do
local changes, by allowing each vertex (one at a time) to move to another color
class of higher cardinality, until no further local moves are possible.

We choose to illustrate this local search method via a game-theoretic analysis;
we do so because of the natural correspondence of the local optima of our pro-
posed method to the pure Nash equilibria of a suitably defined strategic game.
In particular, we view vertices of a graph G = (V, E) as players in a strategic
game. Each player has the same set of actions, which is a set of |V colors. In
a certain profile ¢ (where each vertex v has chosen a color), v gets a payoff of
zero if its color is the same with the color of a neighbor of v. Else, v gets as a
payoff the number of vertices having selected the same color as the color that v
has chosen. In a pure Nash equilibrium of such a game (if such an equilibrium
exists), no vertex can improve its payoff by unilaterally deviating. Note that,
given a profile, one can compute payoffs in small polynomial time. Furthermore,
a “better response” (i.e., a selfish improvement) of a vertex v, given a choice of
colors by all the other vertices, can also be computed quickly by v and the only
global information needed is the number of vertices per color in the graph.

In such a setting, if we start by the trivial proper coloring of G (where each
v chooses its unique name as a color), then any selfish improvement sequence
always produces proper colorings of G. This would give an efficient and general
proper coloring heuristic provided that: (i) Pure equilibria exist; (ii) Such selfish
improvement sequences reach an equilibrium in small time; and (iii) The number
of colors at equilibrium is a good approximation of the chromatic number of G.

Our Results. Quite surprisingly, we show for our game that:

(1) Any selfish improvement sequence, when started with a proper (e.g., the
trivial) coloring, always reaches an equilibrium in O(n - «(G)) selfish moves,
where a(G) is the independence number of G. We prove this by a potential-
based method [I4].

(2) Any pure Nash equilibrium of the game is a proper coloring of G that uses
a number of colors, k, bounded above by all the general known to us upper
bounds on the chromatic number of G. Specifically, let n, m, x(G) and w(G) and
A(G), denote the number of vertices, number of edges, chromatic number, clique
number and maximum degree of G, respectively. Let A2(G) be the maximum
degree that a vertex v can have subject to the condition that v is adjacent to at
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least one vertex of degree no less than the degree of v (note that Ax(G) < A(G)).
We show that k (in any pure Nash equilibrium) satisfies

n+ w(G)

9 7TL—O¢(G)+1,

kgmin{Ag(G)+1, 1—|—\/;—|—8m}.

Note that As(G) + 1 is the bound of Stacho [16] and implies Brooks’ bound [4]
on x(G). In fact, we get constructively all these bounds via a single polynomial
time algorithm. For some of these bounds their proofs till now (in popular graph
theory books, e.g. [9]) are not constructive and not based on a single unifying
method.

(3) Since x(@G) is inapproximable in polynomial time (unless a collapse of com-
plexity classes happens) it is natural to expect the existence of some pure equi-
libria in our game that use a number of colors k far away from x(G). Indeed
we were able to construct a class of (almost complete bipartite) graphs G which
have equilibrium colorings of & = 7 41, while x(G) = 2. However, our selfish im-
provement method does not have to go to such bad equilibria. For the same class
of graphs we show that a randomized sequence of selfish improvements achieves
k = 2 with high probability. In fact, our class of algorithms can be started by the
proper colorings achieved by the best till now approximation methods. Then, it
may improve on them, if their output is not an equilibrium of our game.

(4) Motivated by such thoughts, we investigated the following question: What
kind of polynomial time “mechanisms” (e.g., some preprocessing, a particular
order of selfish moves, e.t.c.) can help our coloring method to get closer to x(G)
in certain graph classes? We managed to provide such enhanced methods that
e.g. are optimal with high probability for dense random g-partite graphs.

We believe that our game and its properties can serve also as an educational
tool in introducing and proving general bounds on the chromatic number.

Previous work. The problem of coloring a graph using the minimum number
of colors is NP-hard [I3], and the best polynomial time approximation algorithm
achieves an approximation ratio of O(n(loglogn)?/(logn)?) [8]. It is known [7]
that the chromatic number cannot be approximated to within £2(n!~¢) for any
constant € > 0, unless NP C co-RP. Several vertex coloring heuristics have
been proposed in the literature, such as Brelaz’s heuristic [3]. To the best of
our knowledge, none of these heuristics achieves all these bounds on the total
number of colors that our algorithm guarantees. Graph coloring games have been
studied before, but in a very different context than here. In these games there
are 2 players, who are introduced with the graph to be colored and a color bound
k. A legal move of either player consists of choosing an uncolored vertex v, and
assign to it any of the k colors that has not been assigned to any neighbor of v.
In one variant of such a game [I] the first player which is unable to move loses
the game. In another variant [I] the first player wins if and only if the game ends
with all vertices colored. Further variants have also been studied by e.g. [10/6].
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2 The Model

Notation. For a finite set A we denote by |A| the cardinality of A. For an
event F in a sample space, denote Pr{E} the probability of E occurring. Denote
G = (V, E) a simple, undirected graph with vertex set V' and set of edges E. For a
vertex v € V denote N (v) = {u € V : {u,v} € E} the set of its neighbors, and let
deg(v) = |N(v)| denote its degree. Let A(G) = max,cy deg(v) be the maximum
degree of G. Let A2(G) = maxyev MaXye N (u):d(v)<d(u) deg(v) be the maximum
degree that a vertex v can have, subject to the condition that v is adjacent to at
least one vertex of degree no less than deg(v). Clearly, A2(G) < A(G). Let x(G)
denote the chromatic number of G, i.e. the minimum number of colors needed
to color the vertices of G such that no adjacent vertices get the same color (i.e.,
the minimum number of colors used by a proper coloring of G). Let w(G) and
(@) denote the clique number and independence number of G, i.e. the number
of vertices in a maximum clique and a maximum independent set of G.

The Graph Coloring Game. Given a finite, simple, undirected graph G =
(V, E) with |V| = n vertices, we define the graph coloring game I'(G) as the
game in strategic form where the set of players is the set of vertices V', and the
action set of each vertex is a set of n colors X = {x1,...,z,}. A configuration or
pure strategy profile ¢ = (¢y)pey € X™ is a combination of actions, one for each
vertex. That is, ¢, is the color chosen by vertex v. For a configuration ¢ € X"
and a color z € X, we denote by n.(c) the number of vertices that are colored
z in ¢, i.e. ny(c) = [{v € V : ¢, = x}|. The payoff that vertex v € V receives in
the configuration ¢ € X" is

)\v(c):{o 1fE|u6N(v):cu=cv.

ne, (c) else

A pure Nash equilibrium [15] (PNE in short) is a configuration ¢ € X™ such that
no vertex can increase its payoff by unilaterally deviating. Let (z, c_, ) denote the
configuration resulting from c if vertex v chooses color x while all the remaining
vertices preserve their colors. Then

Definition 1. A configuration ¢ € X™ of the graph coloring game I'(G) is a
pure Nash equilibrium if, for all vertices v € V, Ay(z,c—y) < A\y(c) Ve X.

A vertex v € V is unsatisfied in the configuration ¢ € X" if there exists a color
x # ¢, such that A,(z,c_,) > A,(c); else we say that v is satisfied. For an
unsatisfied vertex v € V in the configuration c, we say that v performs a selfish
step if v unilaterally deviates to some color = # ¢, such that A,(z,c_,) > Ay(c).

The Social Cost SC(G, c) of a configuration ¢ € X™ of I'(G) is the number of
distinct colors in ¢, i.e., SC(G,c) = [{z € X | ny(c) > 0}|. Given a graph G, the
Approzimation Ratio R(G) is the ratio of the worst, over all pure Nash equilibria

of I'(G), Social Cost to the chromatic number: R(G) = maxc.c is a PNE Si(((é’)c ).
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3 Existence and Tractability of Pure Nash Equilibria

Theorem 1. Ewvery graph coloring game I'(G) possesses at least one pure Nash
equilibrium, and there exists a pure Nash equilibrium c with SC(G, c) = x(G).

Proof. Consider any optimum coloring o = (0,)yey € X" of G. Then o uses
kE = x(G) colors. For each optimum coloring o consider the vector L, =
(bo(1),...,Lo(k)), where £o(j) is the number of vertices that are assigned the
color that is jth in the decreasing ordering of colors according to the number of
vertices that use them. Let 6 correspond to the lexicographically greatest vector
Ls. We will show that 6 is a pure Nash equilibrium. First, since 6 is a proper
coloring, all vertices receive payoff no less than 1, so no vertex has any incentive
to choose a new color other than those already used. Now consider a vertex v
which is assigned color 6, and let i be the coordinate that corresponds to 6, in
Ls. If v had an incentive to choose a color that corresponds to the jth coordinate
of Lg for some j < 4, then this would yield an optimum coloring that would be
lexicographically greater than 6, a contradiction. If v had an incentive to choose
a color that corresponds to the jth coordinate of Lg for some j > ¢, then it must
essentially hold that ¢5(i) = ¢5(j). So, if v deviates, this would again yield an
optimum coloring that would be lexicographically greater that 6, a contradic-
tion. Therefore 6 is a pure Nash equilibrium and SC(G, 6) = x(G). O

Lemma 1. Every pure Nash equilibrium c of I'(G) is a proper coloring of G.

Proof. Assume, by contradiction, that c¢ is not a proper coloring. Then there
exists some vertex v € V such that A,(c) = 0. Clearly, there exists some color
x € X such that ¢, # z for all u € V. Therefore A\, (x,c_,) =1 > 0 = A,(c),
which contradicts the fact that c is an equilibrium. a

Corollary 1. It is NP-complete to decide whether there exists a pure Nash equi-
librium of I'(G) that uses at most k colors.

Proof (Sketch). Follows by reduction to the NP-complete problem of deciding
whether there exists a proper coloring of a graph that uses at most & colors. 0O

Theorem 2. For any graph coloring game I'(G), a pure Nash equilibrium can
be computed in O(n - a(Q)) selfish steps, where n is the number of vertices of G
and a(G) is the independence number of G.

Proof. We define the function & : P — R, where P C X" is the set of all
configurations that correspond to proper colorings of the vertices of G, as ®(c) =
é Yozex n2(c), for all proper colorings c. Fix a proper coloring c. Assume that
vertex v € V can improve its payoff by deviating and selecting color = # ¢,.
This implies that the number of vertices colored ¢, in c is at most the number
of vertices colored z in ¢, i.e. n., (c) < ng(c). If v indeed deviates to z, then
the resulting configuration ¢’ = (z, c_,) is again a proper coloring (vertex v can
only decrease its payoff by choosing a color that is already used by one of its
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neighbors, and v is the only vertex that changes its color). The improvement on
v’s payoff will be A, (¢’) — Ay (c) = ng(c’)—ne,(c) = n.(c)+1—n., (c). Moreover,

B(c') — P(c) nz(e') +ng, (¢') = ni(e) —ng (c))

5 (
5 ((2(€) + 1 + (ne, (€) — 17 — n2(e) ~ . (0))
=nz(c) +1—ne,(c) = A(c') — A\y(c).

Therefore, if any vertex v performs a selfish step (i.e. changes its color so that
its payoff is increased) then the value of @ is increased as much as the payoff
of v is increased. Now, the payoff of v is increased by at least 1. So after any
selfish step the value of @ increases by at least 1. Now observe that, for all
proper colorings ¢ € P and for all colors z € X, ng(c) < a(G). Therefore
P(e) = 5 T aex 12(0) < ) Ve (na(€) - alG)) = jalG) Tpex male) = 5.
Moreover, the minimum value of @ is %n Therefore, if we allow any unsatisfied
vertex (but only one each time) to perform a selfish step, then after at most
"'a(g)_" steps there will be no vertex that can improve its payoff (because &
will have reached a local maximum, which is no more than the global maximum,
which is no more than (n - «(G))/2), so a pure Nash equilibrium will have been
reached. Of course, we have to start from an initial configuration that is a proper
coloring so as to ensure that A4 will terminate in O(n - «(G)) selfish steps; this
can be found easily since there is always the trivial proper coloring that assigns
a different color to each vertex of G. O

The above proof implies the following simple algorithm A that computes a pure
Nash equilibrium of I'(G) (and thus a proper coloring of G):
Input: Graph G with vertex set V = {v1,...,vn}; a set of colors X = {z1,...,z,}
Output: A pure Nash equilibrium ¢ = (¢y,,..., ¢y, ) € X" of I'(G)
Initialization: for i =1 to n do ¢, = z;

repeat
find an unsatisfied vertex v € V and a color € X such that A, (z,c—y) > Ay(c)
set ¢y, =

until all vertices are satisfied

Le., at each step, A allows one unsatisfied vertex to perform a selfish step,
until all vertices are satisfied. Note that, at each step, there may be more than
one unsatisfied vertices, and more than one colors that a vertex could choose in
order to increase its payoff. So actually A is a whole class of algorithms, since
one could define a specific ordering (e.g., some fixed or some random order) of
vertices and colors, and examine vertices and colors according to this order. In
any case however, the algorithm is guaranteed to terminate in O(n-a(QG)) selfish
steps. Furthermore, each selfish step can be implemented straightforwardly in
O(n?) time, since there are n vertices and n colors that each vertex can be
assigned. It might be possible to improve the O(n?) complexity of a selfish step,
e.g. by using appropriate data structures; this is a matter of future research and
we leave it as an open question.
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Let us now give a direct application of Theorem [2] to dense random graphs,
and in particular consider the G, , model, i.e. the class of random graphs with

n vertices where each of the possible "("2_1) edges occurs with probability p (for
some constant 0 < p < 1). The independence number of these graphs is known
to be (1 —o(1)) 10g21(01g/2(1n;p)) with high probability [2], and therefore a pure Nash
equilibrium can be computed in O(n-logy(n)) selfish steps, with high probability.

4 Bounds on the Total Number of Colors

Lemma 2. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < Ay(G) + 1 and hence k < A(G) + 1.

Proof. Consider a pure Nash equilibrium c of I'(G), and let k be the total number
of distinct colors used in c. If k& = 1 then it easy to observe that G must be
totally disconnected, i.e. A(G) = As(G) = 0 and therefore k = A3 (G) + 1. Now
assume k > 2. Let x;, £; € X be the two colors used in c that are assigned to the
minimum number of vertices. W.Lo.g[], assume that nz,(€) < ng;(c) < ng(c) for
all colors « ¢ {x;,x;} used in c. Let v be a vertex such that ¢, = z;. The payoff
of vertex v is A, (c) = ng,(c). Now consider any other color x # x; that is used in
c. Assume that there is no edge between vertex v and any vertex u with ¢, = x.
Then, since c is a pure Nash equilibrium, it must hold that n,,(c) > ng(c) + 1,
a contradiction. Therefore there is an edge between vertex v and at least one
vertex of every other color. Hence the degree of vertex v is at least the total
number of colors used minus 1, i.e. deg(v) > k — 1. Furthermore, let u be the
vertex of color ¢, = x; that v is connected to. Similar arguments as above yield
that « must be connected to at least one vertex of color z, for all = ¢ {z;,z;}
used in c¢. Moreover, u is also connected to v. Therefore deg(u) > k — 1. Now:

A =
2(G) =max  max  deg(t)
deg(t) < deg(s)

> max max  deg(t), max  deg(t)
t € N(v) t € N(u)
deg(t) < deg(v) deg(t) < deg(u)

> min {deg(u),deg(v)} > k-1
and therefore k < Ay(G) + 1 as needed. O

Lemma 3. In a pure Nash equilibrium, all vertices that are assigned unique
colors form a clique.

Proof. Consider a pure Nash equilibrium c¢. Assume that the colors ¢, and ¢,
chosen by vertices v and w are unique, i.e. n.,(c) = n.,(c) = 1. Then the payoff
for both vertices is 1. If there is no edge between u and v then, since c is an
equilibrium, it must hold that 1 = A,(c) > A\, (cy,c—y) = 2, a contradiction. O

1 Without loss of generality.
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Lemma 4. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < ”+“2’(G).

Proof. Consider a pure Nash equilibrium ¢ of I'(G). Assume there are ¢ > 0
vertices that are each assigned a unique color. These t vertices form a clique

(Lemma []), hence t < w(@). The remaining n — ¢ vertices are assigned non-
nt+t o n+w(G) 0
2 2

unique colors, so the number of colors in c is k <t + ”;t =

Lemma 5. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < 1+\/;+8m‘

Proof. Consider a pure Nash equilibrium ¢ of I'(G). W.l.o.g., assume that the k
colors used in ¢ are x1, ..., zg. Let V;, 1 < i < k, denote the subset of all vertices
v € V such that ¢, = z;. W.l.o.g., assume that |V1] < [V3] < --- < |Vj|. Observe
that, for each vertex v; € V;, there is an edge between v; and some v; € V},
for all j > 4. If not, then v; could improve its payoff by choosing color z;, since
[V;| +1 > |Vi| +1 > |Vi|]. This implies that m > Z;:ll |Vi|(k — %) and, since
[Vi] > 1forallie{l,...,k}, m > Zf;ll(k — i) or equivalently m > k(kgl) or
equivalently k2 — k — 2m < 0, which implies k < H“/?gm. O

Theorem 3. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k <n — a(G) + 1.

Proof. Consider any pure Nash equilibrium ¢ of I'(G). Let ¢ be the maximum,
over all vertices, payoff in ¢, i.e. t = max,ex n,(c). Partition the set of vertices
into ¢ sets V1,...,V; so that v € V; if and only if A, (c) = i (note that each vertex
appears in exactly one such set, however not all sets have to be nonempty). Let
k; denote the total number of colors that appear in V;. Clearly, |V;| =i - k; and
the total number of colors used in ¢ is k = Y'_, k;. Now consider a maximum
independent set I of G. The vertices in V; have payoff equal to 1, therefore they
are assigned unique colors, so, by Lemma [3 the vertices in V; form a clique.
Therefore I can only contain at most one vertex among the vertices in V3. Our
goal is to upper bound the size of I. First we prove the following:

Claim 1. If there exists some 7 > 1 such that k; = 1 and I contains all the
vertices in V;, then k < n — a(G) + 1.

Proof of Claim 1. Let = denote the unique color that appears in V;. Since [
contains all the vertices in V;, then it cannot contain any vertex in V3 U---UV;_;.
This is so because each vertex v € Vj, j < 4, is connected by an edge with at
least one vertex of color = (otherwise v could increase its payoff by selecting x,
which contradicts the equilibrium). Furthermore, each vertex in V; has at least
one neighbor of each color that appears in V;11 U--- U V;. Therefore

t t i—1 i
Hl=aG) < Vil + D0 WVil= D kj=n—) Vil =k+D Kk
j=1 j=1

j=it1 j=it1
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which gives k < n—a(G —|—Z —ViD+ki <n—a(G)+k =n—a(G)+1. O

So now it suffices to consider the case where, for all ¢ > 1 such that k; = 1, I
does not contain all the vertices in V;. So I contains at most |V;| — 1 = |V;| —
vertices that belong to V;. In order to complete the proof we need the following:

Claim 2. For all ¢ > 1 with k; # 1, I cannot contain more than |V;| — k; vertices
among the vertices in V;.

Proof of Claim 2. This is clearly true for k; = 0 (and hence |V;| = 0). Now
assume that k; > 2. Observe that, for all vertices v; € V; there must exist an
edge between v; and a vertex of each one of the remaining k; — 1 colors that
appear in V; (otherwise, v; could change its color and increase its payoff by 1,
which contradicts the equilibrium). Fix a color x of the k; colors that appear
in V;. If I contains all vertices of color z, then it cannot contain any vertex
of any color other than x that appears in V;. Therefore I can contain at most
i < (i — 1)k; = |V;| — k; vertices among the vertices in V;. On the other hand,
if I contains at most i — 1 vertices of each color x that appears in V;, then I
contains again at most (¢ — 1)k; = |V;| — k; vertices among the vertices in V;. O

Therefore I cannot contain more than |V;| — k; vertices among the vertices of V;,
for all ¢ > 1, plus one vertex from V;. Therefore:

11| = (G <1+Z|V\ D=14+n—|Vi|—(k—|Vi])=n—k+1.

So, in any case, k <n — a(G) + 1 as needed. O
The bounds given by Lemmata 2 @l Bl and Theorem [3] imply the following:
Theorem 4. For any graph coloring game I'(G) and any pure Nash equilibrium
c of I'(G), SC(G,c) < min{Ag(G) +1, "*‘;(G)’ 1+\/é+8m7 n—a(G) + 1}.

Furthermore, since any Nash equilibrium is a proper coloring (Lemma[Il) and a
Nash equilibrium can be computed in polynomial time (Theorem [2):

Corollary 2. For any graph G, a proper coloring that uses at most k <
min{Ag(G) +1, "J“;(G), 1+\/§+8m, n—a(G) + 1} colors can be computed in
O(n*) time.

5 The Approximation Ratio

Lemma 6. For any graph G with n vertices and m edges,

min {AQ(G) +1, n+°;(G), H"/é"'gm, n—a(G) + 1}

R(G) <
= max {w(G), a("G)}



192 P.N. Panagopoulou and P.G. Spirakis

Fig. 1. (a) A graph with chromatic number 2 and (b) a Nash equilibrium using 6 colors

Proof. Follows from Theorem [ and the fact that x(G) > max{w(G), o(6) }. O

Lemma 7. For any constant ¢ > 0, there exists a graph G(e) such that
R(G(€)) > n'=¢ unless NP C co-RP.

Proof. Assume the contrary. Then there exists some constant ¢ > 0 such that,
for all graphs G, R(G) < n'~¢. But then our selfish improvements algorithm A
of Theorem [ achieves, in O(n*) time, a proper coloring of G with a number
of colors k < R(G) - x(G), ie., k < n'=x(G). Thus, for all G, algorithm A
approximates x(G) in polynomial time with an approximation ratio R < n!~¢
for some constant ¢ > 0. This cannot happen unless NP C co-RP [7]. ]

However, can we construct a graph certificate G with unconditionally high R(G)?
The answer is yes:

1

5
Proof. Consider a bipartite graph G = (V, E) with n = 2k 4 2 vertices, kK > 1.
Let V. =UUWU{s,t} where U = {uq,...,ux} and W = {w1, ..., wx}. The set
of edges F is defined as

Lemma 8. We can construct a graph certificate G such that R(G) =} +

K K
E={{ujw;} eUxW |i#j}U U{s,uz} u U{t,wi} U{s,t}.
i=1 i=1
(Figure [M(a) shows such a graph with n = 10 vertices.) There exists a pure
Nash equilibrium that uses x + 2 colors: vertices uy,w; are colored x1, vertices
ug, we are colored xo e.t.c., while vertex ¢ is colored =11 and vertex s is colored
Zpt2 (see Fig. [(b)). This coloring is a pure Nash equilibrium since each vertex
v € UUW receives payoff equal to 2 and the set of vertices N(v) U {v} uses all
colors x1,...,x,. Vertices s and t get payoff 1, but each of them is connected
to a vertex of each of the remaining colors. The optimum coloring would use 2
colors, one to color the vertices in U U {t} and another to color the vertices in
W U {s}. Therefore R(G) > "{? =7 + 1. But w(G) = 2, so from Lemma [ we
can easily get R(G) < 7} + é, which completes the proof. O

6 On Mechanisms to Improve the Approximation Ratio

6.1 Refinements of the Selfish Steps Sequence: Randomness

The existence of the potential function @(c) assures that if we start with a proper
coloring and allow at each step any single unsatisfied vertex to perform a selfish
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step, then a pure Nash equilibrium will be reached in polynomial time, no matter
in which order the vertices are examined or which is the initial configuration.
In this section we study whether there exists a sequence of selfish steps, i.e. a
specific ordering of the vertices according to which the vertices are allowed to
perform a selfish step, such that the Social Cost of the equilibrium reached is
even less than the general bounds presented before.

Assume that, at each step, the vertex that is allowed to perform a selfish step
is chosen independently and uniformly at random, among all vertices that are
unsatisfied. Moreover, assume that the vertex chosen to perform a selfish step
chooses a color independently and uniformly at random among the colors that
can increase its payoff. Then, we can prove the following (the proof is omitted):

Proposition 1. The random selfish steps sequence applied to the graph of
Lemma [§ terminates in polynomial time at a pure Nash equilibrium that, with
high probability, corresponds to an optimum coloring.

Although Proposition [ is rather restrictive, since it only applies to the graph
of Lemma 8, we believe that the random selfish steps sequence can color other
classes of graphs with a number of colors much smaller than the bounds presented
previously. We expect that randomization can help in avoiding equilibria that
are too far from an optimum coloring. However, we have not yet been able to
prove this; this is a matter of future research and we leave it as an open problem.

6.2 Stackelberg Strategies

Consider a graph coloring game I'(G). Assume that there is a central authority
(a Leader) that controls a portion VL C V of the vertices of G = (V, E), i.e
the Leader colors the vertices in V¥ and, after that, the rest of the vertices in
V\ VL (the followers) are colored selfishly. The goal of the Leader is to find an
assignment of colors to V¥ (a Leader’s strategy) so as to induce the followers to
a pure Nash equilibrium where the total number of colors used in V' is as close
to the chromatic number of G as possible.

Definition 2. For a constant k € N, a random balanced k-partite graph, denoted
G kp, s a k-partite graph with n vertices, where the size of each vertex class is
either [] or | 7], and each edge {u,v} (such that u and v belong to different
vertex classes) exists in G independently at random with probability p.

Lemma 9. The chromatic number of Gn,k,; is k, with high probability.

Proof (Sketch). Clearly, w(G,, j.1) < X(Gy, j,1) < k. The proof follows by show-
ing that, with high probability, there exists a clique of size k in Gn)k)%. O

Theorem 5. Consider the graph coloring game I'(G,, ;. ) There exists a poly-
nomial time computable Leader’s strategy, such that wzth high probability the
total number of colors used in the resulting pure Nash equilibrium is k.

Proof. Let Pi,..., P denote the k vertex classes of G, ; 1. Assume that the
Leader chooses uniformly at random a subset S C V of |S| = clogn vertices, for
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some constant ¢ > 10k. The Leader can exhaustively search among all possible
k-colorings of S in time polynomial in n, since |S| = clog n. Among these possible
colorings, there exists one proper coloring ¢’ that colors each vertex s € SN P,
with the same color x1, each vertex s € SN P, with the same color x5 # x1 e.t.c.
In the following, assume that the Leader’s strategy is c’.

Our next step is to show that, with high probability, each follower v; € P; \ S
is connected to at least one vertex in S of color z;, for all j # 9. To do so, we
use Hoeffding bounds [1I] and obtain

. . 2k
Pr{3i, Jv; e P;, 3j : {vi,v;} ¢ E Yv;€e SNP;} < "

So with probability at least 1 — 271“ , each follower v; € P,\S (foralli € {1,...,k})
has all the colors x; (j # 4) in its neighborhood. But if this is the case, then
the pure Nash equilibrium that will be reached by any selfish steps sequence
will use the same color x; for all v; € P;\ S, for each i = {1,...,k}. Therefore,
with probability at least 1 — 2:, there will be k colors in the resulting pure Nash
equilibrium. However, we assumed that the Leader’s strategy is ¢”. This is not
restrictive, since the Leader can repeatedly choose one of the possible k-colorings
of S (their number is k°!°8™ i.e. polynomial in n) and then leave the followers
converge to a pure Nash equilibrium. The precedent analysis shows that there
exists a proper coloring ¢’ of S such that there will be k colors in the equilibrium
reached by the followers, with high probability. O
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