Seok-Hee Hong
Hiroshi Nagamochi
Takuro Fukunaga (Eds.)

Algorithms
and Computation

19th International Symposium, ISAAC 2008
Gold Coast, Australia, December 2008
Proceedings

LNCS 5369

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5369

Seok-Hee Hong Hiroshi Nagamochi
Takuro Fukunaga (Eds.)

Algorithms
and Computation

19th International Symposium, ISAAC 2008
Gold Coast, Australia, December 15-17, 2008

Proceedings

@ Springer

Volume Editors

Seok-Hee Hong

School of Information Technologies
University of Sydney, Australia
E-mail: shhong @it.usyd.edu.au

Hiroshi Nagamochi

Graduate School of Informatics
Kyoto University, Kyoto, Japan
E-mail: nag@amp.i.kyoto-u.ac.jp

Takuro Fukunaga

Graduate School of Informatics
Kyoto University, Kyoto, Japan
E-mail: takuro@amp.i.kyoto-u.ac.jp

Library of Congress Control Number: 2008940692

CR Subject Classification (1998): F.2, C.2, G.2,1.3.5,C.2.4
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-92181-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-92181-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12578184 06/3180 543210

Preface

This volume contains the proceedings of the 19th International Symposium on
Algorithms and Computation (ISAAC 2008), held on the Gold Coast, Australia,
December 15-17, 2008. In the past, it was held in Tokyo (1990), Taipei (1991),
Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996),
Singapore (1997), Daejeon (1998), Chennai (1999), Taipei (2000), Christchurch
(2001), Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005),
Kolkata (2006), and Sendai (2007).

ISAAC is an annual international symposium that covers the very wide range
of topics in the field of algorithms and computation. The main purpose of the
symposium is to provide a forum for researchers working in algorithms and
theory of computation from all over the world. In response to our call for papers,
we received 229 submissions from 40 countries. The task of selecting the papers
in this volume was done by our Program Committee and many other external
reviewers. After an extremely rigorous review process and extensive discussion,
the Committee selected 78 papers. We hope all accepted papers will eventually
appear in scientific journals in a more polished form. Two special issues, one of
Algorithmica and one of the International Journal on Computational Geometry
and Applications, with selected papers from ISAAC 2008 are in preparation.

The best paper award was given to Takehiro Ito, Takeaki Uno, Xiao Zhou
and Takao Nishizeki for “Partitioning a Weighted Tree to Subtrees of Almost
Uniform Size.” Selected from seven submissions authored by students only, the
best student paper award was given to Ludmila Scharf and Marc Scherfenberg for
“Inducing Polygons of Line Arrangements.” Three prominent invited speakers,
Tetsuo Asano, JAIST, Japan, Peter Eades, University of Sydney, Australia, and
Robert Tarjan, Princeton University, HP, USA also contributed to the program.

We would like to thank all the Program Committee members and external
reviewers for their excellent work, especially given the time constraints. We also
thank all those who submitted papers for consideration, thereby contributing
to the high quality of the conference. We would like to thank our supporting
organizations for their assistance and support. Finally, we are deeply indebted
to the Organizing Committee members whose excellent effort and professional
service to the community made the conference an unparalleled success.

December 2008 Seok-Hee Hong
Hiroshi Nagamochi
Takuro Fukunaga

Program Committee

Kazuyuki Amano
Lars Arge

Cristina Bazgan
Christoph Buchheim
Francis Chin
Kyung-Yong Chwa
Ding-Zhu Du
Thomas Erlebach
Sandor Fekete

Andrew Goldberg
Refael Hassin
Seok-Hee Hong (Co-chair)
Costas Iliopoulos
Hiro Ito
Ming-Yang Kao
Michael Kaufmann
Giuseppe Liotta
Hsueh-I Lu

Anna Lubiw
Tomomi Matsui
Brendan McKay
Pat Morin

Hiroshi Nagamochi (Co-chair)

Kunsoo Park
Frank Ruskey
Ileana Streinu
Takeshi Tokuyama
Anastasios Viglas
Koichi Wada
Lusheng Wang
Osamu Watanabe
Koichi Yamazaki
Hsu-Chun Yen

Organization

Gunma University, Japan

University of Aarhus, Denmark

Universite Paris-Dauphine, France

University of Cologne, Germany

University of Hong Kong, Hong Kong

KAIST, Korea

University of Texas at Dallas, USA

University of Leicester, UK

Braunschweig University of Technology,
Germany

Microsoft Research, USA

Tel Aviv University, Israel

University of Sydney, Australia

University of London, UK

Kyoto University, Japan

Northwestern University, USA

University of Tiibingen, Germany

University of Perugia, Italy

National Taiwan University, Taiwan

University of Waterloo, Canada

Chuo University, Japan

Australian National University, Australia

Carleton University, Canada

Kyoto University, Japan

Seoul National University, Korea

University of Victoria, Canada

Smith College, USA

Tohoku University, Japan

University of Sydney, Australia

Nagoya Institute of Technology, Japan

City University of Hong Kong, Hong Kong

Tokyo Institute of Technology, Japan
Gunma University, Japan
National Taiwan University, Taiwan

Organizing Committee

Sharon Chambers University of Sydney, Australia
Takuro Fukunaga (Co-chair) Kyoto University, Japan

VIII Organization

Seok-Hee Hong (Co-chair) University of Sydney, Australia

Tony (WeiDong) Huang University of Sydney, Australia
Takashi Imamichi Kyoto University, Japan
Ehab Morsy Kyoto University, Japan
Wu Quan University of Sydney, Australia
Jiexun Wang Kyoto University, Japan

ISAAC Advisory Committee

Francis Chin University of Hong Kong, China
Kyung-Yong Chwa KAIST, Korea

Ding-Zhu Du University of Texas at Dallas, USA
Peter Eades University of Sydney, Australia
Wen-Lian Hsu Academia Sinica, Taiwan

Der-Tsai Lee Academia Sinica, Taiwan

Takao Nishizeki Tohoku University, Japan, Chair
Takeshi Tokuyama Tohoku University, Japan
Sponsors

The University of Sydney
The IEICE Information and Systems Society, Technical Committee on COMP
Information Processing Society of Japan, Special Interest Groups on Algorithms

External Reviewers

Mohammad Abam Hans Bodlaender
Umut Acar Janina Brenner
Mustaq Ahmed Tianmin Bu
Khaled Almiédni Hans-Joachim Bockenhauer
Andris Ambainis Valentina Cacchiani
Patrizio Angelini Joseph Chan
Spyros Angelopoulos Kun-Mao Chao
Pavlos Antoniou Chandra Chekuri
Toru Araki Kuan-Ling Chen
Marta Arias Ho-Lin Chen
Yuichi Asahiro Siu-Wing Cheng
Yasuhito Asano Victor Chepoi
James Aspnes Taenam Cho

Yossi Azar Sunghee Choi
Maxim Babenko Jinhee Chun

Sang Won Bae Tom Coleman
Holger Bast Sébastien Collette

Carla Binucci Colin Cooper

Camil Demetrescu
Der-Jiunn Deng
Walter Didimo
Bojan Djordjevic
Stephan Eidenbenz
Leah Epstein
Bruno Escoffier
Piotr Faliszewski
Chun-I Fan

Mike Fellows
Henning Fernau
Simon Fischer
Alan Frieze
Bernhard Fuchs
Toshihiro Fujito
Akihiro Fujiwara
Hiroshi Fujiwara
Takuro Fukunaga
Peter Gacs
Markus Geyer
Emilio Di Giacomo
Xavier Goaoc
Laurent Gourves
Chris Gray

Peter Hachenberger
Mohammad Taghi Hajiaghayi
Xin Han

Sariel Har-Peled
Toru Hasunuma
Meng He

Keld Helsgaun
Hiroshi Hirai
Markus Holzer
Takashi Horiyama
Kuen-Bang Hou
Sheng-Ying Hsiao
Dai-Sin Hsu

John Tacono
Katsunobu Imai
Toshimasa Ishii
Takeshiro Ito
Toshiya Itoh
Kazuo Iwama
Chuzo Iwamoto
Krishnam Raju Jampani

Organization

Inuka Jayasekera
Hirotsugu Kakugawa
Sayaka Kamei

Tom Kamphans
George Karakostas
Yoshiyuki Karuno
Naoki Katoh
Akinori Kawachi
Ken-ichi Kawarabayashi
Mark Keil

Shuji Kijima

David Kirkpatrick
Masashi Kiyomi
Rolf Klein

Kojiro Kobayashi
Stephen Kobourov
Stavros Kolliopoulos
Matias Korman
Takeshi Koshiba
Stephan Kottler
Marc van Kreveld
Alexander Kroeller
Vincent Kuo
Benjamin Lafreniere
Rob LeGrand
Mun-Kyu Lee

Jon Lenchner
Janice Leung

Asaf Levin

Weifa Liang
Xuemin Lin
Chun-Cheng Lin
Tsung-Hao Liu

Zvi Lotker

Chi-Jen Lu

Marco Liibbecke
Gary MacGillivray
Meena Mahajan
Michael Mahoney
Toshiya Mashima
Toshimitsu Masuzawa
Jiri Matousek
Akihiro Matsuura
Alexander Meduna
Henk Meijer

IX

X Organization

Spiros Michalakopoulos
Michael Miller

Ilya Mironov
Joseph Mitchell
Hiroyoshi Miwa
Eiji Miyano
Shuichi Miyazaki
Manal Mohamed
Jerome Monnot
Ehab Morsy
Gabriel Moruz
Mitsuo Motoki
Laurent Mouchard
Tan Munro

S. Muthukrishnan
Wendy Myrvold
Koji Nakano
Shin-ichi Nakayama
Rolf Niedermeier
Mitsunori Ogihara
Yoshio Okamoto
Seiya Okubo
Hirotaka Ono
Fukuhito Ooshita
Aris Pagourtzis
Amit Patel

David Peleg

Ugo Pietropaoli
Valentin Polishchuk
Sheung-Hung Poon
Tomasz Radzik
Mina Razaghpour
Joachim Reichel
Michal Ren

Fran Rosamond
Srinivasa Rao Satti
Joe Sawada

Guido Schaefer
Christiane Schmidt
Michael Schulz
Danny Segev
Jeffrey Shallit
Ting Shen
Hung-Yi Shih
Akiyoshi Shioura

Takayoshi Shoudai
Martin Skutella
Michiel Smid
Shakhar Smorodinsky
Sagi Snir

Venkatesh Srinivasan
Grzegorz Stachowiak
Kathleen Steinhofel
Lorna Stewart
Svetlana Stolpner
Kokichi Sugihara
Yien-Pong Sung
Wing-Kin Sung
Siamak Taati

Hisao Tamaki

Arie Tamir
Takeyuki Tamura
Keisuke Tanaka
Yuuki Tanaka
Seiichi Tani
Dimitrios Thilikos
Alex Thomo

Toan Todinca

Tannis Tourlakis
Shi-Chun Tsai
Ryuhei Uehara
Marc Uetz

Alper Ungor
Takeaki Uno

Jan Vahrenhold
Jenn Vandenbussche
Yann Vaxes

Santosh Vempala
Chang-Yi Wang
Bow-Yaw Wang

Tan Wanless

John Watrous
Renato Werneck
Aaron Williams
Hans-Christoph Wirth
Ronald de Wolf
Alexander Wolff
Damien Woods
Kevin Wortman
Takuya Yoshihiro

Masaki Yamamoto
Hiroki Yanagisawa
Makoto Yokoo
Norbert Zeh

Zhao Zhang

Organization

Yong Zhang
Zhang Zhao
Liang Zhao
Feng Zou
Katharina Zweig

XI

Table of Contents

Invited Talk

Constant-Working-Space Algorithms: How Fast Can We Solve Problems
without Using Any Extra Array? it
Tetsuo Asano

Some Constrained Notions of Planarity
Peter Fades

Reachability Problems on Directed Graphs
Robert E. Tarjan

1A Approximation Algorithm I

Greedy Construction of 2-Approximation Minimum Manhattan
NetWOTK . oottt e
Zeyu Guo, He Sun, and Hong Zhu

The Complexity of Minimum Convex Coloring
Frank Kammer and Torsten Tholey

On the Complexity of Reconfiguration Problems
Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey,
Christos H. Papadimitriou, Martha Sideri, Ryuhei Uehara, and
Yushi Uno

Multiobjective Disk Cover Admits a PTAS
Christian Glafler, Christian Reitwiefiner, and Heinz Schmitz

1B Online Algorithm

Data Stream Algorithms via Expander Graphs
Sumit Ganguly

Improving the Competitive Ratio of the Online OVSF Code Assignment
Problem
Shuichi Miyazaki and Kazuya Okamoto

Optimal Key Tree Structure for Deleting T'wo or More Leaves
Weiwei Wu, Minming Li, and Enhong Chen

Comparing First-Fit and Next-Fit for Online Edge Coloring
Martin R. Ehmsen, Lene M. Favrholdt, Jens S. Kohrt, and
Rodica Mihai

XIV Table of Contents

2A Data Structure and Algorithm

Selecting SUmMs in ATTAYSot vttt ettt e
Gerth Stglting Brodal and Allan Gronlund Jorgensen

Succinet and I/0 Efficient Data Structures for Traversal in Trees
Craig Dillabaugh, Meng He, and Anil Maheshwari

Space-Time Tradeoffs for Longest-Common-Prefix Array
Computation
Simon J. Puglisi and Andrew Turpin

Power Domination in O*(1.7548™) Using Reference Search Trees
Daniel Raible and Henning Fernau

2B Game Theory

The Isolation Game: A Game of Distances
Yingchao Zhao, Wei Chen, and Shang-Hua Teng

On a Non-cooperative Model for Wavelength Assignment in Multifiber

Optical Networks
Evangelos Bampas, Aris Pagourtzis, George Pierrakos, and
Katerina Potika

The Complexity of Rationalizing Matchings
Shankar Kalyanaraman and Christopher Umans

A Game Theoretic Approach for Efficient Graph Coloring
Panagiota N. Panagopoulou and Paul G. Spirakis

3A Graph Algorithm I

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size
Takehiro Ito, Takeaki Uno, Xiao Zhou, and Takao Nishizeki

An Improved Divide-and-Conquer Algorithm for Finding All Minimum
E-Way Cuts . ..o
Mingyu Xiao

On the Algorithmic Effectiveness of Digraph Decompositions and
Complexity Measurest
Michael Lampis, Georgia Kaouri, and Valia Mitsou

An Efficient Scaling Algorithm for the Minimum Weight Bibranching
Problem
Mazxim A. Babenko

Table of Contents

The Balanced Edge Cover Problem.............
Yuta Harada, Hirotaka Ono, Kunihiko Sadakane, and
Masafumi Yamashita

3B Fixed Parameter Tractability

Firefighting on Trees: (1 — 1/e)-Approximation, Fixed Parameter
Tractability and a Subexponential Algorithm
Leizhen Cai, Elad Verbin, and Lin Yang

A New Algorithm for Finding Trees with Many Leaves................
Joachim Kneis, Alexander Langer, and Peter Rossmanith

Faster Parameterized Algorithms for MINIMUM FILL-IN...............
Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger

Graph Layout Problems Parameterized by Vertex Cover
Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra,
Frances A. Rosamond, and Saket Saurabh

A Linear Kernel for the k-Disjoint Cycle Problem on Planar Graphs. . ..
Hans L. Bodlaender, Felko Penninkz, and Richard B. Tan

4A Distributed Algorithm

How to Guard a Graph? i
Fedor V. Fomin, Petr A. Golovach, Alexander Hall, Matus Mihaldk,
Elias Vicari, and Peter Widmayer

Tree Decontamination with Temporary Immunity
Paola Flocchini, Bernard Mans, and Nicola Santoro

Reconfiguration of Cube-Style Modular Robots Using O(logn) Parallel
MOVES . ottt
Greg Aloupis, Sébastien Collette, Erik D. Demaine,
Stefan Langerman, Vera Sacristan, and Stefanie Wuhrer

Squaring the Circle with Weak Mobile Robots
Yoann Dieudonné and Franck Petit

4B Database

Evaluation of General Set Expressions
Ehsan Chiniforooshan, Arash Farzan, and Mehdi Mirzazadeh

Computing with Priced Information: When the Value Makes the
Price ..o
Ferdinando Clicalese and Martin Milani¢

Deductive Inference for the Interiors and Exteriors of Horn Theories. . . .
Kazuhisa Makino and Hirotaka Ono

XV

246

258

270

282

294

306

318

330

342

354

366

378

390

XVI Table of Contents

Leaf Powers and Their Properties: Using the Trees
Michael R. Fellows, Daniel Meister, Frances A. Rosamond,
R. Sritharan, and Jan Arne Telle

5A Approximation Algorithm II

Deterministic Sparse Column Based Matrix Reconstruction via Greedy
Approximation of SVD
Ali Civril and Malik Magdon-Ismail

Minimizing Total Flow-Time: The Unrelated Case....................
Naveen Garg, Amit Kumar, and V.N. Muralidhara

Approximating the Volume of Unions and Intersections of
High-Dimensional Geometric Objects o ...
Karl Bringmann and Tobias Friedrich

Space-Efficient Informational Redundancy.............
Christian Glafler

5B Computational Biology

Minkowski Sum Selection and Finding
Cheng-Wei Luo, Hsiao-Fei Liu, Peng-An Chen, and Kun-Mao Chao

Constructing the Simplest Possible Phylogenetic Network from
Triplets . oo e
Leo van Iersel and Steven Kelk

New Results on Optimizing Rooted Triplets Consistency
Jaroslaw Byrka, Sylvain Guillemot, and Jesper Jansson

A Method to Overcome Computer Word Size Limitation in Bit-Parallel
Pattern Matching i e
M. Oguzhan Kiilekci

6A Computational Geometry I

Inducing Polygons of Line Arrangements............................
Ludmila Scharf and Marc Scherfenberg

Free-Form Surface Partitionin 3-D............
Danny Z. Chen and Ewa Misiolek

Approximate Nearest Neighbor Search under Translation Invariant
Hausdorff Distance
Christian Knauer and Marc Scherfenberg

Table of Contents

Preprocessing Imprecise Points and Splitting Triangulations
Marc van Kreveld, Maarten Léffler, and Joseph S.B. Mitchell

Efficient Output-Sensitive Construction of Reeb Graphs
Harish Doraiswamy and Vijay Natarajan

6B Complexity I

Signature Theory in Holographic Algorithms
Jin-Yi Cai and Pinyan Lu

The Complexity of SPP Formula Minimization
David Buchfuhrer

Understanding a Non-trivial Cellular Automaton by Finding Its
Simplest Underlying Communication Protocol
Eric Goles, Cedric Little, and Ivan Rapaport

Negation-Limited Inverters of Linear Size
Hiroki Morizumi and Genki Suzuki

3-Message NP Arguments in the BPK Model with Optimal Soundness
and Zero-Knowledge.
Giovanni Di Crescenzo and Helger Lipmaa

7A Computational Geometry 11

A Complete Approximation Algorithm for Shortest Bounded-Curvature

Jonathan Backer and David Kirkpatrick

Detecting Commuting Patterns by Clustering Subtrajectories..........
Kevin Buchin, Maike Buchin, Joachim Gudmundsson,
Maarten Léffler, and Jun Luo

On the Stretch Factor of Convex Delaunay Graphs
Prosenjit Bose, Paz Carmi, Sébastien Collette, and Michiel Smid

Covering a Simple Polygon by Monotone Directions
Hee-Kap Ahn, Peter Brass, Christian Knauer, Hyeon-Suk Na, and
Chan-Su Shin

7B Network

On the Stability of Web Crawling and Web Search
Reid Anderson, Christian Borgs, Jennifer Chayes, John Hopcroft,
Vahab Mirrokni, and Shang-Hua Teng

XVIII Table of Contents

Average Update Times for Fully-Dynamic All-Pairs Shortest Paths 692
Tobias Friedrich and Nils Hebbinghaus

Computing Frequency Dominators and Related Problems 704
Loukas Georgiadis

Computing Best Swaps in Optimal Tree Spanners 716
Shantanu Das, Beat Gfeller, and Peter Widmayer

8A Optimization

Covering a Point Set by Two Disjoint Rectangles 728
Hee-Kap Ahn and Sang Won Bae

Computing the Maximum Detour of a Plane Graph in Subquadratic
e . .o 740
Christian Wulff-Nilsen

Finding Long Paths, Cycles and Circuits........... 752
Harold N. Gabow and Shuxin Nie

Computing Best and Worst Shortcuts of Graphs Embedded in Metric
DS .+ v v e e et e 764
Jun Luo and Christian Wulff-Nilsen

8B Routing

On Labeled Traveling Salesman Problems 776
Basile Couétouzr, Laurent Gourves, Jérome Monnot, and
Orestis A. Telelis

Navigating in a Graph by Aid of Its Spanning Tree................... 788
Feodor F. Dragan and Martin Matamala

Single Vehicle Scheduling Problems on Path/Tree/Cycle Networks with
Release and Handling Times.o, 800
Binay Bhattacharya, Paz Carmi, Yuzhuang Hu, and Qiaosheng Shi

Bidirectional Core-Based Routing in Dynamic Time-Dependent Road
Networks . ..ot 812
Daniel Delling and Giacomo Nannicing

9A Graph Algorithm IT

Bandwidth of Bipartite Permutation Graphs (Extended Abstract)...... 824
Ryuhei Uehara

Table of Contents XIX

Konig Deletion Sets and Vertex Covers above the Matching Size 836
Sounaka Mishra, Venkatesh Raman, Saket Saurabh, and
Somnath Sikdar

Independent Sets of Maximum Weight in Apple-Free Graphs 848
Andreas Brandstddt, Tilo Klembt, Vadim V. Lozin, and
Raffaele Mosca

Enumeration of Perfect Sequences of Chordal Graph.................. 859
Yasuko Matsui, Ryuhei Uehara, and Takeaki Uno

From Tree-Width to Clique-Width: Excluding a Unit Interval Graph ... 871
Vadim V. Lozin

9B Complexity II

New Results on the Most Significant Bit of Integer Multiplication 883
Beate Bollig and Jochen Klump

Sorting with Complete Networks of Stacks 895
Felix G. Konig and Marco E. Libbecke

Quantum Query Complexity of Boolean Functions with Small

L G 1Y f = 907
Andris Ambainis, Kazuo Iwama, Masaki Nakanishi,
Harumichi Nishimura, Rudy Raymond, Seiichiro Tani, and
Shigeru Yamashita

Unbounded-Error Quantum Query Complexity 919
Ashley Montanaro, Harumichi Nishimura, and Rudy Raymond

Super-Exponential Size Advantage of Quantum Finite Automata with
Mixed Statest 931
Rusing Freivalds

Author Index 943

Constant-Working-Space Algorithms:
How Fast Can We Solve Problems without
Using Any Extra Array?

Tetsuo Asano

School of Information Science, Jaist,
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

In this talk I will present a new direction of algorithms which do not use any
extra working array. More formally, we want to design efficient algorithms which
require no extra array of size depending on input size n but use only constant
working storage cells (variables), each having O(logn) bits. As an example, con-
sider a problem of finding the median among n given numbers. A linear-time
algorithm for the problem is well known. An ordinary implementation of the al-
gorithm requires another array of the same size. It is not very hard to implement
the algorithm without using any additional array, in other words, to design an
in-place algorithm. Unfortunately, it is not a constant working space algorithm
in our model since it requires some space, say O(logn) space, for maintaining
recursive calls. A good news is that an efficient algorithm is known which finds
the median in O(n'*€) time using O(1/€) working space for any small positive
constant €. The algorithm finds the median without altering any element of an
input array. In other words, the input array is considered as a read-only array.

A main interest in this talk is how to design algorithms using only constant
working space in addition to input arrays. There are two different situations
depending on whether input arrays are read-only or not. If input data are stored
in a read-only array and only constant working space is allowed in an algorithm,
it is called a constant working space algorithm with a read-only array. If we can
read any array element and write any information of logn bits into any array
element in constant time, it is called a constant working space algorithm with a
read-write array. The latter one is usually called as an in-place algorithm.

In this talk I will introduce several constant working space algorithms with
read-write input arrays or with read-only input arrays. Such problems have been
investigated in the community of complexity theory under the name of log-space
computation. The log-space implies the working space of O(logn) bits for an
input size n. There is no difference but their names. In the complexity theory
a main concern is whether a problem belongs to log-space, that is, whether it is
solvable in polynomial time using only small working space of O(logn) bits in
total. My concern is not only polynomial-time solvability but also computational
performance of the algorithm.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Some Constrained Notions of Planarity

Peter Eades

School of Information Technologies,
University of Sydney
peter@it.usyd.edu.au

Graph Drawing is the art and science of making pictures of graphs. Planarity
has always played a central role in graph drawing research. Effective, efficient
and elegant methods for drawing planar graphs were developed over the course
of the last century by Wagner, Hopcroft and Tarjan, Read, de Frassieux, Pach
and Pollack, amongst others.

In the past 30 years, diverse sections of the information industry have motived
a shift in graph drawing, from pure mathematics to industrial research. This
has come from the need to make large and complex data sets comprehensible to
humans. In the mid 1990s, Purchase carried out a set of human experiments that
justified algorithmic planarity research, by showing that edge crossings inhibit
human understanding of graphs.

The shift to a focus on applications brought a number of constraints, and a
number of constrained notions of planarity. These include:

— Upward planarity, for directed acyclic graphs, where edges are drawn
monotonically upward;

— Hierarchical planarity, a variation on upward planarity where vertices are
constrained to a set of horizontal lines;

— Clustered planarity, where the vertices have a cluster hierarchy and each

cluster is drawn as a region in the plane;

Orthogonal planarity, where the edges must consist of horizontal and vertical

line segments;

Symmetric planarity, where the drawing must display a given automorphism.

In this talk we discuss algorithmic research on some such constrained notions
of planarity.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, p. 2, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Reachability Problems on Directed Graphs

Robert E. Tarjan'2"

! Princeton University, Princeton N.J 08544
2 HP Laboratories, Palo Alto CA 94304

robert.tarjanChp.com

Abstract. I will present recent work and open problems on two directed
graph reachability problems, one dynamic, one static. The dynamic prob-
lem is to detect the creation of a cycle in a directed graph as arcs are
added. Much progress has been made recently on this problem, but in-
triguing questions remain. The static problem is to compute dominators
and related information on a flowgraph. This problem has been solved,
but the solution is complicated, and there are related problems that are
not so well understood. The work to be discussed is by colleagues, other
researchers, and the speaker.

* Research at Princeton University partially supported by NSF Grants CCF-0830676
and CCF-0832797. The information contained herein does not necessarily reflect the
opinion or policy of the federal government and no official endorsement should be
inferred.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, p. 3, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Greedy Construction of 2-Approximation
Minimum Manhattan Network*

Zeyu Guo', He Sun'**, and Hong Zhu?

! Fudan University, China
2 East China Normal University, China

Abstract. Given a set T of n points in IR?, a Manhattan Network G
is a network with all its edges horizontal or vertical segments, such that
for all p,q € T, in G there exists a path (named a Manhattan path) of
the length exactly the Manhattan distance between p and ¢. The Mini-
mum Manhattan Network problem is to find a Manhattan network of the
minimum length, i.e., the total length of the segments of the network is
to be minimized. In this paper we present a 2-approximation algorithm
with time complexity O(nlogn), which improves the 2-approximation
algorithm with time complexity O(n?). Moreover, compared with other
2-approximation algorithms employing linear programming or dynamic
programming technique, it was first discovered that only greedy strategy
suffices to get 2-approximation network.

Keywords: Minimum Manhattan Network, approximation algorithm,
greedy strategy.

1 Introduction

A rectilinear path between two points p,¢ € IR? is a path connecting p and ¢
with all its edges horizontal or vertical segments. Furthermore, a Manhattan
path between p and ¢ is a rectilinear path with its length exactly dist(p,q) :=
|p.x — q.x| + |p.y — q.y|, i.e., the Manhattan distance between p and gq.

Given a set T of n points in IR?, a network G is said to be a Manhattan
network on T, if for all p,q € T there exists a Manhattan path between p and ¢
with all its segments in G. For the given network G, let the length of G, denoted
by L(G), be the total length of all segments of G. For the given point set T', the
Minimum Manhattan Network (MMN) Problem is to find a Manhattan network
G on T with minimum L(G).

From the problem description, it is easy to show that there is a close relation-
ship between the MMN problem and planar ¢-spanners. For ¢ > 1, if there exists
a planar graph G such that for all p,q € T, there exists a path in G connecting
p and q of length at most ¢ times the distance between p and ¢, G is said to be

* This work is supported by Shanghai Leading Academic Discipline Project(Project
Number:B412), National Natural Science Fund (grant #60496321), and the
ChunTsung Undergraduate Research Endowment.

** Correspondence author.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 4{15) 2008.
© Springer-Verlag Berlin Heidelberg 2008

Greedy Construction of 2-Approximation Minimum Manhattan Network 5

a t-spanner of T. The MMN Problem for T is exactly the problem to compute
the 1-spanner of T" under the Li-norm.

Related works: Due to the numerous applications in city planning, network
layout, distributed algorithms, and VLSI circuit design, the MMN problem was
first introduced by Gudmundsson, Levcopoulos et al. [B], and until now, it is
open whether this problem belongs to the complexity class P. Gudmundsson et
al. [5] proposed an O(n?)-time 4-approximation algorithm, and an O(nlogn)-
time 8-approximation algorithm. Kato, Imai et al. [7] presented an O(n?)-time
2-approximation algorithm. However, the proof of their algorithm correctness
is incomplete [3]. In spite of that, their paper still provided a valuable idea,
that it suffices for G' to be a Manhattan network if for each of O(n) certain
pairs there exists a Manhattan path connecting its two points. Thus it is not
necessary to enumerate all the pairs in T' x T'. Following this idea, Benkert,
Wolff et al. [1I2] proposed an O(nlogn)-time 3-approximation algorithm. They
also described a mixed-integer programming (MIP) formulation of the MMN
problem. After that, Chepoi, Nouioua et al. [3] proposed a 2-approximation
rounding algorithm by solving the linear programming relaxation of the MIP. In
this paper, the notions Pareto Envelope and a nice strip-staircase decomposition
has been proposed first of all. In K. Nouioua’s Ph.D thesis [8], the primal-dual
based algorithm with 2-approximation and running time O(nlogn) has been
presented. After these works, it was Z. Guo et al. [6] who observed that the
same approximation ratio can also be achieved using combinatorial construction.
In their paper, the dynamic programming speed-up technique of quadrangle
inequality was first used in this problem and, therefore the time complexity O(n?)
has been achieved. In [9], S. Seibert and W. Unger proposed a 1.5-approximation
algorithm. However, their proof is incorrect and 2-approximation is, to our best
knowledge, the lowest ratio for this problem.

Our contributions: In this paper, we present a very simple 2-approximation
algorithm for constructing Manhattan network with running time O(nlogn).
Compared with the simple 3-approximation algorithm with running time
O(nlogn) proposed recently [4] and the previous 2-approximation result [6] re-
lying on dynamic programming speed-up technique, a highlight in our paper is
that, except Pareto Envelope which is widely used in the previous literatures,
it is proven simply greedy strategy is enough for constructing 2-approximation
Minimum Manhattan Network.

Outline of our approach: From a high-level overview, our algorithm is as
follows: partition the input into several blocks (ortho-convex regions) that can
be solved independently of each other. For the blocks, some can be trivially
solved optimally, whereas only one type of blocks is difficult to solve. For such
a non-trivial block there are some horizontal and vertical strips which can be
solved by horizontal and vertical nice covers plus switch segments to connect
neighboring points in the same strip. In such manner, we divide each block into
several staircases. In order to connect the points in each staircase, simple greedy
strategy has been used.

6 7. Guo, H. Sun, and H. Zhu

2 Preliminaries

Basic notations: For p = (p.z,p.y) € R?, let Qx(p) denote the k-th closed
quadrant with respect to the origin p, e.g., Q1(p) := {¢ € R? | p.x < q.x,p.y <
q-y}-

Define R(p, q) as a closed rectangle (possibly degenerate) where p, ¢ € IR? are
its two opposite corners. By (p, ¢) is defined as the vertical closed band bounded
by p, q, whereas By (p, ¢) denotes the horizontal closed band bounded by p, g.

For the given point set 7', let I" be the union of vertical and horizontal lines
which pass through some point in 7. In addition, we use [c,d] to represent the
vertical or horizontal segment with endpoints ¢ and d, as Fig. [l shows.

Fig.1. T = {a,b,c,d,e}. The vertical and horizontal lines compose I".

Pareto envelope: The Pareto envelope, originally proposed by Chepoi et al.
[3], plays an important role in our algorithm and we give a brief introduction.

Given the set of points T, a point p is said to be dominated by q if (Vt eT:
dist(q,¢) < dist(p,t)) A (3t € T : dist(q,t) < dist(p,?)). A point is said to be
an efficient point if it is not dominated by any point in the plane. The Pareto
envelope of T is the set of all efficient points, denoted by P(T). Fig. 2 shows
an example of P(T). It is not hard to prove that P(T) = (,cr Uper R(u,v).
For |T| = n, P(T) can be built in O(nlogn) time. [3] also presented some other
properties of P(T). In particular, P(T) is ortho-convex, i.e., the intersection of
P(T) with any vertical or horizontal line is continuous, which is equivalent to
the fact that for any two points p,q € P(T), there exists a Manhattan path in
P(T) between p and q.

In [3] Chepoi et al. also showed that the Pareto envelope is the union of
some ortho-convex (possibly degenerate) rectilinear polygons (called blocks).
Two blocks can overlap at only one point which is called a cut vertex. We denote
by C the set of cut vertices, and let T := T U C. For a block B, denote by Hp
and Wp its height and width respectively. Let Tg := TN B. We say B is trivial
if B is a rectangle (or degenerate to a segment) such that [Tp| = 2. It is known
that the two points in T must be two opposite corners of B when it is trivial.
In Fig. A C = {a, b, c,d} and only the block between ¢ and d is non-trivial.

Chepoi et al. [3] proved that an MMN on T'F is also an MMN on 7', and to
obtain an MMN on T, it suffices to build an MMN on T for each B C P(T).
The MMN in any trivial block B can be built by simply connecting the two
points in Tp using a Manhattan path. So we have reduced the MMN problem
on 7" to MMN on non-trivial blocks.

Greedy Construction of 2-Approximation Minimum Manhattan Network 7

(a) (b)

Fig. 2. An example of a Pareto envelope. The black points in (a) are the set T. The
two separate grey regions in (b) are non-degenerate blocks, whereas the black lines are
degenerate blocks. All these blocks form the Pareto envelope P(T').

p R(p,q) a -t

Fig. 3. The rectangle is a horizontal strip. Any point in T within Bg(p,q) can only
be placed on the dashed lines, e.g., the point ¢.

For a non-trivial block B denote its border by 0B and let I's := I'N B. We
call a corner p in OB a convex corner if the interior angle at p equals to 7/2,
otherwise p is called a concave corner.

Lemma 1. [3] For any non-trivial block B and any convex corner p in OB, it
holds that p € Tp.

Lemma 2. [3] For any non-trivial block B, there exists an MMN Gp on Tg
such that Gg C I'g. Furthermore, any MMN Gg C I's on Tg contains 0B.

Strips and staircase components: Informally, for p,q € T, p.y < q.y, we call
R(p, q) a vertical strip if it does not contain any point of T in the region By (p, q)
except the vertical lines {(z,y)|z = p.z,y < p.y} and {(z,y)|x = q.z,y > q.y}.
Similarly, for the points p,q € Tg,p.x < g.x, we call R(p, q) a horizontal strip if
it does not contain any point in the region By (p, q) except the horizontal lines
{(z,y)|lz < p.x,y = p.y} and {(z,y)|z > ¢qx,y = q.y}. Especially, we say a
vertical or horizontal strip R(p, q) is degenerate if p.x = q.x or p.y = q.y. Fig. Bl
gives an example of a horizontal strip.

The other notion which plays a critical role in our algorithm is the staircase
component. There are four kinds of staircase components specified by four quad-
rants, and without loss of generality we only describe the one with respect to the
third quadrant. Suppose R(p,q) is a vertical strip and R(p’,q’) is a horizontal
strip, such that ¢ € Q1(p), ¢ € Q1(p'), p,q € Bv(p',¢'), p'.q¢' € Bu(p,q), i-e.,
they cross in the way as Fig. @l shows. Denote by T}, |4, the set of any point
v € T such that v.x > q.xz,v.y > ¢'.y, where p is the leftmost point and p’ is the
topmost point in Q3(v) besides v. A non-empty T,|4q is said to be a staircase
component (see Fig. H)). In this figure, no point in T is located in the dark grey
area and the two light grey unbounded regions except those in T} 4q-

8 7. Guo, H. Sun, and H. Zhu

* q

Tl 1

, u—
URR U
P * q L 4
De ‘ ° p
p‘.,,
Fig. 4. A staircase component Fig.5. An NVC consisting of Fig.6. A switch
black lines segment

For a strip R(p, q), (p,q) is called a strip pair. For each staircase component
Tppr|qqr and each point v in Ty g, (v, p) (also (v,p")) is called a staircase pair.

Theorem 1. [3] A network Gp is a Manhattan network on Tp if and only if
for any strip pair or staircase pair (p,q), p,q € Tp, there exists a Manhattan
path in G connecting p and q.

3 Algorithm Description

Following the approach of [I], a union of vertical segments Cy is said to be a
vertical cover if for any horizontal line £ and any vertical strip R that £ intersects,
it holds that £ N RN Cy # (). Similarly, a union of horizontal segments Cy is
said to be a horizontal cover if for any vertical line ¢ and any horizontal strip
R that ¢ intersects, it holds that £ N RN Cyx # 0. Furthermore, a nice vertical
cover (NVCQ) is a vertical cover such that any of its segments contains at least
one point of Tg. A nice horizontal cover (NHC) is defined symmetrically. Fig.
shows an NVC.

For an NVC Cy, obviously [p,q] C Cy for every degenerate vertical strip
R(p,q). Assume R(p, q) is a non-degenerate vertical strip where p.y < ¢.y, then
there exists vertical segments [p,p’] and [q,¢'] in Cy where p’.y > ¢’y (it is
possible that p = p’ or ¢ = ¢'), as Fig. [f shows. Obviously, a Manhattan path
connecting p and ¢ can be built by adding a horizontal segment [u,v] where
wr = p.x,v.e=qzxq.y <uy=vy < p.y. Suchasegment [u,v] is said to be a
switch segment of R(p,q). The same concept for NHC is defined symmetrically.

Now we present an iterative algorithm CreateNVC to construct an NVC. In
the initialization step, let Cyy be the union of segments [p, g] for each degenerate
vertical strip R(p, ¢), whereas N is the set of non-degenerate ones. In addition, let
the set X be Ts. The main part of the procedure consists of two loops. Regarding
the first loop, a vertical segment of B in some R(p,q) € N is chosen in each
round. Lemma [Tl and the definition of strips guarantee that such segments must
be connected to some point in X. Let the segment lying in the non-degenerate
strip R(p,q) be [p,p], as Fig. [shows. Then p’ is added to X, and [p,p'] is
added to Cy. And by invoking Update(p’), N is updated to be the set of non-
degenerate strips when the new set X is considered as the input point set. Define

Greedy Construction of 2-Approximation Minimum Manhattan Network 9

UN:= UR(p)q)eN R(p, q). It is easy to see that the part of | N adjacent to [p, p/|
is eliminated in each round, which turns out that |J N becomes smaller. It can
be demonstrated that [p,p’] is the unique vertical segment excluded from |J N
in 0B. We repeat the operations above until all the vertical segments initially
falling in 9B N|J N are excluded from |J N and added to Cy.

In the second loop, we choose R(p,q) € N arbitrarily and both its left and
right edges are added to Cy. Two points (p.x,q.y), (¢.z,p.y) are added to X.
And N is updated in the similar manner as Fig. B shows. The formal description
is as follows.

Input: T
Cv «— Ulp, q] where R(p,q) is a degenerate vertical strip;
X « Tp;
N — {R(p,q) | R(p,q) is a non-degenerate vertical strip};
while there exists a vertical segment [p,p'| COB N R(p,q), where R(p,q) €N do
X —XU{p'h
Cv «— Cv U[p,p];
Update(s');
end
while N # () do
Let R(p,q) be an arbitrary vertical strip in V;
P — (px,q.9); ¢ — (¢z,p.y);
12 X —Xu{p,q};
13 COv <~ CvUlppTU[gd];
14 Update(p'); Update(q');
15 end

© 0 No A W N

[Sr——
= o

Algorithm 1. CreateNVC

Lemma 3. CreateNVC takes O(n) time to output an NVC Cy .

Proof. Since Cy initially contains [p, g] for any degenerate vertical strip R(p, q),
a horizontal line ¢ that crosses R(p,q) always intersects Cy . Therefore we only
need to consider non-degenerate vertical strips.

We prove the following invariant maintains: let R(p, q) be a vertical strip in
the original N and ¢ be a horizontal line that intersects R(p,q), then at any
stage of the algorithm, either £N R(p,q) N Cy # 0 or £N R(p,q) € UN holds.

Input: v
1 for each R(p,q) € N such that v.x = p.z,[p,v] N R(p,q) # {p} do

2 N<N\{R(p,q)};
3 if v € R(p,q) and v.y # q.y then N — NU{R(v,q)};

4 end

Algorithm 2. Update

10 7. Guo, H. Sun, and H. Zhu

| @ —--@ ; @
| | d Py
. 3 ¢ 3
o o
Y0 — |)
4 4
oB 0B p p 3(}7"
D p o o L@
Fig. 7. The change in the first loop Fig. 8. The change in the second loop

At the beginning obviously £ N R(p,q) C [JN holds. Each time when N is
updated, the part of R(p, ¢) eliminated from | J N (if existing) must be adjacent to
some segment which is added to Cy, so either N R(p, q)NCy # 0 or {NR(p, q) C
J NV still holds for the updated N. The set N will be updated iteratively until
UN = N =0, which implies £N R(p,q) N Cy # 0.

Secondly, we consider the running time of the procedure.

Line 1 takes O(n) time since O(n) degenerate vertical strips exist. Initially
N contains O(n) non-degenerate vertical strips and |J N contains O(n) vertical
segments of dB. The first loop reduces one such vertical segment in each round,
whereas the second loop eliminates at least one strip in IV in each round. More-
over, each invoking of the procedure Update takes O(1) time since when a point
is added to X, O(1) strips need to be removed or replaced. Therefore the overall
time complexity is O(n). O

After invoking CreateNVC, we add the topmost and bottommost switch segments
for each non-degenerate vertical strip, as Fig.@shows. Then for each vertical strip
R(p,q), at least one Manhattan path between p and ¢ is built. Symmetrically,
we can use the algorithm CreateNHC to compute an NHC. Furthermore, for each
horizontal strip, the leftmost and the rightmost switch segments are added. All
these procedures guarantee that the Manhattan paths for all the strip pairs have
been constructed.

Now we turn to the discussion of staircases. For simplicity, we only describe
the definition of the staircase with respect to the third quadrant. The other cases
are symmetric.

Definition 1 (staircase). For a staircase component T, qq with respect to
the third quadrant, assume R(p, q) is a vertical strip and R(p',q’) is a horizontal
strip. Let My, be the Manhattan path between p and g which passes through the
bottommost switch segment. Let My, be the Manhattan path between p’ and ¢
which passes through the leftmost switch segment. The part of UveTp,,/m/ Qs(v)
bounded by Myq and My g, excluding Myq, My o, Cv, Cy is said to be a staircase,
denoted by Spp|qq -

Fig. IO gives an example of staircase.

Lemma 4. There exists a procedure CreateStaircasePath such that for the

given staircase Spyiqq with the staircase component Ty igqrs |Tpp|qqr| = 15 the

Greedy Construction of 2-Approximation Minimum Manhattan Network 11

Fig.9. Adding Fig.10. The definition of the staircase S},/|4¢'. The dotted lines
switch segments in the right picture is not included in S}, |44 -

procedure takes O(nlogn) time to construct a network Gy qq S Spprjqq SUCh
that Gpprqq U Cr U Cy connects each point in Ty qq to either Mpg or My g .

Proof. Without loss of generality, assume R(p, ¢) is a vertical strip and R(p’, ¢’)
is a horizontal strip where ¢ € Q1(p), ¢’ € Q1(p'), as Fig. [0 shows. Let tg :=
¢, tny1 := ¢'. Express the points in Ty |qq as t1,t2,- -+, t, in the order from the
topmost and leftmost one to the bottommost and rightmost one.

For 1 < i < n, define the horizontal segment h; := {(2,) | ¥ = t;.y} N Spp|qq
and the vertical segment v; := {(z,y) | = t;.x} N Sy g, as Fig[Il shows. We
use Right;(S,,r|44) to represent the staircase polygon on the right of v; whereas
Topi(Spp|qq’) Tepresents the one on the top of h;. Note that Right;(.S,,|4e) and
Top;(Sppr|qqr) are all smaller staircase polygons. Assume S is a general staircase
polygon in Sy, qe - Let hY := h; NS, vy := v;NS. It can be observed that (h{) is
ascending whereas (vy) is descending. Define Right;(S) and Top;(S) in a similar

way. The partial network G,/ |4 NS is constructed in a recursive manner.

Input: S
if S =0 then return
else if L(hf) > L(vls) then return v{U CreateStaircasePath(Right; (S));
else if L(hy) < L(v;)) then return h;U CreateStaircasePath(Top, (S));
else
Choose k such that L(hf) < L(v,f) and L(th) > L(v,erl);
return hj, Uwvj,,U CreateStaircasePath(Tops (S))U
CreateStaircasePath(Rightst1(.5));
7 end

(<=L S NV I R

Algorithm 3. CreateStaircasePath

Initially we invoke CreateStaircasePath(Sy,|qq). For any non-empty S one
of the three branches is chosen. In the third case, binary search guarantees the

12 7. Guo, H. Sun, and H. Zhu

v; | Right, (S)

Fig.11. The definition Fig. 12. One of the three connections for ¢; and tx41 is optimal
of h; and v;

proper k can be obtained with running time O(logn) whereas the procedure is
invoked recursively at most O(n) times, which results in the total running time
O(nlogn).

The correctness proof simply follows from the induction method. a

In the following, we present the global algorithm CreateMMN.

Input: T
Compute P(T).
for each trivial block B C P(T') do
connect the two points in T with a Manhattan path.
for each non-trivial block B C P(T') do
CreatelNVC;
for each vertical strip R(p,q) do
add the topmost and bottommost switch segments of R(p, q);
CreateNHC;
for each horizontal strip R(p,q) do
10 add the leftmost and rightmost switch segments of R(p, q);
11 for each staircase Sy do CreateStaircasePath(Spy|q4q/);

© 00N O A W N

12 end

Algorithm 4. CreateMMN

Theorem 2. For the given point set T of size n, CreateMMN takes O(nlogn)
time to compute a Manhattan network G on T.

Proof. For any non-trivial block, NVC, NHC and switch segments form the
Manhattan paths for strip pairs, whereas some segments are added in staircases
such that there exist Manhattan paths for staircase pairs. By Theorem [the
final network is a Manhattan network.

Regarding the running time, it is well-known that computing the Pareto
envelope and constructing the networks in staircases can be implemented in
O(nlogn) time, and the time required for decomposing each block into stair-
cases and strips is also O(nlogn) using the method similar to [I]. The other

Greedy Construction of 2-Approximation Minimum Manhattan Network 13

steps, including computing NVC, NHC and adding switch segments, can be im-
plemented in linear time. Thus the overall time complexity is O(nlogn). |

4 Approximation Analysis

The rest of this paper is devoted to the approximation analysis of this problem.
Let G denote the Manhattan network constructed by our algorithm, whereas
G* is the optimal one demonstrated by Lemma [with the property that 0B C
G* N B C I'p for every non-trivial block B. For any block B, let Gg := GN B
and G5 := G* N B.

Let B be a non-trivial block. Denote by Gg the switch segments our algo-
rithm adds when computing G. Let S := | Spp|qq» Gu := G NS. From the
algorithm description obviously Gg := Cyy UCy UGg U Gy.

Let G := G N (Cv U Cy), whereas Gf; := G N S.

Lemma 5. L(CV U CH) < 2L(G6) —2Hp — 2Wp.

Proof. We divide Cy UCy into two parts: let Cy be the set of segments for each
degenerate vertical and horizontal strip, as well as the segments added in the
first loop of procedures CreateNVC and CreateNHC. Let Cs represent the union
of the segments added in the second loop. In addition, denote Cf := GE N Ch,
and C3 := G5 N Co.

Observing that C; is the union of the segments in degenerate strips and 0B,
it is easy to show that 9B C C; = Cf. Therefore L(Cy) < 2L(CT) — L(0B) =
2L(CY) —2Hp — 2Wp.

On the other hand, let us consider the second loop of the procedure CreateNVC
and CreateNHC. By symmetric property, we only analyze the procedure CreateNVC.
In a round, two segments [p, '], [¢, ¢] of length ¢ are added into Cy . By our algo-
rithm, R(p, ¢) is contained in some vertical strip R(s,). Since G is a Manhattan
network, C3 N ([p, p'] U [q, ¢]) contains segments of length at least £ to connect s
and t. Since the relation holds for each round and also the procedure CreateNHC,
we obtain L(Cy) < 2L(C3%).

Combining the two inequalities above, we obtain the lemma. a
For any staircase Sp,/|qq, let G;p,qu, =G N Sppriqq -
Lemma 6. For any staircase Sypy|qq » it holds L(Gppy|qq) < 2L(G} 0 1000) -

Proof. Without loss of generality, let S, 4, be a staircase with respect to
the third quadrant, as Fig. [0 shows. Let S be a staircase polygon in S,/ |4
such that CreateStaircasePath(S) is invoked. We will prove L (Gppjgq N S) <
2L (G;p,qu, N S) using induction.

The inequality obviously holds in the trivial case S = (). Assume the relation
holds for smaller staircase polygons in S. For the case L (hf) > L (vf), t1
is connected down and the original problem is reduced to the small one with
region Right;(5). Let Sr := S\Right;(S5). By assumption, we only need to prove

14 7. Guo, H. Sun, and H. Zhu

Fig. 13. The segment lying in two different staircases

L (Gpp/|qq/ N SR) < 2L(G;p,|qq, OSR). Note that L (Gpp/qu’ N SR) =L (vf)7 and
in Gppjgq N Sk segments of length min {L(h{),L(v{)} = L(v{) is necessary
to connect t; to either the left or the bottom boundary of S. Thus the relation
holds. The analysis for the case L(hy) < L(v) is analogous.

Regarding the last case, let Sg := S\ (Top,(S) URight,_(S)). We only need
to prove L (Gpy g N Sk) < 2L(G;p,|qq, N Sg). As Fig. [2 shows, segments of
length at least min {L(v;),L(hy), L(hy) + L(vy,)} are necessary to con-
nect ¢ and txi1 to either the left or the bottom boundary. By monotonic-
ity, L(vi,,) < L(vy) and L(hy) < L(h{,,). By the choice of k, we obtain
L(v,fH) < L(hf) and L(hf) < L(v,fH). Therefore L(Gpp/|qq/ ﬂSR) = L(hf) +
L(vy) <2L(G% 00 N SR)- 0

pp’lqq’

Now we estimate L(Gy). Note that it is possible that some segments of G}; lie
in two different staircases. Let G}, denote the union of these segments. Fig.
illustrates this special condition.

Lemma 7. L(Gy) < 2L(G};) + 2L(Gy,).

Proof. Since the segments of G7, are counted twice, we obtain that L(Gy) <
Y L(Gppriqq) <2 ZL(G;p,qu,) < 2L(Gy) + 2L(G%). |

Lemma 8. 2L(G}) + L(Gs) < 2Hp + 2Wp.

Proof. The lemma can be obtained by the following fact: let £ be a vertical or
horizontal line such that £ I', then ¢ may cross at most one segment in G7,,
and at most two segments in Gg. Furthermore, due to the definitions of strips
and staircase components, ¢ cannot intersect both of G}, and Gg. We omit the
details here. a

Theorem 3. For any block B, L(Gp) < 2L(G%).

Proof. For any trivial block B, the relation obviously holds since L(Gg) = Hg+
Wg. Let B be a non-trivial block, L(Gg) < L(Cy N Cyx) + L(Gs) + L(Gy) <
2L(GE) + 2L(GY) + 2L(G%) + L(Gs) — 2Hp — 2W < 2L(GE) + 2L(GY).
Recall that G& = G5 N (Cy U Cx),G; = G5 N Sy. By the definition of
staircases, it holds that (Cy U Cy) NSy = 0. This means G and Gj; are
disjoint parts of Gj. Therefore L(Gg) < 2L(G§) + 2L(G}y) < 2L(G%). O

Corollary 1. L(G) < 2L(G*). O

Greedy Construction of 2-Approximation Minimum Manhattan Network 15

References

1. Benkert, M., Wolff, A., Widmann, F.: The minimum Manhattan network problem:
a fast factor-3 approximation. Technical Report 2004-16, Fakultét fiir Informatik,
Universitat Karlsruhe. In: Proceedings of the 8th Japanese Conference on Discrete
and Computational Geometry, pp. 16-28 (2005) (short version)

2. Benkert, M., Shirabe, T., Wolff, A.: The minimum Manhattan network problem:
approximations and exact solution. In: Proceedings of the 20th European Workshop
on Computational Geometry, pp. 209-212 (2004)

3. Chepoi, V., Nouioua, K., Vaxes, Y.: A rounding algorithm for approximating min-
imum Manhattan networks. Theoretical Computer Science 390, 56-69 (2008); In:
Proceedings of the 8th International Workshop on Approximation Algorithms for
Combinatorial Optimization, pp. 40-51 (2005)

4. Fuchs, B., Schulze, A.: A simple 3-approximation of minimum Manhattan networks.
Technical Report (2008),
http://www.zaik.uni-koeln.de/~paper/unzip.html?file=2zaik2008-570.pdf

5. Gudmundsson, J., Levcopoulos, C., Narasimhan, G.: Approximating a minimum
Manhattan network. Nordic Journal of Computing 8, 219-232 (2001); In: Proceed-
ings of the 2nd International Workshop on Approximation Algorithms for Combi-
natorial Optimization, pp. 28-37 (1999) (preliminary version)

6. Guo, Z., Sun, H., Zhu, H.: A fast 2-approximation algorithm for the minimum
Manhattan network Problem. In: Proceedings of 4th International Conference on
Algorithmic Aspect in Information Management, pp. 212-223 (2008)

7. Kato, R., Imai, K., Asano, T.: An improved algorithm for the minimum Manhattan
network problem. In: Proceedings of the 13th International Symposium on Algo-
rithms and Computation, pp. 344-356 (2002)

8. Nouioua, K.: Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et
algorithmes, Ph.D. thesis, Université de la Méditerranée (2005)

9. Seibert, S., Unger, W.: A 1.5-approximation of the minimal Manhattan network
problem. In: Proceedings of the 16th International Symposium on Algorithms and
Computation, pp. 246-255 (2005)

http://www.zaik.uni-koeln.de/~paper/unzip.html?file=zaik2008-570.pdf

The Complexity of Minimum Convex Coloring

Frank Kammer and Torsten Tholey

Institut fiir Informatik, Universitat Augsburg, D-86135 Augsburg, Germany
{kammer,tholey}@informatik.uni-augsburg.de

Abstract. A coloring of the vertices of a graph is called convex if each
subgraph induced by all vertices of the same color is connected. We
consider three variants of recoloring a colored graph with minimal cost
such that the resulting coloring is convex. Two variants of the problem
are shown to be NP-hard on trees even if in the initial coloring each color
is used to color only a bounded number of vertices. For graphs of bounded
treewidth, we present a polynomial-time (2+ €)-approximation algorithm
for these two variants and a polynomial-time algorithm for the third
variant. Our results also show that, unless NP C DTTM E(n©{ogloen),
there is no polynomial-time approximation algorithm with a ratio of size
(1 —o(1))Inlnn for the following problem: Given pairs of vertices in an
undirected graph of bounded treewidth, determine the minimal possible
number [for which all except [pairs can be connected by disjoint paths.

Keywords: Convex Coloring, Maximum Disjoint Paths Problem.

1 Introduction

A colored graph (G, C) is a tuple consisting of a graph G and a coloring C' of
G, i.e., a function assigning each vertex v a color that is either 0 or a so-called
real color. A vertex colored with 0 is also called wuncolored. A coloring is an
(a,b)-coloring if the color set used for coloring the vertices contains at most a
real colors and if each real color is used to color at most b vertices. Two equal-
colored vertices v and w in a colored graph (G, C) are C-connected if there is
a path from v to w whose vertices are all colored with the color of v and v. A
coloring C'is called convex if all pairs of vertices colored with the same real color
are C-connected. For a colored graph (G, C1), another arbitrary coloring Co of G
is also called a recoloring of (G, C7). We then say that C4 is the initial coloring
of G and that Cy recolors or uncolors a vertex v of G if Ca(v) # Cy(v) and
Ca(v) = 0, respectively. The cost of a recoloring Cs of a colored graph (G, Ch)
with G = (V. E) I8 3., cv.0£04 ()20 (v) W(V), Where w(v) denotes the weight of
v with w(v) =1 in the case of an unweighted graph. This means that we have
to pay for recoloring or uncoloring a real-colored vertex, but not for recoloring
an uncolored vertex. In the minimum convex recoloring problem (MCRP) we are
given a colored graph and search for a convex recoloring with minimal cost.
The MCRP describes a fundamental problem in graph theory with different
applications in practice: a first systematic study of the MCRP on trees is from

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 16|27 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Complexity of Minimum Convex Coloring 17

Moran and Snir [I0] and was motivated by applications in biology. Further ap-
plications are so-called multicast communications in optical wavelength division
multiplexing networks; see, e.g., [6] for a short discussion of these applications.
Here we focus on the MCRP as a special kind of routing problem. Suppose we
are given a telecommunication or transportation network modeled by a graph
whose vertices represent routers. Moreover, assume that each router can estab-
lish a connection between itself and an arbitrary set of adjacent routers. Then
routers of the same initial color could represent clients that want to be con-
nected by the other routers to communicate with each other or to exchange data
or commodities. More precisely, connecting clients of the same color means find-
ing a connected subgraph of the network containing all the clients, where the
subgraphs for clients of different colors should be disjoint. If we cannot estab-
lish a connection between all the clients, we want to give up connecting as few
clients to the other clients of the same color as possible in the unweighted case
(w(v) =1 for all v € V') or to give up a set of clients with minimal total weight
in the weighted case. Hence, our problem reduces to the MCRP, where a recol-
oring colors all those vertices with color ¢ that represent routers used to connect
clients of color c. The case in which routers can connect a constant number of
disjoint sets of adjacent routers can be handled by copying vertices representing
a router.

We also introduce a new relaxed version of the problem that we call the min-
imum restricted convex recoloring problem (MRRP). In this problem we ask for
a convex recoloring C” that does not recolor any real-colored vertex with a dif-
ferent real color. In practice clients often cannot be used for routing connections
for other clients so that a clear distinction between clients and routers should
be made. This can be modeled by the MRRP, where a client that cannot be
connected to the other clients of the same color may only be uncolored.

Finally, we consider a variant of the MCRP where we search for a convex
recoloring, but assign costs to each color c. We have to pay the cost for color ¢
if at least one vertex of color c¢ is recolored. We call this coloring problem the
manimum block recoloring problem or MBRP. In an unweighted version we assign
cost 1 to each color. The MBRP is useful if in an application it is not useful to
connect only a proper subset of clients that want to be connected.

The MCRP, the MRRP, and the MBRP can also be considered as genera-
lizations of the maximum disjoint paths problem (MDPP) and the disjoint paths
problem (DPP), where in the first case a maximum number and in the second
case all pairs of given pairs of vertices of a graph are to be connected by vertex-
disjoint paths, if possible. Indeed any algorithm solving one of our recoloring
problems on (00, 2)-colorings to optimality also can solve the DPP. Given an
algorithm for the MBRP one can also solve the problem of connecting a subset
of a given set of weighted node pairs (s1,t1),...,(s;,t;) by disjoint paths such
that the sum of the weights of the connected pairs is maximized.

Previous results. The NP-hardness of the unweighted MCRP, MRRP, and
MBRP follows directly from the NP-hardness of the MDPP [8/9]. However, non-
approximability results for our recoloring problems do not follow from

18 F. Kammer and T. Tholey

corresponding results for the MDPP since the latter problem is a maximiza-
tion and not a minimization problem. Moran and Snir [I0] showed that the
MCRP on (o0, 00)-colorings remains NP-hard on trees, and the same is true for
the MRRP, as follows implicitly from the results in [I0] concerning leaf colored
trees.

Snir [13] presented a polynomial-time 2-approximation algorithm for the
weighted MCRP on strings and a polynomial-time 3-approximation algorithm
for the weighted MCRP on trees also published in [II]. Bar-Yehuda, Feldman,
and Rawitz [3] could improve the approximation ratio on trees to 2 + e.

New results. In contrast to the work of Bar-Yehuda et al. and of Snir here we
consider initial (a,b)-colorings with a and b different from oo. In addition, we
also consider graphs of bounded treewidth instead of only trees.

Surprisingly, the variants of the three coloring problems all have different
complexities on graphs of bounded treewidth, as we prove in Section 2] and
Bl We show that the MCRP is NP-hard even on trees initially colored with
(00, 2)-colorings whereas the MRRP can be solved in polynomial time for the
more general (0o, 3)-colorings as input colorings even on weighted graphs of
bounded treewidth. We also observe the NP-hardness of the MRRP on trees
colored with (00, 4)-colorings. Moreover, we present a polynomial-time algorithm
for the MBRP on weighted graphs of bounded treewidth for general colorings.

Extending the result of Bar-Yehuda et al., we present a polynomial-time
(2 + ¢)-approximation algorithm for the MCRP and the MRRP on weighted
graphs of bounded treewidth. However, if we follow their approach in a straight
forward way, we would have to store too much information at each node of a
so-called tree decomposition tree. Therefore, we would obtain a running time of
size 2(n*) with k being the treewidth of the graph considered. Additional ideas
allows us to guarantee a quadratic running time.

Beside our results on graphs of bounded treewidth we show that the un-
weighted versions of our recoloring problems cannot be approximated within
an approximation ratio of (1 — o(1))Inlnn in polynomial time unless NP C
DTIME(n®0°81°8)) even if the initial coloring is restricted to be an (oo, 2)-
coloring. As a consequence of this result, if we are given pairs of vertices, there
is no good approximation possible for approximating in polynomial-time the
minimal [such that all except [pairs are connected by disjoint paths, unless
NP C DTIME(n®U°8l°e™)) Determining ! can be considered in some kind as
the inverse of the MDPP problem. Due to space limitations some proofs in this
article are omitted. They can be found in the full version of this paper.

2 Hardness Results

Theorem 1. Given an unweighted n-vertex graph with an (00, 2)-coloring, no
polynomial-time algorithm for the MCRP, the MRRP or the MBRP has an ap-
prozimation ratio of (1 — o(1))Inlnn unless NP C DTIM E(nC(glogn)),

Theorem 2. The MCRP on unweighted graphs is N'P-hard even if the problem
is restricted to trees colored by an initial (0o, 2)-coloring.

The Complexity of Minimum Convex Coloring 19

Proof. The theorem can be proven by a reduction from 3-SAT. Let F' be an
instance of 3-SAT, i.e., F' is a Boolean formula in 3-CNF. W.l.o.g. we assume
that each clause in F' has exactly three literals. Let n be the number of literals
in F, let m be the number of clauses of F' and let r be the minimal number
such that each literal in F' appears at most r times in F. For the time being
let us construct a forest G which later can be easily connected to a tree. We
construct G by introducing for each variable = a so-called gadget G, consisting
of an uncolored vertex v,, leaves vZ? v colored with a color ¢!, and an edge
{vg, v} for each i = {1, 2}, and two internally disjoint paths of length r+1, one
from v, to vf¥1, and the other from v, to v/¥2. Let us call the internal vertices of
the path connecting v, and v* for i = 1 the positive and for i = 2 the negative
vertices in the gadget G. For each clause K, we introduce a similar gadget G i
consisting of an uncolored vertex v, leaves v, vi? colored with a color ¢l
and an edge {vg, UIL(’J } for each j € {1,2,3}, and three internally disjoint paths

of length 2, all starting in vx but ending in different endpoints, v§’17 02’27 and

v§’37 respectively. In addition, we also introduce 2nr extra vertices without any
incident edges called the free vertices of G. From this forest we obtain a tree T’
if we simply connect all gadgets and all free vertices by the following two steps.
First, add two adjacent vertices v and v? into G that both are colored with the
same new color. Second, for each variable x, connect v, to v!, for each clause
K, connect v to v? and finally also all free vertices to v2.

Concerning the coloring C' of T, we want to color further vertices of T'. For
each literal = or x part of clause K, color in the gadget for x one positive vertex
(in case of literal x) or one negative vertex (in case of literal x) as well as one
of the non-leaves adjacent to vk with a new color ¢, k. If after these colorings
there is at least one uncolored positive or negative vertex, we take for each such
vertex y a new color ¢, and assign it to y as well as to exactly one uncolored free
vertex. One can show that F' is satisfiable if and only if (T, C) has a convex recol-
oring C’" with cost < 2nr+(n+2m). The proof of this equivalence is omitted. O

Although the MCRP is AN'P-complete when being restricted to initial (oo, 2)-
colorings, this is not the fact for the MRRP as we show in Theorem [6l However,
a slight modification of the reduction above shows that the MRRP on weighted
graphs with an initial (oo, 4)-coloring is also N'P-hard even for trees. The idea
is, for each colored non-leaf x, to add two new vertices x1, 2, and edges (z, x1),
(z,x2), to color x1, o with the color of z, and finally to uncolor z.

3 Exact Algorithms

In this section we present algorithms on graphs with bounded treewidth. For
defining graphs of bounded treewidth we have to define tree decompositions.
Tree decompositions and treewidth were introduced by Robertson and Seymour
[12] and a survey for both is given by Bodlaender [4].

Definition 3. A tree decomposition of treewidth k for a graph G = (V, E) is a
pair (T, B), where T = (Vp, Er) is a tree and B is a mapping that maps each

20 F. Kammer and T. Tholey

node w of Vr to a subset B(w) of V' such that (1) U, ey, B(w) =V, (2) for
each edge (u,v) € E, there exists a node w € Vp such that {u,v} C B(w), (3)
B(z)N B(y) C B(w) for all w,z,y € Vp with w being a vertex on the path from
ztoyinT, (4)|B(w)| <k+1 for allw € V. Moreover, a tree decomposition is
called nice if (5) T is a rooted and binary tree, (6) B(w) = B(w1) = B(wz) holds
for each node w of T with two children w1 and wa, (7) either |B(w)\ B(w1)| =1
and B(w) D B(wy) or |B(wy)\ B(w)| =1 and B(w1) D B(w) holds for all nodes
w of T with exactly one child wy.

The treewidth of a graph G is the smallest number &k for which a tree decom-
position of G with treewidth k exists. If k& = O(1), G has bounded treewidth.
For an n-vertex graph of constant treewidth k, one can determine a nice tree
decomposition (7', B) with T consisting of O(n) nodes in linear time [5].

In this section we therefore will assume that we are given an n-vertex graph
G = (V, E) and a nice tree decomposition (T, B) of G of treewidth k—1 (k € N)
with T having O(n) nodes. Before presenting our algorithm we introduce some
further notations and definitions. For clarity, overlined vertices—as for example
v—should always denote nodes of T'. Moreover, we will refer to nodes and arcs
instead of vertices and edges if we mean the vertices or edges of T'. By v and v, we
denote the left and the right child of v in T, respectively. If v has only one child,
we define it to be a left child. We also introduce a new set consisting of k gray
colors—in the following always denoted by Y—and we allow for each recoloring
additionally to use the gray colors. A gray colored vertex w intuitively means
that w is uncolored and will later be colored with a real color. We therefore define
the cost for recoloring a gray colored vertex to be 0 and do not consider the gray
colors as real colors. A convex coloring from now on should denote a coloring C'
where all pairs of vertices of the same gray or real color are C-connected. For
each node v in T, each subset S of vertices of G, each subgraph H of G, and
each coloring C of G we let

— G(v) be the subgraph of G induced by all vertices contained in at least one
set B(w) of a node w contained in the subtree of T' rooted in v.

— C(S),C(H) be the set of colors used by a coloring C for coloring the vertices
of S and of H, respectively.

— SEP(C,v) be the set of real colors used to color vertices except from B(v)
in more than one of the subgraphs G(v)), G(v;) and G — G(v).

Finally, for each subgraph H of G, a legal recoloring of (H,C') is a recoloring
C’" of (H,C) such that for each real color ¢ assigned by C’ there is a vertex
uw of H with ¢ = C(u) = C’(u). Observe that, if there is a convex recoloring
C" of a colored graph (H,C) of cost k, there is also a legal convex recoloring
C' of (H,C) with cost k. C’ can be obtained from C” without increasing the
cost by uncoloring all vertices colored with a color ¢ for which no vertex u with
C"(u) = C(u) = c exists. Hence for solving the MCRP, the MRRP, and the
MBRP we only need to search for legal recolorings solving the problem.

For the rest of this section we assume that our given graph G is colored by
an initial coloring C' not using gray colors. We first present an algorithm for

The Complexity of Minimum Convex Coloring 21

the MCRP. This algorithm considers the nodes of T in a bottom-up strategy
and computes for each node v a set of so-called characteristics. Intuitively, each
characteristic represents a recoloring C’ of G(v) that will be stepwise extended
to a convex recoloring of the whole graph G. Extending a (re-)coloring C; for a
graph H; means replacing C7 by a new color function Cs for a graph Hy O H;
with Ca(w) = Cj(w) for all vertices w of Hy with the following exception: A
vertex colored with a gray color ¢; may be recolored with a real color ¢ if all
vertices of color ¢; are recolored with c;. We next define a characteristic for a
node v precisely as a tuple (P,{Ps|S € P},{cs|S € P},Z), where

— P is a partition of B(v), i.e., a family of nonempty pairwise disjoint sets
S1y..., 85 with Uy ,<; Si = B(v). These sets are called macro sets.

— Pg is a partition of the macro set .S, where the subsets of S contained in Pg
are called micro sets.

— c¢g for each macro set S is a value in SEP(C,v) UY U {0, b}, where b is an
extra value different from 0 and the real and gray colors.

— Z C SEP(C,v). The colors in Z are called the forbidden colors.

In the following for a characteristic @ and a macro set .S of Q we denote the val-
ues P, Ps,cs and Z above by PQ7PSQ,059 and Z2. We next describe a first
intuitive approach of solving the MCRP extending the ideas of Bar-Yehuda
et al. [3] from trees to graphs of bounded treewidth by introducing macro and
micro sets but not using gray colors or the extra value b.

A characteristic Q for a node v should represent a coloring C’ of G(v) such
that the following holds: A macro set S of Q denotes a maximal subset of vertices
in B(v) that are colored by C’ with the same unique color equal to the value
cg stored with the macro set—maximal means that there is no further vertex in
B(v)\ S colored with cg. A micro set is a maximal subset of a macro set that is
(’-connected in G(v). When later extending the recoloring C’ we need to know
which of the colors not in C'(B(v)) are used by C’ to color vertices of G(v)
since these colors may not be used any more to color a vertex outside G(v).
These colors are exactly the forbidden colors of the characteristic. Note that
there can be more than one recoloring of G(v) leading to the same characteristic
for v. Hence, a characteristic does not really represent one recoloring, but an
equivalence class of recolorings. The main idea of our algorithm is the following:

Given all characteristics for the children of a node v and, for each equivalence
class £ described by one of these characteristics, the minimal cost among all
costs of recolorings in &, our algorithm uses a bottom-up strategy to compute
the same information also for v and its ancestors. Since we only want to compute
convex recolorings, at the root of T' we have to remove all characteristics having
a real colored macro set that consists of at least two micro sets. The cost of
an optimal convex recoloring is the minimal cost among all costs computed
for the remaining characteristics. An additional top-down traversal of T' can
also determine a recoloring having optimal cost. Unfortunately, the number of
characteristics to be considered by the approach above would be too high for
an efficient algorithm. The problem is that for graphs of bounded treewidth, in
contrary to what is the case for trees, a path connecting two vertices outside G(v)

22 F. Kammer and T. Tholey

may use vertices in G(v) and vice versa. Hence, as a further change compared
to the algorithm of Bar Yehuda et al., we use gray colors and the extra value b.
These colors are intuitively used as follows:

If a color ¢ is used by C only to color vertices outside G(v), a recoloring C’ of G
may possibly also want to recolor a set S of vertices in G(v) with ¢ in order to C’-
connect some vertices with color c¢. The cost for recoloring vertices of G(v) with
c are independent from the exact value of ¢, and can be computed as the costs of
uncoloring all vertices of S (since C(w) # ¢ for all w in G(v)) and of recoloring
it (without any cost) with color c¢. Therefore, when considering recolorings of the
graph G(v), we do not allow to color it with a real color ¢ ¢ C(G(v)). Instead
of ¢ we use a gray color, since coloring a vertex gray has the same costs as
of uncoloring the vertex but allows us to distinguish the vertex from vertices
colored with another gray color or being uncolored. Note that our definition of
extending a recoloring allows us with zero costs to recolor gray and uncolored
vertices in a later step with a real color, whereas recoloring real-colored vertices
is forbidden when extending a recoloring.

If a recoloring C’ of G(v) colors a macro set S with a color ¢ that is only
used by C to color vertices of G(v), then for extending the recoloring C’ to a
recoloring C”', we do not need to know the exact color of S. The reason for this
is that, for any vertex w outside G(v), the cost for setting C”(w) = ¢ can be
computed again independently from the color of S: We have to pay the weight
of w as costs if w is real-colored by C and zero costs otherwise. Therefore, we
use the extra value b to denote that a macro set S is real-colored with a color ¢
that with respect to C only appears in G(v) and, in this case, we will set ¢ = b
instead of setting c§ = c.

Following the ideas described above we let our algorithm consider only a
restricted class of characteristics. For a node v of T', we define C|g(,) to be the
coloring C restricted to G(v). We call a characteristic @ a good characteristic if
there exists a legal recoloring C” of (G(v), C|¢(v)) With the properties (A1)-(A7).
(" is then said to be consistent with Q.

(A1) C'"(G(v)) C C(G(w))UY U{0}.

(A2) For each macro set S of Q, C’ colors all vertices of S with one color, namely
with g if ¢ # b, and with a real color not in C(G' — G(v)) if c§ = b.

(A3) C’ colors two different macro sets of Q with different colors.

(A4) A micro set is a maximal subset of B(v) that is C'-connected in G(v).

(A5) C" is a convex recoloring for the graph obtained from G(v) by adding,
for each macro set S, edges of an arbitrary simple path visiting exactly one
vertex of each micro set of S.

(A6) Every gray colored vertex in G(v) is C’-connected to a vertex in B(v).

(A7) Z< = SEP(C,v) N (C'(G(v)) \ C'(B(v))).

Note that each convex legal recoloring C” of the initial colored graph (G, C) is
consistent with a good characteristic @ for the root r of T. More explicitly, we
obtain Q by dividing B(r) into macro sets each consisting of all vertices of one
color with respect to C’, by defining the partition of each macro set to consist

The Complexity of Minimum Convex Coloring 23

of only one micro set, by setting Z< = () and by defining, for each macro set S,
cg = b if C'(S) is a real color, or c¢§ = 0 otherwise.

Our algorithm computes in a bottom-up process for each node v of T all good
characteristics of v from the good characteristics of the children of v. However
not all pairs of good characteristics of the children can be combined to good
characteristics of v. Therefore we call a characteristic Q) of v; and a characteristic
9, of v, compatible if they satisfy the following three conditions:

— Two vertices v1,v2 € B(v)) = B(v;) belong to the same macro set in Q if
and only if this is true for Q,.

— Let S be a macro set of @ and hence also of Q) and Q.. Then either
c?‘ = cg" # b or exactly one of c?‘ and cg™ is a gray color.

— The sets of forbidden colors of Q, and of Q) are disjoint.

The following algorithm computes for each node v of T" a set M, of character-
istics from which we will show in the full version of this paper that it is exactly
the set of good characteristics of v. First of all, in a preprocessing phase compute
by a bottom-up and a top-down traversal of T', for each node v of T', the set
SEP(C,v) as well as the set of colors that are used by C' to color vertices in G(v)
but no vertex outside G(v). The latter set is in the following denoted by U(C,v).
Next, for each leaf v of T', M,, is obtained by taking into account all possible
divisions of the vertices of B(v) into macro sets and all possible colorings of the
macro sets with different colors of C(B(v)) UY U {0}. More precisely, for each
choice, a characteristic Q is obtained and added to M, by defining, for each
macro set S colored with ¢, the micro sets of S to be the connected components
of the subgraph of G induced by the vertices of S, and by setting c? =bifcis
a real color in U(C,v), and ¢§ = ¢ otherwise. The set Z< of forbidden colors is
set to (.

Next start a bottom-up traversal of T'. At a non-leaf v all already computed
characteristics of the children are considered. In detail, for each characteristic
9 of M, and—if v has two children—for each compatible good characteristic
Q, of M, , we add to M,, the set of characteristics that also could be obtained
as output by the following non-deterministic algorithm:

— Take for Q and the vertices in B(v) N B(v;) the same division into macro sets
as for Qy. If v has only one child and there is also a vertex w € B(v) \ B(v)),
choose one of the < k possibilities of assigning w to one of the macro sets of
B(v) N B(v;) or choose {w} to be its own new macro set.

— For dividing the vertices of B(v) into micro sets, construct the graph H
consisting of the vertices in B(v) and having an edge between two vertices if
and only if both vertices belong to the same macro set and either this edge
exists in G or both vertices belong to the same micro set in Qj or Q,. Define
the vertices of each connected component in H to be a micro set of Q.

— For each macro set S obtained by the construction above, distinguish be-
tween three cases.

e S C S’ for a macro set S’ of Q;: If v, does not exist or if cg} = c?ﬂ set,

g = c?}. Otherwise, set ¢S to the non-gray value in {08}7 cs'}

24 F. Kammer and T. Tholey

e Shasavertexw € B(v)\B(vi) and |S| > 1 : Choosec§ € {c?{{w},C(w)}

if C?\l{w} is a gray color, otherwise, c? = ng*i{w}'

e S = {w} with w € B(v)\ B(v1): Choose for c§ a value of Y U {0, C(w)}.
After defining c§ as described above, if c§ is a real color and c¢§ € U(c,v),
redefine c§ = b.

— Reject the computation if there is a micro set S’ part of a macro set S in Q)
with S’ N B(v) = 0 and either c$' is a gray color or S\ S’ # 0.

— If there is macro set S = B(v1)\ B(v) of Q) and if cgl is a real color, set Z/ =
{c$'} and Z’ = () otherwise. Finally, set Z2 = SEP(C,v)N(Z'UZ2UZ).

As mentioned before, one can show that our algorithm correctly computes for
each node v the set of all good characteristics of v and that our algorithm can be
extended such that it computes with each good characteristic @ the costs of a
recoloring consistent with @ that among all such recolorings has minimal costs.
One can also show that our algorithm has a running time of O(n? + 4%(k + s +
2)6k+1(k2 4 5)n), where s = max, nodeof 7|SEP(C, v)|.

After the removal of all characteristics having a real colored macro set that
consists of at least two micro sets or having a gray colored macro set we obtain
the cost of an optimal legal convex recoloring as the minimal costs among all costs
stored with the remaining characteristics constructed for the root of T'. Finally by
an additional top-down traversal our algorithm can—beside the minimal costs
of a legal recoloring—also determine the coloring itself within the same time
bound. We obtain the following theorem.

Theorem 4. Given a colored graph (G,C) and a nice tree decomposition (T, B)
of width k—1 as input the MCRP can be solved in O(n?+4°(k+s+2)55+1 (k2 +
s)n) time, where s = MaXynodeot 7|SEP(C,v)|.

It is easy to modify the algorithm above such that it solves the MRRP within the
same time bound. In each bottom-up step we only have to exclude recolorings
that recolor a real colored vertex with a gray or another real color.

Unfortunately, the algorithms above for the MCRP and the MRRP are ex-
ponential in s since there are 2° different possible lists of forbidden colors. The
good news concerning the MBRP on general initial colorings and the MRRP
with its initial coloring being an (oo, 3)-coloring is that we can omit to store the
forbidden colors explicitly. We next describe the necessary modifications.

For the MBRP we use the same basic algorithm as for the MCRP. However, we
compute as a solution for the MBRP w.l.o.g. only recolorings that, for each real
color ¢, either recolor all or none of the vertices initially colored with c. Following
this approach, a characteristic of a node v should only represent recolorings that,
for each real color ¢, either recolor all or none of the vertices v in G(v) for which
C(u) = ¢ holds. If in the latter case there is a vertex in G(v) and also a vertex
outside G(v) initially colored with ¢, we therefore claim that a vertex of B(v) is
also colored with ¢ since otherwise the recoloring can not be extended to a legal
convex recoloring not recoloring any vertex of ¢. This implies an additional rule
for constructing characteristics:

The Complexity of Minimum Convex Coloring 25

Assume that—as in our basic algorithm—we want to construct a characteristic
Q of a non-leaf v from a characteristic Q, of a child u of v. Then we are only
allowed to color a macro set S of Q with ¢ if (1) all vertices in B(v) that are
initially colored with ¢ are contained in S and (2) either Q, also contains a
macro set S’ with ¢§* = ¢ or ¢ ¢ C(G(u)).

For efficiently testing condition (2), we construct in a preprocessing phase
for each node v an array A,, with the following entries: For each color ¢ €
C(G), Aylc] = 1 if G(v) contains a vertex u with C(u) = c¢. Otherwise A,][]
is defined to be 0. If the array is computed by a bottom-up traversal of T', the
preprocessing phase takes O(n?) time. After the preprocessing phase we can test
for each characteristic Q of a node v and each color ¢ in O(k) time whether
(1) and (2) hold. Hence, the asymptotic running time of our algorithm does
not increase. Moreover, our additional rules enables us to find out, for each color
¢ € SEP(C,v), whether a vertex of G(v1) or G(v,) is colored with ¢ by considering
Ay|c] and by testing whether a macro set S of Q) or Q,, respectively, is colored
with c¢. Hence, there is no need to store the forbidden colors.

Theorem 5. On graphs of bounded treewidth the MBRP is solvable in polyno-
meal time.

More complicated modifications are necessary for the MRRP. We assume
w.l.o.g. that, for each color ¢, there are either no or at least two vertices colored
with ¢ by C. The main idea of our algorithm is the following: For improving
the running time at a node v of T' we only want to consider recolorings C’ of
G(v) such that for each color ¢ € C(G) the following condition (D,c) holds. The
correctness of this step will be discussed later.

(D,e) Ifuwis avertex in G(v) with C’(u) = C(u) = ¢, either there exists a vertex
w outside G(v) with C(w) = ¢ and a vertex w’ € B(v) with C’(w') = ¢,
or there exists another vertex w € G(v) with C'(w) = C(w) = c.

This property guarantees that, for a node v of highest depths with G(v;)
containing a vertex wu; initially colored with ¢ and G(v,) containing a vertex
u, initially colored with ¢, a recoloring C’ with property (D,c¢) colors u; or u,
with ¢ if and only if B(v)) and B(v,), respectively, also contains a vertex colored
with c. Therefore, there is no need to store ¢ explicitly as a forbidden color in
a characteristic of v; and of v, any more. With similar arguments one can show
that for no node its characteristic has to store ¢ explicitly as a forbidden color.

The problem is that some legal recolorings are permitted by (D,c). However,
each convex recoloring Cop¢ of optimal cost either is a recoloring with property
(D,c¢) or it colors w.l.o.g. exactly one vertex u with c. In the latter case a coloring
with the same cost as Copy can be obtained from a recoloring with property (D,c)
not coloring any vertex with ¢ by undoing the recoloring of the vertex originally
colored with ¢ that among all such vertices has a maximal weight. Therefore,
for computing the costs of an optimal convex recoloring, we only have to con-
sider the costs of recolorings with property (D,c) and eventually to subtract the
maximal weight over all vertices originally colored with c. Let us call such a sub-
traction a c-cost adaption. Our goal now is to describe an algorithm that runs the

26 F. Kammer and T. Tholey

c-cost-adaption during the bottom-up traversal of T at a certain node v—called
the c-decision node—having the following property:

For each characteristic Q of v, either each recoloring C’ extending a recoloring
consistent with @ and having property (D,c) C’-connects at least two vertices
initially colored with ¢ (and we therefore must not run a c-cost-adaption) or all
such recolorings uncolor all vertices initially colored with ¢ (and therefore we
have to run a c-cost-adaption).

If, for each color ¢, we know the c-decision node, our algorithm runs as follows:
For each node v (also above the c-decision node), we only compute characteristics
representing recolorings for which property (D,c) holds for each color c. If we
reach the c-decision node v, for each characteristic @ of v, we test whether all
recolorings extending Q do not use color ¢ and if so, we run a c-cost adaption
for Q. One can show that, for all colors ¢, a c-decision node exists and that
one can efficiently determine the characteristics representing the recoloring with
property (D,c).

Theorem 6. On graphs of bounded treewidth the MRRP restricted to initial
(00, 3)-colorings is solvable in polynomial time.

Note that the running times for the MCRP and the MRRP on arbitrary initial
colorings are also polynomial if s—defined as in Theorem [l—is of size O(logn).
This is the case if an (a, b)-coloring with a = O(logn) is given.

Theorem 7. On graphs of bounded treewidth the MCRP and the MRRP, both
restricted to initial (a,b)-colorings with a = O(logn), are solvable in polynomial
time.

4 Approximation Algorithms

Since the MCRP is A/P-hard even on trees, we can not hope for a polynomial-
time algorithm that solves the problem to optimality—even if we consider graphs
of bounded treewidth. Using the algorithm of the last section we now present for
graphs of bounded treewidth a (2 + ¢)-approximation algorithm for the MCRP
and the MRRP given an arbitrary (oo, co)-coloring. The following algorithm is
inspired by the algorithm of Bar-Yehuda et al. [3]. We extend the algorithm from
trees to graphs of bounded treewidth and present a slightly different description
for proving the correctness of the algorithm.

Given a graph G with a coloring C' and a nice tree decomposition (T, B) of
width k—1 for G our results can be obtained by iteratively modifying the coloring
C and the weights of the vertices such that finally |[SEP(C,v)| < s for all nodes
v of T and a fixed s € N with s > k. Let v be a node of T" such that there is a
set R’ C SEP(C,v) containing exactly s colors and let V' be a set consisting of
two vertices of color ¢ for all ¢ € R’ such that for each pair of vertices z,y € V'
of the same color the vertices « and y are in different components in G — B(v).
Moreover, let « be the minimal weight of a vertex in V'. The size of SEP(C,v) is
decremented by reducing the weight of all vertices in ¥V’ by « and subsequently
uncoloring the vertices of zero-weight.

The Complexity of Minimum Convex Coloring 27

On the one hand, this weight reduction decreases the cost of an optimal convex
(re-)coloring C” of G by at least (s — k)a since the at most k vertices in B(v)
allow to color connect only k of the s colors in R’, i.e., s—k vertices in V' can not
be C’-connected. On the other hand, if we have a solution for the MCRP (or the
MRRP) with the reduced weight function, we can simply take this solution as a
solution for the MCRP (or the MRRP) with the original weights and our costs
increase by at most 2sa. Thus, in each iteration our costs decrease at most by a
factor of 2s/(s — k) more than the decrease of the costs of an optimal solution.
If at the end no further reduction is possible, we can use the exact algorithms
from the previous section, i.e., we can solve the instance obtained by this weight
reduction as good as an optimal algorithm. Altogether, we have only recoloring
costs that are a factor of 2s/(s — k) bigger than the costs of an optimal solution.
Choosing s large enough, we obtain the following.

Corollary 8. For graphs of bounded treewidth a (2 + €)-approzimation algo-
rithms exist for the MCRP and the MRRP with quadratic running time.

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms 2, 153-177 (2006)

2. Andrews, M., Zhang, L.: Hardness of the undirected edge-disjoint paths problem.
In: Proc. 37th Annual ACM Symposium on Theory of Computing (STOC 2005),
pp. 276-283 (2005)

3. Bar-Yehuda, R., Feldman, 1., Rawitz, D.: Improved approximation algorithm for
convex recoloring of trees. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS,
vol. 3879, pp. 55-68. Springer, Heidelberg (2006)

4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded tree width. The-
oret. Comput. Sci. 209, 1-45 (1998)

5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the path-
width and treewidth of graphs. J. Algorithms 21, 358-402 (1996)

6. Chen, X., Hu, X., Shuai, T.: Inapproximability and approximability of maximal
tree routing and coloring. J. Comb. Optim. 11, 219-229 (2006)

7. Feige, U.: A threshold of Inn for approximating set cover. J. ACM 45, 634652
(1998)

8. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5, 4568 (1975)

9. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
(ACM) SIGDA Newsletter 5, 31-36 (1975)

10. Moran, S., Snir, S.: Convex recolorings of strings and trees: definitions, hardness
results and algorithms. In: Dehne, F., Lépez-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 218-232. Springer, Heidelberg (2005)

11. Moran, S., Snir, S.: Efficient approximation of convex recoloring. J. Comput. Sys-
tem Sci. 73, 1078-1089 (2007)

12. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb.
Theory Ser. B 35, 39-61 (1983)

13. Snir, S.: Computational Issues in Phylogenetic Reconstruction: Analytic Maximum
Likelihood Solutions, and Convex Recoloring. Ph.D. Thesis, Department of Com-
puter Science, Technion, Haifa, Israel (2004)

On the Complexity of Reconfiguration Problems

Takehiro Ito!, Erik D. Demaine?, Nicholas J.A. Harvey?,
Christos H. Papadimitriou?, Martha Sideri*, Ryuhei Uehara®, and Yushi Uno®

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
2 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA
3 Computer Science Division, University of California at Berkeley,
Soda Hall 689, EECS Department, Berkeley, CA 94720, USA
4 Department of Computer Science,
Athens University of Economics and Business,
Patision 76, Athens 10434, Greece
5 School of Information Science, JAIST,
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
6 Graduate School of Science, Osaka Prefecture University,
1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
takehiro@ecei.tohoku.ac.jp, edemaine@mit.edu, nickh@mit.edu,
christos@cs.berkeley.edu, sideriQaueb.gr, uehara@jaist.ac. jp,
uno@mi.s.osakafu-u.ac. jp

Abstract. Reconfiguration problems arise when we wish to find a step-
by-step transformation between two feasible solutions of a problem such
that all intermediate results are also feasible. We demonstrate that a
host of reconfiguration problems derived from NP-complete problems
are PSPACE-complete, while some are also NP-hard to approximate. In
contrast, several reconfiguration versions of problems in P are solvable
in polynomial time.

1 Introduction

Consider the bipartite graph with weighted vertices in Fig[l(a) (both solid and
dotted edges). It models a situation in which power stations with fixed capacity
(the square vertices) provide power to customers with fixed demand (the round
vertices). It can be seen as a feasible solution of a particular instance of a search
problem which we may call the POWER SUPPLY problem [T0JIT]: Given a bipartite
graph G = (U,V, E) with weights on the vertices, is there a forest covering all
vertices in G, and with exactly one vertex from U in each component, such that
the sum of the demands of the V' vertices (customers) in each component is no
more than the capacity of the U vertex (power station) in it?

But suppose now that we are given two feasible solutions of this instance (the
leftmost and rightmost ones in Fig[Il), and we are asked: Can the solution on the
left be transformed into the solution on the right by moving only one customer at
a time, and always remaining feasible? This problem, which we call the POWER

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 28 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Complexity of Reconfiguration Problems 29

Fig. 1. A sequence of feasible solutions for the POWER SUPPLY problem

SUPPLY RECONFIGURATION problem, is an exemplar of the kind of problems we
discuss in this paper. (In this particular instance, it turns out that the answer
is “yes”; see Figlll) As one may have expected, the most basic reconfiguration
problem is the SATISFIABILITY RECONFIGURATION problem: Given a CNF for-
mula and two satisfying truth assignments sy and s;, are these connected in the
subgraph of the hypercube induced by the satisfying truth assignments? This
problem has been shown PSPACE-complete in [6].

In more generality, reconfiguration problems have the following structure: Fix
a search problem S (a polynomial-time algorithm which, on instance I and
candidate solution y of length polynomial in that of I, determines whether y is
a feasible solution of I); and fix a polynomially-testable symmetric adjacency
relation A on the set of feasible solutions, that is, a polynomial-time algorithm
such that, given an instance I of S and two feasible solutions y’ and y” of I,
it determines whether ¢’ and y” are adjacent. (In almost all problems discussed
in this paper, the feasible solutions can be considered as sets of elements, and
two solutions are adjacent if their symmetric difference has size 1 — or, in some
cases such as POWER SUPPLY RECONFIGURATION, 2.) The RECONFIGURATION
PROBLEM FOR S AND A is the following computational problem: Given instance
I of S and two feasible solutions yo and y; of I, is there a sequence of feasible
solutions yo, y1, ...,y of I such that y;_1 and y; are adjacent for i =1,2,...,t?

Reconfiguration problems can also arise from optimization problems, if one
turns the optimization problem into a search problem by giving a threshold.
For example, the CLIQUE RECONFIGURATION problem is the following: Given a
graph G, an integer k, and two cliques Cy and C; of G, both of size at least k,
is there a way to transform Cjy into C; via cliques, each of which results from
the previous one by adding or subtracting one node of GG, without ever going
through a clique of size less than k& — 17

Reconfiguration problems are useful and entertaining, have been coming up in
recent literatures [1I6J9], and are interesting for a variety of reasons. First, they
may reflect, as in the POWER SUPPLY RECONFIGURATION problem above, a situa-
tion where we actually seek to implement such a sequence of elementary changes
in order to transform the current configuration to a more desirable one, in a con-
text in which intermediate steps must also be fully feasible, and only restricted
changes can occur — in our example, no two customers can change providers
simultaneously, and we certainly do not wish customers to be without power.
In a complex, dynamic environment in which changing circumstances affect the
feasible solution of choice, determining whether such adaptation is possible may

30 T. Ito et al.

be crucial. Reconfiguration problems also model questions of evolvability: Can
genotype yg evolve into genotype y; via individual mutations which are each of
adequate fitness? Here a genotype is considered feasible if its fitness is above a
threshold, and two genotypes are considered adjacent if one is a simple mutation
of the other. Finally, reconfiguration versions of constraint satisfaction problems
(the first kind studied in the literature [6]) yield insights into the structure of the
solution space, and heuristics, such as survey propagation, whose performance
depends crucially on connectivity and other properties of the solution space.

In this paper we embark on a systematic investigation of the complexity of re-
configuration problems. Our main focus is showing that a host of reconfiguration
problems (including all those mentioned above and many more) are PSPACE-
complete. The proof for the POWER SUPPLY RECONFIGURATION problem and
those for certain other problems are explained in Section[2l In Section [3] we point
out that certain reconfiguration problems arising from problems in P (such as the
MINIMUM SPANNING TREE and MATCHING problems) can be solved in polynomial
time, and in Section] we show certain approximability and inapproximability
results for reconfiguration problems.

2 PSPACE-Completeness

In this section we show that a host of reconfiguration problems are PSPACE-
complete. We first give a proof for the POWER SUPPLY RECONFIGURATION
problem in Subsection 2.1 and then give proof sketches for certain other re-
configuration problems in Subsection

2.1 POWER SUPPLY RECONFIGURATION

The POWER SUPPLY RECONFIGURATION problem was defined informally in the
Introduction. An instance is given in terms of a bipartite graph G = (U, V, E),
where each vertex in U is called a supply vertex and each vertex in V is called a
demand vertex. Each supply vertex u € U is assigned a positive integer sup(u),
called the supply of u, while each demand vertex v € V is assigned a positive
integer dem(v), called the demand of v. We wish to find a forest which covers all
vertices in G such that each tree T in the forest has exactly one supply vertex
whose supply is at least the sum of demands of all demand vertices in T'. We call
an assignment f : V — U a configuration of G if there is an edge (v, f(v)) eFE
for each demand vertex v € V. A configuration f of G is called feasible if the
following condition holds: for each supply vertex u € U,

sup(u) > Z{dem(v) | v € V such that f(v) = u}.

The adjacency relation on the set of feasible configurations is defined as follows:
two feasible configurations f and f’ are adjacent if |{v eV: f(v)# f’(v)}| =1,
that is, f’ can be obtained from f by changing the assignment of a single de-
mand vertex. Then, for given a bipartite graph G = (U, V, E) and two feasible

On the Complexity of Reconfiguration Problems 31

configurations fy and f; of G, the POWER SUPPLY RECONFIGURATION problem is
to determine whether there is a sequence of feasible configurations fo, f1,..., fi
of G such that f;_; and f; are adjacent for i =1,2,...,t.

Figlll illustrates three feasible configurations of a bipartite graph G, where
each supply vertex is drawn as a square, each demand vertex as a round, and
the supply or demand is written inside. Fig[l also illustrates an example of a
transformation from the feasible configuration in Figllia) to one in Figlll(c),
where the demand vertex whose assignment was changed from the previous one
is depicted by a thick round. The optimization problem for finding a certain
configuration of a given graph has been studied in [TOJTT].

Theorem 1. POWER SUPPLY RECONFIGURATION is PSPACE-complete.

Proof. 1t is easy to see that this problem, as well as any reconfiguration version
of a problem in NP, can be solved in (most conveniently, nondeterministic [13])
polynomial space.

We give a reduction to this problem from the SATISFIABILITY RECONFIGURA-
TION problem, which was recently shown to be PSPACE-complete [6]. In that
problem we are given a Boolean formula ¢ in conjunctive normal form, say with
n variables x1, z9, ..., x, and m clauses C1, Cs, ..., C,,, and two satisfying truth
assignments sy and s; of ¢. Then, we are asked whether there is a sequence of
satisfying truth assignments, starting with sy and ending in s;, and each differing
from the previous one in only one variable. Let ¢ be the maximum number of
clauses in which a literal occurs, and hence no literal appears in more than ¢
clauses in ¢.

Given such an instance of SATISFIABILITY RECONFIGURATION, we construct
an instance of POWER SUPPLY RECONFIGURATION as follows. We first make a
variable gadget G, for each variable x;, 1 < i < n; G, is a binary tree with three
vertices as illustrated in Fig2(a); the root F; is a demand vertex of demand ¢, and
the two leaves z; and Z; are supply vertices of supply ¢. Then the corresponding
bipartite graph Gy is constructed as follows. For each variable z;, 1 < i < n,

F
Xi fi

(a) Gy, (b) Gy

Fig. 2. (a) Variable gadget G.,, and (b) bipartite graph G corresponding to a Boolean
formula ¢ with four clauses C1 = (21 V x3), C2 = (1 V 22 V 23), C3 = (T1 V 22 V T3)
and Cy = (Z2 V Z3), and hence ¢ = 2

32 T. Ito et al.

put the variable gadget G, to the graph, and for each clause C;, 1 < j < m,
put a demand vertex C; of demand 1 to the graph. Finally, for each clause Cj,
1 < j < m, join a supply vertex z; (or Z;) in G,,, 1 < i < n, with the clause
demand vertex C; if and only if the literal z; (respectively, Z;) is in the clause
Cj. (See Figld(b) as an example.) Clearly, G is a bipartite graph.

Consider a feasible configuration of G4. Then each demand vertex Fj;, 1 <
1 < m, must be assigned to one of x; and Z;; a literal is considered false if F;
1s assigned to the corresponding supply vertex. Notice that, since supply vertices
have supply ¢ and the F;’s have demand c, a false-literal supply vertex cannot
provide power to any of the other demand vertices. Hence, all clause demand
vertices Cj, 1 < 7 < m, must be assigned to true-literal supply vertices that
occur in them. Since each literal x; (or Z;), 1 < ¢ < n, appears in at most
¢ clauses in ¢, the corresponding supply vertex x; (respectively, Z;) in G, can
provide power to all clause demand vertices C; whose corresponding clauses have
x; (respectively, Z;).

To complete the reduction, we now create two feasible configurations fy and
f+ of G4 corresponding to the satisfying truth assignments sy and s; of ¢, respec-
tively. Each demand vertex F;, 1 < i < n, is assigned to the supply vertex whose
corresponding literal is false, while each clause demand vertex C;, 1 < j < m,
is assigned to an arbitrary true-literal supply vertex adjacent to C;. Clearly, fo
and f; are feasible configurations of G. This completes the construction of the
corresponding instance of the POWER SUPPLY RECONFIGURATION problem.

We know that a feasible configuration of G'¢ corresponds to a satisfying truth
assignment of ¢ plus an assignment of each clause to a true literal. It is easy to
see that this correspondence goes backwards: every satisfying truth assignment
of ¢ can be mapped to at least one (in general, to exponentially many) feasible
configurations of G 4.

How about adjacent configurations — defined to be configurations differing
in the assignment of just one demand vertex? One can easily observe that there
are only two types of reassignments to go from a feasible configuration of G4 to
an adjacent one, as follows:

(1) One could change the assignment of a demand vertex F; from x; to Z;, or
vice versa, if any clause demand vertex is currently assigned to neither supply
vertices x; nor x;.

(2) Alternatively, if a clause demand vertex Cj is adjacent to more than one true-
literal supply vertices, then one could change the assignment of C; from the
current one to another.

Therefore, any sequence of adjacent feasible configurations of G4 can be broken
down to subsequences, intermittently with a reassignment of type (1) above;
in each subsequence, every two adjacent configurations can go from one to an-
other via a reassignment of type (2) above. Therefore, all feasible configurations
in each subsequence correspond to the same satisfying truth assignment of ¢,
while any two consecutive subsequences correspond to adjacent satisfying truth
assignments (namely, differing in only one variable). Conversely, for given any
sequence of adjacent satisfying truth assignments of ¢, there is a corresponding

On the Complexity of Reconfiguration Problems 33

sequence of adjacent feasible configurations of G4, obtained as follows: Consider
a flip of a variable z; from true to false. (A flip of z; from false to true is similar.)
Then we wish to change the assignment of the demand vertex F; from the supply
vertex T; to x;. (Remember that the literal to which F; is assigned is considered
false.) We first change the assignments of all clause demand vertices, which are
currently assigned to z;, to another true-literal supply vertex: since we are about
to flip the variable x; and we know that the truth assignment of ¢ after the flip
will be also satisfying, there must be a second true-literal supply vertex for every
clause demand vertex currently assigned to x;. After all such reassignments, we
finally change the assignment of F; from Z; to x;.

It is easy now to see that there is a sequence of adjacent satisfying truth as-
signments of ¢ from sg to s; if and only if there is a sequence of adjacent feasible
configurations of Gy from fj to f;. This completes a proof of Theorem[Il O

2.2 Other Intractable Reconfiguration Problems

There is a wealth of reconfiguration versions of NP-complete problems which
can be shown PSPACE-complete via extensions, often quite sophisticated, of the
original NP-completeness proofs; in this subsection we only sample the realm of
possibilities.

We have already defined the CLIQUE RECONFIGURATION problem in the Intro-
duction as an example of a general scheme whereby any optimization problem
can be transformed into a reconfiguration problem by giving a threshold (upper
bound for minimization problems, lower bound for maximization problems) for
the allowed values of the objective function of the intermediate feasible solutions;
the INDEPENDENT SET RECONFIGURATION and VERTEX COVER RECONFIGURA-
TION problems are defined similarly. In the INTEGER PROGRAMMING RECON-
FIGURATION problem, we are given a 0-1 linear program seeking to maximize cx
subject to Az < b, and we consider two solutions adjacent if they only differ in
one variable.

Theorem 2. The following problems are PSPACE-complete: INDEPENDENT SET
RECONFIGURATION, CLIQUE RECONFIGURATION, VERTEX COVER RECONFIGU-
RATION, SET COVER RECONFIGURATION, INTEGER PROGRAMMING RECONFIG-
URATION.

Proof sketch. We sketch a proof for the INDEPENDENT SET RECONFIGURATION
problem. The reduction can be obtained by extending the well-known reduction
from the 3SAT problem to the INDEPENDENT SET problem [I2]. We construct
a graph p(¢) from a given 3SAT formula ¢ with n variables and m clauses,
as follows. For each variable x in ¢, we put an edge to the graph; the two
endpoints are labeled x and Z. Then, for each clause C in ¢, we put a clique
of size |C] to the graph; each node in the clique corresponds to a literal in the
clause C. Finally, we add an edge between two nodes in different components
if and only if the nodes correspond to opposite literals. Then, any maximum
independent set in p(¢) contains at least n nodes; the n nodes are chosen from the
endpoints of edges corresponding to the variables; a literal is considered true if

34 T. Ito et al.

the corresponding endpoint is chosen. Clearly, p(¢) has a maximum independent
set of size k = n + m if and only if ¢ is satisfiable. Consider all independent
sets of size k in p(¢); they can be partitioned into subclasses of the form p(s)
corresponding to the satisfying truth assignments s of ¢ (the various independent
sets in the subclass p(s) correspond to the different possible ways to satisfy each
clause by s). It is easy to see that all independent sets in p(s) are connected
via intermediate independent sets of size at least k — 1. Therefore, by similar
arguments in the proof of Theorem/[I one can easily observe that telling whether
two independent sets of size k in p(¢) can be transformed into one another via
intermediate independent sets of size at least kK — 1 is PSPACE-complete.
Similarly as the NP-completeness proofs [5 §3.1.3], the result for INDEPEN-
DENT SET RECONFIGURATION yields those for CLIQUE RECONFIGURATION and
VERTEX COVER RECONFIGURATION. Then, the result for SET COVER RECON-
FIGURATION is immediate since it is a generalization of VERTEX COVER RECON-
FIGURATION. INTEGER PROGRAMMING RECONFIGURATION generalizes CLIQUE
RECONFIGURATION via the well-known integer program for CLIQUE. a

3 Reconfiguration Problems in P

Reconfiguration problems arise in relation to polynomially solvable problems as
well. For example, in the MINIMUM SPANNING TREE RECONFIGURATION problem,
we are given an edge-weighted graph G, a threshold k, and two spanning trees
of G, both of weight at most k, and wish to transform one tree into another via
edge exchanges, without ever getting into a tree with weight > k. The MATCH-
ING RECONFIGURATION problem is defined similarly (the formal definition will
be given later). We show in this section that both problems can be solved in
polynomial time.

The result for the MINIMUM SPANNING TREE RECONFIGURATION problem can
be obtained from the following more general proposition.

Proposition 1. Given a weighted matroid M and two bases By and By of M,
both of weight at most k, there always exists a sequence of |By \ B:| exchanges
that transforms one into the other without ever exceeding weight k.

Proof sketch. For an unweighted matroid, this result follows trivially from the
properties of a base family [15, §39.5]. For a weighted matroid M, we outline
a proof for the case when By and B; are both of maximum weight. Then, the
result follows from the fact that the set of mazimum weight bases of M also form
the base family of another matroid [2, p. 287] [3, p. 130]. By generalizing this
proof appropriately, one can obtain the full result. (Due to the page limitation,
we omit the details.) O

In the MATCHING RECONFIGURATION problem, we are given an unweighted graph
G, a threshold k, and two matchings My and M; of GG, both of size at least k,
and we are asked whether there is a sequence of matchings of G, starting with M

On the Complexity of Reconfiguration Problems 35

and ending in My, and each resulting from the previous one by either addition
or deletion of an edge in G, without ever going through a matching of size less
than k£ — 1.

Proposition 2. MATCHING RECONFIGURATION can be solved in polynomial
time.

Proof sketch. Since the adjacency relation is symmetric, we may assume without
loss of generality that |Mo| < |M;|. Consider the subgraph H of G induced
by all edges in (Mo \ M) U (M \ My). Then, H consists of single edges, and
alternating paths and cycles with respect to My and M;. The greedy algorithm
for transforming My into M; is the following. Divide the components of H into
the following four categories: (1) single edges of M; \ Mp; (2) alternating paths
starting with an edge of My \ Mo; (3) alternating cycles; and (4) all the rest. In
this category order, transform M) into M; by repeatedly adding edges of M\ M
and deleting edges of My \ M; along each component of H. Notice that, after
exchanging the edges in Categories (1) and (2), the obtained matching M has
size at least |My| (> |Mp|). Therefore, one can easily observe that intermediate
matchings have size at least |My| — 1 for exchanging edges in Category (2), and
have size at least |M;| — 2 for exchanging edges in Categories (3) and (4).

For the case |M;| > k + 1, the greedy algorithm always transforms M; into
M; without ever going through a matching of size less than k — 1. For the case
|Mo| = | M| = k, there does not always exist a desired sequence of matchings if
H has components of Category (3). Nonetheless, existence can be determined in
polynomial time, as follows. If My and M, are not maximum matchings of G, we
first transform M; into a matching M| of size k+1 along an arbitrary augmenting
path with respect to M;; then, the greedy algorithm works for transforming M
into M{. Therefore, a desired sequence always exists for this subcase. If My and
M; are maximum matchings of G and H contains alternating cycles, we have
the following lemma, whose proof is omitted due to the page limitation.

Lemma 1. There is a sequence of adjacent matchings from My to My such that
all intermediate matchings have size at least k— 1 if and only if every cycle in H
contains a vertex that begins an even-length alternating path in G with respect
to My ending at an unmatched vertex by M.

By Lemma [I] one can easily determine whether there exists a desired sequence
for this subcase in polynomial time. O

We note in passing that the MATCHING RECONFIGURATION problem for edge-
weighted graphs seems quite a bit more complicated; however, we conjecture
that it also can be solved in polynomial time.

Besides MINIMUM SPANNING TREE RECONFIGURATION and MATCHING RE-
CONFIGURATION, it turns out that all polynomial-time solvable special cases
of SATISFIABILITY, as characterized by Schaefer [I4], give rise to polynomially
solvable reconfiguration problems:

Theorem 3 ([6]). SATISFIABILITY RECONFIGURATION for linear, Horn, dual
Horn and 2-literal clauses are all in P.

36 T. Ito et al.

4 Approximation

We have seen that an optimization problem gives rise to a reconfiguration prob-
lem by bounding the objective of intermediate configurations. In turn, we can get
a natural optimization problem if we try to optimize the worst objective among
all configurations in the reconfiguration path. For example, in the problem that
we call the MAXMIN CLIQUE RECONFIGURATION problem, we are given a graph
and two cliques Cy and C%, and we are asked to transform Cjy into Cy by a
sequence of additions and removals of nodes so that the minimum size of any
clique in the sequence is as large as possible.

Theorem 4. MAXMIN CLIQUE RECONFIGURATION cannot be approximated
within any constant factor unless P = NP.

Proof. We give a reduction in an approximation-preserving manner from the
CLIQUE problem to this problem. For a given graph G with n nodes, we construct
a new graph G’ with 3n nodes as a corresponding instance of MAXMIN CLIQUE
RECONFIGURATION: a set of n nodes is connected as GG, while two new sets of n
nodes are connected each as a clique (these two cliques of G’ are called Cy and
C}); finally, there are edges in G’ between each new node and each node in G.
Consider any sequence of cliques of G’, each resulting from the previous one
by insertion or deletion of a node, starting from Cj and ending in C;. We claim
that one of them will be a clique of G — this follows directly from the ab-
sence of any edges from Cjy to C;. Conversely, for any clique C of G, there
exists a sequence from Cy to C; via C (add the nodes of C to the clique Cy,
then remove those of Cp, then add those of Cy). Therefore, the minimum clique
size in the sequence is the size of C, and hence solving (or approximating) this
instance of MAXMIN CLIQUE RECONFIGURATION is the same as solving (respec-
tively, approximating) the CLIQUE problem for G. Since it is known that CLIQUE
cannot be approximated within any constant factor unless P = NP [7], the result
follows. O

A similar argument establishes the following;:

Theorem 5. MAXMIN MAXSAT RECONFIGURATION cannot be approrimated
within a factor better than %2 unless P = NP.

Proof. We reduce in an approximation-preserving manner the MAXSAT problem
to this problem. Suppose that we are given an instance ¢ of MAXSAT with n
variables x1,xs,...,2, and m clauses C1,Cs,...,C,. We construct a new in-
stance ¢’ in which each clause C;, 1 < j < m, is replaced by (C; Vy V z) where
y and z are new variables, and the additional clause (7 V z) with weight m. Note
that the truth assignments sq : z = 1,y = 0,21y = 29 = --- =z, = 1 and
st:z2=0,y=1,21 = x5 =--- =z, = 0 are both satisfying all 2m clauses.
Consider now an optimal path in the hypercube between sy and s;. Since at
so:z=1,y=0and at s; : 2 =0,y = 1, there must exist a truth assignment on
this path such that y = z. Since the clause (g V Z) has weight m and the path

On the Complexity of Reconfiguration Problems 37

is assumed optimal, it must be that y = z = 0. Thus, the remaining variables
must spell an optimum satisfying truth assignment of the original formula ¢.
Hence, from an optimum path for the corresponding instance of MAXMIN MAXSAT
RECONFIGURATION, we can obtain an optimum truth assignment for the original
instance of MAXSAT. Similarly, from an a-approximation for MAXMIN MAXSAT
RECONFIGURATION, it is easy to see that we get a (2« — 1)-approximation of
the MAXSAT instance. Since it is known that MAXSAT cannot be approximated
within a factor better than § unless P = NP [§], the result follows. a

By a similar maneuver, it can be shown that the MINMAX SET COVER RECONFIG-
URATION problem cannot be approximated within a factor better than o(logn)
unless NP is contained in DTIME (n©Ucglosn)) [4].

Returning to the POWER SUPPLY problem, there is a natural optimization
version of the problem, in which the constraint that the total demand of all
demand vertices in each tree T' be within the supply of the supply vertex in T is
replaced by a “soft” criterion: we allow that the total demand in T exceeds the
supply in T', but wish to minimize the sum of the “deficient power” of all supply
vertices in the graph.

We now define the MINMAX POWER SUPPLY RECONFIGURATION problem. For
a configuration f of a bipartite graph G = (U, V, E) and a supply vertex u € U,
the deficient power d(f,u) of u on f is defined as follows:

d(f,u) = Z{dem(v) | v € V such that f(v) = u} — sup(u).

If f is infeasible, then there is at least one supply vertex u such that d(f,u) > 0.
On the other hand, if f is feasible, then d(f,u) < 0 for all supply vertices
u € U; in fact, a nonpositive deficient power d(f,u) represents the marginal
power of uw on f. The cost ¢(f) of a configuration f is defined to be ¢(f) =
Y owev ld(f,u)|. Clearly, c(f) = > ,cysup(u) — >, oy dem(v) for every feasible
configuration f of G. In the problem that we call the MINMAX POWER SUPPLY
RECONFIGURATION problem, we are given a bipartite graph G = (U, V, E) and
two feasible configurations fy and f; of G, and we are asked to transform fy into
ft by a sequence of reassignments of single demand vertices so that the maximum
cost of any configuration in the sequence is as small as possible. It is easy to
see that a sequence fy, f1, ..., ft which consists of only feasible configurations is
optimum, and the optimum value is } 7 ., sup(u) — >, o dem(v).

One can observe that the MINMAX POWER SUPPLY RECONFIGURATION prob-
lem is strongly NP-hard (by a reduction from the 3-PARTITION problem [5], for
example). However, the problem can be solved in linear time for the following
special case. Suppose in the remainder of this section that we are given a bipar-
tite graph G = (U, V, E') having exactly two supply vertices. For a configuration
fof Gylet W(f) ={ve V]| fv)# fi(v)}, that is, W(f) is the set of de-
mand vertices which are assigned to “wrong” supply vertices on f. Note that all
(demand) vertices in W (f) are adjacent to both the two supply vertices. For a
given initial configuration fy of G, let v* be a demand vertex in W(fy) having
the maximum demand, that is, dem(v*) = max{dem(v) | v € W(fo)}. Then, we
have the following lemma.

38 T. Ito et al.

Lemma 2. If ¢(fo) > 2 - dem(v*), then the optimum sequence for MINMAX
POWER SUPPLY RECONFIGURATION consists of only feasible configurations, and
it can be found in linear time.

Proof. Suppose without loss of generality that W(fy) # 0. If all demand ver-
tices in W (f) are assigned to the same supply vertex, then we just change the
assignments of all demand vertices in W (fp) from the current supply vertex to
the other. Since both fy and f; are feasible, all intermediate configurations are
also feasible. Therefore, we assume in the following that each of the two supply
vertices has at least one demand vertex in W(fy).

Since fy is feasible, the cost ¢(fp) denotes the sum of marginal powers of
the two supply vertices. Moreover, since the sum is at least 2 - dem(v*), one of
the two supply vertices has marginal power of at least dem(v*). Therefore, we
can change the assignment of at least one demand vertex v € W(fy) from the
“wrong” supply vertex to the “correct” one, since dem(v) < dem(v*). Clearly,
the resulting configuration f; is also feasible, and satisfies ¢(f1) > 2 - dem(v*).
By repeatedly executing such a reassignment, we can obtain a desired sequence
fo, f1,.-., ft which consists of only feasible configurations. Therefore, the se-
quence is an optimum solution. The length of the sequence is [W(fo)| (< |V])
since each demand vertex in W (fy) moves exactly once and any of the other
demand vertices does not move in the sequence. We can thus find an optimum
solution in linear time. O

Theorem 6. There is a linear-time 2-approzimation algorithm for MINMAX
POWER SUPPLY RECONFIGURATION having exactly two supply vertices.

Proof. Let OPT be the optimum value for an instance of MINMAX POWER SUP-
PLY RECONFIGURATION. Since we have to change the assignment of the demand
vertex v* for obtaining the target configuration f;, we have OPT > dem(v*).
By Lemma [it suffices to consider the case ¢(fp) < 2 - dem(v*). In this
case, consider a slightly modified instance in which the supplies of the two sup-
ply vertices are increased so that the total supply is equal to 2 - dem(v*). In
the modified instance, both the configurations fy and f; remain feasible and
c(fo) = 2-dem(v*). Therefore, by Lemma] we can find in linear time an op-
timum sequence which consists of only feasible configurations for the modified
instance; the optimum value is thus 2-dem(v*). Note that some configurations in
the sequence may be infeasible for the original instance. We take the sequence as
our approximation solution for the original instance, and hence our approximate
value A is A =2-dem(v*) <2-OPT. O

5 Open Problems

There are many open problems raised by this work, and we mention some of
these below:

— Do all problems in P give rise, in a natural way, to polynomially solvable
reconfiguration problems? We conjecture that the answer is negative, but we
have yet to identify a counterexample (even a conjectured one).

On the Complexity of Reconfiguration Problems 39

— Is the TRAVELING SALESMAN RECONFIGURATION problem (where two tours

are adjacent if they differ in two edges) PSPACE-complete?

— Are there better approximation algorithms for the MINMAX POWER SUPPLY

RECONFIGURATION problem? Lower bounds?

— Are the problems in Section] PSPACE-complete to approximate (not just

NP-hard)?

References

10.

11.

12.

13.

14.

15.

. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-

completeness and superpolynomial distances. In: Kucera, L., Kucera, A. (eds.)
MFCS 2007. LNCS, vol. 4708, pp. 738-749. Springer, Heidelberg (2007)

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial
Optimization. Wiley, Chichester (1997)

Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127-136
(1971)

Feige, U.: A threshold of Inn for approximating set cover. J. ACM 45, 634-652
(1998)

. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)

Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity
of Boolean satisfiability: computational and structural dichotomies. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
346-357. Springer, Heidelberg (2006)

Hastad, J.: Clique is hard to approximate within n'~¢. Acta Mathematica 182,
105-142 (1999)

Hastad, J.: Some optimal inapproximability results. J. ACM 48, 798-859 (2001)
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoretical Computer Science 343, 72-96 (2005)

Ito, T., Zhou, X., Nishizeki, T.: Partitioning trees of supply and demand. Interna-
tional J. Foundations of Computer Science 16, 803-827 (2005)

Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning
graphs with supply and demand. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 121-130. Springer, Heidelberg (2006)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. of Computer and System Sciences 4, 177-192 (1970)

Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of 10th ACM
Symposium on Theory of Computing, pp. 216-226 (1978)

Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

Multiobjective Disk Cover Admits a PTAS

Christian GlaBer!, Christian ReitwieBner!, and Heinz Schmitz?

1 Julius-Maximilians-Universitat Wiirzburg, Germany
{glasser,reitwiessner}@informatik.uni-wuerzburg.de
2 Fachhochschule Trier, Germany
schmitz@informatik.fh-trier.de

Abstract. We introduce multiobjective disk cover problems and study
their approximability. We construct a polynomial-time approximation
scheme (PTAS) for the multiobjective problem where k types of points
(customers) in the plane have to be covered by disks (base stations)
such that the number of disks is minimized and for each type of points,
the number of covered points is maximized. Our approximation scheme
can be extended so that it works with the following additional features:
interferences, different services for different types of customers, different
shapes of supply areas, weighted customers, individual costs for base
stations, and payoff for the quality of the obtained service.

Furthermore, we show that it is crucial to solve this problem in a
multiobjective way, where all objectives are optimized at the same time.
The constrained approach (i.e., the restriction of a multiobjective prob-
lem to a single objective) often used for such problems can significantly
degrade their approximability. We can show non-approximability results
for several single-objective restrictions of multiobjective disk cover prob-
lems. For example, if there are 2 types of customers, then maximizing
the supplied customers of one type is not even approximable within a
constant factor, unless P = NP.

1 Introduction

Geometric cover problems have received much attention in recent years, mostly
due to their applicability to wireless networks. Typically, a service provider aims
to deliver various kinds of services to customers and therefore has to choose base
station locations such that customer locations can be covered. Various optimiza-
tion problems arise in this context in a natural way. For example, for a given
set P of customer locations and a set D of possible base station locations in the
Euclidean plane, the Unit Disk Cover Problem tries to find a minimal subset of
D such that all customers in P are covered by unit disks whose centers belong to
D (hence assuming equivalent base stations and ignoring obstacles to the signal
propagation) [I0/5IT9]. In another version of the problem one tries to maximize
the number of supplied customers with a given budget of base stations, e.g. [17].
So far these problems have been studied only in terms of single-objective opti-
mization where either disk locations or customer supply have been optimized.
In contrast, here we are interested in the complete trade-offs when both ob-
jectives are considered at once. These trade-offs give not only a better insight in

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 40-{51| 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multiobjective Disk Cover Admits a PTAS 41

the nature of the problem, but also allow a human decision-maker to choose an
appropriate solution according to aspects that are perhaps not quantifiable or
that differ from instance to instance.

This paper introduces multiobjective disk cover problems and presents the
first study of their approximability. We want to minimize the number of base
stations and simultaneously maximize the number of supplied customer loca-
tions. More than that, we allow different types of customers such that for each
type, the number of supplied customers has to be maximized. For example, for
k = 2 types of customers this captures the scenario where a service provider
wants to optimize a wireless network with customers having subscribed to two
different services. More generally, an instance of the Disc Cover Problem with
k types of customers (k-DC) has k sets Py, ..., Py of customer locations, a set
of potential base station locations D and a disk radius r describing the range of
action of a base station. We seek a valid subset of base station locations (i.e., re-
specting a minimum-distance constraint) such that the number of base stations
is minimized, and for each type of customers, the numbers of covered customers
is maximized. In practice, several additional aspects can be taken into account
to obtain more realistic models. For instance, if a customer receives signals from
two base stations, then interferences may have a negative effect on the quality
of service. So actually, here one wants to maximize the number of points that
are covered by ezactly one disk. To capture the aspect of interference, we also
investigate exact versions of k-DC, i.e., where the numbers of uniquely covered
customers of the different types are considered (k-EDC).

Trade-offs in multiobjective optimization are captured by the notion of the
so-called Pareto curve which is the set of all solutions whose vector of objective
values is not dominated by any other solution (for an introduction see, e.g., [13]).
In most interesting cases however, Pareto curves are computationally hard in the
sense that we do not know polynomial-time algorithms computing them. The
reason for this is that the Pareto curve may have exponential size (which is not
the case in our setting), or because it comprises optimal solutions of NP-hard
single-objective optimization problems (which is the case here). A reasonable
approach to avoid these difficulties is to approximate the set of non-dominated
solutions using the concept of the e-approximate Pareto curve. Informally, for
every solution S of the Pareto curve there is a solution S’ in the e-approximate
Pareto curve that is within a factor (14 €) of S, or better, in all objectives. The
question whether there exist fast approximation schemes for Pareto curves has
been addressed for several multiobjective optimization problems [2TI22/20]. The
systematic study of the theory of multiobjective approximation was initiated by
Papadimitriou and Yannakakis [20], see also [23/T1].

Our contribution. We introduce multiobjective disk cover problems and study
their approximability. We construct polynomial-time approximation schemes for
the multiobjective problems k-DC and k-EDC where k£ > 1. So for each of
the problems there exists an algorithm, which, given a problem instance I and
some € > 0, outputs an e-approximate Pareto curve in time polynomial in |I|

42 C. Glafler, C. ReitwieBiner, and H. Schmitz

(Theorems [[and). On the methodological side we extend the shifting strategy
introduced by Hochbaum and Maass [18] to the multiobjective case.

We also discuss the possibility to extend our algorithms so that they work
with the following features: different services for different types of customers,
different shapes of supply areas, weighted customers, individual costs for base
stations, and payoff for the quality of the obtained service. Although we mention
only problems where the number of covered points of different types have to be
maximized, one can also think of an application where some types of points have
to be maximized, while others are to be minimized. Only minor modifications of
our algorithms are needed to take this into account as well.

Our paper also shows that we should be careful when looking for an appro-
priate model for a given practical problem. The choice of the right model can be
crucial for a successful algorithmic solution. We see this at two places:

1. Our models contain a minimum-distance constraint for disk locations. On
one hand, this constraint plays an important role in the construction of
the PTAS. Without this assumption, the problem becomes more difficult
such that the shifting strategy does not yield a PTAS. On the other hand,
this minimum-distance constraint is actually present in practical settings: It
usually makes no sense to build base stations, fire departments, drugstores,
etc. arbitrarily close to each other, and a small constant specifying their
minimum distance can always be identified. So we may add the constraint
to our model and exploit it to achieve better approximation algorithms. This
shows that a too general choice of the model can complicate the solution of
the underlying practical problem.

2. The approximability of a multiobjective problem does not necessarily imply
that the restriction to a single objective is approximable. The reason for this
apparent contradiction is that an optimization algorithm can exploit trade-
offs between the single objectives if it optimizes all objectives at the same
time. We show non-approximability results for several restrictions of k-DC
and k-EDC (Theorems @ and [B]). For example, for k£ > 2, no restriction of
k-EDC to a single criterion is approximable within a constant factor (unless
P = NP), while the general (multiobjective) version of k-EDC admits even
a PTAS. This shows that the frequently used constrained approach (i.e., the
restriction of a multiobjective problem to a single objective) can considerably
degrade the approximability. In other words, also a too restricted choice of
the model can complicate the solution of the underlying problem.

Related work. The single-objective disk cover problem was initially examined
in the continuous version (i.e., no given disk centers) by Hochbaum and Maass
[18] who construct a PTAS for this problem. The version with given disk centers
has been studied by several authors [BII9[7/4], but in general only constant-
factor approximation results are known (which shows again the influence of the
minimum-distance constraint). Calinescu, Mandoiu, Wan and Zelikovsky [5] in-
vestigated a variant of the disk cover problem where the number of disks needed
to cover all points is to be minimized. Some of their results were improved by

Multiobjective Disk Cover Admits a PTAS 43

Narayanappa and Vojtechovsky [19]. Very recently, the Unique Cover Problem
on unit disks (the number of points covered by exactly one disk have to be max-
imized) and its approximability has been studied by Erlebach and van Leeuwen
[15]. Several other variations of the disk cover problem where a solution includes
specifying radii for the individual disks were analyzed in [S[T4JT]. Cannon and
Cowen [6] studied the single-objective problem of minimizing the number of
disks where one type of customers must be covered while the other one has to be
avoided. Various partial covering problems were investigated by Gandhi, Kuller
and Srinivasan [16]. These problems are concerned with covering a given amount
of elements while minimizing the cost of such a covering. In contrast to most of
the afore mentioned papers, in [I6] the multiobjective version of some special
covering problem on graphs is also examined.

2 Definitions

We recall some standard notations, see e.g., [20023]. A multiobjective optimization
problem II has a set of valid instances Z, and for every instance I € Z there
is a set S(I) of feasible and polynomially length-bounded solutions for I. As
usual, we assume that Z is decidable in polynomial time, and that there is
a polynomial-time algorithm that decides on input (I, S) whether S € S(I).
Moreover, we have K > 1 polynomial-time computable objective functions f;
that map every I € Z and S € S(I) to some value f;(I,5) € N. Note that
every optimization problem with objective functions that have values in Q can
be transformed into an equivalent problem satisfying the previous definition.
A vector goal € {min, max}¥ specifies whether the i-th objective has to be
minimized or maximized, respectively. So for an instance I we can evaluate
every S € S(I) to the K-vector f(I,5) = (fi(I,S),..., fx(I,5)) of values with
respect to the given objective functions.

We say a solution S € S(I) dominates a solution S’ € S(I) if forall1 <i < K
it holds that f;(I,S) < fi(I,S5") if f; is to be minimized (and f;(1,.S) > fi(I,S")
if f; is to be maximized), with at least one strict inequality. Denote by P*°!(I) C
S(I) the Pareto-solution set for I, i.e., the set of all non-dominated solutions for
I. The Pareto-value set for I is PV (I) = {f(I,5) | S € P*°'(I)}.

Let € = (e1,...,€x) be a K-vector of numbers ¢; > 0. A solution S € S(I)
e-covers a solution S’ € S(I) if for all 1 < ¢ < K it holds that f;(I,5) <
(I+€)fi(1,5) if f; is to be minimized (and (1 + €;) f;(I,S) > fi(I1,5) if f; is
to be maximized).

A set P°UI) C S(I) is an e-approzimate Pareto-solution set for I if for all
S" € P*U(I) there is some S € P*°!(I) that e-covers S’. (So an e-approximate
Pareto-solution set can contain dominated points.) We call P**(I) C N an
e-approzimate Pareto-value set for I if P*(I) = {f(I,S) | S € P*°'(I)} for
some set P*°!(I). Note that for fixed € there may be more than one e-approximate
Pareto-solution set for 1. Moreover, if S(I) # () then P*°/(I) # () and P°/(I) # §.
If e = (6,...,0) for some § > 0 we simply write P£°/(I) and the like.

44 C. Glafler, C. ReitwieBiner, and H. Schmitz

A multiobjective optimization problem IT is e-approximable in polynomial
time if there is a polynomial-time algorithm, which on input I € Z outputs
an e-approximate Pareto-solution set P*°!(I). Problem IT has a polynomial-time
approzimation scheme (PTAS) if there is an algorithm, which, given I € Z and
4 > 0, outputs an d-approximate Pareto-solution set P(SSOZ(I) in time polynomial
in |I]. APX is the class of all single-objective optimization problems that are
d-approximable for some § > 0. For some vector x denote by |z| its Euclidean
norm. If S is a finite set, then |S| gives the cardinality of S. Both cases will be
distinguishable from the context without confusion. Moreover, we use [a, b] as
an abbreviation for {a,a +1,...,b}.

Next we define (k 4 1)-objective disk-cover problems. As is standard for such
problems, we always want to minimize the number of disks which is the first
objective in all of the following problems. The parameter £ > 1 denotes the
number of different types of points we want to cover. Moreover, ¢ € (0,2] is
a fixed rational constant that determines the minimal distance o - r between
different disks of radius r. This minimum-distance constraint plays an important
role in our model, since it is crucial for the polynomial running time of the
approximation algorithm we construct in section Bl With our method we cannot
well approximate instances that essentially depend on coverings where the disks
are very close to each other. This insight has an important consequences for the
choice of an appropriate model: If such degenerated instances can be excluded
by practical reasons (e.g., because it makes no sense to build base stations, fire
departments, drugstores, etc. arbitrarily close to each other), then we should
add the minimum-distance constraint to our model and exploit it to achieve a
better approximability.

k-Objective Disk Cover (k-DC,)

Instance: k finite sets of points Py,..., P, C Z x Z, disk radius r € N, finite set
of disk positions D C Z x Z

Solution: a selection S C D such that for all different z,y € S, [z —y| > o7

Goals: (min|S|, max|C1], ..., max|Cy|) where C;={z € P; |IyeS, |z —y|<r}

k-Objective Exact Disk Cover (k-EDC,)

Instance: k finite sets of points Py, ..., Py C Z x Z, disk radius r € N finite set
of disk positions D C Z X Z

Solution: a selection S C D such that for all different z,y € S, [x —y| >0 7

Goals: (min|S|, max|C1|,..., max|Cy|) where C; ={z € P; | Ay € S, |z —y| <r}

The value of ¢ will be always clear from the context. So for simplicity we write
k-DC and k-EDC instead of k-DC, and k-EDC,,.

We also discuss single-objective versions of these problems. Following Di-
akonikolas and Yannakakis [I1] we define the restricted versions of multiobjective
problems (also known as the e-constraint problem [I3]). Let IT be a K-objective
optimization problem with objectives (f1,..., fx) and goals (g1,...,9x). The
restriction to the i-th objective is the following single-objective problem.

Multiobjective Disk Cover Admits a PTAS 45

Restriction of IT to the i-th objective (Restricted;-IT)
Instance: an instance I of IT and numbers By, ...,B;_1,Bit1,...,Bxk € N
Solution: a solution S for I such that for j € [1, K] — {3} it holds that

(95 = max = f;(1,S5) > Bj) and (g; = min = f;(I,S) < Bj)
Goal: max f;(I,S) if g; = max, min f;(I,S) otherwise

3 PTAS for Multiobjective Disk Cover

In this section we construct polynomial-time approximation schemes for the
multiobjective problems k-DC where k > 1. To keep the exposition simple, we
concentrate on the 3-objective problem 2-DC and explain a polynomial-time al-
gorithm that computes e-approximate Pareto-solution sets for this problem. Our
algorithm extends the shifting strategy introduced by Hochbaum and Maass [18§]
to the multiobjective case. For this we need a combinatorial argument showing
that this strategy works for multiple objectives. Moreover, we use dynamic pro-
gramming for efficiently combining the solutions of sub-problems. At the end of
the section we discuss the possibility to extend our algorithms so that they work
with the following additional features: interferences, different services for differ-
ent types of customers, different shapes of supply areas, weighted customers,
individual costs for base stations, and payoff for the quality of the obtained
service. In particular, an appropriate modification provides a PTAS for k-EDC.

We start with the description of the algorithm. Fix some shifting parameter
1 € N\ {0}. The larger [is, the better the approximation will be. The input to
the algorithm are two finite sets of points B, G C Z x Z (blue and green points),
a disk radius r € N and a finite set of disk positions D C Z x Z. For finite
P,S C Z x Z, where S is a valid solution (it respects the minimum distance
constraint), define ¢(P,S) < |{p € P | 3z € S,|p — z| < r}| as the number of
points from P covered by solution S.

In the algorithm, some functions p: N x N — P (D) x N with different indices
will be defined. For a given number of disks and blue points to cover, such
a function provides a partial solution for this sub-problem together with the
number of green points covered in this solution. For any of these functions we
address their components as (p*°(k, b), p*® (k, b)) £ p(k, b) for k,b € N.
2-DC-APPROX(B,G,r,D) :

1. let {aj,as,...,a,} Z{acrl-(ZxZ)| (BUGUD)N (a+[0,2r1]?) # 0}
2. for every s €r-[0,1)? do
for every i € [1,m] do
D; DN (s +a; + [r,r1 — 1r)?)
B; £BN (s +a; + [2r,rl — 21)?)
GiZGN(s+a; +[2r,rl — 2r)?)
for every k € [0,|D;]] and every b € [0, |B;|] do
Vo Z{SCD;|S is valid solution, |S| < k,c(B;,S) > b}
if Vep =0 then pss(k,b)Z(L, 1)
10. else psi(k,b)%(S,g) for S € Vyp, such that
g = c(G4,8) = max{c(Gi,8’) | 8’ € Vxp}

© 0 N O O b W

46 C. Glafler, C. ReitwieBiner, and H. Schmitz

11. done

12. done

13. for every k € [0,|D|] and every b € [0,|B|] do

14. by dynamic programming choose ky,...,kp,by,...,bp €N

such that Z pe3(ks,bs) is maximal, Vieynpiy(ki,bi)# L,

Zk <k, and Zb >b
i=1
15. 1f this succeeded,

then let pa(k,b) (U pioh (i bs), Y- pit ks,)
16. done - ’
17. done
18. PL{pl(k,b) |s €r-[0,1)% kb€ N}
19. remove all dominated solutions from P
20. return P

Explanation of the algorithm. First, we want to give an overview of the
algorithm. The plane is divided into a grid of squares of side length rl. In each
of these squares, the problem is solved independently (i.e., a small Pareto curve
is calculated). By not considering the points at the border of width r of the
squares, we obtain that an optimal solution needs at least as much disks as our
calculated solution to cover the points in the square. Then, these solutions are
combined. This is repeated for I? different positions (shifts) of the grid and the
best solution is chosen.

The algorithm starts by partitioning the plane into squares of side length rl.
Of course, there are infinitely many such squares, but many of them are empty
and only some are of interest. The points a1, as, ..., a,, are the lower-left corner
points of squares we need to consider. Because we will shift these squares later,
we also have to include squares that contain a point for some, but possibly not
all shifts, and thus we look for points in a square of side length 2rl. These points
a; are all points such that there is at least one blue point, green point or one
disk position in the square of side length 27l which has a; as its lower-left corner
point.

Next, the algorithm loops over all I2 (I in each dimension) shifts s of hop size
r (the radius of a disk). In line 3, we loop over every index of the rl-grid points
a; which were found worth considering at the beginning.

In lines 4 to 6, we prepare a spatially restricted sub-problem of the general
problem. The expression [0,71)? denotes the set of points in a square of side
length 7. Modified to [r,rl — r)? it denotes the set of points in such a square
where a border of width r is removed from every edge. We only retain those
points D; from the set of disk positions D which lie in the restricted square that
is positioned at the grid point a; and shifted by s. In this way, disk positions from
different sub-problems are guaranteed to have a minimal distance of gr (recall
that o € (0,2]). We also restrict the blue and green points, but here we use a
larger border of width 2r. The points on the 2r-border are completely ignored

Multiobjective Disk Cover Admits a PTAS 47

in every sub-problem. By this method, as we will argue later, we get an optimal
solution for each square restricted in this way. We can combine the solutions of
these sub-problems to obtain a global solution.

We now calculate the whole Pareto curve of this sub-problem starting in line[7l
To this end, we loop over every possible number of disks k& and covered blue points
b and calculate the solution S C D; that maximizes the number of covered green
points ¢ using at most k disks in positions from D, such that at least b blue
points are also covered. This can be done by exhaustive search in polynomial
time, as we will explain next. We first argue that there are only polynomially
many valid solutions |V} ;|. Because all disk positions in a valid solution S € Vi,
must have a mutual distance of at least or, virtual circles of diameter or around
these positions can touch each other but must not overlap. The area covered

by these virtual circles is | S| (Q;)QW. Since & < r and S C D;, these virtual

circles are all located in a square of side length 7, and we get | S| (Q;)2 7 < (rl)2.

Solved for the number of disks we obtain |S| < ifz £ ¢, which is a constant. Since
there are only polynomially many ways to choose at most ¢ elements from the
polynomially sized set D;, we see that |V | is polynomial in the input size. Since
c can be calculated effectively, V4, can be searched exhaustively for a solution
that maximizes the number of covered green points in polynomial time. If such
a solution does not exist (because Vi, = () then both components of ps;(k,b)
are set to a special undefined value 1, which we will need later.

After the i-loop, we have small Pareto curves ps; for each sub-problem given
by shift s and point a,;. In the loop starting in line 13, we combine them into
a larger Pareto curve pg for the current shift s. To this end, we try to find a
solution that maximizes the number of covered green points for a given number
of disks k£ and blue points b using the solutions ps; in line 14. We distribute the
k disks and b blue points over all squares in any possible way. The number of
disks available to square 7 is called k; and the number of blue points that must
be covered in square ¢ is called b;. The distribution that maximizes the total
number of covered green points is chosen and the combination of the individual
solutions ps ;(k;, b;) for this distribution is stored in p4(k, b).

In general, there are exponentially many ways to distribute the numbers k and
b, but the search for an optimal distribution can be done efficiently by dynamic
programming, as can be seen from the following algorithm. We need to consider
the iterations of the k, b-loop starting in line 15 of the 2-DC-APPROX-algorithm
all at once, so the following code can be used as a replacement of the lines 13-16
of the 2-DC-APPROX-algorithm. The return value of CombinePartialSolutions
is the function ps.

CombinePartialSolutions(ps,1,Ps,2,---sPsm):

1. P/1 gPS,l

2. for t: =2 to m do

3. for every k € [0,|D|] and every b € [0, |B|] do

4 find maximal p'(k,b) % p/2l(ky,by) + pgf‘,}(Rz,Bg) for

1_{1751,1_{2,62 € N such that 1_{1 +1_{2 S k, 51 +52 2 b7
pi2i(ky,b1) # L and pf3(ks,b2)) # L

48 C. Glafler, C. ReitwieBiner, and H. Schmitz

5 if this is not possible then let p/(k,b)Z |
6. else let p/*i(k,b) % p/*i(ky,b;) U p2% (ko, ba)

7. done

8. done

9. return p,

In every iteration of the t-loop of CombinePartialSolutions, another square
is incorporated into the Pareto curve, each time solving some kind of knapsack
problem. Since there are only polynomially many combinations of ki, b1, ko, ba
such that the constraints in line 4 are met, p; can be computed in polynomial
time. The correctness of this dynamic programming method follows by induction.
Since m is polynomial in the input length, the computation of CombinePartial-
Solutions and thus also the computation of lines 13-16 in 2-DC-APPROX can
be done in polynomial time.

Back at the 2-DC-APPROX-algorithm, we have an approximate Pareto curve
ps for every of the shift values after the end of the second loop over s. In Line 18,
we simply put all the previously obtained solutions p3°!(k, b) for all s, k, b in one
set P, remove the dominated solutions in line 19 and return that set in line 20.

Correctness of the algorithm. We now argue for the correctness of the algo-
rithm by showing that for fixed [it runs in polynomial time and that the relative
error becomes arbitrarily small if [is increased.

Lemma 1. For every fixed | > 5, the algorithm 2-DC-APPROX works in poly-
nomial time.

We argue that by choosing [large enough, the algorithm 2-DC-APPROX has
an arbitrarily small relative error.

Lemma 2. Fiz anl > 5 and let ¢ Z(0, 1167 116) On input of a 2-DC instance I =
(B,G,r, D) the algorithm 2-DC-APPROX computes an e-approximate Pareto-
solution set P for I.

Theorem 1. Fiz k > 1 and o € (0,2]. For all 6 > 0, k-DC is (0,0,...,0)-
approzimable in polynomial time (and hence has a PTAS).

The multiobjective shifting strategy used in 2-DC-APPROX is a very general
method that can be applied to several other multiobjective covering problems.
It is easy to see that the algorithm 2-DC-APPROX can be adapted such that it
takes interferences into account.

Theorem 2. Fix k > 1 and ¢ € (0,2]. For all 6 > 0, k-EDC is (0,0,...,0)-
approzimable in polynomial time (and hence has a PTAS).

Besides interferences, also other parameters can be added to the problem. For
instance it might be the case that the single services have different operating
distances. This brings us to the version of 2-DC where we have to place simul-
taneously two disks of different radii on the selected locations (one disk for each
type of customers). 2-DC-APPROX can be easily adapted such that it gives a

Multiobjective Disk Cover Admits a PTAS 49

PTAS also for this variant of the problem. In general, we can allow even more
complicated rules that determine whether or not a customer is supplied by a
base station. Here the different services can have supply areas of very general
shape as long as

— we can efficiently test whether a point belongs to such an area and

— the minimum distance constraint is satisfied (i.e., the distance of two base
stations is at least ¢ - r where 2r is the maximal diameter of the area and o
is a fixed constant).

Further generalization could handle weights for the customers, individual costs
for the base stations, and payoffs that depend on the quality of the service
obtained by the single customers. For these scenarios, appropriate versions of
2-DC-APPROX provide polynomial-time approximation schemes.

4 Non-approximability of the Restricted Version

The approximability of a multiobjective problem does not necessarily imply that
the single-objective restrictions of this problem are approximable. The reason for
this apparent contradiction is that all solutions for a restricted version of the
problem must strictly satisfy the additional constraints on the values of the
objectives that are not optimized any more (i.e., the constraints f;(I,S) > B;
or f;(I,S) < By in the definition of the restricted problem). An approximation
algorithm has more freedom if it can optimize all objectives at the same time,
since here the algorithm can exploit trade-offs between the single objectives. In
fact, the problems k-DC and k-EDC are examples where such trade-offs yield
a significantly better approximability. In this section we will show that several
restrictions of k-DC and k-EDC are not approximable within a constant factor,
unless P = NP. For instance, for k > 2, no restriction of k-EDC is in APX (unless
P = NP), while the general (multiobjective) version of k-EDC even admits a
PTAS. Angel, Bampis, and Kononov [2J3], Cheng, Janiak, and Kovalyov [9], and
Dongarra et al. [12] discovered similar phenomena for multiobjective scheduling
problems.

For our results in this section we need the NP-completeness of the following
versions of geometric disk cover problems.

Disk Cover
DC = {(P,D,k) ‘ P,D C Z x Z are finite sets, k € N, and there exists an
S C D such that |S| <k and Vo € P3y € S, |z — y| < 2}

Exact Disk Cover
EDC = {(P, D) ’ P, D C Z x Z are finite sets and there exists an S C D such
that Vo € P3ly € S, |z —y| < 2}

Note that there is a minimum-distance constraint for disk locations implicitly
given in these definitions since we consider points from Z x Z and a fixed radius
r=2.

50 C. Glafler, C. ReitwieBiner, and H. Schmitz

Theorem 3. DC and EDC are NP-complete.

As we have seen in Section [B] the minimum-distance constraint helps us to find
a PTAS for k-DC. Nevertheless, the problem remains difficult. Although the
Pareto curve is only polynomial in size, we cannot hope to discover an algorithm
that computes it exactly: For o < %, an algorithm that exactly determines the
Pareto curve for k-DC, in polynomial time would also solve the problem DC in
polynomial time. Since DC is NP-complete, this would imply P = NP.

By Theorem], the multiobjective problem k-EDC has good approximation
properties (a PTAS). Now we will see (Theorem[]) that in contrast, the restricted
versions of k-EDC vary with respect to their approximation behavior. While
1-EDC restricted to the first component is not approximable (i.e., not in APX
unless P = NP), the restriction to the second component has good approximation
properties (a PTAS). Even more surprisingly, for £ > 2 the Pareto curve of k-
EDC is approximable, but no restriction of k-EDC is approximable (i.e., not in
APX unless P = NP). Theorem [states similar results for k-DC. For instance,
while the Pareto curve of 2-EDC is approximable, the restriction of 2-EDC to
the second component is not (i.e., not in APX unless P = NP).

Theorem 4. Fiz some o € (0, }].

1. If P #£ NP, then for all k > 2 and all i € [1,k+ 1], Restricted;-k-EDC' is not
in APX.

2. If P #£ NP, then Restricted;-1-EDC is not in APX.

3. Restricteds-1-EDC admits a PTAS.

Theorem 5. Fiz some o € (0, }].

1. Restricteds-1-DC has a PTAS.
2. If P #£ NP, then for all k > 2 and all i € [2,k + 1], Restricted;-k-DC is not
in APX.

References

1. Alt, H., Arkin, E.M., Bronnimann, H., Erickson, J., Fekete, S.P., Knauer, C.,
Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point
sets by disks. In: Symposium on Computational Geometry, pp. 449-458 (2006)

2. Angel, E., Bampis, E., Kononov, A.: A FPTAS for approximating the unrelated
parallel machines scheduling problem with costs. In: Meyer auf der Heide, F. (ed.)
ESA 2001. LNCS, vol. 2161, pp. 194-205. Springer, Heidelberg (2001)

3. Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria
batching and parallel machine scheduling problems. Theoretical Computer Sci-
ence 306(1-3), 319-338 (2003)

4. Ben-Moshe, B., Carmi, P., Katz, M.J.: Approximating the visible region of a point
on a terrain. Geolnformatica 12(1), 21-36 (2008)

5. Calinescu, G., Mandoiu, I.I., Wan, P.-J., Zelikovsky, A.: Selecting forwarding neigh-
bors in wireless ad hoc networks. MONET 9(2), 101-111 (2004)

6. Cannon, A.H., Cowen, L.J.: Approximation algorithms for the class cover problem.
Annals of Mathematics and Artificial Intelligence 40(3-4), 215223 (2004)

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Multiobjective Disk Cover Admits a PTAS 51

. Carmi, P., Katz, M.J., Lev-Tov, N.: Covering points by unit disks of fixed location.

In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 644-655. Springer,
Heidelberg (2007)

. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat

objects. Journal of Algorithms 46(2), 178-189 (2003)

. Cheng, T.C.E., Janiak, A., Kovalyov, M.Y.: Bicriterion single machine scheduling

with resource dependent processing times. STAM Journal on Optimization 8(2),
617-630 (1998)

Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(1-3), 165-177 (1990)

Diakonikolas, I., Yannakakis, M.: Small approximate pareto sets for bi-objective
shortest paths and other problems. In: Charikar, M., Jansen, K., Reingold, O.,
Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp.
74-88. Springer, Heidelberg (2007)

Dongarra, J., Jeannot, E., Saule, E., Shi, Z.: Bi-objective scheduling algorithms
for optimizing makespan and reliability on heterogeneous systems. In: Proceedings
19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 280—
288. ACM, New York (2007)

Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)

Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing 34(6), 1302-1323
(2005)

Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In:
Proceedings of 19th Annual Aymposium on Discrete Algorithms, pp. 1267-1276
(2008)

Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial cov-
ering problems. J. Algorithms 53(1), 55-84 (2004)

GlaBler, C., Reith, S., Vollmer, H.: The complexity of base station positioning in
cellular networks. Discrete Applied Mathematics 148(1), 1-12 (2005)

Hochbaum, D., Maass, W.: Approximation schemes for covering and packing prob-
lems in image processing and VLSI. Journal of the ACM 32, 130-136 (1985)
Narayanappa, S., Vojtechovsky, P.: An improved approximation factor for the unit
disk covering problem. In: CCCG (2006)

Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: FOCS, pp. 86-92 (2000)

Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria combinato-
rial optimization. Working papers 3756-95, Massachusetts Institute of Technology,
Sloan School of Management (1995)

Safer, H.M., Orlin, J.B.: Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Working papers 3757-95, Massachusetts Institute
of Technology, Sloan School of Management (1995)

Vassilvitskii, S., Yannakakis, M.: Efficiently computing succinct trade-off curves.
Theoretical Computer Science 348(2-3), 334-356 (2005)

Data Stream Algorithms via Expander Graphs

Sumit Ganguly

IIT Kanpur, India

sganguly@cse.iitk.ac.in

Abstract. We present a simple way of designing deterministic algorithms
for problems in the data stream model via lossless expander graphs. We
illustrate this by considering two problems, namely, k-sparsity testing and
estimating frequency of items.

1 Introduction

We say that an n-dimensional vector f from Z" is k-sparse if it has at most k
non-zero entries. The problem is to test whether f is k-sparse or no after it has
been subject to a sequence of coordinate wise updates in arbitrary order, that
is, f is the frequency vector of a data stream. More formally, a data stream over
the domain [n] = {1,2,...,n} is a sequence o of records of the form (indez, i,v),
where, indez is the position of the record in the sequence, ¢ € [n] and v € Z.
Associated with each data stream o is an n-dimensional frequency vector f(o),
such that f;(o) is the frequency of i, or the cumulative sum of the updates to
fi(o), made by the sequence o. That is,

filo) = Z v, i€ [n] .

(index,i,v)€c

The k-sparsity testing problem is as follows: design a data structure, referred
to as a k-sparsity tester, that (a) processes any stream o of updates over the
domain [n], and, (b) provides a test to check whether f(o) is k-sparse, that is,
whether, f has at most k£ non-zero entries. The problem is to obtain solutions
whose space requirement is o(n).

We first review work on the following well-studied and closely related problem,
namely, k-sparse vector reconstruction problem, where it is required to design
a structure that can process a data stream o and can retrieve the frequency
vector f(o) provided f(o) is k-sparse. However, the structure is not required to
actually test whether f(o) is k-sparse or not and may present an incorrect answer
if f(o) is not k-sparse. Let m denote max?_,|f;|. It is easy to show [I5] that the
k-sparse reconstruction problem requires 2(klog(mn/k)) bits. Minsky et. al.
[22] study a constrained version of the k-sparse vector reconstruction problem
where f(o) € {—1,0,1}" and present a space-optimal algorithm for this scenario.
Eppstein and Goodrich [I1] present a space-optimal solution for the case when
f(o) € {0,1}™ The k-set structure [I5] presents a k-sparse vector reconstruction
technique for the general case when f € {—m,...,m}". We reproduce their
theorem since we will refer to it later.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 52|63 2008.
© Springer-Verlag Berlin Heidelberg 2008

Data Stream Algorithms via Expander Graphs 53

Theorem 1 ([15]). For vectors f € {—m, ..., m}", there exists a data structure
for the k-sparse reconstruction problem that requires space O(klog(mn)log(n/k))
bits. The time taken to process any coordinate-wise update to f is O(k(log(n/k)))
elementary arithmetic operations over a finite field of size O(mn) and charac-
teristic at least mn + 1. O

The work on compressed sensing [3I10] has independently considered the prob-
lem of k-sparse vector reconstruction. Based on previous work in [3[T0/TE], Indyk
[20] presented the first deterministic algorithm in the compressed sensing frame-
work for k-sparse vector reconstruction using space O (k210818 n)” log(mmn)) bits,
where, F > 1 is a constant that depends on the best known construction of a
class of extractors.

We now review prior work on k-sparsity testing. It is known that k-sparsity
testing for vectors in {—m,...,m}"™ requires 2(n) space, for any m > 1 and
k > 0 [III16]. In view of this negative result, in this paper, we will restrict
our attention to non-negative frequency vectors from {0, ...,m}", that is, 0 <
fi(o) < m, for each i € [n]. A space-optimal 1-sparsity tester was presented
in [I2] that requires O(log(mn)) bits. A k-sparsity tester can be constructed
by using strongly selective families [6I§] as follows. An (n, k) strongly selective
family is a family of sets {S; }1<i<; such that for any A C {1,2,...,n} such that
|A| < k and for any = € A, there exists a member S; of the family such that
S;NA = {x}. In other words, each member of the set A is selected via intersection
by some member of the family. Constructive solutions for (n, k)-strongly selective
families are known for which the size of the family t = O(k? - polylog(n)). A
k-sparsity test can be designed by keeping a 1-sparsity tester [12] for each of
the sets {S;}1<i<t. The space requirement is O(k? - polylog(n) log(mn)) bits.
This line of work cannot be used to obtain significantly more space efficient k-
sparsity tests, since, there is a space lower bound of £2(k?(log(n/k))/(logk)) for
the size of (n, k)-strongly selective family [6]. The k-set structure [I5] presents
a technique that can be used to test k-sparsity of vectors in {0,...,m}™ using
space O(k?logn + klog(mn)). Finite fields based solutions to k-sparse vector
construction of Minsky et.al. [22], Eppstein and Goodrich [II], our previous
work in [I5], and, the compressed sensing approach of Indyk [20] are not known
to directly extend to deterministic k-sparsity testing.

Deterministic estimation of data stream frequency. We consider deterministic
solution to the APPROXFREQ(¢) problem, namely, to design a low-space data
structure that can (a) process any stream o over the domain [n], and, (b)
given any ¢ € [n], it returns a deterministic estimate fi for f;(o) satisfying
|fi — fi(o)| < €l f(o)|l1, where, ||f(o)]]1 is the £1 norm of the frequency vector
f(o). The APPROXFREQ(€) problem is a well-studied and basic problem in data
stream processing. Deterministic algorithms requiring O(e~!logm) space are
known for insert-only (i.e., no deletions) streams [9J2321]. For streams with ar-
bitrary insertions and deletions, the CR-PRECIS algorithm solves the problem
APPROXFREQ(¢) [14] using space O(e~2(log~%(1/€))(log? n)(logmn)). A space
lower bound of 2(¢~2?logm) for deterministic algorithms is known for solving
APPROXFREQ(€) over streams with frequency vector in {—m,...,m}"™ [13].

54 S. Ganguly

Contributions. We present a simple paradigm for designing deterministic algo-
rithms over data streams by using appropriately chosen lossless expander graphs.
The paradigm consists of two steps, namely, identifying the expansion proper-
ties needed to solve the problem at hand, and, a low space representation of
the expander graph (or an object that closely resembles it). We illustrate our
paradigm by designing algorithms for k-sparsity testing and estimating item
frequencies.

We first present a novel solution for deterministic k-sparsity tester for the fre-
quency vector f(o) of a data stream o, when, f(o) € {0,...,m}"™. This tech-
nique, based on lossless expander graphs, requires space O(k-D(1/4,n, k)), where,
D(e,n,r) = o(n) is the smallest known degree function in the construction of
(k, €)-lossless expanders. We subsequently improve upon this algorithm to present
a space upper bound of O(k(log(n/k))(logmn)) bits. This improves the current
upper bound of O(k?logn + klog(mn)) space [I5] and nearly matches the space
lower bound up to a logarithmic factor, which we show to be £2(klog(mn/k)). We
also use the expander graphs based approach to design a family of deterministic
algorithms for APPROXFREQ(¢), of which the CR-PRECIS algorithm [14] is a spe-
cial case. The algorithms derived in this manner are slightly more efficient in space
and update time than the CR-PRECIS algorithm.

Organization. The remainder of the paper is organized as follows. In Section [2]
we consider the k-sparsity testing problem over data stream and and in Section 3]
we consider the APPROXFREQ(¢€) problem.

2 Testing k-Sparsity

In this section, we design a deterministic k-sparsity tester for frequency vectors
in {0,...,m}™ based on lossless expander graphs. We first present a space lower
bound for k-sparsity testing of vectors over {0, ..., m}" in the data stream model.

Lemma 1. For each value of 1 < k < n/2, a deterministic k-sparsity tester for
vectors over {0,...,m}"™ requires £2(klog(mn/k)) bits.

Proof (Of Lemmalll). Let k < n/2. Suppose f,g are distinct k-sparse vectors
such that ||fllce < m/2 and ||g|lec < m/2. We first show that there exists
h € {—-m,...,m}"™ such that both f 4+ h and g + h are non-negative and one
of them is k-sparse and the other is not k-sparse. This would imply that any
k-sparsity tester must map distinct k-sparse vectors in {0,..., |m/2|}" to dis-
tinct summaries. Since, the number of k-sparse vectors in {0,...,|m/2]}" is
S o ()(lm/2] +1)7, the space requirement would be at least the logarithm
of this quantity, which is O(klog(mn/k)).

Let Sy and S, denote the set of coordinates of f and g respectively with
non-zero entries. Let T be any set of size k — |Sy| such that TN (Sf USy) = ¢.

Data Stream Algorithms via Expander Graphs 55

Such a T exists since, k < n/2. Denote by 11 the characteristic vector of T'. Let
h =g+ 1p. Then g+ h = 29 + 17 and is k-sparse. Further, f+h=f+g+ 11
and therefore,

1Strgtrel = [(SpU S+ [T > [Se| + 1+ |T| =k +1

and so, f + h is not k-sparse. O

2.1 Sparsity Separator Structure

We first define the (k,1)-sparsity separator structure that will be used later to
test k-sparsity in sub-linear space.

Definition 1. A (k,l)-sparsity separator structure, where, k <1, is a data struc-
ture that (a) supports updates corresponding to any stream o over [n], and,
(b) supports a deterministic operation called SEPARATESPARSITY that returns
TRUE if the sparsity of f(o) is at most k and returns FALSE if the sparsily of
f(o) is at least [. O

There is an indeterminate region, namely, if the sparsity of f(o) is between k+1
and [— 1, then the function SEPARATESPARSITY(f) is allowed to return either
TRUE or FALSE.

Lossless expander graphs. We design a (k, 2k) sparsity separator structure using
lossless expander graphs. We first recall some standard concepts from expander
graphs [19]. Let G = (V1, Vg, E, d) denote a left-regular bipartite graph where,
Vi = {v1,...,v,} is the set of vertices in the left partition, Vg = {us,...,u,} is
the set of vertices in the right partition, E is the set of edges of G and d is the
degree of each vertex in the left partition.

Definition 2 (Lossless Expanders [19].). A left-regular bipartite graph G =
(VL,Vr, E,d) is said to be be a (Kmax, €)-lossless expander if every set of K <
Kpax vertices from the left partition has at least (1 — €)dK neighbors in VR.

The work in [4] presents non-trivial, explicit constructions of lossless expanders
using the zig-zag product of expanders.

Theorem 2 ([4]). For any € > 0 and r < n, there is an explicit family of
left-regular bipartite graphs with |Vi| = n, |Vg| = r that is an (c'er/d, €)-lossless
expander with left degree D(e,n,r) < (n/er)¢ for some constants c,c’ > 0. The
neighbors of any left vertex may be found in time O(d - logo(l)(n)). O

Denote by R(e, n, k) the smallest value of r for which there is a known efficiently
constructible (k, €)-lossless expander with n left vertices and r right vertices.
Theorem [2is optimized for the case r = ©(n), in which case, the degree d = d(n)
is constant. Our approach will be the following. We will be interested in (K, €)-
lossless expander graphs with r as small as possible. We use Theorem 2lto obtain

! More accurately, an expander is a family of bipartite graphs {Gn}n>n,, for some ng,
where, Kmax = Kmax(n), e = €(n) and d = d(n).

56 S. Ganguly

expander graphs with the desired lossless expansion property to give us the wire-
frame of an algorithm for the problem. We then replace the expander by a more
explicit and low-space construction of a bipartite graph G with a smaller value
of r and that has the desired lossless expansion property.

A (k,2k)-sparsity separator using lossless expander graphs. Given n and using
Theorem [2] we consider a left-regular bipartite graph G = (Vy,, Vg, E, d) that is
a (2k, e = 1/4)-lossless expander such that

[VL| = n, |Vr| = r and left-degree d = D(e,n,r) .

Keep r=|Vg| integer counters denoted as an r-dimensional vector g=[g1, . . ., gr],
where, g5 is the counter associated with vertex us € Vg. All counters are initial-
ized to 0. The counter gs maintains the following sum over the data stream.

gs = Z filo), s=1,2,...,r .

(vi,us)EE

Alternatively, if we let B be the r x n matrix such that A5, = 1 if v; is adjacent
to us and As ; = 0 otherwise, then, g = A(f(0)). The counters are easily updated
corresponding to a stream update (pos,i,v) as follows:

gs := gs +v, Vs € [r] such that us is adjacent to v; .

Equivalently, in matrix notation, g := g + A;, where, A; is the column corre-
sponding to vertex v;. Since, the neighbors of any left vertex v; can be computed
in d - polylog(n) time and d = D(e,n,), the update can be performed in time
D(e, n,4k) - polylog(n).

A procedure for SEPARATESPARSITY (k,2k) can be designed as follows. It
first checks if g is not (1 — 1/4)2dk = 3% _sparse in which case it returns FALSE.
Otherwise, the procedure returns TRUE.

procedure SEPARATESPARSITY (k, 2k)
Data Structure: A (k, 2k)-sparsity separator structure.
if g is not (gdk - 1)—sparse return FALSE else return TRUE

We now show that the algorithm SEPARATESPARSITY (k, 2k) correctly solves the
approximate sparsity problem with parameter k, 2k.

Lemma 2. Algorithm SEPARATESPARSITY(k,2k) correctly solves the problem
SEPARATESPARSITY (k, 2k).

Proof. Suppose that f is not 2k — 1-sparse. Then, it has at least 2k non-zero
entries. Let Sy = {v; € Vi | fi > 0}. Then, |Sy| > 2k. Choose any subset
T C Sy such that |T'| = 2k. Let I'(S) denote the neighbors of any set T C V. By
property of the (2k, 1/4)-lossless expander graph, (1—1/4)d(2k) < |I'(T)| < 2dk,
that is, 1.5dk < |I'(T")| < 2dk. For each s € I'(T), gs > 0, since, g5 is the sum
of the (positive) f;’s of those i’s such that v; is adjacent to us. Therefore, g

Data Stream Algorithms via Expander Graphs 57

procedure SPARSITYTEST(k)
Input: Data Stream o with frequency vector f(o) € {0,...,m}".
Output: Returns TRUE if f is k-sparse and FALSE otherwise.
Data Structure: (a) A (k,2k)-sparsity separator structure over {0,...,m}", and,
(b) a 2k-set structure over {—m,...,m}" that supports operation RETRIEVEVECTOR(2k) [15].
begin
1. if SEPARATESPARSITY(k,2k) = FALSE return FALSE
2. else if SPARSITY(RETRIEVEVECTOR(2k)) < k return TRUE
3. else return FALSE
end.

Fig. 1. Procedure for testing k-sparsity

has at least 1.5dk non-zero entries and the algorithm returns FALSE. On the
other hand, if f is k-sparse, |I'(Sf)| < kd and therefore g is kd-sparse and the
algorithm returns TRUE. Hence the algorithm satisfies the properties of testing
SEPARATESPARSITY (k, 2k). O

The space requirement of Algorithm SEPARATESPARSITY consists of the r-
dimensional vector g, each of whose entries is an integer between 0 and mn.
Then, the space requirement is O(R(e, n, 2k) log(mn)). The time requirement to
process each stream update is D(e, n, R) - O(log®™ (n)).

2.2 Algorithm for Testing k-Sparsity

We now use the sparsity separator (k,2k) of Section 1] together with the k-set
reconstruction procedure of [I5] to design an algorithm for k-sparsity test.

We keep two data structures, namely, a 2k-set structure for 2k-set reconstruc-
tion as presented in [I5] and a (k, 2k)-sparsity separator structure, presented in
Section 2Tl Both structures are maintained independently and in parallel in the
face of stream updates. The procedure k-SPARSITYTEST is presented in Fig-
ure [Tl and is described as follows. It first uses the (k, 2k) sparsity separator test
on the r-dimensional vector g. If the approximate sparsity test returns FALSE,
then, we know that f cannot be k-sparse. (Otherwise, the (k,2k)-sparsity sep-
arator test would have returned TRUE, by definition.) However, if the sparsity
separator procedure returns TRUE, then, f is 2k-sparse (otherwise, the sparsity-
separator(k, 2k) would have returned FALSE). The reconstruction procedure of
the 2k-set structure [I5] is then invoked to obtain f, and from f, we obtain
its sparsity. If the sparsity is at most k, then the procedure returns TRUE, and
otherwise returns FALSE. We summarize these properties and the space and time
bounds in the following theorem.

Theorem 3. There exists a k-sparsity tester for frequency vector of data stream
in {0,...,m}"™ using space O(R(1/4,n,2k)logmn)), where, R = R(1/4,n,2k) is
the smallest value of v for which a (2k,1/4)-lossless expander can be efficiently
constructed with n vertices in the left vertex partition Vi. The time required to
process each stream update is O(D(1/4,n, R) -1og® M (n)). O

58 S. Ganguly

Improving the expander based sparsity test. The space requirement of the
the expander based k-sparsity separator presented in Section [2] can be improved
by using a different construction of an (approximate) expander graph than the
one given by Theorem[2l The set of vertices adjacent to a given subset of vertices
S in a graph is denoted as I'(S).

Lemma 3. For any n > 2, d > 3log(ne/4k) and r > 8kd, there exist bipartite
graphs G = (Vi, Vg, E) with |VL| = n, |Vr| = r satisfying the following property:
for any subset S C Vi, such that |S| <k, |I'(S)| < k and for any subset S C V,
such that |S| > 4k, |I'(S)| > k. Moreover, the bipartite graph can be succinctly
represented by a string of size kd? bits. The adjacency of a vertex in the left
partition may be computed in time O(kd?).

Proof (Of Lemma[3). Let Vi, = {1,2,...,n} and Vg = {1,2,...,r}. Define d
independently chosen random hash functions hq, ..., hg each mapping [n] — [r].
For i € Vi, and s € Vg, we say that there is an edge (i, s) provided there exists
j€{1,...,d} such that h;(i) = s.

By construction, for any S C V7, be a set of left vertices of size k, |I'(S)| < kd.
Now suppose S C Vi, and |S| = 4k. For s € Vg, define an indicator variable y;
that is 1 if us € I'(S) and 0 otherwise.

Priys =1} =1-(1—[8]/r)* =p (say) .

Thus,
|S|d _ d2|5\2 < kd
r o2 =P=
Let .
WS = Zys .
s=1
Therefore,
d?k?
E[Ws]=rp>kd— .
Further,
I 9 I
EWE] = (Q_ws) =D w2 D vabe
s=1 s=1 1<s1<s2<r
r
= 2 2.
rp + (2)]9
Thus,

(W) = Var W] = E (3] ~ € 0Ws])* = o +2()07 — (o)
=rp—rp* .

Therefore,
o?(Ws) <rp <kd .

Data Stream Algorithms via Expander Graphs 59

If the hash functions hq, ..., hq are each t-wise independent, then, the y;’s are at
least t-wise independent. By Chernoff’s bound for ¢-wise independent variables
[24], we have,

/2

tmax(t,02(Ws)\"'?
Pr{iWs —E[Ws]| >T} < (o2/372 [24] .
Choose the degree of independence as t = kd and let the deviation from the
expectation be T' = E [Wg] — (kd 4+ 1). Then,

1 2 72
T>rp— (kd+1) > 4kd — 6’id > 2kd

by choosing r > 8kd. Substituting, we have

(kd)(4kd))kd/z _ okd/3

Pr{Ws <k} <Pr{|Ws —E[Ws]| > T} < (62/3(2kd)2

Therefore,
Pr{Ws < k, for some S s.t. |S| = 4k} < (Z{}) e kd/3 < kin(ne/dk)—kd/3

provided, d > 31n(ne/4k) Thus,
Pr{VS,|S| = 4k, Ws > 4k} > 0

This proves the existence of a bipartite graph with the properties as stated in
the Lemma.

Such a bipartite graph may be generated as follows. The random seed length
is kd?logn bits, since, each of the hash functions may be implemented as a
degree kd — 1 polynomial over a field of size O(n). We iterate over the space of
kd?logn bit strings, generate the corresponding bipartite graph and check for
the property. If the property holds, then, the kd?logn bit seed is stored as the
generator for the bipartite graph. The above proof assures us of the existence of
such a seed. O

(k, 4k)-Sparsity separator. A (k,4k)-sparsity separator can be designed based
on a succinctly representable bipartite graph G = (Vi,, Vg, E) obtained us-
ing Lemma [such that |V;| = n,d = 4log(ne/k) and |Vg| = r = 16kd. By
Lemma B for any subset S C Vi, if |S| > 4k, then, |I'(S)| > 2k and if |S| < k,
then, |I'(S)| < k. A (k,4k)-sparsity separator is designed as follows. Keep r
counters, ¢i,...,Jr, one each corresponding to each right vertex us € Vg ; all
initialized to 0. The counter g, maintains the following sum: g, = >, (vi,us)EE fi-
Corresponding to update (pos,i,v) on the stream, the counters are updated as
follows.

UPDATE(pos, i,v) : ¢gs = gs +v, Vs such that (i,s) € E.

60 S. Ganguly

The space requirement is O(r) = O(klog(n/k)) counters of size O(log(mn)) bits
plus the succinct description length O(kd?) = O(klog?(n/k)) bits. The time
required to process each stream update of the form (pos,i,v) is to evaluate d
polynomials of degree kd each to obtain the adjacency of vertex wv;; this re-
quires time O(kd?) = O(klog®(n/k)). The (k, 4k)-SEPARATESPARSITY test is as
follows.

procedure BIPARTITE-SEPARATESPARSITY (k, 4k)
1. if ¢ is not k-sparse then return FALSE else return TRUE.

Rephrasing Lemma [3] if f is k-sparse, then, g is k-sparse, and, if f is not 4k-
sparse, then, g is not k sparse. The problem of k-sparsity testing can now be read-
ily solved as before. Keep a (k, 4k)-sparsity separator for vectors in {0,...,m}"
based on succinct bipartite graphs and a 4k-set structure from [I5]. The algo-
rithm for k-sparsity testing is identical to that presented in Figure [l with the
only change being that the use of the 2k-set structure is replaced by a 4k-set
structure. We therefore have the following theorem.

Theorem 4. There exists a structure for testing k-sparsity of wvectors in
{0,...,m}"™ updated coordinate-wise as a data stream using space O(klog(n/k)
log(mn)). The time taken to process each coordinate-wise update is O(klog?

(n/k)). 0

The space requirement of the succinct bipartite graph based k-sparsity tester is
within a logarithmic factor of the space lower bound of 2(klog(mn/k)) proved
in Lemma [T}

3 Deterministic Estimation of Frequency Vector

In this section, we present a novel, deterministic algorithm for approximating
the frequency vector of a data stream based on the use of lossless expander
graphs. Consider a (2, €/2)-lossless expander graph G = (Vi, Vg, E,d), where,
Vi = {v1,...,un}, Vo = {u1,...,u,}. By Theorem [a (2,€/2)-lossless ex-
pander has r = O(D(e,n,0(1))/e) and d = D(e,n,r), where, D(e,n,O(1)) is
the current best known degree function for an (O(1), €)-lossless expander given
by Theorem 2l As before, we keep an integer counter g5 corresponding to each
vertex us € V. The counters are initialized to 0 and are updated corresponding
to stream update exactly in the same manner as discussed in Section 2XI1 The
estimate fz is the following.

s:(vi,us)EE

Lemma 4. |fl — filo)] < €|l f(o)]1-

Data Stream Algorithms via Expander Graphs 61

Proof. For simplicity, fix the input stream o and let f denote f(o). Fix i. By
property of (2, €)-lossless expander, for any i, j € [n], i # j,

\D(v;) N D(v;)] = 2d — |T(v) UL (v))] < 2d — (1 — ¢/2)(2d) < ed . (1)

Therefore,
Yo=Y Yo L= fill)n)
s:(vi,us)EE s:(viyus)EE j:(vj,us)EE j=1
=dfi+ Y fITw)nTw)|=dfi+ > fi(ed), by @ .
1<j<n 1<j<n
J#i J#i

Dividing by d, transposing and taking absolute values, we have,

1
|d S g Hl <D el <elfl— 1l

s:(vi,us)EE VES
Since, } D si(viun)eE Is = fi, this proves the lemma. 0

Theorem 2] can be applied by setting » = O(!D(e,n,1)) and d = D(e,n,r),
thereby obtaining a (K, €)-lossless expander, for some K > 2. We summarize
this in the following theorem.

Theorem 5. There exists a deterministic algorithm for solving APPROXFREQ(e)
over a data stream using space O(R(¢e,n,2)log(mn)). The time taken to process
each stream update is O(D(e, n, R)1og®™M n). O

An exercise along the lines of producing a succinctly representable bipartite
graph using the probabilistic method instead of using the lossless expander family
of Theorem 2l can be carried out (and has a slightly simpler argument). We state
this in the following lemma.

Lemma 5. There exists a bipartite graph G(n,e) = (Vi.,Vr, E,d) such that
VL] = n, |Vr| = O((1/€?)log(n/¢)), d = O(logn) such that the degree of every
vertex in Vi is between (1 — €)d and d and for any v,,v; € Vi, i # j, the
number of common neighbors of v; and v; do not exceed ed. Moreover, such a
bipartite graph can be succinctly represented using O((log(n/€))(logn)) bits. The
neighbors of any vertex in Vi, can be computed in time O(log(n/e)(logn)). 0O

Note that the bipartite graph of Lemma [l is not left-regular, but rather almost
left-regular: (1—e)d < deg(v;) < d. The analysis of Lemmall goes through with a
slight modification, since the division by d gives rise to a factor that lies between 1
and 1/(1—¢), thereby, increasing the error factor by O(e). Replacing the (2, ¢/2)-
expander graph by the succinct bipartite graph G(n, e/4) from Lemma [yields
an algorithm for APPROXFREQ(€). This is summarized in the following theorem.

62 S. Ganguly

Theorem 6. There exists a deterministic algorithm for solving APPROXFREQ(e)
over a data stream using space O(e~2log(n/e€)log(mn)) bits. The time taken to
process each stream update is O(log(n/e)(logn)). O

The only known previous algorithm for deterministic estimation of frequency is
the CR-PRECIS algorithm [I4] which requires space O(e2(log™2(1/€))(log? n)-
(logmn)). The algorithm of Theorem[@lis slightly better in its space requirement
than the CR-PRECIS algorithm [I4] by a small poly-logarithmic factor.

It is interesting to note that the primes residue based structure used by the
CR-PREecis structure [I5] is an explicit construction of a (2,¢/2)-lossless ex-
pander as follows. For ¢ distinct primes py, ..., p;, we define the bipartite graph
Ger(pis--.,pt) = (Vi, Vg, E,d) where, Vi, = {v1,...,v,} and Vg = {u;; | 1 <
j <tand 0 << p;—1}. There is an edge between left vertex v; and right vertex
uj, if and only if | =4 mod p;. The degree of each left vertex is by construction
t, since, each number has exactly one residue respectively for pi,...,p:. For any
1 < i < j < n, each common neighbor u;; of v; and v; means that p;|j — i. If
there are s distinct common neighbors, then, there are s distinct primes that
divides j — 4. Since, j —i < n — 1, and each p; > 2, s < logn. This shows that
the graph is a (2, ¢/2)-lossless expander for ¢ = 2(logn)/e and for any choice of
primes p1,...,ps. Since, 7 = |Vg| = p1 + ...+ pt, r is minimized by choosing the
first 2logn/e primes as pi, ..., pr. The well-known prime number theorem then
guarantees that pi+. . .+p, = O(pit) = O(t2Int) = O((log? n/e?) log((logn)/€)).

References

1. Alon, N.: Perturbed identity matrices have high rank: proof and applications
(2006), http://www.math.tau.ac.il/~nogaa/identity.pdf

2. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Bounds for Frequency Estimation of
Packet Streams. In: Proc. of SIROCCO, pp. 33-42 (2003)

3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52(2), 489-509 (2006)

4. Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.: Randomness conductors
and constant degree lossless expanders. In: Proc. of ACM STOC (2002)

5. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693-703. Springer, Heidelberg (2002)

6. Cheblus, B., Kowalski, D.R.: Almost Optimal Explicit Selectors. In: Liskiewicz, M.,
Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270-280. Springer, Heidelberg
2005

7. (Cormz)de, G., Muthukrishnan, S.: An Improved Data Stream Summary: The
Count-Min Sketch and its Applications. J. Algo. 55(1)

8. De Bonis, A., Gasieniec, L., Vaccaro, U.: Generalized framework for selectors with
applications in optimal group testing. In: Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 81-96. Springer,
Heidelberg (2003)

9. Demaine, E.D., Lépez-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Mohring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348-360. Springer, Heidelberg (2002)

http://www.math.tau.ac.il/~nogaa/identity.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Data Stream Algorithms via Expander Graphs 63

Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289-1306 (2006)
Eppstein, D., Goodrich, M.T.: Space-Efficient Straggler Identification in Round-
Trip Data Streams. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS,
vol. 4619, pp. 637-648. Springer, Heidelberg (2007)

Ganguly, S.: Counting distinct items over update streams. In: Deng, X., Du, D.-Z.
(eds.) ISAAC 2005. LNCS, vol. 3827, pp. 505-514. Springer, Heidelberg (2005)
Ganguly, S.: Lower bounds for frequency estimation over data streams. In: Hirsch,
E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science — Theory
and Applications. LNCS, vol. 5010, pp. 204-215. Springer, Heidelberg (2008)
Ganguly, S., Majumder, A.: CR-precis: A Deterministic Summary Structure for
Update Streams. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007.
LNCS, vol. 4614, pp. 48-59. Springer, Heidelberg (2007)

Ganguly, S., Majumder, A.: Deterministic K-set Structure. In: Proc. ACM PODS,
pp. 280-289 (2006)

Ganguly, S., Majumder, A.: Deterministic K-set Structure. Manuscript under re-
view (July 2006), http://www.cse.iitk.ac.in/users/sganguly

Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., Strauss, M.: Fast
Small-space Algorithms for Approximate Histogram Maintenance. In: Proc. ACM
STOC, pp. 152-161 (2002)

Gilbert, A., Strauss, M., Tropp, J., Vershynin, R.: One sketch for all: Fast algo-
rithms for Compressed Sensing. In: Proc. ACM STOC (2007)

Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Draft
of book (2006)

Indyk, P.: Explicit Constructions for Compressed Sensing of Sparse Signals. In:
Proc. ACM SODA (2008)

Karp, R.M., Shenker, S., Papadimitriou, C.H.: A Simple Algorithm for Finding
Frequent Elements in Streams and Bags. ACM TODS 28(1), 51-55 (2003)
Minsky, Y., Trachtenberg, A., Zippel, R.: Set Reconciliation with Nearly Optimal
Communication Complexity. IEEE Trans. Inf. Theory 49(9), 2213-2218

Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Programm. 2, 143—
152 (1982)

Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding Bounds with Applica-
tions for Limited Independence. In: Proc. ACM SODA, pp. 331-340 (1992)

http://www.cse.iitk.ac.in/users/sganguly

Improving the Competitive Ratio of the Online
OVSF Code Assignment Problem*

Shuichi Miyazaki! and Kazuya Okamoto?

! Academic Center for Computing and Media Studies, Kyoto University
shuichi@media.kyoto-u.ac.jp
2 Graduate School of Informatics, Kyoto University
okia@kuis.kyoto-u.ac.jp

Abstract. Online OVSF code assignment has an important application
to wireless communications. Recently, this problem was formally modeled
as an online problem, and performances of online algorithms have been
analyzed by the competitive analysis. The previous best upper and lower
bounds on the competitive ratio were 10 and 5/3, respectively. In this
paper, we improve them to 7 and 2, respectively. We also show that our
analysis for the upper bound is tight by giving an input sequence for
which the competitive ratio of our algorithm is 7 — ¢ for arbitrary ¢ > 0.

1 Introduction

Universal Mobile Telecommunication System (UMTS) is one of the third gener-
ation (3G) technologies, which is a mobile communication standard. UMTS uses
a high-speed transmission protocol Wideband Code Division Multiple Access
(W-CDMA) as the primary mobile air interface. W-CDMA was implemented
based on Direct Sequence CDMA (DS-CDMA), which allows several users to
communicate simultaneously over a single communication channel. DS-CDMA
utilizes Orthogonal Variable Spreading Factor (OVSF) code to separate commu-
nications [I].

OVSF code is based on an OVSF code tree, which is a complete binary tree of
height h. The leaves of the OVSF code tree are of level 0 and parents of vertices
of level £ (¢ =0,...,h—1) are of level £+ 1. Therefore the level of the root is h.
Fig. M shows an OVSF code tree of height 4. Each vertex of level £ corresponds to
a code of level £. In DS-CDMA, each communication uses a code of the specific
level. To avoid interference, we need to assign codes (vertices of an OVSF code
tree) to communications so that they are mutually orthogonal, namely, in any
path from the root to a leaf of an OVSF code tree, there is at most one assigned
vertex. However, it is not so easy to serve requests efficiently as we will see later.

Erlebach et al. [4] first modeled this problem as an online problem, called the
online OVSF code assignment problem, and verified the efficiency of algorithms
using the competitive analysis: An input o consists of a sequence of a-requests
(assignment requests) and r-requests (release requests). An a-request a; specifies

* This work was supported by KAKENHI 17700015, 19200001, 19-4017, and 20300028.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 64]-76,/2008.
© Springer-Verlag Berlin Heidelberg 2008

Improving the Competitive Ratio 65

Level 4 Level 4

Level 3 Level 3

Level 2 Level 2

Fig.1. An OVSF code tree of hight 4 Fig. 2. An example of an assignment

a required level, denoted £(a;). Upon receiving an a-request a;, the task of an
online algorithm is to assign a; to one of the vertices of level ¢(a;) of OVSF
code tree, so that the orthogonality condition is not broken. It may also reassign
other requests (already existing in the tree). An r-request 7; specifies an a-
request, denoted f(r;), which was previously assigned and is still assigned to
the current OVSF code tree. When an r-request r; arrives, the task of an online
algorithm is to merely remove f(r;) from the tree (and similarly, it may reassign
other requests in the tree). Each assignment and reassignment causes a cost of
1, but removing a request causes no cost. Without loss of generality, we may
assume that o does not include an a-request that cannot be assigned by any
reassignment of the existing requests (in other words, the total bandwidth of
requests at any point never exceeds the capacity).

For example, consider the OVSF code tree given in Fig. [l and the input o =
(a1, az2,as3,a4,71,0a5), where £(a1) = 2,0(az) = £(asz) = 1,4(as) = 0,€(as) = 3
and f(r1) = ag. Suppose that, for the first four requests, an online algorithm
assigns a; through a4 as depicted in Fig. 2l Then, 71 arrives and as is released.
Next, as arrives, but an algorithm cannot assign as unless it reassigns other a-
requests. If it reassigns a4 to a child of the vertex to which as was assigned, it can
assign as to the right vertex of level 3. In this case, it costs 6 (5 assignments and
1 reassignment). However, if it has assigned as to a vertex in the right subtree
of the root, and a4 to a vertex in the left subtree, then the cost is 5, which is
clearly optimal.

This problem also has an application in assigning subnets to users in computer
network managements. An IP address space can be divided into subnets, each
of which is a fragment of the whole IP address space consisting of a set of
continuous IP addresses of size power of 2. This structure can be represented as
a complete binary tree, in exactly the same way as our problem. Usually, the sizes
of subnets requested by users depend on the number of computers they want to
connect to the subnet, and the task of managers is to assign subnets to users
so that no two assigned subnets overlap. Apparently, we want to minimize the
number of reassignments because a reassignment causes a large cost for updating
configurations of computers.

Online algorithms are evaluated by the competitive analysis. The competitive
ratio of an online algorithm ALG is defined as max{ ggfpig‘;; }, where Cara(o)
and Copr (o) are the costs of ALG and an optimal offline algorithm, respectively,
for an input o, and max is taken over all o. If the competitive ratio of ALG is
at most ¢, we say that ALG is c-competitive.

For the online OVSF code assignment problem, Erlebach et al. [4] developed
a O(h)-competitive algorithm (recall that A is the hight of the OVSF code tree),

66 S. Miyazaki and K. Okamoto

and proved that the lower bound on the competitive ratio of the problem is
1.5. Forisek et al. [6] developed a ©(1)-competitive algorithm, but they did not
obtain a concrete constant. Later, Chin, Ting, and Zhang [2] proposed algorithm
LAZY by modifying the algorithm of Erlebach et al. [4], and proved that the
competitive ratio of LAZY is at most 10. Chin, Ting, and Zhang [2] also showed
that no online algorithm can be better than 5/3-competitive.

Our Contribution. In this paper, we improve both upper and lower bounds,
namely, we give a 7-competitive algorithm EXTENDED-LAZY, and show that no
online algorithm can be better than 2-competitive. We further show that our
upper bound analysis is tight by giving a sequence of requests for which the
competitive ratio of EXTENDED-LAZY is 7 — ¢ for an arbitrary constant ¢ > 0.

Let us briefly explain an idea of improving an upper bound. Erlebach
et al. [4] defined the “compactness” of the assignment, and their algorithm keeps
compactness at any time. They proved that serving a request, namely assigning
(or releasing) a request and modifying the tree to make compact, will cause at
most one reassignment at each level, which leads to ©(h)-competitiveness. Chin,
Ting, and Zhang [2] pointed out that always keeping the tree compact is too
costly. Their algorithm LAZY does not always keep the compactness but makes
the tree compact when it is necessary. To achieve this relaxation, they defined
“tanks”. By exploiting the idea of tanks, they proved that the cost of serving each
request is at most 5, which provides 10-competitiveness. Our algorithm follows
this line. We further relax the compactness by defining “semi-compactness”. We
also use amortized cost analysis. We prove that serving one a-request (r-request,
respectively) and keeping semi-compactness costs at most 4 (3, respectively) and
obtained 7-competitiveness of EXTENDED-LAZY.

Related Results. For the online OVSF code assignment problem, there are a
couple of resource augmentations, namely, online algorithms are allowed to use
more bandwidth than an optimal offline algorithm: Erlebach et al. [4] developed
a 4-competitive algorithm in which an online algorithm can use a double-sized
OVSF code tree. Chin, Zhang, and Zhu [3] developed a 5-competitive algorithm
that uses 1/8 extra bandwidth.

Also, there are several offline models. One is the problem of finding a minimum
number of reassignments to modify the current assignment so that the new
request can be assigned, given a current assignment configuration of the tree and
a new request. For this problem, Minn and Siu [7] developed a greedy algorithm.
Moreover, Erlebach et al. [4] proved that this problem is NP-hard and developed
a O(h)-approximation algorithm. Another example is an offline version of our
problem, namely, given a whole sequence of requests, we are asked to find a
sequence of operations that minimizes the number of reassignments. Erlebach,
Jacob, and Tomamichel [5] proved that this is NP-hard and gave an exponential-
time algorithm.

2 Preliminaries

In this section, we define terminologies needed to give our algorithm, most of
which are taken from [2]. Given an assignment configuration, we say that vertex

Improving the Competitive Ratio 67

Level 4 Level 4

Level 3 Level 3

Fig. 3. A compact assignment Fig. 4. A semi-compact assignment

v is dead if v or one of its descendants is assigned. In the example of Fig. [
shaded vertices are assigned, and vertices with stars (%) are dead. If, at any
level, all the left vertices (on the same level) to the rightmost dead vertex are
dead, and all the assigned vertices are mutually orthogonal, then the assignment
is called compact. For example, the assignment in Fig. B]is compact.

Next, let us define a status of levels. Level £ is said to be rich if an a-request of
level £ can be assigned to the leftmost non-dead vertex v at £ without reassigning
other requests. In other words, none of descendants, ancestors, and v itself is
assigned. Otherwise, the level ¢ is said to be poor. For example, in the assignment
of Fig.[3l levels 0, 2, and 3 are rich and levels 1 and 4 are poor. A level £ is said to
be locally rich if the rightmost assigned vertex is the left child of its parent. For
example, in Fig.[Bl only level 0 is locally rich. Note that in a compact assignment,
locally rich levels are always rich.

Then, we define a tank. Consider an a-request a of level b, and suppose that it
is assigned to a vertex x of level b. We sometimes consider as if a were assigned
to a vertex y of a higher level ¢ (¢ > b) if x is the only assigned descendant of y
(see Fig.@)). In this case, the vertex y is called tank[b, t]. Levels b and ¢ are called
the bottom and the top of tank[b, t], respectively. We say that level £ (b < £ < t)
belongs to tank|b, t]. Note that we consider that the vertex y is assigned and the
vertex x is unassigned.

Finally, let us define the semi-compactness. An assignment is said to be semi-
compact if the following five conditions are satisfied: (i) All the assigned vertices
are mutually orthogonal; (ii) All left vertices of the rightmost dead vertex are
dead at each level; (iii) Each level belongs to at most 1 tank; (iv) Suppose that
there is a tank v(=tank(b, t]) at level ¢. Then level ¢ contains at least one assigned
vertex other than v, and there is no dead vertex to the right of v in ¢; (v) Levels
belonging to tanks are all poor except for the top levels of tanks. Fig. [shows
an example of a semi-compact assignment.

3 Algorithm EXTENDED-LAZY

To give a complete description of EXTENDED-LAZY, we first define the following
four functions [2]. Note that a single application of each function keeps the or-
thogonality, but may break the semi-compactness. However, EXTENDED-LAZY
combines functions so that the combination keeps the semi-compactness.

68 S. Miyazaki and K. Okamoto

— AppendRich(¢, a): This function is available if the level of a-request a is less
than or equal to £ (namely £(a) < £), and level £ is rich. It assigns a to the
vertex immediately right of the rightmost dead vertex at £. If there is no
dead vertices at /¢, it assigns a to the leftmost vertex v at . Note that if
{(a) # ¢, this function creates tank[¢(a), £].

— AppendPoor(¢, a): This function is available if £(a) < ¢ and level ¢ is poor. It
assigns a-request a to the vertex v immediately right of the rightmost dead
vertex at £. If there is no dead vertices at £, it assigns a to the leftmost vertex
v at £. (If there is no such v, abort.) Note that if £(a) # ¢, tank[{(a), £] is
created. Then, it releases an a-request assigned to a vertex in the path from
v to the root and returns it. (Such a request exists because ¢ was poor and
v was non-dead. This request is unique because of the orthogonality.)

— FreeTail({): Release the a-request assigned to the rightmost assigned vertex
at level ¢, and return it.

— AppendLeft(¢, a): This function is available if £(a) = £. Assign a-request a
to the leftmost non-assigned vertex at level ¢ that has no assigned ancestors
or descendants.

Each of AppendRich, AppendPoor, and AppendLeft yields a cost of 1, and
FreeTail does not yield a cost.

Now, we are ready to describe EXTENDED-LAZY. Its behaviors on an a-request
and an r-request are given in Sects. B and B2 respectively. Executions of
EXTENDED-LAZY is divided into several cases. In the description of each case, we
explain the behavior of EXTENDED-LAZY, and in addition, for the later analysis,
we will calculate the cost incurred and an upper bound on the increase in the
number of locally rich levels due to the operations.

3.1 Executions of EXTENDED-LAZY for a-Requests

As summarized in Fig. Bl the behavior of EXTENDED-LAZY for an a-request a
is divided into six cases based on the status of the level ¢(a) (recall that ¢(a) is
the level to which a has to be assigned).

Case (1): The case that ¢(a) does not belong to a tank and is rich. Execute
AppendRich(¢(a),a). The execution of this case costs 1, and the number of
locally rich levels increases by at most 1 because only £(a) changes status.

Case (2): The case that £(a) does not belong to a tank and £(a) is poor. Fur-
thermore, if we look at the higher levels from ¢(a) to the root, namely in the

£(a) not belong to a tank rich Case (1)
poor rich Case (2)
bottom of a tank Case (3)
belong to a tank top rich Case (4)
poor Case (5)
otherwise Case (6)

Fig. 5. Execution of EXTENDED-LAZY for an a-request a

Improving the Competitive Ratio 69

order of £(a)+1,£¢(a)+2,...,h until we encounter a level that is rich or a bottom
of a tank, we encounter a rich level (say, the level t) before a bottom of a tank. In
this case, execute AppendRich(t, a). Note that the new tank[{(a),?] is created.
This case costs 1 and the number of locally rich levels increases by at most 1
since only level ¢ changes status.

Case (3): The same as Case (2), but when looking at higher levels, we encounter
a bottom b of tank[b,] before we encounter a rich level. This case is a little bit
complicated. First, execute FreeTail(¢) and receive the a-request o’ of level b
(because a level-b request was assigned to level ¢ by exploiting a tank). Then
execute AppendPoor(b,a’) (note that b is poor by the condition (v) of semi-
compactness), and receive another a-request a” of level s. Note that there is an
assigned vertex at t because of the condition (iv), and hence b < s < ¢. Next,
using AppendRich(t, a”), assign a”’ to the vertex which was tank(b,¢], which
creates the new tank[s,t] if s # ¢t. Now, recall that the level b was poor, and
hence a’ was assigned to a left child. So, the level b is currently locally rich. We
execute AppendRich(b, a). Note that tank[¢(a),b] is newly created. In this case,
the cost incurred is 3, and the number of locally rich levels does not change.

Case (4): The case that ¢(a) is the top of a tank and is rich. First, execute
FreeTail(¢(a)) and receive the a-request a’ from the bottom of the tank. Then,
execute AppendRich(¢(a), a) and AppendRich(¢(a),a’) in this order. Intuitively
speaking, we shift the top of the tank to the right, and assign a to the vertex
which was a tank. In this case, it costs 2 and similarly as Case (1), the number
of locally rich levels increases by at most 1.

Case (5): The case that £(a) is the top of a tank, say tank[b, £(a)], and is poor.
Execute FreeTail({(a)) and receive the a-request a’ of level b from tank[b, £(a)],
and execute AppendRich(¢(a),a) to process a. Note that £(a’) (= b) is poor
because £(a’) was the bottom of tank[b, £(a)]. Also, note that b currently does
not belong to a tank. Hence our current task is to process a’ of level b where
b does not belong to a tank and is poor. So, according to the status of levels
higher than b, we execute one of Cases (2) or (3). Before going to Cases (2) or
(3), the cost incurred is 1 and there is no change in the number of locally rich
levels. Hence, the total cost of the whole execution of this case can be obtained
by adding one to the cost incurred by the subsequently executed case (Cases
(2) or (3)), and the change in the locally rich levels is the same as that of the
subsequently executed case.

Case (6): The case that £(a) belongs to tank[b, t] and is not the top of tank[b, ¢].
Execute FreeTail(t) and receive the a-request a’ of level b from tank(b, ¢]. Then,
execute AppendPoor(£(a), a) and receive an a-request a” of level s. By a similar
observation as Case (3), we can see that ¢(a) < s < t. Then, assign a” to
the vertex which was tank[b, t] using AppendRich(¢,a”). (Note that tank[s, ¢] is
created if s # ¢.) Since ¢(a) was poor, a was assigned to a left child. Hence ¢(a) is
currently locally rich. Execute AppendRich(¢(a), a’), which creates tank[b, £(a)]
if £(a) # b. The execution of this case costs 3, and the number of locally rich
levels does not change.

70 S. Miyazaki and K. Okamoto

Here we give one remark. Suppose that £(a) does not belong to a tank and
is poor. Then, we look at higher levels to see which of Cases (2) and (3) is
executed. It may happen that we encounter neither a rich level nor a bottom of
a tank, namely there is no tank in upper levels, and all upper levels are poor.
However, we can claim that this does not happen since such a case happens only
when the total bandwidth of all a-requests exceeds the capacity. As we have
mentioned previously, we excluded this case from inputs. (Actually, we do not
have to exclude this case because our algorithm detects this situation, and in
such a case, we may simply reject the a-request.) Because of the space restriction,
we omit the proof of this claim.

The following lemma proves the correctness of EXTENDED-LAZY on a-requests.

Lemma 1. EXTENDED-LAZY preserves the semi-compactness on a-requests.

Proof. In order to prove this lemma, we have to show that the five conditions
(i) through (v) of semi-compactness are preserved after serving an a-request. It
is relatively easy to show that (i) is preserved because EXTENDED-LAZY uses
only AppendRich, AppendPoor, and FreeTail, each of which preserves the or-
thogonality even by a single application. So, let us show that conditions (ii)
through (v) are preserved after the execution of each of Cases (1) through (6),
provided that (i) through (v) are satisfied before the execution. Because of the
space restriction, however, we treat here only Case (1) and omit all other cases.
Case (1): Let v be the vertex (of level ¢(a)) to which the request a is assigned.
Note that by AppendRich(¢(a),a), some of ancestors of v may turn from non-
dead to dead. It is easy to see that the condition (ii) is preserved at level £(a)
since we only appended the request to the right of the rightmost dead vertex.
Now, suppose that vertex vs of level s (s > £(a)) turned from non-dead to dead.
Then, by the above observation, v, is an ancestor of v. Next, let v' be the vertex
which is immediately left of v. Then, since v’ was dead, v, is not an ancestor of
v’. As a result, the ancestor of v/ at level s is the vertex, say v}, immediately
left of vs, which implies that v, was dead. Thus, condition (ii) is satisfied at
any level. It is not hard to see that other conditions, (iii) through (v), are also
preserved because Case (1) does not create or remove tanks. O

3.2 Executions of EXTENDED-LAZY for r-Requests

Next, we describe executions of EXTENDED-LAZY for r-requests. Similarly as
Sec. B there are eight cases depending on the status of level £(f(r)) as sum-
marized in Fig. [0 each of which will be explained in the following. Recall that
f(r) is the request that r asks to release.

Case (I): The case that £(f(r)) does not belong to a tank and is locally rich.
Release f(r). If f(r) is the rightmost dead vertex at £(f(r)), do nothing. Oth-
erwise, use FreeTail(¢(f(r))) and receive an a-request a of level £(f(r)). Then,
using AppendLeft(¢(f(r)), a), assign a to the vertex to which f(r) was assigned.
Note that the vertex v which was the rightmost dead vertex of level ¢(f(r))
becomes non-dead after the above operations, which may turn some vertices in
the path from v to the root non-dead from dead. As a result, an assignment may

Improving the Competitive Ratio 71

L(f(r)) not belong to a tank locally rich Case (I)

otherwise Case (II)
belong to a tank top locally rich ~ Case (III)
otherwise Case (IV)
bottom the top is locally rich ~ Case (V)
otherwise Case (VI)
otherwise the top is locally rich ~ Case (VII)
otherwise Case (VIII)

Fig. 6. Execution of EXTENDED-LAZY for an r-request r

become non-semi-compact. If the semi-compactness is broken, we use the oper-
ation REPAIR, which will be explained later, to retrieve the semi-compactness.
The cost of this case is either 1 or 0, and the number of locally rich levels de-
creases by 1 without considering the effect of REPAIR. (We later estimate these
quantities considering the effect of REPAIR.)

Case (II): The case that £(f(r)) does not belong to a tank and is not locally
rich. EXTENDED-LAZY behaves exactly the same way as Case (I). Note that
vertex v which was the rightmost dead vertex at level £(f(r)) becomes non-dead
after the above operations, but v is a right child because ¢(f(r)) was not locally
rich. Since the semi-compactness was satisfied before the execution, the vertex
immediately left of v was (and is) dead, which implies that the parent and hence
all ancestors of v are still dead. Thus, we do not need REPAIR in this case. It
costs either 1 or 0, and the number of locally rich levels increases by 1 because
£(f(r)) becomes locally rich.

Case (III): The case that £(f(r)) belongs to tank[b,t], £(f(r)) = t, and ¢ is
locally rich. First, release f(r). Next, execute FreeTail(t) and receive the a-
request a of level b from tank(b, t]. If f(r) was assigned to the vertex immediately
left of tank[b,¢] at ¢, do nothing. Otherwise, using FreeTail(t), receive an a-
request a’ of level ¢, and using AppendLeft(¢,a’), assign a’ to the vertex to
which f(r) was assigned. We then find a level to which we assign the request a.
Starting from level ¢, we see if the level contains at least one a-request, until we
reach level b+ 1. Let ¢ be the first such level. Then execute AppendRich(4,a),
which creates tank(b, £]. If there is no such level £ between ¢ and b + 1, execute
AppendRich(b, a). In this case, we may need REPAIR. Without considering the
effect of REPAIR, it costs either 1 or 2. If it costs 1, the number of locally rich
levels stays unchanged or decreases by 1, and if it costs 2, the number of locally
rich levels decreases by 1.

Case (IV): The case that £(f(r)) belongs to tank[b,t], £(f(r)) = t, and ¢ is not
locally rich. EXTENDED-LAZY behaves exactly the same way as Case (III). In
this case, we do not need REPAIR by a similar observation as Case (II). It costs
either 1 or 2, and the number of locally rich levels increases by 1.

Case (V): The case that £(f(r)) belongs to tank[b, t], £(f(r)) = b, and t is locally
rich. First, release f(r). If f(r) was the request assigned to tanklb, t], stop here;
otherwise, do the following: Execute FreeTail(t) and receive the a-request a of
level b from tank[b,t]. Then, using AppendLeft(b, a), assign a to the vertex to

72 S. Miyazaki and K. Okamoto

which f(r) was assigned. In this case, we may need REPAIR because tank[b,]
becomes unassigned. The incurred cost is 1 or 0, and the number of locally rich
levels decreases by 1 without considering the effect of REPAIR.

Case (VI): The case that £(f(r)) belongs to tank[b,t], £(f(r)) = b, and ¢ is
not locally rich. EXTENDED-LAZY behaves exactly the same way as Case (V).
In this case, we do not need REPAIR for the same reason as Case (IT). The cost
is 1 or 0, and the number of locally rich levels increases by 1.

Case (VII): The case that £(f(r)) belongs to tank[b,t], b < £(f(r)) < t, and
t is locally rich. First, release f(r). Next, execute FreeTail(¢) and receive the a-
request a of level b from tank[b, t]. If f(r) was assigned to the rightmost assigned
vertex at £(f(r)), do nothing. Otherwise, using FreeTail(¢(f(r))), receive an a-
request a’ of level £(f(r)), and using AppendLeft(¢(f(r)),a’), assign a’ to the
vertex to which f(r) was assigned. We then find a level to which we assign the
request a in the same way as Case (III). Starting from level £(f(r)), we see if the
level contains at least one a-request, until we reach level b+ 1. Let £ be the first
such level. Then execute AppendRich(4, a), which creates tank[b, ¢]. If there is
no such level ¢ between ¢(f(r)) and b+ 1, execute AppendRich(b, a). In this case,
we may need REPAIR. Without considering the effect of REPAIR, it costs either
1 or 2. If it costs 1, the number of locally rich levels is unchanged or decreases
by 1, and if it costs 2, the number of locally rich levels decreases by 1.

Case (VIII): The case that £(f(r)) belongs to tank(b, t], b < £(f(r)) < ¢, and t is
not locally rich. EXTENDED-LAZY behaves exactly the same way as Case (VII).
In this case, we do not need REPAIR for the same reason as Case (IV). The cost
is 1 or 2. The number of locally rich levels increases by 1 or 2 when the cost is
1, and by 1 when the cost is 2.

Recall that after executing Cases (I), (III), (V), or (VII), the OVSF code tree
may not satisfy semi-compactness. In such a case, however, there is only one level
that breaks the conditions of semi-compactness, and furthermore, there is only
one broken condition, namely (ii) or (v) (again, the proof is omitted). If (ii) is
broken at level £, level £ consists of, from left to right, a sequence of dead vertices
up to some point, then one non-dead vertex v, and then again a sequence of (at
least one) dead vertices. This non-dead vertex was called a “hole” in [2]. We also
use the same terminology here, and call level ¢ a hole-level. If (v) is broken at
level ¢, £ is a bottom of a tank tank|[¢, ¢] and is rich. Furthermore, level £ consists
of, from the leftmost vertex, a sequence of 0 or more dead vertices, a sequence of
1 or more non-dead vertices, and then the leftmost level-£ descendant of tank|[¢,
t] (which is non-dead by definition). We call level ¢ a rich-bottom-level. A level
is called a critical-level if it is a hole-level or a rich-bottom-level.

The idea of REPAIR is to resolve a critical-level one by one. When we remove
a critical-level ¢ by REPAIR, it may create another critical-level. However, we
can prove that there arises at most one new critical level, and its level is higher
than ¢. Hence we can obtain a semi-compact assignment by applying REPAIR at
most h times.

Let us explain the operation REPAIR (again because of a space restriction, we
will give only a rough idea and omit detailed descriptions). If ¢ is a hole-level

Improving the Competitive Ratio 73

and £ is not a bottom of a tank, then we release the a-request a assigned to the
rightmost assigned vertex at level £, and reassign it to the hole to fill the hole by
AppendLeft(£,a). If £ is a hole-level and ¢ is a bottom of a tank v(=tank[¢, t]),
then there is a vertex u that is the leftmost level-¢ descendant of v. Recall that the
a-request virtually assigned to v is actually a request for level ¢ and is assigned
to u. We release this request a using FreeTail(t) and perform AppendLeft(Z,a).
Finally, if £ is a rich-bottom-level, then we will do the same operation, namely,
release the a-request a from the tank, and execute AppendLeft(¢, a).

Lemma 2. EXTENDED-LAZY preserves the semi-compactness on r-requests.

Proof. Similarly as Lemmalll, we will check that five conditions (i) through (v) of
semi-compactness are preserved for each application of Cases (I) through (VIII)
(followed by appropriate number of applications of REPAIR). Because of the
space restriction, it is omitted. a

4 Competitive Analyses of EXTENDED-LAZY

First, we estimate the cost and the increase in the number of locally rich levels
incurred by applications of REPAIR. By a single application of REPAIR, the cost
of 1 is incurred and the number of locally rich levels increases or decreases by
1. In case that the number of locally rich levels increases by 1, the resulting
OVSF code tree is semi-compact. On the other hand, if the number of locally
rich levels decreases by 1, we may need one more application of REPAIR. Hence, if
REPAIR is executed k times, then the total cost of k is incurred, and the number
of locally rich levels decreases by k — 2 or k. (In the case of k = 1, “decreases by
k —2” means “increases by 17.)

Then, let us estimate the cost and the increase in the number of locally
rich levels for each of the cases (1) through (6) and (I) through (VIII) of
EXTENDED-LAZY. From the observations of Sects. B.Iland[3.2, and the above ob-
servation on REPAIR, these quantities can be calculated as in Table[Il There are
two values in Case (5): Left and right values correspond to the cases where
Cases (2) and (3), respectively, are executed after Case (5). There are also
two values in Cases (III), (VII), and (VIII), which correspond to behaviors of
EXTENDED-LAZY. In the lower table, k denotes the number of applications of
REPAIR. One can see that, from the upper table, the sum of the cost and the

Table 1. The costs and increases in the number of locally rich levels for each execution
of EXTENDED-LAZY

Case (1) (2) (3) (4) (5 (6)

Cost 1 1 3 2 2 4 3
Increase <1 <1 0 <1<1 0 O
Case I 1o (I17) Iv) (V) (VI (VII) (VIII)

Cost <Ek+1 <1 k+1 E4+2 <2 <k+1 <1 k+1 E+2 1 2
Increase < —k+1 1 <—-k+2<—-k+1 1 <—-k+1 1 <—-k+2<-k+1<21

74 S. Miyazaki and K. Okamoto

increase in the number of locally rich levels is at most 4 for serving an a-request.
This happens when EXTENDED-LAZY executes Case (5) followed by Case (3).
Similarly, by the lower table, the sum of the cost and the increase in the number
of locally rich levels for serving one r-request is at most 3, which happens in
Cases (III), (IV), (VII), and (VIII).

Now, we are ready to calculate the competitive ratio of EXTENDED-LAZY.
For an arbitrary input sequence o, let A and R be the set of a-requests and the
set of r-requests in o, respectively. It is easy to see that the cost of an optimal
offline algorithm is at least |A| because each a-request incurs a cost of 1 in any
algorithm. We then estimate the cost of EXTENDED-LAZY. For a € A and r € R,
let ¢, and ¢, be the costs of EXTENDED-LAZY for serving a and r, respectively.
The cost of EXTENDED-LAzY for o is then) . 1cqa+ D, cpcr Also, forac A
and r € R, let p, and p, be the increases in the number of locally rich levels
caused by EXTENDED-LAZY in serving a and r, respectively. Define P to be the
number of locally rich levels in the OVSF code tree at the end of the input
o. Then, P = 3 _4Pa+) ,crPr since there is no locally rich level at the
beginning. The cost of EXTENDED-LAZY for o is

ZC“+ZCT§ZCG+ZCT+P

a€A reR acA reR
= Z(Ca +pa) + Z(CT +pr)
a€cA reR
<> a+> 3 (1)
acA reR
= 4]A| + 3|R|
< 7|4l (2)

(1) is due to the above analysis, and (2) is due to the fact that |R| < |A] since
for each r-request, there must be a preceding a-request corresponding to it. Now,
the following theorem is immediate from the above inequality.

Theorem 1. The competitive ratio of EXTENDED-LAZY is at most 7.
Next, we give a lower bound on the competitive ratio of EXTENDED-LAZY.

Theorem 2. The competitive ratio of EXTENDED-LAZY is at least 7T— € for any
positive constant € > 0.

Proof. As one can see in the upper bound analysis, the most costly operations
are Case (5) followed by Case (3) for a-requests and Cases (III), (IV), (VII), and
(VIII) for r-requests. We first give a short sequence which leads an OVSF code
tree of EXTENDED-LAZY to some special configuration, and after that, we give
a-requests and r-requests repeatedly, for which EXTENDED-LAZY executes Case
(5) followed by Case (3), or Case (VIII) almost every time. Because of the space
restriction, we omit the complete proof. a

Improving the Competitive Ratio 75

5 A Lower Bound

Theorem 3. For any positive constant ¢ > 0, there is no (2 — €)-competitive
online algorithm for the online OVSF code assignment problem.

Proof. Consider an OVSF code tree of height h (where h is even), namely, the
number of leaves are n = 2". First, an adversary gives n a-requests of level 0
so that the vertices of level 0 are fully assigned, by which, an arbitrary online
algorithm incurs the cost of n. Then, depending on the assignment of the online
algorithm, the adversary requires to release one a-request from each subtree
rooted at a vertex of level h/2. (Hereafter, we simply say “subtree” to mean a
subtree of this size.) Since there are \/n such subtrees, the adversary gives y/n 1-
requests in total. Next, the adversary gives an a-request a; of level h/2. To assign
a1, the online algorithm has to make one of subtrees empty by reassignments,
for which the cost of at least y/n — 1 is required.

Again, depending on the behavior of the online algorithm, the adversary re-
quires to release \/n a-requests of level 0 uniformly from each subtree except for
the subtree to which a; is assigned. Here, “uniformly” means that the numbers
of r-requests for any pair of subtrees differ by at most 1; in the current case, the
adversary requires to release two a-requests from one subtree, and one a-request
from each of the other \/n — 2 subtrees. Subsequently, the adversary gives an
a-request as of level h/2. Similarly as above, the online algorithm needs /n — 2
reassignments to assign as.

The adversary repeats the same operation y/n rounds, where one round con-
sists of y/n r-requests to release a-requests of level 0 uniformly from subtrees,
and one a-request of level h/2. Eventually, all initial a-requests of level 0 are
removed, and the final OVSF code tree contains v/n a-requests of level h/2.

The total cost of the online algorithm is n++/n+ (v/n—1)+ (vV/n—2)+ (v/n—

2+ = nty/nt DY (V=T 1) > 2n—yn(log v+ (X L —log v/n)).

On the other hand, the cost of an optimal offline algorithm is n + /n since it
does not need reassignment. Hence, the competitive ratio is at least

2n —ynllog v+ (S5 | ~logvn)) _, _ vnllogv/n+2+ (T | ~logv/n))
n++/n N n++/n

Since limnHC,O(Z:i‘/:"1 ! —log\/n) =~ (v ~ 0.577) is the Euler’s constant, the term
v/n(log \/n+2+(zg/=n1 !

Mvay/s ~18 V™) becomes arbitrarily small as n goes infinity. O

References

1. Adachi, F., Sawahashi, M., Okawa, K.: Tree-structured generation of orthogonal
spreading codes with different lengths for forward link of DS-CDMA mobile radio.
Electronics Letters 33(1), 27—28 (1997)

2. Chin, F.Y.L., Ting, H.F., Zhang, Y.: A constant-competitive algorithm for online
OVSF code assignment. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp.
452-463. Springer, Heidelberg (2007)

76

S. Miyazaki and K. Okamoto

. Chin, F.Y.L., Zhang, Y., Zhu, H.: Online OVSF code assignment with resource

augmentation. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp.
191-200. Springer, Heidelberg (2007)

. Erlebach, T., Jacob, R., Mihaldk, M., Nunkesser, M., Szab6, G., Widmayer, P.: An

algorithmic view on OVSF code assignment. Algorithmica 47(3), 269-298 (2007)

. Erlebach, T., Jacob, R., Tomamichel, M.: Algorithmische aspekte von OVSF code

assignment mit schwerpunkt auf offline code assignment. Student thesis as ETH
Ziirich

. Forisek, M., Katreniak, B., Katreniakova, J., Kréalovi¢, R., Koutny, V., Pardubska,

D., Plachetka, T., Rovan, B.: Online bandwidth allocation. In: Arge, L., Hoffmann,
M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 546-557. Springer, Heidelberg
(2007)

. Minn, T., Siu, K.Y.: Dynamic assignment of orthogonal variable-spreading-factor

codes in W-CDMA. IEEE Journal on Selected Areas in Communications 18(8),
1429-1440 (2000)

Optimal Key Tree Structure for Deleting Two or
More Leaves*

Weiwei Wu', Minming Li%, and Enhong Chen?

! Department of Computer Science, University of Science and Technology of China
wweiwei2@cityu.edu.hk
2 Department of Computer Science, City University of Hong Kong
minmli@cs.cityu.edu.hk
3 Department of Computer Science, University of Science and Technology of China
chenehQustc.edu.cn

Abstract. We study the optimal tree structure for the key management
problem. In the key tree, when two or more leaves are deleted or replaced,
the updating cost is defined to be the number of encryptions needed to
securely update the remaining keys. Our objective is to find the optimal
tree structure where the worst case updating cost is minimum. We first
prove the degree upper bound (k + 1) — 1 when k leaves are deleted
from the tree. Then we focus on the 2-deletion problem and prove that
the optimal tree is a balanced tree with certain root degree 5 < d < 7
where the number of leaves in the subtrees differs by at most one and
each subtree is a 2-3 tree.

1 Introduction

In the applications that require content security, encryption technology is widely
used. Asymmetric encryption is usually used in a system requiring stronger se-
curity, while symmetric encryption technology is also widely used because of the
easy implementation and other advantages. In the applications such as telecon-
ferencing and online TV, the most important security problem is to ensure that
only the authorized users can enjoy the service. Centralized key management
technology can achieve efficiency and satisfy the security requirement of the sys-
tem. Hence, several models based on the key tree management are proposed to
safely multicast the content. Two kinds of securities should be guaranteed in
these applications: one is Future Security which prevents a deleted user from
accessing the future content; the other is Past Security which prevents a newly
joined user from accessing the past content. Key tree model, which was proposed
by Wong el al. [§] is widely studied in recent years. In this model, the Group

* This work was supported in part by the National Basic Research Program of China
Grant 2007CB807900, 2007CB807901, a grant from the Research Grants Council of
the Hong Kong Special Administrative Region, China [Project No. CityU 116907],
Program for New Century Excellent Talents in University (No.NCET-05-0549) and
National Natural Science Foundation of China (No.60775037).

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 77188 2008.
© Springer-Verlag Berlin Heidelberg 2008

78 W. Wu, M. Li, and E. Chen

Controller (GC) maintains a tree structure for the whole group. The root of the
tree stores a Traffic Encryption Key (TEK) which is used to encrypt the content
that should be broadcast to the authorized users. To update the TEK securely,
some auxiliary keys are maintained. Whenever a user leaves or joins, the GC
would update keys accordingly to satisfy Future Security and Past Security. Be-
cause updating keys for each user change is too frequent in some applications, [5]
proposed Batch Rekeying Model where keys are only updated after a certain pe-
riod of time. [I0] studied the scenario of popular services with limited resources
which always has the same number of joins and leaves during the batch period
(because there are always users on the waiting list who will be assigned to empty
positions whenever some authorized users leave). A recent survey for key tree
management can be found in [2].

An important research problem in the key tree model is to find an optimal
structure for a certain pattern of user behaviors so that the total number of en-
cryptions involved in updating the keys is minimized. Graham et al. [3] studied
the optimal structure in Batch Rekeying Model where every user has a proba-
bility p to be replaced in the batch period. They showed that the optimal tree
for n users is an n-star when p > 1 — 371/3 ~ 0.307, and when p < 1 — 371/3,
the optimal tree can be computed in O(n) time. Specially when p tends to 0,
the optimal tree resembles a balanced ternary tree to varying degrees depending
on certain number-theoretical properties of n. Feng et al. [I] studied the optimal
structure in Key Tree Model under the assumption that users in the group are
all deleted one by one. Their result shows that the optimal tree is a tree where
every internal node has degree at most 5 and the children of nodes which have
degree d # 3 are all leaves. [9] improved the result of [I] and showed that a bal-
anced tree where every subtree has nearly the same number of leaves can achieve
the optimal cost. They then investigate the optimal structure when the insertion
cost in the initial setup period is also considered and showed that the optimal
tree is a tree where every internal node has degree at most 7 and children of
nodes which have degree d # 2 and d # 3 are all leaves.

More related to this paper, Soneyink et al. [6] proved that any distribution
scheme has a worst-case cost of {2(logn) for deleting a user. They also found an
optimal structure when only one user is deleted from the tree. In this paper, we
further investigate the problem when two or more users are deleted from a tree.
We first prove a degree upper bound (k + 1)2 — 1 for the problem of deleting k
users. Then we give a tighter degree bound for the problem of deleting two users.
After that, we investigate the maximum number of leaves that can be placed on
the tree given a fixed worst case deletion cost. Based on this, we prove that a
balanced tree with certain root degree 5 < d < 7 where the number of leaves
in the subtrees differs by at most one and each subtree is a 2-3 tree can always
achieve the minimum worst case 2-deletion cost.

The rest of this paper is organized as follows. We review the key tree model in
Section 2 and then prove the degree bound of the optimal tree for the k-deletion
problem in Section 3. From Section E] on, we focus on the 2-deletion problem

Optimal Key Tree Structure for Deleting Two or More Leaves 79

and remove the possibility of root degree 2 and 3. In Section 5, we study the
maximum number of leaves that can be placed on a tree given a fixed deletion
cost and use the result to prove that the optimal tree for the 2-deletion problem
is a tree where each subtree of the root is a 2-3 tree and has the number of leaves
differed by at most 1. Finally, we conclude our work and propose a conjecture
on the optimal tree cost for the general k-deletion problem in Section 6.

2 Preliminaries

We first review the Key Tree Model [8] which is also referred to in the literature
as LKH(logical key hierarchy) [7].

In the Key Tree Model, there is a Group Controller maintaining a key tree for
the group. A leaf on the key tree represents a user and stores an individual key
that is only known by this user. An internal node stores a key that is shared by
all its leaf descendants. Thus a user always knows the keys stored in the path
from the leaf to the root. To guarantee content security, the GC encrypts the
content by the Traffic Encryption Key (TEK) which is stored in the root and
then broadcast it to the users. Only the authorized users knowing the TEK can
decrypt the content. When a user joins or leaves, the GC will update the keys
in a bottom-up fashion. As shown in Figure[I{a), there are 7 users in the group.
We take the deletion of user u4 as an example, since u4 knows k4, kg and kg,
the GC need to update the keys kg and k1p (the node that stores k4 disappears
because uy is already deleted from the group). GC will encrypt the new kg with
ks and broadcast it to notify us. Note that only ws can decrypt the message.
Then GC encrypts the new k1o with kg, k7, ks and the new kg respectively, and
then broadcast the encrypted messages to notify the users. Since all the users
and only the users in the group can decrypt one of these messages, the GC can
safely notify the users except user u4 about the new TEK. The deletion cost
measured as the number of encryptions is 5 in this example.

In the following, we say that a node u has degree d if it has d children in the
tree. Note that the worst case deletion cost of the tree shown in Figure [[[(a) is
6 where one of the users uy, uz, ug is deleted. In [6], the authors investigate the
optimal tree structure with n leaves where the worst case single deletion cost is
minimum. Their result shows that the optimal tree is a special kind of 2-3 tree
defined as follows.

Fig. 1. Two structures of a group with 7 users

80 W. Wu, M. Li, and E. Chen

Definition 1. In the whole paper, we use 2-3 tree to denote a tree with n leaves
constructed in the following way.

(1)When n > 5, the root degree is 3 and the number of leaves in three subtrees
of the root differs by at most 1. When n = 4, the tree is a complete binary tree.
When n = 2 orn = 3, the tree has root degree 2 and 3 respectively. When n =1,
the tree only consists of a root.

(2)Each subtree of the root is a 2-3 tree defined recursively.

In fact, [0] showed that 2-3 tree is a tree where the maximum ancestor weight
(summation of degrees of all ancestors of a node) of the leaves on the tree is
minimum among all the trees having the same number of leaves. As shown in
Figure[l(b), the optimal tree for a single deletion for a group with 7 users has a
worst case deletion cost 5.

In this paper, we study the scenario where two or more users leave the group
during a period and we update keys at the end of this period. There are two
versions of this problem to be considered here.

We denote the problem to find the optimal tree when k users are deleted as
pure k-deletion problem. For example, deleting two users u; and uy in Figure[Ii(a)
will incur cost 7 because we need to update ks and kg with 2 and 1 encryptions
respectively and then to update k19 with 4 encryptions. This is also the worst
case deletion. The objective is to find the optimal structure where the worst case
cost is minimum.

In popular applications, there is a fixed number of positions and new users are
always waiting to join. In such a scenario the number of joins and the number
of leaves during the period are the same, which means that the newly joined k
users will take the k positions which are vacant due to the leave of k users. In
this setting, when two users u; and uy4 are replaced on Figure[Il (a), the updating
cost is 9 which equals the summation of the ancestors’ degrees of these two leaves
where the common ancestors’ degrees are only computed once. We denote the
problem to find the optimal tree when k users are replaced as k-deletion problem.

We first define the k-deletion problem formally as follows.

Definition 2. Given atreeT, we denote the number of encryptions incurred by re-
placingui, , . .., u;,, withk newusersasCp(wiy, ..., u;),) = ZUG(UKK;C ANC(us,) dy

where ANC (u) is the set of u’s ancestor nodes and d, is v’s degree. We use k-
deletion cost to denote the maximum cost among all possible combinations and
write it as Cip(T,n) = max;, iy, i, C7(Wiy, Wiy, .., Uiy).

We further define an optimal tree T, i opt (abbreviated as T, opt if the context
is clear) for k-deletion problem as a tree which has the minimum k-deletion cost
over all trees with n leaves, i.e. Cx(Th,opt,n) = mjin Ci(T,n). We also denote

this optimal cost as OPTy(n). The k-deletion problem is to find the OPT(n)
and Tn,k,opt~

The pure k-deletion cost and the pure k-deletion problem are defined similarly
by using the cost incurred by permanently deleting the leaves instead of the cost
by updating the leaves (Some keys need not be updated if all its leaf descendants
are deleted and the number of encryptions needed to update that key is also

Optimal Key Tree Structure for Deleting Two or More Leaves 81

reduced if some branches of that node totally disappear after deletion). We will
show the relationship between these two problems in the following.

Definition 3. We say a node v is a pseudo-leaf node if its children are all leaves.
In the following two lemmas, we use t to denote the number of pseudo-leaf nodes
mn atree T'.

Lemma 1. Ift < k, then the pure k-deletion cost of T is at least n — k.

Proof. When t < k, we claim that in order to achieve pure k-deletion cost, we
need to delete at least one leaf from each pseudo-leaf node. Suppose on the
contrary there exists one pseudo-leaf node v where none of its children belongs
to the k leaves we delete. We divide the discussion into two cases.

First, if each of the k leaves is a child of the remaining ¢t — 1 pseudo-leaf nodes,
then there exists one pseudo-leaf node u with at least two children deleted. In
this case, a larger pure deletion cost can be achieved if we delete one child of v
while keeping one more child of u undeleted.

Second, if some of the k leaves are not from the remaining ¢ — 1 pseudo-leaf
nodes, then we assume wu is one of them whose parent is not a pseudo-leaf. Then
there exists one of u’s sibling w that contains at least one pseudo-leaf w’ (w’
can be w itself). If no children of w’ belong to the k leaves, then deleting a child
of w’ while keeping u undeleted incurs larger pure deletion cost. If at least one
child of w’ belongs to the k leaves, then deleting a child of v while keeping u
undeleted incurs larger pure deletion cost.

We see that in the worse case deletion, each pseudo-leaf node has at least
one child deleted, which implies that all the keys in the remaining n — k leaves
should be used once as the encryption key in the updating process. Hence the
pure k-deletion cost of T is at least n — k.

Lemma 2. Ift > k, then the pure k-deletion cost is Cy,(T,n) —k where Cy(T,n)
1s the k-deletion cost.

Proof. Using similar arguments as in the proof of Lemma [, we can prove that
when ¢ > k, the pure k-deletion cost can only be achieved when the k£ deleted
leaves are from k different pseudo-leaf nodes. Then it is easy to see that the pure
k-deletion cost is C(T,n) — k where Ci (T, n) is the k-deletion cost.

Theorem 1. When considering trees with n leaves, the optimal pure k-deletion
cost is OPTy(n) — k where OPTy(n) is the optimal k-deletion cost.

Proof. Note that in the tree where all n leaves have the same parent (denoted
as one-level tree), the pure k-deletion cost is n — k. By Lemma [any tree with
the number of pseudo-leaf nodes at most k has the pure k-deletion cost at least
n — k. Hence we only need to search the optimal tree among the one-level tree
and the trees with the number of pseudo-leaf nodes larger than k. Moreover,
in the one-level tree T, the pure k-deletion cost is n — k = Ci(T,n) — k where
Ck(T,n) is the k-deletion cost. Further by Lemmal[2] all the trees in the scope for
searching the optimal tree have pure k-deletion cost Cy (T, n) — k, which implies

82 W. Wu, M. Li, and E. Chen

that the optimal pure k-deletion cost is OPTy(n) — k where OPTj(n) is the
optimal k-deletion cost (The structure of the optimal trees in both problems are
also the same).

The above theorem implies that the optimal tree for the pure k-deletion problem
and the k-deletion problem are in fact the same. Therefore, we only focus on
the k-deletion problem in the following and when we use “deleting”, we in fact
mean “updating”.

3 Degree Bound for the k-Deletion Problem

In this section, we try to deduce the degree bound for the k-deletion problem. In
the following proofs, we will often choose a template tree T and then construct
a tree T” by deleting from T some leaves together with the exclusive part of leaf-
root paths of those leaves. Here, the exclusive part of a leaf-root path includes
those edges that are not on the leaf-root path of any of the remaining leaves. We
also say that T is a template tree of T’. By the definition of the k-deletion cost,
we have the following fact.

Fact 1. If T is a template tree of T', then the k-deletion cost of T’ is no larger
than that of T'.

Lemma 3. OPTy(n) is non-decreasing when n increases.

Proof. Suppose on the contrary OPTy(n1) > OPTg(ng) when n; < ng, then
there exist two trees T7 and T5 satisfying Ck(T1,n1) = OPTg(n1) and Ci (7%, no)
= OPTy(ng). We can take T» as a template tree and delete the leaves until the
number of leaves decreases to ni. The resulting tree T} satisfies Cy(17,n1) <
Ck (T2, n2) < OPTy(n1) by Fact[Il which contradicts the definition of O PTy(ny).
The lemma is then proved.

Lemma 4. T, .t has root degree upper bounded by (k + 1) — 1.

Proof. We divide the value of root degree d > (k + 1)? into two sets, {d|(k +
)2 <d< (k+t)k+t+1),d kit e Nt >1} and {d|(k+t—1)(k+1t) <
d < (k+1t)?2dkt € N,t > 2}. Take k = 2 for instance, the first set is
{9,10,11,16,17,18,19, 25, .. } while the other is {12, 13, 14, 15, 20, 21, 22,23, . . .}.

Case 1: (k+t)2<d< (k+t)(k+t+1)(t>1).

We write d as (k+t)% +7 where 0 < r < k+t. Given a tree T, we can transform
it into a tree with root degree k + t as Figure 2 shows. In the resulting tree 7",
subtrees Ty, ..., Ty, , are k+t subtrees where the root u1,. .., ur ¢ are on level
one. Among the k + ¢ subtrees, there are r subtrees with root degree k + ¢ + 1
and k 4+t — r subtrees with root degree k 4 t. Suppose that the k-deletion cost
of T" is incurred by deleting ki, ko, ..., ks users from subtree T;,,T,,...,T;,
respectively where k1 + ko + ... + ks = k and s < k. The corresponding cost
is Cp(T',n) = Z;Zl Cy, (T3, ,mi;) + Do where n;; is the number of leaves in T},
and Dy is the cost incurred in the first two levels.

Optimal Key Tree Structure for Deleting Two or More Leaves 83

T

L LT, TT

Fig. 2. Transformation of the tree which has root degree d = (k +t)* +r

In the original tree T, the corresponding cost for deleting those leaves is
Ok(T, n) = Zj‘:l Ck]. (Ti]. , TLZ]) + d= Zj‘:l ij (Ti]. s nij) + (k‘ + t)z + 7. We will
prove that when ¢t > 1 we always have Cy(T,n) > Cp(T",n), i.e. Dy < (k-+t)>+r.

Firstly, if » < k, the cost Dy is at most r(k +t+ 1)+ (k—r)(k+¢)+k+t
where there are r users coming from r subtrees with root degree k +¢ + 1 and
k — r users coming from k — r subtrees with root degree k + t. Therefore, we
have Do < (k+t+1)r+ (k+t)(k—r)+k+t=(k+t)(k+1)+r < (k+t)*+r.

Secondly, if r > k, the cost Dy is at most (k +t) + (k + t + 1)k where the
k users are all from k subtrees which have root degree k + t 4+ 1. Therefore, we
have Do < (k+t)+ (k+t+ Dk < (k+t)(k+1)+k < (k+1)? +r.

Hence, in both situations, the condition ¢ > 1 ensures that the transformation
from T to T does not increase the k-deletion cost.

Case 2 can be proved similarly.

Lemma M suggests that we can find an optimal tree for k-deletion cost among
trees whose root degree is at most (k +)2 — 1. Note that our degree bound in
Lemma M is only for the root. We can also extend this property to all the internal
nodes (proof is also omitted).

Lemma 5. Any internal node in T), opt has degree upper bounded by (k+ 1)2 —1.

4 Degree Bound for 2-Deletion Problem

From this section on, we focus on the 2-deletion problem.

Definition 4. We denote the maximum cost to delete a single leaf in a tree T
as St and the mazimum cost to delete two leaves as Dr, i.e. Sp = C(T,1) and
Dy =C(T,2).

According to Lemma [[] for 2-deletion, T, op: has degree upper bounded by 8.
Furthermore, in a tree T' with root degree 1, the two deleted users in any com-
bination are from the only subtree 7. Therefore, the tree T3 is better than T
because the 2-deletion cost of T is one less than that of T. Thus we need not
consider root degree d = 1 when we are searching for the optimal tree.

Fact 2. For 2-deletion problem, suppose that a tree T' has root degree d where
d > 2 and the d subtrees are T1,Ts,...,Ty. We have

Dr = max {DTi +d, STi + ST]- + d}.
1<4,5<d

84 W. Wu, M. Li, and E. Chen

Proof. We know that deleting any two leaves from a subtree T; will incur a cost
at most D, 4 d, while deleting two leaves from two different subtrees T; and T}
will incur a cost at most Sz, + St; + d. The 2-deletion cost comes from one of
the above cases and therefore the fact holds.

We can further remove the possibility of degree 8 by the following lemma.

Lemma 6. For 2-deletion problem, we can find an optimal tree among the trees
with node degrees bounded between 2 and 7.

In the following, we show two important properties of the optimal tree (monotone
property and 2-3 tree property) and then further remove the possibility of root
degree 2 and 3 to reduce the scope of trees within which we search for the optimal
tree. Due to space limit, most of the proofs are omitted in this version.

Lemma 7. (monotone property) For 2-deletion problem, suppose a tree T has root
degree d where d > 2 and d subtrees are Ty, Ts, ..., T4. Without loss of general-
ity, we assume that T' has a non-increasing leaf descendant vector (ny,na, ..., nq),
where n; is the number of leaves in subtree T;. Then, there exists an optimal tree
where Sy > S, > ... > S1, and T; is a template of Ti1q for2 <i<d-—1.

Fact 3. For trees satisfying Lemma[7, we have
Dy = InaX{l)T1 +d, ST1 + ST2 + d}

Proof. By Fact 2l we have Dr = maxi<; j<a{Dr, +d, St, + S1; + d}. Lemma 7l
further ensures that maxi<; j<a{Dr, +d, St, + S1; +d} = max{Dr, +d, Dp, +
d,St, + St, + d} Since D, < 257, < Sty + St,, we have Dy = max{DTl +
d,St, + St, + d}.

In the following, we further reduce the scope for searching the optimal tree by
proving the following lemma.

Lemma 8. (2-3 tree property) For a tree T satisfying Lemma[7, we can trans-
form subtrees Ty, ..., Ty into 2-3 trees without increasing the 2-deletion cost.

Proof. Given a tree T satisfying Lemma [[] and Fact Bl we transform subtrees
T5,Ts,...,Ty into 2-3 trees T5,T5,..., T to get a new tree T'. For 2 < i < d,
since St; = OPT1(n;), we have Sp, < ... < Spy < Sy < S7, (Lemma [3)) and
DT’ < QSTI < QST/ < St + ST' (2 <1 < d) Thu& DT/ = HlaX{l)T1 +d, DT/

d, STl + ST/ + d} < max{Dr, +d,St, + St, + d} = Dp, which implies the
transformatlon does not increase 2-deletion cost. The lemma is then proved.

We denote the trees satisfying Lemmal[8 as candidate-trees. By Lemma] we can
find an optimal tree among all the candidate trees. For a candidate tree T" with
root degree d, we define branch B; to be the union of 7T; and the edge connecting
the root of T' with the root of T;. We say the branch B is the dominating branch
and other branches By, ... By are ordinary branches. We then prove the following
theorem to further remove the possibility of root degree 2 and 3 in the optimal
tree (details are omitted in this version).

Theorem 2. For 2-deletion problem, a tree T with root degree 2 or 3 can be
transformed into a tree with root degree 4 without increasing the 2-deletion cost.

Optimal Key Tree Structure for Deleting Two or More Leaves 85

5 Optimal Structure of 2-Deletion Problem

Although we have removed the possibility of the root degree 2 and 3 in Section (]
and have fixed the structure of the ordinary branches, we still do not have an
effective algorithm to exactly compute the optimal structure because we need to
enumerate all the possible structures of the dominating branch. In this section,
we will prove that among the candidate trees with n leaves, a balanced structure
can achieve 2-deletion cost OPT5(n). The basic idea is to first investigate the
capacity g(R) for candidate trees with 2-deletion cost R (Theorem [B]). Note that
the optimal tree has the minimum 2-deletion cost with n leaves, which reversely
implies that if we want to find a tree with 2-deletion cost R and at the same
time has the maximum possible number of leaves, then computing the optimal
tree for increasing n until OPT»(n) > R will produce one such solution. We
then analyze and calculate the exact value for the capacity (maximum number
of leaves) given a fixed 2-deletion cost R (Theorem [). Finally, we prove that
certain balanced structure can always be the optimal structure that minimizes
the 2-deletion cost (Theorem [).

Definition 5. We use capacity to denote the mazrimum number of leaves that
can be placed in a certain type of trees given a fized deletion cost. According to
[6], function f(r) defined below is the capacity for 1-deletion cost r (among all
the possible trees). We use function g(R) to denote the capacity for 2-deletion
cost R (among all the possible trees). In other words, when g(R—1) < n < g(R),
we have OPTy(n) = R.

3-3°1 if r=3;
firy=¢4-371 if r=3i+1
6-371 if r=3i+2

To facilitate the discussion, according to Fact [3] we can divide the candidate
trees with 2-deletion cost R and root degree d into two categories as summarized
in the following definition.

Definition 6. Candidate trees of category 1: The two leaves whose deletion cost
achieves 2-deletion cost are from different branches, i.e. D = St, + St, + d,
which implies S, + St, > Dy .

Candidate trees of category 2: The two leaves whose deletion cost achieves
2-deletion cost are both from the dominating branch Bi, i.e. Dy = Dy, +d,
which implies St, + St, < D, .

Correspondingly, we denote the capacity of the candidate trees belonging to cat-
egory 1 with 2-deletion cost R as g1(R) and denote the capacity of the candidate
trees belonging to category 2 with 2-deletion cost R as go(R). Note that we can
find the optimal tree among the candidate trees according to Lemma [which
implies that with the same 2-deletion cost R, the best candidate tree can always
have equal or larger number of leaves than the general trees. That is, we have
g(R) = max{g1(R), g2(R)}. Thus in the following discussions, we only focus on

86 W. Wu, M. Li, and E. Chen

the candidate trees. On the other hand, because we are finding trees with the
maximum number of leaves, it is easy to see that we can assume the number of
leaves in ordinary branches are all the same (Otherwise, we can make the tree
bigger without affecting the 2-deletion cost).

In all candidate trees with 2-deletion cost R, by Fact [Bl we only need to
consider the case where at most one of the two leaves whose deletion cost achieves
2-deletion cost are from the ordinary branches. Suppose each ordinary branch
has 1-deletion cost r—, and correspondingly 77 has 1-deletion cost r™ where
rt¥ < R—d—r~ (otherwise we have Dy > r* +r~ +d > R, a contradiction).
For fixed cost R, Lemma [1 (monotonous property) implies that r* > r=. We
first prove the following capacity bound (details are omitted in this version).

Theorem 3. We have g;(R) < (R—2r")- f(r7)(i =1,2).

In the following theorem, among these candidate trees we study the optimal
structure which achieves the maximum capacity for different values of R.

Theorem 4. For 2-deletion cost R, the maximum capacity is

6-371 i R=6i

7-3-1 if R=6i+1

) 8.3l if R=6i+2
9(R) = 1. 3i-1 if R=6i+3
12.3-1 f R=6i+4
15-3-1 f R=6i+5

After we have obtained the capacity for the 2-deletion cost R, we finally prove
that among the candidate trees with n leaves, the optimal cost can be achieved
by some balanced structure as shown below.

Definition 7. We use the balanced tree to denote a tree with root degree d where
each subtree is 2-83 tree and has number of leaves differed by at most 1.

Theorem 5. Among trees with n leaves,

(1)when n € (15 - 371,18 - 3'Y], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+6.

(2)when n € (12 - 377115 - 371, the optimal tree is a balanced tree which has
root degree 5 and 2-deletion cost 6i+5.

(3)when n € (10 - 37112 - 3°=1], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+4.

(4)when n € (8-3771,10-371], the optimal tree is a balanced tree which has root
degree 5 and 2-deletion cost 6i+3.

(5)when n € (7-31=1 83171, the optimal tree is a balanced tree which has root
degree 6 and 2-deletion cost 6i+2.

(6)when n € (6-31=1 7.3, the optimal tree is a balanced tree which has root
degree 7 and 2-deletion cost 6i+1.

Optimal Key Tree Structure for Deleting Two or More Leaves 87

Proof. When n € (15- 371,18 - 3"71], we have OPTy(n) = 6i + 6. We will prove
that the balanced tree with root degree 6 can always achieve this optimal cost.
In the balanced tree, each subtree T; (1 < j < 6) has the number of leaves
n; = f’“g“} € [[5-371],3-37!. By function f(-), we have Sy, < 3i. Thus
any two leaves from the tree will incur a deletion cost at most 2-3i +6 = 6i + 6.

When n € (12-3°1,15 - 37! we have OPTy(n) = 6i + 5. Then we will prove
that the balanced tree with root degree 5 can always achieve the optimal cost.
In the balanced tree, each subtree T; (1 < j < 5) has the number of leaves
n; = f"_gH} € [[?-371],3-31]. By function f(-), we have Sz, < 3i. Thus
any two leaves from the tree will incur a deletion cost at most 2-3i +5 = 6i + 5.

When n € (10-371,12- 37" we have OPTy(n) = 6i +4 and n; = [" 1] €
[[5 31,2371 By function f(-), we have Sz, < 3i — 1. Thus any two leaves
from the tree will incur a deletion cost at most 2+ (3i — 1) +6 = 6i 4.

When n € (8-3"1,10-3"!], we have OPTy(n) = 6i+3 and n; = ["I "] €
[[2-3771],2-3""!]. By function f(-), we have S7, < 3i — 1. Thus any two leaves
from the tree will incur a deletion cost at most 2+ (3i — 1) +5 =67+ 3.

When n € (7-371,8- 371, we have OPTy(n) = 6i + 2 and n; = ["}g“} €
[L§-371], 5 -3""1]. By function f(:), we have S, < 3i — 2. Thus any two leaves
from the tree will incur a deletion cost at most 2 - (31 — 2) + 6 = 6i + 2.

When n € (631,731, we have OPTy(n) = 6i + 1. The balanced tree
with root degree 7 where n; = f"_$+11 € [|5-3771],371] can always achieve
the optimal cost. By function f(-), we have Sy, < 3i — 3. Thus any two leaves
from the tree will incur a deletion cost at most 2 - (31 — 3) + 7 = 6i + 1.

Note that in some cases a balanced tree with degree 4 can also be an optimal
tree, but it is not necessary to consider this possibility because we do not need
to find all the possible structures of an optimal tree with n leaves.

Finally we have fixed the structure of the dominating branch and obtained the
optimal tree structure for the 2-deletion problem. We conjecture the general
result for the k-deletion problem in the next section.

6 Conclusion

In this paper, we study the optimal structure for the key tree problem. We
consider the scenario where two or more users are deleted from the key tree and
aim to find an optimal tree in this situation. We first prove a degree upper bound
(k+1)2 —1 for the k-deletion problem. Then we focus on the 2-deletion problem
by firstly removing the possibility of root degree 2 and 3 to reduce the scope
for searching the optimal tree. Then, we investigate the capacity of the key tree.
Based on this, we prove that the optimal tree for the 2-deletion problem is a
balanced tree with certain root degree 5 < d < 7 where the number of leaves in
each subtree differs by at most 1 and each subtree is a 2-3 tree.

The capacity f(-) where k = 1 and g(-) where k = 2 stimulates us to conjecture
the general form of capacity G (R) which denotes the maximum number of leaves
that can be placed in a tree given the k-deletion cost R in the k-deletion problem.
Based on the form of f(-) and g(-), we conjecture the capacity Gi(R) to be of

88 W. Wu, M. Li, and E. Chen

the form shown in Equation (). Furthermore, if the conjecture is proved to be
correct, it is also possible to obtain the optimal structure in a similar way as in
the proof of Theorem [El

(3k + a) - 3071 if R=3k-it+a,acl0k)
GuR) = (k+20a—k) 3" if R=3k-itaack2k) (1)
(6k +3(a—2K)) -3~ if R=3k-i+a,a€ 2k 3k)

One of the possible future work is therefore to investigate the capacity and
optimal structure for the general k-deletion problem. We believe that the concept
of capacity will also be very important to this problem.

References

1. Chen, Z.Z., Feng, Z., Li, M., Yao, F.F.: Optimizing Deletion Cost for Secure Mul-
ticast Key Management. Theoretical Computer Science 401, 52-61 (2008)

2. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient Tree-Based Revocation in
Groups of Low-State Devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, pp. 511-527. Springer, Heidelberg (2004)

3. Graham, R.L., Li, M., Yao, F.F.: Optimal Tree Structures for Group Key Manage-
ment with Batch Updates. STAM Journal on Discrete Mathematics 21(2), 532-547
(2007)

4. Li, M., Feng, Z., Graham, R.L., Yao, F.F.: Approximately Optimal Trees for Group
Key Management with Batch Updates. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.)
TAMC 2007. LNCS, vol. 4484, pp. 284-295. Springer, Heidelberg (2007)

5. Li, X.S., Yang, Y.R., Gouda, M.G., Lam, S.S.: Batch Re-keying for Secure Group
Communications. In: Proceedings of the Tenth International Conference on World
Wide Web, pp. 525-534 (2001)

6. Snoeyink, J., Suri, S., Varghese, G.: A lower bound for multicast key distribution.
In: Proceedings of the Twentieth Annual IEEE Conference on Computer Commu-
nications, pp. 422-431 (2001)

7. Wallner, D., Harder, E., Agee, R.C.: Key Management for Multicast: Issues and
Architectures, RFC 2627 (June 1999)

8. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure Group Communications Using Key
Graphs. IEEE/ACM Transactions on Networking 8(1), 16-30 (2003)

9. Wu, W., Li, M., Chen, E.: Optimal Tree Structures for Group Key Tree Manage-
ment Considering Insertion and Deletion Cost. In: Proceedings of the 14th Annual
International Computing and Combinatorics Conference, pp. 521-530 (2008)

10. Zhu, F.,; Chan, A., Noubir, G.: Optimal Tree Structure for Key Management of
Simultaneous Join/Leave in Secure Multicast. In: Proceedings of Military Commu-
nications Conference, pp. 773-778 (2003)

Comparing First-Fit and Next-Fit for Online
Edge Coloring

Martin R. Ehmsen!*, Lene M. Favrholdt!*, Jens S. Kohrt!*,
and Rodica Mihai?

! Department of Mathematics and Computer Science,
University of Southern Denmark
{ehmsen, lenem,svalle}@imada.sdu.dk
2 Department of Informatics, University of Bergen
rodica.mihai@ii.uib.no

Abstract. We study the performance of the algorithms First-Fit and
Next-Fit for two online edge coloring problems. In the min-coloring prob-
lem, all edges must be colored using as few colors as possible. In the
max-coloring problem, a fixed number of colors is given, and as many
edges as possible should be colored. Previous analysis using the compet-
itive ratio has not separated the performance of First-Fit and Next-Fit,
but intuition suggests that First-Fit should be better than Next-Fit. We
compare First-Fit and Next-Fit using the relative worst order ratio, and
show that First-Fit is better than Next-Fit for the min-coloring prob-
lem. For the max-coloring problem, we show that First-Fit and Next-Fit
are not strictly comparable, i.e., there are graphs for which First-Fit is
better than Next-Fit and graphs where Next-Fit is slightly better than
First-Fit.

1 Introduction

In edge coloring, the edges of a graph must be colored such that no two adjacent
edges receive the same color. This paper studies two variants of online edge
coloring, min-coloring and max-coloring. For both problems, the algorithm is
given the edges of a graph one by one, each one specified by its endpoints.

In the min-coloring problem, each edge must be colored before the next edge
is received, and once an edge has been colored, its color cannot be changed. The
aim is to color all edges using as few colors as possible.

For the mazx-coloring problem, a limited number k of colors is given. Each
edge must be either colored or rejected before the next edge arrives. Once an
edge has been colored, its color cannot be changed and it cannot be rejected.
Similarly, once an edge has been rejected, it cannot be colored. In this problem,
the aim is to color as many edges as possible.

For both problems we study the following two algorithms. First-Fit is the
natural greedy algorithm which colors each edge using the lowest possible color.

* Supported in part by the Danish Agency for Science, Technology and Innovation
(FNU).

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 89 2008.
© Springer-Verlag Berlin Heidelberg 2008

90 M.R. Ehmsen et al.

Next-Fit uses the colors in a cyclic order. It colors the first edge with the color 1
and keeps track of the last used color ¢just. For the max-coloring problem, when
coloring an edge (u,v), it uses the first color in the sequence {(ciast + 1, Clast +
2,...,k, 1,2, ..., clast) that is not yet used on any edge incident to u or v. For
the min-coloring problem it only cycles through the set of colors that it has been
forced to use so far.

Both algorithms are members of more general families of algorithms. For the
max-coloring problem, we define the class of fair algorithms that never reject
an edge, unless all k colors are already represented at adjacent edges. For the
min-coloring problem, we define the class of parsimonious algorithms that do
not take a new color into use, unless necessary.

The min-problem has previously been studied in [I], where the main result
implies that all parsimonious algorithms have the same competitive ratio of
approximately 2.

The max-problem was studied in [8]. For k-colorable graphs, First-Fit and
Next-Fit have very similar competitive ratios of 1/2 and k/(2k — 1). For general
graphs, there is an upper bound on the competitive ratio of First-Fit of 3(\/10 -
1) ~ 0.48, and the competitive ratio of Next-Fit exactly matches the general
lower bound for fair algorithms of 2v/3 — 3 ~ 0.46. No fair algorithm can be
better than 0.5-competitive, so the competitive ratio cannot vary much between
fair algorithms. Moreover, there is a general upper bound (even for randomized
algorithms) of 4/7 ~ 0.57.

General intuition suggests that First-Fit should be better than Next-Fit, and
thus comes the motivation to study the performance of the two algorithms using
some other measure than the competitive ratio. There are previous problems,
such as paging [B3], bin packing [4], scheduling [7], and seat reservation [6] where
the relative worst-order ratio was successfully applied and separated algorithms
that the competitive ratio could not. The relative worst-order ratio is a quality
measure that compares two online algorithms directly, without an indirect com-
parison via an optimal offline algorithm. Thus, the relative worst-order ratio in
many cases give more detailed information than the competitive ratio.

For the min-problem, we prove that the two algorithms are comparable, and
First-Fit is 1.5 times better than Next-Fit. For the max-problem, surprisingly,
we conclude that First-Fit and Next-Fit are not comparable using the relative
worst-order ratio.

2 Quality Measures

The standard quality measure for online algorithms is the competitive ratio.
Roughly speaking, the competitive ratio of an online algorithm A is the worst-
case ratio of the performance of A to the performance of an optimal offline
algorithm over all possible request sequences [14J10].

In this paper, we use the competitive ratio only for the min-coloring prob-
lem. For that problem, the measure is defined in the following way. Let A be

Comparing First-Fit and Next-Fit for Online Edge Coloring 91

an edge coloring algorithm and let E be a sequence of edges. Then, A(F) denotes
the number of colors used by A. OPT denotes an optimal offline. The competitive
ratio of algorithm A is

CR4 =inf{c|3: VE: A(E) <c-OPT(FE) + b}

The relative worst-order ratio was first introduced in [4] in an effort to com-
bine the desirable properties of the max/max ratio [2] and the random-order
ratio [II]. The measure was later refined in [5]. We describe the measure using
the terminology of the coloring problems. Let E be a sequence of n edges. If o
is a permutation on n elements, then o(E) denotes FE permuted by o.

For the max-coloring problem, A(FE) is the number of edges colored by algo-
rithm A, and

Aw(E) = min{A(o(E))}.

For the min-coloring problem, A(F) is the number of colors used by A, and

Aw(E) = max{A(o(E))}.

Thus, in both cases, Aw (E) is the performance of A on a worst possible permu-
tation of F.

Definition 1. For any pair of algorithms A and B, we define

cu(A,B) = inf{c|3b: VE: Aw(E) < cBw(E)+ b} and
ci(A,B) = sup{c|3b: VE: Aw(FE) > cBw(E) — b}.

If ci(A,B) > 1 or cu(A, B) < 1, the algorithms are said to be comparable and
the relative worst-order ratio WR 4 g of algorithm A to algorithm B is defined.
Otherwise, WR 4 g is undefined.

If c,(A,B) <1, then WRy4 p = ¢)(A, B), and
if ci(A,B) > 1, then WR4 g = ¢, (A, B).
Intuitively, ¢; and ¢, can be thought of as tight lower and upper bounds, respec-

tively, on the performance of A relative to B.

3 Min-coloring Problem

We first study the min-coloring problem, where all edges of a graph must be col-
ored using as few colors as possible. The first result is an immediate consequence
of a result in [1].

Theorem 1. Any parsimonious algorithm has a competitive ratio of 2 — 1/A,
where A is the maximum vertex degree.

92 M.R. Ehmsen et al.

Proof. In [II, it is proven that, for any online algorithm A, there is a graph
G with maximum vertex degree A, such that G can be A-colored, but A uses
2A —1 colors. On the other hand, since no edge is adjacent to more than 2A — 2
other edges, no parsimonious algorithm will use more than 2A — 1 colors. a

Thus, the competitive ratio does not distinguish First-Fit and Next-Fit. How-
ever, with the relative worst-order ratio, we get the result that First-Fit is better
than Next-Fit:

Theorem 2. The relative worst-order ratio of Next-Fit to First-Fit is at least g
The theorem follows directly from Lemmas [Il and [2] below.
Lemma 1. Given any graph G with edges E, NFw (F) > FFw(E).

Proof. For any First-Fit coloring, we construct an ordering of the edges so that
Next-Fit does the same coloring as First-Fit. Assume that First-Fit uses k colors
and let C; denote the set of edges that First-Fit colors with color i. The ordering
of the edges given to Next-Fit consists of all the edges from Cj, then from Cs
and further till Cy. The edges in each set is given in an arbitrary order. By the
First-Fit policy, each edge in C; is adjacent to edges of C,...,C;—_1. Thus, since
Next-Fit only cycles through the colors that it used so far, it will color the edges
the same way as First-Fit. This means that, for any First-Fit coloring, we can
construct an ordering of the edges such that Next-Fit uses the same number of
colors. The result follows. O

Lemma 2. There exists a graph with edges E such that NFw(E) > 3 FFw(E).

Proof. For any even k, consider the graph S consisting of k/2+2 stars Sy, Sy, .. .,
Si/2 and Scenter as depicted in Figure[ll The center vertices of Si,. .., S/, have

k//
/
ol

Fig. 1. The graph S used in the proof of Lemma

Comparing First-Fit and Next-Fit for Online Edge Coloring 93

degree k/2+ 1, and the centers of Sy and Sgenter have degree k. Edges for which
one end-vertex has degree one are called outer edges. The remaining edges are
called inner edges.

It is not difficult to see that, for any ordering of the edges, First-Fit uses
exactly k colors: At most one outer edge in each star S;, i = 1,...,k/2, is
colored with a color larger than k/2, and if this happens, the edge connecting
S; t0 Scenter has already been colored.

Next-Fit will use 3k/2 colors, if the edges are given in the following order:
First the edges of Sy, forcing Next-Fit to use the first k& colors. Then the outer
edges of S followed by the outer edges of Scenter- Then the inner edge of S,
which is colored with the color k + 1. Finally, for ¢ = 2,...,k/2, the outer edges
of S; followed by the inner edge of S;, which is colored with the color &+ ¢. This
way, the inner edges will be colored with k +1,...,3k/2. O

4 Max-coloring Problem

In this section, we study the max-coloring problem, where a limited number &
of colors are given, and as many edges as possible should be colored. We first
describe a bipartite graph with edges E, such that FFw(E) > 9/8 - NFw(E).
Then, we describe a family of graphs with edge set F,, such that NFw(FE,) =
(14 £2(,5)) - FFw(E,). Thus, the two algorithms are not comparable.

4.1 First-Fit Can Be Better Than Next-Fit

Let Brr = (X,Y, E) be a complete bipartite graph with |X| = |Y| = k. For
simplicity, we assume that 4 divides k. For other values of k, we get similar
results, but the calculations are a bit more messy. We denote by C; the edges
that First-Fit colors with color .

Proposition 1. In any First-Fit coloring of Bk, |Ci| > k—i+1,i=1,....k.

Proof. Assume that color 7 has been used j < k —1i times. The induced subgraph
containing all vertices not adjacent to an edge colored with color 7 is the complete
bipartite graph Bj_j x—;, where k— 7 > 7. This subgraph cannot be colored with
the colors 1,...,7 — 1 only, and since this is a First-Fit coloring, the color i is
going to be used. Thus, at least one more edge will be colored with color i. O

Proposition 2. If First-Fit colors at most 196 k% edges of By, then

7k?

Gl 2 60k —1— 4"

=1,...,k.
Proof. If First-Fit colors at most 9k2/16 edges, then it rejects at least 7k%/16
edges. Each rejected edge is adjacent to at least one edge of each color i =

1,..., k. Each edge colored with color i has 2k — 2 neighbor edges. Among those,
at least ¢ — 1 edges are already colored, since each edge colored with i is adjacent

94 M.R. Ehmsen et al.

to all lower colors 1,2,..,% — 1. Thus, at most 2k — 1 — ¢ edges can be rejected
for each edge colored with i. Hence, for First-Fit to reject 7k?/16 edges, it has
to use color i at least 7k%/(16(2k — 1 —4)) times. 0

Lemma 3. Given any ordering of the edges of By, i, First-Fit colors more than
196 k? edges.

Proof. The number of edges colored by First-Fit is Zf:l |C;|. We assume for the
sake of contradiction that First-Fit colors at most 9%2/16 edges of By, j. Using
Propositions [l and 2] we get,

k 3k/4 k 7k2
0> S kit .
2 Gl = 3 (k—i+)+ 2 16(2k — 1 —4)
i=1 1=1 1:3k/4+1
k 5k/4—2
B T, 1
- D, it ok ,Z i
i=k/4+1 i=k—1
15, 7 o (k+k/4—2\ 15, 7 ,
1 In(1+1/4
S LT n(k-2 3o T gk L+ 1/
15 7,3 9
k_2 k_2 — k_2
Z 32" T 14 T 16"

9k?

which is a contradiction. Thus, First-Fit colors more than

edges. a

Lemma 4. Given the worst ordering of the edges of By, Next-Fit colors at
most k2 /2 edges.

Proof. We partition the vertex sets X, Y into equal-sized sets X1, Xs, Y7, Y5. The
induced subgraphs H; and Hs with vertex sets X1,Y7 and Xs, Y5, respectively,
are complete bipartite graphs. We give the edges of H; and Hs alternately such
that Next-Fit colors the edges of H; using colors 1,2,...,k/2 and the edges of
Hy with colors k/2 + 1,..., k. After that, Next-Fit cannot color any of the k%/2
edges between H; and Hs. Thus, Next-Fit colors at most k2/2 edges of By ;. O

Combining Lemmas Bl and [l we arrive at:

Corollary 1. Given the graph By = (X,Y,E), FFw(E) > § NFw(E).

4.2 Next-Fit Can Be Slightly Better Than First-Fit

In this section, we prove that there exists a family of graphs where Next-Fit is
1+ £2(,5) times better than First-Fit. We first define the building blocks of the
graph family.

Definition 2. For any given number k > 25 of colors, a superstar S is a graph
consisting of an inner star with k edges, each incident to the center of an outer
star with k — 2 edges of its own.

Comparing First-Fit and Next-Fit for Online Edge Coloring 95

Fig. 2. Two superstars, for k = 25, connected through a link of five outer stars

A superstar graph is a graph consisting of superstars. FEach pair of superstars
in the graph may share a number of outer stars. The set of outer stars shared by
a pair of superstars is called the link between them. All outer stars are contained
in a link. Each link contains at least five outer stars, and each superstar has
links to between five and seven other superstars. See Figure[d for an incomplete
example.

Clearly, fair algorithms never reject outer star edges. However, if all outer stars
are colored using the same k& — 2 colors, at least k — 2 edges of each inner star
will be rejected. This leads to the following lemma.

Lemma 5. Let G, 1 be a superstar graph with n superstars. Then, on its worst
ordering of the edges, First-Fit rejects at least n(k — 2) edges.

What remains to be shown is that there exists a family G, » of superstar graphs,
such that on a worst ordering of the edges of G, i, Next-Fit rejects only n(k —
2) — 2(n) edges.

Proposition 3. Consider a superstar graph G colored by a fair algorithm. Any
superstar in G has at most k — 1 edges rejected. If some superstar S in G has
k —1 edges rejected, then each of its neighbor superstars has at most k — 4 edges
rejected.

Proof. Clearly, outer star edges are not rejected, so we only need to consider the
inner star edges. At least one inner star edge will be colored in each superstar,
since each inner star edge is only adjacent to k — 1 edges that are not inner star
edges in the same superstar. Thus, at most k — 1 edges are rejected from any
superstar in the graph.

Assume that some superstar S has k — 1 inner star edges rejected. Each of
these edges must be adjacent to k colored edges. However, at most & — 1 of

96 M.R. Ehmsen et al.

these colored neighbor edges belong to S (k — 2 from the outer star, and the one
colored inner edge of S). Hence, the kth colored neighbor edge must be an inner
star edge in a neighboring superstar. Since each link contains at least five inner
edges of S and at most one of them is colored, this completes the proof. O

By Proposition[3l any pair of neighboring superstars have at most 2k —4 rejected
edges in total. A pair of neighboring superstars with 2k — 4 rejected edges in
total is called a bad pair. Note that in a bad pair, exactly k —2 edges are rejected
in each superstar. A pair of neighboring superstars with at most 2k — 5 rejected
edges in total is called a good pair. A superstar contained only in bad pairs is
called a bad superstar. A superstar contained in at least one good pair is called
a good superstar.

Counting the good superstars, the extra colored edge from a good pair is
counted at most eight times: once for the superstar S containing it and once
for each of the at most seven neighbors of S. Thus, the following lemma follows
directly from Proposition [3

Lemma 6. Consider a fair coloring of a superstar graph with n superstars. If
m

there are m good superstars, then at most n(k —2) — ¢ edges are rejected.
Thus, we just need to show that we can connect our building blocks, the super-
stars, such that, for any Next-Fit coloring, there will be {2(n) good superstars.
Such a construction is described in the proof of Lemmal[8l The proof of Lemma [§
uses Proposition @ and Lemma [7] below.

The magority coloring of a superstar is the set of colors used on the majority
of its outer stars, breaking ties arbitrarily. An outer star is isolated, if it is not
adjacent to at least one colored inner star edge.

Proposition 4. If two neighboring superstars have different majority colorings,
one of them is a good superstar.

Proof. We prove the proposition by contraposition. Assume that two superstars
S and S’ are both bad superstars. Then, by Proposition Bl S, S’, and their
neighbors each have exactly k — 2 edges rejected. Let ¢; and ¢ be the two colors
used on inner star edges in S.

If S has m neighbors, the outer stars of S are adjacent to at most 2m + 2
colored inner star edges. Thus S has at least k — 2m — 2 isolated outer stars.
Each of these outer stars must be colored with the k — 2 colors different from
c1 and co. Hence, the isolated outer stars in S are colored the same, and since
m > 5 and k > 5m that coloring is the majority coloring of S. The same is true
for S’. Since S and S’ have exactly two colored edges and there are at least five
edges in the link between them, they share at least one isolated outer star. This
means that S and S’ have the same majority coloring. O

Lemma 7. Assume that k > 101. Consider a Next-Fit coloring of a superstar
graph G, i, n > 6. Among the bad superstars, there are at most gn superstars
with the same majority coloring.

Comparing First-Fit and Next-Fit for Online Edge Coloring 97

Proof. Any subgraph of G,, ;, containing x superstars has at least xg outer stars.
Thus, in any subgraph H of G,, , consisting of = bad superstars with the same
majority coloring M, there are at least 7' = z (5 — 8) isolated outer stars
colored with M. Each time Next-Fit has used the colors in M once, the two
colors c¢1,c2 ¢ M must be used once, before it will use the colors in M on
isolated outer stars again. Thus, an upper bound on the number of times ¢; and
c are used in Gy, ; gives an upper bound on z.

Clearly, ¢; and ¢y are each used at most once on inner star edges in each
superstar. Inside H, ¢; and ce are not used on isolated outer stars. Thus, since
each bad superstar has at least k — 16 isolated outer stars, ¢; and co are used at
most 17z times on superstars in H.

Outside H, ¢; and c2 can each be used at most once per outer star, since using
¢1 (¢2) on an inner star edge would prohibit the algorithm from using ¢; (¢2) on the
adjacent outer star. Hence, since each superstar outside H share each outer star
with another superstar, the superstars outside H can only contribute (n — x) ’5
Thus, to create x bad superstars with majority coloring M, we must have

k k
— — < — .
x(2 8) 1 < 17z +(n m)2

Solving for x, we obtain x < gm since k > 101 and n > 6. O

Lemma 8. For k > 101, there exists a family of superstar graphs G, where
any Next-Fit coloring results in 2(n) good superstars.

Proof. We use a result from expander graphs [129]. Using the notation from [13],
for any positive integer m, there exists an (n = 2m?,7, 2’2‘/3>—expander7 ie., a
7-regular bipartite multigraph G(X UY, E) with |X| = |Y| = ¥, such that for

27
any S C X
2—+/3 219
> _
0(8)] 2 <1+) (1 ;)) 1.

where I'(S) is the set of edges between S and S. The result also holds for any
S C Y. The graph contains parallel edges, but each vertex has at least five
neighbors. Replacing each set of parallel edges by one edge, we obtain a simple
graph with the same I'-function.

Now, we connect the superstars as in the simple expander graph. For any
suitable n, let each vertex in the expander graph correspond to a superstar.
Each edge in the expander graph corresponds to a link between the corresponding
superstars. Thus, we obtain a superstar graph where each superstar has links to
5 to 7 other superstars.

Consider any Next-Fit coloring of this graph with n superstars. If there are
at least })n good superstars, the result follows immediately. Thus, we consider
the case where there are at least gn bad superstars. By Lemma [, no majority
coloring occurs on more than gn bad superstars. Among the bad superstars,
let S be the superstars with the most frequently occurring majority coloring. If

98 M.R. Ehmsen et al.

|S| < in, add the bad superstars with the most frequently occurring majority
coloring among the superstars not in S. Continue doing this until S reaches a
size between })n and gn This is possible, since we consider the case where there
are at least gn bad superstars.

Define Sx = SN X (similarly for Sy), and assume without loss of generality
that [Sx| > |Sy|. Note that |[Sx| > }|S| > jn. We can bound the size of I'(S)

from below by the following
IL(S)] = [I'(Sx)| = |Sy|
23 [2IS
A () [ERENE e)

We now have two cases depending on the size of Sx.

— n < |Sx| < jn. Since [Sx |+ [Sy| < 3n, we must have |Sy| < 2 n. Thus,
inequality () immediately yields a lower bound of 152n - 132n = én, since

- 2|8 . .
2 2‘/3 12 XI) is nonnegative.
n

— |Sx| < [,n. Since |Sx| — [Sy| > 0, inequality () gives a lower bound of

(2_2\/3> (13|SX‘ 2 2?4\23”'

Hence, in the coloring done by Next-Fit, we in both cases have {2(n) links
between S and S. By the construction of S, each superstar in S linked to a
superstar s in S is a good superstar or has a different majority coloring than s.
Thus, by Proposition] there are £2(n) good superstars. a

This immediately yields the following theorem.

Theorem 3. First-Fit and Next-Fit are not comparable by the relative worst-
order ratio.

Proof. By Lemma [B there is an ordering of the edges in any superstar graph
with n superstars, such that First-Fit rejects at least n(k — 2) edges.

By Lemmas [0l and [§] there are superstar graphs G, , with n superstars such
that, for any ordering of the edges, Next-Fit rejects only n(k —2) — 2(n) edges.
Hence, since First-Fit colors ©(nk?) edges,

1
NFw (Gn) = (1 + 2 <k2>) FFw(Gnk)-
On the other hand, by Corollary [l there exists a graph S, such that

5 Conclusion

We have proven that, with the relative worst-order ratio, First-Fit is strictly
better than Next-Fit for the min-coloring problem. This is in contrast to the

Comparing First-Fit and Next-Fit for Online Edge Coloring 99

competitive ratio which is the same for all parsimonious algorithms, a class of
algorithms to which First-Fit and Next-Fit belongs.

For the max-coloring problem, the answer is not as clear: With the relative
worst-order ratio, there are graphs where First-Fit does significantly better than
Next-Fit and graphs where Next-Fit does slightly better than First-Fit. This is
somewhat in keeping with an earlier result saying that the two algorithms can
hardly be distinguished by their competitive ratios.

Note that, for the max-coloring problem, the two algorithms may be asymp-
totically comparable [5]. Roughly speaking, it means that, as k tends to infinity,
the algorithms “become comparable”. This is left as an open problem. Note that
if one were to prove that the algorithms are not asymptotically comparable, an-
other construction than the superstar graphs would be required: even if Next-Fit
colored all edges of a superstar graph, it would color only 1+6(,1€) times as many
edges as First-Fit.

References

1. Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is optimal for on-line
edge coloring. Information Processing Letters 44(5), 251-253 (1992)

2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73-91 (1994)

3. Boyar, J., Ehmsen, M.R., Larsen, K.S.: Theoretical evidence for the superiority
of LRU-2 over LRU for the paging problem. In: Approximation and Online Algo-
rithms, pp. 95-107 (2006)

4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Transactions on Algorithms 3(22) (2007)

5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to
paging. Journal of Computer and System Sciences 73, 818-843 (2007)

6. Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation.
ACM Transactions on Algorithms 4(4), article 48, 22 pages (2008)

7. Epstein, L., Favrholdt, L.M., Kohrt, J.: Separating online scheduling algorithms
with the relative worst order ratio. Journal of Combinatorial Optimization 12(4),
362-385 (2006)

8. Favrholdt, L.M., Nielsen, M.N.: On-line edge coloring with a fixed number of colors.
Algorithmica 35(2), 176-191 (2003)

9. Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentrators.
Journal of Computer and System Sciences 22, 407-420 (1981)

10. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 79-119 (1988)

11. Kenyon, C.: Best-fit bin-packing with random order. In: 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 359-364 (1996)

12. Margulis, G.A.: Explicit constructions of concentrators. Problems of Information
Transmission 9(4), 325-332 (1973)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

14. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202-208 (1985)

Selecting Sums in Arrays

Gerth Stglting Brodal and Allan Grgnlund Jgrgensen*

BRICS**, MADALGO**, Department of Computer Science,
University of Aarhus, Denmark
{gerth, jallan}@daimi.au.dk

Abstract. In an array of n numbers each of the (%) +n contiguous sub-
arrays define a sum. In this paper we focus on algorithms for selecting and
reporting maximal sums from an array of numbers. First, we consider the
problem of reporting k subarrays inducing the k£ largest sums among all
subarrays of length at least [and at most u. For this problem we design
an optimal O(n + k) time algorithm. Secondly, we consider the problem
of selecting a subarray storing the k’th largest sum. For this problem we
prove a time bound of O(n - max{1,log(k/n)}) by describing an algo-
rithm with this running time and by proving a matching lower bound.
Finally, we combine the ideas and obtain an O(n-max{1,log(k/n)}) time
algorithm that selects a subarray storing the k’th largest sum among all
subarrays of length at least [and at most wu.

1 Introduction

In an array, A[l,...,n], of numbers each subarray, Afi,...,j| for 1 <i <j <mn,
defines a sum, Y_7_, At]. There are (%) + n different subarrays each inducing
a sum. Locating a subarray Ali, ...,] maximizing »;_, A[t] is known as the
mazximum sum problem, and it was formulated by Ulf Grenander in a pattern
matching context. Algorithms solving the problem also have applications in areas
such as Data Mining [12/T3] and Bioinformatics [I]. In [5] Bentley describes the
problem and an optimal linear time algorithm.

The problem can be extended to any number of dimensions. In the two di-
mensional version of the problem the input is an m X n matrix of numbers,
and the task is to locate the connected submatrix storing the largest aggre-
gate. This problem can be solved by a reduction to (g‘) + m one-dimensional
instances of size n, or a single one-dimensional instance in one array of length
O(m?n) created by separating each of the (}') + m instances mentioned before
by dummy —oo elements. However, this solution is not optimal since faster algo-
rithms are known [2221]. The currently fastest algorithm is due to Takaoka who

* Supported in part by an Ole Roemer Scholarship from the Danish National Science
Research Council.
** Basic Research in Computer Science, research school.
*** Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 100[111,) 2008.
© Springer-Verlag Berlin Heidelberg 2008

Selecting Sums in Arrays 101

describes an O(m?n+/loglogm/logm) time algorithm in [21]. The only known
lower bound for the problem is the trivial £2(mn) bound. The two-dimensional
version was the first problem studied, introduced as a method for maximum
likelihood estimations of patterns in digitized images [5].

A natural extension of the maximum sum problem, introduced in [4], is to
compute the k largest sums for 1 < k < (g) + n. The subarrays are allowed to

overlap, and the output is k triples of the form (4,7, Y 7_, A[t]). An O(nk) time
algorithm is given in [4]. An algorithm solving the problem in optimal O(n + k)
time using O(k) additional space is described in [7].

Another generalization of the maximal sum problem is to restrict the length
of the subarrays considered. This generalization is considered in [T5TI8/9] mainly
motivated by applications in Bioinformatics such as finding tandem repeats [23],
locating GC-rich regions [14], and constructing low complexity filters for se-
quence database search [2]. In [I5] Huang describes an O(n) time algorithm
locating the largest sum of length at least [, while in [I8] an O(n) time algo-
rithm locating the largest sum of length at most u is described. The algorithms
can be combined into at linear time algorithm finding the largest sum of length
at least [and at most u [I8]. In [9] it is shown how to solve the problem in O(n)
time when the input elements are given online one by one.

The length constrained k mazimal sums problem is defined as follows. Given an
array A of length n, find the k largest sums consisting of at least [and at most u
numbers. The k£ maximal sums problem is the special case of this problem where
!l =1 and u = n. Lin and Lee solved the problem using a randomized algorithm
with an expected running time of O(nlog(u — 1) + k) [I7]. Their algorithm is
based on a randomized algorithm that selects the k’th largest length constrained
sum from an array in O(nlog(u —[)) expected time. The authors state as an
open problem whether this is optimal. Furthermore, in [16] Lin and Lee describe
a deterministic O(nlogn) time algorithm that selects the k’th largest sum in an
array of size n. They propose as an open problem whether this bound is tight.
This problem is known as the sum selection problem.

Our Contribution. In this paper we settle the time complexity for the sum se-
lection problem and the length constrained k£ maximal sums problem. First, we
describe an optimal O(n + k) time algorithm for the length constrained k max-
imal sums problem in Section 21 This algorithm is an extension of our optimal
algorithm solving the k& maximal sums problem from [7]. Secondly, we prove a
time bound of ©(nlog(k/n)) for the sum selection problem in Section Bl This
is the main result of the paper. An O(nlog(k/n)) time algorithm that selects
the k’th largest sum is described in Section [3] and in Section we prove a
matching lower bound using a reduction from the cartesian sum problem [IT].
Finally, in Section [l we combine the ideas from the two algorithms we have de-
signed and obtain an O(nlog(k/n)) time algorithm that selects the k’th largest
sum among all sums consisting of at least [and at most « numbers. This bound

1 For simplicity of exposition by log z we denote the value max{1,log, z}.

102 G.S. Brodal and A.G. Jgrgensen

Table 1. Overview of results on reporting and selecting sums in arrays

Problem Previous Work This Paper
Length Const. & Maximal Sums O(nlog(u — 1) + k) exp. [I7] O(n + k)
Sum Selection O(nlogn) [16] O(nlog(k/n))

Length Const. Sum Selection — O(nlog(u — 1)) exp. [17] O(nlog(k/n))

is always as good as the previous randomized bound of O(nlog(u — {)) by Lin
and Lee [I7], since there are) ,- ,n —t + 1 < n(u — [+ 1) subarrays of length
between [and u in an array of size n and thus k/n < u — 1+ 1. Due to lack of
space the details are deferred to the full version which will combine the results
of this paper and the results in [7]. The results are summarized in Table [Tl

2 The Length Constrained kK Maximal Sums Problem

In this section we present an optimal O(n+ k) time algorithm that reports the k
largest sums of an array A of length n with the restriction that each sum is an
aggregate of at least [and at most u numbers. We reuse the idea from the k
maximal sums algorithm in [7], and construct a hea;ﬂ that implicitly represents
all Y y;n—t+1 = O(n(u—1)) valid sums from the input array using only
O(n) time and space. The k largest sums are then retrieved from the heap using
Fredericksons heap selection algorithm [I0] that extracts the k largest elements
from a heap in O(k) time. We note that the k¥ maximal sums algorithm from [7]
can be altered to use a heap supporting deletions to obtain an O(n log(u—1)+k)
algorithm solving the problem without randomization. The difference between
our new O(n+ k) time algorithm and the algorithm solving the k& maximal sums
problem [7] is in the way the sums are grouped in heaps. This change enables
us to solve the problem without deleting elements from a heap. In the following
we assume that | < u. If | = u the problem can be solved in O(n) time using a
linear time selection algorithm [6].

2.1 A Linear Time Algorithm

For each array index j, for j = 1,...,n — [+ 1, we build data structures rep-
resenting all sums of length between | and u ending at index j + [— 1. This
is achieved by constructing all sums ending at A[j] with length between 1 and
u—1+1, and then adding the sum of the [— 1 elements, A[j +1,...,7+1—1],
following A[j] in the input array to each sum. To construct these data structures
efficiently, the input array is divided into slabs of w = u—1 consecutive elements,
and the sums are grouped in disjoint sets, Qj and Q; for j = 1,...,n, depending
on the slab boundaries.

2 For simplicity of exposition, by heap we denote a heap ordered binary tree where
the largest element is placed at the root.

Selecting Sums in Arrays 103

L (§§§§;§§§§§x\§

LT 7T Dhnnmy

Q;

‘ ‘ ‘ ‘ §\\\\ nuesy

m-wil 7777777008727, |

~ -

j—u+l a J b jH+l-1

-

(=

9,¢c =Y ItV At and d = I AL A

Fig. 1. Overview of the sets, | = 4,u i1

slab is starting at index a and ending at index b.

Let a be the first index in the slab containing index j, i.e. a =1+ [/ | w.

The set Qj contains all sums of length between [and u ending at index j+1—1
that start in the slab containing index j and is defined as follows:

Qj ={(t,7+1—-1,sum) |a<i<yj, sumzc—FZ{:iA[t]},

where ¢ = Ziiﬁﬂ A[t] is the sum of — 1 numbers in A[j+1,...,5+1—1]. The
set Q; contains the (u —1+1) —(j —a+1) =u — 10— j+ a valid sums ending

at index j 4+ [— 1 that start to the left of index a, thus:
Q;={G,j+1—1sum)|j—u+l<i<a, sum:d—i—Z?;iIA[t]},

where d = Ziii_lA[t] is the result of summing the j — a + [numbers in
Ala,...,j 4+ 1 —1]. The sets are illustrated in Figure [Il By construction, the
sets Qj and Qj are disjoint and their union is the w — [+ 1 sums of length
between [and u ending at index j + 1 — 1.

With the sets of sums defined we continue with the representation of these.
The sets Q; and Q; are represented by pairs (6;, H;) and (§;, H;) where H; and
H; are partially persistent heaps and §; and é; are constants that must be added
to all elements in H ; and H ;j respectively to obtain the correct sums. For the
heaps we use the Theap from [7] which supports insertions in amortized constant
time. Partial persistence is implemented using the node copying technique [8].

We construct representations of two sequences of sets, L; and R; for j =
1,...,n, that depend on the slab boundaries. Consider the slab Ala,...,7,...,0]
containing index j. The set L; contains the j — a + 1 sums ending at A[j] that
start between index a and j. The set R; contains the b — j 4+ 1 sums ending at
A[b] starting between index j and b, see Figure[ll

104 G.S. Brodal and A.G. Jgrgensen

Each set L; is represented as a pair (6], H) where 61 is an additive constant
as above and HJL is a partially persistent Theap. The pairs are incrementally
constructed while scanning the input array from left to right as follows:

(65, Hy) = (Ala], {0}) A
<5J‘L7H]‘L> <5L1+AH i Fau{- 5] 1) -

This is also the construction equations used in [7]. Constructing a representation
of L, is simple, and creating a representation for L; can be done efficiently given
a representation of L;_;. The representation of L; is constructed by implicitly
adding A[j] to all elements from L;_; by setting 6 = ¢} ; + A[j] and inserting
an element to represent the sum A[j]. Since 6% | + A[] needs to be added to all
elements in the representation of L;, an element with 6L ; as key is inserted into
H jL_l, yielding H]L ending the construction. Partial per51stence ensures that the
Theap H jL_l used to represent L;_; is not destroyed. By the above description
and the cost of applying the node copying technique [§] the amortized time
needed to construct a pair is O(1).

The R; sets are represented by partially persistent ITheaps H]R, and these
representations are built by scanning the input array from right to left. We get
the following incremental construction equations:

Hyt = {A[bl} A
Hf = HEL UYL Alt]} -

Similar to the <6jL7 H]L> pairs, constructing a partial persistent Theap HJR also
takes O(1) time amortized. Therefore, the time needed to build the representa-
tion of the 2n sets L; and R; for j =1,...,n is O(n).

We represent the sets Qj and Qj using the representatlons of the sets L; and
R;_uy1. FigureMillustrates the correspondence between Q; and L; and Q; and
R;_y4;. Consider any index j € {1,...,n — 1+ 1}, and let Ala,...,j,...,b] be
the current slab containing j. The set Qj contains the sums of length between [
and u that start in the current slab and end at index j+1—1. The set L; contains
the j —a + 1 sums that start in the current slab and end at A[j]. Therefore,
adding the sum of the [— 1 numbers in A[j + 1,...,j + 1 — 1] to each element
in L; gives Qj and thus:

Qj = (c+ 6k HE) |

where ¢ = >/ +]l 1AL

Similarly, the set @; contains the u —l+1—(j —a+1) =u—1—j+a
sums of length between ! and v ending at A[j + [— 1] starting in the previous
slab. The set [Z;_,; contains the u — [— j — a shortest sums ending at the last
index in the previous slab. Therefore, adding the sum of the j + [— a numbers
in Ala,...,j+1—1] to each element in R;_,4; gives Q; and thus:

Q <d Hj u+l>

where d = 77T At

Selecting Sums in Arrays 105

Lemma 1. Constructing the 2(n — I + 1) pairs that represent Qj and Qj for
j=1,....,n—1+1 takes O(n) time.

Proof. Constructing all (6], H]) pairs and all H* partial persistent Theaps takes
O(n) time, and calculating sums ¢ and d takes constant time using a prefix array.
Constructing the prefix array takes O(n) time. Therefore, constructing Qj and
Q;for j=1,...,n—1+1 takes O(n) time. O

After constructing the 2(n — [+ 1) pairs, they are assembled into one large heap
using 2(n — I + 1) — 1 dummy oo keys as in [7]. The largest 2(n — I+ 1) — 1+ k
elements are then extracted from the assembled heap in O(n + k) time using
Fredericksons heap selection algorithm. The implicit sums given by adding 6
values are explicitly computed while Fredericksons algorithm explores the final
heap top down in the way described in [7]. The 2(n—1{+1) — 1 dummy elements
are discarded.

Theorem 1. The algorithm described reports the k largest sums with length
between | and w in an array of length n in O(n + k) time.

3 Sum Selection Problem

In this section we prove a @(nlog(k/n)) time bound for the sum selection prob-
lem by designing an O(nlog(k/n)) time algorithm that selects the k’th largest
sum in an array of size n and by proving a matching lower bound.

The idea of the algorithm is to reduce the problem to selection in a collec-
tion of sorted arrays and weight balanced search trees [I93]. The trees and the
sorted arrays are constructed using the ideas from Section [and [7]. Selecting
the k’th largest element from a set of trees and sorted arrays is done using an
essential part of the sorted column matrix selection algorithm of Frederickson
and Johnson [I1]. The part of Frederickson and Johnsons algorithm that we use
is an iterative procedure named Reduce. In a round of the Reduce algorithm each
array, A, is represented by the 1+ |a|A|] largest element stored in the array, and
a constant fraction of the elements in each array may be eliminated. This can
be approximated in weight balanced search trees and the complexity analysis
from [I1] remains valid.

The lower bound is proved using a reduction from the X + Y cartesian sum
selection problem [IT].

We note that if £ < n then the k& maximal sums algorithm from [7] can be
used to solve the problem optimally in O(n) time.

To construct the sorted arrays efficiently, we use a heap data structure, that
is a generalization of the Theap, which we name Bheap. The Bheap is a heap
ordered binary tree where each node of the tree contains a sorted array of size
B. By heap order, we mean that all elements in a child of a node v must be
smaller than the smallest element stored in v. Sorted arrays of B elements are
required to be inserted in O(B) time amortized. Our Bheap implementation is
based on ideas from the functional random access lists in [20] and simple bubble
up/down procedures based on merging sorted arrays.

106 G.S. Brodal and A.G. Jgrgensen

3.1 An O(nlog(k/n)) Time Algorithm

In this section we reduce the sum selection problem to selection in a set of trees
and sorted arrays. We use the weight balanced B-trees of Arge and Vitter [3]
with degree B = O(1). Similar to the grouping of sums in Section 2 each index
j, for j = 1,...,n, is associated with data structures representing all possible
sums ending at A[j]. The set representing all sums ending at index j is defined
as follows:

Q; = {(i,j7 sum) |1 <i<j, sum= Z{:iA[t]} .

The input array is divided into slabs of size w = [k/n], and the set @, is repre-
sented by two disjoint sets W B; and BH; that depend on the slab boundaries.
The set W B; contains the sums ending at index j beginning in the current slab,
and BH; contains the sums ending at index j not beginning in the current slab.
Leta=1+ Lj;lJ w, i.e. the first index in the slab containing index j, then:

WBj = {(i,j7 sum) | a <i < j, sum = Z{:i A[t]} A

BH; = {(i,j, sum)|1<i<a, sum=c+ Z?:_il A[t]})
where ¢ = 327_ A[t] is the sum of the j — a + 1 numbers in Ala, ..., j]. The sets

WB; and BH; are disjoint, and WB; U BH; = @; by construction. The sets
are illustrated in Figure

The set W B; is represented as a pair (7;,T;) where T; is a partial persistent
weight balanced B-tree and 7; is an additive constant that must be added to all
elements in T} to obtain the correct sums. The set BHj; is represented as a pair
(65, H;) where 6; is an additive constant and H; is a partial persistent Bheap
with B = w.

W’BJ-
L[] 7 o
(1T T [1T
| 1 - [T] 1] : [|
Fig. 2. Overview of the sets. Slab size w = 5, and Ala,...,b] is the slab containing

index j.

Selecting Sums in Arrays 107

The pairs (7j,T;) are constructed as follows. If j is the first index of a slab,
i.e. j =1+ tw for some natural number ¢, then:

(3, Tj) = (A[1],{0}) -

This is the start of a new slab, and a new partial persistent weight balanced
B-tree representing A[j], the first element in the slab, is created. If j is not the
first index in a slab then:

(15, Tj) = (1j—1 + A[j], Tj-1 U {~Tj-1}) ,

i.e. we change the additive constant and insert —7;_; into the weight balanced
tree T;_1. These construction equations are identical to the construction equa-
tions from Section 2 and partial persistence ensures that T;_; is not destroyed
by constructing T7.
For the (6;, H;) pairs representing the sets Qj, we observe that if j < w then
BH; = (), thus:
(65, H;) = (0,0) .

If 5 > w and j is not the first index in a slab, then adding A[j] to all elements
from the previous set yields the new set, thus:

(65, Hj) = (6j—1 + A[j], Hj—1) .

If 7 is the first index of a slab, i.e. j = 1 + tw for some integer ¢ > 1, all w
sums represented in (7;_1,7;_1) are inserted into a sorted array S and each sum
explicitly calculated. This sorted array then contains all sums starting in the
previous slab ending at index j — 1. For each element in S the additive constant
0j—1 is subtracted and S is inserted into the Bheap H;_;. The construction
equation becomes:

(65, Hj) = (6j—1 + A[j], Hj—1 U S) ,

where ,
§={ligs=851) |j—w<i<js =5 AN}

Again, partial persistence ensures that the previous version of the Bheap, H;_1,
is not destroyed.

Lemma 2. Constructing the pairs (6;, H;) and (1;,T;) for j = 1,...,n takes
O(nlog(k/n)) time.

Proof. The Bheap and the weight balanced B-trees have constant in and out-
degree. Therefore, partial persistence can be implemented for both using the
node copying technique [g].

For the Bheap, amortized O(1) pointers and arrays are changed per insertion.
The extra cost for applying the node copying technique is O(B) = O(w) time
amortized per insert operation. Constructing the sorted array S from a weight
balanced B-tree takes O(w) time. An insert in a Bheap is only performed every
w’th step, and calculating additive constants in each step takes constant time.
Therefore, the time used for constructing all (¢;, H;) pairs is O(n+ " w) = O(n).

108 G.S. Brodal and A.G. Jgrgensen

Each insert in a weight balanced B-tree is performed on a tree containing at
most w elements using O(log w) time. Therefore, the extra cost of using the node
copying technique is O(logw) time amortized per insert operation. Calculating
an additive constant 7; takes constant time, thus, constructing all (7;,7}) pairs
takes O(nlog(k/n)) time. O

After the n pairs, (6;, H;), storing Bheaps are constructed, they are assembled
into one large heap in the same way as in Section 2l That is, we construct
a complete heap on top of the pairs using n — 1 dummy nodes storing the
same array of w dummy oo elements. We then use Fredericksons heap selection
algorithm in the same way as in Section 2] where the representative for each node
is the smallest element in the sorted array stored in it. Using Fredericksons heap
selection algorithm the 2n — 1 nodes with the maximal smallest element and
their 2n children are extracted. This takes O(n) time and the nodes extracted
from the Bheap gives 3n sorted arrays by discarding the n — 1 dummy nodes.

Lemma 3. The 3n nodes found as described above contain the k largest sums
contained in the n pairs (6;, H;).

Proof. The 4n—1 nodes found by the heap selection algorithm forms a connected
subtree T' of the heap rooted at the root of the heap. Any element e stored in a
node v, ¢ T is smaller than all elements stored in any internal node v € T since,
by heap order, e is smaller than the smallest element in the leaf of T that is on
the path from v, to the root. The smallest element in a leaf is smaller than the
smallest element in any internal node since the leaf was not picked by the heap
selection algorithm. There are 2n — 1 internal nodes in 7" and n of these does
not store dummy elements. Therefore, for each element not residing in 7" there
at least nw = n”ﬂ > k larger elements in the 3n found nodes. O

These 3n sorted arrays of size w and the n pairs (7;,T;) storing weight balanced
B-trees of size at most w contain at most 4nw = 4n[*] < 4(k + n) sums. The
3n arrays and the n weight balanced B-trees are given as input to the adapted
sorted column matrix selection algorithm, which extracts the k’th largest element
from these in O(nlog(k/n)) time. The fact that the weight balanced B-trees are
partially persistent versions of the same tree and contain additive constants is
handled by expanding the trees and computing the sums explicitly during the
top down traversals performed by the selection algorithm as in Section 2 and [7].

Theorem 2. The algorithm described selects the k’th largest sum in an array
of size n in O(nlog(k/n)) time.

3.2 Lower Bound

In this section we prove a matching lower bound of 2(nlog(k/n)) time for the
sum selection problem via a reduction from the X + Y cartesian sum selection
problem. In the X 4+ Y cartesian sum selection problem as defined in [I1], the
input is two unsorted arrays X and Y and an integer k, and the task is to select
the k’th largest element in the cartesian sum {z+y |z € X, y € Y}.

Selecting Sums in Arrays 109

Given an instance of the X + Y cartesian sum selection problem, X =
{z1,...,2zn}, Y ={y1,...,Ym}, and k, construct the following array A :

Tl — T2 i —Tit1l " Tno1l —Tpn Tn + 0O+ Y1 Y2 — Y1+ Ym — Ym—1

where oo is a number larger than (n 4+ m) - max{|z| | z € X} U{|y| | y € Y}.
The sums in A have the following properties:

. -1

— A sum ranging from i to j where i <n < j represents the sum (ors Al +
Tn + 00+ y1 + (31,1 Alt]) = i + yj—ns1 + 0.

— A sum including A[n] = x,, + oo + y1 is larger than any sum that does not

There are more sums in the sum selection instance than there are in the X +Y
cartesian sum instance since any sum not containing A[n| does not correspond
to an element in the cartesian sum. However, the £’th largest sum does contain
A[n] and corresponds to the k’th largest sum in the cartesian sum instance.
Therefore, any algorithm that selects the k’th largest sum in an array can be
used to select the k’th largest element in the cartesian sum.

The lower bound for selecting the k’'th largest element in the cartesian sum
(X +Y)is 2(m+ plog(k/p)) comparisons where | X| =n,|Y| =m with n <m
and p = min{k, m} [II]. In the reduction the size of the array A is n +m — 1,
which is ©(n +m) = ©(m), and it can be built in O(m) time.

Theorem 3. Any algorithm that selects the k’th largest sum in an array of
size n uses £2(nlog(k/n)) comparisons.

4 Length Constrained Sum Selection

In this section we sketch how to select the k’th largest sum consisting of at
least [and at most u numbers from an array of size n in O(nlog(k/n)) time. The
algorithm combines the ideas from Section 2] and Section Bl Similar to Section
the algorithm works by reducing the problem to selection in a collection of weight
balanced search trees and sorted arrays. It should be noted that a deterministic
algorithm with running time O(nlog(u — [)) can be achieved by using weight
balanced B-trees instead of Theaps in the algorithm from Section 2l and using
these as input to the adapted sorted column matrix selection algorithm instead
of the heap selection algorithm.

To achieve O(nlog(k/n)) time, we constrain the lengths of the sums consid-
ered and divide the input array into slabs of size v — [as in Section 2l Subse-
quently, we efficiently construct representations of the sets Qj and Qj defined in
Section [2] using weight balanced trees and Bheaps by subdividing each slab into
sub-slabs of size [Z 1 as in Section Bl recall k/n < u — 1 + 1. Weight balanced
B-trees are used to represent sums residing inside a sub-slab, and Bheaps are
used to represent sums covering multiple sub-slabs. The sums are illustrated in
Figure[3l The Bheaps and the weight balanced B-trees are constructed efficiently
as in Section [B] using partial persistence.

110 G.S. Brodal and A.G. Jgrgensen

F
[T NIV ° |,
CNIIIEINNY | (@
(- ANV /
[T |
[IIINIIImmY) |,
-&\\\\\\\\\\\\\\\\\\\&\\\\\\\\\\\\\\\\\\\\ ’
T AT EEEEEEE |

u

8 A N N IR NN N N D N ST

j—u+l a b J jHi—1

[k/n]
u rl

Fig. 3. Combining ideas - The sums associated with index j. A new slab of length

u — [starts at index a and a new subslab of length [k/n] = 4 starts at index b.
c= Zf;l:i Alt], d= Egié_l Alt], e= Egii_l Alt] and f = Zfii_l Alt] where z is

the first index in the subslab following the subslab containing index j — u + [. The set
Q); is split into T}, represented by a weight balanced tree, and BHj, represented by a
Bheap. The set @); is split similarly.

After the representations of the sets Qj and Qj are constructed, the algorithm
continues as in Section Bl The sorted arrays storing the k largest sums stored in
the Bheaps are extracted using Fredericksons heap selection algorithm. The sorted
arrays and the weight balanced B-trees are then given as input to the adapted
sorted column matrix selection algorithm that selects the k’th largest sum.

Theorem 4. The k’th largest sum of length between | and uw in an array of
size n can be selected in O(nlog(k/n)) time.

References

1. Allison, L.: Longest biased interval and longest non-negative sum interval. Bioin-
formatics 19(10), 1294-1295 (2003)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology 215(3), 403-410 (1990)

3. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Jour-
nal on Computing 32(6), 1488-1508 (2003)

4. Bae, S.E., Takaoka, T.: Algorithms for the problem of k& maximum sums and a
vlsi algorithm for the £ maximum subarrays problem. In: Proc. 7Tth International
Symposium on Parallel Architectures, Algorithms, and Networks, pp. 247-253.
IEEE Computer Society, Los Alamitos (2004)

5. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM 27(9),
865-873 (1984)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Selecting Sums in Arrays 111

. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for

selection. J. Comput. Syst. Sci. 7(4), 448-461 (1973)

. Brodal, G.S., Jgrgensen, A.G.: A linear time algorithm for the k¥ maximal sums

problem. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 442—
453. Springer, Heidelberg (2007)

. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures

persistent. Journal of Computer and System Sciences 38(1), 86-124 (1989)

. Fan, T.-H., Lee, S., Lu, H.-1., Tsou, T.-S., Wang, T.-C., Yao, A.: An optimal algo-

rithm for maximum-sum segment and its application in bioinformatics. In: Proc.
8th International Conference on Implementation and Application of Automata.
LNCS, pp. 46-66. Springer, Heidelberg (2003)

Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Com-
put. 104(2), 197214 (1993)

Frederickson, G.N., Johnson, D.B.: The complexity of selection and ranking in
X+Y and matrices with sorted columns. J. Comput. Syst. Sci. 24(2), 197-208
(1982)

Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with opti-
mized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179
213 (2001)

Fukuda, T., Morimoto, Y., Morishta, S., Tokuyama, T.: Interval finding and its
application to data mining. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E80-A(4), 620-626 (1997)

Hannenhalli, S., Levy, S.: Promoter prediction in the human genome. Bioinformat-
ics 17, S90-S96 (2001)

Huang, X.: An algorithm for identifying regions of a DNA sequence that satisfy
a content requirement. Computer Applications in the Biosciences 10(3), 219-225
1994

£in, %.—C., Lee, D.T.: Efficient algorithms for the sum selection problem and k
maximum sums problem. In: The 17th International Symposium on Algorithms
and Computation. LNCS, pp. 460-473. Springer, Heidelberg (2006)

Lin, T.-C., Lee, D.T.: Randomized algorithm for the sum selection problem. Theor.
Comput. Sci. 377(1-3), 151-156 (2007)

Lin, Y.-L., Jiang, T., Chao, K.-M.: Efficient algorithms for locating the length-
constrained heaviest segments, with applications to biomolecular sequence analysis.
In: Proc. 27th International Symposium of Mathematical Foundations of Computer
Science 2002. LNCS, pp. 459-470. Springer, Heidelberg (2002)

Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: STOC
1972: Proceedings of the fourth annual ACM symposium on Theory of computing,
pp. 137-142. ACM, New York (1972)

Okasaki, C.: Purely functional random-access lists. In: Functional Programming
Languages and Computer Architecture, pp. 86-95 (1995)

Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electr. Notes Theor. Comput. Sci. 61 (2002)

Tamaki, H., Tokuyama, T.: Algorithms for the maximum subarray problem based
on matrix multiplication. In: Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 446-452. Society for Industrial and Applied
Mathematics, Philadelphia (1998)

Walder, R.Y., Garrett, M.R., McClain, A.M., Beck, G.E., Brennan, T.M., Kramer,
N.A., Kanis, A.B., Mark, A.L., Rapp, J.P., Sheffield, V.C.: Short tandem repeat
polymorphic markers for the rat genome from marker-selected libraries. Mam-
malian Genome 9(12), 1013-1021 (1998)

Succinct and I/0O Efficient Data Structures for
Traversal in Trees*

Craig Dillabaugh, Meng He, and Anil Maheshwari

School of Computer Science, Carleton University, Ottawa, Ontario, Canada

Abstract. We present two results for path traversal in trees, where the
traversal is performed in an asymptotically optimal number of I/Os and
the tree structure is represented succinctly. Our first result is for bottom-
up traversal that starts with a node in the tree 1" and traverses a path to
the root. For blocks of size B, a tree on N nodes, and for a path of length
K, we design data structures that permit traversal of the bottom-up path
in O(K/B) I/Os using only 2N + 1051;1\1 + o(N) bits, for an arbitrarily
selected constant, ¢, where 0 < € < 1. Our second result is for top-down
traversal in binary trees. We store T" using (3 + ¢) N + o(N) bits, where
q is the number of bits required to store a key, while top-down traversal
can still be performed in an asymptotically optimal number of I/Os.

1 Introduction

Many operations on graphs and trees can be viewed as the traversal of a path.
Queries on trees, for example, typically involve traversing a path from the root
to some node, or from some node to the root. Often the datasets represented in
graphs and trees are too large to fit in internal memory and traversal must be
performed efficiently in external memory (EM). Efficient EM traversal in trees
is important for structures such as suffix trees, and as a building block to graph
searching and shortest path algorithms.

Succinet data structures were first proposed by Jacobson [I]. The idea is to
represent data structures using space as near the information-theoretical lower
bound as possible, while allowing efficient navigation. Succinct data structures,
which have been studied largely outside the external memory model, also have
natural application to large data sets.

In this paper, we present data structures for traversal in trees that are both
efficient in the EM setting, and that encode the trees succinctly. We are aware of
only the work by Chien et al. [2] on succinet full-text indices supporting efficient
substring search in EM, that follows the same track. Our contribution is the first
such work on general trees that bridges these two techniques.

Previous Work: The I/O-model [3] splits memory into two levels; the fast,
but finite, internal memory; and slow but infinite EM. Data is transferred be-
tween these levels by an input-output operation (I/O). Algorithms are analyzed

* Research supported by NSERC.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 112 2008.
© Springer-Verlag Berlin Heidelberg 2008

Succinct and I/O Efficient Data Structures for Traversal in Trees 113

in terms of the number of I/O operations. The unit of memory that may be
transferred in a single I/0 is referred to as a disk block. The parameters B, M,
and N denote the size (in terms of the number of data elements) of a block,
internal memory, and the problem instance. Blocking of data structures in the
I/O model has reference to the partitioning of the data into individual blocks
that can subsequently be transferred with a single 1/0.

Nodine et al. [4] studied the problem of blocking graphs and trees, for efficient
traversal, in the I/O model. Among their main results they presented a bound of
O(K/log, B) for d-ary trees where on average each vertex may be represented
twice. Blocking of bounded degree planar graphs, such as Triangular Irregular
Networks (TINs), was examined in Aggarwal et al. [5]. The authors show how
to store a planar graph of size N, and of bounded degree d, in O(N/B) blocks
so that any path of length K can be traversed using O(K/log, B) 1/0Os.

Hutchinson et al. [6] examined the case of bottom-up traversal, where the path
begins with some node in T" and proceeds to the root. They gave a blocking which
supports bottom-up traversal in O(K/B) I/Os when the tree is stored in O(N/B)
blocks. The case of top down traversal has been more extensively studied. Clark
and Munro [7] describe a blocking layout that yields a logarithmic bound for
root-to-leaf traversal in suffix trees. Given a fixed independent probability on
the leaves, Gil and Itai [8], presented a blocking layout that yields the minimum
expected number of I/Os on a root to leaf path. In the cache oblivious model,
Alstrup et al. [9] gave a layout that yields a minimum worst case, or expected
number of I/Os, along a root-to-leaf path, up to constant factors. Demaine et al.
[10] presented an optimal blocking strategy to support top down traversals. They
showed that for a binary tree T, a traversal from the root to a node of depth K
requires the following number of I/Os: (1) O(K/1g(1+ B)), when K = O(lg N),
(2) ©(lgN/(1g(1 + BlgN/K))), when K = 2(IgN) and K = O(BlgN), and
(3) ©(K/B), when K = 2(Blg N). Finally, Brodal and Fagerberg [11] describe
the giraffe-tree, which likewise permits a O(K/B) root-to-leaf tree traversal with
O(N) space in the cache-oblivious model.

Our Results: Throughout this paper we assume that B = 2(lgN) (i.e. the
disk block is of reasonable size). Our paper presents two main results:

1. In Section Bl we show how a tree T can be blocked in a succinct fashion
such that a bottom-up traversal requires O(K/B) I/Os using only 2N +
GNN + o(N) bits to store T, where K is the path length and 0 < e < 1.

logp
This technique is based on [6], and achieves an improvement on the space
bound by a factor of lg N.

2. In Section [we show that a binary tree, with keys of size ¢ = O(lg N) bits,

can be stored using (34+¢)N +o0(N) bits so that a root-to-node path of length

K can be reported with: (a) O (1g(1+(BK1gN)/q)> I/Os, when K = O(lg N);

(b) 0(lg NV) 1/Os, when K = 2(Ig N) and K = O (Blg:N); and

1g(1+ B8N
(¢) O (B%?N) I/O0s, when K = (2 (Blg:N). This result achieves a lg N

factor improvement on the previous space cost in [10] for the tree structure.

114 C. Dillabaugh, M. He, and A. Maheshwari
2 Preliminaries

Bit Vectors: A key data structure used in our research is a bit vector B[1..N]
that supports the operations rank and select. The operations rank;(B,i) and
rankg(B,4) return the number of 1s and Os in BJ[l..i], respectively. The opera-
tions select;(B,r) and selecty(B,r) return the position of the " occurrences
of 1 and 0, respectively. Several researchers [IITIT2] considered the problem of
representing a bit vector succinctly to support rank and select in constant time
under the word RAM model with word size ©(Ign) bits, and their results can
be directly applied to the external memory model. The following lemma sum-
marizes some of these results, in which part (a) is from Jacobson [I] and Clark
and Munro [7], while part (b) is from Raman et al. [12]:

Lemma 1. A bit vector B of length N can be represented using either: (a)
N + o(N) bits, or (b) [lg (%)1 +O(Nl1glgN/1g N) = o(N) bits, where R is the
number of 1s in B, to support the access to each bit, rank and select in O(1)
time (or O(1) 1/Os in external memory).

Succinct Representations of Trees: As there are (27?) /(n 4+ 1) different
binary trees (or ordinal trees) on N nodes, various approaches [IIT3II4] have
been proposed to represent a binary tree (or ordinal tree) in 2N + o(N) bits,
while supporting efficient navigation. Jacobson [I] first presented the level-order
binary marked (LOBM) structure for binary trees, which can be used to encode
a binary tree as a bit vector of 2N bits. He further showed that operations such
as retrieving the left child, the right child and the parent of a node in the tree can
be performed using rank and select operations on bit vectors. We make use of
his approach to encode tree structures in Section[dl Another approach we use in
this paper is based on the isomorphism between balanced parenthesis sequences
and ordinal trees, proposed by Munro and Raman [I3]. The balanced parenthesis
sequence of a given tree can be obtained by performing a depth-first traversal,
and outputting an opening parenthesis each time we visit a node, and a closing
parenthesis immediately after all the descendants of this node are visited. Munro
and Raman [I3] designed a succinct representation of an ordinal tree of N nodes
in 2N + o(N) bits based on the balanced parenthesis sequence, which supports
the computation of the parent, the depth and the number of descendants of a
node in constant time, and the i** child of a node in O(i) time.

3 Bottom Up Traversal

In this section, we present a set of data structures that encode a tree T succinctly
so that the I/Os performed in traversing a path from a given node to the root
is optimal. Let A denote the maximum number of nodes that can be stored in
a single block, and let K denote the length of the path. Given the bottom up
nature of the queries, there is no need to encode a node’s key value, since the
path always proceeds to the current node’s parent.

Succinct and I/O Efficient Data Structures for Traversal in Trees 115

Data Structures: We begin with a brief overview of our technique. We partition
T into layers of height 7B where 0 < 7 < 1. The top layer and the bottom layer
can contain less than 7B levels. We then group the nodes of each layer into
blocks, and store with each block a duplicate path. To reduce the space required
by these paths, we further group blocks into superblocks which also store a
duplicate path. By loading at most the block containing a node, along with its
associated duplicate path, and the superblock duplicate path we demonstrate
that a layer can be traversed with at most O(1) I/Os. A set of bit vectord] that
map the nodes at the top of one layer to their parents in the layer above are
used to navigate between layers.

Layers are numbered starting at 1 for the topmost layer. Let L; be the i*? layer
in T'. The layer is composed of a forest of subtrees whose roots are all at the top
level of L;. We now describe how the blocks and superblocks are created within
L;. We number L;’s nodes in preorder starting from 1 for the leftmost subtree
and numbering the remaining subtrees from left to right. Once the nodes of L;
are numbered they are grouped into blocks of consequtive preorder number. Each
block stores a portion of T along with the representation of its duplicate path,
or the superblock duplicate path, if it is the first block in a superblock. We refer
to the space used to store the duplicate path as redundancy which we denote W.
In our succinct tree representation we require two bits to represent each node in

the subtrees of L;, so for blocks of Blg N bits we have A = {Blgg_w .

We term the first block in a layer the leading block. Layers are blocked in such
a manner that the leading block is the only block permitted to be non-full (may
contain less than A nodes). The leading block requires no duplicate structure
and thus W = 0 for leading blocks. All superblocks except possibly the first,
which we term the leading superblock, contain exactly |lg B| blocks.

For each block we store as the duplicate path, the path from the node with
the minimum preorder number in the block to the layer’s top level. Similar to
Property 3 of Lemma 2 in [6] we have the following property:

Property 1. Given a block (or superblock) Y, for any node z in Y there exists a
path from z to either the top of its layer, or to the duplicate path of Y, which
consists entirely of nodes in Y.

Each block is encoded by three data structures:

1. An encoding of the tree structure, denoted B.. The subtree(s) contained, or
partially contained, within the block are encoded as a sequence of balanced
parentheses (see Section[Z)). Note that in this representation, the i'" opening
parenthesis corresponds to the i*® node in the preorder in this block.

2. The duplicate path array, D,[j], for 1 < j < 7B. Let v be the node with
the smallest preorder number in the block. Entry D,[j] stores the preorder
number of the node at the j*" level on the path from v to the top level of
the layer. The number recorded is the preorder number with respect to the
block’s superblock. It may be the case that v is not at the 7B™ level of

L All bit vectors are represented using the structures of Lemma [Th or Lemma [Ib.

116 C. Dillabaugh, M. He, and A. Maheshwari

the layer. In this case the entries below v are set to 0. Recall that preorder
numbers begin at 1, so the 0 value effectively flags an entry as invalid.

3. The root-to-path array, R,[j], for 1 < j < 7B. A block may include many
subtrees rooted at nodes on the duplicate path. Consider the set of roots of
these subtrees. The entry at R,[j] stores the number of subtrees rooted at
nodes on D, from level 7B up to level j. The number of subtrees rooted at
node D,[j] can be calculated by evaluating R,[j] — R,[j + 1] when j < 7B,
or Ry[j] when j = 7B.

Now consider the first block in a superblock. The duplicate path of this
block is the superblock’s duplicate path. Unlike the duplicate path of a reg-
ular block, which stores the preorder numbers with respect to the superblock,
the superblock’s duplicate path stores the preorder numbers with respect to the
preorder numbering in the layer. Furthermore, consider the duplicate paths of
blocks within a superblock. These paths may share a common subpath with the
superblock duplicate path. Each entry on a block duplicate path that is shared
with the superblock duplicate path is set to —1.

For an arbitrary node v € T, let v’s layer number be ¢, and its preorder
number within the layer be p,. Each node in T is uniquely represented by the
pair (£y,py). Let 7 define the lexicographic order on these pairs. Given a node’s
£, and p, values, we can locate the node and navigate within the corresponding
layer. The challenge is how to map between the roots of one layer and their
parents in the layer above. Consider the set of N nodes in T. We define the
following data structures, that will facilitate mapping between layers:

1. Bit vector Vyirst[1..N], where Vyipst[i] = 1 iff the i*® node in 7 is the first
node within its layer.

2. Bit vector Vparent[1..N], where Vyarent[i] = 1 iff the the i*! node in 7 is the
parent of some node at the top level of the layer below.

3. Bit vector Virst chitall..N], where Viirst chaali] = 1 iff the i*™ node in 7 is
a root in its layer and its parent in the preceeding layer differs from that of
the previous root in this layer.

All leading blocks are packed together on disk, separate from the full blocks.
Note that leading blocks do not require a duplicate path or root-to-path array,
so only the tree structure need be stored for these blocks. Due to the packing,
the leading block may overrun the boundary of a block on disk. We use the first
lg B bits of each disk block to store an offset which indicates the position of the
starting bit of the first leading block starting in the disk block. This allows us
to skip any overrun bits from a leading block stored in the previous disk block.

We store two bit arrays to aid in locating blocks to index the partially full
leading blocks and the full blocks. Let x be the number of layers on T', and let
z be the total number of full blocks. The bit vectors are:

1. Bit vector B[l..x], where B[i] = 1 iff the i*} leading block resides in a
different disk block than the (i — 1)*® leading block.

2. Bit vector B¢[l..(x + z)] that encodes the number of full blocks in each layer
in unary. More precisely By[l..(x + 2)] = 0110%210%1... where ; is the
number of full blocks in layer 3.

Succinct and I/O Efficient Data Structures for Traversal in Trees 117

To analyze the space costs of our data structures we have the following lemma.

Lemma 2. The data structures described above occupy 2N + hig:}[v +o(N) bits.

Proof (sketch). The number of bits used to store the actual tree structure of
T is 2N, as the structure is encoded using the balanced parentheses encoding.
We must also account for the space required to store the duplicate paths and
their associated root-to-path arrays. The space required for block and superblock
duplicate paths differs: [1g ((B[lg B][lg N1)/2)] bits are sufficient to store a node
on a block duplicate path (as there are at most (B[lg B][lg N|)/2 nodes in a
superblock), while an entry of a superblock duplicate path require [lg N bits.

We store the array R, for each block. As a block may have as many as
(B[lg N1)/2 nodes, each entry in R, requires [lg B] + [lg [1g N'|] bits. Thus, for
a regular block, the number of bits used to store both D,, and R, is 7B(2[lg B]+
2[1g [lg N1 + [1g [1g BI]).

Now consider the total space required for all duplicate paths and root-to-path
arrays within a superblock. The superblock duplicate path requires 7B[lg N
bits. The space cost of each of the ([lg B]—1) remaining blocks is given in the pre-
vious paragraph. Thus the total redundancy per superblock is W = 7B[lg N| +
TB([lg B] + [lg [lg N11) + ([lg B] — 1)7B(2[lg B] + 2[1g [Ilg N'|] + [1g [lg B]1).

The average redundancy per block is then:

TB[lg N N TB([lg B] + [lg [lg N1])

"o =g [lg B]
(Ng B] - 1)rB(2Mlg B] + 2[lg [lg NT] + g [lg B]))
* g B]
< 7B[logy N1+ rB(3[lgB] +3[lg [lgNT] + Mg g B)) (1)

The value for the average redundancy, W, represents the worst case per block
redundancy, as the redundancy for leading blocks is [lg B]/(B[lgN]) < W,

bits. The total number of blocks required to store T is Bﬂg?\rj\]]—wb' The the

2N

total size of the redundancy for T is W; = Bllg N1— W3,

- Wy, which is at most

W = 129]}[1';%’ when W, < éB[lg NT. Tt is easy to show that when 7 < 116, this
condition is true. Finally, substituting the value for W}, from Eq. [0 to obtain
Wt _ ANT[logg N1 + 12N 7[lg B] + 12N7[lg [lg N1 + ANT[lg[lgB]] _ 127N —|—O(N)

[lg N [lg N [lg N [g N " [logp N
We arrive at out final bound because the first, third, and fourth terms are each

asymptotically o(N) (recall that we assume B = 2(lg N)).
The bit vectors Vyirst, Vparent, Vrirst chitds Bi, and By can be stored in o(IN)
bits using Lemma [Ib, as they are spare bit vectors. a

Navigation: The algorithm for reporting a node-to-root path is given by algo-
rithms ReportPath (see Fig. [dl) and ReportLayerPath (see Fig.). Algorithm
ReportPath(T,v) is called with v being the number of a node in T given by
7. ReportPath handles navigation between layers and calls ReportLayerPath
to perform the traversal within each layer. The parameters ¢, and p, are the
layer number and the preorder value of node v within the layer, as previously

118 C. Dillabaugh, M. He, and A. Maheshwari

Algorithm ReportPath(T,v)
1. Find £,, the layer containing v. £, = ranki(Vfirst, v).
2. Find ay,, the position in 7 of £,’s first node. ay, = selecti(Vyirst, lv).
3. Find py, v’s preorder number within £,. p, = v — ay, .
4. Repeat the following steps until the top layer has been reported.
(a) Let r = ReportLayerPath({,,py) be the preorder number of the root of
the path in layer ¢, (This step also reports the path within the layer).
(b) Find o, —1), the position in 7 of the first node at the next higher layer.
a(e, —1) = select1(Vyirse, bv — 1).
(¢) Find A, the rank of r’s parent among all the nodes in the layer
above that have children in £,. A = (ranki(Vyirst chitd, e, + 7)) —
(ranki (Vfirst chitd, @z, — 1).
(d) Find which leaf §, at the next higher layer corresponds to A. § =
selecti(Vparent, ranki (Vparent, 0o, —1)) — 1 + A).
(e) Update o, = e, —1y; Po = 0 — oyg, —1), and; £y, = £, — 1.

Fig. 1. Algorithm for reporting the path from node v to the root of T’

Algorithm ReportLayer Path({y, py)

1. Load block b, containing p,. Scan B (the tree’s representation) to locate p,.
If b, is stored in a superblock, SB,, then load SB,’s first block if b, is not the
first block in SB,. Let min(D;) be the minimum valid preorder number of b,’s
duplicate path (let min(D,) = 1 if b, is a leading block), and let min(SBp,)
be the minimum valid preorder number of the superblock duplicate path (if
by is the first block in SB, then let min(SBp,) = 0).

2. Traverse the path from p, to a root in B.. If r is the preorder number (within
B.) of a node on this path report (r — 1) + min(D,) + min(SBp,). This step
terminates at a root in Be. Let 71 be the rank of this root in the set of roots
of Be.

3. Scan the root-to-path array, R, from 7B5...1 to find the smallest ¢ such that
Rpli] > ri. If 7 > Rp[1] then r is on the top level in the layer so return
(r—1) +min(D,) + min(SBp,) and terminate.

4. Set j=i— 1.

while(j > 1 and Dp[j] # 1) report Dp[j] + min(SBp,) and set j = j — 1.
6. If j > 1 then report SBp,[j] and set j = j — 1 until(j < 1).

o

Fig. 2. Steps to execute traversal within a layer, ¢,,, starting at the node with preorder
number p,. This algorithm reports the nodes visited and returns the layer preorder
number of the root at which it terminates.

described. ReportLayer Path returns the preorder number, within layer £, of the
root of path reported from that layer. In ReportLayer Path we find the block b,
containing node v using the algorithm FindBlock(¢,,p,) described in Fig. B It
is straightforward that this algorithm performs O(1) I/Os per layer when per-
forming path traversals, so a path of length K in T can be traversed in O(K/7B)
I/0s. Combing this with Lemma 2l we have the following theorem (to simplify
our space result we define one additional term e = 127):

Succinct and I/O Efficient Data Structures for Traversal in Trees 119

Algorithm FindBlock({y, py)

1. Find o, the disk block containing ¢,’s leading block. o = ranki (B, £y).

2. Find «, the rank of ¢,’s leading block within o, by performing rank/select
operations on B; to find j < ¢, such that Bi[j] = 1. o = p, — j.

3. Scan o to find, and load, the data for £,’s leading block (may required loading
the next disk block). Note the size § of the leading block.

4. If p, <6 then p, is in the already loaded leading block, terminate.

5. Calculate w, the rank of the block containing p, within the select(By, £, +
1) — select1(By,£,) full blocks for this level.

6. Load full block ranke(By, %) + w and terminate.

Fig. 3. FindBlock algorithm

Theorem 1. A tree T' on N nodes can be represented in 2N + 10;;71\[+ o(N)
bits such that given a node-to-root path of length K, the path can be reported in

O(K/B) I/Os, when 0 < € < 1.

For the case in which we wish to maintain a key with each node, we store each
key in the same block that contains its corresponding node, and we also store
each duplicate path and keys associated to the nodes in the path in the same
block. This yields the following corollary:

Corollary 1. A tree T on N nodes with g-bit keys, where ¢ = O(lg N), can be

represented in (2 4+ q)N + q - (10%TBNN] + ﬁg% + O(N)] bits such that given a
node-to-root path of length K, that path can be reported in O(TK/B) 1/Os, when

O0<7<1.

In Corollary [it is obvious that the first and third terms inside the square
brackets are small so we will consider the size of the the second term inside the
brackets ((27¢N)/[lg N1). When ¢ = o(lg N) this term becomes o(N). When
g = O(lg N) we can select 7 such that this term becomes (nN) for 0 < 7 < 1.

4 Top Down Traversal

Given a binary tree T', in which every node is associated with a key, we wish to
traverse a top-down path of length K starting at the root of T and terminating at
some node v € T'. We follow our previous notation by letting A be the maximum
number of nodes that can be stored in a single block. Let ¢ = O(lg N) be the
number of bits required to encode a single key. Keys are included in the top-
down case because it is assumed that the path followed during the traversal is
selected based on the key values in T'.

Data Structures: We begin with a brief sketch of our data structures. A tree
T is partitioned into subtrees, where each subtree T; is laid out into a tree
block. Each block contains a succinct representation of T; and the set of keys
associated with the nodes in T;. The edges in T' that span a block boundary are

120 C. Dillabaugh, M. He, and A. Maheshwari

not explicitly stored within the tree blocks. Instead, they are encoded through
a set of bit vectors that enable navigation between blocks.

To introduce our data structures, we give some definitions. If the root node
of a block is the child of a node in another block, then the first block is a child
of the second. There are two types of blocks: internal blocks that have one or
more child blocks, and terminal blocks that have no child blocks. The block level
of a block is the number of blocks along a path from the root of this block to
the root of T'.

We number the internal blocks in the following manner. First number the
block containing the root of T as 1, and number its child blocks consecutively
from left to right. We then consecutively number the internal blocks at each
successive block level. The internal blocks are stored on the disk in an array I,
such that the block numbered j is stored in entry I[j].

Terminal blocks are numbered and stored separately. Starting again at 1, they
are numbered from left to right. Terminal blocks are stored in the array Z. As
terminal blocks may vary in size, there is no one-to-one correspondence between
disk and tree blocks in Z; rather, the tree blocks are packed into Z to minimize
wasted space. At the start of each disk block j, a lg B bit block offset is stored
which indicates the position of the starting bit of the first terminal block stored
in Z[j]. Subsequent terminal blocks are stored immediately following the last
bits of the previous terminal blocks. If there is insufficient space to record a
terminal block within disk block Z[j], the remaining bits are stored in Z[j + 1].

We now describe how an individual internal tree block is encoded. Consider
the block of subtree Tj; it is encoded using the following structures:

1. The block keys, By, is an A-element array which encodes the keys of T}.

2. The tree structure, B, is an encoding of T using the LOBM sequence of
Jacobson [I]. More specifically, we define each node of T} as a real node. T}
is then augmented by adding dummy nodes as the left and/or right child of
any real node that does not have a corresponding real child node in Tj. We
then perform a level order traversal of T; and output a 1 each time we visit
a real node, and a 0 each time we visit a dummy node. If T; has A nodes the
resulting bit vector has A 1s for real nodes and A + 1 0s for dummy nodes.
As the first bit is always 1, and the last two bits are always 0s, we do not
store them explicitly. Thus, B, can be represented with 24 — 2 bits.

3. The dummy offset, By. Let I' be a total order over the set of all dummy
nodes in internal blocks. In I" the order of dummy node d is determined
first by its block number, and second by its position within Bs. The dummy
offset records the position in I" of the first dummy node in Bs.

The encoding for terminal blocks is identical to internal blocks except: the
dummy offset is omitted, and the last two Os of By are encoded explicitly.

We now define a dummy root. Let T} and T}, be two tree blocks where T}, is a
child block of T};. Let 7 be the root of T}, and v be r’s parent in 7. When T} is

2 The node may have a child in T, but if that node is not part of Tj, it is replaced by
a dummy node.

Succinct and I/O Efficient Data Structures for Traversal in Trees 121

encoded a dummy node is added as a child of v which corresponds to r. Such a
dummy node is termed a dummy root.
Let ¢ be the number of dummy nodes over all internal blocks. We create:

1. X[1..£] stores a bit for each dummy node in internal blocks. Set X[i] = 1 iff
dummy node i is the dummy root of an internal block.

2. S[1..4] stores a bit for each dummy node in internal blocks. Set S[i] = 1 iff
dummy node ¢ is the dummy root of a terminal block.

3. Sp[l1..0'], where ¢ is the number of 1s in S. Each bit in this array corresponds
to a terminal block. Set Sg[j] = 1 iff the corresponding terminal block is
stored starting in a disk block of Z that differs from that in which terminal
block j — 1 starts.

Block Layout: We have yet to describe how T is split up into tree blocks. This
is achieved using the two-phase blocking strategy of Demaine et al. [I0]. Phase
one blocks the first clg N levels of T', where 0 < ¢ < 1. Starting at the root of T
the first |1g (A + 1) levels are placed in a block. Conceptually, if this first block
is removed we are left with a forest of O(A) subtrees. The process is repeated
recursively until ¢lg N levels of T" have thus been blocked.

In the second phase we block the rest of the subtrees by the following recursive
procedure. The root, r, of a subtree is stored in an empty block. The remaining
A — 1 capacity of this block is then subdivided, proportional to the size of the
subtrees, between the subtrees rooted at r’s children. During this process, if at
a node the capacity of the current block is less than 1, a new block is created.
To analyze the space costs of our structures, we have:

Lemma 3. The data structures described above occupy (3 + ¢)N + o(N) bits.

Proof. We first determine the maximum block size A. The encoding of subtree T}
requires 24 bits. We need Agq bits to store the keys, and [lg N bits to store the
dummy offset. Therefore, 24 + Ag + [lgN] = |Blg N|. Thus, A =6 (BEN).

During the first phase of the layout, non-full internal blocks may be created.
However, the height of the phase 1 tree is bounded by clg N levels, so the total
number of wasted bits in such blocks is bounded by o(N).

The arrays of blocks I and Z store the structure of T' as LOBM which requires
2N bits. The dummy roots are duplicated as the roots of child blocks, but as the
first bit in each block need not be explicitly stored, the entire tree structure still
requires only 2N bits. The keys occupy N - ¢ bits. Each of the O(N/A) blocks
in I stores a block offset of size 1g(IN/A) bits. The total space required for the
offsets is N/A-1g (N/A), which is o(N) bits since ¢ = O(lg N). The bit vectors X
and Sp have size N, but in both cases the number of 1 bits is bounded by N/A.
By Lemma [Ib, we can store them in o(N) bits. S can be encoded in N + o(N)
bits using Lemma [Th. The total space is thus (3 4+ ¢)N + o(N) bits.]

Navigation: Navigation in T is summarized in Figures[and Bl which present the
algorithms T'raverse(key,i) and TraverseT erminal Block(key, i) respectively.
During the traversal the function compare(key) compares the value key to the

122

C. Dillabaugh, M. He, and A. Maheshwari

Algorithm Traverse(key,1)

1.
2.

w

Load block I[i] to main memory. Let T; denote the subtree stored in I[i].
Scan B, to navigate within T;. At each node z use compare(key, Bi[z]) to
determine which branch to follow until a dummy node d with parent p is
reached.

Scan Bs to determine j = ranko(Bs,d).

Determine the position of j with respect to I" by adding the dummy offset to
calculate A = By + j.

If X[A\] =1, then set ¢ = rank: (X, \) and call Traverse(key,1).

If X[A\] = 0 and S[A\] = 1, then set ¢ = ranki;(S,\) and call
TraverseTerminal Block(key,1).

If X[\] = 0 and S[A] = 0, then p is the final node on the traversal, so the
algorithm terminates.

Fig. 4. Top down searching algorithm for a blocked tree

Algorithm TraverseTerminal Block(key,1)

1.
2.
3.

4.

6.

Load disk block Z[A] containing terminal block i, where A\ = rank;(Sp,1).

Let By be the offset of disk block Z[A].

Find «, the rank of terminal block ¢ within Z[A] by scanning from Sg[i] back-

wards to find j < i such that Sg[j] = 1. Then a =i — j.

Starting at By scan Z[)\] to find the start of the a'" terminal block. Recall that

each block stores a bit vector B, in the LOBM encoding, so we can determine

when we have reached the end of one terminal block as follows:

(a) Set two counters y =3 =1.

(b) Scan Bs. When a 1 bit is encountered increment p and 3. When a 0 bit is
encountered decrement 3. Terminate the scan when 8 < 0 as the end of
Bs has been reached.

(¢) Now p records the number of nodes in the terminal block so calculate the
length of the array By needed to store the keys and jump ahead this many
bits. This will place the scan at the start of the next terminal block.

Once the a'" block has been reached, the terminal block can be read in (process

is the same as scanning the previous blocks). It may be the case the this

terminal block overruns the disk block Z[A] into Z[A+ 1]. In this case skip the
first [lg B] bits of Z[X + 1] and continue reading in the terminal block.

With the terminal block in memory, the search can be concluded in a man-

ner analogous to that for internal blocks except that once a dummy node is

reached, the search terminates.

Fig. 5. Performing search for a terminal block

key of a node to determine which branch of the tree to traverse. The parameter ¢
is the number of a disk block. Traversal is initiated by calling Traverse(key, 1).

It is easy to observe that a call to TraverseT erminal Block can be performed
in O(1) I/0s, while Traverse can be executed in O(1) I/Os per recursive call.
Thus, the I/O bounds are then obtained directly by substituting our succinct
block size A for the standard block size B in the result of Demaine et al. [10]
(see Section). Combining this with Lemmas [3] we have the following result:

Succinct and I/O Efficient Data Structures for Traversal in Trees 123

Theorem 2. A rooted binary tree, T, of size N, with keys of size g = O(1g N)
bits, can be stored using (3+q)N +o(n) bits so that a root to node path of length
K can be reported with:

1. O(I/0s, when K = O(lg N)

femi)
lg(1+(BlgN)/q)

O< o) I/Os, when K = Q2(1g N) “”dK:O(BI%IQN)’ and

2
lg(1+ &)

3. O(B‘IIK) 1/0s, whenK:Q(BlgzN).

gN q

Acknowledgements

We wish to thank our anonymous reviewers for their helpful comments and
corrections.

References

1. Jacobson, G.: Space-efficient static trees and graphs. FOCS 42, 549-554 (1989)

2. Chien, Y.F., Hon, W.K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler trans-
form: Linking range searching and text indexing. In: DCC, pp. 252-261 (2008)

3. Aggarwal, A., Jeffrey, S.V.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116-1127 (1988)

4. Nodine, M.H., Goodrich, M.T., Vitter, J.S.: Blocking for external graph searching.
Algorithmica 16(2), 181-214 (1996)

5. Agarwal, P.K., Arge, L., Murali, T.M., Varadarajan, K.R., Vitter, J.S.: I/O-efficient
algorithms for contour-line extraction and planar graph blocking (extended ab-
stract). In: SODA, pp. 117-126 (1998)

6. Hutchinson, D.A., Maheshwari, A., Zeh, N.: An external memory data structure
for shortest path queries. Discrete Applied Mathematics 126, 55-82 (2003)

7. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: SODA, pp.
383-391 (1996)

8. Gil, J., Itai, A.: How to pack trees. J. Algorithms 32(2), 108-132 (1999)

9. Alstrup, S., Bender, M.A., Demaine, E.D.; Farach-Colton, M., Rauhe, T., Thorup,
M.: Efficient tree layout in a multilevel memory hierarchy. arXiv:cs.DS/0211010
[cs:DS] (2004)

10. Demaine, E.D., Iacono, J., Langerman, S.: Worst-case optimal tree layout in a
memory hierarchy. arXiv:cs/0410048v1 [cs:DS] (2004)

11. Brodal, G.S., Fagerberg, R.: Cache-oblivious string dictionaries. In: SODA, pp.
581-590 (2006)

12. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA, pp. 233-242 (2002)

13. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. STAM J. Comput. 31(3), 762-776 (2001)

14. Benoit, D., Demaine, E.D.; Munro, J., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275-292 (2005)

Space-Time Tradeoffs for
Longest-Common-Prefix Array Computation*

Simon J. Puglisi and Andrew Turpin

School of Computer Science and Information Technology, RMIT University,
Melbourne, Australia
{sjp,aht}@cs.rmit.edu.au

Abstract. The suffix array, a space efficient alternative to the suffix
tree, is an important data structure for string processing, enabling effi-
cient and often optimal algorithms for pattern matching, data compres-
sion, repeat finding and many problems arising in computational biology.
An essential augmentation to the suffix array for many of these tasks is
the Longest Common Prefix (LCP) array. In particular the LCP array
allows one to simulate bottom-up and top-down traversals of the suf-
fix tree with significantly less memory overhead (but in the same time
bounds). Since 2001 the LCP array has been computable in ©(n) time,
but the algorithm (even after subsequent refinements) requires relatively
large working memory. In this paper we describe a new algorithm that
provides a continuous space-time tradeoff for LCP array construction,
running in O(nwv) time and requiring n+O(n/y/v+v) bytes of working
space, where v can be chosen to suit the available memory. Furthermore,
the algorithm processes the suffix array, and outputs the LCP, strictly
left-to-right, making it suitable for use with external memory. We show
experimentally that for many naturally occurring strings our algorithm
is faster than the linear time algorithms, while using significantly less
working memory.

1 Introduction

The suffix array SA, of a string = is an array containing all the suffixes of x
sorted into lexicographical order [T0]. The suffix array can be enhanced [I] with
the longest-common-prefix (LCP) array LCP, which contains the lengths of the
longest common prefixes of adjacent elements in SA,. When preprocessed in this
way the suffix array becomes equivalent to, though much more compact than,
the suffix tree [I3II6U17], a data structure with “myriad virtues” [2]. Conceptu-
ally LCP, defines the “shape” of the suffix tree and thus allows top-down and
bottom-up traversals to be simulated using SA,. Such traversals are at the heart
of many efficient string processing algorithms [TI2I8I15].

Despite its utility, the problem of constructing LCP,. efficiently has been little
studied. The three algorithms that do exist [9JI2] consume significant amounts
of memory and, though asymptotically linear in their runtime, have poor locality

* This work is supported by the Australian Research Council.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 124{135,|2008.
© Springer-Verlag Berlin Heidelberg 2008

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 125

of memory reference and so tend to be slow in practice, certainly relative to the
fastest algorithms for constructing SA,. In this paper we describe a new algo-
rithm for LCP array construction that provides a continuous space-time tradeoff,
running in O(nv) time and requiring n+O(n/\/v+v) bytes of working space,
where v can be chosen to suit the available memory. We show experimentally
that for many naturally occurring strings our algorithm is faster than the linear
time algorithms, while always using a fraction of the working memory. Our basic
strategy is to compute the LCP values for a special sample of the suffixes and
then use these values to derive the rest with only a fixed extra cost per value.
Importantly we require only sequential access to the SA and LCP array, and
this locality of memory reference makes our algorithm suitable for low memory
environments when these arrays must reside on disk, and non sequential access
would cripple runtime.

The remainder of this paper is organized in the following manner. In the
remainder of this section we set some notation, formalise basic ideas and then
tour existing LCP array construction algorithms. Then, in Section Blwe describe
two peices of algorithmic machinery that are essential to our methods. Our new
algorithm is detailed in Section [Bl Section Ml reports on our experiments with an
efficient implementation of the algorithm, with reflections offered in Section Bl

1.1 Basic Definitions and Notation

Throughout we consider a string = x[0..n] = z[0]z[1]...z[n] of n+ 1 symbols.
The first n symbols of x are drawn from a constant ordered alphabet, X, con-
sisting of symbols 0, j = 1,2,...,|%| ordered 01 < 02 < --- < 0. The final
character z[n] is a special “end of string” character, $, lexicographically smaller
than all the other characters in X, so $§ < oy. For purposes of accounting we
assume the common case that | X| € 0..255, where each symbol requires one byte
of storage and that n < 232 so the length of 2 and any pointers into it require
four bytes each. These are not inherant limits on our algorithm, which will work
for any alphabet size and any string length.

For i =0,...,n we write z[i..n] to denote the suffix of = of length n —i + 1,
that is x[i..n] = z[i]z[i + 1]---z[n]. For simplicity we will frequently refer to
suffix x[i..n] simply as “suffix ¢”. Similarly, we write z[0..7] to denote the prefiz
of z of length i+ 1. We write x[i..j] to represent the substring x[i|z[i+1] - - - x[j]
of = that starts at position ¢ and ends at position j.

The suffix array of x, denoted SA, or just SA, when the context is clear,
is an array SA[0..n] which contains a permutation of the integers 0..n such that
z[SA[0]..n] < z[SA[1]..n] < --- < z[SA[n]..n]. In other words, SA[j] = i iff x[i..n]
is the jth suffix of in ascending lexicographical order.

Our focus in this paper is the computation of the an array derived from SA,,
the lep array LCP = LCPJ0..n]. Define lep(y, z) as the length of the longest
common prefix of strings y and z. For every j € 1..n,

LCP[j] = lep(z[SA[j —1]..n], z[SA[j]..n]),

126 S.J. Puglisi and A. Turpin

that is the length of the longest common prefix of suffixes SA[j—1] and SAj].
LCP[0] is undefined. The following example, which we will return to later, illus-
trates these data structures.

0 1 2 3 4 5 6 7 8 9 10
x a t a t g t t t g t $
SA 100 2 8 4 9 1 7 3 6 5
LCP - 0 2 0 2 0 1 1 3 1 2

Thus the longest common prefix of suffixes 0 and 2 is at, of length 2, while that
of suffixes 9 and 1 is ¢, of length 1.

1.2 Prior Art

When the average value in LCP is low it is feasible to compute each value by
brute force. However, we do not know in advance the longest LCP value for a
gien suffix array; in the worst case (a string of n identical symbols) the brute
force approach requires O(n?) time. Kasai et al [9] give an elegant algorithm
to construct LCP given SA and z in ©@(n) time. Including these arrays and
another for working, their algorithm requires 13n bytes. Manzini [12] describes a
refinement to Kasai et al’s approach that maintains the linear running time but
reduces space usage to 9n bytes. Manzini presents a further variant — again with
linear runtime — that overwrites SA with LCP and uses 4Hj(z) + 6n bytes of
space where Hy, is the k' order emperical entropy [I1], a measure that decreases
the more compressible x is. Thus, for very regular strings this algorithm uses
little more than 6n bytes, but in the worst case may use 10n.

To gain an idea of the problematic nature of the space bounds for these algo-
rithms, consider the task of construction LCP for the entire human genome; some
3GDb of data. DNA is notoriously uncompressible, so Manzini’s second algorithm
will have no advantage, leaving his 9n byte algorithm as the most space efficient
option. To avoid the deleterious effect of using secondary memory would require
27Gb of main memory, much more than the capacity of most workstations.

2 Tools

In this section we introduce two of the important components of our algorithm:
the concept of a Difference Cover, and efficient algorithms for solving Range
Minimum Queries.

2.1 Difference Covers

Essential to our methods is the concept of a difference cover, which was re-
cently used by Burkhardt and Kérkkainen for the purposes of suffix array con-
struction [4]. As they define it, a difference cover D modulo v is a set of integers
in the range 0..v—1 with the property that for all i € 0..v—1 there exists j, k € D
such that ¢ = k—j(mod v). A difference cover must have size > /v, though small

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 127

ones (with size < v/1.5v+6) can be generated relatively easily with a method
described by Colburn and Ling [5]. In any case, once computed a difference cover
can be stored and reused — around a dozen of varying sizes are provided in the
source code of Burkhardt and Kéarkk&inen [4].

An example of a difference cover for v = 7 is D = {1,2,4}. Observe that
for ¢ = 0..6 it is always possible to find two elements of D (perhaps the same
element twice) so that i equals the difference of the numbers, modulo v.

We also borrow from Burkhardt and Kérkkéinen a function 4(i,j) over a
difference cover D defined as follows. For any integers 4, j, let §(4, j) be an integer
k € 0..v—1 such that (i+k) mod v and (j+k) mod v are both in D. They show
that a lookup table of size O(v) computable in time O(v) is sufficient for (4, j)
to be evaluted in constant time for any i, j.

2.2 Range Minimum Queries

Our algorithms also rely on efficient data structures for solving range minimum
queries (RMQs). Given an array of n integers A[0..n—1], function RMQ 4 (i, j),
i,j € 0.n—1, i < j, returns k € i..j such that A[k] is the minimum (or equal
minimum) of all values in A[i..j]. Remarkably, it is possible to preprocess A
in O(n) time to build a data structure requiring O(n) space that subsequently
allows arbitrary RMQs to be answered in constant time [3l6]. The most space
efficient of these preprocessing algorithms requires just 2n + o(n) bits for the
final data structure and working space during its construction [6J7].

3 Computing the LCP Array

Our strategy for saving space is to compute the lcp values for a sample of suffixes
and then use those values to generate the rest. The particular sample we use
is defined by a difference cover with density selected such that overall space
requirements fit into the available memory.

At a high level the algorithm is comprised of the following steps:

1. Choose v > 2, a difference cover D modulo v with |D| = ©(y/v) and compute
the function 4.

2. Fill an array S[0..n/|D|] with the suffixes whose starting position modulo v
is in D. Build a data structure on S so that we can compute the lcp of an
arbitrary pair of sample suffixes in constant time.

3. Scan SA left-to-right and compute all the LCP values. To compute LCP[i]
we compare the first v symbols of SA[i] and SA[i—1]. If we find a mismatch
at SA[i]+j we know the lcp is j—1 and we are done. If they are equal after
v symbols we compute the lep using the fact that suffixes SA[i]+(SA[i—
1],SA[i]) and SA[i —1]+6(SA[i —1],SA[:]) are in the sample and we can
compute their Icp in constant time using the data structure alluded to in the
previous step.

As mentioned in Section 21 Step 1, the selection of a suitable difference
cover, can be acheived in O(y/v) time and anyway can be done offline. We now
delve further into Step 2 and Step 3 in turn.

128 S.J. Puglisi and A. Turpin

3.1 Step 2: Collecting and Preprocessing the Sample

Let m = n|D|/v denote the number of sample suffixes in string z[0..n]. As men-
tioned above, we collect the sample suffixes in an left-to-right scan of SA[0..n],
filling an array S[0..m—1] with the suffixes whose starting position modulo v is
in D. This can be acheived in O(n) if we first preprocess D and build a small
table D[0..v—1]. That is, D[i],i € D, is the number of elements less than i € D
(ie. it’s rank in D), or -1 if ¢ ¢ D. After the scan of SA all the sample suffixes
appear in S in the order in which they appear in the SA.

We then preprocess S and build a data structure so that we can compute
the lcp of an arbitrary pair of sample suffixes in constant time. The first part
of this is a mapping that gives us the position in S of a given sample suffix in
constant time. Because the values in S are periodic according to the difference
cover, the mapping can be implemented with an array S [0..m —1] and the D
table: the position of sample suffix i in S is simply S[|D|[i/v]+ D[i mod v]].
Figure [[l summarises the process.

— Compute D[0..v—1] (assume set D is sorted).

1: 50
2: for i — 0 to v—1 do
3: D[i] = -1
4: if D[j] =i then
5: D[i] «— j
6: j—7+1
— Put sample suffixes in S[0..m—1] and their ranks in S.
750
8: for i — 0 to n do
9: if D[SA[i] mod v] # —1 then
10: S[j] < SA[{]
11 SUDILS[)/v) + DIS) mod] — j
12: j—7+1

Fig. 1. Compute arrays S[0.m—1], §[0..m—1] and D[0..v—1]

Using the example string from Section [} and the difference cover D = {0, 1}
and v = 3, we get arrays shown in Figure

Having collected S, for each S[i], i = 1..m we compute L[i] = lep(S[i—1], S[é])
using the algorithm in Figure Bl The algorithm is an adaption of the original
O(n) time LCP algorithm from Kasai et al. [9]. The outer loop at Line 1 iterates
over elements of our chosen difference cover D, s, and the while loop on Line 4
fills in the values of L[S[s]], L[S[s + |D|]], L[S[s + 2|D|]], and so on. Note we
assume S[—1] = n to finess the boundary case in Line 5 when S[k] = 0.

We exploit the following lemma from Kasai et al. [9]

Lemma 1. If £(i) is lep value for suffiz i then €(i +v) > (i) — v,

which allows us to maintain ¢ never reducing by more than v with each iteration.
The analysis of execution time for Figure [3 is similar to that of Kasai et al. [9].

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 129

SA 10 0 2 8 9 1 7 3 6 5
SAijmodv 1 0 2 2 1 0 1 1 0 0 2
7 o 1 2 3 4 5 6 7
S 10 0 4 9 1 7 3 6
ID||S[jl/v] 6 0O 2 6 0 4 2 4
D[S[jjmodv] 1 0 1 0 1 1 0 0
S 1 4 6 2 7 5 3 0
L after s =0 0 0 3 1
L after s=1 - 0 0 0 1 1 3 1

Fig. 2. An example of the derivation of S, S and L

— Using S[0..m—1], S and D compute L[0..m—1].
1: for s — 0 to |D|—1 do

2: k—s

3 {0

4 while k < m do

5: s0 — S[S[k]—1]

6: 51— S[S[K]]

7 while z[so + £] = z[s1 + ¢] do
8 L—1L+1

9: L[S[k]] — ¢

10: £ — max(0,£ — v)

11: k—k+|D|

Fig. 3. Compute the values of L[0..m—1]

Consider the loop starting on Line 4, which computes the values in L corre-
sponding to sample suffixes ¥ = D[s](mod v). The execution time of this loop
is propotional to the number of times Line 8 is executed, as it is the innermost
loop. The value of £ increases by 1 on Line 8 and is always less than n, the string
length. Since ¢ is initially 0 and is decreased by at most v each time around the
outer while loop (at Line 10), which is executed at most m/|D| times, ¢ increases
at most 2n times. The O(n) time bound follows. In order to compute all the val-
ues in L we simply run the algorithm once for each k € D. Since |D| = O(y/v) it
follows that we can compute L in O(y/vn) time. With L in hand we preprocess

130 S.J. Puglisi and A. Turpin

it for constant time RMQs, allowing us to take advantage of the following well
known result (see, eg. [10]).

Lemma 2. Let A[0..n] be an array of lexicographically sorted strings and let
P[1..n] be an array where Pli] = lep(Ali —1], A[d]). Then for i,j € 0..n,i <
g, lep(A[i), A[j]) = RMQp (i, j).

We now have a data structure, which can be built in O(n\/v) time, that lets us
find the lcp of two arbitrary sample suffixes in constant time. In the next section
we use it to efficiently compute the entire LCP array.

3.2 Step 3: Computing the Entire LCP Array

We make a second scan of SA left-to-right to compute all the LCP values. For
convenience, let sy denote suffix SA[i—1] and s; denote suffix SA[i]. To compute
LCP[i] we first compare z[sg..S0+v] to x[s1..s1+v]. If they are not equal, the
offset of the first mismatching character is the lecp value and we can move on. On
the other hand, if the first v characters of these suffixes are equal, then LCP[:]
can be computed by finding the beginning of the sample suffixes in z[sg..s0+v]
and z[s1..s1 +v], ap and ay respectively in Figure @l and then using their pre-
computed lep value to derive LCP[i]. More specifically, because of the properties
of the difference cover, d(sp, s1) will return an offset k from sp and s; so that
both suffixes beginning at so+k and s;+k are in the sample set S. Using S
we can locate these in constant time, giving their positions in S, as 19 and
as shown in Figure @l Finally, LCP[i] will be equal to k plus the lcp of the two
sample suffixes located at ro and r1, which is computed as the RMQ; (ro,71).

Because we access SA strictly left-to-right it is possible to overwrite SA with
LCP as the algorithms proceeds. This excellent memory access pattern also
allows the possibility of leaving the SA on disk, overwriting it there with the
LCP information.

1: for i — 1 to n do

2: S0 < SA[i—1]
3: s1 — SA[q
— Check if lep(so, 81) < v.

4 7«0
5: while z[so + j] = z[s1 + j] and j < v do
6: je—3J3+1
7 if j < v then
8 LCP[i] < j
9 else

— Compute lep(so, s1) using L.
10: ao — so0+ 6(s0,51) ; 70 — S[|D||ao/v] + Dlao mod v]]
11: a1 — s1+ 6(s0,51) ; 71 — S[|D||a1/v] + Dla1 mod v]]
12: LCP[i] < 0(so0, s1) + RMQ (ro,71)

Fig. 4. Compute LCP[1..n] (LCP[0] is undefined) given $ and the RMQ, data struc-
ture in O(nwv) time

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 131

4 Implementation and Experiments

In this section we report on experiments with the new algorithm. The purpose
of the experiments was to compare the new algorithm to existing approaches
and also to gauge the effect of parameter v, the size of the difference cover on
performance. We implemented two different versions of the new algorithm, and
three existing approaches as follows.

PT-mem. Overwrites a memory resident SA with the LCP information, requir-
ing around 5n+13n/4/v bytes of primary memory.

PT-disk. Streams and overwrites a disk resident SA with the LCP information,
requiring around n+13n/y/v bytes of primary memory.

L-13. The original O(n) algorithm of Kasai et al [9], requiring 13n bytes.

L-9. Manzini’s first variant, requiring 9n bytes.

L-6. Manzini’s most space efficient version requiring 4H(x) + 6n bytes.

The memory requirements as stated here include the cost of the text, the SA
and the LCP array when they are required to be held in RAM. Note that while
the PT-MEM and PT-DISK programs overwrite SA, if the SA is required it can
be copied in @(n) time before the algorithm commences.

All tests were conducted on a 3.0 GHz Intel Xeon CPU with 4Gb main memory
and 1024K L2 Cache and a 320 GB Seagate Barracuda 7200.10 disk. The machine
was under light load, that is, no other significant I/O or CPU tasks were running.
The operating system was Fedora Linux running kernel 2.6.9. The compiler was
g++ (gee version 3.4.4) executed with the -O3 option. Times were recorded with
the standard Unix getrusage function. All running times given are the average
of three runs.

The five approaches were tested on the four different data sets shown in Table[I]
obtained from the Pizza-Chili Corpuﬂ. The large lcp values for the ENGLISH
corpus are due to duplicate documents in the text. Also note that we tested our
algorithms on intermediate file sizes (100 Mb), but the resources required fell
between those of the 50 Mb and 200 Mb data sets as expected, and so are not
reported here.

Figure Bl shows plots of the running time versus the memory usage on the four
data sets. Several points are immediately obvious. Firstly, comparing PT-MEM
(squares) with PT-DisK (circles) horizontally in each panel, we see that using
the disk based version requires very little extra time over and above the memory
based version. That is, the circles are about level vertically with the squares for
the same v value. This confirms the left-to-right nature of our implementations;
because we process the data structures on disk left-to-right, the buffering and
pre-fetching strategies employed by the operating system hide the cost of disk
reads and seeks.

Secondly, examining the methods at the memory levels given by the L-6
method (leftmost triangle in curve in each panel), we see that PT-MEM (squares)
is faster on all four data sets when v > 64. Moving the SA and LCP to disk,
PT-DIsK still remains faster than L-6, and uses about 60% less memory.

! pizzachili.dcc.uchile.cl

pizzachili.dcc.uchile.cl

132 S.J. Puglisi and A. Turpin

XML DNA n
o
3
T ov=32 o A
— A [0
§ / 7& / o \
3’/,8_ 1 /O o A o° / A
) o / le) a
€ ° o i
i: v=256 o
A
o _|
Yo
. A
o u A
* 'ﬂ\A\A ‘.,. --,l \A
o 4
ENGLISH SOURCE o PT-disk
A o PT-mem
° A 1-{6,9,13}
3
o o
™ OO/ D|:| /E’ A
(&) o A
D o /O
N o —
o) - o KA
S A *® e
£ \
o | A
Yo
®e-o Bgg-EaA
_ A
\A “. [] -t ,\.\A\A
o 4
I I I I I I I I I I I I
2 4 6 8 10 12 2 4 6 8 10 12
Memory (Bytes per symbol) Memory (Bytes per symbol)

Fig. 5. Time-memory tradeoff for the three approaches. Each panel represents a differ-
ent collection, with open symbols are for the 200Mb variants, and filled symbols for the
50Mb. Lines linking data points are for display only, and do not represent data points.
Distinguishing the L. methods (triangles) is obvious from the memory usage of each.
For the PT methods, the four data points for each cuve represent v = 32, 64, 128, 256
respectively, with memory usage decreasing as v increases, as indicated for the PT-DISK
method in the XML panel.

Thirdly, we note that on XML, DNA and SOURCES, the run-time of the new
PT approaches decreases with increasing v. This seems counterintuitive, since we
showed that the asymptotic runtime of the algorithm was directly proportional to

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 133

Table 1. Data sets used for empirical tests

lep

Data set name Size (Mb) | 2] Hs mean max

DNA-50 50 4 1.903 31 14,836
DNA-200 200 4 1.901 59 97,979
XML-50 50 97 0.735 42 1,005
XML-200 200 97 0.817 44 1,084
ENGLISH-50 50 239 1.764 2,221 109,394
ENGLISH-200 200 239 1.839 9,390 987,770
SOURCES-50 50 230 1.372 168 71,651
SOURCES-200 200 230 1.518 373 307,871

v, and so time should increase as v increases. The asymptotic analysis, however,
hides the internal tradeoff between the time to establish the S, S and L arrays
and the actual time to compute the LCP array. For these three data sets, the
average lcp value is quite low, and so the time invested in establishing the data
structures is not recouped during the LCP construction phase. As v decreases,
the initialisation time increases, but the extra knowledge of sampled lcp values
is not used as many lcp values are still less than v.

On the ENGLISH data set, which has longer lcp in general, there is a reward
for decreasing v from 256 to 128: the increase in the time required to produce a
denser sampling in S, S and L is recovered by faster production of LCP. Again,
however, when v is too low, the setup time begins to dominate again; hence the
“u-turn” in the curves for the PT methods in the bottom left panel of Figure 6l

Finally we can observe that if you have memory to spare, then [.-13 is the
algorithm of choice, consistently coming in faster on all but the DNA data set.
The DNA data set has the property that it has very short lcp values, and so the
algorithm has particularly poor locality of memory reference in comparison to
the PT approaches. Note also that the memory use by L-6 is about 8.5 bytes
per input symbol for the DNA data set because of the high value of Hy, or the
poor compressibility, for that data. Similarly, Table [l shows that the ENGLISH-
200 collection has a high Hj value, and likewise the memory required by L-6 is
about 8 bytes per symbol.

5 Discussion

The LCP array is a vital component in many algorithms that exploit suffix arrays
for efficient string processing. In this paper we have introduced a new algorithm
for computing the LCP array from the Suffix Array which allows a controlled
tradeoff between speed and memory. It requires O(nv) time and 5n+0(n/y/v)
bytes of primary memory. Choosing v to be larger than 32 allowed our method
to run faster and in less memory than existing approaches for LCP construction

134 S.J. Puglisi and A. Turpin

on the data sets used in our experiments. Moreover, if the SA and LCP are
stored on disk, the memory of our algorithm falls by a further 4n bytes, and in
practice is still faster than both L-6 and L-9 while using about 70% less primary
memory.

We remark that one could just keep the data structures representing the
sample of suffixes as a surrogate LCP array and compute actual LCP values on
demand, rather than explicitly computing the entire LCP array. Each “access”
to an element in LCP would cost O(v) time. On the other hand, instead of
computing the full LCP values, one could choose to store only values in the range
0..v and compute the remainder of the length as needed using the surrogate LCP
array. Fach of these smaller entries can be stored in O(logv) bits, and constant
time access to each full LCP value is maintained. We are currently investigating
the efficacy of such succinct LCP representations.

There are several other avenues future work might take. Firstly, Manzini’s
algorithms are all refinements (particularly to space overheads) of the original
algorithm by Kasai et. al. As the method we employ here for producing the L
array (Figure) is a modification of Kasai et. al’s approach, perhaps Manzini’s
tricks can be adapted to reduce the space requirements for this step in our algo-
rithm. Another interesting question is whether one of the many fast algorithms
for SA construction [14] can be modified to also output the LCP information in
an efficient manner. Finally, our current algorithm makes the tacit assumption
that the input text can reside in main memory so that random accesses to it are
not too costly. Developing variants that make only batches of sequential accesses
to the text to allow the algorithm to scale to massive, disk resident data is an
important open problem.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53-86 (2004)

2. Apostolico, A.: The myriad virtues of subword trees. In: Apostolico, A., Galil,
Z. (eds.) Combinatorial Algorithms on Words. NATO ASI Series F12, pp. 85-96.
Springer, Heidelberg (1985)

3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.,
Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88-94. Springer,
Heidelberg (2000)

4. Burkhardt, S., Karkkéinen, J.: Fast lightweight suffix array construction and check-
ing. In: Baeza-Yates, R., Chavez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 55-69. Springer, Heidelberg (2003)

5. Colbourn, C.J., Ling, A.C.H.: Quorums from difference covers. Information
Processing Letters 75(1-2), 9-12 (2000)

6. Fischer, J., Heun, V.. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36-48. Springer, Heidelberg (2006)

7. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459-470. Springer, Heidelberg (2007)

10.

11.

12.

13.

14.

15.
16.

17.

Space-Time Tradeoffs for Longest-Common-Prefix Array Computation 135

Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181-192. Springer, Heidel-
berg (2001)

Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches.
SIAM Journal of Computing 22(5), 935-948 (1993)

Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407-430 (2001)

Manzini, G.: Two space saving tricks for linear time LCP computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372-383.
Springer, Heidelberg (2004)

McCreight, E.M.: A space-economical suffix tree construction algroithm. Journal
of the ACM 23(2), 262-272 (1976)

Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2), 1-31 (2007)

Smyth, B.: Computing Patterns in Strings. Pearson Addison-Wesley, Essex (2003)
Ukkonen, E.: Online construction of suffix trees. Algorithmica 14(3), 249-260
(1995)

Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th annual
Symposium on Foundations of Computer Science, pp. 1-11 (1973)

Power Domination in O*(1.7548™)
Using Reference Search Trees

Daniel Raible and Henning Fernau

Univ. Trier, FB 4—Abteilung Informatik, 54286 Trier, Germany
{raible,fernau}@informatik.uni-trier.de

Abstract. The POWER DOMINATING SET problem is an extension of
the well-known domination problem on graphs in a way that we enrich
it by a second propagation rule: Given a graph G(V,E) aset P CV is
a power dominating set if every vertex is observed after we have applied
the next two rules exhaustively. First, a vertex is observed if v € P
or it has a neighbor in P. Secondly, if an observed vertex has exactly
one unobserved neighbor u, then also u will be observed as well. We
show that POWER DOMINATING SET remains AP-hard on cubic graphs.
We designed an algorithm solving this problem in time O*(1.7548™) on
general graphs. To achieve this we have used a new notion of search trees
called reference search trees providing non-local pointers.

1 Introduction

We study an extension of DOMINATING SET. The extension originates not from
an additional required property for the solution set (e.g., CONNECTED DoOMI-
NATING SET) but by adding a second rule. To be precise we look for a vertex
set, called power dominating set, such that every vertex is observed according
to the next two rules:

Observation Rule 1 (OR1): A vertex in the power domination set observes
itself and all of its neighbors.

Observation Rule 2 (OR2): If an observed vertex v of degree d > 2 is adja-
cent to d— 1 observed vertices, then the remaining unobserved neighbor becomes
observed as well.

By skipping the second rule we would exactly arrive at DOMINATING SET. The
second rule is responsible for the non-local character of the problem as it im-
plements a kind of propagation. Due to this propagation mechanism a vertex
can observe another vertex at arbitrary distance. Also the sequence of OR2 ap-
plications can be arbitrary but leading to the same set of observed vertices.
Indeed, many arguments relying on the locality of DOMINATING SET fail. There
is no transformation to SET COVER and thus the algorithm of [3] cannot simply
be modified. The problem occurs in the context of monitoring electric power
networks. One wishes to place a minimum number of measurement devices at
certain points in the network to measure the state variables (for example the

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 1364147,|2008.
© Springer-Verlag Berlin Heidelberg 2008

Power Domination in O*(1.7548"™) Using Reference Search Trees 137

voltage magnitude and the current phase). In that sense OR2 stands for Kirch-
hoff’s law. In this way, we arrive at the definition of the central problem:

PowER DOMINATING SET (PDS)

Given: An undirected graph G = (V| E), and the parameter k.

We ask: Is there a set P C V with |P| < k which observes all vertices in V
with respect to the two observation rules OR1 and OR27?

Discussion of Related Results. The study of PDS was initiated by Haynes
et al. [7] where they showed A'P-hardness and gave a first polynomial time
algorithm for trees. Guo et al. [6] and Kneis et al. [§] studied this problem
independently with respect to parameterized complexity. They proved W/2]-
hardness if the parameter is the size of the solution by reducing DOMINATING
SET to PDS. As a by-product it turns out that PDS is still NP-hard on graphs
with maximum degree four and that there is a lower bound for any approxima-
tion ratio of f2(logn) modulo standard complexity assumptions. Additionally,
they showed fixed-parameter tractability of PDS with respect to tree-width,
where [6] also give a concrete algorithm. [6] achieve this by transforming PDS
into a orientation problem on undirected graphs. The problem was also stud-
ied in the context of special graph classes like interval graphs [9] and block
graphs [12] where linear time algorithms where obtained. Aazami and Stilp [I]

improved the approximation lower bound to (2(210%1_e ") and gave an O(yv/n)-
approximation for planar graphs. On the other hand also domination problems
have been studied in exact algorithmics. Fomin, Gradoni and Kratsch [3] gave
a O*(1.5137™)-algorithm for DOMINATING SET where they use the power of the
measure and conquer approach. The currently fastest O*(1.5134™)-algorithm by
Rooj and Bodlaender [I1] achieves this slight improvement by a new reduc-
tion rule. Fomin, Gradoni and Kratsch [4] showed that the variant CONNECTED
DOMINATING SET can be solved in time O*(1.9407™).

New Results. First, we show that PDS remains A'P-hard for planar cubic
graphs. As PDS is polynomial time solvable for max-degree-two graphs and
NP-hardness was shown for max-degree-four graphs [6/8], this result closes the
gap inbetween. Furthermore, this justifies to follow a branching strategy even in
the case of cubic graphs. Note that it is not always true that generally N"P-hard
graph problems remain A'P-hard for cubic graphs. FEEDBACK VERTEX SET is
a problem where as with PDS cycles play a role (see [6]). But in contrast to
general graphs, it is solvable in polynomial time on cubic graphs [10]. Secondly,
we present an algorithm solving PDS in time O*(1.7548™), which breaks the
trivial 2™-barrier. The run time analysis proceeds in an amortized fashion using
the measure and conquer approach (see [3]). Furthermore, we introduce the
concept of a reference search tree. In an ordinary search tree we usuallay cut off
branches due to local structural conditions. In a reference search tree we also will
cut off branches if we can point to another node of the search tree where we can
find no worse solutions. This node must not be a neighbor of the current node
but can be anywhere in the search tree, as long as the overall search structure
remains acyclic.

138 D. Raible and H. Fernau

Terminology and Notation. The (open) neighborhood of v € V is N(v) =
{w | {w,v} € E} and the closed neighborhood N[v] := N(v) U {v}. A possible
solution set will be denoted P. We call a vertex v € V directly observed by
w € N(v) if u is in the solution, i.e., u € P. The vertex v € V will be called
indirectly observed by u € V if v is observed due to the application of OR2 onto
u. An (a,b)-branch is a binary branch which reduces the problem measure by an
amount of a in one part of the branch and by b in the other.

2 NP-Hardness of Planar Cubic Power Dominating Set

We will reduce VERTEX COVER to PLANAR CUBIC PDS. Due to [5] VERTEX
COVER remains NP-complete on planar cubic graphs. For any planar cubic
graph G(V, E) and any v € V we can denominate the neighbors of v as follows:
N(v) = {ny,, Nyy, Ny }. The reduction works as follows: Given a planar cubic
graph G(V, E) introduce for every v € V the gadget T, depicted in Figure [II
which consists of the vertices in the dotted square. For any {u,v} € F we can
find 1 < b,¢ < 3 such that v = n,, and v = n,,. By introducing the edge
{cvb, Cuc} we finally get G'(V’, E’) which is planar and cubic.

Lemma 1. G has a vertex cover of size < k iff G' has a PDS of size < k.

Fig. 1. The gadget T),. The vertices ¢i, q2, g3 correspond to vertices of the form c,; of
some other gadget T, such that z € V.

According to Lemma [[l PLANAR CUBIC PDS remains NP-hard.

3 An Exact Algorithm for Power Dominating Set

3.1 Reference Search Trees

We will introduce a new kind of search scheme for combinatorial optimization
problems. These problems can usually be modeled as follows. We are given a
triple (U, S, ¢) such that U = {uq,...,u,} is called the universe, S C P(U) is
the solution space and ¢ : P(U) — N is the value function. Generally we are
looking for a S € S such that ¢(S) is minimum or maximum. We then speak of a
combinatorial minimization (maximization, resp.) problem. The general search
space is P(U).

The set vector (svg) of aset @ € P(U) is a 0/1-vector indexed by the elements
of U such that: svg[i] =1 <= wu; € Q. We write svg € S when we mean Q) € S.

Power Domination in O*(1.7548"™) Using Reference Search Trees 139

A solvec is a 0/1/%-vector. We define the following partial order < on solvecs
$1, s2 of length n:

$1 X8y <= V1<i<n:(s1[i] =+= s2[i] =*)
A(s1li) =d (d € {0,1}) = s2[i] € {d, *}).

A branching is a directed tree D(V,T) with root r € V such that all arcs are
directed from the father-vertex to the child-vertex. For a vertex u € V' the term
ST, refers to the sub-tree rooted at w.

Definition 1. A reference search tree (rst) for a combinatorial minimization
(mazimization, resp.) problem (U,S,c) is a directed graph D(V,T U R) together
with a ingective function label : V. — {(z1,...,2n) | z € {0,1,%x}} with the
following properties:

D(V,T) is a branching.

D(V,T UR) is acyclic.

Letu,v € V(D) then u is a descendant of v in D(V,T') iff label(u) < label(v).

For any set vector svg of a set Q € P(U) with Q € S and a vertex v € V(D)

such that svg = label(v) we have either one of the following properties:

(a) There exists a leaf z € V(ST,) such that c(label(z)) < c(svq) (c(label(z))
> ¢(svg), resp.) and label(z) € S.

(b) There exists a verter x € V(ST,) such that there is exactly one arc
(z,y) € R and we have that there is a 0/1-vector h with h < label(y),
c(h) < c(svg) (c(h) > c(svg), resp.) and h € S.

B oo~

How can a rst be exploited algorithmically? It is important to see that in a rst
all the information for finding an optimal solution is included. Ordinary search
trees can be defined by omitting item (b) of Definition [l In a search tree we
skip a solution s with s < u for a sub-tree ST, if we can find a solution in ST,
which is no worse. In a rst we also have the possibility to make a reference to
another subtree STy where such a solution could be found. In ST it might also
be the case that we have to follow a reference once more. So, the only obstacle
seems to be that, if we follow reference after reference, we end up in a cycle. But
this is prevented by item 2. of Definition [[l An algorithm building up an rst can
eventually benefit by cutting of branches and introducing references instead.

3.2 Annotated Power Dominating Set

In what follows we assume that the vertices of the given graph G(V, E) are an-
notated. To be precise we have a function s which assigns a label to every vertex:
s : V(G) — {active, inactive, blank}. An active (inactive, resp.) vertex has al-
ready been determined to be (not to be, resp.) part of P. For a blank vertex this
decision has been not made yet. We will abbreviate the three attributes by (a), (i)
and (b). We also define A :={v € V(Q) | s(v) = (a)}, I :=={v € V(G) | s(v) =
(1)} and B :={v € V(GQ) | s(v) = (b)}. For any given set A C V(G) we can de-
termine which vertices are already observed by applying exhaustively OR1 and
OR2. Due to this we introduce " : V(G) — {(0o)bserved, (u)nobserved} and set

140 D. Raible and H. Fernau

O:={veV(@)|sw) =(o)}and U :=V(G)\O. The state of a vertex v is the
tuple (s(v), s'(v)). During the course of the algorithm the states of the vertices
(i-e., the labels s, s’) will be modified in a way that they represent choices already
made. We set N*(v) := {{w,v} € E | §'(w) = (u)} and d*(v) := |[N*(v)|. N*(v)
represents the unobserved neighbors of v. Let A*(G) := max,cv ns(v)=) d*(v)
and M(G) = {v € B | d*(v) = A*(G)}. We define NV (v) = N*(v) NI and
A9 (v) = [N® (v)]. We will write d&(v), N5(v), d2, N (v), sa(v) and s (v)
when we are referring to a particular annotated graph G by which the functions
are induced. We omit the subscript when it is clear from the context. A vertex
v € V(G) such that s'(v) = (o) and d*(v) = 2 will be called a trigger. A triggered
path between vy, vy € V(G) with s(v1) = (b), s(vg) = (b) is a path vy,..., vk
such that s(v;) = (b) and d*(v;) < 2, or v; is a trigger for 1 <i < k. A triggered
cycle is a triggered path with v; = vg. Observe that for all u € O we have
d*(u) # 1 due to OR2.

Algorithm. In this section we present reduction rules and the algorithm. Their
correctness and run time will be analyzed in the next section. We state the fol-
lowing reduction rules:

Isolated: Let v € O N B such that d*(v) = 0 then set s(v) « (7).

TrigR: Let v € V be a trigger and s(v) = (b). Then set s(v) « ().

Blank.2: Let v € V(G) with d*(v) <2, v € BNU, y € N*(v) and s(y) = (4).
Then set s(v) < (i).

Obs.3: Let v € V(G) such that v € BNU, d*(v) < 1 and y € N(v) with
y € INO and d*(y) > 3. Then set s(v) « (4).

Trig.2: Let v € V(G) such that v € BNU and d*(v) < 1. If there is a trigger u
with N*(u) = {v,y} and y € I NU then set s(v) = (4).

Observe that for degree-2 vertices there is no valid contraction rule, see
Figure If we deleted v and connected x and y observation would prop-
agate to z due to OR2. We are now ready to state Alg. [Tt

Algorithm 1. An exact algorithm for POWER DOMINATING SET

1: Apply OR2 exhaustively.
2: Apply Isolated, TrigR, Blank2, Obs3 and Trig2 exhaustively.
3: Select form M(G) a vertex v according to the priorities:
4: a) s(v) = (u). {We prefer unobserved vertices}
b) dV(v) < d*(v) {We prefer vertices such that not all neighbors are inactive}
5: if d*(v) > 4 then
6: Branch on v by setting 1) s(v) < (¢) and 2) s(v) < (a) in either of the branches.
7: else if d*(v) = 3 then
8: Branch on v: 1) s(v) « (i) and 2) s(v) < (a) and for all v € N*(v) with

s(u) = (b) set s(u) «— (3).
else if d*(v) =2 then
10: Branch on v by setting 1) s(v) < (¢) and 2) s(v) < (a) in either of the branches.

©

Power Domination in O*(1.7548"™) Using Reference Search Trees 141

Correctness. We will prove correctness of Alg.[Iland the reduction rules using
the concept of a reference search tree (see Definition). We have to define
U:=V(G),S :={SCV(QG) | SisaPDS for G} and ¢(Y) = |Y] for every
Y € P(U). The function label : V(D) — {(e1,...,en) | e € {(a), (¥), (b)}} then
expresses which vertices are no more blank, i.e., are active or inactive. Here (a)
refers to 1, (i) to 0 and (b) to the x-symbol defined in the function label of
Definition [[I According to this we set (a) = (¢) and (i) = (a).

The nodes of the rst V(D) represent choices made concerning the blank vertices
of V(G). These choices can be due to branching or to applying reduction rules.
Hence there is a 1-to-1 correspondence between V(D) and the application of
reduction rules and branchings. According to this we will speak of full nodes
and flat nodes, i.e. full nodes have two children in D(V,T), flat nodes only one.
In particular, nodes where reference pointers start are flat.

If we encounter a vertex v € V(G) with s(v) = (i) in the current node ¢
of the search tree we can find a second node d, € V(D) which represents the
choice made on v. That is we must have that label(q) < label(d,). We can find
d, by simply going up the search tree starting from g. We sometimes indicate
this relation by writing d?, whereas we omit the superscript where it is clear
from the context.

Prerequisites for Correctness Proofs. The correctness proofs proceed to some
extent in a graphical way. For this we draw the branching (the search tree without
references) D(V,T') in the plane with 2- and y-coordinates. If w is a point in the
plane then pos,(u) denotes its z- and pos,(u) its y-coordinate. It is possible to
draw D(V,T) satisfying three properties.

— Firstly, if v € V(D) is a father of u € V(D) then pos,(v) > posy(u).

— Secondly, let v € V(D) have two children u,,ug, i.e., it is a full node. uz
corresponds to the branch where we set s(y) = (i), in u, we decided s(y) =
(a) for some y € V(G). We want D to be drawn such that for all z € ST,
we have pos,(v) > pos,(z) and for all 2’ € ST, we have pos,(z’) > pos,(v).
Hence we may speak of u; as the left and u, as the right child of v. According
to this we will refer to them as [(v) and r(v), respectively.

— Thirdly, let v € V(D) be a flat node with its only child v.. Then we require
that pos, (v) = posg(ve).

The subsequent correctness proofs proceed as follows: Every time we skip a pos-
sible solution we show that we can insert a reference to some node u € V(D) of
the search tree such that we can find a solution z with label(z) < label(u) which
is no worse. Additionally, we show that these references always point from the
left to the right (with respect to the z-coordinate) in the drawing of D(V,T).
This way we assure acyclicity of the final rst D(V,T U R) which is implicitly
built up by the algorithm.

Lemma 2. Let us fix an annotated PDS instance G(V, E) that corresponds to
some node q € V(D) in the search tree. Let v € V(G) with w € INO and
df(u) > 3. Then di € D(V,T) is a full node.

142 D. Raible and H. Fernau

3% ié' %é @ @
y S — — —0
(b) (c) (d) (e)

Fig. 2. Filled vertices are observed, white vertices are unobserved. Round vertices are
blank, square vertices are inactive. Shaded vertices are active.

Proof. Suppose the contrary. Due to df(u) > 3 none of the reduction rules in
Alg[M have set s(u) < (¢) and thus there is no reference starting in w. The only
remaining possibility is the second part of the branch in step 7 of Alg. Il Now
suppose by setting s(v) « (a) for some v € V(G) the algorithm has set also
s(u) « (7) and s’'(u) = (o) implicitly. We now examine the situation right before
this happened. This situation is reflected by some annotated graph G'(V, E).
We must have df, (v) = 3 and s (u) = (u). Suppose at this point s, (v) = (u).
From this it follows that d}, (u) > 4 due to our premise. But this contradicts
the choice of v as branch vertex. Therefore we must have si, (v) = (0). But once
more this contradicts the choice of v since we have si, (u) = (u) at that point
(as step 7 applied u should have been observed by v directly). a

Lemma 3. Applying Blank2, Obs3, Trig2, TrigR, Isolated and step 7 of
Alg. [is correct.

Proof. We will prove the following: 1) for every vertex v € V(G) with s(v) = (¢)
either d, is a full node or there is a vertex h such that dj, is a full node and we in-
serted a reference (v, r(dp,)) such that if there is a solution with s(v) = (a) at that
point in the search tree we can find a no worse one z with label(z) < label(r(d},)).
2) Every reference is pointing from the left to the right in the drawing of D(V,T).
As step 7 makes use of this fact, it will be proven in parallel. The proof is by
induction on the height s of the search tree. In case s = 0 nothing is to show. If
s > 0 we will distinguish between the different operations:

Blank2. Let g be the current search tree node and, w.l.o.g., label(q) = (e1,.. .,
e1—1,(b),. .. (b)) such that e; corresponds to v and e; to y (with v and y we are refer-
ring to the definition of Blank2). Suppose Blank2 applies to v and dj is a full node
(see Figure. Suppose there is a solution k := (e1, .. .,e;—1,(a),e141,. . . ,€n) =
label(q) as indicated in Figure[2(c)] Then also k" := (€1, ..., e;—1, (i), €141, - - -, €n)
is a solution (due to d*(v) < 2 and OR2, see Figure[2(d)). Hence we insert a ref-
erence (q,7(d})) as k" < label(r(d])) which is pointing from the left to the right.
This reference means that we can find a no worse solution compared to k. We find
this solution in the sub search tree ST, 4q) as label(k') < label(r(d})) or else we
have to follow another reference to the right. Therefore we can skip the possibility
of setting s(v) «— (a).

Power Domination in O*(1.7548"™) Using Reference Search Trees 143

If d? is a flat node than due to the induction hypothesis there must be a
reference (df, h’) such that b’ € V(D) is the right child of some h € V(D) which
is a full node and (df,h’) points from the left to the right. We can rule out the
solution k again as k' is no worse. Due to (df, h’) also &’ is skipped as there must
be a alternative solution z with label(z) =< h’ such that z is no worse than &’.
Thus we can insert the reference (g, ') pointing also from the left to the right.

Trig2. The proof is completely analogous to the first item.

Obs3. From Lemma [2lwe have that y is a full node. The correctness follows now
analogously to the first part of the first item.

Step 7. We only have to consider the second part of the branch: s(v) < (a)
and for all uw € N*(v) with s(u) = (b) set s(u) « (i). Let N*(v) = {a,b, c}. We
make a case distinction concerning d¥ (v). Let ¢ € D(V) be the current search
tree node before branching and let label(q) = (e1, ..., e, (b),..., (b)), where the
entries ey corresponds to v, ez to a and eg to b. Therefore we have e; = (b).
Assume there is a PDS P 3 v with svp < label(q).

d®(v) =0 If [P N N*(v)| € {2,3} then also P\ {v} is a PDS due to OR2. If
w.l.o.g PN N*(v) = {a} then also P’ := P\ {v} U{b} is a PDS where P’ is
covered by the first part of the branch.

d®(v) =1 The only cases |P N N*(v)| = 1 and |P N N*(v)| = 2 can be handled
analogously to the case d) = 0.

d®(v) =2 W.lo.g. PN N*(v) = {a}. Assume there is a PDS corresponding to
k= ((a),(a),(i),eq,...,e,) 2 label(q); k' := ((i), (a),(a),eq,...,€,) is then
a solution, too. Suppose df is a full node. Then k" < label(r(d})) and hence
we insert a reference (g, r(df)). If df is a flat node there must be a reference
(df,n’). Then insert (g, h').

The inserted references are pointing all from the left to the right in the drawing
of D(V,T). This ensures acyclicity of D(V,T U R). O

Note that the reduction rules treated in Lemma [3] are not valid on their own.
They are only correct because they are referring to solutions which Alg. [defi-
nitely will consider. In other words, if we are given an annotated graph G, where
the annotation is not due to Alg. [[l we cannot apply these reduction rules.

Run Time Analysis. We define the following sets: I = {v € I | §'(v) #
(0),3u € N*(v) : s(u) = ()}, O = (ONB), B = BNU. Here I comprises
the inactive vertices, which are not observed such that they have at least one
neighbor which is blank. In O we find the observed vertices for which we have
not yet decided if there are active or not. Also for any v € O we have d*(v) > 2
(Isolated). B contains the unobserved blank vertices. The measure we use in
our run time is the following one:

©(@) = |B|+3-10] +~ - |I| with 3 = 0.51159, v = 0.48842

We will now analyze the different branchings in Alg. IIlA In general we can find
integers ¢, k with ¢ + k = d*(v) such that £ = |[N*(v) N I| and k = |[N*(v) N B|.

144 D. Raible and H. Fernau

d*(v) > 4: The first case is when we have chosen a vertex v with d := d*(v). We
will explicitly analyze the case when d = 4. We show that any case occurring
for d > 4 is run time upper bounded by some case when d = 4. First we will
distinguish between the circumstances that s’(v) = (o) and §'(v) = (u).

§'(v) = (u) In the branch where we set s(v) «— (a) we get a reduction in ¢(G)
of 1+ ¢-~v+k-(1—p). This is due to v becoming observed and active,
the vertices in N*(v) N I becoming inactive and observed and N*(v) N B
becoming observed and blank. In the branch setting s(v) « (i) we reduce
©(G) by at least (1 —~) (we obtain a greater reduction if v drops out of I).
As (1 —) < ~ the worst case is the branch (1 4+ 4(1 — §),1 —) which is
upper bounded by O*(1.6532").

s'(v) = (o) In the branch where we set s(v) «— (a) we get a reduction in ¢(G) of
B+L€-v+k-(1—). Here we get only a reduction of 8 from v as it is already
observed. In case s(v) « (i) the reduction is again 3 as v drops out of O. As
(B+4(1—p),) is the worst branch we have a upper bound of O*(1.7548™).

We examine now cases with d > 4. Here the worst case is analogously when
k = d. But it is also no better as the case when k£ = 4 and d = 4, which was
already considered.

d*(v) = 3: We first focus on the case where ¢ < 2. As we get a reduction of one
for every vertex in N*(v) N B the worst case is when ¢ = 2. Now if s'(v) = (u)
then this results in a (2 + 2 -+v,1 — 7) branching. If s'(v) = (o) we have a
(B+2-v+1,p5)-branching. O*(1.7489™) is an upper bound for both.

Now due to the priorities in step 4 of Alg. [[l we select a vertex v such that
¢ = 3 with least priority. We first examine the case where s'(v) = (u) and ¢ = 3.
Now suppose for all u € N*(v) we have N*(u)NB = {v} (&). Then in the branch
s(v) < (i) we get an additional amount of 3 - . This is due to the fact that the
vertices in N*(v) will drop out of I. Hence, we have a (14 3-v,(1 —~) +3-7)
branch.

Conversely, there is a u € N*(v) with N*(u) N B = {v,u1,...,us} and s > 1
(). If s'(u1) = (0) then due to TrigR and the choice of v we have d*(u;) = 3.
In s(v) < (a) u will become a trigger and is reduced away from ¢(G) due to
TrigR. This means we have a (1 4+ 3 -~ + 3,1 —) branch.

If '(u1) = (u) then we have d*(u1) = 3 due to Blank2 and the choice of v.
Also it holds that d¥(u;) = 3 again by the choice of v. Hence in s(v) « (a)
the x-degree of u; drops by one. Therefore Blank2 applies on u; and it will not
appear in ¢(G) anymore which leads to a (2 +3-+v,1 —) branch. O*(1.6489™)
upper bounds both possibilities.

The second possibility for v is s'(v) = (o), yielding a (3+3-v, 3+ 3-7)-branch
for case @. In case of &, s’(u1) = (o) is necessary or otherwise, we contradict the
choice of v (d*(u1) > 3), or Blank2 applies to u; (d*(u1) < 2). Again we have
d® (u;) = 3. Hence, this gives a (20 + 37, 8)-branch, as u; becomes a trigger.
An upper bound for both is O*(1.7488™).

Power Domination in O*(1.7548"™) Using Reference Search Trees 145

d*(v) < 2:
Lemma 4. In step 10 of Alglll we have:

1. For all uw € V with d*(u) > 3 it follows that s(u) = (3).
2. Let v € V(G) with s(v) = (b) and s'(v) = (u) chosen for branching then:
(a) For all u € N*(v) : s(u) = (b).
(b) If d*(v) <1 then for allu € N(v) \ N*(v) : s(u) = (i) and d*(u) = 2.
3. 0=0nNI. (0ONB =0, alternatively).

Proof. 1. Otherwise, we have a contradiction to the choice of v. 2(a) Otherwise,
Blank2 applies. 2(b) Note that s'(u) = (o). Suppose s(u) = (b) then either
TrigR applies (d* (u) = 2) or we have a contradiction to the choice of v (d*(u) >
3). From s(u) = (a) it follows that s'(v) = (o), a contradiction. If we had
d*(u) > 3 and s(u) = (i) then Obs38 applies. This contradicts s(v) = (b).

3. Let u € O\ I then d*(u) € {0,1,2} is ruled out by Isolated, OR2 and
TrigR. If d*(u) > 3 then from item 1. it follows that u € I, a contradiction. O

Let v be the vertex chosen in step 9 of Algll Let G' := G[B] and note that
B = B due to Lemma @Bl G consists of paths and cycles formed by vertices in
B due to Lemma AlZa and the fact that for all z € B we have d*(z) < 2 (see
Figure. v belongs to one of those components. Explore G the following way:

1. For all u € B set visited(u) < f.

2. If there is u € N*(v) with visited(u) = f then set visited(v) < t and v «— u.

3. If there is t € N(v) with t € O (due to LemmaHI2b u is a trigger) such that
d*(t) = {v,u} and visited(u) = f then set visited(v) — t and v — u.

4. If one of the steps 3 or 4 applied goto 2.. Else set visited(v) < t and stop.

Let W := {u € B | visited(u) = t}. W comprises the visited vertices in B.
Either W is path or a cycle containing at least two vertices from B (as long
|[V(G)| > 1 and due to Lemma HIRE)). Either v has a blank neighbor or it has a
trigger as neighbor. Now observe that any vertex in W is equally likely to be set
active: Once there is an active vertex from W the whole vertex-set W will be
observed due to OR2. Also any additional trigger ' ¢ W which is a neighbor of
some v' € W only depends on v’ being observed.

Considering the branch s(v) < (a) due to exhaustively applying OR2 for any
v’ € W we have N(v') C O afterwards. Hence W will drop out of B but will also
not be included in O due to Isolated. Thus there is a reduction of |[W| > 2.

In case s(v) < (i) due to applying Blank2 and Trig2 we have that W < I'\ I
(Lemma MZa)/2D) and thus a reduction of |W|. Summing up we have a (2,2)
branch which we upper bound by O*(1.415").

Note that the instances occurring at this point of Alg[dl are still NP-hard to
solve. There is a simple reduction from cUBiC PDS. For any vertex v, create a
cycle C, of length three. If {u,v} € E, connect free vertices z € C, and y € C,,
with an inactive trigger. So, we have no alternative to continuing the branching.

146 D. Raible and H. Fernau

Theorem 1. POWER DOMINATING SET can be solved in time O*(1.7548"™).

We like to comment that Alg. [[] achieves a run time of 0*(1.6212") on cubic
graphs. This can be seen by modifying the general analysis. Simply choose [=
0.8126 and v = 0.3286 and skip the part where d*(v) > 4.

4 Conclusion and Further Perspectives

Speed-Up With Exponential Space. We precompute optimal solutions for all ver-
tex induced subgraphs with no more than w = 0.1103n vertices. For any sub-
graph Gg we create 2*™ instances by deciding for all v € V(Gg) if they are
observed yet or not. By solving each of these instances by brute force, we spend
4" steps for any induced subgraph with predetermined observation pattern.
Thus we need O*(()4“") € 0*(1.6493") steps for building up a table of size
0(1.5275™). Let R =V (G)\ {v € O | N[v] C O}. Once we arrived at a graph G
with |R| < wn in Alg. [[l we can look up the rest of the solution by inspecting
the table entry which is determined by G[R] and RN O. Thus Alg. [l will run in
O*(1.7548(1=«)n) C ©0*(1.6493™). Tt is important to notice that we ignored the
fact that there might be active and inactive vertices in G[R]. The correctness fol-
lows from the fact that the state of observation of G[V'\ R] is independent of how
G|[R] is observed. Also any solution for G[R] which ignores the labels active and
inactive cannot be worse than one that does not. By choosing w = 0.092972 the
same algorithm solves cUBIC PDS in O*(1.55™) steps using 0(1.4533™) space.

Notice that this type of speed-up relies on the fact that no branching or re-
duction rule ever changes the (underlying) graph itself, but rather, the existing
graph is annotated. This property is also important when designing improved al-
gorithms with the help of reference search trees, since it might be tricky to argue
to find a solution not worse than the ones to be expected in a particular branch
of a search tree somewhere else in the tree, when the instance is (seemingly)
completely changed.

Résumée. In this paper, we designed an exact algorithm for POWER DOMINAT-
ING SET consuming O*(1.7548"™) time. To achieve this we made intensive use
of the concept of a reference search tree. This means that we where able to cut
off branches by referring to arbitrary locations in the search tree where one can
find equivalent solutions. Maybe the term search-DAG expresses this property
also quite well. In the long version of [2] we already applied the concept of an
rst successfully. We proved the correctness of a reduction rule whose application
was critical for the run time. We expect that we can exploit reference search
trees further by designing exact algorithms for non-local problems or improving
existent ones (e.g., CONNECTED DOMINATING SET/VERTEX COVER or MaAX
INTERNAL SPANNING TREE). For this kind of problems we are not allowed to
delete vertices due to selecting vertices into the solution or not. We rather have
to label them. Many algorithms come to decisions by respecting them. We rather
try to make use of them. Let = be a labeled vertex not selected into the solution
and y an unlabeled vertex. Suppose by re-labeling = (taking z into the solution)

Power Domination in O*(1.7548"™) Using Reference Search Trees 147

and excluding y from the solution we have a solution which is no worse to the
possibility of taking y into the solution. Then we can skip this last possibility by
inserting a reference. We imagine that this arguing is also possible when several
vertices are involved.

References

10.

11.

12.

. Aazami, A., Stilp, M.D.: Approximation algorithms and hardness for domination

with propagation. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.)
RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 1-15. Springer, Heidel-
berg (2007)

. Fernau, H., Raible, D.: Exact algorithms for maximum acyclic subgraph on a su-

perclass of cubic graphs. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008.
LNCS, vol. 4921, pp. 144-156. Springer, Heidelberg (2008); long version available
as Technical Report 08-5, Technical Reports Mathematics / Computer Science,
University of Trier, Germany (2008)

. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: domination — a case

study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 191-203. Springer, Heidelberg (2005)

. Fomin, F.V., Grandoni, F., Kratsch, D.: Solving connected dominating set faster

than 2. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
152-163. Springer, Heidelberg (2006)

. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.

SIAM J. Appl. Math. 32(4), 826-834 (1976)

. Guo, J., Niedermeier, R., Raible, D.: Improved algorithms and complexity results

for power domination in graphs. In: Liskiewicz, M., Reischuk, R. (eds.) FCT 2005.
LNCS, vol. 3623, pp. 172-184. Springer, Heidelberg (2005)

. Haynes, T.W., Mitchell Hedetniemi, S., Hedetniemi, S.T., Henning, M.A.: Domi-

nation in graphs applied to electric power networks. STAM J. Discrete Math. 15(4),
519-529 (2002)

. Kneis, J., Molle, D., Richter, S., Rossmanith, P.: Parameterized power domination

complexity. Inf. Process. Lett. 98(4), 145-149 (2006)

. Liao, C.-S., Lee, D.-T.: Power domination problem in graphs. In: Wang, L. (ed.)

COCOON 2005. LNCS, vol. 3595, pp. 818-828. Springer, Heidelberg (2005)
Speckennmeyer, E.: On feedback vertex sets and nonseparating independent sets
in cubic graphs. Journal of Graph Theory 3, 405-412 (1988)

van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer, a faster
exact algorithm for dominating set. In: STACS 2008, volume 08001 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFT), Schloss Dagstuhl, Germany, pp. 657-668 (2008)

Xu, G., Kang, L., Shan, E., Zhao, M.: Power domination in block graphs. Theor.
Comput. Sci. 359(1-3), 299-305 (2006)

The Isolation Game: A Game of Distances

Yingchao Zhao'-*, Wei Chen?, and Shang-Hua Teng?**

! State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University

zhaoyingchao@gmail.com
2 Microsoft Research Asia
weilc@microsoft.com
3 Boston University
steng@cs.bu.edu

Abstract. We introduce a new multi-player geometric game, which we will refer
to as the isolation game, and study its Nash equilibria and best or better response
dynamics. The isolation game is inspired by the Voronoi game, competitive facil-
ity location, and geometric sampling. In the Voronoi game studied by Diirr and
Thang, each player’s objective is to maximize the area of her Voronoi region. In
contrast, in the isolation game, each player’s objective is to position herself as far
away from other players as possible in a bounded space. Even though this game
has a simple definition, we show that its game-theoretic behaviors are quite rich
and complex. We consider various measures of farness from one player to a group
of players and analyze their impacts to the existence of Nash equilibria and to the
convergence of the best or better response dynamics: We prove that it is NP-hard
to decide whether a Nash equilibrium exists, using either a very simple farness
measure in an asymmetric space or a slightly more sophisticated farness measure
in a symmetric space. Complementing to these hardness results, we establish ex-
istence theorems for several special families of farness measures in symmetric
spaces: We prove that for isolation games where each player wants to maximize
her distance to her m" nearest neighbor, for any m, equilibria always exist. More-
over, there is always a better response sequence starting from any configuration
that leads to a Nash equilibrium. We show that when m = 1 the game is a poten-
tial game — no better response sequence has a cycle, but when m > 1 the games
are not potential. More generally, we study farness functions that give different
weights to a player’s distances to others based on the distance rankings, and obtain
both existence and hardness results when the weights are monotonically increas-
ing or decreasing. Finally, we present results on the hardness of computing best
responses when the space has a compact representation as a hypercube.

1 Introduction

In competitive facility location [445l7] data clustering [8], and geometric sampling [10],
a fundamental geometric problem is to place a set of objects (such as facilities and

* Supported by the National Natural Science Foundation of China under grant No. 60621062
and the National Key Foundation R&D Projects under the grant No. 2004CB318108 and
2007CB311003.

** Supported by NSF grants CCR-0635102 and ITR CCR-0325630. Part of this work was done
while visiting ITCS at Tsinghua University and Microsoft Research Asia Lab.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 1481-158, R008.
(© Springer-Verlag Berlin Heidelberg 2008

The Isolation Game: A Game of Distances 149

cluster centers) in a space so that they are mutually far away from one another. Inspired
by the study of Diirr and Thang [3]] on the Voronoi game, we introduce a new multi-
player geometric game called isolation game.

In an isolation game, there are k players that will locate themselves in a space ({2, A)
where A(x, y) defines the pairwise distance among points in {2. If Az, y) = A(y, x),
forallz,y € £2, we say (£2, A) is symmetric. The i*” player has a (k—1)-place function
fileo s A(pi, pi-1), A(pi, pit1), - - -) from the k — 1 distances to all other players to a
real value, measuring the farness from her location p; to the locations of other players.
The objective of player 4 is to maximize f; (..., A(p:, pi—1), A(pi, pi+1), - - -), once the
positions of other players (..., p;—1, pi+1, .. .) are given.

Depending on applications, there could be different ways to measure the farness
from a point to a set of points. The simplest farness function f;() could be the one that
measures the distance from p; to its nearest player. Games based on this measure are
called nearest-neighbor games. Another simple measure is the total distance from p;
to other players. Games based on this measure are called fotal distance games. Other
farness measures include the distance of p; to its m'" nearest player, or a weighted
combination of the distances from player ¢ to other players.

Isolation games with simple farness measures can be viewed as an approximation of
the Voronoi game [[1/26]. Recall that in the Voronoi game, the objective of each player is
to maximize the area of her Voronoi cell in {2 induced by {p1, ..., pr. } — the set of points
in {2 that are closer to p; than to any other player. The Voronoi game has applications in
competitive facility location, where merchants try to place their facilities to maximize
their customer bases, and customers are assumed to go to the facility closest to them.
Each player needs to calculate the area of her Voronoi cell to play the game, which
could be expensive. In practice, as an approximation, each player may choose to simply
maximize her nearest-neighbor distance or total-distance to other players. This gives
rise to the isolation game with these special farness measures.

The generalized isolation games may have applications in product design in a com-
petitive market, where companies’ profit may depend on the dissimilarity of their prod-
ucts to those of their competitors, which could be measured by the multi-dimensional
features of products. Companies differentiate their products from those of their com-
petitors by playing some kind of isolation games in the multi-dimensional feature space.
The isolation game may also have some connection with political campaigns such as in
a multi-candidate election, in which candidates, constrained by their histories of public
service records, try to position themselves in the multi-dimensional space of policies
and political views in order to differentiate themselves from other candidates.

We study the Nash equilibria [9] and best or better response dynamics of the isolation
games. We consider various measures of farness from one player to a group of players
and analyze their impact to the existence of Nash equilibria and to the convergence
of best or better response dynamics in an isolation game. For simple measures such
as the nearest-neighbor and the total-distance, it is quite straightforward to show that
these isolation games are potential games when the underlying space is symmetric.
Hence, the game has at least one Nash equilibrium and all better response dynamics
converge. Surprisingly, we show that when the underlying space is asymmetric, Nash
equilibria may not exist, and it is NP-hard to determine whether Nash equilibria exist in

150 Y. Zhao, W. Chen, and S.-H. Teng

an isolation game. The general isolation game is far more complex even for symmetric
spaces, even if we restrict our attention only to uniform anonymous isolation games. We
say an isolation game is anonymous if for all 4, f;() is invariant under the permutation
of its parameters. We say an anonymous isolation game is uniform if f;() = f;() for
all ¢, j. For instance, the two potential isolation games with the nearest-neighbor or
total-distance measure mentioned above are uniform anonymous games. Even these
classes of games exhibit different behaviors: some subclass of games always have Nash
equilibrium, some can always find better response sequences that converge to a Nash
equilibrium, but some may not have Nash equilibrium and determining the existence of
Nash equilibrium is NP-complete. We summarize our findings below.

First, We prove that for isolation games where each player wants to maximize her
distance to her m!” nearest neighbor, equilibria always exist. In addition, there is always
a better response sequence starting from any configuration that leads to a Nash equilib-
rium. We show, however, this isolation game is not a potential game — there are better
response sequences that lead to cycles. Second, as a general framework, we model the
farness function of a uniform anonymous game by a vector w = (w1, wa, ..., Wk_1).
Let dj = (dj1,dj2,...,d;,k—1) be the distance vector of player j in a configura-
tion, which are distances from player j to other £ — 1 players sorted in nondecreasing
order, i.e., dj1 < dj2 < ... < djk—1. Then the utility of player j in the configura-
tionisw - d = Z;:ll(wi - dj ;). We show that Nash equilibrium exists for increasing
or decreasing weight vectors w, when the underlying space ({2, A) satisfies certain
conditions, which are different for increasing and decreasing weight vectors. For a par-
ticular version of the decreasing weight vectors, namely (1,1,0,...,0), we show that:
(a) it is not potential even on a continuous one dimensional circular space; (b) in gen-
eral symmetric spaces Nash equilibrium may not exist, and (c) it is NP-complete to
decide if a Nash equilibrium exists in general symmetric spaces. Combining with the
previous NP-completeness result, we see that either a complicated space (asymmetric
space) or a slightly complicated farness measure ((1,1,0,...,0) instead of (1,0...,0)
or (0,1,0,...,0)) would make the determination of Nash equilibrium difficult.

We also examine the hardness of computing best responses in spaces with compact
representations such as a hypercube. We show that for one class of isolation games
including the nearest-neighbor game as the special case it is NP-complete to compute
best responses, while for another class of isolation games, the computation can be done
in polynomial time.

The rest of the paper is organized as follows. Section [2| covers the basic definitions
and notation. Section [3] presents the results for nearest-neighbor and total-distance iso-
lation games. Section 4] presents results for other general classes of isolation games.
Section [3] examines the hardness of computing best responses in isolation games. We
conclude the paper in Section[6l The full version of the paper with complete proofs can
be found in [11]].

2 Notation

We use ({2, A) to denote the underlying space, where we assume A(x,z) = 0 for all
x € §2, A(z,y) > Oforall x,y € 2 and x # y, and that (2, A) is bounded — there

The Isolation Game: A Game of Distances 151

exists a real value B such that A(x,y) < B for every z,y € (2. In general, ({2, A)
may not be symmetric or satisfy the triangle inequality. We always assume that there
are k players in an isolation game and each player’s strategy set is the entire (2. A
configuration of an isolation game is a vector (p1,p2,...,Pk), where p; € {2 speci-
fies the position of player . The utility function of player ¢ is a (k — 1)-place func-
tion f;(..., A(pi,pi—1), A(pi,pit1), .. .). For convenience, we use ut;(c) to denote
the utility of player 7 in configuration c.

We consider several classes of weight vectors in the uniform, anonymous isolation
game. In particular, the nearest-neighbor and fotal-distance isolation games have the
weight vectors (1,0, ...,0)and (1,1, ..., 1), respectively; the single-selection game has
vectors that have exactly one nonzero entry; the monotonically-increasing (or decreas-
ing) games have vectors whose entries are monotonically increasing (or decreasing).

A better response of a player i in a configuration ¢ = (p1, . .., px) is a new position
p} # p; such that the utility of player 7 in configuration ¢’ by replacing p; with p} in ¢ is
larger than her utility in c. In this case, we say that ¢’ is the result of a better-response
move of player ¢ in configuration c. A best response of a player ¢ in a configuration
¢ = (p1,...,pk) is a new position p; # p; that maximizes the utility of player ¢ while
player j remains at the position p; for all j # 4. In this case, we say that ¢’ is the result
of a best-response move of player ¢ in configuration c.

A (pure) Nash equilibrium of an isolation game is a configuration in which no player
has any better response in the configuration. An isolation game is better-response poten-
tial (or best-response potential) if there is a function F' from the set of all configurations
to a totally ordered set such that F'(¢) < F(c) for any two configurations ¢ and ¢’ where
¢ is the result of a better-response move (or a best-response move) of some player at
configuration c. We call F' a potential function. Note that a better-response potential
game is also a best-response potential game, but a best-response potential game may
not be a better-response potential game. If (2 is finite, it is easy to see that any better-
response or best-response potential game has at least one Nash equilibrium. Henceforth,
we use the shorthand “potential games” to refer to better-response potential games.

3 Nearest-Neighbor and Total-Distance Isolation Games

In this section, we focus on the isolation games with weight vectors (1,0, ...,0) and
(1,1,...,1). We show that both are potential games when {2 is symmetric, but when {2
is asymmetric and finite, it is NP-complete to decide whether those games have Nash
equilibria.

Theorem 1. The symmetric nearest-neighbor and total-distance isolation games are
potential games.

The following lemma shows that the asymmetric isolation game may not have any
Nash equilibrium for any nonzero weight vector. Thus, it also implies that asymmet-
ric nearest-neighbor and total-distance isolation games may not have Nash equilibria.

Lemma 1. Consider an asymmetric space 2 = {v1,vs,...,vp41} with the distance
function given by the following matrix with t > £ + 1. Suppose that for every player i

152 Y. Zhao, W. Chen, and S.-H. Teng

her weight vector w; has at least one nonzero entry. Then, for any 2 < k < (, there is
no Nash equilibrium in the k-player isolation game.

A vi vy vz ... Vg V41
U1 0 t—1t—2...t—04+1 t—V/4
vo t—¢ 0 t—1...t—4+2t—4+1

ve t—2t—3t—4... 0 t—1
Ve t—1t—2¢—3 ... t—1¢ 0

Theorem 2. It is NP-complete to decide whether a finite, asymmetric nearest-neighbor
or total-distance isolation game has a Nash equilibrium.

Proof. We first prove the case of nearest-neighbor isolation game.

Suppose that the size of {2 is n. Then the distance function A has n? entries. The
decision problem is clearly in NP. The NP-hardness can be proved by a reduction from
the Set Packing problem. An instance of the Set Packing problem includes a set I =
{e1,€2,...,em} of m elements, a set S = {Si,...,S5,} of n subsets of I, and a
positive integer k. The decision problem is to decide whether there are k disjoint subsets
in S. We now give the reduction.

The space 2 has n + k + 1 points, divided into a left set L = {v1, va,...,v,} and a
right set R = {u1, us, ..., ur4+1 }. For any two different points v;, v; € L, A(v;,v;) =
2nif S; N'S; = 0, and A(v;, v;) = 1/2 otherwise. The distance function on R is given
by the distance matrix in Lemma[llwith £ = k and¢t = k+1.Foranyv € Landu € R,
A(v,u) = A(u,v) = 2n. Finally, the isolation game has k + 1 players.

We now show that there exists a Nash equilibrium for the nearest-neighbor isolation
game on {2 iff there are k disjoint subsets in the Set Packing instance.

First, suppose that there is a solution to the Set Packing instance. Without loss of
generality, assume that the k disjoint subsets are Sp, So, ..., Sk. Then we claim that
configuration ¢ = (v1,vs,..., vk, u1) is a Nash equilibrium. In this configuration, it
is easy to verify that every player’s utility is 2n, the largest possible pairwise distance.
Therefore, c is a Nash equilibrium.

Conversely, suppose that there is a Nash equilibrium in the nearest-neighbor isolation
game. Consider the set R. If there is a Nash equilibrium c, then the number of players
positioned in R is either k& + 1 or at most 1 because of Lemma/[ll If there are k + 1
players in R, then every player has utility 1, and thus every one of them would want to
move to points in L to obtain a utility of 2n. Therefore, there cannot be k + 1 players
positioned in R, which means that there are at least k players positioned in L.

Without loss of generality, assume that these k players occupy points vy, va, . . ., Uk
(which may have duplicates). We claim that subsets S7, So, ..., S, form a solution
to the Set Packing problem. Suppose, for a contradiction, that this is not true, which
means there exist S; and S; among these k subsets that intersect with each other. By
our construction, we have A(v;,v;) = 0 or 1/2. In this case, players at point v; and
v; would want to move to some free points in R, since that will give them utilities
of at least 1. This contradicts the assumption that c is a Nash equilibrium. Therefore,

The Isolation Game: A Game of Distances 153

we found a solution for the Set Packing problem given a Nash equilibrium c of the
nearest-neighbor isolation game.

The proof for the case of total-distance isolation game is essentially the same, with
only changes in players’ utility values. (]

4 Isolation Games with Other Weight Vectors

In this section, we study several general classes of isolation games. We consider sym-
metric space ({2, A) in this section.

4.1 Single-Selection Isolation Games
Theorem 3. A Nash equilibrium always exists in any single-selection symmetric game.

Although Nash equilibria always exist in the single-selection isolation games, the fol-
lowing lemma shows that they are not potential games.

Lemma 2. Let 2 = {A,B,C, D, E, F} contain six points on a one-dimensional cir-
cular space with A(A,B) = 15, A(B,C) = 11, A(C,D) = 14, A(D,E) = 16,
A(E,F) = 13, and A(F, A) = 12. The five-player single-selection game with the
weight vector (0,1,0,0) on {2 is not potential.

Proof. Let the five players stand at A, B, C, D, and E respectively in the initial config-
uration. Their better response dynamics can iterate forever as shown in Figure[Tl Hence
this game is not a potential game. ([

25—+27

13— 14 ele.
old— new utility

Fig.1. An example of a better-response sequence that loops forever for a five-player isolation
game with weight vector (0, 1, 0, 0) in a one dimensional circular space with six points

Surprisingly, the following theorem complements the previous lemma.

Theorem 4. If (2 is finite, then for any single-selection game on {2 and any starting
configuration c, there is a better-response sequence in the game that leads to a Nash
equilibrium.

154 Y. Zhao, W. Chen, and S.-H. Teng

Proof. Suppose that the nonzero weight entry is the m!” entry in the k-player single-
selection isolation game with m > 1 (the case of m = 1 is already covered in
nearest-neighbor isolation game). For any configuration ¢ = (p1,...,px), the utility
of player i is the distance between player i and her m?”* nearest neighbor. Let vector
u(c) = (ug,uq,...,u) be the vector of the utility values of all players in ¢ sorted in
nondecreasing order, i.e., u; < us < ... < ug. We claim that for any configuration
¢, if ¢ is not a Nash equilibrium, there must exist a finite sequence of configurations
¢ = cp,c1,C2,...,c¢ = c, such that ¢;;1 is the result of a better-response move of
some playerin ¢; fori = 0,1,...,¢ — 1 and u(c) < u(c’) in lexicographic order.

We now prove this claim. Since the starting configuration ¢y = c is not a Nash
equilibrium, there exists a player ¢ that can make a better response move to position p,
resulting in configuration ¢;. We have ut;(co) < wut;(c1). Let S; be the set of player
1’s m — 1 nearest neighbors in configuration c;. We now repeat the following steps
to find configurations co, . .., ¢;. When in configuration c;, we select a player a; such
that ut,, (c;) < ut;(c1) and move a; to position p, the same position where player i
locates. This gives configuration c;1. This is certainly a better-response move for a;
because utq;(cj11) = uti(cjp1) = uti(c1) > utq,;(cj), where the second equality
holds because we only move the m — 1 nearest neighbors of player ¢ in ¢; to the same
position as i, so it does not affect the distance from i to her m*”* nearest neighbor. The
repeating step ends when there is no more such player a; in configuration c;, in which
case c; = ¢ = .

We now show that u(c) < u(c’) in lexicographic order. We first consider any player
J & S;, either her utility does not change (ut;(c) = ut;(c’)), or her utility change must
be due to the changes of her distances to player ¢ and players a1, as, . . ., a;—1, who have
moved to position p. Suppose that player j is at position ¢. Then A(p, q) > ut;(c1)
because j ¢ ;. This means that if j’s utility changes, her new utility ut;(c¢’) must be
at least A(p,q) > ut;(c1). For a player j € S;, if she is one of {as,...,a;—1}, then
her new utility ut;(c’) = ut;(¢’) = ut;(c1); if she is not one of {a1,...,a;—1}, then
by definition ut;(c¢’) > wut;(c1). Therefore, comparing the utilities of every player in
c and ¢/, we know that either her utility does not change, or her new utility is at least
ut;(c) = ut;(c1) > wut;(c), and at least player ¢ herself strictly increases her utility
from ut;(c) to ut;(c’). With this result, it is straightforward to verify that u(c) < u(c’).
Thus, our claim holds.

We may call the better-response sequence found in the above claim an epoch. We
can apply the above claim to concatenate new epochs such that at the end of each epoch
the vector w strictly increases in lexicographic order. Since the space (2 is finite, the
vector © has an upper bound. Therefore, after a finite number of epochs, we must be
able to find a Nash equilibrium, and all these epochs concatenated together form the
better-response sequence that leads to the Nash equilibrium. This is clearly true when
starting from any initial configuration. |

4.2 Monotonically-Increasing Games

For monotonically-increasing games, we provide the following general condition that
guarantees the existence of a Nash equilibrium. We say that a pair of points u,v € 2
is a pair of polar points if for any point w € (2, the inequality A(u, w) + A(w,v) <

The Isolation Game: A Game of Distances 155

A(u,v) holds. Spaces with polar points include one-dimensional circular space, two-
dimensional sphere, n-dimensional grid with L; norm as its distance function, etc.

Theorem 5. If (2 has a pair of polar points, then any monotonically-increasing isola-
tion game on §2 has a Nash equilibrium.

4.3 Monotonically-Decreasing Games

Monotonically-decreasing games are more difficult to analyze than the previous vari-
ants of isolation games, and general results are not yet available. In this section, we
first present a positive result for monotonically-decreasing games on a continuous one-
dimensional circular space. We then present some hardness result for a simple type of
weight vectors in general symmetric spaces.

The following theorem is a general result with monotonically-decreasing games as
its special cases.

Theorem 6. In a continuous one-dimensional circular space 2, the isolation game
on 2 with weight vector w = (w1, ws, ..., wk_1) always has a Nash equilibrium if
k—1 t
=1 (—1) W S 0
A monotonically-decreasing isolation game with weight vector w =
(w1, ws,...,wE_1) automatically satisfies the condition Zf:_ll(—l)twt < 0.
Hence we have the following corollary.

Corollary 1. In a continuous one-dimensional circular space (2, any monotonically-
decreasing isolation game on {2 has a Nash equilibrium.

We now consider a simple class of monotonically-decreasing games with weight vector
w = (1,1,0,...,0) and characterize the Nash equilibria of the isolation game in a con-
tinuous one-dimensional circular space 2. Although the game has a Nash equilibrium
in a continuous one-dimensional circular space according to the above corollary, it is
not potential, as shown by the following lemma.

Lemma 3. Consider 2 = {A,B,C,D,E,F} that contains six points in a one-
dimensional circular space with A(A,B) = 13, A(B,C) = 5, A(C,D) = 10,
A(D,E) = 10, A(E,F) = 11, and A(F, A) = 8. The five-player monotonically-
decreasing game on 2 with weight vector w = (1,1, 0, 0) is not best-response poten-
tial (so not better-response potential either). This implies that the game on a continuous
one-dimensional circular space is not better-response potential.

If we extend from the one-dimensional circular space to a general symmetric space,
there may be no Nash equilibrium for isolation games with weight vector w =
(1,1,0,...,0) at all, as shown in the following lemma.

Lemma 4. There is no Nash equilibrium for the four-player isolation game with weight
vector w = (1,1,0) in the space with five points {A, B,C, D, E} and the following
distance matrix, where N > 21 (note that this distance function also satisfies triangle
inequality).

156 Y. Zhao, W. Chen, and S.-H. Teng

A A B C D E
A 0 N—-6 N—-11 N-1 N-6
B N—-6 0 N—-8 N—-10 N-1
CN-11 N-8 0 N-1 N—-6
D N-1N-10 N-1 0 N-10
EN-6 N-1 N-6N-10 O

Using the above lemma as a basis, we further show that it is NP-complete to decide
whether an isolation game with weight vector (1,1,0,...,0) on a general symmetric
space has a Nash equilibrium. The proof is by a reduction from 3-Dimensional Match-
ing problem.

Theorem 7. In a finite symmetric space ({2, A), it is NP-complete to decide the exis-
tence of Nash equilibrium for isolation game with weight vector w = (1,1,0,...,0).

5 Computation of Best Responses in High Dimensional Spaces

We now turn to the problem of computing the best response of a player in a configu-
ration. A brute-force search on all points in the space can be done in O(k log kv/D),
where D is the size of the distance matrix. This is fine if the distance matrix is explic-
itly given as input. However, it could become exponential if the space has a compact
representation, such as an n-dimensional grid with the L; norm as the distance func-
tion. In this section, we present results on an n-dimensional hypercube {0, 1}™ with the
Hamming distance, a special case of n-dimensional grids with the L; norm.

Theorem 8. In a 2n-dimensional hypercube {0,1}2", it is NP-complete to decide
whether a player could move to a point so that her utility is at least n — 1 in the k-
player nearest-neighbor isolation game with k bounded by poly(n).

The above theorem leads to the following hardness result in computing best responses
for a general class of isolations games, with nearest-neighbor game as a special case.

Corollary 2. It is NP-hard to compute a best response for an isolation game in the

space {0, 1}2™ with weight vector w = (i, Co %, l, 0,...,0) where cis a constant and
~

C
* Is either 0 or 1.

Contrasting to the above corollary, if the weight vector has only nonzero entries towards
the end of the vector, it is easy to compute the best response, as shown in the following
theorem.

Theorem 9. A best response for a k-player isolation game in the space {0,1}™ with
w = (0,...,0,1,%,...,%) can be computed in polynomial time where c is a constant,
~ ~ -

k is bounded by poly(n) and x is either 0 or 1.

The Isolation Game: A Game of Distances 157

6 Final Remarks

The isolation game is very simple by its definition. However, as shown in this paper, the
behaviors of its Nash equilibria and best response dynamics are quite rich and complex.
This paper presents the first set of results on the isolation game and lays the ground
work for the understanding of the impact of the farness measures and the underlying
space to some basic game-theoretic questions about the isolation game. It remains an
open question to fully characterize the isolation game. In particular, we would like
to understand for what weight vectors, the isolation game on simple spaces, such as
d-dimensional grids, hypercubes, and torus grid graphs, has potential functions, has
Nash equilibria, or has converging best (better) response sequences. What is the impact
of distance functions, such as L1-norm or L2-norm to these questions? We would like
to know whether it is NP-hard to determine if Nash equilibria exist in these special
spaces when the input is the weight vector. What can we say about other continuous
spaces such as squares, cubes, balls, and spheres? For example, is there a sequence of
better response dynamics that converge to a Nash equilibrium in the isolation game
on the sphere with w = (1,1,1,0,...,0)? What can we say about approximate Nash
equilibria?

More concretely, In Lemmal]we show an example in which a single-selection game
with weight vector (0, 1,0,...,0) is not better-response potential in one dimensional
circular space. However, we verify that the game is best-response potential. This phe-
nomenon of being best-response potential but not better-response potential is rarely
seen in other type of games. Moreover, our experiments lead us to conjecture that all
games on continuous one dimensional circular space with weight vector (0, 1,0, ...,0)
is best-response potential. So far, we are only able to prove that in such games start-
ing from any configuration there is always an acyclic sequence of best responses that
either converge to a Nash equilibrium or is infinitely long. If the conjecture is true, we
will find a large class of games that are best-response potential but not better-response
potential (latter is implied by Lemma [2] for the continuous one dimensional space), an
interesting phenomenon not known in other common games.

Another line of research is to understand the connection between the isolation game
and the Voronoi game.

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M.J., Oostrum, R.: Competitive facility loca-
tion: the Voronoi game. Theor. Comput. Sci. 310(1-3), 457-467 (2004)

2. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discrete
and Computational Geometry, 31, 125-138 (2004)

3. Diirr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann,
M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17-28. Springer, Heidelberg (2007)

4. Eiselt, H.A., Laporte, G.: Competitive spatial models. European Journal of Operational Re-
search 39, 231-242 (1989)

5. Eiselt, H.A., Laporte, G., Thisse, J.-F.: Competitive location models: A framework and bib-
liography. Transportation Science 27, 44-54 (1993)

6. Fekete, S.P., Meijer, H.: The one-round Voronoi game replayed. Computational Geometry:
Theory and Applications 30, 81-94 (2005)

158 Y. Zhao, W. Chen, and S.-H. Teng

7. Francis, R.L., White, J.A.: Facility Layout and Location. Prentice-Hall, Inc., Englewood
Cliffs (1974)
8. Jain, A.K., Murty, M.N., Flynn, PJ.: Data Clustering: A Review. ACM Computing Sur-
veys 31(3) (1999)
9. Nash, J.F.: Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences 36(1), 4849 (1950)
10. Teng, S.-H.: Low Energy and Mutually Distant Sampling. J. Algorithms 30(1), 52-67 (1999)
11. Zhao, Y., Chen, W., Teng, S.-H.: The isolation game: A game of distances, Microsoft Re-
search Technical Report MSR-TR-2008-126 (September 2008)

On a Non-cooperative Model for Wavelength
Assignment in Multifiber Optical Networks*

Evangelos Bampas, Aris Pagourtzis, George Pierrakos, and Katerina Potika

School of Elec. & Comp. Eng., National Technical University of Athens
Polytechnioupoli Zografou, 157 80 Athens, Greece
{ebamp,pagour,gpierr,epotik}@cs.ntua.gr

Abstract. We study path multicoloring games that describe situations
in which selfish entities possess communication requests in a multifiber
all-optical network. Each player is charged according to the maximum
fiber multiplicity that her color (wavelength) choice incurs and the social
cost is the maximum player cost. We investigate the price of anarchy of
such games and provide two different upper bounds for general graphs—
namely the number of wavelengths and the minimum length of a path
of maximum disutility, over all worst-case Nash Equilibria—as well as
matching lower bounds which hold even for trees; as a corollary we obtain
that the price of anarchy in stars is exactly 2. We also prove constant
bounds for the price of anarchy in chains and rings in which the number
of wavelengths is relatively small compared to the load of the network;
in the opposite case we show that the price of anarchy is unbounded.

Keywords: Selfish wavelength assignment, non-cooperative games,
price of anarchy, multifiber optical networks, path multicoloring.

1 Introduction

The need for efficient access to the optical bandwidth in all-optical networks has
given rise to the study of several optimization problems in the past years. The
most well-studied among them is the problem of assigning a path and a color
(wavelength) to each communication request in such a way that paths of the same
color are edge-disjoint and the number of colors used is minimized. Nonetheless,
it has become clear that the number of wavelengths in commercially available
fibers is rather limited—and will probably remain such in the foreseeable future.
Fortunately, the use of multiple fibers has come to the rescue. However, fibers
are not unlimited either, therefore it makes sense to minimize their usage. This
is particularly interesting from the customer’s point of view, for example in

* This work has been funded by the project PENED 2003. The project is cofinanced
75% of public expenditure through EC-European Social Fund, 25% of public ex-
penditure through Ministry of Development—General Secretariat of Research and
Technology of Greece and through private sector, under measure 8.3 of Operational
Programme “Competitiveness” in the 3rd Community Support Programme.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 159 2008.
© Springer-Verlag Berlin Heidelberg 2008

160 E. Bampas et al.

situations where one can hire a number of parallel fibers for a certain period and
the cost depends on that number.

To this end, several optimization problems have been defined and studied,
the objective being to minimize either the maximum fiber multiplicity per edge
[1213] or the sum of these maximum multiplicities over all edges of the graph
[456]; in another scenario the allowed fiber multiplicity per edge is given and
the goal is to minimize the number of wavelengths needed [7I8/5].

In this work we consider a non-cooperative model, where each request is issued
by a user who tries to optimize her own fiber usage by selecting the most appro-
priate wavelength, taking into account other users’ choice. This model is mainly
motivated by the lack of centralized control in large scale networks. We assume
that each user is charged according to the maximum fiber multiplicity that the
user’s choice incurs. More specifically, a user will be charged according to the
maximum number of paths that share an edge with her and use the same wave-
length. We consider as social cost the maximum fiber multiplicity that appears
on any edge of the network. Minimizing this quantity is particularly important
in cases where fibers are hired or sold as a whole, hence the maximum number
of fibers needed on an edge determines the total cost; further motivation can
be found in papers that address the corresponding optimization problem (see
e.g. [TI213]). Here we focus on situations where routing is unique (acyclic topolo-
gies) or pre-determined—as happens in many practical settings, for example in
cases where there are specific routing constraints such as a requirement to use
lightpaths that have been set in advance, or shortest path routing.

We formulate the above model by defining the class of SELFISH PATH MUL-
TICOLORING (S-PMC) games: the input is a graph, a set of paths, and the
number of colors w. Each player controls a path in the graph and has to choose
a color for that path from {aj,...,a,}. A player is charged according to the
maximum multiplicity of her color along her path. We consider as social cost
the maximum color multiplicity per edge, i.e., the maximum number of paths of
same color that use an edge.

Related work. Arguably, the most important notion in the theory of non-cooper-
ative games is the Nash Equilibrium (NE) [9], a stable state of the game in which
no player has incentive to change strategy unilaterally. A fundamental question
in this theory concerns the existence of pure Nash Equilibria (PNE). For various
games [TO/TTIT2IT3] it has been shown that a PNE exists and can usually be
found with the use of potential functions. A standard measure of the worst-case
quality of Nash Equilibria relative to optimal solutions is the price of anarchy
(PoA) [14], which has been extensively studied for load balancing games [14/15]
and other problems such as routing and facility location [I0/I6]. A second known
measure related to NE is the price of stability (PoS), defined in [17].

S-PMC games are closely related to a variation of congestion games [TI8/T9)
where a player’s cost is determined by her mazimum latency instead of the usual
cost which is the sum of her latencies. Next, we briefly explain the relation of
those models to ours.

Non-cooperative Wavelength Assignment in Multifiber Optical Networks 161

In [I8] the authors study atomic routing games on networks, where each player
chooses a path to route her traffic from an origin to a destination node, with
the objective of minimizing the maximum congestion on any edge of her path.
They show that these games always possess at least one optimal PNE (hence the
PoS is 1) and that the PoA of the game is determined by topological properties
of the network; in particular they show that the PoA is upper bounded by
the length of the longest path in the player strategy sets and lower bounded
by the length of the longest cycle. Some of our results extend to their model,
since our model mimics traffic routing in the following sense: we may consider
a multigraph, where we replace each edge with w parallel edges, one for each
color. Each player’s strategy set then consists of w different source-destination
paths, corresponding to the w available colors in the original model. A further
generalization is the model of Banner and Orda [19], where they introduce the
notion of bottleneck games. In this model they allow arbitrary latency functions
on the edges and consider both the case of splittable and unsplittable flows. They
show existence, convergence and non-uniqueness of equilibria and they prove
that the PoA for these games is unbounded. Both models are more general than
ours; however our model fits better into the framework of all-optical networks for
which we manage to provide, among others, smaller upper bounds on the PoA
compared to the ones obtained by [I819], as well as a better convergence rate to
Nash equilibria. In [20] they study similar games and give results for restricted
cases, e.g. single-commodity networks.

To the best of our knowledge selfish path multicoloring games have not been
studied before. Selfish path coloring in single fiber all-optical networks have
been studied in [21I2212324]. Bilo and Moscardelli [2I] consider the conver-
gence to Nash Equilibria of selfish routing and path coloring games. Later, Bilo
et al. [22] considered different information levels of local knowledge that players
may have for computing their payments in the same games and give bounds for
the PoA in chains, rings and trees. The existence of Nash Equilibria and the
complexity of recognizing and computing a Nash Equilibrium for selfish routing
and path colorings games under several payment functions are considered by
Georgakopoulos et al. [23]. In [24] upper and lower bounds of the PoA for self-
ish path coloring with and without routing are presented under functions that
charge a player only according to her own strategy.

Our results. We first give an upper bound on the convergence rate of Nash
dynamics for S-PMC games, and observe that the price of stability is always
equal to 1. We also show how to efficiently compute a Nash Equilibrium of
minimum social cost for S-PMC games in rooted trees, i.e. trees in which each
path lies entirely on a simple path from some fixed root node to a leaf. For
S-PMC games in stars, we prove that a known approximation algorithm for a
related optimization problem actually gives an %—approximate Nash Equilibrium.

For general graphs, we obtain two upper bounds on the PoA: the first, which
is not hard to show, is equal to the number of available colors. The second,
which requires more involved arguments, is equal to the length of a shortest

162 E. Bampas et al.

path with maximum disutility in any worst-case NE. For both bounds we provide
matching lower bounds. In fact, we prove that these bounds hold even in trees.

Then, we move on to specific network topologies and show that for S-PMC
games in stars PoA = 2. We also provide constant bounds on the PoA in a
broad class of S-PMC games in chains and rings, namely for all games with
L = 2(w?), where w is the number of available colors and L is the maximum
load among all edges of the network. On the other hand, for any € > 0 we exhibit
a class of S-PMC games in chains (and rings) with L = ©(w?~¢) for which the
PoA is unbounded.

In order to show our upper bounds, we demonstrate path patterns that must
be present in any Nash Equilibrium, while for the lower bounds we employ
recursive construction techniques.

2 Definitions and Model

Given an undirected graph G(V, E), a set P of simple paths defined on G, and
aset W = {ay,...,a,} of available colors, L(e) will denote the load of edge e,
i.e. the number of paths that use edge e. The maximum of these loads will be
denoted by L, i.e. L = max.cp L(e).

Given, additionally, an assignment of a color to each path we define the fol-
lowing:

Definition 1

1. p(e,c¢) will denote the multiplicity of color ¢ on edge e, i.e. the number of
paths that use edge e and are colored with color c.

2. pe will denote the maximum multiplicity of any color on edge e, i.e. . =
max.ew (e, c).

8. Umax will denote the mazimum multiplicity of any color over all edges: pimax =
maXeck He-

4. p(p,c) will denote the mazimum multiplicity of color ¢ over the edges of
path p: p(p, ¢) = maxeep (e, c).

It will be clear from the context which specific coloring we are referring to when
we use the above notation.

The minimum piy,ax that can be attained by some coloring of the paths in P
will be denoted by popr, i-e. popT = ming pimax Where ¢ ranges over all possible
colorings. We note immediately the following:

Fact. No coloring can achieve a py.x smaller than (i -‘ Thus, popr > (i —‘

We now proceed to define the class of selfish path multicoloring games and
subclasses thereof.

Definition 2 (Selfish path multicoloring games). A selfish path multicol-
oring game is the following strategic game defined in terms of an undirected
graph G, a set P of simple paths defined on G, and an integer w > 0:

Non-cooperative Wavelength Assignment in Multifiber Optical Networks 163

— Players: there is one player for each path in P. For simplicity, we identify a
player i with the corresponding path p;.

— Strategies: a strategy for player i is a color ¢; chosen from the set W =
{a1,...,ayu} of available colors. We say that color ¢; is assigned to path p;
or that path p; is colored with color c;. All players share the common set of
strategies W.

— Disutility: given a strategy profilec = (c1, ..., c|p|), the disutility f; : wliel —
IN of each player i is defined as follows:

fi(e) = pu(pi, ci).

We denote this game by (G, P,w). The class of all selfish path multicoloring
games will be denoted by S-PMC.

We will use the notation S-PMC(G) to denote a subclass of S-PMC that con-
tains only games satisfying a property G (for example G may constrain the graph
on which the game is defined to belong to a specific graph class, etc.).

Following the standard definition, a strategy profile ¢ = (c1,...,¢|p|) is said
to be a pure Nash Equilibrium (PNE), or simply Nash Equilibrium (NE), if for
each player i it holds that: fi(ci,...,cj,...,cip)) > fi(cr,..., ¢ ... cp)), for
any strategy ¢, € W. Moreover, following the definition of [25], we say that
a strategy profile ¢ = (c1,...,¢p|) is an e-approzimate Nash Equilibrium if for
each player ¢ it holds that: fl(cl7 e Chyensyp)) 2 (T=€)- filer, . ciy ooy cip))s

for any strategy c; € W.

Definition 3 (Blocking edges). If ¢ is a strategy profile for a game (G, P, w)
and p; € P, we say that edge e is an o -blocking edge for p;, or that it blocks
a; for p;, if e € p; and p(e, a;) > fi(e) — 1. Furthermore, the p(e, o) paths that
are colored with a;; and use edge e are called a;-blocking paths for p;.

Intuitively, an a;-blocking edge for p; “blocks” p; from switching to color o;
because if it did, the new disutility of path p; would be at least p(e,a;) +1 >
fi(€), no better than its current choice. It is immediate from the definitions that
the following property holds in any Nash Equilibrium of any S-PMC game:

Property 1 (Structural property of S-PMC Nash Equilibria). In a Nash Equi-
librium, every path p must contain at least one a;-blocking edge for p, for every
color ;.

Definition 4 (Social cost). The social cost of a strategy profile ¢ for an S-
PMC game is defined as follows: sc(€) = maxeep fle = max-

It is straightforward to verify that the social cost of a strategy profile coincides
with the maximum player disutility in that profile:

sc(c) = max pie = max fie)

We define i to be the maximum social cost over all strategy profiles that are
Nash Equilibria: i = max, ;5 Ngsc(c). Following the standard definitions, the

164 E. Bampas et al.

price of anarchy (PoA) of a game (G, P, w) is the worst-case social cost in a Nash
Equilibrium divided by popr, i.e.: POA((G, P,w)) = ™% = ™" se(e) — s - The
price of stability (PoS) of a game is the best-case social cost in a NE divided by
popt: PoS({(G, P,w)) = mmc;(;;isc(c). The price of anarchy (resp. stability) of

a class of games S-PMC(G) is the maximum price of anarchy (resp. stability)
among all games in S-PMC(G).

3 Existence and Computation of Nash Equilibria

We use lexicographic-order arguments similar to those in [I8/19] to show that
in any S-PMC game the following holds: starting from an arbitrary strategy
profile any Nash dynamics converges to a Nash Equilibrium of smaller or equal
social cost. The proof is omitted.

Theorem 1. For any game (G, P,w) in S-PMC:

a. the price of stability is 1, and
b. any Nash dynamics converges to a Nash Equilibrium in at most 4171 steps.

Due to Theorem [Tl computing a Nash Equilibrium of minimum social cost is at
least as hard as the corresponding optimization problem. As noticed in [4] this
problem is NP-hard in general graphs, in fact even in rings and stars. Therefore,
it is also NP-hard to compute an optimal Nash Equilibrium even in the case of
rings and stars. However, we show that there exists an efficient algorithm that
computes optimal Nash Equilibria for a subclass of S-PMC(TREE). Further-
more, we show that we can use a known algorithm for PATH MULTICOLORING
in stars [4] to compute approximate Nash Equilibria for S-PMC(STAR) games.
We will only state the theorems and omit the proofs.

Definition 5. We define S-PMC(ROOTED-TREE) to be the subclass of S-
PMC that contains games (G, P,w) with the following property: “G is a tree
and there is a node r such that each path in P lies entirely on some simple path
from r to a leaf.”

Consider the greedy algorithm that colors paths in order of non-decreasing dis-
tance from the root in such a way that the color multiplicity is the lowest possible
with respect to the current partial coloring.

Theorem 2. Given an S-PMC(ROOTED-TREE) game (G(V,E), P,w) with
mazimum load L as input, the greedy algorithm computes an optimal Nash Equi-
librium of cost exactly Lﬂ .

Theorem 3. There is a polynomial-time algorithm that computes a %—appmxi—
mate Nash Equilibrium for any S-PMC(STAR) game.

Non-cooperative Wavelength Assignment in Multifiber Optical Networks 165

4 Tight Upper Bounds for the PoA of S-PMC Games

In this section we provide two upper bounds on the PoA of any S-PMC game and
we show that both of them are tight. The first bound is determined by a property
of the network, namely the number of available wavelengths. The second bound
is more subtle, as it depends on the length of paths with the highest disutility
in worst-case Nash Equilibria. We prove that these bounds are tight even for
the class S-PMC(ROOTED-TREE), and asymptotically tight for the class S-
PMC(ROOTED-TREE: A = 3), i.e. the subclass of S-PMC(ROOTED-TREE)
that contains games defined on graphs with maximum degree 3.

Lemma 1. The price of anarchy of any S-PMC game (G, P,w) is at most w.

Proof. Let ¢ be a worst-case Nash Equilibrium of (G, P, w), hence sc(e) = fi.
Clearly, i < L and since the minimum social cost over all strategy profiles is
popT > (w it turns out that popr > ». This implies that HO’uPT < w. O

Lemma 2. For any worst-case Nash Equilibrium c of an S-PMC game (G, P, w)
and for any p; € P with f;(c) = sc(e) = fi, the price of anarchy of (G, P,w) is
at most equal to the length of p;.

Proof. Let € be an edge of p; where the color ¢; chosen by p; appears with
maximum multiplicity fi: wu(é,¢;) = fi. Let z denote the length of path p;, and
let eq,...,e.—1 be the edges that p uses, apart from €. For 1 <j <z —1, let z;
be the number of colors that are blocked for p; on e; and let y be the number
of colors that are blocked for p; on € (since ¢ is a Nash Equilibrium, it must be
that x1 + ...+ 2.1 +y > w—1).

If it is the case that z = 1, i.e. p; uses only edge €, then € must block all colors
for p; except ¢;. This implies that the load of edge € is: L(€) > fi+(w—1)(3—1) =
wii—w+1. Therefore, the minimum social cost over all strategy profiles satisfies:
LoPT > [Ll(f)-‘ > [— "] = f1. We conclude that the price of anarchy in this

case is equal to 1.

Now, assume that z > 2. We will prove that L > 1+ [“] (4 — 1). First,
observe that L(é) > u+y(ﬂ —1)and, for 1 <j<z—-1,L(ej) >1+az;(2—1).
Ify>["“]—1, then L(¢) > a+ ([1 —1)(p—1)=1+["Y] (4 —1), therefore
L > 1+ ["“](4—1).If on the other hand, y < [“] — 1, then zy + ... +
Ty Z2w—1—y > w-— ﬂ:] 4+ 1. This implies that there is some xj such

that zj > w_lgﬂﬂ > w’fjf“ = . Since x; is an integer, it must be that
x> [“]. Therefore, L > L(e,) > 1+ [“] (2 —1).

We conclude that in any case L > 1+ [*] (i — 1). So, the price of anarchy is
bounded as follows:
)
[

We omit the proof of the last inequality, which holds for all 4 > 2, w > 1, and
z > 2. O

PoA((G, Pw)) = M < I <

<z.
porr — [L] =7

166 E. Bampas et al.

-1

Uo

Fig. 1. The construction A.()) for the proof of Lemmal[3l The thick lines represent the
edges of the underlying graph, and the thin lines represent the paths defined on the
graph. The color and multiplicity of each group of paths is written next to that group.
Each shaded box represents a recursive copy of A.(A —1).

As an immediate corollary of Lemma 2] we derive the following upper bound on
the price of anarchy:

Corollary 1. The price of anarchy of any S-PMC game (G, P,w) is bounded
as follows:
PoA < min min length(p;
T e:NEAsc(e)=f i:fi(c)=p & (p)
Lemma 3. The upper bounds of Lemma [l and Corollary [0 are tight even for
the class of S-PMC(ROOTED-TREE) games.

Proof. We first define a recursive construction of an S-PMC game and a Nash
Equilibrium for this game. The construction is illustrated in Figure[Il For any
z>1land A > 1, let A,(\) be the following S-PMC game with z available colors:
there are \ paths of color a; and length z, starting at the “root node” ug, which
branch out into A branches, one on each branch. Let us call these the “primary”
paths for A.(A\). On any of the z — 1 edges of each such branch, one color is
blocked for the primary path. The A — 1 blocking paths of each edge branch out
into an A, (XA — 1) game. They become primary paths for this copy of A,(A —1).
The root node for the j-th recursive copy of A,(A — 1) on the k-th branch is
node uy,; (node ug,1 is common for all branches). The base case of this recursive
construction is A,(0), which is a degenerate game with no paths and no available
colors, defined on a graph consisting of a single node.

Observe that for any z > 1, the construction A,(z) is an S-PMC(ROOTED-
TREE) game in NE, in which all of the following are equal to z: w, L, fimax,
and all path lengths. By Theorem 2] the optimal strategy profile for A,(z) has
social cost popt = Lﬂ = 1. Therefore, the ratio 5(‘;;; is equal to z for this
Nash Equilibrium, hence the price of anarchy is at least z. a

Non-cooperative Wavelength Assignment in Multifiber Optical Networks 167

By appropriate modification of the construction presented in Figure[l], we obtain
the following:

Lemma 4. The upper bounds of Lemma 1l and Corollary [l are asymptotically
tight even for the class of S-PMC(ROOTED-TREE) games with mazimum de-
gree 3.

We summarize the results of Lemmata [I] Bl [3, and 4 in the following theorem:

Theorem 4. The price of anarchy of any S-PMC game (G, P,w) is upper-
bounded both by w and by

min min length(p;).
c:NEAsc(e)=p i:fi(e)=f & (p)
These bounds are tight for the class S-PMC(ROOTED-TREE) and asymptotically
tight for the class S-PMC(ROOTED-TREE: A = 3).

Theorem 5. The price of anarchy of the class S-PMC(STAR) is 2.

Proof. Lemma [21 implies an upper bound of 2 on the price of anarchy since the
length of any path in a star cannot be larger than 2.

For the lower bound, it can be shown that the construction of Lemma[3l can be
modified to yield a family of S-PMC(STAR) games with price of anarchy 2. More
specifically every game As()\) can be embedded in a star, by using additional
star rays for branching. The detailed construction is omitted. ad

5 The Price of Anarchy on Graphs of Maximum Degree 2

In this section we study the price of anarchy of path multicoloring games on
chains and rings, and we prove a constant upper bound for a broad class of
S-PMC(RING) games with L = £2(w?). Notice that this class essentially en-
compasses all S-PMC(RING) games of practical importance, as the number of
wavelengths is limited in practice due to technological constraints, whereas L
can grow large depending on network traffic. For the sake of completeness, we
show that the PoA becomes quickly unbounded if we allow the network designer
to provide ample wavelengths to the users, i.e. when L = o(w?).

We begin by strengthening Property [l to prove a more involved structural
property of Nash Equilibria in S-PMC(RING) games. Let (G, P,w) be an S-
PMC(RING) game. Given a coloring ¢ = (c1,...,¢/p|), let P(e,a;)(c) € P
denote the set of paths colored with color «; that use edge e € E; by definition
|P(e,;)(c)| = ule,a;). For the sake of simplicity, in the rest of the section
we will write P(e, o;) instead of P(e, a;)(c). Furthermore, let [e;, e,] denote the
clockwise arc starting at edge e¢; and ending at edge e,..

Lemma 5 (Structural property of S-PMC(Ring) NE). Given a game
in S-PMC(RING) and a coloring ¢ thereof which is a Nash Equilibrium, for
every edge e and color «; there is an edge-simple arc [e, e,] with the following
properties:

168 E. Bampas et al.

a. for every color aj # au, arc [er, e;] contains an edge which is an oj-blocking
edge for at least half of the paths in P(e,«;), and
b. for every edge € of the arc [e,e,] it holds that |P(e, ;) N P(e, ;)| >

[IP(evai)li‘
5 .

Proof. Since the game is in NE, by Property[levery path p € P(e, «;) must have
at least one a;-blocking edge, for every color a; # «;. For a fixed color o # oy,
consider the two a;-blocking edges for some path in P(e, a;) that are closest to
edge e clockwise and counter-clockwise. It is not hard to see that for at least one
of these two edges, call it b(c;), the following property holds: the arc [e, b(a;)]
or the arc [b(a;), €] is contained in at least [Ip(eéai)l—‘ of the paths in P(e, ;).
In case that there is only one a;-blocking edge for all paths in P(e, «;), then the
property holds a fortiori for this edge.

For every color «; we pick one such edge b(c;). If the above property holds for
arc [e, b(ay)], we add b(c;) to set BT, otherwise we add it to set B~. We now claim
that a clockwise traversal of the ring starting at edge e will first encounter all edges
of BT and then all edges of B~. Indeed, if one edge b~ of B~ lies before one edge
bt of BT on this clockwise traversal, this would imply that b~ is traversed by the

Pp(ez’ai)l—‘ paths that contain the arc [e, b*] and thus b~ should also belong to BT.

The above discussion implies that if we define e, to be the last edge of BT
and e; to be the first edge of B~ encountered in this clockwise traversal, then
the edge-simple arc [e;, e,] satisfies the conditions of the Lemma. a

We now prove a constant upper bound on the price of anarchy of S-PMC(RING)
games with L = 2(w?); denote this class by S-PMC(RING: L = 2(w?)). This
also provides an upper bound on the price of anarchy of any S-PMC(CHAIN:
L = 2(w?)) game, as every game defined on a chain can be trivially embedded
in a ring topology.

We first employ the structural property of S-PMC(RING) Nash Equilibria
(Lemma [B]) in order to establish the existence of a heavily loaded edge in S-
PMC(RING) games with i > w.

Lemma 6. In every S-PMC(RING) game (G, P,w) with i > w there is an
edge with load at least ")’ .

Proof. Let [e1, er]p(e,a,) be the arc that is obtained by applying Lemma [for
path set P(e, «;). We define P; to be the set of paths P(€, a;) which induce the
social cost fi. For ¢ > 2 we define P; to be the set of a;-blocking paths for the
path set P;_1, for some color o; not appearing at any of the path sets Py, k < 1,
with the following property:

[elaeT]PL - [elaeT]Ppu (1)

if such a path set exists. If more than one path sets with the desired property
exist, we arbitrarily pick one of them.

Let e; be the a;-blocking edge for P;_;; based on the inductive definition of P;
as a set of blocking paths for path set P;_; we can easily show that p(e;, ;) >

Non-cooperative Wavelength Assignment in Multifiber Optical Networks 169

ft— i+ 1. Applying Lemma[Blb) for color a; and edge e; yields the following: for
every edge e € [e, e;] p, we have that (e, o) > ﬂf;“. Furthermore, since Equa-
tion[holds for all k < 4, the load of all edges e € [e, e,] p, is at least Zaj ple, aj),
where o now ranges over the colors of all path sets Py, k < 4. Hence, for every
edge e € [e, e,]p, we have that L(e) > >°, (e, a;) = S ﬂ_I;H.

Let now n be the first integer for which no such path set P, exists and consider
the path set P,_1. Since we are at Nash Equilibrium we know that there exist
a-blocking edges for paths in P,_1, for every color a. We restrict our attention
to the w — n 4 1 colors, which have not yet appeared at any Py, for k <n —1;
let «; be one of these colors. Consider now an aj-blocking edge e, such that
en € ler,er]p, , (by Lemmal5(a) such an edge must exist). We now have that, at
least half of the a;-blocking paths in P(e,, i), i.e. at least ’2_;+1 paths, extend
beyond one of the edges €;(Pn—1), er(Pn—1) of the arc [e;,e;]p, , (otherwise
we would have picked P(e,, ;) to be P,). This means that for at least half of
these w —n+ 1 blocking path sets, their paths leave the arc from the same edge,
incurring on it an additional load of “~ 2! A= "+1

Thus, the total load of this edge is at least Z" i S S A

M0 4 (n—1)- 79T Since ji > w the above sum is at least ™. |
Theorem 6. The price of anarchy of any game in the class S-PMC(RING:
L = 2(w?)) is bounded by a constant.

Proof. We distinguish between two cases:

— If i > w, then by Lemma [0l we get L > ‘“” . This implies ~ > Qf = [oPT >

f‘f = PoA < 4.

— If i < w, then PoA = MiT < [‘Lw < ‘22 , where we used successively the
facts that uopT > L and fi < w. The last inequality, combined with the fact
that L = 2(w?), 1mphes PoA = O(1). a

Finally, we show that the price of anarchy can get arbitrarily large when the
number of available colors increases; specifically, that it is unbounded for the
classes S-PMC(CHAIN: L = o(w?)) and S-PMC(RING: L = o(w?)). The proof
is omitted.

Theorem 7. For any fized € > 0 there exists an infinite family of games in
S-PMC(CHAIN: L = O(w?~¢)) with PoA = Q(w?2).

References

1. Andrews, M., Zhang, L.: Minimizing maximum fiber requirement in optical net-
works. J. Comput. Syst. Sci. 72(1), 118-131 (2006)

2. Andrews, M., Zhang, L.: Complexity of wavelength assignment in optical network
optimization. In: INFOCOM 2006. IEEE, Los Alamitos (2006)

3. Andrews, M., Zhang, L.: Wavelength assignment in optical networks with fixed
fiber capacity. In: Diaz, J., Karhumaiki, J., Lepisto, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 134-145. Springer, Heidelberg (2004)

4. Nomikos, C., Pagourtzis, A., Zachos, S.: Routing and path multicoloring. Inf.
Process. Lett. 80(5), 249-256 (2001)

170

5.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

E. Bampas et al.

Erlebach, T., Pagourtzis, A., Potika, K., Stefanakos, S.: Resource allocation prob-
lems in multifiber WDM tree networks. In: Bodlaender, H.L. (ed.) WG 2003. LNCS,
vol. 2880, pp. 218-229. Springer, Heidelberg (2003)

. Winkler, P.; Zhang, L.: Wavelength assignment and generalized interval graph

coloring. In: SODA, pp. 830-831 (2003)

. Margara, L., Simon, J.: Wavelength assignment problem on all-optical networks

with k fibres per link. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP
2000. LNCS, vol. 1853, pp. 768-779. Springer, Heidelberg (2000)

. Li, G., Simha, R.: On the wavelength assignment problem in multifiber WDM star

and ring networks. IEEE/ACM Trans. Netw. 9(1), 60-68 (2001)

. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286-295 (1951)
. Fotakis, D., Kontogiannis, S.C., Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.:

The structure and complexity of Nash equilibria for a selfish routing game. In:
Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 123-134. Springer, Heidelberg (2002)
Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2, 65-67 (1973)

Milchtaich, I.: Congestion games with player-specific payoff functions. Games and
Economic Behavior 13, 111-124 (1996)

Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14,
124-143 (1996)

Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404-413. Springer, Heidelberg (1999)
Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: STOC, pp. 510—
519 (2001)

Roughgarden, T., Tardos, E.: How bad isselfish routing? J. ACM 49(2),236-259(2002)
Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Rough-
garden, T.: The price of stability for network design with fair cost allocation. In:
FOCS, pp. 295-304. IEEE Computer Society, Los Alamitos (2004)

Busch, C., Magdon-Ismail, M.: Atomic routing games on maximum congestion. In:
Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 79-91. Springer,
Heidelberg (2006)

Banner, R., Orda, A.: Bottleneck routing games in communication networks. In:
INFOCOM 2006. IEEE, Los Alamitos (2006)

Caragiannis, 1., Galdi, C., Kaklamanis, C.: Network load games. In: Deng, X., Du,
D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 809-818. Springer, Heidelberg (2005)
Bilo, V., Moscardelli, L.: The price of anarchy in all-optical networks. In: Kralovic,
R., Sykora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 13—22. Springer, Hei-
delberg (2004)

Bilo, V., Flammini, M., Moscardelli, L..: On Nash equilibria in non-cooperative all-
optical networks. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 448-459. Springer, Heidelberg (2005)

Georgakopoulos, G.F., Kavvadias, D.J., Sioutis, L.G.: Nash equilibria in all-optical
networks. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1033-1045.
Springer, Heidelberg (2005)

Milis, I., Pagourtzis, A., Potika, K.: Selfish routing and path coloring in all-optical
networks. In: Janssen, J., Pralat, P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 71-84.
Springer, Heidelberg (2007)

Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion
games. In: SODA, pp. 169-178. SIAM, Philadelphia (2007)

The Complexity of Rationalizing Matchings

Shankar Kalyanaraman* and Christopher Umans**

Computer Science Department
California Institute of Technology
Pasadena, CA 91125
{shankar,umans}@cs.caltech.edu

Abstract. Given a set of observed economic choices, can one infer preferences
and/or utility functions for the players that are consistent with the data? Ques-
tions of this type are called rationalization or revealed preference problems in
the economic literature, and are the subject of a rich body of work.

From the computer science perspective, it is natural to study the complexity of
rationalization in various scenarios. We consider a class of rationalization prob-
lems in which the economic data is expressed by a collection of matchings, and
the question is whether there exist preference orderings for the nodes under which
all the matchings are stable.

‘We show that the rationalization problem for one-one matchings is NP-complete.
We propose two natural notions of approximation, and show that the problem is
hard to approximate to within a constant factor, under both. On the positive side,
we describe a simple algorithm that achieves a 3/4 approximation ratio for one of
these approximation notions. We also prove similar results for a version of many-
one matching.

1 Introduction

Given a set of consumption choices in a market, it is natural to try to infer informa-
tion about the players’ preferences or utility functions. This branch of consumer de-
mand theory is known as revealed preference theory because consumers, by dint of
the choices they make, “reveal” their preferences for various outcomes [Afr67, [Die73|
Sam48| [Ech06] [FST04,Var82, [SprO0]. It constitutes a major tool in econometric analy-
sis used to estimate aggregate consumer demand [Afr67, [Var06|. From the Computer
Science perspective, this is a learning problem, and recent work initiated a study of its
PAC-learnability [BVO6].

Some classes of data cannot always be explained, or rationalized by simple (say,
linear) utility functions, or even any reasonable utility function. Such settings are in-
teresting to economists, because it becomes possible, in principle, to “test” various
assumptions (e.g. that the players are maximizing a simple utility function). Several
(classical and recent) results [Afr67, [Var82, [FSTO04, |[Ech06] in the economic literature

* Supported by NSF CCF-0346991, NSF CCF-0830787, BSF 2004329 and a Graduate Research
Fellowship from the Social and Information Sciences Laboratory (SISL) at Caltech.
** Supported by NSF CCF-0346991, NSF CCF-0830787, BSF 2004329, a Sloan Research Fel-
lowship, and an Okawa Foundation research grant.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 1711182} 2008.
(© Springer-Verlag Berlin Heidelberg 2008

172 S. Kalyanaraman and C. Umans

establish criteria for when data is always rationalizable, thus delineating the limits of
the “testable implications” of such data.

There is an important role for Computer Science in these questions, as the feasibility
of performing such tests depends on being able to answer the rationalizability question
efficiently. In other words, given a type of economic data, and a target form for an “ex-
planation” (preference profile, a class of utility functions, etc...), we wish to understand
the complexity of deciding whether the data can be rationalized by an explanation of the
prescribed form. To our knowledge these sort of problems have not been studied before.

Among rationalization problems, one can identify at least two broad classes of prob-
lems. Some, such as inferring utility functions from consumption data, are rather easily
solved efficiently using linear programming [[Afr67, [Var82|]. Others are more combina-
torial in nature, and their complexity is not at all obvious. One recent example is the
problem of inferring costs from observations of spanning trees being formed to distrib-
ute some service, say power [0zs06].

Among the combinatorial-type rationalization problems, one of the most natural is
the matchings problem that we study in this paper. Here we are given a set of bipartite
matchings, and we wish to determine if there are preferences for the nodes under which
all of the given matchings are stable. Matchings, or more precisely “two-sided matching
markets,” are a central abstraction in economics, investigated in relation to the similar
“marriage models” in auction and labor markets [RS90, [Fle03), [EO04, [EY07] and from
the point of view of mechanism design [S6n96] and related strategic issues [STTO1].
They are also a fundamental combinatorial abstraction from the computational perspec-
tive.

1.1 Our Results

Given two sets of nodes, M (“men”) and W (“women”), together with preferences for
each node, the famous algorithm of Gale and Shapley [[GS62] obtains a stable matching.
We will be interested in the “reverse” question: given a set of matchings, are there pref-
erences under which they are simultaneously stable? One may wonder why we should
be given a collection of matchings instead of a single instance of a matching between
the set of men and women. Indeed, we think of the men (and women) as representing
instances of different fypes or populations that are matched differently in each match-
ing and we are interested in determining the preference profiles that define these types
based on the observed set of matchings. Before stating our results, we formalize the
problem and introduce some terminology.

Definition 1. Let M, W be disjoint sets of equal cardinality. A one-one matching p
is a bijection p : M UW — M UW, such that for all m € M, u(m) € W, for all
we W, u(w) € M, and forallm € M,w € W, u(m) = w < pu(w) = m.

In the problems we consider, we will be seeking preferences for the elements of M and
W, which are expressed as follows:

Definition 2. A preference order for m € M (resp. w € W) is a linear ordering of
W (resp. M). We write m : w > w' to mean that w occurs before w' in the preference
order for m. A preference profile is a collection of preference orders for each m € M
andw € W.

The Complexity of Rationalizing Matchings 173

The “stability” of a matching with respect to a preference profile depends on the crucial
notion of blocking pair:

Definition 3. A blocking pair with respect to a matching p and a preference profile P
is a pair (m,w) : m € M,w € W such that u(m) # w and

m:w > pu(m) and w :m > p(w).

Matching p is stable with respect to ‘P if there is no blocking pair with respect to . and
P.

In other words, in a blocking pair (m,w) with respect to x and P, both people are
“unhappy” with their current partner in p and would instead prefer to be matched to
each other.

Our first result is that rationalizing matchings is hard.

Theorem 1. Given a collection of one-one matchings 'H on the sets M and W, it is
NP-complete to determine if there exists a preference profile P such that every n € 'H
is stable with respect to P.

We call such a preference profile a rationalization of the matchings . The main gadget
we use in the reduction is distilled from some fairly involved necessary and sufficient
conditions for a preference profile to be a rationalization, discovered by Echenique
[Ech06]. We describe the full conditions in Section 2l Our gadget is a configuration
across two matchings, that looks like this:

me—-—e W m w
m’ o' m/ w'
z oz

A preference profile P rationalizes the matchings containing this configuration only
if eitherm : w > w’ and m’ : z > w,orm : w’ > wand m’ : w > z. Conversely, if
these conditions hold (together with additional conditions concerning the remainder of
the matchings) then P rationalizes the set of matchings. We use this gadget fundamen-
tally as a Boolean choice gadget (either m prefers w over w’ or w’ over w), and as part
of a scheme to ensure consistency (since the choice of m is tied to the choice of m’).

Having ascertained that rationalizing a collection of matchings is NP-complete, we
would next want to know how hard it is to solve the problem approximately. In this
context, we first need to decide what exactly we mean by ‘approximate’ rationalization.
Two notions are of particular interest: on the one hand, we can think of identifying a
preference profile that rationalizes the maximum number of matchings.

Problem 1 (MAX-STABLE-MATCHINGS). Given a collection of matchings H on sets
M, W, find a preference profile P that maximizes the number of matchings in 7 that
are simultaneously rationalized by P.

174 S. Kalyanaraman and C. Umans

This problem is hard to approximate to within some constant factor:

Theorem 2. There is a constant ¢ > 0 for which it is NP-hard to approximate MAX-
STABLE-MATCHINGS fo within a factor of (1 — €).

A second natural notion of approximation attempts to maximize “stability” among the
given set of matchings at a more fine-grained level, by maximizing the number of non-
blocking pairs across all matchings.

Some effort is required to make this notion of approximation meaningful. In a typical
instance there will be many pairs (m, w) for which m is not matched to w in any of the
given matchings. We say such a pair is non-active and pairs that are matched in some
matching are active. It is easy to ensure that all non-active pairs are non-blocking pairs
with respect to any matching, by requiring the preference profile to be valid:

Definition 4. A preference profile P is valid with respect to a collection of matchings
H if for every m € M, m : w > w' if (m,w) is active and (m,w') is not active, and
Soreveryw € W, w : m > m’ if (m,w) is active and (m', w) is not active.

In other words, each man m prefers a woman that he is matched to in some matching
over women that he is never matched to, and similarly for each woman w. We argue that
to have a meaningful notion of maximizing non-blocking pairs, one should consider only
valid preference profiles, and therefore attempt to maximize the number of non-blocking
pairs among the active pairs (since a valid preference profile automatically takes care
of all of the non-active pairs). We are led to define the following optimization problem:

Problem 2 (MAX-STABILITY). Given a collection of matchings H on sets M, W, find
a valid preference profile P for M, W that maximizes:

[{(m,w, p) : (m,w) is active and is not a blocking pair with respect to p, P}|.
This problem is also hard to approximate to within some constant factor:

Theorem 3. There is a constant ¢ > 0 for which it is NP-hard to approximate MAX-
STABILITY fo within a factor of (1 — €).

Our proof uses the overall structure of the reduction used to prove Theorem [to-
gether with an explicit constant-degree expander to make aspects of the reduction robust
enough to be gap-preserving.

An approximation of 3/4 is achievable (in expectation) for this problem by a simple
randomized assignment of preferences. Derandomizing via the method of conditional
expectations yields:

Theorem 4. There is a deterministic, polynomial-time approximation algorithm for
MAX-STABILITY that achieves an approximation factor of 3/4.

Finally, we turn to a generalization of the one-one matchings we have been considering:

Definition 5. Let F, W be disjoint sets. A one-many matching is a pair of functions
(u,7) with i : F — 2%, and 7 : W — F for which

Yw € u(f), 7(w) = f and Vw € W,w € pu(t(w)).

The Complexity of Rationalizing Matchings 175

Typically in economics literature, one-to-many matchings are spoken of in reference
to firms and workers (or, similarly, hospitals and interns) and hence the notation of
F,W is more prevalent. However, since this problem is so closely tied in with our
discussion of one-to-one matchings we will continue to use the notation of “men” M
and “women” W when we mention one-to-many matchings in the rest of the paper.
One-many matching models have been widely studied [Rot82) [Rot85]].

In a one-many matching, preference order and preference profile are defined in
the same way as for one-one matchings, except that each m has a linear ordering
of 2" instead of just W. Also analogous to the blocking pair for one-to-one match-
ings, we can define a blocking set and a notion of stability [EO04] for one-to-many
matchings:

Definition 6. A blocking set with respect to a one-many matching (1, 7) and a prefer-
ence profile P is a pair (m, B) : m € M, B C W such that u(m) N B = () and

JA C p(m) such that
m:AUB > u(m)andVw € B w:m > 7(w).

Matching (i, T) is stable* with respect to P if there is no blocking set with respect to
(1, 7) and P.

The rationalization problem for one-many matchings is not likely to even be in NP,
because a witness (preference profile) entails listing preference over 2", which is ex-
ponentially large. We are then led to consider a restricted version of the problem in
which we only allow m € M to be matched to a set of cardinality at most some con-
stant parameter /. We call such matchings one-¢ matchings.

The resulting rationalization problem is in NP and, we show, NP-complete:

Theorem 5. For every fixed {, given a collection of one-£ matchings H on the sets M
and W, it is NP-complete to determine if there exists a preference profile P such that
every i € H is stable™ with respect to P.

We can define the notion of an active pair (m, B) for one-¢ matchings in analogy with
active pairs, and also valid preference profiles as in Definition 4l

The two approximation problems arising with respect to one-¢ matchings are hard to
approximate to within some constant factor, just as in the one-one case:

Theorem 6. There is a constant ¢ > 0 for which it is NP-hard to approximate MAX-
STABLE-ONE-{-MATCHINGS to within a factor of (1 — ¢).

Theorem 7. There is a constant ¢ > 0 for which it is NP-hard to approximate MAX-
ONE-{-STABILITY to within a factor of (1 — ¢).

Please note that owing to space limitations, all our results on generalizations to the
case of one-many matchings (Theorems[3l{7)) are proved in the full version of this paper
[KUO08].

176 S. Kalyanaraman and C. Umans

2 Preliminaries

In this section, we encapsulate the working of the result for one-one matchings due to
Echenique [Ech06] and provide the necessary and sufficient conditions for the existence
of a preference profile that rationalizes a given collection of matchings. We start with
some definitions and notations.

Definition 7. For any two matchings i, /' € H, a (u, p')-pivot is a w € W such that
there exist some my, my € M such that u(mg) = p'(mg) = w.

The key to proving Theorem[Ilis a result due to Echenique [[Ech06] which we encapsu-
late in Lemmal[Ilwhich sets down necessary and sufficient conditions for the existence of
a preference profile that rationalizes a given collection of matchings. We first introduce
some notation that will be necessary to describe Lemmal[ll Consider the directed graph
G; with M as vertex set and E;; as edge-set where (m, m') € E;; if pu;(m) = pj(m’).
Let C(p, 1t5) denote the set of all connected components of GG;;. We will denote the anal-
ogous graph obtained by considering as vertex set W as H;;. The following proposition
now follows from our notation and establishes a correspondence between G;; and H;;.

Proposition 1. (Echenique [[Ech06]]) C is a connected component of G; iff 11;(C) is a
connected component of H;;. Furthermore, 11;(C) = p1;(C).

Echenique [Ech06] showed the following lemma to be true.

Lemma 1. (Echenique [Ech06]]) Let H = {p1, ..., ¢} be rationalized by preference
profile P. Consider, for all ji;, 1; € H the graph G;; and all C € Cy;. Then, exactly
one of () or () must be true:

m : pi(m) > p;(m) for allm € C and

w: pi(w) > pi(w) forallw € p;(C) (1)
m : pi(m) < pj(m) for allm € C and
w: pi(w) < pi(w) for allw € p1;(C) ()

Conversely, if P is a preference profile such that for all p;, ji; € H and C € C(u;, 1),
exactly one of (I)) or @) holds, and in addition:

m:0>w < wd {um)|peH}
w:h>m < m¢ {ulw)|ueH}

where p(m) = () would denote that m is not matched to any w € W, then P rational-

izes 'H.

3 Hardness of Rationalizability of Matchings

We are given two sets M, W with |[M| = |W| = N and a set H of s matchings
W1y s M — W. We show that the problem of determining whether there exists
a preference profile that rationalizes H is NP-complete by reducing from NAE-3SAT.

The Complexity of Rationalizing Matchings 177

3.1 Proof Outline

We give below a broad overview of the reduction used to prove Lemmal2l Our objective
is to start with a set of clauses and construct matchings corresponding to them in such
a way that the all-equal assignment to variables in a clause would lead to a conflicting
preference relation for some element in the set of matchings. With this in mind, we
build ‘matching gadgets’ corresponding to a given Boolean formula.

By way of example, consider a single clause C7 = (z1 V Z2 V Z3). We associate with
each variable x;, the elements my; € My, wy;, wy; € W1. We will subsequently pad M
with dummy elements to ensure that |M7| = |W7]. For such a clause, we look up Fig. 1
to construct 10 partial matchings pi1, . . . , 1o involving My = {my;i = 1,2,3}U{us}
and Wy = {wy;, wi;|i = 1,2,3} U {y1, z1}. Our encoding of the truth assignment to
a variable z; in clause C; will then correspond to mq; preferring w}; over wy;, i.e.
ma; : wh; > wi, iff ; = 1. The claim below gives a flavor of how the entire reduction
works.

—

myj, wl)
myj, yf)

He1t (mz’,w;‘)
He2: (miv wl)
)
)

—

Hes: (mj»w;)

pear (my, wy) (M, 2¢)

es: (mk,wg) (ue,wk)
k) (

wee: (M, wi) (ue, wy)

et (uz,wk) (mi,wj) Mgol (mwv Wip)(vlpvwlp)
Heg: (u;z,wj) (mi,wi) /J*;OZ' (mzp7wlp) (7}1P7w;p)
Leg: (mk,Zg) (mi,wj) N;o3: (vipvwip) (mjpv /p)
Me10: (mk,wj) (mz,w;) /J*;o4: (vipvw;p) (mjlhwjp)

Fig.1.For C; = (x; + T; + Tx) Fig.2. Consistency matching for x,, occurring in
clauses Cj, C}

Claim. There exists a rationalizable preference profile for M;, W; for the matchings
described in Fig. 1 iff there exists a not-all-equal satisfying assignment for C}.

Proof (Sketch). Suppose there exists a not-all-equal satisfiable assignment to C' . Then,
in order to show that the corresponding preference profile obtained is rationalizable,
we will show that it satisfies the conditions in Lemma [[l We fix the preference for
each my,; between wy; and w}, based on the assignment to x; for i = 1,2,3. We
set my; @ wi; > wy; if &; = 1 and my; @ wy; > wj,; otherwise. Note that since
an assignment (0,1,1) or (1,0,0) to (x1,x2,x3) is ruled out, the matchings in Table
[B.1] ensure that there will be no “cycles” in the preference orders of mq1,m12, M13.
Furthermore, an assignment to x1, 3, 3 only fixes a preference order for all m € M;
and so we can fix a preference order for w € Wj so that there is no conflict in the
preference orders for all m, w and that the conditions in Lemma[Tl are satisfied.

The converse is immediate because for a rationalizable preference profile for m €
My, w € Wi, Lemmal[llholds and hence an all-equal assignment to C is not allowed.
For instance, suppose (21, 22, x3) were assigned (0, 1, 1) then using Lemma[Ilto draw up
all the preference relations we would obtain a conflict, i.e. m1; : w12 > w); (applying

178 S. Kalyanaraman and C. Umans

Lemma[lto 11, ..., p18) and mqyy : w1z < wi; (applying Lemmal[lto g9, pi110)-
Therefore, setting each of the z; to the values obtained depending on the preference
relation for my; between wy; and w}; as delineated above is a not-all-equal satisfying
assignment.

In a Boolean formula with m clauses, we repeat the exercise above but use disjoint sets
My, Wy for each clause Cy to avoid conflicting preference orders across clauses. This
makes it necessary for us to enforce consistency between the preference relations for
my; and we;, wy, forall ¢ = 1,...,m and the assignment to z;. To this end, we use
additional matching gadgets from Fig. 2 and an auxiliary element v;. Again applying
Lemmalll we see that for z; occurring in clauses C1, C3 say, we must have that m;; :
w’n > w11 < M9y Z’LU/21 > woq.

Note that in the manner our construction of matching gadgets is set up, it is nec-
essary for our purposes to reduce from NAE-3SAT as opposed to 3SAT because, if an
all-false assignment to a clause were to lead to a conflict in preference relation for some
m,w,w’, then by symmetry an all-true assignment would also lead to a contradictory
preference relation.

3.2 Proof of Theorem/Il

The proof for Theorem [l automatically follows from LemmaRlwhich we formally state
below.

Lemma 2. Let Z be an instance of NAE-3SAT over n variables x1,...,x, and m
clauses Cy, . .., Cy,—1. Then, there exists an instance Z' of O(m) matchings between
sets M and W, |M| = |W| = O(m + n) such that there exists a rationalizable prefer-

ence profile forallm € M,w € W iffthere exists a not-all-equal satisfiable assignment
to T1,...,Ty. Furthermore, these matchings can be constructed in polynomial time.

We defer the detailed proof to the full version of this paper [KUOS| but make a few
remarks here summarizing the proof. First, note that the table in Fig. 1 can also be used
symmetrically for the clause of type (Z; + x; + x). Similar such ‘matching tables’ can
be constructed corresponding to all the different types of clauses and are used in order
to construct the partial matchings.

Finally, the remaining matchings between elements of M and W are constructed
based on some simple rules to ensure that no contradictory preferences (i.e. m : w’ > w
and m : w > w’) and no unintended blocking pairs occur. In the end a not-all-equal as-
signment for Z exists iff there is a rationalizing preference profile for the corresponding
collection of matchings.

4 Hardness of Approximate Rationalizability of Matchings

Our next step in exploring the computational aspects of rationalizability of matchings
will be to look at the complexity of ‘approximate’ rationalizability.

The Complexity of Rationalizing Matchings 179

4.1 Maximizing the Number of Rationalizable Matchings

In the first setting, we wish to maximize the number of matchings that can be completely
rationalized as stable by a preference profile. We argue in the theorem below that this is
hard to approximate within a constant factor.

Theorem 2] states that this is hard to approximate within a constant factor. To prove
Theorem [2| we show that it is NP-hard to rationalize any fixed set of matchings as
captured in the lemma below.

Lemma 3. Given a collection of matchings H = {1, ..., pr} between M and W
where k is some fixed constant, it is NP-hard to determine if there exists preferences for
m € M,w € W for which each of i € 'H is a stable matching.

From Lemma[3] (proof in full version [KUQS]) it follows that it is NP-hard to approxi-
mate MAX-STABLE-MATCHINGS for H to within a factor of (1—e) wheree = 1/(k+1).

Note that given a collection 7 of any two matchings, it is trivial to construct a (valid)
preference profile that rationalizes H by arbitrarily assigning a preference for each ele-
ment in M matched to W in one matching over the other and correspondingly assigning
the reverse preference for elements in W.

4.2 Maximizing the Number of Non-blocking Pairs

We look at the MAX-STABILITY problem. The motivation in considering this problem
as a notion of approximate rationalizability is that we are now striving to ensure that
given a collection of matchings between two sets M and W, there are optimally many
different pairs (m, w) for which at least one of them is happy with their current partner
and has no incentive to be matched to the other.

As a preliminary exercise, we ask how well would a simple randomized assignment
of preferences to m € M, w € W perform. It turns out that this would achieve a 3/4-
approximate solution. This is the content of Theorem] whose proof is deferred to the
full version [KUOS|.

It suffices to mention here that a simple randomized preference order for all m €
M, w € W achieves the 3/4-approximation factor in expectation and can subsequently
be derandomized. How much better can we do than just a random assignment of pref-
erences? Theorem[3]as stated tells us that a constant-factor approximation is all we can
hope for.

To prove the theorem, we once again construct matchings corresponding to each
clause in MAX-NAE-3SAT instance Z. Recall that in proving Lemma 2] we needed to
construct auxiliary matchings to ensure consistency of assignment to the variables in
accordance with the preferences of the corresponding elements in the matchings. To
prove hardness of approximation, we will need to establish a gap-preserving reduction
by boosting the robustness of these consistency gadgets. We do so by augmenting the
number of matchings corresponding to the consistency and argue subsequently that if
there exists a preference profile that achieves at least a (1 — ¢’) fraction of stable pairs,
then there exists an assignment that would satisfy at least a (1 — ¢) fraction of the
clauses. Theorem[3| then follows from the following Lemma:

180 S. Kalyanaraman and C. Umans

Lemma 4. Let Z be an instance of MAX-NAE-3SAT over n variables x1, . .., z, and

m clauses Cy, ..., Cyp,_1. Then, there exists a € < 1 and a polynomial time reduction

to an instance Z' of MAX-STABILITY of matchings between sets M and W, |M| =
|W| = O(m) such that the following is true:

opt(Z) =1 = opt(Z') =1 (3)

opt(Z)<1—e=opt(Z') < 1—¢ 4)

Proof. We set up matchings corresponding to the clauses Cy, ..., Cp,—1 as before, but

now we need to work harder to boost the robustness of the consistency gadgets. Pre-
viously, we used Table 3.1l to construct additional matchings using auxiliary elements
to ‘link’ different copies of m;;; 7 = 1,...,m corresponding to a single variable x;. It
will help to conceptualize this as a graph.

For a variable x; which occurs in some ¢ clauses C, , . . ., Cj,, we associate elements
from M, mj,;, ..., m;,; and define the consistency graph for x;, G; to comprise vertex
set Vi = {mj,...,mj,;}. An edge exists between any two vertices (1,5, m; ;) if
they are ‘linked’ together by an auxiliary element.

Then, the consistency matchings described above in Claim [3.1] correspond to a path
in G;. In order to boost the robustness, we will now replace the path in GG; by a constant-
degree expander graph on ¢ vertices. We make use of the edge expansion notion to define
an expander graph: an (n, d, \) expander graph is a d-regular graph on n vertices with
the property that |0(Y)|/|Y] > d(1—X)/2where Y C V;, |Y| < |V;]/2, 0(Y) is the set
of all edges with exactly one end-point in Y and) is the spectral expansion parameter
of the graph. In particular, the following proposition will be useful (the proof can be
found in [DHO5]):

Lemma 5. For a (t,d, \) expander graph G and all § < (1 — X)/12, upon removing
26t vertices from G, there exists a connected component of size at least

46
(1-,%,)

Note that the total number of occurrences of variables in all the clauses is at most 3m,
and further, that in each clause a variable corresponds to an element m matched to at
most an O(1) elements in W. Therefore, the total number of pairs for which a matching
exists is at most O(m). Since we only consider valid preference profiles, this means
that the number of active pairs under consideration is also O(m) say. Additionally, the
total number of auxiliary elements required to construct the expander graphs in the
consistency gadgets is also at most O(m) and hence |M| = O(m).

Since our reduction is unchanged in how a satisfying assignment will correspond
to a rationalizing preference profile (and hence, all stable pairs), (3) goes through. It
remains to show that @) holds.

We shall show that if there is a valid preference profile for Z’ such that there are at
most an ¢ fraction of blocking pairs, then there exists an assignment that fails to satisfy
at most € fraction of clauses in Z.

Suppose that there is a valid preference profile that allows at most ¢'m blocking pairs.
Note that if a pair (m, w) is a blocking pair for some matching p, then Lemma[Ilbreaks

The Complexity of Rationalizing Matchings 181

down for p. Since each matching in Z’ can be identified with a clause, a blocking pair
could result in the clause being unsatisfied.

For a blocking pair (m, w) for some matching x in our reduction, we evaluate how
many clauses are affected. Suppose p corresponds to one of the matchings for clause
Cy. If m € My then m must be associated with some variable z; occurring in Cy,
and we will label C; unsatisfiable. Otherwise, (m, w) has no effect on the satisfiability
of C R

Suppose p corresponds to a matching constructed to ensure consistency. If m € M,
for some clause C; and x;, then we delete the node my; in GG; and as before label C) as
unsatisfiable. However, now we also need to argue that (m, w) does not cause too many
other clauses to be labeled unsatisfiable.

From Lemma[3 we know that deleting at most a constant fraction of vertices from G;
will result in a connected component of size at least (1 — (14:SA))t. Taking the aggregate
for every variable z; and after deleting at most €’m vertices from all the consistency
graphs G, together, the total sum of the largest connected components amongst all G,
will be some (1—e)m where € is determined by €’, A and the total number of occurrences
of all variables in all the clauses. Therefore, at most em of these occurrences in clauses
will be discarded and the corresponding em clauses labeled as unsatisfiable.

MAX-NAE-3SAT is known to be APX-complete [PY91] and not approximable to within
0.917 [Zwi98]].

5 Conclusions and Future Work

There are many interesting opportunities for extensions to our work on the rational-
ization problem for matchings. It would be interesting to tighten the constant factor in
Lemmal[3t is it hard even to rationalize three matchings? It would also be satisfying to
tighten the hardness of approximation result in Theorem[3l We can additionally look at
other (restricted) variants of the matchings problem such as many-many matchings and
pose the related complexity questions.

On a more general note, the question of rationalizability per se is very tantalizing
because of the mutually interesting perspectives it offers within both economics and
theoretical computer science.

Acknowledgments. We are indebted to Federico Echenique for numerous invaluable
discussions and for getting us started on this work.

References

[Afr67] Afriat, S.N.: The Construction of Utility Functions from Expenditure Data. Interna-
tional Economic Review 8(1), 67-77 (1967)

[BV0O6] Beigman, E., Vohra, R.: Learning from revealed preference. In: ACM Conference on
Electronic Commerce, pp. 36—42 (2006)

[DHO5] Dwork, C., Harsha, P.: Expanders in Computer Science (CS369E) — Lecture 5, Stan-
ford University (2005)

182

[Die73]

[Ech06]

[EO04]
[EY07]
[Fle03]
[FSTO04]
[GS62]
[KUO8]

[Ozs06]
[PY91]

[Rot82]
[Rot85]

[RS90]

[Sam48]
[S6n96]
[Spr00]
[STTO1]
[Var82]

[Var06]

[Zwi98]

S. Kalyanaraman and C. Umans

Diewert, E.: Afriat and Revealed Preference Theory. Review of Economic Stud-
ies 40(3), 419-425 (1973)

Echenique, F.: What matchings can be stable? The testable implications of match-
ing theory. Technical Report 1252, California Institute of Technology Social Science
Working Papers (2006)

Echenique, F., Oviedo, J.: Core many-to-one matchings by fixed-point methods. Jour-
nal of Economic Theory 115(2), 358-376 (2004)

Echenique, F., Yenmez, M.B.: A solution to matching with preferences over col-
leagues. Games and Economic Behavior 59(1), 46-71 (2007)

Fleiner, T.: A fixed-point approach to stable matchings and some applications. Math.
Oper. Res. 28(1), 103-126 (2003)

Fostel, A., Scarf, H.E., Todd, M.J.: Two new proofs of Afriat’s theorem. Economic
Theory 24(1), 211-219 (2004)

Gale, D., Shapley, L.: College admissions and the stability of marriage. American
Mathematical Monthly 69(1), 9-15 (1962)

Kalyanaraman, S., Umans, C.: The complexity of rationalizing matchings. Electronic
Colloquium on Computational Complexity (ECCC) (21) (2008)

Ozsoy, H.: A characterization of Bird’s rule, Job market paper (2006)

Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity
classes. Journal of Computing Systems and Sciences 43(3), 425-440 (1991)

Roth, A.E.: The economics of matchings: stability and incentives. Math Operations
Research 7, 617-628 (1982)

Roth, A.E.: The college admissions problem is not equivalent to the marriage prob-
lem. Journal of Economic Theory 35, 277-288 (1985)

Roth, A.E., Sotomayor, M.A.: Two-sided matching: A Study in Game-Theoretic
Modeling and Analysis, 2nd edn. Econometric Society Monographs, vol. 18. Cam-
bridge University Press, Cambridge (1990)

Samuelson, P.A.: Consumption Theory in terms of Revealed Preference. Econom-
ica 15(60), 243-253 (1948)

Sonmez, T.: Strategy-proofness in many-to-one matching problems. Economic De-
sign 3, 365-380 (1996)

Sprumont, Y.: On the Testable Implications of Collective Choice Theories. Journal of
Economic Theory 93, 205-232 (2000)

Sethuraman, J., Teo, C.-P., Tan, W.-P.: Gale-Shapley stable marriage revisited: strate-
gic issues and applications. Management Science 47(9), 1252-1267 (2001)

Varian, H.R.: The Nonparametric Approach to Demand Analysis. Economet-
rica 50(4), 945-973 (1982)

Varian, H.R.: Revealed Preference. In: Szenberg, M., Ramrattan, L., Gottesman, A.A.
(eds.) Samuelson Economics and the Twenty-First Century, ch. 6, pp. 99-115. Oxford
University Press, Oxford (2006)

Zwick, U.: Approximation algorithms for constraint satisfaction problems involving
at most three variables per constraint. In: Proceedings of the 9th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 201-210. ACM-SIAM, New York (1998)

A Game Theoretic Approach
for Efficient Graph Coloring*

Panagiota N. Panagopoulou'? and Paul G. Spirakis'?

! Computer Engineering and Informatics Department, University of Patras
2 Research Academic Computer Technology Institute
N. Kazantzaki Str., University of Patras, GR 26500 Rion, Patras, Greece
panagopp@cti.gr, spirakis@cti.gr

Abstract. We give an efficient local search algorithm that computes a
good vertex coloring of a graph G. In order to better illustrate this local
search method, we view local moves as selfish moves in a suitably defined
game. In particular, given a graph G = (V, E) of n vertices and m edges,
we define the graph coloring game I'(G) as a strategic game where the
set of players is the set of vertices and the players share the same action
set, which is a set of n colors. The payoff that a vertex v receives, given
the actions chosen by all vertices, equals the total number of vertices
that have chosen the same color as v, unless a neighbor of v has also
chosen the same color, in which case the payoff of v is 0. We show:

— The game I'(G) has always pure Nash equilibria. Each pure equi-
librium is a proper coloring of GG. Furthermore, there exists a pure
equilibrium that corresponds to an optimum coloring.

— We give a polynomial time algorithm A which computes a pure Nash
equilibrium of I'(G).

— The total number, k, of colors used in any pure Nash equilibrium
(and thus achieved by A) is k < min{Az +1, ”'5‘”, 1+‘/§+8m ,n—a+
1}, where w, « are the clique number and the independence number
of G and As is the maximum degree that a vertex can have subject
to the condition that it is adjacent to at least one vertex of equal or
greater degree. (A2 is no more than the maximum degree A of G.)

— Thus, in fact, we propose here a new, efficient coloring method that
achieves a number of colors satisfying (together) the known general
upper bounds on the chromatic number x. Our method is also an
alternative general way of proving, constructively, all these bounds.

— Finally, we show how to strengthen our method (staying in polyno-
mial time) so that it avoids “bad” pure Nash equilibria (i.e. those
admitting a number of colors k far away from x). In particular, we
show that our enhanced method colors optimally dense random g-
partite graphs (of fixed ¢) with high probability.

* Partially supported by the EU within the 6th Framework Programme under con-
tract 015964 “Algorithmic Principles for Building Efficient Overlay Computers” (AE-
OLUS) and the ICT Programme under contract IST-2008-215270 (FRONTS), and
by the General Secretariat for Research and Technology of the Greek Ministry of
Development within the Programme PENED 2003.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 183[195, 2008.
© Springer-Verlag Berlin Heidelberg 2008

184 P.N. Panagopoulou and P.G. Spirakis

1 Introduction

Overview. One of the central optimization problems in Computer Science is
the problem of wvertex coloring of graphs: given a graph G = (V, E) of n vertices,
assign a color to each vertex of G so that no pair of adjacent vertices gets the
same color and so that the total number of distinct colors used is minimized.
The global optimum of vertex coloring (the chromatic number) is, in general,
inapproximable in polynomial time unless a collapse of some complexity classes
happens [7]. In this paper, we propose an efficient vertex coloring algorithm that
is based on local search: Starting with an arbitrary proper vertex coloring (e.g.
the trivial proper coloring where each vertex is assigned a unique color), we do
local changes, by allowing each vertex (one at a time) to move to another color
class of higher cardinality, until no further local moves are possible.

We choose to illustrate this local search method via a game-theoretic analysis;
we do so because of the natural correspondence of the local optima of our pro-
posed method to the pure Nash equilibria of a suitably defined strategic game.
In particular, we view vertices of a graph G = (V, E) as players in a strategic
game. Each player has the same set of actions, which is a set of |V colors. In
a certain profile ¢ (where each vertex v has chosen a color), v gets a payoff of
zero if its color is the same with the color of a neighbor of v. Else, v gets as a
payoff the number of vertices having selected the same color as the color that v
has chosen. In a pure Nash equilibrium of such a game (if such an equilibrium
exists), no vertex can improve its payoff by unilaterally deviating. Note that,
given a profile, one can compute payoffs in small polynomial time. Furthermore,
a “better response” (i.e., a selfish improvement) of a vertex v, given a choice of
colors by all the other vertices, can also be computed quickly by v and the only
global information needed is the number of vertices per color in the graph.

In such a setting, if we start by the trivial proper coloring of G (where each
v chooses its unique name as a color), then any selfish improvement sequence
always produces proper colorings of G. This would give an efficient and general
proper coloring heuristic provided that: (i) Pure equilibria exist; (ii) Such selfish
improvement sequences reach an equilibrium in small time; and (iii) The number
of colors at equilibrium is a good approximation of the chromatic number of G.

Our Results. Quite surprisingly, we show for our game that:

(1) Any selfish improvement sequence, when started with a proper (e.g., the
trivial) coloring, always reaches an equilibrium in O(n - «(G)) selfish moves,
where a(G) is the independence number of G. We prove this by a potential-
based method [I4].

(2) Any pure Nash equilibrium of the game is a proper coloring of G that uses
a number of colors, k, bounded above by all the general known to us upper
bounds on the chromatic number of G. Specifically, let n, m, x(G) and w(G) and
A(G), denote the number of vertices, number of edges, chromatic number, clique
number and maximum degree of G, respectively. Let A2(G) be the maximum
degree that a vertex v can have subject to the condition that v is adjacent to at

A Game Theoretic Approach for Efficient Graph Coloring 185

least one vertex of degree no less than the degree of v (note that Ax(G) < A(G)).
We show that k (in any pure Nash equilibrium) satisfies

n+ w(G)

9 7TL—O¢(G)+1,

kgmin{Ag(G)+1, 1—|—\/;—|—8m}.

Note that As(G) + 1 is the bound of Stacho [16] and implies Brooks’ bound [4]
on x(G). In fact, we get constructively all these bounds via a single polynomial
time algorithm. For some of these bounds their proofs till now (in popular graph
theory books, e.g. [9]) are not constructive and not based on a single unifying
method.

(3) Since x(@G) is inapproximable in polynomial time (unless a collapse of com-
plexity classes happens) it is natural to expect the existence of some pure equi-
libria in our game that use a number of colors k far away from x(G). Indeed
we were able to construct a class of (almost complete bipartite) graphs G which
have equilibrium colorings of & = 7 41, while x(G) = 2. However, our selfish im-
provement method does not have to go to such bad equilibria. For the same class
of graphs we show that a randomized sequence of selfish improvements achieves
k = 2 with high probability. In fact, our class of algorithms can be started by the
proper colorings achieved by the best till now approximation methods. Then, it
may improve on them, if their output is not an equilibrium of our game.

(4) Motivated by such thoughts, we investigated the following question: What
kind of polynomial time “mechanisms” (e.g., some preprocessing, a particular
order of selfish moves, e.t.c.) can help our coloring method to get closer to x(G)
in certain graph classes? We managed to provide such enhanced methods that
e.g. are optimal with high probability for dense random g-partite graphs.

We believe that our game and its properties can serve also as an educational
tool in introducing and proving general bounds on the chromatic number.

Previous work. The problem of coloring a graph using the minimum number
of colors is NP-hard [I3], and the best polynomial time approximation algorithm
achieves an approximation ratio of O(n(loglogn)?/(logn)?) [8]. It is known [7]
that the chromatic number cannot be approximated to within £2(n!~¢) for any
constant € > 0, unless NP C co-RP. Several vertex coloring heuristics have
been proposed in the literature, such as Brelaz’s heuristic [3]. To the best of
our knowledge, none of these heuristics achieves all these bounds on the total
number of colors that our algorithm guarantees. Graph coloring games have been
studied before, but in a very different context than here. In these games there
are 2 players, who are introduced with the graph to be colored and a color bound
k. A legal move of either player consists of choosing an uncolored vertex v, and
assign to it any of the k colors that has not been assigned to any neighbor of v.
In one variant of such a game [I] the first player which is unable to move loses
the game. In another variant [I] the first player wins if and only if the game ends
with all vertices colored. Further variants have also been studied by e.g. [10/6].

186 P.N. Panagopoulou and P.G. Spirakis
2 The Model

Notation. For a finite set A we denote by |A| the cardinality of A. For an
event F in a sample space, denote Pr{E} the probability of E occurring. Denote
G = (V, E) a simple, undirected graph with vertex set V' and set of edges E. For a
vertex v € V denote N (v) = {u € V : {u,v} € E} the set of its neighbors, and let
deg(v) = |N(v)| denote its degree. Let A(G) = max,cy deg(v) be the maximum
degree of G. Let A2(G) = maxyev MaXye N (u):d(v)<d(u) deg(v) be the maximum
degree that a vertex v can have, subject to the condition that v is adjacent to at
least one vertex of degree no less than deg(v). Clearly, A2(G) < A(G). Let x(G)
denote the chromatic number of G, i.e. the minimum number of colors needed
to color the vertices of G such that no adjacent vertices get the same color (i.e.,
the minimum number of colors used by a proper coloring of G). Let w(G) and
(@) denote the clique number and independence number of G, i.e. the number
of vertices in a maximum clique and a maximum independent set of G.

The Graph Coloring Game. Given a finite, simple, undirected graph G =
(V, E) with |V| = n vertices, we define the graph coloring game I'(G) as the
game in strategic form where the set of players is the set of vertices V', and the
action set of each vertex is a set of n colors X = {x1,...,z,}. A configuration or
pure strategy profile ¢ = (¢y)pey € X™ is a combination of actions, one for each
vertex. That is, ¢, is the color chosen by vertex v. For a configuration ¢ € X"
and a color z € X, we denote by n.(c) the number of vertices that are colored
z in ¢, i.e. ny(c) = [{v € V : ¢, = x}|. The payoff that vertex v € V receives in
the configuration ¢ € X" is

)\v(c):{o 1fE|u6N(v):cu=cv.

ne, (c) else

A pure Nash equilibrium [15] (PNE in short) is a configuration ¢ € X™ such that
no vertex can increase its payoff by unilaterally deviating. Let (z, c_,) denote the
configuration resulting from c if vertex v chooses color x while all the remaining
vertices preserve their colors. Then

Definition 1. A configuration ¢ € X™ of the graph coloring game I'(G) is a
pure Nash equilibrium if, for all vertices v € V, Ay(z,c—y) < A\y(c) Ve X.

A vertex v € V is unsatisfied in the configuration ¢ € X" if there exists a color
x # ¢, such that A,(z,c_,) > A,(c); else we say that v is satisfied. For an
unsatisfied vertex v € V in the configuration c, we say that v performs a selfish
step if v unilaterally deviates to some color = # ¢, such that A,(z,c_,) > Ay(c).

The Social Cost SC(G, c) of a configuration ¢ € X™ of I'(G) is the number of
distinct colors in ¢, i.e., SC(G,c) = [{z € X | ny(c) > 0}|. Given a graph G, the
Approzimation Ratio R(G) is the ratio of the worst, over all pure Nash equilibria

of I'(G), Social Cost to the chromatic number: R(G) = maxc.c is a PNE Si(((é’)c).

A Game Theoretic Approach for Efficient Graph Coloring 187
3 Existence and Tractability of Pure Nash Equilibria

Theorem 1. Ewvery graph coloring game I'(G) possesses at least one pure Nash
equilibrium, and there exists a pure Nash equilibrium c with SC(G, c) = x(G).

Proof. Consider any optimum coloring o = (0,)yey € X" of G. Then o uses
kE = x(G) colors. For each optimum coloring o consider the vector L, =
(bo(1),...,Lo(k)), where £o(j) is the number of vertices that are assigned the
color that is jth in the decreasing ordering of colors according to the number of
vertices that use them. Let 6 correspond to the lexicographically greatest vector
Ls. We will show that 6 is a pure Nash equilibrium. First, since 6 is a proper
coloring, all vertices receive payoff no less than 1, so no vertex has any incentive
to choose a new color other than those already used. Now consider a vertex v
which is assigned color 6, and let i be the coordinate that corresponds to 6, in
Ls. If v had an incentive to choose a color that corresponds to the jth coordinate
of Lg for some j < 4, then this would yield an optimum coloring that would be
lexicographically greater than 6, a contradiction. If v had an incentive to choose
a color that corresponds to the jth coordinate of Lg for some j > ¢, then it must
essentially hold that ¢5(i) = ¢5(j). So, if v deviates, this would again yield an
optimum coloring that would be lexicographically greater that 6, a contradic-
tion. Therefore 6 is a pure Nash equilibrium and SC(G, 6) = x(G). O

Lemma 1. Every pure Nash equilibrium c of I'(G) is a proper coloring of G.

Proof. Assume, by contradiction, that c¢ is not a proper coloring. Then there
exists some vertex v € V such that A,(c) = 0. Clearly, there exists some color
x € X such that ¢, # z for all u € V. Therefore A\, (x,c_,) =1 > 0 = A,(c),
which contradicts the fact that c is an equilibrium. a

Corollary 1. It is NP-complete to decide whether there exists a pure Nash equi-
librium of I'(G) that uses at most k colors.

Proof (Sketch). Follows by reduction to the NP-complete problem of deciding
whether there exists a proper coloring of a graph that uses at most & colors. 0O

Theorem 2. For any graph coloring game I'(G), a pure Nash equilibrium can
be computed in O(n - a(Q)) selfish steps, where n is the number of vertices of G
and a(G) is the independence number of G.

Proof. We define the function & : P — R, where P C X" is the set of all
configurations that correspond to proper colorings of the vertices of G, as ®(c) =
é Yozex n2(c), for all proper colorings c. Fix a proper coloring c. Assume that
vertex v € V can improve its payoff by deviating and selecting color = # ¢,.
This implies that the number of vertices colored ¢, in c is at most the number
of vertices colored z in ¢, i.e. n., (c) < ng(c). If v indeed deviates to z, then
the resulting configuration ¢’ = (z, c_,) is again a proper coloring (vertex v can
only decrease its payoff by choosing a color that is already used by one of its

188 P.N. Panagopoulou and P.G. Spirakis

neighbors, and v is the only vertex that changes its color). The improvement on
v’s payoff will be A, (¢’) — Ay (c) = ng(c’)—ne,(c) = n.(c)+1—n., (c). Moreover,

B(c') — P(c) nz(e') +ng, (¢') = ni(e) —ng (c))

5 (
5 ((2(€) + 1 + (ne, (€) — 17 — n2(e) ~ . (0))
=nz(c) +1—ne,(c) = A(c') — A\y(c).

Therefore, if any vertex v performs a selfish step (i.e. changes its color so that
its payoff is increased) then the value of @ is increased as much as the payoff
of v is increased. Now, the payoff of v is increased by at least 1. So after any
selfish step the value of @ increases by at least 1. Now observe that, for all
proper colorings ¢ € P and for all colors z € X, ng(c) < a(G). Therefore
P(e) = 5 T aex 12(0) <) Ve (na(€) - alG)) = jalG) Tpex male) = 5.
Moreover, the minimum value of @ is %n Therefore, if we allow any unsatisfied
vertex (but only one each time) to perform a selfish step, then after at most
"'a(g)_" steps there will be no vertex that can improve its payoff (because &
will have reached a local maximum, which is no more than the global maximum,
which is no more than (n - «(G))/2), so a pure Nash equilibrium will have been
reached. Of course, we have to start from an initial configuration that is a proper
coloring so as to ensure that A4 will terminate in O(n - «(G)) selfish steps; this
can be found easily since there is always the trivial proper coloring that assigns
a different color to each vertex of G. O

The above proof implies the following simple algorithm A that computes a pure
Nash equilibrium of I'(G) (and thus a proper coloring of G):
Input: Graph G with vertex set V = {v1,...,vn}; a set of colors X = {z1,...,z,}
Output: A pure Nash equilibrium ¢ = (¢y,,..., ¢y,) € X" of I'(G)
Initialization: for i =1 to n do ¢, = z;

repeat
find an unsatisfied vertex v € V and a color € X such that A, (z,c—y) > Ay(c)
set ¢y, =

until all vertices are satisfied

Le., at each step, A allows one unsatisfied vertex to perform a selfish step,
until all vertices are satisfied. Note that, at each step, there may be more than
one unsatisfied vertices, and more than one colors that a vertex could choose in
order to increase its payoff. So actually A is a whole class of algorithms, since
one could define a specific ordering (e.g., some fixed or some random order) of
vertices and colors, and examine vertices and colors according to this order. In
any case however, the algorithm is guaranteed to terminate in O(n-a(QG)) selfish
steps. Furthermore, each selfish step can be implemented straightforwardly in
O(n?) time, since there are n vertices and n colors that each vertex can be
assigned. It might be possible to improve the O(n?) complexity of a selfish step,
e.g. by using appropriate data structures; this is a matter of future research and
we leave it as an open question.

A Game Theoretic Approach for Efficient Graph Coloring 189

Let us now give a direct application of Theorem [2] to dense random graphs,
and in particular consider the G, , model, i.e. the class of random graphs with

n vertices where each of the possible "("2_1) edges occurs with probability p (for
some constant 0 < p < 1). The independence number of these graphs is known
to be (1 —o(1)) 10g21(01g/2(1n;p)) with high probability [2], and therefore a pure Nash
equilibrium can be computed in O(n-logy(n)) selfish steps, with high probability.

4 Bounds on the Total Number of Colors

Lemma 2. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < Ay(G) + 1 and hence k < A(G) + 1.

Proof. Consider a pure Nash equilibrium c of I'(G), and let k be the total number
of distinct colors used in c. If k& = 1 then it easy to observe that G must be
totally disconnected, i.e. A(G) = As(G) = 0 and therefore k = A3 (G) + 1. Now
assume k > 2. Let x;, £; € X be the two colors used in c that are assigned to the
minimum number of vertices. W.Lo.g[], assume that nz,(€) < ng;(c) < ng(c) for
all colors « ¢ {x;,x;} used in c. Let v be a vertex such that ¢, = z;. The payoff
of vertex v is A, (c) = ng,(c). Now consider any other color x # x; that is used in
c. Assume that there is no edge between vertex v and any vertex u with ¢, = x.
Then, since c is a pure Nash equilibrium, it must hold that n,,(c) > ng(c) + 1,
a contradiction. Therefore there is an edge between vertex v and at least one
vertex of every other color. Hence the degree of vertex v is at least the total
number of colors used minus 1, i.e. deg(v) > k — 1. Furthermore, let u be the
vertex of color ¢, = x; that v is connected to. Similar arguments as above yield
that « must be connected to at least one vertex of color z, for all = ¢ {z;,z;}
used in c¢. Moreover, u is also connected to v. Therefore deg(u) > k — 1. Now:

A =
2(G) =max max deg(t)
deg(t) < deg(s)

> max max deg(t), max deg(t)
t € N(v) t € N(u)
deg(t) < deg(v) deg(t) < deg(u)

> min {deg(u),deg(v)} > k-1
and therefore k < Ay(G) + 1 as needed. O

Lemma 3. In a pure Nash equilibrium, all vertices that are assigned unique
colors form a clique.

Proof. Consider a pure Nash equilibrium c¢. Assume that the colors ¢, and ¢,
chosen by vertices v and w are unique, i.e. n.,(c) = n.,(c) = 1. Then the payoff
for both vertices is 1. If there is no edge between u and v then, since c is an
equilibrium, it must hold that 1 = A,(c) > A\, (cy,c—y) = 2, a contradiction. O

1 Without loss of generality.

190 P.N. Panagopoulou and P.G. Spirakis

Lemma 4. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < ”+“2’(G).

Proof. Consider a pure Nash equilibrium ¢ of I'(G). Assume there are ¢ > 0
vertices that are each assigned a unique color. These t vertices form a clique

(Lemma []), hence t < w(@). The remaining n — ¢ vertices are assigned non-
nt+t o n+w(G) 0
2 2

unique colors, so the number of colors in c is k <t + ”;t =

Lemma 5. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k < 1+\/;+8m‘

Proof. Consider a pure Nash equilibrium ¢ of I'(G). W.l.o.g., assume that the k
colors used in ¢ are x1, ..., zg. Let V;, 1 < i < k, denote the subset of all vertices
v € V such that ¢, = z;. W.l.o.g., assume that |V1] < [V3] < --- < |Vj|. Observe
that, for each vertex v; € V;, there is an edge between v; and some v; € V},
for all j > 4. If not, then v; could improve its payoff by choosing color z;, since
[V;| +1 > |Vi| +1 > |Vi|]. This implies that m > Z;:ll |Vi|(k — %) and, since
[Vi] > 1forallie{l,...,k}, m > Zf;ll(k — i) or equivalently m > k(kgl) or
equivalently k2 — k — 2m < 0, which implies k < H“/?gm. O

Theorem 3. In any pure Nash equilibrium of I'(G), the number k of total colors
used satisfies k <n — a(G) + 1.

Proof. Consider any pure Nash equilibrium ¢ of I'(G). Let ¢ be the maximum,
over all vertices, payoff in ¢, i.e. t = max,ex n,(c). Partition the set of vertices
into ¢ sets V1,...,V; so that v € V; if and only if A, (c) = i (note that each vertex
appears in exactly one such set, however not all sets have to be nonempty). Let
k; denote the total number of colors that appear in V;. Clearly, |V;| =i - k; and
the total number of colors used in ¢ is k = Y'_, k;. Now consider a maximum
independent set I of G. The vertices in V; have payoff equal to 1, therefore they
are assigned unique colors, so, by Lemma [3 the vertices in V; form a clique.
Therefore I can only contain at most one vertex among the vertices in V3. Our
goal is to upper bound the size of I. First we prove the following:

Claim 1. If there exists some 7 > 1 such that k; = 1 and I contains all the
vertices in V;, then k < n — a(G) + 1.

Proof of Claim 1. Let = denote the unique color that appears in V;. Since [
contains all the vertices in V;, then it cannot contain any vertex in V3 U---UV;_;.
This is so because each vertex v € Vj, j < 4, is connected by an edge with at
least one vertex of color = (otherwise v could increase its payoff by selecting x,
which contradicts the equilibrium). Furthermore, each vertex in V; has at least
one neighbor of each color that appears in V;11 U--- U V;. Therefore

t t i—1 i
Hl=aG) < Vil + D0 WVil= D kj=n—) Vil =k+D Kk
j=1 j=1

j=it1 j=it1

A Game Theoretic Approach for Efficient Graph Coloring 191

which gives k < n—a(G —|—Z —ViD+ki <n—a(G)+k =n—a(G)+1. O

So now it suffices to consider the case where, for all ¢ > 1 such that k; = 1, I
does not contain all the vertices in V;. So I contains at most |V;| — 1 = |V;| —
vertices that belong to V;. In order to complete the proof we need the following:

Claim 2. For all ¢ > 1 with k; # 1, I cannot contain more than |V;| — k; vertices
among the vertices in V;.

Proof of Claim 2. This is clearly true for k; = 0 (and hence |V;| = 0). Now
assume that k; > 2. Observe that, for all vertices v; € V; there must exist an
edge between v; and a vertex of each one of the remaining k; — 1 colors that
appear in V; (otherwise, v; could change its color and increase its payoff by 1,
which contradicts the equilibrium). Fix a color x of the k; colors that appear
in V;. If I contains all vertices of color z, then it cannot contain any vertex
of any color other than x that appears in V;. Therefore I can contain at most
i < (i — 1)k; = |V;| — k; vertices among the vertices in V;. On the other hand,
if I contains at most i — 1 vertices of each color x that appears in V;, then I
contains again at most (¢ — 1)k; = |V;| — k; vertices among the vertices in V;. O

Therefore I cannot contain more than |V;| — k; vertices among the vertices of V;,
for all ¢ > 1, plus one vertex from V;. Therefore:

11| = (G <1+Z|V\ D=14+n—|Vi|—(k—|Vi])=n—k+1.

So, in any case, k <n — a(G) + 1 as needed. O
The bounds given by Lemmata 2 @l Bl and Theorem [3] imply the following:
Theorem 4. For any graph coloring game I'(G) and any pure Nash equilibrium
c of I'(G), SC(G,c) < min{Ag(G) +1, "*‘;(G)’ 1+\/é+8m7 n—a(G) + 1}.

Furthermore, since any Nash equilibrium is a proper coloring (Lemma[Il) and a
Nash equilibrium can be computed in polynomial time (Theorem [2):

Corollary 2. For any graph G, a proper coloring that uses at most k <
min{Ag(G) +1, "J“;(G), 1+\/§+8m, n—a(G) + 1} colors can be computed in
O(n*) time.

5 The Approximation Ratio

Lemma 6. For any graph G with n vertices and m edges,

min {AQ(G) +1, n+°;(G), H"/é"'gm, n—a(G) + 1}

R(G) <
= max {w(G), a("G)}

192 P.N. Panagopoulou and P.G. Spirakis

Fig. 1. (a) A graph with chromatic number 2 and (b) a Nash equilibrium using 6 colors

Proof. Follows from Theorem [and the fact that x(G) > max{w(G), o(6) }. O

Lemma 7. For any constant ¢ > 0, there exists a graph G(e) such that
R(G(€)) > n'=¢ unless NP C co-RP.

Proof. Assume the contrary. Then there exists some constant ¢ > 0 such that,
for all graphs G, R(G) < n'~¢. But then our selfish improvements algorithm A
of Theorem [achieves, in O(n*) time, a proper coloring of G with a number
of colors k < R(G) - x(G), ie., k < n'=x(G). Thus, for all G, algorithm A
approximates x(G) in polynomial time with an approximation ratio R < n!~¢
for some constant ¢ > 0. This cannot happen unless NP C co-RP [7].]

However, can we construct a graph certificate G with unconditionally high R(G)?
The answer is yes:

1

5
Proof. Consider a bipartite graph G = (V, E) with n = 2k 4 2 vertices, kK > 1.
Let V. =UUWU{s,t} where U = {uq,...,ux} and W = {w1, ..., wx}. The set
of edges F is defined as

Lemma 8. We can construct a graph certificate G such that R(G) =} +

K K
E={{ujw;} eUxW |i#j}U U{s,uz} u U{t,wi} U{s,t}.
i=1 i=1
(Figure [M(a) shows such a graph with n = 10 vertices.) There exists a pure
Nash equilibrium that uses x + 2 colors: vertices uy,w; are colored x1, vertices
ug, we are colored xo e.t.c., while vertex ¢ is colored =11 and vertex s is colored
Zpt2 (see Fig. [(b)). This coloring is a pure Nash equilibrium since each vertex
v € UUW receives payoff equal to 2 and the set of vertices N(v) U {v} uses all
colors x1,...,x,. Vertices s and t get payoff 1, but each of them is connected
to a vertex of each of the remaining colors. The optimum coloring would use 2
colors, one to color the vertices in U U {t} and another to color the vertices in
W U {s}. Therefore R(G) > "{? =7 + 1. But w(G) = 2, so from Lemma [we
can easily get R(G) < 7} + é, which completes the proof. O

6 On Mechanisms to Improve the Approximation Ratio

6.1 Refinements of the Selfish Steps Sequence: Randomness

The existence of the potential function @(c) assures that if we start with a proper
coloring and allow at each step any single unsatisfied vertex to perform a selfish

A Game Theoretic Approach for Efficient Graph Coloring 193

step, then a pure Nash equilibrium will be reached in polynomial time, no matter
in which order the vertices are examined or which is the initial configuration.
In this section we study whether there exists a sequence of selfish steps, i.e. a
specific ordering of the vertices according to which the vertices are allowed to
perform a selfish step, such that the Social Cost of the equilibrium reached is
even less than the general bounds presented before.

Assume that, at each step, the vertex that is allowed to perform a selfish step
is chosen independently and uniformly at random, among all vertices that are
unsatisfied. Moreover, assume that the vertex chosen to perform a selfish step
chooses a color independently and uniformly at random among the colors that
can increase its payoff. Then, we can prove the following (the proof is omitted):

Proposition 1. The random selfish steps sequence applied to the graph of
Lemma [§ terminates in polynomial time at a pure Nash equilibrium that, with
high probability, corresponds to an optimum coloring.

Although Proposition [is rather restrictive, since it only applies to the graph
of Lemma 8, we believe that the random selfish steps sequence can color other
classes of graphs with a number of colors much smaller than the bounds presented
previously. We expect that randomization can help in avoiding equilibria that
are too far from an optimum coloring. However, we have not yet been able to
prove this; this is a matter of future research and we leave it as an open problem.

6.2 Stackelberg Strategies

Consider a graph coloring game I'(G). Assume that there is a central authority
(a Leader) that controls a portion VL C V of the vertices of G = (V, E), i.e
the Leader colors the vertices in V¥ and, after that, the rest of the vertices in
V\ VL (the followers) are colored selfishly. The goal of the Leader is to find an
assignment of colors to V¥ (a Leader’s strategy) so as to induce the followers to
a pure Nash equilibrium where the total number of colors used in V' is as close
to the chromatic number of G as possible.

Definition 2. For a constant k € N, a random balanced k-partite graph, denoted
G kp, s a k-partite graph with n vertices, where the size of each vertex class is
either [] or | 7], and each edge {u,v} (such that u and v belong to different
vertex classes) exists in G independently at random with probability p.

Lemma 9. The chromatic number of Gn,k,; is k, with high probability.

Proof (Sketch). Clearly, w(G,, j.1) < X(Gy, j,1) < k. The proof follows by show-
ing that, with high probability, there exists a clique of size k in Gn)k)%. O

Theorem 5. Consider the graph coloring game I'(G,, ;.) There exists a poly-
nomial time computable Leader’s strategy, such that wzth high probability the
total number of colors used in the resulting pure Nash equilibrium is k.

Proof. Let Pi,..., P denote the k vertex classes of G, ; 1. Assume that the
Leader chooses uniformly at random a subset S C V of |S| = clogn vertices, for

194 P.N. Panagopoulou and P.G. Spirakis

some constant ¢ > 10k. The Leader can exhaustively search among all possible
k-colorings of S in time polynomial in n, since |S| = clog n. Among these possible
colorings, there exists one proper coloring ¢’ that colors each vertex s € SN P,
with the same color x1, each vertex s € SN P, with the same color x5 # x1 e.t.c.
In the following, assume that the Leader’s strategy is c’.

Our next step is to show that, with high probability, each follower v; € P; \ S
is connected to at least one vertex in S of color z;, for all j # 9. To do so, we
use Hoeffding bounds [1I] and obtain

. . 2k
Pr{3i, Jv; e P;, 3j : {vi,v;} ¢ E Yv;€e SNP;} < "

So with probability at least 1 — 271“ , each follower v; € P,\S (foralli € {1,...,k})
has all the colors x; (j # 4) in its neighborhood. But if this is the case, then
the pure Nash equilibrium that will be reached by any selfish steps sequence
will use the same color x; for all v; € P;\ S, for each i = {1,...,k}. Therefore,
with probability at least 1 — 2:, there will be k colors in the resulting pure Nash
equilibrium. However, we assumed that the Leader’s strategy is ¢”. This is not
restrictive, since the Leader can repeatedly choose one of the possible k-colorings
of S (their number is k°!°8™ i.e. polynomial in n) and then leave the followers
converge to a pure Nash equilibrium. The precedent analysis shows that there
exists a proper coloring ¢’ of S such that there will be k colors in the equilibrium
reached by the followers, with high probability. O

References

1. Bodlaender, H.L.: On the complexity of some coloring games. International Journal
of Foundations of Computer Science 2(2), 133-147 (1991)

2. Bollbéas, B.: The chromatic number of random graphs. Combinatorica 8, 49-55
(1988)

3. Brelaz, D.: New methods to color the vertices of a graph. Comm. ACM 22, 251-256
(1979)

4. Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37,
194-197 (1941)

5. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

6. Dinski, T., Zhu, X.: A bound for the game chromatic number of graphs. Discrete
Mathematics 196, 109-115 (1999)

7. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Com-
puter and System Sciences 57(2), 187-199 (1998)

8. Halldérsson, M.: A still better performance guarantee for approximate graph col-
oring. Information Processing Letters 45, 19-23 (1993)

9. Harary, F.: Graph theory. Addison-Wesley, Reading (1969)

10. Harary, F., Tuza, Z.: Two graph-colouring games. Bulletin of the Australian Math-
ematical Society 48, 141-149 (1993)

11. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58, 13-30 (1963)

12. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley Interscience, Hoboken
(1995)

13.

14.

15.
16.

A Game Theoretic Approach for Efficient Graph Coloring 195

Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85-103. Plenum Press (1972)

Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14,
124-143 (1996)

Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286-295 (1951)
Stacho, L.: New upper bounds for the chromatic number of a graph. Journal of
Graph Theory 36(2), 117-120 (2001)

Partitioning a Weighted Tree
to Subtrees of Almost Uniform Size

Takehiro Ito!, Takeaki Uno?, Xiao Zhou', and Takao Nishizeki'

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai, 980-8579, Japan
2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
takehiro@ecei.tohoku.ac.jp, uno@nii.ac. jp,
{zhou,nishi}@ecei.tohoku.ac.jp

Abstract. Assume that each vertex of a graph G is assigned a nonnega-
tive integer weight and that [and u are integers such that 0 <[< u. One
wishes to partition G into connected components by deleting edges from
G so that the total weight of each component is at least | and at most
u. Such an “almost uniform” partition is called an (I, u)-partition. We
deal with three problems to find an (I, u)-partition of a given graph: the
minimum partition problem is to find an (I, u)-partition with the mini-
mum number of components; the maximum partition problem is defined
analogously; and the p-partition problem is to find an (I, u)-partition
with a given number p of components. All these problems are NP-hard
even for series-parallel graphs, but are solvable for paths in linear time
and for trees in polynomial time. In this paper, we give polynomial-time
algorithms to solve the three problems for trees, which are much simpler
and faster than the known algorithms.

1 Introduction

Let G be an undirected graph, and let each vertex v of G be assigned a non-
negative integer w(v), called the weight of v. Let [and u be given nonnegative
integers, called the lower bound and upper bound on component sizes, respec-
tively. We wish to partition G into connected components by deleting edges
from G so that the total weights of all components are almost uniform, that is,
the sum of weights of all vertices in each component is at least | and at most «
for appropriately chosen bounds [and u. We call such an almost uniform par-
tition an (I, u)-partition of G. In this paper, we deal with the following three
partition problems to find an (I, u)-partition of a given graph G: the minimum
partition problem is to find an (I, u)-partition of G with the minimum number
of components; the mazimum partition problem is defined analogously; and the
p-partition problem is to find an (I, u)-partition of G with a given number p of
components.

Figures [l{a) and (b) illustrate two (5, 15)-partitions of the same tree, where
each vertex is drawn as a circle, the weight of each vertex is written inside the

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 196{207,|2008.
© Springer-Verlag Berlin Heidelberg 2008

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 197

@ ® @/@\@
s N

(@) (b)

Fig. 1. (a) Solution for the minimum partition problem, and (b) solution for the max-
imum partition problem, where [=5 and u = 15

circle, and the deleted edges are drawn as dotted lines. The (5, 15)-partition with
three components in Fig.[T(a) is a solution for the 3-partition problem and for the
minimum partition problem, while the (5, 15)-partition with six components in
Fig.[I(b) is a solution for the 6-partition problem and for the maximum partition
problem. The three partition problems often appear in many practical situations
such as load balancing [I], image processing [4J6], paging systems of operation
systems [9], and political districting [2I10].

An NP-complete problem, called the set partition problem [3], can be easily
reduced in linear time to any of the three partition problems for a complete
bipartite graph Ks ,_2, where n is the number of vertices in a graph. Since
K3 9 is a series-parallel graph, the three partition problems are NP-hard even
for series-parallel graphs [5]. Therefore, it is very unlikely that the three parti-
tion problems can be solved in polynomial time even for series-parallel graphs,
although the three problems can be solved in pseudo-polynomial time for graphs
of bounded tree-width, including series-parallel graphs [B]. On the other hand,
all the three partition problems can be solved for paths in linear time [6] and
for special classes of trees, i.e., stars, worms and caterpillars, in polynomial time
[8], while the p-partition problem can be solved for arbitrary trees of n vertices
in time O(p3n*) [1].

In this paper, we show that all the three partition problems can be solved
for arbitrary trees more efficiently. To be precise, we show that the p-partition
problem can be solved in time O(p*n). Since p < n, our algorithm is faster
and much simpler than the known algorithm in [7]. Furthermore, our algorithm
runs in linear time if p is a fixed constant. One can solve the minimum partition
problem and the maximum partition problem by solving the p-partition problem
for every p, 1 < p < n. Therefore, both the minimum partition problem and the
maximum partition problem can be solved in time O(n®).

2 Simple Algorithm

In this section we give a simple algorithm to solve the p-partition problem for
trees of n vertices in time O(p*u?n). It examines whether a given tree T has
an (I, u)-partition with p subtrees or not. However, one can easily modify the
algorithm so that it actually finds an (I, u)-partition with p subtrees whenever
T has it. One may assume that p < n, but the upper bound u is not necessarily

198 T. Ito et al.

bounded by n. Therefore, the algorithm does not necessarily take polynomial
time, but takes pseudo-polynomial time. Using this algorithm, we will give a
polynomial-time algorithm in Section Bl

2.1 Terms and Definitions

We first present our idea. One may assume without loss of generality that a
given tree T is a rooted tree with root r. In Fig2(a) an (I, u)-partition of T is
indicated by dotted lines. For each vertex v of T', we denote by T, the subtree
of T which is rooted at v and is induced by all descendants of v in 7. Thus
T = T,. Every (l,u)-partition of a tree T naturally induces a partition of its
subtree T, as illustrated in Figl2(b). The induced partition is not necessarily
an (I, u)-partition of T),, because the component P, containing v may not satisfy
the lower bound [. However, the induced partition is an “extendable” partition
of T,; in an extendable partition of T}, every component, except for P,, must
satisfy both the lower bound [and the upper bound u, but P, may not satisfy
either the lower bound [or the upper bound w. Thus, for a subtree T, of T" and
an integer k, 0 < k < p — 1, we define S(T,, k) as the set of all integers z such
that z is the total weight of the component P, in an extendable partition of T,
with k& + 1 components. Our idea is to compute S(Ty, k) from the leaves to the
root r of T' by means of dynamic programming. Clearly, T" has an (I, u)-partition
with p components if and only if S(7,,p — 1) contains an integer z such that
[<z<u.

We now formally define the notion of an extendable partition of a subtree T,
of T. Let P be a partition of the vertex set V(T,) of T, into nonempty subsets.
P is called a partition of T, if each subset in P induces a connected component
(subtree) of T,. For a set P C V(T,), we denote by w(P) the total weight of
vertices in P, that is, w(P) = > . pw(z). For a partition P of T,, we always
denote by P, the set in P containing the root v of T,. A partition P of T, is
extendable if each set P € P\ {P,} satisfies | < w(P) < u. Note that P, may
not satisfy | < w(PR,) < u.

(@ T=T,

Fig. 2. (a) An (I, u)-partition of a tree T' and (b) an extendable partition of a subtree
T, of T

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 199

We then formally define a set S(T5, k) of integers z for a subtree T, of T' and
an integer k, 0 < k <p— 1, as follows:

S(Ty, k) ={z | T, has an extendable partition P
such that z = w(P,) and |P| =k + 1}.

For a set Z of integers, let min(Z) = min{z | z € Z} and max(Z) = max{z | z €
Z}. We now have the following lemma.

Lemma 1. max(S(Ty, k)) — min(S(Ty, k)) < k(u —1).

Proof. For each integer z € S(T,, k), T, has an extendable partition P such that
z = w(Py) and |P| = k + 1. Since each component P € P \ {P,} satisfies the
lower bound [, we have

z=wP)=wlV(T) - > wP) <w(V(T,))— kL.
PeP\{P,}

Thus we have
max(S(Ty, k) <w(V(Ty)) — kl.

Similarly, since each component P € P\ {P,} satisfies the upper bound u, we
have
min(S(Ty, k)) > w(V(Ty)) — ku.

Therefore, we have max(S (T, k)) — min(S(Ty, k)) < k(u —1). O

Our algorithm computes S(Ty, k) for each vertex v of T from the leaves to the
root 7 of T" by means of dynamic programming. Since T = T;., the following
lemma clearly holds.

Lemma 2. A tree T has an (I, u)-partition with p subtrees if and only if S(T, p—
1) contains an integer z such that | < z < u.

Let v be a vertex of T, let v1,vs,- -+, vs be the children of v ordered arbitrarily,
and let e;, 1 <14 < s, be the edge joining v and v;, as illustrated in Figl3l We de-
note by T the subtree of T which consists of the vertex v, the edges ey, ez, -, ¢€;
and the subtrees Ty, , Ty,, - -, Ty,. In Figl3 the subtree T! is indicated by a dot-
ted line. Clearly T, = T, . For the sake of notational convenience, we denote by
TV the subtree of a single vertex v. Therefore, T, = T\ if v is a leaf of T

Fig. 3. Tree T,

200 T. Ito et al.

2.2 Algorithm

We now describe the simple algorithm.
We first compute set S(T?, k) for each vertex v of T and each integer k,
0<k<p-—1.For k=0,

S(T;),0) = {w(v)}, (1)
and for each integer k, 1 < k <p—1,

S(TO k) = 0. (2)

We next compute sets S(T¢, k), 1 < i < s, for each internal vertex v of T
from the counterparts of T¢~! and T, from the bottom to the top of T', where
s is the number of the children of v. (See Fig[l) By Lemma [one can know
immediately from S(T,.,p — 1) whether T has an (I, u)-partition with p subtrees
or not.

T is obtained from T!~! and T,, by joining v and v; as illustrated in FigHl
Every extendable partition P of T can be obtained by merging an extendable
partition P’ of T:~! with an extendable partition P” of T;,,. In FigHl extendable
partitions are indicated by dotted lines. There are the following two Cases (a) and
(b), and we define two sets S%(T%, k) and S°(T, k) for the two cases, respectively.

Case (a): v; € P,.

In this case, an extendable partition P of T can be obtained by merging
an extendable partition P’ of T:~1 with an extendable partition P” of T,,, as
illustrated in Figll(a). Then, the component P, € P containing v consists of the
vertices in P, U P/, where P is the component in P’ such that v € P; and P,/

is the component in P” such that v; € P./. We thus define a set S*(T}, k) as
follows:

k
SUTLk) = | J{Z +2" |2 € ST k) and 2" € S(To k= K)}. (3)
k=0
Case (b): v; & P,.
In this case, P, = P/, and an extendable partition P of T}’ can be obtained by

merging an extendable partition P’ of T!~! with an (I, u)-partition P” of T,,,,
as illustrated in FigHlb). We thus define a set S*(T7, k) as follows:

SU(Ty k) = ST 1K), (4)
where S(T:71, k') is taken over all k', 0 < k' < k — 1, such that S(T,,k— k' —1)
contains an integer z”, | < 2" < u.

From two sets S?(T!, k) and S°(T?, k) above, one can compute a set S(T7, k) as
follows: ' 4 '
S(Ty, k) = ST}, k) U SU(T, k). ()

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 201

(b) v, &P,

Fig. 4. Merging a partition P’ of T:™! with a partition P” of T,, to a partition
P of T¢

One may assume that } 7y w(x) < pu; otherwise, T has no (I, u)-partition
with p subtrees. Thus w(P,) < pu for any partition P of T,, and hence
max(S(Ty, k)) < pu. Therefore, we have |S(T,, k)| < k(u —1)+1<pu+1=
O(pu). We represent set S(7T5, k) simply by a list, whose length is O(pu). Thus,
one can compute a set {2’ + 2" | 2/ € S(T.7', k') and 2’ € S(T,,,k — k')} from
two sets S(T:71, k') and S(T,,, k — k') in time O(p?u?), using an array of length
pu + 1. Since k' is taken over all integers, 0 < k' < k < p—1, in Eq. (@), one
can compute S*(T¢, k) in time O(p®u?). Similarly, one can compute S*(T7, k)
in Eq. @) in time O(p?u). Thus one can compute S(77, k) in Eq. (@) in time
O(p®u?). The integer k in Eq. (@) is taken over all k, 0 < k < p— 1, and there are
at most n+ (n— 1) pairs of a vertex v and an integer ¢. Thus, one can recursively
compute the sets S(T7, k) for all vertices v of T', all integers i and all integers k,
0 <k <p-—1,in time O(p*u?n). By Lemma [one can know from S(T,p — 1)
in time O(pu) whether T has an (I, u)-partition with p components. Thus the
simple algorithm takes time O(p*u?n) to solve the p-partition problem for trees.

We remark that the p-partition problem can be solved in linear time for the
case [= u. In this case, by Lemma [|S(T7, k)| < 1, and the algorithm above
can be easily implemented so that it runs in linear time.

3 Polynomial-Time Algorithm

The main result of this paper is the following theorem.

Theorem 1. The p-partition problem can be solved for a tree T in time O(p*n),
where n 1s the number of vertices in T and p is any positive integer.

202 T. Ito et al.

One can solve the minimum partition problem and the maximum partition prob-
lem by solving the p-partition problem for every p, 1 < p < n. We thus have the
following corollary.

Corollary 1. Both the minimum partition problem and the maximum partition
problem can be solved for a tree T in time O(nS).

In the remainder of this section, as a proof of Theorem [I we give an algorithm
to solve the p-partition problem for trees in time O(pn). One may assume that
l < u, because the algorithm in Section 2l runs in linear time if [= w.

The simple algorithm in Section 2 uses a DP table S(T5, k) of size O(pu). Our
polynomial-time algorithm is analogous to the simple algorithm, but reduces the
size of a DP table to O(p). We represent the set S(T,, k) of integers by at most
p “maximal consecutive subsets,” each of which is represented by an interval,
i.e., a pair of integers. This is our main idea.

3.1 Terms and Definitions

A set Z of integers is consecutive (with respect to u — 1) if, for each integer
z € Z\ {max(Z)}, Z contains an integer 2z’ such that 0 < z/ — 2z < u —[. The
pair [min(Z), max(Z)] is called the interval of Z. Obviously Z is consecutive if
|Z] = 1.

Lemma 3. If both X and Y are consecutive with respect to u — 1, then the set
Z={zx+y|xzeX andy €Y} is also consecutive with respect to u — .

Proof. If |Z] = 1, then Z is consecutive. One may thus assume that |Z| > 2.
We shall prove that, for each integer z € Z \ {max(Z)}, Z contains an integer
Z'suchthat 0 < 2/ — 2z <wu—1.

Clearly, max(Z) = max(X) + max(Y). For each integer z € Z \ {max(Z)},
there exist z € X and y € Y such that x + y = 2. Since z # max(Z), either
x # max(X) or y # max(Y). One may assume without loss of generality that
x # max(X). Then, since X is consecutive, there exists an integer ' € X such
that 0 < 2’ —x < w —1. Since ' € X and y € Y, the integer 2z’ = 2’ + y is
contained in Z. We now have

Z—z=@+y)—(z+y)=2"—2>0
and
Z—z=2"—x<u-—I,
and hence 0 < 2/ — 2z <wu —1. O

Note that the interval of Z is [min(X) 4+ min(Y"), max(X) + max(Y)].

For a set Z of integers, a set Z' C Z is called a mazimal consecutive subset of
Z (with respect to u — 1) if Z’ is consecutive and there is no consecutive subset
Z" C Z such that Z' C Z"”. Set Z can be partitioned into maximal consecutive
subsets of Z. We define a set I(Z) of intervals, as follows:

I(Z)={[z,y] | [x,vy] is the interval of a maximal consecutive subset of Z}. (6)

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 203

Fig. 6. Merge operation for intervals [z,y] and [z’, ']

In Fig[l every integer in Z is represented by a cross, square, circle or triangle, all
integers represented by the same symbol form a maximal consecutive subset of
Z, and each interval in I(Z) is indicated by a dotted curve joining two integers.

Our algorithm computes the set I(S(Ty,k)) of intervals in place of the set
S(T,, k) of integers.

Two intervals [z, y] and [2/, y'] are intersecting (with respect to u—1) if x < 2’
and 2’ —y < u—1. (See Figl6l) The merge operation for two intersecting intervals
[z,y] and [2',y'] returns an interval [z,y’] if y < y; otherwise, it returns the
interval [z,y]. Figures [B(a) and (b) illustrate the merge operation for the case
y <y, and Figlfl(c) illustrates the merge operation for the case y > 3/, where the
interval obtained by the merge operation is indicated by a thick dotted curve.
The merge operation for a set Z of intervals is to obtain a set M (Z) of intervals
such that no two intervals are intersecting by repeatedly applying the merge
operation for two intersecting intervals in Z. (See Fig[fl) We always denote by
M(Z) the set obtained by the merge operation for Z.

We are now ready to define the DP table of our polynomial-time algorithm.
We denote the set I(S(T,,k)) of intervals simply by I(T,, k) for a subtree T, of
a tree T' and an integer k, 0 < k < p — 1. Let z be an integer, then z ¢ S(T,, k)
if I(T,, k) does not contain an interval [z,y], z < z < y. However, z € S(T,, k)
does not necessarily hold even if I(T,, k) contains an interval [z,y], x < z < y.

We estimate the size of the DP table, as follows.

Lemma 4. [[(T,, k)| <k+1.

Proof. If k = 0, then an extendable partition P of T, consists of exactly one set
P, =V (T,) and hence I(T,,0) = {[w(V(T})),w(V(Ty))]} and |[I(T},0)| = 1.

We may thus assume that k& > 1. Let I(Ty,k) = {[zo, o], [z1,91]," ",
[©m, Ym]}. We shall show that m < k. One may assume without loss of gen-
erality that zp < yo < 1 < y1 < -+ < Tiy < Ypn. Then min(S(T,, k)) = xo,
max(S(Ty, k)) = Ym, and hence by Lemma [I] we have

Ym — xo < k(u—1). (7)

204 T. Ito et al.

z

MZ)

Fig. 7. Merge operation for a set Z of intervals

For each i, 0 <14 < m — 1, the two intervals [x;,y;] € I(Ty, k) and [zi41,vi41] €
I(T,, k) are not intersecting, and hence v — I < x;4+1 — y;. We thus have

m—1
m(u—1) <Z~731+1_yz (8)
1=0

Since z; < y; for each i, 0 < i < m, by Eq. ([8) we have

m—1 —1

m(u—1) <Z (@it1 =) < D Wit —¥i) = Ym — Yo < Ym — To- (9)
=0 s

By Egs. (@) and (@) we have m < k, and hence |I(T,, k)| =m+1 < k. O

3

I
<

Our algorithm computes the set I(T,, k) for each vertex v of T from leaves to the
root r of T' by means of dynamic programming. We have the following lemma.

Lemma 5. A tree T has an (1, u)-partition with p subtrees if and only if I(T,p—
1) contains an interval [x,y| such that either () | <y <w or (ii) x <u < y.

Proof.
Necessity: Suppose that T has an (I,u)-partition with p subtrees. Then by
Lemma P S(T,p — 1) contains an integer z such that | < z < wu. Therefore,

I(T,p — 1) contains an interval [x,y] such that < z < y. Then, clearly (i) or
(ii) holds.

Sufficiency: Suppose that I(T,p — 1) contains an interval [z, y] satisfying either
(i) or (ii). By Lemma it suffices to show that S(T,p — 1) contains an integer z
such that [< z < w.

If the interval [z,y] € I(T,p — 1) satisfies the condition (i), that is, | <y < u,
then the integer y € S(T,p — 1) satisfies | <y < u, of course.

One may thus assume that the interval [z,y] € I(T,p — 1) satisfies the con-
dition (ii), that is, + < u < y. Let W = {wo, w1, -, wn} be the maximal
consecutive subset of S(T,p — 1) such that z = min(W) and y = max(WW). One
may assume that w; < w;y; for each ¢, 0 <7 < m — 1. Let w; € W be the
minimum integer such that v < w;. If w; = u, then the integer w; € S(T,p—1)
clearly satisfies | < w; < u. One may thus assume that

u < wj. (10)

Then, since wy = & < u, we have w; # wp and hence 1 < j and v > w;_; €
S(T,p—1). Since W is consecutive, we have w; — w;j_1 < u — [. Therefore, by
Eq. (I0) we have | < w;_;. Thus we have | < w;_1 < u. |

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 205

3.2 Algorithm

We now describe our polynomial-time algorithm. The algorithm recursively com-
putes the sets I(T%, k) of intervals. We will later show that I(T!, k) = I(T%, k).

We first compute (T2, k) for each vertex v of T and each integer k, 0 < k <
p — 1, similarly as in Eqs. ({l) and (@). For k = 0, let

(T}, 0) = {[w(v),w(v)]}, (11)
and for each integer k, 1 <k <p—1, let
I(T?, k) = 0. (12)

We next compute I(T?, k), 1 < i < s, for each internal vertex v of T from the
counterparts of T:~! and T,,, where s is the number of the children of v. (See
Figs. Bl and @ together with Eqs. @)-(&).) We first compute two sets I¢(T}, k)
and I°(T!, k), as follows:

k
(T k) = (J {le' + 2"y + 9" [/, y) € (T, k') and
k'=0
[‘fﬂv y//] € j(va k — k/)}a (13)

and
(T8 k) = JI(T LK) (14)

where I(T:71 k') is taken over all K/, 0 < k' < k — 1, such that I(T,,k— k' — 1)
contains an interval [z”,y"] with either | < y” <wor z” <u < y".

From I%(T%, k) and I*(T?, k) above, we compute a set I(T}, k), as follows:
I'(Ty, k) = I*(T;, k) U I°(T}, k) (15)

and
(T, k) = M(I'(T}, k). (16)

3.3 Proof of Theorem [1]

We first show that I(T}, k) = I(T¢, k).
We first have the following two Lemmas [6] and [, whose proofs are omitted
due to the page limitation.

Lemma 6. For each integer 2 € S(T: k), I(T k) contains an interval [x,y]
such that x < z < y.

Lemma 7. For each interval [x,y] € I(T! k), both x and y are contained in
S(T¢, k) and the set {z € S(Ti k) | < z < y} is consecutive with respect to
u—1.

206 T. Ito et al.

Using Lemmas [6] and [, we have the following Lemma [, whose proof is omitted
due to the page limitation.

Lemma 8. [(T}, k) = I(T}, k).

We then show that the algorithm takes time O(p*n).

By Egs. (II) and (I2) one can compute the set I(T0, k) = I(TY, k) in time
O(p) for a vertex v of T and all integers k, 0 < k < p— 1. Therefore, I(T?, k) can
be computed in time O(pn) for all vertices v in T' and all integers k, 0 < k < p—1.

For i > 1, by Lemma @ we have |[[(T:"1, k)| < k+1 < p and |I(T,,, k)| <
p. Therefore, by Eqs. (I3)-(H) one can compute a (multi)set I'(T¢ k) from
(T~ k') and I(T,,,k — k') for an internal vertex v of 7', an integer i and an
integer k in time O(p?).

We now explain how to compute M (I'(T?, k)), that is, how to execute the
merge operations in Eq. (I8]). For each interval [z,y] € I'(T¢, k), clearly

wV(TH) —ku <z <y <w(V(TH) — k.
Thus, x and y are integers between w(V (T})) — ku and w(V (T?)) — kI, and
(w(V(T})) = kl) = (w(V(T})) — ku) = k(u—1).

We first partition the set I'(T¢, k) into the following k subsets J,, 1 < ¢ < k:

Jo =Alz,y] € I'(Ty, k) | (a = D(u—1) <z — (W(V(T})) — ku) < q(u—1)}
foreach ¢, 1 <g<k-—1, and

Ji = A{lz,y] € I'(T}, k) | (k= 1) (u—1) <o — (w(V(T))) - ku) < k(u—1)}.
The partition above can be found in time O(p?) since |I'(T!, k)| = O(p?). We
then compute sets M (J;), 1 < g < k. Clearly, any two intervals in M (J,) are
intersecting. Therefore, if J, # 0, then M (J;) = {[z},y,]} where z, = min{z |
[z,y] € Jy} and y;, = max{y | [z,y] € J,}. If J, = 0, then M(J,) = (). Since

|I'(T¢, k)| = O(p?), one can compute all the sets M(J,), 1 < q < k, in time
O(p®). We then compute a set J of intervals as follows:

k
J = M.
qg=1

Then, obviously |J| < k < pand M(J) = M(I'(T, k) = I(T:, k). Clearly, } <
xh < --- < xj although some of x}, 5, --,x} may be missing. Therefore, one
can compute M (J) from J in time O(p) by merging intervals [z}, y1], [z5, 5], - -,
[z}, y] in this order. Hence, one can compute I(77, k) in Eq. (6 in time O(p?)
for an internal vertex v of T, an integer ¢ and an integer k.

Thus, I(T¢, k) = I(Ti, k) can be computed in time O(p*n) for all internal
vertices v, all integers ¢ and all integers k, 0 < k£ < p — 1. Note that there
are O(n) pairs of v and 4. Hence, one can compute the set I(T,p — 1) in time
O(p*n). By Lemmal[5l one can know from I(T,p— 1) in time O(p) whether T has
an (I, u)-partition with p components.

We have thus shown that the p-partition problem can be solved for trees in
time O(p*n). This completes a proof of Theorem [

4

Partitioning a Weighted Tree to Subtrees of Almost Uniform Size 207

Conclusions

In this paper we obtained a polynomial-time algorithm to solve the p-partition
problem for trees, which is much simpler and faster than the known algorithm in

.

Our algorithm takes time O(p*n), and hence runs in linear time if p = O(1).

On the other hand, both the minimum partition problem and the maximum
partition problem can be solved in time O(n®). We finally remark that our
algorithm correctly solves the three partition problems even if the weights of
vertices and the bounds [and u on component sizes are real numbers.

References

10.

. Becker, R., Simeone, B., Chiang, Y.-I.: A shifting algorithm for continuous tree

partitioning. Theoretical Computer Science 282, 353-380 (2002)

. Bozkaya, B., Erkut, E., Laporte, G.: A tabu search heuristic and adaptive memory

procedure for political districting. European J. Operational Research 144, 12-26
(2003)

. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco (1979)

. Gonzalez, R.C., Wintz, P.: Digital Image Processing. Addison-Wesley, Reading

(1977)

. Ito, T., Zhou, X., Nishizeki, T.: Partitioning a graph of bounded tree-width to

connected subgraphs of almost uniform size. J. Discrete Algorithms 4, 142-154
(2006)

. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use in

image processing. Discrete Applied Math. 42, 227-256 (1993)

. Schréder, M.: Balanced Tree Partitioning, Ph. D. Thesis, University of Karlsruhe,

Germany (2001)

. Simone, C.D., Lucertini, M., Pallottino, S., Simeone, B.: Fair dissections of spiders,

worms, and caterpillars. Networks 20(3), 323-344 (1990)

. Tsichritzis, D.C., Bernstein, P.A.: Operating Systems. Academic Press, New York

(1974)
Williams Jr., J.C.: Political redistricting: a review. Regional Science 74, 13-40
(1995)

An Improved Divide-and-Conquer Algorithm for
Finding All Minimum k-Way Cuts*

Mingyu Xiao

School of Computer Science and Engineering
University of Electronic Science and Technology of China
Chengdu 610054, China
myxiao@gmail.com

Abstract. Given a positive integer k£ and an edge-weighted undirected
graph G = (V, E; w), the minimum k-way cut problem is to find a subset
of edges of minimum total weight whose removal separates the graph
into k connected components. This problem is a natural generalization
of the classical minimum cut problem and has been well-studied in the
literature.

A simple and natural method to solve the minimum k-way cut prob-
lem is the divide-and-conquer method: getting a minimum k-way cut
by properly separating the graph into two small graphs and then finding
minimum k’-way cut and k”-way cut respectively in the two small graphs,
where k' + k" = k. In this paper, we present the first algorithm for the
tight case of k' = |k/2]. Our algorithm runs in O(n**~'¢*) time and can
enumerate all minimum k-way cuts, which improves all the previously
known divide-and-conquer algorithms for this problem.

Keywords: k-Way Cut, Divide-and-Conquer, Graph Algorithm.

1 Introduction

Let k be a positive integer and G = (V, E;w) a connected undirected graph
where each edge e has a positive weight w(e). A k-way cut of G is a subset of
edges whose removal separates the graph into k£ connected components, and the
minimum k-way cut problem is to find a k-way cut of minimum total weight.
The minimum k-way cut problem is a natural generalization of the classical
minimum cut problem and has great applications in the area of VLSI system
design, parallel computing systems, clustering, network reliability and finding
cutting planes for the travelling salesman problems.

The minimum 2-way cut problem is commonly known as the minimum cut
problem and can be solved in O(mn+n?logn) time by Nagamochi and Ibaraki’s
algorithm [I2] or Stoer and Wagner’s algorithm [19]. Another version of the
minimum 2-way cut problem is the minimum (s,t) cut problem, which asks us to

* The work was done when the author was a PhD student in Department of Computer
Science and Engineering, the Chinese University of Hong Kong.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 208{-219| 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Improved Divide-and-Conquer Algorithm 209

find a minimum cut that separates two given vertices s and ¢. The minimum (s, t)
cut problem can be solved in O(mnlogn?/m) time by Goldberg and Tarjan’s
algorithm [4] and O(min(n??3, m"?)mlog(n?/m)logU) time by Goldberg and
Rao’s algorithm [3], where U is the maximum capacity of the edge. Finding a
minimum cut or minimum (s,t) cut is a subroutine in our algorithms. In the
remainder of the paper, we use T'(n,m) = O(mn) to denote the running time of
computing a minimum cut or a minimum (s,¢) cut in an edge-weighted graph.

For k = 3, Kamidoi et al. [§] and Kapoor [I0] showed that the minimum
3-way cut problem can be solved by computing O(n3) minimum (s,t) cuts.
Later, Burlet and Goldschmidt [I] improved this result to O(n?) minimum cut
computations. He [6] showed that in unweighted planar graphs the minimum
3-way cut problem can be solved in O(nlogn) time. Xiao [22] designed the first
polynomial algorithm for finding minimum 3-way cuts in hypergraphs.

Furthermore, Kamidoi et al. [§] and Nagamochi and Ibaraki [I3] proved that
the minimum 4-way cut problem can be solved by computing O(n) minimum
3-way cuts. Nagamochi et al. [I4] extended this result for minimum {5, 6}-way
cuts by showing that Ty(n,m) = O(nTi—1(n,m)), where k = 5,6, and Ti(n, m)
is the running time of computing a minimum k-way cut. Those results lead to
O(mn*) time algorithms for the minimum k-way cut problem for k < 6.

For general k, Goldschmidt and Hochbaum [5] proved that the minimum k-way
cut problem is NP-hard when k is part of the input and gave the first polyno-
mial algorithm for fixed k. The running time of their algorithm is O(nkQT(n, m)).
Later, Kamidoi et al. [9] improved the running time to O(n4/(1=1.71/Vk)=34p
(n,m)). Karger and Stein [T1] proposed a Monte Carlo algorithm with O(n2(*~1)
log® n) running time. Recently, Thorup [20] designed an deterministic algorithm
with running time O(n2*), which is based on tree packing. Since this problem
is NP-hard for arbitrary k, it is also interesting to design approximation algo-
rithms for it. Saran and Vazirani[I8] gave two simple approximation algorithms
with ratio of (2 — 2/k) and running time of O(nT'(n,m)). Naor and Rabani [10]
obtained an integer program formulation of this problem with integrality gap 2,
and Ravi and Sinha [I7] also derived a 2-approximation algorithm via the net-
work strength method. Zhao et al. [24] proved that the approximation ratio is
2 — 3/k for an odd k and 2 — (3k — 4)/(k® — k) for an even k, if we compute a
k-way cut of the graph by iteratively finding and deleting minimum 3-way cuts in
the graph. Xiao et al. [23] determined the tight approximation ratio of a general
greedy splitting algorithm, in which we iteratively increase a constant number of
components of the graph with minimum cost. That result implies that the approx-
imation ratio is 2—h/k+O(h? /k?) for the algorithm that iteratively increases h—1
components.

Most deterministic algorithms for finding minimum k-way cuts, including the
two algorithms presented by Goldschmidt and Hochbaum [5] and Kamidoi et
al. [9], are based on a divide-and-conquer method. The main idea is to get a
minimum k-way cut by properly separating the graph into two small graphs and
then finding minimum k’-way cut and k”-way cut respectively in the two small
graphs, where k' + k” = k. We say that cut C' = [X, X] is an (h,k — h)-cut of

210 M. Xiao

G, if there is a minimum k-way cut Cy = [Y1, -+, Y}, Yhy1 -+, Yx] of G such
that U?:1Yi = X and Uf:hHYi = X. Once an (h,k — h)-cut C = [X, X] is
given, we only need to find a minimum h-way cut in induced subgraph G[X]
and a minimum (k — h)-way cut in induced subgraph G[X]. Goldschmidt and
Hochbaum [B] proved that there are a set .S of at most k — 2 vertices and a set T’
of at most k — 1 vertices such that a minimum (S,T) cut is a (1,k — 1)-cut. By
enumerating all the possibilities of S and T, we have at most O(n?*~3) candidates
for (1,k — 1)-cuts. Goldschmidt and Hochbaum obtained an O(nkQ) algorithm
for the minimum k-way cut problem by recursively applying this method. There
are two ways to improve this method. First, we can reduce the sizes of S and T.
Second, we can try to make minimum (S, 7T) cut a more ‘balanced’ cut, in other
words, we want minimum (S, 7)) cut an (h, k — h)-cut such that h is close to &.
Kamidoi et al. [9] proved that there are a set S of at most k — 2 vertices and a
set T of at most k — 2 vertices such that a minimum (5,7 cut is a (p, k — p)-cut
with p = [(k — v/k)/2] — 1, and then they got an O(n*/(=LT1/VK)=347(p 1n))
algorithm for the minimum k-way cut problem. In this paper, we show that there
are a set S of at most 2 L’;J vertices and a set 1" of at most k — 1 vertices such
that a minimum (S, T) cutisa (| 5], [5])-cut. Based on this property, we obtain
an O(n**~18%) algorithm for finding all minimum k-way cuts. Previous results
as well as our result are summarized in the following table. Recently Thorup [20]
designed an even faster algorithm for the minimum k-way cut problem, which is
based on tree packing, but not the divide-and-conquer method.

Table 1. History of divide-and-conquer algorithms for the minimum k-way cut problem

Goldschmidt et al. [5] Kamidoi et al. [9] This paper
Bounds on |S| and |T| k—2and k—1 k—2andk—2 2]k/2] and k—1
The min (S,T) cut (1,k —1)-cut (p, k — p)-cut, (Lk/2] , Tk/2])-cut
p=[(k—Vk)/2] -1
Running time for the O(nkz) O(n*/ (1=1.T1/Vk) =16 O(n*F~18k)

min k-way cut problem

In this paper, we assume the original graph G = (V, E;w) is a connected
graph with more than k vertices. For an edge subset £/ C E, w(E’) denotes
the total weight of the edges in E’. Let X1,Xs,---,X; C Vbel (2 <1< n)
disjoint nonempty subsets of vertices, then [X7, Xs,---, X;] denotes the set of
edges crossing any two different vertex sets of {X7, Xo, -+, X;}. A 2-way cut
is also simply called a cut of the graph. Cut [X, X] is called an (S,T') cut, if
S C X and T C X. Sometimes a singleton set {s} is simply written as s and
w([X1, X2, -+, Xi]) as w(X1, Xa, -+, X;). The rest of the paper is organized as
follows: We first present the simple divide-and-conquer algorithm in Section 2.
Then we give the proofs of our structural results in Section 3. In the last section,
we conclude with some remarks.

An Improved Divide-and-Conquer Algorithm 211

2 The Divide-and-Conquer Algorithm

Let C' = [X, X] be a cut. Recall that cut C is an (h, k — h)-cut of G if there is a
minimum k-way cut Cy, = [Y1,- -+, Ya, Yh41 -+, Yx] of G such that X = 2?21 Y;
and X = Zf:hﬂ Y:. Let Cy = [Y1,--+,Y%] be a minimum k-way cut and 1 <
h < k —1 an integer. By arbitrarily choosing h components {Y},,Y;,,---,Y;, }
of Cy, we get an (h, k — h)-cut [U?:1 Y;,, U?Zl Yj,], which is called an (h,k — h)-
partition of C. Among all (h, k — h)-partitions, those with minimum weight are
called minimum (h,k — h)-partitions of Cj and the weight of them is denoted
by wh k—n(Ch).

For an (h, k — h)-cut [X, X] of graph G, a minimum h-way cut [Y7,---,Y}] in
induced graph G[X] and a minimum (k — h)-way cut [Z1,- -, Zx—p] in induced
graph G[X] together yields a minimum k-way cut [Y1, -+, Y}, Z1,--+, Zp_4] in
the original graph G. This suggests a recursive way to solve the minimum k-way
cut problem: find an (h,k — h)-cut [X, X] and recursively find minimum h-way
and (k — h)-way cuts respectively in G[X] and G[X].

However it is not easy to find an (h, k — h)-cut, even for h = 1. In Section [3
we will prove that for each minimum (|% |, [4])-partition [X, X] of each min-
imum k-way cut, there are a set S of at most 2 V;J vertices and a set T of at
most k — 1 vertices such that a minimum (5, T) cut is [X, X] (See Theorem [2).
This minimum (5,7) cut is called the nearest minimum (S,T) cut of S and
can be found by using the same time of computing a maximum flow from S to
T. Theorem 2] enables us to obtain the following divide-and-conquer algorithm
to find minimum k-way cuts. We enumerate all possibilities of S and T and
find the nearest minimum (S,7T) cuts in the graph. Then we get a family I’
of at most (2&]) x (")) < n2ls]+ (S,T) cuts by using the same num-
ber of maximum flow computations. By Theorem 2] I" contains all minimum
(VSJ , (g})—partitions of all minimum k-way cuts. We then recursively find, for
each member of I'; minimum LSJ—Way cut in G[X] and minimum [g—‘—way cut
in G[X]. The minimum ones among all k-way cuts we find will be returned as
our solution. The algorithm is described in Figure [l

The correctness of algorithm Multiwaycut follows from Theorem 2l Now we
analyze the running time. When k = 2, we use Nagamochi et al.’s algorithm [I5]
to find all minimum cuts directly, which runs in O(m?n + mn?logn)=0(mT
(n,m)) time. When k > 2, we get the recurrence relation

C(n, k) < n23) TR =L, [5]) + O, [E])) + 28] TE=1 (1)

where C'(n, k) is the upper bound on the number of maximum flow computations
to be computed when algorithm Multiwaycut runs on an n-vertex graph and
an integer k. It is easy to verify that C(n,k) = O(n**~18k=3) satisfies () by
using the substitution method.

4k—lg k)

Theorem 1. All minimum k-way cuts can be found in O(n time.

212 M. Xiao

Multiwaycut(G, k)

Input: A graph G = (V, E;w) with nonnegative edge weights and a positive
integer k < |V|.

Output: The set R of all minimum k-way cuts and the weight W of the
minimum k-way cut.

1. If {k = 2}, then return the set of all the minimum cuts and the weight
directly.
2. Else {k > 3},
Let W be 4o0.
For each pair of disjoint nonempty vertex subsets S and T with
S| <2|5] and [T|<k—1,do
Compute the nearest minimum (S,T") cut C = [X, X] of S.
If {|{X|>|%] and |X| > [£]}, then
(R1,W1) «— Multiwaycut(G[X], |).
(R2, W2) «—— Multiwaycut(G[X], [5]).
If {W > w(C)+ W1+ Wa}, then
W «— U)(C) + Wh +W2,
R «— {CUF1 UF2 | F1 € Ry, F> € RQ}.
Else if {W = w(C)+ W1 + W2}, then
R +— RU{CUFIUFZ | Fy e Rl,Fz c Rz}.
Return (R, W).

Fig. 1. The Algorithm Multiwaycut(G, k)

3 Structural Properties

In this section, we prove the following key theorem, which is the foundation of
our divide-and-conquer algorithm.

Theorem 2. Let Cj, be a minimum k-way (k > 3) cut of a graph G and [A, B]
a minimum (LSJ , [g})—partition of Cx. Then there exits a set S C A of at most
2 V;J vertices and a set T C B of at most k — 1 vertices such that the nearest

minimum (S,T) cut of S is [A, B].

To prove this theorem, we will derive some useful structural properties. Given
two disjoint vertex sets S and T', a minimum (S, T') cut separates the graph into
two components. One that contains S is called the source part and the other one
is called the sink part, which contains T'. For most cases, there are more than
one minimum (5,7 cut. Among all minimum (5,7") cuts, the unique one that
makes the source part of the maximum cardinality is called the farthest minimum
(S,T) cut of S, and the unique one that makes the sink part of the maximum
cardinality is called the nearest minimum (S,T) cut of S. The farthest minimum
(S,T) cut of S is the same as the nearest minimum (7',.5) cut of T. Ford and
Fullkerson [7] proved the uniqueness of the farthest and nearest minimum (5, T)
cuts by using the Max flow/Min cut theorem. We can easily get the farthest

An Improved Divide-and-Conquer Algorithm 213

and nearest minimum (S, 7T) cuts in linear time based on a maximum flow from
S to T. (Note that given a maximum flow, in the residual graph, let X be
the set of vertices who are connected with ¢. Then [V — X, X] is the farthest
minimum isolating cut for s). These two special minimum (5,7") cuts have been
discussed and used in the literature [7], [21], [5], [2]. Next, we give more structural
properties of them.

Lemma 1. Let [X1, X1] be the nearest minimum (S1,T) cut of S1 and (X2, X2]
the nearest minimum (Sa2,T) cut of S, if S1 2 Sa, then X1 O Xos.

Lemma 2. Let [X1, X1] be the farthest minimum (S,T1) cut of S and (X2, X2]
the farthest minimum cut (S,Ts) of S, if Ty 2 Ty, then X7 C Xo.

Lemma [l and Lemma] can be proved easily by using the uniqueness of the
nearest and farthest minimum (s,¢) cuts.

Lemma 3. Let C; = [X1,X1] be the nearest minimum (S1,T) cut of S1 and
Cy = [Xa, X3] a minimum (S2,T) cut. If S; C Xa, then X; C Xo.

P?”OOf. Let Z = X1 —XQ, Y = X2 —Xl, U= X1 ﬂXQ, and W = X1 UX2 (See
Figure). To prove X; C X5, we only need to prove that Z = (). Assume to
the contrary that Z # (). We show the contradiction that [X; — Z, X1 4+ Z] is a
‘nearer’ minimum (S7,T") cut of S; than Cy = [X7, X;]. Obviously, we only need
to prove that w(X; — Z, X3 + Z) < w(S1,T).

Fig. 2. Tllustration for the proof of Lemma [3]

Since [U+4Y + Z,W]is an (S2,T) cut and Cp = [X2, Xo] a minimum (S2,7T)
cut, we have
wlU+Y +Z,W) = w(X2, Xs).

It is clear that
U+Y+ZW|=[U+Y, W]+ [Z, W]
and
[(Xo, Xo] = [U+Y, W+ Z]=[U+Y,W|+[U,Z] +[Y, Z].

We get
w(U, Z) + w(Y, Z) < w(Z,W).

214 M. Xiao

Therefore, w(U, Y +W+Z2) = w(U,Y+W)4w(U, Z) < w(U, Y +W)4+w(Z, W) <
wU, Y +W)+w(Z,Y+W)=wlU+Z,Y + W) =w(C).

We will use the following relation between two multi-way cuts, which was
proved by Xiao et al. in [23].

Proposition 1. Given an edge-weighted graph G, and integers h and k (2 <
h < k), then for any minimum h-way cut C), and any k-way cut Cy of G, the
following relation holds

2k — h)(h — 1

)

w(C’h) <

Kamidoi et al. [9] proved the following two important results

Proposition 2. Given an edge-weighted graph G and two integers h and k (1 <
h < k), let Ck be a minimum k-way cut in G and wp ,—p(Cy) the weight of the
minimum (h,k — h)-partitions of Cy, then

_ 2h(k —h)

S kk—1) w(Cy). (3)

Wh, k- (Ck)
Proposition 3. Given a graph G = (V, E) with at least 4 vertices, two disjoint
nonempty subsets T and R of V, and an integer p > 2, let {s1,82,--,8p} =
S CV —TUR be a set of p vertices such that, for each i € {1,2,--- p}, there
is a minimum (SUR—{s;},T) cut [X;, X;] which satisfies (TU{s;}) C X;. Let
Z = ﬂ1<i§pXi’ W = U1§i<j§p(Xi N Xj), and V; = X; — W (Z =1,2,- ~-,p),

then C* = [Z,Y1,Ys,---,Y,, W] is a (p+ 2)-way cut such that
w(C*) +w(Z,W) +w(Y1,Ys,--,Y,) <w(Xi, X1) + w(Xe, Xo). (4)

Based on Proposition 3] we can prove the following Lemmadl The detailed proof
can be found in the full version of this paper.

Lemma 4. Given a graph G = (V, E) with at least 4 ver