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Preface

This volume contains the proceedings of the 19th International Symposium on
Algorithms and Computation (ISAAC 2008), held on the Gold Coast, Australia,
December 15–17, 2008. In the past, it was held in Tokyo (1990), Taipei (1991),
Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996),
Singapore (1997), Daejeon (1998), Chennai (1999), Taipei (2000), Christchurch
(2001), Vancouver (2002), Kyoto (2003), Hong Kong (2004), Hainan (2005),
Kolkata (2006), and Sendai (2007).

ISAAC is an annual international symposium that covers the very wide range
of topics in the field of algorithms and computation. The main purpose of the
symposium is to provide a forum for researchers working in algorithms and
theory of computation from all over the world. In response to our call for papers,
we received 229 submissions from 40 countries. The task of selecting the papers
in this volume was done by our Program Committee and many other external
reviewers. After an extremely rigorous review process and extensive discussion,
the Committee selected 78 papers. We hope all accepted papers will eventually
appear in scientific journals in a more polished form. Two special issues, one of
Algorithmica and one of the International Journal on Computational Geometry
and Applications, with selected papers from ISAAC 2008 are in preparation.

The best paper award was given to Takehiro Ito, Takeaki Uno, Xiao Zhou
and Takao Nishizeki for “Partitioning a Weighted Tree to Subtrees of Almost
Uniform Size.” Selected from seven submissions authored by students only, the
best student paper award was given to Ludmila Scharf and Marc Scherfenberg for
“Inducing Polygons of Line Arrangements.” Three prominent invited speakers,
Tetsuo Asano, JAIST, Japan, Peter Eades, University of Sydney, Australia, and
Robert Tarjan, Princeton University, HP, USA, also contributed to the program.

We would like to thank all the Program Committee members and external
reviewers for their excellent work, especially given the time constraints. We also
thank all those who submitted papers for consideration, thereby contributing
to the high quality of the conference. We would like to thank our supporting
organizations for their assistance and support. Finally, we are deeply indebted
to the Organizing Committee members whose excellent effort and professional
service to the community made the conference an unparalleled success.

December 2008 Seok-Hee Hong
Hiroshi Nagamochi
Takuro Fukunaga
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Deductive Inference for the Interiors and Exteriors of Horn Theories . . . . 390
Kazuhisa Makino and Hirotaka Ono



XVI Table of Contents

Leaf Powers and Their Properties: Using the Trees . . . . . . . . . . . . . . . . . . . 402
Michael R. Fellows, Daniel Meister, Frances A. Rosamond,
R. Sritharan, and Jan Arne Telle

5A Approximation Algorithm II

Deterministic Sparse Column Based Matrix Reconstruction via Greedy
Approximation of SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
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Constant-Working-Space Algorithms:
How Fast Can We Solve Problems without

Using Any Extra Array?

Tetsuo Asano

School of Information Science, Jaist,
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan

In this talk I will present a new direction of algorithms which do not use any
extra working array. More formally, we want to design efficient algorithms which
require no extra array of size depending on input size n but use only constant
working storage cells (variables), each having O(log n) bits. As an example, con-
sider a problem of finding the median among n given numbers. A linear-time
algorithm for the problem is well known. An ordinary implementation of the al-
gorithm requires another array of the same size. It is not very hard to implement
the algorithm without using any additional array, in other words, to design an
in-place algorithm. Unfortunately, it is not a constant working space algorithm
in our model since it requires some space, say O(log n) space, for maintaining
recursive calls. A good news is that an efficient algorithm is known which finds
the median in O(n1+ε) time using O(1/ε) working space for any small positive
constant ε. The algorithm finds the median without altering any element of an
input array. In other words, the input array is considered as a read-only array.

A main interest in this talk is how to design algorithms using only constant
working space in addition to input arrays. There are two different situations
depending on whether input arrays are read-only or not. If input data are stored
in a read-only array and only constant working space is allowed in an algorithm,
it is called a constant working space algorithm with a read-only array. If we can
read any array element and write any information of log n bits into any array
element in constant time, it is called a constant working space algorithm with a
read-write array. The latter one is usually called as an in-place algorithm.

In this talk I will introduce several constant working space algorithms with
read-write input arrays or with read-only input arrays. Such problems have been
investigated in the community of complexity theory under the name of log-space
computation. The log-space implies the working space of O(log n) bits for an
input size n. There is no difference but their names. In the complexity theory
a main concern is whether a problem belongs to log-space, that is, whether it is
solvable in polynomial time using only small working space of O(log n) bits in
total. My concern is not only polynomial-time solvability but also computational
performance of the algorithm.
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Some Constrained Notions of Planarity

Peter Eades

School of Information Technologies,
University of Sydney

peter@it.usyd.edu.au

Graph Drawing is the art and science of making pictures of graphs. Planarity
has always played a central role in graph drawing research. Effective, efficient
and elegant methods for drawing planar graphs were developed over the course
of the last century by Wagner, Hopcroft and Tarjan, Read, de Frassieux, Pach
and Pollack, amongst others.

In the past 30 years, diverse sections of the information industry have motived
a shift in graph drawing, from pure mathematics to industrial research. This
has come from the need to make large and complex data sets comprehensible to
humans. In the mid 1990s, Purchase carried out a set of human experiments that
justified algorithmic planarity research, by showing that edge crossings inhibit
human understanding of graphs.

The shift to a focus on applications brought a number of constraints, and a
number of constrained notions of planarity. These include:

– Upward planarity, for directed acyclic graphs, where edges are drawn
monotonically upward;

– Hierarchical planarity, a variation on upward planarity where vertices are
constrained to a set of horizontal lines;

– Clustered planarity, where the vertices have a cluster hierarchy and each
cluster is drawn as a region in the plane;

– Orthogonal planarity, where the edges must consist of horizontal and vertical
line segments;

– Symmetric planarity, where the drawing must display a given automorphism.

In this talk we discuss algorithmic research on some such constrained notions
of planarity.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Reachability Problems on Directed Graphs

Robert E. Tarjan1,2�

1 Princeton University, Princeton NJ 08544
2 HP Laboratories, Palo Alto CA 94304

robert.tarjan@hp.com

Abstract. I will present recent work and open problems on two directed
graph reachability problems, one dynamic, one static. The dynamic prob-
lem is to detect the creation of a cycle in a directed graph as arcs are
added. Much progress has been made recently on this problem, but in-
triguing questions remain. The static problem is to compute dominators
and related information on a flowgraph. This problem has been solved,
but the solution is complicated, and there are related problems that are
not so well understood. The work to be discussed is by colleagues, other
researchers, and the speaker.

� Research at Princeton University partially supported by NSF Grants CCF-0830676
and CCF-0832797. The information contained herein does not necessarily reflect the
opinion or policy of the federal government and no official endorsement should be
inferred.
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Greedy Construction of 2-Approximation
Minimum Manhattan Network�

Zeyu Guo1, He Sun1,��, and Hong Zhu2

1 Fudan University, China
2 East China Normal University, China

Abstract. Given a set T of n points in IR2, a Manhattan Network G
is a network with all its edges horizontal or vertical segments, such that
for all p, q ∈ T , in G there exists a path (named a Manhattan path) of
the length exactly the Manhattan distance between p and q. The Mini-
mum Manhattan Network problem is to find a Manhattan network of the
minimum length, i.e., the total length of the segments of the network is
to be minimized. In this paper we present a 2-approximation algorithm
with time complexity O(n log n), which improves the 2-approximation
algorithm with time complexity O(n2). Moreover, compared with other
2-approximation algorithms employing linear programming or dynamic
programming technique, it was first discovered that only greedy strategy
suffices to get 2-approximation network.

Keywords: Minimum Manhattan Network, approximation algorithm,
greedy strategy.

1 Introduction

A rectilinear path between two points p, q ∈ IR2 is a path connecting p and q
with all its edges horizontal or vertical segments. Furthermore, a Manhattan
path between p and q is a rectilinear path with its length exactly dist(p, q) :=
|p.x− q.x|+ |p.y − q.y|, i.e., the Manhattan distance between p and q.

Given a set T of n points in IR2, a network G is said to be a Manhattan
network on T , if for all p, q ∈ T there exists a Manhattan path between p and q
with all its segments in G. For the given network G, let the length of G, denoted
by L(G), be the total length of all segments of G. For the given point set T , the
Minimum Manhattan Network (MMN) Problem is to find a Manhattan network
G on T with minimum L(G).

From the problem description, it is easy to show that there is a close relation-
ship between the MMN problem and planar t-spanners. For t ≥ 1, if there exists
a planar graph G such that for all p, q ∈ T , there exists a path in G connecting
p and q of length at most t times the distance between p and q, G is said to be

� This work is supported by Shanghai Leading Academic Discipline Project(Project
Number:B412), National Natural Science Fund (grant #60496321), and the
ChunTsung Undergraduate Research Endowment.

�� Correspondence author.
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a t-spanner of T . The MMN Problem for T is exactly the problem to compute
the 1-spanner of T under the L1-norm.

Related works: Due to the numerous applications in city planning, network
layout, distributed algorithms, and VLSI circuit design, the MMN problem was
first introduced by Gudmundsson, Levcopoulos et al. [5], and until now, it is
open whether this problem belongs to the complexity class P. Gudmundsson et
al. [5] proposed an O(n3)-time 4-approximation algorithm, and an O(n log n)-
time 8-approximation algorithm. Kato, Imai et al. [7] presented an O(n3)-time
2-approximation algorithm. However, the proof of their algorithm correctness
is incomplete [3]. In spite of that, their paper still provided a valuable idea,
that it suffices for G to be a Manhattan network if for each of O(n) certain
pairs there exists a Manhattan path connecting its two points. Thus it is not
necessary to enumerate all the pairs in T × T . Following this idea, Benkert,
Wolff et al. [1,2] proposed an O(n log n)-time 3-approximation algorithm. They
also described a mixed-integer programming (MIP) formulation of the MMN
problem. After that, Chepoi, Nouioua et al. [3] proposed a 2-approximation
rounding algorithm by solving the linear programming relaxation of the MIP. In
this paper, the notions Pareto Envelope and a nice strip-staircase decomposition
has been proposed first of all. In K. Nouioua’s Ph.D thesis [8], the primal-dual
based algorithm with 2-approximation and running time O(n logn) has been
presented. After these works, it was Z. Guo et al. [6] who observed that the
same approximation ratio can also be achieved using combinatorial construction.
In their paper, the dynamic programming speed-up technique of quadrangle
inequality was first used in this problem and, therefore the time complexity O(n2)
has been achieved. In [9], S. Seibert and W. Unger proposed a 1.5-approximation
algorithm. However, their proof is incorrect and 2-approximation is, to our best
knowledge, the lowest ratio for this problem.

Our contributions: In this paper, we present a very simple 2-approximation
algorithm for constructing Manhattan network with running time O(n log n).
Compared with the simple 3-approximation algorithm with running time
O(n log n) proposed recently [4] and the previous 2-approximation result [6] re-
lying on dynamic programming speed-up technique, a highlight in our paper is
that, except Pareto Envelope which is widely used in the previous literatures,
it is proven simply greedy strategy is enough for constructing 2-approximation
Minimum Manhattan Network.

Outline of our approach: From a high-level overview, our algorithm is as
follows: partition the input into several blocks (ortho-convex regions) that can
be solved independently of each other. For the blocks, some can be trivially
solved optimally, whereas only one type of blocks is difficult to solve. For such
a non-trivial block there are some horizontal and vertical strips which can be
solved by horizontal and vertical nice covers plus switch segments to connect
neighboring points in the same strip. In such manner, we divide each block into
several staircases. In order to connect the points in each staircase, simple greedy
strategy has been used.
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2 Preliminaries

Basic notations: For p = (p.x, p.y) ∈ IR2, let Qk(p) denote the k-th closed
quadrant with respect to the origin p, e.g., Q1(p) := {q ∈ IR2 | p.x ≤ q.x, p.y ≤
q.y}.

Define R(p, q) as a closed rectangle (possibly degenerate) where p, q ∈ IR2 are
its two opposite corners. BV (p, q) is defined as the vertical closed band bounded
by p, q, whereas BH(p, q) denotes the horizontal closed band bounded by p, q.

For the given point set T , let Γ be the union of vertical and horizontal lines
which pass through some point in T . In addition, we use [c, d] to represent the
vertical or horizontal segment with endpoints c and d, as Fig. 1 shows.

a

b

c d

e

Fig. 1. T = {a, b, c, d, e}. The vertical and horizontal lines compose Γ .

Pareto envelope: The Pareto envelope, originally proposed by Chepoi et al.
[3], plays an important role in our algorithm and we give a brief introduction.

Given the set of points T , a point p is said to be dominated by q if
(
∀t ∈ T :

dist(q, t) ≤ dist(p, t)
)
∧
(
∃t ∈ T : dist(q, t) < dist(p, t)

)
. A point is said to be

an efficient point if it is not dominated by any point in the plane. The Pareto
envelope of T is the set of all efficient points, denoted by P(T ). Fig. 2 shows
an example of P(T ). It is not hard to prove that P(T ) =

⋂
u∈T

⋃
v∈T R(u, v).

For |T | = n, P(T ) can be built in O(n log n) time. [3] also presented some other
properties of P(T ). In particular, P(T ) is ortho-convex, i.e., the intersection of
P(T ) with any vertical or horizontal line is continuous, which is equivalent to
the fact that for any two points p, q ∈ P(T ), there exists a Manhattan path in
P(T ) between p and q.

In [3] Chepoi et al. also showed that the Pareto envelope is the union of
some ortho-convex (possibly degenerate) rectilinear polygons (called blocks).
Two blocks can overlap at only one point which is called a cut vertex. We denote
by C the set of cut vertices, and let T+ := T ∪C. For a block B, denote by HB

and WB its height and width respectively. Let TB := T+∩B. We say B is trivial
if B is a rectangle (or degenerate to a segment) such that |TB| = 2. It is known
that the two points in TB must be two opposite corners of B when it is trivial.
In Fig. 2, C = {a, b, c, d} and only the block between c and d is non-trivial.

Chepoi et al. [3] proved that an MMN on T+ is also an MMN on T , and to
obtain an MMN on T+, it suffices to build an MMN on TB for each B ⊆ P(T ).
The MMN in any trivial block B can be built by simply connecting the two
points in TB using a Manhattan path. So we have reduced the MMN problem
on T to MMN on non-trivial blocks.
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(a)

a b

c

d

(b)

Fig. 2. An example of a Pareto envelope. The black points in (a) are the set T . The
two separate grey regions in (b) are non-degenerate blocks, whereas the black lines are
degenerate blocks. All these blocks form the Pareto envelope P(T ).

p q tR(p, q)

Fig. 3. The rectangle is a horizontal strip. Any point in TB within BH(p, q) can only
be placed on the dashed lines, e.g., the point t.

For a non-trivial block B denote its border by ∂B and let ΓB := Γ ∩ B. We
call a corner p in ∂B a convex corner if the interior angle at p equals to π/2,
otherwise p is called a concave corner.

Lemma 1. [3] For any non-trivial block B and any convex corner p in ∂B, it
holds that p ∈ TB.

Lemma 2. [3] For any non-trivial block B, there exists an MMN GB on TB

such that GB ⊆ ΓB. Furthermore, any MMN GB ⊆ ΓB on TB contains ∂B.

Strips and staircase components: Informally, for p, q ∈ TB, p.y < q.y, we call
R(p, q) a vertical strip if it does not contain any point of TB in the region BV (p, q)
except the vertical lines {(x, y)|x = p.x, y ≤ p.y} and {(x, y)|x = q.x, y ≥ q.y}.
Similarly, for the points p, q ∈ TB, p.x < q.x, we call R(p, q) a horizontal strip if
it does not contain any point in the region BH(p, q) except the horizontal lines
{(x, y)|x ≤ p.x, y = p.y} and {(x, y)|x ≥ q.x, y = q.y}. Especially, we say a
vertical or horizontal strip R(p, q) is degenerate if p.x = q.x or p.y = q.y. Fig. 3
gives an example of a horizontal strip.

The other notion which plays a critical role in our algorithm is the staircase
component. There are four kinds of staircase components specified by four quad-
rants, and without loss of generality we only describe the one with respect to the
third quadrant. Suppose R(p, q) is a vertical strip and R(p′, q′) is a horizontal
strip, such that q ∈ Q1(p), q′ ∈ Q1(p′), p, q ∈ BV (p′, q′), p′, q′ ∈ BH(p, q), i.e.,
they cross in the way as Fig. 4 shows. Denote by Tpp′|qq′ the set of any point
v ∈ TB such that v.x > q.x, v.y > q′.y, where p is the leftmost point and p′ is the
topmost point in Q3(v) besides v. A non-empty Tpp′|qq′ is said to be a staircase
component (see Fig. 4). In this figure, no point in TB is located in the dark grey
area and the two light grey unbounded regions except those in Tpp′|qq′ .
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p

q

Tpp′|qq′

p′
q′

Fig. 4. A staircase component Fig. 5. An NVC consisting of
black lines

p

q

u v

p′

q′

Fig. 6. A switch
segment

For a strip R(p, q), (p, q) is called a strip pair. For each staircase component
Tpp′|qq′ and each point v in Tpp′|qq′ , (v, p) (also (v, p′)) is called a staircase pair.

Theorem 1. [3] A network GB is a Manhattan network on TB if and only if
for any strip pair or staircase pair (p, q), p, q ∈ TB, there exists a Manhattan
path in GB connecting p and q.

3 Algorithm Description

Following the approach of [1], a union of vertical segments CV is said to be a
vertical cover if for any horizontal line � and any vertical strip R that � intersects,
it holds that � ∩ R ∩ CV 
= ∅. Similarly, a union of horizontal segments CH is
said to be a horizontal cover if for any vertical line � and any horizontal strip
R that � intersects, it holds that � ∩ R ∩ CH 
= ∅. Furthermore, a nice vertical
cover (NVC) is a vertical cover such that any of its segments contains at least
one point of TB. A nice horizontal cover (NHC) is defined symmetrically. Fig. 5
shows an NVC.

For an NVC CV , obviously [p, q] ⊆ CV for every degenerate vertical strip
R(p, q). Assume R(p, q) is a non-degenerate vertical strip where p.y < q.y, then
there exists vertical segments [p, p′] and [q, q′] in CV where p′.y ≥ q′.y (it is
possible that p = p′ or q = q′), as Fig. 6 shows. Obviously, a Manhattan path
connecting p and q can be built by adding a horizontal segment [u, v] where
u.x = p.x, v.x = q.x, q′.y ≤ u.y = v.y ≤ p′.y. Such a segment [u, v] is said to be a
switch segment of R(p, q). The same concept for NHC is defined symmetrically.

Now we present an iterative algorithm CreateNVC to construct an NVC. In
the initialization step, let CV be the union of segments [p, q] for each degenerate
vertical strip R(p, q), whereas N is the set of non-degenerate ones. In addition, let
the set X be TB. The main part of the procedure consists of two loops. Regarding
the first loop, a vertical segment of ∂B in some R(p, q) ∈ N is chosen in each
round. Lemma 1 and the definition of strips guarantee that such segments must
be connected to some point in X . Let the segment lying in the non-degenerate
strip R(p, q) be [p, p′], as Fig. 7 shows. Then p′ is added to X , and [p, p′] is
added to CV . And by invoking Update(p′), N is updated to be the set of non-
degenerate strips when the new set X is considered as the input point set. Define
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N :=

⋃
R(p,q)∈N R(p, q). It is easy to see that the part of

⋃
N adjacent to [p, p′]

is eliminated in each round, which turns out that
⋃

N becomes smaller. It can
be demonstrated that [p, p′] is the unique vertical segment excluded from

⋃
N

in ∂B. We repeat the operations above until all the vertical segments initially
falling in ∂B ∩

⋃
N are excluded from

⋃
N and added to CV .

In the second loop, we choose R(p, q) ∈ N arbitrarily and both its left and
right edges are added to CV . Two points (p.x, q.y), (q.x, p.y) are added to X .
And N is updated in the similar manner as Fig. 8 shows. The formal description
is as follows.

Input: TB

CV ←
�

[p, q] where R(p, q) is a degenerate vertical strip;1

X ← TB ;2

N ← {R(p, q) | R(p, q) is a non-degenerate vertical strip};3

while there exists a vertical segment [p, p′]⊆∂B ∩R(p, q), where R(p, q)∈N do4

X ← X ∪ {p′};5

CV ← CV ∪ [p, p′];6

Update(p′);7

end8

while N �= ∅ do9

Let R(p, q) be an arbitrary vertical strip in N ;10

p′ ← (p.x, q.y); q′ ← (q.x, p.y);11

X ← X ∪ {p′, q′};12

CV ← CV ∪ [p, p′] ∪ [q, q′];13

Update(p′); Update(q′);14

end15

Algorithm 1. CreateNVC

Lemma 3. CreateNVC takes O(n) time to output an NVC CV .

Proof. Since CV initially contains [p, q] for any degenerate vertical strip R(p, q),
a horizontal line � that crosses R(p, q) always intersects CV . Therefore we only
need to consider non-degenerate vertical strips.

We prove the following invariant maintains: let R(p, q) be a vertical strip in
the original N and � be a horizontal line that intersects R(p, q), then at any
stage of the algorithm, either � ∩R(p, q) ∩ CV 
= ∅ or � ∩R(p, q) ⊆

⋃
N holds.

Input: v
for each R(p, q) ∈ N such that v.x = p.x, [p, v] ∩ R(p, q) �= {p} do1

N ← N\{R(p, q)};2

if v ∈ R(p, q) and v.y �= q.y then N ← N ∪ {R(v, q)};3

end4

Algorithm 2. Update
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pp

qq

∂B∂B

p′p′

Fig. 7. The change in the first loop

pp

qq p′

q′

Fig. 8. The change in the second loop

At the beginning obviously � ∩ R(p, q) ⊆
⋃

N holds. Each time when N is
updated, the part of R(p, q) eliminated from

⋃
N (if existing) must be adjacent to

some segment which is added to CV , so either �∩R(p, q)∩CV 
= ∅ or �∩R(p, q) ⊆⋃
N still holds for the updated N . The set N will be updated iteratively until⋃
N = N = ∅, which implies � ∩R(p, q) ∩CV 
= ∅.
Secondly, we consider the running time of the procedure.
Line 1 takes O(n) time since O(n) degenerate vertical strips exist. Initially

N contains O(n) non-degenerate vertical strips and
⋃

N contains O(n) vertical
segments of ∂B. The first loop reduces one such vertical segment in each round,
whereas the second loop eliminates at least one strip in N in each round. More-
over, each invoking of the procedure Update takes O(1) time since when a point
is added to X , O(1) strips need to be removed or replaced. Therefore the overall
time complexity is O(n). �


After invoking CreateNVC, we add the topmost and bottommost switch segments
for each non-degenerate vertical strip, as Fig. 9 shows. Then for each vertical strip
R(p, q), at least one Manhattan path between p and q is built. Symmetrically,
we can use the algorithm CreateNHC to compute an NHC. Furthermore, for each
horizontal strip, the leftmost and the rightmost switch segments are added. All
these procedures guarantee that the Manhattan paths for all the strip pairs have
been constructed.

Now we turn to the discussion of staircases. For simplicity, we only describe
the definition of the staircase with respect to the third quadrant. The other cases
are symmetric.

Definition 1 (staircase). For a staircase component Tpp′|qq′ with respect to
the third quadrant, assume R(p, q) is a vertical strip and R(p′, q′) is a horizontal
strip. Let Mpq be the Manhattan path between p and q which passes through the
bottommost switch segment. Let Mp′q′ be the Manhattan path between p′ and q′

which passes through the leftmost switch segment. The part of
⋃

v∈Tpp′|qq′ Q3(v)
bounded by Mpq and Mp′q′ , excluding Mpq,Mp′q′ , CV , CH is said to be a staircase,
denoted by Spp′|qq′ .

Fig. 10 gives an example of staircase.

Lemma 4. There exists a procedure CreateStaircasePath such that for the
given staircase Spp′|qq′ with the staircase component Tpp′|qq′ ,

∣∣Tpp′|qq′
∣∣ = n, the
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Fig. 9. Adding
switch segments

pp

qq

Spp′|qq′

Mpq

Mp′q′

p′p′

q′q′

Fig. 10. The definition of the staircase Spp′|qq′ . The dotted lines
in the right picture is not included in Spp′|qq′ .

procedure takes O(n log n) time to construct a network Gpp′|qq′ ⊆ Spp′|qq′ such
that Gpp′|qq′ ∪CH ∪ CV connects each point in Tpp′|qq′ to either Mpq or Mp′q′ .

Proof. Without loss of generality, assume R(p, q) is a vertical strip and R(p′, q′)
is a horizontal strip where q ∈ Q1(p), q′ ∈ Q1(p′), as Fig. 10 shows. Let t0 :=
q, tn+1 := q′. Express the points in Tpp′|qq′ as t1, t2, · · · , tn in the order from the
topmost and leftmost one to the bottommost and rightmost one.

For 1 ≤ i ≤ n, define the horizontal segment hi := {(x, y) | y = ti.y}∩Spp′|qq′

and the vertical segment vi := {(x, y) | x = ti.x} ∩ Spp′|qq′ , as Fig 11 shows. We
use Righti(Spp′|qq′) to represent the staircase polygon on the right of vi whereas
Topi(Spp′|qq′ ) represents the one on the top of hi. Note that Righti(Spp′|qq′) and
Topi(Spp′|qq′ ) are all smaller staircase polygons. Assume S is a general staircase
polygon in Spp′|qq′ . Let hS

i := hi∩S, vS
i := vi∩S. It can be observed that 〈hS

i 〉 is
ascending whereas 〈vS

i 〉 is descending. Define Righti(S) and Topi(S) in a similar
way. The partial network Gpp′|qq′ ∩ S is constructed in a recursive manner.

Input: S
if S = ∅ then return ∅;1

else if L
�
hS

1

�
≥ L

�
vS
1

�
then return vS

1 ∪ CreateStaircasePath(Right1(S));2

else if L
�
hS

n

�
≤ L

�
vS

n

�
then return hS

n∪ CreateStaircasePath(Topn(S));3

else4

Choose k such that L
�
hS

k

�
≤ L

�
vS

k

�
and L

�
hS

k+1

�
≥ L

�
vS

k+1

�
;5

return hS
k ∪ vS

k+1∪ CreateStaircasePath(Topk (S))∪6

CreateStaircasePath(Rightk+1(S));
end7

Algorithm 3. CreateStaircasePath

Initially we invoke CreateStaircasePath(Spp′|qq′ ). For any non-empty S one
of the three branches is chosen. In the third case, binary search guarantees the
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ti

hi

vi

Topi(S)

Righti(S)

Fig. 11. The definition
of hi and vi

tktktk

tk+1tk+1tk+1

Fig. 12. One of the three connections for tk and tk+1 is optimal

proper k can be obtained with running time O(log n) whereas the procedure is
invoked recursively at most O(n) times, which results in the total running time
O(n log n).

The correctness proof simply follows from the induction method. �


In the following, we present the global algorithm CreateMMN.

Input: T
Compute P(T ).1

for each trivial block B ⊆ P(T ) do2

connect the two points in TB with a Manhattan path.3

for each non-trivial block B ⊆ P(T ) do4

CreateNVC;5

for each vertical strip R(p, q) do6

add the topmost and bottommost switch segments of R(p, q);7

CreateNHC;8

for each horizontal strip R(p, q) do9

add the leftmost and rightmost switch segments of R(p, q);10

for each staircase Spp′|qq′ do CreateStaircasePath(Spp′ |qq′);11

end12

Algorithm 4. CreateMMN

Theorem 2. For the given point set T of size n, CreateMMN takes O(n log n)
time to compute a Manhattan network G on T .

Proof. For any non-trivial block, NVC, NHC and switch segments form the
Manhattan paths for strip pairs, whereas some segments are added in staircases
such that there exist Manhattan paths for staircase pairs. By Theorem 1, the
final network is a Manhattan network.

Regarding the running time, it is well-known that computing the Pareto
envelope and constructing the networks in staircases can be implemented in
O(n log n) time, and the time required for decomposing each block into stair-
cases and strips is also O(n log n) using the method similar to [1]. The other
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steps, including computing NVC, NHC and adding switch segments, can be im-
plemented in linear time. Thus the overall time complexity is O(n log n). �


4 Approximation Analysis

The rest of this paper is devoted to the approximation analysis of this problem.
Let G denote the Manhattan network constructed by our algorithm, whereas
G� is the optimal one demonstrated by Lemma 2 with the property that ∂B ⊆
G� ∩ B ⊆ ΓB for every non-trivial block B. For any block B, let GB := G ∩ B
and G�

B := G� ∩B.
Let B be a non-trivial block. Denote by GS the switch segments our algo-

rithm adds when computing GB. Let S :=
⋃

Spp′|qq′ , GU := GB ∩ S. From the
algorithm description obviously GB := CV ∪ CH ∪GS ∪GU .

Let G�
C := G�

B ∩ (CV ∪ CH), whereas G�
U := G�

B ∩ S.

Lemma 5. L(CV ∪ CH) ≤ 2L(G�
C)− 2HB − 2WB.

Proof. We divide CV ∪CH into two parts: let C1 be the set of segments for each
degenerate vertical and horizontal strip, as well as the segments added in the
first loop of procedures CreateNVC and CreateNHC. Let C2 represent the union
of the segments added in the second loop. In addition, denote C�

1 := G�
C ∩ C1,

and C�
2 := G�

C ∩ C2.
Observing that C1 is the union of the segments in degenerate strips and ∂B,

it is easy to show that ∂B ⊆ C1 = C�
1 . Therefore L(C1) ≤ 2L(C�

1 ) − L(∂B) =
2L(C�

1 )− 2HB − 2WB.
On the other hand, let us consider the second loop of the procedure CreateNVC

andCreateNHC.By symmetric property,weonly analyze theprocedureCreateNVC.
In a round, two segments [p, p′], [q, q′] of length � are added into CV . By our algo-
rithm, R(p, q) is contained in some vertical strip R(s, t). Since G�

B is a Manhattan
network, C�

2 ∩ ([p, p′] ∪ [q, q′]) contains segments of length at least � to connect s
and t. Since the relation holds for each round and also the procedure CreateNHC,
we obtain L(C2) ≤ 2L(C�

2 ).
Combining the two inequalities above, we obtain the lemma. �


For any staircase Spp′|qq′ , let G�
pp′|qq′ := G�

U ∩ Spp′|qq′ .

Lemma 6. For any staircase Spp′|qq′ , it holds L(Gpp′|qq′) ≤ 2L(G�
pp′|qq′) .

Proof. Without loss of generality, let Spp′|qq′ be a staircase with respect to
the third quadrant, as Fig. 10 shows. Let S be a staircase polygon in Spp′|qq′

such that CreateStaircasePath(S) is invoked. We will prove L
(
Gpp′|qq′ ∩ S

)
≤

2L
(
G�

pp′|qq′ ∩ S
)

using induction.
The inequality obviously holds in the trivial case S = ∅. Assume the relation

holds for smaller staircase polygons in S. For the case L
(
hS

1
)
≥ L

(
vS
1
)
, t1

is connected down and the original problem is reduced to the small one with
region Right1(S). Let SR := S\Right1(S). By assumption, we only need to prove
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Fig. 13. The segment lying in two different staircases

L
(
Gpp′|qq′ ∩ SR

)
≤ 2L

(
G�

pp′|qq′∩SR

)
. Note that L

(
Gpp′|qq′ ∩ SR

)
= L

(
vS
1
)
, and

in Gpp′|qq′ ∩ SR segments of length min
{
L
(
hS

1
)
, L

(
vS
1
)}

= L
(
vS
1
)

is necessary
to connect t1 to either the left or the bottom boundary of S. Thus the relation
holds. The analysis for the case L

(
hS

n

)
≤ L

(
vS

n

)
is analogous.

Regarding the last case, let SR := S\
(
Topk(S)∪Rightk+1(S)

)
. We only need

to prove L
(
Gpp′|qq′ ∩ SR

)
≤ 2L

(
G�

pp′|qq′ ∩ SR

)
. As Fig. 12 shows, segments of

length at least min
{
L
(
vS

k

)
, L

(
hS

k+1

)
, L

(
hS

k

)
+ L

(
vS

k+1

)}
are necessary to con-

nect tk and tk+1 to either the left or the bottom boundary. By monotonic-
ity, L

(
vS

k+1

)
≤ L

(
vS

k

)
and L

(
hS

k

)
≤ L

(
hS

k+1

)
. By the choice of k, we obtain

L
(
vS

k+1

)
≤ L

(
hS

k

)
and L

(
hS

k

)
≤ L

(
vS

k+1

)
. Therefore L

(
Gpp′|qq′ ∩SR

)
= L

(
hS

k

)
+

L
(
vS

k+1

)
≤ 2L

(
G�

pp′|qq′ ∩ SR

)
. �


Now we estimate L(GU ). Note that it is possible that some segments of G�
U lie

in two different staircases. Let G�
D denote the union of these segments. Fig. 13

illustrates this special condition.

Lemma 7. L(GU ) ≤ 2L(G�
U ) + 2L(G�

D).

Proof. Since the segments of G�
D are counted twice, we obtain that L(GU ) ≤∑

L(Gpp′|qq′ ) ≤ 2
∑

L(G�
pp′|qq′ ) ≤ 2L(G�

U ) + 2L(G�
D). �


Lemma 8. 2L(G�
D) + L(GS) ≤ 2HB + 2WB.

Proof. The lemma can be obtained by the following fact: let � be a vertical or
horizontal line such that � 
⊆ Γ , then � may cross at most one segment in G�

D,
and at most two segments in GS . Furthermore, due to the definitions of strips
and staircase components, � cannot intersect both of G�

D and GS . We omit the
details here. �


Theorem 3. For any block B, L(GB) ≤ 2L(G�
B).

Proof. For any trivial block B, the relation obviously holds since L(GB) = HB +
WB. Let B be a non-trivial block, L(GB) ≤ L(CV ∩ CH) + L(GS) + L(GU ) ≤
2L(G�

C) + 2L(G�
U ) + 2L(G�

D) + L(GS)− 2HB − 2WB ≤ 2L(G�
C) + 2L(G�

U ).
Recall that G�

C = G�
B ∩ (CV ∪ CH), G�

U = G�
B ∩ SU . By the definition of

staircases, it holds that (CV ∪ CH) ∩ SU = ∅. This means G�
C and G�

U are
disjoint parts of G�

B. Therefore L(GB) ≤ 2L(G�
C) + 2L(G�

U ) ≤ 2L(G�
B). �


Corollary 1. L(G) ≤ 2L(G�). �
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Abstract. A coloring of the vertices of a graph is called convex if each
subgraph induced by all vertices of the same color is connected. We
consider three variants of recoloring a colored graph with minimal cost
such that the resulting coloring is convex. Two variants of the problem
are shown to be NP-hard on trees even if in the initial coloring each color
is used to color only a bounded number of vertices. For graphs of bounded
treewidth, we present a polynomial-time (2+ε)-approximation algorithm
for these two variants and a polynomial-time algorithm for the third
variant. Our results also show that, unless NP ⊆ DTIME(nO(log log n)),
there is no polynomial-time approximation algorithm with a ratio of size
(1 − o(1)) ln ln n for the following problem: Given pairs of vertices in an
undirected graph of bounded treewidth, determine the minimal possible
number l for which all except l pairs can be connected by disjoint paths.

Keywords: Convex Coloring, Maximum Disjoint Paths Problem.

1 Introduction

A colored graph (G,C) is a tuple consisting of a graph G and a coloring C of
G, i.e., a function assigning each vertex v a color that is either 0 or a so-called
real color. A vertex colored with 0 is also called uncolored. A coloring is an
(a, b)-coloring if the color set used for coloring the vertices contains at most a
real colors and if each real color is used to color at most b vertices. Two equal-
colored vertices v and w in a colored graph (G,C) are C-connected if there is
a path from v to w whose vertices are all colored with the color of u and v. A
coloring C is called convex if all pairs of vertices colored with the same real color
are C-connected. For a colored graph (G,C1), another arbitrary coloring C2 of G
is also called a recoloring of (G,C1). We then say that C1 is the initial coloring
of G and that C2 recolors or uncolors a vertex v of G if C2(v) 
= C1(v) and
C2(v) = 0, respectively. The cost of a recoloring C2 of a colored graph (G,C1)
with G = (V,E) is

∑
v∈V :0�=C1(v) �=C2(v) w(v), where w(v) denotes the weight of

v with w(v) = 1 in the case of an unweighted graph. This means that we have
to pay for recoloring or uncoloring a real-colored vertex, but not for recoloring
an uncolored vertex. In the minimum convex recoloring problem (MCRP) we are
given a colored graph and search for a convex recoloring with minimal cost.

The MCRP describes a fundamental problem in graph theory with different
applications in practice: a first systematic study of the MCRP on trees is from

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 16–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Moran and Snir [10] and was motivated by applications in biology. Further ap-
plications are so-called multicast communications in optical wavelength division
multiplexing networks; see, e.g., [6] for a short discussion of these applications.
Here we focus on the MCRP as a special kind of routing problem. Suppose we
are given a telecommunication or transportation network modeled by a graph
whose vertices represent routers. Moreover, assume that each router can estab-
lish a connection between itself and an arbitrary set of adjacent routers. Then
routers of the same initial color could represent clients that want to be con-
nected by the other routers to communicate with each other or to exchange data
or commodities. More precisely, connecting clients of the same color means find-
ing a connected subgraph of the network containing all the clients, where the
subgraphs for clients of different colors should be disjoint. If we cannot estab-
lish a connection between all the clients, we want to give up connecting as few
clients to the other clients of the same color as possible in the unweighted case
(w(v) = 1 for all v ∈ V ) or to give up a set of clients with minimal total weight
in the weighted case. Hence, our problem reduces to the MCRP, where a recol-
oring colors all those vertices with color c that represent routers used to connect
clients of color c. The case in which routers can connect a constant number of
disjoint sets of adjacent routers can be handled by copying vertices representing
a router.

We also introduce a new relaxed version of the problem that we call the min-
imum restricted convex recoloring problem (MRRP). In this problem we ask for
a convex recoloring C′ that does not recolor any real-colored vertex with a dif-
ferent real color. In practice clients often cannot be used for routing connections
for other clients so that a clear distinction between clients and routers should
be made. This can be modeled by the MRRP, where a client that cannot be
connected to the other clients of the same color may only be uncolored.

Finally, we consider a variant of the MCRP where we search for a convex
recoloring, but assign costs to each color c. We have to pay the cost for color c
if at least one vertex of color c is recolored. We call this coloring problem the
minimum block recoloring problem or MBRP. In an unweighted version we assign
cost 1 to each color. The MBRP is useful if in an application it is not useful to
connect only a proper subset of clients that want to be connected.

The MCRP, the MRRP, and the MBRP can also be considered as genera-
lizations of the maximum disjoint paths problem (MDPP) and the disjoint paths
problem (DPP), where in the first case a maximum number and in the second
case all pairs of given pairs of vertices of a graph are to be connected by vertex-
disjoint paths, if possible. Indeed any algorithm solving one of our recoloring
problems on (∞, 2)-colorings to optimality also can solve the DPP. Given an
algorithm for the MBRP one can also solve the problem of connecting a subset
of a given set of weighted node pairs (s1, t1), . . . , (sl, tl) by disjoint paths such
that the sum of the weights of the connected pairs is maximized.

Previous results. The NP-hardness of the unweighted MCRP, MRRP, and
MBRP follows directly from the NP-hardness of the MDPP [8,9]. However, non-
approximability results for our recoloring problems do not follow from
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corresponding results for the MDPP since the latter problem is a maximiza-
tion and not a minimization problem. Moran and Snir [10] showed that the
MCRP on (∞,∞)-colorings remains NP-hard on trees, and the same is true for
the MRRP, as follows implicitly from the results in [10] concerning leaf colored
trees.

Snir [13] presented a polynomial-time 2-approximation algorithm for the
weighted MCRP on strings and a polynomial-time 3-approximation algorithm
for the weighted MCRP on trees also published in [11]. Bar-Yehuda, Feldman,
and Rawitz [3] could improve the approximation ratio on trees to 2 + ε.

New results. In contrast to the work of Bar-Yehuda et al. and of Snir here we
consider initial (a, b)-colorings with a and b different from ∞. In addition, we
also consider graphs of bounded treewidth instead of only trees.

Surprisingly, the variants of the three coloring problems all have different
complexities on graphs of bounded treewidth, as we prove in Section 2 and
3. We show that the MCRP is NP-hard even on trees initially colored with
(∞, 2)-colorings whereas the MRRP can be solved in polynomial time for the
more general (∞, 3)-colorings as input colorings even on weighted graphs of
bounded treewidth. We also observe the NP-hardness of the MRRP on trees
colored with (∞, 4)-colorings. Moreover, we present a polynomial-time algorithm
for the MBRP on weighted graphs of bounded treewidth for general colorings.

Extending the result of Bar-Yehuda et al., we present a polynomial-time
(2 + ε)-approximation algorithm for the MCRP and the MRRP on weighted
graphs of bounded treewidth. However, if we follow their approach in a straight
forward way, we would have to store too much information at each node of a
so-called tree decomposition tree. Therefore, we would obtain a running time of
size Ω(nk) with k being the treewidth of the graph considered. Additional ideas
allows us to guarantee a quadratic running time.

Beside our results on graphs of bounded treewidth we show that the un-
weighted versions of our recoloring problems cannot be approximated within
an approximation ratio of (1 − o(1)) ln lnn in polynomial time unless NP ⊆
DTIME(nO(log log n)) even if the initial coloring is restricted to be an (∞, 2)-
coloring. As a consequence of this result, if we are given pairs of vertices, there
is no good approximation possible for approximating in polynomial-time the
minimal l such that all except l pairs are connected by disjoint paths, unless
NP ⊆ DTIME(nO(log log n)). Determining l can be considered in some kind as
the inverse of the MDPP problem. Due to space limitations some proofs in this
article are omitted. They can be found in the full version of this paper.

2 Hardness Results

Theorem 1. Given an unweighted n-vertex graph with an (∞, 2)-coloring, no
polynomial-time algorithm for the MCRP, the MRRP or the MBRP has an ap-
proximation ratio of (1− o(1)) ln lnn unless NP ⊆ DTIME(nO(log log n)).

Theorem 2. The MCRP on unweighted graphs is NP-hard even if the problem
is restricted to trees colored by an initial (∞, 2)-coloring.
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Proof. The theorem can be proven by a reduction from 3-SAT. Let F be an
instance of 3-SAT, i.e., F is a Boolean formula in 3-CNF. W.l.o.g. we assume
that each clause in F has exactly three literals. Let n be the number of literals
in F , let m be the number of clauses of F and let r be the minimal number
such that each literal in F appears at most r times in F . For the time being
let us construct a forest G which later can be easily connected to a tree. We
construct G by introducing for each variable x a so-called gadget Gx consisting
of an uncolored vertex vx, leaves vL,i

x , vR,i
x colored with a color ci

x and an edge
{vx, v

L,i
x } for each i = {1, 2}, and two internally disjoint paths of length r+1, one

from vx to vR,1
x , and the other from vx to vR,2

x . Let us call the internal vertices of
the path connecting vx and vR,i

x for i = 1 the positive and for i = 2 the negative
vertices in the gadget Gx. For each clause K, we introduce a similar gadget GK

consisting of an uncolored vertex vK , leaves vL,j
K , vR,j

K colored with a color cj
K

and an edge {vK , vL,j
K } for each j ∈ {1, 2, 3}, and three internally disjoint paths

of length 2, all starting in vK but ending in different endpoints, vR,1
K , vR,2

K , and
vR,3

K , respectively. In addition, we also introduce 2nr extra vertices without any
incident edges called the free vertices of G. From this forest we obtain a tree T
if we simply connect all gadgets and all free vertices by the following two steps.
First, add two adjacent vertices v1 and v2 into G that both are colored with the
same new color. Second, for each variable x, connect vx to v1, for each clause
K, connect vK to v2 and finally also all free vertices to v2.

Concerning the coloring C of T , we want to color further vertices of T . For
each literal x or x part of clause K, color in the gadget for x one positive vertex
(in case of literal x) or one negative vertex (in case of literal x) as well as one
of the non-leaves adjacent to vK with a new color cx,K . If after these colorings
there is at least one uncolored positive or negative vertex, we take for each such
vertex y a new color cy and assign it to y as well as to exactly one uncolored free
vertex. One can show that F is satisfiable if and only if (T,C) has a convex recol-
oring C′ with cost ≤ 2nr+(n+2m). The proof of this equivalence is omitted. �

Although the MCRP is NP-complete when being restricted to initial (∞, 2)-
colorings, this is not the fact for the MRRP as we show in Theorem 6. However,
a slight modification of the reduction above shows that the MRRP on weighted
graphs with an initial (∞, 4)-coloring is also NP-hard even for trees. The idea
is, for each colored non-leaf x, to add two new vertices x1, x2, and edges (x, x1),
(x, x2), to color x1, x2 with the color of x, and finally to uncolor x.

3 Exact Algorithms

In this section we present algorithms on graphs with bounded treewidth. For
defining graphs of bounded treewidth we have to define tree decompositions.
Tree decompositions and treewidth were introduced by Robertson and Seymour
[12] and a survey for both is given by Bodlaender [4].

Definition 3. A tree decomposition of treewidth k for a graph G = (V,E) is a
pair (T,B), where T = (VT , ET ) is a tree and B is a mapping that maps each
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node w of VT to a subset B(w) of V such that (1)
⋃

w∈VT
B(w) = V , (2) for

each edge (u, v) ∈ E, there exists a node w ∈ VT such that {u, v} ⊆ B(w), (3)
B(x) ∩B(y) ⊆ B(w) for all w, x, y ∈ VT with w being a vertex on the path from
x to y in T , (4) |B(w)| ≤ k+1 for all w ∈ VT . Moreover, a tree decomposition is
called nice if (5) T is a rooted and binary tree, (6) B(w) = B(w1) = B(w2) holds
for each node w of T with two children w1 and w2, (7) either |B(w)\B(w1)| = 1
and B(w) ⊃ B(w1) or |B(w1)\B(w)| = 1 and B(w1) ⊃ B(w) holds for all nodes
w of T with exactly one child w1.

The treewidth of a graph G is the smallest number k for which a tree decom-
position of G with treewidth k exists. If k = O(1), G has bounded treewidth.
For an n-vertex graph of constant treewidth k, one can determine a nice tree
decomposition (T,B) with T consisting of O(n) nodes in linear time [5].

In this section we therefore will assume that we are given an n-vertex graph
G = (V,E) and a nice tree decomposition (T,B) of G of treewidth k−1 (k ∈ N)
with T having O(n) nodes. Before presenting our algorithm we introduce some
further notations and definitions. For clarity, overlined vertices—as for example
v—should always denote nodes of T . Moreover, we will refer to nodes and arcs
instead of vertices and edges if we mean the vertices or edges of T . By vl and vr we
denote the left and the right child of v in T , respectively. If v has only one child,
we define it to be a left child. We also introduce a new set consisting of k gray
colors—in the following always denoted by Y —and we allow for each recoloring
additionally to use the gray colors. A gray colored vertex w intuitively means
that w is uncolored and will later be colored with a real color. We therefore define
the cost for recoloring a gray colored vertex to be 0 and do not consider the gray
colors as real colors. A convex coloring from now on should denote a coloring C
where all pairs of vertices of the same gray or real color are C-connected. For
each node v in T , each subset S of vertices of G, each subgraph H of G, and
each coloring C of G we let

– G(v) be the subgraph of G induced by all vertices contained in at least one
set B(w) of a node w contained in the subtree of T rooted in v.

– C(S), C(H) be the set of colors used by a coloring C for coloring the vertices
of S and of H , respectively.

– SEP(C, v) be the set of real colors used to color vertices except from B(v)
in more than one of the subgraphs G(vl), G(vr) and G−G(v).

Finally, for each subgraph H of G, a legal recoloring of (H,C) is a recoloring
C′ of (H,C) such that for each real color c assigned by C′ there is a vertex
u of H with c = C(u) = C′(u). Observe that, if there is a convex recoloring
C′′ of a colored graph (H,C) of cost k, there is also a legal convex recoloring
C′ of (H,C) with cost k. C′ can be obtained from C′′ without increasing the
cost by uncoloring all vertices colored with a color c for which no vertex u with
C′′(u) = C(u) = c exists. Hence for solving the MCRP, the MRRP, and the
MBRP we only need to search for legal recolorings solving the problem.

For the rest of this section we assume that our given graph G is colored by
an initial coloring C not using gray colors. We first present an algorithm for
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the MCRP. This algorithm considers the nodes of T in a bottom-up strategy
and computes for each node v a set of so-called characteristics. Intuitively, each
characteristic represents a recoloring C′ of G(v) that will be stepwise extended
to a convex recoloring of the whole graph G. Extending a (re-)coloring C1 for a
graph H1 means replacing C1 by a new color function C2 for a graph H2 ⊇ H1
with C2(w) = C1(w) for all vertices w of H1 with the following exception: A
vertex colored with a gray color c1 may be recolored with a real color c2 if all
vertices of color c1 are recolored with c2. We next define a characteristic for a
node v precisely as a tuple (P, {PS |S ∈ P}, {cS |S ∈ P}, Z), where

– P is a partition of B(v), i.e., a family of nonempty pairwise disjoint sets
S1, . . . , Sj with

⋃
1≤i≤j Si = B(v). These sets are called macro sets.

– PS is a partition of the macro set S, where the subsets of S contained in PS

are called micro sets.
– cS for each macro set S is a value in SEP(C, v) ∪ Y ∪ {0, b}, where b is an

extra value different from 0 and the real and gray colors.
– Z ⊆ SEP(C, v). The colors in Z are called the forbidden colors.

In the following for a characteristic Q and a macro set S of Q we denote the val-
ues P, PS , cS and Z above by PQ, PQ

S , cQS and ZQ. We next describe a first
intuitive approach of solving the MCRP extending the ideas of Bar-Yehuda
et al. [3] from trees to graphs of bounded treewidth by introducing macro and
micro sets but not using gray colors or the extra value b.

A characteristic Q for a node v should represent a coloring C′ of G(v) such
that the following holds: A macro set S of Q denotes a maximal subset of vertices
in B(v) that are colored by C′ with the same unique color equal to the value
cQS stored with the macro set—maximal means that there is no further vertex in
B(v) \S colored with cQS . A micro set is a maximal subset of a macro set that is
C′-connected in G(v). When later extending the recoloring C′ we need to know
which of the colors not in C′(B(v)) are used by C′ to color vertices of G(v)
since these colors may not be used any more to color a vertex outside G(v).
These colors are exactly the forbidden colors of the characteristic. Note that
there can be more than one recoloring of G(v) leading to the same characteristic
for v. Hence, a characteristic does not really represent one recoloring, but an
equivalence class of recolorings. The main idea of our algorithm is the following:

Given all characteristics for the children of a node v and, for each equivalence
class E described by one of these characteristics, the minimal cost among all
costs of recolorings in E , our algorithm uses a bottom-up strategy to compute
the same information also for v and its ancestors. Since we only want to compute
convex recolorings, at the root of T we have to remove all characteristics having
a real colored macro set that consists of at least two micro sets. The cost of
an optimal convex recoloring is the minimal cost among all costs computed
for the remaining characteristics. An additional top-down traversal of T can
also determine a recoloring having optimal cost. Unfortunately, the number of
characteristics to be considered by the approach above would be too high for
an efficient algorithm. The problem is that for graphs of bounded treewidth, in
contrary to what is the case for trees, a path connecting two vertices outside G(v)
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may use vertices in G(v) and vice versa. Hence, as a further change compared
to the algorithm of Bar Yehuda et al., we use gray colors and the extra value b.
These colors are intuitively used as follows:

If a color c is used by C only to color vertices outside G(v), a recoloring C′ of G
may possibly also want to recolor a set S of vertices in G(v) with c in order to C′-
connect some vertices with color c. The cost for recoloring vertices of G(v) with
c are independent from the exact value of c, and can be computed as the costs of
uncoloring all vertices of S (since C(w) 
= c for all w in G(v)) and of recoloring
it (without any cost) with color c. Therefore, when considering recolorings of the
graph G(v), we do not allow to color it with a real color c 
∈ C(G(v)). Instead
of c we use a gray color, since coloring a vertex gray has the same costs as
of uncoloring the vertex but allows us to distinguish the vertex from vertices
colored with another gray color or being uncolored. Note that our definition of
extending a recoloring allows us with zero costs to recolor gray and uncolored
vertices in a later step with a real color, whereas recoloring real-colored vertices
is forbidden when extending a recoloring.

If a recoloring C′ of G(v) colors a macro set S with a color c that is only
used by C to color vertices of G(v), then for extending the recoloring C′ to a
recoloring C′′, we do not need to know the exact color of S. The reason for this
is that, for any vertex w outside G(v), the cost for setting C′′(w) = c can be
computed again independently from the color of S: We have to pay the weight
of w as costs if w is real-colored by C and zero costs otherwise. Therefore, we
use the extra value b to denote that a macro set S is real-colored with a color c
that with respect to C only appears in G(v) and, in this case, we will set cQS = b
instead of setting cQS = c.

Following the ideas described above we let our algorithm consider only a
restricted class of characteristics. For a node v of T , we define C|G(v) to be the
coloring C restricted to G(v). We call a characteristic Q a good characteristic if
there exists a legal recoloring C′ of (G(v), C|G(v)) with the properties (A1)-(A7).
C′ is then said to be consistent with Q.

(A1) C′(G(v)) ⊆ C(G(v)) ∪ Y ∪ {0}.
(A2) For each macro set S of Q, C′ colors all vertices of S with one color, namely

with cQS if cQS 
= b, and with a real color not in C(G −G(v)) if cQS = b.
(A3) C′ colors two different macro sets of Q with different colors.
(A4) A micro set is a maximal subset of B(v) that is C′-connected in G(v).
(A5) C′ is a convex recoloring for the graph obtained from G(v) by adding,

for each macro set S, edges of an arbitrary simple path visiting exactly one
vertex of each micro set of S.

(A6) Every gray colored vertex in G(v) is C′-connected to a vertex in B(v).
(A7) ZQ = SEP(C, v) ∩ (C′(G(v)) \ C′(B(v))).

Note that each convex legal recoloring C′ of the initial colored graph (G,C) is
consistent with a good characteristic Q for the root r of T . More explicitly, we
obtain Q by dividing B(r) into macro sets each consisting of all vertices of one
color with respect to C′, by defining the partition of each macro set to consist
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of only one micro set, by setting ZQ = ∅ and by defining, for each macro set S,
cQS = b if C′(S) is a real color, or cQS = 0 otherwise.

Our algorithm computes in a bottom-up process for each node v of T all good
characteristics of v from the good characteristics of the children of v. However
not all pairs of good characteristics of the children can be combined to good
characteristics of v. Therefore we call a characteristicQl of vl and a characteristic
Qr of vr compatible if they satisfy the following three conditions:

– Two vertices v1, v2 ∈ B(vl) = B(vr) belong to the same macro set in Ql if
and only if this is true for Qr.

– Let S be a macro set of Q and hence also of Ql and Qr. Then either
cQl
S = cQr

S 
= b or exactly one of cQl
S and cQr

S is a gray color.
– The sets of forbidden colors of Qr and of Ql are disjoint.

The following algorithm computes for each node v of T a set Mv of character-
istics from which we will show in the full version of this paper that it is exactly
the set of good characteristics of v. First of all, in a preprocessing phase compute
by a bottom-up and a top-down traversal of T , for each node v of T , the set
SEP(C, v) as well as the set of colors that are used by C to color vertices in G(v)
but no vertex outside G(v). The latter set is in the following denoted by U(C, v).
Next, for each leaf v of T , Mv is obtained by taking into account all possible
divisions of the vertices of B(v) into macro sets and all possible colorings of the
macro sets with different colors of C(B(v)) ∪ Y ∪ {0}. More precisely, for each
choice, a characteristic Q is obtained and added to Mv by defining, for each
macro set S colored with c, the micro sets of S to be the connected components
of the subgraph of G induced by the vertices of S, and by setting cQS = b if c is
a real color in U(C, v), and cQS = c otherwise. The set ZQ of forbidden colors is
set to ∅.

Next start a bottom-up traversal of T . At a non-leaf v all already computed
characteristics of the children are considered. In detail, for each characteristic
Ql of Mvl and—if v has two children—for each compatible good characteristic
Qr of Mvr , we add to Mv the set of characteristics that also could be obtained
as output by the following non-deterministic algorithm:

– Take for Q and the vertices in B(v)∩B(vl) the same division into macro sets
as for Ql. If v has only one child and there is also a vertex w ∈ B(v) \B(vl),
choose one of the ≤ k possibilities of assigning w to one of the macro sets of
B(v) ∩B(vl) or choose {w} to be its own new macro set.

– For dividing the vertices of B(v) into micro sets, construct the graph H
consisting of the vertices in B(v) and having an edge between two vertices if
and only if both vertices belong to the same macro set and either this edge
exists in G or both vertices belong to the same micro set in Ql or Qr. Define
the vertices of each connected component in H to be a micro set of Q.

– For each macro set S obtained by the construction above, distinguish be-
tween three cases.
• S ⊆ S′ for a macro set S′ of Ql: If vr does not exist or if cQl

S′ = cQr
S , set

cQS = cQl
S′ . Otherwise, set cQS to the non-gray value in {cQl

S′ , c
Qr
S }.
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• S has a vertexw ∈ B(v)\B(vl) and |S| > 1 : Choose cQS ∈ {c
Ql
S\{w}, C(w)}

if cQl
S\{w} is a gray color, otherwise, cQS = cQl

S\{w}.
• S = {w} with w ∈ B(v) \B(vl): Choose for cQS a value of Y ∪{0, C(w)}.

After defining cQS as described above, if cQS is a real color and cQS ∈ U(c, v),
redefine cQS = b.

– Reject the computation if there is a micro set S′ part of a macro set S in Ql
with S′ ∩B(v) = ∅ and either cQl

S is a gray color or S \ S′ 
= ∅.
– If there is macro set S = B(vl)\B(v) of Ql and if cQl

S is a real color, set Z ′ =
{cQl

S } and Z ′ = ∅ otherwise. Finally, set ZQ = SEP(C, v)∩(Z ′∪ZQl ∪ZQr).

As mentioned before, one can show that our algorithm correctly computes for
each node v the set of all good characteristics of v and that our algorithm can be
extended such that it computes with each good characteristic Q the costs of a
recoloring consistent with Q that among all such recolorings has minimal costs.
One can also show that our algorithm has a running time of O(n2 + 4s(k + s +
2)6k+1(k2 + s)n), where s = maxv node of T |SEP(C, v)|.

After the removal of all characteristics having a real colored macro set that
consists of at least two micro sets or having a gray colored macro set we obtain
the cost of an optimal legal convex recoloring as the minimal costs among all costs
stored with the remaining characteristics constructed for the root of T . Finally by
an additional top-down traversal our algorithm can—beside the minimal costs
of a legal recoloring—also determine the coloring itself within the same time
bound. We obtain the following theorem.

Theorem 4. Given a colored graph (G,C) and a nice tree decomposition (T,B)
of width k−1 as input the MCRP can be solved in O(n2 +4s(k+s+2)6k+1(k2 +
s)n) time, where s = maxv node of T |SEP(C, v)|.

It is easy to modify the algorithm above such that it solves the MRRP within the
same time bound. In each bottom-up step we only have to exclude recolorings
that recolor a real colored vertex with a gray or another real color.

Unfortunately, the algorithms above for the MCRP and the MRRP are ex-
ponential in s since there are 2s different possible lists of forbidden colors. The
good news concerning the MBRP on general initial colorings and the MRRP
with its initial coloring being an (∞, 3)-coloring is that we can omit to store the
forbidden colors explicitly. We next describe the necessary modifications.

For the MBRP we use the same basic algorithm as for the MCRP. However, we
compute as a solution for the MBRP w.l.o.g. only recolorings that, for each real
color c, either recolor all or none of the vertices initially colored with c. Following
this approach, a characteristic of a node v should only represent recolorings that,
for each real color c, either recolor all or none of the vertices u in G(v) for which
C(u) = c holds. If in the latter case there is a vertex in G(v) and also a vertex
outside G(v) initially colored with c, we therefore claim that a vertex of B(v) is
also colored with c since otherwise the recoloring can not be extended to a legal
convex recoloring not recoloring any vertex of c. This implies an additional rule
for constructing characteristics:
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Assume that—as in our basic algorithm—we want to construct a characteristic
Q of a non-leaf v from a characteristic Qu of a child u of v. Then we are only
allowed to color a macro set S of Q with c if (1) all vertices in B(v) that are
initially colored with c are contained in S and (2) either Qu also contains a
macro set S′ with cQu

S′ = c or c /∈ C(G(u)).
For efficiently testing condition (2), we construct in a preprocessing phase

for each node v an array Av, with the following entries: For each color c ∈
C(G), Av[c] = 1 if G(v) contains a vertex u with C(u) = c. Otherwise Av[c]
is defined to be 0. If the array is computed by a bottom-up traversal of T , the
preprocessing phase takes O(n2) time. After the preprocessing phase we can test
for each characteristic Q of a node v and each color c in O(k) time whether
(1) and (2) hold. Hence, the asymptotic running time of our algorithm does
not increase. Moreover, our additional rules enables us to find out, for each color
c ∈ SEP(C, v), whether a vertex of G(vl) or G(vr) is colored with c by considering
Av[c] and by testing whether a macro set S of Ql or Qr, respectively, is colored
with c. Hence, there is no need to store the forbidden colors.

Theorem 5. On graphs of bounded treewidth the MBRP is solvable in polyno-
mial time.

More complicated modifications are necessary for the MRRP. We assume
w.l.o.g. that, for each color c, there are either no or at least two vertices colored
with c by C. The main idea of our algorithm is the following: For improving
the running time at a node v of T we only want to consider recolorings C′ of
G(v) such that for each color c ∈ C(G) the following condition (D,c) holds. The
correctness of this step will be discussed later.

(D,c) If u is a vertex in G(v) with C′(u) = C(u) = c, either there exists a vertex
w outside G(v) with C(w) = c and a vertex w′ ∈ B(v) with C′(w′) = c,
or there exists another vertex w ∈ G(v) with C′(w) = C(w) = c.

This property guarantees that, for a node v of highest depths with G(vl)
containing a vertex ul initially colored with c and G(vr) containing a vertex
ur initially colored with c, a recoloring C′ with property (D,c) colors ul or ur
with c if and only if B(vl) and B(vr), respectively, also contains a vertex colored
with c. Therefore, there is no need to store c explicitly as a forbidden color in
a characteristic of vl and of vr any more. With similar arguments one can show
that for no node its characteristic has to store c explicitly as a forbidden color.

The problem is that some legal recolorings are permitted by (D,c). However,
each convex recoloring Copt of optimal cost either is a recoloring with property
(D,c) or it colors w.l.o.g. exactly one vertex u with c. In the latter case a coloring
with the same cost as Copt can be obtained from a recoloring with property (D,c)
not coloring any vertex with c by undoing the recoloring of the vertex originally
colored with c that among all such vertices has a maximal weight. Therefore,
for computing the costs of an optimal convex recoloring, we only have to con-
sider the costs of recolorings with property (D,c) and eventually to subtract the
maximal weight over all vertices originally colored with c. Let us call such a sub-
traction a c-cost adaption. Our goal now is to describe an algorithm that runs the
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c-cost-adaption during the bottom-up traversal of T at a certain node v—called
the c-decision node—having the following property:

For each characteristicQ of v, either each recoloring C′ extending a recoloring
consistent with Q and having property (D,c) C′-connects at least two vertices
initially colored with c (and we therefore must not run a c-cost-adaption) or all
such recolorings uncolor all vertices initially colored with c (and therefore we
have to run a c-cost-adaption).

If, for each color c, we know the c-decision node, our algorithm runs as follows:
For each node v (also above the c-decision node), we only compute characteristics
representing recolorings for which property (D,c) holds for each color c. If we
reach the c-decision node v, for each characteristic Q of v, we test whether all
recolorings extending Q do not use color c and if so, we run a c-cost adaption
for Q. One can show that, for all colors c, a c-decision node exists and that
one can efficiently determine the characteristics representing the recoloring with
property (D,c).

Theorem 6. On graphs of bounded treewidth the MRRP restricted to initial
(∞, 3)-colorings is solvable in polynomial time.

Note that the running times for the MCRP and the MRRP on arbitrary initial
colorings are also polynomial if s—defined as in Theorem 4—is of size O(log n).
This is the case if an (a, b)-coloring with a = O(log n) is given.

Theorem 7. On graphs of bounded treewidth the MCRP and the MRRP, both
restricted to initial (a, b)-colorings with a = O(log n), are solvable in polynomial
time.

4 Approximation Algorithms

Since the MCRP is NP-hard even on trees, we can not hope for a polynomial-
time algorithm that solves the problem to optimality—even if we consider graphs
of bounded treewidth. Using the algorithm of the last section we now present for
graphs of bounded treewidth a (2 + ε)-approximation algorithm for the MCRP
and the MRRP given an arbitrary (∞,∞)-coloring. The following algorithm is
inspired by the algorithm of Bar-Yehuda et al. [3]. We extend the algorithm from
trees to graphs of bounded treewidth and present a slightly different description
for proving the correctness of the algorithm.

Given a graph G with a coloring C and a nice tree decomposition (T,B) of
width k−1 for G our results can be obtained by iteratively modifying the coloring
C and the weights of the vertices such that finally |SEP(C, v)| < s for all nodes
v of T and a fixed s ∈ N with s > k. Let v be a node of T such that there is a
set R′ ⊆ SEP(C, v) containing exactly s colors and let V ′ be a set consisting of
two vertices of color c for all c ∈ R′ such that for each pair of vertices x, y ∈ V ′

of the same color the vertices x and y are in different components in G−B(v).
Moreover, let α be the minimal weight of a vertex in V ′. The size of SEP(C, v) is
decremented by reducing the weight of all vertices in V ′ by α and subsequently
uncoloring the vertices of zero-weight.
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On the one hand, this weight reduction decreases the cost of an optimal convex
(re-)coloring C′ of G by at least (s − k)α since the at most k vertices in B(v)
allow to color connect only k of the s colors in R′, i.e., s−k vertices in V ′ can not
be C′-connected. On the other hand, if we have a solution for the MCRP (or the
MRRP) with the reduced weight function, we can simply take this solution as a
solution for the MCRP (or the MRRP) with the original weights and our costs
increase by at most 2sα. Thus, in each iteration our costs decrease at most by a
factor of 2s/(s− k) more than the decrease of the costs of an optimal solution.
If at the end no further reduction is possible, we can use the exact algorithms
from the previous section, i.e., we can solve the instance obtained by this weight
reduction as good as an optimal algorithm. Altogether, we have only recoloring
costs that are a factor of 2s/(s−k) bigger than the costs of an optimal solution.
Choosing s large enough, we obtain the following.

Corollary 8. For graphs of bounded treewidth a (2 + ε)-approximation algo-
rithms exist for the MCRP and the MRRP with quadratic running time.
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Abstract. Reconfiguration problems arise when we wish to find a step-
by-step transformation between two feasible solutions of a problem such
that all intermediate results are also feasible. We demonstrate that a
host of reconfiguration problems derived from NP-complete problems
are PSPACE-complete, while some are also NP-hard to approximate. In
contrast, several reconfiguration versions of problems in P are solvable
in polynomial time.

1 Introduction

Consider the bipartite graph with weighted vertices in Fig.1(a) (both solid and
dotted edges). It models a situation in which power stations with fixed capacity
(the square vertices) provide power to customers with fixed demand (the round
vertices). It can be seen as a feasible solution of a particular instance of a search
problem which we may call the power supply problem [10,11]: Given a bipartite
graph G = (U, V,E) with weights on the vertices, is there a forest covering all
vertices in G, and with exactly one vertex from U in each component, such that
the sum of the demands of the V vertices (customers) in each component is no
more than the capacity of the U vertex (power station) in it?

But suppose now that we are given two feasible solutions of this instance (the
leftmost and rightmost ones in Fig.1), and we are asked: Can the solution on the
left be transformed into the solution on the right by moving only one customer at
a time, and always remaining feasible? This problem, which we call the power
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Fig. 1. A sequence of feasible solutions for the power supply problem

supply reconfiguration problem, is an exemplar of the kind of problems we
discuss in this paper. (In this particular instance, it turns out that the answer
is “yes”; see Fig.1.) As one may have expected, the most basic reconfiguration
problem is the satisfiability reconfiguration problem: Given a CNF for-
mula and two satisfying truth assignments s0 and st, are these connected in the
subgraph of the hypercube induced by the satisfying truth assignments? This
problem has been shown PSPACE-complete in [6].

In more generality, reconfiguration problems have the following structure: Fix
a search problem S (a polynomial-time algorithm which, on instance I and
candidate solution y of length polynomial in that of I, determines whether y is
a feasible solution of I); and fix a polynomially-testable symmetric adjacency
relation A on the set of feasible solutions, that is, a polynomial-time algorithm
such that, given an instance I of S and two feasible solutions y′ and y′′ of I,
it determines whether y′ and y′′ are adjacent. (In almost all problems discussed
in this paper, the feasible solutions can be considered as sets of elements, and
two solutions are adjacent if their symmetric difference has size 1 — or, in some
cases such as power supply reconfiguration, 2.) The reconfiguration

problem for S and A is the following computational problem: Given instance
I of S and two feasible solutions y0 and yt of I, is there a sequence of feasible
solutions y0, y1, . . . , yt of I such that yi−1 and yi are adjacent for i = 1, 2, . . . , t?

Reconfiguration problems can also arise from optimization problems, if one
turns the optimization problem into a search problem by giving a threshold.
For example, the clique reconfiguration problem is the following: Given a
graph G, an integer k, and two cliques C0 and Ct of G, both of size at least k,
is there a way to transform C0 into Ct via cliques, each of which results from
the previous one by adding or subtracting one node of G, without ever going
through a clique of size less than k − 1?

Reconfiguration problems are useful and entertaining, have been coming up in
recent literatures [1,6,9], and are interesting for a variety of reasons. First, they
may reflect, as in the power supply reconfiguration problem above, a situa-
tion where we actually seek to implement such a sequence of elementary changes
in order to transform the current configuration to a more desirable one, in a con-
text in which intermediate steps must also be fully feasible, and only restricted
changes can occur — in our example, no two customers can change providers
simultaneously, and we certainly do not wish customers to be without power.
In a complex, dynamic environment in which changing circumstances affect the
feasible solution of choice, determining whether such adaptation is possible may
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be crucial. Reconfiguration problems also model questions of evolvability: Can
genotype y0 evolve into genotype yt via individual mutations which are each of
adequate fitness? Here a genotype is considered feasible if its fitness is above a
threshold, and two genotypes are considered adjacent if one is a simple mutation
of the other. Finally, reconfiguration versions of constraint satisfaction problems
(the first kind studied in the literature [6]) yield insights into the structure of the
solution space, and heuristics, such as survey propagation, whose performance
depends crucially on connectivity and other properties of the solution space.

In this paper we embark on a systematic investigation of the complexity of re-
configuration problems. Our main focus is showing that a host of reconfiguration
problems (including all those mentioned above and many more) are PSPACE-
complete. The proof for the power supply reconfiguration problem and
those for certain other problems are explained in Section 2. In Section 3 we point
out that certain reconfiguration problems arising from problems in P (such as the
minimum spanning tree and matching problems) can be solved in polynomial
time, and in Section 4 we show certain approximability and inapproximability
results for reconfiguration problems.

2 PSPACE-Completeness

In this section we show that a host of reconfiguration problems are PSPACE-
complete. We first give a proof for the power supply reconfiguration

problem in Subsection 2.1, and then give proof sketches for certain other re-
configuration problems in Subsection 2.2.

2.1 Power Supply Reconfiguration

The power supply reconfiguration problem was defined informally in the
Introduction. An instance is given in terms of a bipartite graph G = (U, V,E),
where each vertex in U is called a supply vertex and each vertex in V is called a
demand vertex. Each supply vertex u ∈ U is assigned a positive integer sup(u),
called the supply of u, while each demand vertex v ∈ V is assigned a positive
integer dem(v), called the demand of v. We wish to find a forest which covers all
vertices in G such that each tree T in the forest has exactly one supply vertex
whose supply is at least the sum of demands of all demand vertices in T . We call
an assignment f : V → U a configuration of G if there is an edge

(
v, f(v)

)
∈ E

for each demand vertex v ∈ V . A configuration f of G is called feasible if the
following condition holds: for each supply vertex u ∈ U ,

sup(u) ≥
∑{

dem(v) | v ∈ V such that f(v) = u
}
.

The adjacency relation on the set of feasible configurations is defined as follows:
two feasible configurations f and f ′ are adjacent if

∣∣{v ∈ V : f(v) 
= f ′(v)}
∣∣ = 1,

that is, f ′ can be obtained from f by changing the assignment of a single de-
mand vertex. Then, for given a bipartite graph G = (U, V,E) and two feasible
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configurations f0 and ft of G, the power supply reconfiguration problem is
to determine whether there is a sequence of feasible configurations f0, f1, . . . , ft

of G such that fi−1 and fi are adjacent for i = 1, 2, . . . , t.
Fig.1 illustrates three feasible configurations of a bipartite graph G, where

each supply vertex is drawn as a square, each demand vertex as a round, and
the supply or demand is written inside. Fig.1 also illustrates an example of a
transformation from the feasible configuration in Fig.1(a) to one in Fig.1(c),
where the demand vertex whose assignment was changed from the previous one
is depicted by a thick round. The optimization problem for finding a certain
configuration of a given graph has been studied in [10,11].

Theorem 1. Power supply reconfiguration is PSPACE-complete.

Proof. It is easy to see that this problem, as well as any reconfiguration version
of a problem in NP, can be solved in (most conveniently, nondeterministic [13])
polynomial space.

We give a reduction to this problem from the satisfiability reconfigura-

tion problem, which was recently shown to be PSPACE-complete [6]. In that
problem we are given a Boolean formula φ in conjunctive normal form, say with
n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm, and two satisfying truth
assignments s0 and st of φ. Then, we are asked whether there is a sequence of
satisfying truth assignments, starting with s0 and ending in st, and each differing
from the previous one in only one variable. Let c be the maximum number of
clauses in which a literal occurs, and hence no literal appears in more than c
clauses in φ.

Given such an instance of satisfiability reconfiguration, we construct
an instance of power supply reconfiguration as follows. We first make a
variable gadget Gxi for each variable xi, 1 ≤ i ≤ n; Gxi is a binary tree with three
vertices as illustrated in Fig.2(a); the root Fi is a demand vertex of demand c, and
the two leaves xi and x̄i are supply vertices of supply c. Then the corresponding
bipartite graph Gφ is constructed as follows. For each variable xi, 1 ≤ i ≤ n,

x1 x1 x3 x3x2 x2

1
C3

1
C2

1
C1

2 2

2

2 2

2

2 2

2
F3F2F1Gx1 Gx2 Gx3

(a) Gxi                                                                  (b) Gφ

xi xic c

c
Fi

1
C4

Fig. 2. (a) Variable gadget Gxi , and (b) bipartite graph Gφ corresponding to a Boolean
formula φ with four clauses C1 = (x1 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x̄1 ∨ x2 ∨ x̄3)
and C4 = (x̄2 ∨ x̄3), and hence c = 2
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put the variable gadget Gxi to the graph, and for each clause Cj , 1 ≤ j ≤ m,
put a demand vertex Cj of demand 1 to the graph. Finally, for each clause Cj ,
1 ≤ j ≤ m, join a supply vertex xi (or x̄i) in Gxi , 1 ≤ i ≤ n, with the clause
demand vertex Cj if and only if the literal xi (respectively, x̄i) is in the clause
Cj . (See Fig.2(b) as an example.) Clearly, Gφ is a bipartite graph.

Consider a feasible configuration of Gφ. Then each demand vertex Fi, 1 ≤
i ≤ n, must be assigned to one of xi and x̄i; a literal is considered false if Fi

is assigned to the corresponding supply vertex. Notice that, since supply vertices
have supply c and the Fi’s have demand c, a false-literal supply vertex cannot
provide power to any of the other demand vertices. Hence, all clause demand
vertices Cj , 1 ≤ j ≤ m, must be assigned to true-literal supply vertices that
occur in them. Since each literal xi (or x̄i), 1 ≤ i ≤ n, appears in at most
c clauses in φ, the corresponding supply vertex xi (respectively, x̄i) in Gxi can
provide power to all clause demand vertices Cj whose corresponding clauses have
xi (respectively, x̄i).

To complete the reduction, we now create two feasible configurations f0 and
ft of Gφ corresponding to the satisfying truth assignments s0 and st of φ, respec-
tively. Each demand vertex Fi, 1 ≤ i ≤ n, is assigned to the supply vertex whose
corresponding literal is false, while each clause demand vertex Cj , 1 ≤ j ≤ m,
is assigned to an arbitrary true-literal supply vertex adjacent to Cj . Clearly, f0
and ft are feasible configurations of Gφ. This completes the construction of the
corresponding instance of the power supply reconfiguration problem.

We know that a feasible configuration of Gφ corresponds to a satisfying truth
assignment of φ plus an assignment of each clause to a true literal. It is easy to
see that this correspondence goes backwards: every satisfying truth assignment
of φ can be mapped to at least one (in general, to exponentially many) feasible
configurations of Gφ.

How about adjacent configurations — defined to be configurations differing
in the assignment of just one demand vertex? One can easily observe that there
are only two types of reassignments to go from a feasible configuration of Gφ to
an adjacent one, as follows:

(1) One could change the assignment of a demand vertex Fi from xi to x̄i, or
vice versa, if any clause demand vertex is currently assigned to neither supply
vertices xi nor x̄i.

(2) Alternatively, if a clause demand vertex Cj is adjacent to more than one true-
literal supply vertices, then one could change the assignment of Cj from the
current one to another.

Therefore, any sequence of adjacent feasible configurations of Gφ can be broken
down to subsequences, intermittently with a reassignment of type (1) above;
in each subsequence, every two adjacent configurations can go from one to an-
other via a reassignment of type (2) above. Therefore, all feasible configurations
in each subsequence correspond to the same satisfying truth assignment of φ,
while any two consecutive subsequences correspond to adjacent satisfying truth
assignments (namely, differing in only one variable). Conversely, for given any
sequence of adjacent satisfying truth assignments of φ, there is a corresponding
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sequence of adjacent feasible configurations of Gφ, obtained as follows: Consider
a flip of a variable xi from true to false. (A flip of xi from false to true is similar.)
Then we wish to change the assignment of the demand vertex Fi from the supply
vertex x̄i to xi. (Remember that the literal to which Fi is assigned is considered
false.) We first change the assignments of all clause demand vertices, which are
currently assigned to xi, to another true-literal supply vertex: since we are about
to flip the variable xi and we know that the truth assignment of φ after the flip
will be also satisfying, there must be a second true-literal supply vertex for every
clause demand vertex currently assigned to xi. After all such reassignments, we
finally change the assignment of Fi from x̄i to xi.

It is easy now to see that there is a sequence of adjacent satisfying truth as-
signments of φ from s0 to st if and only if there is a sequence of adjacent feasible
configurations of Gφ from f0 to ft. This completes a proof of Theorem 1. �


2.2 Other Intractable Reconfiguration Problems

There is a wealth of reconfiguration versions of NP-complete problems which
can be shown PSPACE-complete via extensions, often quite sophisticated, of the
original NP-completeness proofs; in this subsection we only sample the realm of
possibilities.

We have already defined the clique reconfiguration problem in the Intro-
duction as an example of a general scheme whereby any optimization problem
can be transformed into a reconfiguration problem by giving a threshold (upper
bound for minimization problems, lower bound for maximization problems) for
the allowed values of the objective function of the intermediate feasible solutions;
the independent set reconfiguration and vertex cover reconfigura-

tion problems are defined similarly. In the integer programming recon-

figuration problem, we are given a 0-1 linear program seeking to maximize cx
subject to Ax ≤ b, and we consider two solutions adjacent if they only differ in
one variable.

Theorem 2. The following problems are PSPACE-complete: independent set

reconfiguration, clique reconfiguration, vertex cover reconfigu-

ration, set cover reconfiguration, integer programming reconfig-

uration.

Proof sketch. We sketch a proof for the independent set reconfiguration

problem. The reduction can be obtained by extending the well-known reduction
from the 3SAT problem to the independent set problem [12]. We construct
a graph ρ(φ) from a given 3SAT formula φ with n variables and m clauses,
as follows. For each variable x in φ, we put an edge to the graph; the two
endpoints are labeled x and x̄. Then, for each clause C in φ, we put a clique
of size |C| to the graph; each node in the clique corresponds to a literal in the
clause C. Finally, we add an edge between two nodes in different components
if and only if the nodes correspond to opposite literals. Then, any maximum
independent set in ρ(φ) contains at least n nodes; the n nodes are chosen from the
endpoints of edges corresponding to the variables; a literal is considered true if
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the corresponding endpoint is chosen. Clearly, ρ(φ) has a maximum independent
set of size k = n + m if and only if φ is satisfiable. Consider all independent
sets of size k in ρ(φ); they can be partitioned into subclasses of the form ρ(s)
corresponding to the satisfying truth assignments s of φ (the various independent
sets in the subclass ρ(s) correspond to the different possible ways to satisfy each
clause by s). It is easy to see that all independent sets in ρ(s) are connected
via intermediate independent sets of size at least k − 1. Therefore, by similar
arguments in the proof of Theorem 1, one can easily observe that telling whether
two independent sets of size k in ρ(φ) can be transformed into one another via
intermediate independent sets of size at least k − 1 is PSPACE-complete.

Similarly as the NP-completeness proofs [5, §3.1.3], the result for indepen-

dent set reconfiguration yields those for clique reconfiguration and
vertex cover reconfiguration. Then, the result for set cover recon-

figuration is immediate since it is a generalization of vertex cover recon-

figuration. integer programming reconfiguration generalizes clique

reconfiguration via the well-known integer program for clique. �


3 Reconfiguration Problems in P

Reconfiguration problems arise in relation to polynomially solvable problems as
well. For example, in the minimum spanning tree reconfiguration problem,
we are given an edge-weighted graph G, a threshold k, and two spanning trees
of G, both of weight at most k, and wish to transform one tree into another via
edge exchanges, without ever getting into a tree with weight > k. The match-

ing reconfiguration problem is defined similarly (the formal definition will
be given later). We show in this section that both problems can be solved in
polynomial time.

The result for the minimum spanning tree reconfiguration problem can
be obtained from the following more general proposition.

Proposition 1. Given a weighted matroid M and two bases B0 and Bt of M,
both of weight at most k, there always exists a sequence of |B0 \ Bt| exchanges
that transforms one into the other without ever exceeding weight k.

Proof sketch. For an unweighted matroid, this result follows trivially from the
properties of a base family [15, §39.5]. For a weighted matroid M, we outline
a proof for the case when B0 and Bt are both of maximum weight. Then, the
result follows from the fact that the set of maximum weight bases of M also form
the base family of another matroid [2, p. 287] [3, p. 130]. By generalizing this
proof appropriately, one can obtain the full result. (Due to the page limitation,
we omit the details.) �


In the matching reconfiguration problem, we are given an unweighted graph
G, a threshold k, and two matchings M0 and Mt of G, both of size at least k,
and we are asked whether there is a sequence of matchings of G, starting with M0
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and ending in Mt, and each resulting from the previous one by either addition
or deletion of an edge in G, without ever going through a matching of size less
than k − 1.

Proposition 2. Matching reconfiguration can be solved in polynomial
time.

Proof sketch. Since the adjacency relation is symmetric, we may assume without
loss of generality that |M0| ≤ |Mt|. Consider the subgraph H of G induced
by all edges in (M0 \Mt) ∪ (Mt \M0). Then, H consists of single edges, and
alternating paths and cycles with respect to M0 and Mt. The greedy algorithm
for transforming M0 into Mt is the following. Divide the components of H into
the following four categories: (1) single edges of Mt \M0; (2) alternating paths
starting with an edge of Mt \M0; (3) alternating cycles; and (4) all the rest. In
this category order, transform M0 into Mt by repeatedly adding edges of Mt\M0
and deleting edges of M0 \Mt along each component of H . Notice that, after
exchanging the edges in Categories (1) and (2), the obtained matching M has
size at least |Mt| (≥ |M0|). Therefore, one can easily observe that intermediate
matchings have size at least |M0| − 1 for exchanging edges in Category (2), and
have size at least |Mt| − 2 for exchanging edges in Categories (3) and (4).

For the case |Mt| ≥ k + 1, the greedy algorithm always transforms M0 into
Mt without ever going through a matching of size less than k − 1. For the case
|M0| = |Mt| = k, there does not always exist a desired sequence of matchings if
H has components of Category (3). Nonetheless, existence can be determined in
polynomial time, as follows. If M0 and Mt are not maximum matchings of G, we
first transform Mt into a matching M ′

t of size k+1 along an arbitrary augmenting
path with respect to Mt; then, the greedy algorithm works for transforming M0
into M ′

t. Therefore, a desired sequence always exists for this subcase. If M0 and
Mt are maximum matchings of G and H contains alternating cycles, we have
the following lemma, whose proof is omitted due to the page limitation.

Lemma 1. There is a sequence of adjacent matchings from M0 to Mt such that
all intermediate matchings have size at least k−1 if and only if every cycle in H
contains a vertex that begins an even-length alternating path in G with respect
to M0 ending at an unmatched vertex by M0.

By Lemma 1 one can easily determine whether there exists a desired sequence
for this subcase in polynomial time. �


We note in passing that the matching reconfiguration problem for edge-
weighted graphs seems quite a bit more complicated; however, we conjecture
that it also can be solved in polynomial time.

Besides minimum spanning tree reconfiguration and matching re-

configuration, it turns out that all polynomial-time solvable special cases
of satisfiability, as characterized by Schaefer [14], give rise to polynomially
solvable reconfiguration problems:

Theorem 3 ([6]). Satisfiability reconfiguration for linear, Horn, dual
Horn and 2-literal clauses are all in P.
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4 Approximation

We have seen that an optimization problem gives rise to a reconfiguration prob-
lem by bounding the objective of intermediate configurations. In turn, we can get
a natural optimization problem if we try to optimize the worst objective among
all configurations in the reconfiguration path. For example, in the problem that
we call the maxmin clique reconfiguration problem, we are given a graph
and two cliques C0 and Ct, and we are asked to transform C0 into Ct by a
sequence of additions and removals of nodes so that the minimum size of any
clique in the sequence is as large as possible.

Theorem 4. Maxmin clique reconfiguration cannot be approximated
within any constant factor unless P = NP.

Proof. We give a reduction in an approximation-preserving manner from the
clique problem to this problem. For a given graph G with n nodes, we construct
a new graph G′ with 3n nodes as a corresponding instance of maxmin clique

reconfiguration: a set of n nodes is connected as G, while two new sets of n
nodes are connected each as a clique (these two cliques of G′ are called C0 and
Ct); finally, there are edges in G′ between each new node and each node in G.

Consider any sequence of cliques of G′, each resulting from the previous one
by insertion or deletion of a node, starting from C0 and ending in Ct. We claim
that one of them will be a clique of G — this follows directly from the ab-
sence of any edges from C0 to Ct. Conversely, for any clique C of G, there
exists a sequence from C0 to Ct via C (add the nodes of C to the clique C0,
then remove those of C0, then add those of Ct). Therefore, the minimum clique
size in the sequence is the size of C, and hence solving (or approximating) this
instance of maxmin clique reconfiguration is the same as solving (respec-
tively, approximating) the clique problem for G. Since it is known that clique

cannot be approximated within any constant factor unless P = NP [7], the result
follows. �


A similar argument establishes the following:

Theorem 5. Maxmin maxsat reconfiguration cannot be approximated
within a factor better than 15

16 unless P = NP.

Proof. We reduce in an approximation-preserving manner the maxsat problem
to this problem. Suppose that we are given an instance φ of maxsat with n
variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. We construct a new in-
stance φ′ in which each clause Cj , 1 ≤ j ≤ m, is replaced by (Cj ∨ y ∨ z) where
y and z are new variables, and the additional clause (ȳ∨ z̄) with weight m. Note
that the truth assignments s0 : z = 1, y = 0, x1 = x2 = · · · = xn = 1 and
st : z = 0, y = 1, x1 = x2 = · · · = xn = 0 are both satisfying all 2m clauses.

Consider now an optimal path in the hypercube between s0 and st. Since at
s0 : z = 1, y = 0 and at st : z = 0, y = 1, there must exist a truth assignment on
this path such that y = z. Since the clause (ȳ ∨ z̄) has weight m and the path
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is assumed optimal, it must be that y = z = 0. Thus, the remaining variables
must spell an optimum satisfying truth assignment of the original formula φ.
Hence, from an optimum path for the corresponding instance of maxmin maxsat

reconfiguration, we can obtain an optimum truth assignment for the original
instance of maxsat. Similarly, from an α-approximation for maxmin maxsat

reconfiguration, it is easy to see that we get a (2α − 1)-approximation of
the maxsat instance. Since it is known that maxsat cannot be approximated
within a factor better than 7

8 unless P = NP [8], the result follows. �

By a similar maneuver, it can be shown that the minmax set cover reconfig-

uration problem cannot be approximated within a factor better than o(log n)
unless NP is contained in DTIME

(
nO(log log n)

)
[4].

Returning to the power supply problem, there is a natural optimization
version of the problem, in which the constraint that the total demand of all
demand vertices in each tree T be within the supply of the supply vertex in T is
replaced by a “soft” criterion: we allow that the total demand in T exceeds the
supply in T , but wish to minimize the sum of the “deficient power” of all supply
vertices in the graph.

We now define the minmax power supply reconfiguration problem. For
a configuration f of a bipartite graph G = (U, V,E) and a supply vertex u ∈ U ,
the deficient power d(f, u) of u on f is defined as follows:

d(f, u) =
∑{

dem(v) | v ∈ V such that f(v) = u
}
− sup(u).

If f is infeasible, then there is at least one supply vertex u such that d(f, u) > 0.
On the other hand, if f is feasible, then d(f, u) ≤ 0 for all supply vertices
u ∈ U ; in fact, a nonpositive deficient power d(f, u) represents the marginal
power of u on f . The cost c(f) of a configuration f is defined to be c(f) =∑

u∈U |d(f, u)|. Clearly, c(f) =
∑

u∈U sup(u) −
∑

v∈V dem(v) for every feasible
configuration f of G. In the problem that we call the minmax power supply

reconfiguration problem, we are given a bipartite graph G = (U, V,E) and
two feasible configurations f0 and ft of G, and we are asked to transform f0 into
ft by a sequence of reassignments of single demand vertices so that the maximum
cost of any configuration in the sequence is as small as possible. It is easy to
see that a sequence f0, f1, . . . , ft which consists of only feasible configurations is
optimum, and the optimum value is

∑
u∈U sup(u)−

∑
v∈V dem(v).

One can observe that the minmax power supply reconfiguration prob-
lem is strongly NP-hard (by a reduction from the 3-partition problem [5], for
example). However, the problem can be solved in linear time for the following
special case. Suppose in the remainder of this section that we are given a bipar-
tite graph G = (U, V,E) having exactly two supply vertices. For a configuration
f of G, let W (f) = {v ∈ V | f(v) 
= ft(v)}, that is, W (f) is the set of de-
mand vertices which are assigned to “wrong” supply vertices on f . Note that all
(demand) vertices in W (f) are adjacent to both the two supply vertices. For a
given initial configuration f0 of G, let v∗ be a demand vertex in W (f0) having
the maximum demand, that is, dem(v∗) = max{dem(v) | v ∈W (f0)}. Then, we
have the following lemma.
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Lemma 2. If c(f0) ≥ 2 · dem(v∗), then the optimum sequence for minmax

power supply reconfiguration consists of only feasible configurations, and
it can be found in linear time.

Proof. Suppose without loss of generality that W (f0) 
= ∅. If all demand ver-
tices in W (f0) are assigned to the same supply vertex, then we just change the
assignments of all demand vertices in W (f0) from the current supply vertex to
the other. Since both f0 and ft are feasible, all intermediate configurations are
also feasible. Therefore, we assume in the following that each of the two supply
vertices has at least one demand vertex in W (f0).

Since f0 is feasible, the cost c(f0) denotes the sum of marginal powers of
the two supply vertices. Moreover, since the sum is at least 2 · dem(v∗), one of
the two supply vertices has marginal power of at least dem(v∗). Therefore, we
can change the assignment of at least one demand vertex v ∈ W (f0) from the
“wrong” supply vertex to the “correct” one, since dem(v) ≤ dem(v∗). Clearly,
the resulting configuration f1 is also feasible, and satisfies c(f1) ≥ 2 · dem(v∗).
By repeatedly executing such a reassignment, we can obtain a desired sequence
f0, f1, . . . , ft which consists of only feasible configurations. Therefore, the se-
quence is an optimum solution. The length of the sequence is |W (f0)| (≤ |V |)
since each demand vertex in W (f0) moves exactly once and any of the other
demand vertices does not move in the sequence. We can thus find an optimum
solution in linear time. �


Theorem 6. There is a linear-time 2-approximation algorithm for minmax

power supply reconfiguration having exactly two supply vertices.

Proof. Let OPT be the optimum value for an instance of minmax power sup-

ply reconfiguration. Since we have to change the assignment of the demand
vertex v∗ for obtaining the target configuration ft, we have OPT ≥ dem(v∗).

By Lemma 2 it suffices to consider the case c(f0) < 2 · dem(v∗). In this
case, consider a slightly modified instance in which the supplies of the two sup-
ply vertices are increased so that the total supply is equal to 2 · dem(v∗). In
the modified instance, both the configurations f0 and ft remain feasible and
c(f0) = 2 · dem(v∗). Therefore, by Lemma 2 we can find in linear time an op-
timum sequence which consists of only feasible configurations for the modified
instance; the optimum value is thus 2 ·dem(v∗). Note that some configurations in
the sequence may be infeasible for the original instance. We take the sequence as
our approximation solution for the original instance, and hence our approximate
value A is A = 2 · dem(v∗) ≤ 2 ·OPT. �


5 Open Problems

There are many open problems raised by this work, and we mention some of
these below:
– Do all problems in P give rise, in a natural way, to polynomially solvable

reconfiguration problems? We conjecture that the answer is negative, but we
have yet to identify a counterexample (even a conjectured one).
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– Is the traveling salesman reconfiguration problem (where two tours
are adjacent if they differ in two edges) PSPACE-complete?

– Are there better approximation algorithms for the minmax power supply

reconfiguration problem? Lower bounds?
– Are the problems in Section 4 PSPACE-complete to approximate (not just

NP-hard)?
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Abstract. We introduce multiobjective disk cover problems and study
their approximability. We construct a polynomial-time approximation
scheme (PTAS) for the multiobjective problem where k types of points
(customers) in the plane have to be covered by disks (base stations)
such that the number of disks is minimized and for each type of points,
the number of covered points is maximized. Our approximation scheme
can be extended so that it works with the following additional features:
interferences, different services for different types of customers, different
shapes of supply areas, weighted customers, individual costs for base
stations, and payoff for the quality of the obtained service.

Furthermore, we show that it is crucial to solve this problem in a
multiobjective way, where all objectives are optimized at the same time.
The constrained approach (i.e., the restriction of a multiobjective prob-
lem to a single objective) often used for such problems can significantly
degrade their approximability. We can show non-approximability results
for several single-objective restrictions of multiobjective disk cover prob-
lems. For example, if there are 2 types of customers, then maximizing
the supplied customers of one type is not even approximable within a
constant factor, unless P = NP.

1 Introduction

Geometric cover problems have received much attention in recent years, mostly
due to their applicability to wireless networks. Typically, a service provider aims
to deliver various kinds of services to customers and therefore has to choose base
station locations such that customer locations can be covered. Various optimiza-
tion problems arise in this context in a natural way. For example, for a given
set P of customer locations and a set D of possible base station locations in the
Euclidean plane, the Unit Disk Cover Problem tries to find a minimal subset of
D such that all customers in P are covered by unit disks whose centers belong to
D (hence assuming equivalent base stations and ignoring obstacles to the signal
propagation) [10,5,19]. In another version of the problem one tries to maximize
the number of supplied customers with a given budget of base stations, e.g. [17].
So far these problems have been studied only in terms of single-objective opti-
mization where either disk locations or customer supply have been optimized.

In contrast, here we are interested in the complete trade-offs when both ob-
jectives are considered at once. These trade-offs give not only a better insight in
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the nature of the problem, but also allow a human decision-maker to choose an
appropriate solution according to aspects that are perhaps not quantifiable or
that differ from instance to instance.

This paper introduces multiobjective disk cover problems and presents the
first study of their approximability. We want to minimize the number of base
stations and simultaneously maximize the number of supplied customer loca-
tions. More than that, we allow different types of customers such that for each
type, the number of supplied customers has to be maximized. For example, for
k = 2 types of customers this captures the scenario where a service provider
wants to optimize a wireless network with customers having subscribed to two
different services. More generally, an instance of the Disc Cover Problem with
k types of customers (k-DC) has k sets P1, . . . , Pk of customer locations, a set
of potential base station locations D and a disk radius r describing the range of
action of a base station. We seek a valid subset of base station locations (i.e., re-
specting a minimum-distance constraint) such that the number of base stations
is minimized, and for each type of customers, the numbers of covered customers
is maximized. In practice, several additional aspects can be taken into account
to obtain more realistic models. For instance, if a customer receives signals from
two base stations, then interferences may have a negative effect on the quality
of service. So actually, here one wants to maximize the number of points that
are covered by exactly one disk. To capture the aspect of interference, we also
investigate exact versions of k-DC, i.e., where the numbers of uniquely covered
customers of the different types are considered (k-EDC).

Trade-offs in multiobjective optimization are captured by the notion of the
so-called Pareto curve which is the set of all solutions whose vector of objective
values is not dominated by any other solution (for an introduction see, e.g., [13]).
In most interesting cases however, Pareto curves are computationally hard in the
sense that we do not know polynomial-time algorithms computing them. The
reason for this is that the Pareto curve may have exponential size (which is not
the case in our setting), or because it comprises optimal solutions of NP-hard
single-objective optimization problems (which is the case here). A reasonable
approach to avoid these difficulties is to approximate the set of non-dominated
solutions using the concept of the ε-approximate Pareto curve. Informally, for
every solution S of the Pareto curve there is a solution S′ in the ε-approximate
Pareto curve that is within a factor (1 + ε) of S, or better, in all objectives. The
question whether there exist fast approximation schemes for Pareto curves has
been addressed for several multiobjective optimization problems [21,22,20]. The
systematic study of the theory of multiobjective approximation was initiated by
Papadimitriou and Yannakakis [20], see also [23,11].

Our contribution. We introduce multiobjective disk cover problems and study
their approximability. We construct polynomial-time approximation schemes for
the multiobjective problems k-DC and k-EDC where k ≥ 1. So for each of
the problems there exists an algorithm, which, given a problem instance I and
some ε > 0, outputs an ε-approximate Pareto curve in time polynomial in |I|



42 C. Glaßer, C. Reitwießner, and H. Schmitz

(Theorems 1 and 2). On the methodological side we extend the shifting strategy
introduced by Hochbaum and Maass [18] to the multiobjective case.

We also discuss the possibility to extend our algorithms so that they work
with the following features: different services for different types of customers,
different shapes of supply areas, weighted customers, individual costs for base
stations, and payoff for the quality of the obtained service. Although we mention
only problems where the number of covered points of different types have to be
maximized, one can also think of an application where some types of points have
to be maximized, while others are to be minimized. Only minor modifications of
our algorithms are needed to take this into account as well.

Our paper also shows that we should be careful when looking for an appro-
priate model for a given practical problem. The choice of the right model can be
crucial for a successful algorithmic solution. We see this at two places:

1. Our models contain a minimum-distance constraint for disk locations. On
one hand, this constraint plays an important role in the construction of
the PTAS. Without this assumption, the problem becomes more difficult
such that the shifting strategy does not yield a PTAS. On the other hand,
this minimum-distance constraint is actually present in practical settings: It
usually makes no sense to build base stations, fire departments, drugstores,
etc. arbitrarily close to each other, and a small constant specifying their
minimum distance can always be identified. So we may add the constraint
to our model and exploit it to achieve better approximation algorithms. This
shows that a too general choice of the model can complicate the solution of
the underlying practical problem.

2. The approximability of a multiobjective problem does not necessarily imply
that the restriction to a single objective is approximable. The reason for this
apparent contradiction is that an optimization algorithm can exploit trade-
offs between the single objectives if it optimizes all objectives at the same
time. We show non-approximability results for several restrictions of k-DC
and k-EDC (Theorems 4 and 5). For example, for k ≥ 2, no restriction of
k-EDC to a single criterion is approximable within a constant factor (unless
P = NP), while the general (multiobjective) version of k-EDC admits even
a PTAS. This shows that the frequently used constrained approach (i.e., the
restriction of a multiobjective problem to a single objective) can considerably
degrade the approximability. In other words, also a too restricted choice of
the model can complicate the solution of the underlying problem.

Related work. The single-objective disk cover problem was initially examined
in the continuous version (i.e., no given disk centers) by Hochbaum and Maass
[18] who construct a PTAS for this problem. The version with given disk centers
has been studied by several authors [5,19,7,4], but in general only constant-
factor approximation results are known (which shows again the influence of the
minimum-distance constraint). Calinescu, Mandoiu, Wan and Zelikovsky [5] in-
vestigated a variant of the disk cover problem where the number of disks needed
to cover all points is to be minimized. Some of their results were improved by
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Narayanappa and Vojtechovsky [19]. Very recently, the Unique Cover Problem
on unit disks (the number of points covered by exactly one disk have to be max-
imized) and its approximability has been studied by Erlebach and van Leeuwen
[15]. Several other variations of the disk cover problem where a solution includes
specifying radii for the individual disks were analyzed in [8,14,1]. Cannon and
Cowen [6] studied the single-objective problem of minimizing the number of
disks where one type of customers must be covered while the other one has to be
avoided. Various partial covering problems were investigated by Gandhi, Kuller
and Srinivasan [16]. These problems are concerned with covering a given amount
of elements while minimizing the cost of such a covering. In contrast to most of
the afore mentioned papers, in [16] the multiobjective version of some special
covering problem on graphs is also examined.

2 Definitions

We recall some standard notations, see e.g., [20,23]. A multiobjective optimization
problem Π has a set of valid instances I, and for every instance I ∈ I there
is a set S(I) of feasible and polynomially length-bounded solutions for I. As
usual, we assume that I is decidable in polynomial time, and that there is
a polynomial-time algorithm that decides on input (I, S) whether S ∈ S(I).
Moreover, we have K ≥ 1 polynomial-time computable objective functions fi

that map every I ∈ I and S ∈ S(I) to some value fi(I, S) ∈ N. Note that
every optimization problem with objective functions that have values in Q can
be transformed into an equivalent problem satisfying the previous definition.
A vector goal ∈ {min, max}K specifies whether the i-th objective has to be
minimized or maximized, respectively. So for an instance I we can evaluate
every S ∈ S(I) to the K-vector f(I, S) = (f1(I, S), . . . , fK(I, S)) of values with
respect to the given objective functions.

We say a solution S ∈ S(I) dominates a solution S′ ∈ S(I) if for all 1 ≤ i ≤ K
it holds that fi(I, S) ≤ fi(I, S′) if fi is to be minimized (and fi(I, S) ≥ fi(I, S′)
if fi is to be maximized), with at least one strict inequality. Denote by P sol(I) ⊆
S(I) the Pareto-solution set for I, i.e., the set of all non-dominated solutions for
I. The Pareto-value set for I is P val(I) = {f(I, S) | S ∈ P sol(I)}.

Let ε = (ε1, . . . , εK) be a K-vector of numbers εi ≥ 0. A solution S ∈ S(I)
ε-covers a solution S′ ∈ S(I) if for all 1 ≤ i ≤ K it holds that fi(I, S) ≤
(1 + εi)fi(I, S′) if fi is to be minimized (and (1 + εi)fi(I, S) ≥ fi(I, S′) if fi is
to be maximized).

A set P sol
ε (I) ⊆ S(I) is an ε-approximate Pareto-solution set for I if for all

S′ ∈ P sol(I) there is some S ∈ P sol
ε (I) that ε-covers S′. (So an ε-approximate

Pareto-solution set can contain dominated points.) We call P val
ε (I) ⊆ NK an

ε-approximate Pareto-value set for I if P val
ε (I) = {f(I, S) | S ∈ P sol

ε (I)} for
some set P sol

ε (I). Note that for fixed ε there may be more than one ε-approximate
Pareto-solution set for I. Moreover, if S(I) 
= ∅ then P sol(I) 
= ∅ and P sol

ε (I) 
= ∅.
If ε = (δ, . . . , δ) for some δ > 0 we simply write P sol

δ (I) and the like.
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A multiobjective optimization problem Π is ε-approximable in polynomial
time if there is a polynomial-time algorithm, which on input I ∈ I outputs
an ε-approximate Pareto-solution set P sol

ε (I). Problem Π has a polynomial-time
approximation scheme (PTAS) if there is an algorithm, which, given I ∈ I and
δ > 0, outputs an δ-approximate Pareto-solution set P sol

δ (I) in time polynomial
in |I|. APX is the class of all single-objective optimization problems that are
δ-approximable for some δ > 0. For some vector x denote by |x| its Euclidean
norm. If S is a finite set, then |S| gives the cardinality of S. Both cases will be
distinguishable from the context without confusion. Moreover, we use [a, b] as
an abbreviation for {a, a + 1, . . . , b}.

Next we define (k + 1)-objective disk-cover problems. As is standard for such
problems, we always want to minimize the number of disks which is the first
objective in all of the following problems. The parameter k ≥ 1 denotes the
number of different types of points we want to cover. Moreover, � ∈ (0, 2] is
a fixed rational constant that determines the minimal distance � · r between
different disks of radius r. This minimum-distance constraint plays an important
role in our model, since it is crucial for the polynomial running time of the
approximation algorithm we construct in section 3. With our method we cannot
well approximate instances that essentially depend on coverings where the disks
are very close to each other. This insight has an important consequences for the
choice of an appropriate model: If such degenerated instances can be excluded
by practical reasons (e.g., because it makes no sense to build base stations, fire
departments, drugstores, etc. arbitrarily close to each other), then we should
add the minimum-distance constraint to our model and exploit it to achieve a
better approximability.

k-Objective Disk Cover (k-DC�)
Instance: k finite sets of points P1, . . . , Pk ⊆ Z× Z, disk radius r ∈ N, finite set

of disk positions D ⊆ Z× Z
Solution: a selection S ⊆ D such that for all different x, y ∈ S, |x− y| ≥ � · r
Goals: (min|S|, max|C1|, . . . , max|Ck|) where Ci ={x∈Pi

∣∣∃y∈S, |x− y|≤ r}

k-Objective Exact Disk Cover (k-EDC�)
Instance: k finite sets of points P1, . . . , Pk ⊆ Z× Z, disk radius r ∈ N, finite set

of disk positions D ⊆ Z× Z
Solution: a selection S ⊆ D such that for all different x, y ∈ S, |x− y| ≥ � · r
Goals: (min|S|, max|C1|, . . . , max|Ck|) whereCi ={x∈Pi

∣∣ ∃!y∈S, |x− y|≤ r}

The value of � will be always clear from the context. So for simplicity we write
k-DC and k-EDC instead of k-DC� and k-EDC�.

We also discuss single-objective versions of these problems. Following Di-
akonikolas and Yannakakis [11] we define the restricted versions of multiobjective
problems (also known as the ε-constraint problem [13]). Let Π be a K-objective
optimization problem with objectives (f1, . . . , fK) and goals (g1, . . . , gK). The
restriction to the i-th objective is the following single-objective problem.
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Restriction of Π to the i-th objective (Restrictedi-Π)
Instance: an instance I of Π and numbers B1, . . . , Bi−1, Bi+1, . . . , BK ∈ N
Solution: a solution S for I such that for j ∈ [1, K]− {i} it holds that

(gj = max ⇒ fj(I, S) ≥ Bj) and (gj = min ⇒ fj(I, S) ≤ Bj)
Goal: max fi(I, S) if gi = max, min fi(I, S) otherwise

3 PTAS for Multiobjective Disk Cover

In this section we construct polynomial-time approximation schemes for the
multiobjective problems k-DC where k ≥ 1. To keep the exposition simple, we
concentrate on the 3-objective problem 2-DC and explain a polynomial-time al-
gorithm that computes ε-approximate Pareto-solution sets for this problem. Our
algorithm extends the shifting strategy introduced by Hochbaum and Maass [18]
to the multiobjective case. For this we need a combinatorial argument showing
that this strategy works for multiple objectives. Moreover, we use dynamic pro-
gramming for efficiently combining the solutions of sub-problems. At the end of
the section we discuss the possibility to extend our algorithms so that they work
with the following additional features: interferences, different services for differ-
ent types of customers, different shapes of supply areas, weighted customers,
individual costs for base stations, and payoff for the quality of the obtained
service. In particular, an appropriate modification provides a PTAS for k-EDC.

We start with the description of the algorithm. Fix some shifting parameter
l ∈ N \ {0}. The larger l is, the better the approximation will be. The input to
the algorithm are two finite sets of points B, G ⊆ Z×Z (blue and green points),
a disk radius r ∈ N and a finite set of disk positions D ⊆ Z × Z. For finite
P, S ⊆ Z × Z, where S is a valid solution (it respects the minimum distance
constraint), define c(P, S) df= |{p ∈ P | ∃x ∈ S, |p − x| ≤ r}| as the number of
points from P covered by solution S.

In the algorithm, some functions p : N×N → P (D)×N with different indices
will be defined. For a given number of disks and blue points to cover, such
a function provides a partial solution for this sub-problem together with the
number of green points covered in this solution. For any of these functions we
address their components as (psol(k, b), pval(k, b)) df= p(k, b) for k, b ∈ N.
2-DC-APPROX(B,G,r,D):

1. let {a1, a2, . . . , am} df={a ∈ rl · (Z× Z) | (B ∪ G ∪ D) ∩ (a + [0, 2rl]2) 
= ∅}
2. for every s ∈ r · [0, l)2 do

3. for every i ∈ [1, m] do

4. Di
df= D ∩ (s + ai + [r, rl− r)2)

5. Bi
df= B ∩ (s + ai + [2r, rl− 2r)2)

6. Gi
df= G ∩ (s + ai + [2r, rl− 2r)2)

7. for every k ∈ [0, |Di|] and every b ∈ [0, |Bi|] do

8. Vk,b
df={S ⊆ Di | S is valid solution, |S| ≤ k, c(Bi, S) ≥ b}

9. if Vk,b = ∅ then ps,i(k, b)
df=(⊥,⊥)

10. else ps,i(k, b)
df=(S, g) for S ∈ Vk,b such that

g = c(Gi, S) = max{c(Gi, S′) | S′ ∈ Vk,b}



46 C. Glaßer, C. Reitwießner, and H. Schmitz

11. done

12. done

13. for every k ∈ [0, |D|] and every b ∈ [0, |B|] do

14. by dynamic programming choose k1, . . . , km, b1, . . . , bm ∈ N

such that
m∑

i=1

pvals,i (ki, bi) is maximal, ∀i∈[1,m]p
val
s,i (ki, bi) 
=⊥,

m∑
i=1

ki ≤ k, and
m∑

i=1

bi ≥ b

15. if this succeeded,

then let ps(k, b)
df=(

m⋃
i=1

psols,i (ki, bi),
m∑

i=1

pvals,i (ki, bi))

16. done

17. done

18. P df={psols (k, b) | s ∈ r · [0, l)2, k, b ∈ N}
19. remove all dominated solutions from P

20. return P

Explanation of the algorithm. First, we want to give an overview of the
algorithm. The plane is divided into a grid of squares of side length rl. In each
of these squares, the problem is solved independently (i.e., a small Pareto curve
is calculated). By not considering the points at the border of width r of the
squares, we obtain that an optimal solution needs at least as much disks as our
calculated solution to cover the points in the square. Then, these solutions are
combined. This is repeated for l2 different positions (shifts) of the grid and the
best solution is chosen.

The algorithm starts by partitioning the plane into squares of side length rl.
Of course, there are infinitely many such squares, but many of them are empty
and only some are of interest. The points a1, a2, . . . , am are the lower-left corner
points of squares we need to consider. Because we will shift these squares later,
we also have to include squares that contain a point for some, but possibly not
all shifts, and thus we look for points in a square of side length 2rl. These points
ai are all points such that there is at least one blue point, green point or one
disk position in the square of side length 2rl which has ai as its lower-left corner
point.

Next, the algorithm loops over all l2 (l in each dimension) shifts s of hop size
r (the radius of a disk). In line 3, we loop over every index of the rl-grid points
ai which were found worth considering at the beginning.

In lines 4 to 6, we prepare a spatially restricted sub-problem of the general
problem. The expression [0, rl)2 denotes the set of points in a square of side
length rl. Modified to [r, rl − r)2 it denotes the set of points in such a square
where a border of width r is removed from every edge. We only retain those
points Di from the set of disk positions D which lie in the restricted square that
is positioned at the grid point ai and shifted by s. In this way, disk positions from
different sub-problems are guaranteed to have a minimal distance of �r (recall
that � ∈ (0, 2]). We also restrict the blue and green points, but here we use a
larger border of width 2r. The points on the 2r-border are completely ignored
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in every sub-problem. By this method, as we will argue later, we get an optimal
solution for each square restricted in this way. We can combine the solutions of
these sub-problems to obtain a global solution.

We now calculate the whole Pareto curve of this sub-problem starting in line 7.
To this end, we loop over every possible number of disks k and covered blue points
b and calculate the solution S ⊆ Di that maximizes the number of covered green
points g using at most k disks in positions from Di such that at least b blue
points are also covered. This can be done by exhaustive search in polynomial
time, as we will explain next. We first argue that there are only polynomially
many valid solutions |Vk,b|. Because all disk positions in a valid solution S ∈ Vk,b

must have a mutual distance of at least �r, virtual circles of diameter �r around
these positions can touch each other but must not overlap. The area covered
by these virtual circles is |S|

(
�r
2

)2
π. Since �r

2 ≤ r and S ⊆ Di, these virtual
circles are all located in a square of side length rl, and we get |S|

(
�r
2

)2
π ≤ (rl)2.

Solved for the number of disks we obtain |S| ≤ 4l2

π�2
df= c, which is a constant. Since

there are only polynomially many ways to choose at most c elements from the
polynomially sized set Di, we see that |Vk,b| is polynomial in the input size. Since
c can be calculated effectively, Vk,b can be searched exhaustively for a solution
that maximizes the number of covered green points in polynomial time. If such
a solution does not exist (because Vk,b = ∅) then both components of ps,i(k, b)
are set to a special undefined value ⊥, which we will need later.

After the i-loop, we have small Pareto curves ps,i for each sub-problem given
by shift s and point ai. In the loop starting in line 13, we combine them into
a larger Pareto curve ps for the current shift s. To this end, we try to find a
solution that maximizes the number of covered green points for a given number
of disks k and blue points b using the solutions ps,i in line 14. We distribute the
k disks and b blue points over all squares in any possible way. The number of
disks available to square i is called ki and the number of blue points that must
be covered in square i is called bi. The distribution that maximizes the total
number of covered green points is chosen and the combination of the individual
solutions ps,i(ki, bi) for this distribution is stored in ps(k, b).

In general, there are exponentially many ways to distribute the numbers k and
b, but the search for an optimal distribution can be done efficiently by dynamic
programming, as can be seen from the following algorithm. We need to consider
the iterations of the k, b-loop starting in line 15 of the 2-DC-APPROX-algorithm
all at once, so the following code can be used as a replacement of the lines 13–16
of the 2-DC-APPROX-algorithm. The return value of CombinePartialSolutions
is the function ps.

CombinePartialSolutions(ps,1, ps,2, . . . , ps,m):
1. p′1

df= ps,1
2. for t := 2 to m do
3. for every k ∈ [0, |D|] and every b ∈ [0, |B|] do
4. find maximal p′valt (k, b) df= p′valt−1(k̄1, b̄1) + pvals,t (k̄2, b̄2) for

k̄1, b̄1, k̄2, b̄2 ∈ N such that k̄1 + k̄2 ≤ k, b̄1 + b̄2 ≥ b,
p′valt−1(k̄1, b̄1) 
= ⊥ and pvals,t (k̄2, b̄2)) 
= ⊥
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5. if this is not possible then let p′t(k, b)
df=⊥

6. else let p′solt (k, b) df= p′solt−1(k̄1, b̄1) ∪ psols,t (k̄2, b̄2)
7. done
8. done
9. return p′m

In every iteration of the t-loop of CombinePartialSolutions, another square
is incorporated into the Pareto curve, each time solving some kind of knapsack
problem. Since there are only polynomially many combinations of k̄1, b̄1, k̄2, b̄2
such that the constraints in line 4 are met, p′t can be computed in polynomial
time. The correctness of this dynamic programming method follows by induction.
Since m is polynomial in the input length, the computation of CombinePartial-
Solutions and thus also the computation of lines 13–16 in 2-DC-APPROX can
be done in polynomial time.

Back at the 2-DC-APPROX-algorithm, we have an approximate Pareto curve
ps for every of the shift values after the end of the second loop over s. In Line 18,
we simply put all the previously obtained solutions psol

s (k, b) for all s, k, b in one
set P , remove the dominated solutions in line 19 and return that set in line 20.

Correctness of the algorithm. We now argue for the correctness of the algo-
rithm by showing that for fixed l it runs in polynomial time and that the relative
error becomes arbitrarily small if l is increased.

Lemma 1. For every fixed l ≥ 5, the algorithm 2-DC-APPROX works in poly-
nomial time.

We argue that by choosing l large enough, the algorithm 2-DC-APPROX has
an arbitrarily small relative error.

Lemma 2. Fix an l ≥ 5 and let ε
df=(0, 16

l , 16
l ). On input of a 2-DC instance I =

(B, G, r, D) the algorithm 2-DC-APPROX computes an ε-approximate Pareto-
solution set P for I.

Theorem 1. Fix k ≥ 1 and � ∈ (0, 2]. For all δ > 0, k-DC is (0, δ, . . . , δ)-
approximable in polynomial time (and hence has a PTAS).

The multiobjective shifting strategy used in 2-DC-APPROX is a very general
method that can be applied to several other multiobjective covering problems.
It is easy to see that the algorithm 2-DC-APPROX can be adapted such that it
takes interferences into account.

Theorem 2. Fix k ≥ 1 and � ∈ (0, 2]. For all δ > 0, k-EDC is (0, δ, . . . , δ)-
approximable in polynomial time (and hence has a PTAS).

Besides interferences, also other parameters can be added to the problem. For
instance it might be the case that the single services have different operating
distances. This brings us to the version of 2-DC where we have to place simul-
taneously two disks of different radii on the selected locations (one disk for each
type of customers). 2-DC-APPROX can be easily adapted such that it gives a
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PTAS also for this variant of the problem. In general, we can allow even more
complicated rules that determine whether or not a customer is supplied by a
base station. Here the different services can have supply areas of very general
shape as long as

– we can efficiently test whether a point belongs to such an area and
– the minimum distance constraint is satisfied (i.e., the distance of two base

stations is at least � · r where 2r is the maximal diameter of the area and �
is a fixed constant).

Further generalization could handle weights for the customers, individual costs
for the base stations, and payoffs that depend on the quality of the service
obtained by the single customers. For these scenarios, appropriate versions of
2-DC-APPROX provide polynomial-time approximation schemes.

4 Non-approximability of the Restricted Version

The approximability of a multiobjective problem does not necessarily imply that
the single-objective restrictions of this problem are approximable. The reason for
this apparent contradiction is that all solutions for a restricted version of the
problem must strictly satisfy the additional constraints on the values of the
objectives that are not optimized any more (i.e., the constraints fj(I, S) ≥ Bj

or fj(I, S) ≤ Bj in the definition of the restricted problem). An approximation
algorithm has more freedom if it can optimize all objectives at the same time,
since here the algorithm can exploit trade-offs between the single objectives. In
fact, the problems k-DC and k-EDC are examples where such trade-offs yield
a significantly better approximability. In this section we will show that several
restrictions of k-DC and k-EDC are not approximable within a constant factor,
unless P = NP. For instance, for k ≥ 2, no restriction of k-EDC is in APX (unless
P = NP), while the general (multiobjective) version of k-EDC even admits a
PTAS. Angel, Bampis, and Kononov [2,3], Cheng, Janiak, and Kovalyov [9], and
Dongarra et al. [12] discovered similar phenomena for multiobjective scheduling
problems.

For our results in this section we need the NP-completeness of the following
versions of geometric disk cover problems.

Disk Cover
DC = {(P, D, k)

∣∣P, D ⊆ Z × Z are finite sets, k ∈ N, and there exists an
S ⊆ D such that |S| ≤ k and ∀x ∈ P ∃y ∈ S, |x− y| ≤ 2}

Exact Disk Cover
EDC = {(P, D)

∣∣P, D ⊆ Z×Z are finite sets and there exists an S ⊆ D such
that ∀x ∈ P ∃!y ∈ S, |x− y| ≤ 2}

Note that there is a minimum-distance constraint for disk locations implicitly
given in these definitions since we consider points from Z×Z and a fixed radius
r = 2.
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Theorem 3. DC and EDC are NP-complete.

As we have seen in Section 3, the minimum-distance constraint helps us to find
a PTAS for k-DC. Nevertheless, the problem remains difficult. Although the
Pareto curve is only polynomial in size, we cannot hope to discover an algorithm
that computes it exactly: For � ≤ 1

2 , an algorithm that exactly determines the
Pareto curve for k-DC� in polynomial time would also solve the problem DC in
polynomial time. Since DC is NP-complete, this would imply P = NP.

By Theorem 2, the multiobjective problem k-EDC has good approximation
properties (a PTAS). Now we will see (Theorem 4) that in contrast, the restricted
versions of k-EDC vary with respect to their approximation behavior. While
1-EDC restricted to the first component is not approximable (i.e., not in APX
unless P = NP), the restriction to the second component has good approximation
properties (a PTAS). Even more surprisingly, for k ≥ 2 the Pareto curve of k-
EDC is approximable, but no restriction of k-EDC is approximable (i.e., not in
APX unless P = NP). Theorem 5 states similar results for k-DC. For instance,
while the Pareto curve of 2-EDC is approximable, the restriction of 2-EDC to
the second component is not (i.e., not in APX unless P = NP).

Theorem 4. Fix some � ∈ (0, 1
2 ].

1. If P 
= NP, then for all k ≥ 2 and all i ∈ [1, k +1], Restrictedi-k-EDC is not
in APX.

2. If P 
= NP, then Restricted1-1-EDC is not in APX.
3. Restricted2-1-EDC admits a PTAS.

Theorem 5. Fix some � ∈ (0, 1
2 ].

1. Restricted2-1-DC has a PTAS.
2. If P 
= NP, then for all k ≥ 2 and all i ∈ [2, k + 1], Restrictedi-k-DC is not

in APX.
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Abstract. We present a simple way of designing deterministic algorithms
for problems in the data stream model via lossless expander graphs. We
illustrate this by considering two problems, namely, k-sparsity testing and
estimating frequency of items.

1 Introduction

We say that an n-dimensional vector f from Zn is k-sparse if it has at most k
non-zero entries. The problem is to test whether f is k-sparse or no after it has
been subject to a sequence of coordinate wise updates in arbitrary order, that
is, f is the frequency vector of a data stream. More formally, a data stream over
the domain [n] = {1, 2, . . . , n} is a sequence σ of records of the form (index, i, v),
where, index is the position of the record in the sequence, i ∈ [n] and v ∈ Z.
Associated with each data stream σ is an n-dimensional frequency vector f(σ),
such that fi(σ) is the frequency of i, or the cumulative sum of the updates to
fi(σ), made by the sequence σ. That is,

fi(σ) =
∑

(index,i,v)∈σ

v, i ∈ [n] .

The k-sparsity testing problem is as follows: design a data structure, referred
to as a k-sparsity tester, that (a) processes any stream σ of updates over the
domain [n], and, (b) provides a test to check whether f(σ) is k-sparse, that is,
whether, f has at most k non-zero entries. The problem is to obtain solutions
whose space requirement is o(n).

We first review work on the following well-studied and closely related problem,
namely, k-sparse vector reconstruction problem, where it is required to design
a structure that can process a data stream σ and can retrieve the frequency
vector f(σ) provided f(σ) is k-sparse. However, the structure is not required to
actually test whether f(σ) is k-sparse or not and may present an incorrect answer
if f(σ) is not k-sparse. Let m denote maxn

i=1|fi|. It is easy to show [15] that the
k-sparse reconstruction problem requires Ω(k log(mn/k)) bits. Minsky et. al.
[22] study a constrained version of the k-sparse vector reconstruction problem
where f(σ) ∈ {−1, 0, 1}n and present a space-optimal algorithm for this scenario.
Eppstein and Goodrich [11] present a space-optimal solution for the case when
f(σ) ∈ {0, 1}n. The k-set structure [15] presents a k-sparse vector reconstruction
technique for the general case when f ∈ {−m, . . . ,m}n. We reproduce their
theorem since we will refer to it later.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 52–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Theorem 1 ([15]). For vectors f ∈ {−m, . . . ,m}n, there exists a data structure
for the k-sparse reconstruction problem that requires space O(k log(mn) log(n/k))
bits. The time taken to process any coordinate-wise update to f is O(k(log(n/k)))
elementary arithmetic operations over a finite field of size O(mn) and charac-
teristic at least mn + 1. �

The work on compressed sensing [3,10] has independently considered the prob-
lem of k-sparse vector reconstruction. Based on previous work in [3,10,18], Indyk
[20] presented the first deterministic algorithm in the compressed sensing frame-
work for k-sparse vector reconstruction using space O(k2(log log n)E

log(mn)) bits,
where, E > 1 is a constant that depends on the best known construction of a
class of extractors.

We now review prior work on k-sparsity testing. It is known that k-sparsity
testing for vectors in {−m, . . . ,m}n requires Ω(n) space, for any m ≥ 1 and
k ≥ 0 [11,16]. In view of this negative result, in this paper, we will restrict
our attention to non-negative frequency vectors from {0, . . . ,m}n, that is, 0 ≤
fi(σ) ≤ m, for each i ∈ [n]. A space-optimal 1-sparsity tester was presented
in [12] that requires O(log(mn)) bits. A k-sparsity tester can be constructed
by using strongly selective families [6,8] as follows. An (n, k) strongly selective
family is a family of sets {Si}1≤i≤t such that for any A ⊂ {1, 2, . . . , n} such that
|A| ≤ k and for any x ∈ A, there exists a member Sj of the family such that
Sj∩A = {x}. In other words, each member of the set A is selected via intersection
by some member of the family. Constructive solutions for (n, k)-strongly selective
families are known for which the size of the family t = O(k2 · polylog(n)). A
k-sparsity test can be designed by keeping a 1-sparsity tester [12] for each of
the sets {Si}1≤i≤t. The space requirement is O(k2 · polylog(n) log(mn)) bits.
This line of work cannot be used to obtain significantly more space efficient k-
sparsity tests, since, there is a space lower bound of Ω(k2(log(n/k))/(log k)) for
the size of (n, k)-strongly selective family [6]. The k-set structure [15] presents
a technique that can be used to test k-sparsity of vectors in {0, . . . ,m}n using
space O(k2 logn + k log(mn)). Finite fields based solutions to k-sparse vector
construction of Minsky et.al. [22], Eppstein and Goodrich [11], our previous
work in [15], and, the compressed sensing approach of Indyk [20] are not known
to directly extend to deterministic k-sparsity testing.

Deterministic estimation of data stream frequency. We consider deterministic
solution to the ApproxFreq(ε) problem, namely, to design a low-space data
structure that can (a) process any stream σ over the domain [n], and, (b)
given any i ∈ [n], it returns a deterministic estimate f̂i for fi(σ) satisfying
|f̂i − fi(σ)| ≤ ε‖f(σ)‖1, where, ‖f(σ)‖1 is the �1 norm of the frequency vector
f(σ). The ApproxFreq(ε) problem is a well-studied and basic problem in data
stream processing. Deterministic algorithms requiring O(ε−1 logm) space are
known for insert-only (i.e., no deletions) streams [9,23,21]. For streams with ar-
bitrary insertions and deletions, the CR-Precis algorithm solves the problem
ApproxFreq(ε) [14] using space Õ(ε−2(log−2(1/ε))(log2 n)(logmn)). A space
lower bound of Ω(ε−2 logm) for deterministic algorithms is known for solving
ApproxFreq(ε) over streams with frequency vector in {−m, . . . ,m}n [13].
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Contributions. We present a simple paradigm for designing deterministic algo-
rithms over data streams by using appropriately chosen lossless expander graphs.
The paradigm consists of two steps, namely, identifying the expansion proper-
ties needed to solve the problem at hand, and, a low space representation of
the expander graph (or an object that closely resembles it). We illustrate our
paradigm by designing algorithms for k-sparsity testing and estimating item
frequencies.

We first present a novel solution for deterministic k-sparsity tester for the fre-
quency vector f(σ) of a data stream σ, when, f(σ) ∈ {0, . . . ,m}n. This tech-
nique, based on lossless expander graphs, requires spaceO(k ·D(1/4, n, k)), where,
D(ε, n, r) = o(n) is the smallest known degree function in the construction of
(k, ε)-lossless expanders. We subsequently improve upon this algorithm to present
a space upper bound of O(k(log(n/k))(logmn)) bits. This improves the current
upper bound of O(k2 logn + k log(mn)) space [15] and nearly matches the space
lower bound up to a logarithmic factor, which we show to be Ω(k log(mn/k)). We
also use the expander graphs based approach to design a family of deterministic
algorithms for ApproxFreq(ε), of which the CR-Precis algorithm [14] is a spe-
cial case. The algorithms derived in this manner are slightly more efficient in space
and update time than the CR-Precis algorithm.

Organization. The remainder of the paper is organized as follows. In Section 2,
we consider the k-sparsity testing problem over data stream and and in Section 3
we consider the ApproxFreq(ε) problem.

2 Testing k-Sparsity

In this section, we design a deterministic k-sparsity tester for frequency vectors
in {0, . . . ,m}n based on lossless expander graphs. We first present a space lower
bound for k-sparsity testing of vectors over {0, . . . ,m}n in the data stream model.

Lemma 1. For each value of 1 ≤ k < n/2, a deterministic k-sparsity tester for
vectors over {0, . . . ,m}n requires Ω(k log(mn/k)) bits.

Proof (Of Lemma 1). Let k < n/2. Suppose f, g are distinct k-sparse vectors
such that ‖f‖∞ ≤ m/2 and ‖g‖∞ ≤ m/2. We first show that there exists
h ∈ {−m, . . . ,m}n such that both f + h and g + h are non-negative and one
of them is k-sparse and the other is not k-sparse. This would imply that any
k-sparsity tester must map distinct k-sparse vectors in {0, . . . , �m/2�}n to dis-
tinct summaries. Since, the number of k-sparse vectors in {0, . . . , �m/2�}n is∑k

r=0

(
n
k

)
(�m/2� + 1)r, the space requirement would be at least the logarithm

of this quantity, which is O(k log(mn/k)).
Let Sf and Sg denote the set of coordinates of f and g respectively with

non-zero entries. Let T be any set of size k − |Sg| such that T ∩ (Sf ∪ Sg) = φ.
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Such a T exists since, k < n/2. Denote by 1T the characteristic vector of T . Let
h = g + 1T . Then g + h = 2g + 1T and is k-sparse. Further, f + h = f + g + 1T

and therefore,

|Sf+g+1T | = |(Sf ∪ Sg)|+ |T | > |Sg|+ 1 + |T | = k + 1

and so, f + h is not k-sparse. �


2.1 Sparsity Separator Structure

We first define the (k, l)-sparsity separator structure that will be used later to
test k-sparsity in sub-linear space.

Definition 1. A (k, l)-sparsity separator structure, where, k ≤ l, is a data struc-
ture that (a) supports updates corresponding to any stream σ over [n], and,
(b) supports a deterministic operation called SeparateSparsity that returns
true if the sparsity of f(σ) is at most k and returns false if the sparsity of
f(σ) is at least l. �


There is an indeterminate region, namely, if the sparsity of f(σ) is between k+1
and l − 1, then the function SeparateSparsity(f) is allowed to return either
true or false.

Lossless expander graphs. We design a (k, 2k) sparsity separator structure using
lossless expander graphs. We first recall some standard concepts from expander
graphs [19]. Let G = (VL, VR, E, d) denote a left-regular bipartite graph where,
VL = {v1, . . . , vn} is the set of vertices in the left partition, VR = {u1, . . . , ur} is
the set of vertices in the right partition, E is the set of edges of G and d is the
degree of each vertex in the left partition.

Definition 2 (Lossless Expanders [19].). A left-regular bipartite graph G =
(VL, VR, E, d) is said to be be a (Kmax, ε)-lossless expander if every set of K ≤
Kmax vertices from the left partition has at least (1− ε)dK neighbors in VR. 1

The work in [4] presents non-trivial, explicit constructions of lossless expanders
using the zig-zag product of expanders.

Theorem 2 ([4]). For any ε > 0 and r ≤ n, there is an explicit family of
left-regular bipartite graphs with |VL| = n, |VR| = r that is an (c′εr/d, ε)-lossless
expander with left degree D(ε, n, r) ≤ (n/εr)c for some constants c, c′ > 0. The
neighbors of any left vertex may be found in time O(d · logO(1)(n)). �


Denote by R(ε, n, k) the smallest value of r for which there is a known efficiently
constructible (k, ε)-lossless expander with n left vertices and r right vertices.
Theorem 2 is optimized for the case r = Θ(n), in which case, the degree d = d(n)
is constant. Our approach will be the following. We will be interested in (K, ε)-
lossless expander graphs with r as small as possible. We use Theorem 2 to obtain
1 More accurately, an expander is a family of bipartite graphs {Gn}n≥n0 , for some n0,

where, Kmax = Kmax(n), ε = ε(n) and d = d(n).
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expander graphs with the desired lossless expansion property to give us the wire-
frame of an algorithm for the problem. We then replace the expander by a more
explicit and low-space construction of a bipartite graph G with a smaller value
of r and that has the desired lossless expansion property.

A (k, 2k)-sparsity separator using lossless expander graphs. Given n and using
Theorem 2, we consider a left-regular bipartite graph G = (VL, VR, E, d) that is
a (2k, ε = 1/4)-lossless expander such that

|VL| = n, |VR| = r and left-degree d = D(ε, n, r) .

Keep r= |VR| integer counters denoted as an r-dimensional vector g=[g1, . . . , gr],
where, gs is the counter associated with vertex us ∈ VR. All counters are initial-
ized to 0. The counter gs maintains the following sum over the data stream.

gs =
∑

(vi,us)∈E

fi(σ), s = 1, 2, . . . , r .

Alternatively, if we let B be the r×n matrix such that As,i = 1 if vi is adjacent
to us and As,i = 0 otherwise, then, g = A(f(σ)). The counters are easily updated
corresponding to a stream update (pos, i, v) as follows:

gs := gs + v, ∀s ∈ [r] such that us is adjacent to vi .

Equivalently, in matrix notation, g := g + Ai, where, Ai is the column corre-
sponding to vertex vi. Since, the neighbors of any left vertex vi can be computed
in d · polylog(n) time and d = D(ε, n, r), the update can be performed in time
D(ε, n, 4k) · polylog(n).

A procedure for SeparateSparsity(k, 2k) can be designed as follows. It
first checks if g is not (1− 1/4)2dk = 3dk

2 -sparse in which case it returns false.
Otherwise, the procedure returns true.

procedure SeparateSparsity(k, 2k)
Data Structure: A (k, 2k)-sparsity separator structure.

if g is not
( 3

2dk − 1
)
-sparse return false else return true

We now show that the algorithm SeparateSparsity(k, 2k) correctly solves the
approximate sparsity problem with parameter k, 2k.

Lemma 2. Algorithm SeparateSparsity(k, 2k) correctly solves the problem
SeparateSparsity(k, 2k).

Proof. Suppose that f is not 2k − 1-sparse. Then, it has at least 2k non-zero
entries. Let Sf = {vi ∈ VL | fi > 0}. Then, |Sf | ≥ 2k. Choose any subset
T ⊂ Sf such that |T | = 2k. Let Γ (S) denote the neighbors of any set T ⊂ VL. By
property of the (2k, 1/4)-lossless expander graph, (1−1/4)d(2k) ≤ |Γ (T )| ≤ 2dk,
that is, 1.5dk ≤ |Γ (T )| ≤ 2dk. For each s ∈ Γ (T ), gs > 0, since, gs is the sum
of the (positive) fi’s of those i’s such that vi is adjacent to us. Therefore, g
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procedure SparsityTest(k)
Input: Data Stream σ with frequency vector f(σ) ∈ {0, . . . , m}n.
Output: Returns true if f is k-sparse and false otherwise.
Data Structure: (a) A (k, 2k)-sparsity separator structure over {0, . . . , m}n, and,
(b) a 2k-set structure over {−m, . . . , m}n that supports operation RetrieveVector(2k) [15].
begin

1. if SeparateSparsity(k, 2k) = false return false

2. else if Sparsity(RetrieveVector(2k)) ≤ k return true

3. else return false

end.

Fig. 1. Procedure for testing k-sparsity

has at least 1.5dk non-zero entries and the algorithm returns false. On the
other hand, if f is k-sparse, |Γ (Sf )| ≤ kd and therefore g is kd-sparse and the
algorithm returns true. Hence the algorithm satisfies the properties of testing
SeparateSparsity(k, 2k). �


The space requirement of Algorithm SeparateSparsity consists of the r-
dimensional vector g, each of whose entries is an integer between 0 and mn.
Then, the space requirement is O(R(ε, n, 2k) log(mn)). The time requirement to
process each stream update is D(ε, n,R) ·O(logO(1)(n)).

2.2 Algorithm for Testing k-Sparsity

We now use the sparsity separator (k, 2k) of Section 2.1 together with the k-set
reconstruction procedure of [15] to design an algorithm for k-sparsity test.

We keep two data structures, namely, a 2k-set structure for 2k-set reconstruc-
tion as presented in [15] and a (k, 2k)-sparsity separator structure, presented in
Section 2.1. Both structures are maintained independently and in parallel in the
face of stream updates. The procedure k-SparsityTest is presented in Fig-
ure 1 and is described as follows. It first uses the (k, 2k) sparsity separator test
on the r-dimensional vector g. If the approximate sparsity test returns false,
then, we know that f cannot be k-sparse. (Otherwise, the (k, 2k)-sparsity sep-
arator test would have returned true, by definition.) However, if the sparsity
separator procedure returns true, then, f is 2k-sparse (otherwise, the sparsity-
separator(k, 2k) would have returned false). The reconstruction procedure of
the 2k-set structure [15] is then invoked to obtain f , and from f , we obtain
its sparsity. If the sparsity is at most k, then the procedure returns true, and
otherwise returns false. We summarize these properties and the space and time
bounds in the following theorem.

Theorem 3. There exists a k-sparsity tester for frequency vector of data stream
in {0, . . . ,m}n using space O(R(1/4, n, 2k) logmn)), where, R = R(1/4, n, 2k) is
the smallest value of r for which a (2k, 1/4)-lossless expander can be efficiently
constructed with n vertices in the left vertex partition VL. The time required to
process each stream update is O(D(1/4, n, R) · logO(1)(n)). �
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Improving the expander based sparsity test. The space requirement of the
the expander based k-sparsity separator presented in Section 2 can be improved
by using a different construction of an (approximate) expander graph than the
one given by Theorem 2. The set of vertices adjacent to a given subset of vertices
S in a graph is denoted as Γ (S).

Lemma 3. For any n ≥ 2, d > 3 log(ne/4k) and r ≥ 8kd, there exist bipartite
graphs G = (VL, VR, E) with |VL| = n, |VR| = r satisfying the following property:
for any subset S ⊂ VL such that |S| ≤ k, |Γ (S)| ≤ k and for any subset S ⊂ VL

such that |S| ≥ 4k, |Γ (S)| > k. Moreover, the bipartite graph can be succinctly
represented by a string of size kd2 bits. The adjacency of a vertex in the left
partition may be computed in time O(kd2).

Proof (Of Lemma 3). Let VL = {1, 2, . . . , n} and VR = {1, 2, . . . , r}. Define d
independently chosen random hash functions h1, . . . , hd each mapping [n]→ [r].
For i ∈ VL and s ∈ VR, we say that there is an edge (i, s) provided there exists
j ∈ {1, . . . , d} such that hj(i) = s.

By construction, for any S ⊂ VL be a set of left vertices of size k, |Γ (S)| ≤ kd.
Now suppose S ⊂ VL and |S| = 4k. For s ∈ VR, define an indicator variable ys

that is 1 if us ∈ Γ (S) and 0 otherwise.

Pr {ys = 1} = 1− (1 − |S|/r)d = p (say) .

Thus,
|S|d
r
− d2|S|2

2r2 ≤ p ≤ kd

r
.

Let

WS =
r∑

s=1

ys .

Therefore,

E [WS ] = rp ≥ kd− d2k2

r
.

Further,

E
[
W 2

S

]
=

( r∑
s=1

ys

)2 =
r∑

s=1

ys + 2
∑

1≤s1<s2≤r

ys1ys2

= rp + 2
(
r

2

)
p2 .

Thus,

σ2(WS) = Var
[
WS

]
= E

[
W 2

S

]
− (E [WS ])2 = rp + 2

(
r

2

)
p2 − (rp)2

= rp− rp2 .

Therefore,
σ2(WS) ≤ rp ≤ kd .
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If the hash functions h1, . . . , hd are each t-wise independent, then, the ys’s are at
least t-wise independent. By Chernoff’s bound for t-wise independent variables
[24], we have,

Pr {|WS − E [WS ]| > T } ≤
(
tmax(t, σ2(WS))

e2/3T 2

)t/2

[24] .

Choose the degree of independence as t = kd and let the deviation from the
expectation be T = E [WS ]− (kd + 1). Then,

T ≥ rp− (kd + 1) ≥ 4kd− 16k2d2

r
≥ 2kd

by choosing r ≥ 8kd. Substituting, we have

Pr {WS ≤ k} ≤ Pr {|WS − E [WS ]| > T } ≤
(

(kd)(4kd)
e2/3(2kd)2

)kd/2

= e−kd/3 .

Therefore,

Pr {WS ≤ k, for some S s.t. |S| = 4k} ≤
(

n

4k

)
e−kd/3 ≤ ek ln(ne/4k)−kd/3 < 1

provided, d ≥ 3 ln(ne/4k) Thus,

Pr {∀S, |S| = 4k,WS > 4k} > 0

This proves the existence of a bipartite graph with the properties as stated in
the Lemma.

Such a bipartite graph may be generated as follows. The random seed length
is kd2 logn bits, since, each of the hash functions may be implemented as a
degree kd− 1 polynomial over a field of size O(n). We iterate over the space of
kd2 logn bit strings, generate the corresponding bipartite graph and check for
the property. If the property holds, then, the kd2 logn bit seed is stored as the
generator for the bipartite graph. The above proof assures us of the existence of
such a seed. �


(k, 4k)-Sparsity separator. A (k, 4k)-sparsity separator can be designed based
on a succinctly representable bipartite graph G = (VL, VR, E) obtained us-
ing Lemma 3 such that |VL| = n, d = 4 log(ne/k) and |VR| = r = 16kd. By
Lemma 3, for any subset S ⊂ VL, if |S| ≥ 4k, then, |Γ (S)| > 2k and if |S| ≤ k,
then, |Γ (S)| ≤ k. A (k, 4k)-sparsity separator is designed as follows. Keep r
counters, g1, . . . , gr, one each corresponding to each right vertex us ∈ VR ; all
initialized to 0. The counter gs maintains the following sum: gs =

∑
i:(vi,us)∈E fi.

Corresponding to update (pos, i, v) on the stream, the counters are updated as
follows.

Update(pos, i, v) : gs = gs + v, ∀s such that (i, s) ∈ E.
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The space requirement is O(r) = O(k log(n/k)) counters of size O(log(mn)) bits
plus the succinct description length O(kd2) = O(k log2(n/k)) bits. The time
required to process each stream update of the form (pos, i, v) is to evaluate d
polynomials of degree kd each to obtain the adjacency of vertex vi; this re-
quires time O(kd2) = O(k log2(n/k)). The (k, 4k)-SeparateSparsity test is as
follows.

procedure Bipartite-SeparateSparsity(k, 4k)
1. if g is not k-sparse then return false else return true.

Rephrasing Lemma 3, if f is k-sparse, then, g is k-sparse, and, if f is not 4k-
sparse, then, g is not k sparse. The problem of k-sparsity testing can now be read-
ily solved as before. Keep a (k, 4k)-sparsity separator for vectors in {0, . . . ,m}n

based on succinct bipartite graphs and a 4k-set structure from [15]. The algo-
rithm for k-sparsity testing is identical to that presented in Figure 1, with the
only change being that the use of the 2k-set structure is replaced by a 4k-set
structure. We therefore have the following theorem.

Theorem 4. There exists a structure for testing k-sparsity of vectors in
{0, . . . ,m}n updated coordinate-wise as a data stream using space O(k log(n/k)
log(mn)). The time taken to process each coordinate-wise update is O(k log2

(n/k)). �


The space requirement of the succinct bipartite graph based k-sparsity tester is
within a logarithmic factor of the space lower bound of Ω(k log(mn/k)) proved
in Lemma 1.

3 Deterministic Estimation of Frequency Vector

In this section, we present a novel, deterministic algorithm for approximating
the frequency vector of a data stream based on the use of lossless expander
graphs. Consider a (2, ε/2)-lossless expander graph G = (VL, VR, E, d), where,
VL = {v1, . . . , vn}, VR = {u1, . . . , ur}. By Theorem 2, a (2, ε/2)-lossless ex-
pander has r = O(D(ε, n,O(1))/ε) and d = D(ε, n, r), where, D(ε, n,O(1)) is
the current best known degree function for an (O(1), ε)-lossless expander given
by Theorem 2. As before, we keep an integer counter gs corresponding to each
vertex us ∈ VR. The counters are initialized to 0 and are updated corresponding
to stream update exactly in the same manner as discussed in Section 2.1. The
estimate f̂i is the following.

f̂i =
1
d

∑
s:(vi,us)∈E

gs, i ∈ [n].

Lemma 4. |f̂i − fi(σ)| ≤ ε‖f(σ)‖1.
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Proof. For simplicity, fix the input stream σ and let f denote f(σ). Fix i. By
property of (2, ε)-lossless expander, for any i, j ∈ [n], i 
= j,

|Γ (vi) ∩ Γ (vj)| = 2d− |Γ (vi) ∪ Γ (vj)| ≤ 2d− (1− ε/2)(2d) ≤ εd . (1)

Therefore,

∑
s:(vi,us)∈E

gs =
∑

s:(vi,us)∈E

∑
j:(vj ,us)∈E

fj =
n∑

j=1

fj |Γ (vj) ∩ Γ (vi)|

= dfi +
∑

1≤j≤n
j �=i

fj|Γ (vj) ∩ Γ (vi)| = dfi +
∑

1≤j≤n
j �=i

fj(εd), by (1) .

Dividing by d, transposing and taking absolute values, we have,∣∣1
d

∑
s:(vi,us)∈E

gs − fi

∣∣ ≤ ∣∣∑
j �=i

εfj

∣∣ ≤ ε‖f‖1 − |fi| .

Since, 1
d

∑
s:(vi,us)∈E gs = f̂i, this proves the lemma. �


Theorem 2 can be applied by setting r = O(1
εD(ε, n, 1)) and d = D(ε, n, r),

thereby obtaining a (K, ε)-lossless expander, for some K ≥ 2. We summarize
this in the following theorem.

Theorem 5. There exists a deterministic algorithm for solving ApproxFreq(ε)
over a data stream using space O(R(ε, n, 2) log(mn)). The time taken to process
each stream update is O(D(ε, n,R) logO(1) n). �


An exercise along the lines of producing a succinctly representable bipartite
graph using the probabilistic method instead of using the lossless expander family
of Theorem 2 can be carried out (and has a slightly simpler argument). We state
this in the following lemma.

Lemma 5. There exists a bipartite graph G(n, ε) = (VL, VR, E, d) such that
|VL| = n, |VR| = O((1/ε2) log(n/ε)), d = O(log n) such that the degree of every
vertex in VL is between (1 − ε)d and d and for any vi, vj ∈ VL, i 
= j, the
number of common neighbors of vi and vj do not exceed εd. Moreover, such a
bipartite graph can be succinctly represented using O((log(n/ε))(logn)) bits. The
neighbors of any vertex in VL can be computed in time O(log(n/ε)(logn)). �


Note that the bipartite graph of Lemma 5 is not left-regular, but rather almost
left-regular: (1−ε)d ≤ deg(vi) ≤ d. The analysis of Lemma 4 goes through with a
slight modification, since the division by d gives rise to a factor that lies between 1
and 1/(1−ε), thereby, increasing the error factor by O(ε). Replacing the (2, ε/2)-
expander graph by the succinct bipartite graph G(n, ε/4) from Lemma 5 yields
an algorithm for ApproxFreq(ε). This is summarized in the following theorem.
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Theorem 6. There exists a deterministic algorithm for solving ApproxFreq(ε)
over a data stream using space O(ε−2 log(n/ε) log(mn)) bits. The time taken to
process each stream update is O(log(n/ε)(logn)). �

The only known previous algorithm for deterministic estimation of frequency is
the CR-Precis algorithm [14] which requires space O(ε−2(log−2(1/ε))(log2 n)·
(logmn)). The algorithm of Theorem 6 is slightly better in its space requirement
than the CR-Precis algorithm [14] by a small poly-logarithmic factor.

It is interesting to note that the primes residue based structure used by the
CR-Precis structure [15] is an explicit construction of a (2, ε/2)-lossless ex-
pander as follows. For t distinct primes p1, . . . , pt, we define the bipartite graph
GCR(p1, . . . , pt) = (VL, VR, E, d) where, VL = {v1, . . . , vn} and VR = {uj,l | 1 ≤
j ≤ t and 0 ≤ l ≤ pj−1}. There is an edge between left vertex vi and right vertex
uj,l if and only if l = i mod pj . The degree of each left vertex is by construction
t, since, each number has exactly one residue respectively for p1, . . . , pt. For any
1 ≤ i < j ≤ n, each common neighbor uj,l of vi and vj means that pl|j − i. If
there are s distinct common neighbors, then, there are s distinct primes that
divides j − i. Since, j − i ≤ n − 1, and each pl ≥ 2, s < logn. This shows that
the graph is a (2, ε/2)-lossless expander for t = 2(logn)/ε and for any choice of
primes p1, . . . , pt. Since, r = |VR| = p1 + . . .+ pt, r is minimized by choosing the
first 2 logn/ε primes as p1, . . . , pt. The well-known prime number theorem then
guarantees that p1+. . .+pt = O(ptt) = O(t2 ln t) = O((log2 n/ε2) log((log n)/ε)).
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Abstract. Online OVSF code assignment has an important application
to wireless communications. Recently, this problem was formally modeled
as an online problem, and performances of online algorithms have been
analyzed by the competitive analysis. The previous best upper and lower
bounds on the competitive ratio were 10 and 5/3, respectively. In this
paper, we improve them to 7 and 2, respectively. We also show that our
analysis for the upper bound is tight by giving an input sequence for
which the competitive ratio of our algorithm is 7− ε for arbitrary ε > 0.

1 Introduction

Universal Mobile Telecommunication System (UMTS) is one of the third gener-
ation (3G) technologies, which is a mobile communication standard. UMTS uses
a high-speed transmission protocol Wideband Code Division Multiple Access
(W-CDMA) as the primary mobile air interface. W-CDMA was implemented
based on Direct Sequence CDMA (DS-CDMA), which allows several users to
communicate simultaneously over a single communication channel. DS-CDMA
utilizes Orthogonal Variable Spreading Factor (OVSF) code to separate commu-
nications [1].

OVSF code is based on an OVSF code tree, which is a complete binary tree of
height h. The leaves of the OVSF code tree are of level 0 and parents of vertices
of level � (� = 0, . . . , h− 1) are of level �+ 1. Therefore the level of the root is h.
Fig. 1 shows an OVSF code tree of height 4. Each vertex of level � corresponds to
a code of level �. In DS-CDMA, each communication uses a code of the specific
level. To avoid interference, we need to assign codes (vertices of an OVSF code
tree) to communications so that they are mutually orthogonal, namely, in any
path from the root to a leaf of an OVSF code tree, there is at most one assigned
vertex. However, it is not so easy to serve requests efficiently as we will see later.

Erlebach et al. [4] first modeled this problem as an online problem, called the
online OVSF code assignment problem, and verified the efficiency of algorithms
using the competitive analysis: An input σ consists of a sequence of a-requests
(assignment requests) and r-requests (release requests). An a-request ai specifies
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Fig. 1. An OVSF code tree of hight 4
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Fig. 2. An example of an assignment

a required level, denoted �(ai). Upon receiving an a-request ai, the task of an
online algorithm is to assign ai to one of the vertices of level �(ai) of OVSF
code tree, so that the orthogonality condition is not broken. It may also reassign
other requests (already existing in the tree). An r-request ri specifies an a-
request, denoted f(ri), which was previously assigned and is still assigned to
the current OVSF code tree. When an r-request ri arrives, the task of an online
algorithm is to merely remove f(ri) from the tree (and similarly, it may reassign
other requests in the tree). Each assignment and reassignment causes a cost of
1, but removing a request causes no cost. Without loss of generality, we may
assume that σ does not include an a-request that cannot be assigned by any
reassignment of the existing requests (in other words, the total bandwidth of
requests at any point never exceeds the capacity).

For example, consider the OVSF code tree given in Fig. 1 and the input σ =
(a1, a2, a3, a4, r1, a5), where �(a1) = 2, �(a2) = �(a3) = 1, �(a4) = 0, �(a5) = 3
and f(r1) = a2. Suppose that, for the first four requests, an online algorithm
assigns a1 through a4 as depicted in Fig. 2. Then, r1 arrives and a2 is released.
Next, a5 arrives, but an algorithm cannot assign a5 unless it reassigns other a-
requests. If it reassigns a4 to a child of the vertex to which a2 was assigned, it can
assign a5 to the right vertex of level 3. In this case, it costs 6 (5 assignments and
1 reassignment). However, if it has assigned a2 to a vertex in the right subtree
of the root, and a4 to a vertex in the left subtree, then the cost is 5, which is
clearly optimal.

This problem also has an application in assigning subnets to users in computer
network managements. An IP address space can be divided into subnets, each
of which is a fragment of the whole IP address space consisting of a set of
continuous IP addresses of size power of 2. This structure can be represented as
a complete binary tree, in exactly the same way as our problem. Usually, the sizes
of subnets requested by users depend on the number of computers they want to
connect to the subnet, and the task of managers is to assign subnets to users
so that no two assigned subnets overlap. Apparently, we want to minimize the
number of reassignments because a reassignment causes a large cost for updating
configurations of computers.

Online algorithms are evaluated by the competitive analysis. The competitive
ratio of an online algorithm ALG is defined as max{CALG(σ)

COP T (σ)}, where CALG(σ)
and COPT (σ) are the costs of ALG and an optimal offline algorithm, respectively,
for an input σ, and max is taken over all σ. If the competitive ratio of ALG is
at most c, we say that ALG is c-competitive.

For the online OVSF code assignment problem, Erlebach et al. [4] developed
a Θ(h)-competitive algorithm (recall that h is the hight of the OVSF code tree),
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and proved that the lower bound on the competitive ratio of the problem is
1.5. Forǐsek et al. [6] developed a Θ(1)-competitive algorithm, but they did not
obtain a concrete constant. Later, Chin, Ting, and Zhang [2] proposed algorithm
LAZY by modifying the algorithm of Erlebach et al. [4], and proved that the
competitive ratio of LAZY is at most 10. Chin, Ting, and Zhang [2] also showed
that no online algorithm can be better than 5/3-competitive.

Our Contribution. In this paper, we improve both upper and lower bounds,
namely, we give a 7-competitive algorithm Extended-Lazy, and show that no
online algorithm can be better than 2-competitive. We further show that our
upper bound analysis is tight by giving a sequence of requests for which the
competitive ratio of Extended-Lazy is 7− ε for an arbitrary constant ε > 0.

Let us briefly explain an idea of improving an upper bound. Erlebach
et al. [4] defined the “compactness” of the assignment, and their algorithm keeps
compactness at any time. They proved that serving a request, namely assigning
(or releasing) a request and modifying the tree to make compact, will cause at
most one reassignment at each level, which leads to Θ(h)-competitiveness. Chin,
Ting, and Zhang [2] pointed out that always keeping the tree compact is too
costly. Their algorithm LAZY does not always keep the compactness but makes
the tree compact when it is necessary. To achieve this relaxation, they defined
“tanks”. By exploiting the idea of tanks, they proved that the cost of serving each
request is at most 5, which provides 10-competitiveness. Our algorithm follows
this line. We further relax the compactness by defining “semi-compactness”. We
also use amortized cost analysis. We prove that serving one a-request (r-request,
respectively) and keeping semi-compactness costs at most 4 (3, respectively) and
obtained 7-competitiveness of Extended-Lazy.

Related Results. For the online OVSF code assignment problem, there are a
couple of resource augmentations, namely, online algorithms are allowed to use
more bandwidth than an optimal offline algorithm: Erlebach et al. [4] developed
a 4-competitive algorithm in which an online algorithm can use a double-sized
OVSF code tree. Chin, Zhang, and Zhu [3] developed a 5-competitive algorithm
that uses 1/8 extra bandwidth.

Also, there are several offline models. One is the problem of finding a minimum
number of reassignments to modify the current assignment so that the new
request can be assigned, given a current assignment configuration of the tree and
a new request. For this problem, Minn and Siu [7] developed a greedy algorithm.
Moreover, Erlebach et al. [4] proved that this problem is NP-hard and developed
a Θ(h)-approximation algorithm. Another example is an offline version of our
problem, namely, given a whole sequence of requests, we are asked to find a
sequence of operations that minimizes the number of reassignments. Erlebach,
Jacob, and Tomamichel [5] proved that this is NP-hard and gave an exponential-
time algorithm.

2 Preliminaries

In this section, we define terminologies needed to give our algorithm, most of
which are taken from [2]. Given an assignment configuration, we say that vertex
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Fig. 4. A semi-compact assignment

v is dead if v or one of its descendants is assigned. In the example of Fig. 3,
shaded vertices are assigned, and vertices with stars (∗) are dead. If, at any
level, all the left vertices (on the same level) to the rightmost dead vertex are
dead, and all the assigned vertices are mutually orthogonal, then the assignment
is called compact. For example, the assignment in Fig. 3 is compact.

Next, let us define a status of levels. Level � is said to be rich if an a-request of
level � can be assigned to the leftmost non-dead vertex v at � without reassigning
other requests. In other words, none of descendants, ancestors, and v itself is
assigned. Otherwise, the level � is said to be poor. For example, in the assignment
of Fig. 3, levels 0, 2, and 3 are rich and levels 1 and 4 are poor. A level � is said to
be locally rich if the rightmost assigned vertex is the left child of its parent. For
example, in Fig. 3, only level 0 is locally rich. Note that in a compact assignment,
locally rich levels are always rich.

Then, we define a tank. Consider an a-request a of level b, and suppose that it
is assigned to a vertex x of level b. We sometimes consider as if a were assigned
to a vertex y of a higher level t (t > b) if x is the only assigned descendant of y
(see Fig. 4). In this case, the vertex y is called tank[b, t]. Levels b and t are called
the bottom and the top of tank[b, t], respectively. We say that level � (b ≤ � ≤ t)
belongs to tank[b, t]. Note that we consider that the vertex y is assigned and the
vertex x is unassigned.

Finally, let us define the semi-compactness. An assignment is said to be semi-
compact if the following five conditions are satisfied: (i) All the assigned vertices
are mutually orthogonal; (ii) All left vertices of the rightmost dead vertex are
dead at each level; (iii) Each level belongs to at most 1 tank; (iv) Suppose that
there is a tank v(=tank[b, t]) at level t. Then level t contains at least one assigned
vertex other than v, and there is no dead vertex to the right of v in t; (v) Levels
belonging to tanks are all poor except for the top levels of tanks. Fig. 4 shows
an example of a semi-compact assignment.

3 Algorithm Extended-Lazy

To give a complete description of Extended-Lazy, we first define the following
four functions [2]. Note that a single application of each function keeps the or-
thogonality, but may break the semi-compactness. However, Extended-Lazy

combines functions so that the combination keeps the semi-compactness.
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– AppendRich(�, a): This function is available if the level of a-request a is less
than or equal to � (namely �(a) ≤ �), and level � is rich. It assigns a to the
vertex immediately right of the rightmost dead vertex at �. If there is no
dead vertices at �, it assigns a to the leftmost vertex v at �. Note that if
�(a) 
= �, this function creates tank[�(a), �].

– AppendPoor(�, a): This function is available if �(a) ≤ � and level � is poor. It
assigns a-request a to the vertex v immediately right of the rightmost dead
vertex at �. If there is no dead vertices at �, it assigns a to the leftmost vertex
v at �. (If there is no such v, abort.) Note that if �(a) 
= �, tank[�(a), �] is
created. Then, it releases an a-request assigned to a vertex in the path from
v to the root and returns it. (Such a request exists because � was poor and
v was non-dead. This request is unique because of the orthogonality.)

– FreeTail(�): Release the a-request assigned to the rightmost assigned vertex
at level �, and return it.

– AppendLeft(�, a): This function is available if �(a) = �. Assign a-request a
to the leftmost non-assigned vertex at level � that has no assigned ancestors
or descendants.

Each of AppendRich, AppendPoor, and AppendLeft yields a cost of 1, and
FreeTail does not yield a cost.

Now, we are ready to describe Extended-Lazy. Its behaviors on an a-request
and an r-request are given in Sects. 3.1 and 3.2, respectively. Executions of
Extended-Lazy is divided into several cases. In the description of each case, we
explain the behavior of Extended-Lazy, and in addition, for the later analysis,
we will calculate the cost incurred and an upper bound on the increase in the
number of locally rich levels due to the operations.

3.1 Executions of Extended-Lazy for a-Requests

As summarized in Fig. 5, the behavior of Extended-Lazy for an a-request a
is divided into six cases based on the status of the level �(a) (recall that �(a) is
the level to which a has to be assigned).

Case (1): The case that �(a) does not belong to a tank and is rich. Execute
AppendRich(�(a), a). The execution of this case costs 1, and the number of
locally rich levels increases by at most 1 because only �(a) changes status.

Case (2): The case that �(a) does not belong to a tank and �(a) is poor. Fur-
thermore, if we look at the higher levels from �(a) to the root, namely in the

�(a) not belong to a tank rich Case (1)
poor rich Case (2)

bottom of a tank Case (3)
belong to a tank top rich Case (4)

poor Case (5)
otherwise Case (6)

Fig. 5. Execution of Extended-Lazy for an a-request a
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order of �(a)+1, �(a)+2, . . . , h until we encounter a level that is rich or a bottom
of a tank, we encounter a rich level (say, the level t) before a bottom of a tank. In
this case, execute AppendRich(t, a). Note that the new tank[�(a), t] is created.
This case costs 1 and the number of locally rich levels increases by at most 1
since only level t changes status.

Case (3): The same as Case (2), but when looking at higher levels, we encounter
a bottom b of tank[b, t] before we encounter a rich level. This case is a little bit
complicated. First, execute FreeTail(t) and receive the a-request a′ of level b
(because a level-b request was assigned to level t by exploiting a tank). Then
execute AppendPoor(b, a′) (note that b is poor by the condition (v) of semi-
compactness), and receive another a-request a′′ of level s. Note that there is an
assigned vertex at t because of the condition (iv), and hence b < s ≤ t. Next,
using AppendRich(t, a′′), assign a′′ to the vertex which was tank[b, t], which
creates the new tank[s, t] if s 
= t. Now, recall that the level b was poor, and
hence a′ was assigned to a left child. So, the level b is currently locally rich. We
execute AppendRich(b, a). Note that tank[�(a), b] is newly created. In this case,
the cost incurred is 3, and the number of locally rich levels does not change.

Case (4): The case that �(a) is the top of a tank and is rich. First, execute
FreeTail(�(a)) and receive the a-request a′ from the bottom of the tank. Then,
execute AppendRich(�(a), a) and AppendRich(�(a), a′) in this order. Intuitively
speaking, we shift the top of the tank to the right, and assign a to the vertex
which was a tank. In this case, it costs 2 and similarly as Case (1), the number
of locally rich levels increases by at most 1.

Case (5): The case that �(a) is the top of a tank, say tank[b, �(a)], and is poor.
Execute FreeTail(�(a)) and receive the a-request a′ of level b from tank[b, �(a)],
and execute AppendRich(�(a), a) to process a. Note that �(a′) (= b) is poor
because �(a′) was the bottom of tank[b, �(a)]. Also, note that b currently does
not belong to a tank. Hence our current task is to process a′ of level b where
b does not belong to a tank and is poor. So, according to the status of levels
higher than b, we execute one of Cases (2) or (3). Before going to Cases (2) or
(3), the cost incurred is 1 and there is no change in the number of locally rich
levels. Hence, the total cost of the whole execution of this case can be obtained
by adding one to the cost incurred by the subsequently executed case (Cases
(2) or (3)), and the change in the locally rich levels is the same as that of the
subsequently executed case.

Case (6): The case that �(a) belongs to tank[b, t] and is not the top of tank[b, t].
Execute FreeTail(t) and receive the a-request a′ of level b from tank[b, t]. Then,
execute AppendPoor(�(a), a) and receive an a-request a′′ of level s. By a similar
observation as Case (3), we can see that �(a) < s ≤ t. Then, assign a′′ to
the vertex which was tank[b, t] using AppendRich(t, a′′). (Note that tank[s, t] is
created if s 
= t.) Since �(a) was poor, a was assigned to a left child. Hence �(a) is
currently locally rich. Execute AppendRich(�(a), a′), which creates tank[b, �(a)]
if �(a) 
= b. The execution of this case costs 3, and the number of locally rich
levels does not change.
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Here we give one remark. Suppose that �(a) does not belong to a tank and
is poor. Then, we look at higher levels to see which of Cases (2) and (3) is
executed. It may happen that we encounter neither a rich level nor a bottom of
a tank, namely there is no tank in upper levels, and all upper levels are poor.
However, we can claim that this does not happen since such a case happens only
when the total bandwidth of all a-requests exceeds the capacity. As we have
mentioned previously, we excluded this case from inputs. (Actually, we do not
have to exclude this case because our algorithm detects this situation, and in
such a case, we may simply reject the a-request.) Because of the space restriction,
we omit the proof of this claim.

The following lemma proves the correctness of Extended-Lazy on a-requests.

Lemma 1. Extended-Lazy preserves the semi-compactness on a-requests.

Proof. In order to prove this lemma, we have to show that the five conditions
(i) through (v) of semi-compactness are preserved after serving an a-request. It
is relatively easy to show that (i) is preserved because Extended-Lazy uses
only AppendRich, AppendPoor, and FreeTail, each of which preserves the or-
thogonality even by a single application. So, let us show that conditions (ii)
through (v) are preserved after the execution of each of Cases (1) through (6),
provided that (i) through (v) are satisfied before the execution. Because of the
space restriction, however, we treat here only Case (1) and omit all other cases.
Case (1): Let v be the vertex (of level �(a)) to which the request a is assigned.
Note that by AppendRich(�(a), a), some of ancestors of v may turn from non-
dead to dead. It is easy to see that the condition (ii) is preserved at level �(a)
since we only appended the request to the right of the rightmost dead vertex.
Now, suppose that vertex vs of level s (s > �(a)) turned from non-dead to dead.
Then, by the above observation, vs is an ancestor of v. Next, let v′ be the vertex
which is immediately left of v. Then, since v′ was dead, vs is not an ancestor of
v′. As a result, the ancestor of v′ at level s is the vertex, say v′s, immediately
left of vs, which implies that v′s was dead. Thus, condition (ii) is satisfied at
any level. It is not hard to see that other conditions, (iii) through (v), are also
preserved because Case (1) does not create or remove tanks. �


3.2 Executions of Extended-Lazy for r-Requests

Next, we describe executions of Extended-Lazy for r-requests. Similarly as
Sec. 3.1, there are eight cases depending on the status of level �(f(r)) as sum-
marized in Fig. 6, each of which will be explained in the following. Recall that
f(r) is the request that r asks to release.

Case (I): The case that �(f(r)) does not belong to a tank and is locally rich.
Release f(r). If f(r) is the rightmost dead vertex at �(f(r)), do nothing. Oth-
erwise, use FreeTail(�(f(r))) and receive an a-request a of level �(f(r)). Then,
using AppendLeft(�(f(r)), a), assign a to the vertex to which f(r) was assigned.
Note that the vertex v which was the rightmost dead vertex of level �(f(r))
becomes non-dead after the above operations, which may turn some vertices in
the path from v to the root non-dead from dead. As a result, an assignment may
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�(f(r)) not belong to a tank locally rich Case (I)
otherwise Case (II)

belong to a tank top locally rich Case (III)
otherwise Case (IV)

bottom the top is locally rich Case (V)
otherwise Case (VI)

otherwise the top is locally rich Case (VII)
otherwise Case (VIII)

Fig. 6. Execution of Extended-Lazy for an r-request r

become non-semi-compact. If the semi-compactness is broken, we use the oper-
ation Repair, which will be explained later, to retrieve the semi-compactness.
The cost of this case is either 1 or 0, and the number of locally rich levels de-
creases by 1 without considering the effect of Repair. (We later estimate these
quantities considering the effect of Repair.)

Case (II): The case that �(f(r)) does not belong to a tank and is not locally
rich. Extended-Lazy behaves exactly the same way as Case (I). Note that
vertex v which was the rightmost dead vertex at level �(f(r)) becomes non-dead
after the above operations, but v is a right child because �(f(r)) was not locally
rich. Since the semi-compactness was satisfied before the execution, the vertex
immediately left of v was (and is) dead, which implies that the parent and hence
all ancestors of v are still dead. Thus, we do not need Repair in this case. It
costs either 1 or 0, and the number of locally rich levels increases by 1 because
�(f(r)) becomes locally rich.

Case (III): The case that �(f(r)) belongs to tank[b, t], �(f(r)) = t, and t is
locally rich. First, release f(r). Next, execute FreeTail(t) and receive the a-
request a of level b from tank[b, t]. If f(r) was assigned to the vertex immediately
left of tank[b, t] at t, do nothing. Otherwise, using FreeTail(t), receive an a-
request a′ of level t, and using AppendLeft(t, a′), assign a′ to the vertex to
which f(r) was assigned. We then find a level to which we assign the request a.
Starting from level t, we see if the level contains at least one a-request, until we
reach level b + 1. Let � be the first such level. Then execute AppendRich(�, a),
which creates tank[b, �]. If there is no such level � between t and b + 1, execute
AppendRich(b, a). In this case, we may need Repair. Without considering the
effect of Repair, it costs either 1 or 2. If it costs 1, the number of locally rich
levels stays unchanged or decreases by 1, and if it costs 2, the number of locally
rich levels decreases by 1.

Case (IV): The case that �(f(r)) belongs to tank[b, t], �(f(r)) = t, and t is not
locally rich. Extended-Lazy behaves exactly the same way as Case (III). In
this case, we do not need Repair by a similar observation as Case (II). It costs
either 1 or 2, and the number of locally rich levels increases by 1.

Case (V): The case that �(f(r)) belongs to tank[b, t], �(f(r)) = b, and t is locally
rich. First, release f(r). If f(r) was the request assigned to tank[b, t], stop here;
otherwise, do the following: Execute FreeTail(t) and receive the a-request a of
level b from tank[b, t]. Then, using AppendLeft(b, a), assign a to the vertex to
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which f(r) was assigned. In this case, we may need Repair because tank[b, t]
becomes unassigned. The incurred cost is 1 or 0, and the number of locally rich
levels decreases by 1 without considering the effect of Repair.

Case (VI): The case that �(f(r)) belongs to tank[b, t], �(f(r)) = b, and t is
not locally rich. Extended-Lazy behaves exactly the same way as Case (V).
In this case, we do not need Repair for the same reason as Case (II). The cost
is 1 or 0, and the number of locally rich levels increases by 1.

Case (VII): The case that �(f(r)) belongs to tank[b, t], b < �(f(r)) < t, and
t is locally rich. First, release f(r). Next, execute FreeTail(t) and receive the a-
request a of level b from tank[b, t]. If f(r) was assigned to the rightmost assigned
vertex at �(f(r)), do nothing. Otherwise, using FreeTail(�(f(r))), receive an a-
request a′ of level �(f(r)), and using AppendLeft(�(f(r)), a′), assign a′ to the
vertex to which f(r) was assigned. We then find a level to which we assign the
request a in the same way as Case (III). Starting from level �(f(r)), we see if the
level contains at least one a-request, until we reach level b+ 1. Let � be the first
such level. Then execute AppendRich(�, a), which creates tank[b, �]. If there is
no such level � between �(f(r)) and b+1, execute AppendRich(b, a). In this case,
we may need Repair. Without considering the effect of Repair, it costs either
1 or 2. If it costs 1, the number of locally rich levels is unchanged or decreases
by 1, and if it costs 2, the number of locally rich levels decreases by 1.

Case (VIII): The case that �(f(r)) belongs to tank[b, t], b < �(f(r)) < t, and t is
not locally rich. Extended-Lazy behaves exactly the same way as Case (VII).
In this case, we do not need Repair for the same reason as Case (IV). The cost
is 1 or 2. The number of locally rich levels increases by 1 or 2 when the cost is
1, and by 1 when the cost is 2.

Recall that after executing Cases (I), (III), (V), or (VII), the OVSF code tree
may not satisfy semi-compactness. In such a case, however, there is only one level
that breaks the conditions of semi-compactness, and furthermore, there is only
one broken condition, namely (ii) or (v) (again, the proof is omitted). If (ii) is
broken at level �, level � consists of, from left to right, a sequence of dead vertices
up to some point, then one non-dead vertex v, and then again a sequence of (at
least one) dead vertices. This non-dead vertex was called a “hole” in [2]. We also
use the same terminology here, and call level � a hole-level. If (v) is broken at
level �, � is a bottom of a tank tank[�, t] and is rich. Furthermore, level � consists
of, from the leftmost vertex, a sequence of 0 or more dead vertices, a sequence of
1 or more non-dead vertices, and then the leftmost level-� descendant of tank[�,
t] (which is non-dead by definition). We call level � a rich-bottom-level. A level
is called a critical-level if it is a hole-level or a rich-bottom-level.

The idea of Repair is to resolve a critical-level one by one. When we remove
a critical-level � by Repair, it may create another critical-level. However, we
can prove that there arises at most one new critical level, and its level is higher
than �. Hence we can obtain a semi-compact assignment by applying Repair at
most h times.

Let us explain the operation Repair (again because of a space restriction, we
will give only a rough idea and omit detailed descriptions). If � is a hole-level
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and � is not a bottom of a tank, then we release the a-request a assigned to the
rightmost assigned vertex at level �, and reassign it to the hole to fill the hole by
AppendLeft(�, a). If � is a hole-level and � is a bottom of a tank v(=tank[�, t]),
then there is a vertex u that is the leftmost level-� descendant of v. Recall that the
a-request virtually assigned to v is actually a request for level � and is assigned
to u. We release this request a using FreeTail(t) and perform AppendLeft(�, a).
Finally, if � is a rich-bottom-level, then we will do the same operation, namely,
release the a-request a from the tank, and execute AppendLeft(�, a).

Lemma 2. Extended-Lazy preserves the semi-compactness on r-requests.

Proof. Similarly as Lemma 1, we will check that five conditions (i) through (v) of
semi-compactness are preserved for each application of Cases (I) through (VIII)
(followed by appropriate number of applications of Repair). Because of the
space restriction, it is omitted. �


4 Competitive Analyses of Extended-Lazy

First, we estimate the cost and the increase in the number of locally rich levels
incurred by applications of Repair. By a single application of Repair, the cost
of 1 is incurred and the number of locally rich levels increases or decreases by
1. In case that the number of locally rich levels increases by 1, the resulting
OVSF code tree is semi-compact. On the other hand, if the number of locally
rich levels decreases by 1, we may need one more application of Repair. Hence, if
Repair is executed k times, then the total cost of k is incurred, and the number
of locally rich levels decreases by k− 2 or k. (In the case of k = 1, “decreases by
k − 2” means “increases by 1”.)

Then, let us estimate the cost and the increase in the number of locally
rich levels for each of the cases (1) through (6) and (I) through (VIII) of
Extended-Lazy. From the observations of Sects. 3.1 and 3.2, and the above ob-
servation on Repair, these quantities can be calculated as in Table 1. There are
two values in Case (5): Left and right values correspond to the cases where
Cases (2) and (3), respectively, are executed after Case (5). There are also
two values in Cases (III), (VII), and (VIII), which correspond to behaviors of
Extended-Lazy. In the lower table, k denotes the number of applications of
Repair. One can see that, from the upper table, the sum of the cost and the

Table 1. The costs and increases in the number of locally rich levels for each execution
of Extended-Lazy

Case (1) (2) (3) (4) (5) (6)
Cost 1 1 3 2 2 4 3

Increase ≤ 1 ≤ 1 0 ≤ 1 ≤ 1 0 0

Case (I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Cost ≤ k + 1 ≤ 1 k + 1 k + 2 ≤ 2 ≤ k + 1 ≤ 1 k + 1 k + 2 1 2

Increase ≤ −k + 1 1 ≤ −k + 2 ≤ −k + 1 1 ≤ −k + 1 1 ≤ −k + 2 ≤ −k + 1 ≤ 2 1
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increase in the number of locally rich levels is at most 4 for serving an a-request.
This happens when Extended-Lazy executes Case (5) followed by Case (3).
Similarly, by the lower table, the sum of the cost and the increase in the number
of locally rich levels for serving one r-request is at most 3, which happens in
Cases (III), (IV), (VII), and (VIII).

Now, we are ready to calculate the competitive ratio of Extended-Lazy.
For an arbitrary input sequence σ, let A and R be the set of a-requests and the
set of r-requests in σ, respectively. It is easy to see that the cost of an optimal
offline algorithm is at least |A| because each a-request incurs a cost of 1 in any
algorithm. We then estimate the cost of Extended-Lazy. For a ∈ A and r ∈ R,
let ca and cr be the costs of Extended-Lazy for serving a and r, respectively.
The cost of Extended-Lazy for σ is then

∑
a∈A ca +

∑
r∈R cr. Also, for a ∈ A

and r ∈ R, let pa and pr be the increases in the number of locally rich levels
caused by Extended-Lazy in serving a and r, respectively. Define P to be the
number of locally rich levels in the OVSF code tree at the end of the input
σ. Then, P =

∑
a∈A pa +

∑
r∈R pr since there is no locally rich level at the

beginning. The cost of Extended-Lazy for σ is∑
a∈A

ca +
∑
r∈R

cr ≤
∑
a∈A

ca +
∑
r∈R

cr + P

=
∑
a∈A

(ca + pa) +
∑
r∈R

(cr + pr)

≤
∑
a∈A

4 +
∑
r∈R

3 (1)

= 4|A|+ 3|R|
≤ 7|A|. (2)

(1) is due to the above analysis, and (2) is due to the fact that |R| ≤ |A| since
for each r-request, there must be a preceding a-request corresponding to it. Now,
the following theorem is immediate from the above inequality.

Theorem 1. The competitive ratio of Extended-Lazy is at most 7.

Next, we give a lower bound on the competitive ratio of Extended-Lazy.

Theorem 2. The competitive ratio of Extended-Lazy is at least 7−ε for any
positive constant ε > 0.

Proof. As one can see in the upper bound analysis, the most costly operations
are Case (5) followed by Case (3) for a-requests and Cases (III), (IV), (VII), and
(VIII) for r-requests. We first give a short sequence which leads an OVSF code
tree of Extended-Lazy to some special configuration, and after that, we give
a-requests and r-requests repeatedly, for which Extended-Lazy executes Case
(5) followed by Case (3), or Case (VIII) almost every time. Because of the space
restriction, we omit the complete proof. �
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5 A Lower Bound

Theorem 3. For any positive constant ε > 0, there is no (2 − ε)-competitive
online algorithm for the online OVSF code assignment problem.

Proof. Consider an OVSF code tree of height h (where h is even), namely, the
number of leaves are n = 2h. First, an adversary gives n a-requests of level 0
so that the vertices of level 0 are fully assigned, by which, an arbitrary online
algorithm incurs the cost of n. Then, depending on the assignment of the online
algorithm, the adversary requires to release one a-request from each subtree
rooted at a vertex of level h/2. (Hereafter, we simply say “subtree” to mean a
subtree of this size.) Since there are

√
n such subtrees, the adversary gives

√
n r-

requests in total. Next, the adversary gives an a-request a1 of level h/2. To assign
a1, the online algorithm has to make one of subtrees empty by reassignments,
for which the cost of at least

√
n− 1 is required.

Again, depending on the behavior of the online algorithm, the adversary re-
quires to release

√
n a-requests of level 0 uniformly from each subtree except for

the subtree to which a1 is assigned. Here, “uniformly” means that the numbers
of r-requests for any pair of subtrees differ by at most 1; in the current case, the
adversary requires to release two a-requests from one subtree, and one a-request
from each of the other

√
n − 2 subtrees. Subsequently, the adversary gives an

a-request a2 of level h/2. Similarly as above, the online algorithm needs
√
n− 2

reassignments to assign a2.
The adversary repeats the same operation

√
n rounds, where one round con-

sists of
√
n r-requests to release a-requests of level 0 uniformly from subtrees,

and one a-request of level h/2. Eventually, all initial a-requests of level 0 are
removed, and the final OVSF code tree contains

√
n a-requests of level h/2.

The total cost of the online algorithm is n+
√
n+(

√
n−1)+(

√
n−2)+(

√
n−

2)+· · · = n+
√
n+

∑√
n

i=1(
√
n−�

√
n√

n+1−i
�) > 2n−√n(log

√
n+(

∑√
n

i=1
1
i−log

√
n)).

On the other hand, the cost of an optimal offline algorithm is n +
√
n since it

does not need reassignment. Hence, the competitive ratio is at least

2n −
√

n(log
√

n + (
�√

n
i=1

1
i
− log

√
n))

n +
√

n
= 2 −

√
n(log

√
n + 2 + (

�√
n

i=1
1
i
− log

√
n))

n +
√

n
.

Since limn→∞(
∑√

n
i=1

1
i −log

√
n) = γ (γ � 0.577) is the Euler’s constant, the term

√
n(log

√
n+2+(

�√
n

i=1
1
i −log

√
n))

n+
√

n
becomes arbitrarily small as n goes infinity. �
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algorithmic view on OVSF code assignment. Algorithmica 47(3), 269–298 (2007)

5. Erlebach, T., Jacob, R., Tomamichel, M.: Algorithmische aspekte von OVSF code
assignment mit schwerpunkt auf offline code assignment. Student thesis as ETH
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Abstract. We study the optimal tree structure for the key management
problem. In the key tree, when two or more leaves are deleted or replaced,
the updating cost is defined to be the number of encryptions needed to
securely update the remaining keys. Our objective is to find the optimal
tree structure where the worst case updating cost is minimum. We first
prove the degree upper bound (k + 1)2 − 1 when k leaves are deleted
from the tree. Then we focus on the 2-deletion problem and prove that
the optimal tree is a balanced tree with certain root degree 5 ≤ d ≤ 7
where the number of leaves in the subtrees differs by at most one and
each subtree is a 2-3 tree.

1 Introduction

In the applications that require content security, encryption technology is widely
used. Asymmetric encryption is usually used in a system requiring stronger se-
curity, while symmetric encryption technology is also widely used because of the
easy implementation and other advantages. In the applications such as telecon-
ferencing and online TV, the most important security problem is to ensure that
only the authorized users can enjoy the service. Centralized key management
technology can achieve efficiency and satisfy the security requirement of the sys-
tem. Hence, several models based on the key tree management are proposed to
safely multicast the content. Two kinds of securities should be guaranteed in
these applications: one is Future Security which prevents a deleted user from
accessing the future content; the other is Past Security which prevents a newly
joined user from accessing the past content. Key tree model, which was proposed
by Wong el al. [8] is widely studied in recent years. In this model, the Group
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Controller (GC) maintains a tree structure for the whole group. The root of the
tree stores a Traffic Encryption Key (TEK) which is used to encrypt the content
that should be broadcast to the authorized users. To update the TEK securely,
some auxiliary keys are maintained. Whenever a user leaves or joins, the GC
would update keys accordingly to satisfy Future Security and Past Security. Be-
cause updating keys for each user change is too frequent in some applications, [5]
proposed Batch Rekeying Model where keys are only updated after a certain pe-
riod of time. [10] studied the scenario of popular services with limited resources
which always has the same number of joins and leaves during the batch period
(because there are always users on the waiting list who will be assigned to empty
positions whenever some authorized users leave). A recent survey for key tree
management can be found in [2].

An important research problem in the key tree model is to find an optimal
structure for a certain pattern of user behaviors so that the total number of en-
cryptions involved in updating the keys is minimized. Graham et al. [3] studied
the optimal structure in Batch Rekeying Model where every user has a proba-
bility p to be replaced in the batch period. They showed that the optimal tree
for n users is an n-star when p > 1 − 3−1/3 ≈ 0.307, and when p ≤ 1 − 3−1/3,
the optimal tree can be computed in O(n) time. Specially when p tends to 0,
the optimal tree resembles a balanced ternary tree to varying degrees depending
on certain number-theoretical properties of n. Feng et al. [1] studied the optimal
structure in Key Tree Model under the assumption that users in the group are
all deleted one by one. Their result shows that the optimal tree is a tree where
every internal node has degree at most 5 and the children of nodes which have
degree d 
= 3 are all leaves. [9] improved the result of [1] and showed that a bal-
anced tree where every subtree has nearly the same number of leaves can achieve
the optimal cost. They then investigate the optimal structure when the insertion
cost in the initial setup period is also considered and showed that the optimal
tree is a tree where every internal node has degree at most 7 and children of
nodes which have degree d 
= 2 and d 
= 3 are all leaves.

More related to this paper, Soneyink et al. [6] proved that any distribution
scheme has a worst-case cost of Ω(logn) for deleting a user. They also found an
optimal structure when only one user is deleted from the tree. In this paper, we
further investigate the problem when two or more users are deleted from a tree.
We first prove a degree upper bound (k + 1)2 − 1 for the problem of deleting k
users. Then we give a tighter degree bound for the problem of deleting two users.
After that, we investigate the maximum number of leaves that can be placed on
the tree given a fixed worst case deletion cost. Based on this, we prove that a
balanced tree with certain root degree 5 ≤ d ≤ 7 where the number of leaves
in the subtrees differs by at most one and each subtree is a 2-3 tree can always
achieve the minimum worst case 2-deletion cost.

The rest of this paper is organized as follows. We review the key tree model in
Section 2 and then prove the degree bound of the optimal tree for the k-deletion
problem in Section 3. From Section 4 on, we focus on the 2-deletion problem
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and remove the possibility of root degree 2 and 3. In Section 5, we study the
maximum number of leaves that can be placed on a tree given a fixed deletion
cost and use the result to prove that the optimal tree for the 2-deletion problem
is a tree where each subtree of the root is a 2-3 tree and has the number of leaves
differed by at most 1. Finally, we conclude our work and propose a conjecture
on the optimal tree cost for the general k-deletion problem in Section 6.

2 Preliminaries

We first review the Key Tree Model [8] which is also referred to in the literature
as LKH(logical key hierarchy) [7].

In the Key Tree Model, there is a Group Controller maintaining a key tree for
the group. A leaf on the key tree represents a user and stores an individual key
that is only known by this user. An internal node stores a key that is shared by
all its leaf descendants. Thus a user always knows the keys stored in the path
from the leaf to the root. To guarantee content security, the GC encrypts the
content by the Traffic Encryption Key (TEK) which is stored in the root and
then broadcast it to the users. Only the authorized users knowing the TEK can
decrypt the content. When a user joins or leaves, the GC will update the keys
in a bottom-up fashion. As shown in Figure 1(a), there are 7 users in the group.
We take the deletion of user u4 as an example, since u4 knows k4, k9 and k10,
the GC need to update the keys k9 and k10 (the node that stores k4 disappears
because u4 is already deleted from the group). GC will encrypt the new k9 with
k5 and broadcast it to notify u5. Note that only u5 can decrypt the message.
Then GC encrypts the new k10 with k6, k7, k8 and the new k9 respectively, and
then broadcast the encrypted messages to notify the users. Since all the users
and only the users in the group can decrypt one of these messages, the GC can
safely notify the users except user u4 about the new TEK. The deletion cost
measured as the number of encryptions is 5 in this example.

In the following, we say that a node u has degree d if it has d children in the
tree. Note that the worst case deletion cost of the tree shown in Figure 1(a) is
6 where one of the users u1, u2, u3 is deleted. In [6], the authors investigate the
optimal tree structure with n leaves where the worst case single deletion cost is
minimum. Their result shows that the optimal tree is a special kind of 2-3 tree
defined as follows.
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Fig. 1. Two structures of a group with 7 users
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Definition 1. In the whole paper, we use 2-3 tree to denote a tree with n leaves
constructed in the following way.

(1)When n ≥ 5, the root degree is 3 and the number of leaves in three subtrees
of the root differs by at most 1. When n = 4, the tree is a complete binary tree.
When n = 2 or n = 3, the tree has root degree 2 and 3 respectively. When n = 1,
the tree only consists of a root.

(2)Each subtree of the root is a 2-3 tree defined recursively.

In fact, [6] showed that 2-3 tree is a tree where the maximum ancestor weight
(summation of degrees of all ancestors of a node) of the leaves on the tree is
minimum among all the trees having the same number of leaves. As shown in
Figure 1(b), the optimal tree for a single deletion for a group with 7 users has a
worst case deletion cost 5.

In this paper, we study the scenario where two or more users leave the group
during a period and we update keys at the end of this period. There are two
versions of this problem to be considered here.

We denote the problem to find the optimal tree when k users are deleted as
pure k-deletion problem. For example, deleting two users u1 and u4 in Figure 1(a)
will incur cost 7 because we need to update k8 and k9 with 2 and 1 encryptions
respectively and then to update k10 with 4 encryptions. This is also the worst
case deletion. The objective is to find the optimal structure where the worst case
cost is minimum.

In popular applications, there is a fixed number of positions and new users are
always waiting to join. In such a scenario the number of joins and the number
of leaves during the period are the same, which means that the newly joined k
users will take the k positions which are vacant due to the leave of k users. In
this setting, when two users u1 and u4 are replaced on Figure 1 (a), the updating
cost is 9 which equals the summation of the ancestors’ degrees of these two leaves
where the common ancestors’ degrees are only computed once. We denote the
problem to find the optimal tree when k users are replaced as k-deletion problem.

We first define the k-deletion problem formally as follows.

Definition 2. Given a tree T , we denote the number of encryptions incurred by re-
placingui1 , . . . , uik

withknewusersasCT (ui1 , . . . , uik
) =

∑
v∈(
�

1≤j≤k ANC(uij
)) dv

where ANC(u) is the set of u’s ancestor nodes and dv is v’s degree. We use k-
deletion cost to denote the maximum cost among all possible combinations and
write it as Ck(T, n) = maxi1,i2,...,ik

CT (ui1 , ui2 , . . . , uik
).

We further define an optimal tree Tn,k,opt (abbreviated as Tn,opt if the context
is clear) for k-deletion problem as a tree which has the minimum k-deletion cost
over all trees with n leaves, i.e. Ck(Tn,opt, n) = min

T
Ck(T, n). We also denote

this optimal cost as OPTk(n). The k-deletion problem is to find the OPTk(n)
and Tn,k,opt.

The pure k-deletion cost and the pure k-deletion problem are defined similarly
by using the cost incurred by permanently deleting the leaves instead of the cost
by updating the leaves (Some keys need not be updated if all its leaf descendants
are deleted and the number of encryptions needed to update that key is also



Optimal Key Tree Structure for Deleting Two or More Leaves 81

reduced if some branches of that node totally disappear after deletion). We will
show the relationship between these two problems in the following.

Definition 3. We say a node v is a pseudo-leaf node if its children are all leaves.
In the following two lemmas, we use t to denote the number of pseudo-leaf nodes
in a tree T .

Lemma 1. If t ≤ k, then the pure k-deletion cost of T is at least n− k.

Proof. When t ≤ k, we claim that in order to achieve pure k-deletion cost, we
need to delete at least one leaf from each pseudo-leaf node. Suppose on the
contrary there exists one pseudo-leaf node v where none of its children belongs
to the k leaves we delete. We divide the discussion into two cases.

First, if each of the k leaves is a child of the remaining t−1 pseudo-leaf nodes,
then there exists one pseudo-leaf node u with at least two children deleted. In
this case, a larger pure deletion cost can be achieved if we delete one child of v
while keeping one more child of u undeleted.

Second, if some of the k leaves are not from the remaining t − 1 pseudo-leaf
nodes, then we assume u is one of them whose parent is not a pseudo-leaf. Then
there exists one of u’s sibling w that contains at least one pseudo-leaf w′ (w′

can be w itself). If no children of w′ belong to the k leaves, then deleting a child
of w′ while keeping u undeleted incurs larger pure deletion cost. If at least one
child of w′ belongs to the k leaves, then deleting a child of v while keeping u
undeleted incurs larger pure deletion cost.

We see that in the worse case deletion, each pseudo-leaf node has at least
one child deleted, which implies that all the keys in the remaining n− k leaves
should be used once as the encryption key in the updating process. Hence the
pure k-deletion cost of T is at least n− k.

Lemma 2. If t > k, then the pure k-deletion cost is Ck(T, n)−k where Ck(T, n)
is the k-deletion cost.

Proof. Using similar arguments as in the proof of Lemma 1, we can prove that
when t > k, the pure k-deletion cost can only be achieved when the k deleted
leaves are from k different pseudo-leaf nodes. Then it is easy to see that the pure
k-deletion cost is Ck(T, n)− k where Ck(T, n) is the k-deletion cost.

Theorem 1. When considering trees with n leaves, the optimal pure k-deletion
cost is OPTk(n)− k where OPTk(n) is the optimal k-deletion cost.

Proof. Note that in the tree where all n leaves have the same parent (denoted
as one-level tree), the pure k-deletion cost is n− k. By Lemma 1, any tree with
the number of pseudo-leaf nodes at most k has the pure k-deletion cost at least
n − k. Hence we only need to search the optimal tree among the one-level tree
and the trees with the number of pseudo-leaf nodes larger than k. Moreover,
in the one-level tree T , the pure k-deletion cost is n − k = Ck(T, n) − k where
Ck(T, n) is the k-deletion cost. Further by Lemma 2, all the trees in the scope for
searching the optimal tree have pure k-deletion cost Ck(T, n)− k, which implies
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that the optimal pure k-deletion cost is OPTk(n) − k where OPTk(n) is the
optimal k-deletion cost (The structure of the optimal trees in both problems are
also the same).

The above theorem implies that the optimal tree for the pure k-deletion problem
and the k-deletion problem are in fact the same. Therefore, we only focus on
the k-deletion problem in the following and when we use “deleting”, we in fact
mean “updating”.

3 Degree Bound for the k-Deletion Problem

In this section, we try to deduce the degree bound for the k-deletion problem. In
the following proofs, we will often choose a template tree T and then construct
a tree T ′ by deleting from T some leaves together with the exclusive part of leaf-
root paths of those leaves. Here, the exclusive part of a leaf-root path includes
those edges that are not on the leaf-root path of any of the remaining leaves. We
also say that T is a template tree of T ′. By the definition of the k-deletion cost,
we have the following fact.

Fact 1. If T is a template tree of T ′, then the k-deletion cost of T ′ is no larger
than that of T .

Lemma 3. OPTk(n) is non-decreasing when n increases.

Proof. Suppose on the contrary OPTk(n1) > OPTk(n2) when n1 ≤ n2, then
there exist two trees T1 and T2 satisfying Ck(T1, n1) = OPTk(n1) and Ck(T2, n2)
= OPTk(n2). We can take T2 as a template tree and delete the leaves until the
number of leaves decreases to n1. The resulting tree T ′

1 satisfies Ck(T ′
1, n1) ≤

Ck(T2, n2) < OPTk(n1) by Fact 1, which contradicts the definition of OPTk(n1).
The lemma is then proved.

Lemma 4. Tn,opt has root degree upper bounded by (k + 1)2 − 1.

Proof. We divide the value of root degree d ≥ (k + 1)2 into two sets, {d|(k +
t)2 ≤ d < (k + t)(k + t + 1), d, k, t ∈ N, t ≥ 1} and {d|(k + t − 1)(k + t) ≤
d < (k + t)2, d, k, t ∈ N, t ≥ 2}. Take k = 2 for instance, the first set is
{9, 10, 11, 16, 17, 18, 19, 25, . . .} while the other is {12, 13, 14, 15, 20, 21, 22, 23, . . .}.
Case 1: (k + t)2 ≤ d < (k + t)(k + t + 1) (t ≥ 1).
We write d as (k + t)2 + r where 0 ≤ r < k + t. Given a tree T , we can transform
it into a tree with root degree k + t as Figure 2 shows. In the resulting tree T ′,
subtrees Tu1 , . . . , Tuk+t

are k+t subtrees where the root u1, . . . , uk+t are on level
one. Among the k + t subtrees, there are r subtrees with root degree k + t + 1
and k + t − r subtrees with root degree k + t. Suppose that the k-deletion cost
of T ′ is incurred by deleting k1, k2, . . . , ks users from subtree Ti1 , Ti2 , . . . , Tis

respectively where k1 + k2 + . . . + ks = k and s ≤ k. The corresponding cost
is Ck(T ′, n) =

∑s
j=1 Ckj (Tij , nij ) + D0 where nij is the number of leaves in Tij

and D0 is the cost incurred in the first two levels.
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Fig. 2. Transformation of the tree which has root degree d = (k + t)2 + r

In the original tree T , the corresponding cost for deleting those leaves is
Ck(T, n) =

∑s
j=1 Ckj (Tij , nij ) + d =

∑s
j=1 Ckj (Tij , nij ) + (k + t)2 + r. We will

prove that when t ≥ 1 we always have Ck(T, n) ≥ Ck(T ′, n), i.e. D0 ≤ (k+t)2+r.
Firstly, if r ≤ k, the cost D0 is at most r(k + t + 1) + (k − r)(k + t) + k + t

where there are r users coming from r subtrees with root degree k + t + 1 and
k − r users coming from k − r subtrees with root degree k + t. Therefore, we
have D0 ≤ (k + t+1)r +(k + t)(k− r)+ k + t = (k + t)(k +1)+ r ≤ (k + t)2 + r.

Secondly, if r > k, the cost D0 is at most (k + t) + (k + t + 1)k where the
k users are all from k subtrees which have root degree k + t + 1. Therefore, we
have D0 ≤ (k + t) + (k + t + 1)k ≤ (k + t)(k + 1) + k ≤ (k + t)2 + r.

Hence, in both situations, the condition t ≥ 1 ensures that the transformation
from T to T ′ does not increase the k-deletion cost.

Case 2 can be proved similarly.

Lemma 4 suggests that we can find an optimal tree for k-deletion cost among
trees whose root degree is at most (k + t)2 − 1. Note that our degree bound in
Lemma 4 is only for the root. We can also extend this property to all the internal
nodes (proof is also omitted).

Lemma 5. Any internal node in Tn,opt has degree upper bounded by (k+1)2−1.

4 Degree Bound for 2-Deletion Problem

From this section on, we focus on the 2-deletion problem.

Definition 4. We denote the maximum cost to delete a single leaf in a tree T
as ST and the maximum cost to delete two leaves as DT , i.e. ST = C(T, 1) and
DT = C(T, 2).

According to Lemma 5, for 2-deletion, Tn,opt has degree upper bounded by 8.
Furthermore, in a tree T with root degree 1, the two deleted users in any com-
bination are from the only subtree T1. Therefore, the tree T1 is better than T
because the 2-deletion cost of T1 is one less than that of T . Thus we need not
consider root degree d = 1 when we are searching for the optimal tree.

Fact 2. For 2-deletion problem, suppose that a tree T has root degree d where
d ≥ 2 and the d subtrees are T1, T2, . . . , Td. We have

DT = max
1≤i,j≤d

{DTi + d, STi + STj + d}.
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Proof. We know that deleting any two leaves from a subtree Ti will incur a cost
at most DTi + d, while deleting two leaves from two different subtrees Ti and Tj

will incur a cost at most STi + STj + d. The 2-deletion cost comes from one of
the above cases and therefore the fact holds.

We can further remove the possibility of degree 8 by the following lemma.

Lemma 6. For 2-deletion problem, we can find an optimal tree among the trees
with node degrees bounded between 2 and 7.

In the following, we show two important properties of the optimal tree (monotone
property and 2-3 tree property) and then further remove the possibility of root
degree 2 and 3 to reduce the scope of trees within which we search for the optimal
tree. Due to space limit, most of the proofs are omitted in this version.

Lemma 7. (monotone property) For 2-deletion problem, suppose a tree T has root
degree d where d ≥ 2 and d subtrees are T1, T2, . . . , Td. Without loss of general-
ity, we assume that T has a non-increasing leaf descendant vector (n1, n2, . . . , nd),
where ni is the number of leaves in subtree Ti. Then, there exists an optimal tree
where ST1 ≥ ST2 ≥ . . . ≥ STd

and Ti is a template of Ti+1 for 2 ≤ i ≤ d− 1.

Fact 3. For trees satisfying Lemma 7, we have

DT = max{DT1 + d, ST1 + ST2 + d}.
Proof. By Fact 2 we have DT = max1≤i,j≤d{DTi + d, STi + STj + d}. Lemma 7
further ensures that max1≤i,j≤d{DTi + d, STi + STj + d} = max{DT1 + d, DT2 +
d, ST1 + ST2 + d}. Since DT2 < 2ST2 ≤ ST1 + ST2 , we have DT = max{DT1 +
d, ST1 + ST2 + d}.
In the following, we further reduce the scope for searching the optimal tree by
proving the following lemma.

Lemma 8. (2-3 tree property) For a tree T satisfying Lemma 7, we can trans-
form subtrees T2, . . . , Td into 2-3 trees without increasing the 2-deletion cost.

Proof. Given a tree T satisfying Lemma 7 and Fact 3, we transform subtrees
T2, T3, . . . , Td into 2-3 trees T ′

2, T
′
3, . . . , T

′
d to get a new tree T ′. For 2 ≤ i ≤ d,

since ST ′
i

= OPT1(ni), we have ST ′
d
≤ . . . ≤ ST ′

3
≤ ST ′

2
≤ ST2 (Lemma 3) and

DT ′
i
≤ 2ST ′

i
≤ 2ST ′

2
≤ ST1 + ST ′

2
(2 ≤ i ≤ d). Thus DT ′ = max{DT1 + d, DT ′

2
+

d, ST1 + ST ′
2

+ d} ≤ max{DT1 + d, ST1 + ST2 + d} = DT , which implies the
transformation does not increase 2-deletion cost. The lemma is then proved.

We denote the trees satisfying Lemma 8 as candidate-trees. By Lemma 8, we can
find an optimal tree among all the candidate trees. For a candidate tree T with
root degree d, we define branch Bi to be the union of Ti and the edge connecting
the root of T with the root of Ti. We say the branch B1 is the dominating branch
and other branches B2, . . . Bd are ordinary branches. We then prove the following
theorem to further remove the possibility of root degree 2 and 3 in the optimal
tree (details are omitted in this version).

Theorem 2. For 2-deletion problem, a tree T with root degree 2 or 3 can be
transformed into a tree with root degree 4 without increasing the 2-deletion cost.



Optimal Key Tree Structure for Deleting Two or More Leaves 85

5 Optimal Structure of 2-Deletion Problem

Although we have removed the possibility of the root degree 2 and 3 in Section 4
and have fixed the structure of the ordinary branches, we still do not have an
effective algorithm to exactly compute the optimal structure because we need to
enumerate all the possible structures of the dominating branch. In this section,
we will prove that among the candidate trees with n leaves, a balanced structure
can achieve 2-deletion cost OPT2(n). The basic idea is to first investigate the
capacity g(R) for candidate trees with 2-deletion cost R (Theorem 3). Note that
the optimal tree has the minimum 2-deletion cost with n leaves, which reversely
implies that if we want to find a tree with 2-deletion cost R and at the same
time has the maximum possible number of leaves, then computing the optimal
tree for increasing n until OPT2(n) > R will produce one such solution. We
then analyze and calculate the exact value for the capacity (maximum number
of leaves) given a fixed 2-deletion cost R (Theorem 4). Finally, we prove that
certain balanced structure can always be the optimal structure that minimizes
the 2-deletion cost (Theorem 5).

Definition 5. We use capacity to denote the maximum number of leaves that
can be placed in a certain type of trees given a fixed deletion cost. According to
[6], function f(r) defined below is the capacity for 1-deletion cost r (among all
the possible trees). We use function g(R) to denote the capacity for 2-deletion
cost R (among all the possible trees). In other words, when g(R−1) < n ≤ g(R),
we have OPT2(n) = R.

f(r) =

⎧⎨⎩3 · 3i−1 if r = 3i
4 · 3i−1 if r = 3i + 1
6 · 3i−1 if r = 3i + 2

To facilitate the discussion, according to Fact 3, we can divide the candidate
trees with 2-deletion cost R and root degree d into two categories as summarized
in the following definition.

Definition 6. Candidate trees of category 1: The two leaves whose deletion cost
achieves 2-deletion cost are from different branches, i.e. DT = ST1 + ST2 + d,
which implies ST1 + ST2 ≥ DT1 .

Candidate trees of category 2: The two leaves whose deletion cost achieves
2-deletion cost are both from the dominating branch B1, i.e. DT = DT1 + d,
which implies ST1 + ST2 < DT1 .

Correspondingly, we denote the capacity of the candidate trees belonging to cat-
egory 1 with 2-deletion cost R as g1(R) and denote the capacity of the candidate
trees belonging to category 2 with 2-deletion cost R as g2(R). Note that we can
find the optimal tree among the candidate trees according to Lemma 8, which
implies that with the same 2-deletion cost R, the best candidate tree can always
have equal or larger number of leaves than the general trees. That is, we have
g(R) = max{g1(R), g2(R)}. Thus in the following discussions, we only focus on
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the candidate trees. On the other hand, because we are finding trees with the
maximum number of leaves, it is easy to see that we can assume the number of
leaves in ordinary branches are all the same (Otherwise, we can make the tree
bigger without affecting the 2-deletion cost).

In all candidate trees with 2-deletion cost R, by Fact 3, we only need to
consider the case where at most one of the two leaves whose deletion cost achieves
2-deletion cost are from the ordinary branches. Suppose each ordinary branch
has 1-deletion cost r−, and correspondingly T1 has 1-deletion cost r+ where
r+ ≤ R − d − r− (otherwise we have DT ≥ r+ + r− + d > R, a contradiction).
For fixed cost R, Lemma 7 (monotonous property) implies that r+ ≥ r−. We
first prove the following capacity bound (details are omitted in this version).

Theorem 3. We have gi(R) ≤ (R− 2r−) · f(r−)(i = 1, 2).

In the following theorem, among these candidate trees we study the optimal
structure which achieves the maximum capacity for different values of R.

Theorem 4. For 2-deletion cost R, the maximum capacity is

g(R) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6 · 3i−1 if R = 6i
7 · 3i−1 if R = 6i + 1
8 · 3i−1 if R = 6i + 2
10 · 3i−1 if R = 6i + 3
12 · 3i−1 if R = 6i + 4
15 · 3i−1 if R = 6i + 5

After we have obtained the capacity for the 2-deletion cost R, we finally prove
that among the candidate trees with n leaves, the optimal cost can be achieved
by some balanced structure as shown below.

Definition 7. We use the balanced tree to denote a tree with root degree d where
each subtree is 2-3 tree and has number of leaves differed by at most 1.

Theorem 5. Among trees with n leaves,

(1)when n ∈ (15 · 3i−1, 18 · 3i−1], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+6.
(2)when n ∈ (12 · 3i−1, 15 · 3i−1], the optimal tree is a balanced tree which has
root degree 5 and 2-deletion cost 6i+5.
(3)when n ∈ (10 · 3i−1, 12 · 3i−1], the optimal tree is a balanced tree which has
root degree 6 and 2-deletion cost 6i+4.
(4)when n ∈ (8 ·3i−1, 10 ·3i−1], the optimal tree is a balanced tree which has root
degree 5 and 2-deletion cost 6i+3.
(5)when n ∈ (7 · 3i−1, 8 · 3i−1], the optimal tree is a balanced tree which has root
degree 6 and 2-deletion cost 6i+2.
(6)when n ∈ (6 · 3i−1, 7 · 3i−1], the optimal tree is a balanced tree which has root
degree 7 and 2-deletion cost 6i+1.
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Proof. When n ∈ (15 · 3i−1, 18 · 3i−1], we have OPT2(n) = 6i + 6. We will prove
that the balanced tree with root degree 6 can always achieve this optimal cost.
In the balanced tree, each subtree Tj (1 ≤ j ≤ 6) has the number of leaves
nj = �n−j+1

6 � ∈ [� 5
2 · 3i−1�, 3 · 3i−1]. By function f(·), we have STi ≤ 3i. Thus

any two leaves from the tree will incur a deletion cost at most 2 · 3i+6 = 6i+6.
When n ∈ (12 · 3i−1, 15 · 3i−1] we have OPT2(n) = 6i + 5. Then we will prove

that the balanced tree with root degree 5 can always achieve the optimal cost.
In the balanced tree, each subtree Tj (1 ≤ j ≤ 5) has the number of leaves
nj = �n−j+1

5 � ∈ [� 12
5 · 3i−1�, 3 · 3i−1]. By function f(·), we have STi ≤ 3i. Thus

any two leaves from the tree will incur a deletion cost at most 2 · 3i+5 = 6i+5.
When n ∈ (10 · 3i−1, 12 · 3i−1] we have OPT2(n) = 6i+ 4 and nj = �n−j+1

6 � ∈
[� 5

3 · 3i−1�, 2 · 3i−1]. By function f(·), we have STi ≤ 3i− 1. Thus any two leaves
from the tree will incur a deletion cost at most 2 · (3i− 1) + 6 = 6i + 4.

When n ∈ (8 · 3i−1, 10 · 3i−1], we have OPT2(n) = 6i+ 3 and nj = �n−j+1
5 � ∈

[� 8
5 · 3i−1�, 2 · 3i−1]. By function f(·), we have STi ≤ 3i− 1. Thus any two leaves

from the tree will incur a deletion cost at most 2 · (3i− 1) + 5 = 6i + 3.
When n ∈ (7 · 3i−1, 8 · 3i−1], we have OPT2(n) = 6i + 2 and nj = �n−j+1

6 � ∈
[� 7

6 · 3i−1�, 4
3 · 3i−1]. By function f(·), we have STi ≤ 3i− 2. Thus any two leaves

from the tree will incur a deletion cost at most 2 · (3i− 2) + 6 = 6i + 2.
When n ∈ (6 · 3i−1, 7 · 3i−1], we have OPT2(n) = 6i + 1. The balanced tree

with root degree 7 where nj = �n−j+1
7 � ∈ [� 6

7 · 3i−1�, 3i−1] can always achieve
the optimal cost. By function f(·), we have STi ≤ 3i − 3. Thus any two leaves
from the tree will incur a deletion cost at most 2 · (3i− 3) + 7 = 6i + 1.

Note that in some cases a balanced tree with degree 4 can also be an optimal
tree, but it is not necessary to consider this possibility because we do not need
to find all the possible structures of an optimal tree with n leaves.

Finally we have fixed the structure of the dominating branch and obtained the
optimal tree structure for the 2-deletion problem. We conjecture the general
result for the k-deletion problem in the next section.

6 Conclusion

In this paper, we study the optimal structure for the key tree problem. We
consider the scenario where two or more users are deleted from the key tree and
aim to find an optimal tree in this situation. We first prove a degree upper bound
(k+1)2−1 for the k-deletion problem. Then we focus on the 2-deletion problem
by firstly removing the possibility of root degree 2 and 3 to reduce the scope
for searching the optimal tree. Then, we investigate the capacity of the key tree.
Based on this, we prove that the optimal tree for the 2-deletion problem is a
balanced tree with certain root degree 5 ≤ d ≤ 7 where the number of leaves in
each subtree differs by at most 1 and each subtree is a 2-3 tree.

The capacity f(·) where k = 1 and g(·) where k = 2 stimulates us to conjecture
the general form of capacity Gk(R) which denotes the maximum number of leaves
that can be placed in a tree given the k-deletion cost R in the k-deletion problem.
Based on the form of f(·) and g(·), we conjecture the capacity Gk(R) to be of
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the form shown in Equation (1). Furthermore, if the conjecture is proved to be
correct, it is also possible to obtain the optimal structure in a similar way as in
the proof of Theorem 5.

Gk(R) =

⎧⎨⎩ (3k + α) · 3i−1 if R = 3k · i + α, α ∈ [0, k)
(4k + 2(α− k)) · 3i−1 if R = 3k · i + α, α ∈ [k, 2k)
(6k + 3(α− 2k)) · 3i−1 if R = 3k · i + α, α ∈ [2k, 3k)

(1)

One of the possible future work is therefore to investigate the capacity and
optimal structure for the general k-deletion problem. We believe that the concept
of capacity will also be very important to this problem.
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Abstract. We study the performance of the algorithms First-Fit and
Next-Fit for two online edge coloring problems. In the min-coloring prob-
lem, all edges must be colored using as few colors as possible. In the
max-coloring problem, a fixed number of colors is given, and as many
edges as possible should be colored. Previous analysis using the compet-
itive ratio has not separated the performance of First-Fit and Next-Fit,
but intuition suggests that First-Fit should be better than Next-Fit. We
compare First-Fit and Next-Fit using the relative worst order ratio, and
show that First-Fit is better than Next-Fit for the min-coloring prob-
lem. For the max-coloring problem, we show that First-Fit and Next-Fit
are not strictly comparable, i.e., there are graphs for which First-Fit is
better than Next-Fit and graphs where Next-Fit is slightly better than
First-Fit.

1 Introduction

In edge coloring, the edges of a graph must be colored such that no two adjacent
edges receive the same color. This paper studies two variants of online edge
coloring, min-coloring and max-coloring. For both problems, the algorithm is
given the edges of a graph one by one, each one specified by its endpoints.

In the min-coloring problem, each edge must be colored before the next edge
is received, and once an edge has been colored, its color cannot be changed. The
aim is to color all edges using as few colors as possible.

For the max-coloring problem, a limited number k of colors is given. Each
edge must be either colored or rejected before the next edge arrives. Once an
edge has been colored, its color cannot be changed and it cannot be rejected.
Similarly, once an edge has been rejected, it cannot be colored. In this problem,
the aim is to color as many edges as possible.

For both problems we study the following two algorithms. First-Fit is the
natural greedy algorithm which colors each edge using the lowest possible color.
� Supported in part by the Danish Agency for Science, Technology and Innovation
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Next-Fit uses the colors in a cyclic order. It colors the first edge with the color 1
and keeps track of the last used color clast. For the max-coloring problem, when
coloring an edge (u, v), it uses the first color in the sequence 〈clast + 1, clast +
2, . . . , k, 1, 2, . . . , clast〉 that is not yet used on any edge incident to u or v. For
the min-coloring problem it only cycles through the set of colors that it has been
forced to use so far.

Both algorithms are members of more general families of algorithms. For the
max-coloring problem, we define the class of fair algorithms that never reject
an edge, unless all k colors are already represented at adjacent edges. For the
min-coloring problem, we define the class of parsimonious algorithms that do
not take a new color into use, unless necessary.

The min-problem has previously been studied in [1], where the main result
implies that all parsimonious algorithms have the same competitive ratio of
approximately 2.

The max-problem was studied in [8]. For k-colorable graphs, First-Fit and
Next-Fit have very similar competitive ratios of 1/2 and k/(2k− 1). For general
graphs, there is an upper bound on the competitive ratio of First-Fit of 2

9 (
√

10−
1) ≈ 0.48, and the competitive ratio of Next-Fit exactly matches the general
lower bound for fair algorithms of 2

√
3 − 3 ≈ 0.46. No fair algorithm can be

better than 0.5-competitive, so the competitive ratio cannot vary much between
fair algorithms. Moreover, there is a general upper bound (even for randomized
algorithms) of 4/7 ≈ 0.57.

General intuition suggests that First-Fit should be better than Next-Fit, and
thus comes the motivation to study the performance of the two algorithms using
some other measure than the competitive ratio. There are previous problems,
such as paging [5,3], bin packing [4], scheduling [7], and seat reservation [6] where
the relative worst-order ratio was successfully applied and separated algorithms
that the competitive ratio could not. The relative worst-order ratio is a quality
measure that compares two online algorithms directly, without an indirect com-
parison via an optimal offline algorithm. Thus, the relative worst-order ratio in
many cases give more detailed information than the competitive ratio.

For the min-problem, we prove that the two algorithms are comparable, and
First-Fit is 1.5 times better than Next-Fit. For the max-problem, surprisingly,
we conclude that First-Fit and Next-Fit are not comparable using the relative
worst-order ratio.

2 Quality Measures

The standard quality measure for online algorithms is the competitive ratio.
Roughly speaking, the competitive ratio of an online algorithm A is the worst-
case ratio of the performance of A to the performance of an optimal offline
algorithm over all possible request sequences [14,10].

In this paper, we use the competitive ratio only for the min-coloring prob-
lem. For that problem, the measure is defined in the following way. Let A be
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an edge coloring algorithm and let E be a sequence of edges. Then, A(E) denotes
the number of colors used by A. OPT denotes an optimal offline. The competitive
ratio of algorithm A is

CRA = inf{c | ∃b : ∀E : A(E) ≤ c ·OPT(E) + b}

The relative worst-order ratio was first introduced in [4] in an effort to com-
bine the desirable properties of the max/max ratio [2] and the random-order
ratio [11]. The measure was later refined in [5]. We describe the measure using
the terminology of the coloring problems. Let E be a sequence of n edges. If σ
is a permutation on n elements, then σ(E) denotes E permuted by σ.

For the max-coloring problem, A(E) is the number of edges colored by algo-
rithm A, and

AW(E) = min
σ
{A(σ(E))}.

For the min-coloring problem, A(E) is the number of colors used by A, and

AW(E) = max
σ
{A(σ(E))}.

Thus, in both cases, AW(E) is the performance of A on a worst possible permu-
tation of E.

Definition 1. For any pair of algorithms A and B, we define

cu(A, B) = inf{c | ∃b : ∀E : AW(E) ≤ cBW (E) + b} and
cl(A, B) = sup{c | ∃b : ∀E : AW(E) ≥ cBW (E)− b} .

If cl(A, B) ≥ 1 or cu(A, B) ≤ 1, the algorithms are said to be comparable and
the relative worst-order ratio WRA,B of algorithm A to algorithm B is defined.
Otherwise, WRA,B is undefined.

If cu(A, B) ≤ 1, then WRA,B = cl(A, B), and
if cl(A, B) ≥ 1, then WRA,B = cu(A, B) .

Intuitively, cl and cu can be thought of as tight lower and upper bounds, respec-
tively, on the performance of A relative to B.

3 Min-coloring Problem

We first study the min-coloring problem, where all edges of a graph must be col-
ored using as few colors as possible. The first result is an immediate consequence
of a result in [1].

Theorem 1. Any parsimonious algorithm has a competitive ratio of 2 − 1/∆,
where ∆ is the maximum vertex degree.
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Proof. In [1], it is proven that, for any online algorithm A, there is a graph
G with maximum vertex degree ∆, such that G can be ∆-colored, but A uses
2∆−1 colors. On the other hand, since no edge is adjacent to more than 2∆−2
other edges, no parsimonious algorithm will use more than 2∆− 1 colors. �


Thus, the competitive ratio does not distinguish First-Fit and Next-Fit. How-
ever, with the relative worst-order ratio, we get the result that First-Fit is better
than Next-Fit:

Theorem 2. The relative worst-order ratio of Next-Fit to First-Fit is at least 3
2 .

The theorem follows directly from Lemmas 1 and 2 below.

Lemma 1. Given any graph G with edges E, NFW(E) ≥ FFW(E).

Proof. For any First-Fit coloring, we construct an ordering of the edges so that
Next-Fit does the same coloring as First-Fit. Assume that First-Fit uses k colors
and let Ci denote the set of edges that First-Fit colors with color i. The ordering
of the edges given to Next-Fit consists of all the edges from C1, then from C2
and further till Ck. The edges in each set is given in an arbitrary order. By the
First-Fit policy, each edge in Ci is adjacent to edges of C1, . . . , Ci−1. Thus, since
Next-Fit only cycles through the colors that it used so far, it will color the edges
the same way as First-Fit. This means that, for any First-Fit coloring, we can
construct an ordering of the edges such that Next-Fit uses the same number of
colors. The result follows. �


Lemma 2. There exists a graph with edges E such that NFW(E) ≥ 3
2 FFW(E).

Proof. For any even k, consider the graph S consisting of k/2+2 stars S0, S1, . . . ,
Sk/2 and Scenter as depicted in Figure 1. The center vertices of S1, . . . , Sk/2 have

Fig. 1. The graph S used in the proof of Lemma 2
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degree k/2+ 1, and the centers of S0 and Scenter have degree k. Edges for which
one end-vertex has degree one are called outer edges. The remaining edges are
called inner edges.

It is not difficult to see that, for any ordering of the edges, First-Fit uses
exactly k colors: At most one outer edge in each star Si, i = 1, . . . , k/2, is
colored with a color larger than k/2, and if this happens, the edge connecting
Si to Scenter has already been colored.

Next-Fit will use 3k/2 colors, if the edges are given in the following order:
First the edges of S0, forcing Next-Fit to use the first k colors. Then the outer
edges of S1 followed by the outer edges of Scenter. Then the inner edge of S1,
which is colored with the color k + 1. Finally, for i = 2, . . . , k/2, the outer edges
of Si followed by the inner edge of Si, which is colored with the color k + i. This
way, the inner edges will be colored with k + 1, . . . , 3k/2. �


4 Max-coloring Problem

In this section, we study the max-coloring problem, where a limited number k
of colors are given, and as many edges as possible should be colored. We first
describe a bipartite graph with edges E, such that FFW(E) ≥ 9/8 · NFW(E).
Then, we describe a family of graphs with edge set En such that NFW(En) =
(1 + Ω( 1

k2 )) · FFW(En). Thus, the two algorithms are not comparable.

4.1 First-Fit Can Be Better Than Next-Fit

Let Bk,k = (X, Y, E) be a complete bipartite graph with |X | = |Y | = k. For
simplicity, we assume that 4 divides k. For other values of k, we get similar
results, but the calculations are a bit more messy. We denote by Ci the edges
that First-Fit colors with color i.

Proposition 1. In any First-Fit coloring of Bk,k, |Ci| ≥ k− i+1, i = 1, . . . , k.

Proof. Assume that color i has been used j ≤ k− i times. The induced subgraph
containing all vertices not adjacent to an edge colored with color i is the complete
bipartite graph Bk−j,k−j , where k−j ≥ i. This subgraph cannot be colored with
the colors 1, . . . , i − 1 only, and since this is a First-Fit coloring, the color i is
going to be used. Thus, at least one more edge will be colored with color i. �


Proposition 2. If First-Fit colors at most 9
16k2 edges of Bk,k, then

|Ci| ≥
7k2

16(2k − 1− i)
, i = 1, . . . , k.

Proof. If First-Fit colors at most 9k2/16 edges, then it rejects at least 7k2/16
edges. Each rejected edge is adjacent to at least one edge of each color i =
1, . . . , k. Each edge colored with color i has 2k−2 neighbor edges. Among those,
at least i−1 edges are already colored, since each edge colored with i is adjacent
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to all lower colors 1, 2, .., i− 1. Thus, at most 2k − 1 − i edges can be rejected
for each edge colored with i. Hence, for First-Fit to reject 7k2/16 edges, it has
to use color i at least 7k2/(16(2k − 1− i)) times. �


Lemma 3. Given any ordering of the edges of Bk,k, First-Fit colors more than
9
16k2 edges.

Proof. The number of edges colored by First-Fit is
∑k

i=1 |Ci|. We assume for the
sake of contradiction that First-Fit colors at most 9k2/16 edges of Bk,k. Using
Propositions 1 and 2 we get,

k∑
i=1

|Ci| ≥
3k/4∑
i=1

(k − i + 1) +
k∑

i=3k/4+1

7k2

16(2k − 1− i)

=
k∑

i=k/4+1

i +
7
16

k2
5k/4−2∑
i=k−1

1
i

>
15
32

k2 +
7
16

k2 ln
(

k + k/4− 2
k − 2

)
15
32

k2 +
7
16

k2 ln(1 + 1/4)

>
15
32

k2 +
7
16

k2 3
14

=
9
16

k2,

which is a contradiction. Thus, First-Fit colors more than 9k2

16 edges. �


Lemma 4. Given the worst ordering of the edges of Bk,k, Next-Fit colors at
most k2/2 edges.

Proof. We partition the vertex sets X, Y into equal-sized sets X1, X2, Y1, Y2. The
induced subgraphs H1 and H2 with vertex sets X1, Y1 and X2, Y2, respectively,
are complete bipartite graphs. We give the edges of H1 and H2 alternately such
that Next-Fit colors the edges of H1 using colors 1, 2, ..., k/2 and the edges of
H2 with colors k/2 + 1, ..., k. After that, Next-Fit cannot color any of the k2/2
edges between H1 and H2. Thus, Next-Fit colors at most k2/2 edges of Bk,k. �


Combining Lemmas 3 and 4, we arrive at:

Corollary 1. Given the graph Bk,k = (X, Y, E), FFW(E) ≥ 9
8 NFW(E).

4.2 Next-Fit Can Be Slightly Better Than First-Fit

In this section, we prove that there exists a family of graphs where Next-Fit is
1 + Ω( 1

k2 ) times better than First-Fit. We first define the building blocks of the
graph family.

Definition 2. For any given number k ≥ 25 of colors, a superstar Sk is a graph
consisting of an inner star with k edges, each incident to the center of an outer
star with k − 2 edges of its own.
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Fig. 2. Two superstars, for k = 25, connected through a link of five outer stars

A superstar graph is a graph consisting of superstars. Each pair of superstars
in the graph may share a number of outer stars. The set of outer stars shared by
a pair of superstars is called the link between them. All outer stars are contained
in a link. Each link contains at least five outer stars, and each superstar has
links to between five and seven other superstars. See Figure 2 for an incomplete
example.

Clearly, fair algorithms never reject outer star edges. However, if all outer stars
are colored using the same k − 2 colors, at least k − 2 edges of each inner star
will be rejected. This leads to the following lemma.

Lemma 5. Let Gn,k be a superstar graph with n superstars. Then, on its worst
ordering of the edges, First-Fit rejects at least n(k − 2) edges.

What remains to be shown is that there exists a family Gn,k of superstar graphs,
such that on a worst ordering of the edges of Gn,k, Next-Fit rejects only n(k −
2)−Ω(n) edges.

Proposition 3. Consider a superstar graph G colored by a fair algorithm. Any
superstar in G has at most k − 1 edges rejected. If some superstar S in G has
k− 1 edges rejected, then each of its neighbor superstars has at most k− 4 edges
rejected.

Proof. Clearly, outer star edges are not rejected, so we only need to consider the
inner star edges. At least one inner star edge will be colored in each superstar,
since each inner star edge is only adjacent to k− 1 edges that are not inner star
edges in the same superstar. Thus, at most k − 1 edges are rejected from any
superstar in the graph.

Assume that some superstar S has k − 1 inner star edges rejected. Each of
these edges must be adjacent to k colored edges. However, at most k − 1 of
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these colored neighbor edges belong to S (k−2 from the outer star, and the one
colored inner edge of S). Hence, the kth colored neighbor edge must be an inner
star edge in a neighboring superstar. Since each link contains at least five inner
edges of S and at most one of them is colored, this completes the proof. �


By Proposition 3, any pair of neighboring superstars have at most 2k−4 rejected
edges in total. A pair of neighboring superstars with 2k − 4 rejected edges in
total is called a bad pair. Note that in a bad pair, exactly k−2 edges are rejected
in each superstar. A pair of neighboring superstars with at most 2k− 5 rejected
edges in total is called a good pair. A superstar contained only in bad pairs is
called a bad superstar. A superstar contained in at least one good pair is called
a good superstar.

Counting the good superstars, the extra colored edge from a good pair is
counted at most eight times: once for the superstar S containing it and once
for each of the at most seven neighbors of S. Thus, the following lemma follows
directly from Proposition 3.

Lemma 6. Consider a fair coloring of a superstar graph with n superstars. If
there are m good superstars, then at most n(k − 2)− m

8 edges are rejected.

Thus, we just need to show that we can connect our building blocks, the super-
stars, such that, for any Next-Fit coloring, there will be Ω(n) good superstars.
Such a construction is described in the proof of Lemma 8. The proof of Lemma 8
uses Proposition 4 and Lemma 7 below.

The majority coloring of a superstar is the set of colors used on the majority
of its outer stars, breaking ties arbitrarily. An outer star is isolated, if it is not
adjacent to at least one colored inner star edge.

Proposition 4. If two neighboring superstars have different majority colorings,
one of them is a good superstar.

Proof. We prove the proposition by contraposition. Assume that two superstars
S and S′ are both bad superstars. Then, by Proposition 3, S, S′, and their
neighbors each have exactly k−2 edges rejected. Let c1 and c2 be the two colors
used on inner star edges in S.

If S has m neighbors, the outer stars of S are adjacent to at most 2m + 2
colored inner star edges. Thus S has at least k − 2m − 2 isolated outer stars.
Each of these outer stars must be colored with the k − 2 colors different from
c1 and c2. Hence, the isolated outer stars in S are colored the same, and since
m ≥ 5 and k ≥ 5m that coloring is the majority coloring of S. The same is true
for S′. Since S and S′ have exactly two colored edges and there are at least five
edges in the link between them, they share at least one isolated outer star. This
means that S and S′ have the same majority coloring. �


Lemma 7. Assume that k ≥ 101. Consider a Next-Fit coloring of a superstar
graph Gn,k, n ≥ 6. Among the bad superstars, there are at most 2

3n superstars
with the same majority coloring.
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Proof. Any subgraph of Gn,k containing x superstars has at least xk
2 outer stars.

Thus, in any subgraph H of Gn,k consisting of x bad superstars with the same
majority coloring M, there are at least xk−16

2 = x
(

k
2 − 8

)
isolated outer stars

colored with M. Each time Next-Fit has used the colors in M once, the two
colors c1, c2 /∈ M must be used once, before it will use the colors in M on
isolated outer stars again. Thus, an upper bound on the number of times c1 and
c2 are used in Gn,k gives an upper bound on x.

Clearly, c1 and c2 are each used at most once on inner star edges in each
superstar. Inside H , c1 and c2 are not used on isolated outer stars. Thus, since
each bad superstar has at least k− 16 isolated outer stars, c1 and c2 are used at
most 17x times on superstars in H .

Outside H , c1 and c2 can each be used at most once per outer star, since using
c1 (c2) on an inner star edge would prohibit the algorithm from using c1 (c2) on the
adjacent outer star. Hence, since each superstar outside H share each outer star
with another superstar, the superstars outside H can only contribute (n− x)k

2 .
Thus, to create x bad superstars with majority coloring M, we must have

x

(
k

2
− 8

)
− 1 ≤ 17x + (n− x)

k

2
.

Solving for x, we obtain x ≤ 2
3n, since k ≥ 101 and n ≥ 6. �


Lemma 8. For k ≥ 101, there exists a family of superstar graphs Gn,k where
any Next-Fit coloring results in Ω(n) good superstars.

Proof. We use a result from expander graphs [12,9]. Using the notation from [13],
for any positive integer m, there exists an

(
n = 2m2, 7, 2−

√
3

2

)
-expander, i.e., a

7-regular bipartite multigraph G(X ∪ Y, E) with |X | = |Y | = n
2 , such that for

any S ⊆ X ,

|Γ (S)| ≥
(

1 +
2−

√
3

2

(
1− 2|S|

n

))
|S| ,

where Γ (S) is the set of edges between S and S. The result also holds for any
S ⊆ Y . The graph contains parallel edges, but each vertex has at least five
neighbors. Replacing each set of parallel edges by one edge, we obtain a simple
graph with the same Γ -function.

Now, we connect the superstars as in the simple expander graph. For any
suitable n, let each vertex in the expander graph correspond to a superstar.
Each edge in the expander graph corresponds to a link between the corresponding
superstars. Thus, we obtain a superstar graph where each superstar has links to
5 to 7 other superstars.

Consider any Next-Fit coloring of this graph with n superstars. If there are
at least 1

3n good superstars, the result follows immediately. Thus, we consider
the case where there are at least 2

3n bad superstars. By Lemma 7, no majority
coloring occurs on more than 2

3n bad superstars. Among the bad superstars,
let S be the superstars with the most frequently occurring majority coloring. If
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|S| < 1
3n, add the bad superstars with the most frequently occurring majority

coloring among the superstars not in S. Continue doing this until S reaches a
size between 1

3n and 2
3n. This is possible, since we consider the case where there

are at least 2
3n bad superstars.

Define SX = S ∩X (similarly for SY ), and assume without loss of generality
that |SX | ≥ |SY |. Note that |SX | ≥ 1

2 |S| ≥
1
6n. We can bound the size of Γ (S)

from below by the following

|Γ (S)| ≥ |Γ (SX)| − |SY |

≥ 2−
√

3
2

(
1− 2|SX |

n

)
|SX |+ (|SX | − |SY |) . (1)

We now have two cases depending on the size of SX .

– 5
12n ≤ |SX | ≤ 1

2n. Since |SX |+ |SY | ≤ 2
3n, we must have |SY | ≤ 3

12n. Thus,
inequality (1) immediately yields a lower bound of 5

12n − 3
12n = 1

6n, since
2−

√
3

2

(
1− 2|SX |

n

)
is nonnegative.

– |SX | < 5
12n. Since |SX | − |SY | ≥ 0, inequality (1) gives a lower bound of(

2−
√

3
2

)
1
6 |SX | ≥ 2−

√
3

144 n.

Hence, in the coloring done by Next-Fit, we in both cases have Ω(n) links
between S and S. By the construction of S, each superstar in S linked to a
superstar s in S is a good superstar or has a different majority coloring than s.
Thus, by Proposition 4, there are Ω(n) good superstars. �


This immediately yields the following theorem.

Theorem 3. First-Fit and Next-Fit are not comparable by the relative worst-
order ratio.

Proof. By Lemma 5, there is an ordering of the edges in any superstar graph
with n superstars, such that First-Fit rejects at least n(k − 2) edges.

By Lemmas 6 and 8, there are superstar graphs Gn,k with n superstars such
that, for any ordering of the edges, Next-Fit rejects only n(k− 2)−Ω(n) edges.
Hence, since First-Fit colors Θ(nk2) edges,

NFW(Gn,k) =
(

1 + Ω

(
1
k2

))
FFW(Gn,k).

On the other hand, by Corollary 1, there exists a graph S, such that

FFW(S) ≥ 9
8

NFW(S). �


5 Conclusion

We have proven that, with the relative worst-order ratio, First-Fit is strictly
better than Next-Fit for the min-coloring problem. This is in contrast to the
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competitive ratio which is the same for all parsimonious algorithms, a class of
algorithms to which First-Fit and Next-Fit belongs.

For the max-coloring problem, the answer is not as clear: With the relative
worst-order ratio, there are graphs where First-Fit does significantly better than
Next-Fit and graphs where Next-Fit does slightly better than First-Fit. This is
somewhat in keeping with an earlier result saying that the two algorithms can
hardly be distinguished by their competitive ratios.

Note that, for the max-coloring problem, the two algorithms may be asymp-
totically comparable [5]. Roughly speaking, it means that, as k tends to infinity,
the algorithms “become comparable”. This is left as an open problem. Note that
if one were to prove that the algorithms are not asymptotically comparable, an-
other construction than the superstar graphs would be required: even if Next-Fit
colored all edges of a superstar graph, it would color only 1+Θ( 1

k ) times as many
edges as First-Fit.

References

1. Bar-Noy, A., Motwani, R., Naor, J.: The greedy algorithm is optimal for on-line
edge coloring. Information Processing Letters 44(5), 251–253 (1992)

2. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11(1), 73–91 (1994)

3. Boyar, J., Ehmsen, M.R., Larsen, K.S.: Theoretical evidence for the superiority
of LRU-2 over LRU for the paging problem. In: Approximation and Online Algo-
rithms, pp. 95–107 (2006)

4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Transactions on Algorithms 3(22) (2007)

5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to
paging. Journal of Computer and System Sciences 73, 818–843 (2007)

6. Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation.
ACM Transactions on Algorithms 4(4), article 48, 22 pages (2008)

7. Epstein, L., Favrholdt, L.M., Kohrt, J.: Separating online scheduling algorithms
with the relative worst order ratio. Journal of Combinatorial Optimization 12(4),
362–385 (2006)

8. Favrholdt, L.M., Nielsen, M.N.: On-line edge coloring with a fixed number of colors.
Algorithmica 35(2), 176–191 (2003)

9. Gabber, O., Galil, Z.: Explicit constructions of linear-sized superconcentrators.
Journal of Computer and System Sciences 22, 407–420 (1981)

10. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 79–119 (1988)

11. Kenyon, C.: Best-fit bin-packing with random order. In: 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 359–364 (1996)

12. Margulis, G.A.: Explicit constructions of concentrators. Problems of Information
Transmission 9(4), 325–332 (1973)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

14. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)



Selecting Sums in Arrays

Gerth Stølting Brodal and Allan Grønlund Jørgensen�

BRICS��, MADALGO���, Department of Computer Science,
University of Aarhus, Denmark
{gerth,jallan}@daimi.au.dk

Abstract. In an array of n numbers each of the
�

n
2

�
+n contiguous sub-

arrays define a sum. In this paper we focus on algorithms for selecting and
reporting maximal sums from an array of numbers. First, we consider the
problem of reporting k subarrays inducing the k largest sums among all
subarrays of length at least l and at most u. For this problem we design
an optimal O(n + k) time algorithm. Secondly, we consider the problem
of selecting a subarray storing the k’th largest sum. For this problem we
prove a time bound of Θ(n · max{1, log(k/n)}) by describing an algo-
rithm with this running time and by proving a matching lower bound.
Finally, we combine the ideas and obtain an O(n·max{1, log(k/n)}) time
algorithm that selects a subarray storing the k’th largest sum among all
subarrays of length at least l and at most u.

1 Introduction

In an array, A[1, . . . , n], of numbers each subarray, A[i, . . . , j] for 1 ≤ i ≤ j ≤ n,
defines a sum,

∑j
t=i A[t]. There are

(
n
2

)
+ n different subarrays each inducing

a sum. Locating a subarray A[i, . . . , j] maximizing
∑j

t=i A[t] is known as the
maximum sum problem, and it was formulated by Ulf Grenander in a pattern
matching context. Algorithms solving the problem also have applications in areas
such as Data Mining [12,13] and Bioinformatics [1]. In [5] Bentley describes the
problem and an optimal linear time algorithm.

The problem can be extended to any number of dimensions. In the two di-
mensional version of the problem the input is an m × n matrix of numbers,
and the task is to locate the connected submatrix storing the largest aggre-
gate. This problem can be solved by a reduction to

(
m
2

)
+ m one-dimensional

instances of size n, or a single one-dimensional instance in one array of length
O(m2n) created by separating each of the

(
m
2

)
+ m instances mentioned before

by dummy −∞ elements. However, this solution is not optimal since faster algo-
rithms are known [22,21]. The currently fastest algorithm is due to Takaoka who
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describes an O(m2n
√

log logm/ logm) time algorithm in [21]1. The only known
lower bound for the problem is the trivial Ω(mn) bound. The two-dimensional
version was the first problem studied, introduced as a method for maximum
likelihood estimations of patterns in digitized images [5].

A natural extension of the maximum sum problem, introduced in [4], is to
compute the k largest sums for 1 ≤ k ≤

(
n
2

)
+ n. The subarrays are allowed to

overlap, and the output is k triples of the form (i, j,
∑j

t=i A[t]). An O(nk) time
algorithm is given in [4]. An algorithm solving the problem in optimal O(n+ k)
time using O(k) additional space is described in [7].

Another generalization of the maximal sum problem is to restrict the length
of the subarrays considered. This generalization is considered in [15,18,9] mainly
motivated by applications in Bioinformatics such as finding tandem repeats [23],
locating GC-rich regions [14], and constructing low complexity filters for se-
quence database search [2]. In [15] Huang describes an O(n) time algorithm
locating the largest sum of length at least l, while in [18] an O(n) time algo-
rithm locating the largest sum of length at most u is described. The algorithms
can be combined into at linear time algorithm finding the largest sum of length
at least l and at most u [18]. In [9] it is shown how to solve the problem in O(n)
time when the input elements are given online one by one.

The length constrained k maximal sums problem is defined as follows. Given an
array A of length n, find the k largest sums consisting of at least l and at most u
numbers. The k maximal sums problem is the special case of this problem where
l = 1 and u = n. Lin and Lee solved the problem using a randomized algorithm
with an expected running time of O(n log(u − l) + k) [17]. Their algorithm is
based on a randomized algorithm that selects the k’th largest length constrained
sum from an array in O(n log(u − l)) expected time. The authors state as an
open problem whether this is optimal. Furthermore, in [16] Lin and Lee describe
a deterministic O(n logn) time algorithm that selects the k’th largest sum in an
array of size n. They propose as an open problem whether this bound is tight.
This problem is known as the sum selection problem.

Our Contribution. In this paper we settle the time complexity for the sum se-
lection problem and the length constrained k maximal sums problem. First, we
describe an optimal O(n + k) time algorithm for the length constrained k max-
imal sums problem in Section 2. This algorithm is an extension of our optimal
algorithm solving the k maximal sums problem from [7]. Secondly, we prove a
time bound of Θ(n log(k/n)) for the sum selection problem in Section 3. This
is the main result of the paper. An O(n log(k/n)) time algorithm that selects
the k’th largest sum is described in Section 3.1, and in Section 3.2 we prove a
matching lower bound using a reduction from the cartesian sum problem [11].
Finally, in Section 4 we combine the ideas from the two algorithms we have de-
signed and obtain an O(n log(k/n)) time algorithm that selects the k’th largest
sum among all sums consisting of at least l and at most u numbers. This bound

1 For simplicity of exposition by log x we denote the value max{1, log2 x}.
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Table 1. Overview of results on reporting and selecting sums in arrays

Problem Previous Work This Paper
Length Const. k Maximal Sums O(n log(u − l) + k) exp. [17] O(n + k)
Sum Selection O(n log n) [16] Θ(n log(k/n))
Length Const. Sum Selection O(n log(u − l)) exp. [17] O(n log(k/n))

is always as good as the previous randomized bound of O(n log(u − l)) by Lin
and Lee [17], since there are

∑u
t=l n − t + 1 ≤ n(u − l + 1) subarrays of length

between l and u in an array of size n and thus k/n ≤ u − l + 1. Due to lack of
space the details are deferred to the full version which will combine the results
of this paper and the results in [7]. The results are summarized in Table 1.

2 The Length Constrained k Maximal Sums Problem

In this section we present an optimal O(n+k) time algorithm that reports the k
largest sums of an array A of length n with the restriction that each sum is an
aggregate of at least l and at most u numbers. We reuse the idea from the k
maximal sums algorithm in [7], and construct a heap2 that implicitly represents
all

∑u
t=l n − t + 1 = O(n(u − l)) valid sums from the input array using only

O(n) time and space. The k largest sums are then retrieved from the heap using
Fredericksons heap selection algorithm [10] that extracts the k largest elements
from a heap in O(k) time. We note that the k maximal sums algorithm from [7]
can be altered to use a heap supporting deletions to obtain an O(n log(u− l)+k)
algorithm solving the problem without randomization. The difference between
our new O(n+k) time algorithm and the algorithm solving the k maximal sums
problem [7] is in the way the sums are grouped in heaps. This change enables
us to solve the problem without deleting elements from a heap. In the following
we assume that l < u. If l = u the problem can be solved in O(n) time using a
linear time selection algorithm [6].

2.1 A Linear Time Algorithm

For each array index j, for j = 1, . . . , n − l + 1, we build data structures rep-
resenting all sums of length between l and u ending at index j + l − 1. This
is achieved by constructing all sums ending at A[j] with length between 1 and
u− l + 1, and then adding the sum of the l− 1 elements, A[j + 1, . . . , j + l− 1],
following A[j] in the input array to each sum. To construct these data structures
efficiently, the input array is divided into slabs of w = u− l consecutive elements,
and the sums are grouped in disjoint sets, Q̂j and Q̄j for j = 1, . . . , n, depending
on the slab boundaries.

2 For simplicity of exposition, by heap we denote a heap ordered binary tree where
the largest element is placed at the root.
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c

Fig. 1. Overview of the sets, l = 4, u = 9, c =
�j+l−1

t=j+1 A[t] and d =
�j+l−1

t=a A[t]. A
slab is starting at index a and ending at index b.

Let a be the first index in the slab containing index j, i.e. a = 1 +
⌊

j−1
w

⌋
w.

The set Q̂j contains all sums of length between l and u ending at index j + l− 1
that start in the slab containing index j and is defined as follows:

Q̂j = {(i, j + l− 1, sum) | a ≤ i ≤ j, sum = c +
∑j

t=i A[t]} ,

where c =
∑j+l−1

t=j+1 A[t] is the sum of l− 1 numbers in A[j +1, . . . , j + l− 1]. The
set Q̄j contains the (u − l + 1)− (j − a + 1) = u − l − j + a valid sums ending
at index j + l − 1 that start to the left of index a, thus:

Q̄j = {(i, j + l − 1, sum) | j − u + l ≤ i < a, sum = d +
∑a−1

t=i A[t]} ,

where d =
∑j+l−1

t=a A[t] is the result of summing the j − a + l numbers in
A[a, . . . , j + l − 1]. The sets are illustrated in Figure 1. By construction, the
sets Q̂j and Q̄j are disjoint and their union is the u − l + 1 sums of length
between l and u ending at index j + l − 1.

With the sets of sums defined we continue with the representation of these.
The sets Q̂j and Q̄j are represented by pairs 〈δ̂j , Ĥj〉 and 〈δ̄j , H̄j〉 where Ĥj and
H̄j are partially persistent heaps and δ̂j and δ̄j are constants that must be added
to all elements in Ĥj and H̄j respectively to obtain the correct sums. For the
heaps we use the Iheap from [7] which supports insertions in amortized constant
time. Partial persistence is implemented using the node copying technique [8].

We construct representations of two sequences of sets, Lj and Rj for j =
1, . . . , n, that depend on the slab boundaries. Consider the slab A[a, . . . , j, . . . , b]
containing index j. The set Lj contains the j − a + 1 sums ending at A[j] that
start between index a and j. The set Rj contains the b − j + 1 sums ending at
A[b] starting between index j and b, see Figure 1.
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Each set Lj is represented as a pair 〈δL
j , H

L
j 〉 where δL

j is an additive constant
as above and HL

j is a partially persistent Iheap. The pairs are incrementally
constructed while scanning the input array from left to right as follows:

〈δL
a , HL

a 〉 = 〈A[a], {0}〉 ∧
〈δL

j , HL
j 〉 = 〈δL

j−1 + A[j], HL
j−1 ∪ {−δL

j−1}〉 .

This is also the construction equations used in [7]. Constructing a representation
of La is simple, and creating a representation for Lj can be done efficiently given
a representation of Lj−1. The representation of Lj is constructed by implicitly
adding A[j] to all elements from Lj−1 by setting δL

j = δL
j−1 +A[j] and inserting

an element to represent the sum A[j]. Since δL
j−1 +A[j] needs to be added to all

elements in the representation of Lj , an element with−δL
j−1 as key is inserted into

HL
j−1, yielding HL

j ending the construction. Partial persistence ensures that the
Iheap HL

j−1 used to represent Lj−1 is not destroyed. By the above description
and the cost of applying the node copying technique [8] the amortized time
needed to construct a pair is O(1).

The Rj sets are represented by partially persistent Iheaps HR
j , and these

representations are built by scanning the input array from right to left. We get
the following incremental construction equations:

HR
b = {A[b]} ∧

HR
j = HR

j+1 ∪ {
∑b

t=j A[t]} .

Similar to the 〈δL
j , H

L
j 〉 pairs, constructing a partial persistent Iheap HR

j also
takes O(1) time amortized. Therefore, the time needed to build the representa-
tion of the 2n sets Lj and Rj for j = 1, . . . , n is O(n).

We represent the sets Q̂j and Q̄j using the representations of the sets Lj and
Rj−u+l. Figure 1 illustrates the correspondence between Q̂j and Lj and Q̄j and
Rj−u+l. Consider any index j ∈ {1, . . . , n − l + 1}, and let A[a, . . . , j, . . . , b] be
the current slab containing j. The set Q̂j contains the sums of length between l
and u that start in the current slab and end at index j+l−1. The set Lj contains
the j − a + 1 sums that start in the current slab and end at A[j]. Therefore,
adding the sum of the l − 1 numbers in A[j + 1, . . . , j + l − 1] to each element
in Lj gives Q̂j and thus:

Q̂j = 〈c + δL
j , H

L
j 〉 ,

where c =
∑j+l−1

t=j+1 A[t].
Similarly, the set Q̄j contains the u − l + 1 − (j − a + 1) = u − l − j + a

sums of length between l and u ending at A[j + l − 1] starting in the previous
slab. The set Rj−u+l contains the u− l− j − a shortest sums ending at the last
index in the previous slab. Therefore, adding the sum of the j + l − a numbers
in A[a, . . . , j + l − 1] to each element in Rj−u+l gives Q̄j and thus:

Q̄j = 〈d,HR
j−u+l〉 ,

where d =
∑j+l−1

t=a A[t].
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Lemma 1. Constructing the 2(n − l + 1) pairs that represent Q̂j and Q̄j for
j = 1, . . . , n− l + 1 takes O(n) time.

Proof. Constructing all 〈δL
j , H

L
j 〉 pairs and all HR

j partial persistent Iheaps takes
O(n) time, and calculating sums c and d takes constant time using a prefix array.
Constructing the prefix array takes O(n) time. Therefore, constructing Q̂j and
Q̄j for j = 1, . . . , n− l + 1 takes O(n) time. �


After constructing the 2(n− l+ 1) pairs, they are assembled into one large heap
using 2(n− l + 1)− 1 dummy ∞ keys as in [7]. The largest 2(n− l + 1)− 1 + k
elements are then extracted from the assembled heap in O(n + k) time using
Fredericksons heap selection algorithm. The implicit sums given by adding δ
values are explicitly computed while Fredericksons algorithm explores the final
heap top down in the way described in [7]. The 2(n− l+1)−1 dummy elements
are discarded.

Theorem 1. The algorithm described reports the k largest sums with length
between l and u in an array of length n in O(n + k) time.

3 Sum Selection Problem

In this section we prove a Θ(n log(k/n)) time bound for the sum selection prob-
lem by designing an O(n log(k/n)) time algorithm that selects the k’th largest
sum in an array of size n and by proving a matching lower bound.

The idea of the algorithm is to reduce the problem to selection in a collec-
tion of sorted arrays and weight balanced search trees [19,3]. The trees and the
sorted arrays are constructed using the ideas from Section 2 and [7]. Selecting
the k’th largest element from a set of trees and sorted arrays is done using an
essential part of the sorted column matrix selection algorithm of Frederickson
and Johnson [11]. The part of Frederickson and Johnsons algorithm that we use
is an iterative procedure named Reduce. In a round of the Reduce algorithm each
array, A, is represented by the 1+�α|A|� largest element stored in the array, and
a constant fraction of the elements in each array may be eliminated. This can
be approximated in weight balanced search trees and the complexity analysis
from [11] remains valid.

The lower bound is proved using a reduction from the X + Y cartesian sum
selection problem [11].

We note that if k ≤ n then the k maximal sums algorithm from [7] can be
used to solve the problem optimally in O(n) time.

To construct the sorted arrays efficiently, we use a heap data structure, that
is a generalization of the Iheap, which we name Bheap. The Bheap is a heap
ordered binary tree where each node of the tree contains a sorted array of size
B. By heap order, we mean that all elements in a child of a node v must be
smaller than the smallest element stored in v. Sorted arrays of B elements are
required to be inserted in O(B) time amortized. Our Bheap implementation is
based on ideas from the functional random access lists in [20] and simple bubble
up/down procedures based on merging sorted arrays.



106 G.S. Brodal and A.G. Jørgensen

3.1 An O(n log(k/n)) Time Algorithm

In this section we reduce the sum selection problem to selection in a set of trees
and sorted arrays. We use the weight balanced B-trees of Arge and Vitter [3]
with degree B = O(1). Similar to the grouping of sums in Section 2, each index
j, for j = 1, . . . , n, is associated with data structures representing all possible
sums ending at A[j]. The set representing all sums ending at index j is defined
as follows:

Qj =
{
(i, j, sum) | 1 ≤ i ≤ j, sum =

∑j
t=i A[t]

}
.

The input array is divided into slabs of size w = �k/n�, and the set Qj is repre-
sented by two disjoint sets WBj and BHj that depend on the slab boundaries.
The set WBj contains the sums ending at index j beginning in the current slab,
and BHj contains the sums ending at index j not beginning in the current slab.
Let a = 1 +

⌊
j−1
w

⌋
w, i.e. the first index in the slab containing index j, then:

WBj =
{
(i, j, sum) | a ≤ i ≤ j, sum =

∑j
t=i A[t]

}
∧

BHj =
{

(i, j, sum) | 1 ≤ i < a, sum = c +
∑a−1

t=i A[t]
}

,

where c =
∑j

t=a A[t] is the sum of the j− a+ 1 numbers in A[a, . . . , j]. The sets
WBj and BHj are disjoint, and WBj ∪ BHj = Qj by construction. The sets
are illustrated in Figure 2.

The set WBj is represented as a pair 〈τj , Tj〉 where Tj is a partial persistent
weight balanced B-tree and τj is an additive constant that must be added to all
elements in Tj to obtain the correct sums. The set BHj is represented as a pair
〈δj , Hj〉 where δj is an additive constant and Hj is a partial persistent Bheap
with B = w.
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︸ ︷︷ ︸
w

1 a j b

Fig. 2. Overview of the sets. Slab size w = 5, and A[a, . . . , b] is the slab containing
index j.
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The pairs 〈τj , Tj〉 are constructed as follows. If j is the first index of a slab,
i.e. j = 1 + tw for some natural number t, then:

〈τj , Tj〉 = 〈A[j], {0}〉 .

This is the start of a new slab, and a new partial persistent weight balanced
B-tree representing A[j], the first element in the slab, is created. If j is not the
first index in a slab then:

〈τj , Tj〉 = 〈τj−1 + A[j], Tj−1 ∪ {−τj−1}〉 ,

i.e. we change the additive constant and insert −τj−1 into the weight balanced
tree Tj−1. These construction equations are identical to the construction equa-
tions from Section 2, and partial persistence ensures that Tj−1 is not destroyed
by constructing Tj.

For the 〈δj , Hj〉 pairs representing the sets Q̂j , we observe that if j ≤ w then
BHj = ∅, thus:

〈δj , Hj〉 = 〈0, ∅〉 .
If j > w and j is not the first index in a slab, then adding A[j] to all elements
from the previous set yields the new set, thus:

〈δj , Hj〉 = 〈δj−1 + A[j], Hj−1〉 .

If j is the first index of a slab, i.e. j = 1 + tw for some integer t ≥ 1, all w
sums represented in 〈τj−1, Tj−1〉 are inserted into a sorted array S and each sum
explicitly calculated. This sorted array then contains all sums starting in the
previous slab ending at index j − 1. For each element in S the additive constant
δj−1 is subtracted and S is inserted into the Bheap Hj−1. The construction
equation becomes:

〈δj , Hj〉 = 〈δj−1 + A[j], Hj−1 ∪ S〉 ,

where
S =

{
(i, j, s− δj−1) | j − w ≤ i < j, s =

∑j−1
t=i A[t]

}
.

Again, partial persistence ensures that the previous version of the Bheap, Hj−1,
is not destroyed.

Lemma 2. Constructing the pairs 〈δj , Hj〉 and 〈τj , Tj〉 for j = 1, . . . , n takes
O(n log(k/n)) time.

Proof. The Bheap and the weight balanced B-trees have constant in and out-
degree. Therefore, partial persistence can be implemented for both using the
node copying technique [8].

For the Bheap, amortized O(1) pointers and arrays are changed per insertion.
The extra cost for applying the node copying technique is O(B) = O(w) time
amortized per insert operation. Constructing the sorted array S from a weight
balanced B-tree takes O(w) time. An insert in a Bheap is only performed every
w’th step, and calculating additive constants in each step takes constant time.
Therefore, the time used for constructing all 〈δj , Hj〉 pairs is O(n+ n

ww) = O(n).
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Each insert in a weight balanced B-tree is performed on a tree containing at
most w elements using O(logw) time. Therefore, the extra cost of using the node
copying technique is O(logw) time amortized per insert operation. Calculating
an additive constant τj takes constant time, thus, constructing all 〈τj , Tj〉 pairs
takes O(n log(k/n)) time. �


After the n pairs, 〈δi, Hi〉, storing Bheaps are constructed, they are assembled
into one large heap in the same way as in Section 2. That is, we construct
a complete heap on top of the pairs using n − 1 dummy nodes storing the
same array of w dummy ∞ elements. We then use Fredericksons heap selection
algorithm in the same way as in Section 2 where the representative for each node
is the smallest element in the sorted array stored in it. Using Fredericksons heap
selection algorithm the 2n − 1 nodes with the maximal smallest element and
their 2n children are extracted. This takes O(n) time and the nodes extracted
from the Bheap gives 3n sorted arrays by discarding the n− 1 dummy nodes.

Lemma 3. The 3n nodes found as described above contain the k largest sums
contained in the n pairs 〈δi, Hi〉.

Proof. The 4n−1 nodes found by the heap selection algorithm forms a connected
subtree T of the heap rooted at the root of the heap. Any element e stored in a
node ve /∈ T is smaller than all elements stored in any internal node v ∈ T since,
by heap order, e is smaller than the smallest element in the leaf of T that is on
the path from ve to the root. The smallest element in a leaf is smaller than the
smallest element in any internal node since the leaf was not picked by the heap
selection algorithm. There are 2n − 1 internal nodes in T and n of these does
not store dummy elements. Therefore, for each element not residing in T there
at least nw = n� k

n� ≥ k larger elements in the 3n found nodes. �


These 3n sorted arrays of size w and the n pairs 〈τi, Ti〉 storing weight balanced
B-trees of size at most w contain at most 4nw = 4n� k

n� ≤ 4(k + n) sums. The
3n arrays and the n weight balanced B-trees are given as input to the adapted
sorted column matrix selection algorithm, which extracts the k’th largest element
from these in O(n log(k/n)) time. The fact that the weight balanced B-trees are
partially persistent versions of the same tree and contain additive constants is
handled by expanding the trees and computing the sums explicitly during the
top down traversals performed by the selection algorithm as in Section 2 and [7].

Theorem 2. The algorithm described selects the k’th largest sum in an array
of size n in O(n log(k/n)) time.

3.2 Lower Bound

In this section we prove a matching lower bound of Ω(n log(k/n)) time for the
sum selection problem via a reduction from the X + Y cartesian sum selection
problem. In the X + Y cartesian sum selection problem as defined in [11], the
input is two unsorted arrays X and Y and an integer k, and the task is to select
the k’th largest element in the cartesian sum {x + y | x ∈ X, y ∈ Y }.
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Given an instance of the X + Y cartesian sum selection problem, X =
{x1, . . . , xn}, Y = {y1, . . . , ym}, and k, construct the following array A :

x1 − x2 · · · xi − xi+1 · · · xn−1 − xn xn +∞+ y1 y2 − y1 · · · ym − ym−1

where ∞ is a number larger than (n + m) · max{|x| | x ∈ X} ∪ {|y| | y ∈ Y }.
The sums in A have the following properties:

– A sum ranging from i to j where i ≤ n ≤ j represents the sum (
∑n−1

t=i A[t])+
xn +∞+ y1 + (

∑j
t=n+1 A[t]) = xi + yj−n+1 +∞.

– A sum including A[n] = xn +∞+ y1 is larger than any sum that does not

There are more sums in the sum selection instance than there are in the X+Y
cartesian sum instance since any sum not containing A[n] does not correspond
to an element in the cartesian sum. However, the k’th largest sum does contain
A[n] and corresponds to the k’th largest sum in the cartesian sum instance.
Therefore, any algorithm that selects the k’th largest sum in an array can be
used to select the k’th largest element in the cartesian sum.

The lower bound for selecting the k’th largest element in the cartesian sum
(X + Y ) is Ω(m + p log(k/p)) comparisons where |X | = n, |Y | = m with n ≤ m
and p = min{k,m} [11]. In the reduction the size of the array A is n + m − 1,
which is Θ(n + m) = Θ(m), and it can be built in O(m) time.

Theorem 3. Any algorithm that selects the k’th largest sum in an array of
size n uses Ω(n log(k/n)) comparisons.

4 Length Constrained Sum Selection

In this section we sketch how to select the k’th largest sum consisting of at
least l and at most u numbers from an array of size n in O(n log(k/n)) time. The
algorithm combines the ideas from Section 2 and Section 3. Similar to Section 3
the algorithm works by reducing the problem to selection in a collection of weight
balanced search trees and sorted arrays. It should be noted that a deterministic
algorithm with running time O(n log(u − l)) can be achieved by using weight
balanced B-trees instead of Iheaps in the algorithm from Section 2, and using
these as input to the adapted sorted column matrix selection algorithm instead
of the heap selection algorithm.

To achieve O(n log(k/n)) time, we constrain the lengths of the sums consid-
ered and divide the input array into slabs of size u − l as in Section 2. Subse-
quently, we efficiently construct representations of the sets Q̂j and Q̄j defined in
Section 2 using weight balanced trees and Bheaps by subdividing each slab into
sub-slabs of size � k

n� as in Section 3, recall k/n ≤ u − l + 1. Weight balanced
B-trees are used to represent sums residing inside a sub-slab, and Bheaps are
used to represent sums covering multiple sub-slabs. The sums are illustrated in
Figure 3. The Bheaps and the weight balanced B-trees are constructed efficiently
as in Section 3 using partial persistence.
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Fig. 3. Combining ideas - The sums associated with index j. A new slab of length
u − l starts at index a and a new subslab of length �k/n
 = 4 starts at index b.
c =

�j+l−1
t=j+1 A[t] , d =

�j+l−1
t=b A[t] , e =

�j+l−1
t=a A[t] and f =

�j+l−1
t=x A[t] where x is

the first index in the subslab following the subslab containing index j − u + l. The set
Q̂j is split into T̂j , represented by a weight balanced tree, and B̂Hj, represented by a
Bheap. The set Q̄j is split similarly.

After the representations of the sets Q̂j and Q̄j are constructed, the algorithm
continues as in Section 3. The sorted arrays storing the k largest sums stored in
the Bheaps are extracted using Fredericksons heap selection algorithm. The sorted
arrays and the weight balanced B-trees are then given as input to the adapted
sorted column matrix selection algorithm that selects the k’th largest sum.

Theorem 4. The k’th largest sum of length between l and u in an array of
size n can be selected in O(n log(k/n)) time.
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Abstract. We present two results for path traversal in trees, where the
traversal is performed in an asymptotically optimal number of I/Os and
the tree structure is represented succinctly. Our first result is for bottom-
up traversal that starts with a node in the tree T and traverses a path to
the root. For blocks of size B, a tree on N nodes, and for a path of length
K, we design data structures that permit traversal of the bottom-up path
in O(K/B) I/Os using only 2N + εN

logB N
+ o(N) bits, for an arbitrarily

selected constant, ε, where 0 < ε < 1. Our second result is for top-down
traversal in binary trees. We store T using (3 + q)N + o(N) bits, where
q is the number of bits required to store a key, while top-down traversal
can still be performed in an asymptotically optimal number of I/Os.

1 Introduction

Many operations on graphs and trees can be viewed as the traversal of a path.
Queries on trees, for example, typically involve traversing a path from the root
to some node, or from some node to the root. Often the datasets represented in
graphs and trees are too large to fit in internal memory and traversal must be
performed efficiently in external memory (EM). Efficient EM traversal in trees
is important for structures such as suffix trees, and as a building block to graph
searching and shortest path algorithms.

Succinct data structures were first proposed by Jacobson [1]. The idea is to
represent data structures using space as near the information-theoretical lower
bound as possible, while allowing efficient navigation. Succinct data structures,
which have been studied largely outside the external memory model, also have
natural application to large data sets.

In this paper, we present data structures for traversal in trees that are both
efficient in the EM setting, and that encode the trees succinctly. We are aware of
only the work by Chien et al. [2] on succinct full-text indices supporting efficient
substring search in EM, that follows the same track. Our contribution is the first
such work on general trees that bridges these two techniques.

Previous Work: The I/O-model [3] splits memory into two levels; the fast,
but finite, internal memory; and slow but infinite EM. Data is transferred be-
tween these levels by an input-output operation (I/O). Algorithms are analyzed
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in terms of the number of I/O operations. The unit of memory that may be
transferred in a single I/O is referred to as a disk block. The parameters B, M ,
and N denote the size (in terms of the number of data elements) of a block,
internal memory, and the problem instance. Blocking of data structures in the
I/O model has reference to the partitioning of the data into individual blocks
that can subsequently be transferred with a single I/O.

Nodine et al. [4] studied the problem of blocking graphs and trees, for efficient
traversal, in the I/O model. Among their main results they presented a bound of
Θ(K/ logd B) for d-ary trees where on average each vertex may be represented
twice. Blocking of bounded degree planar graphs, such as Triangular Irregular
Networks (TINs), was examined in Aggarwal et al. [5]. The authors show how
to store a planar graph of size N , and of bounded degree d, in O(N/B) blocks
so that any path of length K can be traversed using O(K/ logd B) I/Os.

Hutchinson et al. [6] examined the case of bottom-up traversal, where the path
begins with some node in T and proceeds to the root. They gave a blocking which
supports bottom-up traversal in O(K/B) I/Os when the tree is stored in O(N/B)
blocks. The case of top down traversal has been more extensively studied. Clark
and Munro [7] describe a blocking layout that yields a logarithmic bound for
root-to-leaf traversal in suffix trees. Given a fixed independent probability on
the leaves, Gil and Itai [8], presented a blocking layout that yields the minimum
expected number of I/Os on a root to leaf path. In the cache oblivious model,
Alstrup et al. [9] gave a layout that yields a minimum worst case, or expected
number of I/Os, along a root-to-leaf path, up to constant factors. Demaine et al.
[10] presented an optimal blocking strategy to support top down traversals. They
showed that for a binary tree T , a traversal from the root to a node of depth K
requires the following number of I/Os: (1) Θ(K/ lg(1+B)), when K = O(lg N),
(2) Θ(lg N/(lg(1 + B lg N/K))), when K = Ω(lg N) and K = O(B lg N), and
(3) Θ(K/B), when K = Ω(B lg N). Finally, Brodal and Fagerberg [11] describe
the giraffe-tree, which likewise permits a O(K/B) root-to-leaf tree traversal with
O(N) space in the cache-oblivious model.
Our Results: Throughout this paper we assume that B = Ω(lg N) (i.e. the
disk block is of reasonable size). Our paper presents two main results:
1. In Section 3, we show how a tree T can be blocked in a succinct fashion

such that a bottom-up traversal requires O(K/B) I/Os using only 2N +
εN

logB N + o(N) bits to store T , where K is the path length and 0 < ε < 1.
This technique is based on [6], and achieves an improvement on the space
bound by a factor of lg N .

2. In Section 4, we show that a binary tree, with keys of size q = O(lg N) bits,
can be stored using (3+q)N +o(N) bits so that a root-to-node path of length
K can be reported with: (a) O

(
K

lg(1+(B lg N)/q)

)
I/Os, when K = O(lg N);

(b) O

(
lg N

lg(1+ B lg2 N
qK )

)
I/Os, when K = Ω(lg N) and K = O

(
B lg2 N

q

)
; and

(c) O
(

qK
B lg N

)
I/Os, when K = Ω

(
B lg2 N

q

)
. This result achieves a lg N

factor improvement on the previous space cost in [10] for the tree structure.
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2 Preliminaries

Bit Vectors: A key data structure used in our research is a bit vector B[1..N ]
that supports the operations rank and select. The operations rank1(B, i) and
rank0(B, i) return the number of 1s and 0s in B[1..i], respectively. The opera-
tions select1(B, r) and select0(B, r) return the position of the rth occurrences
of 1 and 0, respectively. Several researchers [1,7,12] considered the problem of
representing a bit vector succinctly to support rank and select in constant time
under the word RAM model with word size Θ(lg n) bits, and their results can
be directly applied to the external memory model. The following lemma sum-
marizes some of these results, in which part (a) is from Jacobson [1] and Clark
and Munro [7], while part (b) is from Raman et al. [12]:

Lemma 1. A bit vector B of length N can be represented using either: (a)
N + o(N) bits, or (b) �lg

(
N
R

)
�+ O(N lg lg N/ lgN) = o(N) bits, where R is the

number of 1s in B, to support the access to each bit, rank and select in O(1)
time (or O(1) I/Os in external memory).

Succinct Representations of Trees: As there are
(2n

n

)
/(n + 1) different

binary trees (or ordinal trees) on N nodes, various approaches [1,13,14] have
been proposed to represent a binary tree (or ordinal tree) in 2N + o(N) bits,
while supporting efficient navigation. Jacobson [1] first presented the level-order
binary marked (LOBM) structure for binary trees, which can be used to encode
a binary tree as a bit vector of 2N bits. He further showed that operations such
as retrieving the left child, the right child and the parent of a node in the tree can
be performed using rank and select operations on bit vectors. We make use of
his approach to encode tree structures in Section 4. Another approach we use in
this paper is based on the isomorphism between balanced parenthesis sequences
and ordinal trees, proposed by Munro and Raman [13]. The balanced parenthesis
sequence of a given tree can be obtained by performing a depth-first traversal,
and outputting an opening parenthesis each time we visit a node, and a closing
parenthesis immediately after all the descendants of this node are visited. Munro
and Raman [13] designed a succinct representation of an ordinal tree of N nodes
in 2N + o(N) bits based on the balanced parenthesis sequence, which supports
the computation of the parent, the depth and the number of descendants of a
node in constant time, and the ith child of a node in O(i) time.

3 Bottom Up Traversal

In this section, we present a set of data structures that encode a tree T succinctly
so that the I/Os performed in traversing a path from a given node to the root
is optimal. Let A denote the maximum number of nodes that can be stored in
a single block, and let K denote the length of the path. Given the bottom up
nature of the queries, there is no need to encode a node’s key value, since the
path always proceeds to the current node’s parent.
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Data Structures: We begin with a brief overview of our technique. We partition
T into layers of height τB where 0 < τ < 1. The top layer and the bottom layer
can contain less than τB levels. We then group the nodes of each layer into
blocks, and store with each block a duplicate path. To reduce the space required
by these paths, we further group blocks into superblocks which also store a
duplicate path. By loading at most the block containing a node, along with its
associated duplicate path, and the superblock duplicate path we demonstrate
that a layer can be traversed with at most O(1) I/Os. A set of bit vectors1 that
map the nodes at the top of one layer to their parents in the layer above are
used to navigate between layers.

Layers are numbered starting at 1 for the topmost layer. Let Li be the ith layer
in T . The layer is composed of a forest of subtrees whose roots are all at the top
level of Li. We now describe how the blocks and superblocks are created within
Li. We number Li’s nodes in preorder starting from 1 for the leftmost subtree
and numbering the remaining subtrees from left to right. Once the nodes of Li

are numbered they are grouped into blocks of consequtive preorder number. Each
block stores a portion of T along with the representation of its duplicate path,
or the superblock duplicate path, if it is the first block in a superblock. We refer
to the space used to store the duplicate path as redundancy which we denote W .
In our succinct tree representation we require two bits to represent each node in
the subtrees of Li, so for blocks of B lg N bits we have A =

⌊
B lg N−W

2

⌋
.

We term the first block in a layer the leading block. Layers are blocked in such
a manner that the leading block is the only block permitted to be non-full (may
contain less than A nodes). The leading block requires no duplicate structure
and thus W = 0 for leading blocks. All superblocks except possibly the first,
which we term the leading superblock, contain exactly �lg B� blocks.

For each block we store as the duplicate path, the path from the node with
the minimum preorder number in the block to the layer’s top level. Similar to
Property 3 of Lemma 2 in [6] we have the following property:

Property 1. Given a block (or superblock) Y , for any node x in Y there exists a
path from x to either the top of its layer, or to the duplicate path of Y , which
consists entirely of nodes in Y .

Each block is encoded by three data structures:
1. An encoding of the tree structure, denoted Be. The subtree(s) contained, or

partially contained, within the block are encoded as a sequence of balanced
parentheses (see Section 2). Note that in this representation, the ith opening
parenthesis corresponds to the ith node in the preorder in this block.

2. The duplicate path array, Dp[j], for 1 < j ≤ τB. Let v be the node with
the smallest preorder number in the block. Entry Dp[j] stores the preorder
number of the node at the jth level on the path from v to the top level of
the layer. The number recorded is the preorder number with respect to the
block’s superblock. It may be the case that v is not at the τBth level of

1 All bit vectors are represented using the structures of Lemma 1a or Lemma 1b.
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the layer. In this case the entries below v are set to 0. Recall that preorder
numbers begin at 1, so the 0 value effectively flags an entry as invalid.

3. The root-to-path array, Rp[j], for 1 < j ≤ τB. A block may include many
subtrees rooted at nodes on the duplicate path. Consider the set of roots of
these subtrees. The entry at Rp[j] stores the number of subtrees rooted at
nodes on Dp from level τB up to level j. The number of subtrees rooted at
node Dp[j] can be calculated by evaluating Rp[j]−Rp[j + 1] when j < τB,
or Rp[j] when j = τB.

Now consider the first block in a superblock. The duplicate path of this
block is the superblock’s duplicate path. Unlike the duplicate path of a reg-
ular block, which stores the preorder numbers with respect to the superblock,
the superblock’s duplicate path stores the preorder numbers with respect to the
preorder numbering in the layer. Furthermore, consider the duplicate paths of
blocks within a superblock. These paths may share a common subpath with the
superblock duplicate path. Each entry on a block duplicate path that is shared
with the superblock duplicate path is set to −1.

For an arbitrary node v ∈ T , let v’s layer number be �v and its preorder
number within the layer be pv. Each node in T is uniquely represented by the
pair (�v, pv). Let π define the lexicographic order on these pairs. Given a node’s
�v and pv values, we can locate the node and navigate within the corresponding
layer. The challenge is how to map between the roots of one layer and their
parents in the layer above. Consider the set of N nodes in T . We define the
following data structures, that will facilitate mapping between layers:
1. Bit vector Vfirst[1..N ], where Vfirst[i] = 1 iff the ith node in π is the first

node within its layer.
2. Bit vector Vparent[1..N ], where Vparent[i] = 1 iff the the ith node in π is the

parent of some node at the top level of the layer below.
3. Bit vector Vfirst child[1..N ], where Vfirst child[i] = 1 iff the ith node in π is

a root in its layer and its parent in the preceeding layer differs from that of
the previous root in this layer.

All leading blocks are packed together on disk, separate from the full blocks.
Note that leading blocks do not require a duplicate path or root-to-path array,
so only the tree structure need be stored for these blocks. Due to the packing,
the leading block may overrun the boundary of a block on disk. We use the first
lg B bits of each disk block to store an offset which indicates the position of the
starting bit of the first leading block starting in the disk block. This allows us
to skip any overrun bits from a leading block stored in the previous disk block.

We store two bit arrays to aid in locating blocks to index the partially full
leading blocks and the full blocks. Let x be the number of layers on T , and let
z be the total number of full blocks. The bit vectors are:
1. Bit vector Bl[1..x], where Bl[i] = 1 iff the ith leading block resides in a

different disk block than the (i− 1)th leading block.
2. Bit vector Bf [1..(x+ z)] that encodes the number of full blocks in each layer

in unary. More precisely Bf [1..(x + z)] = 0l110l210l31 . . . where li is the
number of full blocks in layer i.
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To analyze the space costs of our data structures we have the following lemma.

Lemma 2. The data structures described above occupy 2N + 12τN
logB N +o(N) bits.

Proof (sketch). The number of bits used to store the actual tree structure of
T is 2N , as the structure is encoded using the balanced parentheses encoding.
We must also account for the space required to store the duplicate paths and
their associated root-to-path arrays. The space required for block and superblock
duplicate paths differs: �lg ((B�lg B��lg N�)/2)� bits are sufficient to store a node
on a block duplicate path (as there are at most (B�lg B��lg N�)/2 nodes in a
superblock), while an entry of a superblock duplicate path require �lg N� bits.

We store the array Rp for each block. As a block may have as many as
(B�lg N�)/2 nodes, each entry in Rp requires �lg B�+ �lg �lg N�� bits. Thus, for
a regular block, the number of bits used to store both Dp and Rp is τB(2�lg B�+
2�lg �lg N��+ �lg �lg B��).

Now consider the total space required for all duplicate paths and root-to-path
arrays within a superblock. The superblock duplicate path requires τB�lg N�
bits. The space cost of each of the (�lg B�−1) remaining blocks is given in the pre-
vious paragraph. Thus the total redundancy per superblock is W = τB�lg N�+
τB(�lg B�+ �lg �lg N��) + (�lg B� − 1)τB(2�lg B�+ 2�lg �lg N��+ �lg �lg B��).

The average redundancy per block is then:

Wb =
τB�lg N�
�lg B� +

τB(�lg B�+ �lg �lg N��)
�lg B�

+
(�lg B� − 1)τB(2�lg B�+ 2�lg �lg N��+ �lg �lg B��)

�lg B�
≤ τB�logB N�+ τB(3�lg B�+ 3�lg �lg N��+ �lg �lg B��) (1)

The value for the average redundancy, Wb, represents the worst case per block
redundancy, as the redundancy for leading blocks is �lg B�/(B�lg N�) < Wb

bits. The total number of blocks required to store T is 2N
B
lg N�−Wb

. The the
total size of the redundancy for T is Wt = 2N

B
lg N�−Wb
·Wb, which is at most

Wt = 2N ·2Wb

B
lg N� when Wb < 1
2B�lg N�. It is easy to show that when τ ≤ 1

16 , this
condition is true. Finally, substituting the value for Wb from Eq. 1, to obtain
Wt = 4Nτ
logB N�


lg N� + 12Nτ
lg B�

lg N� + 12Nτ
lg 
lg N��


lg N� + 4Nτ
lg 
lg B��

lg N� = 12τN


logB N� +o(N).
We arrive at out final bound because the first, third, and fourth terms are each
asymptotically o(N) (recall that we assume B = Ω(lg N)).

The bit vectors Vfirst, Vparent, Vfirst child, Bl, and Bf can be stored in o(N)
bits using Lemma 1b, as they are spare bit vectors. �


Navigation: The algorithm for reporting a node-to-root path is given by algo-
rithms ReportPath (see Fig. 1) and ReportLayerPath (see Fig. 2). Algorithm
ReportPath(T, v) is called with v being the number of a node in T given by
π. ReportPath handles navigation between layers and calls ReportLayerPath
to perform the traversal within each layer. The parameters �v and pv are the
layer number and the preorder value of node v within the layer, as previously
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Algorithm ReportPath(T, v)
1. Find �v, the layer containing v. �v = rank1(Vfirst, v).
2. Find α�v , the position in π of �v’s first node. α�v = select1(Vfirst, �v).
3. Find pv, v’s preorder number within �v. pv = v − α�v .
4. Repeat the following steps until the top layer has been reported.

(a) Let r = ReportLayerPath(�v, pv) be the preorder number of the root of
the path in layer �v (This step also reports the path within the layer).

(b) Find α(�v−1), the position in π of the first node at the next higher layer.
α(�v−1) = select1(Vfirst, �v − 1).

(c) Find λ, the rank of r’s parent among all the nodes in the layer
above that have children in �v. λ = (rank1(Vfirst child, α�v + r)) −
(rank1(Vfirst child, α�v − 1).

(d) Find which leaf δ, at the next higher layer corresponds to λ. δ =
select1(Vparent, rank1(Vparent, α(�v−1)) − 1 + λ).

(e) Update α�v = α(�v−1); pv = δ − α(�v−1), and; �v = �v − 1.

Fig. 1. Algorithm for reporting the path from node v to the root of T

Algorithm ReportLayerPath(�v, pv)
1. Load block bv containing pv. Scan Be (the tree’s representation) to locate pv.

If bv is stored in a superblock, SBv, then load SBv’s first block if bv is not the
first block in SBv . Let min(Dp) be the minimum valid preorder number of bv’s
duplicate path (let min(Dp) = 1 if bv is a leading block), and let min(SBDp)
be the minimum valid preorder number of the superblock duplicate path (if
bv is the first block in SBv then let min(SBDp) = 0).

2. Traverse the path from pv to a root in Be. If r is the preorder number (within
Be) of a node on this path report (r − 1) + min(Dp) + min(SBDp). This step
terminates at a root in Be. Let rk be the rank of this root in the set of roots
of Be.

3. Scan the root-to-path array, Rp from τB...1 to find the smallest i such that
Rp[i] ≥ rk. If rk ≥ Rp[1] then r is on the top level in the layer so return
(r − 1) + min(Dp) + min(SBDp) and terminate.

4. Set j = i − 1.
5. while(j ≥ 1 and Dp[j] �= 1) report Dp[j] + min(SBDp) and set j = j − 1.
6. If j ≥ 1 then report SBDp [j] and set j = j − 1 until(j < 1).

Fig. 2. Steps to execute traversal within a layer, �v, starting at the node with preorder
number pv. This algorithm reports the nodes visited and returns the layer preorder
number of the root at which it terminates.

described. ReportLayerPath returns the preorder number, within layer �v of the
root of path reported from that layer. In ReportLayerPath we find the block bv

containing node v using the algorithm FindBlock(�v, pv) described in Fig. 3. It
is straightforward that this algorithm performs O(1) I/Os per layer when per-
forming path traversals, so a path of length K in T can be traversed in O(K/τB)
I/Os. Combing this with Lemma 2, we have the following theorem (to simplify
our space result we define one additional term ε = 12τ):
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Algorithm FindBlock(�v , pv)
1. Find σ, the disk block containing �v’s leading block. σ = rank1(Bl, �v).
2. Find α, the rank of �v’s leading block within σ, by performing rank/select

operations on Bl to find j ≤ �v such that Bl[j] = 1. α = pv − j.
3. Scan σ to find, and load, the data for �v’s leading block (may required loading

the next disk block). Note the size δ of the leading block.
4. If pv ≤ δ then pv is in the already loaded leading block, terminate.
5. Calculate ω, the rank of the block containing pv within the select1(Bf , �v +

1) − select1(Bf , �v) full blocks for this level.
6. Load full block rank0(Bf , �v) + ω and terminate.

Fig. 3. FindBlock algorithm

Theorem 1. A tree T on N nodes can be represented in 2N + εN
logB N + o(N)

bits such that given a node-to-root path of length K, the path can be reported in
O(K/B) I/Os, when 0 < ε < 1.

For the case in which we wish to maintain a key with each node, we store each
key in the same block that contains its corresponding node, and we also store
each duplicate path and keys associated to the nodes in the path in the same
block. This yields the following corollary:

Corollary 1. A tree T on N nodes with q-bit keys, where q = O(lg N), can be
represented in (2 + q)N + q ·

[
6τN


logB N� + 2τqN

lg N� + o(N)

]
bits such that given a

node-to-root path of length K, that path can be reported in O(τK/B) I/Os, when
0 < τ < 1.

In Corollary 1 it is obvious that the first and third terms inside the square
brackets are small so we will consider the size of the the second term inside the
brackets ((2τqN)/�lg N�). When q = o(lg N) this term becomes o(N). When
q = Θ(lg N) we can select τ such that this term becomes (ηN) for 0 < η < 1.

4 Top Down Traversal

Given a binary tree T , in which every node is associated with a key, we wish to
traverse a top-down path of length K starting at the root of T and terminating at
some node v ∈ T . We follow our previous notation by letting A be the maximum
number of nodes that can be stored in a single block. Let q = O(lg N) be the
number of bits required to encode a single key. Keys are included in the top-
down case because it is assumed that the path followed during the traversal is
selected based on the key values in T .

Data Structures: We begin with a brief sketch of our data structures. A tree
T is partitioned into subtrees, where each subtree Ti is laid out into a tree
block. Each block contains a succinct representation of Ti and the set of keys
associated with the nodes in Ti. The edges in T that span a block boundary are
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not explicitly stored within the tree blocks. Instead, they are encoded through
a set of bit vectors that enable navigation between blocks.

To introduce our data structures, we give some definitions. If the root node
of a block is the child of a node in another block, then the first block is a child
of the second. There are two types of blocks: internal blocks that have one or
more child blocks, and terminal blocks that have no child blocks. The block level
of a block is the number of blocks along a path from the root of this block to
the root of T .

We number the internal blocks in the following manner. First number the
block containing the root of T as 1, and number its child blocks consecutively
from left to right. We then consecutively number the internal blocks at each
successive block level. The internal blocks are stored on the disk in an array I,
such that the block numbered j is stored in entry I[j].

Terminal blocks are numbered and stored separately. Starting again at 1, they
are numbered from left to right. Terminal blocks are stored in the array Z. As
terminal blocks may vary in size, there is no one-to-one correspondence between
disk and tree blocks in Z; rather, the tree blocks are packed into Z to minimize
wasted space. At the start of each disk block j, a lg B bit block offset is stored
which indicates the position of the starting bit of the first terminal block stored
in Z[j]. Subsequent terminal blocks are stored immediately following the last
bits of the previous terminal blocks. If there is insufficient space to record a
terminal block within disk block Z[j], the remaining bits are stored in Z[j + 1].

We now describe how an individual internal tree block is encoded. Consider
the block of subtree Tj; it is encoded using the following structures:

1. The block keys, Bk, is an A-element array which encodes the keys of Tj.
2. The tree structure, Bs, is an encoding of Tj using the LOBM sequence of

Jacobson [1]. More specifically, we define each node of Tj as a real node. Tj

is then augmented by adding dummy nodes as the left and/or right child of
any real node that does not have a corresponding real child node in Tj

2. We
then perform a level order traversal of Tj and output a 1 each time we visit
a real node, and a 0 each time we visit a dummy node. If Tj has A nodes the
resulting bit vector has A 1s for real nodes and A + 1 0s for dummy nodes.
As the first bit is always 1, and the last two bits are always 0s, we do not
store them explicitly. Thus, Bs can be represented with 2A− 2 bits.

3. The dummy offset, Bd. Let Γ be a total order over the set of all dummy
nodes in internal blocks. In Γ the order of dummy node d is determined
first by its block number, and second by its position within Bs. The dummy
offset records the position in Γ of the first dummy node in Bs.

The encoding for terminal blocks is identical to internal blocks except: the
dummy offset is omitted, and the last two 0s of Bs are encoded explicitly.

We now define a dummy root. Let Tj and Tk be two tree blocks where Tk is a
child block of Tj. Let r be the root of Tk, and v be r’s parent in T . When Tj is

2 The node may have a child in T , but if that node is not part of Tj , it is replaced by
a dummy node.
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encoded a dummy node is added as a child of v which corresponds to r. Such a
dummy node is termed a dummy root.

Let � be the number of dummy nodes over all internal blocks. We create:
1. X [1..�] stores a bit for each dummy node in internal blocks. Set X [i] = 1 iff

dummy node i is the dummy root of an internal block.
2. S[1..�] stores a bit for each dummy node in internal blocks. Set S[i] = 1 iff

dummy node i is the dummy root of a terminal block.
3. SB[1..�′], where �′ is the number of 1s in S. Each bit in this array corresponds

to a terminal block. Set SB[j] = 1 iff the corresponding terminal block is
stored starting in a disk block of Z that differs from that in which terminal
block j − 1 starts.

Block Layout: We have yet to describe how T is split up into tree blocks. This
is achieved using the two-phase blocking strategy of Demaine et al. [10]. Phase
one blocks the first c lg N levels of T , where 0 < c < 1. Starting at the root of T
the first �lg (A + 1)� levels are placed in a block. Conceptually, if this first block
is removed we are left with a forest of O(A) subtrees. The process is repeated
recursively until c lg N levels of T have thus been blocked.

In the second phase we block the rest of the subtrees by the following recursive
procedure. The root, r, of a subtree is stored in an empty block. The remaining
A − 1 capacity of this block is then subdivided, proportional to the size of the
subtrees, between the subtrees rooted at r’s children. During this process, if at
a node the capacity of the current block is less than 1, a new block is created.
To analyze the space costs of our structures, we have:

Lemma 3. The data structures described above occupy (3 + q)N + o(N) bits.

Proof. We first determine the maximum block size A. The encoding of subtree Tj

requires 2A bits. We need Aq bits to store the keys, and �lg N� bits to store the
dummy offset. Therefore, 2A + Aq + �lg N� = �B lg N�. Thus, A = Θ

(
B lg N

q

)
.

During the first phase of the layout, non-full internal blocks may be created.
However, the height of the phase 1 tree is bounded by c lg N levels, so the total
number of wasted bits in such blocks is bounded by o(N).

The arrays of blocks I and Z store the structure of T as LOBM which requires
2N bits. The dummy roots are duplicated as the roots of child blocks, but as the
first bit in each block need not be explicitly stored, the entire tree structure still
requires only 2N bits. The keys occupy N · q bits. Each of the O(N/A) blocks
in I stores a block offset of size lg(N/A) bits. The total space required for the
offsets is N/A · lg (N/A), which is o(N) bits since q = O(lg N). The bit vectors X
and SB have size N , but in both cases the number of 1 bits is bounded by N/A.
By Lemma 1b, we can store them in o(N) bits. S can be encoded in N + o(N)
bits using Lemma 1a. The total space is thus (3 + q)N + o(N) bits. �


Navigation: Navigation in T is summarized in Figures 4 and 5 which present the
algorithms Traverse(key, i) and TraverseT erminalBlock(key, i) respectively.
During the traversal the function compare(key) compares the value key to the
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Algorithm Traverse(key, i)
1. Load block I [i] to main memory. Let Ti denote the subtree stored in I [i].
2. Scan Bs to navigate within Ti. At each node x use compare(key,Bk[x]) to

determine which branch to follow until a dummy node d with parent p is
reached.

3. Scan Bs to determine j = rank0(Bs, d).
4. Determine the position of j with respect to Γ by adding the dummy offset to

calculate λ = Bd + j.
5. If X[λ] = 1, then set i = rank1(X, λ) and call Traverse(key, i).
6. If X[λ] = 0 and S[λ] = 1, then set i = rank1(S, λ) and call

TraverseTerminalBlock(key, i).
7. If X[λ] = 0 and S[λ] = 0, then p is the final node on the traversal, so the

algorithm terminates.

Fig. 4. Top down searching algorithm for a blocked tree

Algorithm TraverseTerminalBlock(key, i)
1. Load disk block Z[λ] containing terminal block i, where λ = rank1(SB , i).
2. Let Bd be the offset of disk block Z[λ].
3. Find α, the rank of terminal block i within Z[λ] by scanning from SB [i] back-

wards to find j ≤ i such that SB [j] = 1. Then α = i − j.
4. Starting at Bd scan Z[λ] to find the start of the αth terminal block. Recall that

each block stores a bit vector Bs in the LOBM encoding, so we can determine
when we have reached the end of one terminal block as follows:
(a) Set two counters µ = β = 1.
(b) Scan Bs. When a 1 bit is encountered increment µ and β. When a 0 bit is

encountered decrement β. Terminate the scan when β < 0 as the end of
Bs has been reached.

(c) Now µ records the number of nodes in the terminal block so calculate the
length of the array Bk needed to store the keys and jump ahead this many
bits. This will place the scan at the start of the next terminal block.

5. Once the αth block has been reached, the terminal block can be read in (process
is the same as scanning the previous blocks). It may be the case the this
terminal block overruns the disk block Z[λ] into Z[λ+1]. In this case skip the
first �lg B
 bits of Z[λ + 1] and continue reading in the terminal block.

6. With the terminal block in memory, the search can be concluded in a man-
ner analogous to that for internal blocks except that once a dummy node is
reached, the search terminates.

Fig. 5. Performing search for a terminal block

key of a node to determine which branch of the tree to traverse. The parameter i
is the number of a disk block. Traversal is initiated by calling Traverse(key, 1).

It is easy to observe that a call to TraverseT erminalBlock can be performed
in O(1) I/Os, while Traverse can be executed in O(1) I/Os per recursive call.
Thus, the I/O bounds are then obtained directly by substituting our succinct
block size A for the standard block size B in the result of Demaine et al. [10]
(see Section 1). Combining this with Lemmas 3, we have the following result:
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Theorem 2. A rooted binary tree, T , of size N , with keys of size q = O(lg N)
bits, can be stored using (3+ q)N +o(n) bits so that a root to node path of length
K can be reported with:
1. O

(
K

lg(1+(B lg N)/q)

)
I/Os, when K = O(lg N)

2. O

(
lg N

lg(1+ B lg2 N
qK )

)
I/Os, when K = Ω(lg N) and K = O

(
B lg2 N

q

)
, and

3. O
(

qK
B lg N

)
I/Os, when K = Ω

(
B lg2 N

q

)
.
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Abstract. The suffix array, a space efficient alternative to the suffix
tree, is an important data structure for string processing, enabling effi-
cient and often optimal algorithms for pattern matching, data compres-
sion, repeat finding and many problems arising in computational biology.
An essential augmentation to the suffix array for many of these tasks is
the Longest Common Prefix (LCP) array. In particular the LCP array
allows one to simulate bottom-up and top-down traversals of the suf-
fix tree with significantly less memory overhead (but in the same time
bounds). Since 2001 the LCP array has been computable in Θ(n) time,
but the algorithm (even after subsequent refinements) requires relatively
large working memory. In this paper we describe a new algorithm that
provides a continuous space-time tradeoff for LCP array construction,
running in O(nv) time and requiring n+O(n/

√
v+v) bytes of working

space, where v can be chosen to suit the available memory. Furthermore,
the algorithm processes the suffix array, and outputs the LCP, strictly
left-to-right, making it suitable for use with external memory. We show
experimentally that for many naturally occurring strings our algorithm
is faster than the linear time algorithms, while using significantly less
working memory.

1 Introduction

The suffix array SAx of a string x is an array containing all the suffixes of x
sorted into lexicographical order [10]. The suffix array can be enhanced [1] with
the longest-common-prefix (LCP) array LCPx which contains the lengths of the
longest common prefixes of adjacent elements in SAx. When preprocessed in this
way the suffix array becomes equivalent to, though much more compact than,
the suffix tree [13,16,17], a data structure with “myriad virtues” [2]. Conceptu-
ally LCPx defines the “shape” of the suffix tree and thus allows top-down and
bottom-up traversals to be simulated using SAx. Such traversals are at the heart
of many efficient string processing algorithms [1,2,8,15].

Despite its utility, the problem of constructing LCPx efficiently has been little
studied. The three algorithms that do exist [9,12] consume significant amounts
of memory and, though asymptotically linear in their runtime, have poor locality
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of memory reference and so tend to be slow in practice, certainly relative to the
fastest algorithms for constructing SAx. In this paper we describe a new algo-
rithm for LCP array construction that provides a continuous space-time tradeoff,
running in O(nv) time and requiring n+O(n/

√
v+v) bytes of working space,

where v can be chosen to suit the available memory. We show experimentally
that for many naturally occurring strings our algorithm is faster than the linear
time algorithms, while always using a fraction of the working memory. Our basic
strategy is to compute the LCP values for a special sample of the suffixes and
then use these values to derive the rest with only a fixed extra cost per value.
Importantly we require only sequential access to the SA and LCP array, and
this locality of memory reference makes our algorithm suitable for low memory
environments when these arrays must reside on disk, and non sequential access
would cripple runtime.

The remainder of this paper is organized in the following manner. In the
remainder of this section we set some notation, formalise basic ideas and then
tour existing LCP array construction algorithms. Then, in Section 2 we describe
two peices of algorithmic machinery that are essential to our methods. Our new
algorithm is detailed in Section 3. Section 4 reports on our experiments with an
efficient implementation of the algorithm, with reflections offered in Section 5.

1.1 Basic Definitions and Notation

Throughout we consider a string x = x[0..n] = x[0]x[1] . . . x[n] of n + 1 symbols.
The first n symbols of x are drawn from a constant ordered alphabet, Σ, con-
sisting of symbols σj , j = 1, 2, . . . , |Σ| ordered σ1 < σ2 < · · · < σ|Σ|. The final
character x[n] is a special “end of string” character, $, lexicographically smaller
than all the other characters in Σ, so $ < σ1. For purposes of accounting we
assume the common case that |Σ| ∈ 0..255, where each symbol requires one byte
of storage and that n < 232 so the length of x and any pointers into it require
four bytes each. These are not inherant limits on our algorithm, which will work
for any alphabet size and any string length.

For i = 0, . . . , n we write x[i..n] to denote the suffix of x of length n− i + 1,
that is x[i..n] = x[i]x[i + 1] · · ·x[n]. For simplicity we will frequently refer to
suffix x[i..n] simply as “suffix i”. Similarly, we write x[0..i] to denote the prefix
of x of length i+1. We write x[i..j] to represent the substring x[i]x[i+1] · · ·x[j]
of x that starts at position i and ends at position j.

The suffix array of x, denoted SAx or just SA, when the context is clear,
is an array SA[0..n] which contains a permutation of the integers 0..n such that
x[SA[0]..n] < x[SA[1]..n] < · · · < x[SA[n]..n]. In other words, SA[j] = i iff x[i..n]
is the jth suffix of x in ascending lexicographical order.

Our focus in this paper is the computation of the an array derived from SAx,
the lcp array LCP = LCP[0..n]. Define lcp(y, z) as the length of the longest
common prefix of strings y and z. For every j ∈ 1..n,

LCP[j] = lcp(x[SA[j−1]..n], x[SA[j]..n]),
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that is the length of the longest common prefix of suffixes SA[j−1] and SA[j].
LCP[0] is undefined. The following example, which we will return to later, illus-
trates these data structures.

0 1 2 3 4 5 6 7 8 9 10

x a t a t g t t t g t $
SA 10 0 2 8 4 9 1 7 3 6 5
LCP - 0 2 0 2 0 1 1 3 1 2

Thus the longest common prefix of suffixes 0 and 2 is at, of length 2, while that
of suffixes 9 and 1 is t, of length 1.

1.2 Prior Art

When the average value in LCP is low it is feasible to compute each value by
brute force. However, we do not know in advance the longest LCP value for a
gien suffix array; in the worst case (a string of n identical symbols) the brute
force approach requires O(n2) time. Kasai et al [9] give an elegant algorithm
to construct LCP given SA and x in Θ(n) time. Including these arrays and
another for working, their algorithm requires 13n bytes. Manzini [12] describes a
refinement to Kasai et al’s approach that maintains the linear running time but
reduces space usage to 9n bytes. Manzini presents a further variant – again with
linear runtime – that overwrites SA with LCP and uses 4Hk(x) + 6n bytes of
space where Hk is the kth order emperical entropy [11], a measure that decreases
the more compressible x is. Thus, for very regular strings this algorithm uses
little more than 6n bytes, but in the worst case may use 10n.

To gain an idea of the problematic nature of the space bounds for these algo-
rithms, consider the task of construction LCP for the entire human genome; some
3Gb of data. DNA is notoriously uncompressible, so Manzini’s second algorithm
will have no advantage, leaving his 9n byte algorithm as the most space efficient
option. To avoid the deleterious effect of using secondary memory would require
27Gb of main memory, much more than the capacity of most workstations.

2 Tools

In this section we introduce two of the important components of our algorithm:
the concept of a Difference Cover, and efficient algorithms for solving Range
Minimum Queries.

2.1 Difference Covers

Essential to our methods is the concept of a difference cover, which was re-
cently used by Burkhardt and Kärkkäinen for the purposes of suffix array con-
struction [4]. As they define it, a difference cover D modulo v is a set of integers
in the range 0..v−1 with the property that for all i ∈ 0..v−1 there exists j, k ∈ D
such that i ≡ k−j( mod v). A difference cover must have size ≥

√
v, though small
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ones (with size ≤
√

1.5v+6) can be generated relatively easily with a method
described by Colburn and Ling [5]. In any case, once computed a difference cover
can be stored and reused – around a dozen of varying sizes are provided in the
source code of Burkhardt and Kärkkäinen [4].

An example of a difference cover for v = 7 is D = {1, 2, 4}. Observe that
for i = 0..6 it is always possible to find two elements of D (perhaps the same
element twice) so that i equals the difference of the numbers, modulo v.

We also borrow from Burkhardt and Kärkkäinen a function δ(i, j) over a
difference cover D defined as follows. For any integers i, j, let δ(i, j) be an integer
k ∈ 0..v−1 such that (i+k) mod v and (j+k) mod v are both in D. They show
that a lookup table of size O(v) computable in time O(v) is sufficient for δ(i, j)
to be evaluted in constant time for any i, j.

2.2 Range Minimum Queries

Our algorithms also rely on efficient data structures for solving range minimum
queries (RMQs). Given an array of n integers A[0..n−1], function RMQA(i, j),
i, j ∈ 0..n−1, i < j, returns k ∈ i..j such that A[k] is the minimum (or equal
minimum) of all values in A[i..j]. Remarkably, it is possible to preprocess A
in O(n) time to build a data structure requiring O(n) space that subsequently
allows arbitrary RMQs to be answered in constant time [3,6]. The most space
efficient of these preprocessing algorithms requires just 2n + o(n) bits for the
final data structure and working space during its construction [6,7].

3 Computing the LCP Array

Our strategy for saving space is to compute the lcp values for a sample of suffixes
and then use those values to generate the rest. The particular sample we use
is defined by a difference cover with density selected such that overall space
requirements fit into the available memory.

At a high level the algorithm is comprised of the following steps:
1. Choose v ≥ 2, a difference cover D modulo v with |D| = Θ(

√
v) and compute

the function δ.
2. Fill an array S[0..n/|D|] with the suffixes whose starting position modulo v

is in D. Build a data structure on S so that we can compute the lcp of an
arbitrary pair of sample suffixes in constant time.

3. Scan SA left-to-right and compute all the LCP values. To compute LCP[i]
we compare the first v symbols of SA[i] and SA[i−1]. If we find a mismatch
at SA[i]+j we know the lcp is j−1 and we are done. If they are equal after
v symbols we compute the lcp using the fact that suffixes SA[i]+δ(SA[i−
1], SA[i]) and SA[i−1]+ δ(SA[i−1], SA[i]) are in the sample and we can
compute their lcp in constant time using the data structure alluded to in the
previous step.

As mentioned in Section 2.1, Step 1, the selection of a suitable difference
cover, can be acheived in O(

√
v) time and anyway can be done offline. We now

delve further into Step 2 and Step 3 in turn.
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3.1 Step 2: Collecting and Preprocessing the Sample

Let m = n|D|/v denote the number of sample suffixes in string x[0..n]. As men-
tioned above, we collect the sample suffixes in an left-to-right scan of SA[0..n],
filling an array S[0..m−1] with the suffixes whose starting position modulo v is
in D. This can be acheived in O(n) if we first preprocess D and build a small
table D̂[0..v−1]. That is, D̂[i], i ∈ D, is the number of elements less than i ∈ D
(ie. it’s rank in D), or -1 if i /∈ D. After the scan of SA all the sample suffixes
appear in S in the order in which they appear in the SA.

We then preprocess S and build a data structure so that we can compute
the lcp of an arbitrary pair of sample suffixes in constant time. The first part
of this is a mapping that gives us the position in S of a given sample suffix in
constant time. Because the values in S are periodic according to the difference
cover, the mapping can be implemented with an array Ŝ[0..m−1] and the D̂
table: the position of sample suffix i in S is simply Ŝ[|D|�i/v�+ D̂[i mod v]].
Figure 1 summarises the process.

— Compute D̂[0..v−1] (assume set D is sorted).
1: j ← 0
2: for i ← 0 to v−1 do

3: D̂[i] = −1
4: if D[j] = i then

5: D̂[i] ← j
6: j ← j + 1

— Put sample suffixes in S[0..m−1] and their ranks in Ŝ.
7: j ← 0
8: for i ← 0 to n do

9: if D̂[SA[i] mod v] �= −1 then
10: S[j] ← SA[i]
11: Ŝ[|D|�S[j]/v� + D̂[S[j] mod v]] ← j
12: j ← j + 1

Fig. 1. Compute arrays S[0..m−1], Ŝ[0..m−1] and D̂[0..v−1]

Using the example string from Section 1.1, and the difference cover D = {0, 1}
and v = 3, we get arrays shown in Figure 2.

Having collected S, for each S[i], i = 1..m we compute L[i] = lcp(S[i−1], S[i])
using the algorithm in Figure 3. The algorithm is an adaption of the original
O(n) time LCP algorithm from Kasai et al. [9]. The outer loop at Line 1 iterates
over elements of our chosen difference cover D, s, and the while loop on Line 4
fills in the values of L[Ŝ[s]], L[Ŝ[s + |D|]], L[Ŝ[s + 2|D|]], and so on. Note we
assume S[−1] = n to finess the boundary case in Line 5 when Ŝ[k] = 0.

We exploit the following lemma from Kasai et al. [9]

Lemma 1. If �(i) is lcp value for suffix i then �(i + v) ≥ �(i)− v,

which allows us to maintain � never reducing by more than v with each iteration.
The analysis of execution time for Figure 3 is similar to that of Kasai et al. [9].
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i 0 1 2 3 4 5 6 7 8 9 10

x a t a t g t t t g t $

D[i] 0 1
D̂[i] 0 1 -1

SA 10 0 2 8 4 9 1 7 3 6 5
SA[i] mod v 1 0 2 2 1 0 1 1 0 0 2

j 0 1 2 3 4 5 6 7

S 10 0 4 9 1 7 3 6
|D|�S[j]/v� 6 0 2 6 0 4 2 4

D̂[S[j] mod v] 1 0 1 0 1 1 0 0

Ŝ 1 4 6 2 7 5 3 0

L after s = 0 0 0 3 1
L after s = 1 - 0 0 0 1 1 3 1

Fig. 2. An example of the derivation of S, Ŝ and L

— Using S[0..m−1], Ŝ and D̂ compute L[0..m−1].
1: for s ← 0 to |D|−1 do
2: k ← s
3: � ← 0
4: while k < m do

5: s0 ← S[Ŝ[k]−1]
6: s1 ← S[Ŝ[k]]
7: while x[s0 + �] = x[s1 + �] do
8: � ← � + 1
9: L[Ŝ[k]] ← �
10: � ← max(0, � − v)
11: k ← k + |D|

Fig. 3. Compute the values of L[0..m−1]

Consider the loop starting on Line 4, which computes the values in L corre-
sponding to sample suffixes k = D[s]( mod v). The execution time of this loop
is propotional to the number of times Line 8 is executed, as it is the innermost
loop. The value of � increases by 1 on Line 8 and is always less than n, the string
length. Since � is initially 0 and is decreased by at most v each time around the
outer while loop (at Line 10), which is executed at most m/|D| times, � increases
at most 2n times. The O(n) time bound follows. In order to compute all the val-
ues in L we simply run the algorithm once for each k ∈ D. Since |D| = O(

√
v) it

follows that we can compute L in O(
√

vn) time. With L in hand we preprocess
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it for constant time RMQs, allowing us to take advantage of the following well
known result (see, eg. [10]).

Lemma 2. Let A[0..n] be an array of lexicographically sorted strings and let
P [1..n] be an array where P [i] = lcp(A[i−1], A[i]). Then for i, j ∈ 0..n, i <
j, lcp(A[i], A[j]) = RMQP (i, j).

We now have a data structure, which can be built in O(n
√

v) time, that lets us
find the lcp of two arbitrary sample suffixes in constant time. In the next section
we use it to efficiently compute the entire LCP array.

3.2 Step 3: Computing the Entire LCP Array

We make a second scan of SA left-to-right to compute all the LCP values. For
convenience, let s0 denote suffix SA[i−1] and s1 denote suffix SA[i]. To compute
LCP[i] we first compare x[s0..s0 +v] to x[s1..s1 +v]. If they are not equal, the
offset of the first mismatching character is the lcp value and we can move on. On
the other hand, if the first v characters of these suffixes are equal, then LCP[i]
can be computed by finding the beginning of the sample suffixes in x[s0..s0+v]
and x[s1..s1+v], a0 and a1 respectively in Figure 4, and then using their pre-
computed lcp value to derive LCP[i]. More specifically, because of the properties
of the difference cover, δ(s0, s1) will return an offset k from s0 and s1 so that
both suffixes beginning at s0 +k and s1 +k are in the sample set S. Using Ŝ
we can locate these in constant time, giving their positions in S, as r0 and r1
as shown in Figure 4. Finally, LCP[i] will be equal to k plus the lcp of the two
sample suffixes located at r0 and r1, which is computed as the RMQL(r0, r1).

Because we access SA strictly left-to-right it is possible to overwrite SA with
LCP as the algorithms proceeds. This excellent memory access pattern also
allows the possibility of leaving the SA on disk, overwriting it there with the
LCP information.

1: for i ← 1 to n do
2: s0 ← SA[i−1]
3: s1 ← SA[i]

— Check if lcp(s0, s1) < v.
4: j ← 0
5: while x[s0 + j] = x[s1 + j] and j < v do
6: j ← j + 1
7: if j < v then
8: LCP[i] ← j
9: else

— Compute lcp(s0, s1) using L.

10: a0 ← s0 + δ(s0, s1) ; r0 ← Ŝ[|D|�a0/v� + D̂[a0 mod v]]
11: a1 ← s1 + δ(s0, s1) ; r1 ← Ŝ[|D|�a1/v� + D̂[a1 mod v]]
12: LCP[i] ← δ(s0, s1) + RMQL(r0, r1)

Fig. 4. Compute LCP[1..n] (LCP[0] is undefined) given Ŝ and the RMQL data struc-
ture in O(nv) time
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4 Implementation and Experiments

In this section we report on experiments with the new algorithm. The purpose
of the experiments was to compare the new algorithm to existing approaches
and also to gauge the effect of parameter v, the size of the difference cover on
performance. We implemented two different versions of the new algorithm, and
three existing approaches as follows.

PT-mem. Overwrites a memory resident SA with the LCP information, requir-
ing around 5n+13n/

√
v bytes of primary memory.

PT-disk. Streams and overwrites a disk resident SA with the LCP information,
requiring around n+13n/

√
v bytes of primary memory.

L-13. The original O(n) algorithm of Kasai et al [9], requiring 13n bytes.
L-9. Manzini’s first variant, requiring 9n bytes.
L-6. Manzini’s most space efficient version requiring 4Hk(x) + 6n bytes.

The memory requirements as stated here include the cost of the text, the SA
and the LCP array when they are required to be held in RAM. Note that while
the PT-mem and PT-disk programs overwrite SA, if the SA is required it can
be copied in Θ(n) time before the algorithm commences.

All tests were conducted on a 3.0 GHz Intel Xeon CPU with 4Gb main memory
and 1024K L2 Cache and a 320 GB Seagate Barracuda 7200.10 disk. The machine
was under light load, that is, no other significant I/O or CPU tasks were running.
The operating system was Fedora Linux running kernel 2.6.9. The compiler was
g++ (gcc version 3.4.4) executed with the -O3 option. Times were recorded with
the standard Unix getrusage function. All running times given are the average
of three runs.

The five approaches were tested on the four different data sets shown in Table 1
obtained from the Pizza-Chili Corpus1. The large lcp values for the english

corpus are due to duplicate documents in the text. Also note that we tested our
algorithms on intermediate file sizes (100 Mb), but the resources required fell
between those of the 50 Mb and 200 Mb data sets as expected, and so are not
reported here.

Figure 5 shows plots of the running time versus the memory usage on the four
data sets. Several points are immediately obvious. Firstly, comparing PT-mem

(squares) with PT-disk (circles) horizontally in each panel, we see that using
the disk based version requires very little extra time over and above the memory
based version. That is, the circles are about level vertically with the squares for
the same v value. This confirms the left-to-right nature of our implementations;
because we process the data structures on disk left-to-right, the buffering and
pre-fetching strategies employed by the operating system hide the cost of disk
reads and seeks.

Secondly, examining the methods at the memory levels given by the L-6

method (leftmost triangle in curve in each panel), we see that PT-mem (squares)
is faster on all four data sets when v ≥ 64. Moving the SA and LCP to disk,
PT-disk still remains faster than L-6, and uses about 60% less memory.
1 pizzachili.dcc.uchile.cl

pizzachili.dcc.uchile.cl
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Fig. 5. Time-memory tradeoff for the three approaches. Each panel represents a differ-
ent collection, with open symbols are for the 200Mb variants, and filled symbols for the
50Mb. Lines linking data points are for display only, and do not represent data points.
Distinguishing the L methods (triangles) is obvious from the memory usage of each.
For the PT methods, the four data points for each cuve represent v = 32, 64, 128, 256
respectively, with memory usage decreasing as v increases, as indicated for the PT-disk

method in the xml panel.

Thirdly, we note that on xml, dna and sources, the run-time of the new
PT approaches decreases with increasing v. This seems counterintuitive, since we
showed that the asymptotic runtime of the algorithm was directly proportional to
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Table 1. Data sets used for empirical tests

lcp
Data set name Size (Mb) |Σ| H5 mean max
dna-50 50 4 1.903 31 14,836
dna-200 200 4 1.901 59 97,979

xml-50 50 97 0.735 42 1,005
xml-200 200 97 0.817 44 1,084

english-50 50 239 1.764 2,221 109,394
english-200 200 239 1.839 9,390 987,770

sources-50 50 230 1.372 168 71,651
sources-200 200 230 1.518 373 307,871

v, and so time should increase as v increases. The asymptotic analysis, however,
hides the internal tradeoff between the time to establish the S, Ŝ and L arrays
and the actual time to compute the LCP array. For these three data sets, the
average lcp value is quite low, and so the time invested in establishing the data
structures is not recouped during the LCP construction phase. As v decreases,
the initialisation time increases, but the extra knowledge of sampled lcp values
is not used as many lcp values are still less than v.

On the english data set, which has longer lcp in general, there is a reward
for decreasing v from 256 to 128: the increase in the time required to produce a
denser sampling in S, Ŝ and L is recovered by faster production of LCP. Again,
however, when v is too low, the setup time begins to dominate again; hence the
“u-turn” in the curves for the PT methods in the bottom left panel of Figure 5.

Finally we can observe that if you have memory to spare, then L-13 is the
algorithm of choice, consistently coming in faster on all but the dna data set.
The dna data set has the property that it has very short lcp values, and so the
algorithm has particularly poor locality of memory reference in comparison to
the PT approaches. Note also that the memory use by L-6 is about 8.5 bytes
per input symbol for the dna data set because of the high value of Hk, or the
poor compressibility, for that data. Similarly, Table 1 shows that the english-
200 collection has a high H5 value, and likewise the memory required by L-6 is
about 8 bytes per symbol.

5 Discussion

The LCP array is a vital component in many algorithms that exploit suffix arrays
for efficient string processing. In this paper we have introduced a new algorithm
for computing the LCP array from the Suffix Array which allows a controlled
tradeoff between speed and memory. It requires O(nv) time and 5n+O(n/

√
v)

bytes of primary memory. Choosing v to be larger than 32 allowed our method
to run faster and in less memory than existing approaches for LCP construction
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on the data sets used in our experiments. Moreover, if the SA and LCP are
stored on disk, the memory of our algorithm falls by a further 4n bytes, and in
practice is still faster than both L-6 and L-9 while using about 70% less primary
memory.

We remark that one could just keep the data structures representing the
sample of suffixes as a surrogate LCP array and compute actual LCP values on
demand, rather than explicitly computing the entire LCP array. Each “access”
to an element in LCP would cost O(v) time. On the other hand, instead of
computing the full LCP values, one could choose to store only values in the range
0..v and compute the remainder of the length as needed using the surrogate LCP
array. Each of these smaller entries can be stored in O(log v) bits, and constant
time access to each full LCP value is maintained. We are currently investigating
the efficacy of such succinct LCP representations.

There are several other avenues future work might take. Firstly, Manzini’s
algorithms are all refinements (particularly to space overheads) of the original
algorithm by Kasai et. al. As the method we employ here for producing the L
array (Figure 3) is a modification of Kasai et. al’s approach, perhaps Manzini’s
tricks can be adapted to reduce the space requirements for this step in our algo-
rithm. Another interesting question is whether one of the many fast algorithms
for SA construction [14] can be modified to also output the LCP information in
an efficient manner. Finally, our current algorithm makes the tacit assumption
that the input text can reside in main memory so that random accesses to it are
not too costly. Developing variants that make only batches of sequential accesses
to the text to allow the algorithm to scale to massive, disk resident data is an
important open problem.
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Abstract. The Power Dominating Set problem is an extension of
the well-known domination problem on graphs in a way that we enrich
it by a second propagation rule: Given a graph G(V, E) a set P ⊆ V is
a power dominating set if every vertex is observed after we have applied
the next two rules exhaustively. First, a vertex is observed if v ∈ P
or it has a neighbor in P . Secondly, if an observed vertex has exactly
one unobserved neighbor u, then also u will be observed as well. We
show that Power Dominating Set remains NP-hard on cubic graphs.
We designed an algorithm solving this problem in time O∗(1.7548n) on
general graphs. To achieve this we have used a new notion of search trees
called reference search trees providing non-local pointers.

1 Introduction

We study an extension of Dominating Set. The extension originates not from
an additional required property for the solution set (e.g., Connected Domi-

nating Set) but by adding a second rule. To be precise we look for a vertex
set, called power dominating set, such that every vertex is observed according
to the next two rules:

Observation Rule 1 (OR1): A vertex in the power domination set observes
itself and all of its neighbors.
Observation Rule 2 (OR2): If an observed vertex v of degree d ≥ 2 is adja-
cent to d−1 observed vertices, then the remaining unobserved neighbor becomes
observed as well.

By skipping the second rule we would exactly arrive at Dominating Set. The
second rule is responsible for the non-local character of the problem as it im-
plements a kind of propagation. Due to this propagation mechanism a vertex
can observe another vertex at arbitrary distance. Also the sequence of OR2 ap-
plications can be arbitrary but leading to the same set of observed vertices.
Indeed, many arguments relying on the locality of Dominating Set fail. There
is no transformation to Set Cover and thus the algorithm of [3] cannot simply
be modified. The problem occurs in the context of monitoring electric power
networks. One wishes to place a minimum number of measurement devices at
certain points in the network to measure the state variables (for example the

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 136–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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voltage magnitude and the current phase). In that sense OR2 stands for Kirch-
hoff’s law. In this way, we arrive at the definition of the central problem:

Power Dominating Set (PDS)

Given: An undirected graph G = (V, E), and the parameter k.
We ask: Is there a set P ⊆ V with |P | ≤ k which observes all vertices in V
with respect to the two observation rules OR1 and OR2?

Discussion of Related Results. The study of PDS was initiated by Haynes
et al. [7] where they showed NP-hardness and gave a first polynomial time
algorithm for trees. Guo et al. [6] and Kneis et al. [8] studied this problem
independently with respect to parameterized complexity. They proved W [2]-
hardness if the parameter is the size of the solution by reducing Dominating

Set to PDS. As a by-product it turns out that PDS is still NP-hard on graphs
with maximum degree four and that there is a lower bound for any approxima-
tion ratio of Ω(log n) modulo standard complexity assumptions. Additionally,
they showed fixed-parameter tractability of PDS with respect to tree-width,
where [6] also give a concrete algorithm. [6] achieve this by transforming PDS
into a orientation problem on undirected graphs. The problem was also stud-
ied in the context of special graph classes like interval graphs [9] and block
graphs [12] where linear time algorithms where obtained. Aazami and Stilp [1]
improved the approximation lower bound to Ω(2log1−ε n) and gave an O(

√
n)-

approximation for planar graphs. On the other hand also domination problems
have been studied in exact algorithmics. Fomin, Gradoni and Kratsch [3] gave
a O∗(1.5137n)-algorithm for Dominating Set where they use the power of the
measure and conquer approach. The currently fastest O∗(1.5134n)-algorithm by
Rooj and Bodlaender [11] achieves this slight improvement by a new reduc-
tion rule. Fomin, Gradoni and Kratsch [4] showed that the variant Connected

Dominating Set can be solved in time O∗(1.9407n).

New Results. First, we show that PDS remains NP-hard for planar cubic
graphs. As PDS is polynomial time solvable for max-degree-two graphs and
NP-hardness was shown for max-degree-four graphs [6,8], this result closes the
gap inbetween. Furthermore, this justifies to follow a branching strategy even in
the case of cubic graphs. Note that it is not always true that generally NP-hard
graph problems remain NP-hard for cubic graphs. Feedback Vertex Set is
a problem where as with PDS cycles play a role (see [6]). But in contrast to
general graphs, it is solvable in polynomial time on cubic graphs [10]. Secondly,
we present an algorithm solving PDS in time O∗(1.7548n), which breaks the
trivial 2n-barrier. The run time analysis proceeds in an amortized fashion using
the measure and conquer approach (see [3]). Furthermore, we introduce the
concept of a reference search tree. In an ordinary search tree we usuallay cut off
branches due to local structural conditions. In a reference search tree we also will
cut off branches if we can point to another node of the search tree where we can
find no worse solutions. This node must not be a neighbor of the current node
but can be anywhere in the search tree, as long as the overall search structure
remains acyclic.
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Terminology and Notation. The (open) neighborhood of v ∈ V is N(v) =
{w | {w, v} ∈ E} and the closed neighborhood N [v] := N(v) ∪ {v}. A possible
solution set will be denoted P . We call a vertex v ∈ V directly observed by
u ∈ N(v) if u is in the solution, i.e., u ∈ P . The vertex v ∈ V will be called
indirectly observed by u ∈ V if v is observed due to the application of OR2 onto
u. An (a,b)-branch is a binary branch which reduces the problem measure by an
amount of a in one part of the branch and by b in the other.

2 NP-Hardness of Planar Cubic Power Dominating Set

We will reduce Vertex Cover to planar cubic PDS. Due to [5] Vertex

Cover remains NP-complete on planar cubic graphs. For any planar cubic
graph G(V, E) and any v ∈ V we can denominate the neighbors of v as follows:
N(v) = {nv1 , nv2 , nv3}. The reduction works as follows: Given a planar cubic
graph G(V, E) introduce for every v ∈ V the gadget Tv depicted in Figure 1,
which consists of the vertices in the dotted square. For any {u, v} ∈ E we can
find 1 ≤ b, c ≤ 3 such that u = nvb

and v = nuc . By introducing the edge
{cv b, cu c} we finally get G′(V ′, E′) which is planar and cubic.

Lemma 1. G has a vertex cover of size ≤ k iff G′ has a PDS of size ≤ k.

av1av2

av3 cv1

cv2

cv3q3

q2

q1zv

Fig. 1. The gadget Tv. The vertices q1, q2, q3 correspond to vertices of the form cz i of
some other gadget Tz such that z ∈ V .

According to Lemma 1 planar cubic PDS remains NP-hard.

3 An Exact Algorithm for Power Dominating Set

3.1 Reference Search Trees

We will introduce a new kind of search scheme for combinatorial optimization
problems. These problems can usually be modeled as follows. We are given a
triple (U ,S, c) such that U = {u1, . . . , un} is called the universe, S ⊆ P(U) is
the solution space and c : P(U) → N is the value function. Generally we are
looking for a S ∈ S such that c(S) is minimum or maximum. We then speak of a
combinatorial minimization (maximization, resp.) problem. The general search
space is P(U).

The set vector (svQ) of a set Q ∈ P(U) is a 0/1-vector indexed by the elements
of U such that: svQ[i] = 1 ⇐⇒ ui ∈ Q. We write svQ ∈ S when we mean Q ∈ S.
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A solvec is a 0/1/�-vector. We define the following partial order # on solvecs
s1, s2 of length n:

s1 # s2 ⇐⇒ ∀1 ≤ i ≤ n : (s1[i] = �⇒ s2[i] = �)
∧(s1[i] = d (d ∈ {0, 1})⇒ s2[i] ∈ {d, �}).

A branching is a directed tree D(V, T ) with root r ∈ V such that all arcs are
directed from the father-vertex to the child-vertex. For a vertex u ∈ V the term
STu refers to the sub-tree rooted at u.

Definition 1. A reference search tree (rst) for a combinatorial minimization
(maximization, resp.) problem (U ,S, c) is a directed graph D(V, T ∪R) together
with a injective function label : V → {(z1, . . . , zn) | zi ∈ {0, 1, �}} with the
following properties:

1. D(V, T ) is a branching.
2. D(V, T ∪R) is acyclic.
3. Let u, v ∈ V (D) then u is a descendant of v in D(V, T ) iff label(u) # label(v).
4. For any set vector svQ of a set Q ∈ P(U) with Q ∈ S and a vertex v ∈ V (D)

such that svQ # label(v) we have either one of the following properties:
(a) There exists a leaf z ∈ V (STv) such that c(label(z)) ≤ c(svQ) (c(label(z))

≥ c(svQ), resp.) and label(z) ∈ S.
(b) There exists a vertex x ∈ V (STv) such that there is exactly one arc

(x, y) ∈ R and we have that there is a 0/1-vector h with h # label(y),
c(h) ≤ c(svQ) (c(h) ≥ c(svQ), resp.) and h ∈ S.

How can a rst be exploited algorithmically? It is important to see that in a rst
all the information for finding an optimal solution is included. Ordinary search
trees can be defined by omitting item (b) of Definition 1. In a search tree we
skip a solution s with s # u for a sub-tree STu if we can find a solution in STu

which is no worse. In a rst we also have the possibility to make a reference to
another subtree STf where such a solution could be found. In STf it might also
be the case that we have to follow a reference once more. So, the only obstacle
seems to be that, if we follow reference after reference, we end up in a cycle. But
this is prevented by item 2. of Definition 1. An algorithm building up an rst can
eventually benefit by cutting of branches and introducing references instead.

3.2 Annotated Power Dominating Set

In what follows we assume that the vertices of the given graph G(V, E) are an-
notated. To be precise we have a function s which assigns a label to every vertex:
s : V (G) → {active, inactive, blank}. An active (inactive, resp.) vertex has al-
ready been determined to be (not to be, resp.) part of P . For a blank vertex this
decision has been not made yet. We will abbreviate the three attributes by (a), (i)
and (b). We also define A := {v ∈ V (G) | s(v) = (a)}, I := {v ∈ V (G) | s(v) =
(i)} and B := {v ∈ V (G) | s(v) = (b)}. For any given set A ⊆ V (G) we can de-
termine which vertices are already observed by applying exhaustively OR1 and
OR2. Due to this we introduce s′ : V (G) → {(o)bserved, (u)nobserved} and set
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O := {v ∈ V (G) | s′(v) = (o)} and U := V (G) \O. The state of a vertex v is the
tuple (s(v), s′(v)). During the course of the algorithm the states of the vertices
(i.e., the labels s, s′) will be modified in a way that they represent choices already
made. We set N�(v) := {{w, v} ∈ E | s′(w) = (u)} and d�(v) := |N�(v)|. N�(v)
represents the unobserved neighbors of v. Let ∆�(G) := maxv∈V ∧s(v)=(b) d�(v)
and M(G) = {v ∈ B | d�(v) = ∆�(G)}. We define N (i)(v) = N�(v) ∩ I and
d(i)(v) = |N (i)(v)|. We will write d�

G(v), N�
G(v), d

(i)
G , N

(i)
G (v), sG(v) and s′G(v)

when we are referring to a particular annotated graph G by which the functions
are induced. We omit the subscript when it is clear from the context. A vertex
v ∈ V (G) such that s′(v) = (o) and d�(v) = 2 will be called a trigger. A triggered
path between v1, vk ∈ V (G) with s(v1) = (b), s(vk) = (b) is a path v1, . . . , vk

such that s(vi) = (b) and d�(vi) ≤ 2, or vi is a trigger for 1 < i < k. A triggered
cycle is a triggered path with v1 = vk. Observe that for all u ∈ O we have
d�(u) 
= 1 due to OR2.

Algorithm. In this section we present reduction rules and the algorithm. Their
correctness and run time will be analyzed in the next section. We state the fol-
lowing reduction rules:

Isolated: Let v ∈ O ∩B such that d�(v) = 0 then set s(v)← (i).

TrigR: Let v ∈ V be a trigger and s(v) = (b). Then set s(v) ← (i).

Blank.2: Let v ∈ V (G) with d�(v) ≤ 2, v ∈ B ∩ U , y ∈ N�(v) and s(y) = (i).
Then set s(v) ← (i).
Obs.3: Let v ∈ V (G) such that v ∈ B ∩ U , d�(v) ≤ 1 and y ∈ N(v) with
y ∈ I ∩O and d�(y) ≥ 3. Then set s(v) ← (i).

Trig.2: Let v ∈ V (G) such that v ∈ B ∩U and d�(v) ≤ 1. If there is a trigger u
with N�(u) = {v, y} and y ∈ I ∩ U then set s(v) = (i).

Observe that for degree-2 vertices there is no valid contraction rule, see
Figure 2(a). If we deleted u and connected x and y observation would prop-
agate to z due to OR2. We are now ready to state Alg. 1:

Algorithm 1. An exact algorithm for Power Dominating Set

1: Apply OR2 exhaustively.
2: Apply Isolated, TrigR, Blank2, Obs3 and Trig2 exhaustively.
3: Select form M(G) a vertex v according to the priorities:
4: a) s(v) = (u). {We prefer unobserved vertices}

b) d(i)(v) < d�(v) {We prefer vertices such that not all neighbors are inactive}
5: if d�(v) ≥ 4 then
6: Branch on v by setting 1) s(v) ← (i) and 2) s(v) ← (a) in either of the branches.
7: else if d�(v) = 3 then
8: Branch on v: 1) s(v) ← (i) and 2) s(v) ← (a) and for all u ∈ N�(v) with

s(u) = (b) set s(u) ← (i).
9: else if d�(v) = 2 then

10: Branch on v by setting 1) s(v) ← (i) and 2) s(v) ← (a) in either of the branches.



Power Domination in O∗(1.7548n) Using Reference Search Trees 141

Correctness. We will prove correctness of Alg. 1 and the reduction rules using
the concept of a reference search tree (see Definition 1). We have to define
U := V (G), S := {S ⊆ V (G) | S is a PDS for G} and c(Y ) = |Y | for every
Y ∈ P(U). The function label : V (D) → {(e1, . . . , en) | ei ∈ {(a), (i), (b)}} then
expresses which vertices are no more blank, i.e., are active or inactive. Here (a)
refers to 1, (i) to 0 and (b) to the �-symbol defined in the function label of
Definition 1. According to this we set ¯(a) = (i) and (̄i) = (a).
The nodes of the rst V (D) represent choices made concerning the blank vertices
of V (G). These choices can be due to branching or to applying reduction rules.
Hence there is a 1-to-1 correspondence between V (D) and the application of
reduction rules and branchings. According to this we will speak of full nodes
and flat nodes, i.e. full nodes have two children in D(V, T ), flat nodes only one.
In particular, nodes where reference pointers start are flat.

If we encounter a vertex v ∈ V (G) with s(v) = (i) in the current node q
of the search tree we can find a second node dv ∈ V (D) which represents the
choice made on v. That is we must have that label(q) # label(dv). We can find
dv by simply going up the search tree starting from q. We sometimes indicate
this relation by writing dq

v, whereas we omit the superscript where it is clear
from the context.

Prerequisites for Correctness Proofs. The correctness proofs proceed to some
extent in a graphical way. For this we draw the branching (the search tree without
references) D(V, T ) in the plane with x- and y-coordinates. If u is a point in the
plane then posx(u) denotes its x- and posy(u) its y-coordinate. It is possible to
draw D(V, T ) satisfying three properties.

– Firstly, if v ∈ V (D) is a father of u ∈ V (D) then posy(v) > posy(u).
– Secondly, let v ∈ V (D) have two children uv, uv̄, i.e., it is a full node. uv̄

corresponds to the branch where we set s(y) = (i), in uv we decided s(y) =
(a) for some y ∈ V (G). We want D to be drawn such that for all z ∈ STuv̄

we have posx(v) > posx(z) and for all z′ ∈ STuv we have posx(z′) > posx(v).
Hence we may speak of uv̄ as the left and uv as the right child of v. According
to this we will refer to them as l(v) and r(v), respectively.

– Thirdly, let v ∈ V (D) be a flat node with its only child vc. Then we require
that posx(v) = posx(vc).

The subsequent correctness proofs proceed as follows: Every time we skip a pos-
sible solution we show that we can insert a reference to some node u ∈ V (D) of
the search tree such that we can find a solution z with label(z) # label(u) which
is no worse. Additionally, we show that these references always point from the
left to the right (with respect to the x-coordinate) in the drawing of D(V, T ).
This way we assure acyclicity of the final rst D(V, T ∪ R) which is implicitly
built up by the algorithm.

Lemma 2. Let us fix an annotated PDS instance G(V, E) that corresponds to
some node q ∈ V (D) in the search tree. Let u ∈ V (G) with u ∈ I ∩ O and
d�

G(u) ≥ 3. Then dq
u ∈ D(V, T ) is a full node.
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Fig. 2. Filled vertices are observed, white vertices are unobserved. Round vertices are
blank, square vertices are inactive. Shaded vertices are active.

Proof. Suppose the contrary. Due to d�
G(u) ≥ 3 none of the reduction rules in

Alg.1 have set s(u) ← (i) and thus there is no reference starting in u. The only
remaining possibility is the second part of the branch in step 7 of Alg. 1. Now
suppose by setting s(v) ← (a) for some v ∈ V (G) the algorithm has set also
s(u)← (i) and s′(u) = (o) implicitly. We now examine the situation right before
this happened. This situation is reflected by some annotated graph G′(V, E).
We must have d�

G′(v) = 3 and s′G′(u) = (u). Suppose at this point s′G′(v) = (u).
From this it follows that d�

G′(u) ≥ 4 due to our premise. But this contradicts
the choice of v as branch vertex. Therefore we must have s′G′(v) = (o). But once
more this contradicts the choice of v since we have s′G′(u) = (u) at that point
(as step 7 applied u should have been observed by v directly). �


Lemma 3. Applying Blank2, Obs3, Trig2, TrigR, Isolated and step 7 of
Alg. 1 is correct.

Proof. We will prove the following: 1) for every vertex v ∈ V (G) with s(v) = (i)
either dv is a full node or there is a vertex h such that dh is a full node and we in-
serted a reference (v, r(dh)) such that if there is a solution with s(v) = (a) at that
point in the search tree we can find a no worse one z with label(z) # label(r(dh)).
2) Every reference is pointing from the left to the right in the drawing of D(V, T ).
As step 7 makes use of this fact, it will be proven in parallel. The proof is by
induction on the height s of the search tree. In case s = 0 nothing is to show. If
s > 0 we will distinguish between the different operations:

Blank2. Let q be the current search tree node and, w.l.o.g., label(q) = (e1,. . . ,
el−1,(b),. . . ,(b)) such that el corresponds to v and e1 to y (with v and y we are refer-
ring to the definition ofBlank2). Suppose Blank2 applies to v and dq

y is a full node
(see Figure 2(b)). Suppose there is a solution k := (e1, . . .,el−1,(a),el+1,. . . ,en) #
label(q) as indicated in Figure 2(c). Then also k′ := (ē1, . . . , el−1, (i), el+1, . . . , en)
is a solution (due to d�(v) ≤ 2 and OR2, see Figure 2(d)). Hence we insert a ref-
erence (q, r(dq

y)) as k′ # label(r(dq
y)) which is pointing from the left to the right.

This reference means that we can find a no worse solution compared to k. We find
this solution in the sub search tree STr(dq

y) as label(k′) # label(r(dq
y)) or else we

have to follow another reference to the right. Therefore we can skip the possibility
of setting s(v) ← (a).
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If dq
y is a flat node than due to the induction hypothesis there must be a

reference (dq
y , h′) such that h′ ∈ V (D) is the right child of some h ∈ V (D) which

is a full node and (dq
y , h′) points from the left to the right. We can rule out the

solution k again as k′ is no worse. Due to (dq
y , h′) also k′ is skipped as there must

be a alternative solution z with label(z) # h′ such that z is no worse than k′.
Thus we can insert the reference (q, h′) pointing also from the left to the right.

Trig2. The proof is completely analogous to the first item.

Obs3. From Lemma 2 we have that y is a full node. The correctness follows now
analogously to the first part of the first item.

Step 7. We only have to consider the second part of the branch: s(v) ← (a)
and for all u ∈ N�(v) with s(u) = (b) set s(u) ← (i). Let N�(v) = {a, b, c}. We
make a case distinction concerning d(i)(v). Let q ∈ D(V ) be the current search
tree node before branching and let label(q) = (e1, . . . , el, (b), . . . , (b)), where the
entries e1 corresponds to v, e2 to a and e3 to b. Therefore we have e1 = (b).
Assume there is a PDS P % v with svP # label(q).

d(i)(v) = 0 If |P ∩ N�(v)| ∈ {2, 3} then also P \ {v} is a PDS due to OR2. If
w.l.o.g P ∩N�(v) = {a} then also P ′ := P \ {v} ∪ {b} is a PDS where P ′ is
covered by the first part of the branch.

d(i)(v) = 1 The only cases |P ∩N�(v)| = 1 and |P ∩N�(v)| = 2 can be handled
analogously to the case d(i) = 0.

d(i)(v) = 2 W.l.o.g. P ∩N�(v) = {a}. Assume there is a PDS corresponding to
k := ((a), (a), (i), e4, . . . , en) # label(q); k′ := ((i), (a), (a), e4, . . . , en) is then
a solution, too. Suppose dq

b is a full node. Then k′ # label(r(dq
b)) and hence

we insert a reference (q, r(dq
b)). If dq

b is a flat node there must be a reference
(dq

b , h
′). Then insert (q, h′).

The inserted references are pointing all from the left to the right in the drawing
of D(V, T ). This ensures acyclicity of D(V, T ∪R). �


Note that the reduction rules treated in Lemma 3 are not valid on their own.
They are only correct because they are referring to solutions which Alg. 1 defi-
nitely will consider. In other words, if we are given an annotated graph G, where
the annotation is not due to Alg. 1 we cannot apply these reduction rules.

Run Time Analysis. We define the following sets: Î = {v ∈ I | s′(v) 
=
(o), ∃u ∈ N�(v) : s(u) = (b)}, Ô = (O ∩ B), B̂ = B ∩ U . Here Î comprises
the inactive vertices, which are not observed such that they have at least one
neighbor which is blank. In Ô we find the observed vertices for which we have
not yet decided if there are active or not. Also for any v ∈ Ô we have d�(v) ≥ 2
(Isolated). B̂ contains the unobserved blank vertices. The measure we use in
our run time is the following one:

ϕ(G) = |B̂|+ β · |Ô|+ γ · |Î| with β = 0.51159, γ = 0.48842

We will now analyze the different branchings in Alg. 1. In general we can find
integers �, k with � + k = d�(v) such that � = |N�(v) ∩ Î| and k = |N�(v) ∩ B̂|.
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d�(v) ≥ 4: The first case is when we have chosen a vertex v with d := d�(v). We
will explicitly analyze the case when d = 4. We show that any case occurring
for d > 4 is run time upper bounded by some case when d = 4. First we will
distinguish between the circumstances that s′(v) = (o) and s′(v) = (u).

s′(v) = (u) In the branch where we set s(v) ← (a) we get a reduction in ϕ(G)
of 1 + � · γ + k · (1 − β). This is due to v becoming observed and active,
the vertices in N�(v) ∩ Î becoming inactive and observed and N�(v) ∩ B̂
becoming observed and blank. In the branch setting s(v) ← (i) we reduce
ϕ(G) by at least (1− γ) (we obtain a greater reduction if v drops out of Î).
As (1 − β) < γ the worst case is the branch (1 + 4(1 − β), 1 − γ) which is
upper bounded by O∗(1.6532n).

s′(v) = (o) In the branch where we set s(v) ← (a) we get a reduction in ϕ(G) of
β + � ·γ +k · (1−β). Here we get only a reduction of β from v as it is already
observed. In case s(v)← (i) the reduction is again β as v drops out of Ô. As
(β +4(1−β), β) is the worst branch we have a upper bound of O∗(1.7548n).

We examine now cases with d > 4. Here the worst case is analogously when
k = d. But it is also no better as the case when k = 4 and d = 4, which was
already considered.

d�(v) = 3: We first focus on the case where � ≤ 2. As we get a reduction of one
for every vertex in N�(v) ∩ B̂ the worst case is when � = 2. Now if s′(v) = (u)
then this results in a (2 + 2 · γ, 1 − γ) branching. If s′(v) = (o) we have a
(β + 2 · γ + 1, β)-branching. O∗(1.7489n) is an upper bound for both.

Now due to the priorities in step 4 of Alg. 1 we select a vertex v such that
� = 3 with least priority. We first examine the case where s′(v) = (u) and � = 3.
Now suppose for all u ∈ N�(v) we have N�(u)∩B = {v} (✪). Then in the branch
s(v) ← (i) we get an additional amount of 3 · γ. This is due to the fact that the
vertices in N�(v) will drop out of Î. Hence, we have a (1 + 3 · γ, (1− γ) + 3 · γ)
branch.

Conversely, there is a u ∈ N�(v) with N�(u) ∩B = {v, u1, . . . , us} and s ≥ 1
(❂). If s′(u1) = (o) then due to TrigR and the choice of v we have d�(u1) = 3.
In s(v) ← (a) u will become a trigger and is reduced away from ϕ(G) due to
TrigR. This means we have a (1 + 3 · γ + β, 1− γ) branch.

If s′(u1) = (u) then we have d�(u1) = 3 due to Blank2 and the choice of v.
Also it holds that d(i)(u1) = 3 again by the choice of v. Hence in s(v) ← (a)
the �-degree of u1 drops by one. Therefore Blank2 applies on u1 and it will not
appear in ϕ(G) anymore which leads to a (2 + 3 · γ, 1− γ) branch. O∗(1.6489n)
upper bounds both possibilities.

The second possibility for v is s′(v) = (o), yielding a (β+3 ·γ, β+3 ·γ)-branch
for case ✪. In case of ❂, s′(u1) = (o) is necessary or otherwise, we contradict the
choice of v (d�(u1) ≥ 3), or Blank2 applies to u1 (d�(u1) ≤ 2). Again we have
d(i)(u1) = 3. Hence, this gives a (2β + 3γ, β)-branch, as u1 becomes a trigger.
An upper bound for both is O∗(1.7488n).
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d�(v) ≤ 2:

Lemma 4. In step 10 of Alg.1 we have:

1. For all u ∈ V with d�(u) ≥ 3 it follows that s(u) = (i).
2. Let v ∈ V (G) with s(v) = (b) and s′(v) = (u) chosen for branching then:
(a) For all u ∈ N�(v) : s(u) = (b).
(b) If d�(v) ≤ 1 then for all u ∈ N(v) \N�(v) : s(u) = (i) and d�(u) = 2.

3. O = O ∩ I. (O ∩B = ∅, alternatively).

Proof. 1 . Otherwise, we have a contradiction to the choice of v. 2 (a) Otherwise,
Blank2 applies. 2 (b) Note that s′(u) = (o). Suppose s(u) = (b) then either
TrigR applies (d�(u) = 2) or we have a contradiction to the choice of v (d�(u) ≥
3). From s(u) = (a) it follows that s′(v) = (o), a contradiction. If we had
d�(u) ≥ 3 and s(u) = (i) then Obs3 applies. This contradicts s(v) = (b).
3 . Let u ∈ O \ I then d�(u) ∈ {0, 1, 2} is ruled out by Isolated, OR2 and
TrigR. If d�(u) ≥ 3 then from item 1. it follows that u ∈ I, a contradiction. �


Let v be the vertex chosen in step 9 of Alg.1. Let G̃ := G[B] and note that
B = B̂ due to Lemma 4.3. G̃ consists of paths and cycles formed by vertices in
B̂ due to Lemma 4.2a and the fact that for all z ∈ B we have d�(z) ≤ 2 (see
Figure 2(e)). v belongs to one of those components. Explore G the following way:

1. For all u ∈ B set visited(u)← f .
2. If there is u ∈ N�(v) with visited(u) = f then set visited(v)← t and v ← u.
3. If there is t ∈ N(v) with t ∈ O (due to Lemma 4.2b u is a trigger) such that

d�(t) = {v, u} and visited(u) = f then set visited(v)← t and v ← u.
4. If one of the steps 3 or 4 applied goto 2.. Else set visited(v)← t and stop.

Let W := {u ∈ B | visited(u) = t}. W comprises the visited vertices in B̂.
Either W is path or a cycle containing at least two vertices from B̂ (as long
|V (G)| > 1 and due to Lemma 4.2b). Either v has a blank neighbor or it has a
trigger as neighbor. Now observe that any vertex in W is equally likely to be set
active: Once there is an active vertex from W the whole vertex-set W will be
observed due to OR2. Also any additional trigger t′ 
∈W which is a neighbor of
some v′ ∈ W only depends on v′ being observed.

Considering the branch s(v) ← (a) due to exhaustively applying OR2 for any
v′ ∈ W we have N(v′) ⊆ O afterwards. Hence W will drop out of B̂ but will also
not be included in Ô due to Isolated. Thus there is a reduction of |W | ≥ 2.

In case s(v)← (i) due to applying Blank2 and Trig2 we have that W ⊂ I \ Î
(Lemma 4.2a/2b) and thus a reduction of |W |. Summing up we have a (2, 2)
branch which we upper bound by O∗(1.415n).

Note that the instances occurring at this point of Alg.1 are still NP-hard to
solve. There is a simple reduction from cubic PDS. For any vertex v, create a
cycle Cv of length three. If {u, v} ∈ E, connect free vertices x ∈ Cv and y ∈ Cu

with an inactive trigger. So, we have no alternative to continuing the branching.
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Theorem 1. Power Dominating Set can be solved in time O∗(1.7548n).

We like to comment that Alg. 1 achieves a run time of O∗(1.6212n) on cubic
graphs. This can be seen by modifying the general analysis. Simply choose β =
0.8126 and γ = 0.3286 and skip the part where d�(v) ≥ 4.

4 Conclusion and Further Perspectives

Speed-Up With Exponential Space. We precompute optimal solutions for all ver-
tex induced subgraphs with no more than ω = 0.1103n vertices. For any sub-
graph GS we create 2ωn instances by deciding for all v ∈ V (GS) if they are
observed yet or not. By solving each of these instances by brute force, we spend
4ωn steps for any induced subgraph with predetermined observation pattern.
Thus we need O∗(

(
n

ωn

)
4ωn) ∈ O∗(1.6493n) steps for building up a table of size

O(1.5275n). Let R = V (G) \ {v ∈ O | N [v] ⊆ O}. Once we arrived at a graph G
with |R| ≤ ωn in Alg. 1, we can look up the rest of the solution by inspecting
the table entry which is determined by G[R] and R∩O. Thus Alg. 1 will run in
O∗(1.7548(1−ω)n) ⊆ O∗(1.6493n). It is important to notice that we ignored the
fact that there might be active and inactive vertices in G[R]. The correctness fol-
lows from the fact that the state of observation of G[V \R] is independent of how
G[R] is observed. Also any solution for G[R] which ignores the labels active and
inactive cannot be worse than one that does not. By choosing ω = 0.092972 the
same algorithm solves cubic PDS in O∗(1.55n) steps using O(1.4533n) space.

Notice that this type of speed-up relies on the fact that no branching or re-
duction rule ever changes the (underlying) graph itself, but rather, the existing
graph is annotated. This property is also important when designing improved al-
gorithms with the help of reference search trees, since it might be tricky to argue
to find a solution not worse than the ones to be expected in a particular branch
of a search tree somewhere else in the tree, when the instance is (seemingly)
completely changed.

Résumée. In this paper, we designed an exact algorithm for Power Dominat-

ing Set consuming O∗(1.7548n) time. To achieve this we made intensive use
of the concept of a reference search tree. This means that we where able to cut
off branches by referring to arbitrary locations in the search tree where one can
find equivalent solutions. Maybe the term search-DAG expresses this property
also quite well. In the long version of [2] we already applied the concept of an
rst successfully. We proved the correctness of a reduction rule whose application
was critical for the run time. We expect that we can exploit reference search
trees further by designing exact algorithms for non-local problems or improving
existent ones (e.g., Connected Dominating Set/Vertex Cover or Max

Internal Spanning Tree). For this kind of problems we are not allowed to
delete vertices due to selecting vertices into the solution or not. We rather have
to label them. Many algorithms come to decisions by respecting them. We rather
try to make use of them. Let x be a labeled vertex not selected into the solution
and y an unlabeled vertex. Suppose by re-labeling x (taking x into the solution)
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and excluding y from the solution we have a solution which is no worse to the
possibility of taking y into the solution. Then we can skip this last possibility by
inserting a reference. We imagine that this arguing is also possible when several
vertices are involved.
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Abstract. We introduce a new multi-player geometric game, which we will refer
to as the isolation game, and study its Nash equilibria and best or better response
dynamics. The isolation game is inspired by the Voronoi game, competitive facil-
ity location, and geometric sampling. In the Voronoi game studied by Dürr and
Thang, each player’s objective is to maximize the area of her Voronoi region. In
contrast, in the isolation game, each player’s objective is to position herself as far
away from other players as possible in a bounded space. Even though this game
has a simple definition, we show that its game-theoretic behaviors are quite rich
and complex. We consider various measures of farness from one player to a group
of players and analyze their impacts to the existence of Nash equilibria and to the
convergence of the best or better response dynamics: We prove that it is NP-hard
to decide whether a Nash equilibrium exists, using either a very simple farness
measure in an asymmetric space or a slightly more sophisticated farness measure
in a symmetric space. Complementing to these hardness results, we establish ex-
istence theorems for several special families of farness measures in symmetric
spaces: We prove that for isolation games where each player wants to maximize
her distance to her mth nearest neighbor, for any m, equilibria always exist. More-
over, there is always a better response sequence starting from any configuration
that leads to a Nash equilibrium. We show that when m = 1 the game is a poten-
tial game — no better response sequence has a cycle, but when m > 1 the games
are not potential. More generally, we study farness functions that give different
weights to a player’s distances to others based on the distance rankings, and obtain
both existence and hardness results when the weights are monotonically increas-
ing or decreasing. Finally, we present results on the hardness of computing best
responses when the space has a compact representation as a hypercube.

1 Introduction

In competitive facility location [4,5,7] data clustering [8], and geometric sampling [10],
a fundamental geometric problem is to place a set of objects (such as facilities and
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cluster centers) in a space so that they are mutually far away from one another. Inspired
by the study of Dürr and Thang [3] on the Voronoi game, we introduce a new multi-
player geometric game called isolation game.

In an isolation game, there are k players that will locate themselves in a space (Ω,∆)
where ∆(x, y) defines the pairwise distance among points in Ω. If ∆(x, y) = ∆(y, x),
for all x, y ∈ Ω, we say (Ω,∆) is symmetric. The ith player has a (k−1)-place function
fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .) from the k − 1 distances to all other players to a
real value, measuring the farness from her location pi to the locations of other players.
The objective of player i is to maximize fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .), once the
positions of other players (. . . , pi−1, pi+1, . . .) are given.

Depending on applications, there could be different ways to measure the farness
from a point to a set of points. The simplest farness function fi() could be the one that
measures the distance from pi to its nearest player. Games based on this measure are
called nearest-neighbor games. Another simple measure is the total distance from pi

to other players. Games based on this measure are called total distance games. Other
farness measures include the distance of pi to its mth nearest player, or a weighted
combination of the distances from player i to other players.

Isolation games with simple farness measures can be viewed as an approximation of
the Voronoi game [1,2,6]. Recall that in the Voronoi game, the objective of each player is
to maximize the area of her Voronoi cell in Ω induced by {p1, ..., pk}— the set of points
in Ω that are closer to pi than to any other player. The Voronoi game has applications in
competitive facility location, where merchants try to place their facilities to maximize
their customer bases, and customers are assumed to go to the facility closest to them.
Each player needs to calculate the area of her Voronoi cell to play the game, which
could be expensive. In practice, as an approximation, each player may choose to simply
maximize her nearest-neighbor distance or total-distance to other players. This gives
rise to the isolation game with these special farness measures.

The generalized isolation games may have applications in product design in a com-
petitive market, where companies’ profit may depend on the dissimilarity of their prod-
ucts to those of their competitors, which could be measured by the multi-dimensional
features of products. Companies differentiate their products from those of their com-
petitors by playing some kind of isolation games in the multi-dimensional feature space.
The isolation game may also have some connection with political campaigns such as in
a multi-candidate election, in which candidates, constrained by their histories of public
service records, try to position themselves in the multi-dimensional space of policies
and political views in order to differentiate themselves from other candidates.

We study the Nash equilibria [9] and best or better response dynamics of the isolation
games. We consider various measures of farness from one player to a group of players
and analyze their impact to the existence of Nash equilibria and to the convergence
of best or better response dynamics in an isolation game. For simple measures such
as the nearest-neighbor and the total-distance, it is quite straightforward to show that
these isolation games are potential games when the underlying space is symmetric.
Hence, the game has at least one Nash equilibrium and all better response dynamics
converge. Surprisingly, we show that when the underlying space is asymmetric, Nash
equilibria may not exist, and it is NP-hard to determine whether Nash equilibria exist in
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an isolation game. The general isolation game is far more complex even for symmetric
spaces, even if we restrict our attention only to uniform anonymous isolation games. We
say an isolation game is anonymous if for all i, fi() is invariant under the permutation
of its parameters. We say an anonymous isolation game is uniform if fi() = fj() for
all i, j. For instance, the two potential isolation games with the nearest-neighbor or
total-distance measure mentioned above are uniform anonymous games. Even these
classes of games exhibit different behaviors: some subclass of games always have Nash
equilibrium, some can always find better response sequences that converge to a Nash
equilibrium, but some may not have Nash equilibrium and determining the existence of
Nash equilibrium is NP-complete. We summarize our findings below.

First, We prove that for isolation games where each player wants to maximize her
distance to her mth nearest neighbor, equilibria always exist. In addition, there is always
a better response sequence starting from any configuration that leads to a Nash equilib-
rium. We show, however, this isolation game is not a potential game — there are better
response sequences that lead to cycles. Second, as a general framework, we model the
farness function of a uniform anonymous game by a vector w = (w1, w2, . . . , wk−1).
Let dj = (dj,1, dj,2, . . . , dj,k−1) be the distance vector of player j in a configura-
tion, which are distances from player j to other k − 1 players sorted in nondecreasing
order, i.e., dj,1 ≤ dj,2 ≤ . . . ≤ dj,k−1. Then the utility of player j in the configura-
tion is w · d =

∑k−1
i=1 (wi · dj,i). We show that Nash equilibrium exists for increasing

or decreasing weight vectors w, when the underlying space (Ω,∆) satisfies certain
conditions, which are different for increasing and decreasing weight vectors. For a par-
ticular version of the decreasing weight vectors, namely (1, 1, 0, . . . , 0), we show that:
(a) it is not potential even on a continuous one dimensional circular space; (b) in gen-
eral symmetric spaces Nash equilibrium may not exist, and (c) it is NP-complete to
decide if a Nash equilibrium exists in general symmetric spaces. Combining with the
previous NP-completeness result, we see that either a complicated space (asymmetric
space) or a slightly complicated farness measure ((1, 1, 0, . . . , 0) instead of (1, 0 . . . , 0)
or (0, 1, 0, . . . , 0)) would make the determination of Nash equilibrium difficult.

We also examine the hardness of computing best responses in spaces with compact
representations such as a hypercube. We show that for one class of isolation games
including the nearest-neighbor game as the special case it is NP-complete to compute
best responses, while for another class of isolation games, the computation can be done
in polynomial time.

The rest of the paper is organized as follows. Section 2 covers the basic definitions
and notation. Section 3 presents the results for nearest-neighbor and total-distance iso-
lation games. Section 4 presents results for other general classes of isolation games.
Section 5 examines the hardness of computing best responses in isolation games. We
conclude the paper in Section 6. The full version of the paper with complete proofs can
be found in [11].

2 Notation

We use (Ω,∆) to denote the underlying space, where we assume ∆(x, x) = 0 for all
x ∈ Ω, ∆(x, y) > 0 for all x, y ∈ Ω and x 
= y, and that (Ω,∆) is bounded — there
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exists a real value B such that ∆(x, y) ≤ B for every x, y ∈ Ω. In general, (Ω,∆)
may not be symmetric or satisfy the triangle inequality. We always assume that there
are k players in an isolation game and each player’s strategy set is the entire Ω. A
configuration of an isolation game is a vector (p1, p2, . . . , pk), where pi ∈ Ω speci-
fies the position of player i. The utility function of player i is a (k − 1)-place func-
tion fi(. . . , ∆(pi, pi−1), ∆(pi, pi+1), . . .). For convenience, we use ut i(c) to denote
the utility of player i in configuration c.

We consider several classes of weight vectors in the uniform, anonymous isolation
game. In particular, the nearest-neighbor and total-distance isolation games have the
weight vectors (1, 0, . . . , 0) and (1, 1, . . . , 1), respectively; the single-selection game has
vectors that have exactly one nonzero entry; the monotonically-increasing (or decreas-
ing) games have vectors whose entries are monotonically increasing (or decreasing).

A better response of a player i in a configuration c = (p1, . . . , pk) is a new position
p′i 
= pi such that the utility of player i in configuration c′ by replacing pi with p′i in c is
larger than her utility in c. In this case, we say that c′ is the result of a better-response
move of player i in configuration c. A best response of a player i in a configuration
c = (p1, . . . , pk) is a new position p′i 
= pi that maximizes the utility of player i while
player j remains at the position pj for all j 
= i. In this case, we say that c′ is the result
of a best-response move of player i in configuration c.

A (pure) Nash equilibrium of an isolation game is a configuration in which no player
has any better response in the configuration. An isolation game is better-response poten-
tial (or best-response potential) if there is a function F from the set of all configurations
to a totally ordered set such that F (c) < F (c′) for any two configurations c and c′ where
c′ is the result of a better-response move (or a best-response move) of some player at
configuration c. We call F a potential function. Note that a better-response potential
game is also a best-response potential game, but a best-response potential game may
not be a better-response potential game. If Ω is finite, it is easy to see that any better-
response or best-response potential game has at least one Nash equilibrium. Henceforth,
we use the shorthand “potential games” to refer to better-response potential games.

3 Nearest-Neighbor and Total-Distance Isolation Games

In this section, we focus on the isolation games with weight vectors (1, 0, . . . , 0) and
(1, 1, . . . , 1). We show that both are potential games when Ω is symmetric, but when Ω
is asymmetric and finite, it is NP-complete to decide whether those games have Nash
equilibria.

Theorem 1. The symmetric nearest-neighbor and total-distance isolation games are
potential games.

The following lemma shows that the asymmetric isolation game may not have any
Nash equilibrium for any nonzero weight vector. Thus, it also implies that asymmet-
ric nearest-neighbor and total-distance isolation games may not have Nash equilibria.

Lemma 1. Consider an asymmetric space Ω = {v1, v2, . . . , v�+1} with the distance
function given by the following matrix with t ≥ � + 1. Suppose that for every player i
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her weight vector wi has at least one nonzero entry. Then, for any 2 ≤ k ≤ �, there is
no Nash equilibrium in the k-player isolation game.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∆ v1 v2 v3 . . . v� v�+1

v1 0 t− 1 t− 2 . . . t− � + 1 t− �
v2 t− � 0 t− 1 . . . t− � + 2 t− � + 1
...

...
. . .

...
v� t− 2 t− 3 t− 4 . . . 0 t− 1

v�+1 t− 1 t− 2 t− 3 . . . t− � 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Theorem 2. It is NP-complete to decide whether a finite, asymmetric nearest-neighbor
or total-distance isolation game has a Nash equilibrium.

Proof. We first prove the case of nearest-neighbor isolation game.
Suppose that the size of Ω is n. Then the distance function ∆ has n2 entries. The

decision problem is clearly in NP. The NP-hardness can be proved by a reduction from
the Set Packing problem. An instance of the Set Packing problem includes a set I =
{e1, e2, . . . , em} of m elements, a set S = {S1, . . . , Sn} of n subsets of I , and a
positive integer k. The decision problem is to decide whether there are k disjoint subsets
in S. We now give the reduction.

The space Ω has n+ k + 1 points, divided into a left set L = {v1, v2, . . . , vn} and a
right set R = {u1, u2, . . . , uk+1}. For any two different points vi, vj ∈ L, ∆(vi, vj) =
2n if Si ∩ Sj = ∅, and ∆(vi, vj) = 1/2 otherwise. The distance function on R is given
by the distance matrix in Lemma 1 with � = k and t = k+1. For any v ∈ L and u ∈ R,
∆(v, u) = ∆(u, v) = 2n. Finally, the isolation game has k + 1 players.

We now show that there exists a Nash equilibrium for the nearest-neighbor isolation
game on Ω iff there are k disjoint subsets in the Set Packing instance.

First, suppose that there is a solution to the Set Packing instance. Without loss of
generality, assume that the k disjoint subsets are S1, S2, . . . , Sk. Then we claim that
configuration c = (v1, v2, . . . , vk, u1) is a Nash equilibrium. In this configuration, it
is easy to verify that every player’s utility is 2n, the largest possible pairwise distance.
Therefore, c is a Nash equilibrium.

Conversely, suppose that there is a Nash equilibrium in the nearest-neighbor isolation
game. Consider the set R. If there is a Nash equilibrium c, then the number of players
positioned in R is either k + 1 or at most 1 because of Lemma 1. If there are k + 1
players in R, then every player has utility 1, and thus every one of them would want to
move to points in L to obtain a utility of 2n. Therefore, there cannot be k + 1 players
positioned in R, which means that there are at least k players positioned in L.

Without loss of generality, assume that these k players occupy points v1, v2, . . . , vk

(which may have duplicates). We claim that subsets S1, S2, . . . , Sk form a solution
to the Set Packing problem. Suppose, for a contradiction, that this is not true, which
means there exist Si and Sj among these k subsets that intersect with each other. By
our construction, we have ∆(vi, vj) = 0 or 1/2. In this case, players at point vi and
vj would want to move to some free points in R, since that will give them utilities
of at least 1. This contradicts the assumption that c is a Nash equilibrium. Therefore,
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we found a solution for the Set Packing problem given a Nash equilibrium c of the
nearest-neighbor isolation game.

The proof for the case of total-distance isolation game is essentially the same, with
only changes in players’ utility values. �

4 Isolation Games with Other Weight Vectors

In this section, we study several general classes of isolation games. We consider sym-
metric space (Ω,∆) in this section.

4.1 Single-Selection Isolation Games

Theorem 3. A Nash equilibrium always exists in any single-selection symmetric game.

Although Nash equilibria always exist in the single-selection isolation games, the fol-
lowing lemma shows that they are not potential games.

Lemma 2. Let Ω = {A,B,C,D,E, F} contain six points on a one-dimensional cir-
cular space with ∆(A,B) = 15, ∆(B,C) = 11, ∆(C,D) = 14, ∆(D,E) = 16,
∆(E,F ) = 13, and ∆(F,A) = 12. The five-player single-selection game with the
weight vector (0, 1, 0, 0) on Ω is not potential.

Proof. Let the five players stand at A, B, C, D, and E respectively in the initial config-
uration. Their better response dynamics can iterate forever as shown in Figure 1. Hence
this game is not a potential game. �

Fig. 1. An example of a better-response sequence that loops forever for a five-player isolation
game with weight vector (0, 1, 0, 0) in a one dimensional circular space with six points

Surprisingly, the following theorem complements the previous lemma.

Theorem 4. If Ω is finite, then for any single-selection game on Ω and any starting
configuration c, there is a better-response sequence in the game that leads to a Nash
equilibrium.
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Proof. Suppose that the nonzero weight entry is the mth entry in the k-player single-
selection isolation game with m > 1 (the case of m = 1 is already covered in
nearest-neighbor isolation game). For any configuration c = (p1, . . . , pk), the utility
of player i is the distance between player i and her mth nearest neighbor. Let vector
u(c) = (u1, u2, . . . , uk) be the vector of the utility values of all players in c sorted in
nondecreasing order, i.e., u1 ≤ u2 ≤ . . . ≤ uk. We claim that for any configuration
c, if c is not a Nash equilibrium, there must exist a finite sequence of configurations
c = c0, c1, c2, . . . , ct = c′, such that ci+1 is the result of a better-response move of
some player in ci for i = 0, 1, . . . , t− 1 and u(c) < u(c′) in lexicographic order.

We now prove this claim. Since the starting configuration c0 = c is not a Nash
equilibrium, there exists a player i that can make a better response move to position p,
resulting in configuration c1. We have ut i(c0) < ut i(c1). Let Si be the set of player
i’s m − 1 nearest neighbors in configuration c1. We now repeat the following steps
to find configurations c2, . . . , ct. When in configuration cj , we select a player aj such
that utaj (cj) < ut i(c1) and move aj to position p, the same position where player i
locates. This gives configuration cj+1. This is certainly a better-response move for aj

because utaj (cj+1) = ut i(cj+1) = ut i(c1) > utaj (cj), where the second equality
holds because we only move the m− 1 nearest neighbors of player i in c1 to the same
position as i, so it does not affect the distance from i to her mth nearest neighbor. The
repeating step ends when there is no more such player aj in configuration cj , in which
case cj = ct = c′.

We now show that u(c) < u(c′) in lexicographic order. We first consider any player
j 
∈ Si, either her utility does not change (utj(c) = utj(c′)), or her utility change must
be due to the changes of her distances to player i and players a1, a2, . . . , at−1, who have
moved to position p. Suppose that player j is at position q. Then ∆(p, q) ≥ ut i(c1)
because j 
∈ Si. This means that if j’s utility changes, her new utility utj(c′) must be
at least ∆(p, q) ≥ ut i(c1). For a player j ∈ Si, if she is one of {a1, . . . , at−1}, then
her new utility utj(c′) = ut i(c′) = ut i(c1); if she is not one of {a1, . . . , at−1}, then
by definition utj(c′) ≥ ut i(c1). Therefore, comparing the utilities of every player in
c and c′, we know that either her utility does not change, or her new utility is at least
ut i(c′) = ut i(c1) > ut i(c), and at least player i herself strictly increases her utility
from ut i(c) to ut i(c′). With this result, it is straightforward to verify that u(c) < u(c′).
Thus, our claim holds.

We may call the better-response sequence found in the above claim an epoch. We
can apply the above claim to concatenate new epochs such that at the end of each epoch
the vector u strictly increases in lexicographic order. Since the space Ω is finite, the
vector u has an upper bound. Therefore, after a finite number of epochs, we must be
able to find a Nash equilibrium, and all these epochs concatenated together form the
better-response sequence that leads to the Nash equilibrium. This is clearly true when
starting from any initial configuration. �

4.2 Monotonically-Increasing Games

For monotonically-increasing games, we provide the following general condition that
guarantees the existence of a Nash equilibrium. We say that a pair of points u, v ∈ Ω
is a pair of polar points if for any point w ∈ Ω, the inequality ∆(u,w) + ∆(w, v) ≤
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∆(u, v) holds. Spaces with polar points include one-dimensional circular space, two-
dimensional sphere, n-dimensional grid with L1 norm as its distance function, etc.

Theorem 5. If Ω has a pair of polar points, then any monotonically-increasing isola-
tion game on Ω has a Nash equilibrium.

4.3 Monotonically-Decreasing Games

Monotonically-decreasing games are more difficult to analyze than the previous vari-
ants of isolation games, and general results are not yet available. In this section, we
first present a positive result for monotonically-decreasing games on a continuous one-
dimensional circular space. We then present some hardness result for a simple type of
weight vectors in general symmetric spaces.

The following theorem is a general result with monotonically-decreasing games as
its special cases.

Theorem 6. In a continuous one-dimensional circular space Ω, the isolation game
on Ω with weight vector w = (w1, w2, . . . , wk−1) always has a Nash equilibrium if∑k−1

t=1 (−1)twt ≤ 0.

A monotonically-decreasing isolation game with weight vector w =
(w1, w2, . . . , wk−1) automatically satisfies the condition

∑k−1
t=1 (−1)twt ≤ 0.

Hence we have the following corollary.

Corollary 1. In a continuous one-dimensional circular space Ω, any monotonically-
decreasing isolation game on Ω has a Nash equilibrium.

We now consider a simple class of monotonically-decreasing games with weight vector
w = (1, 1, 0, . . . , 0) and characterize the Nash equilibria of the isolation game in a con-
tinuous one-dimensional circular space Ω. Although the game has a Nash equilibrium
in a continuous one-dimensional circular space according to the above corollary, it is
not potential, as shown by the following lemma.

Lemma 3. Consider Ω = {A,B,C,D,E, F} that contains six points in a one-
dimensional circular space with ∆(A,B) = 13, ∆(B,C) = 5, ∆(C,D) = 10,
∆(D,E) = 10, ∆(E,F ) = 11, and ∆(F,A) = 8. The five-player monotonically-
decreasing game on Ω with weight vector w = (1, 1, 0, 0) is not best-response poten-
tial (so not better-response potential either). This implies that the game on a continuous
one-dimensional circular space is not better-response potential.

If we extend from the one-dimensional circular space to a general symmetric space,
there may be no Nash equilibrium for isolation games with weight vector w =
(1, 1, 0, . . . , 0) at all, as shown in the following lemma.

Lemma 4. There is no Nash equilibrium for the four-player isolation game with weight
vector w = (1, 1, 0) in the space with five points {A,B,C,D,E} and the following
distance matrix, where N > 21 (note that this distance function also satisfies triangle
inequality).
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⎛⎜⎜⎜⎜⎜⎜⎝
∆ A B C D E
A 0 N − 6 N − 11 N − 1 N − 6
B N − 6 0 N − 8 N − 10 N − 1
C N − 11 N − 8 0 N − 1 N − 6
D N − 1 N − 10 N − 1 0 N − 10
E N − 6 N − 1 N − 6 N − 10 0

⎞⎟⎟⎟⎟⎟⎟⎠
Using the above lemma as a basis, we further show that it is NP-complete to decide
whether an isolation game with weight vector (1, 1, 0, . . . , 0) on a general symmetric
space has a Nash equilibrium. The proof is by a reduction from 3-Dimensional Match-
ing problem.

Theorem 7. In a finite symmetric space (Ω,∆), it is NP-complete to decide the exis-
tence of Nash equilibrium for isolation game with weight vector w = (1, 1, 0, . . . , 0).

5 Computation of Best Responses in High Dimensional Spaces

We now turn to the problem of computing the best response of a player in a configu-
ration. A brute-force search on all points in the space can be done in O(k log k

√
D),

where D is the size of the distance matrix. This is fine if the distance matrix is explic-
itly given as input. However, it could become exponential if the space has a compact
representation, such as an n-dimensional grid with the L1 norm as the distance func-
tion. In this section, we present results on an n-dimensional hypercube {0, 1}n with the
Hamming distance, a special case of n-dimensional grids with the L1 norm.

Theorem 8. In a 2n-dimensional hypercube {0, 1}2n, it is NP-complete to decide
whether a player could move to a point so that her utility is at least n − 1 in the k-
player nearest-neighbor isolation game with k bounded by poly(n).

The above theorem leads to the following hardness result in computing best responses
for a general class of isolations games, with nearest-neighbor game as a special case.

Corollary 2. It is NP-hard to compute a best response for an isolation game in the
space {0, 1}2n with weight vector w = (∗, . . . , ∗, 1︸ ︷︷ ︸

c

, 0, . . . , 0) where c is a constant and

∗ is either 0 or 1.

Contrasting to the above corollary, if the weight vector has only nonzero entries towards
the end of the vector, it is easy to compute the best response, as shown in the following
theorem.

Theorem 9. A best response for a k-player isolation game in the space {0, 1}n with
w = (0, . . . , 0, 1, ∗, . . . , ∗︸ ︷︷ ︸

c

) can be computed in polynomial time where c is a constant,

k is bounded by poly(n) and ∗ is either 0 or 1.
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6 Final Remarks

The isolation game is very simple by its definition. However, as shown in this paper, the
behaviors of its Nash equilibria and best response dynamics are quite rich and complex.
This paper presents the first set of results on the isolation game and lays the ground
work for the understanding of the impact of the farness measures and the underlying
space to some basic game-theoretic questions about the isolation game. It remains an
open question to fully characterize the isolation game. In particular, we would like
to understand for what weight vectors, the isolation game on simple spaces, such as
d-dimensional grids, hypercubes, and torus grid graphs, has potential functions, has
Nash equilibria, or has converging best (better) response sequences. What is the impact
of distance functions, such as L1-norm or L2-norm to these questions? We would like
to know whether it is NP-hard to determine if Nash equilibria exist in these special
spaces when the input is the weight vector. What can we say about other continuous
spaces such as squares, cubes, balls, and spheres? For example, is there a sequence of
better response dynamics that converge to a Nash equilibrium in the isolation game
on the sphere with w = (1, 1, 1, 0, . . . , 0)? What can we say about approximate Nash
equilibria?

More concretely, In Lemma 2 we show an example in which a single-selection game
with weight vector (0, 1, 0, . . . , 0) is not better-response potential in one dimensional
circular space. However, we verify that the game is best-response potential. This phe-
nomenon of being best-response potential but not better-response potential is rarely
seen in other type of games. Moreover, our experiments lead us to conjecture that all
games on continuous one dimensional circular space with weight vector (0, 1, 0, . . . , 0)
is best-response potential. So far, we are only able to prove that in such games start-
ing from any configuration there is always an acyclic sequence of best responses that
either converge to a Nash equilibrium or is infinitely long. If the conjecture is true, we
will find a large class of games that are best-response potential but not better-response
potential (latter is implied by Lemma 2 for the continuous one dimensional space), an
interesting phenomenon not known in other common games.

Another line of research is to understand the connection between the isolation game
and the Voronoi game.

References

1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M.J., Oostrum, R.: Competitive facility loca-
tion: the Voronoi game. Theor. Comput. Sci. 310(1-3), 457–467 (2004)

2. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discrete
and Computational Geometry, 31, 125–138 (2004)
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Abstract. We study path multicoloring games that describe situations
in which selfish entities possess communication requests in a multifiber
all-optical network. Each player is charged according to the maximum
fiber multiplicity that her color (wavelength) choice incurs and the social
cost is the maximum player cost. We investigate the price of anarchy of
such games and provide two different upper bounds for general graphs—
namely the number of wavelengths and the minimum length of a path
of maximum disutility, over all worst-case Nash Equilibria—as well as
matching lower bounds which hold even for trees; as a corollary we obtain
that the price of anarchy in stars is exactly 2. We also prove constant
bounds for the price of anarchy in chains and rings in which the number
of wavelengths is relatively small compared to the load of the network;
in the opposite case we show that the price of anarchy is unbounded.

Keywords: Selfish wavelength assignment, non-cooperative games,
price of anarchy, multifiber optical networks, path multicoloring.

1 Introduction

The need for efficient access to the optical bandwidth in all-optical networks has
given rise to the study of several optimization problems in the past years. The
most well-studied among them is the problem of assigning a path and a color
(wavelength) to each communication request in such a way that paths of the same
color are edge-disjoint and the number of colors used is minimized. Nonetheless,
it has become clear that the number of wavelengths in commercially available
fibers is rather limited—and will probably remain such in the foreseeable future.
Fortunately, the use of multiple fibers has come to the rescue. However, fibers
are not unlimited either, therefore it makes sense to minimize their usage. This
is particularly interesting from the customer’s point of view, for example in
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situations where one can hire a number of parallel fibers for a certain period and
the cost depends on that number.

To this end, several optimization problems have been defined and studied,
the objective being to minimize either the maximum fiber multiplicity per edge
[1,2,3] or the sum of these maximum multiplicities over all edges of the graph
[4,5,6]; in another scenario the allowed fiber multiplicity per edge is given and
the goal is to minimize the number of wavelengths needed [7,8,5].

In this work we consider a non-cooperative model, where each request is issued
by a user who tries to optimize her own fiber usage by selecting the most appro-
priate wavelength, taking into account other users’ choice. This model is mainly
motivated by the lack of centralized control in large scale networks. We assume
that each user is charged according to the maximum fiber multiplicity that the
user’s choice incurs. More specifically, a user will be charged according to the
maximum number of paths that share an edge with her and use the same wave-
length. We consider as social cost the maximum fiber multiplicity that appears
on any edge of the network. Minimizing this quantity is particularly important
in cases where fibers are hired or sold as a whole, hence the maximum number
of fibers needed on an edge determines the total cost; further motivation can
be found in papers that address the corresponding optimization problem (see
e.g. [1,2,3]). Here we focus on situations where routing is unique (acyclic topolo-
gies) or pre-determined—as happens in many practical settings, for example in
cases where there are specific routing constraints such as a requirement to use
lightpaths that have been set in advance, or shortest path routing.

We formulate the above model by defining the class of Selfish Path Mul-

tiColoring (S-PMC) games: the input is a graph, a set of paths, and the
number of colors w. Each player controls a path in the graph and has to choose
a color for that path from {α1, . . . , αw}. A player is charged according to the
maximum multiplicity of her color along her path. We consider as social cost
the maximum color multiplicity per edge, i.e., the maximum number of paths of
same color that use an edge.

Related work. Arguably, the most important notion in the theory of non-cooper-
ative games is the Nash Equilibrium (NE) [9], a stable state of the game in which
no player has incentive to change strategy unilaterally. A fundamental question
in this theory concerns the existence of pure Nash Equilibria (PNE). For various
games [10,11,12,13] it has been shown that a PNE exists and can usually be
found with the use of potential functions. A standard measure of the worst-case
quality of Nash Equilibria relative to optimal solutions is the price of anarchy
(PoA) [14], which has been extensively studied for load balancing games [14,15]
and other problems such as routing and facility location [10,16]. A second known
measure related to NE is the price of stability (PoS), defined in [17].

S-PMC games are closely related to a variation of congestion games [18,19]
where a player’s cost is determined by her maximum latency instead of the usual
cost which is the sum of her latencies. Next, we briefly explain the relation of
those models to ours.
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In [18] the authors study atomic routing games on networks, where each player
chooses a path to route her traffic from an origin to a destination node, with
the objective of minimizing the maximum congestion on any edge of her path.
They show that these games always possess at least one optimal PNE (hence the
PoS is 1) and that the PoA of the game is determined by topological properties
of the network; in particular they show that the PoA is upper bounded by
the length of the longest path in the player strategy sets and lower bounded
by the length of the longest cycle. Some of our results extend to their model,
since our model mimics traffic routing in the following sense: we may consider
a multigraph, where we replace each edge with w parallel edges, one for each
color. Each player’s strategy set then consists of w different source-destination
paths, corresponding to the w available colors in the original model. A further
generalization is the model of Banner and Orda [19], where they introduce the
notion of bottleneck games. In this model they allow arbitrary latency functions
on the edges and consider both the case of splittable and unsplittable flows. They
show existence, convergence and non-uniqueness of equilibria and they prove
that the PoA for these games is unbounded. Both models are more general than
ours; however our model fits better into the framework of all-optical networks for
which we manage to provide, among others, smaller upper bounds on the PoA
compared to the ones obtained by [18,19], as well as a better convergence rate to
Nash equilibria. In [20] they study similar games and give results for restricted
cases, e.g. single-commodity networks.

To the best of our knowledge selfish path multicoloring games have not been
studied before. Selfish path coloring in single fiber all-optical networks have
been studied in [21,22,23,24]. Bilò and Moscardelli [21] consider the conver-
gence to Nash Equilibria of selfish routing and path coloring games. Later, Bilò
et al. [22] considered different information levels of local knowledge that players
may have for computing their payments in the same games and give bounds for
the PoA in chains, rings and trees. The existence of Nash Equilibria and the
complexity of recognizing and computing a Nash Equilibrium for selfish routing
and path colorings games under several payment functions are considered by
Georgakopoulos et al. [23]. In [24] upper and lower bounds of the PoA for self-
ish path coloring with and without routing are presented under functions that
charge a player only according to her own strategy.
Our results. We first give an upper bound on the convergence rate of Nash
dynamics for S-PMC games, and observe that the price of stability is always
equal to 1. We also show how to efficiently compute a Nash Equilibrium of
minimum social cost for S-PMC games in rooted trees, i.e. trees in which each
path lies entirely on a simple path from some fixed root node to a leaf. For
S-PMC games in stars, we prove that a known approximation algorithm for a
related optimization problem actually gives an 1

2 -approximate Nash Equilibrium.
For general graphs, we obtain two upper bounds on the PoA: the first, which

is not hard to show, is equal to the number of available colors. The second,
which requires more involved arguments, is equal to the length of a shortest
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path with maximum disutility in any worst-case NE. For both bounds we provide
matching lower bounds. In fact, we prove that these bounds hold even in trees.

Then, we move on to specific network topologies and show that for S-PMC

games in stars PoA = 2. We also provide constant bounds on the PoA in a
broad class of S-PMC games in chains and rings, namely for all games with
L = Ω(w2), where w is the number of available colors and L is the maximum
load among all edges of the network. On the other hand, for any ε > 0 we exhibit
a class of S-PMC games in chains (and rings) with L = Θ(w2−ε) for which the
PoA is unbounded.

In order to show our upper bounds, we demonstrate path patterns that must
be present in any Nash Equilibrium, while for the lower bounds we employ
recursive construction techniques.

2 Definitions and Model

Given an undirected graph G(V,E), a set P of simple paths defined on G, and
a set W = {α1, ..., αw} of available colors, L(e) will denote the load of edge e,
i.e. the number of paths that use edge e. The maximum of these loads will be
denoted by L, i.e. L = maxe∈E L(e).

Given, additionally, an assignment of a color to each path we define the fol-
lowing:

Definition 1

1. µ(e, c) will denote the multiplicity of color c on edge e, i.e. the number of
paths that use edge e and are colored with color c.

2. µe will denote the maximum multiplicity of any color on edge e, i.e. µe =
maxc∈W µ(e, c).

3. µmax will denote the maximum multiplicity of any color over all edges: µmax =
maxe∈E µe.

4. µ(p, c) will denote the maximum multiplicity of color c over the edges of
path p: µ(p, c) = maxe∈p µ(e, c).

It will be clear from the context which specific coloring we are referring to when
we use the above notation.

The minimum µmax that can be attained by some coloring of the paths in P
will be denoted by µOPT, i.e. µOPT = minc µmax where c ranges over all possible
colorings. We note immediately the following:

Fact. No coloring can achieve a µmax smaller than
⌈

L
w

⌉
. Thus, µOPT ≥

⌈
L
w

⌉
.

We now proceed to define the class of selfish path multicoloring games and
subclasses thereof.

Definition 2 (Selfish path multicoloring games). A selfish path multicol-
oring game is the following strategic game defined in terms of an undirected
graph G, a set P of simple paths defined on G, and an integer w > 0:
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– Players: there is one player for each path in P . For simplicity, we identify a
player i with the corresponding path pi.

– Strategies: a strategy for player i is a color ci chosen from the set W =
{α1, . . . , αw} of available colors. We say that color ci is assigned to path pi

or that path pi is colored with color ci. All players share the common set of
strategies W .

– Disutility: given a strategy profile c = (c1, . . . , c|P |), the disutility fi : W |P | →
IN of each player i is defined as follows:

fi(c) = µ(pi, ci).

We denote this game by 〈G,P,w〉. The class of all selfish path multicoloring
games will be denoted by S-PMC.

We will use the notation S-PMC(G) to denote a subclass of S-PMC that con-
tains only games satisfying a property G (for example G may constrain the graph
on which the game is defined to belong to a specific graph class, etc.).

Following the standard definition, a strategy profile c = (c1, . . . , c|P |) is said
to be a pure Nash Equilibrium (PNE), or simply Nash Equilibrium (NE), if for
each player i it holds that: fi(c1, . . . , c′i, . . . , c|P |) ≥ fi(c1, . . . , ci, . . . , c|P |), for
any strategy c′i ∈ W . Moreover, following the definition of [25], we say that
a strategy profile c = (c1, . . . , c|P |) is an ε-approximate Nash Equilibrium if for
each player i it holds that: fi(c1, . . . , c′i, . . . , c|P |) ≥ (1−ε)·fi(c1, . . . , ci, . . . , c|P |),
for any strategy c′i ∈W .

Definition 3 (Blocking edges). If c is a strategy profile for a game 〈G,P,w〉
and pi ∈ P , we say that edge e is an αj -blocking edge for pi, or that it blocks
αj for pi, if e ∈ pi and µ(e, αj) ≥ fi(c)− 1. Furthermore, the µ(e, αj) paths that
are colored with αj and use edge e are called αj-blocking paths for pi.

Intuitively, an αj-blocking edge for pi “blocks” pi from switching to color αj

because if it did, the new disutility of path pi would be at least µ(e, αj) + 1 ≥
fi(c), no better than its current choice. It is immediate from the definitions that
the following property holds in any Nash Equilibrium of any S-PMC game:

Property 1 (Structural property of S-PMC Nash Equilibria). In a Nash Equi-
librium, every path p must contain at least one αj-blocking edge for p, for every
color αj .

Definition 4 (Social cost). The social cost of a strategy profile c for an S-

PMC game is defined as follows: sc(c) = maxe∈E µe = µmax.

It is straightforward to verify that the social cost of a strategy profile coincides
with the maximum player disutility in that profile:

sc(c) = max
e∈E

µe = max
pi∈P

fi(c)

We define µ̂ to be the maximum social cost over all strategy profiles that are
Nash Equilibria: µ̂ = maxc is NE sc(c). Following the standard definitions, the
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price of anarchy (PoA) of a game 〈G,P,w〉 is the worst-case social cost in a Nash
Equilibrium divided by µOPT, i.e.: PoA(〈G,P,w〉) = maxc is NE sc(c)

µOPT
= µ̂

µOPT
. The

price of stability (PoS) of a game is the best-case social cost in a NE divided by
µOPT: PoS(〈G,P,w〉) = minc is NE sc(c)

µOPT
. The price of anarchy (resp. stability) of

a class of games S-PMC(G) is the maximum price of anarchy (resp. stability)
among all games in S-PMC(G).

3 Existence and Computation of Nash Equilibria

We use lexicographic-order arguments similar to those in [18,19] to show that
in any S-PMC game the following holds: starting from an arbitrary strategy
profile any Nash dynamics converges to a Nash Equilibrium of smaller or equal
social cost. The proof is omitted.

Theorem 1. For any game 〈G,P,w〉 in S-PMC:

a. the price of stability is 1, and
b. any Nash dynamics converges to a Nash Equilibrium in at most 4|P | steps.

Due to Theorem 1, computing a Nash Equilibrium of minimum social cost is at
least as hard as the corresponding optimization problem. As noticed in [4] this
problem is NP-hard in general graphs, in fact even in rings and stars. Therefore,
it is also NP-hard to compute an optimal Nash Equilibrium even in the case of
rings and stars. However, we show that there exists an efficient algorithm that
computes optimal Nash Equilibria for a subclass of S-PMC(Tree). Further-
more, we show that we can use a known algorithm for Path MultiColoring

in stars [4] to compute approximate Nash Equilibria for S-PMC(Star) games.
We will only state the theorems and omit the proofs.

Definition 5. We define S-PMC(Rooted-Tree) to be the subclass of S-

PMC that contains games 〈G,P,w〉 with the following property: “G is a tree
and there is a node r such that each path in P lies entirely on some simple path
from r to a leaf.”

Consider the greedy algorithm that colors paths in order of non-decreasing dis-
tance from the root in such a way that the color multiplicity is the lowest possible
with respect to the current partial coloring.

Theorem 2. Given an S-PMC(Rooted-Tree) game 〈G(V,E), P, w〉 with
maximum load L as input, the greedy algorithm computes an optimal Nash Equi-
librium of cost exactly

⌈
L
w

⌉
.

Theorem 3. There is a polynomial-time algorithm that computes a 1
2 -approxi-

mate Nash Equilibrium for any S-PMC(Star) game.
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4 Tight Upper Bounds for the PoA of S-PMC Games

In this section we provide two upper bounds on the PoA of any S-PMC game and
we show that both of them are tight. The first bound is determined by a property
of the network, namely the number of available wavelengths. The second bound
is more subtle, as it depends on the length of paths with the highest disutility
in worst-case Nash Equilibria. We prove that these bounds are tight even for
the class S-PMC(Rooted-Tree), and asymptotically tight for the class S-

PMC(Rooted-Tree: ∆ = 3), i.e. the subclass of S-PMC(Rooted-Tree)

that contains games defined on graphs with maximum degree 3.

Lemma 1. The price of anarchy of any S-PMC game 〈G,P,w〉 is at most w.

Proof. Let c be a worst-case Nash Equilibrium of 〈G,P,w〉, hence sc(c) = µ̂.
Clearly, µ̂ ≤ L and since the minimum social cost over all strategy profiles is
µOPT ≥

⌈
L
w

⌉
, it turns out that µOPT ≥ µ̂

w . This implies that µ̂
µOPT

≤ w. �


Lemma 2. For any worst-case Nash Equilibrium c of an S-PMC game 〈G,P,w〉
and for any pi ∈ P with fi(c) = sc(c) = µ̂, the price of anarchy of 〈G,P,w〉 is
at most equal to the length of pi.

Proof. Let ẽ be an edge of pi where the color ci chosen by pi appears with
maximum multiplicity µ̂: µ(ẽ, ci) = µ̂. Let z denote the length of path pi and
let e1, . . . , ez−1 be the edges that p uses, apart from ẽ. For 1 ≤ j ≤ z − 1, let xj

be the number of colors that are blocked for pi on ej and let y be the number
of colors that are blocked for pi on ẽ (since c is a Nash Equilibrium, it must be
that x1 + . . . + xz−1 + y ≥ w − 1).

If it is the case that z = 1, i.e. pi uses only edge ẽ, then ẽ must block all colors
for pi except ci. This implies that the load of edge ẽ is: L(ẽ) ≥ µ̂+(w−1)(µ̂−1) =
wµ̂−w+1. Therefore, the minimum social cost over all strategy profiles satisfies:
µOPT ≥

⌈
L(ẽ)

w

⌉
≥

⌈
µ̂− w−1

w

⌉
= µ̂. We conclude that the price of anarchy in this

case is equal to 1.
Now, assume that z ≥ 2. We will prove that L ≥ 1 +

⌈
w
z

⌉
(µ̂ − 1). First,

observe that L(ẽ) ≥ µ̂ + y(µ̂− 1) and, for 1 ≤ j ≤ z − 1, L(ej) ≥ 1 + xj(µ̂− 1).
If y ≥

⌈
w
z

⌉
− 1, then L(ẽ) ≥ µ̂ +

(⌈
w
z

⌉
− 1

)
(µ̂− 1) = 1 +

⌈
w
z

⌉
(µ̂− 1), therefore

L ≥ 1 +
⌈

w
z

⌉
(µ̂ − 1). If, on the other hand, y <

⌈
w
z

⌉
− 1, then x1 + . . . +

xz−1 ≥ w − 1 − y ≥ w −
⌈

w
z

⌉
+ 1. This implies that there is some xk such

that xk ≥
w−�w

z �+1
z−1 >

w−w
z −1+1
z−1 = w

z . Since xk is an integer, it must be that
xk ≥

⌈
w
z

⌉
. Therefore, L ≥ L(ek) ≥ 1 +

⌈
w
z

⌉
(µ̂− 1).

We conclude that in any case L ≥ 1 +
⌈

w
z

⌉
(µ̂− 1). So, the price of anarchy is

bounded as follows:

PoA(〈G,P,w〉) =
µ̂

µOPT
≤ µ̂⌈

L
w

⌉ ≤ µ̂⌈
1+�w

z �(µ̂−1)
w

⌉ ≤ z .

We omit the proof of the last inequality, which holds for all µ̂ ≥ 2, w ≥ 1, and
z ≥ 2. �
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α2

αz

α2

α3

λ − 1 λ − 1 λ − 1

λ − 1
λ − 1 λ − 1

α3

αz

α1

u0

u1,3 u1,z−1u1,2

u1

λ uλ,2 uλ,3 uλ,z−1

Fig. 1. The construction Az(λ) for the proof of Lemma 3. The thick lines represent the
edges of the underlying graph, and the thin lines represent the paths defined on the
graph. The color and multiplicity of each group of paths is written next to that group.
Each shaded box represents a recursive copy of Az(λ − 1).

As an immediate corollary of Lemma 2, we derive the following upper bound on
the price of anarchy:

Corollary 1. The price of anarchy of any S-PMC game 〈G,P,w〉 is bounded
as follows:

PoA ≤ min
c:NE∧sc(c)=µ̂

min
i:fi(c)=µ̂

length(pi)

Lemma 3. The upper bounds of Lemma 1 and Corollary 1 are tight even for
the class of S-PMC(Rooted-Tree) games.

Proof. We first define a recursive construction of an S-PMC game and a Nash
Equilibrium for this game. The construction is illustrated in Figure 1. For any
z ≥ 1 and λ ≥ 1, let Az(λ) be the following S-PMC game with z available colors:
there are λ paths of color α1 and length z, starting at the “root node” u0, which
branch out into λ branches, one on each branch. Let us call these the “primary”
paths for Az(λ). On any of the z − 1 edges of each such branch, one color is
blocked for the primary path. The λ− 1 blocking paths of each edge branch out
into an Az(λ− 1) game. They become primary paths for this copy of Az(λ− 1).
The root node for the j-th recursive copy of Az(λ − 1) on the k-th branch is
node uk,j (node uk,1 is common for all branches). The base case of this recursive
construction is Az(0), which is a degenerate game with no paths and no available
colors, defined on a graph consisting of a single node.

Observe that for any z ≥ 1, the construction Az(z) is an S-PMC(Rooted-

Tree) game in NE, in which all of the following are equal to z: w, L, µmax,
and all path lengths. By Theorem 2, the optimal strategy profile for Az(z) has
social cost µOPT =

⌈
L
w

⌉
= 1. Therefore, the ratio µmax

µOPT
is equal to z for this

Nash Equilibrium, hence the price of anarchy is at least z. �
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By appropriate modification of the construction presented in Figure 1, we obtain
the following:

Lemma 4. The upper bounds of Lemma 1 and Corollary 1 are asymptotically
tight even for the class of S-PMC(Rooted-Tree) games with maximum de-
gree 3.

We summarize the results of Lemmata 1, 2, 3, and 4 in the following theorem:

Theorem 4. The price of anarchy of any S-PMC game 〈G,P,w〉 is upper-
bounded both by w and by

min
c:NE∧sc(c)=µ̂

min
i:fi(c)=µ̂

length(pi).

These bounds are tight for the class S-PMC(Rooted-Tree) and asymptotically
tight for the class S-PMC(Rooted-Tree: ∆ = 3).

Theorem 5. The price of anarchy of the class S-PMC(Star) is 2.

Proof. Lemma 2 implies an upper bound of 2 on the price of anarchy since the
length of any path in a star cannot be larger than 2.

For the lower bound, it can be shown that the construction of Lemma 3 can be
modified to yield a family of S-PMC(Star) games with price of anarchy 2. More
specifically every game A2(λ) can be embedded in a star, by using additional
star rays for branching. The detailed construction is omitted. �


5 The Price of Anarchy on Graphs of Maximum Degree 2

In this section we study the price of anarchy of path multicoloring games on
chains and rings, and we prove a constant upper bound for a broad class of
S-PMC(Ring) games with L = Ω(w2). Notice that this class essentially en-
compasses all S-PMC(Ring) games of practical importance, as the number of
wavelengths is limited in practice due to technological constraints, whereas L
can grow large depending on network traffic. For the sake of completeness, we
show that the PoA becomes quickly unbounded if we allow the network designer
to provide ample wavelengths to the users, i.e. when L = o(w2).

We begin by strengthening Property 1 to prove a more involved structural
property of Nash Equilibria in S-PMC(Ring) games. Let 〈G,P,w〉 be an S-

PMC(Ring) game. Given a coloring c = (c1, . . . , c|P |), let P (e, αi)(c) ⊆ P
denote the set of paths colored with color αi that use edge e ∈ E; by definition
|P (e, αi)(c)| = µ(e, αi). For the sake of simplicity, in the rest of the section
we will write P (e, αi) instead of P (e, αi)(c). Furthermore, let [el, er] denote the
clockwise arc starting at edge el and ending at edge er.

Lemma 5 (Structural property of S-PMC(Ring) NE). Given a game
in S-PMC(Ring) and a coloring c thereof which is a Nash Equilibrium, for
every edge e and color αi there is an edge-simple arc [el, er] with the following
properties:
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a. for every color αj 
= αi, arc [el, er] contains an edge which is an αj-blocking
edge for at least half of the paths in P (e, αi), and

b. for every edge e′ of the arc [el, er] it holds that |P (e′, αi) ∩ P (e, αi)| ≥⌈
|P (e,αi)|

2

⌉
.

Proof. Since the game is in NE, by Property 1 every path p ∈ P (e, αi) must have
at least one αj-blocking edge, for every color αj 
= αi. For a fixed color αj 
= αi,
consider the two αj-blocking edges for some path in P (e, αi) that are closest to
edge e clockwise and counter-clockwise. It is not hard to see that for at least one
of these two edges, call it b(αj), the following property holds: the arc [e, b(αj)]

or the arc [b(αj), e] is contained in at least
⌈
|P (e,αi)|

2

⌉
of the paths in P (e, αi).

In case that there is only one αj-blocking edge for all paths in P (e, αi), then the
property holds a fortiori for this edge.

For every color αj we pick one such edge b(αj). If the above property holds for
arc [e, b(αj)], we add b(αj) to set B+, otherwise we add it to set B−. We now claim
that a clockwise traversal of the ring starting at edge e will first encounter all edges
of B+ and then all edges of B−. Indeed, if one edge b− of B− lies before one edge
b+ of B+ on this clockwise traversal, this would imply that b− is traversed by the⌈
|P (e,αi)|

2

⌉
paths that contain the arc [e, b+] and thus b− should also belong to B+.

The above discussion implies that if we define er to be the last edge of B+

and el to be the first edge of B− encountered in this clockwise traversal, then
the edge-simple arc [el, er] satisfies the conditions of the Lemma. �


We now prove a constant upper bound on the price of anarchy of S-PMC(Ring)

games with L = Ω(w2); denote this class by S-PMC(Ring: L = Ω(w2)). This
also provides an upper bound on the price of anarchy of any S-PMC(Chain:

L = Ω(w2)) game, as every game defined on a chain can be trivially embedded
in a ring topology.

We first employ the structural property of S-PMC(Ring) Nash Equilibria
(Lemma 5) in order to establish the existence of a heavily loaded edge in S-

PMC(Ring) games with µ̂ ≥ w.

Lemma 6. In every S-PMC(Ring) game 〈G,P,w〉 with µ̂ ≥ w there is an
edge with load at least µ̂w

4 .

Proof. Let [el, er]P (e,αi) be the arc that is obtained by applying Lemma 5 for
path set P (e, αi). We define P1 to be the set of paths P (ẽ, α1) which induce the
social cost µ̂. For i ≥ 2 we define Pi to be the set of αj-blocking paths for the
path set Pi−1, for some color αj not appearing at any of the path sets Pk, k < i,
with the following property:

[el, er]Pi ⊆ [el, er]Pi−1 , (1)

if such a path set exists. If more than one path sets with the desired property
exist, we arbitrarily pick one of them.

Let ei be the αj-blocking edge for Pi−1; based on the inductive definition of Pi

as a set of blocking paths for path set Pi−1 we can easily show that µ(ei, αj) ≥
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µ̂− i+1. Applying Lemma 5(b) for color αj and edge ei yields the following: for
every edge e ∈ [el, er]Pi we have that µ(e, αj) ≥ µ̂−i+1

2 . Furthermore, since Equa-
tion 1 holds for all k ≤ i, the load of all edges e ∈ [el, er]Pi is at least

∑
αj

µ(e, αj),
where αj now ranges over the colors of all path sets Pk, k ≤ i. Hence, for every
edge e ∈ [el, er]Pi we have that L(e) ≥

∑
αj

µ(e, αj) ≥
∑i

k=1
µ̂−k+1

2 .
Let now n be the first integer for which no such path set Pn exists and consider

the path set Pn−1. Since we are at Nash Equilibrium we know that there exist
α-blocking edges for paths in Pn−1, for every color α. We restrict our attention
to the w − n + 1 colors, which have not yet appeared at any Pk, for k ≤ n− 1;
let αj be one of these colors. Consider now an αj-blocking edge en such that
en ∈ [el, er]Pn−1 (by Lemma 5(a) such an edge must exist). We now have that, at
least half of the αj-blocking paths in P (en, αj), i.e. at least µ̂−n+1

2 paths, extend
beyond one of the edges el(Pn−1), er(Pn−1) of the arc [el, er]Pn−1 (otherwise
we would have picked P (en, αj) to be Pn). This means that for at least half of
these w−n+1 blocking path sets, their paths leave the arc from the same edge,
incurring on it an additional load of w−n+1

2 · µ̂−n+1
2 .

Thus, the total load of this edge is at least
∑n−1

i=1
µ̂−i+1

2 + w−n+1
2 · µ̂−n+1

2 =
µ̂w
4 + (n− 1) · µ̂−w+1

4 . Since µ̂ ≥ w the above sum is at least µ̂w
4 . �


Theorem 6. The price of anarchy of any game in the class S-PMC(Ring:

L = Ω(w2)) is bounded by a constant.

Proof. We distinguish between two cases:
– If µ̂ ≥ w, then by Lemma 6 we get L ≥ µ̂w

4 . This implies L
w ≥

µ̂
4 ⇒ µOPT ≥

µ̂
4 ⇒ PoA ≤ 4.

– If µ̂ < w, then PoA = µ̂
µOPT

≤ µ̂w
L < w2

L , where we used successively the
facts that µOPT ≥ L

w and µ̂ < w. The last inequality, combined with the fact
that L = Ω(w2), implies PoA = O(1). �


Finally, we show that the price of anarchy can get arbitrarily large when the
number of available colors increases; specifically, that it is unbounded for the
classes S-PMC(Chain: L = o(w2)) and S-PMC(Ring: L = o(w2)). The proof
is omitted.

Theorem 7. For any fixed ε > 0 there exists an infinite family of games in
S-PMC(Chain: L = Θ(w2−ε)) with PoA = Ω(w

ε
2 ).
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16. Roughgarden,T.,Tardos,É.:Howbadisselfishrouting?J.ACM49(2),236–259(2002)
17. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Rough-
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R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 13–22. Springer, Hei-
delberg (2004)
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Abstract. Given a set of observed economic choices, can one infer preferences
and/or utility functions for the players that are consistent with the data? Ques-
tions of this type are called rationalization or revealed preference problems in
the economic literature, and are the subject of a rich body of work.

From the computer science perspective, it is natural to study the complexity of
rationalization in various scenarios. We consider a class of rationalization prob-
lems in which the economic data is expressed by a collection of matchings, and
the question is whether there exist preference orderings for the nodes under which
all the matchings are stable.

We show that the rationalization problem for one-one matchings is NP-complete.
We propose two natural notions of approximation, and show that the problem is
hard to approximate to within a constant factor, under both. On the positive side,
we describe a simple algorithm that achieves a 3/4 approximation ratio for one of
these approximation notions. We also prove similar results for a version of many-
one matching.

1 Introduction

Given a set of consumption choices in a market, it is natural to try to infer informa-
tion about the players’ preferences or utility functions. This branch of consumer de-
mand theory is known as revealed preference theory because consumers, by dint of
the choices they make, “reveal” their preferences for various outcomes [Afr67, Die73,
Sam48, Ech06] [FST04, Var82, Spr00]. It constitutes a major tool in econometric analy-
sis used to estimate aggregate consumer demand [Afr67, Var06]. From the Computer
Science perspective, this is a learning problem, and recent work initiated a study of its
PAC-learnability [BV06].

Some classes of data cannot always be explained, or rationalized by simple (say,
linear) utility functions, or even any reasonable utility function. Such settings are in-
teresting to economists, because it becomes possible, in principle, to “test” various
assumptions (e.g. that the players are maximizing a simple utility function). Several
(classical and recent) results [Afr67, Var82, FST04, Ech06] in the economic literature
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establish criteria for when data is always rationalizable, thus delineating the limits of
the “testable implications” of such data.

There is an important role for Computer Science in these questions, as the feasibility
of performing such tests depends on being able to answer the rationalizability question
efficiently. In other words, given a type of economic data, and a target form for an “ex-
planation” (preference profile, a class of utility functions, etc...), we wish to understand
the complexity of deciding whether the data can be rationalized by an explanation of the
prescribed form. To our knowledge these sort of problems have not been studied before.

Among rationalization problems, one can identify at least two broad classes of prob-
lems. Some, such as inferring utility functions from consumption data, are rather easily
solved efficiently using linear programming [Afr67, Var82]. Others are more combina-
torial in nature, and their complexity is not at all obvious. One recent example is the
problem of inferring costs from observations of spanning trees being formed to distrib-
ute some service, say power [Özs06].

Among the combinatorial-type rationalization problems, one of the most natural is
the matchings problem that we study in this paper. Here we are given a set of bipartite
matchings, and we wish to determine if there are preferences for the nodes under which
all of the given matchings are stable. Matchings, or more precisely “two-sided matching
markets,” are a central abstraction in economics, investigated in relation to the similar
“marriage models” in auction and labor markets [RS90, Fle03, EO04, EY07] and from
the point of view of mechanism design [Sön96] and related strategic issues [STT01].
They are also a fundamental combinatorial abstraction from the computational perspec-
tive.

1.1 Our Results

Given two sets of nodes, M (“men”) and W (“women”), together with preferences for
each node, the famous algorithm of Gale and Shapley [GS62] obtains a stable matching.
We will be interested in the “reverse” question: given a set of matchings, are there pref-
erences under which they are simultaneously stable? One may wonder why we should
be given a collection of matchings instead of a single instance of a matching between
the set of men and women. Indeed, we think of the men (and women) as representing
instances of different types or populations that are matched differently in each match-
ing and we are interested in determining the preference profiles that define these types
based on the observed set of matchings. Before stating our results, we formalize the
problem and introduce some terminology.

Definition 1. Let M,W be disjoint sets of equal cardinality. A one-one matching µ
is a bijection µ : M ∪W → M ∪W , such that for all m ∈ M , µ(m) ∈ W , for all
w ∈W , µ(w) ∈M , and for all m ∈M,w ∈W , µ(m) = w⇔ µ(w) = m.

In the problems we consider, we will be seeking preferences for the elements of M and
W , which are expressed as follows:

Definition 2. A preference order for m ∈ M (resp. w ∈ W ) is a linear ordering of
W (resp. M ). We write m : w > w′ to mean that w occurs before w′ in the preference
order for m. A preference profile is a collection of preference orders for each m ∈M
and w ∈W .
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The “stability” of a matching with respect to a preference profile depends on the crucial
notion of blocking pair:

Definition 3. A blocking pair with respect to a matching µ and a preference profile P
is a pair (m,w) : m ∈M,w ∈W such that µ(m) 
= w and

m : w > µ(m) and w : m > µ(w).

Matching µ is stable with respect to P if there is no blocking pair with respect to µ and
P .

In other words, in a blocking pair (m,w) with respect to µ and P , both people are
“unhappy” with their current partner in µ and would instead prefer to be matched to
each other.

Our first result is that rationalizing matchings is hard.

Theorem 1. Given a collection of one-one matchings H on the sets M and W , it is
NP-complete to determine if there exists a preference profile P such that every µ ∈ H
is stable with respect to P .

We call such a preference profile a rationalization of the matchingsH. The main gadget
we use in the reduction is distilled from some fairly involved necessary and sufficient
conditions for a preference profile to be a rationalization, discovered by Echenique
[Ech06]. We describe the full conditions in Section 2. Our gadget is a configuration
across two matchings, that looks like this:

�m

µ

�m′

�w

�w′

�z

�m

µ′

�m′

�w

�w′

�z

A preference profile P rationalizes the matchings containing this configuration only
if either m : w > w′ and m′ : z > w, or m : w′ > w and m′ : w > z. Conversely, if
these conditions hold (together with additional conditions concerning the remainder of
the matchings) then P rationalizes the set of matchings. We use this gadget fundamen-
tally as a Boolean choice gadget (either m prefers w over w′ or w′ over w), and as part
of a scheme to ensure consistency (since the choice of m is tied to the choice of m′).

Having ascertained that rationalizing a collection of matchings is NP-complete, we
would next want to know how hard it is to solve the problem approximately. In this
context, we first need to decide what exactly we mean by ‘approximate’ rationalization.
Two notions are of particular interest: on the one hand, we can think of identifying a
preference profile that rationalizes the maximum number of matchings.

Problem 1 (MAX-STABLE-MATCHINGS). Given a collection of matchings H on sets
M,W , find a preference profile P that maximizes the number of matchings in H that
are simultaneously rationalized by P .
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This problem is hard to approximate to within some constant factor:

Theorem 2. There is a constant ε > 0 for which it is NP-hard to approximate MAX-
STABLE-MATCHINGS to within a factor of (1 − ε).

A second natural notion of approximation attempts to maximize “stability” among the
given set of matchings at a more fine-grained level, by maximizing the number of non-
blocking pairs across all matchings.

Some effort is required to make this notion of approximation meaningful. In a typical
instance there will be many pairs (m,w) for which m is not matched to w in any of the
given matchings. We say such a pair is non-active and pairs that are matched in some
matching are active. It is easy to ensure that all non-active pairs are non-blocking pairs
with respect to any matching, by requiring the preference profile to be valid:

Definition 4. A preference profile P is valid with respect to a collection of matchings
H if for every m ∈ M , m : w > w′ if (m,w) is active and (m,w′) is not active, and
for every w ∈ W , w : m > m′ if (m,w) is active and (m′, w) is not active.

In other words, each man m prefers a woman that he is matched to in some matching
over women that he is never matched to, and similarly for each woman w. We argue that
to have a meaningful notion of maximizing non-blocking pairs, one should consider only
valid preference profiles, and therefore attempt to maximize the number of non-blocking
pairs among the active pairs (since a valid preference profile automatically takes care
of all of the non-active pairs). We are led to define the following optimization problem:

Problem 2 (MAX-STABILITY). Given a collection of matchingsH on sets M,W , find
a valid preference profile P for M,W that maximizes:

|{(m,w, µ) : (m,w) is active and is not a blocking pair with respect to µ, P}|.

This problem is also hard to approximate to within some constant factor:

Theorem 3. There is a constant ε > 0 for which it is NP-hard to approximate MAX-
STABILITY to within a factor of (1− ε).

Our proof uses the overall structure of the reduction used to prove Theorem 1 to-
gether with an explicit constant-degree expander to make aspects of the reduction robust
enough to be gap-preserving.

An approximation of 3/4 is achievable (in expectation) for this problem by a simple
randomized assignment of preferences. Derandomizing via the method of conditional
expectations yields:

Theorem 4. There is a deterministic, polynomial-time approximation algorithm for
MAX-STABILITY that achieves an approximation factor of 3/4.

Finally, we turn to a generalization of the one-one matchings we have been considering:

Definition 5. Let F,W be disjoint sets. A one-many matching is a pair of functions
(µ, τ) with µ : F → 2W , and τ : W → F for which

∀w ∈ µ(f), τ(w) = f and ∀w ∈ W,w ∈ µ(τ(w)).
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Typically in economics literature, one-to-many matchings are spoken of in reference
to firms and workers (or, similarly, hospitals and interns) and hence the notation of
F,W is more prevalent. However, since this problem is so closely tied in with our
discussion of one-to-one matchings we will continue to use the notation of “men” M
and “women” W when we mention one-to-many matchings in the rest of the paper.
One-many matching models have been widely studied [Rot82, Rot85].

In a one-many matching, preference order and preference profile are defined in
the same way as for one-one matchings, except that each m has a linear ordering
of 2W instead of just W . Also analogous to the blocking pair for one-to-one match-
ings, we can define a blocking set and a notion of stability [EO04] for one-to-many
matchings:

Definition 6. A blocking set with respect to a one-many matching (µ, τ) and a prefer-
ence profile P is a pair (m,B) : m ∈M,B ⊆W such that µ(m) ∩B = ∅ and

∃A ⊆ µ(m) such that

m : A ∪B > µ(m) and ∀w ∈ B w : m > τ(w).

Matching (µ, τ) is stable∗ with respect to P if there is no blocking set with respect to
(µ, τ) and P .

The rationalization problem for one-many matchings is not likely to even be in NP,
because a witness (preference profile) entails listing preference over 2W , which is ex-
ponentially large. We are then led to consider a restricted version of the problem in
which we only allow m ∈ M to be matched to a set of cardinality at most some con-
stant parameter �. We call such matchings one-� matchings.

The resulting rationalization problem is in NP and, we show, NP-complete:

Theorem 5. For every fixed �, given a collection of one-� matchingsH on the sets M
and W , it is NP-complete to determine if there exists a preference profile P such that
every µ ∈ H is stable∗ with respect to P .

We can define the notion of an active pair (m,B) for one-� matchings in analogy with
active pairs, and also valid preference profiles as in Definition 4.

The two approximation problems arising with respect to one-� matchings are hard to
approximate to within some constant factor, just as in the one-one case:

Theorem 6. There is a constant ε > 0 for which it is NP-hard to approximate MAX-
STABLE-ONE-�-MATCHINGS to within a factor of (1 − ε).

Theorem 7. There is a constant ε > 0 for which it is NP-hard to approximate MAX-
ONE-�-STABILITY to within a factor of (1− ε).

Please note that owing to space limitations, all our results on generalizations to the
case of one-many matchings (Theorems 5-7) are proved in the full version of this paper
[KU08].
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2 Preliminaries

In this section, we encapsulate the working of the result for one-one matchings due to
Echenique [Ech06] and provide the necessary and sufficient conditions for the existence
of a preference profile that rationalizes a given collection of matchings. We start with
some definitions and notations.

Definition 7. For any two matchings µ, µ′ ∈ H, a (µ, µ′)-pivot is a w ∈ W such that
there exist some mk,m� ∈M such that µ(mk) = µ′(m�) = w.

The key to proving Theorem 1 is a result due to Echenique [Ech06] which we encapsu-
late in Lemma 1 which sets down necessary and sufficient conditions for the existence of
a preference profile that rationalizes a given collection of matchings. We first introduce
some notation that will be necessary to describe Lemma 1. Consider the directed graph
Gij with M as vertex set and Eij as edge-set where (m,m′) ∈ Eij if µi(m) = µj(m′).
LetC(µi, µj) denote the set of all connected components ofGij. We will denote the anal-
ogous graph obtained by considering as vertex set W as Hij . The following proposition
now follows from our notation and establishes a correspondence between Gij and Hij .

Proposition 1. (Echenique [Ech06]) C is a connected component of Gij iff µi(C) is a
connected component of Hij . Furthermore, µi(C) = µj(C).

Echenique [Ech06] showed the following lemma to be true.

Lemma 1. (Echenique [Ech06]) Let H = {µ1, . . . , µ�} be rationalized by preference
profile P . Consider, for all µi, µj ∈ H the graph Gij and all C ∈ Cij . Then, exactly
one of (1) or (2) must be true:

m : µi(m) > µj(m) for all m ∈ C and

w : µj(w) > µi(w) for all w ∈ µi(C) (1)

m : µi(m) < µj(m) for all m ∈ C and

w : µj(w) < µi(w) for all w ∈ µi(C) (2)

Conversely, if P is a preference profile such that for all µi, µj ∈ H and C ∈ C(µi, µj),
exactly one of (1) or (2) holds, and in addition:

m : ∅ > w ⇐⇒ w 
∈ {µ(m)|µ ∈ H}
w : ∅ > m ⇐⇒ m 
∈ {µ(w)|µ ∈ H}

where µ(m) = ∅ would denote that m is not matched to any w ∈ W , then P rational-
izesH.

3 Hardness of Rationalizability of Matchings

We are given two sets M,W with |M | = |W | = N and a set H of s matchings
µ1, . . . , µs : M → W . We show that the problem of determining whether there exists
a preference profile that rationalizesH is NP-complete by reducing from NAE-3SAT.
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3.1 Proof Outline

We give below a broad overview of the reduction used to prove Lemma 2. Our objective
is to start with a set of clauses and construct matchings corresponding to them in such
a way that the all-equal assignment to variables in a clause would lead to a conflicting
preference relation for some element in the set of matchings. With this in mind, we
build ‘matching gadgets’ corresponding to a given Boolean formula.

By way of example, consider a single clause C1 = (x1∨ x̄2∨ x̄3). We associate with
each variable xi, the elementsm1i ∈M1, w1i, w

′
1i ∈W1. We will subsequently pad M1

with dummy elements to ensure that |M1| = |W1|. For such a clause, we look up Fig. 1
to construct 10 partial matchings µ1, . . . , µ10 involving M1 = {m1i|i = 1, 2, 3}∪{u1}
and W1 = {w1i, w

′
1i|i = 1, 2, 3} ∪ {y1, z1}. Our encoding of the truth assignment to

a variable xi in clause C1 will then correspond to m1i preferring w′
1i over w1i, i.e.

m1i : w′
1i > w1i iff xi = 1. The claim below gives a flavor of how the entire reduction

works.

µ�1: (mi, w
′
i) (mj , wi)

µ�2: (mi, wi) (mj , y�)
µ�3: (mj , w

′
j) (mk, wj)

µ�4: (mj , wj) (mk, z�)
µ�5: (mk, w′

k) (u�, wk)
µ�6: (mk, wk) (u�, wj)
µ�7: (u�, wk) (mi, wj)
µ�8: (u�, wj) (mi, wi)
µ�9: (mk, z�) (mi, wj)
µ�10: (mk, wj) (mi, w

′
i)

Fig. 1. For C� = (xi + x̄j + x̄k)

µ′
p1: (mip, w′

ip) (vip, wip)
µ′

p2: (mip, wip) (vip, w′
jp)

µ′
p3: (vip, wip) (mjp, w′

jp)
µ′

p4: (vip, w′
jp) (mjp, wjp)

Fig. 2. Consistency matching for xp occurring in
clauses Ci, Cj

Claim. There exists a rationalizable preference profile for M1,W1 for the matchings
described in Fig. 1 iff there exists a not-all-equal satisfying assignment for C1.

Proof (Sketch). Suppose there exists a not-all-equal satisfiable assignment to C1. Then,
in order to show that the corresponding preference profile obtained is rationalizable,
we will show that it satisfies the conditions in Lemma 1. We fix the preference for
each m1i between w1i and w′

1i based on the assignment to xi for i = 1, 2, 3. We
set m1i : w′

1i > w1i if xi = 1 and m1i : w1i > w′
1i otherwise. Note that since

an assignment (0, 1, 1) or (1, 0, 0) to (x1, x2, x3) is ruled out, the matchings in Table
3.1 ensure that there will be no “cycles” in the preference orders of m11,m12,m13.
Furthermore, an assignment to x1, x2, x3 only fixes a preference order for all m ∈ M1
and so we can fix a preference order for w ∈ W1 so that there is no conflict in the
preference orders for all m,w and that the conditions in Lemma 1 are satisfied.

The converse is immediate because for a rationalizable preference profile for m ∈
M1, w ∈ W1, Lemma 1 holds and hence an all-equal assignment to C1 is not allowed.
For instance, suppose (x1, x2, x3) were assigned (0, 1, 1) then using Lemma 1to draw up
all the preference relations we would obtain a conflict, i.e. m11 : w12 > w′

11 (applying
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Lemma 1 to µ11, . . . , µ18) and m11 : w12 < w′
11 (applying Lemma 1 to µ19, µ110).

Therefore, setting each of the xi to the values obtained depending on the preference
relation for m1i between w1i and w′

1i as delineated above is a not-all-equal satisfying
assignment.

In a Boolean formula with m clauses, we repeat the exercise above but use disjoint sets
M�,W� for each clause C� to avoid conflicting preference orders across clauses. This
makes it necessary for us to enforce consistency between the preference relations for
m�i and w�i, w

′
�i for all � = 1, . . . ,m and the assignment to xi. To this end, we use

additional matching gadgets from Fig. 2 and an auxiliary element vi. Again applying
Lemma 1, we see that for x1 occurring in clauses C1, C2 say, we must have that m11 :
w′

11 > w11 ⇐⇒ m21 : w′
21 > w21.

Note that in the manner our construction of matching gadgets is set up, it is nec-
essary for our purposes to reduce from NAE-3SAT as opposed to 3SAT because, if an
all-false assignment to a clause were to lead to a conflict in preference relation for some
m,w,w′, then by symmetry an all-true assignment would also lead to a contradictory
preference relation.

3.2 Proof of Theorem 1

The proof for Theorem 1 automatically follows from Lemma 2 which we formally state
below.

Lemma 2. Let Z be an instance of NAE-3SAT over n variables x1, . . . , xn and m
clauses C0, . . . , Cm−1. Then, there exists an instance Z ′ of O(m) matchings between
sets M and W , |M | = |W | = O(m + n) such that there exists a rationalizable prefer-
ence profile for all m ∈M,w ∈W iff there exists a not-all-equal satisfiable assignment
to x1, . . . , xn. Furthermore, these matchings can be constructed in polynomial time.

We defer the detailed proof to the full version of this paper [KU08] but make a few
remarks here summarizing the proof. First, note that the table in Fig. 1 can also be used
symmetrically for the clause of type (x̄i +xj +xk). Similar such ‘matching tables’ can
be constructed corresponding to all the different types of clauses and are used in order
to construct the partial matchings.

Finally, the remaining matchings between elements of M and W are constructed
based on some simple rules to ensure that no contradictory preferences (i.e. m : w′ > w
and m : w > w′) and no unintended blocking pairs occur. In the end a not-all-equal as-
signment forZ exists iff there is a rationalizing preference profile for the corresponding
collection of matchings.

4 Hardness of Approximate Rationalizability of Matchings

Our next step in exploring the computational aspects of rationalizability of matchings
will be to look at the complexity of ‘approximate’ rationalizability.



The Complexity of Rationalizing Matchings 179

4.1 Maximizing the Number of Rationalizable Matchings

In the first setting, we wish to maximize the number of matchings that can be completely
rationalized as stable by a preference profile. We argue in the theorem below that this is
hard to approximate within a constant factor.

Theorem 2 states that this is hard to approximate within a constant factor. To prove
Theorem 2 we show that it is NP-hard to rationalize any fixed set of matchings as
captured in the lemma below.

Lemma 3. Given a collection of matchings H = {µ1, . . . , µk} between M and W
where k is some fixed constant, it is NP-hard to determine if there exists preferences for
m ∈M,w ∈W for which each of µ ∈ H is a stable matching.

From Lemma 3 (proof in full version [KU08]) it follows that it is NP-hard to approxi-
mate MAX-STABLE-MATCHINGS forH to within a factor of (1−ε) where ε = 1/(k+1).

Note that given a collectionH of any two matchings, it is trivial to construct a (valid)
preference profile that rationalizesH by arbitrarily assigning a preference for each ele-
ment in M matched to W in one matching over the other and correspondingly assigning
the reverse preference for elements in W .

4.2 Maximizing the Number of Non-blocking Pairs

We look at the MAX-STABILITY problem. The motivation in considering this problem
as a notion of approximate rationalizability is that we are now striving to ensure that
given a collection of matchings between two sets M and W , there are optimally many
different pairs (m,w) for which at least one of them is happy with their current partner
and has no incentive to be matched to the other.

As a preliminary exercise, we ask how well would a simple randomized assignment
of preferences to m ∈ M,w ∈ W perform. It turns out that this would achieve a 3/4-
approximate solution. This is the content of Theorem 4 whose proof is deferred to the
full version [KU08].

It suffices to mention here that a simple randomized preference order for all m ∈
M,w ∈ W achieves the 3/4-approximation factor in expectation and can subsequently
be derandomized. How much better can we do than just a random assignment of pref-
erences? Theorem 3 as stated tells us that a constant-factor approximation is all we can
hope for.

To prove the theorem, we once again construct matchings corresponding to each
clause in MAX-NAE-3SAT instance Z . Recall that in proving Lemma 2 we needed to
construct auxiliary matchings to ensure consistency of assignment to the variables in
accordance with the preferences of the corresponding elements in the matchings. To
prove hardness of approximation, we will need to establish a gap-preserving reduction
by boosting the robustness of these consistency gadgets. We do so by augmenting the
number of matchings corresponding to the consistency and argue subsequently that if
there exists a preference profile that achieves at least a (1− ε′) fraction of stable pairs,
then there exists an assignment that would satisfy at least a (1 − ε) fraction of the
clauses. Theorem 3 then follows from the following Lemma:
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Lemma 4. Let Z be an instance of MAX-NAE-3SAT over n variables x1, . . . , xn and
m clauses C0, . . . , Cm−1. Then, there exists a ε′ < 1 and a polynomial time reduction
to an instance Z ′ of MAX-STABILITY of matchings between sets M and W , |M | =
|W | = O(m) such that the following is true:

opt(Z) = 1 =⇒ opt(Z ′) = 1 (3)

opt(Z) < 1− ε =⇒ opt(Z ′) < 1− ε′ (4)

Proof. We set up matchings corresponding to the clauses C0, . . . , Cm−1 as before, but
now we need to work harder to boost the robustness of the consistency gadgets. Pre-
viously, we used Table 3.1 to construct additional matchings using auxiliary elements
to ‘link’ different copies of mji; j = 1, . . . ,m corresponding to a single variable xi. It
will help to conceptualize this as a graph.

For a variable xi which occurs in some t clauses Cj1 , . . . , Cjt , we associate elements
from M,mj1i, . . . ,mjti and define the consistency graph for xi, Gi to comprise vertex
set Vi = {mj1i, . . . ,mjti}. An edge exists between any two vertices (mjpi,mjqi) if
they are ‘linked’ together by an auxiliary element.

Then, the consistency matchings described above in Claim 3.1 correspond to a path
in Gi. In order to boost the robustness, we will now replace the path in Gi by a constant-
degree expander graph on t vertices. We make use of the edge expansion notion to define
an expander graph: an (n, d, λ) expander graph is a d-regular graph on n vertices with
the property that |∂(Y )|/|Y | ≥ d(1−λ)/2 where Y ⊆ Vi, |Y | ≤ |Vi|/2, ∂(Y ) is the set
of all edges with exactly one end-point in Y and λ is the spectral expansion parameter
of the graph. In particular, the following proposition will be useful (the proof can be
found in [DH05]):

Lemma 5. For a (t, d, λ) expander graph G and all δ ≤ (1 − λ)/12, upon removing
2δt vertices from G, there exists a connected component of size at least(

1− 4δ
1− λ

)
t

Note that the total number of occurrences of variables in all the clauses is at most 3m,
and further, that in each clause a variable corresponds to an element m matched to at
most an O(1) elements in W . Therefore, the total number of pairs for which a matching
exists is at most O(m). Since we only consider valid preference profiles, this means
that the number of active pairs under consideration is also O(m) say. Additionally, the
total number of auxiliary elements required to construct the expander graphs in the
consistency gadgets is also at most O(m) and hence |M | = O(m).

Since our reduction is unchanged in how a satisfying assignment will correspond
to a rationalizing preference profile (and hence, all stable pairs), (3) goes through. It
remains to show that (4) holds.

We shall show that if there is a valid preference profile for Z ′ such that there are at
most an ε′ fraction of blocking pairs, then there exists an assignment that fails to satisfy
at most ε fraction of clauses in Z .

Suppose that there is a valid preference profile that allows at most ε′m blocking pairs.
Note that if a pair (m,w) is a blocking pair for some matching µ, then Lemma 1 breaks
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down for µ. Since each matching in Z ′ can be identified with a clause, a blocking pair
could result in the clause being unsatisfied.

For a blocking pair (m,w) for some matching µ in our reduction, we evaluate how
many clauses are affected. Suppose µ corresponds to one of the matchings for clause
C�. If m ∈ M� then m must be associated with some variable xi occurring in C�,
and we will label C� unsatisfiable. Otherwise, (m,w) has no effect on the satisfiability
of C�.

Suppose µ corresponds to a matching constructed to ensure consistency. If m ∈M�

for some clause C� and xi, then we delete the node m�i in Gi and as before label C� as
unsatisfiable. However, now we also need to argue that (m,w) does not cause too many
other clauses to be labeled unsatisfiable.

From Lemma 5 we know that deleting at most a constant fraction of vertices from Gi

will result in a connected component of size at least (1− 4δ
(1−λ) )t. Taking the aggregate

for every variable xi and after deleting at most ε′m vertices from all the consistency
graphs Gi together, the total sum of the largest connected components amongst all Gi

will be some (1−ε)m where ε is determined by ε′, λ and the total number of occurrences
of all variables in all the clauses. Therefore, at most εm of these occurrences in clauses
will be discarded and the corresponding εm clauses labeled as unsatisfiable.

MAX-NAE-3SAT is known to be APX-complete [PY91] and not approximable to within
0.917 [Zwi98].

5 Conclusions and Future Work

There are many interesting opportunities for extensions to our work on the rational-
ization problem for matchings. It would be interesting to tighten the constant factor in
Lemma 3: is it hard even to rationalize three matchings? It would also be satisfying to
tighten the hardness of approximation result in Theorem 3. We can additionally look at
other (restricted) variants of the matchings problem such as many-many matchings and
pose the related complexity questions.

On a more general note, the question of rationalizability per se is very tantalizing
because of the mutually interesting perspectives it offers within both economics and
theoretical computer science.

Acknowledgments. We are indebted to Federico Echenique for numerous invaluable
discussions and for getting us started on this work.
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Abstract. We give an efficient local search algorithm that computes a
good vertex coloring of a graph G. In order to better illustrate this local
search method, we view local moves as selfish moves in a suitably defined
game. In particular, given a graph G = (V, E) of n vertices and m edges,
we define the graph coloring game Γ (G) as a strategic game where the
set of players is the set of vertices and the players share the same action
set, which is a set of n colors. The payoff that a vertex v receives, given
the actions chosen by all vertices, equals the total number of vertices
that have chosen the same color as v, unless a neighbor of v has also
chosen the same color, in which case the payoff of v is 0. We show:
– The game Γ (G) has always pure Nash equilibria. Each pure equi-

librium is a proper coloring of G. Furthermore, there exists a pure
equilibrium that corresponds to an optimum coloring.

– We give a polynomial time algorithm A which computes a pure Nash
equilibrium of Γ (G).

– The total number, k, of colors used in any pure Nash equilibrium
(and thus achieved by A) is k ≤ min{∆2 +1, n+ω

2
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√
1+8m
2

, n−α+
1}, where ω, α are the clique number and the independence number
of G and ∆2 is the maximum degree that a vertex can have subject
to the condition that it is adjacent to at least one vertex of equal or
greater degree. (∆2 is no more than the maximum degree ∆ of G.)

– Thus, in fact, we propose here a new, efficient coloring method that
achieves a number of colors satisfying (together) the known general
upper bounds on the chromatic number χ. Our method is also an
alternative general way of proving, constructively, all these bounds.

– Finally, we show how to strengthen our method (staying in polyno-
mial time) so that it avoids “bad” pure Nash equilibria (i.e. those
admitting a number of colors k far away from χ). In particular, we
show that our enhanced method colors optimally dense random q-
partite graphs (of fixed q) with high probability.
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1 Introduction

Overview. One of the central optimization problems in Computer Science is
the problem of vertex coloring of graphs: given a graph G = (V,E) of n vertices,
assign a color to each vertex of G so that no pair of adjacent vertices gets the
same color and so that the total number of distinct colors used is minimized.
The global optimum of vertex coloring (the chromatic number) is, in general,
inapproximable in polynomial time unless a collapse of some complexity classes
happens [7]. In this paper, we propose an efficient vertex coloring algorithm that
is based on local search: Starting with an arbitrary proper vertex coloring (e.g.
the trivial proper coloring where each vertex is assigned a unique color), we do
local changes, by allowing each vertex (one at a time) to move to another color
class of higher cardinality, until no further local moves are possible.

We choose to illustrate this local search method via a game-theoretic analysis;
we do so because of the natural correspondence of the local optima of our pro-
posed method to the pure Nash equilibria of a suitably defined strategic game.
In particular, we view vertices of a graph G = (V,E) as players in a strategic
game. Each player has the same set of actions, which is a set of |V | colors. In
a certain profile c (where each vertex v has chosen a color), v gets a payoff of
zero if its color is the same with the color of a neighbor of v. Else, v gets as a
payoff the number of vertices having selected the same color as the color that v
has chosen. In a pure Nash equilibrium of such a game (if such an equilibrium
exists), no vertex can improve its payoff by unilaterally deviating. Note that,
given a profile, one can compute payoffs in small polynomial time. Furthermore,
a “better response” (i.e., a selfish improvement) of a vertex v, given a choice of
colors by all the other vertices, can also be computed quickly by v and the only
global information needed is the number of vertices per color in the graph.

In such a setting, if we start by the trivial proper coloring of G (where each
v chooses its unique name as a color), then any selfish improvement sequence
always produces proper colorings of G. This would give an efficient and general
proper coloring heuristic provided that: (i) Pure equilibria exist; (ii) Such selfish
improvement sequences reach an equilibrium in small time; and (iii) The number
of colors at equilibrium is a good approximation of the chromatic number of G.

Our Results. Quite surprisingly, we show for our game that:

(1) Any selfish improvement sequence, when started with a proper (e.g., the
trivial) coloring, always reaches an equilibrium in O(n · α(G)) selfish moves,
where α(G) is the independence number of G. We prove this by a potential-
based method [14].

(2) Any pure Nash equilibrium of the game is a proper coloring of G that uses
a number of colors, k, bounded above by all the general known to us upper
bounds on the chromatic number of G. Specifically, let n,m, χ(G) and ω(G) and
∆(G), denote the number of vertices, number of edges, chromatic number, clique
number and maximum degree of G, respectively. Let ∆2(G) be the maximum
degree that a vertex v can have subject to the condition that v is adjacent to at
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least one vertex of degree no less than the degree of v (note that ∆2(G) ≤ ∆(G)).
We show that k (in any pure Nash equilibrium) satisfies

k ≤ min
{
∆2(G) + 1,

n + ω(G)
2

, n− α(G) + 1,
1 +

√
1 + 8m
2

}
.

Note that ∆2(G) + 1 is the bound of Stacho [16] and implies Brooks’ bound [4]
on χ(G). In fact, we get constructively all these bounds via a single polynomial
time algorithm. For some of these bounds their proofs till now (in popular graph
theory books, e.g. [9]) are not constructive and not based on a single unifying
method.

(3) Since χ(G) is inapproximable in polynomial time (unless a collapse of com-
plexity classes happens) it is natural to expect the existence of some pure equi-
libria in our game that use a number of colors k far away from χ(G). Indeed
we were able to construct a class of (almost complete bipartite) graphs G which
have equilibrium colorings of k = n

2 +1, while χ(G) = 2. However, our selfish im-
provement method does not have to go to such bad equilibria. For the same class
of graphs we show that a randomized sequence of selfish improvements achieves
k = 2 with high probability. In fact, our class of algorithms can be started by the
proper colorings achieved by the best till now approximation methods. Then, it
may improve on them, if their output is not an equilibrium of our game.

(4) Motivated by such thoughts, we investigated the following question: What
kind of polynomial time “mechanisms” (e.g., some preprocessing, a particular
order of selfish moves, e.t.c.) can help our coloring method to get closer to χ(G)
in certain graph classes? We managed to provide such enhanced methods that
e.g. are optimal with high probability for dense random q-partite graphs.

We believe that our game and its properties can serve also as an educational
tool in introducing and proving general bounds on the chromatic number.

Previous work. The problem of coloring a graph using the minimum number
of colors is NP-hard [13], and the best polynomial time approximation algorithm
achieves an approximation ratio of O(n(log log n)2/(logn)3) [8]. It is known [7]
that the chromatic number cannot be approximated to within Ω(n1−ε) for any
constant ε > 0, unless NP ⊆ co-RP. Several vertex coloring heuristics have
been proposed in the literature, such as Brelaz’s heuristic [3]. To the best of
our knowledge, none of these heuristics achieves all these bounds on the total
number of colors that our algorithm guarantees. Graph coloring games have been
studied before, but in a very different context than here. In these games there
are 2 players, who are introduced with the graph to be colored and a color bound
k. A legal move of either player consists of choosing an uncolored vertex v, and
assign to it any of the k colors that has not been assigned to any neighbor of v.
In one variant of such a game [1] the first player which is unable to move loses
the game. In another variant [1] the first player wins if and only if the game ends
with all vertices colored. Further variants have also been studied by e.g. [10,6].
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2 The Model

Notation. For a finite set A we denote by |A| the cardinality of A. For an
event E in a sample space, denote Pr{E} the probability of E occurring. Denote
G = (V,E) a simple, undirected graph with vertex set V and set of edges E. For a
vertex v ∈ V denote N(v) = {u ∈ V : {u, v} ∈ E} the set of its neighbors, and let
deg(v) = |N(v)| denote its degree. Let ∆(G) = maxv∈V deg(v) be the maximum
degree of G. Let ∆2(G) = maxu∈V maxv∈N(u):d(v)≤d(u) deg(v) be the maximum
degree that a vertex v can have, subject to the condition that v is adjacent to at
least one vertex of degree no less than deg(v). Clearly, ∆2(G) ≤ ∆(G). Let χ(G)
denote the chromatic number of G, i.e. the minimum number of colors needed
to color the vertices of G such that no adjacent vertices get the same color (i.e.,
the minimum number of colors used by a proper coloring of G). Let ω(G) and
α(G) denote the clique number and independence number of G, i.e. the number
of vertices in a maximum clique and a maximum independent set of G.

The Graph Coloring Game. Given a finite, simple, undirected graph G =
(V,E) with |V | = n vertices, we define the graph coloring game Γ (G) as the
game in strategic form where the set of players is the set of vertices V , and the
action set of each vertex is a set of n colors X = {x1, . . . , xn}. A configuration or
pure strategy profile c = (cv)v∈V ∈ Xn is a combination of actions, one for each
vertex. That is, cv is the color chosen by vertex v. For a configuration c ∈ Xn

and a color x ∈ X , we denote by nx(c) the number of vertices that are colored
x in c, i.e. nx(c) = |{v ∈ V : cv = x}|. The payoff that vertex v ∈ V receives in
the configuration c ∈ Xn is

λv(c) =
{

0 if ∃u ∈ N(v) : cu = cv

ncv(c) else .

A pure Nash equilibrium [15] (PNE in short) is a configuration c ∈ Xn such that
no vertex can increase its payoff by unilaterally deviating. Let (x, c−v) denote the
configuration resulting from c if vertex v chooses color x while all the remaining
vertices preserve their colors. Then

Definition 1. A configuration c ∈ Xn of the graph coloring game Γ (G) is a
pure Nash equilibrium if, for all vertices v ∈ V , λv(x, c−v) ≤ λv(c) ∀x ∈ X.

A vertex v ∈ V is unsatisfied in the configuration c ∈ Xn if there exists a color
x 
= cv such that λv(x, c−v) > λv(c); else we say that v is satisfied. For an
unsatisfied vertex v ∈ V in the configuration c, we say that v performs a selfish
step if v unilaterally deviates to some color x 
= cv such that λv(x, c−v) > λv(c).

The Social Cost SC(G, c) of a configuration c ∈ Xn of Γ (G) is the number of
distinct colors in c, i.e., SC(G, c) = |{x ∈ X | nx(c) > 0}| . Given a graph G, the
Approximation Ratio R(G) is the ratio of the worst, over all pure Nash equilibria
of Γ (G), Social Cost to the chromatic number: R(G) = maxc : c is a PNE

SC(G,c)
χ(G) .
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3 Existence and Tractability of Pure Nash Equilibria

Theorem 1. Every graph coloring game Γ (G) possesses at least one pure Nash
equilibrium, and there exists a pure Nash equilibrium c with SC(G, c) = χ(G).

Proof. Consider any optimum coloring o = (ov)v∈V ∈ Xn of G. Then o uses
k = χ(G) colors. For each optimum coloring o consider the vector Lo =
(�o(1), . . . , �o(k)), where �o(j) is the number of vertices that are assigned the
color that is jth in the decreasing ordering of colors according to the number of
vertices that use them. Let ô correspond to the lexicographically greatest vector
Lô. We will show that ô is a pure Nash equilibrium. First, since ô is a proper
coloring, all vertices receive payoff no less than 1, so no vertex has any incentive
to choose a new color other than those already used. Now consider a vertex v
which is assigned color ôv and let i be the coordinate that corresponds to ôv in
Lô. If v had an incentive to choose a color that corresponds to the jth coordinate
of Lô for some j < i, then this would yield an optimum coloring that would be
lexicographically greater than ô, a contradiction. If v had an incentive to choose
a color that corresponds to the jth coordinate of Lô for some j > i, then it must
essentially hold that �ô(i) = �ô(j). So, if v deviates, this would again yield an
optimum coloring that would be lexicographically greater that ô, a contradic-
tion. Therefore ô is a pure Nash equilibrium and SC(G, ô) = χ(G). �


Lemma 1. Every pure Nash equilibrium c of Γ (G) is a proper coloring of G.

Proof. Assume, by contradiction, that c is not a proper coloring. Then there
exists some vertex v ∈ V such that λv(c) = 0. Clearly, there exists some color
x ∈ X such that cu 
= x for all u ∈ V . Therefore λv(x, c−v) = 1 > 0 = λv(c),
which contradicts the fact that c is an equilibrium. �


Corollary 1. It is NP-complete to decide whether there exists a pure Nash equi-
librium of Γ (G) that uses at most k colors.

Proof (Sketch). Follows by reduction to the NP-complete problem of deciding
whether there exists a proper coloring of a graph that uses at most k colors. �


Theorem 2. For any graph coloring game Γ (G), a pure Nash equilibrium can
be computed in O(n ·α(G)) selfish steps, where n is the number of vertices of G
and α(G) is the independence number of G.

Proof. We define the function Φ : P → R, where P ⊆ Xn is the set of all
configurations that correspond to proper colorings of the vertices of G, as Φ(c) =
1
2

∑
x∈X n2

x(c), for all proper colorings c. Fix a proper coloring c. Assume that
vertex v ∈ V can improve its payoff by deviating and selecting color x 
= cv.
This implies that the number of vertices colored cv in c is at most the number
of vertices colored x in c, i.e. ncv(c) ≤ nx(c). If v indeed deviates to x, then
the resulting configuration c′ = (x, c−v) is again a proper coloring (vertex v can
only decrease its payoff by choosing a color that is already used by one of its
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neighbors, and v is the only vertex that changes its color). The improvement on
v’s payoff will be λv(c′)−λv(c) = nx(c′)−ncv(c) = nx(c)+1−ncv(c). Moreover,

Φ(c′)− Φ(c) =
1
2
(
n2

x(c′) + n2
cv

(c′)− n2
x(c)− n2

cv
(c)

)
=

1
2
(
(nx(c) + 1)2 + (ncv(c) − 1)2 − n2

x(c)− n2
cv

(c)
)

= nx(c) + 1− ncv(c) = λv(c′)− λv(c).

Therefore, if any vertex v performs a selfish step (i.e. changes its color so that
its payoff is increased) then the value of Φ is increased as much as the payoff
of v is increased. Now, the payoff of v is increased by at least 1. So after any
selfish step the value of Φ increases by at least 1. Now observe that, for all
proper colorings c ∈ P and for all colors x ∈ X , nx(c) ≤ α(G). Therefore
Φ(c) = 1

2

∑
x∈X n2

x(c) ≤ 1
2

∑
x∈X(nx(c) · α(G)) = 1

2α(G)
∑

x∈X nx(c) = n·α(G)
2 .

Moreover, the minimum value of Φ is 1
2n. Therefore, if we allow any unsatisfied

vertex (but only one each time) to perform a selfish step, then after at most
n·α(G)−n

2 steps there will be no vertex that can improve its payoff (because Φ
will have reached a local maximum, which is no more than the global maximum,
which is no more than (n · α(G))/2), so a pure Nash equilibrium will have been
reached. Of course, we have to start from an initial configuration that is a proper
coloring so as to ensure that A will terminate in O(n · α(G)) selfish steps; this
can be found easily since there is always the trivial proper coloring that assigns
a different color to each vertex of G. �


The above proof implies the following simple algorithm A that computes a pure
Nash equilibrium of Γ (G) (and thus a proper coloring of G):
Input: Graph G with vertex set V = {v1, . . . , vn}; a set of colors X = {x1, . . . , xn}
Output: A pure Nash equilibrium c = (cv1 , . . . , cvn ) ∈ Xn of Γ (G)
Initialization: for i = 1 to n do cvi = xi

repeat
find an unsatisfied vertex v ∈ V and a color x ∈ X such that λv(x,c−v) > λv(c)
set cv = x

until all vertices are satisfied

I.e., at each step, A allows one unsatisfied vertex to perform a selfish step,
until all vertices are satisfied. Note that, at each step, there may be more than
one unsatisfied vertices, and more than one colors that a vertex could choose in
order to increase its payoff. So actually A is a whole class of algorithms, since
one could define a specific ordering (e.g., some fixed or some random order) of
vertices and colors, and examine vertices and colors according to this order. In
any case however, the algorithm is guaranteed to terminate in O(n ·α(G)) selfish
steps. Furthermore, each selfish step can be implemented straightforwardly in
O(n2) time, since there are n vertices and n colors that each vertex can be
assigned. It might be possible to improve the O(n2) complexity of a selfish step,
e.g. by using appropriate data structures; this is a matter of future research and
we leave it as an open question.
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Let us now give a direct application of Theorem 2 to dense random graphs,
and in particular consider the Gn,p model, i.e. the class of random graphs with
n vertices where each of the possible n(n−1)

2 edges occurs with probability p (for
some constant 0 < p < 1). The independence number of these graphs is known
to be (1− o(1)) log2 n

log2(1/(1−p)) with high probability [2], and therefore a pure Nash
equilibrium can be computed in O(n·log2(n)) selfish steps, with high probability.

4 Bounds on the Total Number of Colors

Lemma 2. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ ∆2(G) + 1 and hence k ≤ ∆(G) + 1.

Proof. Consider a pure Nash equilibrium c of Γ (G), and let k be the total number
of distinct colors used in c. If k = 1 then it easy to observe that G must be
totally disconnected, i.e. ∆(G) = ∆2(G) = 0 and therefore k = ∆2(G) + 1. Now
assume k ≥ 2. Let xi, xj ∈ X be the two colors used in c that are assigned to the
minimum number of vertices. W.l.o.g.1, assume that nxi(c) ≤ nxj (c) ≤ nx(c) for
all colors x /∈ {xi, xj} used in c. Let v be a vertex such that cv = xi. The payoff
of vertex v is λv(c) = nxi(c). Now consider any other color x 
= xi that is used in
c. Assume that there is no edge between vertex v and any vertex u with cu = x.
Then, since c is a pure Nash equilibrium, it must hold that nxi(c) ≥ nx(c) + 1,
a contradiction. Therefore there is an edge between vertex v and at least one
vertex of every other color. Hence the degree of vertex v is at least the total
number of colors used minus 1, i.e. deg(v) ≥ k − 1. Furthermore, let u be the
vertex of color cu = xj that v is connected to. Similar arguments as above yield
that u must be connected to at least one vertex of color x, for all x /∈ {xi, xj}
used in c. Moreover, u is also connected to v. Therefore deg(u) ≥ k − 1. Now:

∆2(G) = max
s∈V

max
t ∈ N(s)

deg(t) ≤ deg(s)

deg(t)

≥ max

⎧⎨⎩ max
t ∈ N(v)

deg(t) ≤ deg(v)

deg(t), max
t ∈ N(u)

deg(t) ≤ deg(u)

deg(t)

⎫⎬⎭
≥ min {deg(u), deg(v)} ≥ k − 1

and therefore k ≤ ∆2(G) + 1 as needed. �


Lemma 3. In a pure Nash equilibrium, all vertices that are assigned unique
colors form a clique.

Proof. Consider a pure Nash equilibrium c. Assume that the colors cv and cu

chosen by vertices v and u are unique, i.e. ncv(c) = ncu(c) = 1. Then the payoff
for both vertices is 1. If there is no edge between u and v then, since c is an
equilibrium, it must hold that 1 = λv(c) ≥ λv(cu, c−v) = 2 , a contradiction. �

1 Without loss of generality.
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Lemma 4. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ n+ω(G)

2 .

Proof. Consider a pure Nash equilibrium c of Γ (G). Assume there are t ≥ 0
vertices that are each assigned a unique color. These t vertices form a clique
(Lemma 3), hence t ≤ ω(G). The remaining n − t vertices are assigned non-
unique colors, so the number of colors in c is k ≤ t + n−t

2 = n+t
2 ≤ n+ω(G)

2 . �


Lemma 5. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ 1+

√
1+8m
2 .

Proof. Consider a pure Nash equilibrium c of Γ (G). W.l.o.g., assume that the k
colors used in c are x1, . . . , xk. Let Vi, 1 ≤ i ≤ k, denote the subset of all vertices
v ∈ V such that cv = xi. W.l.o.g., assume that |V1| ≤ |V2| ≤ · · · ≤ |Vk|. Observe
that, for each vertex vi ∈ Vi, there is an edge between vi and some vj ∈ Vj ,
for all j > i. If not, then vi could improve its payoff by choosing color xj , since
|Vj | + 1 ≥ |Vi| + 1 > |Vi|. This implies that m ≥

∑k−1
i=1 |Vi|(k − i) and, since

|Vi| ≥ 1 for all i ∈ {1, . . . , k}, m ≥
∑k−1

i=1 (k − i) or equivalently m ≥ k(k−1)
2 or

equivalently k2 − k − 2m ≤ 0, which implies k ≤ 1+
√

1+8m
2 . �


Theorem 3. In any pure Nash equilibrium of Γ (G), the number k of total colors
used satisfies k ≤ n− α(G) + 1.

Proof. Consider any pure Nash equilibrium c of Γ (G). Let t be the maximum,
over all vertices, payoff in c, i.e. t = maxx∈X nx(c). Partition the set of vertices
into t sets V1, . . . , Vt so that v ∈ Vi if and only if λv(c) = i (note that each vertex
appears in exactly one such set, however not all sets have to be nonempty). Let
ki denote the total number of colors that appear in Vi. Clearly, |Vi| = i · ki and
the total number of colors used in c is k =

∑t
i=1 ki. Now consider a maximum

independent set I of G. The vertices in V1 have payoff equal to 1, therefore they
are assigned unique colors, so, by Lemma 3, the vertices in V1 form a clique.
Therefore I can only contain at most one vertex among the vertices in V1. Our
goal is to upper bound the size of I. First we prove the following:

Claim 1. If there exists some i > 1 such that ki = 1 and I contains all the
vertices in Vi, then k ≤ n− α(G) + 1.

Proof of Claim 1. Let x denote the unique color that appears in Vi. Since I
contains all the vertices in Vi, then it cannot contain any vertex in V1∪· · ·∪Vi−1.
This is so because each vertex v ∈ Vj , j < i, is connected by an edge with at
least one vertex of color x (otherwise v could increase its payoff by selecting x,
which contradicts the equilibrium). Furthermore, each vertex in Vi has at least
one neighbor of each color that appears in Vi+1 ∪ · · · ∪ Vt. Therefore

|I| = α(G) ≤ |Vi|+
t∑

j=i+1

|Vj | −
t∑

j=i+1

kj = n−
i−1∑
j=1

|Vj | − k +
i∑

j=1

kj
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which gives k ≤ n−α(G)+
i−1∑
j=1

(kj−|Vj |)+ki ≤ n−α(G)+ki = n−α(G)+1. �


So now it suffices to consider the case where, for all i > 1 such that ki = 1, I
does not contain all the vertices in Vi. So I contains at most |Vi| − 1 = |Vi| − ki

vertices that belong to Vi. In order to complete the proof we need the following:

Claim 2. For all i > 1 with ki 
= 1, I cannot contain more than |Vi| − ki vertices
among the vertices in Vi.

Proof of Claim 2. This is clearly true for ki = 0 (and hence |Vi| = 0). Now
assume that ki ≥ 2. Observe that, for all vertices vi ∈ Vi there must exist an
edge between vi and a vertex of each one of the remaining ki − 1 colors that
appear in Vi (otherwise, vi could change its color and increase its payoff by 1,
which contradicts the equilibrium). Fix a color x of the ki colors that appear
in Vi. If I contains all vertices of color x, then it cannot contain any vertex
of any color other than x that appears in Vi. Therefore I can contain at most
i ≤ (i − 1)ki = |Vi| − ki vertices among the vertices in Vi. On the other hand,
if I contains at most i − 1 vertices of each color x that appears in Vi, then I
contains again at most (i−1)ki = |Vi|−ki vertices among the vertices in Vi. �

Therefore I cannot contain more than |Vi|−ki vertices among the vertices of Vi,
for all i > 1, plus one vertex from V1. Therefore:

|I| = α(G) ≤ 1 +
t∑

i=2

(|Vi| − ki) = 1 + n− |V1| − (k − |V1|) = n− k + 1.

So, in any case, k ≤ n− α(G) + 1 as needed. �


The bounds given by Lemmata 2, 4, 5 and Theorem 3 imply the following:

Theorem 4. For any graph coloring game Γ (G) and any pure Nash equilibrium
c of Γ (G), SC(G, c) ≤ min

{
∆2(G) + 1, n+ω(G)

2 , 1+
√

1+8m
2 , n− α(G) + 1

}
.

Furthermore, since any Nash equilibrium is a proper coloring (Lemma 1) and a
Nash equilibrium can be computed in polynomial time (Theorem 2):

Corollary 2. For any graph G, a proper coloring that uses at most k ≤
min

{
∆2(G) + 1, n+ω(G)

2 , 1+
√

1+8m
2 , n− α(G) + 1

}
colors can be computed in

O(n4) time.

5 The Approximation Ratio

Lemma 6. For any graph G with n vertices and m edges,

R(G) ≤
min

{
∆2(G) + 1, n+ω(G)

2 , 1+
√

1+8m
2 , n− α(G) + 1

}
max

{
ω(G), n

α(G)

} .
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t u1 u2 u3 u4

s w1 w2 w3 w4

x5 x1 x2 x3 x4

x6 x1 x2 x3 x4

(a) (b)

Fig. 1. (a) A graph with chromatic number 2 and (b) a Nash equilibrium using 6 colors

Proof. Follows from Theorem 4 and the fact that χ(G) ≥ max{ω(G), n
α(G)}. �


Lemma 7. For any constant ε > 0, there exists a graph G(ε) such that
R(G(ε)) ≥ n1−ε unless NP ⊆ co-RP.

Proof. Assume the contrary. Then there exists some constant ε > 0 such that,
for all graphs G, R(G) < n1−ε. But then our selfish improvements algorithm A
of Theorem 2 achieves, in O(n4) time, a proper coloring of G with a number
of colors k ≤ R(G) · χ(G), i.e., k ≤ n1−εχ(G). Thus, for all G, algorithm A
approximates χ(G) in polynomial time with an approximation ratio R ≤ n1−ε

for some constant ε > 0. This cannot happen unless NP ⊆ co-RP [7]. �

However, can we construct a graph certificate G with unconditionally high R(G)?
The answer is yes:

Lemma 8. We can construct a graph certificate G such that R(G) = n
4 + 1

2 .

Proof. Consider a bipartite graph G = (V,E) with n = 2κ + 2 vertices, κ ≥ 1.
Let V = U ∪W ∪{s, t} where U = {u1, . . . , uκ} and W = {w1, . . . , wκ}. The set
of edges E is defined as

E = {{ui, wj} ∈ U ×W | i 
= j} ∪
κ⋃

i=1

{s, ui} ∪
κ⋃

i=1

{t, wi} ∪ {s, t}.

(Figure 1(a) shows such a graph with n = 10 vertices.) There exists a pure
Nash equilibrium that uses κ + 2 colors: vertices u1, w1 are colored x1, vertices
u2, w2 are colored x2 e.t.c., while vertex t is colored xκ+1 and vertex s is colored
xκ+2 (see Fig. 1(b)). This coloring is a pure Nash equilibrium since each vertex
v ∈ U ∪W receives payoff equal to 2 and the set of vertices N(v) ∪ {v} uses all
colors x1, . . . , xκ. Vertices s and t get payoff 1, but each of them is connected
to a vertex of each of the remaining colors. The optimum coloring would use 2
colors, one to color the vertices in U ∪ {t} and another to color the vertices in
W ∪ {s}. Therefore R(G) ≥ κ+2

2 = n
4 + 1

2 . But ω(G) = 2, so from Lemma 6 we
can easily get R(G) ≤ n

4 + 1
2 , which completes the proof. �


6 On Mechanisms to Improve the Approximation Ratio

6.1 Refinements of the Selfish Steps Sequence: Randomness

The existence of the potential function Φ(c) assures that if we start with a proper
coloring and allow at each step any single unsatisfied vertex to perform a selfish
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step, then a pure Nash equilibrium will be reached in polynomial time, no matter
in which order the vertices are examined or which is the initial configuration.
In this section we study whether there exists a sequence of selfish steps, i.e. a
specific ordering of the vertices according to which the vertices are allowed to
perform a selfish step, such that the Social Cost of the equilibrium reached is
even less than the general bounds presented before.

Assume that, at each step, the vertex that is allowed to perform a selfish step
is chosen independently and uniformly at random, among all vertices that are
unsatisfied. Moreover, assume that the vertex chosen to perform a selfish step
chooses a color independently and uniformly at random among the colors that
can increase its payoff. Then, we can prove the following (the proof is omitted):

Proposition 1. The random selfish steps sequence applied to the graph of
Lemma 8 terminates in polynomial time at a pure Nash equilibrium that, with
high probability, corresponds to an optimum coloring.

Although Proposition 1 is rather restrictive, since it only applies to the graph
of Lemma 8, we believe that the random selfish steps sequence can color other
classes of graphs with a number of colors much smaller than the bounds presented
previously. We expect that randomization can help in avoiding equilibria that
are too far from an optimum coloring. However, we have not yet been able to
prove this; this is a matter of future research and we leave it as an open problem.

6.2 Stackelberg Strategies

Consider a graph coloring game Γ (G). Assume that there is a central authority
(a Leader) that controls a portion V L ⊂ V of the vertices of G = (V,E), i.e.
the Leader colors the vertices in V L and, after that, the rest of the vertices in
V \ V L (the followers) are colored selfishly. The goal of the Leader is to find an
assignment of colors to V L (a Leader’s strategy) so as to induce the followers to
a pure Nash equilibrium where the total number of colors used in V is as close
to the chromatic number of G as possible.

Definition 2. For a constant k ∈ N, a random balanced k-partite graph, denoted
Gn,k,p, is a k-partite graph with n vertices, where the size of each vertex class is
either �n

k � or �n
k �, and each edge {u, v} (such that u and v belong to different

vertex classes) exists in G independently at random with probability p.

Lemma 9. The chromatic number of Gn,k, 1
2

is k, with high probability.

Proof (Sketch). Clearly, ω(Gn,k, 1
2
) ≤ χ(Gn,k, 1

2
) ≤ k. The proof follows by show-

ing that, with high probability, there exists a clique of size k in Gn,k, 1
2
. �


Theorem 5. Consider the graph coloring game Γ (Gn,k, 1
2
). There exists a poly-

nomial time computable Leader’s strategy, such that with high probability the
total number of colors used in the resulting pure Nash equilibrium is k.

Proof. Let P1, . . . , Pk denote the k vertex classes of Gn,k, 1
2
. Assume that the

Leader chooses uniformly at random a subset S ⊂ V of |S| = c logn vertices, for
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some constant c > 10k. The Leader can exhaustively search among all possible
k-colorings of S in time polynomial in n, since |S| = c logn. Among these possible
colorings, there exists one proper coloring cL that colors each vertex s ∈ S ∩ P1
with the same color x1, each vertex s ∈ S∩P2 with the same color x2 
= x1 e.t.c.
In the following, assume that the Leader’s strategy is cL.

Our next step is to show that, with high probability, each follower vi ∈ Pi \S
is connected to at least one vertex in S of color xj , for all j 
= i. To do so, we
use Hoeffding bounds [11] and obtain

Pr {∃i, ∃vi ∈ Pi, ∃j : {vi, vj} /∈ E ∀vj ∈ S ∩ Pj} ≤
2k
n

.

So with probability at least 1− 2k
n , each follower vi ∈ Pi\S (for all i ∈ {1, . . . , k})

has all the colors xj (j 
= i) in its neighborhood. But if this is the case, then
the pure Nash equilibrium that will be reached by any selfish steps sequence
will use the same color xi for all vi ∈ Pi \ S, for each i = {1, . . . , k}. Therefore,
with probability at least 1− 2k

n , there will be k colors in the resulting pure Nash
equilibrium. However, we assumed that the Leader’s strategy is cL. This is not
restrictive, since the Leader can repeatedly choose one of the possible k-colorings
of S (their number is kc log n, i.e. polynomial in n) and then leave the followers
converge to a pure Nash equilibrium. The precedent analysis shows that there
exists a proper coloring cL of S such that there will be k colors in the equilibrium
reached by the followers, with high probability. �
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Abstract. Assume that each vertex of a graph G is assigned a nonnega-
tive integer weight and that l and u are integers such that 0 ≤ l ≤ u. One
wishes to partition G into connected components by deleting edges from
G so that the total weight of each component is at least l and at most
u. Such an “almost uniform” partition is called an (l, u)-partition. We
deal with three problems to find an (l, u)-partition of a given graph: the
minimum partition problem is to find an (l, u)-partition with the mini-
mum number of components; the maximum partition problem is defined
analogously; and the p-partition problem is to find an (l, u)-partition
with a given number p of components. All these problems are NP-hard
even for series-parallel graphs, but are solvable for paths in linear time
and for trees in polynomial time. In this paper, we give polynomial-time
algorithms to solve the three problems for trees, which are much simpler
and faster than the known algorithms.

1 Introduction

Let G be an undirected graph, and let each vertex v of G be assigned a non-
negative integer ω(v), called the weight of v. Let l and u be given nonnegative
integers, called the lower bound and upper bound on component sizes, respec-
tively. We wish to partition G into connected components by deleting edges
from G so that the total weights of all components are almost uniform, that is,
the sum of weights of all vertices in each component is at least l and at most u
for appropriately chosen bounds l and u. We call such an almost uniform par-
tition an (l, u)-partition of G. In this paper, we deal with the following three
partition problems to find an (l, u)-partition of a given graph G: the minimum
partition problem is to find an (l, u)-partition of G with the minimum number
of components; the maximum partition problem is defined analogously; and the
p-partition problem is to find an (l, u)-partition of G with a given number p of
components.

Figures 1(a) and (b) illustrate two (5, 15)-partitions of the same tree, where
each vertex is drawn as a circle, the weight of each vertex is written inside the

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 196–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a)                                                                       (b)

3

284

65 75

3

284

65 75

Fig. 1. (a) Solution for the minimum partition problem, and (b) solution for the max-
imum partition problem, where l = 5 and u = 15

circle, and the deleted edges are drawn as dotted lines. The (5, 15)-partition with
three components in Fig. 1(a) is a solution for the 3-partition problem and for the
minimum partition problem, while the (5, 15)-partition with six components in
Fig. 1(b) is a solution for the 6-partition problem and for the maximum partition
problem. The three partition problems often appear in many practical situations
such as load balancing [1], image processing [4,6], paging systems of operation
systems [9], and political districting [2,10].

An NP-complete problem, called the set partition problem [3], can be easily
reduced in linear time to any of the three partition problems for a complete
bipartite graph K2,n−2, where n is the number of vertices in a graph. Since
K2,n−2 is a series-parallel graph, the three partition problems are NP-hard even
for series-parallel graphs [5]. Therefore, it is very unlikely that the three parti-
tion problems can be solved in polynomial time even for series-parallel graphs,
although the three problems can be solved in pseudo-polynomial time for graphs
of bounded tree-width, including series-parallel graphs [5]. On the other hand,
all the three partition problems can be solved for paths in linear time [6] and
for special classes of trees, i.e., stars, worms and caterpillars, in polynomial time
[8], while the p-partition problem can be solved for arbitrary trees of n vertices
in time O(p3n4) [7].

In this paper, we show that all the three partition problems can be solved
for arbitrary trees more efficiently. To be precise, we show that the p-partition
problem can be solved in time O(p4n). Since p ≤ n, our algorithm is faster
and much simpler than the known algorithm in [7]. Furthermore, our algorithm
runs in linear time if p is a fixed constant. One can solve the minimum partition
problem and the maximum partition problem by solving the p-partition problem
for every p, 1 ≤ p ≤ n. Therefore, both the minimum partition problem and the
maximum partition problem can be solved in time O(n6).

2 Simple Algorithm

In this section we give a simple algorithm to solve the p-partition problem for
trees of n vertices in time O(p4u2n). It examines whether a given tree T has
an (l, u)-partition with p subtrees or not. However, one can easily modify the
algorithm so that it actually finds an (l, u)-partition with p subtrees whenever
T has it. One may assume that p ≤ n, but the upper bound u is not necessarily
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bounded by n. Therefore, the algorithm does not necessarily take polynomial
time, but takes pseudo-polynomial time. Using this algorithm, we will give a
polynomial-time algorithm in Section 3.

2.1 Terms and Definitions

We first present our idea. One may assume without loss of generality that a
given tree T is a rooted tree with root r. In Fig.2(a) an (l, u)-partition of T is
indicated by dotted lines. For each vertex v of T , we denote by Tv the subtree
of T which is rooted at v and is induced by all descendants of v in T . Thus
T = Tr. Every (l, u)-partition of a tree T naturally induces a partition of its
subtree Tv, as illustrated in Fig.2(b). The induced partition is not necessarily
an (l, u)-partition of Tv, because the component Pv containing v may not satisfy
the lower bound l. However, the induced partition is an “extendable” partition
of Tv; in an extendable partition of Tv, every component, except for Pv, must
satisfy both the lower bound l and the upper bound u, but Pv may not satisfy
either the lower bound l or the upper bound u. Thus, for a subtree Tv of T and
an integer k, 0 ≤ k ≤ p− 1, we define S(Tv, k) as the set of all integers z such
that z is the total weight of the component Pv in an extendable partition of Tv

with k + 1 components. Our idea is to compute S(Tv, k) from the leaves to the
root r of T by means of dynamic programming. Clearly, T has an (l, u)-partition
with p components if and only if S(Tr, p − 1) contains an integer z such that
l ≤ z ≤ u.

We now formally define the notion of an extendable partition of a subtree Tv

of T . Let P be a partition of the vertex set V (Tv) of Tv into nonempty subsets.
P is called a partition of Tv if each subset in P induces a connected component
(subtree) of Tv. For a set P ⊆ V (Tv), we denote by ω(P ) the total weight of
vertices in P , that is, ω(P ) =

∑
x∈P ω(x). For a partition P of Tv, we always

denote by Pv the set in P containing the root v of Tv. A partition P of Tv is
extendable if each set P ∈ P \ {Pv} satisfies l ≤ ω(P ) ≤ u. Note that Pv may
not satisfy l ≤ ω(Pv) ≤ u.

v v

(a) T = Tr                                               (b) Tv

Pv

r

Fig. 2. (a) An (l, u)-partition of a tree T and (b) an extendable partition of a subtree
Tv of T
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We then formally define a set S(Tv, k) of integers z for a subtree Tv of T and
an integer k, 0 ≤ k ≤ p− 1, as follows:

S(Tv, k) = {z | Tv has an extendable partition P
such that z = ω(Pv) and |P| = k + 1}.

For a set Z of integers, let min(Z) = min{z | z ∈ Z} and max(Z) = max{z | z ∈
Z}. We now have the following lemma.

Lemma 1. max(S(Tv, k))−min(S(Tv, k)) ≤ k(u− l).

Proof. For each integer z ∈ S(Tv, k), Tv has an extendable partition P such that
z = ω(Pv) and |P| = k + 1. Since each component P ∈ P \ {Pv} satisfies the
lower bound l, we have

z = ω(Pv) = ω(V (Tv))−
∑

P∈P\{Pv}
ω(P ) ≤ ω(V (Tv))− kl.

Thus we have
max(S(Tv, k)) ≤ ω(V (Tv))− kl.

Similarly, since each component P ∈ P \ {Pv} satisfies the upper bound u, we
have

min(S(Tv, k)) ≥ ω(V (Tv))− ku.

Therefore, we have max(S(Tv, k))−min(S(Tv, k)) ≤ k(u− l). �


Our algorithm computes S(Tv, k) for each vertex v of T from the leaves to the
root r of T by means of dynamic programming. Since T = Tr, the following
lemma clearly holds.

Lemma 2. A tree T has an (l, u)-partition with p subtrees if and only if S(T, p−
1) contains an integer z such that l ≤ z ≤ u.

Let v be a vertex of T , let v1, v2, · · · , vs be the children of v ordered arbitrarily,
and let ei, 1 ≤ i ≤ s, be the edge joining v and vi, as illustrated in Fig.3. We de-
note by T i

v the subtree of T which consists of the vertex v, the edges e1, e2, · · · , ei

and the subtrees Tv1 , Tv2 , · · · , Tvi . In Fig.3, the subtree T i
v is indicated by a dot-

ted line. Clearly Tv = T s
v . For the sake of notational convenience, we denote by

T 0
v the subtree of a single vertex v. Therefore, Tv = T 0

v if v is a leaf of T .

vTv
i

v1 v2 vi vs

ei ese1 e2

Tv1 Tv2 Tvi Tvs

Fig. 3. Tree Tv
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2.2 Algorithm

We now describe the simple algorithm.
We first compute set S(T 0

v , k) for each vertex v of T and each integer k,
0 ≤ k ≤ p− 1. For k = 0,

S(T 0
v , 0) = {ω(v)}, (1)

and for each integer k, 1 ≤ k ≤ p− 1,

S(T 0
v , k) = ∅. (2)

We next compute sets S(T i
v, k), 1 ≤ i ≤ s, for each internal vertex v of T

from the counterparts of T i−1
v and Tvi from the bottom to the top of T , where

s is the number of the children of v. (See Fig.3.) By Lemma 2 one can know
immediately from S(Tr, p− 1) whether T has an (l, u)-partition with p subtrees
or not.

T i
v is obtained from T i−1

v and Tvi by joining v and vi as illustrated in Fig.4.
Every extendable partition P of T i

v can be obtained by merging an extendable
partition P ′ of T i−1

v with an extendable partition P ′′ of Tvi . In Fig.4, extendable
partitions are indicated by dotted lines. There are the following two Cases (a) and
(b), and we define two sets Sa(T i

v, k) and Sb(T i
v, k) for the two cases, respectively.

Case (a): vi ∈ Pv.
In this case, an extendable partition P of T i

v can be obtained by merging
an extendable partition P ′ of T i−1

v with an extendable partition P ′′ of Tvi , as
illustrated in Fig.4(a). Then, the component Pv ∈ P containing v consists of the
vertices in P ′

v ∪ P ′′
vi

, where P ′
v is the component in P ′ such that v ∈ P ′

v and P ′′
vi

is the component in P ′′ such that vi ∈ P ′′
vi

. We thus define a set Sa(T i
v, k) as

follows:

Sa(T i
v, k) =

k⋃
k′=0

{z′ + z′′ | z′ ∈ S(T i−1
v , k′) and z′′ ∈ S(Tvi , k − k′)}. (3)

Case (b): vi 
∈ Pv.
In this case, Pv = P ′

v, and an extendable partition P of T i
v can be obtained by

merging an extendable partition P ′ of T i−1
v with an (l, u)-partition P ′′ of Tvi ,

as illustrated in Fig.4(b). We thus define a set Sb(T i
v, k) as follows:

Sb(T i
v, k) =

⋃
S(T i−1

v , k′), (4)

where S(T i−1
v , k′) is taken over all k′, 0 ≤ k′ ≤ k−1, such that S(Tvi , k−k′−1)

contains an integer z′′, l ≤ z′′ ≤ u.

From two sets Sa(T i
v, k) and Sb(T i

v, k) above, one can compute a set S(T i
v, k) as

follows:
S(T i

v, k) = Sa(T i
v, k) ∪ Sb(T i

v, k). (5)
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Tv
i-1 Tvi

Tv
i

Tv
i-1 Tvi

Tv
i

Pv

PvPv

Pvi

v

v

v

v

vi

vi

vi

vi

(a) vi ∈ Pv

(b) vi ∈ Pv

'

Pv'

''

Pvi
'' Pvi

''

Fig. 4. Merging a partition P ′ of T i−1
v with a partition P ′′ of Tvi to a partition

P of T i
v

One may assume that
∑

x∈V (T ) ω(x) ≤ pu; otherwise, T has no (l, u)-partition
with p subtrees. Thus ω(Pv) ≤ pu for any partition P of Tv, and hence
max(S(Tv, k)) ≤ pu. Therefore, we have |S(Tv, k)| ≤ k(u − l) + 1 ≤ pu + 1 =
O(pu). We represent set S(Tv, k) simply by a list, whose length is O(pu). Thus,
one can compute a set {z′ + z′′ | z′ ∈ S(T i−1

v , k′) and z′′ ∈ S(Tvi , k − k′)} from
two sets S(T i−1

v , k′) and S(Tvi , k− k′) in time O(p2u2), using an array of length
pu + 1. Since k′ is taken over all integers, 0 ≤ k′ ≤ k ≤ p − 1, in Eq. (3), one
can compute Sa(T i

v, k) in time O(p3u2). Similarly, one can compute Sb(T i
v, k)

in Eq. (4) in time O(p2u). Thus one can compute S(T i
v, k) in Eq. (5) in time

O(p3u2). The integer k in Eq. (5) is taken over all k, 0 ≤ k ≤ p−1, and there are
at most n+(n−1) pairs of a vertex v and an integer i. Thus, one can recursively
compute the sets S(T i

v, k) for all vertices v of T , all integers i and all integers k,
0 ≤ k ≤ p − 1, in time O(p4u2n). By Lemma 2 one can know from S(T, p− 1)
in time O(pu) whether T has an (l, u)-partition with p components. Thus the
simple algorithm takes time O(p4u2n) to solve the p-partition problem for trees.

We remark that the p-partition problem can be solved in linear time for the
case l = u. In this case, by Lemma 1 |S(T i

v, k)| ≤ 1, and the algorithm above
can be easily implemented so that it runs in linear time.

3 Polynomial-Time Algorithm

The main result of this paper is the following theorem.

Theorem 1. The p-partition problem can be solved for a tree T in time O(p4n),
where n is the number of vertices in T and p is any positive integer.
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One can solve the minimum partition problem and the maximum partition prob-
lem by solving the p-partition problem for every p, 1 ≤ p ≤ n. We thus have the
following corollary.

Corollary 1. Both the minimum partition problem and the maximum partition
problem can be solved for a tree T in time O(n6).

In the remainder of this section, as a proof of Theorem 1, we give an algorithm
to solve the p-partition problem for trees in time O(p4n). One may assume that
l < u, because the algorithm in Section 2 runs in linear time if l = u.

The simple algorithm in Section 2 uses a DP table S(Tv, k) of size O(pu). Our
polynomial-time algorithm is analogous to the simple algorithm, but reduces the
size of a DP table to O(p). We represent the set S(Tv, k) of integers by at most
p “maximal consecutive subsets,” each of which is represented by an interval,
i.e., a pair of integers. This is our main idea.

3.1 Terms and Definitions

A set Z of integers is consecutive (with respect to u − l) if, for each integer
z ∈ Z \ {max(Z)}, Z contains an integer z′ such that 0 < z′ − z ≤ u − l. The
pair [min(Z),max(Z)] is called the interval of Z. Obviously Z is consecutive if
|Z| = 1.

Lemma 3. If both X and Y are consecutive with respect to u − l, then the set
Z = {x + y | x ∈ X and y ∈ Y } is also consecutive with respect to u− l.

Proof. If |Z| = 1, then Z is consecutive. One may thus assume that |Z| ≥ 2.
We shall prove that, for each integer z ∈ Z \ {max(Z)}, Z contains an integer
z′ such that 0 < z′ − z ≤ u− l.

Clearly, max(Z) = max(X) + max(Y ). For each integer z ∈ Z \ {max(Z)},
there exist x ∈ X and y ∈ Y such that x + y = z. Since z 
= max(Z), either
x 
= max(X) or y 
= max(Y ). One may assume without loss of generality that
x 
= max(X). Then, since X is consecutive, there exists an integer x′ ∈ X such
that 0 < x′ − x ≤ u − l. Since x′ ∈ X and y ∈ Y , the integer z′ = x′ + y is
contained in Z. We now have

z′ − z = (x′ + y)− (x + y) = x′ − x > 0

and
z′ − z = x′ − x ≤ u− l,

and hence 0 < z′ − z ≤ u− l. �


Note that the interval of Z is [min(X) + min(Y ),max(X) + max(Y )].
For a set Z of integers, a set Z ′ ⊆ Z is called a maximal consecutive subset of

Z (with respect to u− l) if Z ′ is consecutive and there is no consecutive subset
Z ′′ ⊆ Z such that Z ′ ⊂ Z ′′. Set Z can be partitioned into maximal consecutive
subsets of Z. We define a set I(Z) of intervals, as follows:

I(Z)={[x, y] | [x, y] is the interval of a maximal consecutive subset of Z}. (6)
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Z

I(Z )

Fig. 5. Set I(Z) of intervals for a set Z of integers

< u - l
x x

x
x'x'x'y y' yy'

y
y'

(a)                                             (b)                                             (c)

Fig. 6. Merge operation for intervals [x, y] and [x′, y′]

In Fig.5, every integer in Z is represented by a cross, square, circle or triangle, all
integers represented by the same symbol form a maximal consecutive subset of
Z, and each interval in I(Z) is indicated by a dotted curve joining two integers.

Our algorithm computes the set I(S(Tv, k)) of intervals in place of the set
S(Tv, k) of integers.

Two intervals [x, y] and [x′, y′] are intersecting (with respect to u− l) if x ≤ x′

and x′−y ≤ u−l. (See Fig.6.) The merge operation for two intersecting intervals
[x, y] and [x′, y′] returns an interval [x, y′] if y ≤ y′; otherwise, it returns the
interval [x, y]. Figures 6(a) and (b) illustrate the merge operation for the case
y ≤ y′, and Fig.6(c) illustrates the merge operation for the case y > y′, where the
interval obtained by the merge operation is indicated by a thick dotted curve.
The merge operation for a set Z of intervals is to obtain a set M(Z) of intervals
such that no two intervals are intersecting by repeatedly applying the merge
operation for two intersecting intervals in Z. (See Fig.7.) We always denote by
M(Z) the set obtained by the merge operation for Z.

We are now ready to define the DP table of our polynomial-time algorithm.
We denote the set I(S(Tv, k)) of intervals simply by I(Tv, k) for a subtree Tv of
a tree T and an integer k, 0 ≤ k ≤ p− 1. Let z be an integer, then z /∈ S(Tv, k)
if I(Tv, k) does not contain an interval [x, y], x ≤ z ≤ y. However, z ∈ S(Tv, k)
does not necessarily hold even if I(Tv, k) contains an interval [x, y], x ≤ z ≤ y.

We estimate the size of the DP table, as follows.

Lemma 4. |I(Tv, k)| ≤ k + 1.

Proof. If k = 0, then an extendable partition P of Tv consists of exactly one set
Pv = V (Tv) and hence I(Tv, 0) = {[ω(V (Tv)), ω(V (Tv))]} and |I(Tv, 0)| = 1.

We may thus assume that k ≥ 1. Let I(Tv, k) = {[x0, y0], [x1, y1], · · · ,
[xm, ym]}. We shall show that m ≤ k. One may assume without loss of gen-
erality that x0 ≤ y0 < x1 ≤ y1 < · · · < xm ≤ ym. Then min(S(Tv, k)) = x0,
max(S(Tv, k)) = ym, and hence by Lemma 1 we have

ym − x0 ≤ k(u− l). (7)
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Z

M(Z )

< u - l

Fig. 7. Merge operation for a set Z of intervals

For each i, 0 ≤ i ≤ m− 1, the two intervals [xi, yi] ∈ I(Tv, k) and [xi+1, yi+1] ∈
I(Tv, k) are not intersecting, and hence u− l < xi+1 − yi. We thus have

m(u− l) <
m−1∑
i=0

(xi+1 − yi). (8)

Since xi ≤ yi for each i, 0 ≤ i ≤ m, by Eq. (8) we have

m(u− l) <
m−1∑
i=0

(xi+1 − yi) ≤
m−1∑
i=0

(yi+1 − yi) = ym − y0 ≤ ym − x0. (9)

By Eqs. (7) and (9) we have m < k, and hence |I(Tv, k)| = m + 1 ≤ k. �


Our algorithm computes the set I(Tv, k) for each vertex v of T from leaves to the
root r of T by means of dynamic programming. We have the following lemma.

Lemma 5. A tree T has an (l, u)-partition with p subtrees if and only if I(T, p−
1) contains an interval [x, y] such that either (i) l ≤ y ≤ u or (ii) x ≤ u ≤ y.

Proof.
Necessity: Suppose that T has an (l, u)-partition with p subtrees. Then by
Lemma 2 S(T, p − 1) contains an integer z such that l ≤ z ≤ u. Therefore,
I(T, p − 1) contains an interval [x, y] such that x ≤ z ≤ y. Then, clearly (i) or
(ii) holds.

Sufficiency: Suppose that I(T, p− 1) contains an interval [x, y] satisfying either
(i) or (ii). By Lemma 2 it suffices to show that S(T, p− 1) contains an integer z
such that l ≤ z ≤ u.

If the interval [x, y] ∈ I(T, p− 1) satisfies the condition (i), that is, l ≤ y ≤ u,
then the integer y ∈ S(T, p− 1) satisfies l ≤ y ≤ u, of course.

One may thus assume that the interval [x, y] ∈ I(T, p − 1) satisfies the con-
dition (ii), that is, x ≤ u ≤ y. Let W = {w0, w1, · · · , wm} be the maximal
consecutive subset of S(T, p− 1) such that x = min(W ) and y = max(W ). One
may assume that wi < wi+1 for each i, 0 ≤ i ≤ m − 1. Let wj ∈ W be the
minimum integer such that u ≤ wj . If wj = u, then the integer wj ∈ S(T, p− 1)
clearly satisfies l ≤ wj ≤ u. One may thus assume that

u < wj . (10)

Then, since w0 = x ≤ u, we have wj 
= w0 and hence 1 ≤ j and u > wj−1 ∈
S(T, p− 1). Since W is consecutive, we have wj − wj−1 ≤ u − l. Therefore, by
Eq. (10) we have l < wj−1. Thus we have l < wj−1 < u. �
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3.2 Algorithm

We now describe our polynomial-time algorithm. The algorithm recursively com-
putes the sets Ī(T i

v, k) of intervals. We will later show that Ī(T i
v, k) = I(T i

v, k).
We first compute Ī(T 0

v , k) for each vertex v of T and each integer k, 0 ≤ k ≤
p− 1, similarly as in Eqs. (1) and (2). For k = 0, let

Ī(T 0
v , 0) = {[ω(v), ω(v)]}, (11)

and for each integer k, 1 ≤ k ≤ p− 1, let

Ī(T 0
v , k) = ∅. (12)

We next compute Ī(T i
v, k), 1 ≤ i ≤ s, for each internal vertex v of T from the

counterparts of T i−1
v and Tvi , where s is the number of the children of v. (See

Figs. 3 and 4 together with Eqs. (3)–(5).) We first compute two sets Īa(T i
v, k)

and Īb(T i
v, k), as follows:

Īa(T i
v, k) =

k⋃
k′=0

{
[x′ + x′′, y′ + y′′] : [x′, y′] ∈ Ī(T i−1

v , k′) and

[x′′, y′′] ∈ Ī(Tvi , k − k′)
}
, (13)

and
Īb(T i

v, k) =
⋃

Ī(T i−1
v , k′) (14)

where Ī(T i−1
v , k′) is taken over all k′, 0 ≤ k′ ≤ k− 1, such that Ī(Tvi , k− k′− 1)

contains an interval [x′′, y′′] with either l ≤ y′′ ≤ u or x′′ ≤ u ≤ y′′.

From Īa(T i
v, k) and Īb(T i

v, k) above, we compute a set Ī(T i
v, k), as follows:

Ī ′(T i
v, k) = Īa(T i

v, k) ∪ Īb(T i
v, k) (15)

and
Ī(T i

v, k) = M(Ī ′(T i
v, k)). (16)

3.3 Proof of Theorem 1

We first show that Ī(T i
v, k) = I(T i

v, k).
We first have the following two Lemmas 6 and 7, whose proofs are omitted

due to the page limitation.

Lemma 6. For each integer z ∈ S(T i
v, k), Ī(T i

v, k) contains an interval [x, y]
such that x ≤ z ≤ y.

Lemma 7. For each interval [x, y] ∈ Ī(T i
v, k), both x and y are contained in

S(T i
v, k) and the set {z ∈ S(T i

v, k) | x ≤ z ≤ y} is consecutive with respect to
u− l.
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Using Lemmas 6 and 7, we have the following Lemma 8, whose proof is omitted
due to the page limitation.

Lemma 8. Ī(T i
v, k) = I(T i

v, k).

We then show that the algorithm takes time O(p4n).
By Eqs. (11) and (12) one can compute the set I(T 0

v , k) = Ī(T 0
v , k) in time

O(p) for a vertex v of T and all integers k, 0 ≤ k ≤ p−1. Therefore, I(T 0
v , k) can

be computed in time O(pn) for all vertices v in T and all integers k, 0 ≤ k ≤ p−1.
For i ≥ 1, by Lemma 4 we have |I(T i−1

v , k)| ≤ k + 1 ≤ p and |I(Tvi , k)| ≤
p. Therefore, by Eqs. (13)–(15) one can compute a (multi)set Ī ′(T i

v, k) from
Ī(T i−1

v , k′) and Ī(Tvi , k − k′) for an internal vertex v of T , an integer i and an
integer k in time O(p3).

We now explain how to compute M(Ī ′(T i
v, k)), that is, how to execute the

merge operations in Eq. (16). For each interval [x, y] ∈ Ī ′(T i
v, k), clearly

ω(V (T i
v))− ku ≤ x ≤ y ≤ ω(V (T i

v))− kl.

Thus, x and y are integers between ω(V (T i
v))− ku and ω(V (T i

v))− kl, and

(ω(V (T i
v))− kl)− (ω(V (T i

v))− ku) = k(u− l).

We first partition the set Ī ′(T i
v, k) into the following k subsets Jq, 1 ≤ q ≤ k:

Jq = {[x, y] ∈ Ī ′(T i
v, k) | (q − 1)(u− l) ≤ x− (ω(V (T i

v))− ku) < q(u− l)}
for each q, 1 ≤ q ≤ k − 1, and

Jk = {[x, y] ∈ Ī ′(T i
v, k) | (k − 1)(u− l) ≤ x− (ω(V (T i

v))− ku) ≤ k(u− l)}.
The partition above can be found in time O(p3) since |Ī ′(T i

v, k)| = O(p3). We
then compute sets M(Jq), 1 ≤ q ≤ k. Clearly, any two intervals in M(Jq) are
intersecting. Therefore, if Jq 
= ∅, then M(Jq) = {[x′

q, y
′
q]} where x′

q = min{x |
[x, y] ∈ Jq} and y′q = max{y | [x, y] ∈ Jq}. If Jq = ∅, then M(Jq) = ∅. Since
|Ī ′(T i

v, k)| = O(p3), one can compute all the sets M(Jq), 1 ≤ q ≤ k, in time
O(p3). We then compute a set J of intervals as follows:

J =
k⋃

q=1

M(Jq).

Then, obviously |J | ≤ k ≤ p and M(J) = M(Ī ′(T i
v, k)) = Ī(T i

v, k). Clearly, x′
1 <

x′
2 < · · · < x′

k although some of x′
1, x

′
2, · · · , x′

k may be missing. Therefore, one
can compute M(J) from J in time O(p) by merging intervals [x′

1, y
′
1], [x′

2, y
′
2], · · · ,

[x′
k, y

′
k] in this order. Hence, one can compute Ī(T i

v, k) in Eq. (16) in time O(p3)
for an internal vertex v of T , an integer i and an integer k.

Thus, I(T i
v, k) = Ī(T i

v, k) can be computed in time O(p4n) for all internal
vertices v, all integers i and all integers k, 0 ≤ k ≤ p − 1. Note that there
are O(n) pairs of v and i. Hence, one can compute the set I(T, p − 1) in time
O(p4n). By Lemma 5 one can know from I(T, p−1) in time O(p) whether T has
an (l, u)-partition with p components.

We have thus shown that the p-partition problem can be solved for trees in
time O(p4n). This completes a proof of Theorem 1.
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4 Conclusions

In this paper we obtained a polynomial-time algorithm to solve the p-partition
problem for trees, which is much simpler and faster than the known algorithm in
[7]. Our algorithm takes time O(p4n), and hence runs in linear time if p = O(1).
On the other hand, both the minimum partition problem and the maximum
partition problem can be solved in time O(n6). We finally remark that our
algorithm correctly solves the three partition problems even if the weights of
vertices and the bounds l and u on component sizes are real numbers.
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An Improved Divide-and-Conquer Algorithm for
Finding All Minimum k-Way Cuts�
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Abstract. Given a positive integer k and an edge-weighted undirected
graph G = (V, E; w), the minimum k-way cut problem is to find a subset
of edges of minimum total weight whose removal separates the graph
into k connected components. This problem is a natural generalization
of the classical minimum cut problem and has been well-studied in the
literature.

A simple and natural method to solve the minimum k-way cut prob-
lem is the divide-and-conquer method: getting a minimum k-way cut
by properly separating the graph into two small graphs and then finding
minimum k′-way cut and k′′-way cut respectively in the two small graphs,
where k′ + k′′ = k. In this paper, we present the first algorithm for the
tight case of k′ = �k/2�. Our algorithm runs in O(n4k−lg k) time and can
enumerate all minimum k-way cuts, which improves all the previously
known divide-and-conquer algorithms for this problem.

Keywords: k-Way Cut, Divide-and-Conquer, Graph Algorithm.

1 Introduction

Let k be a positive integer and G = (V,E;w) a connected undirected graph
where each edge e has a positive weight w(e). A k-way cut of G is a subset of
edges whose removal separates the graph into k connected components, and the
minimum k-way cut problem is to find a k-way cut of minimum total weight.
The minimum k-way cut problem is a natural generalization of the classical
minimum cut problem and has great applications in the area of VLSI system
design, parallel computing systems, clustering, network reliability and finding
cutting planes for the travelling salesman problems.

The minimum 2-way cut problem is commonly known as the minimum cut
problem and can be solved in O(mn+n2 logn) time by Nagamochi and Ibaraki’s
algorithm [12] or Stoer and Wagner’s algorithm [19]. Another version of the
minimum 2-way cut problem is the minimum (s, t) cut problem, which asks us to

� The work was done when the author was a PhD student in Department of Computer
Science and Engineering, the Chinese University of Hong Kong.
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find a minimum cut that separates two given vertices s and t. The minimum (s, t)
cut problem can be solved in O(mn logn2/m) time by Goldberg and Tarjan’s
algorithm [4] and O(min(n2/3,m1/2)m log(n2/m) logU) time by Goldberg and
Rao’s algorithm [3], where U is the maximum capacity of the edge. Finding a
minimum cut or minimum (s, t) cut is a subroutine in our algorithms. In the
remainder of the paper, we use T (n,m) = Õ(mn) to denote the running time of
computing a minimum cut or a minimum (s, t) cut in an edge-weighted graph.

For k = 3, Kamidoi et al. [8] and Kapoor [10] showed that the minimum
3-way cut problem can be solved by computing O(n3) minimum (s, t) cuts.
Later, Burlet and Goldschmidt [1] improved this result to O(n2) minimum cut
computations. He [6] showed that in unweighted planar graphs the minimum
3-way cut problem can be solved in O(n log n) time. Xiao [22] designed the first
polynomial algorithm for finding minimum 3-way cuts in hypergraphs.

Furthermore, Kamidoi et al. [8] and Nagamochi and Ibaraki [13] proved that
the minimum 4-way cut problem can be solved by computing O(n) minimum
3-way cuts. Nagamochi et al. [14] extended this result for minimum {5, 6}-way
cuts by showing that Tk(n,m) = O(nTk−1(n,m)), where k = 5, 6, and Tk(n,m)
is the running time of computing a minimum k-way cut. Those results lead to
Õ(mnk) time algorithms for the minimum k-way cut problem for k ≤ 6.

For general k, Goldschmidt and Hochbaum [5] proved that the minimum k-way
cut problem is NP-hard when k is part of the input and gave the first polyno-
mial algorithm for fixed k. The running time of their algorithm is O(nk2

T (n,m)).
Later, Kamidoi et al. [9] improved the running time to O(n4k/(1−1.71/

√
k)−34T

(n,m)). Karger and Stein [11] proposed a Monte Carlo algorithm with O(n2(k−1)

log3 n) running time. Recently, Thorup [20] designed an deterministic algorithm
with running time O(n2k), which is based on tree packing. Since this problem
is NP-hard for arbitrary k, it is also interesting to design approximation algo-
rithms for it. Saran and Vazirani[18] gave two simple approximation algorithms
with ratio of (2 − 2/k) and running time of O(nT (n,m)). Naor and Rabani [16]
obtained an integer program formulation of this problem with integrality gap 2,
and Ravi and Sinha [17] also derived a 2-approximation algorithm via the net-
work strength method. Zhao et al. [24] proved that the approximation ratio is
2 − 3/k for an odd k and 2 − (3k − 4)/(k2 − k) for an even k, if we compute a
k-way cut of the graph by iteratively finding and deleting minimum 3-way cuts in
the graph. Xiao et al. [23] determined the tight approximation ratio of a general
greedy splitting algorithm, in which we iteratively increase a constant number of
components of the graph with minimum cost. That result implies that the approx-
imation ratio is 2−h/k+O(h2/k2) for the algorithm that iteratively increasesh−1
components.

Most deterministic algorithms for finding minimum k-way cuts, including the
two algorithms presented by Goldschmidt and Hochbaum [5] and Kamidoi et
al. [9], are based on a divide-and-conquer method. The main idea is to get a
minimum k-way cut by properly separating the graph into two small graphs and
then finding minimum k′-way cut and k′′-way cut respectively in the two small
graphs, where k′ + k′′ = k. We say that cut C = [X,X] is an (h, k − h)-cut of
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G, if there is a minimum k-way cut Ck = [Y1, · · · , Yh, Yh+1 · · · , Yk] of G such
that

⋃h
i=1 Yi = X and

⋃k
i=h+1 Yi = X. Once an (h, k − h)-cut C = [X,X] is

given, we only need to find a minimum h-way cut in induced subgraph G[X ]
and a minimum (k − h)-way cut in induced subgraph G[X ]. Goldschmidt and
Hochbaum [5] proved that there are a set S of at most k−2 vertices and a set T
of at most k − 1 vertices such that a minimum (S, T ) cut is a (1, k − 1)-cut. By
enumerating all the possibilities of S and T , we have at most O(n2k−3) candidates
for (1, k − 1)-cuts. Goldschmidt and Hochbaum obtained an O(nk2

) algorithm
for the minimum k-way cut problem by recursively applying this method. There
are two ways to improve this method. First, we can reduce the sizes of S and T .
Second, we can try to make minimum (S, T ) cut a more ‘balanced’ cut, in other
words, we want minimum (S, T ) cut an (h, k − h)-cut such that h is close to k

2 .
Kamidoi et al. [9] proved that there are a set S of at most k − 2 vertices and a
set T of at most k−2 vertices such that a minimum (S, T ) cut is a (p, k−p)-cut
with p = �(k −

√
k)/2� − 1, and then they got an O(n4k/(1−1.71/

√
k)−34T (n,m))

algorithm for the minimum k-way cut problem. In this paper, we show that there
are a set S of at most 2

⌊
k
2

⌋
vertices and a set T of at most k − 1 vertices such

that a minimum (S, T ) cut is a (
⌊

k
2

⌋
,
⌈

k
2

⌉
)-cut. Based on this property, we obtain

an O(n4k−lg k) algorithm for finding all minimum k-way cuts. Previous results
as well as our result are summarized in the following table. Recently Thorup [20]
designed an even faster algorithm for the minimum k-way cut problem, which is
based on tree packing, but not the divide-and-conquer method.

Table 1. History of divide-and-conquer algorithms for the minimum k-way cut problem

Goldschmidt et al. [5] Kamidoi et al. [9] This paper
Bounds on |S| and |T | k − 2 and k − 1 k − 2 and k − 2 2 �k/2� and k − 1
The min (S, T ) cut (1, k − 1)-cut (p, k − p)-cut, (�k/2� , �k/2
)-cut

p = �(k −
√

k)/2
 − 1
Running time for the O(nk2

) O(n4k/(1−1.71/
√

k)−16) O(n4k−lg k)
min k-way cut problem

In this paper, we assume the original graph G = (V,E;w) is a connected
graph with more than k vertices. For an edge subset E′ ⊆ E, w(E′) denotes
the total weight of the edges in E′. Let X1, X2, · · · , Xl ⊂ V be l (2 ≤ l ≤ n)
disjoint nonempty subsets of vertices, then [X1, X2, · · · , Xl] denotes the set of
edges crossing any two different vertex sets of {X1, X2, · · · , Xl}. A 2-way cut
is also simply called a cut of the graph. Cut [X,X] is called an (S, T ) cut, if
S ⊆ X and T ⊆ X. Sometimes a singleton set {s} is simply written as s and
w([X1, X2, · · · , Xl]) as w(X1, X2, · · · , Xl). The rest of the paper is organized as
follows: We first present the simple divide-and-conquer algorithm in Section 2.
Then we give the proofs of our structural results in Section 3. In the last section,
we conclude with some remarks.
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2 The Divide-and-Conquer Algorithm

Let C = [X,X] be a cut. Recall that cut C is an (h, k− h)-cut of G if there is a
minimum k-way cut Ck = [Y1, · · · , Yh, Yh+1 · · · , Yk] of G such that X =

∑h
i=1 Yi

and X =
∑k

i=h+1 Yi. Let Ck = [Y1, · · · , Yk] be a minimum k-way cut and 1 ≤
h ≤ k − 1 an integer. By arbitrarily choosing h components {Yj1 , Yj2 , · · · , Yjh

}
of Ck, we get an (h, k− h)-cut [

⋃h
i=1 Yji ,

⋃h
i=1 Yji ], which is called an (h, k− h)-

partition of Ck. Among all (h, k−h)-partitions, those with minimum weight are
called minimum (h, k − h)-partitions of Ck and the weight of them is denoted
by wh,k−h(Ck).

For an (h, k− h)-cut [X,X] of graph G, a minimum h-way cut [Y1, · · · , Yh] in
induced graph G[X ] and a minimum (k − h)-way cut [Z1, · · · , Zk−h] in induced
graph G[X] together yields a minimum k-way cut [Y1, · · · , Yh, Z1, · · · , Zk−h] in
the original graph G. This suggests a recursive way to solve the minimum k-way
cut problem: find an (h, k − h)-cut [X,X] and recursively find minimum h-way
and (k − h)-way cuts respectively in G[X ] and G[X ].

However it is not easy to find an (h, k − h)-cut, even for h = 1. In Section 3,
we will prove that for each minimum (

⌊
k
2

⌋
,
⌈

k
2

⌉
)-partition [X,X] of each min-

imum k-way cut, there are a set S of at most 2
⌊

k
2

⌋
vertices and a set T of at

most k − 1 vertices such that a minimum (S, T ) cut is [X,X] (See Theorem 2).
This minimum (S, T ) cut is called the nearest minimum (S, T ) cut of S and
can be found by using the same time of computing a maximum flow from S to
T . Theorem 2 enables us to obtain the following divide-and-conquer algorithm
to find minimum k-way cuts. We enumerate all possibilities of S and T and
find the nearest minimum (S, T ) cuts in the graph. Then we get a family Γ

of at most
(

n
2� k

2 �
)
×
(

n
k−1

)
< n2� k

2 �+(k−1) (S, T ) cuts by using the same num-
ber of maximum flow computations. By Theorem 2, Γ contains all minimum
(
⌊

k
2

⌋
,
⌈

k
2

⌉
)-partitions of all minimum k-way cuts. We then recursively find, for

each member of Γ , minimum
⌊

k
2

⌋
-way cut in G[X ] and minimum

⌈
k
2

⌉
-way cut

in G[X ]. The minimum ones among all k-way cuts we find will be returned as
our solution. The algorithm is described in Figure 1.

The correctness of algorithm Multiwaycut follows from Theorem 2. Now we
analyze the running time. When k = 2, we use Nagamochi et al.’s algorithm [15]
to find all minimum cuts directly, which runs in O(m2n + mn2 logn)=O(mT
(n,m)) time. When k > 2, we get the recurrence relation

C(n, k) ≤ n2
k
2�+ k − 1(C(n, �k

2 �) + C(n, �k
2�)) + n2
k

2�+ k − 1, (1)

where C(n, k) is the upper bound on the number of maximum flow computations
to be computed when algorithm Multiwaycut runs on an n-vertex graph and
an integer k. It is easy to verify that C(n, k) = O(n4k−lg k−3) satisfies (1) by
using the substitution method.

Theorem 1. All minimum k-way cuts can be found in O(n4k−lg k) time.
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Multiwaycut(G,k)

Input: A graph G = (V, E; w) with nonnegative edge weights and a positive
integer k ≤ |V |.
Output: The set R of all minimum k-way cuts and the weight W of the
minimum k-way cut.

1. If {k = 2}, then return the set of all the minimum cuts and the weight
directly.

2. Else {k ≥ 3},
Let W be +∞.
For each pair of disjoint nonempty vertex subsets S and T with
|S| ≤ 2

�
k
2

�
and |T | ≤ k − 1, do

Compute the nearest minimum (S, T ) cut C = [X, X] of S.
If {|X| ≥

�
k
2

�
and |X| ≥

�
k
2

�
}, then

(R1, W1) ←− Multiwaycut(G[X],
�

k
2

�
).

(R2, W2) ←− Multiwaycut(G[X ],
�

k
2

�
).

If {W > w(C) + W1 + W2}, then
W ←− w(C) + W1 + W2,
R ←− {C

�
F1

�
F2 | F1 ∈ R1, F2 ∈ R2}.

Else if {W = w(C) + W1 + W2}, then
R ←− R

�
{C

�
F1

�
F2 | F1 ∈ R1, F2 ∈ R2}.

Return (R, W ).

Fig. 1. The Algorithm Multiwaycut(G,k)

3 Structural Properties

In this section, we prove the following key theorem, which is the foundation of
our divide-and-conquer algorithm.

Theorem 2. Let Ck be a minimum k-way (k ≥ 3) cut of a graph G and [A,B]
a minimum (

⌊
k
2

⌋
,
⌈

k
2

⌉
)-partition of Ck. Then there exits a set S ⊆ A of at most

2
⌊

k
2

⌋
vertices and a set T ⊆ B of at most k − 1 vertices such that the nearest

minimum (S, T ) cut of S is [A,B].

To prove this theorem, we will derive some useful structural properties. Given
two disjoint vertex sets S and T , a minimum (S, T ) cut separates the graph into
two components. One that contains S is called the source part and the other one
is called the sink part, which contains T . For most cases, there are more than
one minimum (S, T ) cut. Among all minimum (S, T ) cuts, the unique one that
makes the source part of the maximum cardinality is called the farthest minimum
(S, T ) cut of S, and the unique one that makes the sink part of the maximum
cardinality is called the nearest minimum (S, T ) cut of S. The farthest minimum
(S, T ) cut of S is the same as the nearest minimum (T, S) cut of T . Ford and
Fullkerson [7] proved the uniqueness of the farthest and nearest minimum (S, T )
cuts by using the Max flow/Min cut theorem. We can easily get the farthest
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and nearest minimum (S, T ) cuts in linear time based on a maximum flow from
S to T . (Note that given a maximum flow, in the residual graph, let X be
the set of vertices who are connected with t. Then [V − X,X ] is the farthest
minimum isolating cut for s). These two special minimum (S, T ) cuts have been
discussed and used in the literature [7], [21], [5], [2]. Next, we give more structural
properties of them.

Lemma 1. Let [X1, X1] be the nearest minimum (S1, T ) cut of S1 and [X2, X2]
the nearest minimum (S2, T ) cut of S2, if S1 ⊇ S2, then X1 ⊇ X2.

Lemma 2. Let [X1, X1] be the farthest minimum (S, T1) cut of S and [X2, X2]
the farthest minimum cut (S, T2) of S, if T1 ⊇ T2, then X1 ⊆ X2.

Lemma 1 and Lemma 2 can be proved easily by using the uniqueness of the
nearest and farthest minimum (s, t) cuts.

Lemma 3. Let C1 = [X1, X1] be the nearest minimum (S1, T ) cut of S1 and
C2 = [X2, X2] a minimum (S2, T ) cut. If S1 ⊆ X2, then X1 ⊆ X2.

Proof. Let Z = X1 −X2, Y = X2 −X1, U = X1 ∩X2, and W = X1 ∪X2 (See
Figure 2). To prove X1 ⊆ X2, we only need to prove that Z = ∅. Assume to
the contrary that Z 
= ∅. We show the contradiction that [X1 − Z,X1 + Z] is a
‘nearer’ minimum (S1, T ) cut of S1 than C1 = [X1, X1]. Obviously, we only need
to prove that w(X1 − Z,X1 + Z) ≤ w(S1, T ).

1S
T

1C

2C

U
Y

Z

W

Fig. 2. Illustration for the proof of Lemma 3

Since [U + Y +Z,W ] is an (S2, T ) cut and C2 = [X2, X2] a minimum (S2, T )
cut, we have

w(U + Y + Z,W ) ≥ w(X2, X2).

It is clear that
[U + Y + Z,W ] = [U + Y,W ] + [Z,W ]

and
[X2, X2] = [U + Y,W + Z] = [U + Y,W ] + [U,Z] + [Y, Z].

We get
w(U,Z) + w(Y, Z) ≤ w(Z,W ).
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Therefore, w(U, Y +W+Z) = w(U, Y +W )+w(U,Z) ≤ w(U, Y +W )+w(Z,W ) ≤
w(U, Y + W ) + w(Z, Y + W ) = w(U + Z, Y + W ) = w(C1).

We will use the following relation between two multi-way cuts, which was
proved by Xiao et al. in [23].

Proposition 1. Given an edge-weighted graph G, and integers h and k (2 ≤
h ≤ k), then for any minimum h-way cut Ch and any k-way cut Ck of G, the
following relation holds

w(Ch) ≤ (2k − h)(h− 1)
k(k − 1)

w(Ck). (2)

Kamidoi et al. [9] proved the following two important results

Proposition 2. Given an edge-weighted graph G and two integers h and k (1 ≤
h < k), let Ck be a minimum k-way cut in G and wh,k−h(Ck) the weight of the
minimum (h, k − h)-partitions of Ck, then

wh,k−h(Ck) ≤ 2h(k − h)
k(k − 1)

w(Ck). (3)

Proposition 3. Given a graph G = (V,E) with at least 4 vertices, two disjoint
nonempty subsets T and R of V , and an integer p ≥ 2, let {s1, s2, · · · , sp} =
S ⊆ V − T ∪ R be a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there
is a minimum (S ∪R−{si}, T ) cut [Xi, Xi] which satisfies (T ∪ {si}) ⊆ Xi. Let
Z =

⋂
1≤i≤p Xi, W =

⋃
1≤i<j≤p(Xi ∩ Xj), and Yi = Xi −W (i = 1, 2, · · · , p),

then C� = [Z, Y1, Y2, · · · , Yp,W ] is a (p + 2)-way cut such that

w(C�) + w(Z,W ) + w(Y1, Y2, · · · , Yp) ≤ w(X1, X1) + w(X2, X2). (4)

Based on Proposition 3, we can prove the following Lemma 4. The detailed proof
can be found in the full version of this paper.

Lemma 4. Given a graph G = (V,E) with at least 4 vertices, a nonempty subset
of vertices T ⊂ V , and an integer p ≥ 2, let {s1, s2, · · · , sp} = S ⊆ V − T be
a set of p vertices such that, for each i ∈ {1, 2, · · · , p}, there is a minimum
(S − {si}, T ) cut [Xi, Xi] which satisfies (T ∪ {si}) ⊆ Xi. Let Z =

⋂
1≤i≤p Xi,

W =
⋃

1≤i<j≤p(Xi ∩Xj), and Yi = Xi −W (i = 1, 2, · · · , p),
(a) : When Z 
= ∅, then C� = [Z, Y1, Y2, · · · , Yp,W ] is a (p + 2)-way cut such
that

w(C�) + w(Z,W ) + w(Y1, Y2, · · · , Yp) ≤ 2w(V − T, T ). (5)

(b) : When Z = ∅ and p ≥ 3, then C� = [Y1, Y2, · · · , Yp,W ] is a (p + 1)-way cut
such that

w(C�) +
p− 3
p + 1

· w(Y1, Y2, · · · , Yp) ≤
p

p + 1
· 2w(V − T, T ). (6)
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2S

1S

...

pS

TZ

1 1[ , ]X X
2 2[ , ]X X

[ , ]p pX X

Fig. 3. Illustration for Proposition 3 and Lemma 4

Lemma 5. Given a graph G and an integer k ≥ 3, let wk be the weight of
a minimum k-way cut of G. For any cut [A,B] in G with weight w(A,B) <

k
2(k−1)wk (respectively, w(A,B) < k+1

2k−1wk), there exists a set S ⊆ A of at most
k− 1 (respectively, k) vertices such that the nearest minimum (S,B) cut of S is
[A,B].

Proof. Let k′ = k − 1 or k (for the two cases respectively), we only need to
consider the case that |A| ≥ k′ + 1 (when |A| < k′ + 1, we can just let S = A).
Our proof includes two phases. In the first phase, we prove that if the lemma
does not hold, then we can find a set S0 ⊆ A of k′+1 vertices such that, for each
nonempty subset S′

0 of S0, the nearest minimum (S′
0, B) cut C′ = [Z,Z] of S′

0
satisfying S′

0 ⊆ Z and (S0 − S′
0 + B) ⊆ Z. Then S0 is a vertex set that satisfies

the conditions in Lemma 4. In the second phase, based on S0, we will show that
there is a k-way cut with weight less than wk, which is a contradiction.

Phase 1: finding S0. We will give a procedure to select some vertices from A
into S. Initially, all the vertices in A are unmarked and S is an empty set. Once
a vertex is selected into S, we mark it. Sometimes a vertex in S0 will also be
removed from S, but this vertex is still remained as marked. First, we arbitrarily
select k′ + 1 vertices in A into S. For each nonempty subset S′ ⊂ S, we check
the nearest minimum (S′, B) cut C′ = [Z,Z] of S′. If (S − S′ + B) 
⊂ Z, say
a ∈ (S − S′)

⋂
Z, we update S by removing a from S and adding an unmarked

vertex into S (When there are no more unmarked vertex in V −S, we just remove
a from S and stop the procedure). Once S is updated, we check all nonempty
subsets S′’s of S again. Since A is a finite set and in each iteration, one more
vertex is marked, we will find a set S of k′+1 vertices that satisfies the conditions
in Lemma 4 or no more unmarked vertex can be added into S. For the former
case, we just let S0 = S. For the later case, we show that S is a set of k′ vertices
such that the nearest minimum (S,B) cut of S is [A,B], and thus the lemma
holds. Let S(1), S(2), · · · , S(l0) be the updated sequence of S. Let C(l) = [Zl, Zl]
and C(l+1) = [Zl+1, Zl+1] be the nearest minimum (S(l), B) and (S(l+1), B) cuts
of S(l) and S(l+1) respectively. Since S(l) ⊂ Zl+1, we know that Zl ⊆ Zl+1 by
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Lemma 3. For each 1 ≤ l ≤ l0 − 1, we have Zl ⊆ Zl+1. Then all the marked
vertices will be in Zl0 , where [Zl0 , Zl0 ] = [A,B] is the nearest minimum (S(l0), B)
cut of S(l0). Furthermore, since S(l0) is obtained by removing a vertex a from
S(l0−1), we know that the size of S(l0) is k′.

Phase 2: finding a k-way cut with weight less than wk based on S0. Suppose
S0 = {s1, · · · , sk′ , sk′+1}. Let [Xi, Xi] be the nearest minimum (S − {si}, B)
cut (i = 1, · · · , k′ + 1), then [Xi, Xi] satisfies that (B ∪ {si}) ⊆ Xi. Let Z =⋂

1≤i≤k′+1 Xi, W =
⋃

1≤i<j≤k′+1(Xi∩Xj), and Yi = Xi−W (i = 1, · · · , k′ +1).
Next, we consider Z = ∅ and Z 
= ∅ such two cases.

When Z = ∅, it follows from Lemma 4 that C� = [Y1, Y2, · · · , Yk′+1,W ] is a
(k′ + 2)-way cut such that

w(C�) +
k′ − 2
k′ + 2

· w(Y1 + · · ·+ Yk′+1) ≤
k′ + 1
k′ + 2

· 2w(A,B). (7)

Since C� is a (k′ + 2)-way cut and k′ + 2 > k, by Proposition 1, we know that
there is a k-way cut Ck with weight

w(Ck) ≤ (2(k′ + 2)− k)(k − 1)
(k′ + 2)(k′ + 1)

w(C�). (8)

It follows from (7) and (8) that

w(Ck) ≤ (2(k′ + 2)− k)(k − 1)
(k′ + 2)(k′ + 1)

· k
′ + 1

k′ + 2
2w(A,B).

In the case of w(A,B) < k
2(k−1)wk, we have k′ = k − 1. Then

w(Ck) ≤ (k + 2)(k − 1)
(k + 1)k

· k

k + 1
· 2w(A,B) <

(k + 2)k
(k + 1)2

wk < wk.

In the case of w(A,B) < k+1
2k−1wk, we have k′ = k. Then

w(Ck) ≤ (k + 4)(k − 1)
(k + 2)(k + 1)

· k + 1
k + 2

· 2w(A,B) <
2(k + 4)(k2 − 1)
(k + 2)2(2k − 1)

wk < wk.

We get a contraction that Ck is k-way cut with weight less than wk.

When Z 
= ∅, it follows from Lemma 4 that C� = [Z, Y1, Y2, · · · , Yk′+1,W ] is
a (k′ + 3)-way cut such that

w(C�) + w(Z,W ) + w(Y1, · · · , Yk′+1) ≤ 2w(A,B). (9)

Suppose w(Yi0 ,W ) ≥ w(Yi1 ,W ) ≥ w(Yi2 ,W ) ≥ maxi�=i0,i1,i2{w(Yi)}. For the
case of w(A,B) < k

2(k−1)wk, we prove that Ck = [Z,Y−i0−i1 ,W + Yi0 + Yi1 ] is a
k-way cut with weight less than wk, where Y−i0−i1 = {Y1, · · · , Yi0−1, Yi0+1, · · · ,
Yi1−1, Yi1+1, · · · , Yk′+1}. For the case of w(A,B) < k+1

2k−1wk, we prove that Ck =
[Z,Y−i0−i1−i2 ,W +Yi0 +Yi1 +Yi2 ] is a k-way cut with weight less than wk, where
Y−i0−i1−i2 is defined by the same way as Y−i0−i1 .
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In the case of w(A,B) < k
2(k−1)wk, we have k′ = k−1. Then Ck = [Z,Y−i0−i1 ,

W +Yi0 +Yi1 ] is a k-way cut. Since [Xi, Xi] is a minimum (S−{si}, B) cut, we
have w(Z, Yi) ≤ w(Yi,W ) for each i ∈ {1, 2, · · · , k}. Therefore,

w(Yi0 + Yi1 ,W ) ≥ 2
2k

(
∑k

i=1
w(Yi,W ) +

∑k

i=1
w(Z, Yi))

=
1
k

(w(C�)− w(Z,W ) − w(Y1, · · · , Yk)).

By using this inequality and (9), we get

w(Ck) ≤ w(C�)− w(Yi0 + Yi1 ,W )

≤ k − 1
k

w(C�) +
1
k
w(Z,W ) +

1
k
w(Y1, · · · , Yk)

≤ k − 1
k

2w(A,B) <
k − 1
k

k

k − 1
wk = wk.

In the case of w(A,B) < k+1
2k−1wk, we have k′ = k. Clearly, Ck = [Z,Y−i0−i1−i2 ,

W + Yi0 + Yi1 + Yi2 ] is still a k-way cut. We get

w(Yi0 + Yi1 + Yi2 ,W ) ≥ 3
2(k + 1)

(
∑k+1

i=1
w(Yi,W ) +

∑k+1

i=1
w(Z, Yi))

=
3

2(k + 1)
(w(C�)− w(Z,W ) − w(Y1, · · · , Yk+1)).

By using this inequality and (9), we get

w(Ck) ≤ w(C�)− w(Yi0 + Yi1 + Yi2 ,W )

≤ 2k − 1
2(k + 1)

w(C�) +
3

2(k + 1)
w(Z,W ) +

3
2(k + 1)

w(Y1, · · · , Yk+1)

≤ 2k − 1
2(k + 1)

2w(A,B) <
2k − 1

2(k + 1)
2(k + 1)
2k − 1

wk = wk.

We have proved that, in both cases, there is a k-way cut with weight less than
wk. Thus, we have finished the proof.

Lemma 6. Given a graph G and an integer k ≥ 3, let wk be the weight of the
minimum k-way cut of G, then for any cut [A,B] in G with weight w(A,B) ≤

k
2(k−1)wk (respectively, w(A,B) ≤ k+1

2k−1wk), there exists a set S ⊆ A of at most
k − 1 (respectively, k) vertices such that the farthest minimum (S,B) cut of S
is [A,B].

In Lemma 6, the weight of the cuts can equal k
2(k−1)wk or k+1

2k−1wk and there
are the farthest minimum (S,B) cuts, instead of the nearest minimum (S,B)
cuts in Lemma 5. The proof of Lemma 6 just follows the proof of Lemma 5.
Note that since in Lemma 6 there are farthest minimum (S,B) cuts, we have
w(Xi, Xi) < w(V −T, T ) for each i ∈ {1, 2, · · · , p}. Therefore, The equal signs in
(5) and (6) will not hold, which guarantees that the remaining part of the proof
of Lemma 5 is suitable for Lemma 6.
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Now we are ready to prove Theorem 2:

Proof. By Proposition 2, we have w(A,B) ≤ 2h(k−h)
k(k−1) wk, where h =

⌊
k
2

⌋
. Since⌊

k
2

⌋ ⌈
k
2

⌉
≤ (k

2 )2, we have w(A,B) ≤ k
2(k−1)wk and the equal sign does not hold

for odd k. By Lemma 5 and Lemma 6, we know that there is a set S ⊆ A of at
most 2

⌊
k
2

⌋
vertices such that the nearest minimum (S,B) cut of S is [A,B] and

there is a set T ⊆ B of at most k − 1 vertices such that the farthest minimum
(T,A) cut of T is [B,A]. We look at the nearest minimum (S, T ) cut [X,X] of S.
Since [A,B] is the nearest minimum (S,B) cut of S and T ⊆ B, we have A ⊆ X
by Lemma 1. Since [B,A] is the farthest minimum (T,A) cut of T and S ⊆ A, we
have B ⊆ X by Lemma 2. Therefore, [X,X] = [A,B]. Thus, Theorem 2 holds.

Corollary 1. Given a graph G and an integer k ≥ 3, let wk be the weight of
the minimum k-way cut of G, then the number of cuts with weight less than

k
2(k−1)wk in G is bounded by n2k−2 and the number of cuts with weight less than
k+1
2k−1wk is bounded by n2k.

4 Discussion

In this paper, we presented a simple divide-and-conquer algorithm for finding
minimum k-way cuts. As we mentioned in Section 1, there are two possible ways
to improve the algorithm. One is to reduce the sizes of S and T , and the other
one is to make the minimum (S, T ) cut be a more ‘balanced’ (h, k−h)-cut. In our
algorithm, h =

⌊
k
2

⌋
and this means our (h, k − h)-cuts are the most ‘balanced’.

Our questions are: For the most ‘balanced’ case, can we reduce the sizes of S and
T ? What are the lower bounds on the two sizes? Note that if we can reduce the
two sizes to k

2 , then the divide-and-conquer algorithm will run in O(n2k) time.
Nagamochi et al. [13], [14] proved that the minimum k-way cut problem can

be solved by computing O(n) minimum (k − 1)-way cuts for k ≤ 6. Does this
hold for general k? If so, then the minimum k-way cut problem can be solved in
Õ(mnk) time.

Karger and Stein [11] and Nagamochi et al. [15] have studied the bounds on
the number of small cuts, which motivates the following question: Can we give
nontrivial lower and upper bounds on the number of minimum k-way cuts? It is
easy to get a lower bound of O(nk). Note that in a cycle consisting of n edges
with equal weight, the number of minimum k-way cuts is

(
n
k

)
. Can better bounds

be achieved?
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Abstract. We place our focus on the gap between treewidth’s success in
producing fixed-parameter polynomial algorithms for hard graph prob-
lems, and specifically Hamiltonian Circuit and Max Cut, and the
failure of its directed variants (directed tree-width [9], DAG-width [11]
and kelly-width [8]) to replicate it in the realm of digraphs. We answer the
question of why this gap exists by giving two hardness results: we show
that Directed Hamiltonian Circuit is W [2]-hard when the param-
eter is the width of the input graph, for any of these widths, and that
Max Di Cut remains NP-hard even when restricted to DAGs, which
have the minimum possible width under all these definitions. Our results
also apply to directed pathwidth.

Keywords: Treewidth, Digraph decompositions, Parameterized
Complexity.

1 Introduction

Treewidth, first introduced by Robertson and Seymour in [13], has been one of
the most successful tools in the research for efficient algorithms for hard graph
problems in the last 15 years. Intuitively, treewidth allows us to distinguish
graphs that have a relatively simple (tree-like) structure, and exploit that struc-
ture to solve a plethora of otherwise intractable problems, usually by employing a
dynamic programming technique. For an introduction to the notion of treewidth
see Bodlaender’s excellent survey papers [4,3,2].

One of the most celebrated theorems in the area of treewidth is Courcelle’s the-
orem which states that every graph property that can be expressed in monadic sec-
ond order logic can be decided in linear time on graphs of bounded treewidth [5].
Beginning from this starting point, algorithms for many hard graph problems have
been devised using treewidth. They almost invariably have running times of the
form O(f(k) ·n), where k is the treewidth of the input graph and f some exponen-
tial or super-exponential function which represents the complexity of solving the
problem exhaustively on k vertices. Thus, not only is the running time polynomial
for fixed k, but also that the combinatorial explosion is confined to k. This has led
treewidth to become one of the cornerstones of parameterized complexity theory,
a theory which describes the distinction between algorithms with running times
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of the form O(f(k) · nc), where c is a constant (called fixed-parameter tractable
or FPT) and algorithms of the form O(ng(k)). For an introduction to parameter-
ized complexity see the monograph by Downey and Fellows [6] or the introductory
books by Niedermeier [10] and by Flum and Grohe [7].

Several attempts have been made recently to generalize the notion of treewidth
to directed graphs. The motivation behind this line of research is that, although
it is possible to solve many hard problems on digraphs when the underlying
undirected graph has low treewidth by using traditional tree decompositions, this
approach sacrifices a great deal of generality. A problem which demonstrates this
to a great degree is Directed Hamiltonian Circuit. This problem is trivial
when the input graph is a DAG, but there exist DAGs of unbounded treewidth
if the direction of the edges is ignored. Thus, it is desirable to come up with an
alternative measure of digraph complexity which better characterizes the class of
digraphs where hard problems become tractable. It should be noted at this point
that Hamiltonian Circuit admits an FPT solution with a treewidth based
algorithm, therefore a logical target when defining a digraph complexity measure
would be to achieve fixed-parameter tractability for Directed Hamiltonian

Circuit as well.

Previous Work. The most notable variations of treewidth for digraphs that
have been proposed in the past are probably directed treewidth [9], DAG-width
[11] and kelly-width [8]. All these three measures can be viewed as good gen-
eralizations of treewidth in the sense that, if we take an undirected graph and
replace each edge with two opposite directed edges the width of the new digraph
will be the same for all three definitions and equal to the treewidth of the origi-
nal graph. Directed treewidth is the most general of the three, in the sense that
a graph of bounded kelly-width or DAG-width will also have bounded directed
treewidth, while the converse may not be true. Also DAG-width and kelly-width
are conjectured to be only a constant factor apart on any graph ([8]).

Themost important positive result of directed treewidth (which canbe extended
to all the three measures) is an algorithm that solves Directed Hamiltonian

Circuit in O(nk) time, k being the width of the input graph. Nevertheless, this
algorithm is still far from the performance of the best treewidth-based algorithm
for Hamiltonian Circuit, which runs in fixed-parameter linear time. Unfortu-
nately, the reason for this distance is not addressed in [9] or in [8] where another
algorithm (of the same complexity) for this problem is given. In addition, the few
already known algorithmic results on these measures don’t seem to indicate that
they are likely to achieve a level of success comparable to treewidth, as no FPT
algorithms are known for any hard digraph problems. Of course, it could be con-
ceivable that this is due to a lack of effort so far, since digraph decompositions have
been introduced much more recently than treewidth.

A related measure is directed pathwidth. Just as pathwidth is a restriction
of treewidth in the undirected case directed pathwidth is a restriction of all the
previously mentioned directed measures, thus having even greater algorithmic
potential. However, to the best of our knowledge no such results have been
shown for directed pathwidth. In [1] it is shown that a cops-and-robber game
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is equivalent to directed path-width and that there always exists an (almost)
optimal monotone strategy. It is worthy of note that, unlike the undirected case
where treewidth and pathwidth are generalizations of different graph topologies
(trees and paths respectively) in the directed case all the measures we have
mentioned are based on the concept of DAGs as the simplest case.

Our Contribution. In this paper we try to address the question of whether the
already proposed digraph complexity measures will be able to match the success
of treewidth. Our answer is given in the form of two negative results, which
show that the lack of FPT algorithms for Directed Hamiltonian Circuit

and Max Di Cut is not due to a lack of effort, but because such algorithms can
not exist (under some widely believed complexity assumptions).

Our first result concerns Directed Hamiltonian Circuit which we show
to be W [2]-hard when the parameter is the width of the input graph for any
of the mentioned widths. Under the assumption that W [2] 
= FPT this implies
that no FPT algorithm is possible. Therefore, under this standard complexity
assumption, our result implies that no significant improvement is possible for
the O(nk) algorithms of [9] and [8].

Our second result concerns Max Di Cut, for which we show APX-hardness
even when we restrict the problem to DAGs and all edges have uniform weights.
This is a result that is interesting in its own right, and it is rather surprising
that it was not known until now, as Max Di Cut is a widely studied problem.
It is also very relevant in our case for two reasons: First, DAGs have the lowest
possible width for all the widths we have mentioned, therefore our proof implies
that none of them can help with Max Di Cut. Second, using (undirected)
treewidth leads to efficient FPT algorithms for both Max Cut and Max Di

Cut. Thus, this result helps draw further contrast between the performance of
treewidth and its directed variants.

Although our results are negative, they succeed in illuminating some funda-
mental weaknesses in the already proposed digraph measures, and thus they
show the way to a possible future digraph measure that might be able to over-
come them. Therefore, we believe that they serve as a starting point in a renewed
search for a successful digraph complexity measure that might yet manage to at
least partially match treewidth’s success.

The rest of this paper is structured as follows: In Section 2 we give some
necessary definitions and preliminary notions. In Section 3 we demonstrate the
hardness result for Directed Hamiltonian Circuit. In Section 4 we prove
the hardness of Max Di Cut. Finally, in Section 5 we conclude with some
discussion and directions to further research.

2 Definitions and Preliminaries

First, let us give the definitions of the two problems that will be our focus.

Definition 1. The Directed Hamiltonian Circuit problem is that of de-
ciding whether there exists a permutation (v1, v2, . . . , vn) of the vertices of an
input digraph G(V,E) s.t. ∀i ∈ {1, . . . , n− 1} (vi, vi+1) ∈ E and (vn, v1) ∈ E.
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Definition 2. The Max Di Cut problem is the following: given a digraph
G(V,E) and a weight function on the edges w : E → N, find a partition of V into
two sets V0 and V1 so that the weight of the edge set C = {(u, v) | u ∈ V0, v ∈ V1}
is maximized. That is, the objective is to maximize

∑
e∈C w(e).

Max Di Cut was shown APX-hard in [12]. In Section 4 we show APX-hardness
for the problem’s restriction to DAGs. Then we show that APX-hardness also
holds for the cardinality version of the problem restricted to DAGs.

We should also give the definitions of the two problems that will be the starting
points of our reductions.

Definition 3. Dominating Set is the problem of finding a minimum cardinal-
ity subset of vertices D of an undirected graph G(V,E) s.t. any vertex in V \D
has a neighbor in D.

When a vertex u ∈ D is a neighbor of a vertex v, we will say that u dominates
v. We will also follow the convention of saying that any vertex in D dominates
itself. We will make use of the well-known result that Dominating Set is W [2]-
complete when the parameter k is the size of the dominating set we are looking
for ([6]).

Definition 4. NAE3SAT is the problem of finding a truth assignment which,
for every clause of an input 3CNF formula, assigns the value true to at least one
literal, and the value false to at least one literal.

We follow the convention of saying that a clause is satisfied in the NAESAT

sense, or simply satisfied, when a truth assignment assigns different truth values
to two of its literals. We will mainly be concerned with the maximization version
of NAE3SAT where the objective is to find a truth assignment that satisfies as
many clauses as possible. This variant was shown to be APX-hard in [12].

We have already mentioned that directed pathwidth can be defined in terms
of a cops-and-robber game. The game’s definition is the following:

Definition 5. The k-cop invisible-eager robber game is the game where k cops
attempt to catch an invisible robber hiding in a vertex of a digraph G. The cops
are stationed on vertices of G and a cop can move by removing himself from the
graph and then “landing” on any other vertex. The robber can move at any time
and he is allowed to follow any directed path of G, under the condition that he
does not enter vertices occupied by stationary cops.

We say that k cops have a monotone strategy to win this game when they have
a strategy such that the robber can never visit a vertex previously occupied by
a cop. In [1] it was shown that k cops have a monotone strategy on a graph G
iff the graph has directed pathwidth k.

Kelly-width, DAG-width and directed treewidth have also been shown to be
connected to similar games, restricted to monotone strategies. In fact, DAG-
width is equivalent to the above game but with the robber being visible, while
kelly-width is equivalent to the above game but with the robber only being
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allowed to move when a cop enters his vertex. Using the approximate connection
between directed treewidth and a similar game it was shown in [8] that the
directed treewidth of a graph is upper-bounded by its kelly-width multiplied by
a constant.

It is not hard to infer from these results that, since the robber is stronger in
the game related to directed pathwidth, a graph G will have higher pathwidth
than any of the other widths. Since we are interested in proving hardness results,
it will therefore suffice to show that a problem is hard for graphs of small directed
pathwidth and hardness for the other widths will directly follow.

3 Directed Hamiltonian Circuit

In this section we focus on the Directed Hamiltonian Circuit problem, a
problem which can be solved using directed treewidth in O(nk) time ([9]). Of
course this algorithm also applies to DAG-width, kelly-width and directed path-
width, as they are restrictions of directed treewidth. In addition, another O(nk)
algorithm for this problem tailored for kelly-width is given in [8]. Thus, a signif-
icant gap exists between the performance of treewidth, which is fixed-parameter
polynomial on the corresponding undirected problem and the performance of
its directed variants. We show that this is a gap that can not be bridged un-
less W [2] = FPT , by demonstrating that Directed Hamiltonian Circuit is
W [2]-hard when the parameter is any of these widths.

The hardness proof for Directed Hamiltonian Circuit will be a param-
eterized reduction from the naturally parameterized version of Dominating

Set.

Theorem 1. The parameterized versions of Directed Hamiltonian Cir-

cuit, where the parameter is the directed treewidth, kelly-width, DAG-width or
directed pathwidth of the input graph, are W [2]− hard.

Proof. We will show a parameterized reduction from the naturally parameterized
version of Dominating Set, where the parameter k is the size of the set by
constructing a digraph whose directed pathwidth is bounded by a function of k
s.t. the digraph will be Hamiltonian iff the original graph had a dominating set
of size k.

Suppose we are given a graph G(V,E) with V = {1, 2, . . . , n}.
Our digraph G′ has vertex set V ′ = V1 ∪ V2 ∪ V3 where

1. V1 = {u1, u2, . . . , uk}.
2. V2 = {v1, v2, . . . , vn}.
3. V3 = {g(i,j,l) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}, l ∈ {In,Out}}. Here d(i)

denotes the degree of vertex i in G.

E(G′) consists of the following sets of directed edges

1. E1 = {(ui, vj) | i ∈ {1, . . . , k}, j ∈ {1, . . . , n}}.
2. E2 = {(vi, vi+1) | i ∈ {1, . . . , n}} (where we considern+1 to be the same as 1).
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3. E3 = {(g(i,j,In), g(i,j+1,Out)) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}}, (where we
consider d(i) + 1 to be the same as 0).

4. E4 = {(g(i,j,Out), g(i,j,In)) | i ∈ {1, . . . , n}, j ∈ {0, . . . , d(i)}}.
5. Finally, E5 contains the following edges: For any vertex a of the original

graph, let j0, j1, . . . , jd(a) be the vertices of G a dominates in lexicographic
order. Also, let p(a, i) denote the number of vertices that dominate a vertex
i and come before a in lexicographic order. Then the edge (va, g(j0,p(a,j0),In))
and the edges (g(ji,p(a,ji),Out), g(ji+1,p(a,ji+1),In)) for all i < d(a) are included
in E5. Finally, the edges (g(jd(a),p(a,jd(a)),Out), ui) for all i ∈ {1, . . . , k} are
also included in E5.

Let us now discuss the basic idea behind this construction, before we get
into more details. Our digraph G′ consists of three parts: a constraint part V1,
a choice part V2 and a satisfaction part V3. V1 functions as a constraint part
because it only has k vertices and the only edges going into V2 originate here,
thus forcing us to enter the choice part exactly k times. A Hamiltonian tour
will leave V2 k times. The vertices from which it leaves V2 must be (as we will
prove) a dominating set of G, and that is why V2 is the choice part. Finally, V3
is arranged in such a way that it can only be traversed in a Hamiltonian way if
the choice made in V2 is indeed a dominating set.

We will call the group of vertices g(i,j,l) for a specific i, the gadget Ci. The
crucial part of this reduction is the way the gadget Ci works. Notice that the
gadget’s vertices induce a directed cycle. Also, the only way to enter this cycle
is through an In vertex, and the only way to leave is through an Out vertex.
Suppose that a Hamiltonian tour enters a gadget Ci m times and that X ⊆
{0, . . . , d(i)} is the index set of the In vertices that were used. Then it must
also be the index set of the Out vertices used. To see that, suppose that X =
{j1, j2, . . . , jm} in lexicographic order. When entering from g(i,j1,In) the tour has
no choice but to proceed to g(i,j1+1,Out). Then if j2 
= j1 +1 the tour must move
to g(i,j1+1,In), because if it were to exit this vertex would be impossible to visit
in the future. Using this argument again can exclude the possibility of this part
of the tour exiting through any vertex other than g(i,j2,Out). Similarly, the path
that starts at g(i,j2,In) will exit at g(i,j3,Out) and so on, with g(i,jm,In) exiting
through g(i,j1,Out). This procedure covers all the vertices of the gadget, therefore
we proved that for any set of entry vertices X the gadget can be traversed in
a way that does not exclude the existence of a Hamiltonian tour of the whole
graph iff X corresponds also to the exit vertices used.

Let us now make use of the property we just established. Suppose that G
does not have a dominating set of size k, but that a Hamiltonian tour of G′

exists. Let D be the set of choices made by the tour in V2, i.e. the set of vertices
through which the tour exits V2. The selection of the corresponding set in G
leaves some vertex not dominated, say vertex i. Consider the gadget Ci. It can
not be entered directly from a vertex in V2, since none of the vertices from which
we exited V2 corresponds to one that dominates i. Also, if all the other gadgets
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are traversed in a way that does not exclude a Hamiltonian cycle, we established
above that the set of entry indices in each is the same as the set of exit indices.
Thus, if the set of input indices into a gadget Cj corresponds to its domination
by some vertices in D, the tour when exiting Cj will be led to other gadgets
also corresponding to dominated vertices, and therefore it will not be lead to Ci.
Thus, we have a contradiction and no Hamiltonian tour is possible.

It remains to establish the converse, namely that a dominating set of size k
implies a Hamiltonian tour. Let D = {d1, d2, . . . , dk} be a dominating set. Let
us first describe the tour outside the gadgets. Starting at u1, move to vdk+1
(once again, vn+1 is the same as v1) and then follow the edges in V2 until vd1 is
reached. Then we exit V2 towards the gadgets. When we reach an Out gadget
vertex that points to V1 we move to u2. From there we move to vd1+1, then to
vd2 and so on. This procedure makes sure that, even though we enter V2 only k
times, all of its n vertices are covered.

Now, suppose that our path has reached a gadget vertex g(i,j,In). This means
that we are following an edge that “belongs” to the j-th vertex of G that could
dominate vertex i. Call this vertex x. Take the first vertex in D that dominates
i and comes lexicographically after x. Suppose that this is the j′-th vertex that
can dominate i overall. (If there is no such vertex in D that dominates i and
comes after x take the first vertex in D that dominates i). Now, the traversal
of gadget Ci will be g(i,j,In) → g(i,j+1,Out) → g(i,j+1,In) → . . . → g(i,j′,Out),
from which point we exit the gadget. (Note that j and j′ need not necessarily
be distinct for the above argument to work).

Let us now prove this is indeed a Hamiltonian tour. It is not hard to see that
all vertices of V1 and V2 are visited exactly once, leaving the gadgets as the hard
part of this proof. The proof will be by induction. For gadget C1 we know that
it is entered directly from V2 only (1 is always the first vertex lexicographically
that any other vertex dominates). Observe that the tour we suggested is just
a restatement of the reasoning we made on how gadgets work. Then it is not
hard to see that, no matter which vertices of D dominate 1, C1 will be traversed
correctly. The problem is that paths have been now “shifted”, i.e. when entering
from the entry point of the i-th vertex that dominates 1 we exit from the exit
point of the (i+1)-th vertex that dominates 1. Therefore, we will make a proof by
induction. Suppose that we know that the tour we suggested visits the vertices
of gadgets C1, . . . , Ci exactly once and that the entry and exit points for each
gadget correspond to the vertices of D that dominate the vertex this gadget
represents. Now consider the gadget Ci+1. It is only entered using edges that
“belong” to vertices of D, because of the inductive hypothesis. Suppose that one
of its vertices is visited twice. Then, one of its entry points must be used twice,
meaning that an exit of a previous gadget or a vertex of V2 is visited twice, a
contradiction. Now, suppose that the vertices of D that dominate vertex i+1 are
the j1-th, the j2-th, and so on of the vertices that could dominate i+1 overall. Our
tour must visit vertex g(i+1,j1,In), because the vertex of some previous gadget
that point to it is used as an output point (by the inductive hypothesis). Similar



On the Algorithmic Effectiveness of Digraph Decompositions 227

arguments hold for j2 and so on, leading us to conclude that all appropriate
entry points are used and gadget Ci+1 is traversed correctly.

Finally, what is left is to argue that G′ has low directed pathwidth. Consider
the following cop strategy for the robber game: Keep k cops on the vertices of
V1 at all times. Now 2 cops are enough to clean V2, since it is just a directed
cycle with edges going out to V3 but no other incoming edges. Then, these two
cops can clean gadget C1 for the same reasons. After that, they can clean C2
and so on, until the whole graph is clean. �

4 Max Di Cut

Let us now focus on a problem of much different nature: Max Di Cut. Even
though, as we saw in Section 3, no digraph complexity measure manages to pro-
vide an FPT algorithm for Directed Hamiltonian Circuit, they do succeed
in providing algorithms with polynomial running times, when the width k is
fixed. For Max Di Cut the situation is much worse, as we will show that the
problem is NP-hard even for k = 1. This creates an even larger gap with the FPT
performance of treewidth than we had in the case of Directed Hamiltonian

Circuit.
We will prove that Max Di Cut is both NP and APX-hard, even when

restricted to DAGs by showing a reduction from the maximization version of
NAE3SAT.

Theorem 2. Max Di Cut is NP-hard and APX-hard, even when restricted to
DAGs.

Proof. We give a gap-preserving reduction from NAE3SAT to Max Di Cut.
Given a NAE3SAT formula φ with m clauses and n variables we construct a

new NAE3SAT formula φ′ with 2m clauses and n variables and show that φ is
satisfiable iff φ′ is satisfiable (satisfaction is in the NAESAT sense). Then from
φ′ we construct a (weighted) DAG G and show that φ′ is satisfiable iff G has a
directed cut of size 46m. Without loss of generality, we may assume that every
clause of φ has exactly three literals (otherwise we may repeat one).

The new formula φ′ is constructed by taking φ and adding to it, for every
clause (l1 ∨ l2 ∨ l3), the same clause with all literals complemented. If an assign-
ment satisfies t clauses of the original formula, it must satisfy exactly 2t of the
2m clauses of φ′. Note that, if we denote by fi the number of appearances of the
variable xi in φ, then the same variable will appear 2fi times in φ′: fi times as
xi and fi times as ¬xi. In other words, the positive and negative appearances of
each variable in φ′ are balanced. We will make use of this fact several times.

Let us now construct the DAG G(V,E). V consists of four disjoint sets of
vertices A,X,C,B. A = {a1, . . . , an} will be a set of source vertices. B =
{b1, . . . , b2m} will be a set of sink vertices. X = {x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n} will

be the set of vertices corresponding to literals of φ′ while C = {ci,j,k | i ∈
{1, 2, . . . , 2m}, j, k ∈ {1, 2, 3}} will correspond to the clauses of φ′.
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E consists of the following sets of weighted edges:

1. The set E1 = {(ai, xi) | i ∈ {1, . . . , n}}. Each of these edges has weight 6fi,
where fi is the total number of appearances of the variable xi in φ.

2. The set E2 = {(xi, x
′
i) | i ∈ {1, . . . , n}}. Each of these edges also has weight

6fi.
3. The set E3 = {(ci,j,k, bi) | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 
= k}. These

have weight 1.
4. The set E4 = {(ci,k,k, ci,j,k | i ∈ {1, . . . , 2m}, j, k ∈ {1, 2, 3}, j 
= k}. These

also have weight 1.
5. Finally, we add edges that connect vertices of the set X to the corresponding

vertices of C. That is, we add the edges {(xl, ci,j,k), k ∈ {1, 2, 3}} when the
literal xl appears in the j-th position of the i-th clause of φ′, and the edges
(x′

l, ci,j,k) when the literal ¬xl appears in that position. These edges have
weight 2.

Suppose we are given a truth assignment that satisfies (in the NAESAT

sense) t of the m clauses of φ. It must satisfy 2t of the 2m clauses of φ′. Let us
partition V into V0 and V1. Place all vertices of A into V0 and all vertices of B
into V1. Place the vertices of X that correspond to true literals in V1 and the
rest in V0. Place the vertices of C that correspond to true literals in V0 and the
rest in V1.

Let us calculate the weight of this cut. If a variable xi is assigned the value 1
in the assignment, the edge (ai, xi) contributes 6fi to the cut. If it is assigned 0,
then x′

i is in V1, therefore the edge (xi, x
′
i) contributes 6fi to the cut. Thus, the

total contribution of all edges in E1 ∪E2 is 6
∑

i fi. Because the appearances of
each variable in φ′ are balanced, there are as many literals that took the value
true as there are literals that took the value false, in any assignment. Therefore,
exactly half the edges of E3 contribute to the cut. The number of edges in E3
is 12m so, a weight of 6m is contributed to the cut. It is not hard to see that,
for a satisfied clause Ci, the edges of E4 incident on vertices that correspond to
this clause contribute exactly 2 to the cut. On the other hand, the edges of E4
incident on vertices of C that correspond to a clause that is not satisfied will
contribute 0 to the cut, since all these vertices correspond to literals with the
same truth value and are therefore on the same side of the partition. Thus, we
get a total of 4t contributed to the cut, since 2t clauses are satisfied. Finally, once
again because of the balancing of φ′, exactly half of the edges of E5 contribute
to the cut: those incident on vertices of X that we placed in V0, i.e. vertices that
correspond to false literals. Since the weight of each such edge is 2, this adds up
to a total contribution of 2

∑
i fi.

Thus, the total size of the cut is 6
∑

i fi + 6
∑

i fi + 2
∑

i fi + 4t. But, since
every clause of φ had exactly three literals,

∑
i fi = 3m. Therefore, the weight

of the cut is 42m+4t, which is equal to 46m when the truth assignment satisfies
every clause of φ.

Now for the other direction, suppose we are given a partition of V into V0 and
V1. We will show that we can transform such a cut into a cut of the previous
form, thus obtaining a truth assignment. First, observe that for any optimal cut
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A ⊆ V0 and B ⊆ V1, because it is always optimal to place a source in V0 and a
sink in V1. Now, suppose that in the cut we are given, for some i, xi, x

′
i ∈ V0.

Then place x′
i in V1 and this will not make the cut smaller because now the edge

(xi, x
′
i) contributes to the cut and its weight is exactly as much as the weight

of all other edges incident on x′
i. Also, if xi, x

′
i ∈ V1 place xi in V0. This can

not make the cut smaller, since the only edge lost is (ai, xi) and its weight is
the same as that of (xi, x

′
i) which now enters the cut. Therefore, we have now

made sure that for all i, xi and x′
i are on different sides of the partition, without

decreasing the size of our cut.
Consider now a vertex ci,j,j . We know that there exists an edge (xi, ci,j,j) (or

an edge (x′
i, ci,j,j)) of weight 2, which is as much as the weight of all other edges

incident on ci,j,j . Therefore, if xi (resp. x′
i) is in V0, then we can place ci,j,k in

V1 without decreasing the size of the cut. Otherwise, we can place ci,j,j in V0,
because the edge of weight 2 can not be included in the cut by changing the
side of ci,j,j only, and therefore placing it in V0 is not worse because this way we
may also include some of the other edges in the cut. This establishes that every
vertex ci,j,j is on a different side of the partition from its predecessor in X .

Finally, consider a vertex ci,j,k, j 
= k. If its predecessor in X is in V0 we can
place it in V1 without decreasing the size of the cut, because then the edge of
weight 2 is included. Otherwise we can place it in V0, and this will include the
edge (ci,j,k, bi) in the cut. This does not decrease the size of the cut, since the edge
of weight 2 was not included anyway, therefore we might at most lose the other
edge incident on this vertex, which also has weight 1. This establishes that each
of the remaining vertices of C is also on different a different side of the partition
from its predecessor in X .

Now, observe that starting with any given cut, we have transformed it into a
cut of a special form, without decreasing its size. From this cut we can construct
a truth assignment: set to true the literals corresponding to vertices in X that
we placed in V1. This is a valid assignment, since exactly one of xi, x

′
i is in V1.

Also, if we repeat the process of the first direction of this reduction starting from
this assignment we will get the same cut. Therefore, we have shown that there
is a truth assignment that satisfies t of the m clauses of φ iff there is a cut in
the DAG G of size at least 42m + 4t. Thus,

OPTNAESAT (φ) = m ⇒ OPTMDC(G) = 46m

OPTNAESAT (φ) < (1− ε)m ⇒ OPTMDC(G) ≤ (1− 2ε
23

)46m �

It is not hard to extend the results of the previous theorem to the cardinality
version of Max Di Cut, that is, the version where all edges have the same
weight.

Theorem 3. Cardinality Max Di Cut is NP and APX-hard, even when re-
stricted to DAGs.

Proof. First, observe that all the edge weights used in the proof of Theorem 2 are
polynomially (in fact linearly) bounded by the size of the original NAE3SAT
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formula. Thus, if we extend the problem’s definition to include multigraphs, we
can replace every edge of weight w by w parallel edges of weight 1. It is not hard
to see that this does not affect the rest of the proof.

Now, let us show how to eliminate parallel edges. For each edge (u, v) introduce
a directed path of length 3 u,w1, w2, v where w1 and w2 are new vertices. Observe
that, if u is assigned 0 and v is assigned 1, then it is possible to include 2 of the
3 edges of the path in the cut, by assigning 0 to w2 and 1 to w1. However, any
other assignment to u and v ensures that at most 1 of the three edges can be
included in the cut, and in fact this is always possible by assigning 0 to w1 and
1 to w2. Thus, it is not hard to see that the reduction’s arguments can now be
applied with little modification.

Corollary 1. Max Di Cut is NP-hard and APX-hard even when restricted to
graphs of bounded directed treewidth, DAG-width, kelly-width or directed path-
width.

Proof. The proof is immediate, because DAGs have width 1 under the definitions
of all these widths.

5 Conclusions and Further Work

Discussion of Results. In this paper we have presented two hardness results
affecting all known generalizations of treewidth to digraphs as well as directed
pathwidth. It may be worthwhile at this point to discuss why such results hold
for the directed cousins of treewidth, when in the undirected case there has been
such a huge success.

First, the hardness result for Max Di Cut, gives us one indication why such
hardness results hold. The reason is simply that for some problems DAGs are
not really an “easy” topology, as trees are in the undirected case. Therefore, it
would probably make sense in the future to focus research on directed treewidth
variants on generalizations of a graph topology that is even simpler than a DAG.
A further clue is given in this direction by the fact that DAGs (surprisingly) are
the base case for both directed pathwidth and the three treewidth variants we
considered. One would probably expect pathwidth and treewidth to be based on
different graph topologies.

On the other hand, directed treewidth variants have had some success with
path-based problems, such as Directed Hamiltonian Circuit. For such prob-
lems, DAGs usually are indeed the trivial case and it makes sense to design
a width as a generalization of DAGs. However, we showed that none of the
currently known widths (including directed pathwidth) is restrictive enough to
provide for an FPT algorithm for Directed Hamiltonian Circuit.

Therefore, we believe that our results may suggest that in the directed case
things may be more complicated and possibly no “right” complexity measure
exists. On one hand, it would probably make sense to explore the possibility of a
width (not based on DAGs) that can solve Max Di Cut and similar problems,
while still being more general than undirected treewidth. And on the other hand,
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a more realistic goal might be to attempt to refine the definition of some of the
already known widths (which are based on DAGs) in order to make it restrictive
enough to solve Directed Hamiltonian Circuit and related path problems
in FPT time.
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Abstract. Let G = (V G, AG) be a digraph and let S �T be a biparti-
tion of V G. A bibranching is a subset B ⊆ AG such that for each node
s ∈ S there exists a directed s–T path in B and, vice versa, for each
node t ∈ T there exists a directed S–t path in B.

Bibranchings generalize both branchings and bipartite edge covers.
Keijsper and Pendavingh proposed a strongly polynomial primal-dual
algorithm that finds a minimum weight bibranching in O(n′(m+n log n))
time (where n := |V G|, m := |AG|, n′ := min(|S| , |T |)).

In this paper we develop a weight-scaling O(m
√

n log n log(nW ))-
time algorithm for the minimum weight bibranching problem (where W
denotes the maximum magnitude of arc weights).

1 Introduction

In a directed graph G, the sets of nodes and arcs are denoted by V G and AG,
respectively. A similar notation is used for paths, cycles, and etc.

Consider a digraph G and a fixed bipartition S 
 T of V G. A subset B ⊆ AG
is called a bibranching if the following conditions are met:

– for each s ∈ S, set B contains a directed path from s to some node in T ;
– for each t ∈ T , set B contains a directed path from some node in S to t.

Bibranchings were introduced in [Sch82]. In the present paper we study the
minimum weight bibranching problem, which is formulated as follows:

(BB) Given G, S, T , and arc weights w : AG→ R+, find a bibranching B
whose weight w(B) is minimum.

Hereinafter we assume that every real-valued function f : U → R is additively
extended to the family of subsets of U (denoted by 2U ) by f(A) :=

∑
a∈A f(a).

In particular, w(B) denotes the sum of weights of arcs in B.
Minimum weight bibranchings provide a common generalization to a pair of

well-known combinatorial problems. Firstly, if S = {s} then (BB) asks for a
minimum weight s-branching (a directed tree rooted at s that covers all nodes
of G). An O(m + n logn) algorithm for the latter task is known [GGSR86]
� Supported by RFBR grants 05-01-02803 and 06-01-00122.
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(here n := |V G| and m := |AG|; we are assuming throughout the paper that
n ≤ m ≤ n2). Another special case arises when graph G only contains S–T
arcs (but no T –S, S–S, or T –T arcs). Then the definition of a bibranching
reduces to that of a bipartite edge cover. The minimum weight bipartite edge
cover problem (call it (EC) for brevity) seems to be harder: no strongly polyno-
mial o(mn)-algorithm is known so far. Problem (EC) can be solved by finding a
maximum weight bipartite matching in O(n′(m + n logn)) time [FT87] (where
n′ := min(|S| , |T |)). Keijsper and Pendavingh [KP98] generalized the latter
shortest-path augmentation method to solve (BB) in the same time bound.

On the other hand, many optimization problems may be solved faster if
weights are known to be integral. The corresponding algorithms are based on
scaling technique and achieve time bounds that are, in a sense, better than of
their strongly-polynomial counterparts. A typical example is a scaling algorithm
for bipartite matching problems [GT89], which runs in O(m

√
n log(nW )) time

(hereinafter W denotes the maximum magnitude of weights). The latter ap-
proach can also be adopted to solve (EC) and leads to an algorithm with the
same time bound.

Similar ideas are also applicable to general min-cost flow problems [GT87].
However, when the structure of dual solutions becomes non-trivial (i.e. when one
needs exponentially many dual variables) the algorithm and its complexity anal-
ysis may become much more involved. A good example is the minimum weight
perfect matching problem in general (non necessarily bipartite) graphs, which is
solved by Gabow and Tarjan in O(m

√
nα(m,n) log n log(nW )) time [GT91].

Since (BB) involves solving a linear program with inequalities corresponding
to all possible subsets of S and T , our approach is of no exception. We present an
O(m

√
n logn log(nW ))-time weight scaling algorithm for (BB). It is based on

the general notion of ε-optimality (see, e.g., [GT87]), the augmentation proce-
dure from [KP98], and attracts some additional combinatorial ideas to deal with
dual solutions during scaling steps. Also, a variant of the blocking augmentation
technique [Din80] is employed.

Note that the complexity of our algorithm coincides (up to a logarithmic
factor) with that of the best known scaling algorithm [GT89] for solving a special
case of (BB), namely (EC).

The rest of the paper is organized as follows. Section 2 gives the needed
formal background and introduces the linear programming formulation of (BB).
Section 3 and Section 4 outline a high-level description of the algorithm. Section 5
bounds the number of primal and dual steps performed by the algorithm. Due
to lack of space some technical proofs and implementation details are omitted
and will appear in the full version of the paper.

2 Preliminaries

First, we need some additional definitions and notation. Let G be a digraph and
X be a subset of nodes. Then δin

G (X) (resp. δout
G (X) and γG(X)) denotes the set

of arcs entering X (resp. leaving X and having both endpoints in X). When it is
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clear from the context which graph G is meant, it is omitted from the notation.
Also, when X = {v} we drop curly braces and write just δin(v) and δout(v).

For a graph G and a subset X ⊆ V G let G[X ] denote the subgraph of G
induced by X (i.e. the graph obtained from G by removing all nodes in V G−X).

Consider a bipartition S 
 T of V G. For a subset X ⊆ S we put δ(X) :=
δout(X), similarly for X ⊆ T we put δ(X) := δin(X). If a ∈ δ(X) then arc a is
said to cover X . For a set A ⊆ AG, the set of nodes covered by A is defined as
the union of the sets of nodes covered by the individual elements of A. Clearly,
(BB) prompts for a minimum weight subset B ⊆ AG that covers every subset
in 2S ∪ 2T .

Let us introduce an important notion of graph contraction. To contract a set
U ⊆ V H in a graph H means to replace nodes in U by a single complex node (also
denoted by U). Arcs in γ(V H − U) are not affected, arcs in γ(U) are dropped,
and arcs in δin(U) (resp. δout(U)) are redirected so as to enter (resp. leave) the
complex node U . The resulting graph is denoted by H/U . Note that this graph
may contain multiple parallel arcs. We identify arcs in H/U with their pre-images
in H . If H ′ is obtained from H by an arbitrary sequence of contractions, then
H ′ = H/U1/ . . . /Uk for a certain family of disjoint subsets U1, . . . , Uk ⊆ V H
(called the maximal contracted sets). Each node in H ′ corresponds to a subset
of nodes in H : nodes v ∈ V H − (U1 ∪ . . . ∪ Uk) correspond to singletons {v},
complex nodes correspond to sets Ui.

For a set A ⊆ AG, we shall write ASS , AST , and ATT to denote the sets
of S–S, S–T , and T –T arcs in A, respectively. Note that any minimum weight
bibranching need not contain T –S arcs (as their removal preserves the required
connectivity and can only decrease the total weight). Hence, we shall assume
that graph G contains no T –S arcs.

We call a bibranching B canonical if every its proper subset B′ ⊂ B is not a
bibranching. The following observations are easy:

Fact 1. For each bibranching B there exists and can be found in O(m) time a
canonical bibranching B′ ⊆ B.

Fact 2. Any canonical bibranching contains at most n arcs.

Consider the following linear program:

(P) minimize
∑

(w(a)x(a) : a ∈ AG)
subject to x : AG→ R+,

x(δ(X)) ≥ 1 for each X ∈ 2S ∪ 2T .

The program dual of (P) is:

(D) maximize
∑(

π(X) : X ∈ 2S ∪ 2T
)

subject to π : 2S ∪ 2T → R+,
wπ(a) ≥ 0 for each a ∈ AG.

Here wπ := w − ϑπ are the reduced weights of arcs w.r.t. π, and the function
ϑπ : AG→ R+ is defined by

ϑπ(a) :=
∑

(π(X) : a covers X) .
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It is known [Sch03] that (P) describes the upper convex hull of the incidence
vectors of all bibranchings in G. Hence, finding a bibranching of the minimum
weight (under the assumption w ≥ 0) amounts to finding a 0,1-solution to (P).

Weak duality for (P) and (D) implies that
∑

a w(a)x(a) ≥
∑

X π(X) holds for
every pair of admissible solutions x and π. By strong duality, the latter turns into
equality if x and π are optimal. Moreover, (P) is known [Sch03] to be totally dual
integral, that is, if all weights w are integers then there exists an optimal dual
solution π that is integer. Hence, the polyhedron determined by (P) is integral.

The complementary slackness conditions for (P) and (D) (giving an optimality
criterion for solutions x and π to these programs) are viewed as:

(1) if x(a) > 0 for a ∈ AG then wπ(a) = 0;

(2) if π(X) > 0 for X ∈ 2S ∪ 2T then x(δ(X)) = 1.

For a set B ⊆ AG and a function π : 2S ∪ 2T → R+ we say that B is π-
consistent if π(X) > 0 implies |B ∩ δ(X)| ≤ 1 for each X ∈ 2S∪2T . Consistency
is closely related to the complementary slackness conditions, in particular, if B
is a bibranching then its π-consistency is just (2).

Fact 3. For an arbitrary function π : 2S ∪2T → R+ and a set B ⊆ AG one has

ϑπ(B) ≥
∑

(π(X) : B covers X) .

Additionally, if B is π-consistent then the above inequality turns into equality.

3 Algorithm

Recall that a family F of subsets is called laminar if for any X,Y ∈ F one either
has X ⊆ Y , or Y ⊆ X , or X ∩ Y = ∅. Also, let supp (f) denote the support set
of a function f , i.e. {x | f(x) 
= 0}.

The algorithm maintains a laminar family F ⊆ 2S∪2T and a function π : 2S∪
2T → Z+. For X ∈ F , the shell S(X) of X is the graph obtained from G[X ]
by contracting all proper maximal subsets Y ⊂ X , Y ∈ F . Let G denote the
graph obtained by contracting all maximal sets of F in G. Put S (resp. T ) to be
the image of S (resp. T ) in G under these contractions. Let S0

π(X) denote the
subgraph of S(X) consisting of arcs a with wπ(a) = 0.

For a set of nodes Y in G (or in S(X) for X ∈ F) we write Ỹ to denote the
corresponding pre-image subset in V G. When Y = {y} we write just ỹ instead
of {̃y}.

We introduce the following set of properties:

(D1) F is laminar and supp (π) ⊆ F ;
(D2) S0

π(X) is strongly connected for each X ∈ F ;
(D3) wπ(a) ≥ 0 for all a ∈ AG.

Property (D3) is just the feasibility of a dual solution π while (D1) and (D2)
introduce some additional structural requirements for π.
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Next, the algorithm maintains a subset B ⊆ AG, which will be referred to as
a partial bibranching. Consider the following properties:

(P1) set BSS (resp. BTT ) forms a directed out- (resp. in-) forest in G[S] (resp.
in G[T ]), each arc in BST covers a pair of roots of the said forests;

(P2) if a ∈ BSS ∪BTT then wπ(a) = 0; if a ∈ BST then wπ(a) ≤ 1;
(P3) if v ∈ V G is covered by more than one arc in B then π(ṽ) = 0 (c.f. (2)).

Here by an in- (resp. out-) forest we mean an acyclic set of arcs X such that
for each node v at most one arc in X enters (resp. leaves) v. If no arc in X enters
(resp. leaves) node v then v is said to be a root of X .

Property (P1) is required mostly by technical reasons that will become evident
later. Property (P2) may be regarded as a relaxation of (1) and (P3) directly
corresponds to (2).

The algorithm employs bit scaling and works as follows. Let w0 : AG → Z+
denote the input weight function. The algorithm starts with w := 0, π := 0,
F := ∅ and puts B to be an arbitrary bibranching in G obeying (P1) (the latter
can be found in O(m) time by an obvious routine). In case B does not exist, the
algorithm halts.

Each scaling step takes a weight function w from the previous iteration, a
bibranching B ⊆ AG in G, a function π, and a collection F altogether obeying
properties (D1)–(D3), (P1)–(P3). The weights w(a) are doubled and some of
them are increased by 1 (namely, those having 1 at the corresponding position
of the binary representation of w0(a)). Changing weights w may lead to violation
of the above properties so the goal of the scaling step is to restore them. The
necessary details will be given in Section 4.

Lemma 1. Suppose that the current scaling step is complete, so properties
(D1)–(D3), (P1)–(P3) hold for F , π, and B. Also, let B be a bibranching
in G. Then there exists a canonical π-consistent bibranching B in G such that:
(i) w(B) ≤ w(B), (ii) wπ(a) = 0 for each a ∈ BSS ∪BTT ; and (iii) wπ(a) ≤ 1
for each a ∈ BST .

Proof. Firstly, with the help of Fact 1 set B is turned into a canonical bibranch-
ing in G by removing some arcs. Next, let X ∈ F be one of the maximal con-
tracted sets in V G. We describe procedure Expand(X) that extends B into the
shell S(X). For simplicity’s sake suppose X ⊆ S, the other case is symmetric.
Remove X from F thus partly uncontracting graph G. Let X ′ denote the set
of nodes in new G arising from X during this uncontraction. Let R denote the
set of nodes in X ′ that are covered by arcs in B. One has R 
= ∅ since B was
a bibranching before set X got removed from F . We grow an out-forest F in
the subgraph G[X ′] such that: (i) R is the set of roots of F ; (ii) V F = X ′; (iii)
wπ(a) = 0 holds for each a ∈ AF . Property (D2) shows that this forest always
exists. Now we add the arcs of F to B. Clearly, the new set B is a canonical
bibranching in G.

Applying Expand to the elements of F (in an appropriate order) one gets a
bibranching B in G that obeys the required properties.
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Weights w are iteratively scaled, as explained above, until achieving the equality
w = w0. Totally it takes �logW � scaling steps. Next, we put t := �logn�+1 and
perform t additional scaling steps, doubling w each time. Finally, the algorithm
applies Lemma 1 to construct the final bibranching in G.

Let us prove that this general scheme is correct. Put Π :=
∑

X π(X) and
estimate the weight of an optimal bibranching as follows.

Lemma 2. Property (D3) implies w(B) ≥ Π for any bibranching B in G.

Proof. By definition B covers each subset in 2S∪2T . Hence, by Fact 3 and (D3)
one has w(B) = wπ(B) + ϑπ(B) ≥

∑
X π(X) = Π , as required.

Lemma 3. If B is a canonical bibranching in G and properties (P2) and (P3)
hold (for G := G, B := B) then w(B) ≤ Π + n.

Proof. By Fact 2, Fact 3, and property (P2) one has w(B) = wπ(B)+ϑπ(B) ≤
n +

∑
X π(X) = n + Π .

Theorem 4. The algorithm constructs a minimum weight bibranching.

Proof. Let B, w, and π denote the corresponding objects after the last scaling
step. Put B to be a canonical bibranching obtained from B by Lemma 1. Let
Bmin be a minimum weight bibranching (w.r.t. w or, equivalently, w0). One may
assume by Fact 1 that Bmin is canonical. Lemma 2 and Lemma 3 imply that
w(Bmin) ≥ Π and w(B) ≤ Π + n, so w(Bmin) ≤ w(B) ≤ w(Bmin) + n. Recall,
each of the last t scaling steps doubles arc weights. Since all initial weights w0
are integers, w(a) is divisible by 2t for each a ∈ AG. Hence, so is w(B). The
choice of t implies n < 2t, therefore w(B) = w(Bmin), so B is optimal.

4 Scaling Step

Each scaling step consists of the following four stages: doubling stage, shell stage,
ST stage, and TS stage.

First, the doubling stage is executed: arc weights w are multiplied by 2 and
some of them are increased by 1, as described in Section 3. Also, duals π are
doubled. Put F := supp (π) and B := ∅ (hence, any previous bibranching is
discarded). As earlier, let G denote the graph obtained from G by contracting
all maximal sets in F . Obviously, properties (D1), (D3), (P1)–(P3) now hold.
One needs to solve the following two tasks:

– restore property (D2) by ensuring that graphs S0
π(X), X ∈ F , are strongly

connected;
– construct a bibranching B in G obeying properties (P1)–(P3).

The shell stage is executed to deal with (D2). The algorithm scans the sets
in F choosing an inclusion-wise minimal unscanned set at each iteration. Let
X ∈ F be the current set to be scanned. Procedure Normalize-Shell(X) is
called to adjust duals π and ensure (D2) for X or remove X from supp (π) (and
hence also from F).
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Suppose X ⊆ S, the case X ⊆ T is analogous. Normalize-Shell performs a
series of iterations similarly to the minimum weight branching algorithm [Edm67,
GGSR86].

More precisely, it maintains a directed out-forest FS containing all nodes
of X and consisting of some arcs a with wπ(a) = 0. Initially V FS := V S(X)
and AFS := ∅. If S(X) is a single node graph then property (D2) is restored
for X , Normalize-Shell(X) terminates. Otherwise, an arbitrary tree W in FS

is picked. Let r be the root of W . Suppose that all arcs leaving r (in S(X)) have
positive reduced weights. Put

µ1 := min
(
wπ(a) : a ∈ δout

S(X)(r)
)
, µ2 := π(X), µ := min(µ1, µ2).

Adjust the duals as follows:

π(r̃) := π(r̃) + µ,
π(X) := π(X) − µ.

These adjustments decrease the reduced weights of all arcs in S(X) leav-
ing r by µ. Also, r̃ is added to supp (π). By the choice of unscanned sets for
Normalize-Shell, property (D2) holds for r̃ and all its subsets in F . Set r̃ is
also marked as scanned, so Normalize-Shell is never called for it.

If π(X) = 0 holds after the adjustment then set X vanishes from supp (π),
we remove X from F and halt Normalize-Shell(X). We also say that set X
dissolves during the execution of the shell stage.

Now suppose that there is an arc a ∈ δout
S(X)(r) such that wπ(a) = 0. Two

cases are possible. Firstly, a may connect W with another tree W ′ in FS . Then,
a is added to FS thus linking W and W ′. Secondly, a may connect r to a node
in the very same tree W . In this case, a cycle of arcs with zero reduced weights
is discovered. Let Y be the set of nodes of this cycle (in S(X)). Algorithm
contracts Y in S(X), adds Ỹ to F , and proceeds to the next iteration.

Once Normalize-Shell(X) is called for all sets X ∈ F (in an appropriate
order), property (D2) gets restored. Normalization procedure for a subset X ⊆ T
is the same except for it considers sets δout rather than δin.

The remaining part of the scaling step builds a bibranching B in G that
satisfies properties (P1)–(P3). Firstly, the ST stage is executed. It starts with
B = 0 and applies a certain augmenting path approach aiming to update B so
that it covers all subsets in 2S . Next, S and T parts are exchanged and a similar
TS stage is executed, thus completing the scaling step. We shall only describe
the ST stage since the TS stage is essentially symmetric.

Similarly to the shell stage, a directed out-forest FS obeying V FS = S is
maintained in graph G. The latter forest satisfies the following conditions:

(F1) wπ(a) = 0 holds for all a ∈ AFS ;
(F2) wπ(a) > 0 holds for each root node r ∈ S and an S–S arc a leaving r;
(F3) BSS ⊆ AFS ;
(F4) if a node v ∈ S is not covered by B then v is a root of FS .
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Forest FS is initially constructed by putting V FS := S and AFS := BSS (the
latter set forms a directed out-forest according to (P1)). Next, Normalize-
Forest routine is applied to ensure (F2) and (F4). The latter works as follows.
If (F2) fails for a root node r and an S–S arc a leaving r then two cases are
possible. Firstly, a may connect a tree W of FS rooted at r with another tree W ′

in FS . Then, a is added to FS thus linking W and W ′. Secondly, a may connect
r to a node in the very same tree W . In this case, a cycle consisting of arcs with
zero reduced weights is discovered. Let Y denote the set of nodes of this cycle
(in G). The algorithm puts B := B \ γ(Y ), AFS := AFS \ γ(Y ), contracts Y in
G, and adds Ỹ to F . Note that at this point π(Ỹ ) = 0 holds.

Next, if (F4) fails for a node v ∈ S, then v is not a root of FS and v is not
covered by B. To fix this, an arc a ∈ AFS that covers v is fetched and added
to B. Property (F1) implies the validity of (P2). Also, v is covered by exactly
one arc in B after the augmentation, so (P3) holds.

This completes the description of Normalize-Forest.
Once forest FS obeying (F1)–(F4) is constructed, the algorithm builds an

auxiliary digraph H . Put VH := V G and proceed as follows:

– if a 
∈ B is an S–T arc with wπ(a) = 0 then add a to H (these arcs are called
forward);

– if a ∈ B is an S–T arc with wπ(a) = 1 then add a to H but change its
direction to the opposite (these arcs are called backward).

A node v ∈ S is said to be initial if B does not cover v. By (F4) only root
nodes of FS may be initial. A node v is called final if any of the following cases
applies:

1. v ∈ T and π(ṽ) = 0;
2. v ∈ T and v is covered by a T–T arc of B (the latter is unique by (P1));
3. v ∈ T and v is not covered by B;
4. v ∈ S and v is an inner node of FS ;
5. v ∈ S and v is covered by at least two S–T arcs of B.

A path in H connecting an initial node to a final node (with all intermediate
nodes neither initial nor final) is called augmenting. Suppose for a moment that
there exists an augmenting path P in H from an initial node s to a final node t. In
this case, a primal step is possible. We construct a set A(P ) ⊆ AH as follows.
First, we add arcs that correspond to arcs of P (both forward and backward).
Second, we perform adjustments to account for the type of node t. In cases (1),
(3), and (5) we do nothing. In case (2) we add to A(P ) the unique arc in BTT

that covers t. In case (4) we add to A(P ) the unique arc in FS that leaves t.
The augmentation of B along P is performed by putting B := B'A(P ) (here

' denotes the symmetric difference).

Lemma 4. The augmentation of B along P preserves properties (P1)–(P3),
(D1)–(D3), and (F1)–(F4). The set of nodes covered in V G by B strictly in-
creases. The set of initial nodes strictly decreases. The set of final nodes does
not increase. The arc set of H decreases by AP .
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The proof is carried out by a straightforward case-splitting, so we leave details
to the reader.

Note, that in order to achieve the desired time bound one cannot recompute
path P from scratch each time. Taking into account the monotonicity of the
sets of initial and final nodes, and the arc set of H , the blocking augmentation
technique is applied (see, e.g., [Din80]). The latter computes, one by one, a
sequence of augmenting paths and stops when there are no such paths left.
The total running time of this routine is O(m). Each of these paths is used for
augmenting B, as explained above.

A dual step is carried out when no more augmenting paths can be found.
Let S0 (resp. T 0) denote the set of nodes in S (resp. T ) that are reachable from
initial nodes. Calculate the value of the adjustment parameter µ as follows:

µ1 := min
(
π(ṽ) : v ∈ T 0

)
,

µ2 := min
(
wπ(a) : a = (u, v) ∈ AG, u ∈ S0, v ∈ S

)
,

µ3 := min
(
wπ(a) : a = (u, v) ∈ AG, u ∈ S0, v ∈ T − T 0

)
,

µ4 := min
(
1− wπ(a) : a = (u, v) ∈ B, u ∈ S − S0, v ∈ T 0

)
,

µ := min(µ1, µ2, µ3, µ4).

Clearly, (P2) implies that µ ≥ 0. Also, µ4 ∈ {0, 1,∞} (moreover, case µ4 = 0 is
not possible, see Lemma 5 below).

A dual update is performed as follows:

π(ṽ) := π(ṽ) + µ for each v ∈ S0,
π(ṽ) := π(ṽ) − µ for each v ∈ T 0.

If the dual π(ṽ) of some complex node v ∈ T 0 drops to zero then the algorithm
calls Expand(ṽ) to remove ṽ from F , uncontract (partly) graph G, and extend
B into the shell of ṽ.

Also, suppose wπ(a) = 0 holds for some a = (u, v) ∈ AG, u ∈ S0, v ∈ S
after the update. Then, node u must be a root of FS and property (F2) fails.
Procedure Normalize-Forest is called to restore it.

One can see the following:

Lemma 5. If no augmenting path exists in H then 0 < µ <∞. The dual step
preserves properties (P1)–(P3), (D1)–(D3), and (F1)–(F4), does not change the
set of initial nodes, and does not decrease the set of reachable nodes.

If an augmenting path arises after these changes, the dual step completes and
a primal step is executed. Otherwise, the next value of µ is calculated and the
process of changing π proceeds.

The algorithm changes B, π, and F by executing primal and dual steps al-
ternatively. It stops when B covers all nodes in S. Then, parts S and T are
exchanged and the TS stage runs until B covers both S and T . This way, the
requested bibranching B is constructed, the scaling step completes.
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5 Complexity Analysis

In this section we present a sketch of the efficiency analysis. Our immediate goal
is to prove an O(

√
n) bound for the number of primal and dual steps during each

scaling step. Hereinafter w, π0, F0, and G0 denote the corresponding objects after
the doubling stage. Similarly, we use notation π1, F1, and G1 when referring to
the state immediately after the shell stage.

Lemma 6. There exists a canonical π1-consistent bibranching B1 ⊆ AG obey-
ing wπ1(B1) ≤ 6n.

Proof. Let B0 be a bibranching in G0 that was constructed by the previous
scaling step (or just an arbitrary bibranching in G for the first invocation of the
scaling step). By removing an appropriate set of arcs from B0, one may assume
that B0 is canonical, see Fact 1. Property (P2) and the structure of the doubling
stage imply that wπ0(a) ≤ 3 holds for each a ∈ B0.

We now gradually transform graph G0 into G1 and, simultaneously, B0 into
a bibranching B1 in G1 such that wπ1(B1) is small and (P3) holds for B := B1,
π := π1. We denote the current graph by G and the current bibranching by B.
Initially, put G := G0 and B := B0. The difference between G0 and G1 is that
some maximal sets in supp (π0) could have dissolved during the shell stage. The
corresponding dissolved nodes, therefore, are replaced by certain subgraphs.

We enumerate the nodes of G0, let v be the current one. If ṽ /∈ supp (π0) then
v is a simple node (ṽ = {v}), it remains simple in G1. No change is applied to G
and B. Note that the reduced weights of arcs covering v are not changed during
the shell stage and, thus, do not exceed 3.

Next, suppose ṽ ∈ supp (π0). We assume that ṽ ⊆ S (the other case is sym-
metric). Property (P3) implies that in G0 node v is covered by a unique arc,
say a ∈ B0. Let the tail of arc a in G be w. Applying (D2) iteratively, we con-
struct an out-tree W in G such that: (i) W is rooted at w; (ii) VW = ṽ; (iii) if
X ∈ supp (π0) and X ⊆ ṽ then X is covered by exactly one arc in A := AW∪{a};
(iv) every arc a ∈ AW was of zero reduced weight prior to the doubling stage.
Clearly, wπ1(a) ≤ 3 holds for every a ∈ A.

Update G and B as follows. First, uncontract ṽ completely and add AW
to B. Since node w is reachable from every node in ṽ by arcs in AW , it follows
that B remains a bibranching. Next, contract the maximal sets X ∈ supp (π1)
such that X ⊆ ṽ and update B accordingly. Let v denote the image of ṽ under
these contractions. (It is possible that the whole set ṽ gets contracted again,
this happens when ṽ ∈ supp (π1); in this case ṽ did not dissolve during the call
Normalize-Shell(ṽ).)

The above contractions may remove some arcs from B (more precisely, exactly
those arcs whose head and tail nodes are simultaneously contained in the same
maximal contracted set). However, B remains a bibranching since contraction
of an arbitrary subset of S- or T -part of the graph preserves the required con-
nectivity. Finally, we apply Fact 1 and remove all redundant arcs from B (in an
arbitrary way) turning it into a canonical bibranching.
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Recall that initially v was covered by the unique arc a. Now v is expanded
into some set of nodes, namely v, and some arcs from γ(ṽ) are added to B.
Canonicity implies that every node in v is covered by a unique arc from B. This
way, (P3) follows for B.

Let us estimate the total reduced weight of all newly added arcs in B. To
this aim, we bound wπ1(A) (since B receives some subset of arcs from A and
reduced weights of the omitted arcs are non-negative). We consider the following
two subfamilies of supp (π0) and supp (π1):

F0 := {X ∈ supp (π0) | X ⊆ ṽ} , F1 := {X ∈ supp (π1) | X ⊆ ṽ} .

During Normalize-Shell, each time the dual variable corresponding to a set
X ∈ 2S (resp. X ∈ 2T ) is increased by µ, the dual variable corresponding to
some other set Y ∈ 2S (resp. Y ∈ 2T ) is decreased by the same value µ. Hence,∑

(π0(X) : X ∈ F0) =
∑

(π1(X) : X ∈ F1) .

Also, by Fact 3 it follows that

wπ0(A) = w(A) − ϑπ0(A) = w(A) −
∑

(π0(X) : X ∈ F0) ,
wπ1(A) = w(A) − ϑπ1(A) ≤ w(A) −

∑
(π1(X) : X ∈ F1) .

Therefore,
wπ1(A) ≤ wπ0(A) ≤ 3 |A| = 3 |ṽ| .

The above procedure is applied to each node v ∈ V G0 and eventually stops
with G = G1. The final set B is denoted by B1. Let us estimate its reduced
weight wπ1(B1). First, B1 gets at most n arcs that cover simple nodes in G0;
each of those arcs has a reduced weight not exceeding 3. Second, each complex
node v ∈ V G0 generates a set of arcs with total reduced weight not exceeding
3 |ṽ|. Summing these bounds, one gets:

wπ1(B1) ≤ 3n + 3n = 6n.

Finally, to get the desired bibranching B1 in G we apply Expand routine and
extend B1 into the maximal contracted sets of G1. This step only adds arcs of
zero reduced weight wπ1 . Hence, wπ1(B1) = wπ1(B1) ≤ 6n holds.

Lemma 7. Let π : 2S ∪ 2T → R+ be an arbitrary function and B ⊆ AG be an
arbitrary π-consistent arc set satisfying properties (D3) and (P2) (for G := G,
B := B). Then

∆(π, π1, B) :=
∑(

π(X)− π1(X) : X is not covered by B
)
≤ 6n + wπ(B).

Proof. Consider the duals π1 (at the moment just before the ST stage) and the
canonical bibranching B1 constructed in Lemma 6. Put

Q :=
∑

a∈AG

(
χB1(a)− χB(a)

)(
wπ1(a)− wπ(a)

)
.
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(Here χU denotes the incidence vector of an arc set U , i.e. the function that
equals 1 on U and 0 on AG− U .)

Taking into account equalities wπ = w − ϑπ and wπ1 = w − ϑπ1 one gets

Q =
∑

a∈AG

(
χB1(a)− χB(a)

)(
ϑπ(a) − ϑπ1(a)

)
=

= ϑπ(B1) + ϑπ1(B)− ϑπ1(B1)− ϑπ(B).

Since B is π-consistent and B1 is π1-consistent and covers each set in 2S ∪2T ,
Fact 3 implies

Q ≥
∑(

π(X) : X is covered by B1
)

+
∑(

π1(X) : X is covered by B
)
−

−
∑(

π1(X) : X is covered by B1
)
−
∑(

π(X) : X is covered by B
)

=

=
∑(

π(X) : X is not covered by B
)
−

−
∑(

π1(X) : X is not covered by B
)

=

=
∑(

π(X)− π1(X) : X is not covered by B
)
.

On the other hand,

Q =
∑

a∈AG

(
χB1(a)− χB(a)

)(
wπ1(a)− wπ(a)

)
≤

≤
∑

a∈AG

χB1(a)wπ1 (a) + χB(a)wπ(a) ≤

≤ wπ1(B1) + wπ(B) ≤ 6n + wπ(B).

Now the claim follows by transitivity.

Lemma 8. Each scaling step executes O(
√
n) primal and dual steps.

Proof. Let B ⊆ AG denote the current partial bibranching in the current
graph G at some intermediate moment during the ST or the TS stage.

Firstly, we prove that wπ(B) ≤ n. Indeed wπ(B) does not exceed the number
of S–T arcs in B (by property (P2)). The latter can only increase by 1 on each
primal step. The total number of primal steps does not exceed n (since each of
these steps increases the set of covered nodes).

Next, we proceed similarly to Lemma 1, apply Expand routine, and extend
B to a π-consistent set B ⊆ AG. This set obeys wπ(B) = wπ(B) ≤ n.

Consider the sum ∆(π, π1, B). Let X be a set such that π(X) < π1(X). It fol-
lows from the structure of the algorithm that B covers X . Indeed, when the dual
π(ṽ) decreases (for v ∈ V G), B covers v for otherwise v is a reachable final node of
type (3) and the dual adjustment is not possible. Also, if B covers v then B covers
ṽ and all its subsets. Therefore, all terms in ∆(π, π1, B) are non-negative.

Let us deal with the positive terms. Consider the ST stage. Initially, all nodes
in S are not covered by B. Then, during the course of the algorithm the number
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of uncovered nodes in S decreases. Let k dual steps be performed so far. For
each i (1 ≤ i ≤ k) let Di

1, . . . , D
i
li

be the subsets of S that correspond to all
uncovered nodes di

1, . . . , d
i
li

in S during the i-th dual step. For each fixed i,
the sets Di

1, . . . , D
i
li

are pairwise disjoint. Altogether, these sets form a laminar
family

D :=
{
Di

j | 1 ≤ i ≤ k, 1 ≤ j ≤ li
}
.

Each uncovered node di
j was initial (at the corresponding moment of time)

and, hence, reachable. Therefore, π(Di
j) was increased during the corresponding

dual step.
Moreover, for each set Di

j , i < k, 1 ≤ j ≤ li, there are exactly two possibilities:
(i) node di

j gets covered during the upcoming primal step and, hence, Di′

j′∩Di
j = ∅

for each i′ > i and 1 ≤ j′ ≤ li′ ; or (ii) node di
j gets incorporated into some

contracted set at the next dual step, hence, Di
j ⊆ Di+1

j′ for some 1 ≤ j′ ≤ li+1.
This way, sets Di

j form a forest F and for each its tree H with root Di
j the leafs

of H (these are some sets of the form D1
j , 1 ≤ j ≤ l1) are on the same depth i,

which is equal to the height of H . Let H1, . . . , Hlk denote the set of trees in F
rooted at Dk

1 , . . . D
k
lk

. All these trees are of height k. Also, for each 1 ≤ i ≤ k

and 1 ≤ j ≤ lk there exists a set Di
j in tree Hj such that B does not cover Di

j .
Therefore, each tree Hj adds a positive term of value

∑
µ to ∆(π, π1, B) (where∑

µ denotes the sum of the dual adjustments µ performed by the algorithm).
Now summing over all trees H1, . . . , Hlk one gets

∆(π, π1, B) ≥
∑

µ · lk, (3)

On the other hand, by Lemma 7 it follows that

∆(π, π1, B) ≤ 6n + wπ(B) ≤ 7n (4)

Since each dual step changes duals by at least 1, we conclude that k · lk ≤ 7n.
Hence, after �√n� dual steps at most O(

√
n) nodes in S may remain uncovered.

To cover these remaining nodes O(
√
n) primal steps are sufficient (as each such

step decreases the number of uncovered nodes by 1).
Next, consider the state after k dual steps in the TS stage and let, as earlier,

π and B ⊆ AG denote the current duals the current partial bibranching, respec-
tively. Put B ⊆ AG to be the result of expanding B. We have shown earlier that
there are no negative terms in ∆(π, π1, B). Moreover, the very same argument
(with S and T exchanged) applies, so one can construct subsets Di

j ⊆ T similarly
to the ST stage. Since each of these sets Di

j corresponds to an uncovered node
at some intermediate moment and the algorithm can only decrease duals of sets
that are covered, it follows that none of π(Di

j) is changed during the ST stage.
Thus, (3) and (4) hold for the TS stage as well, and the latter completes after
executing O(

√
n) primal and dual steps.

Taking the above Lemma 8 into account and applying the ideas from [Edm67,
GGSR86, FT87, KP98] one can implement the shell stage to run in O(m log n)
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time and both ST and TS stages to take O(m
√
n logn) time (the logn factor

in the above estimates comes from the complexity of priority queue operations,
maintenance of F , and computation of reduced arc weights; we employ binary
heaps and dynamic trees [ST83] for these purposes). Recall (see Section 3) that
the total number of scaling steps is �logW �+ �logn�+1 = O(log(nW )). Hence,
we conclude as follows:

Theorem 5. The running time of the algorithm is O(m
√
n log n log(nW )).

Acknowledgements

The author is thankful to Petr Mitrichev (Faculty of Mechanics and Mathemat-
ics, Moscow State University) and also to the anonymous referees for helpful
comments and suggestions.

References

[Din80] Dinic, E.: Algorithm for solution of a problem of maximum flow in net-
works with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1980)

[Edm67] Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Standards 71B,
233–240 (1967)

[FT87] Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM 34(3), 596–615 (1987)

[GGSR86] Gabow, H., Galil, Z., Spencer, T., Tarjan, R.: Efficient algorithms for
finding minimum spanning trees in undirected and directed graphs. Com-
binatorica 6(2), 109–122 (1986)

[GT87] Goldberg, A., Tarjan, R.: Solving minimum-cost flow problems by succes-
sive approximation. In: STOC 1987: Proceedings of the nineteenth annual
ACM conference on Theory of computing, pp. 7–18 (1987)

[GT89] Gabow, H., Tarjan, R.: Faster scaling algorithms for network problems.
SIAM J. Comput. 18(5), 1013–1036 (1989)

[GT91] Gablow, H., Tarjan, R.: Faster scaling algorithms for general graph
matching problems. J. ACM 38(4), 815–853 (1991)

[KP98] Keijsper, J., Pendavingh, R.: An efficient algorithm for minimum-weight
bibranching. J. Comb. Theory, Ser. B 73(2), 130–145 (1998)

[Sch82] Schrijver, A.: Min-max relations for directed graphs. Ann. Discrete
Math. 16, 261–280 (1982)

[Sch03] Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
[ST83] Sleator, D., Tarjan, R.: A data structure for dynamic trees. Journal of

Computer and System Sciences 26(3), 362–391 (1983)



The Balanced Edge Cover Problem�

Yuta Harada, Hirotaka Ono, Kunihiko Sadakane, and Masafumi Yamashita

Department of Computer Science and Communication Engineering,
Kyushu University, Fukuoka 812-8581, Japan

{ono,sada,mak}@csce.kyushu-u.ac.jp

Abstract. For an undirected graph G = (V, E), an edge cover is defined
as a set of edges that covers all vertices of V . It is known that a minimum
edge cover can be found in polynomial time and forms a collection of star
graphs. In this paper, we consider the problem of finding a balanced edge
cover where the degrees of star center vertices are balanced, which can be
applied to optimize sensor network structures, for example. To this end,
we formulate the problem as a minimization of the summation of strictly
monotone increasing convex costs associated with degrees for covered
vertices, and show that the optimality can be characterized as the non-
existence of certain alternating paths. By using this characterization,
we show that the optimal covers are also minimum edge covers, have
the lexicographically smallest degree sequence of the covered vertices,
and minimize the maximum degree of covered vertices. Based on the
characterization we also present an O(|V ||E|) time algorithm.

1 Introduction

1.1 Problems and Results

For an undirected graph G = (V,E), an edge cover and a matching are de-
fined as a set of edges that covers all vertices of V and a set of edges sharing
no vertices each other, respectively. Both are studied well. In particular, the
maximum matching problem, the problem of finding a matching whose size is
maximum, has been intensively investigated and polynomial time algorithms are
proposed [2,10,13], including some simple algorithms for bipartite graphs [7,8]. A
minimum edge cover is an edge cover whose size is minimum, and is also known
to be solvable in polynomial time, since it can be solved by simply adding un-
covered vertices to a maximum matching [3,11].

Since a minimum (or minimal) edge cover is known to form a collection of
star graphs (components), it is used to divide the original graph structure. In
such divisions, however, the sizes of star graphs can be biased. In this paper, we
consider the problem of finding a minimal edge cover in which the sizes of star
components are balanced. To formulate the notion of “balanced”, we introduce
a cost function f : {1, 2, . . . , |V |} → N+ with respect to degrees that is strictly
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Science, Sports and Culture of Japan and by the Asahi glass foundation.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 246–257, 2008.
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monotonic increasing convex, for example, f(d) = d2, where d is the degree of a
vertex. The problem is described as follows:

Balanced Edge Cover Problem (BEC)
Instance. A simple undirected graph G = (V,E) and a strictly monotonic

increasing convex function f : N+ → R+,
Question. Find an edge cover Ec minimizing c(Ec) =

∑
v∈V f(degEc

(v)), where
degEc

(v) = |{{v, u} ∈ Ec}|.
By the strictly monotonic increasing property and the convexity of f , the sizes
of star components tend to be balanced. For example, imagine two minimal
edge covers on a graph and f(d) = d2. One edge cover Ec(1) consists of star
components have sizes 5, 2 and 1, and the other Ec(2) consists of star components
have sizes 3, 3 and 2. Intuitively, Ec(2) is more balanced than Ec(1), and indeed
Ec(2) has smaller function value f = 32+(1+1+1)+32+(1+1+1)+22+(1+1) =
30 than Ec(1)’s f = 52 +(1+1+1+1+1)+22+(1+1)+1+(1) = 38 , where the
numbers within parentheses represent the degrees of leaf vertices. We consider
the balanced edge cover problem under this setting.

In this paper, we show that (1) for any G, the set of optimal solutions for
BEC is determined independently of function f as long as f is strictly monotonic
increasing convex (we refer f as a cost function), (2) an optimal solution of BEC
gives a minimum edge cover that minimizes the maximum degree with respect to
covering edges, and (3) an edge cover Ec is an optimal solution of BEC if and only
if the degree sequence of Gc = (V,Ec) is the lexicographically smallest among all
edge covers of G. Note that the notion of “balanced” comes from the equivalence
to (2). These are all from a characterization of the optimality of BEC, that is,
the non-existence of alternating paths of certain properties, say edge-reducing
paths and cost-reducing paths. Based on the characterization, we propose two
algorithms; a simple O(min{|V |3/2, |E|}|E|)-time algorithm that removes such
alternating paths and an O(|V ||E|)-time algorithm that extends the edge set so
that the added edges are guaranteed not to create such alternating paths.

1.2 Related Work

The semi-matching with balanced load [4] seems to be the problem most related
with BEC. For a bipartite graph G = (U ∪ V,E), a semi-matching is a set
of edges M ⊆ E such that each vertex in U is an endpoint of exactly one
edge in M . The problem asks a semi-matching that is load balancing in the
sense that the degrees of vertices in V with respect to M is balanced. The main
difference between the problems is that in the semi-matching with balanced load,
balancing the degrees of V is looked for, while BEC seeks to take balance of the
degrees of all vertices (see the characterization (2) of optimal solution of our
problem mentioned above), apart from the obvious difference of their instance
sets; i.e., bipartite graphs and general graphs. BEC is thus a generalization of
the semi-matching with balanced load. An O(|U ||E|)-time algorithm to solve the
semi-matching with balanced load is proposed in [4]. An algorithm for BEC we
will propose in this paper can be transformed into an algorithm that solves the
semi-matching with balanced load with the same time complexity.
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Another aspect of the balanced edge cover is a special case of jump system,
which is introduced by Bouchet and Cunningham [1], Jump systems unify and
generalize matroids, integral bounded g-polymatroids and more. The balanced
edge cover is considered as a constant-sum jump system. For more information,
see [9] and [12].

1.3 Applications

Sensor networks consist of homogeneous sensor nodes and they communicate
each other via wireless links. Some sensor network protocols organize sensor
nodes into a two-level hierarchy; some are chosen as cluster heads that gather
information from normal nodes [5,6]. Every normal node is assigned to exactly
one cluster head. That is, all the sensor nodes are partitioned into clusters.
Once a normal sensor node detects something, it transmits the information to
the cluster head that it belongs to. Suppose that the sensor nodes are vertices
and wireless links are edges. Then the whole topology of the network is modeled
as an undirected graph and the cluster heads and their assignments form an edge
cover. In this context, the balanced edge cover means that the sizes of clusters
are balanced, which conserves energy of cluster heads.

The rest of the paper is organized as follows. Section 2 gives notations and
basic properties of the problems. In Section 3, we give an optimality condition
of balanced edge covers, which also shows the optimality of several problems. In
Section 4, we propose algorithms based on the optimality condition.

2 Preliminaries

Let G = (V,E) be a simple undirected graph with a vertex set V and an edge set
E, where each edge is a pair {u, v} of vertices u, v ∈ V . Throughout the paper,
let |E| = m, |V | = n for the input graph. For a subset E′ ⊆ E and a vertex
v, we denote δE′(v) = {{u, v} ∈ E′} and degE′(v) = |δE′(v)|. Namely, δE′(v)
represents a set of edges in E′ incident with v and degE′(v) is the degree of v.
The notation with the subscript deleted is used for E, i.e., deg(v) = degE(v).
For G = (V,E), a degree sequence is a monotonic nonincreasing sequence of the
vertex degrees of V . For E′ ⊆ E, we analogously define degree sequence with
respect to E′ as a monotonic nonincreasing sequence of degE′(v)’s of V .

An edge set Ec ⊆ E is an edge cover of G if every vertex of V is incident
with an edge of Ec. Note that an edge cover always exists if and only if G has
no isolated vertices. In this paper, we assume that G is a graph without isolated
vertices. Edges e ∈ Ec and e /∈ Ec are called an Ec-covering edge and a Ec-non-
covering edge, respectively. Norman and Rabin show that there is a polynomial
time algorithm to transform a maximum matching to a minimum edge cover, and
vice versa [11]. The transforming algorithm utilizes the following proposition.

Proposition 1 ([11]). Let G be a graph without isolated vertices. Then every
maximum matching is contained in a minimum edge cover, and every minimum
edge cover contains a maximum matching. �




The Balanced Edge Cover Problem 249

From the proof of this result, Gallai’s theorem is also shown, that is, ν(G) +
ρ(G) = n for a graph G with n vertices, where ν(G) and ρ(G) are the sizes
of maximum matching and minimum edge cover of G, respectively [3]. By the
method of Gallai’s theorem, one can indeed derive a minimum edge cover from
a maximum matching M in time O(m), just by adding for each vertex v missed
by M , an arbitrary edge incident with v. Hence a minimum edge cover can
be found in an linearly equivalent running time of a maximum matching algo-
rithm. For the maximum matching problem, O(

√
nm)-time algorithm is known

[10,13].
We obtain the following proposition on minimal edge covers. The proof is

omitted because it is not difficult.

Proposition 2. A set of edges Ec is a minimal edge cover if and only if Gc =
(V,Ec) is a spanning forest of G where each connected component of Ec is a star
(i.e., a K1,r for a natural number r). �


Let Gs = (V,Es) be a subforest of G whose connected components are all stars.
By Proposition 2, Es is a subset of some minimal edge cover Ec. For such a
subforest Es, we call a vertex v satisfying degEs

(v) = 1 a leaf vertex (or simply
leaf) in Es, and call a vertex connected to a leaf vertex by an edge in Es a
center vertex (or simply center) in Es. By definition, for a star component K1,r

in Es, if r ≥ 2 then a center vertex has degree more than 1 and leaf vertices
have degree 1. If r = 1, i.e., the star is K1,1, only two vertices exist in the star
and both of them are centers and also leaves. In addition, there may be vertices
not covered by any edges in Es, and such vertices are called free vertices in Es.
Let CEs , LEs and FEs be sets of centers, leaves and free vertices with respect
to Es, respectively. The union of these vertex sets contains all vertices of V , i.e.
CEs ∪ LEs ∪ FEs = V . If Es is a minimal edge cover then FEs = ∅ holds. If
LEs ∪ FEs = V then Es is a matching. Especially, Es is a perfect matching if
LEs = V holds.

We consider to balance such an edge cover by using a strictly monotonic
increasing convex function f that maps N+ to R+. Given an edge cover Ec

and such an f (we refer f as a cost function), we define the objective function
c(Ec) =

∑
v∈V f(degEc

(v)), which is intended to avoid many covering edges
concentrate a few vertices. Then the balanced edge cover problem is defined as
follows: Given a simple undirected graph G = (V,E) and a strictly monotonic
increasing convex function cost : N+ → R+, find an edge cover Ec minimizing
c(Ec) =

∑
v∈V f(degEc

(v)).
For a cost function f , we call an edge cover Ec that minimizes c(Ec) a balanced

edge cover for f . Actually, balanced edge covers do not depend on f ; just the
property that it is strictly monotonic increasing convex is important, as men-
tioned in Section 1. Hence we sometimes omit “for f”, and just say “balanced”
edge covers. In the following section, we give a characterization of balanced edge
covers based on the non-existence of paths with certain properties, which also
provides algorithms for finding them in the last section.
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3 Optimality of Balanced Edge Covers

In this section, we consider the optimality of balanced edge covers. It can be
characterized by paths of some properties as shown later.

Given a subforest Gs = (V,Es), a sequence of distinct edges P = ({v1, v2},
{v2, v3}, . . . , {vk−1, vk}) is an alternating path with respect to Es or an Es-
alternating path if edges are alternately in and not in Es. Let EP be a set of edges
included in P . For convenience, we denote such an alternating path by a sequence
of vertices P = (v1, . . . , vk). By definition, alternating path P = (v1, . . . , vk) may
not be a simple path (i.e., a path where no vertex is visited more than once),
and even may be a cycle (v1 = vk), but we call them paths for simplicity. Several
paths that we shall introduce later are also alternating paths.

We define the notation A⊕B as the symmetric difference of sets A and B; i.e.,
A⊕B = (A \B) ∪ (B \A). If P is an Ec-alternating path for an edge cover Ec,
then we can obtain a set of edges EP ⊕ Ec by switching Ec-covering edges and
Ec-non-covering edges along P . Note that all the internal vertices v2, . . . , vk−1
in P remain to be covered even after the switching operation. If both v1 and
vk are incident with Ec-covering edges not in P or Ec-non-covering edges in P ,
EP ⊕ Ec is also an edge cover.

Proposition 3. For an edge cover Ec and its alternating path P = (v1, . . . , vk),
if δEc⊕EP (v1) 
= ∅ and δEc⊕EP (vk) 
= ∅ hold, EP ⊕Ec is also an edge cover. �


3.1 Minimum Property

The definition of balanced edge covers themselves does not contain “minimum”
explicitly, but actually they are also minimum edge covers. To show this, we
introduce the notion of “edge-reducing” that characterizes the minimum edge
covers.

Edge-Reducing Path. For an edge cover Ec, an Ec-alternating path P =
(v1, v2, · · · , v2k−1, v2k) is called an edge-reducing path with respect to Ec or an
Ec-edge-reducing path if {v1, v2} and {v2k−1, v2k} are Ec-covering edges with
δEc⊕EP (v1) 
= ∅ and δEc⊕EP (v2k) 
= ∅. For such an Ec-edge-reducing path P ,
EP ⊕ Ec is also an edge cover by Proposition 3. We can see that |EP \ Ec| =
|EP ∩ Ec| + 1, that is, |EP ⊕ Ec| = |Ec| − 1, which means that the switching
operation along P decreases the size of the edge cover by one. Each degree of
v1 and v2k also decreases by one (or if v1 = v2k, it decreases by two) but other
vertices are not affected. Figure 1 shows an example of a edge-reducing path,
where bold lines represent the covering edges, and dotted lines represent the
non-covering edges.

The following theorem shows an optimality condition of minimum edge covers
and leads that a balanced edge cover is also a minimum edge cover.

Theorem 1 ([11]). An edge cover Ec is a minimum edge cover if and only if
there exists no edge-reducing path with respect to Ec. �


From this theorem, we can easily show the following corollary though we omit
the proof.
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v1 v2 v3 v4 v5 v6

Fig. 1. Edge-Reducing Path

c1 l1 c2 l2 c3

Fig. 2. Cost-Reducing Path

Corollary 1. A balanced edge cover for any f is a minimum edge cover. �


3.2 Balance Properties

In this subsection, we focus on the optimality of balanced edge covers. We first
define the cost-reducing path, in which the degree of start vertex is two larger
than the one of end vertex. (A formal definition will be shown later.) Although
the definition of cost-reducing paths just depends on the monotonicity and the
convexity of f , we can show that it well characterizes the minimality of the total
cost. Due to this, we can show that for a graph G the set of optimal solutions
of BEC is determined independently of f . We then show a key lemma about
the existence of the cost-reducing paths and its conditions (Lemma 1), based on
which we characterize the optimality of balanced edge covers (Theorem 2).

We start to define an alternating path of a certain property.

Vertex-Alternating Path. Let Gs = (V,Es) be a subforest of G whose con-
nected components are all stars. For such an Es, we define a vertex-alternating
path P with respect to Es as an Es-alternating path P = (c1, l1, c2, . . . , ck−1,
lk−1, ck) such that ci ∈ CEs , li ∈ LEs , {ci, li} ∈ Es and {li, ci+1} /∈ Es hold for
every i. Namely, P visits centers and leaves alternately. It should be noted that
in a vertex-alternating path a center vertex can appear more than once but a
leaf vertex cannot. The switching operation for a vertex-alternating path P does
not change the size of edges; |Es ⊕EP | = |Es|. For an minimum edge cover Ec,
which also forms an subforest of G, if δEc⊕EP (c1) 
= ∅ then EP ⊕ Ec is also a
minimum edge cover by Proposition 3.

Cost-Reducing Path. Let Gs = (V,Es) be a subforest of G. For a vertex-
alternating path P = (c1, l1, . . . , lk−1, ck) with respect to Es, if degEs

(c1) >
degEs

(ck)+1 then P is called a cost-reducing path. This is because by switching
edges along a cost-reducing path P the total cost c(Es) is literally reduced
without changing the size of edges, that is, c(EP ⊕Es) < c(Es). Figure 2 shows
an example of a cost-reducing path. Note that this definition does not depend on
cost function f . Now we show that a cost-reducing path reduces c(Es) for any
strictly monotonic increasing convex function f indeed. Notice that the switching
operation EP ⊕ Es changes only the degrees of c1 and ck. For simplicity, let d1
and dk denote degEs

(c1) and degEs
(ck) respectively. Then, degEP⊕Es

(c1) =
degEs

(c1) − 1 = d1 − 1 and degEP⊕Es
(ck) = degEs

(ck) + 1 = dk + 1, and
the condition of the cost-reducing path is d1 > dk + 1. By the convexity of f ,
we have
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1
d1 − dk

f(d1) +
(

1− 1
d1 − dk

)
f(dk) ≥ f(dk + 1),(

1− 1
d1 − dk

)
f(d1) +

1
d1 − dk

f(dk) ≥ f(d1 − 1).

The equalities do not hold because f is strictly monotonic increasing. Hence, by
summing the above inequalities, we obtain f(d1)+f(dk) > f(d1−1)+f(dk +1),
which implies that c(Es) > c(EP ⊕ Es); EP ⊕ Es reduces the total cost.

We shall show that the non-existence of cost-reducing path for an edge cover
is a necessary and sufficient condition about a balanced edge cover.

To show this, we first prove the following lemma.

Lemma 1. Let Ec and E∗
c be two different minimum edge covers, and let G′ =

(V,Ec ⊕ E∗
c ). If G′ satisfies the following two conditions, then there exists a

cost-reducing path with respect to Ec in G′.

I. There exists a center vertex c1 ∈ CEc satisfying degEc
(c1) > degE∗

c
(c1).

II. For any c1 of condition I, every vertex-alternating path P = (c1, . . . , ck) with
respect to Ec in G′ satisfies degE∗

c
(ck) ≤ degE∗

c
(c1).

Proof. Let Ec and E∗
c be minimum edge covers satisfying the above two condi-

tions, and G′ = (V,Ec ⊕E∗
c ). There is a vertex c1 ∈ CEc satisfying degEc

(c1) >
degE∗

c
(c1) by the assumption. We construct a vertex-alternating path P starting

from c1 as follows: First set P = (c1). (1) We are at a center vertex ci ∈ CEc . If
both δEc\E∗

c
(ci) \EP 
= ∅ and degEc

(c1) ≤ degEc
(ci) + 1 are satisfied, we choose

an edge {ci, li} ∈ Ec\(E∗
c ∪EP ) and extend P by adding the edge. Note that the

starting vertex c1 satisfies both conditions. Otherwise we stop the construction
of P , that is, P ends at ci. (2) We are at a leaf vertex li ∈ LEc by following an
unique edge {ci−1, li} ∈ δEc(li) that does not belong to E∗

c . Then, since there ex-
ists an edge {li, ci+1} ∈ E∗

c \Ec as shown below, we extend P by adding such an
edge from li. Here, we show that such an edge always exits. First, we can see that
δE∗

c\Ec
(li) 
= ∅ holds, otherwise δE∗

c\Ec
(li) = δE∗

c
(li) \ {ci−1, li} = δE∗

c
(li) = ∅

holds, which contradicts that E∗
c is an edge cover. Next we show that edges

in δE∗
c\Ec

(li) are connected to center vertices in CEc . Otherwise, an edge in
δE∗

c\Ec
(li) forms {li, l′} where l′ ∈ LEc \ CEc . Since Ec is an edge cover, there

exists an Ec-covering edge {l′, c′} where c′ ∈ CEc . Note that c′ 
∈ LEc (i.e.,
degEc

(c′) > 1), because l′ 
∈ CEc (see the definition of center and leaf vertices).
Then an Ec-alternating path (c1, l2, . . . , ci, li, l

′, c′) is an Ec-edge-reducing path,
which contradicts that Ec is an minimum edge cover. By these, we can extend
P by adding {li, ci+1} ∈ E∗

c \Ec. The above construction eventually terminates
because each edge is followed by P at most once.

We then show that the constructed vertex-alternating path P = (c1, . . . , ck)
is a cost-reducing path with respect to Ec. The extension of P stops in the
following two cases: (i) degEc

(c1) > degEc
(ck) + 1 holds. In this case, P is

obviously a cost-reducing path with respect to Ec. (ii) δEc\E∗
c
(ck) \ EP = ∅

holds. Also in this case, we can show P is a cost-reducing path. If c1 = ck then
degEc

(c1) = degE∗
c
(c1) holds, but this contradicts the condition I. Hence c1 
= ck.
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We can see that |δEc\E∗
c
(ck)|+1 = |δE∗

c\Ec
(ck)|, since P arrived at ck via an edge

of E∗
c \ Ec and left at ck via Ec \ E∗

c (All the edges in δEc\E∗
c
(ck) are followed

by P ). Thus degEc
(ck) < degE∗

c
(ck) holds. In addition, degEc

(c1) > degE∗
c
(c1)

and degE∗
c
(ck) ≤ degE∗

c
(c1) hold by the conditions I and II of the lemma. These

three inequities yield degEc
(ck) < degE∗

c
(ck) ≤ degE∗

c
(c1) < degEc

(c1), which
leads degEc

(c1) > degEc
(ck)+1. This shows that P is a cost-reducing path with

respect to Ec, which completes the proof. �

We obtain the following theorem about the optimality of balanced edge covers
by the above lemma.

Theorem 2. For an edge cover Ec, the following (a) ∼ (c) are equivalent:
(a) Ec is a balanced edge cover for any f .
(b) Ec is a minimum edge cover and has no cost-reducing path.
(c) The degree sequence with respect to Ec is the lexicographically smallest among

edge covers.

Proof. Here we show only (a) ⇔ (b) part due to the space limitation: By Corol-
lary 1, a balanced cover is a minimum edge cover. Thus, we just show that the
nonexistence of the cost-reducing path is a necessary and sufficient condition of
balanced edge covers for minimum edge covers. The necessity is obvious, because
otherwise the total cost c(Ec) of arbitrary f can be reduced by the switching
operation. Thus we concentrate the sufficiency.

For an f , let Ec be a minimum edge cover whose total cost c(Ec) is not
minimum, and let E∗

c be a balanced edge cover where the size of the symmetric
difference |Ec ⊕ E∗

c | is minimum. Let G′ = (V,Ec ⊕ E∗
c ). We will show that G′

satisfies the two conditions of Lemma 1; Ec always has a cost-reducing paths.
Since Ec and E∗

c are minimum edge covers,
∑

v∈V degEc
(v) =

∑
v∈V degE∗

c
(v)

= 2ρ(G) holds. Also by c(Ec) > c(E∗
c ), there exists a vertex c1 ∈ CEc such that

degEc
(c1) > degE∗

c
(c1) holds, which satisfies the condition I. Here, we show that

an arbitrary vertex-alternating path from c1 with respect to Ec in G′ (say P =
(c1, l1, . . . , lk−1, ck)), satisfies the condition II, that is, degE∗

c
(ck) ≤ degE∗

c
(c1).

Let P = (ck, lk−1, . . . , l1, c1) denote the reverse of the path P . Then, P is an
E∗

c -alternating path in G′ by the definition of G′. Furthermore, we can say that
when degE∗

c
(ck) > 1, P is an E∗

c -vertex alternating path in G′, that is, that
c1, c2, . . . , ck ∈ CE∗

c
and l1, l2, . . . , lk−1 ∈ LE∗

c
; otherwise, there exists an li ∈

CE∗
c
, which implies (ck, . . . , li) is an E∗

c -edge-reducing path in G. This contradicts
E∗

c is an minimum edge cover. Thus we have P is an E∗
c -vertex alternating path

if degE∗
c
(ck) > 1. If degE∗

c
(ck) > degE∗

c
(c1)+1, P is a cost-reducing path for E∗

c .
This contradicts that E∗

c is an balanced edge cover. If degE∗
c
(ck) = degE∗

c
(c1)+1

holds, E∗
c ⊕ EP is an edge cover and has c(E∗

c ⊕ EP ) = c(E∗
c ), also a balanced

edge cover. This contradicts the definition of E∗
c because the symmetric difference

between Ec and E∗
c ⊕EP is smaller than |Ec⊕E∗

c |. Thus degE∗
c
(ck) ≤ degE∗

c
(c1)

holds for P . Therefore since G′ satisfies two conditions I and II of Lemma 1, Ec

has a cost-reducing path with n G′; the sufficiency is also proved. �

Corollary 2. If an edge coverEc is a balanced edge cover, thenmaxv∈V {degEc

(v)}
is minimized. �
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4 Algorithms

By utilizing the optimality condition shown in the previous section, we first
give a simple algorithm BEC1, which directly uses the result of Theorem 2.
Namely, whenever the algorithm finds a cost-reducing path, apply the switching
operation. The algorithm is given as follows:

Algorithm BEC1
Step 1: Construct a minimum edge cover Ec.
Step 2: Find a cost-reducing path P with respect to Ec. If no cost-reducing

path is found then output Ec.
Step 3: Let Ec := Ec ⊕ EP , and go to Step 2.

In Step 1, the algorithm construct a minimum edge cover Ec by the procedure
introduced in Section 2. Step 3 has been already explained in Section 4. Hence
we just consider how to find a cost-reducing path P = (c1, . . . , ck) with respect
to Ec in Step 2: First, choose a vertex c1 ∈ CEc with maximum degree in Ec,
and build an alternating search tree T rooted at c1. The search tree T is a rooted
tree and consists of edges in Ec directed from CEc to LEc and edges not in Ec

directed from LEc to CEc , where the direction represents the relation between
parents and children. Such T is constructed by applying the breadth-first search
from c1. If a vertex ck with degEc

(c1) > degEc
(ck)+1 is found in the search, the

path from c1 to ck on T is a cost-reducing path. If such ck is not found, we can
say that there exists no cost-reducing path from c1 by definition; we move to
another vertex with maximum degree not in T and construct a new alternating
search tree from the vertex. Note that the search from a vertex that once belong
to an existing T is not requisite by the following Lemma 2. If all vertices of V
are visited, then the algorithm terminates at this step. If no cost-reducing path
exists then return Ec.

Lemma 2. Let P be a vertex-alternating path from c1 to ck such that degEc
(c1) ≥

degEc
(ck) holds. If there is no cost-reducing path starting from c1 then there is also

no cost-reducing path from ck.

Proof. By contradiction. If a cost-reducing path from ck to ck′ exists, the vertex-
alternating path P from c1 to ck can be extended to a vertex-alternating path
from c1 to ck′ with degEc

(c1) > degEc
(ck′ ) + 1, a cost-reducing path. �


Theorem 3. BEC1 produces a balanced edge cover in O(min{n3/2,m}m) time.

Proof. We first discuss the correctness. An edge cover Ec remains minimum dur-
ing the execution of BEC1, because the switching operation for a cost-reducing
path does not change the number of edges. Then, the above explanation on
Step 2 and Theorem 2 show that a balanced edge cover is obtained when it
terminates.

Next, we discuss the time complexity. Step 1 is done in O(n1/2m) time shown
in Section 2. We consider Steps 2 and 3. One iteration of Step 2 requires O(m)
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time since each edge is checked at most once by the breadth-first search. Also a
switching operation in Step 3 takes O(m) time. In the total execution, each vertex
v can be a starting vertex of a cost-reducing path at most deg(v) times, because
once v has maximum degree for Ec, the degree of v decreases monotonically.
Namely, an upper bound on the number of iterations is given as the summation
of deg(v) over all the vertices, that is

∑
v∈V deg(v) = 2m. Thus Steps 2 and

3 are iterated in O(m) times. We have another upper bound O(n3/2) on the
iterations, though we omit the detail due to the space limitation. It is obtained
by a similar analysis to the one in [7], which analyzes the bipartite matching can
be found in O(n1/2m) time. Also a similar technique is shown in [4]. Therefore
the total running time of BEC1 is O(min{n3/2,m} m) time. �


A Faster Algorithm. We propose another algorithm, which improves the run-
ning time. It is based on a similar technique of the matching extension algo-
rithm [2], but in order to adapt a balanced edge cover, it keeps the non-existence
of cost-reducing paths. The procedure of the algorithm is given as follows.

Algorithm BEC2
Step 1: Construct a maximum matching M .
Step 2: Choose a free vertex v1 ∈ FM if FM 
= ∅. Otherwise output M .
Step 3: Build an alternating search tree T rooted at v1, where edges not in M

are directed from {v1} ∪ LM to CM and edges in M are directed from CM

to LM . (Notice that the definition of this T differs from the one in BEC1.)
Step 4: Find a path P = (v1, . . . , v2k) with v2k ∈ CM such that degM (v2k) is as

small as possible in the tree T . Such a path P is called an augmenting path.
Step 5: Let M := M ⊕ EP , and go to Step 2.

BEC2 constructs a maximum matching M at the beginning, and iterates extend-
ing an edge set M by finding an augmenting path P , which is a concatenation
of an M -non covering edge {v1, v2} of v1 ∈ FM and an M -vertex-alternating
path (v2, . . . , v2k). In each iteration, the starting vertex v1 of P gets covered
and the size of M increases by one by the switching operation M ⊕EP , because
{v1, v2} ∈ M ⊕ EP and |EP \M | = |EP ∩M | − 1. The number of free vertices
decreases by one and the algorithm stops if no free vertex exists. Thus, all ver-
tices of V are covered by output M . As for its correctness, we will prove that no
M -cost-reducing path is created by the extension of M in the next lemma.

Lemma 3. No cost-reducing path exists during the execution of BEC2.

Proof. Prove by contradiction. Let us call M0,M1, . . . ,Mi, . . . ,M|FM0 | the sets
of edges constructed in Step 5 of each iteration of BEC2 in this order. That is,
M0 is a maximum matching computed in Step 1, and Mi is defined by Mi−1⊕EP

for P found in Step 4 of i-th iteration, which satisfies |Mi| = |Mi−1| + 1. Now,
we suppose that a cost-reducing path first appears after (j− 1)-th iteration. We
refer the cost-reducing path with respect to Mj as P ∗ = (c1, l1, . . . , lk−1, ck).
For the previous edge set Mj−1, let P ′ = (v′, . . . , c′) be an augmenting path
found in Step 4. Namely, Mj = Mj−1 ⊕ EP ′ . Let Q = (Mj \ Mj−1) ∩ EP ∗ ,
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Fig. 3. P ∗ and P ′ in Mj−1 (Lemma 3)

that is, a set of covering edges in P ∗ that exist in Mj but not in Mj−1. Here,
P ∗ is a first cost-reducing path implies that Q 
= ∅ holds, otherwise P ∗ is also
an Mj−1-cost-reducing path, a contradiction. Also, Q ⊆ EP ′ holds because P ∗

results from the switching operation for P ′. Let degMj
(c1) = d as the degree of

starting vertex c1 of P ∗. Then degMj−1
(ck) ≤ degMj

(ck) ≤ d − 2 holds for the
end vertex ck because P ∗ is a cost-reducing path and the degrees of all vertices
are nondecreasing for the switching operation. Figure 3 shows the relationship
between P ∗ and P ′ in Mj−1. In this situation, we will show a contradiction.

Let {cp, lp} ∈ Q be the first edge in Q that appears on P ∗, that is, p is the
smallest index in Q. There is a vertex-alternating path (c1, . . . , lp−1, cp, . . . , c

′)
in Mj−1 because {cp, lp} is included in P ′ by Q ⊆ EP ′ . This path is not a
cost-reducing path since Mj−1 has no cost-reducing path. Thus, degMj−1

(c′) ≥
degMj−1

(c1)−1 = degMj
(c1)−1 = d−1 holds when c′ 
= c1. In the case of c′ = c1,

degMj−1
(c′) = degMj

(c′) − 1 = d − 1 holds since the degree of c′(c1) increases
by one by switching of P ′. Accordingly, degMj−1

(c′) ≥ d − 1 holds at the end
vertex c′ of P ′; by the definition of the augmenting path, any vertex v ∈ CMj−1

appearing in the alternating search tree in Mj−1 satisfies degMj−1
(v) ≥ d− 1.

On the other hand, let {cq, lq} ∈ Q be the last edge of Q that appear on P ∗.
Because it also exists in P ′ by Q ⊆ EP ′ , an alternating path (v′, . . . , lq, . . . , ck)
with respect to Mj−1 exists. It is included in the alternating search tree with
root v′ for Mj−1 constructed in Step 3. However, the end vertex ck of the path
satisfies degMj−1

(ck) ≤ d − 2 as shown above, a contradiction. This completes
the proof. �


Theorem 4. BEC2 produces a balanced edge cover in O(nm) time.

Proof. At the beginning of the algorithm, a maximum matching M0 is con-
structed, and its size is ν(G). Steps 2 to 5 are iterated n − 2ν(G) times, which
is the number of free vertices for M0, and in each iteration one edge is added
to current M . At the end of the algorithm, no free vertex is left; the obtained
M is an edge cover with size ν(G) + (n− 2ν(G)) = n− ν(G), which is the size
of a minimum edge cover, by Gallai’s theorem. Considering this and Lemma 3,
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BEC2 produces a balanced edge cover by Theorem 2, then the correctness is
proved. It is not difficult to see that the running time is O(nm). �
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Abstract. The firefighter problem is defined as follows. Initially, a fire
breaks out at a vertex r of a graph G. In each subsequent time unit, a
firefighter chooses a vertex not yet on fire and protects it, and the fire
spreads to all unprotected neighbors of the vertices on fire. The objective
is to choose a sequence of vertices for the firefighter to protect so as to
save the maximum number of vertices. The firefighter problem can be
used to model the spread of fire, diseases, computer viruses and suchlike
in a macro-control level.

In this paper, we study algorithmic aspects of the firefighter problem
on trees, which is NP-hard even for trees of maximum degree 3. We
present a (1−1/e)-approximation algorithm based on LP relaxation and
randomized rounding, and give several FPT algorithms using a random
separation technique of Cai, Chan and Chan. Furthermore, we obtain an
2O(

√
n log n)-time subexponential algorithm.

1 Introduction

The Firefighter problem is a one-person’s game on a graph G defined as follows.
At time t = 0, a fire breaks out at a vertex r of G. For each time step t ≥ 1,
a firefighter protects one vertex not yet on fire (the vertex remains protected
thereafter), and then the fire spreads from burning vertices (i.e., vertices on fire)
to all unprotected neighbors of these vertices. The process ends when the fire can
no longer spread, and then all vertices that are not burning are considered saved.
The objective is to choose a sequence of vertices for the firefighter to protect so
as to save the maximum number of vertices in the graph. The Firefighter problem
was introduced by Hartnell [Har95] in 1995 and can be used to model the spread
of fire, diseases, computer viruses and suchlike in a macro-control level.

The Firefighter problem is NP-hard even for trees of maximum degree 3 as
shown by Finbow et al. [FKMR07]. On the other hand, Hartnell and Li [HL00]
� Partially supported by Earmarked Research Grant 410206 of the Research Grants
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have proved that a simple greedy method for trees is a 0.5-approximation
algorithm, and MacGillivray and Wang [MW03] have solved the problem in
polynomial time for some special trees. Various aspects of the problem have
been considered by Develin and Hartke [DH07], Fogarty [Fog03], Wang and
Moeller [WM02], and Cai and Wang [CW07], among others. We refer the reader
to a recent survey of Finbow and MacGillivray [FM07] for more information on
the Firefighter problem.

In this paper, we study algorithmic aspects of the Firefighter problem on trees.
Our main results are:

1. A (1 − 1/e)-approximation algorithm (Section 3) based on a LP-relaxation
and randomized rounding. We also prove that 1 − 1/e is the best approxi-
mation factor one can get using any LP-respecting rounding technique with
the same LP (Section 3.1).

2. Several FPT algorithms and polynomial-size kernels (Section 4 and also a
summary in Table 1) when we use several different choices for the parame-
ter k: the number of saved vertices, the number of saved leaves, and the
number of protected vertices. Our FPT algorithms are based on the random
separation method of Cai, Chan and Chan [CCC06].

3. A subexponential algorithm (Section 5) that runs in time 2O(
√

n log n). We
note that an 2O(n0.33)-time algorithm would falsify a conjecture that there is
no subexponential algorithm for SAT (see discussions in Section 5).

Table 1. Summary of FPT algorithms. The “randomized complexity” column indi-
cates expected running time of algorithms with one-sided error, and the “deterministic
complexity” column gives the worst-case running time of deterministic algorithms.

problems randomized deterministic kernel size

Saving k Vertices O(4k + n) O(n) + 2O(k) O(k2)
Saving All But k Vertices O(4kn) 2O(k)n log n open
Saving k Leaves O(n) + 2O(k) O(n) + 2O(k) O(k2)
Saving All But k Leaves none unless NP ⊆ RP NP-complete for k = 0 no kernel
Maximum k-Vertex Protection kO(k)n kO(k)n log n open

2 Definitions and Notation

We first define some terms. Let T be a rooted tree with root r which is the origin of
the fire. A vertex is protected once it is protected by the firefighter, and saved if it is
not burnt at the end of the game. A strategy for the Firefighter problem is a sequence
v1, v2, . . . , vt of protected vertices of T such that vertex vi, 1 ≤ i ≤ t, is protected
at time i and the fire can no longer spread to unprotected vertices at time t.

The following is the decision version of the problem we consider in the paper.

Firefighter on Trees
Instance A rooted tree T with root r and a positive integer k.
Question Is there a strategy for the firefighter to save at least k vertices

when a fire breaks out at the root r?
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Without ambiguity, we abbreviate “the Firefighter problem on trees” as “the
Firefighter problem” in the rest of the paper.

We denote the subtree of T rooted at vertex v by T (v), and assign the number
of vertices in T (v) as the weight wv of v. For a strategy S, the value of S, denoted
by ‖S‖, equals the number of vertices saved by S.

Denote by Li the set of vertices of depth i (L0 contains only the root), and we
refer to eachLi as a level of T . Let dv denote the depth of v, and h denote the height
of T , i.e., the depth of the deepest leaf. We write u # v if u is an ancestor of v.

An instance of a parameterized problem consists of a pair (I, k) with I being
the input and k the parameter, and a parameterized problem is fixed-parameter
tractable (FPT in short) if it admits an FPT algorithm, i.e., an algorithm that
runs in f(k) |I|O(1) time for some computable function f independent of the
input size |I|. A kernelization for a parameterized problem is a polynomial-time
reduction that maps an instance (I, k) onto (I ′, k′) such that (1) |I ′| ≤ g(k)
for some computable function g, (2) k′ ≤ k, and (3) (I, k) is a “Yes”-instance
iff (I ′, k′) is a “Yes”-instance. The pair (I ′, k′) is called a kernel of (I, k). The
kernel is polynomial-size if g(k) = kO(1). The existence of a kernel implies the
existence of an FPT. The existence of an FPT implies the existence of a kernel,
but not necessarily of a polynomial-size kernel.

3 A (1 − 1/e)–Approximation Algorithm

In this section we present a (1−1/e)-approximation algorithm for the Firefighter
problem on trees, which improves the 1/2-approximation of Hartnell and Li
[HL00] (note (1 − 1/e) ≈ 0.6321). Our algorithm, proposed by B. Alspach (see
[FM07]), uses randomized rounding of an LP relaxation of a 0-1 integer program
formulated by MacGillivray and Wang [MW03]. It is asked in [FM07] to inves-
tigate the performance of this algorithm, and in this section we determine the
approximation ratio of the algorithm.

It is easy to see that an optimal strategy for a tree protects a vertex at level
i at time i and has no need to protect descendants of a protected vertex. This
observation translates into the following 0-1 integer program of MacGillivray
and Wang [MW03] for a tree T = (V,E), where for vertex v, xv is a boolean
decision variable such that xv = 1 iff v is protected, and wv is the number of
descendants of v.

maximize
∑
v∈V

wvxv

subject to xr = 0∑
v∈Li

xv ≤ 1 for every level Li with i ≥ 1

∑
v�u

xv ≤ 1 for every leaf u of T

xv ∈ {0, 1} for every vertex v of T

(1)
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By relaxing the constraint xv ∈ {0, 1} in the above integer program to
0 ≤ xv ≤ 1, we get a linear program, whose optimal solution will be denoted
by OPTLP . The optimal solution to the LP can be interpreted as an optimal
“fractional” firefighting strategy1.

Alspach’s rounding method uses the fact that in OPTLP , the values of xv in
each level of the tree sum up to at most 1, and thus they can be treated as a
probability distribution. The rounding scheme is to pick the vertex to protect at
each level according to this distribution. It might be the case that the fractional
values in a level sum up to less than 1. In this case, with the remaining probability
we choose to protect no vertex at the level (this makes no difference in the
analysis). Also, it might be the case that the rounding procedure chooses to
protect both a vertex v and its ancestor u. In this case, we choose to protect u
rather than v, and do not protect any vertex in v’s level. We call this situation
an annihilation.

We note that the loss in rounding stems exactly from annihilations. If an-
nihilations never occur, the expected value of the rounded strategy is at least
‖OPTLP ‖ and thus the approximation ratio would be 1. On the other hand, if
annihilations occur, consider a vertex v which is fully saved by the fractional
strategy and consider the path of length dv from the root r to v. In the worst
case, the fractional strategy assigns a 1/dv-fraction of a firefighter to each vertex
in this path. In this case, the probability that v is saved by the rounded strategy
is equal to

1− (1 − 1/dv)dv ≥ 1− 1/e .

To turn this intuition into a full analysis, we just need to show that the above
case is indeed the worst case, and that a similar behavior occurs when v is not
fully saved by the fractional strategy. We do this in the following lemma.

Lemma 1. Given any fractional strategy SF , let SI be the integer strategy pro-
duced by applying the randomized rounding method to SF . Then,

E [‖SI‖] ≥
(

1− 1
e

)
· ‖SF ‖ .

Proof. Denote the value of the fractional strategy at v by x̃v and the value of
the rounded strategy at v by xv. Thus, xv is an indicator random variable for
whether v is protected by SI . Similarly, for each v, define ỹv =

∑
u�v x̃v to be

the fraction of v that is saved by SF , and yv =
∑

u�v xv to indicate whether v
is saved by SI .

1 A fractional firefighting strategy is a placement of fractional firefighters on the ver-
tices so that the sum of firefighter fractions assigned to each level is at most 1, and
the sum of firefighter fractions assigned to each root-to-leaf path is at most 1. For
example, if a vertex v is protected by half of a firefighter, all its descendants are
half-saved. If, furthermore, another vertex u � v is protected by 0.3 of a firefighter,
then all descendants of u are 0.8-saved.
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Fix a vertex v, and denote by r = v0, v1, v2, . . . , vk = v the path from the root
to v. By the definition of the rounding procedure, we see that

Pr [yv = 1] = 1−
k∏

i=1

(1− x̃vi).

We have the following bound

Pr [yv = 1]=1−
k∏

i=1

(1− x̃vi) ≥ 1−
(∑k

i=1(1− x̃vi)
k

)k

=1−
(
k −

∑k
i=1 x̃vi

k

)k

= 1−
(
k − ỹv

k

)k

= 1−
(

1− ỹv

k

)k

≥ 1− e−ỹv ≥
(

1− 1
e

)
ỹv,

where the first inequality follows from the inequality of the means, and the
second and third inequalities follow from standard analysis, using the fact that
0 ≤ ỹv ≤ 1. Note that the sum of all ỹv is just the value of SF . Therefore,

E [‖SI‖] =
∑
v∈V

Pr [yv = 1] ≥
∑
v∈V

(
1− 1

e

)
ỹv =

(
1− 1

e

)
· ‖SF ‖ ,

where the first equality follows from linearity of expectation. This finishes the
proof of the lemma. �

The above lemma implies that the expected approximation ratio of our algorithm
is (1 − 1/e). We can easily derandomize our algorithm by using the method of
conditional expectations [AS92], which will be discussed in the full paper.

Theorem 1. There is a deterministic polynomial-time (1− 1/e)-approximation
algorithm for the firefighter problem on trees.

3.1 LP-Respecting Rounding Does Not Achieve Approximation
Better Than 1 − 1/e

We note that the best known integrality gap for MacGillivray and Wang’s LP,
proved by Hartke [Har06], is 16

17 . Thus, it is tempting to believe that the rounding
method might be improvable. However, we can show that no rounding technique
from a relatively rich class of rounding techniques gives an approximation ratio
better than 1 − 1/e. This means that one would have to try something very
different than standard rounding methods.

A common feature of many rounding techniques in the literature is that they
are LP-respecting. A rounding technique for the firefighter problem is called
LP-respecting if it only chooses to protect vertices v with x̃v > 0, and never
protects any vertex v with x̃v = 0. (Recall that x̃v is the value of the optimal
LP solution on vertex v.) The following theorem states that any LP-respecting
rounding technique, when used together with [MW03]’s LP, does not achieve an
approximation ratio better than 1− 1/e. Consequently, any rounding technique
that aims at getting better than (1 − 1/e)–approximation would have to be
LP-disrespecting.
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Theorem 2. For any ε > 0, there exists a tree T , and an optimal fractional
solution S̃ for the LP on T , such that any integral strategy S ⊆ {v : x̃v > 0} can
save no more than (1− 1/e + ε) · ‖OPTIP (T )‖ vertices.

The proof of this theorem is somewhat technical, and we defer it to the full
version of the paper.

4 FPT Algorithms

In this section, we consider FPT algorithms and polynomial-size kernels for three
parameterized versions of the Firefighter problem.

1. Saving k Vertices: The parameter k is the number of saved vertices, and we
ask if there is a strategy saving at least k vertices.

2. Saving k Leaves: The parameter k is the number of saved leaves, and we wish
to determine if the firefighter can save at least k leaves of the tree.

3. Maximum k-Vertex Protection: The parameter k is the number of protected
vertices and we wish to find a strategy for the firefighter to protect k vertices
to maximize the total number of saved vertices.

The results in this section are summarized in Table 1.
The main tool we use is the random separation method of Cai, Chan, and

Chan [CCC06]. This technique produces randomized algorithms, which can be
derandomized by using universal sets (see [NSS95]). A set of binary vectors
of length n is (n, t)-universal if for every subset of size t of the indices, all 2t

configurations appear in the set. Naor et al. [NSS95] give a construction of a
(n, t)-universal set of cardinality 2ttO(log t) logn in time 2ttO(log t)n logn.

4.1 Saving k Vertices

First we use random separation to give an 2O(k)n-time algorithm for Saving k
Vertices. Then we construct a kernel of size O(k2) for the problem. Finally we
use the random separation method to solve the parametric dual problem Saving
All But k Vertices in time 2O(k)n.

We start with our FPT algorithm for Saving k Vertices. Call a strategy S
satisfying if it saves at least k vertices. The goal is then to find a satisfying
strategy if one exists. First observe that if the root r has a child v with weight
wv ≥ k then we can protect v to solve the problem. Therefore we can assume
from now on that the weight of every vertex in V − r is at most k − 1. In
particular, this means that the height of T is at most k.

The algorithm first colors each vertex of T randomly and independently by
either green or red with equal probability. We call a coloring of T good if T has a
satisfying strategy S0 such that all vertices in S0 are green, and all descendants
of vertices in S0 are red.
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Given a good coloring of T , we can find a satisfying strategy S to T as follows:

Step 1. Find the set Vg of green vertices whose descendants are all red.
Step 2. For each level Li (i ≥ 1), choose from Vg ∩ Li a vertex of maximum

weight, and put it in S. (If Vg ∩ Li = ∅ then do nothing).

It’s not hard to see that S is a satisfying strategy, as for each vertex v of S0,
v is in Vg ∩Ldv and can be placed in S, thus ‖S‖ ≥ ‖S0‖. Therefore S is indeed
a satisfying strategy, and we can find it in O(n) time, given a good coloring.

However, the probability of obtaining a good coloring depends on the sum of
the number of vertices in S0 and the number of the descendants of S0, which
might be as large as Θ(k2). We can reduce this sum to 2k by using the following
simple existence lemma:

Lemma 2. Suppose that every non-trivial subtree of T is of size less than k,
and that there is a satisfying strategy. Then there is a satisfying strategy S0 that
saves at most 2k vertices.

Proof. Let S1 be some satisfying strategy. If S1 saves at most 2k vertices, then
we are done. Otherwise, we construct S0 as follows. Since wv < k for each vertex
v of S1, we can add vertices from S1 to S0 in turn until S0 saves at least k
vertices. This S0 saves at most 2k vertices. �

Thus, if we choose S0 not as an arbitrary satisfying strategy, but as the satisfying
strategy guaranteed in Lemma 2, then the probability that a randomly-chosen
coloring is good is at least 1/22k. By choosing 4k colorings and running steps 1
and 2 for each of the colorings, we succeed in finding a satisfying strategy, if one
exists, with at least constant probability.

To derandomize the algorithm, we can use a (n, 2k)-universal set, and use the
vectors of the set as the colorings. If a satisfying strategy exists, then at least one
of the colorings will be good. Therefore we have a deterministic FPT algorithm
that runs in time 4kkO(log k)n logn.

We now present an O(k2)-size kernel for Saving k Vertices on trees. First, note
that if r has a child v with wv ≥ k, we can protect v to save at least k vertices.
In such a case, the problem is solvable in time O(n), and we can use a trivial
kernel for it. From now on we assume that the weight of each child of r is at
most k − 1 and in particular the height h of T is at most k − 1.

The idea behind the kernel is to ignore all but a limited number of vertices in
each level of the tree. Its construction is as follows:

Step 1. If level 1 has at least k vertices then we put the k largest-weight vertices
of level 1 into K1 else we put all vertices of level 1 into K1.

Step 2. For i := 2 to h, if level i has at least 2k − i vertices then we put the
2k− i largest-weight vertices of level i into Ki else we put all vertices of level
i into Ki.

Step 3. The kernel is K =
⋃h

i=1 Ki.

Note that the above construction of K can be performed in time O(n). Also
note that K has at most k +

∑h
i=2(2k − i) ≤ 3k2/2 vertices. We prove that K

is a kernel in the following lemma:
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Lemma 3. If T has a satisfying strategy S, then there exists a satisfying strategy
S′ ⊆ K.

Proof. Let S = {v1, v2, . . . , vt} be a satisfying strategy, where vi is in level i.
Define I(S) to be the largest i such that vi /∈ Ki (define I(S) = ∞ if S ⊆ K).
We say that S is minimal iff the removal of any vertex from S would make S non-
satisfying. We let S be a satisfying strategy that maximizes I(S). Furthermore,
among all of those we choose S to be a strategy which is minimal. Let i = I(S). If
i =∞, we are finished. We assume i <∞, and eventually reach a contradiction.

We will now show how to replace vertex vi of S by a vertex in Ki to get
another satisfying strategy. If i = 1 then |K1| = k as v1 
∈ K1. Note that at
most k − 1 vertices in K1 are ancestors of vertices in S as |S| ≤ k. Therefore
K1 has a vertex v that is not an ancestor of any vertex of S. Since wv ≥ wv1 ,
we can remove v1 from S and insert v, to get a satisfying strategy S′ of T with
i(S′) > i(S), contradicting the choice of S. Otherwise i > 1. Since vi 
∈ Ki, we
have |Ki| = 2k−i. Note that at most k−i vertices in Ki are ancestors of vertices
in S as |S| ≤ k. Furthermore, by the minimality of S, at most k−1 vertices in Ki

are descendants of vertices in S (otherwise S does not need vertex vi). Therefore
Ki has at least one vertex v that is neither an ancestor nor a descendent of any
vertex in S. By the definition of Ki, wv ≥ wvi and we can replace vi in S by v
to get a satisfying strategy S′ of T with i(S′) > i(S), contradicting the choice
of S. �


The O(k2) kernel can be easily combined with the FPT algorithm to establish
the following result.

Theorem 3. Saving k Vertices can be solved in O(n) + 4kkO(log k) time.

For the parametric dual Saving All But k Vertices of Saving k Vertices, we can
also use random separation to obtain an FPT algorithm that runs in 2O(k)n logn
time. The main difference is that we use a random coloring to “guess” the burnt
part instead of the saved part for Saving k Vertices. The details will be given in
the full paper.

4.2 Saving k Leaves and Protecting k Vertices

In this section, we consider FPT algorithms for Saving k Leaves and Maximum
k-Vertex Protection. The former uses the number of saved leaves as the parameter
k, and the latter tries to save the maximum number of vertices by protecting k
vertices.

We start with Saving k Leaves, which deals with the situation that leaves
are much more valuable than internal vertices. Due to space limit, we will only
sketch the main ideas of our FPT algorithm and leave the details to the full
paper. Note that the parametric dual Saving All But k Leaves of Saving k Leaves
is NP-complete even for k = 0, which was shown by Finbow et. al. [FKMR07].
Thus Saving All But k Leaves has no FPT algorithm unless P 
= NP .

To solve Saving k Leaves, it is possible to use the algorithm in the latter part of
this section for Maximum k-Vertex Protection, which takes kO(k)n time. Here we
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describe an algorithm that takes time 2O(k)poly(n). To get such an algorithm, it
is tempting to try the same approach we used for the Saving k Vertices problem,
but such an approach does not work: for Saving k Vertices we used the fact that
if there is a strategy that saves at least k vertices, then there is a strategy whose
subtrees are of total size O(k). This does not hold for Saving k Leaves.

The main difficulty comes from the snakes in the tree. A snake is a path
(v1, v2, . . . , v�) with � ≥ 2, such that for each i = 1, . . . , � − 1, vi has only a
single child, vi+1. (In other words, a snake is an induced path). If snakes do
not exist, then a random separation algorithm similar to the one we gave for
Saving k Vertices solves Saving k Leaves in time 2O(k)n. Clearly, the difficulty
lies in dealing with snakes. To this end, we use a random separation approach
together with an algorithm for finding a maximum matching, which is used to
decide which vertex to protect inside each snake.

The first step of the algorithm is to contract each snake, and to get a snake-free
tree T ′. We then apply the random separation method on T ′ to find a satisfying
(saving at least k leaves) strategy S′. Then we somehow transform S′ into a
satisfying strategy S of T . Note that every vertex v′ in T ′ corresponds to either
a snake or a single vertex in the original tree T , and to save the leaves that v′

saves, we can protect any vertex in the snake that corresponds to v′. With this
observation we can understand the transformation from S′ to S as a scheduling
problem, with the vertices in S′ being the set of tasks, their corresponding snakes
indicating the starting time and the deadline of the tasks, and each level in T
being a free slot in the processing queue. We formulate this problem into a
bipartite graph and find the satisfying strategy using the maximal matching
algorithm for bipartite graphs. We will discuss details in the full paper.

We can use an approach similar to the one used for Saving k Vertices to obtain
an O(k2)-size kernel of Saving k Leaves, which can be combined with the above
FPT algorithm to obtain the following result:

Theorem 4. Saving k Leaves can be solved in O(n) + 2O(k) time.

We now turn to Maximum k-Vertex Protection, the problem of protecting k ver-
tices to save the maximum number of vertices. Note that for any tree of height k,
an optimal strategy needs only protect at most k vertices. Therefore Maximum k-
Vertex Protection can be also regarded as a parameterized version of the firefighter
problem on trees when we take the height of a tree as the parameter k.

Theorem 5. Maximum k-Vertex Protection can be solved in kO(k)n time by a
randomized algorithm.

Proof. We color the vertices randomly and independently, with probability 1
k

to be green and probability 1 − 1
k to be red. Let S0 be an assumed optimal

strategy. We call a coloring c good if all vertices in S0 are green and all of their
ancestors are red. If the coloring is good, then we can find an optimal strategy
by the same procedure that we used in the algorithm for Saving k Vertices, in
time O(n). Now, since there are k vertices in S0, and each of them has at most
k ancestors, the probability for the coloring to be good is at least
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≥
(

1
k

)k

·
(
k − 1
k

)k2

≥
(

1
k

)k (1
4

)k

= k−O(k)

Thus, picking kO(k) colorings allows us to find the optimal strategy with proba-
bility at least a constant. �


This algorithm cannot be derandomized by using normal universal sets while
maintaining the running time, because we color each vertex green or red with
unequal probabilities. We can use equal probability for green and red and then
use a (n, k2)-universal set to derandomize the algorithm, but the resulting al-
gorithm runs in time of 2O(k2)n logn. To derandomize the above algorithm ef-
ficiently, Verbin [Ver] has recently introduced asymmetric universal sets which
can be used to yield a deterministic algorithm that runs in time kO(k)n logn.

Question 1. Is there an algorithm for Maximum k-Vertex Protection that runs
in time 2o(k log k)poly(n)?

5 A Subexponential Algorithm

In this section we present an algorithm for exactly solving the firefighter problem
on trees. The algorithm takes time nO(

√
n) = 2O(

√
n log n) on any tree with n

vertices.
The main idea is to use pruning, coupled with a careful analysis of the size of

the space of feasible solutions. We note that the size of the space of feasible solu-
tions can be 2Ω(n), and an exhaustive approach is clearly not sufficient. On the
other hand, an exhaustive approach is good enough when the tree is somewhat
balanced, and in particular if the tree is of height O(

√
n). Our algorithm deals

with non-balanced trees by detecting parts of the tree that are small and “costly
to save”, and pruning such parts. By “costly to save”, we mean that there are
vertices on the same levels such that if we protect them, we will save many more
vertices.

We now present the algorithm ff-subexp, which operates recursively, and
solves the firefighter problem in time nO(

√
n). Recall that r denotes the root of

T , wv denotes the number of vertices in the subtree rooted at v, dv denotes the
depth of v, and level i refers to the set of all vertices of depth i. We set the
parameter k0 =

√
n, which is fixed throughout the execution of the algorithm,

even when we call the algorithm recursively.
ff-subexp works as follows. Its input is T , a tree with n vertices. Its output

is an optimal firefighter strategy for T .

1. If n ≤ k0, run a brute-force search (taking time O(nk0 )) and return the result
it gives. Otherwise, continue to step 2.

2. If r has some child v with wv ≤ k0, then:
(a) Construct a tree T ′ which is identical to T except that the subtree rooted

at v is completely deleted. Run ff-subexp recursively on T ′ to get an
optimal strategy S′ for T ′.
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(b) Calculate the best strategy S′′ out of the strategies that protect one
vertex in each of the levels 1 through wv, and no vertices below level wv.
Do this using the naive brute-force algorithm that takes time O(nwv+1).

(c) Pick the strategy among S′ and S′′ which, when run on T , gives the best
result. Return it. /* we will prove that this strategy is optimal in the
full paper */

3. else: /* all children of the root are subtrees of size at least k0. Here we’ll do
a sort of brute-force search */
(a) Go over all children v1, . . . , v� of r. For each vi do:

– Find the best strategy, Si, among all strategies that protect vi. Do
this by recursively running ff-subexp on a tree with n − wvi − �
vertices, produced by deleting vi’s subtree, deleting all level-1 nodes,
and making all level-2 nodes into direct descendants of r.

(b) Pick the strategy among S1, . . . , S� that gives the best result when ap-
plied to T , and return it.

Due to the space constraint, we will defer the correctness proof and complexity
analysis of the algorithm to the full paper.

It is interesting to note that the NP-hardness reduction of Finbow, King,
MacGillivray and Rizzi in [FKMR07] in fact implies that an 2O(n0.33)-time algo-
rithm for the firefighter problem on trees would imply an 2o(n)-time algorithm
for solving 3-SAT on instances with n variables and O(n) clauses. This would
falsify a conjecture of Impagliazzo et al. [IP01, IPZ01]. Furthermore, the reduc-
tion of [FKMR07] also implies that an nO(k0.99)-time algorithm for the firefighter
problem on trees of height k would falsify the same conjecture of Impagliazzo
et al. . Recall that the trivial implementation of step 2b in the algorithm takes
time O(nk), which means that the implementation of that step, although naive,
is likely to be close to optimal.

Question 2. Is there an exact 2n1/3polylog(n)-time algorithm for the firefighter
problem on trees? Alternatively, would an 2n1/2/polylog(n)-time algorithm for the
problem imply an 2o(n)-time algorithm for 3-SAT with n variables and O(n)
clauses?
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A New Algorithm for
Finding Trees with Many Leaves�

Joachim Kneis, Alexander Langer, and Peter Rossmanith

Dept. of Computer Science, RWTH Aachen University, Germany

Abstract. We present an algorithm that finds trees with at least k
leaves in undirected and directed graphs. These problems are known as
Maximum Leaf Spanning Tree for undirected graphs, and, respec-
tively, Directed Maximum Leaf Out-Tree and Directed Maxi-

mum Leaf Spanning Out-Tree in the case of directed graphs. The
run time of our algorithm is O(poly(|V |) + 4kk2) on undirected graphs,
and O(4k|V | · |E|) on directed graphs. This improves over the previously
fastest algorithms for these problems with run times of O(poly(|V |) +
6.75kpoly(k)) and 2O(k log k)poly(|V |), respectively.

1 Introduction

In this paper we consider the graph theoretical problems of finding trees and
spanning trees in graphs, so that their number of leaves is maximal. To be more
precise, given a graph G and a number k, we are to find a (spanning) tree with
at least k leaves. For undirected graphs, the terms tree and spanning tree are
well-known. These terms translate to out-tree and spanning out-tree on directed
graphs. Here, a (spanning) out-tree is a rooted tree, such that every leaf (every
node of G) can be reached from the root via a directed path within this tree.

Being a problem that has many practical applications, e.g., in network de-
sign [10,18,21,24], it is already widely studied with regard to its complexity
and approximability. All versions are APX-hard [15] and there is a polyno-
mial time 2-approximation for undirected graphs [23] and a 3-approximation
in almost linear time [20]. On cubic graphs, a 3/2-approximation was found
recently [8].

In the area of parameterized algorithms, the Maximum Leaf Spanning

Tree problem is very prominent. Parameterized complexity theory is an ap-
proach to explore whether hard problems can be solved exactly with a run time
that comes close to polynomial time on well-behaved instances. Formally, a pa-
rameterized problem L is a set of pairs (I, k) where I is an instance and k the
parameter. A parameterized problem L is called fixed parameter tractable and be-
longs to the complexity class FPT if there is an algorithm that decides member-
ship of L in time f(k)poly(|I|), where f is an arbitrary function. If the parameter
is small, such an algorithm can be quite efficient in spite of the NP-hardness of
the problem — in particular if f is a moderately exponential function.
� Supported by the DFG under grant RO 927/7-1.
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The parameterized version of the undirected problem is defined as follows:
Maximum Leaf Spanning Tree (MLST)

Input: An undirected graph G = (V,E), a positive integer k
Parameter: k
Question: Does G have a spanning tree with at least k leaves?

It is long known that MLST ∈ FPT because a graph G contains a k-leaf
spanning tree iff G has a K1,k (a k-star) as a minor [13]. However, this uses
the graph minor theorem from Robertson and Seymour [22] and only proves the
existence of an algorithm with running time f(k)|V |3. The first explicit algorithm
is due to Bodlaender [3], who uses the fact that G does contain a K1,k as a minor
if its treewidth is larger than wk, a value that depends on k. The algorithm
hence tests if the treewidth of G is bigger than wk. In this case, the algorithm
directly answers “yes”. Otherwise, it uses dynamic programming on a small
tree decomposition of G. The overall run time is roughly O((17k4)! |G|). In the
following years, the run time of algorithms deciding MLST was improved further
to O((2k)4kpoly(|G|)) by Downey and Fellows [11], and to O(|G| + 14.23kk) by
Fellows, McCartin, Rosamond, and Stege [14]. The latter was the first algorithm
with an exponential cost function 2O(k) · poly(|G|) and the first algorithm that
employs a small problem kernel : In polynomial time an instance (G, k) of MLST

is reduced to an equivalent instance (G′, k′) with |G′| ≤ f(k) and k′ ≤ k. Note
that the existence of a small problem kernel for a parameterized problem implies
that the respective problem is in FPT.

Bonsma, Brueggemann, and Woeginger [5] use an involved result from ex-
tremal graph theory by Linial and Sturtevant [19], and Kleitman and West [17]
to bound the number of nodes that can possibly be leaves by 4k. A brute
force check for each k-subset of these 4k nodes yields a run time bound of
O(|V |3 + 9.4815kk3). A new problem kernel of size 3.75k by Estivill-Castro,
Fellows, Langston, and Rosamond [12] improves the exponential factor of this
algorithm to 8.12k [4]. The currently best known algorithm for MLST is due
to Bonsma and Zickfeld [9], who reduce the instances to graphs without certain
subgraphs called diamonds and blossoms that admit a better extremal result,
obtaining a run time bound of O(poly(|V |) + 6.75kpoly(k)).

In the directed case, we have to distinguish between the following variants:

Directed Maximum Leaf Out-Tree (DMLOT)
Input: A directed graph G = (V,E), a positive integer k
Parameter: k
Question: Does G contain a rooted out-tree with at least k leaves?

Directed Maximum Leaf Spanning Out-Tree (DMLST)
Input: A directed graph G = (V,E), a positive integer k
Parameter: k
Question: Does G have a spanning out-tree with at least k leaves?

While it is easy to see that a k-leaf tree in an undirected graph can always be
extended to a k-leaf spanning tree, this is not the case for directed graphs that
are not strongly connected (see Figure 1 [6]).
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Fig. 1. A graph containing a 3-leaf out-tree, but no 3-leaf spanning tree

For both of these problems, membership in FPT was discovered only recently,
since neither the graph minor theorem by Robertson and Seymour in its cur-
rent shape, nor the method used by Bodlaender, nor the extremal results by
Kleitman-West are applicable for directed graphs.

In the case of DMLOT, Alon, Fomin, Gutin, Krivelevich, and Saurabh [2]
proved an extremal result for directed graphs, so that either a k-leaf out-tree
exists, or the pathwidth of the underlying graph is bounded by 2k2. This allows
dynamic programming, so that an overall run time bound of 2O(k2 log k)poly(|V |)
can be achieved, answering the long open question whether DMLOT is fixed
parameter tractable. They could further improve this to 2O(k log2 k)poly(|V |) and,
if G is acyclic, to 2O(k log k)poly(|V |) [1].

The more important question, if DMLST ∈ FPT, remained open. Only very
recently, Bonsma and Dorn [6] were able to answer this question in the affirma-
tive. Their approach is based on pathwidth and dynamic programming as well
and yields a run time bound of 2O(k3 log k)poly(|V |). In a subsequent paper [7],
they proved that a run time of 2O(k log k)poly(|V |) suffices to solve both, DMLOT

and DMLST.

Our Contribution
Recall that in the directed case a k-leaf out-tree cannot necessarily be extended
to a k-leaf spanning out-tree even if G does contain a spanning out-tree (see
Figure 1). In this paper, we use the fact that a k-leaf out-tree with root r can
always be extended to a k-leaf spanning out-tree if G does contain a spanning
out-tree rooted in r.

We develop a new algorithm that — in contrast to the prior approaches based
on extremal graph theory — grows an out-tree from the root and therefore solves
both DMLOT andDMLST. The algorithm recursively selects and tries two of the
many possible ways to extend the tree. We prove that at least one of these recursive
calls finds a k-leaf tree, if such a tree exists. The number of recursive calls can be
bounded by 22k = 4k. The same algorithm can be used to solve MLST.

2 Preliminaries

Let G = (V,E) be a graph, and let n := |V | and m := |E| be the number of
vertices and edges, respectively. If G is undirected, we call a (spanning) tree T in
G a k-leaf (spanning) tree iff T has at least k leaves. If G is a directed graph, a
rooted out-tree T is a tree in G, such that T has a unique root r = root(T ), and
each vertex in T can be reached by a unique directed path from r in T . A k-leaf
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out-tree is an out-tree with at least k leaves, and a k-leaf spanning out-tree is a
k-leaf out-tree that is also a spanning out-tree.

In this paper, we do not distinguish between directed and undirected graphs
except when explicitly stated. The respective results and the algorithm can eas-
ily be transferred from directed graphs to undirected graphs and vice versa —
in particular, if undirected graphs are seen as symmetric directed graphs, where
every edge has a reverse edge. Such a representation is commonly used by al-
gorithmic graph libraries like LEDA. Edges are therefore denoted by (u, v), and
we universally use the terms tree and spanning tree. Without loss of generality
(k > 2), trees in undirected graphs are assumed to be rooted.

Let T be a tree in G. V (T ) denotes the set of nodes of T , E(T ) the set
of edges of T . The root, leaves, and inner nodes of T are denoted by root(T ),
leaves(T ) and inner(T ) := V (T ) \ leaves(T ), respectively. We denote by N(v) :=
{ u ∈ V | (v, u) ∈ E } the set of all neighbors of v ∈ V , N [v] := N(v) ∪ {v},
and for U ⊆ V we let N(U) :=

⋃
u∈U N(u). For a tree T and v ∈ V , we set

NT (v) := N(v) \ V (T ). Similarly, NT (U) := N(U) \ V (T ) for U ⊆ V . For
v ∈ V , let Tv := (N [v],

⋃
u∈N(v){(v, u)}) be the star rooted in v that contains

all neighbors of v.
Recall that our algorithm grows a tree from the root. To do so, the algorithm

further distinguishes between leaves of trees that will be leaves in the final k-
leaf tree (R), and leaves that are still allowed to become inner nodes (B), when
the tree is extended by the algorithm. This extension consists of the complete
remaining neighborhood of the particular node. The resulting tree T will be
such that each inner node has all of its neighbors in V (T ). We call such trees
inner-maximal trees.

Definition 1. Let G = (V,E) be a graph, and let T be a tree. If N(inner(T )) ⊆
V (T ), we call T an inner-maximal tree. A leaf-labeled tree is a 3-tuple (T,R,B),
such that T is a tree, and R and B form a partition of leaves(T ). (T,R,B) is
an inner-maximal leaf-labeled tree, if T is inner-maximal.

For trees T 
= T ′, we say T ′ extends T , denoted by T ′ * T , iff root(T ′) =
root(T ) and T is an induced subgraph of T ′. If (T,R,B) is a leaf-labeled tree and
T ′ is a tree such that T ′ * T and R ⊆ leaves(T ′) (R-colored leaves of T remain
leaves in T ′), we say T ′ is an (leaf-preserving) extension of (T,R,B), denoted
by T ′ * (T,R,B). We say a leaf-labeled tree (T ′, R′, B′) extends a leaf-labeled
tree (T,R,B), denoted by (T ′, R′, B′) * (T,R,B), iff T ′ * (T,R,B).

Lemma 1. Let (T,R,B) be an inner-maximal leaf-labeled tree, andT ′ * (T,R,B)
a leaf-preserving extension of (T,R,B). Then B 
= ∅.

Proof. Since T 
= T ′, there is x ∈ V (T ′) with x /∈ V (T ). Let x1 := root(T ) =
root(T ′) and consider the path x1, . . . , xl with xl = x from x1 to x in T . Since
x = xl /∈ V (T ), there is some i such that xi ∈ V (T ) and xi+1 
∈ V (T ). It
is xi ∈ leaves(T ) = R ∪ B, because T is inner-maximal. On the other hand,
xi ∈ inner(T ′), and with R ⊆ leaves(T ′), we have xi ∈ B. �
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3 k-Leaf Trees Versus k-Leaf Spanning Trees

In this section, we show when and how k-leaf trees can be extended to k-leaf
spanning trees. For this to work, remember that we consider trees with at least
k leaves. In particular, we allow that the resulting spanning tree has more leaves
than the originating k-leaf tree. While Lemma 2 can be considered folklore,
Lemma 3 is a new contribution that significantly eases our search for k-leaf
spanning trees in directed graphs.

Lemma 2. A connected, undirected graph G = (V,E) contains a k-leaf tree iff
G contains a k-leaf spanning tree. Furthermore, each k-leaf tree can be extended
to a k-leaf spanning tree in time O(n + m).

Proof. Let T be a tree in G with at least k leaves, and let l := |V − V (T )| be
the number of nodes that are not part of T . If l = 0, then T is a spanning tree
with at least k leaves. If otherwise l > 0, choose u ∈ V (T ) and v ∈ NT (V (T )),
such that u and v are adjacent. Let T ′ := T + {u, v}. It is easy to see that
T ′ has at least as many leaves as T . Furthermore, this operation can efficiently
be done with a breadth-first-search on G starting in V (T ), and hence after at
most O(n + m) steps a spanning tree with at least k leaves can be constructed
from T . �


In the undirected case, it is therefore sufficient to search for an arbitrary tree
with at least k leaves. If an explicit k-leaf spanning tree is asked for, the k-leaf
tree can then be extended to a spanning tree using an efficient postprocessing
operation.

Lemma 2 is, however, not applicable for directed graphs (cf., Figure 1): It is
easy to see that this graph contains an out-tree with three leaves, but the unique
spanning out-tree contains only one leaf. If we fix the root of the trees, we obtain
the following weaker result for directed graphs.

Lemma 3. Let G = (V,E) be a directed graph. If G contains a k-leaf spanning
out-tree rooted in x1, then any k-leaf out-tree rooted in x1 can be extended to a
k-leaf spanning out-tree of G in time O(n + m).

Proof. Let T be a k-leaf out-tree with root(T ) = x1 and let l := |V − V (T )| be
the number of nodes that are not in T . If l = 0, then T is a spanning out-tree
for G with at least k leaves. If l > 0, choose x ∈ V − V (T ) and consider a path
x1, x2, . . . , xs with xs = x from x1 to x. Since G has a spanning out-tree rooted
in x1, such a path must exist in G. Furthermore, x /∈ V (T ) and hence there is
1 ≤ i ≤ s such that xi ∈ V (T ) and xj /∈ V (T ) for each j = i + 1, . . . , s. It is
easy to see that by adding the path xi, . . . , xs to T , the number of leaves does
not decrease. Repeating this procedure yields a spanning out-tree for G that has
at least k leaves. Again, this can be efficiently done with a breadth-first-search
on G, which starts in T and takes time at most O(n + m). See Figure 2 for an
illustration. �
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x1 x1

xi

xi+1

x = xs

x1

Fig. 2. How to extend a k-leaf out-tree into a k-leaf spanning out-tree: For the ease
of illustration, we do not show all the edges in G. A 4-leaf out-tree with root x1 is
depicted in the first figure. The second figure shows an arbitrary spanning out-tree
rooted in x1, we chose one with two leaves. We can extend the first out-tree with edges
from the spanning out-tree so that all nodes are covered.

4 The Algorithm

In this section, we introduce Algorithm 1, which given an inner-maximal leaf-
labeled tree (T,R,B) recursively decides whether there is a k-leaf tree T ′ +
(T,R,B). Informally, the algorithm works as follows: Choose a node u ∈ B and
recursively test whether there is a solution where u is a leaf, or whether there
is a solution where u is an inner node. In the first case, u is moved from B to
the set of fixed leaves R, so that u is preserved as a leaf in solutions T ′. In the
second case, u is considered an inner node and all of its outgoing edges to nodes
in NT (u) are added to T . The upcoming Lemma 4 guarantees that at least one
of these two branches is successful, if a solution exists at all. In the special case
that |NT (u)| ≤ 1, we can skip the latter of the two branches by Lemma 5 and
Corollary 1. Please note that the resulting algorithm is basically the same for
directed and undirected graphs.

Lemma 4. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree, and x ∈ B.

1. If there is no k-leaf tree T ′, such that T ′ + (T,R ∪ {x}, B \ {x}), then all
k-leaf trees T ′ with T ′ + (T,R,B) have x ∈ inner(T ′).

2. If there is a k-leaf tree T ′, such that T ′ + (T,R,B) and x ∈ inner(T ′), then
there is also a k-leaf tree T ′′ + (T+{ (x, y) | y ∈ NT (x) }, R,NT (x)∪B\{x}).

Proof. 1. This is clear, since x is either leaf or inner node in T ′. 2. Let T ′ be a k-
leaf tree, such that T ′ + (T,R,B) and x ∈ inner(T ′). First note that NT (x) 
= ∅,
because x ∈ inner(T ′) and T is an induced subgraph of T ′. Hence consider
arbitrary y ∈ NT (x). If y /∈ V (T ′), then we can construct a k-leaf tree T ′′ from
T ′ by adding y and the edge (x, y). If y ∈ V (T ′), but (x, y) /∈ E(T ′), consider
the unique path x1, x2, . . . , xi, y from x1 := root(T ′) to y in T ′. We can now
replace the edge (xi, y) with (x, y) without decreasing the number of leaves in
T ′: x is inner node in T ′ by definition, and y ∈ leaves(T ′) implies y ∈ leaves(T ′′).
Furthermore, the connectivity of T ′ remains intact. Doing so iteratively for all
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Algorithm 1. A fast algorithm for maximum leaf problems.
Algorithm MaxLeaf:
Input: Graph G = (V, E), an inner-maximal leaf-labeled tree (T, R, B), k ∈ N
Output: Is there a k-leaf tree T ′ � (T, R, B)?
01: if |R| + |B| ≥ k then return “yes”
02: if B = ∅ then return “no”
03: Choose u ∈ B.
// Try branch where u is a leaf
04: if MaxLeaf(G, T, R ∪ {u}, B \ {u}, k) then return “yes”
// If u is not a leaf, it must be an inner node in all extending solutions
05: B := B \ {u}
06: N := NT (u)
07: T := T ∪ { (u, u′) | u′ ∈ N }
// follow paths, see Lemma 5
08: while |N | = 1 do
09: Let u be the unique member of N .
10: N := NT (u)
11: T := T ∪ { (u, u′) | u′ ∈ N }
12: done
// Do not branch if no neighbors left, see Corollary 1
13: if N = ∅ then return “no”.
14: return MaxLeaf(G, T, R, B ∪ N, k)

neighbors y of x yields a k-leaf tree T ′′ with { (x, y) | y ∈ NT (x) } ⊆ E(T ′′).
Therefore T ′′ + (T + { (x, y) | y ∈ NT (x) }, R,NT (x)∪B \ {x}). See Figure 3 for
an example. �


Lemma 5. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree and x ∈ B
with NT (x) = {y}. If there is no k-leaf tree that extends (T,R ∪ {x}, B \ {x}),
then there is no k-leaf tree that extends (T + (x, y), R ∪ {y}, B \ {x}).

Proof. Let T ′ be a k-leaf tree that extends (T + (x, y), R ∪ {y}, B \ {x}). Since
in particular T ′ * T + (x, y) * T , y is the only child of x in T ′, and since
T ′ * (T + (x, y), R ∪ {y}, B \ {x}), y is leaf in T ′. Hence y can be removed
from T ′, obtaining a k-leaf tree T ′′ with x ∈ leaves(T ′′), i.e., T ′′ * (T,R ∪
{x}, B \ {x}). �


Corollary 1. Let G = (V,E) be a graph, (T,R,B) a leaf-labeled tree and x ∈ B
with NT (x) = ∅. If there is a k-leaf tree that extends (T,R,B), there is a k-leaf
tree that extends (T,R ∪ {x}, B \ {x}).

Proof. Let T ′ be a k-leaf tree that extends (T,R,B). It is x ∈ B ⊆ leaves(T ).
Since NT (x) = ∅, we have N(x) ⊆ V (T ) ⊆ V (T ′). For each y ∈ N(x), there is
z ∈ V (T ) with (z, y) ∈ E(T ). In particular, if (x, y) /∈ E(T ), then (x, y) /∈ E(T ′),
since T ′ is a tree and E(T ) ⊆ E(T ′). Hence x ∈ leaves(T ′) and T ′ * (T,R ∪
{x}, B \ {x}). �
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Fig. 3. The exchange argument (Lemma 4): The first figure shows a leaf-labeled tree
(T, R, B) with x ∈ B. The neighborhood of x, NT (x), is shown with dashed edges.
The second figure shows a 5-leaf tree T ′ � (T, R, B), but different choices for edges
originating in x have been made: y1 is not in T ′ at all, and different paths to y3 and y4,
respectively, have been chosen. The third figure shows how the T ′ can be modified so
that all y ∈ NT (x) are children of x. This modification does not decrease the number
of leaves in T ′: y1 becomes a new leaf; no changes are made to the edge (x, y2), y3

remains inner node, and y4 remains leaf, although it is now connected through x.

Lemma 6. Let G = (V,E) be a graph and let k > 2. If G does not con-
tain a k-leaf tree, MaxLeaf(G, Tv, ∅, N(v), k) returns “no” for each v ∈ V .
If G contains a k-leaf tree rooted in r, Algorithm 1 returns “yes” if called as
MaxLeaf(G, Tr, ∅, N(r), k).

Proof. We first show that all subsequent calls to MaxLeaf are always given
an inner-maximal leaf-labeled tree: The star Tv is inner-maximal, and hence
(Tv, ∅, N(v)) is an inner-maximal leaf-labeled tree. Let (T,R,B) be the inner-
maximal tree given as argument to MaxLeaf. The algorithm chooses x ∈ B
and either fixes it as a leaf or as an inner node. If x becomes a leaf, then (T,R∪
{x}, B \ {x}) * (T,R,B) is inner-maximal. If otherwise x becomes inner node,
a tree T ′ is obtained from T by adding the nodes in NT (x) as children of x, so
that they are leaves. Since N(x) ⊆ V (T ′) and N(inner(T ′)) = N(inner(T )) ∪
N(x) ⊆ V (T ) ∪ N(x) = V (T ′), the new tree T ′ is inner-maximal, and so is
(T ′, R,NT (x)∪B \ {x}). This step might be repeated l times while |NT (x)| = 1,
so that we obtain a sequence of leaf-labeled trees (T,R,B) ≺ (T ′, R′, B′) ≺
· · · ≺ (T (l+1), R(l+1), B(l+1)), each of them being inner-maximal for the same
reason. Therefore, MaxLeaf is called with an inner-maximal leaf-labeled tree
(T (l+1), R(l+1), B(l+1)).

Whenever MaxLeaf(G, T,R,B, k) returns “yes”, T is a tree in G with
|leaves(T )| = |R ∪ B| = |R| + |B| ≥ k. Therefore, G does contain a k-leaf
tree and the algorithm never answers “yes” on no-instances. If otherwise G con-
tains a k-leaf tree rooted in r, we use induction over * as follows: Under the
hypothesis that (T,R,B) is an inner-maximal leaf-labeled tree, such that there is
a k-leaf tree T ′ + (T,R,B), we prove: Either T = T ′, or there are (T ′′′, R′′′, B′′′)
and (T ′′, R′′, B′′), such that T ′′′ is a k-leaf tree, (T ′′′, R′′′, B′′′) + (T ′′, R′′, B′′) *
(T,R,B) and MaxLeaf is called with (T ′′, R′′, B′′). Since G is finite, eventually
MaxLeaf is called with a k-leaf leaf-labeled tree and returns “yes”.
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Let r be the root of some k-leaf tree T in G. Since k > 2, we may assume
r ∈ inner(T ) even when G is undirected. Consider T ′ = ({r}, ∅). Then (T ′, ∅, {r})
is a leaf-labeled tree, and trivially T * (T ′, ∅, {r}). By Lemma 4, then there is
also a k-leaf tree T ′′ * (Tr, ∅, N(r)).

We hence may now consider an arbitrary inner-maximal leaf-labeled tree
(T,R,B) that is given a argument to MaxLeaf, such that there is a k-leaf
tree T ′ + (T,R,B). If |leaves(T )| = |R ∪ B| ≥ k, then (T,R,B) already is a
k-leaf tree in G and the algorithm correctly returns “yes”.

Otherwise, B 
= ∅ by Lemma 1, since (T,R,B) is inner-maximal. Fix an
arbitrary u ∈ B. By Lemma 4, there is a k-leaf tree T ′′′ + (T,R∪ {u}, B \ {u}),
or there is a k-leaf tree T ′′′ + (T + { (u, y) | y ∈ NT (u) }, R,NT (u) ∪B \ {u}).

We first assume the first case is true. Then T ′′′ + (T,R ∪ {u}, B \ {u}) *
(T,R,B) and the call to MaxLeaf(G, T,R ∪ {u}, B \ {u}, k) does satisfy the in-
duction hypothesis for the next induction step. If however the first case is false,
we know by Lemma 4, that since there is at least one k-leaf tree that extends
(T,R,B) (namely T ′ + (T,R,B)), there is also a k-leaf tree T ′′′ + (T + { (u, y) |
y ∈ NT (u) }, R,NT (u)∪B \ {u}). Furthermore, by Lemma 5 there is a unique se-
quence of vertices v0, v1, . . . , vl and leaf-labeled trees (T0, R0, B0), . . . , (Tl, Rl, Bl),
such that v0 = u, (T0, R0, B0) = (T,R,B), and

1. (Ti+1, Ri+1, Bi+1) = (Ti + (vi, vi+1), Ri, Bi ∪NTi
(vi) \ {vi}),

2. NTi
(vi) = {vi+1} for 0 ≤ i < l,

3. |NTl
(vl)| 
= 1, and

4. for each 0 ≤ i ≤ l there is a k-leaf tree T ′
i + (Ti, Ri, Bi).

By Corollary 1, we have NTl
(vl) 
= ∅, i.e., the algorithm does not return “no”.

Hence the algorithm recursively calls itself as MaxLeaf(G, Tl, Rl, Bl, k), where
(Tl, Rl, Bl) satisfies the induction hypothesis. �


Lemma 7. Let G = (V,E) be a graph and v ∈ V . The number of recursive calls
of Algorithm 1 when called as MaxLeaf(G, Tv, ∅, N(v), k) for v ∈ V is bounded
by O(22k−|N(v)|) = O(4k).

Proof. Consider a potential function Φ(k,R,B) := 2k− 2|R|− |B|. When called
with a leaf-labeled tree (T,R,B), the algorithm recursively calls itself at most
two times: In line 4, some vertex u ∈ B is fixed as a leaf and the algorithm
calls itself as MaxLeaf(G, T,R ∪ {u}, B \ {u}, k). The potential decreases by
Φ(k,R,B) − Φ(k,R ∪ {u}, B \ {u}) = 1. The while loop in lines 8–12 does not
change the size of B. If, however, line 14 of the algorithm is reached, we have
|N | ≥ 2. Here, the recursive call is MaxLeaf(G, T ′, R,B \ {u} ∪N, k) for some
tree T ′, and hence the potential decreases by Φ(k,R,B)−Φ(k,R,B\{u}∪N) ≥ 1.

Note that Φ(k,R,B) ≤ 0 implies |R + B| ≥ k. Since the potential decreases
by at least 1 in each recursive call, the height of the search tree is therefore at
most Φ(k,R,B) ≤ 2k. For arbitrary inner-maximal leaf-labeled trees (T,R,B),
the number of recursive calls is hence bounded by 2Φ(k,R,B).

In the very first call, we already have |B| = |N(v)|. Hence we obtain a bound
of 2Φ(∅,N(v)) = O(22k−|N(v)|) = O(4k). �
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Theorem 1. MLST can be solved in time O(poly(n) + 4k · k2).

Proof. Let G = (V,E) be an undirected graph. As Estivill-Castro et al. have
shown [12], there is a problem kernel of size 3.75k = O(k) for MLST, which can
be computed in a preprocessing that requires time poly(n). Hence, n = O(k).

Without loss of generality, we assume G is connected and k > 2. We do not
know, which node v ∈ V suffices as a root. It is however easy to see that either
some v ∈ V or one of its neighbors is root of some k-leaf spanning tree, if any
k-leaf spanning tree T exists at all: If v ∈ leaves(T ), the unique predecessor u of
v in T is an inner node u ∈ inner(T ). If furthermore v has minimum degree, the
cost to test all u ∈ N [v] disappears in the run time estimation.

Therefore, let v ∈ V be a node of minimum degree. We need to call MaxLeaf

with arguments (G, Tu, R,N(u), k) for all u ∈ N [v]: If G contains a k-leaf tree,
at least one of those u is a root of some k-leaf tree and the respective call to
MaxLeaf returns “yes” by Lemma 6. Otherwise each call returns “no”. By
Lemma 7, the total number of recursive calls is bounded by

O(2Φ(k,∅,N(v))) +
∑

u∈N(v)

O(2Φ(k,∅,N(u))) = O
(
(d + 1)22k−d

)
= O

(
4k d + 1

2d

)
.

It remains to show that the number of operations in each recursive call is
bounded by O(n2) = O(k2). We can assume the sets V , E, V (T ), E(T ), R, and
B are realized as doubly-linked lists and an additional per-vertex membership
flag is used, so that a membership test and insert and delete set operations only
require constant time each.

Hence lines 1–3 and computing the new sets in lines 4 and 5 takes constant
time. Computing NT (u) and the new tree T takes time O(k), since u has only up
to k neighbors, which are tested for membership in V (T ) in constant time. The
while loop is executed at most once per vertex u ∈ V . Each execution of the while
loop can be done in constant time as well, since |NT (u)| = 1. Concatenating N
to B in line 14 takes constant time, but updating the B-membership flag for
each v ∈ N takes up to k steps.

At this point we have shown that the overall number of operations required
to decide whether G contains a k-leaf tree is bounded by O(poly(n) + 4k · k2).
By Lemma 2, each k-leaf tree can be extended to a spanning tree with at least
k leaves, so the decision problem MLST can be solved in the same amount of
time. �


Note that Algorithm 1 can easily be modified to return a k-leaf spanning tree
in G within the same run time bound. In this case, an additional O(n + m)
postprocessing is required to extend the k-leaf tree to a k-leaf spanning tree.

Theorem 2. DMLOT and DMLST can be solved in time O(4knm).

Proof. Let G = (V,E) be a directed graph. We first consider DMLOT: If G
contains a k-leaf out-tree rooted in r, MaxLeaf(G, Tr, ∅, N(r), k) returns “yes”
by Lemma 6. Otherwise, MaxLeaf(G, Tv, ∅, N(v), k) returns “no” for all v ∈ V .



280 J. Kneis, A. Langer, and P. Rossmanith

We do not know r, so we need to iterate over all v ∈ V . By Lemma 7, the total
number of recursive calls is therefore bounded by∑

v∈V

O(2Φ(k,∅,N(v))) = O(n · 22k) = O(4kn).

What remains to show is that only O(n +m) = O(m) operations are performed
on average on each call of MaxLeaf. Consider one complete path in the recur-
sion tree: It is easy to see, that each vertex v ∈ V occurs at most once as the
respective u in either lines 6 or 10. In particular each edge (v, w) is visited at
most once per path when computing NT (u). Therefore, the overall run time to
solve DMLOT is bounded by O(4k · nm).

To prove the run time bound for DMLST, the algorithm must be slightly
modified in line 1. Here, it may only return “yes” if the leaf-labeled out-tree
(T,R,B) can be extended to a k-leaf spanning out-tree. By Lemma 3, each
k-leaf out-tree that shares the same root with some k-leaf spanning out-tree can
be extended to a k-leaf spanning out-tree in time O(n + m) = O(m). Thus the
run time remains bounded by O(4k · nm). �


5 Conclusion

We solve open problems [7,16] on whether there exist ckpoly(n)-time algorithms
for the k-leaf out-tree and k-leaf spanning out-tree problems on directed graphs.
Our algorithms for DMLOT and DMLST have a run time of O(4k|V ||E|), which
is a significant improvement over the currently best bound of 2O(k log k)poly(|V |).

Since the undirected case is easier, has a linear size problem kernel, and
the root of some k-leaf tree can be found faster, we can solve MLST in time
O(poly(|V |)+4k ·k2), where poly(|V |) is the time to compute the problem kernel
of size 3.75k. This improves over the currently best algorithm with a run time
of O(poly(|V |) + 6.75kpoly(k)).

The question by Michael Fellows et al. from the year 2000 [14] whether there
will ever be a parameterized algorithm for MLST with running time f(k)poly(n),
where f(50) < 1020 unfortunately remains open, but the gap is not so big anymore.
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Abstract. We present two parameterized algorithms for the Minimum

Fill-In problem, also known as Chordal Completion: given an arbi-
trary graph G and integer k, can we add at most k edges to G to obtain a
chordal graph? Our first algorithm has running time O(k2nm+3.0793k),
and requires polynomial space. This improves the base of the exponential
part of the best known parameterized algorithm time for this problem so
far. We are able to improve this running time even further, at the cost of
more space. Our second algorithm has running time O(k2nm+2.35965k)
and requires O∗(1.7549k) space.

1 Introduction

The Minimum Fill-In problem asks, given as input an arbitrary graph G and
an integer k, whether a chordal graph can be obtained by adding at most k new
edges to G. A chordal graph is a graph without induced cycles of length at least
four. This is one of the most extensively studied problems in graph algorithms,
as it has many practical applications in various areas of computer science. The
problem initiated from the field of sparse matrix computations, where the result
of Gaussian Elimination corresponds to a chordal graph, and minimizing the
number of edges in a chordal completion is equivalent to minimizing the number
of non-zero elements in Gaussian Elimination [19]. Among other application ar-
eas are data-base management systems [20] and knowledge-based systems [16].
Since the problem was proved NP-complete [23], it has been attacked using
various algorithmic techniques, and there exist polynomial-time approximation
algorithms [17], exponential-time exact algorithms [9,10], and parameterized al-
gorithms [14,6]. The current best bounds are O∗(1.7549) time and space for
an exact algorithm [10], and O((m + n)4k/(k + 1)) time for a parameterized
algorithm [6], where the O∗-notation suppresses factors polynomial in n.

In this paper we contribute with new parameterized algorithms for the solution
of the Minimum Fill-In problem. The field of parameterized algorithms, first
formalized by Downey and Fellows [7], has been growing steadily and attracting

� Supported by the Research Council of Norway.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 282–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Faster Parameterized Algorithms for Minimum Fill-In 283

more and more attention recently [8,18]. Informally, a parameterized algorithm
computes an exact solution of the problem at hand, but the exponential part of
the running time is limited to a (hopefully small) parameter, typically an integer.
For the Minimum Fill-In problem, the natural parameter is the number of
added edges. The number of vertices and edges of G are denoted by n and m,
respectively. The first parameterized algorithms for this problem were given by
Kaplan et al. and appeared more than a decade ago [14,15], with running times
O(16km) and O(k2nm + k616k). A refined analysis of these algorithms by Cai
gave the current best parameterized running time of O((m + n)4k/(k + 1)) [6].

We present two algorithms that improve on the basis of the exponential part
of the running time of these parameterized algorithms. Central in our algorithms
is a new result, describing edges that can always be added when computing a
minimum solution. Based on this result, our first algorithm is intuitive and easy
to understand, and requires O(k2nm+3.0793k) time and polynomial space. We
are able to improve the base of the exponential part even further in a second algo-
rithm, at the cost of more space. Our second algorithm, which is more involved,
requires O(k2nm + 2.35965k) time and O∗(1.7549k) space. In this extended ab-
stract all proofs are omitted due to limited space, however a full version with all
details is available [3]. In addition, we use well-known insights on chordal graphs
and triangulations [12,13] without further explanations.

2 Preliminaries

All graphs in this work are undirected and simple. A graph is denoted by G =
(V,E), with vertex set V and edge set E(G) = E. For a vertex subset S ⊆ V ,
the subgraph of G induced by S is G[S] = (S, {{v, w} ∈ E | v, w ∈ S}). The
neighborhood of S in G is NG(S) = {v ∈ (V \S) | ∃w ∈ S : {v, w} ∈ E}. We write
NG(v) = NG({v}) for a single vertex v, and NG[S] = NG(S)∪S. Subscripts are
omitted when not necessary. A vertex v is universal if N(v) = V \ {v}.

A vertex subset S ⊆ V is a separator in G if G[V \ S] has more than one
connected component. A connected component C of G[V \ S] is called full for
S if N(C) = S. Vertex set S is a minimal u, v-separator for G if u and v are in
different connected components of G[V \S] and S is an inclusion minimal vertex
set separating u and v. The separator S is a minimal separator of G if there exist
u and v in V such that S is a minimal u, v-separator.

A pair of vertices {u, v} is a non-edge if u and v are not adjacent. For a vertex
set S, we let F (S) denote the set of non-edges in G[S]. S is a clique if F (S) = ∅
or |S| = 1. A clique is a maximal clique in G if it is not a proper subset of
another clique in G. A set of vertices that is a clique and a separator is called a
clique separator. A vertex v is simplicial if N(v) is a clique.

A graph is chordal, or triangulated, if it does not contain a cycle with four or
more vertices as an induced subgraph. A graph H = (V, F ) is a triangulation or
chordal completion of a graph G = (V,E) if E ⊆ F and H is chordal. The edges
in F \ E are called fill edges. H is a minimal triangulation of G if there is no
triangulation H ′ = (V, F ′) of G where F ′ is a proper subset of F . A triangulation
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with the minimum number of edges is called a minimum triangulation. Every
minimum triangulation is thus minimal.

A set of vertices S ⊆ V is a potential maximal clique in G if there is a minimal
triangulation H of G where S is a maximal clique in H . Potential maximal cliques
play an essential role in several algorithms computing minimum triangulations
and related problems, like treewidth. We use an algorithm one of [10] in our
second algorithm.

A vertex set U ⊂ V is a moplex if G[U ] is a clique, N [v] = N [u] for any pair
of vertices in U , and N(U) is a minimal separator in G. Moplex U is simplicial
if G[N(U)] is a clique.

Proposition 1. (Folklore) Let G = (V,E) be an induced cycle, let v1, v2, ..., vn

be the order of the vertices on the cycle, and let H = (V, F ) be a minimal
triangulation of G, where {v1, v3} 
∈ F . Then there exists an edge {v2, v} ∈ F
such that v ∈ V \ {v1, v2, v3}.

Proposition 2. (Folklore) A set S of vertices in a graph G is a minimal u, v-
separator if and only if u and v are in different full components associated to
S. In particular, S is a minimal separator if and only if there are at least two
distinct full components associated to S.

Before we start describing our algorithms, we present an important new result
that describes fill edges that can be safely added when computing a minimum
triangulation, independent of k. This is the first result of its kind to our knowl-
edge, and it is crucial for our further results. A generalized version of this lemma
for marked graphs will be used in our algorithms.

Lemma 1. Given a graph G = (V,E), let S be a minimal separator of G such
that |F (S)| = 1 and S ⊆ N(u) for a vertex u ∈ V . Then there exists a minimum
triangulation of G that has the single element of F (S) as a fill edge.

We start now the description of our algorithms, each of which will be presented
in its own section. For both of our algorithms, the input is an undirected graph
G = (V,E) and an integer k; and each algorithm outputs either a minimum size
set of fill edges of size at most k, or no if each triangulation of G requires at
least k + 1 edges.

3 An O∗(3.0793k)-Time Algorithm for Minimum Fill-In

The first algorithm that we present uses polynomial time reductions and some
branching rules. In the subproblems generated by this branching algorithm, some
vertices have a marking. As will be clear when the subproblems are analyzed,
sometimes we will have the choice of adding a set of fill edges or concluding with
a set of vertices that each must be incident to a fill edge. These vertices will be
marked, to give the desired restriction in the solution of resulting subproblems.
More precisely, subproblems can be associated with problem instances of the
form (G, k, r,M) with G = (V,E) a graph, k and r integers, and M ⊆ V a set of
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marked vertices. For such an instance, we ask whether there exists a triangulation
H = (V, F ) of G with |F \E| ≤ k and 2|F \E| − |M | ≤ r, such that each vertex
in M is incident to a fill edge. We say that a vertex v is marked if v ∈ M ,
and r denotes the number of marks we still can place at later steps during the
algorithm. From the original problem where G and k are given, the new initial
problem instance is (G, k, 2k, ∅). Any triangulation of G which requires k fill
edges is also a solution to the new instance since r = 2k and M = ∅.
Lemma 2. If (G = (V,E), k, r,M) has a solution with {v, w} as a fill edge, then
((V,E ∪ {{v, w}}, k − 1, r − γ,M \ {v, w}) has a solution, where γ ∈ {0, 1, 2} is
the number of unmarked endpoints of {v, w}.
At several points during our algorithm, we write: add an edge e to F and update
accordingly. Following Lemma 2, the update consists of decreasing k by one,
decreasing r by the number of unmarked endpoints of e, and removing the marks
of marked endpoints of e. If we add more edges, we do this iteratively. Whenever
we mark a vertex, we decrease r by one. Note that if two edges are added with a
common endpoint, this endpoint is unmarked after the first addition, and thus
causes a decrease of r at the second addition.

The algorithm is based on checking the existence of the structures described
in the following paragraphs, and performing the corresponding actions. When a
change is made to the input, we start again by checking trivial cases.

Trivial cases. First, the algorithm tests whether G is chordal and k ≥ 0 and
r ≥ 0. If so, it returns ∅. Next, it tests if k ≤ 0 or r ≤ −1. If so, it returns no.

4-Cycles. Then, the algorithm branches on induced cycles of length four (4-cycles).
Suppose that v, w, x, y induce a 4-cycle. Then, in any triangulation, {v, x} is an
edge or {w, y} is an edge. The algorithm recursively solves the two subcases: one
where we add {v, x} as a fill edge and update accordingly, and one where we add
{w, y} as a fill edge and update accordingly.

An invariant of the algorithm is that each 4-cycle has at least two adjacent
vertices that are not marked. Initially, this holds as all vertices are unmarked.
Whenever we create a 4-cycle by adding an edge, we unmark the endpoints of
the added edge. Marks are only added in graphs that do not have a 4-cycle.

Note that we create in this case two subproblems. In each, k is decreased by
one, and r is decreased by at least one. We will show by induction that the search
tree formed by the algorithm has at most ak · br leaves for inputs where we can
use k fill edges, and place at most r marks. Thus, this case gives as condition
ak · br ≥ 2 · ak−1 · br−1, i.e, ab ≥ 2.

Moplexes with marked and unmarked vertices. We use several times the following
insight, following from well-known results on moplexes and triangulations (see
e.g., [1]).

Lemma 3. Let U be a moplex. There is a minimum triangulation that has a fill
edge incident to each vertex in U , or there is a minimum triangulation where
N(U) is a clique and no fill edge is incident to any vertex in U .
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Thus, when we have a moplex that contains marked and unmarked vertices,
we mark all vertices of the moplex.

Finding moplexes with unmarked vertices. Then, the algorithm tests whether
there is a moplex U that contains no marked vertices. If there is no such mo-
plex, the algorithm returns no. Safeness of this step comes from the following
lemma, which follows from the work on moplexes by Berry et al. [1], by simply
considering the first moplex in a moplex elimination ordering of H .

Lemma 4. Let G = (V,E) and let H = (V, F ) be a minimum triangulation of
G. There is a moplex U such that F \ E has no incident edge to U , and N(U)
is a clique in H.

We take such a moplex U , and let S = N(U). We compute F (S), i.e., the set of
non-edges in the neighborhood of U .

Simplicial vertices. If F (S) = ∅, then all vertices in U are simplicial. We recurse
on the instance (G \ U, k, r,M).

By well-known theory on chordal graphs this instance is equivalent to, and a
minimum set of fill edges for the new instance is also a minimum set of fill edges
for, the original instance.

Moplexes missing one edge. Next, we test if |F (S)| = 1. By Lemma 1 it is always
safe to add the edge in F (S), but in some cases we need to compensate for this
by removing one mark from a vertex.

Lemma 5. Let G = (V,E) be a graph and let M ⊆ V be the set of marked
vertices in G. Suppose there exists a minimum triangulation of G such that each
vertex in M is incident to a fill edge. Let u ∈ V be an unmarked vertex, and let
S ⊆ N(u) be a minimal separator F (S) = {{x, y}}.
1. If there is a unique vertex v∗, such that v∗ is the last vertex on each induced

path from x to y through a full component of S not containing u, then there
is a minimum triangulation of G that contains the edge {x, y} and such that
each vertex in M \ {v∗} is incident to a fill edge.

2. If there is no unique vertex v∗, such that v∗ is the last vertex on each induced
path from x to y through a full component of S not containing u, then there
is a minimum triangulation of G that contains the edge {x, y} and such that
each vertex in M is incident to a fill edge.

Suppose we have a moplex U , with F (N(U)) consisting of the single edge {x, y}.
The condition of Lemma 5 now becomes: there is a vertex v∗ that is the last
vertex on each induced path in G[V \ U ] from x to y. A simple modification of
standard breadth first search allows us to find v∗ if existing in linear time. If v∗

exists, we remove its marking. Then, in both cases, we add the edge {x, y} and
update accordingly.

In this case, we possibly decrease k by one, and increase r by one. This gives
us as condition on the running time constants: a ≥ b.

The condition is not symmetric. We can apply the condition with roles of x
and y switched and save a marking in some cases.
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Branching on moplexes. If none of the earlier tests succeeds, we arrive at the
last branching, performed on a moplex U with all vertices in U unmarked.

Recall Lemma 3. It dictates which two subproblems we consider. In the first
subproblem, we mark all vertices in U . In the second subproblem, we add all
edges in F (N(U)) and update accordingly. In the first, r is decreased by |U |.
In the second, |F (N(U))| ≥ 2, as otherwise there is no pair of edges with a
common endpoint in F (N(U)), so k is decreased by two. Note that there must
be a vertex that is common to two elements of F (N(U)): if not, then suppose
{x, y} and {v, w} are elements in F (N(U)), but no other combination of x, y,
v, and w is an element of F (N(U)). Then, these four vertices form a 4-cycle,
which is a contradiction. Thus, in the second subproblem, r is also decreased by
at least one.

This gives us as condition for the running time analysis: ak ·br ≥ ak−2 ·br−1 +
ak · br−1, or a2b ≥ 1 + a2.

Each of these subproblems is solved recursively, and from these solutions, we
then return the best one, adding F (N(U)) to the set returned by the second
subproblem except when it returned no.

Analyzing the running time. By standard graph algorithmic tools, each recursive
call can be performed in O(nm) time, except that the checking for all 4-cycles
before any other operation is done costs once O(m2) time. We now analyze the
number of recursive calls in the search tree. We start with an instance with
r = 2k, so the running time of the algorithm is bounded by ak · b2k. Each of
the steps gave a condition on a and b, and we get as minimum ab2 = 3.0793
when we set a = 1.73205 and b = 1.33334. Thus, the total running time becomes
O(m2 + nm · 3.0793k).

By results of [15] and [17] it is possible to reduce a given instance (G =
(V,E), k) of Minimum Fill-In to an equivalent instance (G′ = (V ′, E′), k′)
where k′ ≤ k and |V ′| = O(k2), in O(k2nm) time. By preprocessing the input
by such an algorithm we get an additive time cost of O(k2nm) but the size of
n and m have been reduced to respectively O(k2) and O(k4). Thus, the time
complexity for our algorithm becomes O(k2nm + 3.0793k).

Theorem 1. The Minimum Fill-In problem can be solved inO(k2nm+3.0793k)
time, using polynomial space.

4 An O∗(2.35965k)-Time Algorithm for Minimum Fill-In

In this section, we give a second algorithm for the Minimum Fill-In problem.
This algorithm uses less time as a function of k, at the cost of exponential space
as a function of k. Like the previous algorithm, we create subinstances with
some vertices marked and with an additional parameter r, which is the number
of marks that still can be handed out.

An important difference from the previous algorithm is that the mark is a
vertex set containing the vertices which are candidates to add a fill edge in-
cident to. The algorithm involves a more extensive analysis of subproblems, a
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mixing of eliminating moplexes with partitioning the graph on clique separators,
resolution of cycles with four vertices, and a resolution of certain cases with the
exact algorithm, recently given by Fomin and Villanger [10]. In order to properly
execute the steps where we partition on clique separators, marks are annotated.
We also allow that the algorithm returns solutions that do not respect marks.
When there is a solution respecting marks with α fill edges, the algorithm may
return any solution with at most α fill edges. If the algorithm returns no, we
know there is no solution that respects marks. (This is needed for the last step,
where we forget the marks.)

With our algorithm description, we will also make the first steps towards the
time analysis. We derive a number of conditions on a function T (k, r), such that
the running time of all recursive calls that originate at a node with parameters
k (number of fill edges) and r (number of marks that still can be placed) is
bounded by T (k, r) times a function, polynomial in n, not depending on k. As
the time for non-leaf nodes of the search tree is bounded by a polynomial in n
times the time for leaf nodes, we only count the time at leaf nodes. We want to
show that T (k, r) ≤ ak · bk · o(k) and derive some conditions on a and b.

The algorithm consists of carefully handling subproblems of various types. We
describe in the next paragraphs which conditions are tested, in what order, and
what steps are executed if a certain condition holds. First we will present some
polynomial-time reduction rules. Several cases are similar to or the same as in
our previous algorithm.

Trivial cases. If G is chordal and k ≥ 0 and r ≥ 0, then we return the empty
set. If G is not chordal, and k ≤ 0 or r ≤ −1, we return no.

Universal vertex. If G contains a universal vertex then we simply remove this
vertex. This is safe, since no induced cycle of length at least 4 contains such a
vertex.

Simplicial vertices. If an unmarked vertex is simplicial then we remove the ver-
tex, and obtain an equivalent instance. If a marked vertex is simplicial then
we return no, since no minimal triangulation will add fill edges incident to a
simplicial vertex.

Clique separators. Then, the algorithm tests if there is a clique separator. If there
is a clique separator S, then let V1, . . . , Vr be the vertex sets of the connected
components of G[V \ S]. We create now r subinstances, with graphs G[S ∪ V1],
. . . , G[S ∪ Vr].

Vertices in subinstances in V \ S keep their marks. A marked vertex in S is
marked in only one subinstance, containing the annotated vertex set related to the
mark. We will describe this more in detail when the annotated vertices are defined.

These subproblems are now independent. First, we test for each subproblem
if there is a solution with at most two fill edges. If so, we solve this in polynomial
time and use this to reduce the parameter of the remaining problems.

When we have α subproblems each of whose solutions requires at least three
fill edges, each can add at most k− 3α+ 3 fill edges. Thus, we need to choose a
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and b such that T (k, r) ≤ α · T (k − 3α + 3, r) for all α, for all α > 1. This gives
a3α−3 ≥ α, which holds for every integer α > 1 and a ≥ 1.3.

A minimal separator missing one edge. The next step is similar to the steps in
our previous algorithm that uses Lemma 5, but now we apply it also to vertices
that do not belong to a moplex.

We test if there is an unmarked vertex v and a minimal separator S contained
in N(v), such that F (S) contains only one edge. If we have such a minimal
separator S, we add the edges in F (S), test if vertex v∗ described in Lemma 5
exists, remove the mark of v∗, update accordingly, and solve recursively the
remaining instance.

If this instance returns no, we return no, otherwise we return the union of
F (S) and the solution found by the instance. This again gives as condition for
the running time analysis: a ≥ b.

If none of the above reduction steps applies, we consider the following branch-
ing steps.

4-Cycles. Like in the previous algorithm, we now test if there is an induced
4-cycle, and branch on the two ways of adding an edge between non-adjacent
vertices in the cycle. Again, we get as condition ab ≥ 2.

Minimal separator S with |F (S)| ≥ 3. Test if there is an unmarked vertex v,
and a minimal separator S ⊆ N(v) with |F (S)| ≥ 3. If so, we branch on this
vertex, similarly as in the previous algorithm: we create two subinstances and
recurse on these, and then output the smallest fill set of these instances, treating
no as a solution of size ∞.

In one subinstance, we add all fill edges in F (S), and k is decreased by |F (S)|.
For each unmarked vertex incident to an edge of F (S), r is decreased by one.
For each vertex incident to j > 1 edges in F (S), r is decreased by j− 1. We also
remove all marks from vertices incident to edges in F (S).

In the other subinstance, we mark vertex v, but we also have to define the an-
notation for the mark of v. Let W be a connected component of G[V \ N [v]] not
containing v such that N(W ) = S. The connected component W exists by defini-
tion of S. The annotated vertices for the mark of v will be W . Let us justify this.

Since S is not completed into a clique there is an edge {x, y} ∈ F (S) which
is not used as a fill edge in the optimal solution we are searching for. Vertex set
W is a full component of S, and thus there exists an induced path u1, u2, ..., ur

from x to y only containing vertices in W . The vertex set {y, v, x, u1, u2, ..., ur}
induces a cycle in G. By Proposition 1, v has a fill edge to one of the vertices in
{u1, u2, ..., ur} if {x, y} is not a fill edge. Since we do not know which one of the
edges in F (S) is not added when v is marked, we use W as the annotation and
in this way ensure that the correct vertex is in the set.

Lemma 6. Given a graph G, let S ⊂ V be a clique separator, let v ∈ S be a
marked vertex, and let X be the annotation of v. Then there exists a connected
component W of G[V \ S] such that X ⊆W .

Again, we return the smallest solution found by the two subinstances, treating
no as a solution of size ∞.
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Similar arguments as before show correctness of this step. In a minimum
triangulation, we must either add all edges in F (S) or vertex v will be incident
to a fill edge. This gives: T (k, r) ≤ T (k − 3, r − 2) + T (k, r − 1), leading to the
condition a3b2 ≥ 1+ a3b. In the first subinstance r is reduced by two since there
are no induced 4-cycles, and thus the three edges of F (S) induces a connected
component. One consequence of this is that at most 4 vertices will be incident
to the three edges in F (S). Notice that, for any remaining minimal separator S
contained in the neighborhood of an unmarked vertex, |F (S)| = 2.

Split the problem into two non-chordal subproblems. Let v be an unmarked ver-
tex, let S be a minimal separator in N(v), and let G′ be the resulting graph
where the edges F (S) are added to G. We test if there are two connected com-
ponents W1 and W2 of G[V \S] where G′[N [W1]] and G′[N [W2]] are non-chordal.
We will then know that at least one fill edge will be required for each of the con-
nected components W1 and W2 in the case where S is completed into a clique.
The algorithm proceeds as follows: Check if one of the subproblems G′[N [W1]]
or G′[N [W2]] can be triangulated by adding at most three fill edges. If this is the
case, we get the recursive condition: T (k, r) ≤ T (k−3, r−2)+T (k, r−1), giving
a3b2 ≥ 1 + a3b. If not, we have the subproblems G′[N [W1]] and G′[V \N [W1]],
and we get the recursive condition: T (k, r) ≤ 2T (k−5, r−1)+T (k, r−1), giving
a5b ≥ 2 + a5.

Using a list of potential maximal cliques. In this case, we use another algorithm
to solve the Minimum Fill-In problem. This algorithm is a variant of the exact
algorithm for Minimum Fill-In by Fomin and Villanger [10]. Suppose none of
the above holds, then we can make several observations. Let Sv be a minimal
separator contained in N(v) for an unmarked vertex v, and let Wv be a connected
component of G[V \ N [v]] which is full for Sv. The graph obtained by adding
the two edges in F (Sv) to G[N [Wv]] will not be chordal, since that would imply
a vertex w ∈ Wv, where Sv ⊆ N(w), and thus the endpoints of an edge of
F (Sv) and vertices v, w would induce a 4-cycle. Since all connected components
of G[V \N [v]] generate non-chordal subproblems by the argument above, we can
notice that G[V \ N [v]] contains exactly one connected component, since zero
components would imply that v is universal, and more than one would imply
that the previous described rule could be applied. A consequence of this again is
that for any unmarked vertex N(v) only contains one minimal separator, which
we can call Sv, and there is only one connected component Wv in G[V \ N [v]]
which is full for Sv. Notice also that G[N [v]] = G[V \Wv] is chordal when the
two edges in F (Sv) are added. Before starting to describe the rule, we need more
knowledge about the problem instance.

Lemma 7. Given a graph G = (V,E) where none of the rules above can be
applied, let u and v be unmarked vertices, where Su ⊂ N [v]. Then u and v are
contained in the same connected component W of G[V \ Sv].

Lemma 8. Given a graphG = (V,E) where none of the rules above can be applied,
let u and v be unmarked vertices. Then N [u] = N [v], or F (Su) ∩ F (Sv) = ∅.



Faster Parameterized Algorithms for Minimum Fill-In 291

Lemma 9. Given a graph G = (V,E) where none of the rules above can be
applied, let v be an unmarked vertex. Then the number of unmarked vertices in
Sv is at most 3.

Lemma 10. Given a graph G = (V,E) with no induced 4-cycle or clique separa-
tor, let H = (V, F ) be a triangulation of G with E ⊂ F . Then only one connected
component of (V, F \ E) contains edges.

A consequence of this lemma is that there are at most k + 1 vertices incident to
a fill edge, and hence we can return no at this point if there are more than k+1
marked vertices. So assume there are at most k + 1 marked vertices.

Next step is to control the unmarked vertices. For each unmarked vertex v
we know that |F (Sv)| = 2, and by Lemma 8 that F (Sv) = F (Su), or F (Sv) ∩
F (Su) = ∅. Partition the unmarked vertices into groups, where F (Sv) = F (Su)
for all pairs u, v of vertices in the same group. Consider the minimum triangu-
lation H , which respects all given marks. By Lemma 10 there is at most k + 1
vertices incident to fill edges of H . Since N [u] = N [v] for a pair of unmarked
vertices in the same group, we can notice that either all or none of them will
have an incident fill edge in H . Remove the at most k + 1 groups that have
incident fill edges. The number of remaining groups is at most k/2, since each
group have two private fill edges in its neighborhood. In total there is at most
3k/2 groups of unmarked vertices.

By Fomin et al. [9] a minimum triangulation can be computed in O((|∆G|+
|ΠG|) · n3) time, where ∆G is the set of minimal separators of G, and ΠG is
the set of potential maximal cliques of G. The algorithm of [9] is more powerful
that stated; among all the tree decompositions that can be constructed, using
provided potential maximal cliques as bags and provided minimal separators
as edges between the bags, the algorithm returns the tree decomposition that
introduce the minimum number of fill edges when completing every bag in the
decomposition into a clique. Thus, we only have to provide a minimal separator
S if |F (S)| ≤ k and a potential maximal clique Ω if |F (Ω)| ≤ k to the algorithm
if we want to solve the Minimum Fill-In problem with parameter k. Previ-
ously we partitioned the unmarked vertices into 3k/2 groups, where all vertices
in the same group have the same neighborhood. When listing minimal separa-
tors and potential maximal cliques, we can treat vertices with the same closed
neighborhood as a single vertex. A vertex is for instance contained in a minimal
u, v-separator S if and only if it has a neighbor in the connected components of
G[V \S] which contains respectively u and v. For potential maximal cliques there
exists a similar definition. A vertex is contained in the potential maximal clique,
if and only if it can reach all other vertices in the potential maximal clique by a
direct edge or a path consisting only of vertices that are not contained in the po-
tential maximal clique. Given these arguments, no vertex set that contains only
a part of a group of unmarked vertices are candidates to be minimal separators
or potential maximal cliques. By Lemma 9 there exists at most three unmarked
vertices that have adjacency to vertices in a group, without being contained in
it. This means that a minimal separator or potential maximal clique can at most
contain 4

√
k of the 3k/2 groups of unmarked vertices.
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Lemma 11. Given a graph G, let M be the set of marked vertices, let q be the
number of groups of unmarked vertices, and let k = |M | − 1. Then all min-
imal separators and potential maximal cliques containing at most � groups of
unmarked vertices can be listed in O

(
1.7549k+1 ·

∑�
i=0

(
q
i

))
time and space.

We also observe that if H = (V, F ) is a triangulation of G = (V,E) with at most
k fill edges, and V \M contains the set of at most 3k/2 group, then no clique
in H contains more than 4

√
k of the 3k/2 groups of vertices of V \M . So, we

can list all potential maximal cliques that can contribute to a triangulation of
G with at most k fill edges using Lemma 11 with � = 4

√
k in time O∗(1.7549k).

Given this list, we can employ the algorithm of Fomin et al. [9] and compute a
triangulation with minimum fill of G; this algorithm uses time, polynomial in n
times the size of the list of potential maximal cliques.

This gives the condition: T (k, r) ≤ 1.7549k, and thus a ≥ 1.7549.

Analyzing the running time. We derived a number of conditions on a and b, such
that, if these hold, then by induction it follows that T (k, r) ≤ akbk · o(k). As we
start with an instance with k and r = 2k, the running time is a polynomial in
n times T (k, 2k). We get as minimum ab2 = 2.35965 when we set a = 1.7549
and b = 1.15956. Rounding this up allows to ignore the o(k) term, and thus the
algorithm requires O∗(2.35965k) time. By the same arguments as the ones used
for the polynomial part of the running time of our previous algorithm, we can
conclude that this algorithm has running time O(k2nm+2.35965k), and requires
O∗(1.7549k) space.

Theorem 2. TheMinimumFill-Inproblemcanbe solved inO(k2nm+2.35965k)
time, usingO∗(1.7549k) space.

Acknowledgments. We thank Guido Diepen, Igor Razgon, Thomas van Dijk,
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Abstract. In the framework of parameterized complexity, one of the
most commonly used structural parameters is the treewidth of the input
graph. The reason for this is that most natural graph problems turn
out to be fixed parameter tractable when parameterized by treewidth.
However, Graph Layout problems are a notable exception. In particular,
no fixed parameter tractable algorithms are known for the Cutwidth,
Bandwidth, Imbalance and Distortion problems parameterized by
treewidth. In fact, Bandwidth remains NP-complete even restricted to
trees. A possible way to attack graph layout problems is to consider struc-
tural parameterizations that are stronger than treewidth. In this paper
we study graph layout problems parameterized by the size of the mini-
mum vertex cover of the input graph. We show that all the mentioned
problems are fixed parameter tractable. Our basic ingredient is a classical
algorithm for Integer Linear Programming when parameterized by
dimension, designed by Lenstra and later improved by Kannan. We hope
that our results will serve to re-emphasize the importance and utility of
this algorithm.

1 Introduction

Parameterized complexity can be thought of as a “multivariate” approach to
complexity analysis and algorithm design. In addition to the overall input size
n, a secondary measurement k, the parameter, is also considered. In the parame-
terized complexity framework the central notion is fixed parameter tractability
(FPT), defined to be solvability in time f(k)nc, where f is some arbitrary func-
tion and c is a constant. For further details and an introduction to parameterized
complexity we refer to [8,11,27].

In the framework of parameterized complexity, an important aspect is the
choice of parameter for a problem. Exploring how one parameter affects the
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Table 1. Problem Definitions

Problem Name Objective Function Problem Definition
Bandwidth fbw(π) = max

uv∈E
|π(u) − π(v)| bw(G)= min

π
fbw(π)

Cutwidth fcw(π) = max
1≤i≤n

|∂(Vi)| cw(G)= min
π

fcw(π)

Imbalance fim(π) =
n�

i=1

|Lπ(vi) − Rπ(vi)| im(G)= min
π

fim(π)

Distortion
1 fdi(π) = max

uv∈E

π(v)−1�

i=π(u)

D(vi, vi+1) di(G)= min
π

fdi(π)

complexity of different parameterized or unparameterized versions of the prob-
lem, often leads to non trivial combinatorics and better understanding of the
problem. In general there are two kinds of parameterizations. In the first kind
the parameter reflects the value of the objective function in question. The second
kind, structural parameterizations, measure the structural properties of the in-
put. A well developed structural parameter is the treewidth of the input graph.
A celebrated result in this direction is that every problem expressible in monadic
second order logic can be solved in time O(f(t) · n) for graphs of treewidth at
most t [7]. Even though many problems become tractable when the treewidth of
the input graph is bounded, there are quite a few that do not. For an example
Bandwidth remains NP-complete even for trees. In these cases it is interesting
to consider parameterizations which enforce more structure on the input than
the treewidth. In this direction Fellows and Rosamond investigated how differ-
ent problems behave when parameterized by the max leaf number of the input
graph [10].

In this paper we consider parameterizing by the vertex cover number (vc(G))
of the graph. The vertex cover number of a graph G is the size of smallest set of
vertices such that every edge has at least one end-point in this set. We study the
graph layout problems Cutwidth, Bandwidth, Imbalance and Distortion

parameterized by vc(G). In a graph layout problem, we are given a graph G =
(V,E) as input and asked to find a permutation π : V → {1, 2, . . . , n} that
minimizes a certain problem specific objective function of π. In order to define
the problems considered we need to introduce some notation. A permutation
π : V → {1, 2, . . . , n} orders the vertex set into v1 <π v2 <π . . . <π vn. For every
i, the set Vi is {v1, . . . , vi} and ∂(Vi) = {uv | uv ∈ E, u ∈ Vi, v ∈ V \ Vi}. We
define Lπ(v) to be {u | u ∈ N(v), u <π v} and Rπ(v) is {u | u ∈ N(v), v <π u}
where N(v) = {u:uv ∈ E} is the neighborhood of v. For a pair of vertices u and
v, the shortest path distance between u and v is denoted by D(u, v). The precise
definitions of the problems studied in the paper are given in Table 1.

Many problems in different domains can be formulated as graph layout prob-
lems. These include optimization of networks for parallel computer architectures,
VLSI design, numerical analysis, computational biology, graph theory, scheduling

1 The presented definition is equivalent to the original definition of distortion for
embedding into line. Details are given in the section about Distortion.
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and archaeology. In particular an algorithm for Imbalance is used as a starting
point for many algorithms in graph drawing [19,20,28,30]. On the other hand
Bandwidth is equivalent to the problem of minimizing bandwidth of a sparse
symmetric square matrix which is useful for the storage and manipulations of
these matrices, including Gaussian elimination [5,24]. Cutwidth was proposed
as a model to minimize the number of channels in a circuit [1,25], and recently
it has found applications in protein engineering [3], network reliability [21], au-
tomatic graph drawing [26], information retrieval [4], and as a subroutine in the
cutting plane algorithm for TSP [17]. The problem of Distortion, or rather low
distortion embeddings of a graph metric into simple metric spaces has proved
to be a useful tool in designing algorithms in various fields. A long list of appli-
cations given in [14] includes approximation algorithms for graph and network
problems, such as sparsest cut, minimum bandwidth, low-diameter decomposi-
tion and optimal group steiner trees, and online algorithms for metrical task
systems and file migration problems.

Our Contributions

– We show that Cutwidth, Bandwidth, Imbalance and Distortion pa-
rameterized by the vertex cover number of the input graph are FPT. Notice
that even though a graph G with vc(G) ≤ k has treewidth at most k, this
can not be directly applied to obtain our results. The reason for this is that
graph layout problems parameterized by treewidth have proven hard to cope
with. In particular, the parameterized complexity of Cutwidth parameter-
ized by treewidth is a non trivial problem left open in [29]. Bandwidth is
NP-complete for trees and the parameterized complexity of Imbalance and
Distortion with treewidth as parameter is unknown.

– A classical result in parameterized algorithms is that p-Variable Inte-

ger Linear Programming Feasiblity (p-ILP) is FPT. This powerful
result, first proved by Lenstra in [23]2 and later improved by Kannan [18],
is very rarely used in parameterized complexity. The only previously known
examples of applications of this result in parameterized algorithms is in an
FPT algorithm for the Closest String problem [13] and in an EPTAS
for Min-Makespan-Scheduling problem [2]. In fact, Niedermeier has ex-
plicitly asked for more applications of the result that p-ILP is FPT. In this
context we quote Niedermeier [[27], Page Number:184]

“. . . it remains to investigate further examples besides Closest

String where the described ILP approach turns out to be applicable.
More generally, it would be interesting to discover more connections
between fixed-parameter algorithms and (integer) linear program-
ming. . . . ”

We extensively use this result in all our algorithms, thus giving more exam-
ples of its applicability.

2 This paper received Fulkerson Prize in 1985 for an outstanding contribution in the
area of discrete mathematics.
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We would like to point out that an improved version of the Lenstra/Kannan algo-
rithm for p-ILP designed by Frank and Tardos [12] uses space polynomial in p and
input size.Weapply this togiveapolynomial spaceFPTalgorithmforBandwidth

parameterized by vc(G). This gives an interesting distinction between vc(G) and
treewidth parameterizations, because almost all algorithms for graphs of bounded
treewidth apply dynamic programming and thus need exponential space.

In Section 2, we give a brief introduction to integer linear programming para-
meterized by the number of variables. Sections 3, 4, 5 and 6 contain FPT algo-
rithms for Imbalance, Cutwidth, Bandwidth and Distortion respectively.
The reader is encouraged to read the section on Imbalance before proceeding to
the later sections because this section contains a description of general scheme
used in all our algorithms. Finally we conclude with some remarks and open
problems in Section 7.

2 Integer Linear Programming with Few Variables

Integer linear programming (ILP) is the framework in which we will eventually
formulate all the problems studied. In this section we describe the required
results in this direction.

p-Variable Integer Linear Programming Feasiblity (p-ILP): Given
matrices A ∈ Zm×p and b ∈ Zm×1, the question is whether there exists
a vector x̄ ∈ Zp×1 satisfying the m inequalities, that is, A · x̄ ≤ b. The
number of variables p is the parameter.

Lenstra [23] showed that p-ILP is FPT with running time doubly exponential
in p. Later, Kannan [18] provided an algorithm for p-ILP running in time pO(p).
The algorithm uses Minkowski’s Convex Body theorem and other results from
Geometry of Numbers. A bottleneck in this algorithm was that it required space
exponential in p. Using the method of simultaneous Diophantine approximation,
Frank and Tardos [12] describe preprocessing techniques, using which it is shown
that Lenstra’s and Kannan’s algorithms can be made to run in polynomial space.
They also slightly improve the running time of the algorithm. For our purposes,
we use this algorithm.

Theorem 1 ([18],[23],[12]). p-Variable Integer Linear Programming

Feasiblity can be solved using O(p2.5p+o(p) ·L) arithmetic operations and space
polynomial in L. Here L is the number of bits in the input.

Later, a randomized algorithm for p-ILP was provided by Clarkson, we refer to
[6] for further details. The result of Lenstra was extended by Khachiyan and
Porkolab [22] to semidefinite integer programming. In their work, they show
that if Y is a convex set in Rk defined by polynomial inequalities and equations
of degree at most d ≥ 2, with integer coefficients of binary length at most l,
then for fixed k, the problem of computing an optimal integral solution y∗ to
the problem min {yk | y(y1, . . . , yl) ∈ Y ∪ Zk} admits an FPT algorithm. Their
algorithm was further improved by Heinz [16] in the specific case of minimizing
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a polynomial F̂ on the set of integer points described by an inequality system
Fi ≤ 0, 1 ≤ i ≤ s where the Fi’s are quasiconvex polynomials in p variables
with integer coefficients. This algorithm generalizes Lenstra’s algorithm. In our
algorithms we need the optimization version of p-ILP rather than the feasibility
version. We proceed to define the minimization version of p-ILP.

p-Variable Integer Linear Programming Optimization (p-Opt-

ILP): Let matrices A ∈ Zm×p, b ∈ Zm×1 and c ∈ Z1×p be given. We
want to find a vector x̄ ∈ Zp×1 that minimizes the objective function
c · x̄ and satisfies the m inequalities, that is, A · x̄ ≥ b. The number of
variables p is the parameter.

Now we are ready to state the theorem we will use in the later sections.

Theorem 2. [�]3 p-Opt-ILP can be solved using O(p2.5p+o(p) · L · log (MN))
arithmetic operations and space polynomial in L. Here, L is the number of bits
in the input, N is the maximum of the absolute values any variable can take,
and M is an upper bound on the absolute value of the minimum taken by the
objective function.

3 Imbalance: The Inner Order Is Irrelevant

The solutions to all the problems considered in this paper follow the same basic
scheme. The case of Imbalance is the simplest exhibition of this theme, and our
algorithm for Imbalance will act as a template for the other algorithms to follow.
We now proceed to give an FPT algorithm for the Imbalance problem parame-
terized by the size of the minimum vertex cover of the input graph. Our input
consists of a graph G = (V,E), and a vertex cover C = {c1, . . . , ck} of size k.

Fixing the order of appearce of vertices in C: We are looking for a per-
mutation π : V → {1, 2, . . . , n} for which fim(π) is minimized. In order to do
this, we loop over all possible permutations of the vertex cover C and for each
such permutation πc, find the best permutation π of V that agrees with πc. We
say that π and πc agree if for all ci, cj ∈ C we have that ci <π cj if and only of
ci <πc cj . In other words, the relative ordering π imposes on C is precisely πc.
Thus, at a cost of a factor of k! in the running time we can assume that there
exists an optimal permutation π such that c1 <π c2 <π . . . <π ck.

Definition 1. Let πc be an ordering of C such that c1 <πc c2 <πc . . . <πc ck.
We define Ci to be {c1, c2, . . . , ci} for every i such that 1 ≤ i ≤ k.

Types of Vertices: Let I be the independent set V \ C. We associate a type
with each vertex in I. A “type” is simply a subset of C.

Definition 2. Let I be the independent set V \ C. The type of a vertex v in I
is N(v). For a type S ⊆ C the set I(S) is the set of all vertices in I of type S.

Notice that two vertices of the same type are indistinguishable up to automor-
phisms of G, and that there are 2k different types.
3 Proofs of results marked with [�] will appear in the long version of the paper.



Graph Layout Problems Parameterized by Vertex Cover 299

Inner Order: Observe that every vertex of I is either mapped between two
vertices of C, to the left of c1 or to the right of ck by a permutation π. For a
permutation π we say that a vertex v is at location 0 if v <π c1 and at location
i if i is the largest integer such that ci <π v. The set of vertices that are at
location i is denoted by Li. We define the inner order of π at location i to be
the permutation defined by π restricted to Li.

The task of finding an optimal permutation can be divided into two parts.
The first part is to partition the set I into L0, . . . , Lk, while the second part
consists of finding an optimal inner order at all locations. One should notice
that partitioning I into L0, . . . , Lk amounts to deciding how many vertices of
each type are at location i for each i. For most layout problems, figuring out
the right partitioning turns out to be more difficult than determining the inner
orders once the partitioning is known. For Imbalance, this turns out to be
particularly true as the inner orders in fact are irrelevant. The reason for this is
that permuting the inner order of π at location i does not change the imbalance
of any single vertex where the imbalance of a vertex v is |Lπ(v)−Rπ(v)|. Finding
the optimal ordering of the vertices thus reduces to finding the right partition
of I into L0, . . . , Lk. We formalize this as an instance of p-Opt-ILP.

ILP Formulation: For a type S and location i we let xi
S be a variable that

encodes the number of vertices of type S that are at location i. Also, for every
vertex ci in C we have a variable yi that represents the imbalance of ci. In order
to represent a feasible permutation, all the variables must be non-negative. Also
the variables xi

S must satisfy that for every type S,
∑k

i=0 x
i
S = |I(S)|. For

every vertex ci of the vertex cover let ei =
∣∣|N(ci) ∩ Ci−1| − |N(ci) ∩ (C \

Ci)|
∣∣ be a constant. Finally for every ci ∈ C we add the constarint yi = ei +∣∣∑
{S⊆C|ci∈S}

(∑i−1
j=0 x

j
S −

∑k
j=i x

j
S

)∣∣.
One should notice that the last set of constraints is not a set of linear con-

straints. However, we can guess the sign of y′i = ei +
∑

{S⊆C|ci∈S}
(∑i−1

j=0 x
j
S −∑k

j=i x
j
S

)
for every i in an optimal solution. This increases the running time by

a factor of 2k. For every i we let ti take the value 1 if we have guessed that
y′i ≥ 0 and we let ti take the value −1 if we have guessed that y′i < 0. We
can now replace the non-linear constraints with the linear constraints yi = tiy

′
i

for every i. Finally, for every type S and location i, let zi
S be the constant∣∣|S ∩ Ci| − |S ∩ (C \ Ci)|

∣∣. We are now ready to formulate the integer linear
program.

min
k�

i=1

ti · yi +
�

S⊆C

zi
S · xi

S

such that
�

i

xi
S = |I(S)| for all i ∈ {0, . . . , k}, S ⊆ C

yi = tiei +
�

{S⊆C|ci∈S}

��i−1
j=0 tix

j
S −

�k
j=i tix

j
S

�
for all i ∈ {1, . . . , k}

xi
S, yi ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C
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Since the value of fim(π) is bounded by n2 and the value of any variable in
the integer linear program is bounded by n, Theorem 2 implies that this integer
linear program can be solved in FPT time, thus implying the following theorem.

Theorem 3. The Imbalance problem parameterized by the vertex cover num-
ber of the input graph is fixed parameter tractable.

4 Cutwidth: The Inner Order Is Known

In the Cutwidth problem, we are to find the permutation of the vertices of
the input graph that minimizes fcw(π), the maximum cut in the permutation.
We proceed to give an FPT algorithm for minimizing fcw(π) in graphs with
small vertex covers. The input is a graph G = (C ∪ I, E) with C being a vertex
cover of size k. We define the rank of a vertex v with respect to a vertex set S
to be rank(S, v) = |N(v) \ S| − |N(v) ∩ S|. Notice that |∂(S ∪ v)| = |∂(S)| +
rank(S, v).

Just as for the Imbalance problem, we guess the order c1 <πc . . . <πc ck

of the vertices in C in an optimal permutation π. We consider the inner order
of Li for some i between 0 and k. Suppose π(ci) = s, then, for any t with
s < t ≤ s + |Li| we have that |∂(Vt)| = |∂(Vs)| +

∑t
j=s+1 rank(Vj−1, vj). Since

the set of vertices in the locations form an independent set, rank(Vj−1, vj) =
rank(Ci, vj) for every j between s + 1 and t. This gives the equation |∂(Vt)| =
|∂(Vs)|+

∑t
j=s+1 rank(Ci, vj).

Hence if we start with an optimal permutation π and reorganize the inner
order at each location i to sort the vertices by rank with respect to Ci in non-
decreasing order, we get another optimal ordering with a fixed inner order for
each location. In such orderings the largest values of |∂(Vi)| occur either at
i = π(cj) − 1 or at i = π(cj) for some j between 1 and k. Since the rank of
a vertex v ∈ I with respect to Ci only depends on i and the type of v, we
can use this together with the fact that |∂(Vt)| = |∂(Vs)|+

∑t
j=s+1 rank(Ci, vj)

in order to give an integer linear programming formulation for the Cutwidth

problem.
For every type S and location i we introduce a variable xi

S that tells us
the number of vertices of type S that are at location i. For every i between 1
and k we add a variable yi which encodes rank(Vπ(ci)−1, ci) and the constant
ei = |N(ci) ∩ (C \ Ci)| − |N(ci) ∩ Ci−1|. For every type S and location i we
also compute the constant ei

S that indicates the rank of a vertex of type S with
respect to Ci. Finally we need a variable c that represents the cutwidth of G.
For the constraints, as for the Imbalance problem, we need to make sure the
variables xi

S represent a valid partitioning of I into L0, . . . , Lk. Finally we need
constraints to encode the rank of the vertex cover vertices and the connection
between the partitioning of I and the cutwidth c. This yields the following integer
linear program:



Graph Layout Problems Parameterized by Vertex Cover 301

min c

such that
∑

i

xi
S = |I(S)| for all S ⊆ C

yi = ei +
∑

{S⊆C|ci∈S}

( k∑
j=i

xj
S −

i−1∑
j=0

xj
S

)
for all i ∈ {0, . . . , k}

c ≥
i∑

j=0

yj +
i−1∑
j=0

∑
S⊆C

ej
S · x

j
S for all i ∈ {1, . . . , k}

c ≥
i−1∑
j=0

yj +
i−1∑
j=0

∑
S⊆C

ej
S · x

j
S for all i ∈ {1, . . . , k}

xi
S ≥ 0 for all i ∈ {0, . . . , k}, S ⊆ C

Since the value of fcw(π) is bounded by n2 and the value of any variable in
the integer linear program is bounded by n2, Theorem 2 implies that this integer
linear program can be solved in FPT time, yielding the following theorem.

Theorem 4. The Cutwidth problem parameterized by the minimum vertex
cover of the input graph is fixed parameter tractable.

5 Bandwidth: The Inner Order Is Structured I

In the Bandwidth problem the aim is to minimize the function fbw(π) =
maxuv∈E |π(u) − π(v)|. As for the previous cases we guess the ordering c1 <πc

. . . <πc ck of the vertices in C in an optimal permutation π. Since we now are
looking for the optimal permutation π that agrees with this ordering of the ver-
tices in C, we observe that for a vertex v ∈ I the only relevant neighbours in C
are the leftmost and rightmost neighbour. We can thus delete the edges from v
to all other neighbours of v. After this reduction every vertex in I has degree at
most 2, and thus the number of different types is bounded by k2 rather than 2k.

For Bandwidth, we are not able to determine the inner orders a priori,
contrary to the situation we had for Cutwidth. Instead we will show that there
is an optimal permutation where the inner orderings have a specific structure.
We say that an interval [a, b] on the integer line is uniform if all vertices π maps
to [a, b] have the same type. A zone is an inclusion maximal uniform interval, and
for a layout π of the vertices of G, the zonal dimension of π at location i, ζi(π),
is the number of zones inside [π(ci) + 1, π(ci+1)− 1]. The zonal dimension of π
is ζ(π) = maxk

i=0 ζi(π). Our approach consists of two parts. First we show that
there is an ordering π minimizing bandwidth such that ζ(π) ≤ k2(2k + 1) + 2k.
We then use this to show that Bandwidth parameterized by the size of the
minimum vertex cover of the input graph is fixed parameter tractable.

Lemma 1. [�] For a graph G = (C ∪ I, E), there is an optimal bandwidth or-
dering π with ζ(π) ≤ k2(2k + 1) + 2k.
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So, how can one use Lemma 1 to give an integer linear program for the Band-

width problem? The trick is to guess the correct values of ζi(π) for every i and
guess which type of vertices appears in each zone. We can do this at a cost of a
factor (3k3)k+1(k2)3k3

= kO(k3) in the running time. Note that the zones are or-
dered from left to right. We can now set up an integer linear program where the
variables encode how many vertices there are in each zone. Let xi be a variable
that encodes the number of vertices in zone number i from the left. For each
type S ⊆ C such that I(S) is nonempty, we let Z(S) be the set of integers such
that for each i ∈ Z(S) we have guessed that the vertices in the zone i have type
S. Let lS and rS be the smallest and largest numbers in Z(S) respectively. Now,
for an integer 1 ≤ i ≤ k we let ei be the number of zones guessed to be to the
left of ci. Finally, for an integer i between 1 and k and a type S we define the
constant t1(i, S) to be the number of vertices from C to the right of zone number
lS and to the left of ci. Similarly, let t2(i, S) be the number of vertices from C
to the left of zone number rS and to the right of ci. Having made the discussed
guesses, we can formulate the Bandwidth problem as an integer linear program
as follows:

min b

such that
∑

i∈Z(S)

xi = |I(S)| for all S ⊆ C : I(S) 
= ∅

b ≥ j − i− 1 +
ej∑

q=ei+1

xq for all cicj∈E

b ≥ t1(i, S) +
ei∑

j=lS

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 
= ∅, ci∈S

b ≥ t2(i, S) +
rS∑

j=ei+1

xj for all i ∈ {1, . . . , k}, S ⊆ C : I(S) 
= ∅, ci∈S

xi ≥ 0 for all i ∈ {0, . . . , k}

(1)

Because the value of fbw(π) is bounded from above by n and the value of any
variable in the integer linear program is bounded by n, Theorem 2 implies that
this integer linear program can be solved in FPT time, yielding the following
theorem.

Theorem 5. [�] The Bandwidth problem parameterized by the size k of the
minimum vertex cover of the input graph can be solved in time kO(k3)n and
polynomial space.

6 Distortion: The Inner Order Is Structured II

In this section we consider the parametrized complexity of embedding graph
metrics into the real line, parameterized by the size of the minimum vertex
cover of the input graph. Given an undirected graph G = (V,E), a natural



Graph Layout Problems Parameterized by Vertex Cover 303

metric associated with G is M(G) = (V,D) where the distance function D is the
shortest path distance between u and v for each pair of vertices u, v ∈ V . Given
a graph metric M and another metric space M ′ (like real line) with distance
functions D and D′, a mapping f : M → M ′ is called an embedding of M into
M ′. The mapping f has contraction cf and expansion ef if for every pair of
points p, q in M , D(p, q) ≤ D′(f(p), f(q)) · cf and D(p, q) · ef ≥ D′(f(p), f(q))
respectively. A mapping f has distortion d if (ef ·cf ) is at most d. We say that f
is non-contracting if cf is at most 1. A non-contracting mapping f has distortion
d if ef is at most d. As observed by several authors before [9,15], the problem
of finding a minimum distortion embedding of a graph metric into the line can
be expressed as a problem of finding the permutation π : V → {1, 2, . . . , n} that
minimizes fdi(π) = maxuv∈E

∑π(v)−1
i=π(u) D(vi, vi+1).

Lemma 2 ([9]). A graph G = (V,E) has a distortion d embedding f into the
real line if and only if there is a permutaion π : V → {1, 2, . . . , n} such that
fdi(π) ≤ d.

For a permutation π and two vertices u and v such that u <π v we define
Dπ(u, v) =

∑π(v)−1
i=π(u) D(vi, vi+1). If v <π u then Dπ(u, v) is defined to be Dπ(v, u).

We give a fixed parameter tractable algorithm for the Distortion problem pa-
rameterized by the size of the minimum vertex cover of the input graph. Our
approach is similar to, albeit more involved than, the algorithm presented for
the Bandwidth problem. As for the previous problems, we iterate over all k!
ways to order the vertices of C into c1 <πc . . . <πc ck. We proceed to show that
there is an optimal permutation π such that ζ(π) ≤ (4k + 1)22k

.

Lemma 3. [�] For a graph G = (C ∪ I, E), there is an optimal distortion or-
dering π with ζ(π) ≤ (4k + 1)22k

.

Using Lemma 3 we can give an algorithm for the Distortion problem simi-
lar to the algorithm for Bandwidth. The algorithm proceeds excactly as for
Bandwidth with the only differences being that the zonal dimension is much
larger, and that one has to be careful to introduce constants that encode the
distance between two consecutive vertices in the ILP. Notice that since the zonal
dimension is not polynomial in k for the Distortion problem, we do not obtain
a polynomial space algorithm.

Theorem 6. The Distortion problem parameterized by the minimum vertex
cover of the input graph is fixed parameter tractable.

7 Conclusion and Discussions

In this paper we considered parameterization by vertex cover number of the
graph, a structural parameter stronger than the treewidth. This enabled us to
show that graph layout problems Cutwidth, Bandwidth, Imbalance and
Distortion are FPT parameterized by vertex cover number of the graph. This
is in contrast to the parameterization by treewidth for which the paramterized
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complexity of these problems is open. The structural parameterization of vertex
cover number also brought forward the technique of bounded variable integer
linear programming to importance. We believe that this (underused) powerful
result will become one of the basic tools in classifying whether a problem is FPT,
as well as in designing practical algorithms, because p-ILP is well solved for p
up to 1000.

One may wonder whether there exists a problem which is not FPT for graphs
of bounded vertex cover number. This in indeed the case, as List Coloring

remains W [1]-hard even for graphs of bounded vertex cover number. An im-
portant graph layout problem is Optimal Linear Arrangement where the
objective is to minimize the sum of |∂Vi|. We can show that this problem is in
XP by giving an algorithm of time complexity nf(k) when parameterized by the
vertex cover number of the input graph. The main difficulty we face in encoding
this problem as ILP is that the objective function is not linear, but quadratic.
Hence in this direction the following questions still remain unanswered.

– Is Optimal Linear Arrangement FPT parameterized by the vertex cover
number of the input graph?

– Is Cutwidth FPT parameterized by the treewidth of the input graph?
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Abstract. We consider the following problem: given a planar graph
G = (V, E) and integer k, find if possible at least k vertex disjoint cycles
in G. This problem is known to be NP-complete. In this paper, we give
a number of simple data reduction rules. Each rule transforms the input
to an equivalent smaller input, and can be carried out in polynomial
time. We show that inputs on which no rule can be carried out have size
linear in k. Thereby we obtain that the k-Disjoint Cycles problem on
planar graphs has a kernel of linear size. We also present a parameterized
algorithm with a running time of O(c

√
k + n2).

1 Introduction

A general approach that is used when one wants to solve an NP-hard problem
in a practical setting is to first use preprocessing or data reduction in an attempt
to obtain a smaller but equivalent instance. A slow exact (or fixed parameter)
algorithm can then be used on the reduced instance. In some cases, it is possible
to obtain bounds on the size of a resulting instance. Techniques from fixed para-
meter tractability theory help to obtain such bounds. We refer to the excellent
overview paper by Guo and Niedermeier [8] for an overview of many recent re-
sults. Data reduction with an upper bound on the size of the resulting instances
is nowadays termed kernelization. For a kernelization algorithm, part of our in-
put is a parameter k, and the algorithm finds in polynomial time an equivalent
input whose size is bounded by a function of the parameter. Both from a the-
oretical and from a practical viewpoint, it is interesting to have a small upper
bound on the size of the resulting kernel.

In this paper, we consider the k-Disjoint Cycles problem on planar graphs:
given a planar graph G = (V,E) and an integer k, find a collection of at least k
cycles that are pairwise vertex-disjoint, or return that no such collection exists.
This problem is NP-complete, also on planar graphs (it contains Partition

into Triangles as subproblem). We show that this problem has a kernel of
size linear in k. We give a number of simple rules that modify the given graph.
If no rule can be applied we have found an equivalent problem instance having
O(k) vertices. Each rule is safe, i.e., when (G, k) is transformed to (G′, k′), then

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 306–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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G has a collection of k disjoint cycles if and only if G′ has a collection of k′

disjoint cycles, and G′ is also planar.
Our result resolve an open problem by Kloks et al. [10], who give an algorithm

for k-Disjoint Cycles on planar graphs that runs in O(c
√

k log kn) time, and
ask for a reduction to a polynomial problem kernel for the problem. We use our
kernel to give an algorithm that runs in time O(c

√
k + n2).

Our linear kernel for planar graphs nicely complements a very recent result
by Bodlaender et al. [5], who show that there is no polynomial size kernel for
the k-Disjoint Cycles problem unless the polynomial time hierarchy collapses
to the third level. However, as k-Disjoint Cycles belongs to the class FPT, a
kernel of exponential size does exist.

Related results are a linear kernel for Feedback Vertex Set on planar
graphs [4], a cubic kernel for the same problem on general graphs [3], a linear
kernel for Dominating Set on planar graphs [2, 1], and FPT-algorithms for
k-Disjoint Cycles on arbitrary graphs (see [7]). Also see [9] for a generic
framework for deriving linear kernels for some problems on planar graphs.

This paper is organized as follows. In Section 2, we give some preliminary
definitions and results. In Section 3, we present the kernelization algorithm,
the reduction rules, prove their safeness, and show that we can apply them in
polynomial time. Section 4 gives proves the bound on the kernel size from which
correctness of our algorithm follows. In Section 5, we state a faster parameterized
algorithm for the k-Disjoint Cycles problem on planar graphs. Some final
comments are made in Section 6.

2 Preliminaries

All graphs in this paper are undirected, planar, and can have parallel edges and
self-loops. Consider a graph G = (V,E). A path is a sequence of vertices and
edges v0e1v1e2 . . . envn such that ei = {vi−1, vi} and vi 
= vj for all 1 ≤ i < j ≤ n.
A cycle is a path where v0 = vn and all other vertices are different. The length
of a path or cycle is the number of edges used. By G[W ] we denote the graph
induced by W ⊆ V , defined as G[W ] = (W,E ∩ W × W ). The neighborhood
N(v) = {u ∈ V \ v : {u, v} ∈ E} of a vertex v ∈ V is the set of vertices adjacent
to v. The neighborhood of a set U ⊆ V is defined as N(U) = (∪u∈UN(u)) \ U .

The degree d(v,W ) = |{e ∈ E : e = {v, u}, u ∈W}| of a vertex v with respect
to W ⊆ V is defined as the number of edges between v and vertices from W . We
use d(v) as a shorthand for d(v, V ). We sometimes use single vertices v instead
of the singleton set {v} for readability. E.g., d(v, w) = 2 implies that there are
exactly two parallel edges {v, w}.

A tree is a connected subgraph of G that contains no cycles. Vertices on a
tree with degree at least three are called internal vertices, leafs have degree at
most one. A forest is a set of trees. To simplify notation we use paths, trees
and cycles as if they are sets of vertices. E.g. given a tree T and a cycle C we
use G[T ∪ C] to denote G[V (T ) ∪ V (C)]. This also allows us to use |P | for the
number of vertices on a path P .
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When talking about disjoint cycles we always mean pairwise vertex disjoint
cycles.

We will need the following two lemma’s throughout the paper. They are stated
here rather than at the time they are needed, as they are of some interest by
themselves:

Lemma 1. Consider a bipartite planar graph G with n vertices on the left side,
having no parallel edges. Let xi be the number of vertices on the right side with
degree i. Then

∑
i≥3(

1
2 i− 1)xi ≤ n− 2.

Proof. We assume x0 = x1 = x2 = 0 without loss of generality. The number of
vertices of G is n+

∑
i xi and the number of edges is

∑
i ixi. The number of faces

is at most half the number of edges, in which case every face has exactly four
incident edges. Using Euler’s formula |V (G)| − |E(G)| + |F (G)| = 2 for planar
graphs we directly obtain the lemma. �


Lemma 2. Given n cycles on the plane, we can connect at most 3n−6 different
pairs by an edge without crossings.

Proof. We will show that the number of edges is maximum when no cycles are
nested. Let f(n) denote the maximum number of edges between n vertices in a
planar graph not allowing self-loops or parallel edges. Then f(n) = 3n − 6 for
n ≥ 3, f(2) = 1 and f(1) = f(0) = 0. We compare the following two cases:
(i) We have q cycles within some cycle C, and C itself has p cycles it can be
connected to on the outside, (ii) we have p + q + 1 cycles without layering. The
difference between these cases is f(p + q + 1)− f(p + 1) − f(q + 1) ≥ 0, so we
can never gain by nesting cycles. �


3 Reduction

We present an algorithm that given an instance (G, k) of Planar k-Disjoint

Cycles either returns true (meaning that G has at least k disjoint cycles), or
returns an equivalent instance (G′, k′) where |V (G′)| = O(k). Two instances
(G, k) and (G′, k′) are equivalent if G has k disjoint cycles if and only if (G′, k′)
has k′ disjoint cycles, and G′ is planar if G is planar. If there are more than
two parallel edges {v, w} in G we can remove all but two without changing the
problem.

The algorithm starts by applying reduction rules until none apply, resulting
in an equivalent instance (G′, k′). If |V (G′)| > 1209k′−1317 we return true, else
we return this instance. The main result of this paper is the following:

Theorem 1. For any integer k ≥ 3 and planar graph G = (V,E) where no
reduction rules can be applied, |V | ≤ 1209k − 1317, or G contains at least k
disjoint cycles.

We present eight reduction rules for the k-Disjoint Cycles problem. Each of these
rules is safe, also for general graphs, and maintains planarity. A safe reduction
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rule transforms an instance (G, k) to an equivalent instance (G′, k′). If we find
some cycle C that is included in some optimal solution then we can select C,
meaning that (G′, k′) = (G[V \ C], k − 1). If vertex v is not included in some
optimal solution then we can remove v, the new instance then becomes (G[V \
v], k). Application of Rule i is only allowed if all rules j < i do not apply.

3.1 Basic Rules

We present the first five rules, safeness of rules 1–4 is trivial.

Rule 1 (Self Loop Rule). If there is an edge {v, v} ∈ E then select cycle (v).

Rule 2 (Degree Zero Rule). If there is a vertex v ∈ V such that d(v) = 0
then remove v.

Rule 3 (Degree One Rule). If there is a vertex v ∈ V such that d(v) = 1
then remove v.

Rule 4 (Degree Two Rule). Suppose there is a vertex v such that d(v) = 2
with incident edges {v, w} and {v, x}. Then remove v and add an edge {w, x} if
allowed (that is, if this does not create a third parallel edge {w, x}). Note that if
w = x a self-loop is added.

Rule 5 (Degree Three Rule). Suppose there is a vertex v with d(v) = 3 and
having only two neighbors w and x where d(v, w) = 2. Then select cycle (v, w).

Proof of safeness. The subgraph G[{v, w, x}] can be used in at most one cycle,
so there is always an optimal solution using cycle (v, w). �


If Rules 1–5 do not apply we have the following result:

Lemma 3. Suppose Rules 1–5 do not apply in a planar graph G = (V,E).
Consider a tree T ⊆ V with leafs L. Then |N(l) \ T | ≥ 2 for all l ∈ L, so every
leaf has at least two neighbors outside of T .

Proof. For every l ∈ L we have d(l, T ) = 1 and d(l, N(T )) ≥ 2 because the Degree
Two Rule does not apply. If |N(l)| = 2 then the Degree Three Rule would apply,
so |N(l)| ≥ 3 proving the lemma. �


3.2 Advanced Rules

We now present rules that operate on small trees : trees T where |N(T )| = 2.
For all rules let N(T ) = {v, w}.

Rule 6 (Small Tree Rule). Consider a small tree T with |T | ≥ 2. If there are
two disjoint cycles in G[T ∪N(T )] then select those cycles, otherwise replace T
by a single vertex, connected by two edges to both v and w.
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Proof of safeness. Note that T has at least two leafs, all of which are connected
to both v and w because of the Degree Three Rule. Hence we always have a
cycle using (v, T ) and (w, T ). If there are two disjoint cycles in G[T ∪ N(T )]
then selecting both is optimal, as this subgraph can only be involved in two
cycles in any solution.

If there is only one disjoint cycle in G[T ∪ N(T )] then there is an optimal
solution where either (v, T ) or (w, T ) is used. Suppose not, then remove the
cycle through v and replace it by (v, T ) to obtain another optimal solution. This
is exactly the same situation as after the reduction. �


Rule 7 (Parallel Small Tree Rule). Consider two small trees T1 and T2 with
N(T1) = N(T2) = {v, w}. Then select both cycles (v, T1) and (w, T2).

Proof of safeness. The subgraph G[T1 ∪T2 ∪{v, w}] contains two disjoint cycles.
This is also the maximum number of cycles this subgraph can be used in any
solution, so we can safely select them. �


Using Rules 1–7 we obtain the following:

Lemma 4. Suppose Rules 1–7 do not apply in graph G. Then for any two dis-
tinct vertices v, w ∈ V there is at most one tree T such that N(T ) = {v, w}, and
T consists of one vertex.

Proof. This follows directly from the Rules 6 and 7. �


The last rule operates on subgraphs that consist of a path and a small set of
adjacent vertices. We only apply this rule for n ≤ 2.

Rule 8 (Path Rule). Consider vertex set W ⊂ V and path U = (u1, . . . , um)
such that W and U are disjoint, n = |W |,m > n and d(ui, V \W ) = 2 for all
u on U . By wj we denote the order in which the vertices of W are connected to
the path. If there are n disjoint cycles in G[W ∪U ] then replace U by a path U ′

of length n where u′
1 = u1 and u′

n = um and ui is connected by two edges to wi

for i = 1, . . . , n.

Proof of safeness. In some optimal solution the subgraph G[U ∪W ] is used in
exactly n or n + 1 cycles. In the first case we can choose all cycles to be the
n disjoint ones in G[U ∪ W ] itself, in the latter case we have to use path U ,
implying that no internal cycle in G[U ∪W ] is used. This is exactly the situation
as is modeled after the reduction. �


See Figure 1 for an application of this rule. We have the following:

Lemma 5. Consider W and U as defined by the Path Rule. If n = 1 then the
Path Rule applies if m ≥ 2, and if n = 2 then Path Rule applies if m ≥ 6.

Proof. If n = 1 and m ≥ 2 we have a disjoint cycle in G[W ∪ U ] allowing
application of the Path Rule. If n = 2 we cannot have a subgraph where the
n = 1 case applies, so no two consecutive vertices on U can be connected to
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u′
1

w1

u′
2

w2
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u3 u4 u5 u6u2u1

w2

w1

(b) After

Fig. 1. Application of the Path Rule where |W | = 2

the same vertex in W without also connecting to the other one. Without loss of
generality we assume d(u,W ) = 1 for all u ∈ U , directly showing that the longest
path that does not allow the Path Rule to be applied consists of alternating the
connections the vertices in W . If m = 6 we have two disjoint cycles as shown in
Figure 1, proving the lemma. �


3.3 Running Time Analysis

The total running time of the kernelization is O(n2). Due to lack of space we
omit all details. We expect an actual implementation to perform very well if the
Path Rule is implemented efficiently.

4 Linear Kernel

In this section we will prove Theorem 1. We use a set of disjoint cycles C that
satisfy the following properties:

Lemma 6. Given a planar graph G = (V,E) where no reduction rules apply.
Let C be a collection of disjoint cycles, and let T = V \ C. We can find a C in
time polynomial in |V | that satisfies the following properties:

1. Every C ∈ C is a minimum cycle in G[T ∪ C],
2. There are no two disjoint cycles in G[T ∪ C] for any C ∈ C,
3. There are no more than 5 disjoint paths between any pair of cycles in C.

Proof. Consider two cycles C1, C2 ∈ C such that the third property is invalidated.
This implies that there are at least six disjoint paths between C1 and C2. We
can then find three vertex disjoint cycles in G[T ∪ C1 ∪ C2] using six of these
paths. This property can be checked by using a flow algorithm thats finds a flow
of size six from a source inside C1 to a sink inside C2 connected to the vertices
of the cycle.

It is easy to see that by using iterative improvement we can find a collection
of disjoint cycles satisfying all properties in polynomial time. �
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Let C be a collection of cycles satisfying Lemma 6, and let k = |C|. Let T denote
the forest consisting of the trees formed by vertices V \V (C). We will first show
that |V (T)| = O(k) and then |V (C)| = O(k).

4.1 Linearity of Trees

For now assume that no cycles in C are nested, after the analysis we will show
that this is indeed the worst-case for the size of V (T). Let TS contain all small
trees (see Lemma 4), and let Ti ⊆ T \ TS contain all trees incident to exactly i
cycles in C that are not in TS .

Lemma 7. For all T ∈ T incident to distinct C1, C2 ∈ C at most two leafs of
T are connected to both C1 and C2.

Proof. Suppose we have three or more such leafs. Each leaf connects to two cycles
and some non-leaf node on T , giving a K3,3 minor contradicting planarity. �


Lemma 8. There are no C ∈ C and distinct T1, T2 ∈ T such that |N(T1)∩C| ≥
2, |N(T2) ∩ C| ≥ 2 and |N(T1 ∪ T2) ∩ C| ≥ 4.

Proof. Suppose for a contradiction that such T1, T2 and C exist. Both trees
connect to some other cycle, so they are at the same side of C by our initial
assumption that there is no nesting. But then we have two cycles in G[C∪T1∪T2]
contradicting property 2 of Lemma 6. �


Lemma 9. Consider a set of one or two cycles S ⊆ C and path U = (u1, . . . , un)
in G[T] such that every vertex on U is connected to at least one vertex in V (S)
having N(ui) ⊆ U ∪ V (S) for i = 2, . . . , (n − 1). If |S| = 1 then n ≤ 5, and if
|S| = 2 then n ≤ 13.

Proof. Let S = {C} if |S| = 1. If we have four or more disjoint paths between
U and C there are two disjoint cycles in G[C ∪ V (T)] contradicting Lemma 6.
This implies that there is a subset D ⊆ V (C) with |D| ≤ 3 such that N(D,U) =
N(C,U). For every vertex of U we delete all edges to C with the exception of
the first edge that goes to some vertex in D. Note that every vertex in U that
was connected to C still is, and that all cycles in G[U ∪ D] are also cycles in
G[U ∪ C].

If four consecutive vertices on U are connected to the same vertex d ∈ D then
the middle two together with d allow the Path Rule in the original graph, so at
most three consecutive vertices on U connect to the same vertex d ∈ D. Because
there are no two disjoint cycles in G[U ∪D] we can add at most two vertices not
connected to d to U , one at each side, so |U | ≤ 5 in this case.

We only sketch the proof for |S| = 2 due to lack of space. Let S = {C1, C2}.
Find subsets of size at most three D1 and D2 in V (C1) and V (C2) respectively
by the same method as above. Let d1, d2 denote the vertices of D1, D2 that have
most edges to U . At most four vertices on U are not incident to d1 or d2. Two
can be incident to more than one vertex in D1, two to more than one in D2.
Finally we have a path of at most five vertices between d1 and d2 because of the
Path Rule. In total this are 13 vertices, proving the lemma. �
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We start our analysis of |V (T)| by giving a bound for |V (TS)|. By definition for
all T ∈ TS we have |N(T )| = 2. Because of the Small Tree Rule also |T | = 1,
and T is incident to exactly two vertices, both with parallel edges. We claim the
following:

Lemma 10. |V (TS)| ≤ 3k − 6.

Proof. Consider a cycle C ∈ C incident to T ∈ TS . Then |C| = 2, because of
property 1 of Lemma 6. We also know that there are no distinct T1, T2 ∈ TS

such that N(C) ⊆ N(T1) ∪ N(T2), otherwise there are two disjoint cycles in
G[T1 ∪ T2 ∪ C] contradicting property 2 of Lemma 6.

Let x denote the number of trees in TS that are incident to exactly one cycle.
We claim x ≤ k: if x > k then there is some cycle C ∈ C incident to at least two
such trees, implying two disjoint cycles in G[C ∪ V (TS)]. All x cycles connected
to these trees cannot be connected to any other small tree.

Now consider cycles C1, C2 ∈ C incident to a small tree T ∈ TS . Also we can
have at most one vertex of C1 or C2 can be incident to small trees, else we have
two disjoint cycles. Because of this and the Parallel Small Tree Rule there is at
most one Small Tree that is incident to both C1 and C2, so the number of Small
Trees incident to a pair of cycles is at most the number of edges in a planar
graph having k − x vertices. By setting x = 0 we obtain the lemma. �


Lemma 11. |V (T1)| ≤ 19k.

Proof. Consider some cycle C ∈ C and all trees X ⊆ T1 incident to C. Let
L be the vertices of V (X) that have d(v, V (X)) ≤ 1 . Every node v ∈ L is
incident to at least 2 vertices in C, so |C| ≤ 4 by property (1) of Lemma 6. If
|N(v1, C)∩N(v2, C)| ≥ 2 then |L| = 2 because of planarity. This implies that if
|L| = 4 then all four vertices connect to a different pair of cycle-vertices, so then
|C| = 4. But in that case we have two disjoint cycles in G[C ∪ L] contradicting
Lemma 6, so |L| ≤ 3.

This means that G[V (X)] contains at most one internal vertex v. If we remove
L and v from G[V (X)] we end up with at most three paths, all of which are
incident to C, so all have size at most 5 by Lemma 9. This means that |V (X)| ≤
19, and because there are at most k cycles we obtain the lemma. �


Lemma 12. |T≥2| ≤ 6k − 3.

Proof. Consider the planar bipartite graph having a vertex for every cycle in C,
and a vertex for every tree in T≥3. Apply Lemma 1 to conclude that |T≥3| ≤
2k − 2.

Consider some maximal subset T′
2 ⊆ T2 such that |N(T1)∩N(T2)∩C| ≤ 1 for

all C ∈ C, so no two trees in T′
2 share more than one vertex on any cycle. Because

|N(T )| ≥ 3 for all T ∈ T′
2, there is always some C ∈ C such that |N(T )∩C| = 2.

For all C ∈ C let XC contain all T ∈ T′
2 such that |N(T ) ∩ C| ≥ 2. If |XC | ≥ 4

we have a contradiction with Lemma 8, so |XC | ≤ 3 for all C ∈ C and |T′
2| ≤ 3k.

Due to lack of space we only sketch the proof that |T2 \ T′2| ≤ k − 1: each
such tree connects to at least two vertices on the same cycle that some tree from
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T′
2 also connects to. Because of planarity of G this ’separates’ C. After k − 1

such separations all cycles are separated, giving us the mentioned result. �


Consider the graph G′ obtained from G by removing all trees from TS and T1,
and deleting all edges between vertices on two different cycles in C. We claim
the following:

Lemma 13. We can add |T≥2| − 1 edges to G′ to connect all trees in T≥2 to a
single tree without breaking planarity.

Proof. If p = 1 the the lemma clearly holds. We will show that if p > 1 we can
lower p step by step by adding an edge as follows: create the bipartite planar
graph H with a vertex for every element in C and T. Edges in H correspond
to cycles and trees that are incident in G′. Every face of H has at least four
incident vertices. We now connect two trees on a face by an edge in G′ obtaining
a new instance with p− 1 trees. �


All that is left now is to show a bound for the size of this single big tree:

Lemma 14. |V (T≥2)| ≤ 163k− 51.

Proof. We add |T≥2| − 1 edges to all trees in T≥2 to create one tree T . Let L
be the set of leafs of T , and let I be the internal nodes of T with d(v, T ) ≥ 3
for all v ∈ I. Every node in L is connected to at least two vertices outside of T
because Lemma 3. Let L1 ⊆ L contain all leafs of L that connect to only one
cycle, and let L2 = L \ L1. If |L1| > 3k then there is some C ∈ C such that at
least four leafs from L1 connect to two or more vertices on C. This implies two
disjoint cycles in G[C ∪ L1] contradiction property 2 of Lemma 6.

Now suppose we walk at an infinitesimal close distance around T . Let ei denote
the i’th edge we encounter. We mark a node of T if it is incident to the very first
of very last edge to some cycle C ∈ C. This way we mark at most 2k nodes. Let
Q contain these marked nodes. We claim that if we encounter consecutive edges
e1 and e2 connected to v1, v2 ∈ T and C1, C2 ∈ C where C1 
= C2 then at least
one of v1, v2 is marked. Suppose not: we now can find integers a < b < c < d and
distinct C1, C2 ∈ C) such that ea and ec connect to C1, and eb and ed connect
to C2. This contradicts planarity. Note that L2 ⊆ Q because those leafs are
connected to at least two different cycles.

We now decompose T in a collection of paths incident to at most two cycles
as follows. First remove all incident nodes I, leaving at most 2|L| − 3 paths (the
maximum number of edges of a tree having |L| leafs). Then remove all marked
nodes Q splitting at most |Q| paths. Finally we remove all edges added to create
T from T≥2, splitting another |T≥2| − 1 paths. Adding everything together we
get at most 2|L1|+ 2|L2| − 3 + |Q|+ |T≥2 | − 1 paths. Using |L1| ≤ 3k, |Q| ≤ 2k
and |L2| ≤ |Q| ≤ 2k this resolves to at most 12k− 4 paths. If a path is incident
to more than two cycles some node on the path has to be marked. Because we
removed all marked nodes we conclude that every path is incident to at most
two cycles. We use Lemma 9 to bound the size of each path to 13, add the
|L| − 2 ≤ 5k − 2 internal nodes I and the ≤ 2k nodes in Q to the path-nodes
proving the lemma. �
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Putting lemma’s 10, 11 and 14 together we get |V (T)| ≤ 191k−60. By the same
argument as in the proof for Lemma 2 we see that every nesting gains at most
131 vertices. As we can have at most k− 1 levels of nesting we get the following
corollary:

Corollary 1. |V (T)| ≤ 322k − 191.

4.2 Linearity of Cycles

We will now show that |V (C)| = O(k). Because of the Degree Two Rule every
vertex v ∈ C ∈ C is incident to at least one vertex in V \ C.

Let VS contain all vertices on cycles C ∈ C that have |C| ≤ 4. We group
the remaining vertices V (C) \ VS according to their minimum distance to some
vertex in V (T). By Vi we denote the subset of V (C) \ VS having shortest-path
distance i to some vertex in V (T). Note that for every cycle not put in VS there
is no vertex in V (T) connecting to more than one vertex on the same cycle, or
we contradict property 1 of Lemma 6. We have the following:

Lemma 15. |V1| ≤ |V (T)| + 19k − 48.

Proof. Let Xi contain the vertices of V (T) incident to exactly i cycles (and thus
i vertices) in V1. Because of Lemma 1 we have

∑
i≥3(

1
2 i− 1)|Xi| ≤ k− 2. Under

this restriction we maximize the total number of incident vertices i|Xi| for i ≥ 3.
This maximum is obtained if |X3| = 2k − 4 and |X>3| = 0 giving us 6k − 12
vertices in V1 connected to X>3.

Let X ′
2 ⊆ X2 contain all vertices from X2 such that N(v) ∩N(w) = ∅ for all

different v, w ∈ X ′
2. We have at most 3k − 6 different pairs of cycles that are

connected to through some vertex in X2 by Lemma 2, and there are at most 5
disjoint paths between every connected pair. Hence X ′

2 contains at most 15k−30
vertices, connected to 30k − 60 vertices in V1.

All |V (T)|−17k+34 vertices in V (T) that are not in X ′
2 or X3 are connected to

at most one vertex in V1 that is not yet counted, so |V1| ≤ |V (T)|+ 19k− 48. �


Lemma 16. |V2| ≤ 2|V1|.

Proof. Every vertex in V2 is incident to at least one vertex in V1, and a vertex
in V1 is incident to at most two vertices in V2. �


We will now count the number of vertices in V≥3. Consider some cycle C ∈ C
incident to c cycles and t trees. If |N(C) ∩ D| > 5 for some incident cycle
D we find some subset W ⊂ V (D) such that N(D) = N(W ) and |W | ≤ 5.
If such a W does not exist we have more than 5 disjoint paths between two
cycles, contradicting property 3 of Lemma 6. We delete all edges between C and
V (D) \W . This operation takes care of some nasty details when counting the
number of vertices in V≥3, because now N(C) ∩ D contains at most 5 vertices
for any incident cycle D. Also note that every vertex on C that was connected
to D still is.
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We now define an observer to be either a tree or a vertex on some incident
cycle, so we have at most 5c+ 2t observers. We take two walks along the circle,
one on the outside and one on the inside, and every time we see an edge to some
observer for the very first or very last time we put the vertex of C incident to
that edge in Q. The paths in G[C \ Q] are called segments. Every segment is
connected to at most one observer on the inside, and one on the outside. We
claim the following:

Lemma 17. The number of segments is at most 10c + 2t.

Proof. The number of segments is at most |Q|. The argument is exactly the same
at in the proof of Lemma 14. �

Lemma 18. |S ∩ V≥3| ≤ 5 for every segment S.

Proof. If the one or two observers of S are only trees then clearly S ∩ V≥3 = ∅.
Suppose S has a tree and a cycle-vertex as observers, and S ∩ V≥3 
= ∅. Then
at least three consecutive vertices on S are not incident to the tree, and thus
incident to the cycle-vertex. But then the Path Rule applies, so we also have
S ∩ V≥3 = ∅ in this case.

If S is observed by only one cycle-vertex then |S| = 1 because of the Path
Rule, and if S is observed by two cycle-vertices then |S| ≤ 5, also because of the
Path Rule. All of these vertices can be in V≥3, proving the lemma. �

Lemma 19. |V≥3| ≤ 300k − 600.

Proof. We attribute most to V≥3 if we have two cycle-vertices as an observer.
This can happen at most 10c times, leading to a total attribution of 50c to V≥3.
We have at most 3k − 6 pairs of incident cycles by Lemma 2. Taking the sum
over all cycles directly proves the lemma. �

Putting Lemma 15,16 and 19 together and adding |VS | we get the following
corollary:

Corollary 2. |V (C)| ≤ 909k− 717.

Together with Corollary 1 this proves Theorem 1.

5 A Faster Parameterized Algorithm

We can use the O(k) kernel for k-Disjoint Cycles on planar graphs, and a
technique introduced by Dorn et al. [6] to improve the parameterized algorithm
with running time O(c

√
k log kn) by Kloks et al. [10]:

Theorem 2. There is a O(c
√

k +n2) algorithm for the k-Disjoint Set Prob-

lem on planar graphs.

Proof. We first apply our kernelization algorithm in time O(n2). The resulting
planar graph has O(k) vertices. Next, it is possible to solve the problem on
this kernel using dynamic programming on sphere cut branch decompositions in
O(c

√
k) time, employing techniques introduced by Dorn et al. [6]. Due to lack of

space we omit all further details. �
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6 Conclusions

We presented the first kernel for the k-Disjoint Cycles Problem on planar
graphs, solving an open problem by Kloks et al. [10], and showed that this kernel
is linear. This nicely complements a very recent result by Bodlaender et al. [5]
that no polynomial kernel for general graphs exists for this problem, assuming
the polynomial time hierarchy does not collapse.

The first question to ask is whether our analysis can be extended to broader
graph classes, for example to graphs of bounded genus. It would also be of
interest to obtain a much smaller kernel, say something around 10k, or perhaps
some lower bound for kernelization of this problem. Implementation would also
be interesting, we expect the algorithm to obtain much smaller kernels then our
crude analysis shows. This optimism is motivated by implementations done by
Van Dijk [11] on the Feedback Vertex Set Problem.
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Abstract. We initiate the study of the algorithmic foundations of games
in which a set of cops has to guard a region in a graph (or digraph)
against a robber. The robber and the cops are placed on vertices of the
graph; they take turns in moving to adjacent vertices (or staying). The
goal of the robber is to enter the guarded region at a vertex with no
cop on it. The problem is to find the minimum number of cops needed
to prevent the robber from entering the guarded region. The problem is
highly non-trivial even if the robber’s or the cops’ regions are restricted
to very simple graphs. The computational complexity of the problem
depends heavily on the chosen restriction. In particular, if the robber’s
region is only a path, then the problem can be solved in polynomial
time. When the robber moves in a tree, then the decision version of the
problem is NP-complete. Furthermore, if the robber is moving in a DAG,
the problem becomes PSPACE-complete.

1 Introduction

Chases and escapes, or pursuits and evasions, are activities which are firm parts
of our everyday or fantasy life. When young we are playing the game of tag or
the game of hide-and-seek and watch Tom & Jerry cartoons. Pursuit-evasion
problems remain fascinating for most of us even when we grow older, and it is
not surprising that in half of the Hollywood movies good guys are chasing the
bad guys, while in the remaining half bad guys are chasing the good ones.

The mathematical study of pursuit-evasion games has a long history, tracing
back to the work of Pierre Bouguer, who in 1732 studied the problem of a pirate
ship pursuing a fleeing merchant vessel. We refer to Differential games by Rufus
Isaac [1], the now classical book on pursuit-evasion games, published in 1965
(and reprinted by Dover in 1999), for a nice introduction to the area. One of the
general pursuit-evasion problems (mentioned in Isaac’s book) is the guarding-
the-target problem. There are many variations of this problem like the deadline
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game, patrolling a channel, and patrolling a line. In this problem, both pursuer
and evader travel with the same speed. The goal of the pursuer is to guard a
target C which is an area in the plane, from attacks by the evader. In Isaacs’s
military conception of this problem, the evader must actually reach at least the
boundary of the target to be successful in her attack.

In this paper we study the cop-robber guarding game (guarding game for
short), a discrete version of the guarding-the-target problem. We use the set-
tings from the classical pursuit-evasion game on graphs called Cops and Rob-
bers [2,3,4].

The guarding game is played on a (directed or undirected) graph G = (V,E)
by two players, the cop-player and the robber-player, each having her pawns
(cops or a robber, respectively) on the vertices of G. The focus of the game is
on the protected region (called also the cop-region) C � V – the cops guard C
by preventing the robber to enter the protected region without being “caught”,
which happens when the robber is on a vertex of C with a cop on it. The game is
played in alternating turns. In the first turn the robber-player places her single
robber on a vertex of V \ C, i.e., outside the protected region C. In the second
turn the cop-player places her c cops on vertices of C (allowing more cops being
placed at one vertex). In each subsequent turn the respective player can move
each of her pawns to a neighboring vertex of the pawn’s position (or leave it
at its current position), following the rule that the cops can move only within
the protected region C, and the robber can move only on vertices with no cops
(thus avoiding being “caught”). At any time of the game both players know the
positions of the cops and the robber in G. The goal of the cop-player is to guard
(or protect) the region C, i.e., to position and move the cops such that, in any
turn, the robber cannot move onto a vertex of C with no cop on it. We say
that a cop on vertex v guards the vertex v (as the robber cannot move onto v).
Naturally, the goal of the robber-player is to position and move the robber in
such a way that at some point in time the robber can move onto a vertex of C
with no cop on it. The region V \C where the robber moves before it eventually
enters C is called the robber-region and is denoted by R.

The guarding game is a robber-win game if the robber-player can (at some
turn) move the robber to a vertex in C with no cop on it. In this case we say
that the robber-player wins the game. Otherwise (if the cop-player can forever
prevent the robber-player to win) we say that it is a cop-win game, and that the
cop-player wins the game, or that the cop-player can guard C. Thus, the game
is fully specified by the number of cops c, and by the board of the game which
is given by the graph G = (V,E), the protected region C and the robber-region
R. We denote the board by [G; R,C]. In this work we will be considering cases
when sets R or C induce subgraphs of G with specific properties (like being a
path, a tree, or DAG). By slightly abusing notations, we often will be referring
to robber or cop regions as subgraphs.

Since the game is played in alternating turns starting at the first turn, the
robber-player moves her robber in odd turns, and the cop-player moves her cops
in even turns. Two consecutive turns 2 · i− 1 and 2 · i are jointly referred to as a
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round i, i ≥ 1. A state of the game at time i is given by the positions of all cops
and robbers on the board after i−1 turns. A strategy of a cop-player (strategy of
a robber-player) is a function X which, given the state of the game, determines
the movements of the cops (the robber) in the current turn. If there are no cops
(no robber) on the board, the function determines the initial positions of the
cops (the robber).

The guarding decision problem is, given a board [G; R,C], and a number c
specifying the number of cops, to decide whether it is a cop-win game or a
robber-win game. The guarding problem is, given a board [G; R,C], to compute
the minimum number of cops that can guard the protected region C against all
possible strategies of the robber-player. We call this number the guard number
� of the game. Figure 1 depicts a board of the game. If the robber is on v4, two
cops must be on u3 and u4. If the robber moves to v3 none of the two cops can
reach u1 in the next turn, hence � > 2. Later we will see that for this game � = 3.

Our Contribution. In this work, we initiate the study of algorithmic and com-
binatorial issues of the guarding problem. We start with the case when R is a
path. We show that for such robber-regions the problem can be solved in poly-
nomial time. The solution is based on a reduction to the minimum-cost flow
problem. Furthermore, an interesting special case of the problem is when C is
a path, too. In this case we establish a combinatorial result that the minimum
number of cops needed to protect the path is equal to the size of a maximum
independent set in a (related) comparability graph. By making use of the com-
binatorial result, we are able to obtain a faster solution for this case. The com-
plexity of the problem increases even with small changes of the robber-region
R. We do not know if the problem can be solved in polynomial time when R
is a cycle, however, we are able to find a 2-approximation of the guard number
in this case. When R is a tree, the problem becomes NP-hard and the para-
meterized version of the problem is W [2]-hard. Moreover, our reduction from
Minimum Set Cover implies that there is a constant ρ > 0 such that there
is no ρ logn-approximation algorithm, unless P = NP1. We also show that the
decision version of the problem is in NP, when R is a tree. In case R is a di-
rected acyclic graph (DAG), the problem is PSPACE-complete. However, in the
general case, when R is an arbitrary graph, we do not know if the problem is
in PSPACE, and we leave it as an open question. In this version, due to lack of
space, some of the proofs are ommitted. We refer the reader to [12] for missing
details.

Related Work. The guarding game can be seen as a member of a vast class
of games called the pursuit-evasion games (see, e.g., [6] for an introduction).
The discrete version of pursuit-evasion games, played on graphs, is the game
called Cops and Robbers. The game was defined (for one cop) by Winkler and
Nowakowski [2] and Quilliot [3] who also characterized graphs for which one cop
can catch the robber. Aigner and Fromme [4] initiated the study of the problem

1 If NP�⊂DTIME(npoly log n), Lund and Yannakakis [5] show that Minimum Set

Cover cannot be approximated within the ratio ρ log n for any ρ < 1/4.
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with several cops. The minimum number of cops required to capture the robber
is called the cop number of a graph. This problem was studied intensively and
we refer to Alspach’s survey [7] for references. The Cops-and-Robbers game can
be seen as a special case of search games played on graphs, see the annotated
bibliography [8] for further references on search and pursuit-evasion games on
graphs. The computational complexity of finding the minimum number of cops
in the game of Aigner and Fromme is still not settled completely. Goldstein
and Reingold [9] proved that the version of the game on directed graphs is
EXPTIME-complete. Also they have shown that the version of the game on
undirected graphs when cops and robbers are given their initial positions is also
EXPTIME-complete. They also conjectured that the problem is EXPTIME-
complete on undirected graphs (without given initial positions of the players).
However, until very recently even NP-hardness of the problem was open [10].

To our knowledge, cop-robber guarding games, the topic of this paper, have
not been studied in mathematical and algorithmic terms before.

2 Guarding against a Path

In this section we consider the guarding problem where the protected region C
induces an arbitrary graph, and the robber-region R induces a path P , i.e., the
board of the game is a path P connected to C by interconnecting edges, leading
to the graph G. Modeling the problem as a flow problem we can design an
algorithm that computes in polynomial time the optimum number of cops that
are needed to guard C when R induces a path.

Let n1 and n2 denote the number of vertices of R and C, respectively, and
suppose that P = (v1, v2, . . . , vn1). The restriction on the area where a robber
can move before entering the protected region C allows us to consider only one
strategy of the robber-player, the direct strategy: the robber-player places her
robber on the first vertex v1 of the path P and moves it from v1 along P to the
last vertex vn1 of the path P , and enters the protected region C when possible.

Lemma 1. If c cops can protect C against the direct strategy of the robber-player
– in a guarding game where the robber-region R is a path G[R] – then c cops can
protect C against any strategy of the robber-player.

Proof. Let Xi be the set of vertices of C on which the cops are placed when the
robber, following the direct strategy, is on vertex vi, i = 1, . . . , n1, of the path P .
Thus, X1, X2, . . . , Xn1 describe the movements of the cops when the robber
moves from v1 to vn1 . Observe now that the cop-player can move the cops from
Xi to Xi−1 if the robber moves from vi to vi−1, and the cop-player can move
the cops from Xi to Xi+1 if the robber moves from vi to vi+1, and that there
is no other movement for the robber at vertex vi. Thus, at any time the robber
moves to vi, the cops can move to Xi and the robber cannot enter C. �


Using this lemma we prove the main result of the section.
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Theorem 1. Let [G; R,C] be a board such that G[R] is a path. The guard-
ing problem on [G; R,C] is solvable in time O(n2

1n2m · log (n1n2)), where m =
|E(G)|, n1 = |R|, and n2 = |C|.

Proof. Due to the previous lemma, we can consider only the direct strategy of the
robber-player. We present a (constructive) algorithm that computes the optimum
number of cops and also a cop-player winning strategy. The first idea behind the
algorithm is to consider the vertices of C after every round i = 1, 2, . . . , n1 when
the robber is on vertex vi. An optimal strategy with � cops places the cops in
round i on vertices Xi. Observe that all cops from Xi can get in one step to
positions Xi+1, i.e., there is a matching between vertices of Xi and Xi+1 in
which the matched vertices are either identical or neighbors in C. Observe also
that for any i the neighbors of vi that lie in C have to be in Xi (otherwise the
robber could move from vi onto C and win). Let us consider one walk of the
robber from vertex v1 to vertex vn1 and let us observe the movements of the cops
in each round i. Consider Figure 1 for an illustration. The example shows the
board consisting of C on five vertices, and a path induced by R of length four
(left). The dotted lines are the interconnecting lines of R and C. For the walk of
the robber from v1 to v4 in four rounds 1, 2, 3, 4 we consider in each round the
vertices of C (right) – four layers (copies) t1, t2, t3, t4 of C. After the moves of
each round i are completed, the neighbors of vi have to be guarded by cops (the
highlighted vertices). An optimal solution is depicted by the three paths between
the layers, which shows the position of each cop at every time, thus showing the
number of necessary cops (three in this case) and their movements.

R = P

C

v1 v2 v3 v4

u1

u2

u3

u4u5

u1 u2 u3 u4 u5

u1 u2
u3

u4 u5

u1 u2 u3 u4 u5

u1 u2 u3 u4 u5

t1:

t2:

t3:

t4:

Fig. 1. An instance of the guarding game with the path G[R] and the graph G[C] to be
guarded (left). The robber walks on the path G[R] from vertex v1 in round 1 (layer t1)
to vertex v4 in round 4 (layer t4). Three cops are necessary to guard C, and a strategy
of the cops is depicted by the thick lines traversing the vertices of the auxiliary graph
which consists of 4 copies of G[C] (right). The highlighted vertices depict vertices on
which there needs to be a cop at the respective time.

The movements of the cops can be seen as a flow between the layers. We want
our algorithm to compute such a flow. We construct a new auxiliary directed
graph A. If R induces a path on n1 vertices, there are n1 layers (copies) t1, . . . , tn1

of C in A. We connect a vertex uj from layer ti with a vertex uk from layer ti+1
(in the direction of the increasing time steps) if j = k (the cop may stay on
the same vertex), or if ujuk is an edge in G[C] (the cop moves from vertex uj
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to vertex uk). There are two additional vertices in A – source s and target t,
where s is connected to every vertex of the first layer, and t is connected to every
vertex of the last layer (see Figure 2). We set the capacity of each edge to be
one, and the cost of each edge to be zero. We want that a minimum-cost flow
from s to t reflects a guarding strategy of the cop-player. We want to make sure
that the flow traverses through those vertices of layer ti, which are neighbors of
vi. For this we duplicate every vertex of every layer, and connect the copy and
the original with an edge of cost −n2 if the original vertex uj is in layer ti and
is a neighbor of vi, otherwise we set the cost to be zero. We call an edge with
cost −n2 a thick edge. We want that a minimum-cost flow reflects an optimal
cop-player strategy. For that we need that the minimum-cost flow is achieved
with a minimum value of the flow (i.e., we need to minimize the amount of cops
that guard C) – for this we set the cost of every edge from the source s to be one.
The next lemma shows that a minimum-cost flow from s to t yields a minimum
number of cops that can guard the protected region C. Finally, as computing
the minimum cost flow in a graph with n vertices and m edges can be done
in time O(nm logn) in our case [11], we immediately obtain the claim of the
theorem. �


u1 u2 u3 u4 u5

t1:

t2:

t3:

t4:

s

t

u′
5

u′
1

u′
2 u′

3 u′
4

Fig. 2. The auxiliary graph A constructed from the guarding game of Figure 1. For
better readability, not every edge has its direction depicted. The thick edges between
the duplicated vertices denote the edges with negative cost −n2.

Lemma 2. The value of a minimum-cost flow of the auxiliary graph A, con-
structed from a guarding game played on [G;R,C], where G[R] is a path, is
equal to the minimum number of cops for which the game is a cop-win game.

Proof. Let f be a minimum-cost flow of the auxiliary graph A. As the capacities
of the edges are integral, the flow f is integral, too. Moreover, every edge e has
either no flow on it, or the flow fe passing through this edge is equal to one.
Also, due to the structure of the graph A (edges between every vertex ui and its
copy u′

i), every vertex ui of every layer has at most one incoming edge with a
non-zero flow and similarly every copy u′

i has at most one outgoing edge with a
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non-zero flow. Thus, the flow from s to t consists of k vertex-disjoint paths (with
edges of non-zero flow), where k is the total flow from s to t, i.e., the value of f .

Observe first that there is no thick edge e with zero flow fe. To see that,
assume for contradiction that there is indeed such an edge e′ with fe′ = 0. Then
the flow f cannot be minimum, as for example the flow which uses n2 paths
where, for every i, path i goes through vertices ui only, has smaller cost – such a
flow uses all cost one edges (there are n2 such edges), but traverses also through
the edge e′, which in total results into a smaller cost than the cost of f .

Thus, a strategy for the cop-player which follows the flow f guarantees that
the cop-player wins. Hence, k is an upper bound on the minimum number of cops
that can guard C. To see that k is also a lower bound, just observe that any
optimum winning strategy for the cop-player translates directly into a flow f ′ in
A of minimum cost: the flow f ′ traverses every thick edge and uses a minimum
number of paths, thus it uses a minimum number of cost-one edges. �


As we shall see in the next section, the complexity of the problem changes
drastically when R is not a path. For the case R is a cycle, Theorem 1 gives
possibility to receive a constant factor approximation for the guard number.
The proof of the following result can be found in [12].

Corollary 1. Let [G; R,C] be a board such that G[R] is a cycle. Then there is
a 2-approximation polynomial time algorithm for the guarding problem.

An interesting special case is when the robber-region and the protected re-
gions are two paths P1, P2, respectively, in the underlying board G. In this case
Lemma 1 applies and we consider only the direct strategy for the robber. We de-
fine an auxiliary graph A = A(G) that reflects the structure of the game played
on such a board. Every edge between P1 and P2 corresponds to a vertex of A.
Two such edges (vertices in A) are connected in A by an edge, if one cop can
guard the endpoints of the edges in P2 against the direct strategy. It is possible
to show that the guard number is equal to the size of a maximum independent
set in A and that A is a comparability graph. Since comparability graphs are per-
fect [13], a maximum independent set can be computed in polynomial time [14].
We present the details in [12].

3 Hardness of Guarding

It is not difficult to guess that the problem of computing the guard number is a
hard problem. In this section we provide two hardness results for quite restricted
classes of boards.

We show first that the problem is NP-hard even when the robber-region is a
tree. We present a reduction from Set Cover [15] (which is an NP-complete
problem) to the guarding decision problem, which then shows that the guarding
decision problem is NP-hard.

Theorem 2. The guarding decision problem is NP-hard even if the robber-
region is a tree G[R] (or even a directed rooted tree in the case of directed graphs).
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Moreover, the parameterized version of the problem with c being a parameter is
W[2]-hard.

Proof. We prove the theorem for undirected graphs. The proof for directed
graphs is a simple adaptation of what follows. We describe how to reduce Set

Cover to the guarding decision problem. Consider an instance of Set Cover,
in which a universe U = {u1, u2, . . . , un} is asked to be covered by at most k
sets from S1, S2, . . . , Sm ⊆ U . In our reduction, we use U as vertices which shall
be effectively guarded by the cops. Thus, U will be part of the protected re-
gion C. We add to our construction one single vertex a connected to all vertices
corresponding to U by paths of length two. Denote by b1, b2, . . . , bn the middle
vertices of these paths. The robber-region R is then {a, b1, b2, . . . , bn} – a tree.
We finally add vertices where the cops can be placed and from which the cops
can “cover” U in the same way as a solution to the Set Cover: we add one ver-
tex Si for every set Si, and connect it to every vertex u ∈ Si ⊆ U . These vertices
define, together with U , the protected region C. The guarding game is defined
by setting the number of cops c = k. Suppose that c cops can win the game.
Initially, if the robber is placed on a, we can assume, w.l.o.g., that cops occupy
vertices from the set {S1, S2, . . . , Sm}. Obviously these vertices correspond to a
set cover of size no more than c = k. Assume now that X ⊆ {S1, S2, . . . , Sm} is a
set cover of size at most k. For every ui ∈ U there is xi ∈ X such that ui and xi

are adjacent in our graph. Let Xi = (X \ {xi})∪{ui} for every i ∈ {1, 2, . . . , n}.
We consider the cops strategy such that cops occupy vertices of X if the robber
is in a, and cops occupy vertices of Xi if the robber is in bi. Clearly, this is a
winning strategy for cops.

Since our reduction is a parameterized reduction and Set Cover is a well-
known W[2]-hard problem, the second claim follows immediately.2

The only difference for the case of directed graphs is that a is joined with
u1, u2, . . . , un by directed paths, and vertices S1, S2, . . . , Sm are joined with
u1, u2, . . . , un by arcs with the obvious orientation. �


Let us note that the second claim of Theorem 2 is ”tight” in some sense. It is
well-known for Cops-and-Robbers games that determining whether c cops can
capture the robber on a graph with n vertices can be done by a backtracking
algorithm which runs in time O(nO(c)) (thus polynomial for fixed c) [17,9,18]. A
similar result holds for the guarding game. Given an integer c and a graph G on
n vertices, it can be determined whether c cops can guard a given set C (and the
corresponding winning strategy of c cops can be computed) by constructing the
game-graph on 2

(|C|+c−1
c

)
|R| nodes (every node of the game-graph corresponds

to a possible position in G of c cops and one robber, taking into account two
possibilities for whose turn it is), and then by making use of backtracking to find
if some robber-winning position can be obtained from an initial position. The
proof of the following proposition is standard and easy.

2 We refer to the book of Downey and Fellows [16] for an introduction to parameterized
complexity.
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Proposition 1. For a given integer c ≥ 1 and a graph G on n vertices, the
question whether the c cops can guard C can be answered in time

(|C|+c−1
c

)2
·

|R|2 · nO(1) = nO(c).

Thus for every fixed c, one can decide in polynomial time if c cops can guard the
protected region against the robber on a given graph G. But from other side the
fact that our problem is W [2]-hard means that the existence of a O(f(c) ·nO(1))-
time algorithm deciding if c cops can win, where f is a function only of the
parameter c, and G is a graph on n vertices, would imply that FPT = W[2],
which is considered to be very unlikely in parameterized complexity.

It can be easily proved that the guarding problem is difficult to approximate.
We combine the (approximation preserving) reduction from the proof of Theo-
rem 2 and the non-approximability for Minimum Set Cover problem [19] and
obtain the following statement.

Corollary 2. There is a constant ρ > 0 such that there is no polynomial time
algorithm that, for every instance, approximates the minimum number of cops
which are necessary to guard the protected region within a multiplicative factor
ρ logn, unless P = NP.

For some cases we can prove that the problem is in NP (see [12] for details).

Proposition 2. If G[R] is a tree or a directed tree, then the guarding decision
problem is NP-complete.

For directed graphs the problem becomes more difficult, if we allow only a
slightly more general robber-region.

Theorem 3. The guarding decision problem is PSPACE-hard for directed graphs
even if G[R] is a directed acyclic graph (DAG).

Proof. We reduce the PSPACE-complete Quantified Boolean Formula in

Conjunctive Normal Form problem [15] to the guarding decision problem.
For given Boolean variables x1, x2, . . . , xn and a Boolean formula F = C1 ∧
C2 ∧ · · · ∧ Cm, where Cj is a clause, this problem asks whether the expression
φ = Q1x1Q2x2 . . . QnxnF , where either Qi = ∀ or Qi = ∃, has value true.

Given a quantified Boolean formula φ, we construct an instance of a
guarding game in the following way. For every quantification Qixi we in-
troduce a gadget graph Gi. If Qi = ∀ then we define graph Gi(∀)
as the graph with the vertex set {ui, vi, xi, xi, yi, yi, zi} and the arc set
{uiyi, yivi, uiyi, yivi, yixi, yixi, zixi, zixi}. Let Wi = {xi, xi, zi}. If Qi = ∃ then
Gi(∃) is the graph with the vertex set {ui, vi, xi, xi, yi, ai, bi, zi} and the arc set
{uiyi, yivi, yiai, aibi, xibi, xibi, zixi, zixi}. In this case let Wi = {xi, xi, bi, zi}.
These graphs are joined together by gluing vertices vi−1 and ui for i ∈
{2, 3, . . . , n}.

In our construction we further introduce vertices C1, C2, . . . , Cm, which cor-
respond to clauses. A vertex xi is joined with Cj by an arc (pointing towards
Cj) if Cj contains the literal xi, and xi is joined with Cj if Cj contains the lit-
eral xi. The vertex vn is connected with all vertices C1, C2, . . . , Cm by directed
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paths of length two with middle vertices w1, w2, . . . , wm. Denote the obtained
directed graph by G, and let C = W1 ∪ W2 ∪ · · · ∪ Wn ∪ {C1, C2, . . . , Cm}
be the cop-region, and R = V \ C be the robber-region. Clearly, G[R] is a
DAG. For the guarding decision problem we set c = n. Construction of G for
φ = ∀x1∃x2∀x3(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) is shown in Figure 3.

u1 v1 = u2 v2

y1

y1

C1 C2
x2 x2

z1 z2

a2

y2

b2

x1 x1 x3 x3

Fig. 3. Construction of G for φ = ∀x1∃x2∀x3(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Suppose that φ = false. We describe a winning strategy for the robber. He
chooses vertex u1 as a starting point and then moves to vertex vn along some
directed path. If the robber comes to the vertex yi of a graph Gi(∀) then one cop
has to occupy the vertex xi, and if the robber comes to yi then some cop has to
occupy the vertex xi. So, cops are “forced” to occupy vertices that correspond
to literals. Similarly, if the robber occupies the vertex yi in a graph Gi(∃) then
at least one cop has to occupy one vertex from the set {xi, xi, bi}, and here this
cop can choose between vertices xi and xi. Since the number of cops is equal to
the number of graphs Gi(∀) and Gi(∃), exactly one cop can stand on vertices of
each such a gadget-graph. It follows from the condition φ = false that there is
a directed path from u1 to vn such that if the robber moves along it to vn then
there is at least one vertex Cj which is not ”covered” by cops, i.e. there are no
cops on this vertex and on vertices xi or xi which are joined by arcs with it.
Then the robber can move to this vertex and win.

Assume now that φ = true and describe a winning strategy for cops. It can be
easily seen that if the robber chooses some vertex ai or wj as an initial position
then he loses immediately. So we can assume that he occupies some vertex r
on the path from u1 to vn. Suppose that this vertex belongs to the graph Gs

(Gs(∀) or Gs(∃), it is assumed that vs−1 = us belongs to Gs for s > 1, and
vn belongs to a virtual Gn+1). We place one cop on a vertex xi or xi for every
i < s. The vertex is chosen arbitrarily if we consider graph Gi(∀), and if xi is
chosen then we suppose that the variable xi = true and xi = false otherwise. If
Gi(∃) is considered then the choice corresponds to the value of the variable xi: if
xi = true then the vertex xi is occupied by a cop, and xi = false otherwise. If
r = ys in Gs(∀) then one cop is placed on the vertex xs, and if r = ys in Gs(∀)
then one cop is placed on the vertex xs. As before, xi = true in the first case
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and xi = false in the second. If r = ys in Gs(∃) then a cop is placed either on
xs or xs and the choice of the vertex corresponds to the value of the variable xs.
If r = us then we place one cop on zs. For all i > s one cop is placed on each
vertex zi. Now the robber starts to move. If he moves to the vertex yi of Gi(∀)
then the cop moves from zi to xi and it is assumed that the variable xi = true,
and if the robber moves to yi then the cop moves to xi and xi = false. If the
robber comes to yi of Gi(∃) then the cop moves from zi to xi or xi, and the
choice corresponds to the value of the variable xi. Note that if the robber moves
from yi to ai then the cop moves to bi and cops win. So the robber is ”forced”
to move along some directed path from r to vn. Since φ = true, cops on graphs
Gi(∃) can move in such a way that when the robber occupies the vertex vn all
vertices Cj are ”covered” by cops, i.e. for every vertex Cj there is an adjacent
vertex xi or xi which is occupied by a cop. Now the robber can move only to
some vertex wj . Cops respond by moving one cop to Cj and win. �

Note that Theorem 3 (as Theorem 2) claims only ”hardness”, but in some cases
we can prove that the problem is PSPACE-complete. The proof of PSPACE-
completeness [12] is based on the fact that when the robber region is a DAG,
the number of steps in the game is polynomial.

Theorem 4. If G[R] is a DAG then the guarding decision problem is PSPACE-
complete for directed graphs.

4 Conclusions and Future Research

In this paper we study (and define) guarding games – a discrete version of
pursuit-evasion games, and a close relative of the Cops-and-Robbers games. We
present several algorithmic solutions and hardness results to various families of
guarding games. Our effort shall be considered as an initial attempt to under-
stand the nature of guarding games, and their differences to other similar games
(such as the Cops-and-Robbers games).

Concerning the complexity of the guarding game, we have shown that when
the robber territory R is a DAG, the decision version of the problem is in
PSPACE. We do not know if this is the case when R is a more complicated
graph. An interesting related question, which remains open, concerns the num-
ber of the rounds in the game. Is it true that for a given number k and a
(di)graph G, we can always decide if a subgraph of G can be guarded by k cops
by playing a game with only a polynomial number of rounds? If the answer to
this question is “yes”, then similarly to the proof of Theorem 4 one can show
that the problem is in PSPACE. Another consequence of this would be that the
case when R is a cycle can be solved in polynomial time by making use of an
approach similar to the path case. If the answer is “no”, what is the complexity
of the problem? Another open question is if on (undirected) graphs the guarding
problem is PSPACE-hard.

To conclude, we feel that with this paper we barely scratched the tip of the
iceberg of the universe of guarding games, but should provide insights and in-
centives to motivate further research in the area.
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Abstract. Consider a tree network that has been contaminated by a persistent
and active virus: when infected, a network site will continuously attempt to spread
the virus to all its neighbours. The decontamination problem is that of disinfect-
ing the entire network using a team of mobile antiviral system agents, called
cleaners, avoiding any recontamination of decontaminated areas. A cleaner is
able to decontaminate any infected node it visits; once the cleaner departs, the
decontaminated node is immune for t ≥ 0 time units to viral attacks from in-
fected neighbours. After the immunity time t is elapsed, re-contamination can
occur. The primary research objective is to determine the minimum team size, as
well as the solution strategy, that is the protocol that would enable such a minimal
team of cleaners to perform the task. The network decontamination problem has
been extensively investigated in the literature, and a very large number of stud-
ies exist on the subject. However, all the existing work is limited to the special
case t = 0. In this paper we examine the tree decontamination problem for any
value t ≥ 0. We determine the minimum team size necessary to disinfect any
given tree with immunity time t. Further we show how to compute for all nodes
of the tree the minimum team size and implicitly the solution strategy starting
from each starting node; these computations use a total of Θ(n) time (serially)
or Θ(n) messages (distributively). We then provide a complete structural char-
acterization of the class of trees that can be decontaminated with k agents and
immunity time t; we do so by identifying the forbidden subgraphs and analyz-
ing their properties. Finally, we consider generic decontamination algorithms, i.e.
protocols that work unchanged in a large class of trees, with little knowledge of
their topological structure. We prove that, for each immunity time t ≥ 0, all trees
of height at most h can be decontaminated by a team of k = � 2h

t+2
� agents whose

only knowledge of the tree is the bound h. The proof is constructive.

Keywords: Network decontamination, tree networks, mobile agents, antiviral
agents, distributed algorithm.

1 Introduction

1.1 The Problem

Among the many security threats in networked systems supporting mobile agents, one
of the most predominant is the presence of extraneous mobile agents (intruders) that
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can harm the network (e.g., see [12]). Foremost examples of such harmful intruders are
viruses: extraneous mobile agents infecting any visited site.

Consider a tree network that has been contaminated by a persistent and active virus:
when infected, a network site will continuously attempt to spread the virus to all its
neighbours. The decontamination problem is that of disinfecting the entire network
using a team of mobile antiviral system agents, called cleaners injected into the sys-
tem from a single site. A cleaner is able to decontaminate any infected node it visits;
however, once it departs, the decontaminated node can be re-contaminated by infected
neighbours. The decontamination is t-strong (t ≥ 0) if once the cleaner departs, the
decontaminated node is immune for t time units to viral attacks from infected neigh-
bours. After the immunity time is elapsed, re-contamination can occur. The value t is
also called immunity time.

The primary research objective is to determine the minimum team size, that is the
smallest number of antiviral agents necessary to decontaminate the entire network
avoiding any recontamination, as well as the solution strategy, that is the protocol that
would enable such a minimal team of cleaners to perform the task. It is worthwhile
noticing that, for a given network, both the optimal team size and the solution strategy
may vary depending on the initial location of the antiviral agents; hence, both objectives
are studied in both relative (i.e., with respect to a given node) and general (i.e., from the
best site) terms.

The network decontamination problem, originally posed in [6], is equivalent to the
intruder capture problem [1,5] and has been extensively studied in the literature due to
the relationship between minimal team size and classical graph parameters such as tree-
width and path-width (e.g., [3,7,15,25] ). In particular, a large amount of studies have
examined the problem when the agents are allowed to "jump" across the network (e.g.,
see [3,7,13,15,17,18,22,23]. Without such an extraordinary capability, the nature of the
problem changes drastically [2], and it has been extensively studied for several classes
of graphs under a variety of different settings (e.g., [1,5,8,9,10,11,14,15,16,20,21]).

All the existing work, in spite of their differences, is limited to the special case t = 0,
that is assuming that a decontaminated node, in absence of an antiviral agent on site,
may be immediately re-contaminated by infected neighbours. In this paper we examine
the decontamination problem for any arbitrary value t ≥ 0, focusing on tree networks.
As mentioned before, decontamination of trees has been examined only for the case
t = 0. It was shown that, in that case, the optimal team size and solution strategy can
determined in linear time (serially) or with a linear number of messages (distributively)
[1]. This must be contrasted with the fact that the problem of determining the optimal
team size for general graphs is NP-hard [22] even for t = 0.

Prior to this work, nothing was known when t > 0.

1.2 Our Results

In this paper we examine the problem of decontaminating tree networks and provide a
complete structural and algorithmic characterization for any arbitrary value t ≥ 0, thus
extending and generalizing the existing results for t = 0. In particular:

We first of all determine the minimum team size necessary to disinfect with immunity
time t a tree network from a given starting node. Furthermore we show that it is possible
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to compute all the minimum team sizes and (implicitly) the solution strategies from all
starting nodes optimally in Θ(n) time (serially) or with Θ(n) messages (distributively),
regardless of the value of t.

We then provide a complete structural characterization of the class of trees that can
be decontaminated with k agents and immunity time t. In particular, we identify the
class F (k, t) of forbidden subgraphs for given k ≥ 0 and t ≥ 0, and prove that any tree
network without any such subgraph can indeed be disinfected by k agents and immunity
time t. Note that, even though the case t = 0 have been studied before, the class F (k, 0)
had not been identified.

Finally, we turn to the problem of designing generic decontamination algorithms,
i.e. protocols that are not specific to a given tree, but rather would work unchanged
in a large class of trees, with little knowledge of their topological structure. Generic
decontamination algorithms are useful when little information is available about the
network, and thus the minimum team size cannot be computed. Trivially, a team of
n cleaners can decontaminate all trees of up to n nodes for any immune time t ≥ 0.
We prove that, for each immunity time t ≥ 0, all trees of height at most h can be
decontaminated by a team of k = � 2h

t+2� agents whose only knowledge of the tree is the
bound h. The proof is constructive: we provide a purely localized generic mobile agent
protocols and prove that it has the claimed property.

2 Definitions and Terminology

Let T = (V,E) be a tree where V is the set of nodes and E is the set of edges. Let
N(u) = {v ∈ V : (u, v) ∈ E} denote the set of neighbours of node x, and let Tu

denote T when rooted in u ∈ V . Let (u, v) ∈ E; we denote by Tv\u the subtree of u
rooted in v not containing u.

A team of mobile antiviral agents, the cleaners, operates in T . Each agent has a dis-
tinct identifier, can perform local computations, can move from a node to a neighbouring
one, and has limited private memory. Each agent obeys the same set of behavioural rules,
and can communicate with other agents only when they are simultaneously present at
the same node (face-to-face communication). The environment is synchronous; that is,
it takes one unit of time for an agent to traverse a link, while local computation is con-
sidered instantaneous.

The team of cleaners is initially located at the same node (the homebase) and agents
can move from node to neighbouring node. At any point in time each node of the net-
work is in one of three possible states: guarded, contaminated, clean. A node is guarded
when it contains at least one agent. Initially all nodes are contaminated except for the
homebase which is guarded. A cleaner is able to decontaminate (or clean) any infected
node it visits, transforming it from contaminated into guarded; once it departs, node
enters state clean; the clean node is immune for t time units to viral attacks from con-
taminated neighbours. This immunity time is restarted at every transition of the node
from a guarded state to a clean state. Once the immunity time has elapsed, a clean node
becomes contaminated if one or more of its neighbours are contaminated. The solution
of the problem is given by devising a strategy for the agents to move in the network in
such a way that at the end all the nodes of the tree are simultaneously clean. We are
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interested in monotone decontamination strategies, i.e., where no clean node becomes
contaminated.

We will denote by Ψt(Tr) the minimum number of agents necessary to perform the
decontamination without recontamination of Tr with immunity time t starting from
r ∈ V . We will denote by Ψt(T ) = minr∈V {Ψt(Tr)} the minimum number of agents
necessary to perform the decontamination without recontamination of T with immunity
time t. In the following, when no ambiguity arises, we will omit the subscript t to
simplify the notation.

3 Minimal Team Size and Solution Strategy

3.1 Determining the Minimum Team Size and Solution Strategy

In the following we define a pair of functions: ψ that will be shown to recursively
describe the minimum number of agents necessary for decontamination, and γ that will
be used for the determination of ψ.

Definition 1. Given r ∈ V , let x ∈ V , and let {v1 . . . vd} be its children in Tr.

(ψr(x), γr(x)) =

⎧⎨⎩ (1, 1) if x is a leaf
(ψr(v1) + 1, 1) (∗reset∗) if ψr(v1) = ψr(v2) and γr(v2) > t

2
(ψr(v1), γr(x) + 1) otherwise

where, without loss of generality, v1 and v2 are such that ψr(v1) = maxi{ψr(vi)} and
ψr(v2) = maxi�=1{ψr(vi)}.

A node x ∈ V will be called a reset node if γr(x) = 1.
The following Lemmas describe properties of ψ and γ.

Lemma 1. Let y1 be a child of r in Tr. If γr(y1) = d with d > 1, then:

(1) there exists a path y1, . . . , yd such that ψr(y1) = ψr(yi) for i = 1 . . . d.
(2) if yd is not a leaf, there exists a child u of yd such that ψr(u) = ψr(y)− 1,
(3) for any child v of yi with 1 ≤ i < d: either [ψr(v) = ψr(y1) and γr(v) <
γr(y1)] or [ψr(v)) < ψr(y1)]

In the following, whenever a node x ∈ V has more than one child, we will always
indicate with x1 and y1 the two children such that the pair (ψr(x1), γr(x1)) is the lex-
icographically maximum among the pairs associated to the children of x and (ψr(y1),
γr(y1)) is the lexicographically maximum among the pairs associated to the children
of x excluding x1.

Lemma 2. Let Tr be a tree rooted in r. Let ψr(x1) = ψr(y1) and γr(x1), γr(y1) > t
2 .

If a team of ψr(x1) + 1 agents starts from r the decontamination of Tr, one of the
two subtrees Tx1\r and Ty1\r must be fully decontaminated before the team starts the
decontamination of the other, regardless of the cleaning strategy.

We now show that ψ recursively describes the minimum number of agents required to
decontaminate a tree from a given node.
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Theorem 1. Let x ∈ V and let p(x) be its parent in Tr. The minimum number of
agents necessary to perform the decontamination of Tx\p(x) from x with immunity time
t is ψr(x). In particular, the minimum number Ψ(Tr) of agents necessary to perform
the decontamination of Tr from r with immunity time t is ψr(r).

Proof. By induction on the height of the trees Tx\p(x), x ∈ V . The theorem is trivially
true when the tree is composed of a single node. Assume it is true for all trees of height
i and let Tx\p(x) have height i + 1. We consider the three possible situations.

Case 1. Consider first the case when ψr(x1) = ψr(y1) and γr(x1), γr(y1) > t
2 . Since

γr(x1) > t
2 and γr(y1) > t

2 , by Lemma 1 there are two paths (x, x1, x2, . . . , xa) and
(x, y1, y2, . . . , yb) in Tx1\x and Ty1\x of lengths respectively a > t

2 and b > t
2 from

x terminating with subtrees requiring ψr(y1) agents each (from their roots xa and yb).
Since, by definition of ψ, ψr(r) = ψr(x1) + 1, by Lemma 2 we know that Tx1\x and
Ty1\x must be decontaminated one after the other starting from x; w.l.g, let Tx1\x be
decontaminated before Ty1\x. However, for the ψr(x1) agents to reach xa, node r stays
unguarded for more than the immunity time t and is recontaminated from y1. Thus,
ψr(x1) + 1 agents are necessary. To show that ψr(x1) + 1 agents are indeed sufficient,
we describe a cleaning algorithm with ψr(x1)+1 agents. One agent stays on x to guard
it from recontamination, the rest of the team first cleans all the subtrees of x requiring
less than ψr(x1) agents. When the remaining subtrees all require ψr(x1) agents (we
know that there are at least two of those), the team moves down on one (e.g., the one
containing path π = (x, x1, x2, . . . , xa)), always keeping a guard on x; whenever, along
π, the agents reach a node xi root of a subtree, ψr(x1)− 1 agents perform the cleaning
of the subtree from xi (this number is sufficient by Lemma 1) while one agent stays on
xi. When the agents reach xa , they clean Txa\xa−1 and they all go back to x. The same
strategy is followed for the remaining subtrees.

Case 2. Consider now the case when ψr(x1) > ψr(y1). In this case ψr(x1) agents are
clearly necessary because, by induction they are necessary for cleaning Tx1\x. They are
also sufficient because they can clean Tx\p(x) by first cleaning Ty1\x (always keeping a
guard on x) then moving to Tx1\x. Thus ψr(x) = ψr(x1) is the minimum number of
agents to decontaminate Tx\p(x) from x .

Case 3. Finally, consider the case ψr(x1) = ψr(y1) with γr(y1) ≤ t
2 . Obviously

ψr(x1) agents are necessary also in this case because, by induction they are neces-
sary for cleaning Tx1\x. By Lemma 1 we know that there is a path from x to a reset
node u of length ≤ t

2 . Let π = (x, α, u) be such a path with α = (u1, . . . , uc). Also in
this case ψr(x1) agents are sufficient to clean Tx\p(x). In fact, the team moves down on
π; whenever the agents reach a node ui root of one or more subtrees outside the path,
ψr(x1)− 1 agents perform the cleaning of each subtree from ui while one agent keeps
moving back and forth from ui to x. Since the distance between ui and x is smaller
than t

2 each node in the path is guaranteed to be revisited within the immunity time t
while the cleaning of the subtrees is performed.

3.2 Optimal Computation of Ψ

We describe how to compute the couple of values ψ and γ. The algorithm will be pre-
sented as an asynchronous distributed protocol in the classical message passing model



Tree Decontamination with Temporary Immunity 335

[24]. The serial version is easily derivable from it. The algorithm to compute Ψ(Tx) for
each node x of the tree performs a "saturation" starting from the leaves of the tree [24].
The first step of the algorithm consists of a WAKE UP (a simple broadcast with possi-
bly multiple initiators) with the goal of activating all the nodes. After the WAKE UP all
nodes are in the state READY and the leaves start the "saturation" sending the pair of
values (1,0) to their parents. When a node x has received a pair of values from all its
neighbours except for one (say p), it computes a pair of values (which will be shown
to correspond to ψp(x) and γp(x)) that it will send it to p. Node x will then change
state becoming COMPUTING. Eventually all nodes become COMPUTING. When a
COMPUTING node x receives the last pair of values from the remaining neighbour,
it has all the necessary information to compute Ψ(Tx). At this point the node contin-
ues the propagation of appropriate pairs towards the other neighbours and becomes
DONE. Eventually every node will receive the information from all its neighbours,
compute the minimum number of agents necessary and sufficient for decontaminating
the tree starting from itself, and become DONE. The rules of Algorithm are described
below.

Algorithm. FIND-MIN-TEAM-SIZE for node x
WAKE UP (* after wake-up every node is in the state READY *)
if x is a READY leaf:

send (1, 1) to parent
become (COMPUTING)

if x is a READY non-leaf:
receiving (a1, c1), . . . , (adeg(x)−1, cdeg(x)−1) from all neighbours except one (say p)
(w.l.g., let (a1, c1) and (a2, c2) be the lexicographically max and second max resp.
of those pairs)

If (a1 = a2) and (c1 = c2 > t
2 )

send (a1 + 1, 1) to p (* Reset *)
If [(a1 = a2) and (c2 ≤ t

2 )] or [(a1 �= a2)]
send (a1, max{c1, c2} + 1) to p (* Increase Counter *)

become (COMPUTING)
if x is COMPUTING:

receiving (a, c) from l
(* node x has now received the information from all neighbours *)

rename the pairs so that (a1, c1) and (a2, c2) are
the lexicographically max and second max respectively of those pairs
If (a1 = a2) and (c1 = c2 > t

2 )
Ψ(Tx) = a1 + 1
send (a1 + 1, 1) to N(x) \ l

else (* [(a1 = a2) and (c2 ≤ t
2 )] or [(a1 �= a2)] *)

Ψ(Tx) = a1
send (a1, max{c1, c2} + 1) to N(x) \ l
(* note that if x is a leaf the operations above will not be performed *)

become (DONE)

By definition of ψ and γ, it is easy to see that:

Lemma 3. Let a node x receive a pair (a, c) from y. We have that: a = ψx(y) and
c = γx(y)).
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As a consequence of Lemma 3, a COMPUTING node x receiving the pair from the last
neighbour has enough information to determine the minimum number of agents needed
to decontaminate the tree starting from x and the correctness follows:

Theorem 2. After executing Algorithm FIND-MIN-TEAM-SIZE, each node x is in the
state DONE and knows the minimum number of agents required to decontaminate the
tree starting from x.

The total number of messages exchanged is Θ(n), where n is the number of nodes of
the tree.

Theorem 3. Algorithm FIND-MIN-TEAM-SIZE can be implemented serially so to run
in Θ(n) time.

4 Structural Characterization and Bounds

4.1 Forbidden Subgraphs

In this Section we give a complete characterization of the class of trees that can be
decontaminated with k agents and immunity time t.

Definition 2. (F ∗(k, t))
- F ∗(1, t) is the family of rooted trees composed of two paths of length at least � t

2�+ 1
joined in the root.
- F ∗(i, t) is the family of rooted trees composed of two paths of length at least � t

2�+ 1
departing from the root, each terminating with a subtree of type F ∗(i− 1, t).

Definition 3. (F (k, t))
- F (1, t) is the family of rooted trees composed of three paths of length at least � t

2�+ 1
departing from the root.
- F (i, t) is the family of rooted trees composed of three paths of length at least � t

2�+ 1
departing from the root, each terminating with a subtree of type F ∗(i− 1, t).

In other words, in F ∗(k, t) and in F (k, t), between two successive branches there is
always a path of length at least � t

2�+ 1 (for an example see Figure 1).
In the following, we will say that a tree contains a subtree of type F ∗(i, t) (resp.

F (i, t) ) if it contains as a subtree the undirected version of a tree in the family F ∗(i, t)
(resp. F (i, t) ) .

The following Lemma state forbidden conditions for decontamination when starting
from a specific node of the tree.

Lemma 4. If a tree T contains a subtree S of type F ∗(k, t), then T requires at least
k + 1 agents to be decontaminated with immunity time t starting from the root of S.

The following Theorem states forbidden conditions for decontamination regardless of
the starting point.

Theorem 4. If a tree T contains a subtree of type F (k, t), then T requires at least k+1
agents to be decontaminated with immunity time t, regardless of the starting node.
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Fig. 1. Trees of type F (1, 0), F (2, 0), and F (3, 0)

Proof. Let r be the root of a subtree of type F (k, t) of T . By definition, there exist three
subtrees of type F ∗(k−1, t) each at distance at least � t

2�+1 from r (see the example of
F (4, 4) in Figure 2). Let (r, x1, x2, . . . , xa), (r, y1, y2, . . . , yb), (r, z1, z2, . . . , zc) be the
three paths and A, B, C the three subtrees respectively from xa, yb and zc. By definition
of ψ and by Lemma 4 we have that ψr(x1) = ψr(y1) = ψr(z1) = k, and since all three
paths have length at least � t

2� + 1, we have that γr(x1), γr(y1), γr(z1) > t
2 , which

means that, starting from r, the number of agents Ψ(Tr) necessary to clean the tree is
k + 1. By definition of agent function, ψr(xi) = ψr(yi) = ψr(zi) = k + 1, thus k + 1
agents are necessary to decontaminate the whole tree starting from all the nodes in the
three paths xi.yj , zl (1 < i < a, 1 < j < b, 1 < l < c). Let the starting point be inside
one of the subtrees A, B, C. Since ψr(xa) = k + 1, the team of agents coming from
inside T1 will need k + 1 agents at node xs to continue cleaning Txa\xa−1 .

4.2 Structural Characterization

Before showing that the forbidden subgraphs described above are the only possible
ones, we introduce some Lemmas. Let Ψ(T ) = minx∈V {Ψ(Tx)}.

Lemma 5. Let the immunity time be t and let T be a tree such that Ψ(T ) = k + 1.
Then there exists a node r with Ψ(Tr) = k + 1 that has at least children x1, y1, and z1
such that ψr(x1) = ψr(y1) = ψr(z1) = k, and γr(x1), γr(y1), γr(z1) > t

2 .

Lemma 6. If T requires k + 1 agents starting from node x (i.e. Ψ(Tx) = k + 1), then
T contains a subtree of type F ∗(k, t) rooted in x.

Theorem 5. If a tree T does not contain a subtree of type F (k, t), then it can be de-
contaminated with k agents from any starting node.

Proof. We prove the theorem by showing that if T requires at least k + 1 agents to be
decontaminated starting from any node, then it necessarily contains a subtree of type
F (k, t). Let T be such that Ψ(T ) = k + 1 and let Ψ(Tr) = k + 1. By Lemma 5
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F*(3,4)

F*(3,4)

F*(3,4)F(4,4)

r

x1
y1

z1

x2
y2

z2

F*(3,4)

F*(4,4)

Fig. 2. A tree of type F (4, 4)

there exists such a node r with three paths (r, x1, x2, . . . , xa), (r, y1, y2, . . . , yb), and
(r, z1, z2, . . . , zc) terminating with three subtrees A, B, andC rooted respectively in xa,
yb and zc. such that ψr(x1) = ψr(y1) = ψr(z1) = k, and γr(x1), γr(y1), γr(z1) > t

2 .
This implies that a, b, c > t

2 . By Lemma 6 it follows that Tx1\r, Ty1\r, and Tz1\r all
contain subtrees of type F ∗(k, t) rooted in x1, y1, and z1 respectively, and the theorem
is proven.

From Theorems 4 and 5 we can conclude that:

Theorem 6. Let t be the immunity time. A tree can be decontaminated with k agents if
and only if it does not contain a subtree of type F (k, t).

As a consequence of Theorem 6 we can derive the following:

Theorem 7. There are trees of n nodes that to be decontaminated with immunity time
t need a team of Ω(log3(

n
t+1 )) cleaners.

5 Generic Decontamination Protocol

In the classical model, to avoid recontamination of a node with contaminated neigh-
bours, the only possibility is to guard the node (i.e., to have an agent reside on the node).
When the immunity time is greater than zero, however, the situation is different. Since
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a decontaminated node x with contaminated neighbours and time immunity t > 0 can
stay for t time units unguarded in contact with contaminated nodes, it is not necessary to
have a stationary agent guarding it to avoid recontamination: a "guarding" agent could
move away from x and come back to it within t time units to obtain the same result. In
this way, a "guarding" agent can "protect" a group of agents from decontamination: for
example, it could protect a path of length up to � t

2� (i.e., containing � t
2�+ 1 nodes) by

oscillating (i.e., moving back and forth) from one extremity to the other.
We describe a decontamination strategy that uses this "oscillating idea" and allows to

decontaminate a tree from a given starting location using � 2h
t+2� agents, where h is the

height of the tree rooted in the starting location and t is the immunity time. The strategy
is not optimal in terms of number of agents (achievable by using our algorithms defined
in previous sections), however the algorithm presented is generic and localized.

Informally our algorithm corresponds to a simple Depth-First Traversal by one agent
while all other agents protects the immunity of the nodes that have been cleaned by the
leading agent traversing the tree. The algorithm follows a localized strategy as agents
only require face-to-face communications.

Let us define the node-level as the distance of a node from the root (the root is at
level 0). Let us define the edge-level as the node-level of the node on the edge-extremity
farthest from the root.

Let a1, a2, . . . ak be the agents (where k = � 2h
t+2�). Each agent is responsible for � t

2�
edge-levels of the tree: more precisely, agent a1 is responsible for levels 1, . . . , � t

2�,
agent ai is responsible for levels i · � t

2� + 1, . . . , (i + 1) · � t
2�. Let Ai denote the area

of responsibility (or domain) of agent i.
Let agent ak be the decontaminating leader of the team. All other agents travel with

the decontaminating leader when it traverses nodes in their area of responsibility or
above. Otherwise (i.e., when the decontaminating agent traverses the tree in lower lev-
els), they oscillate in their respective domain.

Algorithm CLEAN for agent ak

Perform a Depth-First Traversal
When moving down in the domainAi of agent ai, i < k.

tell agents i to (k − 1) to move down with you.
When moving up in the domainAi of agent ai, i < k.

wait for agent ai if necessary.
tell agents i to (k − 1) to move up with you.

Algorithm CLEAN for agents ai (0 < i < k)

If ak is moving down among nodes in
⋃

j≤iAj

move down with agent ak

define the nodes traversed in the domainAi as the active path πi

If ak is traversing nodes in Ai+1
OSCILLATE on (πi) (* where πi is the active path in the domain of ai *)

If ak is moving up (backtracking) to a node in
⋃

j≤iAj

move up with agent ak.
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Algorithm OSCILLATE on (πi) for agents ai (i < k)

Continually move up and down along active path πi.
Until find ak ready to move up

// returning to Algorithm CLEAN to move up with ak.

Let us emphasize that the waiting steps of the backtrack of the leading agent ak

are required by the limited face-to-face communications. This also guarantees that the
agents only oscillate on the path between the root and the leading agent ak.

We can now prove the monoticity of the decontamination.

Lemma 7. All nodes traversed by the agent ak remain decontaminated.

Proof. By construction of the Depth-First Traversal of agent ak, let us define the im-
muned path as the path between the root and the current position of ak. Let us first
prove that the nodes on the immuned path are always clean. By definition of the active
paths πi, i < k, one can observe that an immuned path of depth d, d ≤ h, is composed
of the � d

t/2� first active paths πj defined by the respective agents aj , j ≤ � d
t/2�. Indeed

each agent ai, i < k, moves down the immuned path with agent ak when new nodes are
cleaned for the first time in their domain Ai (by algorithm CLEAN) and then guarantee
that the path remains clean (by algorithm OSCILLATE) until agent ak backtracks up in
their respective domain.

It is now easy to prove that all previously traversed nodes not included in the im-
muned path will remain clean, even if they have not been visited in the last t steps.
Indeed, with the Depth-First order of the traversal, clean nodes that may have infected
neighbours can only be on the immuned path, and thus guarantee the on-going “protec-
tion” of the other nodes.

At the termination of the Depth-First Traversal, all the nodes of the tree have been tra-
versed by agent ak, and the previous lemma leads immediately to the following theorem.

Theorem 8. Algorithm CLEAN decontaminate a tree from a given starting location r
and immunity time t with � 2h

t+2� agents, where h is the height of the tree rooted in r.
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3 Universitat Politècnica de Catalunya
vera.sacristan@upc.edu

4 Carleton University
stefanie.wuhrer@gmail.com

Abstract. We consider a model of reconfigurable robot, introduced and
prototyped by the robotics community. The robot consists of indepen-
dently manipulable unit-square atoms that can extend/contract arms
on each side and attach/detach from neighbors. The optimal worst-case
number of sequential moves required to transform one connected con-
figuration to another was shown to be Θ(n) at ISAAC 2007. However,
in principle, atoms can all move simultaneously. We develop a parallel
algorithm for reconfiguration that runs in only O(log n) parallel steps,
although the total number of operations increases slightly to Θ(n log n).
The result is the first (theoretically) almost-instantaneous universally
reconfigurable robot built from simple units.

1 Introduction

In this paper, we consider homogeneous self-reconfiguring modular robots com-
posed of unit-cube atoms arranged in a grid configuration. Each atom is equipped
with mechanisms allowing it to extend each face out one unit and later retract
it back. Furthermore, the faces can attach/detach to faces of adjacent atoms;
at all times, the atoms should form a connected mass. When groups of atoms
perform the four basic atom operations (expand, contract, attach, detach) in a
coordinated way, the atoms move relative to one another, resulting in a recon-
figuration of the robot. Fig. 1 shows an example of such a reconfiguration. Each
atom is depicted as a square, with a T -shaped arm on each side.
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Fig. 1. Example of reconfiguring crystalline atoms: the top row of atoms is able to shift
to the left, using the bottom row of atoms as a fixed base

The robotics community has implemented this model in two prototype sys-
tems: crystalline atoms [3,4,5] and telecube atoms [6,7]. In the crystalline model,
the default state for atoms is expanded, while in the telecube model, the default
state is contracted. Thus Fig. 1 reconfigures a crystalline robot, or an expanded
telecube robot. The crystalline robots work in a single plane, forbidding ex-
pand/contract/attach/detach operations parallel to the z axis, which is the case
we consider in this paper.

To ensure connectedness of the configuration space, the atoms must be
arranged in meta-modules (or simply modules), which are groups of k×k atoms.
Any value k ≥ 2 suffices for universal reconfigurability [2,7]. Here the collection
of atoms composing a robot must remain connected in the sense that its module
graph (where vertices correspond to modules and edges correspond to attached
modules) is connected.

The complexity of a reconfiguration algorithm can be measured by the num-
ber of parallel steps performed (“makespan”), as well as the total number of
atom operations (“work”). In a parallel step, many atoms may perform moves
simultaneously. The number of parallel steps is typically the most significant fac-
tor in overall reconfiguration time, because the mechanical actions (expansion,
contraction, attachment, detachment) are the slowest part of the system.

Our main contribution in this paper is a reconfiguration algorithm that, given
a source robot S and a target robot T , each composed of n atoms arranged in
k × k modules for some constant k, reconfigures S into T in O(log n) parallel
steps and a total of O(n log n) atom operations. This result improves upon the
reconfiguration time of the algorithm presented at ISAAC 2007 [2], which takes
O(n) parallel steps (although only O(n) total operations, and also for three-
dimensional robots), as well as previous O(n2) algorithms [5,7,4].

A central assumption in our algorithm is that one atom, by contracting or
expanding, can pull or push all n atoms (linear strength). Thus our algorithm
certainly tests the structural limits of a modular robot, but on the other hand this
assumption enables us to achieve reconfiguration times that are likely asymptot-
ically optimal. The quadratic reconfiguration algorithms of [5,7,4] may be given
credit for being the least physically demanding on the structure of the robot.
Even the algorithm in [2] is less demanding than what we propose here, be-
cause it does not produce arbitrarily high velocities (although it still uses linear
strength). Another recent algorithm [1] considers the case where atoms have only
constant strength, and attains O(n) parallel steps and O(n2) total operations,
which is optimal in this setting. Thus the improvement in reconfiguration time
obtained here requires a more relaxed physical model.

The main idea of our parallel algorithm is to reconfigure the given robot into a
canonical form, by recursively dividing the plane into a hierarchy of square cells
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and employing a divide-and-conquer technique to merge quadruples of cells. Each
merge creates a cell containing a simple structure using a constant number of
moves. This structure, which fills the perimeter of a cell as much as possible, can
be decomposed into a constant number of rectangular components. Because the
steps to merge cells of the same level can be executed in parallel, the total number
of parallel steps used to reconfigure any configuration to a simple structure is
O(log n). The entire reconfiguration takes place in the smallest 2h × 2h square
containing the initial configuration, where h is an integer.

We choose to describe our algorithm in terms of the naturally expanded mod-
ules of crystalline robots. Of course, this immediately implies reconfigurability
in the naturally contracted telecube model, by adding one step at the beginning
and end in which all atoms expand and contract in parallel. We also expect that
the individual constructions in our algorithm can be modified to directly work
in the (2D) telecube model as well.

Our algorithm effectively uses modules of 4 × 4 atoms, but for clarity and
brevity assumes that atoms initially appear in blocks of 32 × 32. Reducing the
module size leads to more complicated basic operations that we have designed
for use on large rectangular components. On the other hand, reducing the initial
block size leads to a larger number of possible shapes that we must consider
during the merge of cells. We have designed (though not rigorously analyzed) a
range of algorithms for 2× 2 modules with decreasing restrictions on block size.
This is discussed in Section 5. However, the bulk of this paper focuses on the
version that is easiest to describe.

2 Definitions

We will mainly deal with modules, not atoms, which can be viewed as lying
on their own square lattice somewhat coarser than the atom lattice. Refer to
Fig. 2 for examples of the following notions. In all figures, modules are depicted
as squares unless mentioned otherwise. A module is a node if it has exactly
one neighbor (a leaf node), more than two neighbors (a branching node), or
exactly two neighbors not collinear with the node (a bending node). A branch is
a straight path of (non-node) modules between two nodes (including the nodes
themselves). A cell is a square of module positions (aligned with the module
lattice), some of which may be occupied by modules. The boundary of a cell

(a) (b) (c)

Fig. 2. Definitions; modules are depicted by squares. (a) A ring. (b) A sparse cell with
five side-branches and shaded near-boundary. (c) A shaded backbone and eight nodes.
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consists of all module positions touching the cell’s border. For cells of sufficient
size the near-boundary consists of all module positions adjacent to the cell’s
boundary. If a branch lies entirely in the boundary of a cell, we call it a side-
branch. The configuration within a cell is a ring if the entire cell’s boundary is
occupied by modules, and all remaining modules within the cell are arranged at
the bottom of the cell, filling row by row from left to right. The configuration
within a cell is sparse if it contains only side-branches. A backbone is a set of
branches forming a path that connects two opposite edges of a cell.

3 Elementary Moves That Use O(1) Parallel Steps

Throughout this paper, whenever we describe a move, it is implied that we do
not disconnect the robot and that no collisions occur. We first describe three
basic module moves (slide, compress, k-tunnel) that are used in [2]. We omit
a detailed description of how to implement these moves in terms of individual
atom operations. A compression pushes one module m1 into the space of an
adjacent module m2. The atoms of m1 literally fill the spaces between those of
m2 (see Fig 3). Any part of the robot attached to m1 will be displaced by one
unit along the same direction. Two modules can occupy the same position in
the module lattice. A decompression can be applied to such a position, as long
as an adjacent position contains enough space.

A slide moves a module to an adjacent position , using two substrate modules.
See Fig. 4a. The k-tunnel move compresses a leaf module into the robot, and
decompresses another module out into a leaf position. An entire path of modules
between the two leaves is involved in this move. Within each branch in this path,
modules shift in the direction of the compression, and essentially transfer the
compression to the next bend. Any modules attached to the branches will also
shift. This issue is addressed later on. See Fig. 4b; The parameter k denotes the

(a) (b)

Fig. 3. Compression of two adjacent 4 × 4 modules into one lattice position

(a) (b)

Fig. 4. (a) Slide move; (b) Tunnel move
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number of branches (or bends) in the path between the two modules. The move
takes O(k) parallel steps, but in our uses k will always be a small constant.

We now proceed to describe new basic moves that form the basis of our
reconfiguration algorithm.

3.1 Staircase Move

The staircase move transforms a rectangle of k1×k2 modules to one of dimensions
k2 × k1, both sharing the same lower-left corner C. Connectivity to the rest of
the robot is maintained through the module at C, and thus that module cannot
move. Without loss of generality, we can assume that k1 ≥ k2; otherwise, we
invert the sequence of operations described.

First, we move every row of modules to the right using a slide move with
respect to the row immediately below, as in Fig. 5(b). Second, we move every
column that does not touch the top or bottom border of the bounding box down
using a slide move, as in Fig. 5(c). Finally, we move every row to the left using
a slide move, as in Fig. 5(d). Note that the sliding motions of each step are
executed in parallel. Also, each operation can be done at the atom-level, as was
shown in Fig. 1. Thus the move works even if k2 = 1.

If we require that the transformation between rectangles takes place within
the bounding box of the source and target configurations, we can modify the
above procedure without much difficulty. This modification is omitted in the
present version of this paper.

3.2 Elevator Move

The elevator move transports a rectangle of modules by k units between two
vertical strips. Fig. 6(a) shows the initial configuration in which a rectangle is
to be transported vertically downward. First we detach the top half T of the
rectangle from the bottom half B. Furthermore, B detaches from the vertical
strip on the right. Let R be the rightmost vertical column of k atoms along the
left strip, together with the atoms to the left of B. We detach R to its left,
except at the very bottom, and detach R above, thus creating a corner with B.
Then we contract R vertically, thereby pulling B downward half way. This is
shown in Fig. 6(b), in which, however, we have let R be a vertical column of

k1

k2

k2

k1 + k2
2

k2

k1

(a) (b) (c) (d)

Fig. 5. Staircase move in three parallel steps. The shaded module maintains connec-
tivity to the rest of the robot.
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(a) (b) (c) (d) (e)

Fig. 6. Elevator move in O(1) parallel steps

modules instead of atoms, due to the large width of the shape. Thus far, T has
maintained the connectivity of the robot. Afterward, B attaches to the right
vertical strip and detaches from R, which is now free to expand and re-attach to
the top, as in Fig. 6(c). Now R detaches from the bottom and contracts upwards.
It re-connects to B at the bottom, as in Fig. 6(d). In the last step, shown in
Fig. 6(e), B detaches from the right side, and R expands, thereby moving B all
the way to the bottom. At this point, B has reached its target position. It now
assumes the role of maintaining connectivity, and the process can be repeated
for T .

3.3 Corner Pop

Consider a rectangle R of k1× k2 module units, where without loss of generality
k1 ≤ k2. Let R be empty except for a strip V of modules on its left border and
a strip H along the bottom. The strips form a corner, as shown in Fig. 7(a).

The corner pop moves the modules in R to the upper and right borders of R.
During this corner pop, the modules at the top-left and bottom-right corners
of R do not move. It is assumed that only these positions connect to modules
outside R. Thus, this operation preserves the connectivity of the robot.

We first create two staircases of height k1/2 at the two ends of H , as in
Fig. 7(b). This shifts the middle of H upward. Next, we use the lower half of V
to create a staircase of width k1/2. Simultaneously, the rightmost staircase of H
also moves so that it ends up on the right border of B, as in Fig. 7(c). We move
the two remaining staircases upward, as in Fig. 7(d). Some simple cleaning up
transforms this configuration into a symmetric canonical shape; see Fig. 7(e).

(a) (b) (c) (d) (e)

Fig. 7. Popping a corner in O(1) parallel steps. The shaded modules maintain connec-
tivity to the rest of the robot.
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3.4 Parallel Tunnel Move

The parallel tunnel move takes as input a horizontal row H of modules together
with, on the row immediately above, several smaller horizontal components that
have no other connections. The top components are absorbed into H , after which
H extends horizontally. Alternatively, the absorbed mass can be pushed out
anywhere else on top of H , provided the target space is free. This move allows
us to merge an arbitrary number of strips in the top row in O(1) time.

The idea is to take all odd lattice positions along H and perform 1-tunnel
moves, i.e., absorb modules from above and compress them under even posi-
tions. Then decompressing them all in parallel just expands H horizontally. Any
modules remaining on top will shift over during the expansion, since they are
attached to H . A gap will remain to the right of each such module, so we can
repeat one more time to complete the move.

Fig. 8 illustrates half of the absorption of one module into H . Note that groups
of 4 atoms move separately (they can be considered to be temporary smaller
modules). As described, this procedure assumes that the bottom row is critically
connected to other parts of the robot at one position, and absorbed modules are
redirected away from that position. For 4 × 4 modules, this assumption is not
required, but the minor implementation differences are omitted.

(a) (b) (c) (d)

Fig. 8. Parallel tunnel move. Three 4 × 4 modules are involved.

4 Reconfiguration

In this section we show how to reconfigure a given robot to a canonical form with
O(log n) parallel steps. Here we assume that the initial and final configurations
of the robot consist of blocks of 32× 32 atoms. However we will split blocks to
use modules of 4 × 4 atoms in the intermediate configurations. Recall that the
boundary has a width of four atoms.

Our divide-and-conquer algorithm proceeds as follows. Let the initial robot
be placed on a grid of unit blocks (of 32× 32 atoms). On this grid we construct
a minimal square cell of side length 2h that contains the initial robot (length
is measured in block units). We recursively divide the cell into four subcells of
length 2h−1. As a base case, we take subcells of 2 × 2 blocks (i.e., containing
16× 16 module lattice positions).

In parallel, we reconfigure each subcell within the same recursive depth, so
that the resulting shape is easy to handle. Thus, by merging subcells, in O(log n)
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iterations we will have created a simple shape in our original square. Consider
a cell M . We will use the inductive hypothesis that after merging its subcells,
M will become a ring if there are enough modules, or sparse otherwise. Fur-
thermore, if two points on the boundary of M were initially connected, the new
configuration will ensure connectivity via the shortest path through its boundary.

In the base case of our induction, M has length 2. Thus we have to merge four
subcells, each of which is empty or full. We will obtain a ring if there is at least
one full subcell. One such subcell contains 64 modules, which suffice to cover the
boundary of M . Reconfiguration can be done by tunneling each interior module
iteratively (or by the lemmas that will follow). Thus our hypothesis is preserved.

Lemma 1. Consider a cell M . If any subcell of M contained a backbone in the
original configuration, then there are enough modules to create a ring in M .
There are also enough modules if a path originally connected two subcell sides
that belong to the boundary of M but are not adjacent.

Proof. Consider the eight exterior sides of subcells of M as shown in Fig. 9(a).
Let each of the sides Mi have length c (i.e., c modules fill the side of a subcell).
The total number of modules in the boundary of M is 8c−4. A subcell backbone
contains at least 8c modules and therefore suffices to cover the boundary.

Without loss of generality, suppose that a path begins on M1 and ends at any
side other than M1,M8,M2. Then we have enough modules to make a ring in
M , by similar counting as above. In fact to avoid having enough modules, such
a path would have to remain within the lower two subcells. �


Lemma 2. Let S1 and S2 be adjacent sparse subcells at the top of cell M . In
the original robot, there can be no path from the top border of M to the other
subcells (see Fig. 9(b)).

Proof. A path from the top to the middle of M in the initial robot would contain
enough modules to make both S1 and S2 rings. By the pigeon-hole principle, one
of the two subcells cannot be sparse. �


M1 M2

M3

M4

M5M6

M7

M8

M

S1 S2

(a) (b)

Fig. 9. Connectivity issues, in Lemmas 1 and 2

Lemma 3. All side-branches along the common border of two cells that are
rings or sparse can be merged into at most two pieces per side, with O(1) moves.
Furthermore each side-branch touches one end of the border.
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Proof. If one cell is a ring then the other side can use it as a platform for a
parallel tunnel move that will merge its side-branches into one piece. Otherwise,
for each connected component of side-branches (of which there are at most two;
one per corner) do the following.

Denote the two sides of the border by A and B. Absorb as much as possible
from A to B by sliding modules from A across the border into vacant module
lattice positions. Thus the component has one side-branch in B. Shift (parallel
tunnel) the remainder of A towards the corner that the connected component
attaches to, using B as a platform. Thus A becomes one side-branch. Now (either
by a pop or by parallel-tunnel) bring back material from B to A to restore the
original numbers in each cell. Thus each connected component consists of at
most one side-branch from A and one from B. �


Lemma 4. Suppose B is a boundary side of a cell that has been processed ac-
cording to Lemma 3. Let A be a branch that is in the near-boundary adjacent to
B, and has no connectivity purpose. We can absorb A into B, or B can be filled,
with O(1) moves.

Proof. By Lemma 3, B contains at most two side-branches, each attached to a
corner. If no modules in B are adjacent to A, we can use a 1-tunnel to move
one node (endpoint) of A into the position in B that is adjacent to the other
node of A. Then the rest of A can slide into B. Otherwise, if A is adjacent to a
side-branch in B, as in Fig. 10(a), we do the following. Absorb parts of A into
empty positions of B, as in Fig. 10(b). Thus we create a side-branch B1 which
can be used as a platform to be extended by performing a parallel tunnel move
on what remains of A. If the extension causes B1 to reach a corner or join to
another side-branch in B, then B is full; see Fig. 10(c). �


For sparse cells, by repeatedly applying Lemma 4 and staircaising the remainder
of A to the near-boundary side adjacent to B, we obtain the following:

Corollary 5. If a branch A is positioned in the near-boundary of a sparse cell,
either A can be fully absorbed into the boundary, or the cell will become a ring.

(a) (b) (c)

Fig. 10. Absorbing a near-boundary branch into the boundary of a cell

Let a merged cell contain four subcells that satisfy our induction hypothesis.
That is, they are either rings or sparse, and connectivity is ensured via short-
est paths along their boundaries. A merged cell becomes well-merged if it is
reconfigured to satisfy the induction hypothesis.
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Lemma 6. Let M be a merged cell containing three or four subcell rings. Then
M can become a ring using O(1) moves. Thus M becomes well-merged.

Proof. Omitted due to space restrictions.
Sketch: The outer structure of the desired ring is either in place or can be com-
pleted easily. Following this, all that remains is to organize/merge the interior
modules of the subcells. �


Lemma 7. If exactly two subcells of a merged cell M are rings, then M can
become well-merged using O(1) moves.

Proof. If the two sparse subcells are adjacent, then there is no critical connec-
tivity maintained through their common border, by Lemma 2.

Apply Corollary 5 to move side-branches in the sparse subcells to the bound-
ary of M . There is only one module that possibly cannot be moved, in the case
of two rings that exist in a diagonal configuration and must be connected. If a
new ring is created, we apply Lemma 6. Now the only branches along interior
borders of subcells belong to the two rings, with the possible exception of one
module at the middle of M . We can use corner pops and/or staircase moves and
Corollary 5 to move the interior ring sides to the boundary of M while main-
taining connectivity. This happens regardless of the relative position of the rings
or the presence of the extra module.

What remains is to maintain our shortest path requirement, if we still do not
have a ring in M . In this case, by Lemma 1 we know that there was no initial
backbone in M . Thus each connected component of robot within M “covers” at
most one corner (in other words there is at least one module gap per side).

Note that the modules in the two subrings alone nearly suffice to create a ring
in M . Four modules are missing. We can remove a strip of width 2 from positions
where we wish to have a gap in the boundary of M , and use parallel-tunneling
to position this material in the current gaps. Essentially we create a temporary
ring of width 2. Then the remaining material can be moved. �


Lemma 8. If exactly one subcell S of a merged cell M is a ring, then M can
become well-merged using O(1) moves.

Proof. Without loss of generality let S be at the bottom-left of M . By Lemma 2,
in the original robot there was no path from the top border of M leading to either
of the bottom subcells. The same holds for the right border of M and the two left
subcells. Therefore the two interior borders between the three sparse subcells do
not preserve any connectivity. We may use Corollary 5 to move branches from
those interior borders to the boundary of M . Finally we can do the same for the
interior sides of S.

We may have to redistribute excess internal material from within S. If M has
become a ring, this is easy and has been discussed previously. Otherwise, we can
apply Corollary 5 to each full row of the internal ring structure. This can be
required at most eight times before a ring is created.

Our shortest path connectivity requirement is preserved directly, by the fact
that the internal borders where not necessary for connectivity. �
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Lemma 9. If no subcell of a merged cell M is a ring, then M can become well-
merged using O(1) moves.

Proof. By Lemma 2, we know that in the original robot configuration no path
existed from a side of M to either of the two subcells furthest from it. Therefore
all disjoint subgraphs maintained connectivity between at most two adjacent
external sides of subcells. More specifically, the first type of allowed path con-
nects points that are separated by a corner of M but are also inside the same
subcell. By induction we assume that these points are already connected along
the external boundary of their subcell. The second type connects points that are
on the same border side of M (possibly adjacent subcells). Again by induction
we know that they are already connected along the boundary of M . Therefore
our shortest path requirement is preserved.

All that remains is to remove excess material from inner borders of subcells.
This material consists of one or two branches per border, each of which is con-
nected to the boundary of M . These can be staircased and redistributed with
our standard procedures. �


Theorem 10. Any source robot S can be reconfigured into any target robot T
with O(n log n) atom operations in O(log n) parallel steps, if S and T are con-
structed with blocks of 32× 32 atoms.

Proof. Every cell retains the modules that it initially contained and does not
interfere with the configuration of the robot outside the cell, until it is time to
merge with its neighbors. A temporary exception to this occurs during Lemma 3.
Therefore that step should be performed in a way so that no interference occurs
(i.e., perform only this operation during one time step). At every time step, we
merge groups of four cells, which by induction are either rings or sparse. By
Lemmas 6–9, these four cells merge into a ring or sparse cell. Thus we construct
a ring or sparse cell in O(log n) parallel time steps.

We show that the total number of operations is O(n logn). Each subcell con-
taining m atoms can involve O(m) parallel operations per time step. Because
there are O(1) time steps per level in the recursion, and all mi sum to n, the
total number of operations per recursion level is O(n).

Now consider the bounding box B of S. We construct the smallest square
B2 of side length 2h that contains S and has the same lower-left corner as B.
Our recursive algorithm takes place within B2. Now consider the last merge of
subcells in our algorithm. The lower-left subcell L could not have contained S,
because this would imply that B2 = L. Therefore there must have been a path in
S from the left side of B2 leading to the two rightmost subcells (or from bottom
to two topmost). This implies that S will become a ring (not sparse).

Because a ring of specific side length has a unique shape as a function of the
number of modules it contains, the resulting ring in B2 serves as a canonical
form between S and T . �
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5 Discussion

The number of atoms in our modules and initial blocks can be reduced. By using
2 × 2 modules instead of 4× 4, some of our basic operations become relatively
complicated. For example, the staircase move cannot be implemented via sliding,
but instead involves a form of parallel tunneling to break off strips that are
one module wide, and then using those as carrying tools, etc. Corner pops also
become particularly unattractive. Reducing the block size has the result that we
can no longer rely only on rings and sparse cells to maintain the connectivity
of any robot. We obtain a small set of orthogonal shortcut trees that must be
taken into consideration when merging cells. We conjecture that reconfiguration
can take place with 2× 2 modules and no block restriction.

Our algorithm seems to be implementable in O(n logn) time. Each subcell
contains a constant number of rectangular components, so determining their
relative configuration and series of motions should require constant time. We also
claim that our results extend to the case of labeled robots. This would involve
a type of merge-sort using staircase moves, once a straight path of modules is
constructed using our algorithm.

We have not determined if a similar result will hold in 3D, or if O(log n) steps
are optimal. Such a lower bound can be given for labeled robots, by a simple
Kolmogorov argument: there exist permutations that contain Θ(n log n) bits of
information. Each parallel move can be encoded in O(n) bits (for each robot in
order, which sides perform which operations), so we need Ω(log n) steps.
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Squaring the Circle with Weak Mobile Robots
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Abstract. The Circle Formation Problem (CFP) consists in the design
of a protocol insuring that starting from an initial arbitrary configura-
tion (where no two robots are at the same position), n robots eventually
form a regular n-gon in finite time. None of the deterministic solutions
proposed so far works for a system made of 4 or 3 robots. This comes
from the fact that it is very difficult to maintain a geometric invariant
with such a few number of robots, e.g., the smallest enclosing circle,
concentric cycles, properties of the convex hull, or a leader. As a matter
of fact, due to the high rate of symmetric configurations, the problem
was suspected to be unsolvable with 4 robots. In this paper, we disprove
this conjecture. We present two non-trivial deterministic protocols that
solves CFP with 4 and 3 robots, respectively. The proposed solutions do
not require that each robot reaches its destination in one atomic step.
Our result closes CFP for any number n (> 0) of robots in the semi-
synchronous model.

Keywords: Distributed Coordination, (Uniform) Circle Formation, Mo-
bile Robot Networks, Self-Deployment.

1 Introduction

Consider a distributed system where the computing units are mobile weak robots
(sensors or agents), i.e., devices equipped with sensors and designed to move
in a two-dimensional plane. By weak, we mean that the robots are anonymous,
autonomous, disoriented, and oblivious, i.e., devoid of (1) any local parameter
(such that an identity) allowing to differentiate any of them, (2) any central
coordination mechanism or scheduler, (3) any common coordinate mechanism
or common sense of direction, and (4) any way to remember any previous ob-
servation nor computation performed in any previous step. Furthermore, all the
robots follow the same program (uniform or homogeneous), and there is no kind
of explicit communication medium. The robots implicitly “communicate” by ob-
serving the position of the others robots in the plane, and by executing a part
of their program accordingly.

In such a weak model, there has been considerable interest in the design
of deterministic coordination protocols, e.g., [14,8,12,13,7]. Among them, the
Circle Formation Problem (CFP) consists in the design of a protocol insuring
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that starting from an initial arbitrary configuration (where no two robots are at
the same position), n robots eventually form a circle with equal spacing between
any two adjacent robots. In other words, the robots are required to form a regular
n-gon in finite time.

First attempts to deterministically solve the CFP were presented in [2,3,1].
The CFP algorithm given in [2] is quite informal. The solutions in [3,1] work
in the semi-synchronous model (SSM) [14] in which the cycles of all the robots
are synchronized and their actions are atomic. They ensure only asymptotical
convergence toward a configuration in which the robots are uniformly distributed
on the boundary of a circle. In other words, the robots move infinitely often and
never reach the desired final configuration.

The first solution leading n robots in a regular n-gon in finite time is proposed
in [10]. The proposed protocol works in CORDA [11], a fully asynchronous model
where the robot cycles are not required to be synchronized (as in SSM). CORDA
being weaker than SSM, solutions designed in CORDA also work in SSM [12].
However, the solution in [10] works if n ≥ 5 only. Moreover, if n is even, the
robots may form a biangular circle in the final configuration, i.e., the distance
between two adjacent robots is alternatively either α or β. A deterministic CFP
protocol for SSM is proposed in [5]. It works for a prime number of robots
only. It assumes that every robot reaches its destination atomically — i.e., no
robot stops before reaching its destination. Note that this constraint is also
required for the specific solution proposed in [5] for 3 robots. A general solution
is given in [4] for SSM. It combines the solution in [10] and a method based on
a concentric circles to eventually achieve a regular n-gon. The solution works
for any number of robots, except 4, 6 and 8. Nevertheless, the solution in [4]
assumes that every robot reaches its destination atomically. Finally, in [6], a
deterministic CFP algorithm is given, in SSM, for any number n of robots, except
3 and 4. The robots are not assumed to reach their destination in one atomic
step. The approach in [6] is based on a technique using tools from combinatorics
on words and geometric properties of the convex hull formed by the robots.
Following this work, both cases n = 4 and n = 3 remain open problems. Indeed,
it is very difficult to maintain a geometric invariant with such a few number
of robots, e.g., the smallest enclosing circle, concentric cycles, properties of the
convex hull, or a leader. As a matter of fact, due to the high rate of symmetric
configurations, right now, the problem was suspected to be unsolvable with 4
robots.

In this paper, we first disprove this conjecture by presenting a non-trivial
deterministic protocol that solves CFP for the case n = 4 (Section 3). The
proposed solution does not require that each robot reaches its destination in one
atomic step. Next (Section 4), we improve the solution in [5] for the case n = 3
by providing a protocol also making no assumption about the covered distance
during a step. Since a cohort of n robots trivially always form a regular n-gon if
n ∈ {1, 2}, this paper closes the circle formation problem for any number n(> 0)
of robots in SSM.
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2 Preliminaries

In this section, we define the distributed system, give some definitions on geo-
metric configurations, and specify the problem considered in this paper.

Distributed Model. We adopt the semi-synchronous model (SSM) in [14].
The distributed system considered in this paper consists of n robots. Each robot
ri, viewed as a point in the Euclidean plane, moves on this two-dimensional
space unbounded and devoid of any landmark. Any robot can observe, compute
and move with infinite decimal precision. The robots are equipped with sensors
enabling to detect the instantaneous positions of the other robots in the plane.
The robots agree neither on the orientation of the axes of their local coordinate
system nor on the unit measure. They are uniform and anonymous, i.e, they
all have the same program using no local parameter (such that an identity)
allowing to differentiate any of them. They communicate only by observing the
positions of the others and they are oblivious, i.e., none of them can remember
any previous observation nor computation performed in any previous step.

Time is represented as an infinite sequence of time instants t0, t1, . . . , tj , . . .
Let P (tj) be the multiset of the positions in the plane occupied by the n robots
at time tj (j ≥ 0). For every tj , P (tj) is called the configuration of the distrib-
uted system in tj . P (tj) expressed in the local coordinate system of any robot
ri is called a view. At each time instant tj (j ≥ 0), each robot ri is either ac-
tive or inactive. The former means that, during the computation step (tj , tj+1),
using a given algorithm, ri computes in its local coordinate system a position
pi(tj+1) depending only on the system configuration at tj , and moves towards
pi(tj+1)—pi(tj+1) can be equal to pi(tj), making the location of ri unchanged.
In the latter case, ri does not perform any local computation and remains at the
same position. In every single activation, the distance traveled by any robot r
is bounded by σr. So, if the destination point computed by r is farther than σr ,
then r moves toward a point of distance at most σr . This distance may be differ-
ent between two robots. The concurrent activation of robots is modeled by the
interleaving model in which the robot activations are driven by a fair scheduler.
At each instant tj (j ≥ 0), the scheduler arbitrarily activates a (non empty) set
of robots. Fairness means that every robot is infinitely often activated by the
scheduler.

Basic Definitions and Properties. Given a set P of n ≥ 2 points p1, p2, · · · , pn

in the plane, the convex hull of P , denoted H(P ) (H for short), is the smallest
polygon such that every point in P is either on an edges of H(P ) or inside it.
Informally, it is the shape of a rubber-band stretched around p1, p2, · · · , pn. The
convex hull is unique and can be computed in O(n logn) time [9].

A convex hull, H , is called a (convex) quadriliteral or triangle if H forms a
polygon with four or three, respectively, sides (also called edges) and vertices (or
corners). In the sequel, we consider only convex quadriliterals and triangles. Let
O be the center of H defined as follows: (1) If H forms a quadrilateral, then O
is the unique point where the diagonals of H cross each other; (2) If H forms a
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triangle, then O is the unique point which is equidistant from each of the three
sides of H . A quadrilateral is said to be perpendicular if and only if its diagonals
are perpendicular. Otherwise, it is called a non-perpendicular quadrilateral.

A triangle is said to be equilateral if all its sides are of equal length. An
isosceles triangle has two sides of equal length. A triangle having all sides of
different lengths is said to be scalene. A trapezoid is a quadrilateral with at least
one pair of opposite sides parallel. An isosceles trapezoid is a trapezoid whose the
diagonals are of equal length. A parallelogram is a quadrilateral with both pairs
of opposite sides parallel. A rectangle is defined as a parallelogram where all four
of its angles are right angles. A square is a rectangle perpendicular quadrilateral.

The Circle Formation Problem. The problem considered in this paper,
called CFP (Circle Formation Problem), consists in the design of a determin-
istic distributed protocol which arranges a group of 4 (respectively, 3) mobile
robots with initial distinct positions into a square (resp., equilateral triangle) in
finite time. The side length of the expected square (equilateral triangle) must be
strictly greater than zero.

3 Four Robots

In this section, we present our algorithm that leads 4 mobile robots to eventually
form a square. We refer to Figure 1 to explain our scheme.

Consider the convex hull H formed by the robots on the plane. If the 4 robots
belong to the same line L, then H is reduced to the segment of line linking the
4 points (Figure 1, Case sL). Otherwise (the 4 robots are not aligned), there
are only two possible forms for H : H forms either a quadrilateral or a triangle.
If H forms a triangle, then there is a robot r which is located either inside H
(Case nD-T ) or between two of the three corners of the triangle (Cases nP -D
and P -D). In the latter case, three out of the four robots q, r, and s are aligned
on a line L (r belonging to the segment [q, s]), whereas the fourth robot t does
not. Such a configuration is called a (arbitrary) delta. If the line L′ passing
through r and t is perpendicular to L, then the delta is said to be perpendicular
(Case P -D).

3.1 Overview of the Solution

Let us first describe the main idea of our scheme. It is made of two steps: (1)
Starting from an arbitrary configuration, move the robots to eventually form an
arbitrary perpendicular quadrilaterals; (2) Starting from an arbitrary perpen-
dicular quadrilateral, the robots eventually form a square.

Indeed, when the convex hull H forms an arbitrary perpendicular quadrilat-
eral (Figure 1, Case PQ), the diagonals of H are perpendicular in O. The system
eventually forms a square by sliding the closest robots away from O along their
diagonal until they reach the positions which are at the same distance from O as
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Fig. 1. General Scheme with 4 robots
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the farthest ones (dmax in Figure 1). To reach such an arbitrary perpendicu-
lar quadrilateral, we aim to bring the system into an arbitrary delta. Starting
from a perpendicular delta, Case P -D in Figure 1 (q, r, and s are aligned one
a line L, the line L′ passing through r and t is perpendicular to L), in one
step, the system becomes an arbitrary perpendicular quadrilateral by sliding r
on L′ in the opposite direction of t. Starting from a non-perpendicular delta
(Case nP -D), the system eventually becomes a perpendicular delta by moving t
along L′′, the line passing through t which is parallel to L, until L′ and L become
perpendicular.

Clearly, the above scheme does not cover all the possible cases. In particular, it
gives no details about the “arbitrary” configurations considered in the above first
item. In fact, we can detail the different classes of such “arbitrary” configurations
and the corresponding moves as follows:

1. The convex hull H forms an arbitrary quadrilateral which is not perpendicular,
a rectangle, an isosceles trapezoid, nor a parallelogram. In the sequel, such a
configuration is called an asymmetric quadrilateral (Case AQ, in Figure 1). In
that case, we will show that there always exists a robot r which is either the
unique closest or the unique farthest robot from the center O of the quadrilateral.
By moving either r or the opposite robot (w.r.t. to O) along its diagonal toward
O, the moving robot eventually reaches O. By the way, it crosses one side of
the triangle formed by the 3 other robots. The system then becomes a non-
perpendicular delta, and from this point on, adopt the above behavior.

2. The convex hull H of the 4 robots forms a symmetric non-perpendicular
quadrilateral which is not reduced to a line segment. In that case, H forms ei-
ther an isosceles trapezoid (Case nR-IT ) or a parallelogram (Case nR-P ) —
note that H can be a non-perpendicular rectangle (Case nP -R) if it is both an
isosceles trapezoid and a parallelogram. In these cases, the robots move trying
to form a square in one step. If they move synchronously and reach their re-
spective positions to form a square, then they are done in one step. Otherwise,
the symmetry is broken in one or two steps. Details about this cases are given
below.

3. The convex hull H forms a triangle which is not an arbitrary delta. So, one of
the four robots is located inside the triangle (Case nD-T in Figure 1). In that
case, the robot r inside the triangle moves toward the closest side of the triangle
— if r is at the center of the triangle, then its arbitrarily chooses one side to
move on. Again, the system reaches a configuration where the cohort of robots
form a delta.

4. The 4 robots are aligned on the same line L (Case sL). In that case, both
robots r1 and r2 located between the two extremities of the segment formed by
the 4 robots are able to move perpendicularly to L. With respect to the asyn-
chrony, there are 5 possible resulting configurations: either a non-perpendicular
quadrilateral (possibly, an isosceles trapezoid or a parallelogram) or a triangle
(possibly, a non-perpendicular delta).
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3.2 Details

In this subsection, we describe the basic rules of the algorithm. The main pro-
gram is given in Algorithm 1. It corresponds to the global scheme shown in
Figure 1. The procedures are given in Algorithms 2 to 8.

Algorithm 1. Main Program.
1.01 Let H be the convex hull of the four robots;
1.02 if H is not a square
1.03 then if the four robots are located on the same line L
1.04 then Execute Procedure φSL;
1.05 else if H forms a triangle
1.06 then Execute Procedure φT ;
1.07 else // The robots form a non-square quadrilateral
1.08 if H is a perpendicular quadrilateral
1.09 then Execute Procedure φP Q;
1.10 else // The robots form a non-perpendicular quadrilateral
1.11 if H is a non-rectangle isosceles trapezoid
1.12 then Execute Procedure φIT ;
1.13 elseif H is a non-rectangle parallelogram
1.14 then Execute Procedure φP ;
1.15 elseif H is a rectangle
1.16 then Execute Procedure φR;
1.17 else // H is an asymmetric quadrilateral
1.18 Execute Procedure φAQ;

Theorem 1. Algorithm 1 deterministically solves the circle formation problem
for 4 weak mobile robots.

The correctness of Theorem 1 is shown in the next subsections (Lemmas 1 to 7).
Due to the lack of space, the formal proofs are omitted.

Starting from a Perpendicular Quadrilateral. Each robot executes Pro-
cedure φPQ described in Algorithm 2 — also refer to Figure 1, Case PQ.

Algorithm 2. Procedure φPQ.
2.01 Let d be the greatest distance from O to a robot;
2.02 if my distance from myself to O is less than d
2.03 then Move away from O along my diagonal toward a position p located at distance d from O;

Clearly, by executing φPQ, H remains a perpendicular quadrilateral forever. If
the perpendicular quadrilateral formed by H is a square, then for every robot r,
the distance from r to O is equal to d. So, in that case, all the robots remain idle
(and form a square) forever. Furthermore, by executing Procedure φPQ, every
robot that is located at a distance d′ < d moves away from O on its diagonal of
a distance d′′ ≤ (d− d′). So, by fairness, for each robot r, the distance from r to
O is eventually equal to d. This leads to the following lemma:

Lemma 1. In every execution starting from a configuration where H forms a
perpendicular quadrilateral, both following properties hold: (1) The four robots
eventually form a square; (2) whenever the four robots form a square, then they
form a square forever.
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Starting from a Triangle. The case of the triangle is considered by Procedure
φT , shown in Algorithm 3 — refer to Figure 1, Cases nD-T , nP -D, and P -D.

Algorithm 3. Procedure φT .
3.01 if H forms a delta // One out of the 4 robots is located on one side of H
3.02 then if H forms a perpendicular delta
3.03 then if I am the robot located between two corners of H
3.04 then Move outside H, perpendicularly to my side;
3.05 endif
3.06 elseif I am the robot which is not on the same line L than the three other robots
3.07 then Let L′ be the line passing through me which is parallel to L;
3.08 Let L′′ be the perpendicular line to L passing through the median robot on L;
3.09 Let p be the intersection of lines L′ and L′′;
3.10 Move toward p;
3.11 endif
3.12 elseif I am the robot which is located inside the triangle
3.13 then Let s be an arbitrary side of H which is the closest to myself;
3.14 Let p be the intersection of s and the perpendicular line to s passing through myself;
3.15 Move toward p;

Lemma 2. In every execution starting in a configuration where the four robots
form a triangle, both following properties hold: (1) The four robots eventually
form a square; (2) whenever the four robots form a square, then they form a
square forever.

Starting from a non-perpendicular quadrilateral. In this subsection, we
consider quadrilaterals which are not reduced to the segment, i.e., we assume
that the four corners of the quadrilateral are not aligned on a unique line L.
(We consider this latter case later.) Let us first state the two following general
properties — whether the quadrilateral is perpendicular or not:

Property 1. Let H be a (convex) quadrilateral. The two following properties are
equivalent:

1. No corner c of H exists such that the distance from c to the center O of H is
different than any distance from O to one of the three other corners;
2. H forms an isosceles trapezoid or a parallelogram.

Property 2. Given a quadrilateral H , if there exists a corner c of H such that
the distance from c to the center O of H is different than the distance from O to
any of the three other corners, then there exists a corner c′ of H such that c′ is
either the unique farthest corner from O or the unique closest corner from O.

The case where the quadrilateral is perpendicular is discussed in Subsection 3.2.
So, in the sequel of this subsection, we will consider non-perpendicular quadri-
laterals only — we omit to mention the term “non-perpendicular”. We first con-
sider the case where the convex hull forms an asymmetric quadrilateral. Next, we
discuss three symmetric cases: The non-rectangle isosceles trapezoid, the non-
rectangle parallelogram, and the non-square rectangle. Property 1 ensures that
we consider all the non-perpendicular quadrilaterals.
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Starting from an asymmetric quadrilateral. The aim of Procedure φAQ, shown
in Algorithm 4, is to reach a configuration in which the four robots form a delta
— refer to Figure 1, Case AQ. Both Properties 1 and 2 ensure that if the four
robots form an asymmetric quadrilateral, then there exists a robot r which is
either the unique closest or the unique farthest robot from O. In the former case,
r moves along its diagonal until it reaches O. While r does not reach O, it remains
the closest robot from O since the other robots are not allowed to move. So, r
eventually reaches O and, in this way, the four robots form a delta. In the latter
case, r (the farthest robot) is not allowed to move. So, while the system remains
in an irregular quadrilateral, r remains the farthest robot from O. Let r′ be the
the opposite robot w.r.t. O and r. Since r′ is the only robot allowed to move
toward O, r′ eventually reaches O and, thus, the four robots form a delta. So, by
the fairly repeated execution of Procedure φAQ:

Lemma 3. In every execution starting from an asymmetric quadrilateral, the
four robots eventually form a delta.

Algorithm 4. Procedure φAQ.
4.01 if there exists a unique robot r which is closer from O than any other robot
4.02 then Let r be this robot
4.03 else Let r be the robot which is on the same diagonal than the farthest robot from O;
4.04 endif
4.05 if I am r then Move along my diagonal toward O;

Starting from a non-rectangle isosceles trapezoid. In this case, we first consider
the smallest edge e among the two opposite parallel edges. Then, as illustrated
in Figure 1, Case nR-IT , we build the unique square such that: (1) e is one of
square’s edge; (2) all the vertices of the square are located inside or over the
isosceles trapezoid. Each of both robots which are located on the opposite side
of e can move toward the closest vertex from it. The corresponding procedure,
Procedure φIT , is is shown in Algorithm 5.

Algorithm 5. Procedure φIT .
5.01 Let e be the smallest edge e among the two opposite parallel edges;
5.02 Let p1 and p2 be the extremities of e;
5.03 Let p3 and p4 be the points such that p1, p2, p3, and p4 form a square;
5.04 if I am not located on either p1 or p2
5.05 then Move toward the closest position of me in {p3, p4};

Lemma 4. In every execution starting from a non-rectangle isosceles trapezoid,
the four robots eventually form either an asymmetric quadrilateral, or a square.

Starting from a non-rectangle parallelogram. In that case, the robots consider
the unique square whose one of the two diagonals corresponds to the longest
diagonal of the parallelogram. Then, each of both robots which are not located
on the vertices of the square can move toward the closest vertex from it — refer
to Figure 1, Case nR-P . Procedure φP is is shown in Algorithm 6.
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Algorithm 6. Procedure φP .
6.01 Let d be the longest diagonal of H;
6.02 Let p1 and p2 be the extremities of d;
6.03 Let p3 and p4 be the points such that p1, p2, p3, and p4 from a square;
6.04 if I am not located on either p1 or p2
6.05 then Move toward the closest position of me among p3 and p4;

Lemma 5. In every execution starting from a non-rectangle parallelogram, the
four robots eventually form either an asymmetric quadrilateral, or a square.

Starting from a non-square rectangle. Since the four robots form a rectangle, all
of them are located on the boundary of a same circle C centered in O. So the
robots can compute the unique square having the following characteristics:
1. The vertices are located on the circumference of a circle centered in O and
whose the radius is half the radius of C;
2. The square’s edges are parallel to the non-square rectangle edges.

Once the unique square is computed, each robot can move toward their closest
vertex from it, as depicted in Figure 1, Case nS-R. The corresponding procedure,
Procedure φR, is is shown in Algorithm 7.

Algorithm 7. Procedure φR.
7.01 Let d be the diagonal size of H;
7.02 Let p1, p2, p3, and p4 be the corners of the unique square S and located on the circle
7.03 centered in O and of radius d

2 s.t. the edges of S are parallel to the edges of H;
7.04 Move toward the closest position of me in {p1, p2, p3, p4};

Lemma 6. In every execution starting from a non-square rectangle, the four ro-
bots eventually form either an asymmetric quadrilateral, a non-rectangle isosceles
trapezoid, a non-rectangle parallelogram, or a square.

Starting from a configuration where all the robots are located on the
same line L. Let rm be one of the two middle robots w.r.t. the segment formed
by the 4 robots. Then, rm considers the line L′

m which is perpendicular to L and
passing through it — refer to Figure 1, Case sL. Then, rm moves toward any
point located on L′ which does not belongs to L. The corresponding procedure,
Procedure φSL, is is shown in Algorithm 8.

Algorithm 8. Procedure φSL.
8.01 if I am not an extremity of the segment formed by the four robots
8.02 then Let L′ be the line L′ passing through myself which is perpendicular to L;
8.03 Move toward an arbitrary position on L′ which is not on L;

Lemma 7. In every execution starting from a configuration where the robots are
on the same line L, after one step, the convex hull H of the four robots is either
a non-square quadrilateral or a triangle which is not a perpendicular delta.
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4 Three Robots

As for the case n = 4, consider the convex hull H formed by the robots on
the plane. If the 3 robots belong to the same line L, then H is reduced to the
segment of line linking the 3 points. Otherwise, H forms a non-aligned triangle.
(In the following, we will omit the term “non-aligned”.)

Let us consider the three following cases:

1. The three robots form a non-equilateral isosceles triangle. Let r be the unique
robot which is placed at the unique angle different from the two others robots
s and t. Let p be the position of L, the perpendicular bisector of [s, t], such
that p, s, and t form an equilateral triangle. Since H form an isosceles triangle,
r belongs to L. So, it can move along L toward p. Clearly, while r does not
reach p, it remains the single robot allowed to move. By fairness, the equilateral
triangle is formed in finite time.

2. The three robots are on the same line L. Let s and t be the two robots located
at the extremities of the segment formed by the three robots. Let r be the
median robot and d(s, r) (d(t, r)) denotes the distance between s and r (t and
r). If d(s, r) = d(t, r), then r can move on any position on the perpendicular
bisector of [s, t]. After one step, the robots form an isosceles triangle, and the
system behaves as in Case 1. If d(s, r) 
= d(t, r), then r move toward the position
p such that d(s, p) = d(t, p). By fairness, r reaches p in finite time (Case 2).

3. The three robots form a scalene triangle. Since the three robots form a sca-
lene triangle, the three internal angles are all different. Let r be the robots
corresponding to the greatest internal angle. Then, r can move toward the inter-
section between the opposite side formed by the two others robots and the line
passing through r which is perpendicular to the opposite side of the triangle.
While the robots are not on the same line, r remains the only robots allowed to
move because its internal angle increases whereas the two others internal angles
decrease. By fairness, the three robot are eventually on the same line (Case 2).

The following theorem follows from the above discussion:

Theorem 2. Three robots can deterministically solve the circle formation prob-
lem in finite time.

5 Conclusion

We closed the circle formation problem for any number n(n > 0) of robots
in SSM. We proposed two non-trivial deterministic protocols solving CFP for
4 and 3 robots, respectively. The proposed solutions do not require that each
robot reaches its destination in one atomic step. In a future work, we would like
to address and solve the problem for any number of robots in CORDA.
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Abstract. We consider the problem of evaluating an expression over
sets. The sets are preprocessed and are therefore sorted, and the op-
erators can be any of union, intersection, difference, complement, and
symmetric difference (exclusive union). Given the expression as a for-
mula and the sizes of the input sets, we are interested in the worst-case
complexity of evaluation (in terms of the size of the sets). The problem
is motivated by document retrieval in search engines where a user query
translates directly to an expression over the sets containing the user-
entered words. Special cases of of this problem have been studied [7,6]
where the expression has a restricted form. In this paper, we present
an efficient algorithm to evaluate the most general form of a set ex-
pression. We show a lower bound on this problem for expressions of the
form E1, or E1 − E2 where E1 and E2 are expressions with union, in-
tersection, and symmetric difference operators. We demonstrate that the
algorithm’s complexity matches the lower bound in these instances. We,
moreover, conjecture that the algorithm works optimally, even when we
allow difference and complement operations in E1 and E2.

1 Introduction

We consider the problem of evaluating an expression over sets with the most
general form of binary operations consisting of union, intersection, difference,
symmetric difference and complements. Motivated by its application in databases
and search engines, we assume the sets are preprocessed and are therefore stored
in the sorted order. We are interested in the worst-case complexity of evaluating
the expression sensitive to the sizes of the input sets in the comparison model. We
assume there are no repeated sets in the expression as otherwise, there is an easy
reduction from the satisfiability problem which implies the NP-completeness of
the evaluation problem.

The problem arises in evaluating search queries in text database systems;
search engines maintain for each word w a set S(w) consisting of all document
IDs that contain w [3,11,14]. A query such as “dinner AND recipe – beef”,
translates directly into evaluating the expression (S(dinner)∩S(recipe))−S(beef).
We note that although complicated long queries are not common from a live user,
the queries and their corresponding expressions can be extremely complicated if
they are automatically generated [10].
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Different variations of the problem have been studied before. The simplest case
which is finding intersection or union of two sets is equivalent to the problem
of merging two ordered sets of sizes m,n was studied by Hwang and Lin [9]. It
gives an algorithm with a running time that matches the information theoretic
lower bound

⌈
log

(
m+n

n

)⌉
. They assumed sorted arrays as the input format of

the sets, and as the running time can be sublinear, the output format is given
as a list of cross pointers in the arrays. Brown and Tarjan [4,5] and Pugh [13]
showed how more sophisticated data structures such as AVL-trees, B-trees, or
skip-lists can be used as the input/output format.

Demaine, López-Ortiz, and Munro [7] studied the more general case where
there are more than two sets. The expressions they considered is either the union
of a number of sets or the intersection of them. They give an adaptive algorithm
for this problem by defining a measure of difficulty for any instance and pre-
senting an algorithm with a running time according to the difficulty of the given
instance. Their algorithm was shown to be optimal by Barbay and Kenyon [1].
The adaptive approach was extended by Mirzazadeh [12] to expressions consist-
ing of unions and intersections. The authors studied the worst-case complexity
to evaluate an expression consisting of union and intersection operations [6] and
proved matching upper and lower bounds for the worst-case complexity in the
comparison model. Recently, evaluation of expression with the same form was
considered in a non-comparison based model [2]. In this paper, we study the
evaluation of the most general form of set expressions containing all possible
binary operators of union, intersection, difference, and symmetric difference, as
well as the complement operation in the comparison model.

We first present an efficient algorithm which evaluates such expressions. We
prove that the algorithm is optimal by proving a lower bound in the preceding
section for expressions of the form E1, or E1 −E2 where E1 and E2 are expres-
sions consisting of union, intersection, and symmetric difference operators. We,
moreover, conjecture that the algorithm works optimally, even when there are
difference and complement operations in E1 and E2.

2 Definitions and Preliminaries

In this work, we use a slightly modified version of B+-trees, which we define as
follows.

Definition 1. A partly-expanded B+-tree T is a B+-tree in which for some
internal nodes u, the subtree rooted at u is replaced with the sorted list of elements
that are in that subtree. The size of T is the number of elements in T .

Consequently, a B+-tree or a single sorted array are special forms of a partly-
expanded B+-tree. Hence, we choose partly-expanded B+-trees as our algorithms
input/output format. This choice enables us to support the cases where the input
sets are either sorted arrays, or B+-trees.

An input I is formally defined as a pair (T, Γ ), where T and Γ are as follows.
T is a set expression tree representing the expression: every internal node v is
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assigned one of the operators we support (union, intersection, delta, and minus
operators), namely π(v), and each leaf v of T corresponds to an input set and is
assigned an integer size(v). Every minus or delta internal node has exactly two
children; other internal nodes have at least two children, each. Also, each node
is either a normal or a complement node. We call T the signature of the input
I. Γ is an assignment function that assigns a partly-expanded B+-tree of size
size(v) to each leaf v.

The result of a node v in I, denoted by I(v), is a set defined as follows. For a
leaf v, depending on v being normal or complement, I(v) is the set of elements
in Γ (v) or its complement. For a normal (a complement) internal node v, I(v)
is the result of (the complement of the result of) the application of the operator
π(v) on results of the children of v.

It is easy to see that one can change the tree by propagating the complements
up to the root such that we end with an equivalent expression tree: i.e. the result
of the entire tree remains unaffected (e.g. trees corresponding to expressions
A ∩ B, A − B, and A ∪B). A tree is in least-complement form if aside form
its root, every node is a normal node. If there is no complement node in the
tree, it is complement-free. It is easy to see that every tree has an equivalent in
least-complement form and so, for every tree T we can obtain a complement-free
tree which is either equivalent to T or the complement of T . Thus, in this paper,
we will focus on complement-free trees.

In this paper we focus on the comparison-based algorithms which have oracle
access to Γ : the algorithm reads the signature of the input and can later submit
queries of the form (x, y) to the oracle, where x and y are elements of the input
sets. Then the algorithm is told whether x is less than, equal to, or greater than
y according to Γ . In such situations we say x and y are touched by the algorithm.

For a complement-free expression tree T , we define functions ψ∗ and ψ over
the set of nodes of T as follows. ψ(v) is the maximum potential size of Γ (v):
For a leaf v is defined as ψ(v) = size(v). If v is an internal node with minus
operator, ψ(v) = ψ(u), for u the left child of v. For other nodes v with children
u1, . . . , uk, we define ψ(v) = mink

i=1 ψ(ui) when v is an intersection node, and
ψ(v) =

∑k
i=1 ψ(ui), when v is a union or delta node. For every node v we

define ψ∗(v) = minψ(u), where the minimum is taken over all ancestors u of v,
including v itself. Intuitively, ψ∗(v) is the maximum “contribution” of Γ (v) to
the result of the whole expression. Note that the values of ψ and ψ∗ for all nodes
of an expression tree T can be evaluated in time O (|VT |), where VT denotes
the set of nodes of T . Moreover, we assume that all the internal nodes of T
have exactly two children and their children are ordered in the following way:
for every internal node v,

1. If π(v) ∈ {∪, ∆}, the children of v are sorted in a non-increasing order from
left to right based on their ψ∗, i.e. the left child has the maximum ψ∗.

2. If π(v) = ∩, the children of v are sorted in a non-decreasing order from left
to right based on their ψ∗, i.e. the left child has the minimum ψ∗.
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3. if π(v) = − and the corresponding expression is A − B, the subtree corre-
sponding to A is the left child of v and the subtree corresponding to B is
the right child of v.

We will need the following definitions in the paper. For any node v of a tree
T , we use p(v) to denote the direct parent of v. Also, we use T [v] to denote
the subtree of T rooted at v. For any three numbers x, y, z ≥ 0, we use

(
z

x,y

)
to

denote the number of ways that two sets X ⊆ {1, 2, . . . , z} and Y ⊆ {1, 2, . . . , z}
can be chosen such that |X | = x, |Y | = y, and X ∪ Y = {1, 2, . . . , z}.

3 Algorithm

3.1 Basic Operations on Partly Expanded B+-Trees

We first explain how we can apply the basic operations union, intersection, delta,
and minus to two given partly expanded B+-trees in optimal time. Note that
as long as the algorithm uses edges of a partly expanded B+-treeto reach other
nodes of the tree for the first time rather than trying to “jump” to new nodes,
a partly expanded B+-tree essentially behaves analogously to a B+-tree and
operations can be performed in the same asymptotic cost. The reason is that
once the algorithm reaches any not-expanded node for the first time, it can
expand the node by creating its children (but not expanding them) in constant
time. So, we explain the base algorithms for B+-trees.

Evaluating union and intersection of two B+-trees with n and m leaves can be
performed in time O(m log n+m

m ) [7]. To apply the minus operation on B+-trees,
one can find the common members between two subtrees using the intersection
operation and then use the following lemma (proof is omitted):

Lemma 1. Given a B+-tree with n nodes and a set of m leaves on it, the cost
of deleting those nodes is O

(
m log n+m

m

)
.

3.2 Overview of the Algorithm

The algorithm first specifies some nodes, called “independent nodes” in the tree.
A node v is defined as independent if v is the root or ψ(v) ≤ ψ∗(p(v)); otherwise,
v is dependent. The result of an independent node is evaluated entirely confined
to the subtree rooted at it, and without using anything outside this subtree.

For an independent node v, the maximal subtree of T [v] that includes v but
has no other independent node as an internal node is called the dependant tree
of v, and is denoted by Tv. Thus, each leaf of Tv is either a leaf of T or an
independent node.

We consider independent nodes and compute their results in a bottom-up
fashion. Thus, when computing the result of an independent node v, result of all
leaves of the dependant tree of v are previously computed and the algorithm has
access to the corresponding partly-expanded B+-trees. In the following sections
we discuss how the result of such a node v can be computed.
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3.3 Union and Delta Independent Nodes

For an independent union or delta node v, it is easy to see that both children
u1 and u2 of v are independent. So, the problem for such a node v reduces to
computing the union or delta of two partly-expanded B+-trees, which is discussed
in Section 3.1

3.4 Intersection and Minus Independent Nodes

Suppose v is an independent node. We call the left most leaf of Tv the key leaf
of v, and we denote it by kv. Let Kv be the result of kv. The result of v will be
a subset of Kv. In particular, if we define K ′

v to be the set of elements in Kv

that also appear in the result of at least another leaf of Tv, the result of v is a
subset of K ′

v if π(v) = ∩ and is Kv minus a subset of K ′
v if π(v) = −.

For every element e in K ′
v, the algorithm makes a list of all leaves of Tv having

e in their results in the following way: considering leaves of Tv, except kv, from
left to right, it computes the intersection of the result of each leaf � of Tv with
Kv and for every element e in the intersection, the algorithm adds � to the
corresponding list of e. Then, for any element e of Kv, the algorithm decides
whether e is in the result of v or not, using the method described in the next
theorem.

Theorem 1. After a linear time one-time preprocessing on a set expression tree
T , there is an algorithm that given, as the input, any element e and node v and
the list L of all leaves of Tv containing e in their results in order from left to
right, it can determine if e is in the result of Tv in time linear to the size of L.

Proof. As a one-time preprocessing the algorithm makes the following two data-
structures: the first data-structure is the one by Harel and Tarjan [8] using which
it is possible to find the lowest common ancestor of any two nodes n1 and n2
of Tv, denoted by lca(n1, n2), in constant time. The second data-structure, can
determine, for a node n and an ancestor a of n, if among nodes from the path
from a to n, not including a and n, there is a minus node such that n is in its
right subtree or there is an intersection node. If there exists such a node in the
path, we would say a eliminates n.

We consider an empty stack S and push leaves of L in S, in order from
left to right. After pushing each leaf, we repeat the following procedure until
less than three nodes remain in the stack or no more change is made. Suppose
n1, n2, and n3 are the top three nodes in S in order (n1 is the top one). If
lca(n1, n3) 
= lca(n2, n3) = n2,3, we know there will be no more node of T [n2,3]
to be processed any more; so we pop n1, n2, and n3 from S, and push n2,3 into S
if and only if e will be in the result of n2,3. This can be determined based on the
operator of n2,3. If it is a union, delta, or intersection, e is in the result of n2,3 if
n2,3 eliminates at most one, exactly one, and none of n2 and n3, respectively. If
n2,3 is a minus node, then e is in the result of n2,3 iff n2,3 eliminates n3 or does
not eliminate n2. We also push n1 into S. The running-time is linear in L. �
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Finally, if π(v) = ∩, the algorithm builds a fully-expanded B+-tree on the ele-
ments of K ′

v that are in the result of v and returns it. If π(v) = −, the algorithm
removes the elements of K ′

v that are not in the result of v from K and returns
the resulted partly-expanded B+-tree.

3.5 Running Time

The following lemma shows the running time of the algorithm.

Lemma 2. The total processing time to evaluate an expression tree is∑
v∈leaves−keys

ψ∗(v) lg
(

ψ(v)
ψ∗(v)

+1
)
+

∑
v∈independent−keys

ψ∗(v) lg
(
ψ∗(p(v))
ψ∗(v)

+ 1
)
, (1)

where leaves is the set of all leaves but the left-most leaf of T , independents is
the set of independent nodes and keys is the set all key leaves.

Proof. Considering any independent node v, we prove that the time consumed
to evaluate the result of Tv can be written as the sum of contribution of leaves
of Tv to Equation 1. Since every leaf and independent node of the main tree is
the leaf dependant tree of exactly one independent node, this will conclude the
proof.

First suppose v is a union or delta node v with children u1 and u2, which
are clearly leaves in Tv. As v is independent, ψ∗(v) = ψ(v) = ψ∗(u1) + ψ∗(u2)
and for each i = 1, 2, ψ(ui) = ψ∗(ui). One of u1 and u2 is a non-key indepen-
dent node. Thus the cost of computation for all such nodes v is bounded by∑

v∈independent−keys ψ
∗(v) lg

⌈
ψ∗(p(v))

ψ∗(v) + 1
⌉
.

Now consider the case when v is a minus or an intersection node. It can be seen
that ψ∗(v) = ψ∗(uk) for uk the key leaf of Tv. Thus, since every internal node of
Tv other than v is dependant, for every leaf u of Tv we have ψ∗(p(u)) = ψ∗(uk).
Therefore, the cost for every non-key independent leaf of Tv is the cost of taking
an intersection between the result u, which is of size ψ(u) = ψ∗(u) and a B+-tree
of size at most ψ∗(uk) = ψ∗(p(u)). For non-key non-independent leaves of Tv

also, the cost will be the cost of an intersection between a B+-tree of size ψ(u)
and another one of size ψ∗(uk) = ψ∗(p(u)) = ψ∗(u). �


4 Lower-Bounds

In this section, we argue on the optimality of the proposed algorithm. Similar
to our previous work [6], we obtain two lower-bounds which together show the
algorithm is optimal. We prove the first lower-bound in the most general case of
types of trees. Although proving the second lower-bound seems difficult in the
general case, we show that the algorithm is optimal on various types of expression
trees. These trees consist of union, intersection and symmetric difference operator
nodes with a possible difference operator as the root node. We conjecture that
the second lower-bound applies even in the most general types of trees.
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We fix a root result set OT of size ψ∗(Root(T )). These elements stem from the
leaves of the tree and come up the tree level by level according to the operation
nodes. We define the notion of proof labelling which captures the trace-back of
nodes that had an impact on the presence of an element in the final result. A
proof labelling is formally defined as follows:

Definition 2. Given a signature T , Λ : VT -→ 2OT is a proof labelling for T if
it has the following properties:

1. Λ(Root(T )) = OT .
2. For every vertex v ∈ VT , |Λ(v)| = ψ∗(v).
3. if v ∈ VT − leaves(T ) and u1 and u2 are children of v, Λ(u1)∪Λ(u2) = Λ(v)

if v is a union or delta node, Λ(u1) = Λ(u2) = Λ(v), if v is an intersection
node, and Λ(u1) = Λ(v) and Λ(u2) ⊆ Λ(v) if v is a difference node.

Of course, it is possible that there exist more than one proof labelling for a
signature T and a set OT .

We introduce an adversary B which answers queries such that OT becomes
the result of the root node. The adversary B chooses a proof labelling Λ among
all possible proof labellings and answers queries according to it. The adversary
fixes the input gradually such that it is always consistent with the history of the
queries it has answered.

Members of the sets associated with leaves in the input being fixed will be
triples of integers which are compared in a lexicographical manner. In particular,
members of OT are of the form (i, 0, 0), where 1 ≤ i ≤ |OT | is an integer.
B divides the sequence of members of every leaf v of T into ψ∗(v) = |Λ(v)|
consecutive regions of size

⌊
size(v)
ψ∗(v)

⌋
or

⌈
size(v)
ψ∗(v)

⌉
. Each of ψ∗(v) regions in a leaf

is named after the corresponding element in the proof labelling Λ(v): if the ith
biggest member of Λ(v) is (a, 0, 0), then the ith region of v is called an a-region.
B initializes the first coordinates of all members of an a-region R to a at the
beginning. Thus, given a member x of an a-region and a member y of a b-region
such that a 
= b, whenever a query (x, y) is submitted, B can answer the query
without any knowledge of the second and the third coordinates.

For any region R, the second coordinate of exactly one element of R, which
is called the crucial member of R, will be zero. The strategy is to determine
the second coordinates of triples of a region R in such a way that A does not
touch the crucial member of R before touching log |R| members of R where |R|
denotes the length of R. The third coordinates of non-crucial members are zero.

The first lower-bound comes directly from the following theorem.

Theorem 2. There is an adversary that can force A to touch all crucial mem-
bers of all regions of deep, where deep is the set of all elaves of T that have an
ancestor v such that π(v) = ∩ or v is a right child of a minus node.

We provide proof for Theorem 2 in section 4.1. An argument analogous to binary
search as given in [6] yields the first lower-bound from the premise:
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Theorem 3 (First Lower-Bound). There is an adversary that forces A to
submit at least L1 =

∑
v∈deep ψ

∗(v) · lg
⌈

size(v)
ψ∗(v) + 1

⌉
queries, if A wants to touch

all crucial members of all regions of deep. �


The third coordinates of the crucial members are determined in a manner that
the algorithm A would have to determine which crucial members belong to the
same region; we define two crucial members as similar if they both belong to
a-regions for some 1 ≤ a ≤ |OT |.

The second lower-bound is obtained from the fact that the algorithm must
eventually acquire enough knowledge to be able to determine the proof labelling
the adversary has fixed. The fact is implied by the claim that the algorithm must
have the knowledge to determine all similar members to any particular crucial
member which we prove in section 4.2. Given this premise, one can prove as in [6]
that the algorithm can determine the proof labelling. Therefore, the number of
queries the algorithm submits is at least the logarithm of the number of possible
proof labellings. The number of proof labellings is the product over all nodes
v of the number of ways Λ(v) can be distributed into Λ(u1) and Λ(u2) of its
children which abide the definition of proof labelling. One can verify that this
number is

( ψ∗(v)
ψ∗(u1),ψ∗(u2)

)
whether v is union, intersection, symmetric difference,

or subtraction:

Theorem 4 (Second Lower-Bound). If algorithm A knows the set of all
similar members to any crucial member, then it has submitted at least L2 =
log6

(∏
v

( ψ∗(v)
ψ∗(u1),ψ∗(u2)

))
, where the product is taken over all internal nodes. �


Theorems 3, 4 together yield our desired lower-bound (proof is omitted):

Theorem 5 (Main Lower-Bound). For any signature T and any determin-
istic comparison-based algorithm A, if A knows the set of all similar members
to any crucial member after an interaction with the adversary, A has submitted
at least∑

v∈leaves-keys

ψ∗(v) lg
(

ψ(v)
ψ∗(v)

+ 1
)

+
∑

v∈independent−keys

ψ∗(v) lg
(
ψ∗(p(v))
ψ∗(v)

+ 1
)
∈

queries. �


4.1 The First Lower-Bound

We sketch the proof of theorem 2 (the first lower-bound) in this section. We
prove that all crucial-members of leaves must be touched by a query. The proof
we present in this section is a similar but a less sophisticated than that of the
second lower-bound section 4.2.

We can transform the operation tree into an equivalent tree with only union,
delta, and intersection operations and complement operation on the leaves. We
fix an element (a, 0, 0) ∈ OT and create a subtree of the original tree, denoted by



374 E. Chiniforooshan, A. Farzan, and M. Mirzazadeh

T (a), that consists of nodes v whose Λ(v) contain (a, 0, 0). Moreover, we assume
that all the internal nodes of T (a) have exactly two children (the nodes with only
one children will be contracted). By the definition of proof labelling, a is in the
result of T if and only if o is in the result of T (a).

As queries (x, y) arrive, the adversary can answer x < y, x = y, or x > y
only by looking at their first two coordinates if x and y do not both belong to
an a-region for some (a, 0, 0) ∈ OT or at least one of x or y is not a crucial
member. Otherwise, the first two coordinates of x and y are the same. The third
coordinate of elements are set by the adversary at the first time they are touched.
So, if x or y are touched before, the adversary can answer the query without any
problem; otherwise, if one of them, say x, is being touched for the first time, the
adversary should set the third coordinate of x first, and then answer the query.

Let x be a crucial member of an a-region of �, where � is a leaf of T (a). We
say that � is a-touched if the crucial member of the a-region of � is touched. The
adversary sets the third coordinates in a fashion that makes sure the result of
T (a) cannot be computed unless all the leaves of T (a) are a-touched. It is possible,
because the adversary can use the following method. For simplicity, we assume
that if the expression has minus operations, we rewrite the expression so that it
is minus-free but some of the sets are complement. In other words, there are no
minus nodes in the tree, but some of the leaves of the tree are complement.

1. Let v be the first ancestor of � that has at least another leaf, other than �,
that is not a-touched. If there is no such an ancestor, it means that � is the
only leaf of T (a) that is not a-touched; then,
(a) If � is a normal node, the adversary sets the third coordinate of x to

zero.
(b) Otherwise, if � is a complement node, the third coordinate is set to a

unique positive integer.
2. If (π(v), �) ∈ {(∩, normal), (∪, complement), (∆, complement)}, then the ad-

versary sets the third coordinate of x to zero.
3. Otherwise, if (π(v), �) ∈ {(∩, complement), (∪, normal), (∆, normal)}, the

adversary sets the third coordinate of x to a unique positive integer.

By answering queries in this manner, and assuming that T (a) has at least
two leaves, the adversary guarantees at any point that the algorithm never has
enough knowledge to ensure (a, 0, 0) is in the root result, unless all the leaves of
T (a) are a-touched. The fact that T (a) has at least two leaves if and only if T (a)

has a minus or intersection node completes the proof of Theorem 2.

4.2 The Second Lower-Bound

In this part, we prove that, if T is of a special shape, there is an adversary B
that can force any algorithm A to submit enough queries to determine the set of
all similar members to any crucial member. This enables us to use Theorem 4.
More precisely, we prove the following:
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Theorem 6. Given a complement-free operation signature T where difference
operation is only allowed at the root, for any deterministic comparison-based al-
gorithm A, there exists a generous adversary B that can force A to gain enough
information to determine similar members to any crucial member. A generous
adversary is an adversary that gives one bit of additional information b in an-
swering to each query (x, y) of A: b is one if and only if both x and y are crucial
members of a-regions for some (a, 0, 0) ∈ OT .

Note that by requiring the adversary to be generous, the number of possible
answers that an algorithm can get from the adversary for each query will be six,
which is constant. In order to prove Theorem 6, we define a game between A and
the generous adversary B and prove that B has a winning strategy for the cases
in which at most one difference operation is allowed and that operation must be
at the root of T . We leave the question of whether B has a winning strategy for
all expression trees open. Thus, for proving that the set expression evaluation
algorithm we proposed works optimum for any expression, one has only to prove
that B has a winning strategy in the game explained in the following proof of
Theorem 6.

Proof Sketch. Similar to Section 4.1, B knows how to answer queries (x, y) if
either of x or y is not a crucial member or if x and y are not similar, based
on the first two coordinates of x and y. Our adversary in this section differs
from the adversary in Section 4.1 in the way they set the third coordinate of
crucial members. So, we can assume that x and y are crucial members and they
both belong to a-regions for some (a, 0, 0) ∈ OT . Similar to the proof of the
first lower-bound in Section 4.1, a subtree T (a) of the original tree consisting of
leaves with a-regions and their ancestors is created. Then, we defined a game
between A and B on T (a): the algorithm submits queries comparing two crucial
members and B should response in a non-contradictory manner. For simplicity,
with slightly abusing the notation, when we talk about a query (�1, �2) on T (a),
where �1 and �2 are leaves of T (a), we mean a query (x, y), where x is the crucial
member of the a-region of �1 and y is the crucial member of the a-region of �2.
Also, we may say a leaf � is set if the third coordinate of the crucial member of
its a-region is set to a positive integer; otherwise, we say � is unset. The game
finishes when A has a proof that the result of T (a) is empty or not empty. B
aims to avoid premature ending of the game before A has enough information
for determining the set of members similar to a crucial member of an a-region.

We keep the history of queries on crucial members of an a-region submitted by
A in a graph G(a). More precisely, the vertices of G(a) are the leaves of T (a) and
there is an edge between �1 and �2 in G(a) if and only if A has submitted a query
(�1, �2). Moreover, the label of the edge between �1 and �2 is ‘<’, ‘=’, or ‘>’, if
the B’s answer to the query (�1, �2) has been <, =, or >, respectively. Note that,
because of the generousity of B, A has enough information to determine similar
members to a crucial member of an a-region if and only if G(a) is connected.
Therefore, the goal of B is to avoid ending of the game before G(a) gets connected.
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We can make a number of assumptions about the game. First, since repeating
an already submitted query is useless, we can assume that at most

(
n
2

)
queries

will be submitted on T (a), where n is the number of leaves of T (a). Second, since
G(a) is connected for n = 1, we can assume that n > 1, and hence, for every leaf
� of T (a), � ∈ deep.

Let (�(i)1 , �
(i)
2 ) be the ith query of A. In order to respond to this query, B looks

at the third coordinates of �(i)1 and �
(i)
2 . If both �

(i)
1 and �

(i)
2 are set, then B can

answer the query without doing anything further. If only one of them, say �
(i)
1 , is

set, then B answers �
(i)
1 > �

(i)
2 , without setting the third coordinate of �(i)2 . This

will be consistent with future queries, because of the way that B sets the third
coordinates in the following case. The final case, which is more involved, is the
case that both �

(i)
1 and �

(i)
2 are unset.

We need the following definitions: a node v of T (a) is called unimportant if

1. v is a set leaf.
2. v is a child of an unimportant node.
3. π(v) ∈ {∪, ∆} and all the children of v are unimportant.
4. π(v) = ∩ and at least one of its children is unimportant.

All other nodes are called important nodes. Also, for two leaves � and �′ of T (a)

we say that � is G(a)-equal to �′ if � = �′ or there is a path with label ‘=’ from
� to �′ in G(a). We define f(�) to be the first grand parent v of � that has a
v-unlinked leaf that is not G(a)-equal to �; a v-unlinked leaf is an important leaf
of T (a)[v] that is not G(a)-equal to any node outside T (a)[v]. Finally, we use g(�)
to denote any important leaf that is G(a)-equal to �. The answering strategy
makes sure that g(�) always exists if � is unset.

Now, if �(i)1 is G(a)-equal to �
(i)
2 , B answers �(i)1 = �

(i)
2 and does not set the third

coordinates of them. If there is a value of x ∈ {1, 2} such that π(f(g(�(i)x ))) ∈
{∪, ∆}, or π(f(g(�(i)x ))) = − and g(�(i)x ) is in the right subtree of f(g(�(i)x )), B
answers �

(i)
x > �

(i)
3−x and sets the third coordinate of �

(i)
x , and all other leaves

that are G(a)-equal to �
(i)
x , to

(
n
2

)
+ 1 − i. Otherwise, B answers �

(i)
1 = �

(i)
2 and

does not set the third coordinates of them.

5 Conclusion

We considered the complexity of evaluating a general set expression contain-
ing complement, union, intersection, difference, and symmetric difference. These
expressions are the most general types of expressions with binary and unary op-
erations. We gave an algorithm to evaluate such expressions in the comparison
model.

We argued that the algorithm performs the optimal number of comparisons
by giving a matching lower bound in the cases where the expression does not
contain complement and the only difference operation is at the root of the cor-
responding expression tree. We conjecture that the algorithm is optimal over all
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set expressions. We showed that first lower bound in section 4.1 applies to all
types of set expressions. However, the second bound only applies to the special
types of expressions as stated.

Proving the second lower bound for all types of expressions remains open as
a future work.

References

1. Barbay, J., Kenyon, C.: Adaptive intersection and t-threshold problems. In: SODA,
pp. 390–399 (2002)

2. Bille, P., Pagh, A., Pagh, R.: Fast evaluation of union-intersection expressions.
In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 739–750. Springer,
Heidelberg (2007)

3. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

4. Brown, M.R., Tarjan, R.E.: A fast merging algorithm. J. ACM 26(2), 211–226
(1979)

5. Brown, M.R., Tarjan, R.E.: Design and analysis of a data structure for representing
sorted lists. SIAM Journal on Computing 9(3), 594–614 (1980)

6. Chiniforooshan, E., Farzan, A., Mirzazadeh, M.: Worst case optimal union-
intersection expression evaluation. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 179–190.
Springer, Heidelberg (2005)
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Abstract. We study the function evaluation problem in the priced information
framework introduced in [Charikar et al. 2002]. We characterize the best possible
extremal competitive ratio for the class of game tree functions. Moreover, we
extend the above result to the case when the cost of reading a variable depends on
the value of the variable. In this new value dependent cost variant of the problem,
we also exactly evaluate the extremal competitive ratio for the whole class of
monotone Boolean functions.

1 Introduction

Problem Statement. A function f over a set of variables V = {x1, x2, . . . , xn} is
given and we want to determine the value of f for a fixed but unknown assignment σ,
i.e., a choice of the values for the variables of V . We are allowed to adaptively read the
values of the variables. Each variable xi has an associated non-negative cost cxi which
is the cost incurred to read its value xi(σ). For each i = 1, . . . , n, the cost cxi is fixed
and known beforehand. The goal is to identify and read a minimum cost set of variables
U ⊆ V whose values uniquely determine the value f(σ) = f(x1(σ), . . . , xn(σ)) of f
w.r.t. the given assignment σ, regardless of the values of the variables not probed. We
say that such a set U ⊆ V is a proof for f with respect to the assignment σ.

An evaluation algorithm A for f adaptively reads the variables in V until the set
of variables read so far is a proof for the value of f . Given a cost assignment c =
(cx1 , . . . , cxn), we let cf

A(σ) denote the total cost incurred by the algorithm A to eval-
uate f under the assignment σ and cf (σ) the cost of the cheapest proof for f under the
assignment σ. We say that A is ρ-competitive if cf

A(σ) ≤ ρcf (σ), for every possible
assignment σ. We use γA

c (f) to denote the competitive ratio ofA, that is, the minimum
ρ for which A is ρ-competitive. The best possible competitive ratio for any determin-
istic algorithm, then, is γf

c = minA γA
c (f), where the minimum is computed over all

possible deterministic algorithmsA.
The extremal competitive ratio γA(f) of an algorithm A is defined by γA(f) =

maxc γ
A
c (f). The best possible extremal competitive ratio for any deterministic algo-

rithm is γ(f) = minA γA(f). This is a measure of the structural complexity of f
independent of a particular cost assignment and algorithm.
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Function evaluation problems have been extensively studied in AI, particularly in the
theory of computer aided games. The strategic evolution of the game is usually mod-
eled by a so called game tree [8, 18, 16]. In a game tree (formalized in Sect. 4), each
node represents a state of the game. The root is the current state. For each node/state ν,
its children are the set of possible states reachable from ν given the moves available to
the player moving in state ν. The possible moves for the two players are represented by
alternating levels of edges. A game tree of a certain depth is built by a computer in order
to explore the possible developments of the game from the current position. By assign-
ing to each leaf-state an estimate of the “goodness” of that state for the computer-player,
it is possible to evaluate all the inner states. The most fruitful move for the computer is
the one corresponding to the edge from the root to its children of maximum value. In
general, the evaluation of some leaf state might involve expensive computations. Since,
on the other hand, not all the leaf-state evaluations are needed to compute the node of
maximum value in the first level, we have here an instance of the problem of evaluating
a function by only looking at a cheap set of its variables.

In this paper we characterize the extremal competitiveness for the class of game tree
functions. Moreover, we also study the function evaluation problem when the cost of
reading a variable depends on the value of the variable. The evaluation algorithm knows
the cost cx(y) of reading x when x(σ) = y, for each variable x and for each value y
that the variable x can take.

This above model has applications in several situations. Consider, e.g., the decision
making process of a physician—or of a computer aided decision making system—who
has to decide the cheapest sequence of tests to perform on a patient in order to reli-
ably diagnose a given disease. Different tests typically involve different costs. In this
framework, costs are usually understood in an extended meaning encompassing the ac-
tual monetary costs, the distress of the patient, and the possible side-effects of the tests.
Also, tests’ costs might be dependent on the outcome: a single lab analysis might un-
dergo several phases, some of which are only performed depending on the result of the
previous ones. Analogously, there are tests that if positive, are necessarily followed by
a sequence of other tests—on which the decision maker has no alternative. In this case,
the cost of the “triggering” test can be considered as the sum of the whole set, in case its
outcome is positive, and only its own cost if the outcome is negative. It is then natural
to consider models in which tests’ costs are dependent on the outcome of the test itself.
We refer the interested reader to [21] and references quoted therein for a remarkable
account of several types of costs to be considered in inference procedures.

Besides the two examples above, function evaluation problems are found in a
plethora of different areas both in theoretical and applied computer science like
telecommunications [14], manufacturing [9], computer networks [10], satisficing search
problems [11]. For more on automatic diagnosis problems and computer aided medical
systems see also [1,15] and references therein. Finally, the function evaluation problem
arises in query optimization, a major issue in databases [13].

Our Results. We obtain the tight extremal competitive ratio of monotone Boolean func-
tions in the new value dependent cost model extending the previous result of [6]. This
is achieved via an adaptation of the Linear programming based approach of [6].
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Outside the Boolean realm, we focus on the class of game tree functions. We obtain
the tight extremal competitive ratio for game trees. In particular we show that for any
game tree function f, but for special cases that we also characterize, the extremal com-
petitiveness γ(f) is equal to the maximum size of a certificate for f, i.e., of a minimal
set of variables which allow to prove an upper or lower bound on the value of f, for some
assignment σ. In fact, we provide a polynomial algorithm with competitiveness γ(f) for
any game tree function f. We also extend this result to the value dependent cost model.
Our result significantly improves the previous best known result in [4], where a polyno-
mial time algorithm was provided which achieves γ(f) competitiveness over a restricted
set of assignments, namely only those σ’s for which exactly one variable has value f(σ).

Related Work. Most of the earlier work on function evaluation problems was done in
the classical unitary cost model for both deterministic and randomized algorithms or
assuming some statistical knowledge on the values of the variables (see, e.g., [20, 19,
17,12]). The competitive analysis scenario was proposed by Charikar et al. in [2] where
several classes of functions were studied in this novel framework, including the class
of game trees. For game trees, Charikar et al. [2] presented a pseudo-polynomial time
algorithm with competitiveness 2γf

c . The extremal competitiveness for game trees was
also studied in [4] where a polynomial time algorithm was provided achieving com-
petitiveness γ(f) for any assignment σ such that there exists exactly one variable with
value f(σ). In [5] the authors showed a polynomial time algorithm with competitive-
ness 4γf

c . However, to date, there was no complete and exact characterization of the
optimal competitiveness for the evaluation of game trees.

All the above results are for the case when the cost is independent of the value of
the variable. In fact, this is the first paper taking into account the dependency of costs
on the values in the competitive analysis scenario. In [1] function evaluation with value
dependent costs was also discussed, even though in the probabilistic model considered
in [1] the dependency on the values can be absorbed in the distribution assigned to the
values of the variables. In [5], the case of unknown costs was also considered. This is
an attempt to address cases in which the algorithm has a reduced knowledge on the cost
assignment. It is important to notice that the model of [5] cannot be used to solve the
type of problems addressed here, and vice versa.

Due to the space limitation, some proofs are omitted. For more details, the interested
reader can refer to [7].

2 Preliminaries: The Linear Programming Approach

Let f : D → R be a real-valued function defined over a set of variables V =
{x1, . . . , xn}, where D ⊆ Rn. For x ∈ V , let D(x) denote the set of possible val-
ues that the variable x can take in the elements of the domain of f , that is, D(x) is the
projection of the set D on the x coordinate. For x ∈ V and y ∈ D(x), let cx(y) ≥ 0
denote the cost for querying the variable x, given that the value of x in the (unknown)
assignment σ is x(σ) = y. Furthermore, let cmin

x = min{cx(y) : y ∈ D(x)} and
cmax
x = max{cx(y) : y ∈ D(x)}, for all x ∈ V . We allow that the costs of query-

ing a certain variable are value dependent. In other words, the functions cx(y) are not
necessarily constant as functions of y, i.e., it is possible that cmin

x 
= cmax
x .
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We assume that a bound r ≥ 1 is fixed (and known to the algorithm) on the maximum
possible ratio between two costs of queries for a single variable. More precisely, we
assume that the cost function satisfies, for all x ∈ V , cmax

x ≤ rcmin
x . Equivalently, for

every x ∈ V , and for every y1, y2 ∈ D(x), we have 0 ≤ cx(y1) ≤ rcx(y2). The set of
all such assignments of cost functions will be denoted by Cr(f). Note that without such
bound, no algorithm could guarantee any competitiveness.

In order to make explicit the dependency of our results on the bound r, we shall now
rephrase the definition of the competitive measures.

Definition 1. Let r ≥ 1. The r-extremal competitive ratio of a function f : D →
R, where D ⊆ Rn, is defined as γr(f) = minA γA

r (f) where the minimum
is taken over all deterministic algorithms that evaluate f , and where γA

r (f) =

maxc∈Cr(f) maxσ∈D
cf

A
(σ)

cf (σ) .

It is not hard to see that every ρ-competitive algorithm for the value independent cost
model is an (r×ρ)-competitive algorithm in the value dependent cost model. Therefore,
γr(f) ≤ rγ(f). However, we shall see that this estimate of γr(f) loses an additive term
of r − 1. For this we devise a variant of the Linear Programming Approach introduced
in [6] which is adapted to the value dependent cost model. We denote this new scheme
by LPA∗.

In order to describe the LPA∗ we shall need some new notation. Let P(f) denote
the set of inclusion-wise minimal proofs of f, i.e., the family of sets X such that there
exists at least one assignment σ with respect to which X is a proof for f, while no
subset of X is. Consider the following linear program LPf :

LPf :

{
Minimize

∑
x∈V

s(x) :
∑
x∈P

s(x) ≥ 1 ∀P ∈ P(f) and s(x) ≥ 0 ∀x ∈ V

}

Suppose that the set of variables already read is Y . We shall denote with fY the
restriction of f with respect to Y, that is, the function over V \Y obtained from f by
fixing the values of the variables in Y as given by the valued read so far, according
to the underlying fixed and unknown assignment σ. Let sY be a feasible solution to
the linear program LPfY . The LPA∗ chooses a variable u that minimizes the value of
cmin

x

sY (x) . (For definiteness, we let 0
0 := 0. This assures that the variables of zero cost are

always queried before the others.) Then, the cost assignment c is updated to a new cost
assignment c̃ defined as follows: For x ∈ V \(Y ∪ {u}) and y ∈ D(x), we let

c̃x(y) = cx(y)− δcx(y) where δcx(y) = cx(y) · c
min
u

cmin
x

· sY (x)
sY (u)

. (1)

Note that the quantities δcx(y) are well-defined. More importantly, the values of c̃x(y)
are chosen so that c̃ ∈ Cr(f{u}). (To see this, observe that equality c̃x(y1)/c̃x(y2) =
cx(y1)/cx(y2) holds for every x ∈ V \{u} and every y1, y2 ∈ D(x).) The above proce-
dure is repeated over fY ∪{u} using the new costs c̃, until the value of f is determined.

The linear programming approach for the value dependent cost model is formally
described in Fig. 1, where for the sake of efficiency, for each x ∈ V \ Y only cmin

x is
actually updated. An implementation of this meta-algorithm is then obtained by fixing
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LPA∗(f, V, c)
Y ← ∅;
While the value of f is unknown

Let sY be a feasible solution for LPfY .

Let u be the unread variable x that minimizes cmin
x

sY (x)
.

Read(u)

For each v ∈ V \ Y do cmin
v ← cmin

v − sY (v) × cmin
u

sY (u)

Y = Y ∪ {u}
End While
Return the value of f

Fig. 1. The “value dependent cost” Linear Programming Approach

the rule used to choose at each iteration the feasible solution of LPfY , where Y is the
set of variables already probed.

Lemma 1. Let LP be an implementation of the LPA∗. For each Y ⊂ V, let sY (·) be
the feasible solution used by LP when the set of variables already read is Y . Then, for
every r ≥ 1,

γLP

r (f) ≤ r · max
Y ⊂V

⎧⎨⎩ ∑
v∈V \Y

sY (v)

⎫⎬⎭− r + 1.

Proof. If f has only one variable the result holds. We assume as induction hypothe-
sis that the result holds for every function that depends on less than n variables. Let
f be a function that depends on n variables. Let c ∈ Cr(f) be a cost function such
that γLP

c (f) = γLP
r (f), and let σ be an assignment for f that maximizes the ratio

cf
LP

(σ)/cf (σ). For U ⊆ V , we denote c(U) =
∑

x∈U cx(x(σ)). Furthermore, let X
be a cheapest proof for f w.r.t. cost function c and assignment σ. Let us denote s∅(·)
with s(·). It is not hard to see that the 0-cost variables do not affect the competitiveness
of LP. Then, let u be the first variable selected by LP with cmin

u > 0. Therefore, in
particular, cu(u(σ)) > 0 and cmin

x > 0 for all variables x ∈ V . (Here and throughout
the proof, cmin

x denotes the value before the update.) For x ∈ V \{u} and y ∈ D(x),
we define the new cost function c̃(·) as in (1).

The total amount that the algorithm spends on f to prove the value of σ is at most
the total amount of change in the costs, summed over all the variables, plus the amount
that the algorithm spends on the remaining iterations, that is, the cost spent on f{u} to
prove the value of σV \{u} with respect to the new costs c̃(·). In formulae:

cf
LP

(σ)≤
∑
v∈V

δcv(v(σ))+ c̃
f{u}
LP

(σV \{u})=
cmin
u

s(u)
·
∑
v∈V

cv(v(σ))
cmin
v

·s(v)+ c̃
f{u}
LP

(σV \{u}) ,

(2)
where c̃ is the cost function defined above.

Let X ′ be a cheapest proof for f{u} w.r.t. cost function c̃ and assignment σV \{u}.
Recall that X is a cheapest proof for f w.r.t. cost function c and assignment σ. Note
that X\{u} is also a proof for f{u} w.r.t. assignment σV \{u}. Then,
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c(X) =
∑
v∈X

δcv(v(σ)) + c̃(X\{u}) ≥ cmin
u

s(u)
·
∑
v∈X

cv(v(σ))
cmin
v

· s(v) + c̃(X ′) . (3)

Putting together the inequalities (2) and (3) and noting that c̃
f{u}
LP

(σV \{u})/c̃(X ′) ≤
γLP

r (f{u}), we have

γLP

r (f) = γLP

c (f) =
cf

LP
(σ)

c(X)
≤ max

⎧⎨⎩
∑

v∈V
cv(v(σ))

cmin
v

· s(v)∑
v∈X

cv(v(σ))
cmin

v
· s(v)

, γLP

r (f{u})

⎫⎬⎭ .

We shall now bound the first term in the maximum. In order to simplify formulas, let
us write τv for cv(v(σ))/cmin

v . We have that the first term in the maximum becomes
�

v 	∈X τvs(v) +
�

v∈X τvs(v)
�

v∈X τvs(v)
≤
�

v 	∈X rs(v)
�

v∈X s(v)
+ 1 =

r
�

v∈V s(v) − r
�

v∈X s(v)
�

v∈X s(v)
+ 1

≤ r
�

v∈V

s(v) − r + 1,

where the first inequality follows by 1 ≤ τv ≤ r; the equality by writing the summation
over V \X as the difference between the summation over V and the one over X ; the
second inequality follows because

∑
v∈X s(v) ≥ 1 by definition of the linear program

LPf and the fact that X is a minimal proof for f . Therefore we have

γLP

r (f) ≤ max

{
r
∑
v∈V

s(v)− r + 1, γLP

r (f{u})

}
.

and since f{u} depends on less than n variables, the induction hypothesis yields the
desired result. �


3 Monotone Boolean Functions

By virtue of the above result, it is not hard to provide an upper bound on the extremal
competitiveness for monotone Boolean functions in the value dependent cost model.

Let ∆(f) = max
Y,σ

⎧⎨⎩ ∑
v∈V \Y

s∗Y,σ(v)

⎫⎬⎭ , where the maximum is taken over all possible

restrictions fY,σ of f (i.e., fY,σ is defined by an assignment σ of the values to the vari-
ables in Y ⊂ V ), and where s∗Y,σ(·) denotes an optimal solution of LPfY,σ . Recently,
Cicalese and Laber have proved in [6] that for a large class of functions, which includes
all Boolean functions,∆(f) is bounded above by PROOF (f), the size of a largest min-
imal proof of f . In particular, in conjunction with Lemma 1 this implies that for every
r ≥ 1 and for every Boolean function f , it holds that γr(f) ≤ r ·PROOF (f)− r+1 .

We shall now provide a lower bound that matches the above upper bound. For
monotone Boolean functions, minimal proofs are usually referred to as maxterms and
minterms. A maxterm (minterm) can be defined as a minimal set of variables such that
for any σ that sets their value to 0 (1) we have f(σ) = 0 (f(σ) = 1). This is used in
the following lemma which provides the matching lower bound by generalizing a con-
struction of [2] and [3]. We use k(f) and l(f) to denote the size of the largest minterm
and the largest maxterm of f respectively. Thus, PROOF (f) = max{k(f), l(f)}.
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Theorem 1. Let f be a monotone Boolean function. Then γr(f) ≥ r · PROOF (f)−
r + 1.

Proof. Consider an algorithm A for evaluating f . We construct an assignment σA which
is ‘bad’ for A. Let C be a largest minterm of f , i.e., |C| = k(f). For x ∈ C, we set
cx(1) = r, and cx(0) = 1. For x 
∈ C, we set cx(1) = cx(0) = 0. For all variables in C
but the last one read by A we let x(σA) = 1. All the other variables are set to 0.

The algorithm spends r(|C| − 1) + 1 to prove that f(σA) = 0. In fact, since C is a
minterm, A cannot conclude that f evaluates to 0 before reading all variables in C. On
the other hand, the cheapest proof costs exactly 1 since there is a maxterm of f whose
intersection with C is exactly the last variable read by A. Thus, γr(f) ≥ r(k(f)−1)+1.
By an analogous argument, one can prove that γr(f) ≥ r(l(f) − 1) + 1 yielding the
desired result. �

Combining this result with the above upper bound gives the exact value of γr(f) for
monotone Boolean functions.

Theorem 2. For every r ≥ 1 and for every monotone Boolean function f , we have

γr(f) = r ·max{k(f), l(f)} − r + 1 .

4 Game Trees

A game tree T is a tree, rooted at a node r, where every internal node has either a MIN
or a MAX label and the parent of every MIN (MAX) node is a MAX (MIN) node. Let V
be the set of leaves of T . Every leaf of V is associated with a real number, its value. The
value of a MIN (MAX) node is the minimum (maximum) of the values of its children.
The function computed by T maps the values of the leaves to the value of the root. We
shall identify T with the function it computes. Thus, if f is the function computed by
the game tree T , we shall also write T for f and TY for fY .

By a minterm (maxterm) of a game tree we shall understand a minimal set of leaves
whose values allow to state a lower (upper) bound on the value of the game tree. More
precisely, a minterm (maxterm) for a game tree T rooted at r is a minimal set C of
leaves of T such that if x(σ) ≥ � (x(σ) ≤ �), for each x ∈ C then T (σ) ≥ � (T (σ) ≤ �)
regardless of the values of the leaves y 
∈ C. We shall use the more general term certifi-
cate to either refer to a minterm or to a maxterm. We shall use FL

T and FU
T to denote

the family of all minterms and the family of all maxterms of T , respectively.
As an example, for the game tree function

T = max{min{x1, x2, x3},min{max{x4, x5}, x6}} ,
we haveFU

T = {{x1, x6}, {x2, x6}, {x3, x6}, {x1, x4, x5}, {x2, x4, x5}, {x3, x4, x5}}
and FL

T = {{x1, x2, x3}, {x4, x6}, {x5, x6}}.
These families can be obtained by the following recursive procedure:

• if r is a leaf then FL
T = FU

T = {{r}} ,
• otherwise, let T1, . . . , Tp be the subtrees rooted at the children of r. If r is a MIN

node thenFU
T =

⋃p
i=1 FU

Ti
and1 FL

T =
∏p

i=1 FL
Ti
. If r is a MAX node,FL

T =
⋃p

i=1 FL
Ti

1 For all families of sets F1,F2, . . . ,Fk we define
�

i Fi as follows:
�k

i=1 Fi = {X|X =�k
i=1 Xi, Xi ∈ Fi, Xi �= ∅}.
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and FU
T =

∏p
i=1 FU

Ti
. For the ease of notation, when the function/tree T is clear from

the context we shall simply write FU and FL for FU
T and FL

T .

By the above recursion, it can be verified that every maxterm and every minterm
have a unique variable in common. Notice that the number of certificates of a game tree
can in general be exponential in the number of leaves. Therefore, an efficient algorithm
will never explicitly construct the whole families of certificates.

We shall use k(T ) and l(T ) to denote the largest minterm and maxterm of T , respec-
tively. These quantities play a critical role in the following lower bound on the extremal
competitiveness of every algorithm that evaluates a game tree (in the value dependent
cost model).

Theorem 3. Let T be a game tree. If each certificate of T has size at least 2 then
γr(T ) ≥ r ·max{k(T ), l(T )} − r + 1.

Proof. The proof is exactly the same as the proof of Theorem 1. The fact that the cheap-
est proof is of cost 1 follows from the assumption that each certificate of T has size at
least 2. �


Upper Bound. We shall now employ the Linear Programming Approach for obtaining
an upper bound on the (r-)extremal competitive ratio for game trees that matches the
above lower bound.

We need to introduce some more notation. Let T be a game tree on V . Consider a run
of an algorithm A for evaluating T . Let Y ⊆ V denote the set of variables read by A at
some point during its run and let σY be the assignment of real numbers to the leaves in
Y corresponding to the variables read. Suppose that the restriction TY of T according
to the assignment given by σY is non-constant. Let C be a minterm (maxterm) of T .
We define the (current) value of C as the minimum (maximum) value in σY of the
leaves in Y ∩ C. We say that a minterm (maxterm) is completely evaluated if it is
entirely contained in Y . Let LB denote the maximum value of a completely evaluated
minterm (or −∞, if no minterm has been completely evaluated), and let UB denote
the minimum value of a completely evaluated maxterm (or∞, if no maxterm has been
completely evaluated). Note that if UB (LB) is finite, then every minterm (maxterm)
has a well-defined value.

In order to study the structure of a proof for T , it is useful to express the function
computed by T in terms of its certificates as follows. For every σ ∈ RV , we have:

T (σ) = max
CL∈FL

min{x(σ) : x ∈ CL} = min
CU∈FU

max{x(σ) : x ∈ CU} . (4)

It follows that LB (UB ) is the lower (upper) bound on the value of T (σ) for any as-
signment that extends σY . Moreover, since TY is assumed to be non-constant, we have
LB < UB .

The following lemma (whose proof is omitted due to space limitations) shows that
T can evaluate to any value between the two bounds.

Lemma 2. Let y ∈ R such that LB ≤ y ≤ UB . Then, there is an assignment σ ∈ RV

that extends the current partial assignment σY and such that T (σ) = y.
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We say that a minterm (maxterm) C is active if for each leaf x ∈ C ∩ Y we have
x(σY ) > LB (x(σY ) < UB). In words, a minterm (maxterm) C is active if the evalu-
ation of its unevaluated leaves can still lead to an improvement in the lower bound LB
(upper bound UB ), i.e., can provide information on the value of the game tree. Note
that if all leaves of a certificate C have already been read, then C is non-active.

The following lemma characterizes the proofs of the restricted game tree TY . By
saying that a set of variables P is a proof of (a value) y for (a function) f we mean here
that P is a proof for f w.r.t. an assignment σ s.t. f(σ) = y.

Lemma 3 (Proofs of a restricted game tree). Let P ⊆ V \Y . Then:

(1) [minterm proofs] Suppose that UB is finite. P is a proof of UB for TY if and only
if there is an active minterm CL of value at least UB such that CL\Y ⊆ P .

(2) [maxterm proofs] Suppose that LB is finite. P is a proof of LB for TY if and only
if there is an active maxterm CU of value at most LB such that CU\Y ⊆ P .

(3) [combined proofs] Let y ∈ (LB ,UB). P is a proof of y for TY if and only if there
is an active minterm CL of value yL and an active maxterm CU of value yU such
that LB < yU ≤ y ≤ yL < UB and such that (CL\Y ) ∪ (CU\Y ) ⊆ P .
If UB = ∞ then yL = ∞ is allowed. Similarly, if LB = −∞ then yU = −∞ is
allowed.

Proof. We shall prove (1) and (3). Item (2) can be proved similarly as (1).

(1): First, suppose that P is a proof of UB for TY w.r.t. an assignment σP of values
to the variables in P . Let LB ≤ y′ < UB , and consider the assignment σ′ that agrees
with σP on the variables in P and assigns y′ to the variables in V \(Y ∪ P ). By the
assumption on P , the restricted game tree TY evaluates to UB on σ′, or, equivalently,
T evaluates to UB on the assignment σ composed of σY and σ′. By equation (4), there
is a minterm CL such that min{x(σ) : x ∈ CL} = UB . In particular, CL is an active
minterm of value UB , with CL\Y ⊆ P (by the choice of y).

The other direction is considerably simpler. If there is an active minterm CL of value
at least UB such that CL\Y ⊆ P then assigning UB to each variable in P ⊇ CL\Y
makes CL evaluate to UB , which in turn raises the lower bound to UB , thus forcing
the game tree to evaluate to UB .

(3): Let LB < y < UB and suppose that P is a proof of y for TY w.r.t. an assignment
σP of values to the variables in P . Similarly as above, let LB ≤ y′ < y , and consider
the assignment σ′ that agrees with σP on the variables in P and assigns y′ to the vari-
ables in V \(Y ∪P ). By the assumption on P , TY evaluates to y on σ′, or, equivalently,
T evaluates to y on the assignment σ composed of σY and σ′. By equation (4), there
is a minterm CL such that min{x(σ) : x ∈ CL} = y. Then, CL is an active minterm
of value yL ≥ y, with CL\Y ⊆ P . Similarly, there is an active maxterm CU of value
yU ≤ y, with CU\Y ⊆ P .

For the converse direction, suppose that there is an active minterm CL of value yL

and an active maxterm CU of value yU such that LB < yU ≤ y ≤ yL < UB and such
that (CL ∪ CU )\Y ⊆ P . Since CL and CU are active, the sets CL\Y and CU\Y are
nonempty. Consider the assignment σP that assigns y to the variables in P ⊇ (CL\Y )∪
(CU\Y ). This makes CL evaluate to y, which implies T (σ) ≥ y for every assignment
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σ that simultaneously extends σY and σP . At the same time, CU gets evaluated to y,
which implies T (σ) ≤ y. Therefore, the value of the restricted game tree TY ∪P is
constantly equal to y, proving that P is a proof of y for TY . �


For z ∈ RV , we denote ‖z‖1 =
∑

x∈V |z(x)|.

Lemma 4. There is a solution sY to the LPTY such that ‖sY ‖1 ≤ max{k(T ), l(T )} .
Moreover, such a solution can be found in polynomial time.

Proof. We split the proof into two cases, according to the value of UB .

Case 1. No maxterm has been completely evaluated yet (UB = ∞). In particular, all
the maxterms are active, and there are no minterm proofs. Let HU be a minimal hitting
set of the family {CU\Y : CU is an active maxterm}, and let sY be the characteristic
vector of HU . We claim that this sY is a solution with the desired properties. Indeed,
since there are no minterm proofs, all the minimal proofs contain a member of the
family {CU\Y : CU is an active maxterm}, which implies that sY is a feasible solution
to the linear program LPTY . Furthermore, it was shown in [3] that every minimal
hitting set of the family {CU\Y : CU is an active maxterm} is contained in a minterm
of T . Hence ‖sY ‖1 = |HU | ≤ k(T ).

Case 2. There is a completely evaluated maxterm (UB < ∞). In this case, let P1
denote the family of all minimal minterm proofs, and let P2 denote the family of all
(CU\Y )-parts of the other (i.e., maxterm and combined) minimal proofs. By Lemma 2,
the families P1 and P2 are nonempty.

Claim

(i) max{|P | : P ∈ P1 ∪ P2} ≤ max{k(T ), l(T )}.
(ii) Every member of P1 intersects every member of P2.

Proof of Claim. Part (i) follows from the observations that every element of P1 is con-
tained in a minterm, and every element of P2 is contained in a maxterm.

We prove (ii) by contradiction. Suppose that there is a minimal minterm proof
CL

0 \Y and a minimal non-minterm proof (CL
1 \Y )∪(CU

1 \Y ), with (CU
1 \Y ) nonempty

and (CL
1 \Y ) possibly empty, such that (CL

0 \Y ) ∩ (CU
1 \Y ) = ∅. Let y be the value

of CU
1 . Then, by the above characterization of minimal proofs, y < UB .

Consider the partial assignmentσ that extends the current assignmentσY by setting all
the leaves ofCL

0 \Y to UB , and all the leaves ofCU
1 \Y to y. Then, the mintermCL

0 proves
that the value ofT at σ is at least UB , while the maxtermCU

1 proves that the value ofT at
σ is at most y < UB . This is a contradiction, and the proof of the claim is complete.

We recall the following result implicitly contained in [6].

Theorem 4 ( [6]). LetA1,A2 be two nonempty set families over V such that X ∩Y 
=
∅, for each X ∈ A1 and each Y ∈ A2. Then, there is a feasible solution s to the linear

program

{
Minimize ‖s‖1 s.t.

∑
x∈A

s(x) ≥ 1 ∀A ∈ A1 ∪ A2, and s(x) ≥ 0 ∀x ∈ V

}
such that ‖s‖1 ≤ max{|A| : A ∈ A1 ∪A2} .
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In conjunction with the above claim, this theorem implies that there is a feasible solution
sY to the linear program{

Minimize ‖sY ‖1 s.t.
∑
x∈P

sY (x) ≥ 1 ∀P ∈ P1 ∪ P2, and sY (x) ≥ 0 ∀x ∈ V \Y
}

such that ‖sY ‖1 ≤ max{k(T ), l(T )} .
It remains to show that sY is a feasible solution to LPTY . But this follows from the

fact that every minimal proof of TY contains a member of P1 ∪ P2.
This concludes Case 2 and completes the proof of the existence of the desired

solution sY . We remark that the above solution can be constructed in polynomial
time [7]. �


The following result follows from Lemmas 1 and 4 and Theorem 3.

Corollary 1. Let T be a game tree, and let r ≥ 1. If each certificate of T has size at
least 2 then γr(T ) = r · max{k(T ), l(T )} − r + 1 . Moreover, there is a polynomial
time algorithm for evaluating game trees each certificate of which has size at least 2
with optimal r-extremal competitiveness, for each r ≥ 1.

In the case when not all the certificates of T are of size at least 2, it is possible to im-
prove the upper bound. We let p(T ) (q(T )) denote the number of minterms (maxterms)
of T of size 1. The following theorem summarizes our findings on the (r-)extremal
competitiveness for game trees.

Theorem 5. Let T be a game tree. Then

γ(T ) =
{

max{k(T ), l(T )}, if p(T ) = q(T ) = 1;
max{k(T )− q(T ), l(T )− p(T )}, otherwise.

Furthermore, for each r ≥ 1, we have γr(T ) = r·γ(T )−r+1, and there is a polynomial
time algorithm for evaluating game trees with optimal r-extremal competitiveness, for
each r ≥ 1.

5 Concluding Remarks

We believe that the value dependent cost model deserves further investigation, as called
by its applications in several situations, particularly in the medical setting. The study of
this model with respect to the γc competitiveness is a main direction for continued re-
search. Remarkably, already the situation of AND/OR tree functions, whose certificates
have a simpler structure than those of the game trees, seems to be challenging. We also
remark that the existence of an optimal γc-competitive algorithm for game tree functions
is still an open problem even in the more classical value independent cost model.

Acknowledgment. We are grateful to Mike Paterson for suggesting to us the idea of
studying the value dependent cost model.
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Abstract. In this paper, we investigate the deductive inference for the interiors
and exteriors of Horn knowledge bases, where the interiors and exteriors were
introduced by Makino and Ibaraki [11] to study stability properties of knowledge
bases. We present a linear time algorithm for the deduction for the interiors and
show that it is co-NP-complete for the deduction for the exteriors. Under model-
based representation, we show that the deduction problem for interiors is NP-
complete while the one for exteriors is co-NP-complete. As for Horn envelopes
of the exteriors, we show that it is linearly solvable under model-based represen-
tation, while it is co-NP-complete under formula-based representation. We also
discuss the polynomially solvable cases for all the intractable problems.

1 Introduction

Knowledge-based systems are commonly used to store the sentences as our knowledge
for the purpose of having automated reasoning such as deduction for them (see e.g., [1]).
Deductive inference is a fundamental mode of reasoning, and usually abstracted as
follows: Given the knowledge base KB, assumed to capture our knowledge about the
domain in question, and a query χ that is assumed to capture the situation at hand,
decide whether KB implies χ, denoted by KB |= χ, which can be understood as the
question: “Is χ consistent with the current state of knowledge ?”

In this paper, we consider the interiors and exteriors of knowledge base. Formally,
for a given positive integer α, the α-interior of KB, denoted byσ−α(KB), is a knowledge
that consists of the models (or assignments) v satisfying that the α-neighbors of v are
all models of KB, and the α-exterior of KB, denoted by σα(KB), is a knowledge that
consists of the models v satisfying that at least one of the α-neighbors of v is a model
of KB [11]. Intuitively, the interior consists of the models v that strongly satisfy KB,
since all neighbors of v are models of KB, while the exterior consists of the models v
that weakly satisfy KB, since at least one of the α-neighbors of v is a model of KB.
Here we note that v might not satisfy KB, even if we say that it weakly satisfies KB.
As mentioned in [11], the interiors and exteriors of knowledge base merit study in their
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own right, since they shed light on the structure of knowledge base. Moreover, let us
consider the situation in which knowledge base KB is not perfect in the sense that some
sentences in KB are wrong and/or some are missing in KB (see also [11]).

Suppose that we use KB as a knowledge base for automated reasoning, say, duductive
inference KB |= χ. Since KB does not represent real knowledge KB∗, the reasoning
result is no longer true. However, if we use the interior σ−α(KB) of KB as a knowledge
base and haveσ−α(KB) �|= χ, then we can expect that the result is ture for real knowledge
KB∗, since σ−α(KB) consists of models which strongly satisfy KB. On the other hand,
if we use the exterior σα(KB) of KB as a knowledge base and have σα(KB) |= χ, then
we can expect that the result is ture for real knowledge KB∗, since σα(KB) consists of
models which weakly satisfy KB. In this sense, the interiors and exteriors help to have
safe reasoning.

Main problems considered. In this paper, we study the deductive inference for the in-
teriors and exteriors of propositional Horn theories, where Horn theories are ubiquitous
in Computer Science, cf. [14], and are of particular relevance in Artificial Intelligence
and Databases. It is known that important reasoning problems like deductive inference
and satisfiability checking, which are intractable in general, are solvable in linear time
for Horn theories (cf. [3]).

More precisely, we address the following problems:

• Given a Horn theory Σ, a clause c, and an integer α > 0, we consider the problems of
deciding if deductive queries hold for the α-interior and exterior of Σ, i.e., σ−α(Σ) |= c
and σα(Σ) |= c. It is well-known [3] that a deductive query for a Horn theory can be
answered in linear time. Note that it is intractable to construct the interior and exterior
for a Horn theory [11,13], and hence a direct method (i.e., first construct the interior (or
exterior) and then check a deductive query) is not possible efficiently.
• We contrast traditional formula-based (syntactic) with model-based (semantic) rep-
resentation of Horn theories. The latter form of representation has been proposed as an
alternative form of representing and accessing a logical knowledge base, cf. [2,4,5,7,8,
6,9,10]. In model-based reasoning, Σ is represented by a subset of its modelsM, which
are commonly called characteristic models. As shown in [7], the deductive inference
can be solved in polynomial time, given its characteristic models.
• Finally, we consider Horn approximations for the exteriors of Horn theories. Note
that the interiors of Horn theories are Horn, while the exteriors might not be Horn. We
deal with the least upper bounds, called the Horn envelopes [16], for the exteriors of
Horn theories.

Main results. We investigate the problems mentioned above from an algorithmical
viewpoint. For all the problems, we provide either polynomial time algorithms or proofs
of the intractability; thus, our work gives a complete picture of the tractability/
intractability frontier of deduction for interiors and exteriors of Horn theories. Our main
results can be summarized as follows (see Figure 1).

• We present a linear time algorithm for the deduction for the interiors of a given Horn
theory, and show that it is co-NP-complete for the deduction for the exteriors. Thus,
the positive result for ordinary deduction for Horn theories extends to the interiors, but
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does not to the exteriors. We also show that the deduction for the exteriors is possible
in polynomial time, if α is bounded by a constant or if |N(c)| is bounded by a logarithm
of the input size, where N(c) corresponds to the set of negative literals in c.
• Under model-based representation, we show that the consistency problem and the
deduction for the interiors of Horn theories are both co-NP-complete. As for the exte-
riors, we show that the deduction is co-NP-complete. We also show that the deduction
for the interiors is possible in polynomial time if α is bounded by a constant, and so
is for the exteriors, if α or |P(c)| is bounded by a constant, or if |N(c)| is bounded by a
logarithm of the input size, where P(c) corresponds to the set of positive literals in c.
• As for Horn envelopes of the exteriors of Horn theories, we show that it is linearly
solvable under model-based representation, while it is co-NP-complete under formula-
based representation. The former contrasts to the negative result for the exteriors. We
also present a polynomial algorithm for formula-based representation, if α is bounded
by a constant or if |N(c)| is bounded by a logarithm of the input size.

Interiors Exteriors Envelopes of Exteriors

Formula-Based P co-NP-complete� co-NP-complete�

Model-Based NP-complete† co-NP-complete‡ P

�: It is polynomially solvable, if α = O(1) or |N(c)| = O(log ‖Σ ‖).
†: It is polynomially solvable, if α = O(1).
‡: It is polynomially solvable, if α = O(1), |P(c)| = O(1), or |N(c)| = O(log n|chr(Σ)|).

Fig. 1. Complexity of the deduction for interiors and exteriors of Horn theories

The rest of the paper is organized as follows. In the next section, we review the basic
concepts and fix notations. Sections 3 and 4 investigate the deductive inference for the
interiors and exteriors of Horn theories. Section 5 considers the deductive inference
for the envelopes of the exteriors of Horn theories. Most of the proofs are omitted due
to space limitation. Interested readers can find the omitted parts in [12], which is a
technical report version of the paper.

2 Preliminaries

Horn Theories. We assume a standard propositional language with atoms At =
{x1, x2, . . . , xn}, where each xi takes either value 1 (true) or 0 (false). A literal is ei-
ther an atom xi or its negation, which we denote by xi. The opposite of a literal � is
denoted by �, and the opposite of a set of literals L by L = {� | � ∈ L}. Furthermore,
Lit = At ∪ At denotes the set of all literals.

A clause is a disjunction c =
∨

i∈P(c) xi ∨∨i∈N(c) xi of literals, where P(c) and N(c)
are the sets of indices whose corresponding variables occur positively and negatively
in c and P(c) ∩ N(c) = ∅. Dually, a term is conjunction t =

∧
i∈P(t) xi ∧ ∧i∈N(t) xi of

literals, where P(t) and N(t) are similarly defined. We also view clauses and terms as
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sets of literals. A conjunctive normal form (CNF) is a conjunction of clauses. A clause
c is Horn, if |P(c)| ≤ 1. A theory Σ is any set of formulas; it is Horn, if it is a set
of Horn clauses. As usual, we identify Σ with ϕ =

∧
c∈Σ c, and write c ∈ ϕ etc. It is

known [3] that the deductive query for a Horn theory, i.e., deciding if Σ |= c for a clause
c is possible in linear time.

We recall that Horn theories have a well-known semantic characterization. A model
is a vector v∈{0, 1}n, whose i-th component is denoted by vi. For a model v, let ON(v) =
{i | vi = 1} and OFF(v) = {i | vi = 0}. The value of a formula ϕ on a model v,
denoted ϕ(v), is inductively defined as usual; satisfaction of ϕ in v, i.e., ϕ(v) = 1, will
be denoted by v |= ϕ. The set of models of a formula ϕ (resp., theory Σ), denoted by
mod(ϕ) (resp., mod(Σ)), and logical consequence ϕ |= ψ (resp., Σ |= ψ) are defined as
usual. For two models v and w, we denote by v ≤ w the usual componentwise ordering,
i.e., vi ≤ wi for all i = 1, 2, . . . , n, where 0 ≤ 1; v < w means v � w and v ≤ w.
Denote by v

∧
w componentwise AND of models v,w ∈ {0, 1}n, and by Cl∧(M) the

closure ofM ⊆ {0, 1}n under
∧

. Then, a theory Σ is Horn representable if and only if
mod(Σ) = Cl∧(mod(Σ)) (see [2, 9]) for proofs).

Example 1. ConsiderM1= {(0101), (1001), (1000)} andM2= {(0101), (1001), (1000),
(0001), (0000)}. Then, for v = (0101), w = (1000), we have w, v ∈ M1, while v

∧
w =

(0000) � M1; henceM1 is not the set of models of a Horn theory. On the other hand,
Cl∧(M2) =M2, thusM2 = mod(Σ) for some Horn theory Σ.

As discussed by Kautz et al. [7], a Horn theory Σ is semantically represented by its
characteristic models, where v ∈ mod(Σ) is called characteristic (or extreme [2]), if
v � Cl∧(mod(Σ) \ {v}). The set of all such models, the characteristic set of Σ, is denoted
by chr(Σ). Note that chr(Σ) is unique. E.g., (0101) ∈ chr(Σ2), while (0000) � chr(Σ2);
we have chr(Σ2) = M1. It is known [7] that the deductive query for a Horn theory Σ
from the characteristic set chr(Σ) can be done in linear time, i.e., O(n|chr(Σ)|) time.

Interior and Exterior of Theories. For a model v ∈ {0, 1}n and an integer α > 0, its
α-neighborhood is defined by

Nα(v) = {w ∈ {0, 1}n |‖ w − v ‖≤ α},

where ‖ v ‖ denotes
∑n

i=1 |vi|. For a theory Σ and an integer α > 0, the α-interior and
α-exterior of Σ, denoted by σ−α(Σ) and σα(Σ) respectively, are theories defined by

mod(σ−α(Σ)) = {v ∈ {0, 1}n | Nα(v) ⊆ mod(Σ)} (1)

mod(σα(Σ)) = {v ∈ {0, 1}n | Nα(v) ∩mod(Σ) � ∅}. (2)

By definition,σ0(Σ) = σ, σα(Σ) |= σβ(Σ) for integersα and βwith α < β, andσα(Σ1) |=
σα(Σ2) holds for any integer α, if two theories Σ1 and Σ2 satisfy Σ1 |= Σ2.

Example 2. Let us consider a Horn theory Σ = {x1 ∨ x3, x2 ∨ x3, x2 ∨ x4} of 4 variables,
where mod(Σ) is given by

mod(Σ) = {(1111), (1011), (1010), (0111), (0011), (0010), (0001), (0000)}



394 K. Makino and H. Ono

σ0(Σ)=Σ

σ−1(Σ)

σ1(Σ)

1111

1110 1101 1011 0111

0000

1000 0100 0010 0001

1100 1010 0101 001110010110

Fig. 2. A Horn theory and its interiors and exteriors

(See Figure 2). Then we have σα(Σ) = {∅} for α ≤ −2, {x1, x2, x3, x4} for α = −1, Σ
for α = 0, {x1 ∨ x2 ∨ x3 ∨ x4} for α = 1, and ∅ for α ≥ 2. For example, (0011) is
the unique model of mod(σ−1(Σ)), since N1(0011) ⊆ mod(Σ) and N1(v) � mod(Σ)
holds for all the other models v. For the 1-exterior, we can see that all models v with
(x1 ∨ x2 ∨ x3 ∨ x4)(v) = 1 satisfy N1(v) ∩ mod(Σ) � ∅, and no other such model exists.
For example, (0101) is a model of σ1(Σ), since (0111) ∈ N1(0101) ∩ mod(Σ). On the
other hand, (1100) is not a model of σ1(Σ), since N1(1100) ∩ mod(Σ) = ∅. Notice that
σ−1(Σ) is Horn, while σ1(Σ) is not.

Makino and Ibaraki [11] introduced the interiors and exteriors to analyze stability of
Boolean functions, and studied their basic properties and complexity issues on them
(see also [13]). For example, it is known [11] that, for a theory Σ and nonnegative
integers α and β, σ−α(σ−β(Σ)) = σ−α−β(Σ), σα(σβ(Σ)) = σα+β(Σ), and

σα(σ−β(Σ)) |= σα−β(Σ) |= σ−β(σα(Σ)). (3)

For an integer α > 0 and two theories Σ1 and Σ2, we have

σ−α(Σ1 ∪ Σ2) = σ−α(Σ1) ∪ σ−α(Σ2) (4)

σα(Σ1 ∪ Σ2) |= σα(Σ1) ∪ σα(Σ2), (5)

where σα(Σ1 ∪ Σ2) � σα(Σ1) ∪ σα(Σ2) holds in general.
As demonstrated in Example 2, it is not difficult to see that the interiors of any Horn

theory are Horn, which is, for example, proved by (4) and Lemma 1, while the exteriors
might be not Horn.

3 Deductive Inference from Horn Theories

In this section, we investigate the deductive inference for the interiors and exteriors of
a given Horn theory.
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3.1 Interiors

Let us first consider the deduction for the α-interiors of a Horn theory: Given a Horn
theory Σ, a clause c, and a positive integer α, decide if σ−α(Σ) |= c holds. We show that
the problem is solvable in linear time after showing a series of lemmas.

The following lemma is a basic property of the interiors.

Lemma 1. Let c be a clause. Then for an integer α > 0, we have σ−α(c) =∨
S⊆c:
|S |=α+1

(∧
�∈S �
)
=
∧

S⊆c:
|S |=|c|−α

(∨
�∈S �
)
.

This, together with (4), implies that for a CNF ϕ and an integer α > 0, we have

σ−α(ϕ) =
∧
c∈ϕ

( ∨
S⊆c:
|S |=α+1

(∧
�∈S

�
))
=
∧
c∈ϕ

( ∧
S⊆c:
|S |=|c|−α

(∨
�∈S

�
))
,

where we regard c as a set of literals.

Lemma 2. Let Σ be a Horn theory, and let c be a clause. For an integer α > 0, if
there exists a clause d ∈ Σ such that |N(d) \ N(c)| ≤ α − 1 or (|N(d) \ N(c)| = α and
P(d) ⊆ P(c)), then we have σ−α(Σ) |= c.

Lemma 3. Let Σ be a Horn theory, and let c be a clause. For an integer α > 0, if (i)
|N(d) \ N(c)| ≥ α holds for all d ∈ Σ and (ii) ∅ � P(d) ⊆ N(c) holds for all d ∈ Σ with
|N(d) \ N(c)| = α, then we have σ−α(Σ) �|= c. ��
By Lemmas 2 and 3, we can easily answer the deductive queries, if Σ satisfies certain
conditions mentioned in them. In the remaining case, we have the following lemma.

Lemma 4. For a Horn theory Σ that satisfies none of the conditions in Lemmas 2 and
3, let d be a clause in Σ such that |N(d)\N(c)| = α, and P(d) = P(d)\(P(c)∪N(c)) = { j}.
Then σ−α(Σ) |= c ∨ x j holds.

Proof. By Lemma 1, we have σ−α(d) |= ∨i∈N(c)∩N(d) xi ∨ x j |= c ∨ x j. This implies
σ−α(Σ) |= c ∨ x j by (4). ��
From this lemma, we have only to check σ−α(Σ) |= c∨ x j, instead of σ−α(Σ) |= c. Since
|c| < |c ∨ x j| ≤ n, we can answer the deduction by checking the conditions in Lemmas
2 and 3 at most n times.

We can see that a straightforward implementation of the algorithm requires O(n(‖
Σ‖ +|c|)) time, where ‖Σ‖ denotes the length of Σ, i.e., ‖Σ‖= ∑d∈Σ |d|, though we can
implement a linear time algorithm by adopting a proper data structure.

Theorem 1. Given a Horn theory Σ, a clause c and an integer α > 0, a deductive query
σ−α(Σ) |= c can be answered in linear time, i.e., O(‖Σ‖ +|c|) time. ��

3.2 Exteriors

Let us next consider the deduction for the α-exteriors of a Horn theory. In contrast to
the interior case, we have the following negative result.
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Algorithm 1. Deduction-Interior-from-Horn-Theory
Input: A Horn theory Σ, a clause c and an integer α > 0.

Output: Yes, if σ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c) and P := P(c).

Step 1. /* Check the condition in Lemma 2. */
If there exists a clause d ∈ Σ such that |N(d) \ N| ≤ α − 1 or (|N(d) \ N| = α and P(d) ⊆ P),
then output Yes and halt.

Step 2. /* Check the condition in Lemma 3. */
If P(d) ⊆ N holds for all d ∈ Σ with |N(d) \ N| = α, then output No and halt.

Step 3. /* Update N by Lemma 4. */
For a clause d in Σ such that |N(d) \ N| = α and P(d) = P(d) \ (P ∪ N) = { j}, update
N := N ∪ { j} and return to Step 1. ��

Theorem 2. Given a Horn theory Σ, a clause c and a positive integer α, it is co-NP-
complete to decide whether a deductive query σα(Σ) |= c holds, even if P(c) = ∅. ��
We remark that this result can also be derived from the ones in [11].

However, by using the next lemma, a deductive query can be answered in polynomial
time, if α or N(c) is small.

Lemma 5. Let Σ1 and Σ2 be theories. For an integer α > 0, Then σα(Σ1) |= Σ2 if and
only if Σ1 |= σ−α(Σ2). ��
From Lemma 5, the deductive query for the α-interior of a theory Σ, i.e., σα(Σ) |= c
for a given clause c is equivalent to the condition that Σ |= σ−α(c). Since we have
σ−α(c) =

∧
S⊆c:
|S |=|c|−α

(∨
�∈S �
)

by Lemma 1, the deductive query for the α-interior can be

done by checking
(|c|
α

)
deductions for Σ. More precisely, we have the following lemma.

Lemma 6. Let Σ be a Horn theory, let c be a clause, and α > 0 be an integer. Then
σα(Σ) |= c holds if and only if, for each subset S of N(c) such that |S | ≥ |N(c)| − α, at
least (α − |N(c)| + |S | + 1) j’s in P(c) satisfy Σ |= ∨i∈S xi ∨ x j. ��
This lemma implies that the deductive query can be answered by checking the number
of j’s in P(c) that satisfy Σ |= ∨i∈S xi∨ x j for each S . Since we can check this condition
in linear time and there are

∑α
p=0

(|N(c)|
p

)
such S ’s, we have the following result, which

complements Theorem 2 that the problem is intractable, even if P(c) = ∅.
Theorem 3. Let Σ be a Horn theory, let c be a clause, and let α > 0 be an integer. Then
a deductive query σα(Σ) |= c can be answered in O

(∑α
p=0

(|N(c)|
p

)
‖Σ ‖ +|P(c)|

)
time. In

particular, it is polynomially solvable, if α = O(1) or |N(c)| = O(log ‖Σ ‖).

4 Deductive Inference from Characteristic Sets

In this section, we consider the case when Horn knowledge bases are represented by
characteristic sets. Different from formula-based representation, the deductions for in-
teriors and exteriors are both intractable, unless P=NP.
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4.1 Interiors

We first present an algorithm to solve the deduction problem for the interiors of Horn
theories. The algorithm requires exponential time in general, but it is polynomial when
α is small.

Let Σ be a Horn theory given by its characteristic set chr(Σ), and let c be a clause.
Then for a nonnegative integer α, we have

σ−α(Σ) |= c if and only if σ−α(Σ) ∧ c ≡ 0. (6)

Let v∗ be a unique minimal model such that c(v∗) = 0 (i.e., c(v∗) = 1). By the definition
of interiors, v∗ is a model of σ−α(Σ) if and only if all v’s in Nα(v∗) are models of Σ.
Therefore, for each model v in Nα(v∗), we check if v ∈ mod(Σ), which is equivalent to∧

w∈chr(Σ)
w≥v

w = v. (7)

If (7) holds for all models v in Nα(v∗), then we can immediately conclude by (6) that
σ−α(Σ) �|= c. On the other hand, if there exists a model v inNα(v∗) such that (7) does not
hold, let J = ON(

∧
w∈chr(Σ)

w≥v
w) \ON(v). By definition, we have J � ∅, and we can see that

σ−α(Σ) |=
∨

i∈ON(v)

xi ∨ x j for all j ∈ J. (8)

If J∩N(c) � ∅, by Lemma 1 and (8), we have σ−α(Σ) |= ∨i∈ON(v)∩N(c) xi, since |ON(v) \
N(c)| ≤ α − 1. This implies σ−α(Σ) |= c. On ther other hand, if J ∩ N(c) = ∅, then by
Lemma 1 and (8), we have σ−α(Σ) |= ∨i∈N(c) xi ∨ x j for all j ∈ J. Thus, if J contains
an index in P(c), we can conclude that σ−α(Σ) |= c; Otherwise, we check the condition
σ−α(Σ) |= c ∨ ∨ j∈J x j, instead of σ−α(Σ) |= c. Since a new clause d = c ∨ ∨ j∈J x j is
longer than c, after at most n iterations, we can answer the deductive query. Formally,
our algorithm can be described as Algorithm 2.

Theorem 4. Given the characteristic model chr(Σ) of a Horn theory Σ, a clause c
and a nonnegative integer α, a deductive query σ−α(Σ) |= c can be answered in
O(nα+2|chr(Σ)|) time. In particular, it is polynomially solvable, if α = O(1). ��
However, in general, the problem is intractable, which contrasts to the formula-model
representation.

Theorem 5. Given the characteristic set chr(Σ) of a Horn theory Σ and a posi-
tive integer α, it is co-NP-complete to decide whether σ−α(Σ) is consistent, i.e.,
mod(σ−α(Σ)) � ∅. ��
This result immediately implies the following corollary.

Corollary 1. Given the characteristic set chr(Σ) of a Horn theory Σ, a clause c and a
positive integer α, it is NP-complete to decide whether a deductive query σ−α(Σ) |= c
holds, even if c = ∅. ��
Note that, different from the other hardness results, the hardness is not sensitive to the
size of c.
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Algorithm 2. Deduction-Interior-from-Charset
Input: The characteristic set chr(Σ) of a Horn theory Σ, a clause c and a nonnegative integer α.

Output: Yes, if σ−α(Σ) |= c; Otherwise, No.

Step 0. Let N := N(c), d := c and q := 1.

Step 1. Let v∗ be the unique minimal model such that d(v∗) = 0.

Step 2. For each v in Nα(v∗) do

If (7) does not hold,

then let v(q) := v, J := ON(
∧

w∈chr(Σ)
w≥v

w) \ ON(v) and
q := q + 1

If J ∩ (N ∪ P(c)) � ∅, then output yes and halt.

Let N := N ∪ J and d :=
∨

i∈N xi ∨∨i∈P(c) xi.

Go to Step 1.

end{for}
Step 3. Output No and halt. ��

4.2 Exteriors

Let us consider the exteriors. Similarly to the formula-based representation, we have
the following negative result.

Theorem 6. Given the characteristic set chr(Σ) of a Horn theory Σ, a clause c and
a positive integer α, it is co-NP-complete to decide if a deductive query σα(Σ) |= c
holds. ��
By using Lemma 6, we can see that the problem can be solved in polynomial time,
if α or |N(c)| is small. Namely, for each subset S of N(c) such that |S | ≥ |N(c)| − α,
let vS denotes the model such that ON(vS ) = S . Then wS =

∧
w∈chr(Σ):

w≥vS
w is the unique

minimal model of Σ such that ON(wS ) ⊇ S , and hence it follows from Lemma 6 that it
is enough to check if |ON(ws)∩ P(c)| ≥ α− |N(c)|+ |S |+ 1. Clearly, this can be done in
in O
(∑α

p=0

(|N(c)|
p

)
n|chr(Σ)|

)
time.

Moreover, if |P(c)| is small, then the problem also becomes tractable, which contrasts
with Theorem 2.

Lemma 7. Let Σ be a Horn theory, let c be a clause, and α be a nonnegative integer.
Then σα(Σ) |= c holds if and only if each S ⊆ P(c) such that |S | ≥ |P(c)| − α satisfies

|OFF(w) ∩ N(c)| ≥ α − |P(c)| + |S | + 1 (9)

for all models w of Σ such that OFF(w) ∩ P(c) = S .

Note that (9) is monotone in the sense that, if a model w satisfies (9), then all models v
with v < w also satisfy it. Thus it is sufficient to check if (9) holds for all maximal models
w of Σ such that OFF(w) ∩ P(c) = S . Since such maximal models w can be obtained
from w(i) (i ∈ S ) with i ∈ OFF(w(i)) ∩ P(c) ⊆ S by their intersection w =

∧
i∈S w(i), we

can answer the deduction problem in O
(
n
∑|P(c)|

p=|P(c)|−α
(|P(c)|

p

)
|chr(Σ)|p

)
time.
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Theorem 7. Given the characteristic set chr(Σ) of a Horn theory, a clause c,
and an integer α ≥ 0, a deductive query σα(Σ) |= c can be answered in
O
(
n min{∑α

p=0

(|N(c)|
p

)
|chr(Σ)|,∑|P(c)|

p=|P(c)|−α
(|P(c)|

p

)
|chr(Σ)|p}

)
time. In particular, it is poly-

nomially solvable, if α = O(1), |P(c)| = O(1), or |N(c)| = O(log n · |chr(Σ)|).

5 Deductive Inference for Envelopes of the Exteriors of Horn
Theories

We have considered the deduction for the interiors and exteriors of Horn theories. As
mentioned before, the interiors of Horn theories are also Horn, while this does not hold
for the exteriors. This means that the exteriors of Horn theories might lose beneficial
properties of Horn theories. One of the ways to overcome such a hurdle is Horn Ap-
proximation, that is, approximating a theory by a Horn theory [16]. There are several
methods for approximation, but one of the most natural ones is to approximate a theory
by its Horn envelope. For a theory Σ, its Horn envelope is the Horn theory Σe such
that mod(Σe) = Cl∧(mod(Σ)). Since Horn theories are closed under intersection, Horn
envelope is the least Horn upper bound for Σ, i.e., chr(Σe) ⊇ chr(Σ) and there exists no
Horn theory Σ∗ such that chr(Σe) � chr(Σ∗) ⊇ chr(Σ). In this section, we consider the
deduction for Horn envelopes of interiors of Horn theories; σα(Σ)e |= c.

5.1 Model-Based Representations

Let us first consider the case in which knowledge bases are represented by characteristic
sets.

Proposition 1. Let Σ be a Horn theory, and let α be a nonnegative integer. Then we
have

mod(σα(Σ)e) = Cl∧(
⋃

v∈chr(Σ)

Nα(v)). (10)

��
For a clause c, let v∗ be the unique minimal model such that c(v∗) = 0. We recall that,
for a Horn theory Φ,

Φ |= c if and only if c(
∧

v∈chr(Φ)
v≥v∗

v) = 1. (11)

Therefore, Proposition 1 immediately implies an algorithm for the deduction forσα(Σ)e

from chr(Σ), since we have chr(σα(Σ)e) ⊆ ⋃v∈chr(Σ)Nα(v). However, for a general α,⋃
v∈chr(Σ)Nα(v) is exponentially larger than chr(Σ), and hence this direct method is not

efficient. The following lemma helps developing a polynomial time algorithm.

Lemma 8. Let Σ be a Horn theory, let c be a clause, and let α be a nonnegative integer.
Then σα(Σ)e |= c holds if and only if the following two conditions are satisfied.

(i) |OFF(v) ∩ N(c)| ≥ α holds for all v ∈ chr(Σ).
(ii) If S = {v ∈ chr(Σ) | |OFF(v) ∩ N(c)| = α} � ∅, P(c) is not covered with OFF(v)

for models v in S , i.e., P(c) �
⋃

v∈chr(Σ)
|OFF (v)∩N(c)|=α

OFF(v). ��
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The lemma immediately implies the following theorem.

Theorem 8. Given the characteristic set chr(Σ) of a Horn theory Σ, a clause c, and an
integer α ≥ 0, a deductive query σα(Σ)e |= c can be answered in linear time.

We remark that this contrasts with Corollary 1. Namely, if we are given the character-
istic set chr(Σ) of a Horn theory Σ, σα(Σ)e |= c is polynomially solvable, while it is
co-NP-complete to decide if σα(Σ) |= c.

5.2 Formula-Based Representation

Recall that a negative theory (i.e., a theory consisting of clauses with no positive literal)
is Horn and the exteriors of negative theory are also negative, and hence Horn. This
means that, for a negative theory Σ, we have σα(Σ)e = σα(Σ). Therefore, we can again
make use of the reduction in the proof of Theorem 2, since the reduction uses negative
theories.

Theorem 9. Given a Horn theory Σ, a clause c, and an integer α ≥ 0, it is co-NP-
complete to decide whether σα(Σ)e |= c holds, even if P(c) = ∅. ��
However, if α or N(c) is small, the problem becomes tractable by Algorithm 3.

Algorithm 3. Deduction-Envelope-Exterior-from-Horn-Theory
Input: A Horn theory Σ, a clause c and an integer α ≥ 0.

Output: Yes, if σα(Σ)e |= c; Otherwise, No.

Step 1. /* Check if there exists a model v of Σ such that |OFF(v) ∩ N(c)| < α. */

For each N ⊆ N(c) with |N| = |N(c)| − α + 1 do

Check if the theory obtained from Σ by assigning xi = 1 for i ∈ N is satisfiable.

If so, then output No and halt.

end{for}
Step 2. /* Check if there exists a set S = {v ∈ mod(Σ) | |OFF(v) ∩ N(c)| = α} such that⋃

v∈S OFF(v) ⊇ P(c). */

Let J := ∅.
For each N ⊆ N(c) with |N| = |N(c)| − α do

Compute a unique minimal satisfiable model v for the theory obtained from Σ by
assigning xi = 1 for i ∈ N is satisfiable.

Update J := J ∪ { j ∈ P(c) | vj = 0}.
end{for}
If J = P(c), then output NO and halt.

Step 3. Output Yes and halt. ��

The algorithm is based on a necessary and sufficient condition for σα(Σ)e |= c, which
is obtained from Lemma 8 by replacing all chr(Σ)’s with mod(Σ)’s. It is not difficult to
see that such a condition holds from the proof of Lemma 8.
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Theorem 10. Given a Horn theory Σ, a clause c, and an integer α ≥ 0, a deductive
query σα(Σ)e |= c can be answered in O

(((|N(c)|
α−1

)
+
(|N(c)|

α

)) ‖Σ ‖ +|P(c)|
)

time. In particu-
lar, it is polynomially solvable, if α = O(1) or |N(c)| = O(log ‖Σ ‖). ��
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Abstract. A graph G on n vertices is a k-leaf power (G ∈ Gk) if it is
isomorphic to a graph that can be “generated” from a tree T that has n
leaves, by taking the leaves to represent vertices of G, and making two
vertices adjacent if and only if they are at distance at most k in T . We
address two questions in this paper:

(1) As k increases, do we always have Gk ⊆ Gk+1 ?
Answering an open question of Andreas Brandstädt and Van Bang Le
[2,3,1], we show that the answer, perhaps surprisingly, is “no.”
(2) How should one design algorithms to determine, for k-leaf powers, if
they have some property?

One way this can be done is to use the fact that k-leaf powers have
bounded cliquewidth. This fact, plus the FPT cliquewidth approxima-
tion algorithm of Oum and Seymour [14], combined with the results of
Courcelle, Makowsky and Rotics [7], allows us to conclude that proper-
ties expressible in a general logic formalism, can be decided in FPT time
for k-leaf powers, parameterizing by k. This is wildly inefficient. We ex-
plore a different approach, under the assumption that a generating tree
is given with the graph. We show that one can use the tree directly to
decide the property, by means of a finite-state tree automaton. (A more
general theorem has been independently obtained by Blumensath and
Courcelle [5].)

We place our results in a general context of “tree-definable” graph
classes, of which k-leaf powers are one particular example.

1 Introduction

A graph G is a tree power if there is an integer k and a tree T on the same
vertex set as G such that two vertices are adjacent in G if and only if they are at
distance at most k in T [11]. A leaf-power graph is defined similarly except that
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the vertex set of G now corresponds to the leaves of T . Leaf powers, and k-leaf
powers where the power k is specified, were introduced by Nishimura, Ragde,
Thilikos [13] in 2002 and have attracted a considerable amount of attention.
These graphs have applications in the reconstruction of the evolutionary history
of species and admit efficient algorithms for generaly difficult problems, that
mainly exploit the tree structure of the underlying tree. Note that k-leaf powers
can have arbitrarily large cliques, which means that the class of k-leaf powers is of
unbounded treewidth. It was recently shown that a k-leaf power has cliquewidth
at most 3k/2 [10]. It was known that (k − 1)-leaf powers are k-leaf powers
for k ∈ {1, 2, 3, 4} [2], but it was an open question whether this containment
relationship continued. In this paper we show that this is not the case.

Leaf-power graphs are only one example of graphs with nice algorithmic prop-
erties that rely on an underlying tree structure. In this paper, we generalise the
main concepts. The definition of leaf-power graphs consists of three elements: a
tree, a selection of tree vertices and an adjacency condition. For a fixed k, the
selected vertices are the leaves of the tree and the adjacency condition is a dis-
tance condition. “Being a leaf, i.e., a vertex of certain degree” and “being a pair
of vertices at bounded distance” are predicates that can be expressed already
in limited logic. Based on these observations, we introduce the notion of tree-
definable graph classes. A tree will then define a graph where the vertex set is
selected by a unary graph predicate and adjacency is defined by a binary graph
predicate. We show that every problem that is definable in monadic second-order
logic allowing quantification over sets of vertices can be solved in linear time on
a tree-definable graph class, when the representing tree is given. When allowing
quantification over sets of edges the results are not so positive, and we apply a
Myhill-Nerode argument to show that the set of trees generating Hamiltonian
3-leaf powers does not have finite index. The logical expressions used to generate
4-leaf powers and 5-leaf powers are very similar and yet we show that there exists
a 4-leaf power which is not a 5-leaf power, thereby answering an open question
of Andreas Brandstädt and Van Bang Le [2,3,1].

The paper is organised as follows. In the next section, we define the notion of
tree-definable graph class. In Section 3, we show that well-known graph classes
such as cographs and fixed leaf-power classes are tree-definable. We also show
that not every 4-leaf power is a 5-leaf power. Algorithmic consequences for tree-
definable graph classes are discussed in Section 4. In the final Section 5, we
present open problems.

2 Tree-Definable Graph Classes

We give a very general method for defining graphs. It has three ingredients: a
tree, a logical expression extracting the vertex set of the graph from the tree,
and another logical expression extracting the adjacencies in the graph from the
tree. In the next section, we will show for some well-known graph classes that
they can be defined in this uniform way. (We have recently learned that some of
our results were obtained earlier, in a very general setting, by Blumensath and
Courcelle [5], where they study rational transductions of relational systems.)
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To begin, we specify the logic that we use in this paper. An M2O graph
expression has four types of variables, for vertices, edges, sets of vertices, sets of
edges, and is formed from the following elements:

– equality for each of the four variable types
– the two predicates x ∈ X and e ∈ Y for x a vertex variable, X a vertex

set variable, e an edge variable and Y an edge set variable and the two
predicates adj(u, v) and inc(u, e) for u and v vertex variables and e an edge
variable

– the connectives ∧,∨,¬ and the quantifiers ∀, ∃.

Every variable type allows quantification. Clearly, x ∈ X is true if x is interpreted
by a vertex contained in X ; similarly for e ∈ Y . And adj(u, v) is true if u and v
are interpreted by adjacent, in particular different, vertices, and inc(u, e) is true
if u is an endpoint of e, i.e., e is incident to u. A graph expression without free
variables is called graph sentence. For an M2O graph sentence Φ we say that a
graph G is a model for Φ, denoted as G |= Φ, if Φ is true on G.

Definition 1. Let Φ1 = Φ1(x) and Φ2 = Φ2(x1, x2) be M2O graph expressions
with x, x1 and x2 vertex variables. For a tree T , the graph G represented by T
with respect to (Φ1, Φ2), denoted as GΦ1,Φ2(T ), is defined as follows:

– V (G) =def {u ∈ V (T ) : T |= Φ1(u)}
– E(G) =def {uv : u, v ∈ V (G) and u 
= v and T |= Φ2(u, v)}.

We denote by G(Φ1, Φ2) the class of graphs defined by Φ1, Φ2, i.e., G(Φ1, Φ2) =
{GΦ1,Φ2(T ) : T a tree}. We say that G(Φ1, Φ2) is a tree-definable graph class.

Note that every tree represents a graph with respect to every pair (Φ1, Φ2) of
graph expressions, but the represented graph may be the empty graph or may
have no edges. The definition of tree-definable graph classes raises immediate
questions of three types, that we will address in this paper. Let (Φ1, Φ2) and
(Φ′

1, Φ
′
2) be pairs of graph expressions.

1) Given a tree T , how difficult is it to compute the graph that is represented
by T with respect to (Φ1, Φ2), i.e., the graph GΦ1,Φ2(T )?

2) Given a graph G, how difficult is it to compute a tree T such that T represents
G with respect to (Φ1, Φ2), i.e., such that G = GΦ1,Φ2(T )?

3) How difficult is it to decide whether G(Φ1, Φ2) is contained in G(Φ′
1, Φ

′
2), i.e.,

whether G(Φ1, Φ2) ⊆ G(Φ′
1, Φ

′
2)?

In view of question 2 we remark that we restrict to named graphs. If graphs have
unnamed vertices, question 2 should be rephrased as an isomorphism problem.
Questions 1 and 2 are very natural, as they state the verification problem and a
restricted version of the graph class recognition problem. Question 3 is partially
motivated by a later result about the existence of efficient algorithms for certain
problems. We address the three questions, among others, in different parts of
this paper.
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Another, in some sense more concrete question asks about graph classes that
are captured by our model. Are well-known graph classes tree-definable? In the
next section, we answer this question in the affirmative and give two examples.
This also supports our opinion that the definition of tree-definable graph classes
is indeed a natural approach to unify graph classes.

3 Examples of Tree-Definable Graph Classes

As our first example we show that all (fixed) leaf-power classes are tree-definable.
For a number k ≥ 1, a graph G is a k-leaf power if there is a tree T such that the
vertices of G are in 1-to-1 correspondence with the leaves of T and two vertices
of G are adjacent if and only if the distance of the corresponding leaves is at
most k in T . Hence, for the definition of the two predicates, the vertex selection
predicate should be true only for leaves, and adjacency is a simple distance
condition. Let

– L(x) =def ∃u∀v(adj(x, v) → u = v)
– P1(x1, x2) =def (x1 = x2 ∨ adj(x1, x2))

Pi+1(x1, x2) =def ∃u(Pi(x1, u) ∧ P1(u, x2)) for all i ≥ 1.

For a graph G = (V,E), two (not necessarily different) vertices u, v of G and a
number k ≥ 1, the following holds:

– G |= L(u) if and only if dG(u) ≤ 1
– G |= Pk(u, v) if and only if there is a u, v-path of length at most k in G.

Hence, G(L,Pk) is the class of k-leaf powers. Using the example of k-leaf powers,
we show that the inclusion relation of tree-definable graph classes is not easy to
determine from the logical expressions directly, thereby settling an open problem.
It is known that k-leaf powers are (k + 1)-leaf powers for k ∈ {1, 2, 3}, i.e.,
G(L,P1) ⊆ G(L,P2) ⊆ G(L,P3) ⊆ G(L,P4) [2]. It was an open question whether
this containment relationship continues. The following result shows that this is
not the case.

Lemma 1. There is a 4-leaf power that is not a 5-leaf power.

Proof. Consider the tree T in Figure 1. Let G be the square of T , i.e., the graph
on the vertices of T where two vertices are adjacent if and only if they are at
distance at most 2 in T . It is clear that G is a 4-leaf power. We show that G is
not a 5-leaf power. For a contradiction, assume that G is a 5-leaf power. Let G be
the 5-leaf power of tree S′. Since G has no true twins, no vertex of S′ is adjacent
to two leaves. Let S be the subgraph of S′ induced by all non-leaf vertices. It
holds that G is isomorphic to an induced subgraph of the third power of S. For
ease of notation, let vertices of S have the name of their corresponding vertex
as in Figure 1.

Since vertices 2, 3 and 4 are pairwise adjacent in G, it holds for the distances
between the three vertices: dS(2, 3), dS(2, 4), dS(3, 4) ≤ 3. If dS(2, 3) = 3 then
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Fig. 1. The square of the depicted tree, i.e., the graph on the vertex set of the tree
with vertices adjacent if they are adjacent in the tree or have a common neighbour, is
a 4-leaf power but not a 5-leaf power

dS(2, 4) 
= dS(3, 4). Hence, one of the three distances is at most 2. Without loss
of generality, dS(2, 3) ≤ 2. Consider the path P between 5 and 9 in S: since 5
and 9 are adjacent to 1 in G, it holds dS(5, 9) ≤ dS(5, 1) + dS(9, 1) ≤ 6. We
consider different cases. Let 5 ≤ dS(5, 9) ≤ 6. Then, 1 lies on P , at distance 3
to 5 or 9; by symmetry we can assume dS(1, 5) = 3. If 3 lies on the 1, 5-path
in S then 5 is adjacent also to 3. Hence, 3 does not lie on the 1, 5-path in S.
If the 3, 9-path in S contains two vertices of the 1, 5-path then dS(3, 9) ≥ 4.
Hence, 2 and 3 are contained in different connected components of S−1. The
distance condition dS(2, 3) ≤ 2 then shows that 2 and 3 are neighbours of 1
in S. In particular, 2 is vertex on the 1, 5-path in S. This also implies that
dS(1, 9) = 3, since 4 ≤ dS(2, 9) ≤ 1+dS(1, 9). Then, 3 lies on the 1, 9-path in S.
Summarising, we obtain that the 5, 9-path in S is the following: (5, x, 2, 1, 3, y, 9)
for some vertices x and y. Now, consider vertex 6. It is adjacent to 1, 2, 5 and
non-adjacent to 3. Hence, 6 is a neighbour of x in S. Now, consider vertex 7.
The neighbours of 7 are 2 and 5, but there is no tree that allows assignment of 7.
Hence, dS(5, 9) = 4. Note that every vertex of G that corresponds to a vertex on
P besides 5 and 9 is a common neighbour of 5 and 9. Since 1 is the only common
neighbour of 5 and 9 in G, 2 and 3 are not contained in P . This, however, is
only possible for dS(2, 3) ≥ 4. We conclude that G cannot be a 5-leaf power.

Hence, Lemma 1 shows G(L,P4) 
⊆ G(L,P5). This example also shows that the
inclusion question, given M2O predicates Φ1, Φ2, Φ

′
1, Φ

′
2 to decide whether the

inclusion G(Φ1, Φ2) ⊆ G(Φ′
1, Φ

′
2) holds, cannot be determined easily from just

looking at the expressions.
As a second example, we show that cographs are tree-definable. Cographs are

the P4-free graphs, i.e., the graphs that do not contain the induced path on four
vertices as induced subgraph. Our result is based on the cotree characterisation
of cographs. A rooted tree whose non-leaf vertices are labelled 0 or 1 is called
a cotree. It holds that a graph G is a cograph if and only if there is a cotree T
such that the vertices of G correspond to the leaves of T and two vertices u, v of
G are adjacent if and only if the least common ancestor of u and v is labelled 1.
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Proposition 1. The class of cographs is a tree-definable graph class.

Proof. We prove the proposition in two steps. We first extend the definition of
tree-definable graph classes to coloured trees, and then we show that coloured
trees are captured by our model.

We need five vertex colours with the following meanings: leaf, root vertex with
label 0, root vertex with label 1, non-root vertex with label 0, non-root vertex
with label 1. First, we give a predicate that checks whether a given coloured tree
represents a cotree correctly. This means that every vertex has a colour, there
is exactly one root vertex and the leaves are exactly the vertices with the leaf
colour. The colour class predicates are denoted as C1, C2, C3, C4, C5.

– L(x) =def ∃u∀v(adj(x, v) → u = v)
– Q =def ∀u((L(u)→ C1(u)) ∧ (C1(u)→ L(u)))
– R =def ∃u((C2(u) ∨ C3(u)) ∧ ∀v((C2(v) ∨ C3(v)) → u = v))
– P =def ∀u(C1(u) ∨ C2(u) ∨ C3(u) ∨ C4(u) ∨ C5(u)) ∧Q ∧R

It holds for a 5-coloured tree T that T |= P if and only if T correctly represents
a cotree, in particular, has a unique root vertex and all leaves are coloured with
the unique leaf colour. It remains to define adjacency. To find the first common
vertex of two leaf-root paths, we need predicates for ‘path’ and ‘first common
vertex’. The following expressions describe ‘path’ in the following way, precisely,
predicate X is true if the vertices in Z describe a path between a and b.

– N≥2(x, a, b, Z) =def ∃v1∃v2(v1, v2 ∈ Z ∪ {a, b} ∧ v1 
= v2 ∧ adj(x, v1) ∧
adj(x, v2))

– N≤2(x, a, b, Z) =def ∃v1∃v2∀u((u ∈ Z ∪ {a, b} ∧ adj(x, u)) → (u = v1 ∨ u =
v2))

– X(a, b, Z) =def ∀u(u ∈ Z → (N≥2(u, a, b, Z) ∧ N≤2(u, a, b, Z))) ∧ ∃u(u ∈
Z ∧ adj(a, u)) ∧ ∃u(u ∈ Z ∧ adj(b, u)) .

To determine the first common vertex of two root paths, we apply the same ideas
but omit this here.

For the second step, we encode vertex colours into an uncoloured tree. The
idea is to represent colours by the number of leaves adjacent to a non-leaf vertex.
Predicate L verifies whether a vertex is a leaf or a non-leaf, and similar to
predicates N≤2 and N≥2 we can formulate predicates that check whether a non-
leaf vertex has exactly 1, 2, 3 or 4 or at least five adjacent leaves. The final
expressions then select the non-leaf vertices with exactly one adjacent leaf to
represent the vertices of the graph and two vertices are adjacent if and only if
the tree is syntactically correct and the two paths to the root meet first on a
1 labelled vertex, i.e., a vertex with exactly three adjacent leaves. If the tree
is not syntactically correct, the represented graph has no edges. This is also a
cograph. It follows with the cograph characterisation via cotrees that cographs
are tree-representable.

It is a well-known fact that the cographs are exactly the graphs of clique-width
at most 2.
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4 Efficiently Solvable Problems

In this section, we mainly show that the computational bottleneck for many
problems on tree-definable graphs is the computation of a representing tree.
We show that all problems that can be formulated in a restricted version of
M2O have efficient algorithms on input a representing tree. Our result is based
on Courcelle’s celebrated theorem about solvability of problems on graphs of
bounded treewidth [6].

We show that problems that are expressible in a restricted version of M2O
logic can be solved efficiently on the representing trees as input. This restricted
logic does not allow edge set variables in expressions, and we call such expressions
M1O graph expressions.

Lemma 2. Let Φ1 be a unary M2O graph expression and let Φ2 be a binary
M2O graph expression. Let Ψ be an M1O graph sentence. There is an M2O graph
sentence Ψ ′ such that for all trees T : GΦ1,Φ2(T ) |= Ψ if and only if T |= Ψ ′.

Proof. We modify Ψ to obtain Ψ ′. Consider the following predicate P :

P (X) =def ∃a∃b∀c(a ∈ X ∧ b ∈ X ∧ ¬(a = b) ∧ (c ∈ X → (c = a ∨ c = b)) ∧
Φ1(a) ∧ Φ1(b) ∧ Φ2(a, b))

where a, b, c are vertex variables and X is a vertex set variable. Let G be a
graph and let U be a set of vertices of G. Then, the following holds:

• G |= P (U) if and only if U = {u, v} for some vertices u, v of G, u 
= v, and
G |= Φ1(u) and G |= Φ1(v) and G |= Φ2(u, v).

We show the claim of the lemma by induction over the definition of our graph
expressions. Note that, by assumption, Ψ does not contain e ∈ Y for e an edge
variable and Y an edge set variable as subexpression. For the proof, we have
to consider arbitrary graph expressions without edge set variable occurrences.
For an M2O graph expression F without edge set variable occurrences we write
F = F (α, β, γ) where α is a list of the vertex variables that occur in F , β is a list
of the vertex set variables that occur in F and γ is a list of the edge variables that
occur in F . Expression H denotes the equivalent expression after modification.
We begin with atomic expressions.

– F (〈x1, x2〉, 〈〉, 〈〉) = (x1 = x2) for x1, x2 vertex variables
H(〈x1, x2〉, 〈〉) =def (x1 = x2)

– F (〈〉, 〈X1, X2〉, 〈〉) = (X1 = X2) for X1, X2 vertex set variables
H(〈〉, 〈X1, X2〉) =def (X1 = X2)

– F (〈〉, 〈〉, 〈y1, y2〉) = (y1 = y2) for y1, y2 edge variables
H(〈〉, 〈Y1, Y2〉) =def (Y1 = Y2)

– F (〈x〉, 〈X〉, 〈〉) = (x ∈ X) for x a vertex variable and X a vertex set variable
H(〈x〉, 〈X〉) =def (x ∈ X)

– F (〈x1, x2〉, 〈〉, 〈〉) = (adj(x1, x2)) for x1, x2 vertex variables
H(〈x1, x2〉, 〈〉) =def Φ2(x1, x2)
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– F (〈x〉, 〈〉, 〈y〉) = (inc(x, y)) for x a vertex variable and y an edge variable
H(〈x〉, 〈Y 〉) =def (x ∈ Y )

We continue with the non-atomic expressions. Clearly, it suffices to consider only
∃-quantified variables. By H ′, we denote the expression inductively obtained
for F ′.

– F (α, β, γ) = ∃xF ′(〈x〉 ◦ α, β, γ) for x a vertex variable
H(α, β ◦ γ′) =def ∃x(Φ1(x) ∧H ′(〈x〉 ◦ α, β ◦ γ′))

– F (α, β, γ) = ∃XF ′(α, 〈X〉 ◦ β, γ) for X a vertex set variable
H(α, β ◦ γ′) =def ∃X(∀a(a ∈ X → Φ1(a)) ∧H ′(α, 〈X〉 ◦ β ◦ γ′))

– F (α, β, γ) = ∃yF ′(α, β, 〈y〉 ◦ γ) for y an edge variable
H(α, β ◦ γ′) =def ∃Y (P (Y ) ∧H ′(α, β ◦ 〈Y 〉 ◦ γ′))

– the cases for ∧, ∨, ¬ are obvious.

This completes the proof.

Theorem 1 ([6]). Let Ψ be an M2O graph sentence. There is a linear-time
algorithm that decides on input a tree T whether T |= Ψ .

Corollary 1. Let G be a tree-definable graph class, defined by the two M2O
graph expressions Φ1 and Φ2. Let there be an algorithm that on input a graph G
from G computes a tree T such that GΦ1,Φ2(T ) = G in time O(f(n,m)). Then,
for every problem Ψ definable as an M1O graph sentence, there is an algorithm
that decides Ψ on input graphs from G in time O(f(n,m)).

Proof. The algorithm is simple: on input a graph G from G, compute a rep-
resenting tree for G in time O(f(n,m)). Note that T has at most O(f(n,m))
vertices. Lemma 2 shows that there is an M2O graph sentence Ψ ′ such that
T |= Ψ ′ if and only if G |= Ψ . It is important to note that Ψ ′ does not depend on
T . By Theorem 1 there exists an algorithm for deciding T |= Ψ ′ in time linear
in the size of T . Thus, there is an algorithm for deciding whether G |= Ψ in
time O(f(n,m)).

With Corollary 1, the main algorithmic challenge for graph problems expressible
in M1O logic is to design efficient algorithms for computing a representing tree.
An important parameter determining the running time of such an algorithm is
the size of the output. In general, a graph can have a large representing tree.
As an example, our formulas for cographs in Proposition 1 allow trees that
can be obtained from cotrees by subdividing arbitrary edges with vertices of
label 0. Therefore, it is an interesting question to determine bounds on the size
of representing trees. Lower bounds additionally provide lower bounds on the
running times of algorithms.

Besides the questions about running time, the main question is which prob-
lems can be solved by our approach. We consider a famous example. A Hamil-
tonian cycle in a graph G is a cycle that visits every vertex of G exactly once.
It is known that Hamiltonicity, the problem asking whether a graph contains
a Hamiltonian cycle, is not expressible in M1O logic [12]. The essence of our
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approach is to use the trees that generate the graphs in the family (e.g., k-leaf
powers). We may be interested in a property (such as Hamiltonicity) where
Corollary 1 does not apply, but it still might be the case that the property (of
the graphs generated by the trees) might be recognizable by a finite-state tree
automaton acting on the generating trees. However, for Hamiltonicity, we next
show that this cannot be done for k-leaf powers.

Our argument uses the “Myhill-Nerode” point of view, such as exposited in [8].
Our non-expressibility result is obtained in two steps. We first show that the

problem is not finite-state for a special congruence relation. For rooted trees T1
and T2 with roots R1 and R2, respectively, the result of the operation ⊕ on T1
and T2, denoted as T1⊕T2, is the composition of T1 and T2 by gluing the two trees
together on R1 and R2. The compound graph, that is a tree, has root the glue
vertex (R1, R2). The relation∼F over a set F of rooted trees is defined as follows:
for two rooted trees T1 and T2, T1 ∼F T2 if and only if T1⊕T ∈ F ⇔ T2⊕T ∈ F
for all rooted trees T . Informally, two rooted trees are considered equivalent with
respect to F if they behave equally after compounding with the same tree.

Lemma 3. Let F be the set of rooted trees that represent a 3-leaf power with a
Hamiltonian cycle. Then, ∼F does not have finite index.

Proof. Let G be a graph whose vertex set can be partitioned into a clique A and
an independent set B. Furthermore, let every vertex in A be adjacent to every
vertex in B. Such graphs are called complete split graphs. It obviously holds that
G has a Hamiltonian cycle if and only if |A| ≥ |B|, since two vertices of B cannot
appear consecutively on the cycle.

First we show that complete split graphs are 3-leaf powers. Let G be a com-
plete split graph with vertex partition (A,B) such that A is a clique and B is
an independent set. A star is a tree with a universal vertex. We obtain a tree
for G from the star on |B| + 1 vertices by attaching a new leaf to every leaf of
the star and |A| new leaves to the universal vertex of the star. Let the new tree
be rooted at the universal vertex of the star. For r ≥ 1, denote by Gr the star
on r + 1 vertices, which is a complete split graph, and denote by Tr the corre-
sponding rooted tree due to the above construction. Note that, for arbitrary i
and l, Ti ⊕Gl is a tree for a complete split graph with independent set of size i
and clique of size l + 1. We assume that Gl has root a universal vertex.

Second we show that all Tr are in different equivalence classes of ∼F , thus
showing that ∼F does not have finite index. Let 1 ≤ i < j. By the discussions
about, Ti ⊕ Gj−i has no Hamiltonian cycle and Tj ⊕ Gj−i has a Hamiltonian
cycle. Hence, Ti 
∼F Tj .

In view of Corollary 1, the above provides an alternate proof that Hamiltonicity
cannot be expressed in M1O logic. It also shows that an attempt to mimic the
form of Lemma 2 by having the “extractor” graph expressions in M1O logic, does
not support a conclusion that properties expressible in M2O logic are finite-state
recognizable by automata acting on the generating trees. The proof of Lemma 3
is easily modified to show a similar result for any fixed k ≥ 3. We contrast the
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above with a limited positive result for a problem that cannot be formulated in
M1O.

Lemma 4. Let F be the set of rooted trees that represent a 2-leaf power with a
Hamiltonian cycle. Then, ∼F has finite index.

Proof. Note that 2-leaf powers are exactly the disjoint unions of complete graphs.
So, it holds that a 2-leaf power contains a Hamiltonian cycle if and only if it is
connected and has at least three vertices. Hence, a 2-leaf power has a Hamiltonian
cycle if and only if it is represented by a star with at least three leaves. We show
that ∼F defines three equivalence classes on the set of rooted trees on at least
four vertices: stars with root the centre vertex, stars with root a leaf, rooted
trees that are not stars.

Let T and T ′ be rooted trees. First, let T not be a star. This means that there
is a path of length at least 3 between two leaves in T . Then, there is a path of
length at least 3 between two leaves also in T ⊕ T ′, which means that T ⊕ T ′

represents a disconnected 2-leaf power, and T ⊕T ′ is not in F . Second, let T be
a star with root vertex a leaf. We distinguish two cases for T ′. If T ′ has exactly
one vertex then T ⊕ T ′ represents the same 2-leaf power as T , if T ′ has at least
two vertices then T ⊕ T ′ contains two leaves at distance at least 3. Hence, all
trees in the second class behave equally. Third, let T be a star with root vertex
the centre. Again, we distinguish two cases. If T ′ is a star with root a universal
vertex then T ⊕T ′ is a star with root a universal vertex, if T ′ is a star with root
not a universal vertex or T ′ is not a star then T ⊕ T ′ contains a pair of leaves
at distance at least 3. Hence, the trees in this class behave equally.

We have seen that ∼F partitions the set of rooted trees on at least four
vertices into three classes. Since there is only a finite number of rooted trees on
at most three vertices, ∼F partitions the set of rooted trees into a finite number
of classes, which shows the claim of the lemma.

5 Conclusions and Open Problems

We have shown that graphs of bounded leaf-power is not a well-behaved monotonic
parameter, answering a noted open problem: there are graphs that are 4-leaf pow-
ers but not 5-leaf powers. Recently, we learned that Brandstädt and Wagner have
generalized our construction of a 4-leaf power that is not a 5-leaf power, based on
an early draft of the present paper [9], to construct for any k ≥ 4 a k-leaf power
that is not a k+1-leaf power [4]. But maybe it can be shown that in some sense
the notion is “almost monotonic” for some suitable interpretation of almost.

We have also explored how the generating trees for k-leaf powers can be used
directly to decide properties of graphs in these families, and have shown if a
property is expressible in M1O logic, then this approach can be carried out.
Such expressibility is sufficient, but not necessary for the approach to succeed.
We have shown that Hamiltonicity, a property that is not expressible in M1O,
is finite-state for 2-leaf powers, but not for k-leaf powers for k ≥ 3.
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The issue has been explored in the general setup that the graphs are extracted
from the trees in some manner, and then we want to know if the trees might be
exploited for finite-state recognition of properties. Our general result, Lemma 2,
shows that if the extraction is by means of M2O expressions, and the properties
are expressible in M1O, then the program succeeds. (We have recently learned
that our general lemma seems to be a special case of results in a very general
setting independently and recently published by Blumensath and Courcelle [5].)

However, this area merits much more investigation. Our main motivation is
to try to find general FPT results for classes of problems, for graphs in graph
families extracted from trees, much as Courcelle’s Theorem does for graphs of
bounded treewidth. But not just general FPT results, we also want to explore
how such results can be obtained in an efficient manner.

Another possibility for handling the extraction of the graphs from the trees
would be by means of finite-state automata. For example, consider the (some-
what artificial) parameterized family of graphs Fk defined where two leaves l
and l′ of the generating tree T are adjacent in the extracted graph G(T ) if there
exists a cutwidth at most k layout of T with u and v consecutive. Using the ap-
proach of [8] (Theorem 6.82) one can construct a fairly efficient tree-automaton
for this extraction. Is there an efficient and general way to decide properties of
such graphs? Can we get good quantitative bounds on the sizes of the automata
involved in these kinds of approaches?
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Ali Çivril and Malik Magdon-Ismail

Computer Science Department, RPI, 110 8th Street, Troy, NY 12180
{civria,magdon}@cs.rpi.edu

Abstract. Given a matrix A ∈ Rm×n of rank r, and an integer k < r,
the top k singular vectors provide the best rank-k approximation to A.
When the columns of A have specific meaning, it is desirable to find
(provably) “good” approximations to Ak which use only a small number
of columns in A. Proposed solutions to this problem have thus far focused
on randomized algorithms. Our main result is a simple greedy determin-
istic algorithm with guarantees on the performance and the number of
columns chosen. Specifically, our greedy algorithm chooses c columns
from A with c = O

�
k2 log k

ε2
µ2(A) ln

� √
k‖Ak‖F

ε‖A−Ak‖F

��
such that

‖A − CgrC
+
grA‖

F
≤ (1 + ε) ‖A − Ak‖F ,

where Cgr is the matrix composed of the c columns, C+
gr is the pseudo-

inverse of Cgr (CgrC
+
grA is the best reconstruction of A from Cgr), and

µ(A) is a measure of the coherence in the normalized columns of A. The
running time of the algorithm is O(SV D(Ak)+mnc) where SV D(Ak) is
the running time complexity of computing the first k singular vectors of
A. To the best of our knowledge, this is the first deterministic algorithm
with performance guarantees on the number of columns and a (1 + ε)
approximation ratio in Frobenius norm. The algorithm is quite simple
and intuitive and is obtained by combining a generalization of the well
known sparse approximation problem from information theory with an
existence result on the possibility of sparse approximation. Tightening
the analysis along either of these two dimensions would yield improved
results.

1 Introduction

Most data can be represented as an m × n matrix where the columns are ob-
jects and the rows are the features associated with them. Hence, given a matrix
A ∈ Rm×n, one might be interested in obtaining the “important” spectral in-
formation of A by using some compressed representation. The usual approach
to this problem is to take the best rank k (k / min{m,n}) approximation Ak,
which minimizes the error with respect to any unitarily invariant norm. Ak can
be constructed from the top k singular vectors in O(min{mn2,m2n}) time. The
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first k singular vectors required to construct Ak can be computed efficiently
using Lanczos methods. The problem with this general approach, which was
also pointed out by [10] is that the singular vector representation might not
be suitable to make inferences about the actual underlying data, because they
are generally combinations of all the columns of the raw information in A. An
example of this is the microarray data where the combinations of the column
vectors have no sensible interpretation [16]. Hence, it is of practical importance
to represent the approximation to A by a small number of columns of A.

1.1 Our Contributions

We give a deterministic greedy algorithm for low rank matrix reconstruction
which is based on the sparse approximation of the SVD of A. We first gener-
alize the sparse approximation problem of approximating vector [18] to one of
approximating a subspace, using a small number of columns from A. We analyse
a greedy algorithm which generalizes the analysis in [18]; in order to correct a
minor technical error in the proof therein, we introduce a coherence parameter
for a matrix, the rank coherence parameter which can be thought of as a more
general and robust version of the coherence parameters defined in [23].

Our algorithm first computes the top k left singular vectors of A, and then
selects columns of A in a greedy fashion so as to “fit” the space spanned by
the singular vectors, appropriately scaled according to the singular values. The
performance characteristics of the algorithm depend on how well the greedy
algorithm approximates the optimal choice of such columns from A, and on
how good the optimal columns themselves are. We give an existence result on
the quality of the optimal columns, and the necessary analysis of the greedy
algorithm to arrive at the following result:

Theorem 1. The greedy algorithm chooses a column submatrix Cgr ⊆ A with

c = O
(

k2 log k
ε2 µ2(A) ln

( √
k‖Ak‖F

ε‖A−Ak‖F

))
columns such that

‖A− CgrC
+
grA‖F

≤ (1 + ε) ‖A−Ak‖F .

The term k2 log k
ε2 arises from an upper bound on the number of columns the op-

timal solution would choose (the existence result), and the remaining terms are
contributed by the analysis of the greedy algorithm. The coherence parameter,
µ(A) restricts the class of matrices for which the algorithm is useful. To the best
of our knowledge, this is the first deterministic algorithm with (1 + ε) approxi-
mation. Note that, in order to achieve this approximation ratio, we choose more
than k columns. When µ = O(1), setting ε =

√
k log k and ignoring logarithmic

factors, we have a 1 +
√
k log k approximation ratio with O(k) columns.

We believe that a result without the coherence parameter should be possible,
however have not been able to construct one. In any case, improving either the
upper bound on the optimal reconstruction of the singular vectors, or improving
the analysis of the greedy algorithm would yield a tighter result. The running
time of the algorithm is governed by the computation of the top k singular
vectors, which is O(SV D(Ak)) and the greedy selection phase, which is O(mnc).
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1.2 Comparison to Related Work

With the advent of massive data sets, much work in theoretical computer science
has been spent on finding algorithms for matrix reconstruction by considering a
careful choice of a subset of the columns of the data matrix. The seminal paper
by Frieze, Kannan and Vempala [12] gives a randomized algorithm that chooses
a subset of columns C ∈ Rm×c of A such that ‖A−ΠCA‖F ≤ ‖A−Ak‖F +
ε‖A‖F , where ΠC is a projection matrix obtained by the SVD of C and c =
poly(k, 1/ε, 1/δ), where δ is the failure probability of the algorithm. Subsequent
work [9,8,20] introduced several improvements on the dependence of c on k, 1/ε
and 1/δ also extending the analysis to the spectral norm. Recently, the effort has
been towards eliminating the additive term in the inequality thereby yielding a
relative approximation in the form ‖A−ΠCA‖F ≤ (1 + ε)‖A−Ak‖F . Along
these lines, Deshpande et al. [5] first shows the existence of such approximations
introducing a sampling technique related to the volume of the simplex defined
by the column subsets of size k, without giving a polynomial time algorithm.
Specifically, they show that there exists k columns with which one can get a√
k + 1 relative error approximation in Frobenius norm, which is tight. Later,

Deshpande and Vempala [7] provides an algorithm with two steps which yields a
relative approximation in expectation: first, approximate the “volume sampling”
introduced in [5] by successively choosing one column at each step with carefully
chosen probabilities; then, choose O(k/ε+k2 log k) columns in O(k log k) rounds
in a similar fashion. The complexity of their algorithm is O(M(k/ε+ k2 log k)+
(m + n)poly(k, ε)), where M is the number of non-zero elements in A.

Recent result of Drineas et al. [10] provides two randomized algorithms for rel-
ative error approximation in Frobenius norm using “subspace sampling”, i.e. se-
lecting columns proportional to the row-norms of the matrix of top k right singular
vectors. One of the algorithms chooses exactly c = O(k2 log(1/δ)/ε2) columns; the
other chooses c = O(k log k log(1/δ)/ε2) columns in expectation and both of them
runs in O(SV D(Ak)) time, i.e. the time required to compute Ak, where δ is the
failure probability. Other recent approaches for the problem we consider includes
random projections [21], and sampling which exploits geometric properties of high
dimensional spaces [22]. [6] also considers the subspace approximation problem in
general lp norms. All of these algorithms exploit the power of randomization and
they introduce a trade-off between the the number of columns chosen, the error
parameter and the failure probability of the algorithm. The proof techniques pre-
sented in these papers break when the random sampling approach is sacrificed and
a deterministic column selection procedure is used.

When it comes to deterministic reconstruction, no (1 + ε) approximation al-
gorithms are known. The linear algebra community has developed deterministic
algorithms in the framework of rank revealing QR (RRQR) factorizations [1]
which yield some approximation guarantees in spectral norm. Given a matrix
A ∈ Rn×n, consider the QR factorization of the form

AΠ = Q

(
R11 R12
0 R22

)
(1)
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where R11 ∈ Rk×k and Π ∈ Rn×n is a permutation matrix. By the interlacing
property of singular values (see [13]), σk(R11) ≤ σk(A) and σ1(R22) ≥ σk+1(A).
If the numerical rank of A is k, i.e. σk(A) 0 σk+1(A), then one would like
to find a permutation Π for which σk(R11) is sufficiently large and σ1(R22) is
sufficiently small. A QR factorization is said to be a rank revealing QR (RRQR)
factorization if σk(R11) ≥ σk(A)/p(k, n) and σ1(R22) ≤ σk+1(A)p(k, n), where
p(k, n) is a low degree polynomial in k and n.

Much research on finding RRQR factorizations has yielded improved results
for p(k, n) [1,2,4,14,15,19]. These algorithms make use of the local maximum
volume concept and are generally complicated. Tight bounds for p(k, n) can be
used to give deterministic low rank matrix reconstruction with respect to the
spectral norm, via the following simple fact.

Theorem 2. Let Πk be the matrix of first k columns of Π in (1). Then,

‖A− (AΠk)(AΠk)+A‖2 ≤ p(k, n)‖A−Ak‖2.

The best p(k, n) was proposed by Gu and Eisenstat [14]. The authors show
that there exists a permutation Π for which p(k, n) =

√
1 + k(n− k). It is

not known whether such a permutation can be computed in polynomial time.
Instead, algorithms with p(k, n) =

√
1 + f2k(n− k) were given which run in

O((m+n logf n)n2) time for f > 1 [14]. Hence, for constant f , the approximation
ratio depends on n and the running time is O(mn2 + n3 logn). Note that, these
algorithms consider choosing exactly k columns and the results are not directly
comparable to ours as they provide bounds on the spectral norm. It is not clear
whether these algorithmic results can be extended to give non-trivial bounds
in Frobenius norm or to choose more than k columns so as to yield (1 + ε)
approximation.

Our results rely on a generalization of the sparse approximation problem which
was formally proposed by Natarajan [18]: given A ∈ Rm×n, a vector b ∈ Rm, and
ε > 0, find a vector x ∈ Rn satisfying ‖Ax− b‖2 ≤ ε such that x has the fewest
non-zero entries over all such vectors. This problem was also considered by Tropp
[23]. Natarajan [18] proves that the problem is NP-hard and gives a greedy al-
gorithm based on choosing the column vector from A with largest projection on
b at each step. After correcting a minor technical error in his proof, his result
gives that the greedy algorithm chooses at most �18Opt(ε/2)µ2(A) ln(‖b‖2/ε)�
columns, µ(A) is a parameter defining the coherence between the normalized
columns of A and Opt(ε/2) is the optimal number of vectors at error ε/2. More
recently, from an information theoretic point of view, Tropp [23] analyzed some
previously known algorithms (e.g. Matching Pursuit (MP) [11,17], Basis Pursuit
(BP) [3]) for the sparse approximation problem, showing that these algorithms
perform well for dictionaries (matrices) which are close to orthonormal. A for-
malization of this notion is represented by the coherence parameter [17], which
is the maximum absolute inner product betweeen two distinct column vectors.
Tropp gives a natural generalization of this concept, the cumulative coherence
parameter, which is the maximum coherence between a fixed column vector and
a collection of other column vectors. Intuitively, these parameters measure how
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“close” the column vectors of a matrix are and smaller values indicate an inco-
herent (almost orthonormal) matrix.

1.3 Notation and Preliminaries

From now on A ∈ Rm×n is the matrix we wish to reconstruct. A(i) denotes the
ith row of A for 1 ≤ i ≤ m, and A(j), the jth column of A for 1 ≤ j ≤ n. Aij

is the element at ith row and the jth column. Typically, we use C to denote
a subset of columns of A, written C ⊂ A, i.e. C is a column submatrix of A.
span(C) denotes the subspace spanned by the column vectors in C. The Singu-
lar Value Decomposition of A ∈ Rm×n of rank r is denoted by A = UΣV T

where U ∈ Rm×m is the matrix of left singular vectors, Σ ∈ Rm×r is the
diagonal matrix containing the singular values of A in descending order, i.e.
Σ = diag(σ1, . . . , σr, 0, . . . , 0) where σ1 ≤ σ2 . . . σr > 0 are the singular values
of A. V ∈ Rn×n is the matrix of right singular vectors. The “best” rank k ap-
proximation to A is Ak = UkΣkV

T
k where Uk and Vk are the first k columns

of the corresponding matrices in the full SVD of A, and Σk is the k × k diago-
nal matrix of the first k singular values. The pseudo-inverse of A is denoted by
A+ = V Σ+UT , where Σ+ = diag

(
1
σ1

, . . . 1
σr

, 0, . . . , 0
)
. The Frobenius norm of

A is ‖A‖F =
√∑m

i=1
∑n

j=1 A
2
ij , and the spectral norm of A is ‖A‖2 = σ1(A). We

also define the maximum column norm of a matrix A, ‖A‖col = maxn
i=1{‖A(i)‖2}.

S⊥ is the space orthogonal to the space spanned by the vectors in S.

1.4 Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we define a generalized
version of the sparse approximation problem which asks for a small set of columns
that approximates the subspace spanned by a given set of target vectors. We give
a greedy algorithm along with its analysis. Section 3 gives our column based rank
matrix reconstruction algorithm, which can be viewed as a special case of the
generalized sparse approximation problem, where the target vectors are the left
singular vectors of A.

2 Generalized Sparse Approximation

Instead of seeking sparse approximation to a single vector [18], we propose the
following generalization: given matrices A ∈ Rm×n, a set of vectors B ∈ Rm×k,
and ε > 0, find a matrix X ∈ Rn×k satisfying

‖AX −B‖F ≤ ε (2)

such that
∑n

i=1 νi(X) is minimum over all possible choices of X , where νi(X) = 1
if the row X(i) contains non-zero entries, νi(X) = 0 if X(i) =

−→
0 . Intuitively, the

problem asks for a minimum number of set of column vectors of A whose span
is close to those of B.
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2.1 The Algorithm

A greedy strategy for solving this problem is to choose the column v from A at
each iteration, for which ‖BT v‖2 is maximum, and project the column vectors
of B and the other column vectors of A onto the space orthogonal to the chosen
column. The algorithm proceeds greedily on these residual matrices until the
norm of the residual B drops below the required threshold ε. Naturally, if the
error ε cannot be attained, the algorithm will fail after selecting a maximal
independent set of columns.

Greedy(A, B, ε)
1: normalize each column of A to have norm 1.
2: l ← 0, Λ ← ∅, A0 ← A, B0 ← B.
3: while ‖Bl‖F > ε do

4: choose i ∈ {1, . . . , n} − Λ such that ‖BT
l A

(i)
l ‖

2
is maximum

5: B
(j)
l+1 ← B

(j)
l −

�
B

(j)
l

T
A

(i)
l

�
A

(i)
l for i = 1, . . . , k, i.e. project B

(j)
l ’s onto

{A(i)
l }⊥.

6: Λ ← Λ ∪ {i}.
7: A

(j)
l+1 ← A

(j)
l −

�
A

(j)
l

T
A

(i)
l

�
A

(i)
l for j ∈ {1, . . . , n} − Λ, i.e. project A

(j)
l ’s

onto {A(i)
l }⊥.

8: normalize A
(j)
l+1 for j ∈ {1, . . . , n} − Λ.

9: l ← l + 1.
10: end while
11: return C = Λ(A), the selected columns.

Fig. 1. A greedy algorithm for Generalized Sparse Approximation

We first define the coherence of a matrix.

Definition 3 (Coherence). Given a matrix A ∈ Rm×n of rank r, let A be
the matrix A with normalized columns. Then, the rank coherence of A, µ(A)
is the maximum of the inverses of the least singular value of m × r full-rank
sub-matrices of A. Namely,

µ(A) = max
C⊆A

C∈R
m×r

rank(C)=r

1
σr(C)

. (3)

Remark 4. 1 ≤ µ(A) < ∞. Small values of µ(A) indicate a matrix with near
orthonormal columns.

Theorem 5. The number of columns chosen by Greedy is at most

O

(
Opt(ε/2)µ2(A) ln

(
‖B‖F

ε

))
where Opt(ε/2) is the optimal number of columns at error ε/2.
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We will establish Theorem 5 through a sequence of lemmas. The proof follows
similar reasoning to the proof in [18]. Let t be the total number of iterations of
Greedy. At the beginning of the lth iteration of the algorithm, for 0 ≤ l < t, let
Ul be an optimal solution to the generalized sparse approximation problem with
error parameter ε/2, i.e. Ul minimizes

∑n
i=1 νi(X) over X ∈ Rn×k such that

‖AlUl −Bl‖F ≤ ε/2, where νi(X) = 1 if the row X(i) contains non-zero entries,
νi(X) = 0 if X(i) =

−→
0 . Let Nl =

∑n
i=1 νi(Ul) and Ql = AlUl. Define

λ = 4 max
0≤l<t

Nl‖Ul‖2F
‖Bl‖2F

. (4)

The proofs of the following lemmas which essentially bound the number of
iterations of the algorithm, are given in the appendix. Assuming that the Greedy
has not terminated, the first lemma states that the next step makes significant
progress.

Lemma 6. For the lth iteration of Greedy, ‖BT
l Al‖col ≥

‖Bl‖2
F

2
√

Nl‖Ul‖F

.

Thus, there exists a column in the residual Al which will reduce the residual
Bl significantly, because Bl has a large projection onto this column. Therefore,
since every step of Greedy makes significant progress, there cannot be too many
steps, which is the content of the next lemma.

Lemma 7. t ≤
⌈
2λ ln

(
‖B‖F

ε

)⌉
, where t is the number of Greedy iterations.

What remains is to bound λ. First, we will bound ‖Ul‖F in terms of ‖Bl‖F both
of which appear in the expression for λ. Let πl = {i|Ul(i) 
=

−→
0 } be the indices of

rows of Ul which are not all zero. Recall that these indices denote which columns
are chosen by the optimal solution for Al. Let τl = {i1, i2, . . . , il} be the indices
of the first l columns picked by the algorithm. Given an index set γ, let the set
of column vectors {A(i)|i ∈ γ} be denoted by γ(A). The proofs of the following
lemmas are also in the appendix.

Lemma 8. πl(A) ∪ τl(A) is a linearly independent set for all l ≥ 0.

Lemma 9. For 0 ≤ l < t, ‖Ul‖F ≤ 3
2µ(A)‖Bl‖F .

Proof of Theorem 5: First, we note that the number of non-zero rows in the
optimal solution is non-increasing as the algorithm proceeds, that is Nl ≥ Nl+1
for l > 0, which follows from an argument identical to the proof of Lemma 3 in
[18]. Since Opt(ε/2) = N0, we have

λ ≤ 4 max
0≤l<t

N0‖Ul‖2F
‖Bl‖2F

≤ 9Opt(ε/2)µ2(A)

where the last inequality is due to the result of Lemma 9. Combining this with
Lemma 7, we have that the number of iterations of the algorithm is bounded by

t ≤
⌈
18Opt(ε/2)µ2(A) ln

(‖B‖F

ε

)⌉
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3 Deterministic Low-Rank Matrix Reconstruction

In this section, we give a deterministic algorithm for low rank matrix reconstruc-
tion based on the greedy approach that we have introduced and analyzed for the
generalized sparse approximation problem:

LowRankApproximation(A, k)
1: compute Uk and Σk of A
2: return Greedy(A, UkΣk, ε‖A − Ak‖F )

Fig. 2. The low-rank approximation algorithm

The algorithm first computes Uk, the top k left singular vectors of A and Σk

the first k singular values of A, which can be performed by standard methods
like Lanczos. The columns of A are then selected in a greedy fashion so as to
“fit” them to the subspace spanned by the columns of UkΣk. Intuitively, we
select columns of A which are close to the columns of UkΣk and the analysis
shows that the submatrix C of A we obtain is provably close to the “best” rank-
k approximation to A. The error parameter which is given as an input to the
greedy algorithm is ε‖A−Ak‖F . The following result provides an upper bound
on the number of columns of the optimal solution at error ε‖A−Ak‖F /2.

Lemma 10. There exists a column submatrix C of A with c = O(k log k/ε2)
columns such that ‖UkΣk − CC+UkΣk‖F ≤ ε‖A−Ak‖F /2.

Proof. The proof is given in the appendix due to space limitations.

We now, give the proof of Theorem 1.

Proof of Theorem 1: By the algorithm, we have

UkΣk = CgrC
+
grUkΣk + E,

for some generic error matrix E satisfying ‖E‖F ≤ ε‖A−Ak‖F . Multiplying
both sides by V T

k , we get

UkΣkV
T
k = CgrC

+
grUkΣkV

T
k + EV T

k ,

which is clearly

Ak = CgrC
+
grAk + EV T

k .

Rearranging and adding A to the both sides of the equation, we obtain A −
CgrC

+
grAk = A−Ak +EV T

k . Taking norms of both sides, and noting that C+
grA

is the minimizer of ‖A− CgrX‖F , we obtain
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‖A− CgrC
+
grA‖F

≤ ‖A− CgrC
+
grAk‖F

= ‖A−Ak + EV T
k ‖F

≤ ‖A−Ak‖F + ‖E‖F ‖V T
k ‖F

≤ ‖A−Ak‖F + ε
√
k‖A−Ak‖F

= (1 + ε
√
k)‖A−Ak‖F

Third line follows due to the triangle inequality and submultiplicativity of the
Frobenius norm. Fourth line is due to the fact that ‖E‖F ≤ ε‖A−Ak‖F and
‖V T

k ‖F ≤
√
k. Choosing an error parameter ε′ = ε/

√
k and combining Theorem

5 and Lemma 10 gives the desired result.
Note that, the number of columns chosen by the algorithm depends on µ(A),

i.e. the structure of A. To get an idea of what this result implies when the
number of columns chosen is of order k, we give the following corollary, which
immediately follows upon a careful choice of error parameter.

Corollary 11. The greedy algorithm chooses a submatrix C of Õ(k) columns of
A for which ‖A− CC+A‖F ≤ µ(A)

√
k log k‖A−Ak‖F .

Acknowledgments. We would like to thank Petros Drineas for helpful discus-
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Abstract. We consider the problem of minimizing flow-time in the un-
related machines setting. We introduce a notion of (α, β) variability to
capture settings where processing times of jobs on machines are not com-
pletely arbitrary and give an O(β log α) approximation for this setting.
As special cases, we get (1) an O(k) approximation when there are only k
different processing times (2) an O(log P )-approximation if each job can
only go on a specified subset of machines, but has the same processing
requirement on each such machine. Further, the machines can have dif-
ferent speeds. Here P is the ratio of the largest to the smallest processing
requirement, (3) an O( 1

ε
log 1

ε
)- approximation algorithm for unrelated

machines if we assume that our algorithm has machines which are an
ε-factor faster than the optimum algorithm’s machines. We also improve
the lower bound on the approximability for the problem of minimizing
flow time on parallel machines from Ω(

�
log P/ log log P ) to Ω(log1−ε P )

for any ε > 0.

1 Introduction

We consider the problem of scheduling jobs on multiple machines so as to mini-
mize the total flow time. The flow time of a job is the total time it spends in the
system and equals the difference between its completion time and release time.
A job j has a processing time pij on machine i; this is the most general model of
processing times and is known as the unrelated machines model. A special case
is the related machines model where job j has length aj , machine i has speed (or
slowness) si and the processing time of job j on machine i is aj · si. When the
machines are identical so that si = 1 for all i, then we have the parallel machines
model.

Minimizing flow time is most interesting in the on line setting where the
processing time of a job on various machines is revealed only when the job is
released. For parallel machines an O(logP )-competitive algorithm was first given
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�� Part of the work is supported by DST, Govt of India under Fast Track Young
Scientist Scheme.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 424–435, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Minimizing Total Flow-Time: The Unrelated Case 425

by Leonardi and Raz [6] while for related machines an O(log2 P ) algorithm was
given by Garg and Kumar [4], where P is the ratio of the maximum and minimum
processing times. However, for unrelated machines no on line algorithm can have
bounded competitive ratio and this is true even for the very restricted setting
when each pij is either 1 or ∞[5]. It is for this reason that we consider offline
algorithms for minimizing flow time on unrelated machines.

In this paper we present a new algorithm for this problem. The setting when
the processing times pij are completely arbitrary seems very unnatural and dif-
ficult to approximate. In this paper we consider a model which tries to cap-
ture the variation in processing times which we motivate as follows. Suppose
we have a cluster of heterogeneous computers (machines) on which we want
to run some programs (jobs). These programs are solving different problems –
matrix multiplication, sorting, sequence alignment, mpeg decoding etc. Simi-
larly machines have different architectures – super scalars, multi-cores, vector
machines – and some architectures might be better suited for a particular prob-
lem. This naturally gives rise to different processing times for different problems
on different architectures; we assume that these processing times are from a
set B = {b1, b2 . . . , bβ}. Two machines which implement the same architecture
could run at different speeds due to differences in clock frequency, memory etc.
This results in processing time variations which would (to a large extent) be
independent of the program being run. Similarly, we could be using different
algorithms to solve the same problem and running them on different instances.
The variation in the processing times of the resulting programs would therefore
be independent of the machine on which the program is executed.

We say that processing times have an (α, β)-variability if the processing time of
job j on machine i can be expressed as pij = aj ·bij ·si where bij ∈ B, |B| = β and
1 ≤ aj ≤ α. Our main result in this paper is an O(β(1 + logα))-approximation
when processing times have an (α, β) variability. Note that when pij take k
different values then we can always set α = 1, β = k and this gives an O(k)
approximation. This result was obtained independently by Sitters [7] using a
different algorithm. However, our aim in this paper is to do even better by
providing an algorithm which can exploit bounded variability in the processing
times. As a case in point, consider the setting when job j has processing time
pj but it can be scheduled only on a subset of machines Sj . If all machines
have the same speed, we call this the subset-parallel model. Garg and Kumar [5]
gave an O(logP ) approximation for minimizing flow time in this model, where
P = maxj pj/minj pj . If machine i has speed si then the processing time of job j
on machine i (assuming i ∈ Sj) is pij = pj ·si. Note that choosing B = {1,∞} im-
plies a (P, 2) variability on the processing times and hence our algorithm gives
an O(logP )-approximation. This is the first approximation algorithm for this
subset-related model. We believe that for many other natural settings, the varia-
tions in processing times can be captured using (α, β) variability for small α, β
and this would then imply better approximation guarantees using our algorithm.

The difficulty in approximating flow time for unrelated machines led us to con-
sider the problem with resource augmentation. In this setting the approximation
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algorithm has machines which are an ε-factor faster than those of opt. This means
that the approximation algorithm can complete 1 + ε units of work in 1 time
unit while opt can only do 1 unit. Such a model was considered for parallel ma-
chines and Chekuri et. al. [1] showed aO(1

ε )-competitive algorithm for minimizing
flow time. A small modification to our main algorithm gives an O(ε−1 log ε−1)-
approximation for minimizing flow time on unrelated machines. Note that this
result does not assume that processing times have bounded variability.

Our final result in this paper improves the lower bound on the approximation
ratio for minimizing flow time on parallel machines from Ω(

√
logP/ log logP )

[5] to Ω(log1−ε P ) for any ε > 0. Note that an Ω(logP ) lower bound is already
known for the subset parallel (and hence also for unrelated) model [5].

Technical comparison with other work. The O(logP )-approximation for
the subset parallel model by Garg and Kumar [5] solved an LP formulation of the
problem and then rounded the solution iteratively by modifying the unsplittable
flow algorithm of Dinitz et al.[2].

Our approach does the rounding in one step and uses the Dinitz et al. al-
gorithm as a black box. We are able to do this because of a different way of
handling the “last jobs” on each machine. Overall this makes the algorithm and
its analysis very simple.

2 Unrelated Machines

We consider the problem of minimizing average flow-time of n jobs on m ma-
chines. Job j has a release date rj . If j is scheduled on machine i then it has to
be processed for pij time units. We allow for preemption but disallow migration,
i.e. a job cannot be interrupted on a machine and restarted on another machine.
We now give an integer programming formulation for minimizing flow time on
unrelated machines [4]. For each job j, machine i and time t, we have a variable
xi,j,t which is 1 if machine i processes job j from time t to t + 1, 0 otherwise.
The integer program is as follows.

min
∑

j

∑
i

∑
t

xi,j,t ·
(
t− rj

pij
+

1
2

)
(1)

∑
j

xi,j,t ≤ 1 for all machines i and time t (2)

∑
i

∑
t

xi,j,t/pij = 1 for all jobs j (3)

xi,j,t = 0 if t < rj (4)
xi,j,t ∈ {0, 1} for all jobs j, machines i, time t (5)

Constraint (2) refers to the fact that a machine can process at most one
job at any point of time. Equation (3) says that job j gets completed by the
schedule. Equation (4) captures the requirement that we cannot process a job
before its release date. It should be clear that an integral solution gives rise to
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a schedule where jobs can migrate across machines and may even be processed
simultaneously on different machines.

The only non-trivial part of the integer program is the objective function.
Let ∆j(x) =

∑
i

∑
t xi,j,t ·

(
t−rj

pj
+ 1

2

)
. So the objective function is to minimize

∆(x) =
∑

j ∆j(x). Let S be a non-migratory schedule. S also yields a solution
to the integer program in a natural way — let xS denote this solution. The
following fact was established in [4].

Fact 1. The total flow-time of S is at least
∑

j ∆j(xS).

We say that the processing times have variability (α, β) if for all machines i and
job j, pij = aj · bk · si where 1 ≤ aj ≤ α and bk ∈ B, where B = {b1, . . . , b|B|
is a set of size at most β. We impose no restriction on si but it is no loss of
generality to assume that si ≥ 1.

We say that job j on machine i is of class k if pij = aj · bk · si. Consider
the integer program (1). For the purpose of subsequent discussion, we modify
the integer program slightly by replacing the objective function

∑
j ∆j(x) by∑

j ∆
′
j(x), where ∆′

j(x) =
∑

i

∑
t xi,j,t

(
t−rj

p′
ij

+ 1
2

)
. Here p′ij = pij/aj. It is easy

to see that this modification does not decrease the cost of a solution x and
increases it by at most a factor α. But this slight modification in the objective
function turns out to be very useful. Consider the slots in x for a fixed machine
i and class k – if we rearrange the jobs being processed on these slots (without
violating release dates), the objective function does not change.

We now relax the integer program by replacing the constraints (5) by xi,j,t ≥
0. Let x∗ be an optimal fractional solution to this linear program (LP).

2.1 The Algorithm

We order the jobs in ascending order of their release times (breaking ties ar-
bitrarily). We begin by constructing a directed graph G over which we would
be running the unsplittable flow algorithm of Dinitz et al [2]. We first describe
the vertex set V of G. For each machine i, job j and class k, we have a vertex
v(i, j, k). For each job j, we have a vertex v(j) and a special source vertex s.
Further we have a set of special vertices U = {u1, . . .} – the size of U will be the
processing time of the optimal solution divided by α (this will become clear in
the construction below). We now describe the edges in G. Since we shall treat
this as an instance of the unsplittable flow problem, we need to define flow values
on each edge and the demand of each vertex. We describe this next:

1. Let z∗i,j =
∑

t

x∗
i,j,t

p′
ij

. This is the total (fractional) processing of j on machine
i scaled by the factor aj . If this quantity is non-zero, and the class of j on
machine i is k, we have an edge from v(i, j, k) to v(j) with flow z∗i,j . There are
no other edges incident at vertex v(j). Note that for each job j, the LP has
a constraint

∑
i

∑
t xi,j,t/pij = 1. This implies that the total flow reaching

vertex v(j) is exactly aj and this is the demand of vertex v(j). The demand
of all other vertices in G is zero.
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2. For each j, 1 ≤ j ≤ n− 1, there is an edge from v(i, j, k) to v(i, j + 1, k) for
every i, k. So for fixed values of i and k, we can think of this as a directed
path joining the corresponding vertices in the order of release dates. The edge
from v(i, j, k) to v(i, j + 1, k) has flow given by conservation constraints.

3. We now build a bipartite sub graph between the vertices in U and the set
V ′ = {v(i, 1, k) : for all i, k}. We order the vertices in V ′ by descending
value of bk · si and relabel vertices as v1, v2, . . . , v|V ′| to reflect this ordering.
Let fi be the total flow leaving vertices v1, . . . , vi. With each vertex vi we
associate an interval [fi−1, fi] (let f0 = 0). Further for each vertex ul ∈ U
we associate the interval [α · (l − 1), α · l]. There is an edge from ul to vi iff
the corresponding intervals overlap and the flow on this edge is the length of
the overlap. Hence the total flow leaving ul is exactly α (except perhaps for
the last vertex in U) and the total flow entering vi is the total flow leaving
it.

4. For every ul ∈ U , there is an edge from s to ul and the flow on these edges
is given by flow conservation.

u
1

s
u

u

u2

3

4

1
v

v

v

v

v

2

3

4

|V’|

v(j)

v(i,j,k)

Fig. 1. The graph G constructed from the LP solution

Let f be the initial flow as described above. We will compute a flow, f∗, in
which all demand from the source s to sink v(j) is routed on a single path. The
unsplittable flow theorem of Dinitz et al. says that this can be done such that
the flow on any edge exceeds the fractional flow on that edge by at most the
maximum demand, which in our case is α. The unsplittable flow f∗ in graph G,
allots each job to a unique machine. Once we know which jobs to schedule on
which machine, we apply Shortest-Remaining-Processing-Time (SRPT) on each
machines. Let us call this schedule as S. In order to analyse the flow time of this
schedule, we construct another schedule S′ as follows

On each machine i, we consider jobs by increasing release time and schedule
them in the earliest available slots (of class k on machine i). Note that we might
not be able to assign all jobs to slots since we might run out of slots. It might



Minimizing Total Flow-Time: The Unrelated Case 429

also happen that only a part of a job can be assigned. Let J ′ be the jobs that
could be processed completely. After all the jobs in J ′ are scheduled, we schedule
the jobs in J−J ′ at the earliest possible time on the machine they were assigned
to (considering these jobs in an arbitrary order). We note the flow time of S is
at most the flow time of S′ and hence enough to bound the flow time of S′. Let
P be the total processing time of the jobs in our schedule S′.

Claim. For each machine i and class k, at most α jobs will remain unassigned
in the above step.

Proof. Fix a machine i and class k. The flow through the edge (v(i, j − 1, k),
v(i, j, k)) in f∗ exceeds the original flow through this edge by at most α. Since
the total available space after t equals the original flow through this edge, the
amount of additional available space needed to schedule jobs released at or after
t is at most α. Since at most α jobs could have used this space, the number of
unassigned jobs is at most α.

The following claim was proved in [4]

Claim. Total flow time of jobs in J ′ is at most ∆′(x∗) + βP .

Each of these jobs in J − J ′ would have a flow time which is at most the total
processing time on the machine. Since each machine can have at most αβ of
these jobs, the total increase in the flow time of schedule S′ due to these jobs is
at most αβP . Combining the previous claim we get

Lemma 1. Total flow time of schedule S′ is at most ∆′(x∗) + (α + 1)βP .

The following lemma bounds P .

Lemma 2. P ≤ 4 ·∆′(x∗) + 2α · T where T is the largest processing time of a
job in S′.

Proof. Let f(i, k) be the total flow leaving vertex v(i, 1, k) in the flow f . It is easy
to see that

∑
i,j,t x

∗
i,j,t =

∑
i,k si · bk · f(i, k). Similarly, P =

∑
i,k si · bk · f ′(i, k)

where f ′ is the unsplittable flow we compute.

Claim.
∑

i,k si · bk · f ′(i, k) ≤ 2
∑

i,k si · bk · f(i, k) + 2αT

Proof. We shall split the sum in the left hand side as
∑

ul∈U F ′(ul), where F ′(ul)
is the portion of

∑
i,k si ·bk ·f ′(i, k) where we only look at the flow f ′(i, k) which

comes from the vertex ul. Define F (ul) for the right hand side similarly.
First observe that the total flow leaving uj is α in f and hence it is at most

2α in f ′. Hence F ′(ul) ≤ 2F (ul−1), l ≥ 2 – here we use the fact that if flow goes
from ul to a vertex v(i, 1, k) and from ul−1 to v(i′, 1, k′) then bk′si′ ≥ bksi. All
that remains is to bound F (u1). But this is at most 2αT .

Note that
∑

i,j,t x
∗
i,j,t ≤ 2∆′(x∗). This together with the above claim implies the

lemma.
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We guess the longest processing time of any job (this can take only mn different
values) in the optimum schedule, say L. We run the above algorithm with all
pij > L set to infinity. This ensures that T ≤ opt. Hence P ≤ (4 + 2α)opt and
so the flow time of schedule S′ is O(α2βopt).

Theorem 1. The flow time of schedule S′ is O(α2β · opt).

Note that an (α, β) variability in processing times can also be viewed as a
(2, β(1 + logα) variability. This is because each processing time bk in the set
B can be replaced by the set {bk, bk ∗ 2, bk ∗ 22, . . . bk ∗ 2i, . . . bk ∗ 2r} where
r = logα. Doing this would imply that α ≤ 2 and this yields the following
corollary.

Corollary 1. The algorithm in this section is an O(β(1+logα))-approximation
to the problem of minimizing total flow time on unrelated machines when the
processing times have an (α, β) variability.

3 Speed Augmentation in Unrelated Machines

We now consider the setting where our algorithm has machines which are faster
than the machines available to the optimum algorithm by a factor (1 + ε).

We shall use the extra speed in three phases – in each phase we shall assume
that we can do an extra ε/3 units of work in a unit time slot. We begin by round-
ing down all processing times to a power of (1 + ε/3). Note that the optimum
solution to this instance has flow time only lower than the optimum flow time
for the original instance. A solution to this rounded down instance also gives us
a solution to the original instance since we can use an additional speed of ε/3
to process each job fully – this is the first phase where we give ourselves extra
speed.

We can run the algorithm from the previous section with α = 1 and β =
log1+ε/3 P where P = maxi,j pij is the maximum processing time. This in turn
implies an approximation guarantee of log1+ε/3 P . However, in this section we
present an O(ε−1 log ε−1)-approximation algorithm. We say that a job is of class
k on machine i, if its processing time on this machine is (1 + ε/3)k.

Our algorithm proceeds as the algorithm in the previous section (with aj = 1).
We solve the linear program build the graph G and compute an unsplittable flow
f ′ – note that while solving the LP, we do not assume machines have extra speed.
The unsplittable flow is used to determine the assignment of jobs to machines
and apply Shortest-Remaining-Processing-Time (SRPT) on each machines. Let
us call this schedule as S.

To analyse our algorithm, we compute the schedule S′ as in the previous
section for the jobs in J ′. Now in our new schedule, consider the pij slots in
which job j is scheduled on machine i. We exploit the fact that we have an
additional speed ε/3 and move the processing of job j to the first pij

(1+ε/3) of
these pij slots – this is the second phase where we give ourselves extra speed.
The remaining pij ·ε/3

(1+ε/3) of pij slots is used to schedule the jobs in J \J ′. We order
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the jobs in ascending order of their class and schedule these jobs in the earliest
possible slots. We exploit the fact that we have an additional speed ε/3 to bound
the flow time of these jobs – this is the third phase where we give ourselves extra
speed.

Let this new schedule be S′′.
The following Claim uses the fact that we can get an improved result because

of the extra speed.

Claim. The total flow time of jobs in J ′ is at most O
( 1

ε

)
·
∑

j∈J′ ∆′
j(x

S′′
).

Now we try bound the flow time of jobs in J\J ′. For each machine i, let us denote
these jobs by Ri. Let P (Ri) be the total processing time of the jobs in Ri (in
our schedule). Clearly

∑
i P (Ri) ≤ P ≤ opt. Let Ti be the total processing time

of the jobs in J ′ scheduled on machine i. Define � as the smallest non-negative
integer such that Ti ≤ (1+ε/3)�

ε2 . Let x be a constant such that (1+ε/3)x = 1/ε2.
Note that x is O(1

ε log 1
ε ).

We divide the jobs in Ri into three parts, depending on their class on machine
i – small, medium and large. A job in Ri is small if it of class less than �, medium
if its class is between � and �+ x, and large if it is of class larger than �+ x. We
now bound the flow-time of jobs in each of these parts.

Claim. The total flow-time of small jobs in Ri is at most O(Ti/ε).

Proof. Assume � > 0, otherwise we have nothing to prove. Consider a small job
of class k in Ri. Note that a job of processing time (1 + ε/3)k will finish within
3
ε ·

∑k
j=0(1 + ε/3)j time of its release date.Hence the flow time of this job is at

most
( 1+ε

ε2

)
times its processing time. So the total flow time of small jobs in Ri

can be bounded by O
(

1
ε2 ·

∑
j=0 �(1 + ε)�

)
, which is at most a constant times

(1+ε/3)�

ε3 . But Ti >
(1+ε/3)�−1

ε2 . This proves the result.

Now we consider medium and large jobs. We use the following fact – the flow-
time of a job of class k in Ri can be bounded by

Ti +
k∑

j=0

(1 + ε/3)j ≤ Ti + O

(
(1 + ε/3)k+1

ε

)
(6)

This is so because processing of such a job can be interrupted by either the jobs
in J ′ or those in Ri of smaller class.

Claim. Total flow-time of medium jobs is O(x · Ti + P (Ri)/ε).

Proof. We use equation (6). Consider a job j of class k. Its processing time
on machine i, pij = (1 + ε/3)k. Therefore, its flow-time can be bounded by
Ti + O(pij/ε). Summing over all medium jobs, we see that their total flow-time
is x · Ti plus O(1/ε) times the total processing time of medium jobs.

Claim. The total flow-time of large jobs is O(P (Ri)/ε).
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Proof. The processing time of a large job is at least (1+ε/3)�+x ≥ (1+ε/3)�

ε2 ≥ Ti.
So in equation (6), the second term dominates the first term, and so the result
follows.

Combining the above claims, we get

Theorem 2. The total flow time of schedule S is at most O( 1
ε log 1

ε · opt).

4 Lower Bound for the Parallel Scheduling Problem

In this section, we give lower bound for the approximation ratio of the Parallel
Scheduling problem. Recall that in the Parallel Scheduling problem, all machines
are identical. Each job j has the same processing time pj on all the machines. We
shall use the 3-partition problem to prove the hardness of the Parallel Scheduling
problem. Recall the 3-partition problem. We are given a set X of 3m elements
and a bound B. Each element x ∈ X has size sx which is an integer. We would
like to partition the set X into m sets such that the total size of elements in
any such set is exactly B. Such a partition is said to be valid partition. We can
assume without loss of generality that the sum of the sizes of the elements in X
is exactly m · B. It is NP-complete to decide if such a valid partition exists or
not [3].

In fact, we can say more about this problem. If we look at the NP-completeness
proof of the 3-partition problem (see for example [3]) we can add two more
constraints on the problem instance : (i) For every element x, sx lies between B/4
and B/2. Hence if there is a valid partition, then every set in this partition must
contain exactly three elements of X , and (ii) The bound B is a polynomial in m,
i.e., there is a universal constant c such that B is at most mc (for all instances on
3m elements). The problem remains NP-complete even in this setting. So when
we talk about the 3-partition problem in this section, we shall assume that we
are talking about this special case.

The following theorem was proved in [5].

Theorem 3. Given an instance I of the 3-partition problem, parameters T and
K, there is a poly-time computable function f , which gives an instance f(I) of
the Parallel Scheduling problem. Here T is a multiple of K · B (B is the bound
appearing in I). This reduction has the following properties :

– There are m machines in f(I), and the job sizes lie in the range [KB/4,
KB/2]. The total volume of jobs in f(I) is T ·m.

– If I has a valid partition, then all jobs in f(I) can be finished during [0, T ].
Further the flow-time of these jobs is O(m · T ).

– If I does not have a valid partition, then any scheduling of jobs in f(I) must
leave at least K units of unfinished volume of jobs at time T .

Now we describe the reduction from the 3-partition problem to the Parallel
Scheduling problem. Fix an instance I of the 3-partition problem. We construct
an instance g(I) of the Parallel Scheduling problem. This instance will have �
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phases, each of length T . Each phase shall invoke Theorem 3. The parameter T
in the theorem will remain unchanged, but K will vary. So we shall denote by
f(I,K) the instance returned by the theorem above when the inputs to f are
I, T and K. The parameter � will be mr, for a large enough constant r.

Let us describe phase i. In phase i we get the instance I′i = f(I, B�−i). All
jobs in this instance releasing at time t get released at time (t+i ·T ) in g(I), i.e.,
we just shift the release dates by i · T units of time. Let T� denote the time at
which phase �− 1 (the last phase) gets over, i.e., � ·T . Starting from time T�, we
release m jobs of length 1 at each time step t, where t = T�, . . . , TM , TM >> T�.
This completes the construction of the instance g(I)of Parallel Scheduling. We
shall call the jobs released in phase i as jobs of class �− i.

Suppose I has a valid partitioning. Then it is easy to see that jobs in phase i
of g(I) can be processed during [iT, (i+ 1)T ]. Similarly, after time T�, each new
job gets done in 1 unit of time. So the total flow time is O(m·T ·�)+m·(TM−T�),
which is close to m · TM .

Now suppose I does not have a valid partitioning. We would like to argue
that for any scheduling of the jobs in g(I), the total flow time is Ω(TM · �). This
will give a gap of �/m in the approximation ratio.

Consider a fractional schedule S for the jobs in g(I) – a fractional schedule
is essentially a fractional packing which obeys the release date. We say that
the fractional schedule is valid if it satisfies the following condition for every i,
0 ≤ i ≤ �−1 – at least B�−i volume of jobs of class �− i is processed after phase
i ends, i.e., after time (i + 1) · T . Theorem 3 says that every integral schedule is
valid. We say that a valid schedule is minimal if it satisfies the following stronger
property : for every i, 0 ≤ i ≤ �− 1, there is a job of class �− i which has B�−i

amount of processing left at time (i + 1) · T .
Let W (S) denote the jobs which are waiting at time T� in this schedule. Let

F�(S) denote the flow-time of S if we start counting from time T�. In other words,
if Nt(S) is the number of jobs waiting at time t in S, then F�(S) =

∑
t≥T�

Nt.
Since the flow-time after T� is going to dominate the total flow-time for any
schedule, we should look for schedules which minimize this component of the
flow-time.

The following lemma, clarifies the need for a minimal schedule.

Lemma 3. Given any valid schedule S, there exists a (valid) minimal schedule
S′ such that F�(S′) ≤ 2 · F�(S).

Proof. Fix an i. Let Ti = (i+ 1) · T , the time at which phase i ends. Let Wi(S)
denote the jobs of class �− i waiting at time Ti. Let ji be the job in Wi(S) with
the latest release date. Let j′ be some other job in Wi(S). Suppose we process δ
amount of ji before Ti in some time slot. We now process δ amount of j′ in this
slot, and leave an extra δ amount of job ji waiting at time Ti – this can always
be done as long as δ is small enough. This extra volume of job ji is processed
after time Ti in the slots in which j′ was being processed.

We repeat this process as long as possible. When we stop, either all of ji is
waiting at time Ti, or W (S) has only one job, namely ji. In either of these cases,
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we satisfy the conditions of a minimal schedule for this class. We do this for all
values of i. Let S′ be this schedule.

Clearly S′ is minimal. Let Ni(t) be the number of jobs of class �− i waiting at
time t in S, and let N ′

i(t) be the corresponding quantity in S′. Consider t ≥ Ti.
Then N ′

i(t) ≤ Ni(t) + 1 – indeed we are only increasing the processing of ji

beyond Ti. Further if N ′
i(t) = Ni(t) + 1, then it must be the case that Ni(t) ≥ 1

(because ji is replacing the slot at time t occupied by some other job of class
�− i). So we conclude that after time Ti, N ′

i(t) ≤ 2Ni(t). Summing this over all
values of i and for t ≥ T�, we get the desired result.

Theorem 4. Given any minimal schedule S for the instance g(I), the flow-time
of S is Ω(TM · �).

Proof. We shall build a schedule S′ from S such that F�(S′) ≤ F�(S) but W (S′)
will have jobs from each class. This will yield the desired result. However S′ may
not be a valid schedule and may not even obey released dates. We will construct
S′ in � iterations. At the end of iteration i, the following invariants will hold for
the schedule S′ :

(i) F�(S′) ≤ F�(S).
(ii) There is at least one job from each of the classes 1, 2, . . . , i with remaining

processing time at least 1 in W (S′).
(iii) Jobs from classes i + 1, · · · , � obey release dates.
(iv) Jobs from class 1, 2, . . . i are processed after time (�− i) · T .
(v) For each q ∈ {i+ 1, . . . , �}, there is at least one job of class q which has Bq

volume of processing left at time (�− q + 1) · T .

We initialize S′ to S – recall that jobs of class i are released during [(�− i) ·
T, (� − i + 1) · T ]. Clearly the invariant holds at i = 0 because S is a minimal
schedule. Suppose the invariants hold after iteration i, i ≥ 0. We need to show
that they hold at the end of iteration i+1 as well. Let us consider S′ at the end
of iteration i. Suppose W (S′) has a job of class i + 1. Then we do not do make
any changes in iteration i+ 1. Clearly the invariants hold at the end of iteration
i + 1 as well. So assume W (S′) does not have any job of class i + 1 at the end
of iteration i. The rest of the discussion looks at S′ at the end of iteration i.

We know that at time (� − i) · T at least Bi+1 volume of jobs of class i + 1
are unfinished (using invariant (v) and q = i + 1). This volume of job must get
processed during [(�− i) · T, � · T ] because W (S′) does not contain any job from
this class. But the total volume of jobs released during [(� − i) · T, � · T ] equals
m · i · T and all these jobs are processed after time (�− i) · T (invariant (iv)). So
at least Bi+1 volume of jobs of class i or lower must be waiting at time T�.

We claim there is a class q ∈ {1, . . . , i} such that W (S′) has at least B
2 ·Bq +1

volume of class q jobs. Indeed suppose this were not the case. Then the total
remaining processing time of jobs from classes 1, . . . , i in W (S′) is at most B/2 ·(
Bi + · · ·+ B1

)
+ q which is at most Bi+1. But this contradicts the fact that at

least Bi+1 volume of jobs of class i or lower must be waiting at time T�.
So suppose such a class q exists. Let Jq be the set of jobs of class q in W (S′).

There is a job j ∈ Jq which has remaining processing time at least 1 (using
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invariant (ii)). Let us consider the jobs in Jq − {j}. These jobs have remaining
processing time at least 1 because j can have size at most B

2 · Bq. We form a
new set of jobs J ′ as follows. J ′ is initially empty. We start adding jobs from
Jq − {j} to J ′ – we stop as soon as the remaining processing times of jobs in
J ′ exceeds 1. Note that the total remaining processing times of jobs in J ′ is at
most 1 + B

2 ·Bq ≤ Bi+1. Invariant (v) implies that there is a job j of class i+ 1
which is waiting at time (� − i) · T in S′. Further this job has Bi+1 amount of
processing remaining at time (�− i) ·T . We process all the jobs in J ′ in the slots
in which j is getting processed during [(�− i) ·T, � ·T ] – note that we will be able
to finish all of J ′ because the processing required is at most Bi+1 and at least
Bi+1 amount of j gets processed during this period (also observe that we may be
violating the release date condition for these jobs – but our invariant conditions
are not getting violated). Now we process the extra volume of job j after time
T� in the slots in which jobs in J ′ were getting processed. Note that this cannot
increase F�(S′) (because we are replacing all the slots occupied by J ′ after time
T� by a single job). This ends iteration i + 1. But now F�(S′) ≥ � · (TM − T�)
because the � jobs remaining at time T� will keep on waiting till time TM .The
theorem follows since TM >> T�.

Therefore, it is NP-hard to get an O(�/m)-approximation algorithm for the Par-
allel Scheduling problem. We know that B = mc for some constant c and � = mr

for a large enough constant r. So we get �/m = mr−1. Now P ≤ B/2 · B� ≤
B�+1 ≤ mcmr+c ≤ mrmr

which implies that mr is Ω(logP/ log logP ). So mr−1

is Ω
(

log P
log log P

)1−ε

, where ε = 1/r is an arbitrarily small constant. But this is

same as Ω(logP )1−ε′
for an arbitrary small constant ε′.
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Abstract. We consider the computation of the volume of the union of
high-dimensional geometric objects. While showing that this problem
is #P-hard already for very simple bodies (i.e., axis-parallel boxes), we
give a fast FPRAS for all objects where one can: (1) test whether a given
point lies inside the object, (2) sample a point uniformly, (3) calculate the
volume of the object in polynomial time. All three oracles can be weak,
that is, just approximate. This implies that Klee’s measure problem and
the hypervolume indicator can be approximated efficiently even though
they are #P-hard and hence cannot be solved exactly in time polynomial
in the number of dimensions unless P = NP. Our algorithm also allows
to approximate efficiently the volume of the union of convex bodies given
by weak membership oracles.

For the analogous problem of the intersection of high-dimensional geo-
metric objects we prove #P-hardness for boxes and show that there
is no multiplicative polynomial-time 2d1−ε

-approximation for certain
boxes unless NP = BPP, but give a simple additive polynomial-time
ε-approximation.

1 Introduction

Given n bodies in the d-dimensional space, how efficiently can we compute the
volume of the union and the intersection? We consider this basic geometric prob-
lem for different kinds of bodies. The tractability of this problem highly depends
on the representation and the complexity of the given objects. For many classes
of objects already computing the volume of one body can be hard. For example,
calculating the volume of a polyhedron given either as a list of vertices or as a list
of facets is #P-hard [6, 14]. For convex bodies given by a membership oracle one
can also show that even though there can be no deterministic (O(1)d/ log d)d-
approximation for d ≥ 2 [2], one can still approximate the volume by an FPRAS
(fully polynomial-time randomized approximation scheme). In a seminal paper
Dyer, Frieze, and Kannan [7] gave an O∗(d23) algorithm, which was subsequently
improved in a series of papers to O∗(d4) [16] (where the asterisk hides powers of
the approximation ratio and log d).
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Volume computation of unions can be hard not only for bodies whose volume
is hard to calculate. One famous example for this is Klee’s Measure Problem
(KMP). Given n axis-parallel boxes in the d-dimensional space, it asks for the
measure of their union. In 1977, Victor Klee showed that it can be solved in time
O(n logn) for d = 1 [15]. This was generalized to d > 1 dimensions by Bentley
who presented an algorithm which runs in O(nd−1 logn), which was later im-
proved by van Leeuwen and Wood [20] to O(nd−1). In FOCS ’88, Overmars and
Yap [17] obtained an O(nd/2 logn) algorithm. This was the fastest algorithm for
d ≥ 3 until, on this years SoCG, Chan [5] presented a slightly improved version
of Overmars and Yap’s algorithm that runs in time nd/22O(log∗ n), where log∗

denotes the iterated logarithm. So far, the only known lower bound is Ω(n log n)
for any d [8]. Note that the worst-case combinatorial complexity (i.e., the number
of faces of all dimensions on the boundary of the union) of Θ(nd) does not imply
any bounds on the computational complexity. There are various algorithms for
special cases, e.g., for hypercubes [1, 11] and unit hypercubes [4]. In this paper
we explore the opposite direction and examine the problem of the union of more
general geometric objects.

An important special case of KMP is the hypervolume indicator (HYP) [21]
where all boxes are required to share a common vertex. It is also known as the
“Lebesgue measure”, the “S-metric” and “hyperarea metric” and is a popular
measure of fitness of Pareto sets in multi-objective optimization. There, it mea-
sures the number of solutions dominated by a Pareto set. More details can be
found in Section 4.

Our Results
It is not hard to see that HYP and KMP are #P-hard (see Theorem 1). Hence
they cannot be solved in time polynomial in the number of dimensions unless P
= NP. This shows that exact volume computation of unions is intractable for
all classes of bodies that contain axis-parallel boxes.

This motivates the development of approximation algorithms for the volume
computation of unions. This question was untackled until now – approaches
exist only for discrete sets (see, e.g., Karp, Luby, and Madras [13] for an FPRAS
for #DNF which is similar to our algorithm). We give an efficient FPRAS for a
huge class of bodies including boxes, spheres, polytopes, schlicht domains, convex
bodies determined by an oracle and all affine transformations of those objects
mentioned before. The underlying bodies B just have to support the following
oracle queries in polynomial time:

• PointQuery(x,B): Is point x ∈ Rd an element of body B (approximately)?
• VolumeQuery(B): What is the volume of body B (approximately)?
• SampleQuery(B): Return a random (almost) uniformly distributed point

x ∈ B.

PointQuery is a very natural condition which is fulfilled in almost all practi-
cal cases. The VolumeQuery condition is important as it could be the case that
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no efficient approximation of the volume of one of the bodies itself is possible.
This, of course, prevents an efficient approximation of the union of such bodies.
The SampleQuery is crucial for our FPRAS. In Section 2.3 we will show that
it is efficiently computable for a wide range of bodies.

Note that it suffices that all three oracles are weak. More precisely, we allow
the following relaxation for every body B (vol(B) denotes the volume of a
body B in the standard Lebesgue measure on Rd, more details are given in
Section 2):

• PointQuery(x,B) answers true iff x ∈ B′ for a fixed B′ ⊂ Rd with
vol((B′ \B) ∪ (B \B′)) ≤ εPvol(B).

• VolumeQuery(B) returns a value V ′ with (1 − εV)vol(B) ≤ V ′ ≤ (1 +
εV)vol(B).

• SampleQuery(B) returns only an almost uniformly distributed random
point [10], that is, it suffices to get a random point x ∈ B′ (with B′ as
above) such that for the probability density f we have for every point x:
|f(x)− 1/vol(B′)| < εS.

Let P (d) be the worst PointQuery runtime of any of our bodies, analogously
V (d) for VolumeQuery, and S(d) for SampleQuery. Then our FPRAS has
a runtime of O(nV (d) + n

ε2 (S(d) + P (d))) for producing an ε-approximation1

with probability ≥ 3
4 if the errors of the underlying oracles are small, i.e.,

εS, εP, εV ≤ ε2

47n . For example for boxes, that is, for KMP and HYP, this re-
duces to O(dn

ε2 ) and is the first FPRAS for both problems. In Section 2.3 we also
show that our algorithm is an FPRAS for the volume of the union of convex
bodies.

The canonic next question is the computation of the volume of the intersec-
tion of bodies in Rd. It is clear that most of the problems from above apply to
this question, too. #P-hardness for general, i.e., not necessarily axis-parallel,
boxes follows directly from the hardness of computing the volume of a poly-
tope [6, 14]. This leaves open whether there are efficient approximation algo-
rithms for the volume of intersection. In Section 3 we show that there cannot
be a (deterministic or randomized) multiplicative 2d1−ε

-approximation in gen-
eral, unless NP = BPP by identifying a hard subproblem. Instead we give an
additive ε-approximation, which is therefore the best we can hope for. It has a
runtime of O(nV (d) + ε−2S(d) + n

ε2 P (d)), which gives O(dn
ε2 ) for boxes.

2 Volume Computation of Unions

In this section we show that the volume computation of unions is #P-hard
already for axis-parallel boxes that have one vertex at the origin, i.e., for HYP.
After that we give an FPRAS for approximating the volume of the union of
bodies which satisfy the three aforementioned oracles and describe several large
classes of objects for which the oracles can be answered efficiently.

1 We will always assume that ε is small, that is, 0 < ε < 1.
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2.1 Computational Complexity of Union Calculations

Consider the following problem: Let S be a set of n axis-parallel boxes in Rd

of the form B = [a1, b1] × · · · × [ad, bd] with ai, bi ∈ R, ai < bi. The volume of
one such box is vol(B) =

∏d
i=1(bi − ai). To compute the volume of the union

of these boxes is known as Klee’s Measure Problem (KMP), while we call the
problem HYP (for hypervolume) if we have ai = 0 for all i ∈ [d].

The following Theorem 1 proves #P-hardness of HYP and KMP. This is
the first hardness result for HYP. To the best of our knowledge there is also no
published result that explicitly states that KMP is #P-hard. However, with-
out mentioning this implication, Suzuki and Ibaraki [19] sketch a reduction from
#SAT to KMP. In the following theorem we reduce #MON-CNF to HYP, which
counts the number of satisfying assignments of a Boolean formula in conjunctive
normal form in which all variables are unnegated. While the problem of deciding
satisfiability of such formula is trivial, counting the number of satisfying assign-
ments is #P-hard and even approximating it in polynomial time by a factor of
2d1−ε

for any ε > 0 is NP-hard, where d is the number of variables (see Roth
[18] for a proof).

Theorem 1. HYP and KMP are #P-hard.

Proof. To show the theorem, we reduce #MON-CNF to HYP. The hardness
of KMP follows immediately. Let f =

∧n
k=1

∨
i∈Ck

xi be a monotone Boolean
formula given in CNF with Ck ⊂ [d] := {1, . . . , d}, for k ∈ [n], d the number of
variables, n the number of clauses. Since the number of satisfying assignments
of f is equal to 2d minus the number of satisfying assignments of its negation,
we instead count the latter: Consider the negated formula f̄ =

∨n
k=1

∧
i∈Ck

¬xi.
First, we construct a box Ak = [0, ak

1 ] × · · · × [0, ak
d] in Rd for each clause Ck

with one vertex at the origin and the opposite vertex at (ak
1 , . . . , a

k
d), where we

set

ak
i =

{
1, if i ∈ Ck

2, otherwise
, i ∈ [d].

Observe that the union of the boxes Ak can be written as a union of boxes
of the form Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] with xi ∈ {0, 1}, i ∈ [d].
Moreover,Bx1,...,xd

is a subset of the union
⋃n

k=1 Ak iff it is a subset of some Ak iff
we have ak

i ≥ xi+1 for i ∈ [d] iff ak
i = 2 for all i with xi = 1 iff i /∈ Ck for all i with

xi = 1 iff (x1, . . . , xd) satisfies
∧

i∈Ck
¬xi for some k iff (x1, . . . , xd) satisfies f̄ .

Hence, since vol(Bx1,...,xd
) = 1, we have vol(

⋃n
k=1 Ak) = |{(x1, . . . , xd) ∈

{0, 1}d | (x1, . . . , xd) satisfies f̄}|. Thus a polynomial time algorithm for HYP
would result in a polynomial time algorithm for #MON-CNF, which proves the
claim.

For integer coordinates it is easy to see that KMP ∈#P and hence that in this
case KMP and HYP are even #P-complete.
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2.2 Approximation Algorithm for the Volume of Unions

In this section we present an FPRAS for computing the volume of the union of
objects for which we can answer PointQuery, VolumeQuery, and Sample-

Query in polynomial time. The input of our algorithm ApproxUnion are the
approximation ratio ε and the bodies {B1, . . . , Bn} in Rd defined by the three
oracles. It computes a number Ũ ∈ R such that

Pr
[
(1− ε)vol

( n⋃
i=1

Bi

)
≤ Ũ ≤ (1 + ε)vol

( n⋃
i=1

Bi

)]
≥ 3

4

in time polynomial in n, 1/ε and the query runtimes. The number 3
4 is arbitrary

and can be increased to every number 1 − δ, δ > 0 by a factor of log(1/δ)
in the runtime by running algorithm ApproxUnion log(1/δ) many times and
returning the median of the reported values for Ũ .

We are following the algorithm of Karp and Luby [12] which the authors used
for approximating #DNF and other counting problems on discrete sets. The two
main differences are that here we are handling continuous bodies in Rd and that
we allow erroneous oracles.

Algorithm 1. ApproxUnion (S, ε, εP, εV, εS) calculates an ε-approximation
of vol(

⋃n
i=1 Bi) for a set of bodies S = {B1, . . . , Bn} in Rd determined by

the oracles PointQuery, VolumeQuery and SampleQuery with error ratios
εP, εV, εS.

M := 0, C := 0, ε̃ := ε−εV
1+εV

, C̃ := (1+εS)(1+εV)(1+εP)
(1−εV)(1−εP) , T := 24 ln(2)(1+ε̃)n

ε̃2−8(C̃−1)n
for all Bi ∈ S do

compute V ′
i := VolumeQuery(Bi)

od
V ′ :=

∑n
i=1 V

′
i

while C ≤ T do
choose i ∈ [n] with probability V ′

i /V
′

x := SampleQuery(Bi)
repeat

if C > T then return T ·V ′

nM
choose random j ∈ [n] uniformly
C := C + 1

until PointQuery (x,Bj)
M := M + 1

od
return T ·V ′

nM

We assume that we are given upper bounds εP, εS and εV for the error ratios
of the oracles. In the algorithm we first compute the runtime T and then via
VolumeQuery the volume V ′

i for every given body Bi and their sum V ′ =
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i=1 V

′
i . Then, in a loop, we choose a random i ∈ [n], where we choose an i

with probability V ′
i

V ′ and a random (almost) uniformly distributed point x ∈ Bi

via SampleQuery. Then we repeatedly choose a random j ∈ [n] uniformly and
check, whether x ∈ Bj : PointQuery(x,Bj) returns true iff x ∈ B′

j . If this is the
case, we leave the inner loop and increase the counter M . This random variable
is in the end used to calculate the result T ·V ′

nM .
In the full version of the paper [3] we show correctness of ApproxUnion,

that is, we show that it returns an ε-approximation with probability ≥ 3
4 and

T = O( n
ε2 ) if εS, εP, εV ≤ ε2

47n . The last inequality reflects the fact that we
cannot be arbitrarily accurate if the given oracles are inaccurate. If all oracles
can be calculated accurately, i.e., if εP = εS = εV = 0, the algorithm runs for
just T = 8 ln(8)(1+ε)n

ε2 many steps. The runtime of ApproxUnion is clearly

O(n · V (d) + M · S(d) + T · P (d)) = O(n · V (d) + T · (S(d) + P (d))),

where V (d) is the worst VolumeQuery time for any of the bodies, analogously
S(d) for SampleQuery and P (d) for PointQuery. This equals O(n · V (d) +
n
ε2 · (S(d) + P (d))) if εS, εP, εV ≤ ε2

47n .
For boxes all three oracles can be computed exactly in O(d). This implies that

our algorithm ApproxUnion gives an ε-approximation of KMP and HYP with
probability ≥ 3

4 in runtime O(nd
ε2 ).

2.3 Classes of Objects Supported by Our FPRAS

To find an FPRAS for the union of a certain class of geometric objects
now reduces to calculating the respective PointQuery, VolumeQuery and
SampleQuery in polynomial time. We assume that we can get a random real
number in constant time. Then all three oracles can be calculated in time O(d)
for d-dimensional boxes. This already yields an FPRAS for the volume of the
union of arbitrary boxes, e.g., for KMP and HYP. Note that if we have a body
for which we can answer all those queries, all affine transformations of this body
fulfill these three oracles, too. We will now present three further classes of geo-
metric objects.

Generalized spheres and boxes: Let Bk be the class of boxes of dimension k,
i.e., Bk = {[a1, b1] × · · · × [ak, bk] | ai, bi ∈ R, ai < bi} and Sl the class of
spheres of dimension l. We can combine any box B ∈ Bk and sphere S ∈
Sd−k to get a d-dimensional object B × S. Furthermore, we can permute the
dimensions afterwards to get a generalized “box-sphere”. In R3 this corresponds
to boxes, spheres and cylinders. To calculate the respective VolumeQuery,
PointQuery and SampleQuery is a standard task of geometry.

Schlicht domains: Let ai, bi : Ri−1 → R be continuous functions with ai ≤
bi, where a1, b1 are constants. Let K ⊂ Rd be defined as the set of
all points (x1, . . . , xd) ∈ Rd such that a1 ≤ x1 ≤ b1, a2(x1) ≤ x2 ≤
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b2(x1), . . . , ad(x1, . . . , xd−1) ≤ xd ≤ bd(x1, . . . , xd−1). K is called a schlicht
domain in functional analysis. Fubini’s theorem for schlicht domains states
that we can integrate a function f : K → R by iteratively integrating first
over xd, then over xd−1, . . . , until we reach x1. This way, by integrating
f ≡ 1, we can compute the volume of a schlicht domain, as long as the in-
tegrals are computable in polynomial time, and thus answer a VolumeQuery.
Similarly, we can choose a random uniformly distributed point inside K: Let
K(y) = {(x1, . . . , xd) ∈ K | x1 = y}. Then K(y) is another schlicht domain for
every a1 ≤ y ≤ b1. Assume that we can determine the volume of every such K(y)
and the integral I(y) =

∫ y

a1
K(x)dx. Then the inverse function I−1 : [0, V ]→ R,

where V =
∫ b1

a1
K(x)dx is the volume of K, allows us to choose a y in [a1, b1]

with probability proportional to vol(K(y)). By this we can iteratively choose a
value y for x1 and recurse to find a uniformly random point (y2, . . . , yd) in K(y),
plugging both together to get a uniformly distributed point (y1, . . . , yd) in K.
Hence, as long as we can compute the involved integrals and inverse functions
(or at least approximate them good enough), we can answer SampleQuery.
Since PointQuery is trivially computable – as long as we can evaluate ai and
bi efficiently – this gives an example showing that the classes of objects that ful-
fill our three conditions include not only convex bodies, but also certain schlicht
domains.

Convex bodies: As mentioned in the introduction, exact calculation of Volume-

Query for a polyhedron given as a list of vertices or facets is #P-hard [6, 14].
Since there are randomized approximation algorithms (see Dyer et al. [7] for the
first one) for the volume of a convex body determined by a membership oracle, we
can answer VolumeQuery approximately. The same holds for SampleQuery

as these algorithms make use of an almost uniform sampling method on convex
bodies. See Lovász and Vempala [16] for a result showing that VolumeQuery

can be answered with O∗( d4

ε2
V
) questions to the membership oracle and Sample-

Query with O∗(d3

ε2
S
) queries, for arbitrary errors εV, εS > 0 (where the aster-

isk hides factors of log(d) and log(1/εV) or log(1/εS)). PointQuery can natu-
rally be answered with a single question to the membership oracle. By choosing
εV = εS = ε2

47n , we can show [3] that ApproxUnion is an FPRAS for the volume
of the union of convex bodies which uses O∗(n3d3

ε4 (d + 1
ε2 )) membership queries.

Note that all above mentioned classes of geometric objects contain boxes and
hence our hardness results still hold and hence an ε-approximation algorithm is
the best one can hope for.

3 Volume Computation of Intersections

In this section we are considering the complement to the union problem. We
show that surprisingly the volume of a intersection of a set of bodies is often
much harder to calculate than its union. For many classes of geometric objects
there is even no randomized approximation possible.
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As the problem of computing the volume of a polytope is #P-hard [6, 14],
so is the computation of the volume of the intersection of general (i.e., not
necessarily axis-parallel) boxes in Rd. This can be seen by describing a polytope
as an intersection of halfplanes and representing these as general boxes.

Now, let us consider the convex bodies again. Trivially, the intersection of
convex bodies is convex itself, and from the oracles defining the given bodies
B1, . . . , Bn one can simply construct an oracle, which answers PointQuery for
the intersection of those objects: Given a point x ∈ Rd it asks all n oracles and
returns true iff x lies in all the bodies. One could think now that we can apply
the result of Dyer et al. [7] and the subsequent improvements mentioned in the
introduction to approximate the volume of the intersection and get an FPRAS
for the problem at hand. The problem with that is that the intersection is not
“well-guaranteed”: There is no point known that lies in the intersection, not to
speak of a sphere inside it. However, the algorithm of Dyer et al. [7] relies vitally
on the assumption that the given body is well-guaranteed and hence cannot be
applied for approximating the volume of the intersection of convex bodies.

We will now present a hard subproblem which shows that the volume of the
intersection cannot be approximated (deterministic or randomized) in general.

Definition 1. Let p, q ∈ Rd
≥0. Then Bp := {x | 0 ≤ xi ≤ pi ∀i} is a p-box,

Bp,q := Bp \Bq is a (p, q)-box, and {Bp,q1 , Bp,q2 , . . . , Bp,qn} is a p-set.

A (p, q)-box is basically a box where we cut out another box at one corner. The
resulting object can itself be a box, too, but in general it is not even convex. It
can be seen as the inverse of a box Bp relative to a larger background box Bq.
Note that it is easy to calculate the union of a p-set as

⋃
Bp,qi = Bp \

⋂
Bqi .

On the other hand, the calculation of the intersection of a p-set is #P-hard as⋃
Bqi = Bp \

⋂
Bp,qi by Theorem 1. The following theorem shows that it is not

even approximable.

Theorem 2. Let p, q1, . . . , qn ∈ Rd
≥0. Then the volume of

⋂n
i=1 Bp,qi cannot be

approximated (deterministic or randomized) in polynomial time by a factor of
2d1−ε

for any ε > 0 unless NP = BPP.

Proof. Consider again the problem #MON-CNF already defined Section 2. We
use Roth’s result [18] that #MON-CNF cannot be approximated by a factor of
2d1−ε

unless NP = BPP and construct an approximation preserving reduction.
Let f =

∧n
k=1

∨
i∈Ck

xi be a monotone Boolean formula given in CNF with
Ck ⊂ [d], for k ∈ [n], d the number of variables, n the number of clauses.
For every clause Ck we construct a (p, qk)-box Ak with p = (2, . . . , 2) ∈ Rd,
qk = (qk,1, . . . , qk,d) and qk,i = 1 if i ∈ Ck, and qk,i = 2 otherwise.

Observe that each Ak can be written as a union of boxes of the form
Bx1,...,xd

= [x1, x1 + 1] × · · · × [xd, xd + 1] with xi ∈ {0, 1}. Hence, their in-
tersection can also be written as such a union as follows:

n⋂
k=1

Ak =
⋃

(x1,...,xd)∈S

Bx1,...,xd
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for some set S ⊂ {0, 1}d. Furthermore, we have (x1, . . . , xd) ∈ S iff Bx1,...,xd
⊂

Ak for all k iff Bx1,...,xd
∩{x ∈ Rd

≥0 | x ≺ qk} = ∅ for all k iff ∃i ∈ {1, . . . , d} : xi ≥
qk,i for all k. Since this inequality can only be satisfied if xi = 1 and qk,i = 1,
which holds iff i ∈ Ck, we have that the former term holds if and only if ∃i ∈
Ck : xi = 1 for all k iff

∨
j∈Ck

xj is satisfied for all k iff f is satisfied. Hence, we
have that the set S equals the set of satisfying assignments of f , so that

|{x ∈ {0, 1}d | f(x)=1}|= |S| (∗)
= vol

( n⋂
k=1

Ak

)
/vol

(
B(0,...,0)

)
=vol

( n⋂
k=1

Ak

)
where (∗) comes from the fact that

⋂n
k=1 Ak is composed of |S| many boxes of

equal volume and this volume is 1. Hence, we have a polynomial time reduction
and inapproximability of the volume of the intersection follows.

This shows that in general there does not exist a polynomial time multiplicative
ε-approximation of the volume of the intersection of bodies in Rd. This holds for
all classes of objects which include p-sets, e.g. schlicht domains (cf. Section 2.3).
Though there is no multiplicative approximation, we can still give an additive
approximation algorithm, that is, we can efficiently find a number Ṽ such that

Pr[V − ε · Vmin ≤ Ṽ ≤ V + ε · Vmin] ≥ 3
4

where V is the correct volume of the intersection and Vmin is the minimal volume
of any of the given bodies B1, . . . , Bn. If we could replace Vmin by V in the
equation above, we would have an FPRAS. This is not possible in general as the
ratio of V and Vmin can be arbitrarily small. Hence, such an ε-approximation is
not relative to the exact result, but to the volume of some greater body. This is an
additive approximation since after rescaling, so that Vmin ≤ 1 we get an additive
error of ε. Clearly, we get the result from above quite easily by uniform sampling
in the body Bmin corresponding to the volume Vmin. From Bernstein’s inequality
we know that for N proportional to 1/ε2 and Ṽ = 1/N(Z1+. . .+ZN), where Zi is
a random variable valued 1, if the i-th sample point xi = SampleQuery(Bmin)
lies in the intersection of B1, . . . , Bn, and 0 otherwise, Ṽ approximates V with
absolute error ε. This gives an approximation algorithm with runtimeO(nV (d)+
1
ε2 S(d) + n

ε2 P (d)), yielding O(dn
ε2 ) for boxes.

4 The Hypervolume Indicator

As an application of our results from Section 2 we now analyze the complex-
ity of the hypervolume indicator which is widely used in evolutionary multi-
objective optimization. In multi-objective optimization the aim is is to minimize
(or maximize) d objective functions fi : S → R, 1 ≤ i ≤ d, over a search space
S ⊆ Rd. As these objectives are often conflicting, one does not generally search
for a single optimum, but rather for a set of good compromise solutions. In
order to compare different solutions, we impose an order # on the d-tuples
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Table 1. Results for the computational complexity of the calculation of the volume of
union and intersection (asymptotic in the number of dimensions d)

geometric objects volume of the union volume of the intersection

axis-parallel boxes #P-hard + FPRAS easy
general boxes #P-hard + FPRAS #P-hard
p-sets easy #P-hard + APX-hard
schlicht domains #P-hard + FPRAS2 #P-hard + APX-hard
convex bodies #P-hard + FPRAS #P-hard

f(x) = (f1(x), . . . , fd(x)), x ∈ S, by letting x1 # x2 whenever fi(x1) ≤ fi(x2)
for each i, 1 ≤ i ≤ d. If M ⊂ S is such that x1, x2 ∈ M implies x1 � x2, then
we call M a “Pareto front” and f(M) a “Pareto set”. Pareto fronts correspond
to sets of maximal solutions to the optimization problem given by (S, f). The
functions fi are often assumed to be monotone with respect to some ordering
on S whence f is bijective and the optimization problem reduces to identifying
“good” Pareto sets.

How to compare Pareto sets lies at the heart of research in multi-objective
optimization. One measure that has been the subject of much recent study is
the so-called “hypervolume indicator” (HYP). It measures the space dominated
by the Pareto set relative to a reference point r ∈ Rd. For a Pareto set M , the
hypervolume indicator is

I(M) = vol(
{
x ∈ Rd

≥0 | ∃p ∈M so that r # x # p
}
)

= vol(
⋃

p∈M

{
x ∈ Rd

≥0 | r # x # p
}
).

To simplify the presentation we assume r = (0, . . . , 0) which can be achieved by
setting f ′(x) := f(x) + r. Using the notation of Definition 1, we can reduce the
hypervolume to the well-understood union problem I(M) = vol(

⋃
p∈M Bp).

The hypervolume was first proposed and employed for multi-objective opti-
mization by Zitzler and Thiele [21]. Several algorithms have been developed.
It was open so far whether a polynomial algorithm for HYP is possible. Our
#P-hardness result for HYP (Theorem 1) dashes the hope for a subexponential
algorithm (unless P = NP) and motivates to examine approximation algo-
rithms. Our algorithm ApproxUnion gives an ε-approximation of the hyper-
volume indicator with probability 1−δ in time O(log(1/δ)nd/ε2). As its runtime
is just linear in n and d, it is not only the first proven FPRAS for HYP, but also
a very practical algorithm.

5 Discussion and Open Problems

We have proven #P-hardness for the exact computation of the volume of the
union of bodies in Rd as long as the class of bodies includes axis-parallel boxes.
2 If the integrals are computable in polynomial time (cf. Section 2.3).
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The same holds for the intersection if the class of bodies contains general boxes.
We have also presented an FPRAS for approximating the volume of the union
of bodies that allow three very natural oracles. Very recently, there appeared a
few deterministic polynomial-time approximations (FPTAS) for hard counting
problems (e.g. [9]). It seems to be a very interesting open question whether there
exists a deterministic approximation for the union of some non-trivial class of
bodies. Since the volume of convex bodies determined by oracles cannot be
approximated to within a factor that is exponential in d [2], the existence of
such a deterministic approximation for the union seems implausible. It is also
open whether there is a constant C so that HYP or KMP can be efficiently
deterministically approximated within a factor of C?

For the intersection we proved that no multiplicative approximation (deter-
ministic or randomized) is possible for p-sets (cf. Definition 1), but we also
presented a very simple additive approximation algorithm for the intersection
problem. It would be interesting to know if there is a hard class for multiplicative
approximation which contains only convex bodies.

Our results are summarized in Table 1. Note the correspondence between axis-
parallel boxes and p-sets. The discrete counterpart to their approximability and
inapproximability is the approximability of #DNF and the inapproximability of
#SAT. One implication of our results is the hardness and a practically efficient
approximation algorithm for computing HYP and KMP.
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Abstract. We study the relation of autoreducibility and mitoticity for
polylog-space many-one reductions and log-space many-one reductions.
For polylog-space these notions coincide, while proving the same for log-
space is out of reach. More precisely, we show the following results with
respect to nontrivial sets and many-one reductions.

1. polylog-space autoreducible ⇔ polylog-space mitotic
2. log-space mitotic ⇒ log-space autoreducible ⇒ (log n · log log n)-

space mitotic
3. relative to an oracle, log-space autoreducible �⇒ log-space mitotic

The oracle is an infinite family of graphs whose construction combines
arguments from Ramsey theory and Kolmogorov complexity.

1 Introduction

Our investigations are motivated by the question of whether the ability to refor-
mulate membership questions for a set implies that the set is redundant in the
sense that it can be split into two equivalent parts. This question depends on
the resources available for reformulation and for splitting. In this paper we focus
on notions of redundancy that have low space complexity. Suppose we are given
a set A such that in log-space we can reformulate a given question x ∈ A into
an equivalent question y ∈ A. Is this enough to split A in log-space into disjoint
parts A1 and A2 such that A, A1, and A2 are log-space many-one equivalent?
We study this question also with respect to polylog-space.

The reformulation of questions is made precise by the notion of autoreducibil-
ity. The idea of splitting a set into two parts that are equivalent to the original
set is formalized by the notion of mitoticity. Hence our main questions can be
formulated as follows.

Q1. Does log-space many-one autoreducibility imply log-space many-one mitot-
icity?

Q2. Does polylog-space many-one autoreducibility imply polylog-space many-
one mitoticity?

Trakhtenbrot [13] defined a set A to be autoreducible if there is an oracle
Turing machine M such that A = L(MA) and M on input x never queries x.
Lachlan [7] introduced the notion of mitoticity which was studied comprehen-
sively by Ladner [9,8]. A set A is mitotic if there exists a recursive set S such

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 448–459, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Space-Efficient Informational Redundancy 449

that A, A ∩ S, and A ∩ S are Turing equivalent. Ambos-Spies [1] transferred
autoreducibility and mitoticity to complexity theory and studied several ver-
sions of polynomial-time autoreducibility and polynomial-time mitoticity. A set
A is polynomial-time many-one autoreducible if A is polynomial-time many-one
reducible to A via a function f such that f(x) 
= x for every x. Many-one autore-
ducible sets contain a local redundancy of information, since x and f(x) contain
the same information with respect to membership in A. A set A is polynomial-
time many-one mitotic if there exists S ∈ P such that A, A ∩ S, and A ∩ S
are polynomial-time many-one equivalent. Many-one mitoticity formalizes the
aspect of informational redundancy in sets. Hence our questions Q1 and Q2 ask
whether local (poly)log-space redundancy implies informational (poly)log-space
redundancy. The converse implication holds in general, since mitoticity implies
autoreducibility.

The question of whether local redundancy implies informational redundancy
was first studied by Ladner [9,8] who showed that with respect to r.e. sets, au-
toreducibility and mitoticity coincide. Ambos-Spies [1] introduced the mentioned
resource-bounded notions of redundancy and proved that polynomial-time Tur-
ing autoreducibility does not imply polynomial-time Turing mitoticity. Glaßer et
al. [4,5] showed the same for all reducibility notions between polynomial-time 2-
truth-table reducibility and polynomial-time Turing reducibility. In contrast,
polynomial-time many-one autoreducibility and polynomial-time many-one mi-
toticity coincide [4]. The same holds for polynomial-time 1-truth-table reducibility.

In the present paper we shift the focus to notions of redundancy that have
more restricted resource bounds, i.e., logarithmic or polylogarithmic space. This
brings us to the study of (poly)log-space autoreducibility and (poly)log-space
mitoticity. We prove that polylog-space many-one autoreducibility and polylog-
space many-one mitoticity coincide. This is interesting, since it shows that even
very restricted computational devices can exploit local redundancy and can
transform it into informational redundancy. For log-space we show a similar, but
weaker connection: Log-space many-one autoreducibility implies (logn·log logn)-
space many-one mitoticity. The latter space bound can be even improved to
(logn · log(c) n) for any fixed constant c, where log(c) n denotes the c-times
composition of the log operation. On the technical side we obtain these re-
sults by developing a combination of the construction used for polynomial-time
many-one reductions [4] and the repeated deterministic coin tossing by Cole and
Vishkin [3].

So far we know that autoreducibility and mitoticity are equivalent with re-
spect to unbounded Turing reductions [9,8], polynomial-time many-one reduc-
tions [4], and polylog-space many-one reductions (Corollary 3). Motivated by
these equivalences, one could hope to turn the implications

log-space many-one mitotic ⇒ log-space many-one autoreducible
log-space many-one autoreducible ⇒ (log n · log logn)-space many-one mitotic

into a full equivalence, by replacing (logn · log logn)-space with log-space. We
show that such an improvement is hard to obtain. In section 4 we discuss in
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detail the reason for this and we make this precise with the construction of an
oracle relative to which the equivalence does not hold. This oracle construction
is interesting for two reasons. First, it combines arguments from Ramsey theory
and Kolmogorov complexity to make sure that log-space computable functions
get lost in infinite graphs. Second, the constructed oracle separates log-space
many-one autoreducibility and log-space many-one mitoticity with respect to all
common models of log-space oracle machines. These include weak models like
the ones by Ladner and Lynch [10] and Ruzzo, Simon, and Tompa [12], but
also strong models like the model by Gottlob [6]. A discussion of all considered
models is given in the preliminaries section.

Roughly speaking the oracle is a family of graphs whose existence follows
from Ramsey theory. Each of these graphs is a ring (i.e., a connected graph
with indegree and outdegree 1) where the nodes are numbers whose lengths are
polynomially bounded in the size of the graph. Our witness language L is the set
of all nodes that appear in some ring of the graph family. The rings are such that
the successor of a given node can be computed in log-space which shows that L is
log-space many-one autoreducible. In contrast, for every unbounded function t,
the t(n)-th successor cannot be computed in log-space (where n is the size of the
graph). So log-space functions can determine at most constantly many successors
of a given node. Hence they see at most a constant-size part of the graph and
act on the graph like a relation of constant arity. By the Ramsey theorem, we
can choose our rings such that log-space machines show the same acceptance
behavior on several consecutive nodes v1, . . . , vc. So a log-space separator S puts
all these nodes to the same side, either S or S. For a given log-space function f
we can ensure that c is large enough such that f on input v1 can determine at
most the nodes v1, . . . , vc. The latter are all on the same side of S. So f cannot
be a reduction from L∩S to L∩S. In this way we diagonalize against all f and
obtain that L is not log-space many-one mitotic.

2 Preliminaries

In the paper, all variables represent natural numbers, unless they are explicitly
defined in a different way. We use the following abbreviations for intervals of
natural numbers: [n,m] = {n, n + 1, . . . ,m}, [n,m) = {n, n + 1, . . . ,m − 1},
(n,m] = {n + 1, n + 2, . . . ,m}, (n,m) = {n + 1, n + 2, . . . ,m − 1}. For k ∈ Z
and n ≥ 1 let (k mod n) be the uniquely determined m ∈ [0, n) such that
m ≡ k(mod n). Moreover, sgn(k) denotes the sign of k, abs(k) denotes the
absolute value of k, and |k| denotes the length of the binary representation of k.
For a function f , f (i) denotes the i-th superposition of f , i.e., f (0)(x) = x and
f (i+1)(x) = f(f (i)(x)). For a fixed function f , the sequence f (0)(x), f (1)(x), . . .
is called the trajectory of x. The complement of a set A is denoted by A. A set
A is called nontrivial if |A| ≥ 2 and |A| ≥ 2.

We distinguish between Turing machines and Turing transducers. Turing ma-
chines (TM for short) are used for accepting languages and so they output 0
or 1. Turing Transducers (TT for short) are machines that compute functions
and hence can output arbitrary words. OTM (resp., OTT) is an abbreviation for
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oracle Turing machine (resp., oracle Turing transducer). If M is a TM or TT,
then M(x) denotes the output of M on input x. Similarly, if M is an OTM or
an OTT, then MT (x) denotes the output of M on input x where T is used as
oracle. If M is a TM (resp., OTM), then L(M) (resp., L(MT )) denotes the set
of words accepted by M .

2.1 Models of Log-Space Oracle Machines

There is a canonical way to define oracle access for time-bounded machines. How-
ever, for space-bounded machines there is no such distinguished way. We briefly
discuss several models of log-space oracle machines; for a detailed comparison
we refer to Buss [2]. The following properties are desirable for such models: The
machine should not be able to use the query tape as additional storage, but
it should be able to write long strings to the query tape (e.g., its own input).
Moreover, we would like that log-space computable functions are closed under
composition. Not all of the presented models satisfy these conditions.

LL-Model by Ladner and Lynch [10]: The machine has one additional,
one-way, write-only oracle tape which is not subject to the space bound and
which is erased after asking a query.

RST-Model by Ruzzo, Simon, and Tompa [12]: Like the model by Ladner
and Lynch, but additionally it is required that the machine acts deterministically
while anything is written on the oracle tape. So for deterministic machines, both
models are equivalent.

L-Model by Lynch [11]: The machine has an arbitrary, but fixed number of
one-way, write-only oracle tapes. These tapes are not subject to the space bound
and after asking a query, the corresponding tape is erased.

B-Model by Buss [2]: The machine has many one-way, write-only query
tapes and a single read-write index tape which is logarithmically bounded. If i
is written on the index tape, then all relativized operations (writing to a query
tape, querying the oracle, erasing the query on the tape, and obtaining the
answer) are with respect to tape i. If there are k active queries of maximum
length m, then this considered as space k logm which must be of order O(log n).

W-Model by Wilson [14]: The machine has a one-way, write-only oracle
stack which we consider to write from left to right. The machine can write
several (partial) queries to the stack such that neighboring queries are separated
by #. If the machine enters the query state, then the characters after the right-
most # are considered to be query. After querying, the # and the query itself are
erased so that the machine can continue to write the previous query at the stack.
This nesting of queries may continue to any depth, but the stack contributes to
the computation space as follows. If q1#q2# · · ·#qk is the content of the stack,
then this is considered as space

∑
i∈[1,k] max{log |qi|, 1} which must be of order

O(log n).
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G-Model by Gottlob [6]: The machine has O(log n) one-way, write-only query
tapes and a single read-write index tape which is logarithmically bounded. The
query tapes are not subject to the space bound. If i is written on the index tape,
then all relativized operations are with respect to tape i.

For deterministic machines, the strengths of the presented models compare as
follows:

LL = RST ≤ L ≤ B ≤ G

LL = RST ≤W ≤ G

Throughout the paper (if not stated otherwise) we use the most powerful
G-model for log-space OTMs and OTTs. Moreover, we assume the machines
to have tape alphabet Σ = {0, 1} (which does not restrict the computational
power). If we talk about the space used by such a machine, then this contains
the space used by the working tape and the space used by the index tape. Recall
that it does not contain the space used by query tapes. We may assume that a
machine with space bound d logn has at most d logn query tapes. This latter
assumption is motivated by the observation that each query tape can be used
as a one-bit storage cell: For an oracle O, fix words x0 /∈ O and x1 ∈ O. A bit b
can be stored in the oracle tape by writing xb to the tape. We can read the bit
b by querying the tape and writing again xb to the tape (which was emptied by
the query mechanism).

2.2 Complexity Classes, Reductions, Autoreducibility, and
Mitoticity

For s : N → N, let FSPACE(s) be the class of functions computable in determinis-
tic space O(s(n)) and let DSPACE(s) be the class of languages that are decidable
in deterministic space O(s(n)). Let FPLOG be the class of functions computable
in deterministic polylog-space, i.e., FPLOG =

⋃
k≥1 FSPACE(logk n). Let PLOG

be the class of languages that are decidable in deterministic polylog-space, i.e.,
PLOG =

⋃
k≥1 DSPACE(logk n). Moreover, let FL = FSPACE(log n) and L =

DSPACE(log n). Observe that FPLOG and FL are closed under
composition.

A set A is polylog-space many-one reducible to a set B, in notation A≤plog
m B,

if there exists a total f ∈ FPLOG such that x ∈ A ⇔ f(x) ∈ B. Similarly,
A is log-space many-one reducible to B, in notation A≤log

m B, if there exists a
total f ∈ FL such that x ∈ A ⇔ f(x) ∈ B. From FL’s and FPLOG’s closure
under composition it follows that ≤log

m and ≤plog
m are transitive. For integers

k ≥ 1 we write A≤logk

m B, if there exists a total f ∈ FSPACE(logk n) such
that x ∈ A ⇔ f(x) ∈ B. We write A≤log·loglog

m B, if there exists a total f ∈
FSPACE((log n) · log logn) such that x ∈ A ⇔ f(x) ∈ B. By lengths reasons,
the function classes FSPACE((log n) · log logn) and FSPACE(logk n) for k ≥ 2
are not closed under composition. Hence, the reductions ≤log·loglog

m and ≤logk

m for
k ≥ 2 are not transitive.
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Let ≤r
m be a reduction from {≤log

m ,≤plog
m ,≤log·loglog

m ,≤logk

m }. We say A and
B are ≤r

m-equivalent, in notation A ≡r
m B, if A ≤r

m B and B ≤r
m A. A is

≤r
m-autoreducible, if A ≤r

m A via a reduction f such that f(x) 
= x.
A is ≤log

m -mitotic (resp., ≤plog
m -mitotic), if there exists a separator S ∈ L

(resp., S ∈ PLOG) such that A, A ∩ S, and A ∩ S are pairwise ≤log
m -equivalent

(resp., ≤plog
m -equivalent).1 A is ≤logk

m -mitotic (resp., ≤logk·loglog
m -mitotic), if there

exists a separator S ∈ DSPACE(logk n) (resp., S ∈ DSPACE((logk n)· log logn))
such that A, A ∩ S, and A ∩ S are pairwise ≤logk

m -equivalent (resp., ≤logk·loglog
m -

equivalent).
For an oracle O, let LO be the class of sets decidable by a log-space OTM

that has access to oracle O. Similarly, FLO is the class of functions computable
by a log-space OTT that has access to oracle O. We also need the following
relativized versions of log-space reducibilities, autoreducibility, and mitoticity.

Definition 1. Let O be an oracle and let A,B be sets of words.

A≤log,O
m B

df⇐⇒ there exists f ∈ FLO s.t. for all x,
(x ∈ A ⇔ f(x) ∈ B).

A≤log-lin,O
m B

df⇐⇒ there exist c > 0 and f ∈ FLO such that for
all x, |f(x)| ≤ c|x| and (x ∈ A ⇔ f(x) ∈ B).

A is ≤log,O
m -autoreducible

df⇐⇒ A≤log,O
m A via a reduction f such that

f(x) 
= x.

A is ≤log-lin,O
m -autoreducible

df⇐⇒ A≤log-lin,O
m A via a reduction f such that

f(x) 
= x.

A is ≤log,O
m -mitotic

df⇐⇒ there exists S ∈ LO such that
A ≡log,O

m A ∩ S ≡log,O
m A ∩ S.

Proposition 1. If L is ≤log
m -mitotic such that |L| ≥ 2, then L is ≤log

m -auto-
reducible.

3 The Equivalence (≤plog
m -Autoreducible ⇔

≤plog
m -Mitotic)

This section establishes tight connections between autoreducibility and mitotic-
ity in the (poly)log-space setting. With respect to nontrivial set it holds that:

1. ≤plog
m -autoreducible ⇔ ≤plog

m -mitotic
2. ≤log

m -autoreducible ⇒ ≤log·loglog
m -mitotic

So for polylog-space many-one reductions we can prove an equivalence similar
to the one that is known for polynomial-time many-one reductions [4]. However,
1 This pairwise equivalence can be written as A ≡log

m A∩ S ≡log
m A∩ S (resp., A ≡plog

m

A∩ S ≡plog
m A ∩S), since ≤log

m (resp., ≤plog
m ) is transitive. This is not possible in the

definitions of ≤logk

m -mitoticity and ≤log·loglog
m -mitoticity.
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for log-space many-one reductions we obtain mitoticity only if we grant the
reduction a little more space than O(log n). Log-space many-one autoreducibility
even implies (logn · log(c) n)-space many-one mitoticity for every constant c.

To obtain these results, we apply a combination of the construction used in
the polynomial-time many-one setting [4] and the repeated deterministic coin
tossing by Cole and Vishkin [3]. In comparison with polynomial-time many-
one reductions, for space-bounded many-one reductions a new difficulty comes
up: Assume we are given a many-one autoreduction f that is length-preserving
and let x be our input. In the polynomial-time setting, it is easy to follow the
trajectory of x for |x| steps. This means that if f ∈ FP, then we can compute
f (|x|)(x) in polynomial time. This does not work in the log-space setting. Here
we can follow the trajectory only for constantly-many steps. So if f ∈ FL and
c is constant, then we can compute f (c) in log-space, but we cannot compute
f (|x|)(x) (since the intermediate results f(x), f2(x), . . . cannot be stored in log-
space). Here the repeated deterministic coin tossing [3] comes into play. With
this technique it is possible to construct a well-balanced separator (which is used
to establish mitoticity) such that instead of |x| steps we only have to follow the
trajectory for log log |x| steps. This number can actually be dropped to any fixed
number of repeated log operations, i.e., log(c) |x| where c is constant.

We cannot prove that log-space many-one autoreducibility is equivalent to
log-space many-one mitoticity. The lack of this equivalence is not due to our
particular technique. In section 4 we discuss in detail the deeper reason for the
missing equivalence and we make this precise with the construction of an oracle
relative to which the equivalence does not hold.

Theorem 1. Let k ≥ 1 be an integer and let L be a ≤logk

m -autoreducible set such
that |L| ≥ 2. Then there exist a total g ∈ FSPACE((logk7

n) · log logn) and a set
S ∈ DSPACE(logk4

n) such that for all x,

1. x ∈ L ⇔ g(x) ∈ L, and
2. x ∈ S ⇔ g(x) /∈ S.

Corollary 1. Let k ≥ 1 be an integer and let L be a ≤logk

m -autoreducible set such

that |L| ≥ 2. Then L is ≤logk7
·loglog

m -mitotic.

Proof. From Theorem 1 we obtain g ∈ FSPACE((logk7
n) · log logn) and S ∈

DSPACE(logk4
n) such that (x ∈ L ⇔ g(x) ∈ L) and (x ∈ S ⇔ g(x) /∈ S).

So L ∩ S≤logk7
·loglog

m L ∩ S and L ∩ S≤logk7
·loglog

m L ∩ S, both via g. This shows

L ∩ S ≡logk7
·loglog

m L ∩ S.

The following function g′ witnesses L≤logk7
·loglog

m L∩S: If x ∈ S, then g′(x) = x

else g′(x) = g(x). The following function g′′ witnesses L ∩ S≤logk7 ·loglog
m L: If

x ∈ S, then g′′(x) = x else g′′(x) = w1, where w1 is a fixed word in L. This

shows L ≡logk7
·loglog

m L ∩ S and analogously we obtain L ≡logk7
·loglog

m L ∩ S. �

Corollary 2. Let L be any set such that |L| ≥ 2. If L is ≤log

m -autoreducible,
then L is ≤log·loglog

m -mitotic.
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Remark 1. Corollary 2 can be improved in the sense that for every k ≥ 1, if L
is ≤log

m -autoreducible and |L| ≥ 2, then L is mitotic with respect to many-one
reductions that belong to

FSPACE((logn) · log log · · · log︸ ︷︷ ︸
k times

n).

Corollary 3. Let L be any set such that |L| ≥ 2. L is ≤plog
m -autoreducible if and

only if L is ≤plog
m -mitotic.

Proof. If L is ≤plog
m -mitotic, then there exist S ∈ PLOG and f1, f2 ∈ FPLOG

such that L∩S≤plog
m L∩S via f1 and L∩S≤plog

m L∩S via f2. By assumption, there
exist different words v, w ∈ L. The following function f ′ is a ≤plog

m -autoreduction
for L: If x ∈ S and f1(x) /∈ S, then f ′(x) = f1(x). If x /∈ S and f2(x) ∈ S, then
f ′(x) = f2(x). Otherwise, f ′(x) = min({v, w} − {x}).

The other direction follows from Corollary 1. �


4 The Difficulty of (≤log
m -Autoreducible ⇒ ≤log

m -Mitotic)

We know that the notions of ≤p
m-autoreducibility and ≤p

m-mitoticity are equiv-
alent [4]. In the preceding section we learned that with respect to log-space
many-one reductions, these notions are nearly equivalent:

≤log
m -mitotic ⇒ ≤log

m -autoreducible
≤log

m -autoreducible ⇒ ≤log·loglog
m -mitotic

In this section we explain the reason why it is difficult to establish the full
equivalence. This is done in two steps. First, in section 4.1 we describe this
difficulty on an intuitive level. Second, in section 4.2 we sketch the construction
of a relativized world where this difficulty becomes provable. Relative to our
oracle, ≤log

m -autoreducibility and ≤log
m -mitoticity are not equivalent. This result

holds with respect to all models of log-space oracle machines that were discussed
in the preliminaries section.

Observe that we cannot hope to show unconditionally that ≤log
m -autoreduci-

bility does not imply ≤log
m -mitoticity. Such a proof would separate L from P.

L = P ⇒ ≤log
m -autoreducibility and ≤log

m -mitoticity are equivalent

This is seen as follows: L = P implies FL = FP. If A is ≤log
m -autoreducible, then

it is ≤p
m-autoreducible and hence ≤p

m-mitotic [4]. So there exists a separator
S ∈ P = L such that A ≡p

m A ∩ S ≡p
m A ∩ S. From FL = FP it follows that

A ≡log
m A ∩ S ≡log

m A ∩ S and hence A is ≤log
m -mitotic.

So in the case of log-space reductions we observe a behavior that differs from
the experience we had with polynomial-time reductions. For the latter, either
autoreducibility and mitoticity coincide (i.e., for ≤p

m) or it is possible to separate
the notions unconditionally (i.e., for all reductions between ≤p

2−tt and ≤p
T). In
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contrast, with respect to log-space many-one reductions, it appears as a plausible
possibility that autoreducibility and mitoticity are different, but we cannot prove
this, unless we separate L from P. This is consistent with our suspicion that ≤log

m -
autoreducibility and ≤log

m -mitoticity are inequivalent, but very similar notions.

4.1 Explanation on an Intuitive Level

We give an intuitive explanation of the difficulty of transforming≤log
m -autoreduci-

bility into ≤log
m -mitoticity. It is in the nature of such explanations that our ar-

guments will be simplified and informal.
We say that a function f ∈ FL has difficult, detached cycles if for every g ∈ FL

there exists a constant c > 0 such that for infinitely many x:

1. Tx
df={f (0)(x), f (1)(x), . . . , f (|x|−1)(x)} has cardinality |x| and it holds that

f (|x|)(x) = x
2. f−1(Tx) ⊆ Tx

3. ∀y ∈ Tx, [g(y) ∈ Tx ⇒ g(y) ∈ {f (0)(y), f (1)(y), . . . , f (c)(y)}]
Item 1 states that the trajectory of x is a cycle of length |x|. Item 2 says that no
other arguments are mapped to Tx and therefore, the trajectory of x is not con-
nected to other trajectories. Item 3 describes a certain hardness of f : For a given
element in the trajectory, a log-space machine can only compute constantly-many
successors. This is consistent with the fact that f (c)(x) ∈ FL for all f ∈ FL and
all constants c, and it is also consistent with our impression that f (t(x))(x) is not
necessarily in FL if t is not constant.

At first glance, the property of having difficult, detached cycles might appear
artificial and very strong. However, there is no reason to exclude the existence of
functions f ∈ FL that have this property and that satisfy f(x) 
= x. For example,
with our construction below we demonstrate a relativized world in which such
functions exist. So it is a reasonable hypothesis to assume the existence of such
functions.

Suppose f is such a function. We use f for the construction of a set L that
is ≤log

m -autoreducible via f , but not ≤log
m -mitotic. By item 3 (the hardness con-

dition), every log-space machine can only compute a constant-size preview of
f ’s trajectory. Therefore, every log-space computable separator S that claims
to establish the ≤log

m -mitoticity of L can only compute such a constant-size
preview of f ’s trajectory. This implies that with respect to the trajectory of
f , every separator S of L acts like a relation of constant arity, since it de-
pends only on constantly-many successors of the input x. From Ramsey theory
(more precisely, the existence of the generalized Ramsey numbers) it follows that
for every c ≥ 0 there exists an x such that x, f(x), . . . , f (c)(x) have the same
membership with respect to S (i.e., either all belong to S or all belong to S).
Again by item 3, every log-space computable function g that claims to estab-
lish L ∩ S≤log

m L ∩ S (which is needed for ≤log
m -mitoticity) can only compute a

constant-size preview of f ’s trajectory. So by choosing c large enough we can
enforce that either g(x) ∈ {x, f(x), . . . , f (c)(x)} and hence

x ∈ S ⇔ f(x) ∈ S
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or g(x) does not belong to x’s trajectory with respect to f in which case we can
(by diagonalization) construct L such that

x ∈ L ⇔ g(x) /∈ L.

So g is not a ≤log
m -reduction from L∩S to L∩S. In this way we diagonalize against

all pairs (S, g) and obtain a set L that is not ≤log
m -mitotic. More precisely, our

diagonalization is in such a way that we put whole trajectories inside or outside
L. This implies that L is ≤log

m -autoreducible via f .

4.2 Road Map for the Oracle Construction

While neglecting technical details we sketch the main arguments of the con-
struction. In the first part, with the stagewise construction of an oracle O we
create a suitable relativized environment. Then, in the second part, we use this
environment and construct a language L that is ≤log

m -autoreducible, but not
≤log

m -mitotic.
We start with the description of stage s of the construction of O. There we

diagonalize against two log-space machines M1 (a possible log-space separator)
and M2 (a possible log-space reduction function). At the beginning we choose n
large enough such that changing the oracle with respect to words of length ≥ n2

does not affect separations made in earlier stages. Then we choose a set S ⊆ Σn2

such that |S| = n and S has maximal Kolmogorov complexity. In particular, all
subsets of S have a high Kolmogorov complexity.

Now let us observe that each T ⊆ S of cardinality ≥ 2 induces a particular
set 〈T 〉 ⊆ Σn2

which can be used to define the oracle with respect to words of
length n2. This set 〈T 〉 is defined as follows: If w0, . . . , wk−1 are the words in
T in ascending order, then the characteristic sequence of 〈T 〉 (considered as a
subset of Σn2

) is

0 · · · 0 1w1 0 · · · 0 1w2 0 · · · 0 1wk−1 0 · · · 0 1w0 0 · · · 0

where the factor 1wi+1 starts after the wi-th letter and the factor 1w0 starts
after the wk−1-th letter. So a word w of length n2 belongs to 〈T 〉 if and only if
in the sequence above there is a 1 at position w.

This encoding of T has the advantage that for a given wi, the successor wi+1
can be computed by a log-space machine that has access to the oracle 〈T 〉. For
this, the machine just has to query the words wi + 1, wi + 2, . . . , wi + n2 and
has to interpret the vector of answers as the word wi+1. This property results
in the ≤log

m -autoreducibility of T and finally this will translate into the ≤log
m -

autoreducibility of L.
Since log-space computable functions are closed under composition, for every

constant c > 1, there exists a log-space machine with oracle 〈T 〉 that on input
wi computes the c-th next word wi+c. We show that for log-space machines this
c-times composition of the successor function is expensive: No log-space machine
can compute successors that are farther away than a constant. Hence, there exists
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a constant c such that on input wi and with access to the oracle 〈T 〉 the machines
M1 and M2 can only gain knowledge about the words wi, wi+1, . . . , wi+c, but not
about the words w0, w1, . . . , wi−1 and wi+c+1, wi+c+2, . . . , wk−1.2 In particular,
the machines will not notice if we change the oracle with respect to the latter
words. Therefore, if we consider M1 on input wi and with oracle 〈T 〉, then this
computation will not change if we replace the oracle by {wi, wi+1, . . . , wi+c}. In
this sense, M 〈T 〉

1 (wi) computes exactly the (c + 1)-ary relation

R(wi, wi+1, . . . , wi+c)
df=M

〈{wi,wi+1,...,wi+c}〉
1 (wi).

We now apply Ramsey theory and obtain a set Ts = {w0, . . . , w3c−1} such that
Ts ⊆ S and all words w0, . . . , w2c−1 are equivalent with respect to the relation,
i.e., are all inside or all outside the relation. Note that this property of Ts is very

strong. It means either w0, . . . , w2c−1 ∈ L(M 〈Ts〉
1 ) or w0, . . . , w2c−1 ∈ L(M 〈Ts〉

1 ).
Let Os

df=〈Ts〉 which defines our oracle with respect to words of length n2. This
finishes stage s of our construction. The final oracle O is the union of all Os.

We enter the second part, i.e., the construction of L. All remaining arguments
are now relative to the oracle O. We have to construct L such that it is ≤log

m -
autoreducible, but not ≤log

m -mitotic. On the one hand, L will be the union of sets
Ts for certain s which immediately results in L’s ≤log

m -autoreducibility. On the
other hand, we diagonalize against all possible log-space-computable separators
S = L(M1) and all log-space-computable functions f(x) = M2(x) that claim to
reduce L ∩ S to L ∩ S. The latter destroys ≤log

m -mitoticity.
We sketch the diagonalization argument. Let s be the stage of O’s construction

in which we diagonalized against M1 and M2. In this stage we constructed the set
Ts = {w0, . . . , w3c−1}. We already observed that M2(w0) cannot gain knowledge
about the words wc+1, wc+2, . . . , w3c−1. If M2(w0) /∈ Ts, then by putting Ts

inside or outside L, we can enforce that f does not reduce L to L. Otherwise,
M2(w0) ∈ Ts and hence M2(w0) ∈ {w0, . . . , wc}, since it cannot gain knowledge
about the other words. However, as seen above, either w0, . . . , w2c−1 ∈ L(M1) or
w0, . . . , w2c−1 ∈ L(M1). So in this case, f does not reduce S to S. Therefore, in
any case, f does not reduce L∩S to L∩S. This shows that L is not ≤log

m -mitotic.

Theorem 2.There exists an oracle O relative to which ≤log
m -autoreducibility does

not imply ≤log
m -mitoticity (i.e., there exists an L that is ≤log,O

m -autoreducible, but
not ≤log,O

m -mitotic).

Corollary 4. There exists an oracle O and a language L such that all of the
following holds.

– L is ≤log-lin,O
m -autoreducible by a reduction function that is computable by a

log-space OTT with only one query tape.
– L is not ≤log,O

m -mitotic.

2 This is the point where we need S and hence T to have high Kolmogorov complex-
ity, since otherwise some information about the latter words could be contained in
wi, wi+1, . . . , wi+c which would allow M1 and M2 to obtain this information.
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Corollary 5. There exists an oracle O such that relative to O and with re-
spect to every machine model µ ∈ {LL,RST,L,B,W,G} it holds that ≤log

m -
autoreducibility does not imply ≤log

m -mitoticity.

Proof. Let O and L be as in Corollary 4 and choose a machine model µ. From
the first item of Corollary 4 it follows that L is ≤log,O

m -autoreducible with respect
to µ. By the second item of Corollary 4, L is not ≤log,O

m -mitotic with respect
to the G-model (which is the default machine model in this paper). Among all
considered machine models, the G-model is the most powerful one. Hence, L is
not ≤log,O

m -mitotic with respect to µ. �
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Abstract. Let P, Q ⊆ R2 be two n-point multisets and Ar ≥ b be a set
of λ inequalities on x and y, where A ∈ Rλ×2, r = [xy ], and b ∈ Rλ.
Define the constrained Minkowski sum (P ⊕ Q)Ar≥b as the multiset
{(p + q)|p ∈ P, q ∈ Q, A(p + q) ≥ b}. Given P , Q, Ar ≥ b, an objec-
tive function f : R2 → R, and a positive integer k, the Minkowski

Sum Selection problem is to find the kth largest objective value among
all objective values of points in (P ⊕ Q)Ar≥b. Given P , Q, Ar ≥ b, an
objective function f : R2 → R, and a real number δ, the Minkowski

Sum Finding problem is to find a point (x∗, y∗) in (P ⊕ Q)Ar≥b such
that |f(x∗, y∗) − δ| is minimized. For the Minkowski Sum Selection

problem with linear objective functions, we obtain the following re-
sults: (1) optimal O(n log n) time algorithms for λ = 1; (2) O(n log2 n)
time deterministic algorithms and expected O(n log n) time random-
ized algorithms for any fixed λ > 1. For the Minkowski Sum Find-

ing problem with linear objective functions or objective functions of the
form f(x, y) = by

ax
, we construct optimal O(n log n) time algorithms for

any fixed λ ≥ 1. As a byproduct, we obtain improved algorithms for
the Length-Constrained Sum Selection problem and the Density

Finding problem.

Keywords: Bioinformatics, Sequence analysis, Minkowski sum.

1 Introduction

Let P,Q ⊆ R2 be two n-point multisets and Ar ≥ b be a set of λ inequalities on
x and y, where A ∈ Rλ×2, r = [xy ], and b ∈ Rλ. Define the constrained Minkowski
sum (P ⊕Q)Ar≥b as the multiset {(p + q)|p ∈ P, q ∈ Q,A(p + q) ≥ b}.

In the Minkowski Sum Optimization problem, we are given P , Q, Ar ≥
b, and an objective function f : R2 → R. The goal is to find the maximum
objective value among all objective values of points in (P ⊕Q)Ar≥b. A function
f : D ⊆ R2 → R is said to be quasiconvex if and only if for all points v1, v2 ∈ D
and all γ ∈ [0, 1], one has f(γ · v1 + (1 − γ) · v2) ≤ max(f(v1), f(v2)). Bernholt
et al. [4] studied the Minkowski Sum Optimization problem for quasiconvex
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objective functions and showed that their results have applications to many
optimization problems arising in computational biology [1,5,8,9,14,15,16,20]. In
this paper, two variations of the Minkowski Sum Optimization problem are
studied: the Minkowski Sum Selection problem and the Minkowski Sum

Finding problem.
In the Minkowski Sum Selection problem, we are given P , Q, Ar ≥ b, an

objective function f : R2 → R, and a positive integer k. The goal is to find the kth

largest objective value among all objective values of points in (P ⊕Q)Ar≥b. The
Minkowski Sum Optimization problem is equivalent to the Minkowski Sum

Selection problem with k = 1. A variety of selection problems, including the
Sum Selection problem [3,12], the Length-Constrained Sum Selection

problem [13], and the Slope Selection problem [6,18], are linear-time reducible
to the Minkowski Sum Selection problem with a linear objective function or
an objective function of the form f(x, y) = by

ax . It is desirable that relevant selec-
tion problems from diverse fields are integrated into a single one, so we don’t have
to consider them separately. Next, let us look at the use of the Minkowski Sum

Selection problem in practice. As mentioned above, the Minkowski Sum Op-

timization problem finds applications to many optimization problems arising in
computational biology [1,5,8,9,14,15,16,20]. In these optimization problems, the
objective functions are chosen such that feasible solutions with higher objective
values are “more likely” to be biologically meaningful. However, it is not guaran-
teed that the best feasible solution always satisfies the needs of biologists. If the
best feasible solution does not interest biologists or does not provide enough in-
formation, we still have to find the second best feasible solution, the third best
feasible solution and so on until a satisfying feasible solution is finally found. As a
result, it is desirable to know how to dig out extra good feasible solutions in case
that the best feasible solution is not sufficient.

In the Minkowski SumFinding problem, we are givenP ,Q,Ar ≥ b, an objec-
tive function f : R2 → R, and a real number δ. The goal is to find a point (x∗, y∗)
in (P ⊕ Q)Ar≥b such that |f(x∗, y∗) − δ| is minimized. This problem originates
from the study of the Density Finding problem proposed by Lee et al. [11]. The
Density Finding problem can be regarded as a specialization of the Minkowski

Sum Finding problem with objective function f(x, y) = y
x and find applications

in recognizing promoters in DNA sequences [10,19]. In these applications, the goal
is not to find the feasible solution with the highest objective value. Instead, feasible
solutions with objective values close to some specific number, say δ, are thought
to be more biologically meaningful and preferred.

The main results obtained in this paper are as follows.

– The Minkowski Sum Selection problem with one constraint and a linear
objective function can be solved in optimal O(n log n) time.

– The Minkowski Sum Selection problem with two constraints and a lin-
ear objective function can be solved in O(n log2 n) time by a deterministic
algorithm and expected O(n logn) time by a randomized algorithm.

– For any fixed λ > 2, the Minkowski Sum Selection problem with λ
constraints and a linear objective function is shown to be asymptotically



462 C.-W. Luo et al.

equivalent to the Minkowski Sum Selection problem with two constraints
and a linear objective function.

– The Minkowski Sum Finding problem with any fixed number of con-
straints can be solved in optimal O(n logn) time if the objective function
f(x, y) is linear or of the form by

ax .

As a byproduct, we obtain improved algorithms for theLength-Constrained

Sum Selection problem [13] and the Density Finding problem [11]. Recently,
Lin and Lee [13] proposed an expected O(n log(u − l + 1))-time randomized al-
gorithm for the Length-Constrained Sum Selection problem, where n is the
size of the input instance and l, u ∈ N are two givenparameterswith 1 ≤ l < u ≤ n.
In this study, we obtain a worst-case O(n log(u − l + 1))-time deterministic al-
gorithm for the Length-Constrained Sum Selection problem. Lee, Lin, and
Lu [11] showed the DensityFinding problem has a lower bound ofΩ(n logn) and
proposed an O(n log2 m)-time algorithm for it, where n is the size of the input in-
stance andm is a parameter whose value may be as large asn. In this study, we give
an optimal O(n log n)-time algorithm for the Density Finding problem. Due to
page constraint, we omit the two algorithms (see [17] for the details).

2 Preliminaries

In this section, we review some definitions and theorems. For more details, read-
ers can refer to [4,7]. A matrix X ∈ Rn×m is called sorted if the values of each row
and each column are in nondecreasing order. Frederickson and Johnson [7] gave
some results about the selection problem and the ranking problem in a collection
of sorted matrices. From the results of [7], we have the following theorems.

Theorem 1. The selection problem in a collection of sorted matrices is given
a rank k and a collection of sorted matrices {X1, . . . , XN} in which Xj has
dimensions nj × mj, nj ≥ mj, to find the kth largest element among all ele-
ments of sorted matrices in {X1, . . . , XN}. This problem is able to be solved in
O(

∑N
j=1 mj log(2nj/mj)) time.

Theorem 2. The ranking problem in a collection of sorted matrices is given
an element and a collection of sorted matrices {X1, . . . , XN} in which Xj has
dimensions nj × mj, nj ≥ mj, to find the rank of the given element among
all elements of sorted matrices in {X1, . . . , XN}. This problem can be solved in
O(

∑N
j=1 mj log(2nj/mj)) time.

By the recent works of Bernholt et al. [4], we have the following theorems.

Theorem 3. Given a set of λ linear inequalities Ar ≥ b and two n-point multi-
sets P , Q ⊆ R2, one can compute the vertices of the convex hull of (P ⊕Q)Ar≥b

in O(λ log λ + λ · n logn) time.

Theorem 4. The problem of maximizing a quasiconvex objective function f
over the constrained Minkowski sum (P ⊕ Q)Ar≥b requires Ω(n logn) time in
the algebraic decision tree model even if f is a linear function and Ar ≥ b con-
sists of only one constraint.
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3 Minkowski Sum Selection with One Constraint

In this section we study the Minkowski Sum Selection problem and give an
optimal O(n logn) time algorithm for the case where only one linear constraint
is given and the objective function is also linear.

Given P = {(x1,1, y1,1), . . . , (x1,n, y1,n)}, Q = {(x2,1, y2,1), . . . , (x2,n, y2,n)}, a
positive integer k, one constraint L: ax+ by ≥ c, and a linear objective function
f(x, y) = dx + ey, where a, b, c, d, and e are all constants, we perform the
following transformation.

1. Change the content of P and Q to {(ax1,1 +by1,1, dx1,1 +ey1,1), . . . , (ax1,n +
by1,n, dx1,n + ey1,n)}, and {(ax2,1 + by2,1, dx2,1 + ey2,1), . . . , (ax2,n +
by2,n, dx2,n + ey2,n)}, respectively.

2. Change the constraint from ax + by ≥ c to x ≥ c.
3. Change the objective function from dx + ey to y.

This transformation can be done in O(n) time and the answer remains the
same. Hence from now on, our goal becomes to find the kth largest y-coordinate
on the constrained Minkowski sum of P and Q subject to the constraint L : x ≥ c.

For ease of exposition, we assume that no two points in P and Q have the same
x-coordinate and n is a power of two. The algorithm proceeds as follows. First,
we sort P and Q into Px and Qx (Py and Qy, respectively) in nondecreasing
order of x-coordinates (y-coordinates, respectively) in O(n logn) time. Next, we
use a divide-and-conquer approach to store the y-coordinates of (P ⊕Q)x≥c as a
collection of sorted matrices and then apply Theorem 1 to select the kth largest
element from the elements of these sorted matrices.

Now we explain how to store the y-coordinates of (P⊕Q)x≥c as a collection of
sorted matrices. Let Px = ((x1, y1), . . . , (xn, yn)), Qx = ((x̄1, ȳ1), . . . , (x̄n, ȳn)),
Py = ((x′

1, y
′
1), . . . , (x

′
n, y

′
n)), and Qy = ((x̄′

1, ȳ
′
1), . . . , (x̄

′
n, ȳ

′
n)). We then di-

vide Px into two halves of equal size: A = ((x1, y1), . . . , (xn/2, yn/2)) and B =
((xn/2+1, yn/2+1), . . . , (xn, yn)). Find a point (x̄t, ȳt) of Qx such that xn/2 + x̄t <
c and t is maximized. Then divide Qx into two halves: C = ((x̄1, ȳ1), . . . , (x̄t, ȳt))
and D = ((x̄t+1, ȳt+1), . . . , (x̄n, ȳn)). The set (P ⊕ Q)x≥c is the union of (A ⊕
C)x≥c, (A ⊕ D)x≥c, (B ⊕ C)x≥c, and (B ⊕ D)x≥c. Because x̄t is the largest
x-coordinate among all x-coordinates of points in Qx such that xn/2 + x̄t < c,
we know that all points in A ⊕ C cannot satisfy the constraint x ≥ c. Hence,
we only need to consider points in A ⊕ D, B ⊕ C, and B ⊕ D. Because Px

and Qx are in nondecreasing order of x-coordinates, it is guaranteed that all
points in B ⊕D satisfy the constraint L, i.e., B ⊕D = (B ⊕D)x≥c. Construct
in linear time row vector = (r1, r2, . . . , rn/2) which is the y-coordinates in the
subsequence of Py resulting from removing points with x-coordinates no greater
than xn/2 from Py . Construct in linear time column vector = (c1, c2, . . . , cn−t)
which is the y-coordinates in the subsequence of Qy resulting from removing
points with x-coordinates no greater than x̄t from Qy. Note row vector is the
same as the result of sorting B into nondecreasing order of y-coordinates, and
column vector is the same as the result of sorting D into nondecreasing order
of y-coordinates. Thus, we have {y : (x, y) ∈ (B ⊕ D)x≥c} = {y : (x, y) ∈
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B ⊕D} = {ri + cj : 1 ≤ i ≤ |row vector|, 1 ≤ j ≤ |column vector|}. Therefore,
we can store the y-coordinates of B ⊕ D = (B ⊕ D)x≥c as a sorted matrix X
of dimensions |row vector| × |column vector| where the (i, j)-th element of X
is ri + cj . Note that it is not necessary to explicitly construct the sorted matrix
X , which needs Ω(n2) time. Because the (i, j)-th element of X can be obtained
by summing up ri and cj , we only need to keep row vector and column vector.
The rest is to construct the sorted matrices for the y-coordinates of points in
(A⊕D)x≥c and (B⊕C)x≥c. It is accomplished by applying the above approach
recursively. The pseudocode is shown in Figure 1 and Figure 2. We now analyze
the time complexity.

Algorithm ConstructMatrices(Px, Qx, Py, Qy, L: x ≥ c)
Input: Px and Py are the results of sorting the multiset P ⊆ R2 in nondecreasing

order of x-coordinates and y-coordinates, respectively. Qx and Qy are the results
of sorting the multiset Q ⊆ R2 in nondecreasing order of x-coordinates and
y-coordinates, respectively. A linear constraint L: x ≥ c.

Output: The y-coordinates of points in (P ⊕ Q)x≥c as a collection of sorted matrices.
1 n′ ← |Px|; m′ ← |Qx|.
2 Let Px = ((x1, y1), . . . , (xn′ , yn′)), Qx = ((x̄1, ȳ1), . . . , (x̄m′ , ȳm′)),

Py = ((x′
1, y

′
1), . . . , (x′

n′ , y′
n′)), and Qy = ((x̄′

1, ȳ
′
1), . . . , (x̄′

m′ , ȳ′
m′)).

3 x̄0 ← −∞.
4 if n′ ≤ 0 or m′ ≤ 0 then
5 return
6 if n′ = 1 or m′ = 1 then
7 Scan points in Px ⊕ Qx to find all points satisfying L and construct the sorted

matrix for y-coordinates of these points.
8 return the above sorted matrix.
9 for t ← m′ down to 0 do
10 if xn′/2 + x̄t < c then
11 row vector ← subsequence of Py being removed points with

x-coordinates ≤ xn′/2.
12 column vector ← subsequence of Qy being removed points with

x-coordinates ≤ x̄t.
13 Ax ← Px[1, n′/2]; Bx ← Px[n′/2 + 1, n′]; Cx ← Qx[1, t]; Dx ← Qx[t + 1, m′].
14 Ay ← subsequence of Py being removed points with x-coordinates > xn′/2.
15 By ← subsequence of Py being removed points with x-coordinates ≤ xn′/2.
16 Cy ← subsequence of Qy being removed points with x-coordinates > x̄t.
17 Dy ← subsequence of Qy being removed points with x-coordinates ≤ x̄t.
18 ConstructMatrices(Ax, Dx, Ay, Dy , L: x ≥ c).
19 ConstructMatrices(Bx, Cx, By, Cy, L: x ≥ c).
20 return row vector and column vector.

Fig. 1. The subroutine for the Minkowski Sum Selection problem with one linear
constraint and a linear objective function



Minkowski Sum Selection and Finding 465

Algorithm Selection1(P, Q, L, f, k)
Input: Two multisets P ⊆ R2 and Q ⊆ R2; a linear constraint L; a linear objective

function f : R2 → R; a positive integer k.
Output: The kth largest value among all objective values of points in (P ⊕ Q)L.
1 Perform the input transformation described in Section 3.
2 Sort P and Q into Px and Qx, respectively, in nondecreasing order of x-coordinates.
3 Sort P and Q into Py and Qy, respectively, in nondecreasing order of y-coordinates.
4 S ← ConstructMatrices(Px, Qx, Py, Qy, L).
5 return the kth largest element among the elements of sorted matrices in S.

Fig. 2. The main procedure for the Minkowski Sum Selection problem with one
linear constraint and a linear objective function

Lemma 1. Given a matrix X ∈ RN×M, we define the side length of X be N+M.
Letting T (n′,m′) be the running time of ConstructMatrices(Px, Qx, Py , Qy, L),
where n′ = |Px| = |Py| and m′ = |Qx| = |Qy|, we have T (n′,m′) = O((n′ +
m′) log(n′ + 1)). Similarly, letting M(n′,m′) be the sum of the side lengths of
all sorted matrices created by running ConstructMatrices(Px, Qx, Py, Qy, L), we
have M(n′,m′) = O((n′ + m′) log(n′ + 1)).

Proof. It suffices to prove that T (n′,m′) = O((n′+m′) log(n′+1)). By Algorithm
ConstructMatrices in Figure 1, we have T (n′,m′) ≤ max0≤i≤m′{c′(n′ + m′) +
T (n′/2, i)+T (n′/2,m′− i)} for some constant c′. Then by induction on n′, it is
easy to prove that T (n′,m′) is O((n′ + m′) log(n′ + 1)). �


Theorem 5. Given two n-point multisets P ⊆ R2 and Q ⊆ R2, a positive
integer k, a linear constraint L, and a linear objective function f : R2 → R,
Algorithm Selection1 finds the kth largest objective value among all objective
values of points in (P ⊕Q)L in O(n log n) time. Hence, by Theorem 4, Algorithm
Selection1 is optimal.

Proof. Let S = {X1, . . . , XN} be the sorted matrices produced at Step 4 in
Algorithm Selection1. Let Xj , 1 ≤ j ≤ N , be of dimensions nj × mj where
nj ≥ mj . By Lemma 1, we have O(

∑N
i=1(mi +ni)) = O(n log n). By Theorem 1,

the time required to find the kth largest element from the elements of matrices
in S is O(

∑N
i=1 mi log(2ni/mi)). Since

∑N
i=1 mi log(2ni/mi) ≤

∑N
i=1 mi

2ni

mi
≤∑N

i=1 2(mi+ni) = O(n logn), the time for selecting the kth largest element from
elements of matrices in S is O(n log n). Combining this with the time for the
input transformation, sorting, and executing ConstructMatrices(Px, Qx, Py, Qy,
L), we conclude that the total running time is O(n log n). �


Using similar techniques, the following problem can also be solved in O(n log n)
time. Given two n-point multisets P ⊆ R2 and Q ⊆ R2, a linear constraint L, a
linear objective function f : R2 → R, and a real number t, the problem is to find
the rank of t among all objective values of points in (P ⊕Q)L, where the rank of
t is equal to the number of elements in {y|(x, y) ∈ (P⊕Q)L, y > t} plus one. The
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Algorithm Ranking1(P, Q, L, f, t)
Input: Two multisets P ⊆ R2 and Q ⊆ R2; a linear constraint L; a linear objective

function f : R2 → R; a real number t.
Output: The rank of t among the objective values of points in (P ⊕ Q)L.
1 Perform the input transformation in Section 3.
2 Sort P and Q into Px and Qx, respectively, in nondecreasing order of x-coordinates.
3 Sort P and Q into Py and Qy, respectively, in nondecreasing order of y-coordinates.
4 S ← ConstructMatrices(Px, Qx, Py, Qy, L).
5 return the rank of t among the elements of sorted matrices in S.

Fig. 3. The ranking algorithm for the Minkowski sum with one linear constraint and
a linear objective function

pseudocode is given in Figure 3. Note that in Algorithm Selection1 and Algorithm
Ranking1, we assume the input constraint is of the form ax+by ≥ c. After slight
modifications, we can also cope with constraints of the form ax + by > c. To
avoid redundancy, we omit the details here. For ease of exposition, we assume
that Algorithm Selection1 and Algorithm Ranking1 are also capable of coping
with constraints of the form ax + by > c in the following sections.

4 Minkowski Sum Selection with Two Constraints

In this section, we show the Minkowski Sum Selection problem can be solved
in worst-case O(n log2 n) time and expected O(n log n) time for the case where
two linear constraints are given and the objective function is linear.

Given P = {(x1,1, y1,1), . . . , (x1,n, y1,n)}, Q = {(x2,1, y2,1), . . . , (x2,n, y2,n)}, a
positive integer k, two constraints L1: a1x + b1y ≥ c1 and L2: a2x + b2y ≥ c2,
and a linear objective function f(x, y) = dx + ey, where a1, b1, c1, a2, b2, c2, d,
and e are all constants, we perform the following transformation.

1. Change the content of P and Q to {(a1x1,1 + b1y1,1, dx1,1 + ey1,1), . . . ,
(a1x1,n + b1y1,n, dx1,n + ey1,n)}, and {(a1x2,1 + b1y2,1, dx2,1 + ey2,1), . . . ,
(a1x2,n + b1y2,n, dx2,n + ey2,n)}, respectively.

2. Change the constraints from a1x + b1y ≥ c1 and a2x + b2y ≥ c2 to x ≥ c1
and a2e−b2d

a1e−b1dx + a1b2−b1a2
a1e−b1d y ≥ c2, respectively.

3. Change the objective function from dx + ey to y.

This transformation can be done in O(n) time and the answer remains the
same. Hence from now on, our goal becomes to find the kth largest y-coordinate
on the constrained Minkowski sum of P and Q subject to the constraints L1:
x ≥ c1 and L2: ax + by ≥ c2, where a = a2e−b2d

a1e−b1d and b = a1b2−b1a2
a1e−b1d . Note

that if the two constraints and the objective function are parallel, we cannot
use the above transformation. However, if the two constraints are parallel, this
problem can be solved in O(n log n) time. For the space limitation, we present
the algorithm for this special case in [17].
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After applying the above input transformation to our problem instances, there
are four possible cases: (1) a < 0, b < 0; (2) a > 0, b > 0; (3) a < 0, b > 0; (4)
a > 0, b < 0. Note that the two constraints are not parallel implies b 
= 0. If
a = 0, we can solve this case more easily in O(n log2 n) time by using the same
technique stated later and we omit the details here. In the following discussion
we focus on Case (1), and the other three cases can be solved in a similar way.

For simplicity, we assume that n is a power of two, and each point in (P ⊕
Q)L1,L2 has a distinct y-coordinate. Now we are ready to describe our algo-
rithm. First, we sort P and Q into Py and Qy, respectively, in nondecreasing
order of y-coordinates using O(n log n) time. Let Py = {(x′

1, y
′
1), . . . , (x

′
n, y

′
n)}

and Qy = {(x̄′
1, ȳ

′
1), . . . , (x̄′

n, ȳ
′
n)}. Denote by Y the sorted matrix of dimen-

sions n × n where the (i, j)-th element is y′i + ȳ′j. We then run a loop where
an integer interval [l, u] is maintained such that the solution is within the set
{the hth largest element of Y : l ≤ h ≤ u}. Initially, we set l = 1 and u = n2. At
the beginning of each iteration, we select the u−l+1

2 -th largest element t of Y ,
which can be done in O(n) time by Theorem 1. Let R be the rank of t among the
objective values of points in (P ⊕Q)L1,L2 . Then there are three possible cases:
(i) R < k; (ii) R = k; (iii) R > k. See Figure 4 for an illustration. If it is Case (i),
then we reset l to u−l+1

2 and continue the next iteration. If it is Case (ii), then
we apply the algorithm for the Minkowski Sum Finding problem (discussed
in Section 5) to find the point p = (x∗, y∗) in (P ⊕Q)L1,L2,y≤t in O(n log n) time
such that y∗ is closest to t and return y∗. If it is Case (iii), then we reset u to
u−l+1

2 and continue the next iteration.
It remains to describe the subroutine for computing R. Let A = {(x, y)|x <

c1 and ax + by < c2}, B = {(x, y)|x < c1 and ax + by ≥ c2 and y > t}, C =
{(x, y)|x ≥ c1 and ax + by ≥ c2 and y > t} and D = {(x, y)|x ≥ c1 and ax +
by < c2 and y > t}. See Figure 5 for an illustration. First, we compute the
number of points in (P ⊕ Q) ∩ (A ∪ B), say R1, by calling Ranking1(P,Q,L′:
x < c1, f

′(x, y) = y, t) − 1. Secondly, we compute the number of points in
(P ⊕Q)∩ (A∪D), say R2, by calling Ranking1(P,Q,L′′: ax+ by < c2, f

′(x, y) =
y, t) − 1. Thirdly, we compute the number of points in (P ⊕ Q) ∩ A, say R3,
by calling Ranking1(P,Q,L′′: ax + by < c2, f

′′(x, y) = −x, c1) − 1. Finally,
we compute the number of points in (P ⊕ Q)y>t, say Rt. It can be done by
applying Theorem 2 to calculate the rank of t among the values of the elements
in Y , say R′

t, and set Rt to R′
t − 1. After getting R1, R2, R3, and Rt, we can

compute R by the following equation: R = Rt − R1 − R2 + R3 + 1. Since all
R1, R2, R3, and Rt can be computed in O(n log n) time, the time for computing
R is O(n logn). Now let us look at the total time complexity. Since the loop
consists of at most O(log n) iterations and each iteration takes O(n log n) time,
the total time complexity of the loop is O(n log2 n). By combining this with the
time for the input transformation and sorting, we have the following theorem.

Theorem 6. Given two n-point multisets P ⊆ R2 and Q ⊆ R2, a positive
integer k, two linear constraints L1 and L2, and a linear objective function f :
R2 → R, the kth largest objective value among all objective values of points in
(P ⊕Q)L1,L2 can be found in O(n log2 n) time.
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Fig. 4. The three possible cases for a given value t Fig. 5. The four regions above
(exclusive) the line y = t

Theorem 7. For linear objective functions, the Minkowski Sum Selection

problem with two linear constraints can be solved in expected O(n logn) time.

Proof. Due to the space limitation, we leave the proof to [17]. �


Let λ be a fixed integer greater than two. In the following theorem, we sum-
marize our results of the Minkowski Sum Selection for the case where λ
linear constraints are given and the objective function is linear. Due to the space
limitation, we leave the proof to [17].

Theorem 8. Let λ be any fixed integer larger than two. The Minkowski Sum

Selection problem with λ constraints and a linear objective function is asymp-
totically equivalent to the Minkowski Sum Selection problem with two linear
constraints and a linear objective function.

5 Minkowski Sum Finding

In the Minkowski Sum Finding problem, given two n-point multisets P,Q, a
set of λ inequalities Ar ≥ b, an objective function f(x, y) and a real number δ,
we are required to find a point v∗ = (x∗, y∗) among all points in (P ⊕ Q)Ar≥b

which minimizes |f(x∗, y∗) − δ|. In this section, we show how to cope with an
objective function of the form f(x, y) = ax + by or f(x, y) = by

ax based on the
algorithms proposed by Bernholt et al. [4]. Instead of finding the point v∗ =
(x∗, y∗), we would like to focus on computing the value of |f(x∗, y∗) − δ|. The
point v∗ = (x∗, y∗) can be easily constructed from the computed information.
Before moving on to the algorithm, let us look at the lower bound of the problem.

Lemma 2. The Minkowski Sum Finding problem with an objective function
of the form f(x, y) = ax + by or f(x, y) = by

ax has a lower bound of Ω(n log n)
in the algebraic decision tree model.

Proof. Given two real number sets A = {a1, . . . , an} and B = {b1, . . . , bn},
the Set Disjointness problem is to determine whether or not A ∩ B = ∅. It
is known the Set Disjointness problem has a lower bound of Ω(n log n) in
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the algebraic decision tree model [2]. We first prove that the Set Disjoint-

ness problem is linear-time reducible to the Minkowski Sum Finding prob-
lem with the objective function f(x, y) = y. Let P = {(1, a1), . . . , (1, an)},
Q = {(1,−b1), . . . , (1,−bn)}, and (x∗, y∗) be the point in (P ⊕ Q) such that
y∗ is closest to zero. Then (x∗, y∗) = (2, 0) if and only if A∩B 
= ∅. Similarly, we
can prove that the Set Disjointness problem is linear-time reducible to the
Minkowski Sum Finding problem with the objective function f(x, y) = y

x .
Let P = {(1, a1), . . . , (1, an)}, Q = {(1,−b1), . . . , (1,−bn)}, and (x∗, y∗) be the
point in (P ⊕ Q) such that y∗

x∗ is closest to zero. Then (x∗, y∗) = (2, 0) if and
only if A ∩B 
= ∅. �


Now, let us look at how to cope with a linear objective function f(x, y) =
ax+ by. Without loss of generality, we assume δ = 0; otherwise we may perform
some input transformations first. Thus, the goal is to compute the value of
min{|ax + by| : (x, y) ∈ (P ⊕Q)Ar≥b}.

Lemma 3. Divide the xy-plane into two parts: D1 = {(x, y) : ax+ by ≥ 0} and
D2 = {(x, y) : ax + by < 0}. Given two points v1 = (x1, y1) and v2 = (x2, y2)
in the same part, let vγ = (xγ , yγ) = γv1 + (1− γ)v2, where γ ∈ [0, 1]. Then we
have |axγ + byγ | ≥ min (|ax1 + by1|, |ax2 + by2|).

Proof. It is easy to see the lemma holds if b = 0. Without loss of generality, let
x1 ≥ x2 and b 
= 0. We only prove the case where both v1 and v2 are in D1, and
the other case can be proved in a similar way. Now consider the following two
situations: (1) |ax1+by1| ≤ |ax2+by2| and (2) |ax1+by1| > |ax2+by2|. In the first
situation, by |ax1 + by1| ≤ |ax2 + by2|, ax1 + by1 ≥ 0, and ax2 + by2 ≥ 0, we can
derive that b(y2− y1) ≥ a(x1−x2). Let v′ = (x′, y′) satisfy ax1 + by1 = ax′ + by′

and x′ = xγ = γx1 + (1 − γ)x2. It follows that y′ = a
b (1 − γ)(x1 − x2) + y1. By

yγ = γy1+(1−γ)y2 = (1−γ)(y2−y1)+y1, we have byγ ≥ by′. Thus, |axγ +byγ | ≥
|ax′ + by′| = |ax1 + by1|. In the second situation, b(y1 − y2) > a(x2 − x1). Let
v′′ = (x′′, y′′) satisfy ax2 + by2 = ax′′ + by′′ and x′′ = xγ = γx1 + (1 − γ)x2. It
follows that y′′ = a

b γ(x2 − x1) + y2. By yγ = γy1 + (1− γ)y2 = γ(y1 − y2) + y2,
we have byγ > by′′. Thus, |axγ + byγ | > |ax′′ + by′′| = |ax2 + by2|. Therefore,
|axγ +byγ| ≥ min (|ax1 + by1|, |ax2 + by2|) if ax1+by1 ≥ 0 and ax2+by2 ≥ 0. �


Let D1 = {(x, y) : ax + by ≥ 0} and D2 = {(x, y) : ax + by < 0}. Let R1 be the
vertices of the convex hull of (P ⊕Q)Ar≥b,ax+by≥0 and R2 be the vertices of the
convex hull of (P⊕Q)Ar≥b,ax+by<0. By Theorem 3, we can compute R1 and R2 in
O(λ log λ+λ·n log n) time. Let sol1 = min{|ax+by| : (x, y) ∈ (P⊕Q)Ar≥b∩D1}
and sol2 = min{|ax + by| : (x, y) ∈ (P ⊕ Q)Ar≥b ∩D2}. By Lemma 3, we have
sol1 = min{|ax+ by| : (x, y) ∈ R1} and sol2 = min{|ax+ by| : (x, y) ∈ R2}. Note
that both the sizes of R1 and R2 are bounded above by O(λ ·n). Therefore, sol1
and sol2 are computable in O(λ · n) time by examining all points in R1 and R2.
Finally, we have the solution is the minimum of sol1 and sol2. The total time
complexity is O(λ log λ + λ · n logn), and we have the following theorem.



470 C.-W. Luo et al.

Theorem 9. Let λ be any fixed nonnegative integer. The Minkowski Sum

Finding problem with λ constraints and a linear objective function can be solved
in optimal O(n log n) time.

Next, we see how to cope with an objective function of the form f(x, y) = by
ax .

Without loss of generality, we assume δ = 0 and a = b = 1; otherwise we perform
some input transformations first. Thus, the goal is to compute the value of
min{| yx | : (x, y) ∈ (P⊕Q)Ar≥b}. For technical reasons, we define y

x =∞ if x = 0.
A function f : D → (R∪∞) defined on a convex subset D of R2 is quasiconcave if
whenever v1, v2 ∈ D and γ ∈ [0, 1] then f(γ ·v1+(1−γ)·v2) ≥ min{f(v2), f(v2)}.
Lemma 4. Let D1 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, D2 = {(x, y) ∈ R2 : x ≤
0, y ≥ 0}, D3 = {(x, y) ∈ R2 : x ≤ 0, y ≤ 0}, and D4 = {(x, y) ∈ R2 : x ≥ 0, y ≤
0}. Define function fi : Di → R by letting fi(x, y) = | yx | for each i = 1, 2, 3, 4.
Then we have function fi is quasiconcave for each i = 1, 2, 3, 4.

Proof. We only prove that f1 is quasiconcave. The proofs for f2, f3, and f4 can
be derived in a similar way. Let v1 = (x1, y1) ∈ D1, v2 = (x2, y2) ∈ D1, and
x1 ≥ x2. Without loss of generality we may assume x1 > 0 and vγ 
∈ {v1, v2}.
Consider the following two cases.

Case 1: y1
x1
≤ y2

x2
. Let v′ = (x′, y′) be the point which satisfies y1

x1
= y′

x′ and
x′ = xγ = γx1 + (1− γ)x2. By x1 > 0, x2 ≥ 0, and y1

x1
≤ y2

x2
, we have y2 ≥ x2

x1
y1.

It follows that y′ = (γx1+(1−γ)x2) y1
x1

= γy1+(1−γ)x2
x1

y1 ≤ γy1+(1−γ)y2 = yγ .

By 0 < x′ = xγ and 0 ≤ y′ ≤ yγ , we have | yγ

xγ
| = yγ

xγ
≥ y′

x′ = y1
x1

= | y1
x1
| ≥

min{| y1
x1
|, | y2

x2
|}.

Case 2: y1
x1

> y2
x2

. The proof of this case is similar to that of Case 1. As a result,
we omit this proof. �

Let D1 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, D2 = {(x, y) ∈ R2 : x ≤ 0, y ≥ 0},
D3 = {(x, y) ∈ R2 : x ≤ 0, y ≤ 0}, and D4 = {(x, y) ∈ R2 : x ≥ 0, y ≤ 0}. Let
Ri be the vertices of the convex hull of (P ⊕ Q)Ar≥b ∩ Di for i = 1, 2, 3, 4. By
Theorem 3, each Ri is computable in O(λ log λ + λ · n logn) time. Let soli =
min{| yx | : (x, y) ∈ (P ⊕ Q)Ar≥b ∩ Di} for each i = 1, 2, 3, 4. By Lemma 4, we
have soli = min{| yx | : (x, y) ∈ Ri} for each i. Note that the size of each Ri is
bounded above by O(λ+n). Therefore, each soli is computable in O(λ+n) time
by examining all points in Ri. Finally, we have the solution is min4

i=1 soli. The
total time complexity is O(λ log λ + λ · n logn).

Theorem 10. Let λ be any fixed nonnegative integer. The Minkowski Sum

Finding problem with λ constraints and an objective function of the form f(x, y)
= by

ax can be solved in optimal O(n log n) time.
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Abstract. A phylogenetic network is a directed acyclic graph that vi-
sualises an evolutionary history containing so-called reticulations such
as recombinations, hybridisations or lateral gene transfers. Here we con-
sider the construction of a simplest possible phylogenetic network con-
sistent with an input set T , where T contains at least one phylogenetic
tree on three leaves (a triplet) for each combination of three taxa. To
quantify the complexity of a network we consider both the total number
of reticulations and the number of reticulations per biconnected compo-
nent, called the level of the network. We give polynomial-time algorithms
for constructing a level-1 respectively a level-2 network that contains a
minimum number of reticulations and is consistent with T (if such a
network exists). In addition, we show that if T is precisely equal to the
set of triplets consistent with some network, then we can construct such
a network, which minimises both the level and the total number of retic-
ulations, in time O(|T |k+1), if k is a fixed upper bound on the level.

1 Introduction

One of the ultimate goals in computational biology is to create methods that
can reconstruct evolutionary histories from biological data of currently living or-
ganisms. The immense complexity of biological evolution makes this task almost
a hopeless one [17]. This has motivated researchers to focus first on the simplest
possible pattern of evolution. This least complicated shape of an evolutionary
history is the tree-shape. Now that treelike evolution has been extremely well
studied, a logical next step is to consider slightly more complicated evolutionary
scenarios, gradually extending the complexity that our models can describe. At
the same time we also wish to take into account the parsimony principle, which
tells us that amongst all equally good explanations of our data, one prefers the
simplest one (see e.g. [8]).

For a set of taxa (e.g. species or strains), a phylogenetic tree describes (a
hypothesis of) the evolution that these taxa have undergone. The taxa form the
� Part of this research has been funded by the Dutch BSIK/BRICKS project.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 472–483, 2008.
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leaves of the tree while the internal vertices represent events of genetic diver-
gence: one incoming branch splits into two (or more) outgoing branches.

Phylogenetic networks form an extension to this model where it is also pos-
sible that two branches combine into one new branch. We call such an event
a reticulation, which can model any kind of non-treelike (also called “reticu-
late”) evolutionary process such as recombination, hybridisation or lateral gene
transfer. In addition, reticulations can also be used to display different possible
(treelike) evolutions in one figure. In recent years there has emerged enormous
interest in phylogenetic networks and their application [3,9,15,17,18].

This model of a phylogenetic network allows for many different degrees of
complexity, ranging from networks that are equal, or almost equal, to a tree to
complex webs of frequently diverging and recombining lineages. Therefore we
consider two different measures for the complexity of a network. The first of
these measures is the total number of reticulations in the network. Secondly, we
consider the level of the network, which is an upper bound on the number of
reticulations per non-treelike part (i.e. biconnected component) of the network.
In this paper we consider two different approaches for constructing networks
that are as simple as possible. The first approach minimises the total number of
reticulations for a fixed level (of at most two) and the second approach minimises
both the level and the total number of reticulations, but under more heavy
restrictions on the input.

Level-k phylogenetic networks were first introduced by Choy et al. [5] and
further studied by different authors [11,12,14]. Gusfield et al. gave a biological
justification for level-1 networks (which they call “galled trees”) [6]. Minimising
reticulations has been very well studied in the framework where the input con-
sists of (binary) sequences [6,8,19]. There are also several results known already
about the version of the problem where the input consists of a set of trees and
the objective is to construct a network that is “consistent” with each of the
input trees. Baroni et al. give bounds on the minimum number or reticulations
needed to combine two trees [2] and Bordewich et al. showed that it is APX-hard
to compute this minimum number exactly [4]. If restricted to level-1 networks
the problem becomes polynomial-time solvable even if there are more than two
input trees [10].

In this paper we also consider input sets consisting of trees, but restrict our-
selves to small trees with three leaves each, called triplets, see Fig. 1. Triplets
can for example be constructed by existing methods, such as Maximum Parsi-
mony or Maximum Likelihood, that work accurately and fast for small numbers
of taxa. Triplet-based methods have also been well-studied. Aho et al. [1] gave
a polynomial-time algorithm to construct a tree from triplets if there exists a
tree that is consistent with all input triplets. Jansson et al. [13] showed that the
same is possible for level-1 networks if the input triplet set is dense, i.e. if there
is a triplet for any set of three taxa. Van Iersel et al. further extended this result
to level-2 networks [11]. From non-dense triplet sets it is NP-hard to construct
level-k networks for any k ≥ 1 [12,13]. From the proof of this result also follows
directly that it is NP-hard to find a network consistent with a non-dense triplet
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Fig. 1. One of the three possible triplets on the leaves x, y and z. Note that, as with
all figures in this article, all arcs are directed downwards.

set that contains a minimum number of reticulations1. It is unknown whether
this problem becomes easier if the input triplet set is dense.

In the first part of this paper we consider fixed-level networks and aim to
minimise the total number of reticulations in these networks. In Sect. 3 we give
a polynomial-time algorithm that constructs a level-1 network consistent with a
dense triplet set T (if such a network exists) and minimises the total number of
reticulations over all such networks. We have implemented MARLON, tested it
and made it publicly available [16]. The worst case running time of the algorithm
is O(n5) for n leaves (and hence O(|T | 53 ) with |T | the input size).

In Sect. 4 we further extend this approach by giving an algorithm that even
constructs a level-2 network consistent with a dense triplet set (if one exists) and
again minimises the total number of reticulations over all such networks. This
means that if the level is at most two, we can minimise both the level and the
total number of reticulations, giving priority to the criterion that we find most
important. The running time is O(n9) (and thus O(|T |3)).

Constructing level-k phylogenetic networks becomes even more challenging
when the level can be larger than two, even without minimising the total num-
ber of reticulations. Given a dense set of triplets, it is a major open problem
whether one can construct a minimum level phylogenetic network consistent
with these triplets in polynomial time. Moreover, it is not even known whether
it is possible to construct a level-3 network consistent with a dense input triplet
set in polynomial time. In Sect. 5 of this paper we show some significant progress
in this direction. As a first step we consider the restriction to “simple” networks,
i.e. networks that contain just one nontrivial biconnected component. We show
how to construct, in O(|T |k+1) time, a minimum level simple network with level
at most k from a dense input triplet set (for fixed k).

Subsequently we show that this can be used to also generate general level-
k networks if we put an extra restriction on the quality of the input triplets.
Namely, we assume that the input set contains exactly all triplets consistent with
some network. If that is the case then our algorithm can find such a network
that simultaneously minimises level and the total number of reticulations used.
The fact that in this case optimal solutions for both measures coincide, is an
interesting consequence of the restriction on the input triplets. The algorithm
runs in polynomial time O(|T |k+1) if the upper bound k on the level of the
network is fixed. (For k = 1, 2 we can use existing, optimised simple level-1
1 This follows from the proof of Theorem 7 in [13], since only one reticulation is used

in their reduction.
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and simple level-2 algorithms as subroutines to obtain improved running times
of O(|T |) and O(|T | 83 ) respectively.) This result constitutes an important step
forward in the analysis of level-k networks, since it provides the first positive
result that can be used for all levels k.

2 Preliminaries

A phylogenetic network (network for short) is defined as a directed acyclic graph
in which exactly one vertex has indegree 0 and outdegree 2 (the root) and all
other vertices have either indegree 1 and outdegree 2 (split vertices), indegree 2
and outdegree 1 (reticulation vertices, or reticulations for short) or indegree 1
and outdegree 0 (leaves), where the leaves are distinctly labelled. A phylogenetic
network without reticulations is called a phylogenetic tree.

A directed acyclic graph is connected (also called “weakly connected”) if there
is an undirected path between any two vertices and biconnected if it contains
no vertex whose removal disconnects the graph. A biconnected component of a
network is a maximal biconnected subgraph and is called trivial if it is equal to
two vertices connected by an arc. We call an arc a = (u, v) of a network N a
cut-arc if its removal disconnects N and call it trivial if v is a leaf.

Definition 1. A network is said to be a level-k network if each biconnected
component contains at most k reticulations.

A level-k network that contains no nontrivial cut-arcs and is not a level-(k − 1)
network is called a simple level-k network2. Informally, a simple network thus
consists of a nontrivial biconnected component with leaves “hanging” of it.

A triplet xy|z is a phylogenetic tree on the leaves x, y and z such that the
lowest common ancestor of x and y is a proper descendant of the lowest common
ancestor of x and z. The triplet xy|z is displayed in Fig. 1. Denote the set of
leaves in a network N by LN . For any set T of triplets define L(T ) =

⋃
t∈T Lt

and let n = |L(T )|. A set T of triplets is called dense if for each {x, y, z} ⊆ L(T )
at least one of xy|z, xz|y and yz|x belongs to T . For L′ ⊆ L(T ), we denote
by T |L′ the triplets t ∈ T with Lt ⊆ L′. Furthermore, if C = {S1, . . . , Sq} is a
collection of leaf-sets we use T∇C to denote the induced set of triplets SiSj |Sk

such that there exist x ∈ Si, y ∈ Sj , z ∈ Sk with xy|z ∈ T and i, j and k all
distinct.

Definition 2. A triplet xy|z is consistent with a network N (interchangeably:
N is consistent with xy|z) if N contains a subdivision of xy|z, i.e. if N contains
vertices u 
= v and pairwise internally vertex-disjoint paths u→ x, u→ y, v → u
and v → z.

We say that a cut-arc is a highest cut-arc if it is not reachable from any other
cut-arc. We call a cycle containing the root a highest cycle and a reticulation in
such a cycle a highest reticulation. We say that a leaf x is below an arc (u, v) (and

2 This definition is equivalent to Definition 4 in [11] by Lemma 2 in [11].
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below vertex v) if x is reachable from v. In the next section we will frequently
use the set BHR(N), which denotes the set of leaves in network N that is below
a highest reticulation.

A subset S of the leaves is an SN-set (of triplet set T ) if there is no triplet
xy|z in T with x, z ∈ S, y /∈ S. An SN-set is called nontrivial if it does not
contain all leaves. Furthermore, we say that an SN-set S is maximal (under
restriction X) if there is no nontrivial SN-set (satisfying restriction X) that is a
strict superset of S. Any two SN-sets of a dense triplet set T are either disjoint
or one is included in the other [14, Lemma 8], which implies that there are at
most 2(n − 1) nontrivial SN-sets. All SN-sets can be found in O(n3) time [13].
If a network is consistent with T , then the set of leaves S below any cut-arc is
always an SN-set, since triplets of the form xy|z with x, z ∈ S, y /∈ S, are not
consistent with such a network. Furthermore, each maximal SN-set is equal to
the union of leaves below one or more highest cut-arcs [11].

3 Constructing a Level-1 Network with a Minimum
Number of Reticulations

Given a dense set of triplets T , the problem DMRL-k asks for a level-k network
consistent with T with a minimum number of reticulations. We propose the
following dynamic programming algorithm for solving DMRL-1. The algorithm
considers all SN-sets from small to large and computes an optimal solution NS

for each SN-set S, based on the optimal solutions for included SN-sets. The
algorithm considers both the case where the root of NS is contained in a cycle
and the case where there are two cut-arcs leaving the root. In the latter case
there are two SN-sets S1 and S2 that are maximal under the restriction that they
are a subset of S. If this is the case then the algorithm constructs a candidate
for NS by creating a root connected to the roots of NS1 and NS2 .

The other possibility is that the root of NS is contained in some cycle. For
this case the algorithm tries each SN-set as BHR(NS): the set of leaves below
the highest reticulation. The sets of leaves below other highest cut-arcs can then
be found using the property of optimal level-1 networks outlined in Lemma 1.
Subsequently, an induced set of triplets is computed, where each set of leaves
below a highest cut-arc is replaced by a single meta-leaf. A candidate network
is constructed by computing a simple level-1 network (in O(n3) time [13]) and
replacing each meta-leaf Si by an optimal network NSi for the corresponding
subset of the leaves. The optimal network NS is then the network with a mini-
mum number of reticulations over all candidate networks.

A structured description of the computations is in Algorithm 1. We use f(L′)
to denote the minimum number of reticulations in any level-1 network consistent
with T |L′. In addition, g(L′, S′) denotes the minimum number of reticulations
in any level-1 network consistent with T |L′ with BHR(N) = S′. The algorithm
first computes the optimal number of reticulations. Then a network with this
number of reticulations is constructed using backtracking.
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Algorithm 1. Minimum Amount of Reticulation Level One Network
1: compute the set SN of SN-sets of T
2: for i = 1 . . . n do
3: for each S in SN of cardinality i do
4: for each S′ ∈ SN with S′ ⊂ S do
5: let C contain S′ and all SN-sets that are maximal under the restriction that

they are a subset of S and do not contain S′

6: if T∇C is consistent with a simple level-1 network then
7: g(S,S′) := 1 +

�
X∈C f(X)

8: if there are exactly two SN-sets S1, S2 ∈ SN that are maximal under the
restriction that they are a strict subset of S then

9: g(S, ∅) := f(S1) + f(S2) (C := {S1, S2})
10: f(S) := min g(S,S′) over all computed values of g(S, ·)
11: store the optimal C and the corresponding simple level-1 network
12: construct an optimal network by backtracking.

The following property of optimal level-1 networks shows that the algorithm
computes an optimal solution.

Lemma 1. If there exists a solution to DMRL-1, then there also exists an op-
timal solution N , where the sets of leaves below highest cut-arcs equal either (i)
BHR(N) and the SN-sets that are maximal under the restriction that they do
not contain BHR(N), or (ii) the maximal SN-sets (if BHR(N) = ∅).

Proof. If BHR(N) = ∅ then there are two highest cut-arcs and the sets below
them are the maximal SN-sets. Otherwise, the root of N is part of a cycle.

Claim (1). Each maximal SN-set S equals either the set of leaves below a high-
est cut-arc or the set of leaves below a directed path P ending in the highest
reticulation or in one of its parents.

Proof. If S equals the set of leaves below a single highest cut-arc then we are
done. From now on assume that S equals the set of leaves below different highest
cut-arcs. First observe that no two leaves in S have the root as their lowest
common ancestor, since this would imply that all leaves are in S, because S is
an SN-set. From this follows that all leaves in S are below some directed path
P on the highest cycle. First assume that not all leaves reachable from vertices
in P are in S. Then there are leaves x, z, y reachable respectively from vertices
p1, p2, p3 that are on P (in this order) with x, y ∈ S and z /∈ S. But this leads
to a contradiction because then the triplet xy|z is not consistent with N , whilst
yz|x and xz|y cannot be in T since S is an SN-set. It remains to prove that P
ends in either the highest reticulation or in one of its parents. Assume that this
is not true, then there exists a vertex v on (the interior of) a path from the last
vertex of P to the highest reticulation. Consider some leaf z /∈ S reachable from
v and some leaves x, y ∈ S below different highest cut-arcs. Then this again
leads to a contradiction because xy|z is not consistent with N . �




478 L. van Iersel and S. Kelk

First suppose that some maximal SN-set S equals the set of leaves below a
directed path P ending in a parent of the highest reticulation. In this case we
can modify the network by putting S below a single cut-arc, without increasing
the number of reticulations. To be precise, if p and p′ are the first and last
vertex of P respectively and r is the highest reticulation, then we subdivide the
arc entering p by a new vertex v, add a new arc (v, r), remove the arc (p′, r)
and suppress the resulting vertex with indegree and outdegree both equal to
one. It is not too difficult to see that the resulting network is still consistent
with T .

BHR(N) BHR(N)

S’ S’

Fig. 2. Visualisation of the proof of Lemma 1. From the maximal SN-sets (encircled
in the network on the left) to the sets of leaves below highest cut-arcs (encircled in the
network on the right). Remember that all arcs are directed downwards.

Now suppose that some maximal SN-set S equals the set of leaves below a
directed path P ending in the highest reticulation. The sets of leaves below
highest cut-arcs are all SN-sets (as is always the case). One of them is equal to
BHR(N). If any of the others is contained in a nontrivial SN-set S′ that does not
contain BHR(N), then the procedure from the previous paragraph can again
be used to put S′ below a highest cut-arc. In the resulting network the sets of
leaves below highest cut-arcs are indeed equal to BHR(N) and the SN-sets that
are maximal under the restriction that they do not contain BHR(N).

An example is given in Fig. 2. In the network on the left one maximal SN-set
equals the set of leaves below the grey path. In the middle is the same network,
but now we encircled BHR(N) and the SN-sets that are maximal under the
restriction that they do not contain BHR(N). There is still an SN-set (S′)
below a path on the cycle (again in grey). However, in this case the network can
be modified by putting S′ below a single cut-arc, without increasing the number
of reticulations. This gives the network to the right, where the sets of leaves
below highest cut-arcs are indeed equal to BHR(N) and the SN-sets that are
maximal under the restriction that they do not contain BHR(N). �


Theorem 1. Given a dense set of triplets T , algorithm MARLON constructs
a level-1 network that is consistent with T (if such a network exists) and has a
minimum number of reticulations in O(n5) time.
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4 Constructing a Level-2 Network with a Minimum
Number of Reticulations

This section extends the approach from Sect. 3 to level-2 networks. We describe
how one can find a level-2 network consistent with a dense input triplet set
containing a minimum number of reticulations, or decide that such a network
does not exist. Details have been omitted due to space constraints.

The general structure of the algorithm is the same as in the level-1 case. We
loop though all SN-sets S from small to large and compute an optimal solution
NS for that SN-set, based on previously computed optimal solutions for included
SN-sets. For each SN-set we still consider, like in the level-1 case, the possibility
that there are two cut-arcs leaving the root of NS and the possibility that this
root is in a biconnected component with one reticulation. However, now we also
consider a third possibility, that the root of NS is in a biconnected component
containing two reticulations.

In the construction of biconnected components with two reticulations, we use
the notion of “non-cycle-reachable”-arc, or n.c.r.-arc for short, introduced in [12].
We call an arc a = (u, v) an n.c.r.-arc if v is not reachable from any vertex in a
cycle. These n.c.r.-arcs will be used to combine networks without increasing the
network level. In addition, we use the notion highest biconnected component to
denote the biconnected component containing the root.

Fig. 3. The four possible structures of a biconnected component containing two
reticulations

To get an intuition of the approach, consider the four possible structures of a
biconnected component containing two reticulations displayed in Fig. 3. Let X ,
Y , Z and Q be the sets of leaves indicated in the graph that displays the form
of the highest biconnected component of NS. Observe that after removing Z in
each case X , Y and Q become a set of leaves below a cut-arc and hence an SN-
set (w.r.t T |(S \Z)). In cases 2a, 2b and 2c the highest biconnected component
becomes a cycle, Q the set of leaves below the highest reticulation and X and
Y sets of leaves below highest cut-arcs. We will first describe the approach for
these cases and show later how a similar technique is possible for case 2d.

Our algorithm loops through all SN-sets that are a subset of S and will
hence at some iteration consider the SN-set Z. The algorithm removes the
set Z and computes the SN-sets of T |(S \ Z). The sets of leaves below high-
est cut-arcs (in some optimal solution, if one exists) are now equal to X,Y,Q
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Fig. 4. Example of the construction of network N from N1, N2 and N3

and the SN-sets that are maximal under the restriction that they do not con-
tain X , Y or Q (by the same arguments as in the proof of Lemma 1). There-
fore, the algorithm tries each possible SN-set for X , Y and Q and in one of
these iterations it will correctly determine the sets of leaves below highest cut-
arcs. Then the algorithm computes the induced set of triplets, where each set
of leaves below a highest cut-arc is replaced by a single meta-leaf. All sim-
ple level-1 networks consistent with this induced set of triplets are obtained
by the algorithm in [13]. Our algorithm loops through all these networks and
does the following for each simple level-1 network N1. Each meta-leaf V , not
equal to X or Y , is replaced by an optimal network NV , which has been
computed in a previous iteration. To include leaves in Z, X and Y , we com-
pute an optimal network N2 consistent with T |(X ∪ Z) and an optimal net-
work N3 consistent with T |(Y ∪ Z) where in both networks Z is the set of
leaves below an n.c.r.-arc. Then we combine these three networks into a sin-
gle network like in Fig. 4. A new reticulation is created and Z becomes the
set of leaves below this reticulation. Finally, we check for each constructed net-
work whether it is consistent with T |S. The network with the minimum num-
ber of reticulations over all such networks is the optimal solution NS for this
SN-set.

Now consider case 2d. Suppose we remove Z and replace X , Y (=Q) and
each SN-set of T |(S \ Z) that is maximal under the restriction that it does not
contain X or Y by a single leaf. Then the resulting network consists of a path
ending in a simple level-1 network, with X a child of the root and Q the child of
the reticulation; and each vertex of the path has a leaf as child. Such a network
can easily be constructed and subsequently one can use the same approach as in
cases 2a, 2b and 2c.

Theorem 2. Given a dense triplet set T , Algorithm MARLTN constructs a
level-2 network consistent with T (if such a network exists) that has a minimum
number of reticulations in O(n9) time.
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5 Constructing Networks Consistent with Precisely the
Input Triplet Set

In this section we consider the problem MIN-REFLECT-k. Given a triplet set T ,
this problem asks for a level-k network N that is consistent with precisely those
triplets in T (if such a network exists) and amongst all such solutions minimises
both the level and number of reticulations used. We will show that this problem
is polynomial-time solvable for each fixed k.

Given a network N let T (N) denote the set of all triplets consistent with N .
We say that a network N reflects a triplet set T if T (N) = T . If, for a triplet
set T , there exists a network N that reflects it, we say that T is reflective. Note
that, if N reflects T , that N is in general not uniquely defined by T . There are,
for example, several distinct simple level-2 networks that reflect the triplet set
{xy|z, xz|y, zy|x}.

Problem: MIN-REFLECT-k
Input: set of triplets T .
Output: level-k network N that reflects T (if such a network exists) and, ranging
over all such networks, minimises both the level and the number of reticulations.

This problem might at first glance seem strangely formulated because, in gen-
eral, minimising level and minimising number of reticulations are two distinct
optimisation criteria. However, in the case of reflectivity it turns out that any
solution that minimises the number of reticulations also minimises level.

Theorem 3. Given a dense set of triplets T , it is possible to construct all simple
level-k networks consistent with T in time O(|T |k+1).

We note that it is already known how to generate all simple level-1 networks
consistent with T in time O(|T |) [13] and all simple level-2 networks consistent
with T in time O(|T | 83 ) [11].

Lemma 2. Let N be any simple network. Then all the nontrivial SN-sets of
T (N) are singletons.

The high-level idea behind solving MIN-REFLECT-k is that, if a network N
reflects a triplet set T , the sets of leaves below highest cut-arcs are in 1:1 cor-
relation with the maximal SN-sets of T . This is a consequence of Lemma 2.
We thus use the maximal SN-sets to induce a new triplet set T ′, which must
be reflected by some simple level-� network, with � ≤ k. Using Theorem 3 we
can easily find such a (minimum level) simple network: if we can generate all
networks consistent with a triplet set T , it is easy to identify which of those
reflect T . This leads ultimately to the algorithm MINPITS (MINimum network
consistent with Precisely the Input Triplet Set). The key to understanding why
MINPITS produces solutions that simultaneously minimise level and the num-
ber of reticulations, lies in the fact that in any two networks N and N ′ that
reflect T , the leaf partition induced by the highest cut-arcs of N , and the leaf
partition induced by the highest cut-arcs of N ′, are identical. It follows that the
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only way in which N and N ′ can differ from each other, lies in the choice of
simple network at each recursive step of the algorithm. But we always choose
the simple network of minimum level, and it is not too difficult to see that this
leads to the global minimisation of both level and the number of reticulations.
Proofs and algorithms have been omitted due to space restraints.

Theorem 4. Problem MIN-REFLECT-k can be solved in time O(|T |k+1), for
any fixed k.

For k = 1, 2 we can actually do slightly better: running time O(|T |) and O(|T | 83 )
respectively.

6 Conclusions and Open Questions

In this article we have shown that, for level 1 and 2, constructing a phyloge-
netic network consistent with a dense set of triplets that minimises the number
of reticulations, is polynomial-time solvable. We feel that, given the widespread
use of the principle of parsimony within phylogenetics, this is an important devel-
opment, and testing on simulated data has yielded promising results. However,
the complexity of finding a feasible solution for level-3 and higher, let alone a
minimum solution, remains unknown, and this obviously requires attention. Per-
haps the feasibility and minimisation variants diverge in complexity for higher
k. It would be fascinating to explore this.

We have also shown, for every fixed k, how to generate in polynomial time
all simple level-k networks consistent with a dense set of triplets. This could be
an important step towards determining whether the aforementioned feasibility
question is tractable for every fixed k. We have used this algorithm to show how
MIN-REFLECT-k is polynomial-time solvable for fixed k. Clearly the demand
that a set of triplets is exactly equal to the set of triplets in some network is an
extremely strong restriction on the input. However, for small networks and high
accuracy triplets such an assumption might indeed be valid, and thus of practical
use. In any case, the concept of reflection is likely to have a role in future work
on “support” for edges in phylogenetic networks generated via triplets. Also, the
complexity of some fundamental questions like “does any network N reflect T ?”
remains unclear.
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Abstract. A set of phylogenetic trees with overlapping leaf sets is con-
sistent if it can be merged without conflicts into a supertree. In this
paper, we study the polynomial-time approximability of two related
optimization problems called the maximum rooted triplets consistency
problem (MaxRTC) and the minimum rooted triplets inconsistency prob-
lem (MinRTI) in which the input is a set R of rooted triplets, and where
the objectives are to find a largest cardinality subset of R which is con-
sistent and a smallest cardinality subset of R whose removal from R
results in a consistent set, respectively. We first show that a simple
modification to Wu’s Best-Pair-Merge-First heuristic [25] results in a
bottom-up-based 3-approximation for MaxRTC. We then demonstrate
how any approximation algorithm for MinRTI could be used to approx-
imate MaxRTC, and thus obtain the first polynomial-time approxima-
tion algorithm for MaxRTC with approximation ratio smaller than 3.
Next, we prove that for a set of rooted triplets generated under a uniform
random model, the maximum fraction of triplets which can be consistent
with any tree is approximately one third, and then provide a determin-
istic construction of a triplet set having a similar property which is sub-
sequently used to prove that both MaxRTC and MinRTI are NP-hard
even if restricted to minimally dense instances. Finally, we prove that
MinRTI cannot be approximated within a ratio of Ω(log n) in polyno-
mial time, unless P = NP.

1 Introduction

A supertree method is a method for merging an input collection of phylogenetic
trees on overlapping sets of taxa into a single phylogenetic tree called a supertree.
An input collection of trees might contain contradictory branching structure,
e.g., due to errors in experimental data or because the data originates from
different genes, so ideally, a supertree method should merge the input trees

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 484–495, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



New Results on Optimizing Rooted Triplets Consistency 485

while keeping as much of the branching information as possible. In this paper,
we investigate the computational complexity of some combinatorial problems at
the core of rooted supertree methods which involve rooted triplets.

1.1 Problem Definitions and Notation

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which
every internal node has at least two children, and a rooted triplet is a binary
phylogenetic tree with exactly three leaves. From here on, each leaf in a phy-
logenetic tree is identified with its label. The unique rooted triplet on leaf set
{x, y, z} where the lowest common ancestor (lca) of x and y is a proper descen-
dant of the lca of x and z (or equivalently, where the lca of x and y is a proper
descendant of the lca of y and z) is denoted by xy|z. If xy|z is an embedded
subtree of a tree T , i.e., if the lca of x and y is a proper descendant of the lca
of x and z in T , then xy|z and T are said to be consistent with each other;
otherwise, xy|z and T are inconsistent. A set R of rooted triplets is consistent if
there exists a phylogenetic tree T such that every xy|z ∈ R is consistent with T .
The set of all rooted triplets consistent with a tree T is denoted by rt(T ).

Let L be a set of leaf labels. A set R of rooted triplets over L is called dense
if it contains at least one rooted triplet labeled by L′ for every subset L′ of L
of cardinality three, and simple if it contains at most one rooted triplet for each
such subset. R is minimally dense if it is both dense and simple.

Now, we define the three problems RTC, MaxRTC, and MinRTI. For any
phylogenetic tree T over a leaf set L and a set R of rooted triplets over L, define
C(R, T ) = |R∩rt(T )| and I(R, T ) = |R\rt(T )| (the number of rooted triplets in
R which are consistent and inconsistent with T , respectively). The rooted triplets
consistency problem (RTC) is: Given a set R of rooted triplets with leaf set L,
output a phylogenetic tree leaf-labeled by L which is consistent with every rooted
triplet in R, if one exists; otherwise, output null. The maximum rooted triplets
consistency problem (MaxRTC) is: Given a set R of rooted triplets with leaf
set L, output a phylogenetic tree T leaf-labeled by L which maximizes C(R, T ).
The minimum rooted triplets inconsistency problem (MinRTI) is: Given a set R
of rooted triplets with leaf set L, output a phylogenetic tree T leaf-labeled by L
which minimizes I(R, T ). The optima for MaxRTC and MinRTI on an instance
R are denoted by C(R) and I(R), respectively.

An algorithm A for MaxRTC is an α-approximation algorithm (and the
approximation ratio of A is at most α) if, for every input R, the tree output
by A is consistent with at least C(R)

α of the rooted triplets in R. Analogously, an
algorithm B for MinRTI is a β-approximation algorithm (and the approximation
ratio of B is at most β) if, for every input R, the tree output by B is inconsistent
with at most I(R) · β of the rooted triplets in R. An exact algorithm for either
of MaxRTC or MinRTI automatically yields an exact algorithm for the other,
but approximation ratios are not preserved, as will be demonstrated in Section 6.

Denote n = |L| and k = |R| in the problem definitions above. (Thus, k =
O(n3).) Consider a set L and a total order > on L. For any non-negative integer q,
let [L]q be the set of tuples (x1, ..., xq) ∈ Lq with x1 > ... > xq, and let 〈L〉q be
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the set of tuples (x1, ..., xq) ∈ Lq having pairwise distinct coordinates. We will
alternatively view a simple triplet setR on L as a partial function R : 〈L〉3 → Z3
such that for each distinct x0, x1, x2 ∈ L, it holds that R(x0, x1, x2) = i if and
only if xi+1xi+2|xi ∈ R. Note that R is fully specified by its restriction to [L]3.

1.2 New Results and Organization of the Paper

We first give a survey of existing results in Section 2. Then, in Section 3, we prove
that a simple modification to Wu’s Best-Pair-Merge-First heuristic [25] turns
it into an approximation algorithm for MaxRTC with approximation ratio at
most 3. In Section 4, we show how any approximation algorithm for MinRTI

could be employed to approximate MaxRTC, and use this result to obtain the
first polynomial-time approximation algorithm for MaxRTC with approxima-
tion ratio smaller than 3. In Section 5, we show that for a set of rooted triplets
generated under a uniform random model, the maximum fraction of triplets
which can be consistent with any tree is approximately 1

3 , and provide a deter-
ministic construction of a triplet set having a similar property. Section 6 proves
that MaxRTC and MinRTI are NP-hard even if restricted to minimally dense
instances, which is a strengthening of the result in [14]. Section 6 also proves
that (unrestricted) MinRTI cannot be approximated within a ratio of Ω(log n)
in polynomial time, unless P = NP. Finally, Section 7 discusses open problems.

2 Previous Results

This section lists known results concerning the computational complexity of
RTC and MaxRTC. To our knowledge, MinRTI has not been studied before.

RTC: Aho et al. [1] introduced RTC and gave a recursive top-down O(kn)-time
algorithm for the problem. It uses a so-called auxiliary graph, whose edges are
defined by R, to partition the current leaves into blocks in such a way that each
block consists of all leaves which are in one subtree of the current root, and then
recurses on each block1. Henzinger et al. [11] reduced the algorithm’s complexity
to min{O(n + kn1/2), O(k + n2 logn)} time and O(n + k log3 n) expected time
by employing dynamic data structures for keeping track of the connected com-
ponents in the auxiliary graph under batches of edge deletions. By replacing the
dynamic graph connectivity data structures with newer ones, such as the data
structure by Holm et al. [12], the running time of the algorithm of Aho et al. can
immediately be further improved to min{O(n + k log2 n), O(k + n2 logn)} [17].

Hardness of MaxRTC: MaxRTC was proved to be NP-hard independently
in [4], [15], and [25]. [5] recently observed that the reductions in [4] and [25] are in

1 For any L′ ⊆ L, the auxiliary graph G(R, L′) is the undirected graph G(R, L′) =
(L′, E), where E contains edge {x, y} if and only if there is some xy|z in R with
x, y, z ∈ L′. Then, each connected component of G(R, L′) induces a block of L′.
During execution, if any auxiliary graph having more than one vertex consists of
just one connected component then the algorithm returns null and terminates.



New Results on Optimizing Rooted Triplets Consistency 487

fact L-reductions from an APX-hard problem, and hence that the general (non-
dense) case of MaxRTC is APX-hard. [14] modified the reductions of [4] and [25]
to prove that MaxRTC remains NP-hard even if restricted to dense inputs.

Exact algorithm for MaxRTC: Wu [25] gave an exact, dynamic-programming
algorithm for MaxRTC. It runs in O((k + n2)3n) time and O(2n) space.

Approximation algorithms for MaxRTC: The first polynomial-time appr-
oximation algorithms for MaxRTC, henceforth referred to as One-Leaf-Split
and Min-Cut-Split, were proposed by Ga̧sieniec et al. in [9]. Both algorithms
are greedy, top-down algorithms. One-Leaf-Split achieves a constant ratio ap-
proximation of MaxRTC; more precisely, it runs in O((k + n) logn) time and
constructs a caterpillar tree which is guaranteed to be consistent with at least one
third of the input rooted triplets. On the other hand, Min-Cut-Split proceeds
exactly as the algorithm of Aho et al. [1] with two modifications: (1) the auxiliary
graphs are edge-weighed; and (2) if an auxiliary graph has more than one vertex
but only one connected component then instead of giving up, Min-Cut-Split
will find a minimum weight edge cut in the auxiliary graph, delete those edges,
and continue2. Since deleting an edge from an auxiliary graph corresponds to
deleting one or more rooted triplets from R and since there are at most n − 2
recursion levels containing non-trivial auxiliary graphs in the algorithm of Aho
et al., it follows that if W denotes the total weight of the input rooted triplets
and t the minimum total weight of triplets to remove to achieve consistency
then Min-Cut-Split constructs a tree which is consistent with a subset of R
whose total weight is ≥ W − (n − 2)t. This also implies that Min-Cut-Split
yields an (n− 2)-approximation algorithm for MinRTI. Min-Cut-Split can be
implemented to run in min{O(kn2 + n3 logn), O(n4)} time.

Snir and Rao [24] presented a greedy, top-down, polynomial-time heuristic for
MaxRTC called MXC which resembles Min-Cut-Split. The difference is that MXC
augments the auxiliary graphs with extra edges, and whenever the algorithm of
Aho et al. is stuck with a single connected component, instead of taking a min-
imum weight edge cut, MXC tries to find a cut that maximizes the ratio between
the extra edges and the ordinary edges. Although the worst-case approximation
ratio of MXC is unknown, it appears to perform very well on real data [24].

Wu [25] gave a greedy, bottom-up, polynomial-time heuristic for MaxRTC

named Best-Pair-Merge-First which is structurally similar to the well-known
UPGMA/WPGMA and Neighbor-Joining methods, described in detail in, e.g.,
[7]. It starts with singleton sets, each containing a single leaf label, and repeatedly
merges two sets until all leaf labels are in the same set; whenever two sets A
and B are merged, a new internal node is created that represents the merged set
and whose two children are the (already existing) nodes representing A and B.
A special scoring function determines which pair of sets to merge at each step.
Best-Pair-Merge-First does the above six times (using six different scoring

2 Semple and Steel [23] later independently developed a heuristic for merging a set
of phylogenetic trees with overlapping leaf sets that uses a very similar idea, and
Page [22] further modified the heuristic of Semple and Steel.
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functions) and returns the best solution among those six. No theoretical analysis
of the worst-case performance of Best-Pair-Merge-First was provided in [25],
but Wu demonstrated by extensive simulations that this heuristic performs well
in practice (source code in C is available from the author’s webpage).

A PTAS for MaxRTC restricted to dense inputs, based on the work of [20]
for the analogous unrooted (and more difficult) problem, was outlined in [16].

Miscellaneous related results: Other problems related to RTC/MaxRTC

have been studied in the literature. Ng and Wormald [21] showed how to ef-
ficiently construct all solutions to RTC for any input set of rooted triplets.
Ga̧sieniec et al. [8] considered RTC and MaxRTC for ordered trees. He et al. [10]
gave algorithms for a variant of RTC/MaxRTC called the forbidden rooted
triplets consistency problem in which the input consists of a “good” set and a
“bad” set of rooted triplets, and the objective is to construct a tree which is
consistent with all of the rooted triplets in the good set and none of the rooted
triplets in the bad set. Recently, extensions of RTC/MaxRTC to phylogenetic
networks (generalizations of phylogenetic trees in which certain nodes are al-
lowed to have more than one parent) have been studied in [5,13,14,18,19].

3 A Bottom-Up 3-Approximation Algorithm for
MaxRTC

Here, we modify Wu’s Best-Pair-Merge-Firstheuristic [25] to achieve an appr-
oximation ratio of at most 3. Although MaxRTC already admits a polynomial-
time 3-approximation by One-Leaf-Split (see Section 2), our new result is

Algorithm Modified-BPMF

Input: A set R of rooted triplets on a leaf set L = {�1, �2, . . . , �n}.
Output: A tree with leaf set L consistent with at least one third of the rooted
triplets in R.

1. Construct the set S = {S1, S2, . . . , Sn}, where each Si is a tree consisting of
a leaf labeled by �i.

2. Repeat n − 1 times:
(a) For every Si, Sj ∈ S , reset score(Si, Sj) := 0.
(b) For every xy|z ∈ R such that x ∈ Si, y ∈ Sj , and z ∈ Sk for three different

trees Si, Sj , Sk, update score as follows:
score(Si, Sj) := score(Si, Sj) + 2;
score(Si, Sk) := score(Si, Sk) − 1;
score(Sj , Sk) := score(Sj , Sk) − 1.

(c) Select Si, Sj ∈ S such that score(Si, Sj) is maximum.
(d) Create a tree Sk by connecting a new root node to the roots of Si and Sj .
(e) S := S ∪ {Sk} \ {Si, Sj}.

3. Return the tree in S .

Fig. 1. Algorithm Modified-BPMF
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significant because Best-Pair-Merge-First outperforms One-Leaf-Split in
practice [25] and Wu left it as an open problem to derive its approximation ra-
tio. Also, Best-Pair-Merge-First uses a bottom-up approach while One-Leaf-
Split works top-down, and future work may try to incorporate both approaches.

The new algorithm is called Modified-BPMF and is listed in Fig. 1. Intuitively,
in each iteration it looks for two currently existing trees Si, Sj whose leaves
participate in many rooted triplets of the form xy|z where x belongs to Si,
y belongs to Sj , and z belongs to neither Si nor Sj , and then merges Si and Sj .

We now analyze the approximation ratio of Modified-BPMF. Let T be the
final tree returned in Step 3. For any node u of T , let L[u] be the set of leaf
labels in the subtree of T rooted at u. For each internal node u in T , denote
the two children of u by u1 and u2, and let R(u) be the subset of R defined
by R(u) = {xy|z ∈ R : ∃a, b, c ∈ {x, y, z} such that a ∈ L[u1], b ∈ L[u2], and
c 
∈ L[u1] ∪ L[u2]}. Observe that for any two internal nodes u and v, R(u) and
R(v) are disjoint. Also, each xy|z ∈ R belongs to R(u) for some internal node u.
Thus, the internal nodes of T partition R into disjoint subsets. For each internal
node u of T , further partition the set R(u) into two disjoint subsets R(u)′

and R(u)′′ where R(u)′ are the rooted triplets in R(u) which are consistent
with T and R(u)′′ = R(u) \ R(u)′.

Lemma 1. |R(u)′| ≥ 1
3 · |R(u)| for each internal node u of T .

Proof. Consider the iteration of Modified-BPMF(R) in which the node u is cre-
ated as a new root node for two trees Si and Sj selected in Step 2c. Clearly,
score(Si, Sj) ≥ 0. Moreover, by the definition of score in Steps 2a and 2b
and the construction of T , we have score(Si, Sj) = 2 · |R(u)′| − |R(u)′′|. Since
|R(u)′′| = |R(u)| − |R(u)′|, we obtain |R(u)′| ≥ 1

3 · |R(u)|. �

Theorem 1. For any set R of rooted triplets, Modified-BPMF(R) returns a tree
consistent with at least one third of the rooted triplets in R.

Proof. Follows directly from Lemma 1 and the fact that R is partitioned into
disjoint subsets by the internal nodes of T . �

Modified-BPMF can be implemented to run in O(k+n3) time by using O(k+n2)
time for preprocessing and then spending O(n2) time in each iteration to find the
best pair of trees to merge and O(n2 + |R(u)|) time in each iteration to update
all relevant scores. This is faster than One-Leaf-Split for k = ω(n3/ logn).

4 Approximating MaxRTC by Using MinRTI

In this section, we investigate how approximation algorithms for MinRTI can
be used to approximate MaxRTC.

Theorem 2. Suppose B is a β-approximation algorithm for MinRTI for some
β > 1. Let A′ be the approximation algorithm for MaxRTC which returns the
best of the two approximate solutions obtained by: (1) applying Modified-BPMF
to the input R; and (2) applying B to R and taking the complement relative
to R. Then the approximation ratio of algorithm A′ is at most (3− 2

β ).
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Proof. Let a′(R) be the number of rooted triplets in R consistent with the tree
returned by A′. Since A′ returns the best of the two approximate solutions
obtained by (1) and (2) above, a′(R) ≥ 1

3 · k (according to Theorem 1) and
a′(R) ≥ k − β · (k − C(R)) always hold. There are two possibilities:

• k > 3β
3β−2 · C(R) : Then, a′(R) ≥ 1

3 · k > 1
3 ·

3β
3β−2 · C(R) = 1

3− 2
β

· C(R).

• k ≤ 3β
3β−2 ·C(R) : In this case, a′(R) ≥ k−β ·(k−C(R)) = β ·C(R)−(β−

1)·k ≥ β ·C(R)−(β−1)· 3β
3β−2 ·C(R) = (β− (β−1)·3β

3β−2 )·C(R) = 1
3− 2

β

·C(R).

In both cases, we have a′(R) ≥ 1
3− 2

β

· C(R). �


By plugging in Min-Cut-Split (see Section 2) into Theorem 2, one obtains:

Corollary 1. MaxRTC admits a polynomial-time (3− 2
n−2 )-approximation.

5 Random and Pseudorandom Triplet Sets

This section examines properties of minimally dense sets of triplets constructed
in a random or pseudorandom fashion. We first show that for a triplet set, gener-
ated under a uniform random model, the maximum fraction of triplets that can
be consistent is approximately one third. We then adapt a construction from [2]
to obtain a deterministic construction of a triplet set having a similar property.

Let L be a set of n elements. Consider a minimally dense set R of rooted
triplets on L generated by the following random model: for each t ∈ [L]3, R(t)
is a uniformly chosen random element of Z3. The following theorem shows that
the maximum fraction of triplets which can be consistent is approximately 1/3.

Theorem 3. Let µ = 1
3

(
n
3

)
. Let δ(n) be any function such that δ(n) = Ω( log n

n ).
With high probability: C(R) < (1 + δ(n))µ.

Proof. Fix δ. Given a binary tree T on L, we compute the probability that
C(R, T ) deviates from its expectation by a factor 1+δ. Given a triplet t ∈ rt(T ),
denote by χ(R, t) the indicator variable which equals 1 if t ∈ R and 0 oth-
erwise. Observe that C(R, T ) is a sum of i.i.d. random variables: C(R, T ) =∑

t∈rt(T ) χ(R, t). Since E[C(R, T )] = µ, a straightforward application of Cher-
noff bounds yields: P[C(R, T ) > (1 + δ)µ] ≤ exp(−cµδ2) for some constant c.

Now, apply union bounds to obtain: P[C(R) > (1 + δ)µ] ≤
∑

T P[C(R, T ) >

(1 + δ)µ] ≤ 2n log nexp(−cµδ2). Observe that if δ = Ω( log n
n ) then cµδ2 =

Ω(n log2 n), hence the above expression tends to 0 as n tends to infinity. �


In the rest of this section, we describe a deterministic construction of a minimally
dense random-like triplet set. It uses the following algebraic construction which
generalizes the construction of [2] by introducing an additive parameter q. The
construction provides an s-coloring of the hyperedges of the complete r-uniform
hypergraph, with the pseudorandom properties stated in Lemma 2 below.
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Definition 1. Consider integers r, s > 1, a prime p with s | p−1, and an element
q ∈ Zp. Let g be a generator of Z∗

p, let H be the subgroup of Z∗
p generated by gs,

and for each i ∈ [s] let Hi be the coset Hgi.
For an element j ∈ Z∗

p, define [j]sp = i if j ∈ Hi, and define [0]sp = 0. Define
φr,s

p,q : Zr
p → [s] so that for each j = (j1, ..., jr) ∈ Zr

p, φ
r,s
p,q(j) = [j1 + ...+ jr + q]sp.

Furthermore, for any set A ⊂ Zr
p, and j ∈ [s], write: nj(A) = |{i ∈ A : φr,s

p,q(i) =
j}|. The following lemma from [2] states that if A arises from a cartesian product
and if |A| is large enough, then the fraction of hyperedges of A which have color
j ∈ [s] is approximately 1/s.

Lemma 2 ([2]). Let A1, ..., Ar be subsets of Zp, and let A = {i ∈ [Zp]r : ij ∈
Aj , j = 1...r}. Then for all j ∈ [s], |nj(A)−|A|/s| ≤ cr|A|1/2(log |A|)r−1p(r−1)/2

for some global cr > 0 that depends only on r.

We apply the construction of Definition 1 with r = s = 3 to obtain a minimally
dense triplet set Rp on Zp with random-like properties. More precisely, we de-
fine Rp so that for each distinct x, y, z ∈ Zp, Rp(x, y, z) = φ3,3

p,0(x, y, z). The
next theorem shows that Rp is random-like: every binary tree is consistent with
approximately one third of the triplets in Rp. The proof relies on Lemma 2.

Theorem 4. For any binary tree T on Zp, it holds that |C(Rp, T ) − 1
3

(
p
3

)
| ≤

cp5/2 log p for some constant c.

Proof. Fix z ∈ Zp. Let Lz,1, ..., Lz,m be the clusters hanging along the path in
T from z to the root; these sets form a partition of Zp\{z}. For each i ∈ [m], let
nz,i be the number of triplets of Rp ∩ rt(T ) of the form xy|z with x, y ∈ Lz,i.
We then have: C(Rp, T ) =

∑
z∈Zp

∑
i nz,i.

Fix i ∈ [m], and let Az,i = [Lz,i]2. We will show that |nz,i − |Az,i|/3| ≤
cp3/2 log p. Define the sets L

(1)
z,i = {x ∈ Lz,i : x < z} and L

(2)
z,i = {x ∈ Lz,i :

x > z}, and partition Az,i into three sets A
(1)
z,i = [L(1)

z,i ]
2, A

(2)
z,i = L

(2)
z,i × L

(1)
z,i ,

A
(3)
z,i = [L(2)

z,i ]
2. Next, define f : [Zp\{z}]2 → Z3 by setting f(x, y) = φ2,3

p,z(x, y).
Given A ⊂ [Zp]2, j ∈ Z3, we set n′

j(A) = |{i ∈ A : f(i) = j}|. We then have:

nz,i = n′
1(A

(1)
z,i ) + n′

2(A
(2)
z,i ) + n′

3(A
(3)
z,i )

Since f = φ2,3
p,z , Lemma 2 applies and yields the following inequality: for each j ∈

{1, 2, 3}, |n′
j(A

(j)
z,i) − |A

(j)
z,i |/3| ≤ c′|A(j)

z,i |1/2(log |A(j)
z,i |)p1/2 for some constant c′.

By using the triangle inequality and by summing over index j, we obtain: |nz,i−
|Az,i|/3| ≤ c|Az,i|1/2(log |Az,i|)p1/2 for some constant c. Let S =

∑
z∈Zp

∑
i |Az,i|

and S′ =
∑

z∈Zp

∑
i |Az,i|1/2. By summing over indices z, i in the previous

inequality, we obtain |C(Rp, T )−S/3| ≤ cS′p1/2 log p. We conclude by observing
that S =

(
p
3

)
and that S′ ≤ p2 (this last inequality following from the fact that

for fixed z,
∑

i |Az,i|1/2 ≤
∑

i |Lz,i| = p− 1). �


Corollary 2. |C(Rp)− 1
3

(
p
3

)
| ≤ cp5/2 log p.
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6 Hardness Results

6.1 Minimally Dense Inputs

Our first hardness result concerns the computational complexity of MaxRTC

and MinRTI for minimally dense inputs. It is based on the deterministic con-
struction of a minimally dense random-like triplet set given in Section 5 and is
a non-trivial strengthening of the NP-hardness proof for dense inputs in [14].

Theorem 5. MaxRTC restricted to minimally dense instances is NP-hard.

Proof. We reduce the general (non-dense) case of MaxRTC (which is already
known to be NP-hard [4,15,25]) to the minimally dense case, following an ap-
proach inspired by [2,3]. Starting with an arbitrary instance, the approach con-
sists in replicating each label p times (which is called inflating the instance),
and making the resulting instance dense by adding a pseudorandom triplet set.
Formally, the reduction proceeds as follows. Consider a triplet set R on L given
as an instance of MaxRTC. Let n = |L|, let p be a prime number, and let
L′ = {xi : x ∈ L, i ∈ Zp}. Define the minimally dense triplet set R′ on L′ by:

1. if R(x, y, z) is defined then R′(xi, yj , zk) = R(x, y, z);
2. if R(x, y, z) is undefined and i, j, k distinct then R′(xi, yj , zk) = Rp(i, j, k),

where Rp is the minimally dense triplet set defined in Section 5;
3. otherwise, R′(xi, yj, zk) is an arbitrary element of Z3.

For i ∈ {1, 2, 3}, let R′
i be the triplet set defined by condition i., so that R′ =

R′
1 ∪ R′

2 ∪ R′
3. Observe that R′ is obtained by inflating R, resulting in R′

1,
and completing the instance by a pseudorandom triplet set R′

2 and an arbitrary
triplet setR′

3. The correctness of the reduction follows from the fact that inflating
the instance multiplies the measure by a factor p3, while completing the triplet
set introduces noise which can be made small by proper choice of p, in such a
way that an optimum for R can be recovered from an optimum for R′. More
precisely, let us introduce the following notation. Let N1 = n, let N2 = n(n−1),
let N3 be the number of triples {x, y, z} such that R(x, y, z) is undefined, and
let N = N1 + 8N2 + 27N3. It can be shown that:

1. C(R′
1) = p3C(R);

2. for each binary tree T on L′, |C(R′
2, T )−N

(
p
3

)
/3| ≤ cNp5/2 log p;

3. for each binary tree T on L′, C(R′
3, T ) ≤ Np2.

where 2. follows from the pseudorandomness of Rp stated in Theorem 4.
It follows that C(R′) is an approximation of C(R1) + Np3/18 = p3C(R) +

Np3/18 within an additive error of cNp5/2 log p, for some constant c. Dividing by
p3/18, we obtain |18C(R′)

p3 −(18C(R)+N)| ≤ c′Np−1/2 log p for some constant c′.
Since N = O(n3), we can choose p polynomially bounded in terms of n such that
the right member is less than 1

2 , implying that � 18C(R′)
p3 � = 18C(R) + N . �


Corollary 3. MaxRTC restricted to minimally dense instances is NP-hard.

Proof. Follows from Theorem 5 and the fact that MinRTI is the supplementary
problem of MaxRTC. �
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6.2 Polynomial-Time Inapproximability of General MinRTI

We now establish a hardness of approximation result for MinRTI in the general
case, namely a logarithmic inapproximability by reduction from Hitting Set.

Theorem 6. MinRTI is not approximable within Ω(log n) unless P = NP.

The proof of this theorem is carried out in two steps. We first consider a weighted
version of MinRTI, called MinRTI-W, defined as follows. Given a label set L,
let T (L) be the set of all possible rooted triplets over L. A weighted triplet set
on L is a function R : T (L) → N, and given a binary tree T on L, we define
I(R, T ) =

∑
t∈T (L)\rt(T )R(t). The MinRTI-W problem takes a weighted triplet

set R on L and seeks a binary tree T on L such that I(R, T ) is minimum.
We give a measure-preserving reduction from Hitting Set to MinRTI-W

(Lemma 3) and a measure-preserving reduction from MinRTI-W to MinRTI

(Lemma 4). The hardness of approximation of MinRTI then follows from [6].
Due to space limitations, the proof of Lemma 3 has been omitted from this

conference version of the paper. Please refer to the full version for a com-
plete proof.

Lemma 3. There exists a measure-preserving reduction from Hitting Set to
MinRTI-W.

Lemma 4. There exists a measure-preserving reduction from MinRTI-W to
MinRTI.

Proof. Given a weighted triplet set R on L, construct an unweighted triplet set
R′ on L′ where the label set L′ is obtained from L by adjoining labels ti for each
t ∈ T (L), 1 ≤ i ≤ R(t), and the triplet set R′ consists of the triplets xti|z, yti|z
for all t = xy|z ∈ T (L), 1 ≤ i ≤ R(t). The next two claims imply that the
reduction is measure-preserving.
Claim 1. Given a binary tree T on L, we can construct in polynomial time a
binary tree T ′ on L′ such that I(R′, T ′) = I(R, T ).
Proof of Claim 1. Let < be an arbitrary total order on L. Starting with T , we
define T ′ as follows: for each triplet t = xy|z ∈ T (L) with x < y, for each
1 ≤ i ≤ R(t), insert ti as a sibling of x. We claim that I(R′, T ′) = I(R, T ).
Indeed, consider t = xy|z ∈ T (L) with x < y, then: (i) if xy|z ∈ rt(T ), then for
each 1 ≤ i ≤ R(t), xti|z, yti|z ∈ rt(T ′), hence the contribution of these triplets
to I(R′, T ′) is 0; (ii) if xz|y ∈ rt(T ), then for each 1 ≤ i ≤ R(t), xti|z ∈ rt(T ′)
but yti|z /∈ rt(T ′), hence the contribution of these triplets to I(R′, T ′) is equal
to R(t); (iii) if yz|x ∈ rt(T ), the reasoning is similar.
Claim 2. Given a binary tree T ′ on L′, we can construct in polynomial time a
binary tree T on L such that I(R, T ) ≤ I(R′, T ′).
Proof of Claim 2. Consider a triplet t = xy|z ∈ T (L)\rt(T ). If there existed an
i such that xti|z ∈ rt(T ′) and yti|z ∈ rt(T ′), we would obtain xy|z ∈ rt(T ′),
which is impossible. It follows that for each 1 ≤ i ≤ R(t), one of xti|z, yti|z is
not in R(t′), and thus the contribution of these triplets to I(R′, T ′) is ≥ R(t);
in other words, setting T = T ′|L gives a tree such that I(R, T ) ≤ I(R′, T ′). �
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7 Concluding Remarks

The following table summarizes what is currently known about the polynomial-
time approximability of MaxRTC and MinRTI:

Negative results Positive results
MaxRTC:
general case APX-hard ([5]) (3 − 2

n−2
)-approx. (Section 4)

dense NP-hard (↓) PTAS ([16])
minimally dense NP-hard (Section 6.1) PTAS (↑)

MinRTI:
general case Inappr. Ω(log n) (Section 6.2) (n − 2)-approx. ([9] + Section 2)
dense NP-hard (↓) (n − 2)-approx. (↑)
minimally dense NP-hard (Section 6.1) (n − 2)-approx. (↑)

Significantly, MaxRTC can be approximated within a constant ratio of 3 in
polynomial time whereas MinRTI cannot be approximated within a ratio of
Ω(log n) in polynomial time, unless P = NP.

The main open problem for MaxRTC is to determine whether it admits a
constant-ratio polynomial-time approximation algorithm whose approximation
ratio is asymptotically better than 3. Since MaxRTC is APX-hard [5], a PTAS
is unlikely. Note that both of the 3-approximation algorithms One-Leaf-Split
from [9] and Modified-BPMF in Section 3 always output a solution consistent
with at least one third of the input rooted triplets and that in this sense, they
are worst-case optimal [9].

We would also like to know: Is it possible to achieve a polynomial-time,
polylogarithmic approximation algorithm for MinRTI? Furthermore, is there
a polynomial-time, constant-ratio approximation for dense inputs? In particu-
lar, how well do the existing approximation algorithms for MaxRTC perform
on MinRTI restricted to dense inputs?
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9. Ga̧sieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing
evolutionary trees. Journal of Combinatorial Optimization 3(2–3), 183–197 (1999)

10. He, Y.J., Huynh, T.N.D., Jansson, J., Sung, W.-K.: Inferring phylogenetic rela-
tionships avoiding forbidden rooted triplets. Journal of Bioinformatics and Com-
putational Biology 4(1), 59–74 (2006)

11. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-
mica 24(1), 1–13 (1999)

12. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. Journal of the ACM 48(4), 723–760 (2001)

13. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Hagen, F., Boekhout, T.: Con-
structing level-2 phylogenetic networks from triplets. In: Vingron, M., Wong, L.
(eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 450–462. Springer, Heidel-
berg (2008)

14. van Iersel, L., Kelk, S., Mnich, M.: Uniqueness, intractability and exact algorithms:
reflections on level-k phylogenetic networks (submitted, 2008)

15. Jansson, J.: On the complexity of inferring rooted evolutionary trees. In: Proc.
of GRACO 2001. Electronic Notes in Discrete Mathematics, vol. 7, pp. 121–125.
Elsevier, Amsterdam (2001)

16. Jansson, J., Lingas, A., Lundell, E.-M.: A triplet approach to approximations of
evolutionary trees. In: Poster H15 presented at RECOMB 2004 (2004)

17. Jansson, J., Ng, J.H.-K., Sadakane, K., Sung, W.-K.: Rooted maximum agreement
supertrees. Algorithmica 43(4), 293–307 (2005)

18. Jansson, J., Nguyen, N.B., Sung, W.-K.: Algorithms for combining rooted triplets
into a galled phylogenetic network. SIAM Journal on Computing 35(5), 1098–1121
(2006)

19. Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic network from a dense set
of rooted triplets. Theoretical Computer Science 363(1), 60–68 (2006)

20. Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for infer-
ring evolutionary trees from quartet topologies and its application. SIAM Journal
on Computing 30(6), 1942–1961 (2001)

21. Ng, M.P., Wormald, N.C.: Reconstruction of rooted trees from subtrees. Discrete
Applied Mathematics 69(1–2), 19–31 (1996)

22. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI
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Abstract. The performance of the pattern matching algorithms based
on bit-parallelism degrades when the input pattern length exceeds the
computer word size. Although several divide-and-conquer methods have
been proposed to overcome that limitation, the resulting schemes are
not that much efficient and hard to implement. This study introduces
a new fast bit-parallel pattern matching algorithm that is capable of
searching patterns of any length in a common bit-parallel fashion. The
proposed bit-parallel length invariant matcher (BLIM) is compared with
the Shift-Or and bit-parallel non-deterministic matching (BNDM) algo-
rithms along with the standard Boyer-Moore and Sunday’s quick search,
which are known to be the very fast in general. Benchmarks have been
conducted on natural language, DNA sequence, and binary alphabet ran-
dom texts. Besides the length invariant architecture of the algorithm,
experimental results indicate that on the average BLIM is 18%, 44%,
and 6% faster than BNDM, which is accepted as one of the fastest al-
gorithms of this genre, on natural language, DNA sequence and binary
random texts respectively.

1 Introduction

Searching for exact or approximate occurrences of single or multiple patterns
on text files is a fundamental issue that has been studied deeply during the last
three decades. Besides its obvious usage in text editors, it gained great focus
with the recent advances in genomics that require searching of long patterns with
small alphabets. Additionally, network intrusion detection systems and anti-virus
software also demand for high performance matchers.

The main idea behind the algorithms developed on off-line string searching
may be grouped into two as automata theoretic approaches and sliding window
techniques. In automata theoretic approaches beginning with the Aho-Corasick
[1] finite state machine, most promising theoretical results have been obtained
by using directed acyclic word graphs such as reverse factor and turbo reverse
factor algorithms [2,3,4].

On the sliding window based approaches, the performance of searching pat-
terns from right-to-left by Boyer-Moore (BM) [5] algorithm as oppose to the

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 496–506, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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left-to-right scanning of Knuth-Morris-Pratt (KMP) [6] had gained great suc-
cess and many variants of the basic BM algorithm have been proposed, where
the fastest ones are assumed to be the Sunday’s quick search (QS) [7] and Hor-
spool (HOR) [8] in general.

Baeza–Yates&Gonnet [9] introduced a new way of searching aiming to benefit
from the computers intrinsic bit-parallelism for better speed-ups. Their Shift-Or
(SO) algorithm preprocesses the input pattern in such a way that the searching on
the text is performed with bitwise operations that are very fast in computer archi-
tecture. The downside of the SO was its inability to perform shifts while passing
over the text. A similar bit-parallel algorithm supporting approximate matching
was proposed by Wu&Manber [10], which was implemented as the agrep [11] file
search utility software. Navarro&Raffinot [12] combined bit-parallelism with suf-
fix automata (BNDM). By merging the shift mechanism of the sliding window
techniques with bit-parallel implementation of the non-deterministic automata,
BDNM is quite fast and also flexible especially on small alphabets.

The general problem in all bit parallel algorithms is the limitation defined on
the length of the input pattern, which does not permit searching of strings longer
than the computer word size effectively. While searching such long patterns, bit-
parallel algorithms [12,9,13] divide the input pattern into pieces that are smaller
than the computer word size and perform the search process on that smaller
segments accordingly. In that case the performance of the original algorithm
degrades considerably.

In this study, a different way of using bit parallelism is proposed that lets
searching patterns independent of their lengths, thus, given name bit-parallel
length invariant matcher (BLIM). As oppose to the previous bit-parallel algo-
rithms that require the pattern length not to exceed the word size, and divide
the string into smaller segments if that limitation is violated, BLIM defines a
unique way of handling strings of any size. Proposed architecture supports using
character classes and bounded gaps on the input patterns. It is also very suitable
for matching computer word size number of multiple patterns of any length.

The performance of BLIM is compared with other bit-parallel algorithms SO
and BNDM, with standard BM, QS, and HOR, and also with reverse and turbo
reverse factor algorithms. It is observed that BLIM is the fastest on DNA se-
quence searching. It shows a better performance than other bit-parallel alterna-
tives SO and BNDM on natural language text staying very competitive with BM
and QS on long strings. Thus, besides overcoming the pattern length limitation
of bit-parallelism, it brings a significant improvement in speed, especially in gene
searching.

2 BLIM Algorithm

Let T = t0t1t2 . . . tn−1 be the text of length n, P = p0p1p2 . . . pm−1 be the
pattern of length m that will be scanned on T , and W denotes computer word
size. The alphabet of the text will be shown by Σ, and the number of characters
in the alphabet by |Σ|.
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Given a pattern P , let’s imagine an alignment matrix A which consist of
W number of rows, where each rowi, 0 ≤ i < W , contains the pattern right
shifted by i characters. Thus, A has ws = W + m − 1 columns. Note that,
throughout the study ws value will be referred as window size from now on.
A sample alignment matrix corresponding to pattern P = abaab is shown in
Table 1 assuming computer word size W = 8.

Table 1. The alignment matrix generated for the sample pattern P = abaab with the
assumption that computer word size W = 8

0 1 2 3 4 5 6 7 8 9 10 11
0 a b a a b
1 a b a a b
2 a b a a b
3 a b a a b
4 a b a a b
5 a b a a b
6 a b a a b
7 a b a a b

The main idea of BLIM is to slide that ws length alignment matrix over the
text, check if any possible placements of the input pattern exist in the current
window via bitwise operations, and after completing the investigation of the
current text portion T [i . . . i+ws− 1] right shift the window by an amount that
is computed according to the immediate text character T [i + ws] following the
current window1.

When the window is located on text T [i . . . i+ws− 1], BLIM visits the char-
acters T [i + j] (0 ≤ j < ws) in an order that was previously computed at the
preprocessing stage. At each character visit, the possibility of any occurrences
of the pattern is checked with a bitwise and operation by using a mask matrix
that was again precomputed. Current window is slid right by the shift amount
specified by the text character T [i + ws] after the current investigation is over.
Thus, a shift vector of alphabet size needs to be calculated at preprocessing also.
In summary, at preprocessing stage BLIM calculates the mask matrix, the shift
vector and decides on the scan order according to input pattern.

2.1 Preprocessing Stage I: The Mask Matrix

Mask matrix consists of alphabet size |Σ| rows, and ws columns. Each
Mask[ch][pos], where ch ∈ Σ, and 0 ≤ pos < ws, is a bit vector of W bits
as bW−1bW−2 . . . b1b0. The ith bit in Mask[ch][pos] is set to 0, if observing that
ch at position pos is not possible for the i character right shifted placement of

1 Performing shift according to the immediate text character following the current
window was first proposed by Sunday in quick search algorithm [7], which is one of
the fastest algorithms in BM family.
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the input pattern P . Otherwise, it is equal to 1, which indicates observing that
ch at that pos does not violate the placement of the i character right shifted
version of the pattern. The formal definition for the actual value of the bi in
Mask[ch][pos] is as follows:

bi = 0 , if (0 ≤ pos− i < m and (ch 
= ppos−i)
bi = 1 , otherwise

An example mask matrix that is generated for the sample pattern P = abaab is
shown in Table 2 (in hexadecimal notation) assuming the alphabet of the text
is Σ = {a, b, c, d} with a computer word size W = 8.

Table 2. The mask matrix generated for sample pattern P = abaab, assuming alphabet
Σ = {a, b, c, d}, and computer word size W = 8

0 1 2 3 4 5 6 7 8 9 10 11
a FF FE FD FB F6 ED DB B7 6F DF BF 7F
b FE FD FA F4 E9 D3 A7 4F AF 3F 7F FF
c FE FC F8 F0 E0 C1 83 87 8F 1F 3F 7F
d FE FC F8 F0 E0 C1 83 87 8F 1F 3F 7F

For the sample pattern P = abaab, Table 3 depicts the calculation and mean-
ings of bits in Mask[b][6] explicitly. It is seen that right shift of the string by 0,
1, 2, 5, and 7 characters are appropriate, as specified by the corresponding bits
in Mask[b][6]. These possible alignments can be viewed on rows 0, 1, 2, 5, and
7 of Table 1. Note that, the observation of b at T [i + 6] does not infer with the
alignments beginning at T [i], T [i+1], and T [i+7]. Thus, the corresponding bits
are set to 1.

Table 3. Calculation of the bit vector Mask[b][6] = A7 for P = abaab

Bit Index i 7 6 5 4 3 2 1 0
pos-i -1 0 1 2 3 4 5 6

ppos−i a b a a b
Bit Value 1 0 1 0 0 1 1 1

2.2 Preprocessing Stage II: The Shift Vector

BLIM uses the shift mechanism proposed in quick search of Sunday [7]. That is;
the immediate text character following the window determines the actual shift
amount. If that character is included in the pattern then Shift[ch] = ws − k,
where k = max{i; pi = ch}, else Shift[ch] = ws + 1. On the same example
pattern P = abaab, remembering that ws = 12, and Σ = {a, b, c, d}, the shift
values of the letters are given in Table 4.

If one encounters the character a at T [i + 12] while the window is located
at T [i . . . i + 11], then the pattern abaab may begin at T [i + 9], T [i + 10], and
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Table 4. Computing the shift values of letters for sample pattern P = abaab

Character Shift Value
a 9 = 12 − max(0, 2, 3)
b 8 = 12 − max(1, 4)
c 13 = 12 + 1
d 13 = 12 + 1

T [i+12]. Thus, the safe shift of a should be 9. Similarly, if b = T [i+12], then the
shift value is 8. The characters c and d do not occur in pattern P. Observation
of those bad characters at T [i + 12] directly yields the next attempt to begin
from T [i + 13], which means a shift value of 13.

Note that such a shift mechanism does not benefit from the characters inves-
tigated in the current window. This memoryless shift function may be replaced
with a more sophisticated two-dimensional shift matrix such that Shift[ch][pos]
would indicate the safe shift amount when one observes ch at position pos. At
each character visit, the shift value should be selected as the maximum of the
current value and the value of the visited letter. Although theoretically less num-
ber of characters are visited in that case, the experiments showed that the time
elapsed to update shift value at each character visit downgrades the speed. Thus,
it is preferred to use the simple version instead.

2.3 Preprocessing Stage III: Scan Order

The characters of the ws length window should be visited in such an order that
checking all possible alignments in the current window be accomplished with
minimum number of character accesses. If we traverse the window from right-to-
left or left-to-right, we have to perform unnecessary checks in case of a leftmost
or rightmost occurrence of the pattern. Actually, the optimum solution requires
calculating the next position after each character visit, which slows down the
algorithm considerably.

As a simple and efficient way of computing the scan order, BLIM algorithm
checks the characters at positions m− i, 2m− i, . . . , km− i, where km− i < ws,
for i = 1, 2, ...,m in order. As an example, assuming computer word size W = 8,
the scan order of the sample pattern P = abaab is 4, 9, 3, 8, 2, 7, 1, 6, 11, 0, 5, 10.
The main idea behind this ordering is to investigate the window in such a way
that at each character access maximum number of alignments is checked.

2.4 Main Search Loop

BLIM algorithm is sketched in Figure 1 as a whole. It has a very simple main
loop in which the current text portion is investigated very fast by using only
the bitwise and operator. When the window is located at T [i . . . i+ws− 1], the
flag variable is first set to the corresponding mask value of the text character
T [i + ScanOrder[0]] at position ScanOrder[0]. Remember that ScanOrder[0]
is always equal to m − 1. The next character to be visited is defined by
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ScanOrder[1]. The and operation is performed between the current flag and
the mask of T [i + ScanOrder[1]] defined for position ScanOrder[1]. The tra-
versal of the characters continues till the flag becomes 0 or all the characters
are visited. If flag becomes 0, this implies pattern does not exist on the win-
dow. Otherwise, one or more occurrences of the pattern are detected at the
investigated text factor. In that case, the 1 bits of the flag tells the positions
of occurrences exactly, e.g., say if the 3rd bit is 1, then pattern is detected at
T [i + 3]. After completing the search on the current text factor, the window is
slid right by the shift amount of the character at T [i + ws].

A sample run of the BLIM algorithm is depicted in Table 5 assuming that
pattern abaab is to be searched on a text factor T [0 . . .11] = ababaabaabab.

Calculate Mask;

Calculate Shift;

Calculate ScanOrder;

Pad the text with m arbitrary characters;//to avoid segmentation fault

i=0;

ws=W+m-1;

while (i<n){

flag = Mask[T[i+ScanOrder[0]]][ScanOrder[0]];

for (j=1 ; flag & j<ws ; j++){

flag &= MaskMatrix[T[i+ScanOrder[j]]][ScanOrder[j]];

}

if (flag){

Check bits of the flag to find out detected items;

}

i += Shift[T[i+ws]];

}

Fig. 1. The BLIM algorithm

Table 5. A sample run of BLIM on text factor ababaabaabab for searching abaab

j ScanOrder[j] Mask[ch][pos] flag
ababaabaabab 0 4 Mask[a][4] = 11110110 11110110
ababaabaabab 1 9 Mask[b][9] = 00111111 00110110
ababaabaabab 2 3 Mask[b][3] = 11110100 00110100
ababaabaabab 3 8 Mask[a][8] = 01101111 00100100
ababaabaabab 4 2 Mask[a][2] = 11111101 00100100
ababaabaabab 5 7 Mask[a][7] = 10110111 00100100
ababaabaabab 6 1 Mask[b][1] = 11111101 00100100
ababaabaabab 7 6 Mask[b][6] = 10100111 00100100
ababaabaabab 8 11 Mask[b][11] = 11111111 00100100
ababaabaabab 9 0 Mask[a][0] = 11111111 00100100
ababaabaabab 10 5 Mask[a][5] = 11101101 00100100
ababaabaabab 11 1 Mask[b][1] = 11111101 00100100
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The corresponding mask values can be reached from Table 2. At the end of that
sample run, it is observed that flag is 00100100, which indicates pattern is de-
tected at positions T [2] and T [5] conforming to bit indices (from least significant
bit to most signicicant bit) that are 1. Note that after completion of the run, the
window will be slid right according to the immediate text character following
the window, e.g., the shift is 9, if T [12] =a, or 13 if T [12] =c or d.

3 Analysis

The preprocessing of BLIM has a quadratic time complexity due to the compu-
tation of the mask matrix that is of size |Σ|×ws. The calculation of shift vector
and the scan order array are linear with the length of the input pattern.

The best shift that the algorithm can perform is ws + 1 = W + m, and
worst is ws −m + 1 = W . At each attempt the algorithm must check at least
�ws

m � positions on the text window T [i . . . i + ws − 1] under investigation, and
ws−1 positions at most in case of a mismatch. Thus, the best-case complexity is
O(� n

ws+1�×�
ws
m �) ≈ O( n

m ) assuming that best shift is performed at each attempt
with minimal position checks. The worst case is when the window is slid over
the text with the least shift value, and maximum character visits performed at
each trial, which corresponds to a complexity of O(� n

W � × ws).
BLIM can handle character classes and bounded gaps in input patterns as

well. If the pattern P contains more than one character at a position, then
the corresponding cells of all those characters in the mask matrix will be filled
accordingly. As an example, let’s say we are searching for pattern P=ab[ab]ab,
which means third character is either a or b. Then, while calculating the mask
matrix, P [2] will be treated not as a single letter, but a list of characters. When a
gap is defined on the pattern, that means the list is composed of whole alphabet
for that position.

Another advantage of BLIM is its ability to perform multiple pattern matching
easily. Up to W number of patterns, whatever their sizes are, can be scanned
simultaneously on the text. The main idea is to reserve each row of the alignment
matrix for one of the input patterns in Table 1, and compute the mask matrix
accordingly. Actually, the proposed architecture is capable of building the mask
matrix according to any specified alignment matrix. Thus, it is able to handle
character classes and bounded gaps on multi-patterns as well. Note that, the
length invariant structure of BLIM lets to scan multi-patterns of any size again.
That is more important as the total size of multiple strings is more probable to
exceed the computer word size, which restricts the other bit-parallel algorithms.

4 Experimental Results

BLIM is compared with bit-parallel non-deterministic matching (BNDM), re-
verse factor (BDM), turbo reverse factor (TBDM), standard Boyer-Moore (BM),
Sunday’s quick search (QS), Horspool (HOR), and Shift-Or (SO) algorithms on
natural language text, DNA sequences and binary alphabet random texts. Note
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that the comparisons of the algorithms shown in figures 2, 3, and 4 do not include
HOR, BDM and TBDM plots. That is because QS dominates HOR in general,
and the performances of BDM and TBDM in practice are poor when compared
with BLIM and BNDM.

The implementations of the tested algorithms are taken from the Char-
ras&Lecroq’s handbook of exact string matching algorithms [14]2. Slight modi-
fications performed on QS and HOR algorithms, which let them run faster.

All text files used in experiments are 30 MB in size. During the tests, the
files are totally read into the memory, and each test pattern is scanned on the
data 10 times by each of the tested algorithms. The minimum timing for each
algorithm is recorded to minimize the effect of the system3. That testing scheme
is repeated at least 5 times for each data type with different 30MB files on a PC
with a Intel Pentium4 2.8 Ghz CPU and 2 GB memory running Windows XP
operating system4.

Natural language test data is a collection of Turkish text from a daily news-
paper. For each length of 2 to 50, 20 distinct strings are randomly selected from
the text. Thus, a total of 980 test patterns are used in natural language searching
experiments. The benchmark results are depicted in figure 2.
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Fig. 2. Experimental results obtained on natural language text

2 The codes can also be reached from the web page http://www-igm.univ-mlv.fr/∼
lecroq/string

3 Note that time elapsed to read the data file into memory is not included in recorded
timings, which means the results show the pure performance of the tested algorithms.

4 Same experiments are also performed on Intel Xeon 3.0 Ghz machine with 3 GB of
memory running Windows XP SP2, and on a Linux machine with 2 GB memory.
Similar performance lines are obtained for each algorithm in each trial.

http://www-igm.univ-mlv.fr/~lecroq/string
http://www-igm.univ-mlv.fr/~lecroq/string
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On natural language text, BLIM is on the average 18% faster than BNDM.
For short patterns of length smaller than 5, SO behaves better than BLIM. Note
that, although it is generally accepted that bit-parallel approaches do not give
good results on natural language text, it is observed that for patterns longer
than 12 characters, BLIM is very competitive with QS and BM.

The DNA sequence data used in experiments is extracted from the first human
genome. Again, 20 random patterns are chosen for each length of 5 to 200 in
steps of 5 making a total of 800 test patterns. Figure 3 shows the performance
of the tested algorithms on DNA sequence searching.

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pattern Length

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e 
in

 s
ec

.

Results on DNA Sequence Searching

SO
BNDM
BM
QS
BLIM

Fig. 3. Experimental results obtained on DNA sequence data

On DNA sequence searching, BM and QS are not very effective especially on
longer patterns as expected. The performance of BLIM is approximately 44%
better than BNDM. With that speed up, BLIM is by far the fastest technique
on off-line searching of DNA sequences as BNDM is accepted as state-of-the-art
off-line DNA matching in general.

Similar to DNA data, 20 random patterns with a binary alphabet Σ = a, b
are generated for each length of 5 to 200 again with a step of 5. That 800 binary
alphabet strings are searched on randomly generated text files of 30 MB in size
with the same alphabet.

It is observed that BLIM is only 6% better than BNDM on binary alphabet
random texts. SO is very effective on short binary sequence searching. On longer
strings BLIM shows a better performance than BM. Note that the speed of QS
on binary random data is very bad, when compared with BM. Actually, that is
because on random binary data good-suffix shift mechanism of BM gets more
important than bad character shift function. As QS does not include the good
suffix shift mechanism, it degrades.

In summary, BLIM outperforms the other bit-parallel alternatives BNDM
and SO on both natural language text and DNA sequences. Especially on DNA
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Fig. 4. Experimental results obtained on randomly generated binary alphabet text

Table 6. Average elapsed time ratio of BLIM according to other tested algorithms.
Bold items represent the cases where BLIM is better.

Average Time Ratio
Data Type Pattern Length SO

BLIM
BNDM
BLIM

BM
BLIM

QS
BLIM

Natural Language Text 2-32 1.83 1.18 0.87 0.74
33-50 NA NA 1.12 0.90

DNA Sequence 5-30 1.34 1.66 1.54 1.70
35-200 NA NA 3.75 5.18

Random Text with Binary Alphabet 5-30 0.61 1.16 1.30 2.52
35-200 NA NA 1.46 6.66

pattern matching it shows a very significant improvement being approximately
1.6 times faster than BNDM. On binary random texts, the leadership of SO
continues, although for long patterns BLIM is the best candidate with its length-
invariant structure. The over all average speed ratios of algorithms are depicted
in Table 6.

5 Conclusion

Bit-parallel pattern matching algorithms require input pattern length to be less
than or equal to computer word size. If pattern length exceeds that limitation,
the string is divided into pieces that are smaller than the word size, and search
process is performed on that segments accordingly. In that case the performance
of the algorithms degrade.

This study presented a new way of using bit-parallelism that overcomes the
computer word-size limitation and permits to search patterns of any length.
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The algorithm is capable of handling multiple patterns, and also using character
classes and bounded gaps in patterns as well. A deep investigation of multi-
pattern searching by BLIM is an on-going research, where initial results are
promising.

In addition to its length invariant property, experimental results indicate that
it is faster than previous bit-parallel approaches, SO and BNDM. Especially
on DNA sequence searching, where up to now BNDM is known to be fastest
in general, BLIM outperforms the BNDM with a 44% gain in speed. On long
patterns it is 3.75 times faster than BM also. Thus, BLIM becomes a powerful
tool in gene searching with both its significant improvement in speed and length-
invariant structure.
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Inducing Polygons of Line Arrangements
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Abstract. We show that an arrangement A of n lines in general po-
sition in the plane has an inducing polygon of size O(n). Additionally,
we present a simple algorithm for finding an inducing n-path for A in
O(n log n) time and an algorithm that constructs an inducing n-gon for
a special class of line arrangements within the same time bound.

1 Introduction

Every simple polygon induces an arrangement of lines, simply by extending its
edges. We consider the question whether every arrangement of lines in the plane
has an inducing polygon, namely, a simple polygon P such that every line l of
the arrangement A is collinear with an edge of P and that every edge of P is
collinear with some line of A, see Fig. 1 for an example. There are arrangements
that cannot be induced by a simple polygon. Lines that all intersect in one point
and lines that form a 3×2 parallel grid serve as examples of such arrangements.
However, we will show that when the lines of an arrangement are in general
position, i.e., no three lines intersect in one point, and no two lines are parallel,
an inducing polygon exists and can be found in O(n2) time. From now on we
consider only arrangements of lines in general position in the plane.

A

P

Fig. 1. Line arrangement A and a simple polygon P inducing A

A stronger version of the inducing polygon problem has been addressed by
Bose et al. in [1]. Namely, the authors required the inducing polygon to be an
n-gon, where n is the size of the arrangement. They present an algorithm for
constructing an inducing simple n-path, that is, a polygonal path that uses every
line exactly once (also referred to as an inducing polyline) in O(n2) time. That
polyline can be extended to an inducing n-gon if there exists a line such that

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 507–519, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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all intersection points of the arrangement lie on one side of that line. Finally,
they demonstrated that every arrangement contains a subarrangement of size√
n− 1 + 1 with an inducing (

√
n− 1 + 1)-gon.

In this paper we describe an O(n2) time algorithm for finding an inducing
polygon of size O(n) for an arrangement of n lines. Also we show that for every
arrangement that maps to a convex set of points in dual space there exists
an inducing n-gon. Additionally, we present a simpler and faster algorithm for
finding an inducing n-path with O(n log n) running time.

2 Inducing Polygon of Linear Size

In this section we describe an algorithm that constructs an inducing polygon P
of size O(n) for every arrangement A of n lines in general position.

Define the envelope polygon PE of A as the polygon consisting of the finite
length segments at the boundary of the unbounded faces of the arrangement [2].
A face f of A is a boundary face if f is adjacent to an edge of PE and f is
bounded, see Fig. 2(a) for an example, where the shading indicates the boundary
faces of A.

Our algorithm is based on the following observation: every line l ∈ A is either
induced by PE or crosses an edge of PE . In the latter case l contains an edge of
some boundary face fl. We call the lines that are not induced by the polygon
constructed so far unused lines. Intuitively, the algorithm traverses the edges
of PE , scans every edge e for unused lines that cross e and for every such line
l it augments the envelope polygon by “denting in” the face fl as depicted in
Figure 2(b).

(a)

PE

(b)

l
fl

P

Fig. 2. (a) The envelope polygon PE with shaded boundary faces; (b) Augmenting the
the polygon P for the line l

More precisely, the algorithm constructs an inducing polygon P for A in the
following way: First, set P = PE . Then traverse the edges of PE in clockwise
order and scan every edge e for unused lines that cross it. The scanning direction
for e is chosen according to the following rules:

(a) If both end vertices v1 and v2 of e are reflex, the scanning direction corre-
sponds to the traversal direction of PE , Fig. 3(a).
(b) If exactly one incident vertex of e is convex, the scanning direction is from
the convex vertex to the reflex one, Fig. 3(b).
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(c) If both end vertices are convex, find a line l′ intersecting e, such that l′

contributes a convex vertex x to PE . We split e at the intersection point with l′

and set the direction for the two parts separately, each from the corresponding
convex vertex towards the intersection point with l′, Fig. 3(c).

Note that the line l′ always exists due to the following observations: PE has
at least one convex vertex x that is not v1 or v2 and is not an intersection
point of the lines that contain the points v1 and v2. From the definition of PE

and convexity of v1 and v2 it follows that the intersection points of the line l1
containing e with every other line of A lie between or at the vertices v1 and v2.
Especially it means that the lines, call them l′ and l′′, that intersect in x, cross
the line l1 in the interior of the edge e.

e
(a)

v1 v2
e

(b)

v1 v2
e

x

(c)

l′

v1 v2
l′′

Fig. 3. Direction rules for edge traversal. The shading indicates the interior of P . The
light arrow in the interior of P shows the global traversal direction of the envelope
edges, and the dark big arrow on the edge e indicates the scanning direction for unused
lines on e.

Next, for every unused line l that crosses e we consider the boundary face fl

that comes after l in the scanning direction of the edge. Let ∂fl be the boundary
of fl and let e′ be the edge of ∂fl contained in e. We replace e′ in P by ∂fl \ e′ (see
Fig. 2(b)) and mark all lines induced by ∂fl \ e′, including the line l, as used.

Correctness. Due to space limitations we only sketch the correctness proof here,
the details are given in [3].

We need to show that P is a polygon, P induces A, and that P is simple.
We start with P = PE . Every augmentation replaces a line segment by a

polygonal chain connecting its end points. Hence P is a polygon.
Every unused line crosses an edge of PE . Therefore, all unused lines have been

handled by the time the algorithm terminates. During each augmentation step
only a part of an edge e of PE is removed from P , so we never “lose” any of the
lines that P induced before the augmentation. Thus, every line in A is induced
by P .

The algorithm starts with the envelope polygon PE , which is a simple poly-
gon. To show that the resulting polygon P is also simple, we first describe the
possible violations of simplicity that may occur. Then, assuming that there is
an augmentation step, that is, an extension of P by the boundary of one cell,
violating the simplicity, we deduce a contradiction.

We say that a polygon has a self-intersection (a) if it has a pair of edges
e1 and e2 intersecting in a single point v such that v is not an end point of
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either e1 or e2. A polygon has an edge-overlap (b) if there exist two edges e1
and e2 in the polygon such that e1 ⊆ e2. Note, that the case where two edges
overlap in a line segment but neither edge contains the other is not possible by
construction. A polygon has a vertex-overlap (c) if it has two coinciding vertices,
see Fig. 4 for examples. Note, that the described cases are the only simplicity

v1

v2

v3

v4

v5v6
v1

v2

v3

v4

(a) (b) (c)

v1 v2

v3
v4

v5

v6

Fig. 4. (a) Self-intersection; (b) edge-overlap; (c) vertex-overlap

violations that could occur during an augmentation step. Although the edges of
the envelope polygon might contain more than one edge of the arrangement, in
an augmentation step we only traverse a single cell. That means that a newly
added edge can either overlap completely or be completely contained in an other
edge of the polygon P constructed by that time. Furthermore, since the lines of
the arrangement are in general position, we cannot have a vertex of the polygon
in the interior of an edge without having an edge overlap.
Case (a): It is easy to see that P has no self-intersections, since in one aug-
mentation step P is extended by the boundary of one cell of the arrangement.
Therefore, no two edges of one extension belong to the same line, and thus, the
edges added during the augmentation process have no inner intersection points
with any other line of the arrangement.

For the cases (b) and (c) we assume that there is an unused line l that initiates
an extension step causing an edge- or a vertex-overlap for the first time during
the execution of the algorithm. Let e be the edge of PE that has been scanned
when the line l was encountered, f be the corresponding face of the arrangement,
and l1 be the line containing e.

Recall, that in one extension step the boundary of f except for the edge e′

contained in e is added to P , that is, we add an open polygonal chain. The
scanning direction on e defines an order on the edges of ∂f \ {e′}, where the
edge contained in l is the first one, and the other edge of f adjacent to e′ is the
last one.

Now we make some basic observations:

O1. All intersection points of A are inside or on PE . Especially, we can say that
the intersection point l ∩ l1 is the first one on the line l.

O2. Consider a sequence of edges e1, . . . , ek forming an unbounded
cone and an edge ei of that sequence. If there is a line inter-
secting the chain e1, . . . , ei−1 and the chain ei+1, . . . , ek then
ei is not an edge of PE . Furthermore, if there is more than one
such line, then ei can also not be an edge of a boundary face.
A similar observation holds for a vertex of the chain e1, . . . , ek.

ei

e1 ek
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Case (b): Let e∗ be the edge of f that is already (a part of) an edge in P .
It can be shown that neither the first nor the last edge of ∂f \ {e′} can be the
overlapping edge. Therefore, the edge e∗ must be an intermediate edge of f , as
depicted in Figure 5. Let l2 be the line containing e∗, and l3 the line containing
the edge coming after e∗ in ∂f with respect to traversal direction.

e

f
l

l3

e∗

e′l1

l2

x
(iii)

(i)

(ii)

Fig. 5. Face f with an edge e∗ that
causes an edge-overlap. Three com-
binatorially different positions of the
intersection point of l and l3 on l are
denoted by the double-arrows.

Suppose e∗ is an edge of the envelope
polygon. Consider the possible locations
of the intersection point x of l and l3 on
the line l relative to the lines l1 and l2.
The lines l1 and l2 subdivide l into three
sections: (i) Before the intersection point
with l1, i.e., outside PE . x cannot lie in
this section by Observation O1. (ii) Be-
tween the intersections with l1 and l2. If
x is in this section, the edge e∗ cannot be
an edge of f . (iii) Behind the intersection
with l2. In this case e∗ cannot be an edge
of the envelope polygon by Observation
O2.

If e∗ is an edge of a previously traversed face f ′, we again consider the possible
positions of the intersection point of the lines l and l3 relative to the line l2 and
to the line containing the edge of f ′ that is a part of an edge in PE . In each of
the possible configurations we get that either e∗ is not an edge of the face f ′, or
the face f ′ is not a boundary face.

From these considerations we can conclude that P has no edge-overlap.
Case (c): To exclude the possibility of a vertex-overlap, we consider possible
configurations of the arrangement that might lead to a multiple usage of an
intersection point.

Let v be a vertex of f , such that v was already a vertex of P by the time l was
encountered. Let l2 and l3 denote the lines that intersect in the point v. Further
since we assume a vertex-overlap, the face f contains v but does not contain the
edges in P which are incident to v.

Let the scanning direction on the edge e be fixed, the opposite direction can
be handled symmetrically. With respect to the chosen direction there are three
possible configurations of the intersection points of lines l, l2, l3 with the line l1 as

l
e l1

f

v

l2 l3

v
l2

l3

f

l

e
l1

l e
l1f

v

l2
l3

(a) (b) (c)

Fig. 6. Possible configurations of intersection points with lines l, l2, l3 on the line l1
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l
e l1

f

v

l2 l3 l4

w
v

l2
l3

f
l4

l

e
l1

Configuration (a) Configuration (b)

Fig. 7. Necessary continuations of configurations (a) and (b)

illustrated in Figure 6: (a) l2 and l3 intersect l1 on the left of l; (b) the intersection
point of l1 with l lies between those of l1 with l2 and l3; (c) the intersection points
l2 ∩ l1 and l3 ∩ l1 are on the right of the intersection point l ∩ l1.

For the configuration (a) we observe that the line l cannot be the last one
intersecting l1. Therefore, there exists a line l4 intersecting l1 to the right of l as
depicted in Figure 7(a). Additionally, l4 must intersect l after l1 by Observation
O1, and it also may not separate the vertex v from the face f . Therefore, v
cannot be a vertex of the envelope polygon, since all its incident faces are then
bounded. Furthermore, if there is any other line intersecting l1 on the right of l,
then v also cannot be a vertex added in a previously performed extension step
by Observation O2. If there were any line intersecting l4 below l1 and the line l1
on the left of l, then e would not be an edge of the envelope polygon. Therefore,
the vertex w = l1 ∩ l4 must be a convex vertex of the envelope polygon, which
contradicts the scanning direction rules.

In configuration (b), if v is a vertex of the envelope polygon, there must be
a line l4 that intersects the line l3 on the other side of v than l1 (on the right of
v in Fig. 7), because v is reflex. The line l4 also has to cross l. The intersection
point l∩ l4 on the line l cannot be below line l1 by Observation O1. It cannot lie
between l ∩ l3 and l ∩ l1, since then v would not be a vertex in f . It also cannot
lie above l ∩ l3, since then v is not a vertex of PE by Observation O2.

Assuming that v is a vertex of a previously visited face f ′ we find again that
there is exactly one line l4 that intersects the line l3 on the other side of v than
l1. Additionally we can prove that if there is a line that intersects l2 on the
same side of v as l1, then it is the line l4. For the line l4 there are four possible
combinatorial positions depicted in Figure 8.

In each of these subconfigurations the corresponding part of the arrangement
(highlighted in Figure 8) is fixed and no other line can modify the envelope

v
l2

l3

f

l

e
l1

l4
v

l2
l3

f
l4

l

e
l1

v
l2

l3

f
l4

l

e
l1

v
l2

l3

f
l4

f ′

w

l

e
l1

1. 2. 3. 4.

Fig. 8. Configuration (b): Possible positions of the line l4
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polygon (darker highlight). In cases 1 to 3 the right vertex of the edge e is
convex in PE , which is a contradiction to scanning direction rules. For the case
4 we can show that either we should have met the line l prior to scanning the
edge e or the assumed scanning direction of e contradicts the direction rules.

Let us consider configuration (c). If we assume that the vertex v is a vertex
of the envelope polygon we can conclude that the point l1 ∩ l3 is a convex vertex
of the edge e in the envelope polygon, which contradicts the direction rules.

Now suppose that v is a vertex of a face f ′ traversed in one of the previous
steps. Then, by Observation O2, there exists exactly one line l4 which crosses the,
so far unbounded, cone composed of lines l, l2, l3, l1 (shaded region in Figure 6).
Such a line l4 intersects l1 on the same side of the point l1 ∩ l as the lines l2 and
l3. Also there is at most one line intersecting l2 and l3 on the same side of v as
their intersection point with l1, that is below v in Figure 9. Consider possible
locations of the intersection points x = l1 ∩ l4 on l1 and y = l2 ∩ l4 on l2: There
are five combinatorial possibilities which are depicted in Figure 9:

1. x is between the intersection points l1∩l and l1∩l2, then y has to lie between
v and the intersection point l2 ∩ l1;

2. x is between l1 ∩ l2 and l1 ∩ l3, and y is on the other side of v than the point
l2 ∩ l1 (above v);

3. x is between l1 ∩ l2 and l1 ∩ l3, and y is on the other side of l2 ∩ l1 than v
(below l1);

4. x is on the other side of l1 ∩ l3 than l1 ∩ l and l1 ∩ l2 (on the right of l3), and
y is on the other side of v than l2 ∩ l1 (above v);

5. x is on the other side of l1 ∩ l3 than l1 ∩ l and l1 ∩ l2 (on the right of l3), and
y is on the other side of l2 ∩ l1 than v (below l1).
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Fig. 9. Case (c): Possible positions of line l4

In all these cases the corresponding part of the arrangement and of the en-
velope polygon is fixed. In cases 1, 2 and 4 the vertex incident to e, which lies
in scanning direction, is convex in PE . In these cases the traversal of the face f
contradicts our direction rules.



514 L. Scharf and M. Scherfenberg

In case 5 the envelope edge starting at the vertex y and incident to face f ′

has a convex vertex in PE . According to the direction rules and the structure of
f ′ the line causing the traversal of f ′ is l1, but l1 contributes to the envelope,
which is a contradiction.

For the remaining case 3 it can be shown that if the face f ′ was traversed
before the face f , then either we should have met l prior to scan of the edge e, or
the edge e has two reflex vertices and the assumed scanning direction contradicts
the rules.

We have now shown that the polygon P has no self-intersections, edge- or
vertex-overlaps. Thus, the constructed polygon P is simple and comprises every
line of the arrangement.

Complexity. A trivial bound for the running time of the algorithm is O(n2),
since in that time we can construct and traverse the whole arrangement. The
size of the constructed polygon P is O(n): P consists of the edges of the envelope
polygon plus the edges of some boundary faces. The size of the envelope polygon
is O(n) as shown by Eu et al. in [2]. This result follows from the zone theorem [4],
since the envelope polygon is the zone of the infinite line. In a recent work [5]
Dangelmayr et al. introduced a generalized definition of a k-zone. The k-zone
of a line l in an arrangement A are the edges of A that can be connected to l
by a segment intersecting at most k lines including l and the connected edge.
According to this definition the zone as in [4] is a 2-zone and the boundary faces
are contained in the 3-zone of the infinite line. Dangelmayr et al. showed that
the complexity of a k-zone is O(n) for every fixed k. It follows that the total
complexity of P is linear in n.

3 Inducing n-gon: The Zigzag Algorithm

The Zigzag algorithm constructs an inducing n-gon of the arrangement A if the
dual points of the lines in A lie in convex position. In contrast to the polygons
generated by the algorithm described in the previous section, an n-gon is a
polygon which induces every line of A exactly once.

Let π denote the plane containing the lines of A, then the dual space π∗ is
defined as in [6]: The dual of a point p : (a, b) ∈ π is the line p∗ : f(x) = ax − b
in π∗; the dual of a line l : f(x) = ax + b in π is the point l∗ : (a,−b) ∈ π∗. We
can assume w.l.o.g. that A does not contain a vertical line.

Define L∗ as a set of duals of lines of A. Since the lines of A are in general
position, L∗ is in general position, i.e., no three points of L∗ are collinear, and
all points in L∗ have different x-coordinates. Let P be an inducing polygon in π
with n edges. We define a dual polygon for P as a polygon P ∗ in π∗ that visits
the vertices of L∗ in the same order as P visits the lines of A, starting at any
edge of P . P ∗ is uniquely defined by P and vice versa.

The Zigzag algorithm constructs a polygon P ∗ in the dual space. First, the
convex hull of the points in L∗ is computed. Then we connect the leftmost point
l∗left and the rightmost point l∗right in L∗ with an edge e. The edge e divides the
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points into the upper hull Hu and the lower hull Hb of L∗. The lower hull ([6]) of
a set of points is defined as the part of the convex hull of the set that lies below
or on the line connecting the leftmost and the rightmost points of the set. The
upper hull is defined symmetrically. Starting with l∗left, we connect the points of
Hb in a zig-zag manner by connecting alternately the so far unvisited points of
Hb with the largest and the smallest x-coordinate, as illustrated in Figure 10.
Thus, lleft is connected to the point l∗1 ∈ Hb with the largest x-coordinate, l∗1
is connected to the point l∗2 ∈ Hb \ {lleft, l∗1} with the smallest x-coordinate et
cetera until all points of Hb are in the path. Next, starting with l∗right, the upper
hull is traversed in the “mirrored” way. Finally, we connect the end points of the
obtained path with an edge and name the polygon P ∗. The corresponding path
P in primal space is an inducing n-gon for A.

l∗2
l∗1

l∗right

l∗4l∗3

l∗left e

e′

l2

l1

lright

l4

l3
lleft

e e′

Fig. 10. The polygons P ∗ and P produced by the Zigzag algorithm

The time complexity of the algorithm is dominated by the construction of the
convex hull, which is O(n logn).

Correctness. By construction every point of L∗ was added to P ∗ exactly once,
hence P is an inducing n-gon for A. Next we show that P is simple.

The dual of a segment s in π is a left-right double wedge in π∗ bounded by
the duals of the endpoints of s, see [6]. A left-right double wedge is a double
wedge not containing a vertical line. Define a center of a double wedge as the
intersection point of the lines that bound it. We say that two double wedges
intersect if they share a common line, see Fig. 11. In other words, two double
wedges intersect if and only if each of them contains the center of the other. It
is known ([6]) that two segments in π intersect if and only if the corresponding
double wedges intersect in π∗.

p1

p2q1

q2x

p∗1

p∗2

q∗1

q∗2
x∗

Fig. 11. Intersecting segments and their dual double wedges

Consider our polygons P and P ∗. Two edges of P intersect if and only if their
dual double wedges intersect. We call two double wedges consecutive if they
share a bounding line. Two double wedges are consecutive if and only if they are
dual to adjacent edges of P . Hence P is simple if and only if no non-consecutive
double wedges of P ∗ intersect.
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During the traversal of the upper and lower hull the algorithm visits alter-
nately the so far unvisited points with the smallest and the highest x-coordinate.
Hence, the x-coordinates of every three consecutively visited points p1, p2, p3
form a bitonic sequence, that is the x coordinate of p2 is either larger or smaller
than the x-coordinates of both p1 and p2. Therefore, one part of the correspond-
ing double wedge is bounded by the segments p2p1 and p2p3 (inner wedge) and
the other part by the extensions of these segments in the direction of p2 (outer
wedge), see Fig. 12.

p1 p2

p3

outer wedge
inner wedge

Fig. 12. Inner and outer wedge of a double wedge

Obviously, the outer wedge cannot contain any other point because it is faced
outside the convex hull. The inner wedge cannot contain any other point be-
cause p1 and p3 are neighbors on the convex hull. Hence, two non-consecutive
wedges cannot share a common line. Since the two endpoints do not lie inside
any other wedge, the closing edge also does not produce double-wedges causing
intersections in primal space.

4 Inducing Polyline: The Christmas Tree Algorithm

The Christmas tree algorithm constructs for an arrangementA of size n a simple
polyline that induces every line ofA exactly once in O(n log n) time. As the Zigzag
algorithm, the Christmas tree algorithm works in the dual space π∗. In analogy to
a dual polygon, the dual for a polyline P in π is defined as the polyline P ∗ in π∗

that visits the vertices of L∗ in the same order as P visits the lines of A.
The idea of the algorithm is to traverse all points in L∗ and add them to a poly-

line P ∗ in such an order that the dual polyline P in π is simple. The traversal goes
as follows:

We start at any point on the lower convex hull of L∗ and in direction left
or right, let us say left. As long as the x-coordinate of the currently visited
points is monotone decreasing (when the direction is left) or increasing (when
the direction is right), the traversal goes along the lower hull (LH for short)
of the so far unvisited points of L∗ extended by the last visited point. If the
point with the minimal or maximal x-coordinate of the convex hull is reached,
the direction is reversed. Algorithm 1 formalizes the traversal in pseudo code.
Figure 13 depicts an example of the polyline P ∗ and the corresponding inducing
polyline P . Note that P ∗ resembles the garlands decorating a Christmas tree.
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Algorithm 1. Christmas tree algorithm
set p = any point in LH[L∗]1

set P ∗ = {p}2

set dir = left3

repeat4

if LH[(L∗ \ P ∗) ∪ {p}] contains no point in direction dir from p then5

reverse the direction in dir6

set p = next point in LH[(L∗ \ P ∗) ∪ {p}] in direction dir from p7

set P ∗ = P ∗ ∪ {p}8

until P ∗ = L∗9

l∗2

l∗8

l∗3 l∗4 l∗5

l∗6l∗7

l∗1

l∗9 points in dual spaceP ∗

l2

l8

l3

l4
l5

l6

l7

l1

l9

lines in primal space

P

Fig. 13. The path P ∗ generated by the Christmas tree algorithm and the dual inducing
n-path P for A

Correctness. By construction every point of L∗ was added to P ∗ exactly once,
hence P is an inducing n-path for A. Next we demonstrate that P is simple.

Let us consider the double wedge w centered at a point p2, and let p1 and p3
denote the points visited before and after the point p2 respectively. We analyze
the position of the points in L∗ that have not been visited at the time when p2 is
added to P ∗ and show that none of them except for p3 is contained in w. There
are two cases to distinguish: (a) the direction of the traversal stays constant at
p2 and (b) the traversal direction is reversed at p2.

Case (a): There are two observations:
(1) The points p1, p2 and p3 belong to the lower hull of the set of the so far
unvisited points in L∗ extended by p2 and p1, see Fig. 14(a).
(2) The points p1, p2 and p3 form an x-monotone sequence.
From (1) and the general position of the points in L∗ follows that all unvisited
points except p3 lie above the ray going from p2 through p1 and above the ray
going from p2 through p3. From (1) and (2) follows that the double wedge w lies
below p1, p2 and p3. Thus, no double wedge can contain an unvisited center of
a non-consecutive double wedge.
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Case (b): The points p2 and p3 belong to the lower hull of the set of the so
far unvisited points in L∗ extended by p2. Further, p1, p2 and p3 form a bitonic
sequence with respect to their x-coordinate and p1 lies below that lower hull, see
Fig. 14(b). Thus, the inner wedge of the double wedge centered at p2 lies below
the line going through p2 and p3. Again, it follows from the general position of
the points in L∗ that the inner wedge of w cannot contain an unvisited center
of a non-consecutive double wedge.

Because the traversal direction changes at p2, p2 is the so far unvisited point
with the smallest or highest x-coordinate. It follows that no other unvisited point
can lie in the outer wedge of w. Since the traversal defines a total order on the
points, no two non-consecutive double wedges intersect.

unvisited

p1

p3
p2

(a)

unvisited

p1

p3p2

(b)

Fig. 14. Two types of double wedges generated by the Christmas tree algorithm

The running time of the algorithm is determined by a data structure for
calculating the convex hull of the semi-dynamic point set starting as L∗ and
n delete operations on the point set in line 7 of the algorithm. The point set
is semi-dynamic because the contained points are deleted only. Using the data
structure of Hershberger and Suri [7] the deletions of the points can be performed
in O(log n) amortized time. Thus, the overall running time for constructing an
inducing polyline is O(n logn). The space required by the algorithm is linear
in n.

5 Conclusions

We demonstrated that an arrangement A of n lines in general position in the
plane has an inducing polygon of linear size that can be constructed in O(n2)
time. Additionally, we presented a simpler and faster algorithm for finding a
simple inducing polyline of size n for A. Moreover, we showed that when the
lines of A map to a set of points in convex position in dual space, an inducing
n-gon for A can be found in O(n logn) time. Thus we widened the class of
arrangements for which an inducing n-gon can be constructed. The question
whether such a polygon exists for an arbitrary arrangement of lines in general
position remains open.

Acknowledgements. We thank Helmut Alt, Xavier Goaoc, Hyosil Kim and
Elena Mumford for fruitful discussions.



Inducing Polygons of Line Arrangements 519

References

1. Bose, P., Everett, H., Wismath, S.: Properties of arrangement graphs. Int. J. of
Computational Geometry and Applications 13(6), 447–462 (2003)

2. Eu, D., Guevremont, E., Toussaint, G.T.: On envelopes of arrangements of lines.
Journal of Algorithms 21(1), 111–148 (1996)

3. Scharf, L.: An inducing simple polygon of a line arrangement. Technical Report B
08-03, Freie Universität Berlin (2008)

4. Bern, M.W., Eppstein, D., Plassman, P.E., Yao, F.F.: Horizon theorems for lines and
polygons. In: Discrete and Computational Geometry: Papers from the DIMACS Spe-
cial Year. DIMACS Ser. Discrete Math. and Theoretical Computer Science, vol. 6,
pp. 45–66. AMS (1991)

5. Dangelmayr, C., Felsner, S., Trotter, W.T.: Intersection graphs of pseudosegments:
Chordal graphs (2008) arXiv:0809.1980v1 [math.CO]

6. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational geom-
etry: algorithms and applications. Springer, New York (1997)

7. Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm.
BIT 32(2), 249–267 (1992)



Free-Form Surface Partition in 3-D

Danny Z. Chen1,� and Ewa Misio�lek2

1 Dept. of Computer Science and Engineering, Univ. of Notre Dame,
Notre Dame, IN 46556, USA

chen@cse.nd.edu
2 Mathematics Department, Saint Mary’s College, Notre Dame, IN 46556, USA

misiolek@saintmarys.edu

Abstract. We study the problem of partitioning a spherical representa-
tion S of a free-form surface F in 3-D, which is to partition a 3-D sphere
S into two hemispheres such that a representative normal vector for each
hemisphereoptimizes agivenglobal objective function.Thisproblemarises
in important practical applications, particularly surfacemachining inman-
ufacturing. We model the spherical surface partition problem as process-
ing multiple off-line sequences of insertions/deletions of convex polygons
alternated with certain point queries on the common intersection of the
polygons. Our algorithm combines nontrivial data structures, geometric
observations, and algorithmic techniques. It takes O(min{m2n log log m+
m3 log2(mn) log2(log m)

log3 m
, m3 log2 n + mn}) time, where m is the number of

polygons, of size O(n) each, in one off-line sequence (generally, m ≤ n).
This is a significant improvement over the previous best-known O(m2n2)
time algorithm. As a by-product, our algorithm can process O(n) inser-
tions/deletions of convex polygons (of size O(n) each) and queries on their
common intersections in O(n2 log log n) time, improving over the “stan-
dard” O(n2 log n) time solution for off-line maintenance of O(n2) inser-
tions/deletions of points and queries. Our techniques may be useful in
solving other problems.

1 Introduction

1.1 Problem Formulation and Motivations

Constrained geometric partition is a fundamental topic in computational geome-
try as well as in numerous practical applications. Efficient solutions to geometric
partition problems are needed in a vast array of fields, including image process-
ing and image segmentation in computer vision [16,17], mesh decomposition in
computer graphics [3,13], convex decomposition in computational geometry [4],
operations research, and computer-aided design and manufacturing. Some for-
mulations of such problems, e.g., minimizing the number of desired subsets in
the partition, are NP-hard [3,15], and as a result, partitions into a fixed number
of subsets have also been studied [1,11,18].
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In this paper, we consider the problem of optimally partitioning a free-form
surface F in 3-D into two sub-patches, which is an important problem in surface
machining in manufacturing. A free-form surface is a surface that describes the
shape of a manufactured product or a component (e.g., a body of a car or a part
of an engine). Unlike a regular surface, a free-form surface is not described using
mathematical equations; instead, it may be defined, for example, by a finite set
of points on the surface and the vectors normal to the surface at those points.

In manufacturing settings, a “best” free-form surface partition is equivalent to
finding a set of optimal orientations of a workpiece for surface machining using
a three-, four-, or five-axis numerically controlled (NC) machine. A detailed
description of the problems associated with the operations and setup of NC
machining can be found in [5,18].

The problem of minimizing the number of setups has been studied [5,10,19]
and has been shown to be NP-hard [6]. To deal with this computational difficulty,
instead of minimizing the number of setups, one can elect to find a fixed number
k of setups. In this paper, we consider partitioning a free-form surface F into two
sub-patches (i.e., finding k = 2 setups), if possible. We also like to determine a
representative direction vector for an optimal tooling direction of each sub-patch.

The following is a statement of the free-form surface partition problem. The
distance between two vectors is the angle between the two vectors.

Surface Partition (SP) Problem. Given a (discretized) free-form surface
F = (X,V ) in 3-D, where X = {x1, . . . , xn} is a set of points on F and
V = {v1, . . . ,vn} is the set of vectors normal to F at the points of X, par-
tition F into two sub-patches F1 = (X1, V1) and F2 = (X2, V2), if feasible, such
that (i) the distance between the optimal representative direction vectors v∗

1 and
v∗
2 respectively for V1 and V2 and all the vectors in V1 and V2 is as small as

possible, and (ii) F is entirely accessible to the rays along the direction of v∗
1 or

v∗
2 (i.e., F1 is “visible” along the rays in the direction of v∗

1 and F2 is “visible”
along the rays in the direction of v∗

2).

We model the SP problem as a spherical surface partition problem (see [18]
for the modelling details), whose key is to solve the problem of querying a dy-
namically changing common intersection of convex polygons. The common in-
tersection changes as new convex polygons are added or others are deleted in an
off-line sequence, which has O(m) insertions/deletions of polygons of size O(n)
each, alternated with two types of point queries on the common intersection.

A “natural” approach for the above problem is to explicitly maintain the
common intersection of convex polygons as updates occur and use the common
intersection to answer queries as needed. This is what Tang and Liu did [18].
Their algorithm takes in total O(m2n2) time to solve the SP problem. Our
approach is different in two key aspects: (1) Although the problem is of a dynamic
nature, we do not handle the problem in a dynamic fashion (instead, we exploit
the off-line feature of the operations); (2) we do not compute and maintain
the explicit common intersection of the “active” polygons (instead, we maintain
partial common intersections).
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1.2 Our Contributions

In this paper, we present an O(min{m2n log logm + m3 log2(mn) log2(log m)
log3 m

,m3

log2 n + mn}) time algorithm for solving the SP problem, where n is the num-
ber of sample points on the surface F and m is the number of points on the
spherical representation S of F (generally, m ≤ n). The previous best-known
SP algorithm, by Tang and Liu [18], takes O(m2n2) time. When m = Θ(n), we
achieve a nearly O(n) time improvement over [18]. If m = O(

√
n), then the im-

provement is nearly O(n1.5). Our solution combines nontrivial data structures,
geometric observations, and algorithmic techniques, and is based on the following
key ideas.

– We model the surface partition problem as an off-line process of convex
polygon intersections with queries, instead of an on-line dynamic process as
in [18]. This allows us to handle off-line sequences of polygonal intersections
with queries using static data structures (e.g., time trees).

– Instead of maintaining the explicit common intersection of all “active” poly-
gons at any moment (which is quite costly) for queries, we maintain a large
(static) collection of common intersections of many subsets of polygons.

– But, performing queries on such a collection of common intersections (in-
stead of on one common intersection) for an efficient overall algorithm then
takes a much more judicious effort. We use a two-level scheme for partition-
ing the set of polygons into (many) subsets and come up with interesting
data structures (e.g., prefix partial intersection trees) to capture all needed
common intersections for any query at any time.

A key component to our algorithm is the following problem of off-line process-
ing of convex polygon intersections with queries.

Off-line Process of Polygonal Intersections with Queries (OPI). Given
a set P = {P1, . . . , Pm} of m convex polygons of size O(n) each and a set I =
{I1, . . . , Im} of time intervals, where Ii = [tai , t

d
i ] represents the “life time” of

the polygon Pi, i.e., tai is the time when Pi is added and tdi is the time when Pi is
deleted, process an off-line sequence of O(m) operations OP1, OP2, . . . , OPO(m),
where each operation OPi is one of the following types:

1. Insert a convex polygon of P into consideration.
2. Delete a convex polygon of P from consideration.
3. For a query point pq, check if pq is in the common intersection of the currently

“alive” polygons; if not, report a point pc on the boundary of the common in-
tersection that is closest to pq.

Hershberger and Suri [12] gave an O(n logn) time algorithm for processing an
off-line sequence of O(n) insertions, deletions, and queries on the convex hull of
points in the plane. Since maintaining the convex hull of planar points is equiva-
lent to maintaining the common intersection of half-planes, their algorithm can be
applied to OPI. A straightforward application of their algorithm to a sequence of
O(n) OPI operations, each update operation performing O(n) point insertions or
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deletions (equivalent to inserting or deleting all O(n) edges of a convex polygon),
results in an O(n2 logn) time solution. In comparison, our method reduces this
time bound to O(n2 log logn) in the OPI setting. To achieve a more efficient OPI
solution than simply applying [12], we utilize the following ideas.

First,we handle the off-line dynamic polygonal insertions/deletionswith queries
by using static data structures. Since the life times of the convex polygons (i.e.,
their times to be inserted in and deleted from the common intersection) are given
a priori, we use a static time tree data structure so that for any time t0, we can
efficiently identify all polygons active at t0.

Second, by using geometric observations and techniques, we query the com-
mon intersection of all polygons active at any time without explicitly computing
and maintaining it. Instead, we compute and store the common intersections
of various subsets of polygons, called partial common intersections, in a data
structure called prefix partial intersection trees. The prefix partial intersection
trees, together with the time trees, allow us to efficiently extract needed querying
information for the common intersection of active polygons at any time t0.

Third, to gain further efficiency, we partition arbitrarily the set P of m convex
polygons into h subsets of m/h polygons each, and build the time tree and prefix
partial intersection trees separately for each such subset. By carefully choosing
the value of h, we can calibrate the complexity of our algorithm in terms of the
parameters m and n (in this paper, h = m

logc m for some constant c ≥ 3).
Our techniques may go beyond solving the surface partition problem. For

example, we efficiently solve the problem of off-line processing the common in-
tersection of convex polygons for updates and queries, which may find other
applications.

2 Our Algorithm

Our SP solution is hinged on solving O(m) instances of the OPI problem. The
details on how to formulate these O(m) OPI instances can be found in the full
verion of the paper and in [18]. It is sufficient for us to focus on how to handle
one OPI instance. Our OPI algorithm is quite involved and consists of quite a
few components and steps. To ease the discussions, we first give an overview of
the algorithm, and then explain its ingredients in detail.

Assume that the set of convex polygons, P = {P1, . . . , Pm} is stored in a set
of arrays, each of which contains O(n) vertices and is in clockwise order around
the polygon boundary starting at the leftmost vertex. The set of time intervals,
I = {I1, . . . , Im}, specifies the “life times” of the polygons in P , i.e., Ii = [tai , t

d
i ]

is the time interval for Pi to be “active”.

2.1 Overview of the OPI Algorithm

Our main ideas are to handle the dynamic process of polygon intersections and
queries as an off-line one, and compute and use the common intersections of
many subsets of polygons (instead of one common intersection for all active
polygons) for queries.
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We handle the off-line OPI process by using static data structures, the time
trees and prefix partial intersection trees (or PPI trees). The time trees store
the time intervals of I, to allow an efficient identification of all polygons active
at any given time. One could use the active polygons to compute the common
intersection for a fast query, but that would be very time-consuming as in [18].
Instead, we compute the common intersections of many subsets of polygons,
called partial common intersections (or simply partial intersections), and store
them in the PPI trees. The set of partial intersections allows us to query the
common intersection of active polygons, yielding an efficient OPI algorithm.

The partial intersections of subsets of polygons must capture needed querying
information for the common intersection of all active polygons at any time, and
our queries on those partial intersections must be efficient. To achieve these goals,
we use a two-level scheme to partition the polygon set P into subsets. First, we
arbitrarily partition P into h subsets P1, . . . ,Ph, of k = m

h polygons each (for
a carefully chosen parameter h). Then for each subset Pi = {Pi1 , . . . , Pik

}, we
build a time tree TIi to store their time intervals, Ii = {Ii1 , . . . , Iik

}. This “high-
level” partition helps in efficiency of constructing our data structures.

The “low-level” partition focuses on each subset Pi. Pi is further partitioned
into subsets Pj

i based on its time tree TIi , such that the polygons in each Pj
i

have significant overlaps in their time intervals (and thus may be active at the
same time). Each subset Pj

i is ordered according to the time intervals of its
polygons. Every Pj

i is represented by a PPI tree, which stores various subsets
of polygons in Pj

i and their common intersections. The PPI tree for Pj
i allows

fast queries on the (implicitly represented) common intersection of any prefix
subsequence of (active) polygons in Pj

i .
The time trees and PPI trees together store the partial intersections of many

subsets of polygons in P . Each query on the common intersection of active
polygons at any time is then performed on a diverse set of partial intersections,
and this must be done carefully to gain efficiency. To answer a query at a time t0,
we first identify the collection of all active partial intersections at t0 by searching
in every time tree and its PPI trees. Then a prune-and-search process on the
corresponding partial intersections is performed to find the answer to the query.

2.2 Construction and Queries of Data Structures

The static data structures, time trees and prefix partial intersection trees (PPI
trees), provide means for efficiently identifying all active partial intersections for
queries at any given time. As pointed out above, the partial intersections are
computed and stored in PPI trees for various subsets of polygons in P . After
arbitrarily partitioning P into h subsets P1, . . . ,Ph, of k = m

h polygons each, for
each subset Pi, we construct a time tree Ti. Each time tree Ti defines (or induces)
a further partition of the polygon subset Pi for computing partial intersections.

Time Tree. A time tree Ti is a standard interval tree [2,9] that stores the
set Ii of k time intervals for the k polygons in Pi. It is built in a top-down
fashion. For j = 1, . . . , |Ti|, a node vj

i of Ti stores a subset of kj time intervals,
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Ij
i = {Ij

i1
, . . . , Ij

ikj
} ⊆ Ii, which are not assigned to any proper ancestor node of

vj
i in Ti and all contain a time tji (see [2] for more details). This means that the

polygons in Pj
i = {P j

i1
, . . . , P j

ikj
} ⊆ Pi are all active at the time tji .

The intervals in Ij
i at the node vj

i are stored in two sorted arrays: Lj
i , sorted in

the increasing order of the left endpoints of Ij
i , and Rj

i , sorted in the decreasing
order of the right endpoints of Ij

i . Suppose at any time t0, we want to use Ti to
identify the set of all polygons in Pi active at t0. If a node vj

i of Ti happens to
contain bj intervals for such active polygons, then those intervals must be the
first bj elements in the “prefix” subsequence of those in Lj

i or Rj
i (depending on

whether t0 ≤ tji or t0 > tji ). Further, this prefix subsequence of intervals (and
thus their polygons) in (say) Lj

i can be easily identified by a binary search on Lj
i

in O(log k) time. Hence, we can implicitly identify the set of all active polygons
in Pi at time t0 by reporting the index bj of the last interval in the prefix
subsequence of Lj

i or Rj
i at each “active” node vj

i in Ti. Since we visit at most
O(log k) active nodes in Ti, the total time for identifying all active polygons in
Pi at time t0 is O(log2 k). Also, since each time tree Ti (an interval tree) contains
k intervals, it can be constructed in O(k log k) time and O(k) space [2]. Thus,
for all h time trees, we have the following result.

Lemma 1. Given a set P of m polygons, the set of h time trees T1, . . . , Th for
the subsets P1, . . . ,Ph of a partition of P can be computed in O(m log k) time
and O(m) space. Using the time trees, for any time t0, we can implicitly identify
the set of all polygons active at t0 in O(h log2 k) time.

Since an interval tree stores each of its intervals at exactly one node, for each
Ti, we have Ij

i ∩ I
j′

i = ∅ for any j 
= j′ and
⋃

j I
j
i = Ii. This induces a partition

of the subset Pi of polygons for computing the partial intersections, which are
stored in PPI trees.

Prefix Partial Intersection Trees. For each subset Pj
i in the partition of Pi

induced by its time tree Ti, we build two prefix partial intersection trees (PPI
trees) TLj

i and TRj
i . The leaves of TLj

i , from left to right, contain the convex
polygons of Pj

i ordered as in the array Lj
i , and the leaves of TRj

i , from left to
right, contain the convex polygons of Pj

i ordered as in Rj
i . Each PPI tree is

built in a bottom-up fashion, so that a parent node stores a convex polygon,
called i-polygon, that is the common intersection of the i-polygons stored at its
two child nodes. The root of each PPI tree holds the common intersection of all
polygons for which the tree is built. See Fig. 1(a).

Observe that the partition of polygons induced by the time trees ensures that
if a polygon Pb at the bth leaf (in the left-to-right order) of a PPI tree T is
active at a time t0, then so are all polygons at the preceding b − 1 leaves of T
(i.e., all the b prefix polygons of T are active at t0). Combining this property
with the structures of the PPI trees, we are able to obtain needed information
on the common intersection of any prefix subsequence of the polygons stored at
the leaves of T , by looking at the partial intersections stored at multiple (in fact,
O(log k)) nodes of T .
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Fig. 1. Examples of PPI trees. Pi,j denotes the intersection of polygons Pi and Pj .
(a) A PPI tree TR2 for a set of four polygons corresponding to an array R2 of node
v2 of a time tree. Since the search for active polygons at time t0 reports b2 = 3, the
two marked partial intersections are identified using TR2. (b) A PPI tree for eight
polygons. If the last prefix index is 7, the three marked polygons are identified as the
partial intersections of the 7 prefix polygons.

In the example of Fig. 1(b), three partial intersections P1,2,3,4, P5,6, and P7
are used for the seven prefix polygons P1, . . . , P7. (A node Pi,j holds the common
intersection of polygons Pi and Pj .) Note that each index in {1, . . . , 7} appears
in exactly one of the three involved partial intersections.

Suppose we want to identify the needed partial intersections for b prefix poly-
gons P1, . . . , Pb in a PPI tree T with kj polygons in its leaves (b ≤ kj). Let SPg

denote the search path in T from the root to the gth leaf (storing the polygon
Pg). Let the left fringe of SPg be the set of nodes of T that are the left children of
the nodes on SPg but do not belong to SPg. (In Fig. 1(b), the left fringe of SP7
includes the nodes P1,2,3,4 and P5,6.) Then for any b < kj , the needed partial
intersections for the b prefix polygons are those in the left fringe of SPb+1. If
b = kj , then the (only) needed partial intersection is at the root of the PPI tree.
For example, the partial intersections for the seven prefix polygons P1, . . . , P7 in
Fig. 1 are at the left fringe nodes of SP8: P1,...,4, P5,6, and P7. Clearly, the left
fringe of any SPg has O(log kj) nodes. Thus, O(log kj) partial intersections are
used for any prefix subsequence of polygons in T .

For the time bound of PPI tree construction, let T (kj , n) denote the time for
building a PPI tree with kj polygons of O(n) vertices each. Then we have the
following recurrence relation for T (kj, n): T (kj, n) = 2T (kj

2 , n) + akjn, where
a > 0 is a constant. The solution is T (kj, n) = O(kjn log kj). The space bound
for a PPI tree can be analyzed in a similar way. Hence, we have the following
lemma.

Lemma 2. Given an ordered set Pj
i of kj polygons, the PPI tree TRj

i (or TLj
i )

can be built in O(kjn log kj) time and space. Using TRj
i (or TLj

i ), in O(log kj)
time, we can identify O(log kj) partial intersections for any number of prefix
polygons in Pj

i .

Recall that at a time tree Ti storing the time intervals of k polygons, for each
node of Ti containing kj polygons (

∑
j kj = k), we build two PPI trees (TLj

i and
TRj

i ). Thus, constructing all PPI trees for a single time tree Ti takes O(kn log k)
time. At any time t0, the total number of partial intersections for one time tree
Ti needed by a query at t0 is O(log2 k), since for each of the O(log k) active
nodes of Ti at t0, we identify O(log k) partial intersections. For h time trees, the
following holds.
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Lemma 3. Given a set P of m polygons with O(n) vertices each, the set of all
PPI trees can be built in O(mn log k) time and space. Using the h time trees and
their PPI trees, for any time t0, we can identify O(h log2 k) partial intersections
for all polygons of P active at t0 in O(h log2 k) time.

The following result is a direct consequence of Lemmas 1 and 3.

Lemma 4. Given a set P of m polygons with O(n) vertices each, it takes
O(mn log k) time and space to construct all the time trees and PPI trees. Using
these data structures, for any time t0, we can identify all the O(h log2 k) partial
intersections active at t0 in O(h log2 k) time.

2.3 Handling Queries on Common Intersections

For a query point pq at any time t0, we need to check (1) whether pq is in the
common intersection P̄ of all polygons active at t0 (the point inclusion query),
and if not, (2) find a point on the boundary δP̄ of P̄ that is closest to pq

(the closest point query), provided P̄ 
= ∅. In the following, we call the partial
intersections stored in the PPI trees as i-polygons.

To answer a query at time t0, we first identify all i-polygons active at t0, by
searching in each time tree and its PPI trees. Let Pt0 denote the set of i-polygons
active at time t0.

Point Inclusion Query. Clearly, the common intersection P̄ of the active
polygons is the common intersection of the active i-polygons. To check whether
a query point pq ∈ P̄ , it is sufficient to check whether pq is in each of the
i-polygons in Pt0 . This is a simple task. We perform a binary search on the
vertices of each i-polygon, in O(log(kn)) time. For O(h log2 k) i-polygons,
the next lemma holds.

Lemma 5. Given any query point pq and O(h log2 k) i-polygons, a point inclu-
sion query can be answered in O(h log2 k log(kn)) time.

If pq is contained in every i-polygon of Pt0 , then pq is the sought point. Otherwise,
some i-polygons in Pt0 do not contain pq, and we need to proceed with the second
query, i.e., finding a point pc on the boundary δP̄ of the common intersection P̄
that is closest to pq, or concluding that P̄ is empty (and thus there is no feasible
answer).

Closest Point Query. The problem of deciding whether the common inter-
section P̄ = ∅ and (if not) finding the closet point pc on the boundary δP̄ of
P̄ to the query point pq is closely related to the 2-D linear programming (LP)
problem [8,14]. In fact, the LP problem can be viewed as a special case of this
problem, i.e., the point pq in the LP problem is always at infinity. To solve this
LP-related problem, we use several geometric observations and a prune-and-
search process on a set of sorted arrays representing the boundary chains of the
active i-polygons in Pt0 . Due to space limit we omit the details.
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Fig. 2. (a) Three concave chains (with thick solid edges) within the angular interval
[a, b]. (b) Four convex chains (with thick solid edges) within the angular interval [a, b].
(c) Cv is a subchain of U and Cn is a subchain of L. The ray lpqp satisfies the statement
of Lemma 6, but the ray lpqr does not; hence the point r is not on the boundary δP̄ .

Let R = {R1, . . . , Rk0} be the set of i-polygons in Pt0 that do not contain
pq and R̄ be their common intersection. For any of our closest point queries,
R 
= ∅. Similarly, let Q = {Q1, . . . , Qk1} be the set of i-polygons in Pt0 that do
contain pq and Q̄ be their common intersection. Clearly, P̄ = R̄ ∩ Q̄. For each
Ri ∈ R, let Cv

Ri
(resp., Cn

Ri
) be the portion of the boundary chain of Ri that

is visible (resp., not visible) from pq (when the boundary of Ri is viewed as the
only “opaque” object in the plane). and Cn

Ri
be the boundary chain of Ri that

is not visible from pq. Let the angular interval [αi, βi] be the set of directions
in each of which a point of Cv

Ri
is visible from pq, and [α, β] =

⋂
i[αi, βi]. Note

that for each Qi ∈ Q, its whole boundary is visible from pq. Let Cv
Qi

be the
boundary chain of Qi that is in the angular interval [α, β]. Note that we only
need to consider those chains in the angular interval [α, β] since P̄ (if existing)
is completely contained in this angular interval. We classify such chains of Ri’s
and Qj ’s into two sets: The set U of concave chains, U = {Cv

Ri
| i = 1, . . . , k0},

and the set L of convex chains, L = {Cn
Ri
| i = 1, . . . , k0}∪{Cv

Qj
| j = 1, . . . , k1}.

Fig. 2(a)-(b) illustrates these two types of chains.
Since pq 
∈ P̄ , we also divide the boundary δP̄ of P̄ into two chains Cv and

Cn, where Cv is the chain visible from pq and Cn = δP̄ − Cv. The following
lemma gives a simple geometric observation.

Lemma 6. If P̄ 
= ∅, then the visible chain Cv of δP̄ is a subchain of the upper
envelope U of the concave chains in U and the invisible chain Cn of δP̄ is a
subchain of the lower envelope L of the convex chains in L. Moreover, any ray
lpqpd

originating at pq and passing through a point pd on δP̄ intersects U before
intersecting L. (See Fig. 2(c) for an illustration.)

Finding the convex and concave chains in U and L is easy. We first do a binary
search on each i-polygon Ri ∈ R to find the two tangents between pq and Ri.
The two tangents for Ri define the angular interval [αi, βi] for Ri. The two points
at which the tangents touch Ri define the visible chain Cv

Ri
and invisible chain

Cn
Ri

to pq. Since we focus only on the angular interval [α, β] =
⋂

i[αi, βi], we
find the subchains of {Cv

Ri
}k0

i=1 and {Cn
Ri
}k0

i=1 that are in [α, β]. (To simplify
the exposition, we retain the same notation for the shortened chains.) Similarly,
we find the chains in {Cv

Qj
}k1

j=1 for Q. Clearly, computing all these chains can
be done in O(log(kn)) time per i-polygon or in O(h log2 k log(kn)) total time
for all i-polygons in Pt0 . From now on, we assume that all the concave and
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convex chains in U and L are available as sorted arrays of their vertices, and
that [α, β] 
= ∅.

Using U and L, there are different ways to check if a given point p is on δP̄
and to find a point pc on δP̄ closest to pq (if pc exists). For example, one could
compute the envelopes U and L explicitly and then find pc using a binary search
on U and L. But, this is time-consuming, and we need a more efficient solution
without computing the explicit envelopes.

We use a prune-and-search approach, in which a ray lα0 originating at pq and
extending in a chosen direction α0 in an angular interval I (initially, I = [α, β])
“probes” the envelopes U and L without actually computing them. We probe U
and L by finding the intersection points of lα0 with all concave and convex chains.
This can be done by a binary search on each chain, in totally O(h log2 k log(kn))
time. Then, the point pU (resp., pL), such that the distance from pq to pU (resp.,
pL) is the largest (resp., smallest) among all intersection points of lα0 with the
concave (resp., convex) chains, belongs to U (resp., L). In a similar way as for
the LP algorithms [8,14], by examining some local geometry of U (resp., L)
around pU (resp., pL) and checking the relative positions of pU and pL with
respect to pq (see [8,14] for more details), either we locate the sought point pc,
or conclude that P̄ = ∅ (and thus no feasible answer), or decide which direction
to swing the ray for the next probe (i.e., we choose a subinterval I ′ ⊂ I, with the
current α0 as one of its endpoints, in which the next α0 will be chosen). Once
I ′ is established, we eliminate (prune) the portions of all chains that are in the
discarded subinterval I − I ′, and continue the search on the shortened chains.

A key to the efficiency of our above prune-and-search procedure is at selecting
the ray’s direction α0 in an angular interval I so that a “significant” portion of
the chains (i.e., a constant fraction of all vertices on the chains) is guaranteed
to be pruned away in each probing iteration.

Our prune-and-search process on the chains is based on a weighted selection
procedure [7]. Suppose the chains Ci ∈ U ∪ L are stored in a set of arrays Ai,
each sorted in the angular order of its vertices. Clearly, there are O(h log2 k)
such sorted arrays. For each Ai, let pi be its median element, and wi = |Ai| be
the weight of pi. Let M be the set of all such pairs (pi, wi). Then we use the
weighted median selection algorithm [7] to find the weighted median pmed of M
in O(|M |) = O(h log2 k) time. Using pmed, we do a binary search on each Ai to
prune away all its elements no bigger than pmed or larger than pmed, depending
on the swinging direction of the probing ray, in O(log(kn)) time (the pruning
is done by simply marking the remaining subarray of Ai). Hence, every probing
iteration takes O(h log2 k log(kn)) time. It is easy to see that approximately 1

4
of the total number of vertices in all arrays Ai are pruned away in each probing
iteration. We continue the process recursively on the remaining subarrays of
the Ai’s, until only totally O(h log2 k) vertices are left, at which point we simply
compute the explicit common intersection of the O(h log2 k) involved half-planes
(in O(h log2 k log(hk)) time), which then allows us to answer the query easily.

Let N = O(mn) be the number of vertices on the O(h log2 k) chains (with
O(kn) vertices per chain). The time bound T (N) for the above prune-and-search
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process is captured by the recurrence relation T (N) = T (3
4N)+ah log2 k log(kn),

where a > 0 is a constant. Thus, T (N) = O(h log2 k log(kn) log(mn)) = O(h
log2 k log2(mn)).

Lemma 7. Every closest point query can be answered in O(h log2 k log2(mn))
time.

2.4 Putting Things Together

Based on Lemmas 1, 4, 5, and 7, our algorithm for one instance of the OPI
problem, on m convex polygons of O(n) vertices each, takes O(mn log k) time to
build the data structures, and O(mh log2 k log2(mn)) time to answer the O(m)
queries.

Theorem 8. Given a set P of m convex polygons with O(n) vertices each, the
OPI problem can be solved in O(mn log k + mh log2 k log2(mn)) time, where h
is the number of subsets in an arbitrary partition of P, with each subset having
k = m

h polygons.

We need to choose the value of h in terms of m and n to calibrate the time bound
of our OPI algorithm. Note that in the surface machining settings, m ≤ n holds.
Thus we assume O(logm) = O(log n). In this case, let h = m

log3 m
(hence k =

log3 m). This gives an OPI algorithm of O(mn log logm +m2 log2(mn) log2(log m)
log3 m

)
time. (In fact, we can let h = m

logc m for some constant c ≥ 3.)
However, when m is much smaller than n (even though logm = Θ(log n)

still holds), e.g., m = O(
√
n), we can do even better. In this case, we avoid

computing any partial intersections at all (since n is too large). Instead, we use
only one time tree, in which each input convex polygon Pi is viewed as a partial
intersection by itself. Then the preprocess builds only a single time tree. Every
query involves O(m) input polygons (which are found from the time tree). Using
the techniques in Section 2.3, a query can be answered in O(m log2 n) time. This
leads to an O(m2 log2 n) time OPI algorithm (if the m polygons of O(n) vertices
each are already stored in the main memory of the computer, i.e., no time is
spent on reading in the input). Since solving the SP problem involves O(m) OPI
instances, we have the following result.

Theorem 9. The SP problem can be solved in O(min{m2n log logm +
m3 log2(mn) log2(log m)

log3 m
, m3 log2 n + mn}) time.

Finally, we should mention that if none of its O(m) OPI instances yields a feasible
solution, then the SP problem instance cannot be 2-partitioned as desired.
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Abstract. The Hausdorff distance is a measure for the resemblance of
two geometric objects. Given a set of n point patterns and a query
point pattern Q, the nearest neighbor of Q under the Hausdorff dis-
tance is the point pattern which minimizes this distance to Q. An ex-
tension of the Hausdorff distance is the translation invariant Hausdorff
distance which additionally allows the translation of the point patterns
in order to minimize the distance. This paper introduces the first data
structure which allows to solve the nearest neighbor problem for the di-
rected Hausdorff distance under translation in sublinear query time in
a non-heuristic manner, in the sense that the quality of the results, the
performance, and the space bounds are guaranteed. The data structure
answers queries for both directions of the directed Hausdorff distance
with a

�
d(s − 1.5)(1 + ε)-approximation factor in O(log n

ε
) query time

for the nearest neighbor and O(k+log n) query time for the k-th nearest
neighbor for any ε > 0. (The O-notation of the latter runtime contains
terms that are quadratic in ε−1.)

Furthermore it is shown how to find the exact nearest neighbor under
the directed Hausdorff distance without transformation of the point sets
within some weaker time and storage bounds.

1 Introduction

The Hausdorff distance is a well known and natural measure to quantify the
similarity between two geometric objects. Therefore, it is of strong interest to
have a data structure which supports the retrieval of patterns using this distance
measure and its extensions. This paper presents the first data structure which
solves the nearest neighbor problem for the directed Hausdorff distance under
translation in sublinear query time and which is not a heuristic in the sense that
the quality of the results, the performance, and the space bounds are guaranteed.

The directed Hausdorff distance
−→
h under L∞ between two point sets Q and

P is defined as −→
h (Q,P ) = max

q∈Q
min
p∈P

‖q − p‖∞

and
←−
h (Q,P ) =

−→
h (P,Q) for the opposite direction.
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When translations of the point sets are allowed, this distance measure is called
the translation invariant Hausdorff distance

−→
h T defined as

−→
h T(Q,P ) = min

t∈Rd
max
q∈Q

min
p∈P

‖q − p + t‖∞ (1)

and
←−
h T(Q,P ) =

−→
h T(P,Q) respectively.

In contrast to the undirected Hausdorff distance, the directed Hausdorff dis-
tance can be used for partial matching, which also finds fractional resemblance.
Because the proposed search structure allows queries for both directions of the
distance measure, it can be applied in order to find point sets which contain
parts of the query point set and – vice versa – point sets which are a part of the
query point set.

Let U be a set of n point patterns, where each pattern P ∈ U consists of
s points p1, ..., ps in the metric space (Rd, L∞). Given a query point pattern
Q, we are looking for the set P ∈ U which is nearest to Q with respect to
the directed Hausdorff distance under translation. The k-th nearest neighbor
problem extends this question to retrieve the point patterns P ∈ U having the
k smallest Hausdorff distance to Q under translation.

The paper consists of two parts. First it is shown how an embedding can
be used to solve the exact nearest neighbor problem for the directed Hausdorff
distance without allowing transformations of the point patterns. This data struc-
ture employs a nearest neighbor search for single points in a high dimensional
metric space under the maximum metric.

The second part of the paper extends the first structure in order to retrieve an
approximate nearest point pattern under translation. It makes use of a nearest
neighbor search for single points in a high dimensional Euclidean space.

Throughout this paper we will write Rd
2 to denote the Euclidean d-space and

Rd
∞ for the d-space with the maximum metric. Furthermore, [n] denotes the set

of integers {1, . . . , n}.
Table 1 shows the performance of the data structure for fixed dimension d and

fixed size s of the point sets under the translation invariant Hausdorff distance
and for the case when translations are not allowed. The given references describe
the employed nearest neighbor search for single points in the embedding space.

The O-notation hides that the needed space is exponential in s – see Table 2
and 3 for the time and space bounds in dependance of the dimension d and
the size s of the point sets. Furthermore the approximation depends on both
parameters in the translation invariant case. Thus, the search structure is mainly
suitable for a fast retrieval of small point sets (s/ n).

2 Related Work

There are only very few results about the nearest neighbor search under the
Hausdorff distance. Some of the data structures are designed for the search
under the directed Hausdorff distance, some under the undirected Hausdorff
distance and other under both variants of this distance function. In contrast to
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Table 1. Performance of the data structure for fixed dimension and size s of the point
patterns. The table shows the upper bounds for the retrieval when translation invariant
case and when translations of the patterns are not allowed. † The O-notation suppresses
terms that are quadratic in ε−1. ‡Holds for

−→
h only if ε ∈ O(s).

−→
h T,
←−
h T

query time prepr. time/space approx, factor

approx. nns [1] O(log n
ε
) O(n log n

εO(1) log2 n
ε
)

approx. k-nns† [2] O(k + log n) O(nO(1))

�
d(s − 1.5)(1 + ε)

−→
h ,
←−
h

query time preprocessing time space

exact nns† [3] O(logO(1) n) O(n logO(1) n) O(n logO(1) n)

apprx. nns [4] O(logO(1) n) O(n) O(n1+ε logO(1) n)‡

app. k-nns [5] O((k + 1/εO(1)) log n) O(n log n) O(n)

the directed Hausdorff distance, the undirected Hausdorff distance fulfills the
properties of a metric and corresponding search structures can benefit especially
from the triangle inequality, e.g., by using reference points. In that aspect, the
directed Hausdorff distance seems far more difficult to handle.

Braß and Knauer [6] developed a data structure for searching the nearest
neighbor under the directed and undirected Hausdorff distance without allowing
transformations of the point sets in O(m log2 n) query time with size and pre-
processing time in O(n2cn2d+1

), where m is the size of the query point set, n is
the total number of patterns and c > 0 is a suitable constant. With respect to
our setting and notation this data structure yields a query time in O(s log2(ns))
with size and preprocessing in O(ns2c(ns)2d+1

). Like the data structure proposed
in this paper, Braß and Knauer’s structure is capable of searching under both
directions of the Hausdorff distance and needs space exponential in the size s of
the point sets.

Farach-Colton and Indyk [7] gave a rather complicated approximate nearest
neighbor algorithm for the undirected Hausdorff distance and stated that it is ex-
tendable to translation invariance. For d = 2 and d = 3 their data structure an-
swers queries in O(s2 logn) time and needs superpolynomial storage nO(log s) for
a constant factor approximation or s2n1+ρ space with any ρ > 0 for an approxi-
mation factor of O(log log s). As the data structure proposed in this paper, their
search structure is based on a nearest neighbor search in an embedding space.

Another technique which is capable of retrieving the nearest point set under the
undirected Hausdorff distance makes use of the so-called vantage points [8]. The
vantage point approach is a heuristic which also requires the triangle inequality.

3 Exact Nearest Neighbor Search without Transformation

Theorem 1. Given a set U of n point patterns, where each pattern consists of s
points in Rd

∞, and a query point pattern Q, the nearest neighbor of Q in U under
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the directed Hausdorff distances
−→
h and

←−
h can be determined by an L∞-nearest

neighbor search for single points in Rsd.

Proof (Theorem 1). Let us first consider the distance
−→
h . The search structure

makes use of the following embedding:
Each point pattern P ∈ U is represented by a set P̂ of ss points in the em-

bedding space Rsd. We call such a point p̂ a representative point of P . Each
p̂ ∈ P̂ represents a different so-called variation v ∈ V (which combines a combi-
nation and a permutation) of P ’s points, i.e. we choose and order s candidates
pv(i) out of s points of P with repetition, yielding ss different mappings.

v : [s]→ [s]. (2)

Each variation generates a representative point p̂ ∈ Rsd by using the candidate
points’ coordinates as the coordinates of the representative point:

p̂ = ( pv(1)1, pv(1)2, ..., pv(1)d
,

pv(2)1, pv(2)2, ..., pv(2)d
,

...
pv(s)1, pv(s)2, ..., pv(s)d

).

(3)

Additionally, a representative point q̂ ∈ Rsd for the query point set Q is
needed. This point is derived in the same way as a representative point for
a set P ∈ U , but the assignment of the coordinates must correspond to any
permutation of Q’s points.

Performing a nearest neighbor search in the embedding space Rsd for the
representative q̂ of Q returns some representative point p̂ for some point set P
with the following distance:

min
p̂∈P̂

‖p̂− q̂‖∞

=min
p̂∈P̂

sd
max
i=1

|p̂i − q̂i|

Using the variation v which corresponds to p̂ we get:

=min
v∈V

s
max
j=1

d
max
k=1

∣∣qjk − pv(j)k

∣∣
=min

v∈V

s
max
j=1

∥∥qj − pv(j)
∥∥
∞

=max
q∈Q

min
p∈P

‖q − p‖∞

=
−→
h (Q,P )

Thus, the representative p̂ nearest to q̂ belongs to the point set P which is the
nearest neighbor of Q under the directed Hausdorff distance

−→
h (Q,P ).
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The data structure looks slightly different when queries in the opposite direc-
tion under

←−
h shall be answered. Instead of using ss representative points per

P ∈ U we use just one p̂ which represents a permutation of P ’s points. On the
other hand ss queries are performed on the embedding space for a single point
set Q, each of them using a different variation of Q’s points in q̂. Thus, we con-
sider all valid point mappings from P to Q. The formal proof is equivalent. �


Depending on the application, different nearest neighbor search structures for
L∞ in high dimensional spaces can be employed. Applying the exact search
structure given by Gabow et al. [3, Theorem 5.1], the

(
4
⌈
log1+ε log(4ds)

⌉
+ 1

)
-

approximate nearest neighbor structure of Indyk [4] and the (1+ε)-approximate
k-nearest neighbors search structure of Arya et al. [5] yields the time and space
bounds shown in Table 2.

Table 2. Time and space bounds for retrieving the exact nearest point set, the ap-
proximate nearest point set and the k nearest point sets under the directed Hausdorff
distance without allowing translations

−→
h

←−
h

ex
ac

t
nn

s
[3

]

query time O
“
(ds)! (2 log (nss))max(ds−1,1)

”
O

“
s2sd! (2 log n)max(ds−1,1)

”

prepr. time O
“
ns2sd! (2 log (nss))max(ds−1,1)

”
O

“
ns2sd! (2 log n)max(ds−1,1)

”

space O
“
ns2sd! (2 log (nss))ds−1

”
O

“
ns2sd! (2 log n)ds−1

”

ap
p.

nn
s

[4
]

query time O
“
ds logO(1) (nss)

”
O

“
dss+1 logO(1) n

”

prepr. time O (nss) O (n)

space O
“
ds1+s(1+ε)n1+ε logO(1) (nss)

”
O

“
ds1+sn1+ε logO(1) ns

”

a.
k
-n

ns
[5

]

query time O
““

k +
˚
1 + 6ds

ε

ˇds
”

ds log (nss)
”

O
““

k +
˚
1 + 6ds

ε

ˇds
”

dss+1 log n
”

prepr. time O
`
dnss+1 log (nss)

´
O (dsn log n)

space O
`
dnss+1

´
O (dsn)

4 Approximate Nearest Neighbor Search under
Translation

This section extends the technique of the previous section in order to determine
the nearest neighbor under the translation invariant Hausdorff distance.

Theorem 2. Given a set U of n point patterns, where each pattern consists of
s points in Rd

∞, and a query point pattern Q, the nearest neighbor of Q in U
under the translation invariant directed Hausdorff distances

−→
h T and

←−
h T can be√

d(s− 1.5)-approximated by a nearest neighbor search for single points in Rsd
∞

for s ≥ 3. The approximation factor is
√
d in case of s = 2.
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Theorem 3. Given a set U of n point patterns, where each pattern consists of
two points in Rd

∞, and a query point pattern Q, the nearest neighbor of Q in U
under the translation invariant directed Hausdorff distances

−→
h T and

←−
h T can be

determined exactly by a nearest neighbor search for single points in Rd
∞.

The proof of Theorem 2 and 3 extends the techniques shown in the previous
section. It consists of three parts: First the embedding space is divided into d
subspaces. With the help of these subspaces and the following Lemma 1 we realize
the translation invariance. Finally all subspaces are combined into a slightly
different embedding space again.

Throughout this section we denote a vector which consists only of ones by
1 = (1, ..., 1).

Lemma 1. The distance between two parallel lines m and l in direction 1 in Rs
∞

can be
√
s− 1.5-approximated by the distance of two points in Rs−1

2 for s ≥ 3.
The calculation is exact in the case of s = 2.

Proof (Lemma 1). The lines m and l are represented by an arbitrary point on
them. Let us use the points a ∈ m and b ∈ l whose s-th coordinate is 0 for this
purpose. The distance

‖m− l‖∞

can be attained from a to an optimal translation of the point b along l

‖m− l‖∞ = min
x∈R

‖a− b + x1‖∞ .

With δ = a− b = (δ1, ..., δs) we have

‖m− l‖∞ = min
x∈R

‖δ + x1‖∞ .

This value is the minimum of the upper envelope of the family of functions
fk(x) = |δk + x| for k = 1...s, see Figure 1. The minimum is attained at
the intersection of the two functions |δmin + x| and |δmax + x| with δmin and
δmax being the minimal and maximal δk. Due to the slope of the functions, this
happens at −(δmin + δmax)/2 with the value (δmax − δmin)/2. Since we do not
know the maximal and minimal δk, we have to determine the maximal difference
over all possible combinations:

‖m− l‖∞ =
1
2

max
i,j∈[s]

i<j

|δi − δj | .

Remember that we have chosen a and b such that as = bs = 0. It follows that
δs = 0 and we can reduce the number of parameters:

‖m− l‖∞ =
1
2

max

⎛⎝ max
i,j∈[s−1]

i<j

|δi − δj | , max
i∈[s−1]

|δi|

⎞⎠ . (4)
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|δi + x |

|δi+1 + x |
δmax − δmin

2

min
x∈R

‖δ + x1‖∞

Fig. 1. The function minx∈R ‖δ + x1‖∞ is the minimum of the upper envelope of a
family of functions

Fig. 2. (a) The points on each curve have the same distance to the origin in different
metrics. The dashed curves are based on the Euclidean metric and the solid curves on
the metric 1

2
max

�
maxi,j∈[s−1],i<j |δi − δj | , maxi∈[s−1] |δi|

�
as defined in(4) for s = 3.

When approximating one metric by the other the approximation factor is the quotient of
the radii of the two curves in one metric. (b) The unit sphere B transformed by S for s = 3
(solid curve) and its circumscribed and inscribed Euclidean sphere (dashed curves).

Setting the latter equation to 1 and the point a = 0, this formula defines a unit
sphere in Rs−1 according to the L∞-distance for lines. We denote this sphere
(which is in fact a polyhedron) by B. Figure 3a shows B for s = 4.

We now approximate the metric given by (4) by a Minkowski-metric.
When approximating one metric by another, say M1 by M2, the approxima-

tion factor c can be calculated by the ratio of the radii of two unit spheres.
Given a unit sphere u in the approximating metric M2 and its circumscribed
and inscribed spheres vin and vout in the original metric M1, the approximation
factor equals the radius of vout divided by the radius of vin, see Figure 4a. This
holds, because a point on u with the smallest norm in M1 lies on vin and another
point on u with the largest norm in M1 lies on vout. However, since both points
lie on u they have the same norm in the approximation metric M2. It is easy to
see, that an alternative way of calculating c is to inscribe and circumscribe the
unit sphere in the original metric by spheres in the approximation metric, as the
resulting factor stays the same.

Note, that there are 2
(
s−1
2

)
+ 2(s− 1) = Ω(s2) facets in B, from which Ω(s2)

are point symmetric to the origin. Thus, approximating B with the unit sphere of
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L∞ – a hypercube having just 2s facets – is unlikely to gain good approximation
factors for large s. Instead we chose L2 for the approximation.

It remains to calculate the radii rin and rout of the inscribed and circumscribed
Euclidean spheres of B. Before doing so, we improve the approximation factor
by applying a linear transformation to the space, which transforms B into a
polyhedron more similar to a Euclidean sphere. A proper transformation for
that purpose is a shearing S which maps the two farthest vertices of B with
different norms according to L2 onto the same Euclidean sphere.

S =

⎛⎜⎜⎜⎜⎜⎝
1 ω · · · ω

ω 1 · · · ω
...

...
. . .

...

ω ω · · · 1

⎞⎟⎟⎟⎟⎟⎠
The two farthest points in B are the intersection point of the hyperplanes defined
by 1 = 1

2δi for i ∈ [s− 1] and the intersection point of the hyperplanes defined by
1 = − 1

2δi for i ∈ [s−1]. These hyperplanes corresponding to the facets defined by
the term maxi∈[s−1] |δi| in equation (4). As both points have the same norm it is
sufficient to consider one of them, e.g. (2, ..., 2). A farthest vertex of the remaining
points is (2, ..., 2, 0), which is an intersection point of the hyperplanes defined by
1 = 1

2δi for i ∈ [s−2] and the hyperplane 1 = 1
2 (δs−2−δs−1). Adjusting the norms

of the points we have ∥∥∥∥∥∥∥∥∥∥∥
S

⎛⎜⎜⎜⎜⎜⎝
2
...

2

2

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
S

⎛⎜⎜⎜⎜⎜⎝
2
...

2

0

⎞⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥
2

= rout.

One of the two valid solutions for this equation is

ω =
2

(s− 3)2 − (s− 2)2
−
√

4
[(s− 3)2 − (s− 2)2]2

+
1

(s− 2) [(s− 3)2 − (s− 2)2]

yielding
rout =

∣∣2√s− 1 (1 + (s− 2)ω)
∣∣ .

(The other solution for ω adds the square-root instead of subtracting, leading to
a sharing S′. See Figure 3b/c for a comparison of S and S′ for s = 4.)

Due to space limitations, the calculation of the radius rin of the inscribed Euclid-
ean sphere of the transformed B is omitted. It can be shown that rin =

√
2(1−ω).

It remains to calculate the approximation factor, which is the quotient of the cir-
cumscribedandthe inscribedEuclideansphereofB. Insertionandsimplifyinggives

rout

rin
=

√
(2s− 2)(s− 2)

(2s− 3)
=

√
s− 3

2
− 1

4s− 6
<

√
s− 3

2
.

Thus, for s ≥ 3 the approximation factor is slightly better than
√
s− 1.5.
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(a) (b) (c) (d)

Fig. 3. All images show a variant of the unit sphere B for s = 4. (a) untransformed,
(b) transformed by S, (c) transformed by S′, which additionally mirrors B at the hy-
perplane with the normal vector 1, (d) transformed by S, circumscribed and inscribed
by a Euclidean sphere.

In case of s = 2 the unit sphere B is simply defined by the L∞-norm in R. As
this equals the one-dimensional Euclidean norm the calculation is exact. This
finishes the proof of Lemma 1. �

Proof (Theorem 2). As in the previous section we first show the proof for the
directed Hausdorf distance

−→
h T. Starting with the definition of the Hausdorff

distance under translation
−→
h T by equation 1 we have

−→
h T(Q,P ) = min

t∈Rd
max
q∈Q

min
p∈P

‖q − p + t‖∞

Now we use the variation which minimizes the maximal point distance as defined
in (2)

= min
t∈Rd

min
v∈V

s
max
j=1

∥∥qj − pv(j) + t
∥∥
∞

The composition of two min-functions is commutative

= min
v∈V

min
t∈Rd

s
max
j=1

∥∥qj − pv(j) + t
∥∥
∞

= min
v∈V

min
t∈Rd

s
max
j=1

d
max
k=1

∣∣qjk − pv(j)k
+ tk

∣∣
The composition of two max-functions is commutative

−→
h T(Q,P ) = min

v∈V
min
t∈Rd

d
max
k=1

s
max
j=1

∣∣qjk − pv(j)k
+ tk

∣∣
All tk can be chosen independently from each other. So for some function f(tk)
we have

min
t∈Rd

d
max
k=1

f(tk) =
d

max
k=1

min
tk∈R

f(tk)

which allows another re-ordering of the extremum functions

−→
h T(Q,P ) = min

v∈V

d
max
k=1

min
tk∈R

s
max
j=1

∣∣qjk − pv(j)k
+ tk

∣∣ (5)
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Now, let 1 denote the s-dimensional vector (1, ..., 1) and ρk : Rsd → Rs the
projection which projects a representative point p̂ ∈ Rsd as defined in (3) into
the subspace of the embedding space spanned by the coordinates of the j-th
point dimension:

ρk : p̂ -→ (pv(1)k
, pv(2)k

, ..., pv(s)k
)

This projection lets us reformulate the Hausdorff distance in (5) in terms of
representative points

−→
h T(Q,P ) = min

p̂∈P̂

d
max
k=1

min
tk∈R

‖ρk(q̂)− ρk(p̂) + tk1‖∞ (6)

The inner min-function equals the L∞-distance of ρk(q̂) to the line lk going
through ρk(p̂) with the slope 1

min
tk∈R

‖ρk(q̂)− ρk(p̂) + tk1‖∞

= ‖ρk(q̂)− lk‖∞
Furthermore, this term is equal to the distance of the line lk to the line mk with
lk going through ρk(q̂) with the slope 1

= ‖mk − lk‖∞ (7)

According toLemma1theL∞-distancebetween these lines canbeα-approximated
by the distance between some representative points q̃ and p̃ in Rs−1

2 with α =√
s− 1.5 for s ≥ 3. Note, that the coordinates of the subspaces must be normalized

when the smallest distance is required additionally to the nearest neighbor. Alter-
natively the exact Hausdorff distance of the approximate nearest neighbor can be
calculated in an additional final step. Using normalized subspaces we have

‖q̃k − p̃k‖2 ≤ ‖mk − lk‖∞ ≤
√
s− 1.5 ‖q̃k − p̃k‖2

Thus, we can α-approximate (6) with
−→
h T

α(Q,P ) = min
p̂∈P̂

d
max
k=1

‖q̃k − p̃k‖2

where q̃k and p̃k can be calculated from p̂ for the k-th subspace of the embedding
space as described in Lemma 1.

Finally we need to approximate the composition of the maximum-function
and the Euclidean metric in the last equation by a single metric. This can be
achieved by using only the Euclidean metric. It holds that in Rd the maximum-
distance can be

√
d-approximated by the Euclidean distance. Thus, we can

√
d-

approximate
d

max
k=1

‖q̃k − p̃k‖2
by √√√√ d∑

k=1

‖q̃k − p̃k‖2 (8)
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Table 3. Time and space bounds for retrieving the nearest point set and the k nearest
point sets under the approximate and translation invariant Hausdorff distance. †The
O-notation suppresses terms that are quadratic in ε−1 here.

−→
h T ←−

h T

nn
s

[1
] query time O

`
log n

ε
+ s log s

´
O

`
ss log n

ε

´

prepr. time/
space

O
“
nss log nss

εd(s−1) log2 nss

ε

”
O

“
n log n

εd(s−1) log2 n
ε

”

k
-n

ns
[2

]

query time† O(k + [ds log2(ds)][ds + log(nss)]) O(ss[k + (ds log2(ds))(ds + log n)])

prepr. time/
space

O (nss log (ds))2d(s−1) O (n log (ds))2d(s−1)

Defining

p̃ = ( p̃11, p̃12, ..., p̃1(s−1),

p̃21, p̃22, ..., p̃2(s−1),
...

p̃d1, p̃d2, ..., p̃d(s−1) )

and q̃ in an equivalent way, we can rewrite (8) as ‖q̃ − p̃‖2. Hence, we have a√
d(s− 1.5)-approximation of the Hausdorff distance under translation:

−→
h T

approx(Q,P ) = min
p̂∈P̂

‖q̃ − p̃‖2

where p̃ and q̃ can be calculated from p̂ and q̂ and thus from P and Q,
respectively.

Every p̃ maintains a reference to the point set it represents, and thus the
nearest point set P can be determined.

In case of s = 2 the calculation of the distance between the lines can be made
exactly by any Minkowski norm. This results in a

√
d-approximation when the

Euclidean norm is used for the nearest neighbor search in the embedding space
and an exact retrieval when the Maximum norm is used.

The presented embedding space is also suitable for calculating the nearest
neighbor of Q under

←−
h T using the same modification as in the previous section.

This finishes the proof of Theorem 2 and 3. �


Having the embedding, a nearest neighbor search for single points can be applied.
Using the (1+ε)-approximate nearest neighbor structure of Har-Peled [1] and the
(1+ε)-approximate k-nearest neighbor structure of Kleinberg [2, First Algorithm]
we achieve the results shown in Table 3. In all four cases the approximation factor
is c =

√
d(s− 1.5)(1 + ε).
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Future Work. It is possible to extend the presented technique for a retrieval
under other geometric distance measures. It would be interesting to modify the
algorithm to a constant factor approximation in terms of s or d.

Acknowledgements. Thanks to Helmut Alt for fruitful discussions.
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Abstract. Given a triangulation of a set of n points in the plane, each
colored red or blue, we show how to compute a triangulation of just the
blue points in time O(n). We apply this result to show that one can
preprocess a set of disjoint regions (representing “imprecise points”) in
the plane having total complexity n in O(n log n) time so that if one
point per region is specified with precise coordinates, a triangulation of
the n points can be computed in O(n) time.

1 Introduction

Computational geometry deals with computing structure for input data that is
embedded in a space of two or more dimensions. The most popular input is a
set of points, on which the goal is to compute a useful structure, such as a tri-
angulation. Algorithms for such tasks have been developed many years ago and
are provably fast and correct. However, a major obstacle to the practical imple-
mentation of geometric algorithms is that most theoretically sound algorithms
assume that the input data is given precisely, while, in practice, the input is
often taken from real-world data, and therefore has an intrinsic error. When the
input is not precise, the value of the output is questionable.

In many applications, even though data is imprecise, some information about
the error is known. For example, a point may be known not to be more than
some ε away from a given point, to be inside a given region, or to be chosen from
a known probability distribution. Several approaches have been proposed to use
this additional information, varying from fuzzy methods to computing partial
output that is certain to be combinatorially correct.

Here we study the situation in which each point is known to lie in a pre-
described region in the plane. We are interested in preprocessing such a collec-
tion of regions, such that if the points are later given precisely, we can do certain
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computations faster. This is not always possible: if all regions have a common
intersection, then the precise sample could be an arbitrary point set within the
intersection, so lower bounds for the classical case apply.

Specifically, the main problem we solve in this paper is that of triangulating
imprecise points: given a set S = {P1, P2, . . . , Pm} of non-overlapping polygonal
regions in the plane having a total of n vertices, preprocess them in such a
way that when a set {p1, . . . , pm} of points is given, with pi ∈ Pi and each
point specified by its exact coordinates and knowledge of its containing region,
a triangulation of the points pi can be computed in linear (O(n)) time.

In our solution, we encounter a very natural problem that we believe to be of
independent interest. The problem is to split a triangulation: given an arbitrary
triangulation of a set of n vertices in the plane, each colored red or blue, compute
a triangulation of just the blue vertices. We show how to split a triangulation in
linear (O(n)) time.

In the next section, we study the triangulation splitting problem. Then, in
Section 3, we show how this result applies to preprocess a set of disjoint regions
in the plane for linear-time triangulation of sample points. In Section 4, we give
some concluding remarks.

Related Work. The problem of splitting an arbitrary triangulation is similar
to one studied by Chazelle et al. [3], who show how to compute, given a Delaunay
triangulation with red and blue vertices, the Delaunay triangulation of the blue
vertices in linear time.

Data imprecision in computational geometry has traditionally been considered
mostly in stochastic or fuzzy settings [9,17]. However, in recent years there has
been a growing interest in exact models of imprecision. Guibas et al. [7] introduce
the notion of espilon geometry, a framework for robust computations on impre-
cise points. Abellanas et al. [1] and Weller [21] study the tolerance of a geometric
structure: the largest perturbation of the vertices such that the combinatorial
structure remains the same. Bandyopadhyay and Snoeyink [2] compute the set
of “almost-Delaunay simplices,” which are the tuples of points that could define
a Delaunay simplex if the entire point set is perturbed by at most ε > 0. Ely
and Leclerc [6] and Khanban and Edalat [11] consider the epsilon geometry ver-
sions of the In-Circle predicate for Delaunay triangulation with imprecise points
modeled as disks or as rectangles, respectively. Khanban and co-authors [10,12]
developed a theory for returning partial Delaunay or Voronoi diagrams, consist-
ing of the portion of the diagram that is certain. Sember and Evans [20] compute
a related structure, the “guaranteed Voronoi diagram”, of a set of imprecise sites.
Van Kreveld and Löffler [14,15] consider the problem of determining the smallest
and largest possible values for geometric extent measures—such as the diameter
or convex hull area—of a set of imprecise points.

Some prior results on triangulating imprecise points are known as well. Held
and Mitchell [8] consider the problem of preprocessing a set of n disjoint unit
discs in O(n logn) time, such that when one point in each disc is given, the point
set can be triangulated in linear time. They give a simple and practical solution.
Their result can be extended to overlapping regions of different shapes, as long
as the regions do not overlap more than a constant number of other regions, the
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regions are fat, and the sizes do not vary by more than a constant factor. In
the same setting, Löffler and Snoeyink [13] show that a set of discs can be pre-
processed in O(n log n) time such that the Delaunay triangulation of the points
can be computed in linear time. This algorithm relies on the linear-time con-
strained Delaunay triangulation algorithm for polygons by Chin and Wang [4],
which would not be easy to implement. The same extensions to partially over-
lapping fat regions are possible.

In both previous results [8,13], the extensions work only up to a class of shapes
bounded by a number of constants, which end up in the running times. An
interesting question is what can be done for more general regions. As mentioned
earlier, we cannot hope to do any useful preprocessing if the overlap of the regions
is not bounded. However, for a set of n general disjoint regions in the plane, there
is hope to do more. For a set of general disjoint regions, a linear-time Delaunay
triangulation algorithm is not possible, since Seidel [19] shows that even if the
sorted order of a set of points is given, computing the Delaunay triangulation
requires Ω(n logn) time. If the input regions consist of a set of vertical lines,
then any amount of preprocessing of the regions only yields the sorted order (in
x-coordinate) of the sample points that lie on the lines.

Our results show that, although the Delaunay triangulation is out of reach,
we can preprocess a set of disjoint regions such that some triangulation of a
sample can be computed in linear time.

2 Splitting a Triangulation

In this section we study the following problem: given a triangulation embedded
in the plane with vertices that are colored either red or blue, compute a trian-
gulation of only the blue vertices. Figure 1 shows an example of this problem.
To solve the problem, we will remove all of the red points one by one, until we
have only blue points left. During this process, we will maintain a subdivision of
the plane with certain properties, which allows us quickly to find new red points
to remove and to remove them efficiently. We first describe this subdivision and
some operations we can perform on it, and then give the algorithm and time
analysis.

(a) (b)

Fig. 1. (a) Example input with red (open) and blue (solid) points. (b) Example output.
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2.1 Structure and Operations

During the algorithm, we will maintain a subdivision of the plane that uses the
blue points and remaining red points as vertices. The subdivision is a special kind
of pseudotriangulation (see, e.g., [16]). A pseudotriangulation is a subdivision of
a convex region into pseudotriangles : simple polygons with exactly three convex
vertices. The three convex vertices are also called the corners of the pseudotrian-
gle, and the three polygonal lines connecting each pair of corners are called the
sides of the pseudotriangle. (Note that we do not require a pseudotriangulation
to be “pointy” or “minimal”.)

Fig. 2. A fox is a pseudotriangle with one red vertex and one concave chain of blue
vertices

In the pseudotriangulation that we maintain, we allow only two types of faces:
triangles and foxes. A fox is a pseudotriangle that has only one side that is not
a straight edge and that has all vertices blue except the one (red) vertex that is
incident to the two straight sides. We call the red vertex the chin of the fox, and
the other two convex vertices the ears. Figure 2 shows an example of a fox. For
each fox, we store the chain of concave blue vertices in a balanced binary tree.
If a pseudotriangulation has only triangles and foxes as faces, we call it happy.

Note that our input triangulation is happy, since it has only normal triangles.
Also note that if we manage to remove all red vertices and maintain a happy
subdivision, we cannot have any foxes left, since a fox has a red vertex: we are
left with only normal triangles with three blue vertices, which is the required
output of the algorithm.

Whenever we have a happy subdivision, we will denote the number of blue
points by n and the number of remaining red points by k.

For a given red point p, let r(p) be the number of red neighbors of p and b(p)
the number of blue neighbors of p (i.e., r(p) + b(p) is the degree of p). Observe
that any face to which red point p is incident is either a triangle or a fox that
has p as its chin. As a consequence, the union of all faces incident to p forms a
star-shaped polygon. By c(p) we denote the total complexity of this polygon.

In addition to the shape restriction on the pseudotriangles, we will impose
one more condition that we will maintain throughout the algorithm. For all red
points p, Condition (∗) should hold.

b(p) ≤ 2 · r(p) + 3 (∗)

This condition is not necessarily true for the input triangulation, so we will have
to do an initial pass over the input triangulation to make this condition hold.
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2.2 The Algorithm

First, we must make sure that all red points in the pseudotriangulation sat-
isfy Condition (∗). We describe below (Lemma 1) how to simplify a red point.
Applying this to each red point takes O(n) time in total.

Next, we perform a sequence of reduction steps, at each step reducing the
number of red points by a constant factor. At a step when we have k red points
left, we want to find an independent set of O(k) red points each having constant
red degree. Since this step does not depend on any blue points, this can easily
be done in O(k) time.

Then, we remove each of the red points in the independent set by applying
Lemma 3 (below). The resulting subdivision is still happy, but Condition (∗)
may no longer hold for red points that had a red neighbor that was removed.
However, we can repair this condition by applying Lemma 2 (below) to those
red points, but only in the sectors where something changed. The number of
red-blue edges in those sectors cannot have increased by more than the number
of edges that were added in the removal step. We added no more than a constant
number of red-blue edges for each removed point, so this is in total at most O(k).

Simplifying a Red Point. The proof of the following lemma will appear below,
after the proof of Lemma 2:

Lemma 1. Let p be a red point in a happy pseudotriangulation. We can make
Condition (∗) hold for p in O(c(p)) time.

(a) (b)

Fig. 3. (a) The pseudotriangles incident to a given red point form a star-shaped region.
(b) By adding and removing the appropriate edges, we can make Condition (∗) hold.

Figure 3 shows an example. Since p is a red point, and the pseudotriangulation
is happy, the region around p (the union of its incident cells) is a star-shaped
polygon of which all red and all convex vertices are connected to p. The purpose
of this step is to remove any superfluous red-blue edges incident on p. We leave
all red-red edges where they are, so we do not need to consider them. Between
each pair of red neighbors of p, there is a sector of the star that has only blue
points (we will consider the case where p has no red neighbors separately). We
will first prove the following lemma for a single sector.

Lemma 2. Let p be a red point, and let q and r be two red neighbors of p such
that there are no other red neighbors of p between them. Let b be the number
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of blue neighbors of p between q and r, and c the total number of blue points
between q and r. In O(b log c + m) time or in O(c) time, we can update the
subdivision such that the number of red-blue edges between q and r is at most 2
if �qpr ≤ 180◦, and at most 3 otherwise.

Proof: We have a sequence of blue points, some of which may be connected
to p. The first and last points are always connected to p, since their neighbors
are red, and any face of the subdivision with two red vertices must be a normal
triangle. Now, if any other point s is also connected to p, we can almost always
remove it. There are two cases.

If s is concave, we can simply remove edge ps. Both neighbors of s are blue,
so the two cells ps divides must be foxes (or normal triangles with one red and
two blue vertices, which are degenerate foxes). Since s is also concave, the com-
bination of both cells is still a valid cell. In this case, we do need to concatenate
the two binary trees that store the chains between the ears of the foxes. We
postpone this concatenation until the end of the procedure.

If s is convex, we can remove the edge ps if the (normal) triangle formed by
s and its two neighbors is empty. If this is the case, we add this completely blue
normal triangle and then add edges from its other two corners to p, and recurse.
If the triangle is not empty, then we must keep the edge ps. However, this is
only possible if p itself is inside this triangle, which can happen at most once
and only if the angle of the sector is at least 180◦.

After all superfluous red-blue edges have been removed, we might be left
with a sequence of O(b) blue chains, stored as balanced binary trees, of total
complexity O(c), which have to be concatenated into one big balanced binary
tree. We note that this can be done in O(b log c) time by merging them one by
one, or in O(c) time by simpy building a new tree from scratch. �
With this result, we can prove Lemma 1.

Proof: We apply Lemma 2 to all sectors, using O(c) time complexity. There can
be at most 2 sectors with an angle of at least 180◦, so if p has any red neighbors
the number of red-blue edges after simplifying all sectors is at most 2r(p) + 2.

If p does not have any red neighbors, we can still proceed with deleting blue
edges as described above, until there are only three neighbors left. In fact, in
this case we are just triangulating the star-shaped polygon that remains after
removal of p.

In both cases, Condition (∗) follows. �

Removing a Red Point

Lemma 3. Let p be a red point in a happy subdivision with r(p) = O(1), for
which Condition (∗) holds. We can remove this point from the subdivision, and
partition the gap it leaves into triangles and foxes in O(log c(p)+m) time, where
m is the number of blue-blue edges formed in this step.

Proof: Because of Condition (∗), we know that also b(p) = O(1). We can
remove p and all its incident edges, of which there are only a constant number.
This results in an empty star-shaped polygon which needs to be partitioned into
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(a) (b) (c)

Fig. 4. (a) A red point p of constant red degree and its incident pseudotriangles.
(b) The empty polygon after removing p. (c) A repseudotriangulation of the gap.

smaller cells again, see Figure 4(b). The complexity of this polygon is c(p), and
consists of r(p) red points and at most b(p) concave chains of blue points.

We will partition the gap into pseudotriangles. As described in [18], we can
add geodesic shortest paths between pairs of convex vertices of a simple polygon,
until a (minimal) pseudotriangulation has been found. Since we have only a
constant number of convex vertices, we only need to insert a constant number of
shortest paths. For a given pair of vertices, we can compute this shortest path
in O(log c(p)) time, because we stored the chains of concave vertices in binary
trees and we can compute tangents in logarithmic time. After this procedure,
the gap has been split into a constant number of pseudotriangles in O(log c(p))
time, see Figure 4(c). All the pseudotriangles have only blue concave vertices.

We now apply Lemma 4 (below) to all of these pseudotriangles to obtain a
partitioning of the gap into a constant number of triangles and foxes, plus any
necessary number of completely blue triangles. �
We now have a happy subdivision again, although Condition (∗) may no longer
be true for some red vertices on the boundary of the gap.

Subdividing a Pseudotriangle. Since removal of a red point can lead to
pseudotriangles that are not foxes or normal triangles, we describe how to sub-
divide a pseudotriangle:

Lemma 4. Let T be a pseudotriangle, with the restriction that all concave ver-
tices are blue. We can subdivide T into O(1) non-blue triangles and foxes plus
some number of triangles that are completely blue, in time O(log c+m) where c
is the complexity of T and m is the number of blue-blue edges we produce in this
step.

Proof: If none of the sides of T have any concave vertices, then T is already a
normal triangle.

If only one of the sides has concave vertices, and the corner opposite to it is
blue, then we can triangulate the pseudotriangle with edges from the blue corner
to all of the concave vertices, see Figure 5(a). This creates many blue triangles,
and at most two triangles that involve a red point. If the corner opposite to it
is red, then depending on the colors of the other two corners we either make an
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(a) (b) (c) (d) (e) (f)

Fig. 5. We can subdivide any pseudotriangle into O(1) triangles and foxes, plus a
number of blue triangles

edge to the neighbors or not, see Figure 5(b). In this case, we make one fox and
at most two triangles on the sides.

If two of the sides of the pseudotriangle have a concave vertex on them,
consider the corner between these two sides. We can add an edge between its
two neighbors, which are both blue. We can then continue adding blue-blue edges
between the two chains, until this is no longer possible. The part that is left is
then either a quadrilateral, see Figure 5(c), which we can simply split into two
triangles, or a pseudotriangle with at most one side with concave vertices, see
Figure 5(d), which we can further split in the way described above.

If all three sides have concave vertices on them, consider one of the corners. If
we can make an edge between this corner and one concave vertex of the oppo-
site side, then this splits the pseudotriangle into two pseudotriangles with both at
most two sides with concave vertices, see Figure 5(e), which we can then further
split as described above. We can find out whether there is such an edge in O(log c)
time by extending the edges adjacent to the corner, and intersecting them with
the opposite chain. If this is not possible for any corner, then we can connect the
two neighbors of each corner with a blue-blue edge, see Figure 5(f). The remaining
area has only blue vertices, and can be triangulated in any way. �

2.3 Time Analysis

The first phase of the algorithm takes O(n) time.
Then, let 1/f denote the fraction of the red points that remain after throwing

some away in each step. Then we perform logf n phases. At the end of the ith
phase there are k/f i red points remaining. In each phase, we spend O(k) time to
find an independent set. Then, we spend O(log c(p) + m) time for each element
in the set. We can charge the m to the blue-blue edges that are created; since
there can be at most O(n) blue-blue edges and they are never removed, we spend
no more than O(n) time in total on them. The c(p) factors are added over all
elements in the independent set, and can be no more than O(n) in total. In the
worst case, they are divided equally, and we spend O(k · log n

k ) time on removing
the points. By Lemma 2, Condition (∗) can be repaired in a sector that was
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involved in a removal step in O(log c(p)+m) time, since the number of red-blue
edges in such a sector is constant. There are at most O(k) such sectors, so again,
in the worst case all blue points are equally divided and we spend O(k · log n

k )
time on repairing them.

The total time we spend is now

logf n∑
i=1

O(
n

f i
log f i) =

logf n∑
i=1

O(f i log
n

f i
) =

n∑
k=1

O(log
n

u(k)
),

where u(k) is the smallest power of f larger than k. We can interprete this as
the summation over k of the amount of time charged to removing one red point
when there are k left. This time bound is then bounded by

n∑
k=1

O(log
n

k
) = O(log

nn

n!
) = O(n log n− logn!) = O(n).

3 Triangulating Imprecise Points

With the triangulation splitting result, it becomes straightforward to solve our
original problem: given a set S = {P1, . . . , Pm} of non-overlapping polygonal
regions in the plane of total complexity n, preprocess them in such a way that
when a point pi ∈ Pi in each region is given, a triangulation of these points can
be computed in linear time.

Preprocessing
In preprocessing, we compute a triangulation of the plane of complexity O(n),
such that each triangle contains only (a part of) one of the input regions. To-
gether with this, we create a list of pointers from each imprecise region Pi to
the set of triangles that cover this region. If the regions S are disjoint polygons
(not necessarily simple – they can have holes or multiple components), this is
simple to do in O(n log n) time by computing a constrained triangulation of the
vertices of the regions, as in Figure 6(b).

Reconstruction
Now, when we are given a set {p1, . . . , pm} of points such that each point pi lies
inside an input region Pi, and it is known which point lies in which region, we
want to compute a triangulation of the points pi in linear (O(n)) time.

To do this, we add the points to the triangulation computed in the preprocess-
ing step. For this we need to locate each point pi in the triangulation, which we
do by simply walking through all triangles to which region Pi points (since we
know that pi ∈ Pi). Since each triangle is contained in a single region, we spend
only O(n) time in total. Once the triangle containing pi is identified, we simply
split it into three smaller triangles. Figure 6(c) shows an example.

Now we have a triangulation with two types of vertices: the ones from the pre-
processing (red) and the ones we added (blue). We simply invoke the algorithm
from Section 2 to obtain a triangulation of just the blue points.
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(a) (b) (c)

Fig. 6. (a) A set of regions in the plane. (b) A triangulation of the vertices of the
regions. (c) The sample points have been added to the triangulation.

3.1 Extensions

The main improvement of our algorithm over [8] and [13] is that the input regions
for the algorithm do not have to be fat or have the same size, or even be convex
or connected. However, we do still assume that the regions are polygonal and do
not overlap.

We can extend the approach to work also for regions that are not completely
disjoint, as long as the complexity of their overlay is not too high. If we com-
pute the overlay of the polygons and triangulate the resulting arrangement, the
method will run in O(n log n + c) preprocessing and O(ck log k) reconstruction
time, where c is the total complexity of the overlay, and k is the maximum
number of regions that overlap in a single point.

If the input regions are not polygonal, we cannot simply triangulate their
vertices, but our approach still applies if we first compute a polygonal subdivision
of the plane such that each face contains one region. If the regions are convex,
such a subdivision can be computed having complexity that is linear in the
number of regions [5]. If the regions are not convex, the complexity may increase,
depending on the exact shape of the regions.

4 Conclusions

When a set of points is unknown, but constrained by a known region for each
point, it is interesting to preprocess the regions to speed up computations when
the exact locations of the points become known. We give an algorithm to pre-
process a set of disjoint regions in the plane in O(n logn) time, so that a sample
from the regions, one point per region, can be triangulated in linear time. This
time bound is optimal and improves previous results by allowing more general
regions. In future work, it would be interesting to study whether similar results
can be obtained in higher dimensions.

Our method is based on an algorithm we presented for splitting a triangulation
in linear time. This is a very natural problem that we believe is interesting in
its own right.
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Abstract. The Reeb graph tracks topology changes in level sets of a scalar func-
tion and finds applications in scientific visualization and geometric modeling.
This paper describes a near-optimal two-step algorithm that constructs the Reeb
graph of a Morse function defined over manifolds in any dimension. The algo-
rithm first identifies the critical points of the input manifold, and then connects
these critical points in the second step to obtain the Reeb graph. A simplifica-
tion mechanism based on topological persistence aids in the removal of noise and
unimportant features. A radial layout scheme results in a feature-directed drawing
of the Reeb graph. Experimental results demonstrate the efficiency of the Reeb
graph construction in practice and its applications.

1 Introduction

The Reeb graph of a scalar function describes the connectivity of its level sets. The
abstract representation of level-set topology within the Reeb graph enables development
of simple and efficient methods for modeling objects and visualizing scientific data.
Reeb graphs and their loop-free version, called contour trees, have a wide variety of
applications including computer aided geometric design [20,25], topology-based shape
matching [13], topological simplification and cleaning [11,24], surface segmentation
and parametrization [12,26], and efficient computation of level sets [22]. They serve as
an effective user interface for selecting meaningful level sets [2,5] and transfer functions
for volume rendering [23].

1.1 Related Work

Several algorithms have been proposed for constructing Reeb graphs. However, only
a few produce provably correct Reeb graphs. Shinagawa and Kunii proposed the first
algorithm for constructing the Reeb graph of a scalar function defined on a triangulated
2-manifold [19]. Their algorithm explicitly tracked connected components of the level
sets and has a running time of O(n2), where n is the number of triangles in the input.
Cole-Mclaughlin et al. [7] improved the running time to O(n logn) by maintaining the
level sets using dynamically balanced search trees. In a recent paper, Pascucci et al. [17]
proposed an online algorithm that constructs the Reeb graph for streaming data. Their
algorithm takes advantage of the coherency in the input to construct the Reeb graph
efficiently. In the case of streaming data, where triangles are processed one after an-
other, the algorithm essentially attaches the straight line Reeb graph corresponding to
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the current triangle with the Reeb graph computed so far. Even though the algorithm has
a O(n2) behavior in the worst case, it performs very well in practice for 2-manifolds.
However, the optimizations that result in fast incremental construction of Reeb graphs
for 2-manifolds do not provide a performance benefit in higher dimensions. We adopt
a simple but different approach to compute Reeb graphs that traces connected compo-
nents of interval volumes (the volume between two level sets). This approach results in
an algorithm that exhibits good worst-case behavior and works well in practice - while
we obtain good running times for 2-manifolds, our algorithm performs better than the
online algorithm for 3-manifolds.

For the special case of loop-free Reeb graphs, Carr et al. [4] described an elegant
O(v logv) algorithm that works in all dimensions, where v is the number of vertices
in the input. Besides the naı̈ve O(n2) algorithm and the online algorithm, there is no
known algorithm for computing Reeb graphs of manifolds in higher dimension. The
presence of loops in the Reeb graph implies that its decomposition into a join and
split tree, which was crucial for the efficiency of the algorithm by Carr et al., may
not exist. Efficient storage and manipulation of connected components of level sets
will lead to fast construction of Reeb graphs. Cole-Mclaughlin et al. [7] adopt this
approach to obtain an efficient algorithm for 2-manifolds. However they exploit the
unique property of one-dimensional level sets that their vertices can be ordered, and
hence, their algorithm does not directly extend to higher dimension manifolds. Other
algorithms for computing Reeb graphs follow a sample based approach that produces
potentially inaccurate results [13,21].

1.2 Results

We present an efficient two-step algorithm for computing the Reeb graph of a piecewise-
linear (PL) function in O(n + l + t logt) time, where n is the number of triangles in the
input mesh, t is the number of critical points of the function, and l is the size (number
of edges) of all critical level sets. The algorithm has various desirable properties. It is

– output-sensitive: the running time depends of the number of critical points of the
function, which is equal to the number of nodes in the Reeb graph, and the size of
critical level sets, which is indicative of the importance of features in the data.

– near-optimal: the size of critical level sets is usually O(n) in practice. So, the worst-
case running time is close to the optimal bound of (n + t logt) [22].

– generic: the algorithm works, without any modifications, for functions defined on
d-manifolds and for non-manifolds.

– simple: the algorithm is simple to implement.

We also describe a method to simplify the Reeb graph based on an extended notion
of persistence [1] that removes short leaves and cycles in the graph. Finally, we describe
a feature-directed layout of the Reeb graph that serves as a useful interface for exploring
and understanding three-dimensional scalar fields. We also present experimental results
that demonstrate the efficiency of our algorithm.
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2 Background

Let Md denote a d-manifold with or without boundary. A smooth, real-valued function
f : Md → R is called a Morse function if it satisfies the following conditions [7]:

1. All critical points of f are non-degenerate and lie in the interior of Md .
2. All critical points of the restriction of f to the boundary of Md are non-degenerate.
3. All critical values are distinct i.e., f (p) 
= f (q) for all critical points p 
= q.

The above conditions typically do not hold in practice for PL functions. However, simu-
lated perturbation of the function [8, Section 1.4] ensures that no two critical values are
equal. All multiple saddles (degenerate) can be unfolded into simple (non-degenerate)
saddles by repeatedly splitting the link of the multiple saddle [9]. A total order on the
vertices helps in consistently identifying the vertex with the higher function value be-
tween a pair of vertices.

2.1 Critical Points and Level Sets

Critical points of a smooth function are exactly where the gradient becomes zero. Ban-
choff [3] and later Edelsbrunner et al. [9] describe a combinatorial characterization for
critical points of a PL function, which are always located at vertices of the mesh. The
link of a vertex consists of all vertices adjacent to it and the induced edges, triangles, and
higher-order simplices. Adjacent vertices with lower function value and their induced
simplices constitute the lower link, whereas the adjacent vertices with higher function
value and their induced simplices constitute the upper link. For functions defined on
2- and 3-manifolds, the critical points are classified based on the number of connected
components (denoted as β0, the zeroth Betti number) of the lower and upper link. Clas-
sification of all critical points in higher dimensions requires the computation of higher
order Betti numbers.

The preimage of a real value is called a level set. The level set of a regular value is
a (d− 1)-manifold with or without boundary, possibly containing multiple connected
components. We are interested in the evolution of level sets against increasing function
value. Significant topological changes occur at critical points, whereas topology of the
level set is preserved across regular points [14].

In the context of Reeb graphs, we are only interested in critical points that modify the
number of level-set components. So, it is sufficient to count the number of connected
components of the lower / upper link for identifying these critical points. Given a critical
point ci with function value fi, we define a critical level set as the level set at a function
value infinitesimally below / above fi (i.e. f−1( fi± ε)).

For example, consider the case when d = 3. A level set of a 3-manifold is called
an isosurface. Figure 1 illustrates the topology changes that occur at critical points
of a 3-manifold. Specifically, the level set topology changes either by gaining/losing
a component or by gaining/losing genus. The isosurface gains a component when it
evolves past a minimum and loses a component when it evolves past a maximum. At
2-saddles, the local pictures in Figure 1 indicate an apparent splitting of a component
into two. Global behavior of the isosurface component will determine if this is indeed
a split or a reduction in genus.
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Fig. 1. Figures above show the isosurfaces before
( f−1(c− ε)) and after ( f−1(c + ε)) passing through a
point with function value c and the structure of the Reeb
graph at the corresponding node. Topology of the isosur-
face changes when it evolves past a critical point.

Fig. 2. Reeb graph of the height
function defined on a surface with
two tunnels. Reeb graph tracks the
topology of level sets.
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Fig. 3. Mapping between arcs in
the Reeb graph and cylinders in
the input

2.2 Reeb Graph

The Reeb graph of f is obtained by contracting each connected component of a level
set to a point [18]. The Reeb graph expresses the evolution of connected components
of level sets as a graph whose nodes correspond to critical points of the function, see
Figure 2. Figure 1 illustrates the structure of the Reeb graph for 3-manifolds at various
types of nodes. In the case of saddles, the corresponding node has degree 3 if the saddle
merges/splits components, and degree 2 if it is a genus modifying saddle.

This view of the Reeb graph focuses on the mapping between components of indi-
vidual level sets and nodes or points within arcs of the graph. We propose the use of an
alternate mapping between nodes / arcs of the graph and components of critical level
sets / equivalence classes of regular level set components. The two mappings are con-
sistent with each other. The advantage of the alternate view is that it leads to a simple
and efficient algorithm to compute the Reeb graph. For example, in Figure 3, the arc
a1 is mapped to cylinder A1, a collection of regular level set components that are topo-
logically equivalent to each other. The boundary of A1 consists of two critical level set
components. The end point v2 of the arc originating at v1 can be computed by tracing
the cylinder from the lower boundary component to the upper component.

2.3 Input

We assume that the input manifold is represented by a triangulated mesh, the function is
sampled at vertices, and linearly interpolated within each simplex. In the case of higher
dimensional manifolds (d ≥ 3), the algorithm requires only the 2-skeleton (vertices,
edges, and triangles) of the mesh.
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3 The Reeb Graph Algorithm

We now describe an algorithm that computes the Reeb graph of a PL function f de-
fined on a 3-manifold. The algorithm directly extends to d-manifolds (d ≥ 2) and non-
manifolds but in order to simplify the description, we will consider the case of d = 3 in
this section. The algorithm proceeds in two phases:

1. Locate critical points of the input and sort them based on function value.
2. Connect critical point pairs to obtain arcs of the Reeb graph.

A vertex is regular if it has one lower link component and one upper link component.
All other vertices are critical. A critical point is a maximum if the upper link is empty
and a minimum if the lower link is empty. Number of components of the upper and
lower links are computed using a breadth first traversal of the link. We only need to
locate the critical points and classify them as either a minimum, maximum or saddle.

3.1 ls-Graph

Tracking components of the level set requires only a 1-skeleton (vertices and edges)
representation of the level set. Edges in a level set of f will pass through a set of trian-
gles in the input mesh. We track components of level sets between two function values
f1 and f2 ( f1 < f2) by traversing triangles through which each component of the level
set passes as function values are varied from f1 to f2. We introduce a dual graph that
stores triangle adjacencies and helps track level set components. This graph Gls (V,E),
called the ls-graph , is a directed graph whose nodes V = {t1,t2, . . . ,tn} corresponds to
the n triangles {T1,T2, . . . ,Tn} in the input mesh. Each node ti is assigned a cost equal
to the maximum over function values at the vertices of the triangle Ti. Let v0,v1, and v2

( f (v0) < f (v1) < f (v2)) be vertices of a triangle Ti. Gls contains an edge between ver-
tices ti and t j if triangles Ti and Tj are adjacent, unless Ti and Tj share the edge (v0,v1)
and the cost of t j is greater than f (v1), see Figure 4. The dotted, solid and dashed lines
within the triangles indicate the edges of the level set when the function value becomes
greater than f (v0), f (v1) and f (v2) respectively. An edge is directed towards the node
with higher cost. Traversing an edge in Gls implicitly tracks a component of a level set
as function value increases. If this edge does not cross a critical value, then the traversal
is equivalent to tracing a path within a cylinder. Figure 4(f) shows a configuration where
the level set potentially splits and hence no edge is inserted between ti and t j.

3.2 Connecting the Critical Points

Our iterative algorithm uses the ls-graph to compute arcs in the Reeb graph. Let {c1,c2,
. . . ,ct} be the ordered set of critical points with function values { f1, f2, . . . , ft} ( fx < fy

whenever x < y). Let Li denote the set of triangles that contain the components of the
critical level set f−1( fi− ε) that are modified by ci. The ith iteration of the algorithm
connects ci with a set of critical points cp ( fp > fi).

The star of a vertex consists of all simplices incident on the vertex. All simplices in
the star where the function value is greater than the vertex constitute the upper star. Let
the upper star of ci contain k connected components (k≤ 2 for a Morse function). Each
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Fig. 5. Connecting critical
points in the algorithm

component of the star corresponds to a possible arc in the Reeb graph starting from ci.
Initiate a search in the ls-graph beginning with a node ti j corresponding to a triangle Ti j

in the jth component ( j = 1...k) of the upper star of ci. We move to a higher cost node
in Gls at each step of the search. The search terminates when we find a node t ′i j with cost
greater or equal to fi+1. An arc connects the nodes corresponding to ci and ci+1 in the
Reeb graph iff the triangle T ′i j belongs to the set Li+1. This search represents a monotone
ascent through the cylinder. The search procedure for the ith iteration is illustrated in
Figure 5, which shows a slice of the input mesh with the relevant triangles. Triangles in
Lp are shaded, different colors indicating disjoint components of the level set.

We use a triangle-edge data structure [15] to store the input triangulation. The ls-
graph is implicitly stored in this data structure because each triangle-edge pair stores a
reference to neighboring triangle-edge pairs. During the search, we tag a visited node
with a label [i, j] if its cost is lesser or equal to fi+1. If T ′i j does not belong to Li+1, we
continue the search until we reach a node with cost greater or equal to fi+2, in order to
determine if an arc in the Reeb graph connects ci with ci+2. We repeat the search until
it is successful.

If a search initiated in the ith iteration from a node in the jth component of the upper
star reaches a node with a tag [i, j′] ( j 
= j′), then ci is a genus modifying saddle and
therefore the Reeb graph remains unchanged. The critical point ci is again a genus mod-
ifying saddle if the search reaches a node, whose corresponding triangle lies in a critical
isosurface component that was previously visited from a different upper star component
of ci. Note that it is impossible for the search initiated in the ith iteration to reach a ver-
tex tagged [i′, j] (i 
= i′) for any j, because this will imply that two components of a level
set merged into one at a regular vertex.

The Reeb graph is stored as an adjacency list whose nodes correspond to critical
points of the function. An arc from ci to cp is added if the search finds a triangle in Lp.
Once all critical points are processed, the adjacency list will represent the Reeb graph.

3.3 Analysis

Correctness. Let cp ( fi < fp) be a critical point such that there is an arc from ci to
cp in the Reeb graph. So, if we track a component of the level set at function value
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infinitesimally above fi and keep increasing the function value until it reaches fp, then
the topology of that component remains unchanged until the function value reaches fp.
Consider a triangle Ti j that contains the level set component when the tracking begins.
As we increase the function value past the cost of the node ti j, the level set component
passes through an adjacent triangle with cost greater than that of ti j. This is equivalent
to the search in the ls-graph as performed by the algorithm. The algorithm continues the
above procedure until we reach a node t ′i j with cost greater than or equal to fp. Since
the cost of the preceding node is less than fp, an isosurface component at a function
value infinitesimally below fp will pass through the triangle T ′i j. Since the Reeb graph
contains an arc between critical points ci and cp, the triangle T ′i j will belong to the set
Lp and our algorithm will identify the arc (ci,cp) of the Reeb graph.

Running time. Let n be the number of triangles in the input and t be the number
of critical points of the input PL function. Triangles adjacent to a given triangle can
be found in O(1) time using the triangle-edge data structure. The ls-graph is implic-
itly stored in this data structure. Critical points are located by computing the number
of connected components of the lower and upper links, which can be done in O(n)
time using the triangle-edge data structure. Sorting the critical points takes O(t logt)
time.

The sets Li for each critical point ci can be found by marching through the triangles
that contain f−1( fi− ε). This can be accomplished in O(l) time, where l = ∑i |Li|, is
the number of triangles in all the sets Li. Though it is possible in theory that l = O(n2),
the size of the critical level sets is usually O(n) in practice.

Each node ti in the ls-graph has at most 6 neighbors (since each triangle can be in at
most two tetrahedra). Hence, the number of edges in the ls-graph is O(n). During the
search procedure, each node is tagged exactly once and visited at most 6 times (from
each of its tagged neighbors). Thus the traversal of the graph is accomplished in O(n)
time. Each update of the adjacency list representation takes constant time. Total number
of such updates is equal to the number of arcs in the Reeb graph. A conservative bound
for the number of edges in the Reeb graph is given by the number of triangles in the
input. Hence, maintaining the Reeb graph takes O(n) time. Combining the above steps,
we obtain an O(n + l + t logt) running time for our algorithm.

3.4 d-Manifolds and Non-manifolds

The level set of a regular value for a Morse function defined on a d-manifold is a (d−1)-
manifold. The connectivity of a level set is represented by its 1-skeleton. Hence, similar
to 3-manifolds, tracking the connected components of the level set requires only a 1-
skeleton representation, which can be extracted from the 2-skeleton of the input mesh.
So, the algorithm works directly on the 2-skeleton representation of d-manifolds. In the
case of non-manifolds, the algorithm will again work on the 2-skeleton representation.
We relax the definition of critical points to include all vertices that modify the topology
of the level set. Candidate critical points are again located by counting the number of
connected components of the lower and upper link.
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4 Visualization of Reeb Graphs

4.1 Simplification of Reeb Graphs

Simplification is necessary for effective visualization of large and feature rich data be-
cause it aids in noise removal and creation of feature-preserving multiresolution repre-
sentations. A topological feature in the input is represented by a pair of critical points,
typically an arc in the Reeb graph. Unimportant features in the data can be removed
by repeated cancellation of low persistence critical point pairs [10], which also leads to
a multiresolution representation of the input scalar field. Features can also be ordered
and removed based on geometric measures like hypervolume [5]. Existing algorithms
for contour tree simplification remove critical point pairs that create / destroy a level
set component. We simplify the Reeb graph using a notion of extended persistence [1]
that pairs genus modifying critical points in addition to pairing component creators with
destroyers.

Our approach to Reeb graph simplification is similar to the one used to simplify
contour trees [5]. In addition to the leaf pruning and node reduction simplification op-
erations, we perform an additional loop pruning operation on the Reeb graph. Leaf
pruning removes a leaf and the incident arc from the Reeb graph. A leaf connecting to
a degree-2 saddle is not pruned. Node reduction removes a degree-2 node by merging
the two adjacent edges. The loop pruning operation removes a loop defined by adjacent
nodes connected by two parallel arcs, from the Reeb graph. This operation is equiva-
lent to removing one of the parallel arcs and performing node reduction on the pair of
adjacent nodes.

We simplify the Reeb graph using repeated application of the three mentioned op-
erations: (1) Perform node reduction where possible, (2) Choose the least important
leaf / loop and prune it. Leaves and loops that can be pruned are stored in a priority
queue ordered based on the persistence of the corresponding critical point pair. If a
pruning operation results in a reducible node, then node reduction is performed imme-
diately. All new leaves and loops created by the above operations are in turn added to
the priority queue. Note that we use the simplification process as an aid for visualizing
Reeb graphs and not to modify the input function. Realizing the function representing
the simplified Reeb graph may require changing the topology of the input.

4.2 Reeb Graph Layout

We build upon the orrery layout proposed for contour trees [16] to obtain a layout for
Reeb graphs. The extension to Reeb graphs is non-trivial because of the presence of
loops. We overcome this difficulty by designing a four step layout scheme:

– First, extract a spanning contour tree of the Reeb graph.
– Second, compute a branch decomposition of this spanning tree.
– Third, use a radial layout scheme to embed the spanning tree in 3D.
– Finally, add the non-tree arcs to the layout.

The spanning contour tree is a spanning tree of the Reeb graph that satisfies the
structural properties of a contour tree. All degree-2 nodes in this spanning tree have
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Fig. 6. The spanning contour
tree of a Reeb graph is struc-
turally similar to a contour tree.
Removal of a1 results in a span-
ning contour tree. Removing a2
results in a tree with an invalid
degree-2 node.

(a)
model

(b) Reeb graph: side
view

(c) Reeb graph: top
view

Fig. 7. Radial layout of the Reeb graph of the height function
on a 4-torus

Table 1. Reeb graph computation time for various 2D and 3D input. For all 2D models, solid
8-torus, and fighter, the Reeb graph was computed for the height function. In all other cases, the
function is available with the data set.

Time taken (sec)
Dimension Model #Triangles #Critical points Our algorithm Online algorithm

2D

bunny 40000 217 0.7 0.1
Laurent Hand 99999 92 1.5 0.43

Neptune 998840 1757 24.3 3.7

3D

engine 27252 160 2 0.7
solid 8-torus 34832 18 0.56 0.14

fighter 143881 8 2.2 28
PMDC 237291 902 8 17
blunt 451601 827 213 406

nucleon 652964 2203 254 1638
post 1243200 132 70 1671

exactly one neighbor node with higher function value and one neighbor node with lower
function value. Not all spanning trees satisfy this property. For example, in Figure 6,
removing arc a1 results in a spanning contour tree. Removal of a2 also results in a
spanning tree, but one that does not correspond to a valid contour tree.

A branch decomposition is an alternate representation of a contour tree that explicitly
stores the topological features and their hierarchical relationship [16]. A branch is a path
between two leaves of the contour tree or a path that connects a leaf to an interior node
of another branch.

All branches of the spanning contour tree are drawn as L-shaped polylines and the
z-coordinate corresponds to function value. The (x,y) coordinates are computed for
each branch using a radial layout scheme. The root branch is located at the origin and
others are placed on concentric circles centered at the origin. All branches that connect
to an interior node of the root branch are equally spaced around the origin at a fixed
distance from it. Branches that connect to an interior node of a first-level branch are



Efficient Output-Sensitive Construction of Reeb Graphs 565

(a) Reeb graphs before and after various iterations
of simplification.

(b) partition induced by the
full resolution and simpli-
fied Reeb graphs.

Fig. 8. Reeb graph computed for height function on Laurent hand and induced partition on the
surface

(a) dnaB (b) GroEL

Fig. 9. Reeb graph computed for height function on volume representation of two molecules:
dnaB and GroEL. The transfer function shown in the middle determines the color map.

placed in the second concentric circle within a wedge centered at a level-one branch.
The angle subtended is proportional to the number of descendant branches. In order to
avoid intersections when the non-tree arcs are added, we include a dummy branch for
each loop arc before calculating the angular wedge subtended at each branch. Figure 7
shows the layout for the Reeb graph of a 4-torus.

5 Experimental Results

The Reeb graph construction algorithm was implemented in Java and tested on a Pen-
tium 4, 2.4 GHz machine with 1 GB main memory. Our implementation accepts a func-
tion sampled at vertices of a simplicial mesh as input, computes the Reeb graph, and
stores it as an edge list. Table 1 shows the time taken by our implementation to compute
the Reeb graph for various models. We compare the performance of our algorithm with
the online algorithm described in [17]. While the online algorithm performs well for
2D data, our algorithm performs substantially better for 3D data. We expect that the
algorithm will also be efficient in practice for higher dimensional input. The running
time depends on the number of critical points, clearly indicating the output sensitiv-
ity of our algorithm. For large datasets that do not fit in memory, our implementation
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can be extended similar to the contour tree algorithm described in [6]. Also, no code
optimizations have been applied. An implementation in C / C++ will exhibit significant
improvement in the performance.

Figure 8 shows the Reeb graph for the height function defined on the Laurent hand
model. The near-horizontal branches in the Reeb graph indicate that the function is noisy
near the wrist. Our implementation allows the user to interactively simplify and visu-
alize the Reeb graph by specifying a persistence threshold. Simplification using a low
persistence threshold removes these unimportant features. The remaining branches cor-
respond to the palm and fingers and the loop corresponds to the thumb and fore-finger.
Figure 9 shows the Reeb graph computed for two biological data sets: dnaB and GroEL.
In both data sets, the volumetric domain represents the molecule and the scalar field is
the height function. Loops in the Reeb graph indicate possible tunnels in the molecule.
The Reeb graph of dnaB contains two loops and that of GroEL has five loops.

6 Conclusions and Future Work

We have described a simple output-sensitive near-optimal algorithm that constructs the
Reeb graph of a PL function. Compared to prior known algorithms that run in O(n2)
time, our algorithm has a worst case running time of O(n + l + t logt), where n is the
number of triangles in the mesh representing the domain, t is the number of critical
points of the function and l is size of all critical level sets. The algorithm works with-
out any modification for functions defined on manifolds in any dimension, and for
non-manifold domains. We have also described a method to simplify the Reeb graph
based on an extended notion of persistence and provided a feature-directed layout of
the Reeb graph that serves as a useful interface for exploring and understanding three-
dimensional scalar fields. We have shown through our experimental results that our
algorithm performs efficiently in practice. The iterations of the algorithm being inde-
pendent of each other, provide an inherent scope for parallelization.

Acknowledgements. This work was supported by the Department of Science and Tech-
nology, India, under Grant SR/S3/EECE/048/2007.
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Abstract. Valiant initiated a theory of holographic algorithms based
on perfect matchings. These algorithms express computations in terms
of signatures realizable by matchgates. We substantially develop the
signature theory in terms of d-realizability and d-admissibility, where
d measures the dimension of the basis subvariety on which a signature is
feasible. Starting with 2-admissibility, we prove a Birkhoff-type theorem
for the class of 2-realizable signatures. This gives a complete structural
understanding of 2-realizability and 2-admissibility. This is followed by
characterization theorems for 1-realizability and 1-admissibility.

1 Introduction

It is generally conjectured that many problems in the class NP or #P are
not computable in P. The prevailing view is that these problems require the
processing of exponentially many potential solution fragments, by any algorithm.

However it is usually rather natural to express the answer to such a problem
as a suitable exponential sum. Take for instance the canonical Boolean Satisfi-
ability problem 3SAT. We can express the number of satisfying assignments as
an exponential sum, as follows. Suppose C is an OR gate with 3 input literals
in a formula Φ. We assign a signature RC = (0, 1, 1, 1, 1, 1, 1, 1) to C, where the
entries are indexed by 3 bits b1b2b3 ∈ {0, 1}3. Here b1b2b3 correspond to a truth
assignment to the 3 literals. If (Rb1b2b3) and (R′

b4b5b6
) are two signatures, then

its tensor product has 64 entries, and its value indexed by b1 . . . b6 ∈ {0, 1}6
is the product Rb1b2b3R

′
b4b5b6

. If we form the tensor product of signatures for
a set of m clauses R =

⊗
C RC , then R has 3m indices (i1, i2, . . . , i3m) ∈

{0, 1}3m, and a particular entry has the value 1 if each OR gate is satisfied, and
the value 0 otherwise. Now suppose a Boolean variable x appears in k clauses.
Depending on whether it appears positively or negatively in each clause, we can
assign a signature tensor of arity k, indexed by (i1, i2, . . . , ik) ∈ {0, 1}k, where
all but two values are 0, and the two remaining values are 1, corresponding to
a consistent truth assignment. For example if x appears in C positively and in
� Supported by NSF CCF-0511679 and by the NNSF of China Grant 60553001 and the
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C′ negatively, then we can assign Gx = (0, 1, 1, 0)T. From these we can form the
tensor product for all variables G =

⊗
x Gx. The indices of R and G match up

one-to-one according to which x appears in which C. Then the exponential sum
〈R,G〉 =

∑
i1...ij ...∈{0,1} Ri1...ij ...G

i1...ij ... counts exactly the number of satisfying
assignments to Φ: For each 0-1 tuple (i1 . . . ij . . .), the product Ri1...ij ...G

i1...ij ... is
1 when this corresponds to a consistent assignment of truth values to each variable
and the truth assignment satisfies each clause; the product value is 0 otherwise.

This expression has exponentially many terms. The power of holographic
algorithms is to evaluate such an exponential sum in polynomial time, for some
combinatorial problems. This happens when suitable signatures are realizable.

In Valiant’s theory, the notion of realizability has meanings at two levels.
First, there is a theory of matchgate expressibility. Some signatures, such as
Gx = (0, 1, 1, 0)T are directly expressible as the standard signature of a planar
matchgate. When this direct expressibility is possible, we can apply the Fisher-
Kasteleyn-Temperley (FKT) method on planar perfect matchings [10,11,15] to
evaluate the exponential sum in polynomial time. However frequently the desired
signature is not directly expressible as such, e.g., RC = (0, 1, 1, 1, 1, 1, 1, 1). The
main idea of holographic algorithms is to come up with suitable basis transforma-
tions in the tensor space, such that the desired signatures become expressible,
as a superposition of standard signatures of matchgates. When realizability is
achieved for all the desired signatures under some basis transformation, the FKT
algorithm can still be applied, by Valiant’s Holant Theorem [18], to evaluate the
exponential sum in polynomial time. What happens at the heart of this “magic”
is that, the superposition creates a pleasing algebraic cancelation, analogous to
quantum computing.

We illustrate this cancelation process by an example. Consider the signature
RC = (0, 1, 1, 1, 1, 1, 1, 1), which is not directly expressible by a matchgate.
However, it so happens that there exists a matchgate with the standard signature
(Γb1b2b3) = 1

4 (0, 1, 1, 0, 1, 0, 0, 1). Here the values 0 or 1/4 are evaluations
of perfect matchings of a weighted graph called a matchgate. Now we can

choose two linearly independent basis vectors β =
[(

1 + ω
1− ω

)
,

(
1
1

)]
, where

ω = e2πi/3. In the tensor space spanned by β⊗3, we can represent the OR
signature (0, 1, 1, 1, 1, 1, 1, 1) by perfect matchings as follows: If we write out

(β−1)⊗3 =

([
1 + ω 1
1− ω 1

]−1
)⊗3

, we can get

(0, 1, 1, 1, 1, 1, 1, 1)

([
1 + ω 1
1− ω 1

]−1
)⊗3

=
1
4
(0, 1, 1, 0, 1, 0, 0, 1) = (Γb1b2b3).

It follows that
(0, 1, 1, 1, 1, 1, 1, 1) = (Γb1b2b3)β

⊗3.

In this way each logical value 0 or 1 in (0, 1, 1, 1, 1, 1, 1, 1) is expressed as a
“superposition” or a “holographic mix” of perfect matching values in (Γb1b2b3).
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In order to be able to solve a particular problem in polynomial time, we
would need simultaneous realizability (for both R and G) under the same basis
transformation. Valiant [19] showed that we can count mod 7 the number of
satisfying assignments to a restricted class of 3CNF formulae. The same number
without mod 7 for this restricted #SAT problem is #P-complete, and to count
mod 2 is NP-hard. Exactly which sum is computable in polynomial time by
holographic algorithms brings us to the subject of signature theory.

Finding a holographic algorithm successfully for a particular problem boils
down to the existence of suitable signatures in a suitable tensor space. This is
the realizability problem. The requirements are specified by families of algebraic
equations called Grassmann-Plücker Identities [17,1]. These families of equations
are non-linear, exponential in size, and difficult to handle. But whenever we find
a suitable solution, we get an exotic polynomial time algorithm. Of course the big
question is whether such “freak objects” exist for any of the NP-hard problems.
If not, is there a coherent explanation? To quote Valiant [18]: “Any proof of P 
=
NP may need to explain, and not only to imply, the unsolvability” of NP-hard
problems using this approach.

In our STOC paper [4] an algebraic framework was developed which gives a
satisfactory theory of symmetric signatures. In this framework, we defined a basis
manifoldM. A priori the tensor space can have basis vectors of high dimensions;
in [5] we have proved a general basis collapse theorem which effectively restricted
the theory to the basis manifold M corresponding to GL2. Thus to Valiant’s
challenge above [18] what remains is the general (i.e., not necessarily symmetric)
signature theory on M. This paper is a significant step toward that.

Definition 1. Two bases β =
[(

n0
n1

)
,

(
p0
p1

)]
and β′ =

[(
n′

0
n′

1

)
,

(
p′0
p′1

)]
are

equivalent, denoted by β ∼ β′, iff there exist x, y ∈ F∗ such that n′
0 = xn0, p

′
0 =

xp0, n
′
1 = yn1, p

′
1 = yp1 or n′

0 = xn1, p
′
0 = xp1, n

′
1 = yn0, p

′
1 = yp0. The basis

manifold M is GL2(F)/ ∼.

Definition 2. A tensor G is admissible as a generator on a basis β iff G′ =
β⊗nG satisfies the parity requirements. It is called realizable as a generator on
a basis β iff G′ = β⊗nG satisfies both the parity requirements and all the MGI.
This is equivalent to G′ being the standard signature of some planar matchgate.

Definition 3. Let Bgen(G) (resp. Bp
gen(G)) be the set of all possible bases in

M for which a generator G is realizable (resp. admissible).

Definition 4. A generator G is called d-realizable (resp. d-admissible) for an
integer d ≥ 0 iff Bgen(G) ⊂ M (resp. Bp

gen(G) ⊂ M) is an algebraic subset of
dimension at least d.

The signature theory is expressed in terms of d-admissibility and d-realizability,
where d ≥ 0 is the dimension of the algebraic variety of M corresponding to a
signature. The higher this number d is, the more likely one can find a basis that
is common to all the signatures needed for all the constraints of the problem at
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hand. In almost all cases where holographic algorithms are successful [18,4,6],
one uses some d-realizable signature for d > 0. The main findings of this paper
are characterizations of these highly realizable signatures.

After factoring out an equivalence relation, the basis manifold M has
dimension 2. Thus d-realizability for d = 2 is the maximum possible. In fact,
a 2-realizable signature is realizable on every basis in the basis manifold M.
We first prove a Birkhoff-type theorem which gives a complete and explicit
characterization of the class of 2-realizable signatures (over char. 0). This turns
out to be the vertices of a simplex, of which the linear span is precisely the
class of 2-admissible signatures, whose dimension is the Catalan number. The
2-realizable signatures also have an explicit combinatorial interpretation in terms
of planar tensor product of perfect matchings. In general the realizability of
signatures is controlled by a set of algebraic equations called Matchgate Identities
(MGI), a.k.a. useful Grassmann-Plücker Identities [17,1]. The proof here uses
MGI implicitly, in the form of explicit Pfaffian representations. The proof of
the characterization theorem for 2-realizability is rather involved. In Section 2
we give a proof outline. The main structure of the proof is a (multiply) nested
induction. A key idea is the Pfaffian representation, which is purely algebraic.
Another key idea is the introduction of a derivative operator ∂j , which uses the
underlying geometry of planarity. We then extend this characterization theorem
to all char. p 
= 2.

Next we give characterization theorems concerning 1-realizability and 1-
admissibility. The proof techniques are mainly algebraic. The 1-realizable
signatures are much richer than the 2-realizable signatures. Many signatures
used by previous holographic algorithms can be viewed as special cases of these
1-realizable signatures. The characterization theorems obtained here can give
more holographic algorithms for other problems. Due to space limitation, most
proofs are omitted (see [7] for more details.) The structural theory for general
signatures developed here substantially move forward our understanding of the
ultimate capabilities of holographic algorithms.

2 Characterization of 2-Realizability

We present our signature theory in the algebraic framework of [4]. The theory is
developed in terms of d-admissibility and d-realizability. The key to the success
of a holographic algorithm is to find generators and recognizers whose signatures
we desire and whose realizability varieties intersect. This typically happens with
at least one side having a d-realizability for d ≥ 1. To maximize the chance
of a non-empty intersection, 2-realizability is the most desirable. The central
results from [4] in this regard are characterizations of 2-admissible signatures.
The arity of any 2-admissible signature must be an even number n = 2k. The 2-
admissible signatures are the solutions to a homogeneous linear equation system.
The dimension of the solution space is 1

2k

(2k
k

)
, the Catalan number.

It turns out that there is a particular set of 2-admissible signatures with a
clear combinatorial meaning. These are signatures of planar matchgates with
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k pairs of points on the circumference of a unit disk D, constructed by planar
tensor product, as shown in Figure 1.

Let P be a matchgate consisting of a path of length 2 (3 nodes and 2 edges),
where we place the two end points on the circumference of D, and the two edges
are weighted +1 and −1 respectively. This gives a planar matchgate of arity 2
with the (standard) signature (0,+1,−1, 0). It is easy to verify that this signature
is indeed 2-realizable. Now we can form planar tensor product [4] recursively
using disjoint copies of P as the basic building block. The planar matchgate
formed is also 2-realizable. Combinatorially this process is very simple: We end
up with 2k vertices on the circumference of D, which are pair-wise matched up
by k disjoint paths each with weights +1 and −1 on its two edges, respectively.
The union of these k disjoint paths form a planar graph with a total of 3k vertices
(planar tensor product preserves planarity, and these k paths do not cross each
other). This family of matchgates with 2k external nodes is denoted by D2k.

1

1

1

1

1

1

1

1

Fig. 1. A 2-realizable signature

Let G ∈ D2k, and let (GS)S⊂[2k] be its signature. We show that (GS) satisfies
the conditions to be 2-admissible [4]. First note that each entry GS is 0, except
when S contains exactly one end point from each P . This follows from the
definition of perfect matching. In particular GS 
= 0 only for |S| = k. Now we
show that

∑
S⊂T GS = 0, for any subset T ⊂ [2k] of cardinality k + 1. Since

|T | = k + 1, there must be at least one pair {i, j} ⊂ T , where i and j are
connected by some P of length 2 in G. Then the only possible non-zero terms
in

∑
S⊂T GS come from S = T − {i} and S = T − {j}. In order to be actually

non-zero, the set T −{i, j} must contain exactly one vertex from each pair of the
other k−1 pairs of external nodes connected by length-2 paths. Thus either every
term in

∑
S⊂T GS is zero, or there are exactly two non-zero terms of opposite

values ±1. Thus,
∑

S⊂T GS = 0 for all |T | = k + 1.
This proof gives an explicit set of solutions to the system defining 2-

admissibility [4]. this set is the Catalan number 1
2k

(2k
k

)
. We also know from

the exact knowledge of the rank information derived from results of the
Kneser Graph KG2k+1,k [12,13,14,8,9] that this number 1

2k

(2k
k

)
is exactly the

dimension of the solution subspace. If we order the entries of the signature GS

lexicographically by its index S ⊂ [2k], the first non-zero entry (with value
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+1) occurs at the location where for each matched pair i < j by a path P we
assign 0 to the i-th bit and 1 to the j-th bit. This corresponds to a balanced
paranthesized expression (BPE), i.e., a sequence of length 2k consisting of k 0’s
and k 1’s, and any prefix has at least as many 0’s as 1’s (write 0 for “(” and
1 for “)”). This mapping from D2k to BPE of length 2k is also reversable. By
considering the submatrix whose rows are these 1

2k

(2k
k

)
signatures from D2k and

whose columns are indexed by BPE (if we order the signatures G according to
the unique corresponding BPE in lexicographic order, this submatrix is upper-
triangular with 1’s on the diagonal), it follows that these signatures are linearly
independent. At this point the class of 2-admissible signatures is completely
understood. They form the linear span of the signatures from D2k.

Theorem 1. The set of 1
2k

(2k
k

)
signatures from D2k are 2-realizable, and forms

a basis of the solution space of the set of all 2-admissible signatures of arity 2k.

Our main theorem in this section is to prove that the signatures from D2k are
precisely the class of 2-realizable signatures of arity 2k (over char. 0), after a
scaling factor.

Theorem 2. Up to a scalar factor, every 2-realizable signature is obtainable as
a planar tensor product from (0, 1,−1, 0). For arity 2k, this is precisely the set
of 1

2k

(2k
k

)
signatures from D2k.

Proof Outline: Since the proof of Theorem 2 is quite involved, we only present
a proof outline. At the top level, the theorem is proved by an induction on the
arity. Given a 2-realizable signature, we show that in a certain planar matchgate
of this signature, there exist two contiguous nodes (i, i + 1), which are isolated
from the rest. The part on (i, i + 1) makes one copy of (0, 1,−1, 0). Then we
apply induction on the remaining part.

However the proof for the existence of such two contiguous nodes is
complicated. We first prove this under the condition that G0101···01 
= 0. If this
is true, by flipping all odd bits, we can define a new signature GA which has
the property that G1111···11

A 
= 0. Then, from the general theory [1], we know
that GA can be realized by Pfaffians of a (weighted, but not necessarily planar)
graph Γ without internal nodes. This transformation is a key idea of this proof
and through which we bypass the difficulty of having to deal with exponentially
many MGI explicitly. After that we deal with edge weights of the graph Γ
rather than the entries of G. This reduces the number of variables from 2n to(
n
2

)
, and the explicit form of Pfaffian satisfies all MGI implicitly. We translate

the conditions of G being 2-admissible to conditions on GA. Then we apply these
conditions on the edge weights in Γ and prove that there is one isolated edge
connecting two contiguous nodes.

Then all we need to prove is that G0101···01 
= 0. This turns out to be at least
as difficult as above. We prove this by a nested induction. First we introduce
derivative operators ∂j which construct 2-realizable signatures of arity n−2 from
a 2-realizable signature of arity n. After a normalization, we use the operator
and the inductive hypothesis (of the outer induction) to prove that at least one
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of the two values G0101···01, G1001···01 is non-zero. Then we prove (by the inner
induction) that the case G0101···01 = 0, G1001···01 
= 0 leads to a contradiction.
This proof also uses the method of explicit Pfaffian representation.

3 1-Realizability

Section 2 gives a complete characterization of 2-realizable signatures. In this
section, we study 1-realizable signatures. As discussed in [4], d-realizability for
d > 0 is key to finding interesting holographic algorithms, since they result
from a non-empty intersection of the signature varieties of both recognizers and
generators. We present a structural characterization theorem for 1-realizable
signatures. They are also restrictive, but they are much richer than 2-realizable
signatures.

First we prove the following key lemma. This lemma plays an important role
in the proof of Theorem 3. Moreover, this lemma reveals a key property of the
set Bp

gen(G), which is useful not only for the study of 1-realizable signatures.

Lemma 1. For any G, if T1 =
(

1 α
1 y1

)
∈ Bp

gen(G) and T2 =
(

1 α
1 y2

)
∈ Bp

gen(G)

(for y1 
= y2), then for all y ∈ C− {α},
(

1 α
1 y

)
∈ Bp

gen(G).

Proof: If G is trivial, then the lemma is obvious. We assume G is non-trivial.
Let Bp

gen(G) = V0 ∪ V1 ⊂ M, and V0 (resp. V1) be the set defined by all the
parity requirements for being an odd (resp. even) matchgate. Since G is non-
trivial, we have V0 ∩ V1 = ∅. Then there are four cases, depending on whether
T1 and T2 are in V0 or V1. Here we will only present the proof for the case where
both T1, T2 ∈ V0. The case for T1 ∈ V0 and T2 ∈ V1 requires a different but
similar proof, and is omitted here. The other two cases are similar to these two.

Let T1, T2 ∈ V0. We recall the parity polynomial equation [4] for V0 (for |T |
even): 〈

n⊗
σ=1

[1, x[σ∈T ]], G

〉
=

∑
0≤i≤n−|T |
0 ≤ j ≤ |T |

xiyj
∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B = 0. (1)

For any T ⊂ [n] and |T | even, let

fT (y) =
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

αiyj
∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B.

Then for all even T , deg(fT ) ≤ |T | and fT (y1) = fT (y2) = 0. We note that
y1 
= α and y2 
= α. We want to prove that fT is identically 0 for all even T .

We prove this by induction on |T | ≥ 0 and |T | is even. The case |T | = 0 is
obvious.

Inductively we assume this has been proved for all |T | ≤ 2(k − 1), for some
k ≥ 1. Now |T | = 2k. First we prove that α is a root of fT (y) with multiplicity
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at least 2k − 1. We prove this by showing that f
[r]
T (α) = 0 for 0 ≤ r ≤ 2(k − 1),

where f [0] = fT and f
[r]
T = d

dy (f [r−1]
T ) is the r-th derivative. We have

f
[r]
T (α)=

∑
0≤i≤n−|T |
r ≤ j ≤ |T |

r!
(
j

r

)
αiαj−r

∑
A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B=r!
n−r∑
�=0

α�
∑

|S|=�+r

(
|T ∩ S|

r

)
GS .

(2)
Note that the second equality follows from considering each GS , where |S∩T | =
j ≥ r and |S ∩ T c| = i.

If r is even, we consider any T ′ where |T ′| = r. Since r ≤ 2(k−1), by induction,
we have fT ′ ≡ 0. Then f

[r]
T ′ ≡ 0 and f

[r]
T ′ (α) = 0. On the other hand, just as in

(2), we have

f
[r]
T ′ (α) = r!

n−r∑
i=0

αi
∑

|S|=i+r

(
|T ′ ∩ S|

r

)
GS = r!

n−r∑
i=0

αi
∑

|S|=i+r,S⊃T ′

GS ,

where the second equality is due to |T ′| = r, which implies that in the inner sum
over S, the only non-zero terms are those S ⊃ T ′.

Summing over all T ′ ⊂ T where |T ′| = r, we get:

0 =
∑

T ′⊂T,|T ′|=r

f
[r]
T ′ (α) = r!

n−r∑
i=0

αi
∑

T ′⊂T,|T ′|=r

∑
|S|=i+r,S⊃T ′

GS

= r!
n−r∑
i=0

αi
∑

|S|=i+r

(
|T ∩ S|

r

)
GS = f

[r]
T (α).

The third equality is by considering how many times each GS appears, where
|S ∩ T | ≥ r and |S| = i + r.

If r is odd, we consider any T ′ where |T ′| = r + 1. Since r + 1 ≤ 2(k − 1), by
induction, we have fT ′ ≡ 0. Then f

[r]
T ′ (α) = 0. Similarly with (2), we have

f
[r]
T ′ (α) = r!

n−r∑
i=0

αi
∑

|S|=i+r

(
|T ′ ∩ S|

r

)
GS

= r!
n−r∑
i=0

αi

⎛⎝ ∑
|S|=i+r,T ′⊂S

(r + 1)GS +
∑
t∈T ′

∑
|S|=i+r,T ′\S={t}

GS

⎞⎠ .

Summing over all T ′ ⊂ T where |T ′| = r+1, we can show that this quadruple
sum finally simplifies to (|T | − r)f [r]

T (α). Since |T | − r > 0, we have f
[r]
T (α) = 0.

We omit the proof details.
To sum up, we proved that f

[r]
T (α) = 0 for r = 0, 1, . . . , 2(k − 1). So α is a

root of multiplicity at least 2k− 1. The degree of fT is at most 2k, and we know
fT has at least two more roots y1 and y2. Therefore fT must be identically 0.
This completes the proof of case 1. We omit the other cases. �
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This lemma says that, for any fixed x ∈ C, either for all y or for at most one

y ∈ C− {x}, we have
(

1 x
1 y

)
∈ Bp

gen(G).

4 Characterization Theorems of 1-Admissibility and
1-Realizability

Here we give some characterization theorems for 1-admissibility and 1-realizability
of signatures. It turns out that, for a general 1-admissible signature, after omitting
isolated points in Bp

gen(G), one can show that Bp
gen(G) is the solution for a single

polynomial F (x, y) onM. Using Lemma 1, we can show that this F (x, y) must be
multilinear. More precisely we have the following characterization theorem of 1-
admissibility. (Since we are talking about 1-admissibility or 1-realizability, in this
section we will omit isolated points for both Bp

gen(G) or Bgen(G).)

Theorem 3. If G is 1-admissible, then there exist three constants a, b, c such
that

Bp
gen(G) =

{[(
n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣∣ an0n1 + b(n0p1 + n1p0) + cp0p1 = 0
}
.

Also for any three constants a, b, c, there exists a signature G such that the above
equation holds.

Proof: We first remark that for a given a, b, c, the existence of G can be fulfilled
by symmetric signatures.

If G is in fact 2-admissible, we take a = b = c = 0, then there is no constraint
on the bases. Now we assume G is not 2-admissible. In the following proof, we use

the dehomogenized coordinates
(

1 x
1 y

)
∈ M. The exceptional cases are similar.

If there are two bases
(

1 α
1 y1

)
∈ Bp

gen(G) and
(

1 α
1 y2

)
∈ Bp

gen(G) (y1 
= y2), by

Lemma 1, we have{(
1 α
1 y

)
∈M

∣∣∣∣ y ∈ C− {α}
}
⊂ Bp

gen(G). (3)

Now we prove that Bp
gen(G) =

{(
1 α
1 y

)
∈M

∣∣∣∣ y ∈ C− {α}
}

. If not, we assume

for a contradiction that
(

1 u
1 v

)
∈ Bp

gen(G) and u, v 
= α:
(

1 u
1 v

)
is equivalent to(

1 v
1 u

)
on M). Under this assumption, we prove that G is 2-admissible. For any

basis T =
(

1 x0
1 y0

)
∈ M, if x0 = α or y0 = α then we know T ∈ Bp

gen(G). Now
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we assume x0, y0 
= α. Since
(

1 u
1 v

)
∈ Bp

gen(G) and
(

1 u
1 α

)
∈ Bp

gen(G) by (3), it

follows from Lemma 1 that for any t 
= u, we have(
1 u
1 t

)
∈ Bp

gen(G) (4)

So if x0 = u or y0 = u, we have T ∈ Bp
gen(G). Similarly if x0 = v or y0 = v, we

also have T ∈ Bp
gen(G). Now we further assume x0, y0 
∈ {u, v}. Then we have(

1 u
1 y0

)
∈ Bp

gen(G) by (4) and
(

1 α
1 y0

)
∈ Bp

gen(G) by (3). By Lemma 1, we have(
1 x0
1 y0

)
∈ Bp

gen(G). Since this is true for any T =
(

1 x0
1 y0

)
∈ M, we conclude

that G is 2-admissible, which we assumed not to be. Therefore if G is not 2-

admissible and if
(

1 α
1 y1

)
∈ Bp

gen(G) and
(

1 α
1 y2

)
∈ Bp

gen(G) (for y1 
= y2), then

Bp
gen(G) =

{(
1 α
1 y

)
∈ M

∣∣∣∣ y ∈ C− {α}
}
. We can let a = α2, b = −α, c = 1 in

the theorem.
Now we can assume Bp

gen(G) does not contain two bases of the above form.

More precisely, for a basis
(

1 x
1 y

)
∈ M, whenever we fix a x, there exist at most

one y, such that
(

1 x
1 y

)
∈ Bp

gen(G). This is also true for any fixed y. On the

other hand, if we disregard at most finitely many points, it can be shown using
Hilbert’s Nullstellensatz that, to be 1-admissible, there exists a single polynomial
F (x, y) ∈ C[x, y] such that

Bp
gen =

{(
1 x
1 y

)
∈M

∣∣∣∣F (x, y) = 0
}
.

We omit the proof of this claim. Furthermore we will assume F (x, y) is of minimal
degree. In particular, we may assume F (x, y) is square-free.

W.o.l.o.g., assume d = degy F ≥ degx F . Clearly d ≥ 1. Otherwise, F (x, y) is
a constant, which is absurd. Write

F (x, y) = fd(x)yd + fd−1(x)yd−1 + · · ·+ f0(x), (5)

where fi(x) ∈ C[x], deg fi ≤ d, for all 0 ≤ i ≤ d, and fd is not identically zero.
For any x0 such that fd(x0) 
= 0, we can write

F (x0, y) = fd(x0)
(
yd +

fd−1(x0)
fd(x0)

yd−1 + · · ·+ f0(x0)
fd(x0)

)
. (6)

This polynomial in y has d roots in C counting multiplicity, but does not have
two distinct roots. Therefore, there exists α ∈ C such that

F (x0, y) = fd(x0)(y + α)d. (7)
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If we compare the expressions in (6) and (7), we get for all 1 ≤ k ≤ d,(
d
k

)
αk = fd−k(x0)

fd(x0)
. It follows that

(
d
k

)( fd−1(x0)
(d
1)fd(x0)

)k

= fd−k(x0)
fd(x0)

, for 1 ≤ k ≤ d.

Writing in terms of polynomials, for all 1 ≤ k ≤ d,(
d

k

)
fk

d−1(x)
dk

= fd−k(x)fk−1
d (x), (8)

holds for infinitely many x ∈ C, and therefore holds identically, as polynomials
in C[x].

It follows that, in C[x, y],

fd−1
d (x) · F (x, y) =

(
fd(x)y +

fd−1(x)
d

)d

. (9)

Assume for a contradiction that d ≥ 2. Take k = 2 in (8), we get fd(x)|fd−1(x)

in C[x]. Also for all k ≥ 1, fd−k(x) = (d
k)
dk fd−1(x)

(
fd−1(x)
fd(x)

)k−1
, and therefore

fd−1(x)|fd−k(x) in C[x]. In particular fd(x)|fd−k(x) for all k ≥ 1, which implies
that fd(x)|F (x, y) in C[x, y]. If deg fd(x) ≥ 1, then for a root x of fd, there
would have been infinitely many zero of F (x, y). Since this is not the case, we
must have deg fd(x) = 0, i.e., fd(x) is a non-zero constant c ∈ C.

It follows that

F (x, y) = c

(
y +

fd−1(x)
cd

)d

.

But F (x, y) is square-free in C[x, y], it follows that d = 1 after all.
So back to (9) we obtain F (x, y) = f1(x)y + f0(x), and deg f1, deg f0 ≤ 1.

Therefore F (x, y) is of the form a + bx+ b′y + cxy. By symmetry on x and y in
M, we get b = b′.

�

Now we can prove the characterization theorem for 1-realizability.

Theorem 4. If G is 1-realizable, then there exist three constants a, b, c such that

Bgen(G) =
{[(

n0
n1

)
,

(
p0
p1

)]
∈ M

∣∣∣∣ an0n1 + b(n0p1 + n1p0) + cp0p1 = 0
}
.

Also for any three constants a, b, c, there exists a signature G such that the above
equation holds.

Proof: Again, we first remark that for a given a, b, c, the existence of G can be
fulfilled by symmetric signatures.

Since G is 1-realizable, G is also 1-admissible. There are two cases: if G is in
fact 2-admissible, then as a 1-realizable signature, G is at least realizable on some
bases. G is indeed a 2-realizable signature. In this case we take a = b = c = 0.

If G is 1-admissible but not 2-admissible, then in Theorem 3 we must have a
non-zero triple (a, b, c), defining Bp

gen(G) as a 1-dimensional variety. We claim
that, for any T ∈ Bp

gen(G), all the MGI of T⊗nG must vanish. Otherwise Bgen(G)
cannot have dimension 1. Since all MGI are satisfied for any T ∈ Bp

gen(G), we
get Bgen(G) = Bp

gen(G). Theorem 4 now follows from Theorem 3. �
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Abstract. Circuit minimization is a useful procedure in the field of logic
synthesis. Recently, it was proven that the minimization of (∨,∧,¬) for-
mulae is hard for the second level of the polynomial hierarchy [BU08].
The complexity of minimizing more specialized formula models was left
open, however. One model used in logic synthesis is a three-level model
in which the third level is composed of parity gates, called SPPs. SPPs
allow for small representations of Boolean functions and have efficient
heuristics for minimization. However, little was known about the com-
plexity of SPP minimization. Here, we show that SPP minimization is
complete for the second level of the Polynomial Hierarchy under Turing
reductions.

1 Introduction

Circuit minimization problems are an interesting class of problems contained
in the second level of the Polynomial-Time Hierarchy (PH). Given a circuit C
computing a function f , the goal is to find the smallest circuit C′ also computing
f . The complexity of circuit minimization depends heavily upon the model of
circuit being minimized as well as how the size of a circuit is calculated. Here
we use boolean formulae as our model. The details of this model and the size
function are defined later.

As a simple example, take the formula a → b. It could be expressed either
by the formula (a ∧ b) ∨ ¬a or by the simpler and more common ¬a ∨ b. Since
we are measuring the size by the number of occurrences of variables, the size of
the first formula is 3, while the size of the second is 2. Even with this simple
example, the fact that the first formula is not minimal is not immediately clear
without the knowledge that it computes a → b. With larger, more complicated
formulae, the problem becomes even more difficult.

Circuit minimization has practical applications in fields such as logic syn-
thesis and hardware design. Two popular variants of circuit minimization are
unbounded-depth and constant depth formula minimization over (∧,∨,¬) for-
mulae. The 2-level (DNF) version was proven ΣP

2 complete in [Uma98]. More
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recently, the constant depth version for all constants greater than 2 as well as
the unlimited depth version were proven to be hard for the second level of the
PH under Turing reductions in [BU08]. More recently, three-level formula min-
imization in which the first level is an OR gate, the second level is AND gates,
and the third level is composed of XOR gates, has been introduced [LP99]. Such
a formula is referred to as a Sum of Pseudoproducts (SPP) in the literature.

Definition 1 (SPP Formulae). An SPP formula is the disjunction of the
conjunction of parity formulae. In other words, an SPP formula contains a single
OR gate of unlimited fan-out, to which the inputs are unlimited fan-out AND
gates which in turn take unlimited fan-out XOR gates as input. The size of an
SPP formula is the number of times the input variables appear in it.

Rather than allow negations of input variables, we allow the XOR gates to
take constants as inputs. Adding a true input is equivalent to negating one of
the input variables and does not increase the formula size. The number of true
inputs thus determines whether an XOR gate computes odd or even parity on
the input variables. The sub-formula computed by an AND gate is referred to
as a pseudoproduct.

Definition 2 (Pseudoproduct). A pseudoproduct is the conjunction of XORs.

Note that when we refer to XORs above, we mean the function computed by an
XOR gate rather than the gate itself. Both meanings are used throughout this
paper.

SPP formula minimization has been a recent subject of study in the field of
logic synthesis [BCDV08, CB02, Cir03]. Some research has found inefficient but
exact minimization algorithms, while other research is directed toward finding
more efficient heuristics. Little has been known about the formal complexity of
SPP minimization. Characterizing the complexity of SPP minimization is impor-
tant, as SPPs are well-suited for use in practical situations such as representation
of arithmetic functions [LP99, JSA97].

Note that SPP formulae are a generalization of DNF formulae. Recall that
a DNF formula is simply the disjunction of several terms, each of which is the
conjunction of some of the input variables and their negations. One reason that
SPP formulae are useful in logic synthesis is that they allow for much smaller
representations of many Boolean functions than DNF formulae. The simplest
such example is that of the parity function. Since SPP formulae contain XOR
gates of unlimited fan-out, parity only requires a single XOR gate with a linear
number of inputs. By contrast, a CNF or DNF for parity requires exponential
size.

We formally define the SPP minimization problem as

Problem 1 (Minimum SPP Formula (MSF)). Given an SPP formula S and an
integer k, is there an SPP formula of size at most k which is equivalent to S?

Here, we show that the minimization of SPP formulae is hard for the second level
of the PH under Turing reductions. This result provides the theoretical back-
ing for work on inefficient exact minimization algorithms [Cir03] and heuristics
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[BCDV08]. It also closes a gap in our knowledge of the complexity of circuit min-
imization. ΣP

2 hardness demonstrates that polynomial time algorithms making
use of NP or coNP queries cannot exist unless the PH collapses. This is an im-
portant result to those working in logic synthesis, as queries to problems such
as the coNP-hard tautology problem are often used in the design of algorithms
and heuristics.

1.1 Description of the Reduction

This section contains a high-level description of the reduction used to show that
Problem 1 is ΣP

2 -complete under Turing reductions, in order to facilitate under-
standing of a more technical description later. We also compare the reduction in
this paper to a related reduction in [BU08].

The problem we reduce from is Modified Succinct Set Cover, which was
shown to be ΣP

2 -complete in [BU08].

Problem 2 (modified succinct set cover (MSSC)). Given a DNF formula
D on variables v1, v2, . . . , vm, x1, x2, . . . , xn and an integer k, is there a subset I ⊆
{1, 2, . . . n} with |I| ≤ k and for which D ∨

∨
i∈I ¬xi ≡ (

∨m
i=1 ¬vi ∨

∨n
i=1 ¬xi)?

Less formally, the goal is to determine whether there exists a small subset I
of the xi variables, for which

∨
i∈I xi accepts every assignment not accepted

by D, except for the all true assignment. In this way, MSSC can be seen as a
succinct form of the set cover problem, in which the points accepted by D and
the formulae ¬xi are the sets which form the instance.

In order to reduce MSSC to MSF, we attempt to split the SPP formula of the
MSF instance into one portion which computes D and another which accepts∨

i ¬xi. To accomplish this, we add a variable z, the value of which determines
whether the formula computes D on the rest of the variables, or D ∨

∨
i ¬xi.

With this variable added, the formula should look like D∨ (z∧
∨

i ¬xi). Because
SPP formulae only have one OR gate at the top level, the particular form is
more similar to D ∨

∨
i(z ∧ ¬xi).

The difficult direction of the reduction is showing that if the MSSC instance
is negative, so is the MSF instance. In order to prevent a small equivalent SPP
formula from existing if the MSSC is negative, we attach different weights to
the variables. Rather than simply counting each occurrence of a variable as 1
toward the size of the formula, we wish to count each variable v as w(v) to add
flexibility to our reduction.

In order to increase the size contribution of each variable, we replace each
occurrence of each variable v with w(v) new variables, so they contribute w(v)
toward the size at each occurrence of v. This is achieved exactly by replacing
each variable v with v1 ⊕ v2 ⊕ · · · ⊕ vw(v). The fact that this transformation
preserves minimum formula size is shown by Lemma 3.

We weight the z variable in a less general way that is better suited for achieving
the desired form. We replace z by z1∧· · ·∧z�, where � is an integer value particular
to the instance of MSSC. In order to avoid confusion, we do not refer to this as
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weighting in the more technical description of the reduction, and simply state
the reduction explicitly with variables z1, . . . , z�.

The reduction approach we use in this paper is superficially similar to one
contained in [BU08], which proves that minimization of (∨,∧,¬) formulae of
both fixed depth ≥ 3 and unrestricted depth are ΣP

2 -complete under Turing
reductions. Consider the depth-3 version, which is most similar to SPP mini-
mization.

Problem 3 (minimum equivalent depth 3 expression (MEE3)). Given a
depth 3 Boolean (∨,∧,¬) formula F and an integer k, is there an equivalent
depth 3 formula of size at most k?

Here, the depth ignores NOT gates. The reduction in [BU08] showing that MEE3
is ΣP

2 -complete under Turing reductions also reduced from MSSC, and used the
same basic strategies. The original variables were given different weights to avoid
the formula being too small when the initial MSSC instance is negative. Extra
variables were added which split the formula into a portion computing D and
a portion computing D ∨

∨
i ¬xi, playing a similar role to the zi variables in

this paper, but with an altogether different form. In the SPP reduction shown
in this paper, we create a formula with a form similar to D ∨

∨
i(z ∧ ¬xi). By

contrast, in [BU08] the formula resulting from the reduction is more similar to
D ∨ (z ∧

∨
i ¬xi) .

The two above forms are different ways of expressing the same formula. The
big difference, however, is the number of occurrences of the z variable. In [BU08],
the z variable is given such a heavy weight that it must appear only once in a
minimal formula. The entire proof depends on this fact. This is not possible with
an SPP formula, however, as the z would then appear in only one pseudoprod-
uct, and this pseudoproduct would thus be responsible for computing

∨
i ¬xi.

Lemma 1 demonstrates why this prevents any such reduction from working.

Lemma 1. No pseudoproduct can compute ¬a ∨ ¬b.

A proof of this lemma is contained in the full version of this paper.
Lemma 1 is important because it demonstrates that a single pseudoproduct is

not powerful enough to accept formulae like
∨

i(z∧¬xi), which can be restricted
to ¬xi ∨ ¬xj by restricting z to true and all other variables except xi and xj to
false.

Thus, we require several copies of the z variable in any reduction from MSSC
to MSF using the general approach developed in [BU08]. In a depth-3 Boolean
formula like those under consideration in the [BU08] reduction from MSSC to
MEE3, the sub-formula containing the z variable is a DNF, and is therefore not
limited in computational capability like a pseudoproduct.

Since the z variable cannot occur only once, the relative weights must be
completely different from those used in [BU08], in order to allow for an unknown
number of z variables. Rather than a single z variable carrying more weight than
the rest of the formula combined, all the z variables combined carry less weight
than any other single variable. This is a huge change, and just the existence of
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multiple copies of the z variables alone completely destroys many of the proof
techniques used in [BU08]. We are able to get a handle on the structure of the
pseudoproducts containing the z variables by developing new proof techniques.
One key structural lemma used in obtaining our results is Lemma 2.

Lemma 2. If a pseudoproduct computes the conjunction z1, . . . , zn of n vari-
ables, the pseudoproduct contains at least n XORs.

The proof of Lemma 2 is contained in the full version of this paper.

2 Results

In this section, we present new classifications for the complexity of problems
related to SPP formulae. We begin in Section 2.1 with a few simple results, then
continue in Section 2.3 with the proof of the ΣP

2 completeness of MSF under
Turing reductions.

2.1 Complexity of Related Problems

In this section, we note some complexity results that remain unchanged from
the corresponding results for related DNF problems.

Problem 4 (SPP Equivalence). Given two SPP formula S, T , do both S and T
compute the same function?

Proposition 1. SPP Equivalence is coNP-complete.

While the proof is quite simple, this result is important to note, as not all types
of logic formulae are known to share this result. For example, the equivalence of
two ordered binary decision diagrams (OBDDs) is decidable in P [Bry86]. The
proof is contained in the full version of this paper.

Problem 5 (DNF Irredundancy). Given a DNF formula T and an integer k, does
there exist an equivalent formula T ′ consisting of the disjunction of at most k
terms from T ?

The irredundancy problem is important because it is often used in heuristics
for DNF minimization problems, despite having been proven ΣP

2 hard to even
approximate in [Uma99]. We see here that the corresponding problem for SPP
formulae shares the same complexity classification.

Problem 6 (SPP Irredundancy). Given an SPP S and an integer k, is there an
equivalent SPP S′ composed of the disjunction of k pseudoproducts from S?

Theorem 1. SPP Irredundancy is ΣP
2 hard to approximate to within a factor

of nε for some ε > 0, where n is the input size.

A proof of this theorem is contained in the full version of this paper.
Prime implicants are also important to DNF minimization, as a minimum

DNF is composed only of prime implicants.
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Definition 3 (Prime Implicant). A prime implicant of a DNF D is a term
T which implies D and does not imply any other term which implies D.

An implicant x1∧· · ·∧xn of D is prime iff there is no k such that x1∧· · ·∧xk−1∧
xk+1 ∧ · · · ∧ xn is also an implicant of D. Since prime implicants are necessary
for DNF minimization, it is important to be able to determine whether a term
is a prime implicant.

Problem 7 (IS-PRIMI). Given a DNF D and a term T , is T a prime implicant
of D?

IS-PRIMI was proven DP-complete independently in [GHM08] and [UVSV06].
Prime pseudoproducts are a generalization of prime implicants to SPP for-

mulae.

Definition 4 (Prime Pseudoproduct). A prime pseudoproduct of an SPP S
is a pseudoproduct P which implies S, but does not imply any other pseudoprod-
uct which implies S.

Prime pseudoproducts characterize SPP with a minimum number of XOR gates
[LP99] rather than minimum SPP formulae as defined in this paper. Still, they
are important to the study of SPP formulae, so we consider the complexity of
determining whether a pseudoproduct is prime.

Problem 8 (SPPPrime Pseudoproduct (SPP-PP)). Given an SPPS and a pseudo-
product P , is P a prime pseudoproduct of S?

We show that SPP-PP is DP-hard using the same reduction used in [GHM08]
to prove that IS-PRIMI is DP-hard. The reduction is from SAT-UNSAT.

Problem 9 (SAT-UNSAT). Given CNF formulae α, β, is α satisfiable and β un-
satisfiable?

Theorem 2. SPP-PP is DP-hard.

A proof of this theorem is contained in the full version of this paper.
Note that we only achieve a hardness result here and not a completeness

result. One key feature of IS-PRIMI that is used to prove containment in DP is
that in order to check that a1 ∧ · · · ∧ an is prime, we need only verify that the n
terms obtained by removing one of the ais do not imply f . With pseudoproducts,
it is unclear how to check primality in NP. Thus, we only have a lower-bound
complexity result.

In this section, we have seen that complexity results for equivalence and ir-
redundancy of SPP formulae can be inferred directly from the corresponding
results for DNF formulae because DNF formulae are a special case of SPP for-
mulae. These results were simple because the problems only depend on the for-
mulae taken as inputs, and do not depend on properties of any other formula.
This preserves the DNF versions as special cases of the SPP versions. In general,
formula minimization problems differ in that the problem instance is compared
to all formulae of size less than k, necessitating a different reduction when the
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type of formulae under consideration is changed. So the result that DNF formula
minimization is ΣP

2 -complete [Uma01] does not immediately carry over to SPP
formula minimization.

The ΣP
2 -completeness result does not directly carry over from DNFs to SPPs,

but one might hope that the proof techniques used would, as happened with
the DP-hardness proofs of IS-PRIMI and SPP-PP. However, the proof of DP-
hardness for prime implicants had the convenient feature that the DNF term
created by the reduction is a prime implicant iff it is a prime pseudoproduct.
The proof of DNF minimization being ΣP

2 -complete does not have the analogous
feature that the DNF produced is a minimum DNF iff it is a minimum SPP. So
a new reduction is necessary.

2.2 Weighted Variables

Normally, we measure the size of an SPP formula by the number of occurrences
of variables within it. Each occurrence counts as 1 toward the total size. Another
notion of size might be to assign a positive integer weight w(v) to each variable
v, and count each occurrence of the variable v as w(v) toward the total size.
We will show a transformation from positive integer weights to the normal size
measure in which each variable counts as 1, which preserves minimum formula
size.

Since the SPP formulae in consideration have unlimited fanout XOR gates,
we can replace a variable v of weight w(v) with the XOR of w(v) new variables,
v1 ⊕ · · · ⊕ vw(v) in order to eliminate the need for directly assigning weights to
variables. This weighting is achieved by adding the new vi variables to each XOR
gate containing v, and removing v completely.

Given an SPP formula F with associated weight function w(v), we call F the
weighted version of the formula. Let F ′ be the formula obtained by replacing
every variable v with the XOR of w(v) new variables. We call F ′ the expanded
version of the formula. Note that if F computes f and F ′ computes f ′, f(x1 ⊕
· · ·⊕xw(x), y1⊕· · ·⊕yw(y), . . .) is equivalent to f ′(x1, . . . , xw(x), y1, . . . , yw(y), . . .).
We denote the weighted size of F with weights w(v) by |F |w, and we denote the
size of F ′ by |F ′|.

The expansion described above differs from the expansion strategy used in
[BU08], in which a conjunction of w(v) new variables was used rather than an
XOR. Our strategy has the advantages that it handles negation without requiring
a possible increase in the depth of the formula and can be easily applied to SPP
formulae. Lemma 3 demonstrates that applying this simple transformation is
equivalent to positive integer weighting. Before we get to Lemma 3, we define
the weighted version of MSF.

Problem 10 (Weighted MSF (W-MSF)). Given an SPP formula S, a list of
weights w for each variable in unary, and an integer k, is there a formula S′

equivalent to S for which |S′|w ≤ k?

We refer to a formula which is minimum with respect to w as a w-minimum
formula.
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Lemma 3. Let f be a Boolean function and w be a positive integer weighting
function for the variables of f . If F is a w-minimum formula for f and F ′ is a
minimum formula equivalent to the expanded version of F , then |F |w = |F ′|.

A proof of this lemma is contained in the full version of this paper.
Now, we apply Lemma 3 to show that W-MSF and MSF are poly-time equiv-

alent.

Theorem 3. There exist polynomial-time reductions between W-MSF and MSF.

This follows pretty quickly from Lemma 3 and a detailed proof is contained in
the full version of this paper.

Since these two problems are polynomial-time equivalent, we only need to
prove that one of them is ΣP

2 complete under Turing reductions to see that they
both are. We will show that MSF is ΣP

2 complete under Turing reductions via
W-MSF.

2.3 Main Result

In this section, we show that Problem 1, the SPP minimization problem, is
ΣP

2 complete under Turing reductions by reducing from MSSC to W-MSF. The
following steps describe how a Turing machine with access to an oracle for W-
MSF can solve MSSC.

– We are given an instance 〈D,x1, x2, . . . , xn, k〉 of MSSC, where D is a DNF
formula over variables v1, . . . , vm, x1, . . . , xn.

– Set � = 2k(k + 1)(|D|+ 1).
– Create new variables z1, . . . , z�.
– Set the weight function w such that w(vi) = 2k2�, w(xi) = k� and w(zi) = 1

for all i.
– Using binary search, find the size of the w-minimum SPP formula for D

using O(log |D|w) oracle calls. Call this size τ .
– Set S = D∨(Z∧¬x1)∨(Z∧¬x2)∨· · ·∨(Z∧¬xn) where Z = z1∧z2∧· · ·∧z�.
– Finally, we make one last oracle call to determine whether there is an SPP

formula S′ equivalent to S for which |S′|w ≤ τ + k(k + 1)�. Accept iff such
an S′ exists.

Remark 1. Since this reduction only uses logarithmically many adaptive oracle
calls, standard techniques can be used to turn this into a non-adaptive reduction
with polynomially many oracle calls.

A helpful lemma was proven in [BU08]:

Lemma 4. Let t1, t2, . . . , tn be a set of variables, and S a set of assignments
of true/false values to t1, . . . , tn. A minimum formula accepting at least S and
not the all-true assignment to variables t1, t2, . . . , tn is of the form

∨
i∈I ¬ti for

some I ⊆ {1, 2, . . . , n}.
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Although this lemma was only proven for (∨,∧,¬)-formula in [BU08], it holds
true for weighted SPP as well using the same proof. The proof in both cases relies
on transforming a formula F accepting at least S but not the all-true assignment
into the form

∨
i∈I ¬ti, by setting I as the set of all variables mentioned in

F . Everything in S will still be accepted, the all-true assignment will still be
rejected, and the size is not increased.

One final necessary lemma will allow us to determine the placement of the
zi variables in S′ when |S′| ≤ τ + k(k + 1)�. Before proving this lemma, it is
necessary to define the notion of a restriction.

Definition 5 (Restriction). A restriction of a function f to a partial assign-
ment σ is simply the remaining function on all other variables when the variables
contained in σ are fixed according to σ. Similarly, a restriction of a formula F
to σ results in the formula F with occurrences of variables in σ replaced with
values according to σ.

A restriction will reduce the size of the formula, as constants do not count toward
formula size. Note that if we restrict an SPP formula, the resulting formula is
also an SPP formula.

Lemma 5. Let S′ be an equivalent SPP formula to the SPP formula S created
by the Turing reduction described at the beginning of Section 2.3. Let U be the
subset of pseudoproducts in S′ that accept an assignment not accepted by D. Let
HP be the set of zi variables in pseudoproduct P which occur in some XOR in
P that contains only constants and zi variables. Either |S′|w > τ + k(k + 1)� or
there exists some index i∗ such that zi∗ ∈ HP ∀P ∈ U .

Proof. Suppose that there does not exist an index i∗ such that zi∗ ∈ HP ∀P ∈ U .
Consider a pseudoproduct P ∈ U . Let HP

C denote the complement of HP

within the set of zi variables. So HP
C is the set of zi variables that never appear

in an XOR in P consisting of only zi variables and constants. Since P ∈ U , there
exists some assignment σ accepted by P but not by D.

Let P ′ be the restriction of P to σ on all variables which are not members
of HP

C . Thus, P ′ computes some function on the variables in HP
C . Recall

that S = D ∨
∨

i (z1 ∧ · · · ∧ z� ∧ ¬xi). Since σ is not accepted by D, S becomes∧
zi∈HP

C zi under the restriction to σ on all variables outside of HP
C .

P ′ cannot accept anything not accepted by S′, so P ′ can only accept when∧
zi∈HP

C zi is true. Furthermore, it must accept in this case, as P accepted σ. So
P ′ computes exactly

∧
zi∈HP

C zi. Thus, by Lemma 2, there are at least |HP
C |

XORs in P ′. Note that this does not include XORs which contain only constants.
These can be safely ignored, as they must all reduce to true since P ′ does not
compute a constant function.

Each of the |HP
C | non-trivial XORs in P ′ corresponds to an XOR in P that

contains a variable other than one of the zis. This follows from the definition of
HP

C and the fact that each non-trivial XOR in P ′ contains a member of HP
C .

Since all variables other than the zi are weighted at least �, |P |w ≥ �|HP
C |.

Furthermore, since no zi is contained in HP ∀P ∈ U ,
⋃

P∈U HP
C = {z1, . . . , z�}.
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So
∑

P∈U |HP
C |� ≥ �2, which is important because |S′|w ≥

∑
P∈U |P |w ≥∑

P∈U |HP
C |�. Thus, we have |S′|w ≥ �2, which since � = 2k(k + 1)(|D| + 1),

is greater than 2k(k + 1)�|D| + k(k + 1)�. We know 2k(k + 1)�|D| > τ since
w(v) ≤ 2k2� < 2k(k + 1)�, so τ ≤ |D|w < 2k(k + 1)�|D| for every variable v.
Thus, |S′|w > τ + k(k + 1)�.

Therefore, either there is some index i∗ such that zi∗ ∈ HP ∀P ∈ U or
|S′| > τ + k(k + 1)�. �


The main result that W-MSF is ΣP
2 -complete under Turing reductions, and

therefore so is MSF, follows from Theorem 4.

Theorem 4. Let S be the SPP formula resulting from the Turing reduction
at the beginning of Section 2.3. The W-MSF instance 〈S,w, τ + k(k + 1)�〉 is
positive iff the original MSSC instance was positive as well.

Proof. First, we will show that a positive MSSC instance implies a positive W-
MSF instance. Let I ⊆ [n] such that |I| ≤ k and D ∨

∨
i∈I ¬xi ≡

∨m
i=1 ¬vi ∨∨n

i=1 ¬xi. Since the MSSC instance is positive, such an I exists. Let D̂ be a
w-minimum formula equivalent to D. Note |D̂|w = τ. We construct a formula
S′ = D̂∨

[∨
i∈I

(
¬xi ∧

∧�
j=1 zj

)]
. which is equivalent to S since when we restrict

such that
∧�

j=1 is false, it computes D and when we restrict such that
∧�

j=1 is
true, it computes D∨

∨
i∈I ¬xi ≡

∨m
i=1 ¬vi ∨

∨n
i=1 ¬xi. Thus, S′ and S compute

the same functions under any restriction to the zi variables, so S′ ≡ S. Note
that |S′|w = |D̂|w +

∑
i∈I(w(xi) + �) = τ + k(k� + �) = τ + k(k + 1)�. Thus, a

positive instance of MSSC implies a positive instance of W-MSF.
Now we prove that a negative instance of MSSC implies a negative instance of

W-MSF. We will show that if the MSSC instance is negative, so is the W-MSF
instance by first restricting to the portion of the formula computing D via the
upcoming Claim 1 to achieve a τ lower bound. We then show that the rest of S′

is of size greater than k(k + 1)� by the upcoming Claim 2.
Suppose that the instance of MSSC is negative. Assume by way of contradic-

tion that the W-MSF instance is positive. By this assumption, there exists some
formula S′ which is equivalent to S and for which |S′|w ≤ τ + k(k + 1)�. Let U
be the subset of pseudoproducts in S′ that accept an assignment to the input
variables not accepted by D. Let HP be defined as in Lemma 5 to be the set of
zi variables that occur in some XOR in a pseudoproduct P containing only zi

variables and constants. By Lemma 5, there is some index i∗ such that zi∗ ∈ HP

∀P ∈ U , since |S′|w ≤ τ + k(k + 1)�.

Claim 1. Every member of U becomes false under the restriction zi = true
∀i 
= i∗ and zi∗ = false.

A proof of this claim is contained in the full version of this paper.
Let S∗ be the restriction of S′ to zi = true ∀i 
= i∗ and zi∗ = false. By

Claim 1, S∗ only depends on pseudoproducts outside of U . Also, S∗ must be
equivalent to D, since we have restricted such that z1 ∧ · · · ∧ z� is false and
S′ ≡ S = D ∨

∨
i(z1 ∧ · · · ∧ z� ∧ ¬xi). Thus, since S∗ ≡ D, |S∗|w ≥ τ .
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Claim 2. The total weighted size of the pseudoproducts in U is greater than
k(k + 1)�.

This claim follows from Lemma 4 and the MSSC instance being false. A detailed
proof is contained in the full version of this paper.

The total size of S′ can now be calculated. The total size of all the pseudoprod-
ucts outside of U is at least τ . By Claim 2, the total size of the pseudoproducts
in U is greater than k(k + 1)�. Thus,

|S′|w > τ + k(k + 1)�,

contradicting |S′|w ≤ τ + k(k + 1)�. So a negative instance of MSSC implies a
negative instance of W-MSF, completing the proof. �


Thus, W-MSF is ΣP
2 -complete under Turing reductions, and therefore so is MSF

by Theorem 3.

3 Conclusions and Open Problems

In this paper, we have resolved several problems relating to the complexity of
SPP formulae. We have proven that formula equivalence remains coNP-complete
and that irredundancy remains ΣP

2 -hard to approximate to within nε for some
ε > 0 when we generalize DNF formulae to SPP formulae. We also saw that when
we generalize IS-PRIMI to SPP-PP, the DP-hardness result remains. Since we
do not show SPP-PP ∈ DP, the complete characterization of SPP-PP remains
an open problem. Most importantly, we have resolved the complexity of the
MSF problem, providing critical theoretical background to an important area of
research in the field of logic synthesis.

The reduction used in this paper is a Turing reduction. A Turing reduction is
needed to find the minimum formula size for D, which is critical to the reduction.
So finding a many-one reduction remains an open problem.

Approximability of SPP minimization has not been addressed here, and re-
mains an interesting open problem. The nature of the reduction given in this
paper precludes direct use toward an inapproximability result. This is because
the way in which the variables are weighted causes the part of the formula com-
puting D to vastly outweigh the part determining how many xi variables are
necessary. This makes it impossible to use the reduction to approximate the
number of xi variables necessary. If this could be reversed such that each xi

variable carried greater weight in the problem size than the portion computing
D, it would lead to both approximability results and a many-one reduction.

Rather than attempt to find a minimum SPP formula, several researchers
have further restricted the possible solution space by restricting the fan-out of
the XOR gates to a constant [BCDV08, CB02, Cir03].

Definition 6 (k-SPP Formulae). A k-SPP formula is an SPP formula in
which the XOR gates have fan-out of at most k.
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While a k-SPP formula may require larger size than an SPP formula, they are
sufficiently powerful to be exponentially smaller than the smallest equivalent
DNF in some cases [Cir03].

Although k-SPP formulae are an active area of research [BCDV08], we have
not resolved their complexity here. However, this work is an important first step
toward determining the complexity of k-SPP, since so little was known about
the complexity of either SPP or k-SPP minimization.
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Abstract. In the present work we find a non-trivial communication
protocol describing the dynamics of an elementary CA, and we prove
that there are no simpler descriptions (protocols) for such CA. This is,
to our knowledge, the first time such a result is obtained in the study of
CAs. More precisely, we divide the cells of Rule 218 into two groups and
we describe (and therefore understand) its global dynamics by finding
a protocol taking place between these two parts. We assume that x ∈
{0, 1}n is given to Alice while y ∈ {0, 1}n is given to Bob. Let us call
z(x, y) ∈ {0, 1} the result of the dynamical interaction between the cells.
We exhibit a protocol where Alice, instead of the n bits of x, sends
2�log(n)
+ 1 bits to Bob allowing him to compute z(x, y). Roughly, she
sends 2 particular positions of her string x. By proving that any one-
round protocol computing z(x, y) must exchange at least 2�log(n)
 − 5
bits, the optimality of our construction (up to a constant) is concluded.

1 Introduction

The process of understanding and classifying cellular automata (CAs) has been
carried out mainly by researchers belonging to the dynamical systems commu-
nity [2,9,14]. This interest can be explained on one hand by the simple fact that
CAs are discrete dynamical systems and, on the other hand, by the impact of
Wolfram’s classification [21], which is an “empirical categorization of space-time
pattterns into four classes loosely based on an analogy with those found in con-
tinous state dynamical systems”; nevertheless, this classification “has resisted
numerous attempts at formalizations” [7].

We claim that CAs are extremely complex (highly non linear) objects and
therefore the language of computer science appears to be particularly suitable
for studying them. More precisely, our approach is to divide the cells into (two)
groups in order to describe the dynamics by finding simple communication pro-
tocols taking place between these parts.
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Obviously, this is not the first time CAs are analyzed from a (theoretical)
computer science point of view. The algorithmic approach has always been
present. In fact the model itself was invented in the 1950’s as a tool to study
self-reproduction [16]. And more recently researchers have tackled different algo-
rithmic problems ranging from the intrinsic universality and the complexity of
predicting [4,11,12,15,17,20] to the decidability/complexity of different dynami-
cal systems properties [1,3,6,8]. But the present work is, to our knowledge, the
first one where non-trivial protocols are discovered in the dynamics itself (in
a previous paper the connection between CAs and communication complexity
began to be explored [5]; nevertheless, in that work, instead of understanding
the CAs behavior, the main interest was to give a formal classification; in fact,
proofs were given just for simple cases).

1.1 Basics

An (elementary) CA is defined by a local function f : {0, 1}3 → {0, 1}, which
maps the state of a cell and its two immediate neighbors to a new cell state.
There are 223

= 256 CAs and each of them is identified with its Wolfram
number ω =

∑
a,b,c∈{0,1} 24a+2b+cf(a, b, c) (see [21,22]). Sometimes, instead of

expliciting function f , we refer to fω. The dynamics is defined in the one-
dimensional cellspace. Following the CAs paradigm, all the cells change their
states synchronously according to f . This endows the line of cells with a global
dynamics whose links with the local function are still to be understood. After
n time steps the value of a cell depends on its own initial state together with
the initial states of the n immediate left and n immediate right neighbor cells.
More precisely, we define the n-th iteration fn : {0, 1}2n+1 → {0, 1} recursively:
f1(z−1, z0, z1) = f(z−1, z0, z1) and, for n ≥ 2,

fn(z−n . . . z1, z0, z1 . . . zn) = fn−1(f(z−n, z−n+1, z−n+2) . . . f(zn−2, zn−1, zn)).

This work is motivated by the following idea: if we were capable of giving a
simple description of fn (for arbitrary n) then we would have understood the
behavior of the corresponding CA.

1.2 Representation

The first step is to represent fn as two families of 0-1 matrices depending on
whether the central cell begins in state c = 0 or c = 1. More precisely, the square
matrices M c,n

f of size 2n are defined as follows (see Figure 1).

M c,n
f (x, y) := fn(x, c, y) with x = xn . . . x1 and y = y1 . . . yn in {0, 1}n.

Note that the first matrix of each family, standing for n = 1, completely defines
the local function. One can think of these matrices as seeds for the families. We
should emphasize also that the space-time diagram shows the evolution of only
a single configuration, while the matrix covers all configurations .
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Fig. 1. The two families of binary matrices Mc,n
f178

of Wolfram Rule 178

1.3 Interpretation

This step is obviously the most difficult. Here we try to prove and interpret
the behavior of M c,n

f for arbitrary values of n. Fortunately, these 0-1 matrices
reveal themselves to be a striking representation. For instance, let us consider
Rule 105. In Figure 2 we show on the left the space-time diagram of Rule 105 for
some initial configuration, and on the right the matrix M0,6

f105
. In contrast with the

space-time diagram, the matrix looks simple. In fact, as we are going to see later,
the simplicity of a matrix M c,n

f is related to the simplicity of the communication
protocol that computes fn. Therefore, assuming that x = xn . . . x1 ∈ {0, 1}n is
given to one party (say Alice) and that y = y1 . . . yn ∈ {0, 1}n is given to another
party (say Bob), we are going to look for the simplest communication protocols
that compute both fn(x, 0, y) and fn(x, 1, y).

1.4 Our Contribution

Let d(M) be the number of different rows of a matrix M . In [5] the only CAs we
managed to explain were those we called bounded (where d(M c,n

f ) was constant)
and linear (where d(M c,n

f ) grew as Θ(n)). All the other CAs were grouped
together using a mainly experimental criterion. We conjectured the existence of
polynomial and exponential classes. In the present work we prove the existence
of a CA for which d(M c,n

f ) grows as Θ(n2).
Linear and bounded rules are easy to explain in terms of communication

protocols. This is the case of Rule 178 of Figure 1 (this particular rule has
just been studied by D. Regnault [18] using percolation theory and considering



Understanding a Non-trivial Cellular Automaton 595

Fig. 2. A space time diagram for Rule 105 (left) and matrix M0,6
f105

(right). In the
diagram every row is a configuration and time goes upward; grey cells represent states
which are undetermined from the bottom (initial) configuration.

asynchronicity; we belive that the linearity of the rule and the fact that it is
amenable to other types analysis is not a coincidence).

This paper shows that as soon as we move up in the hierarchy the underlying
protocols become rather sophisticated. In fact, for the CA we treat here (Rule
218), we prove that if c = 0 then Alice needs to send 2 positions of her string
(2 log(n) bits). The quantitative relation between the one-round communication
complexity and the number of different rows will be explained later. But roughly,
the first is the logarithm of the second. Therefore, sending 2 log(n) bits is equiv-
alent to having Θ(n2) different rows. The difference between sending 1 position
(Θ(n) behavior) and 2 positions (Θ(n2) behavior) is huge. The reader can verify
this by comparing the cases c = 0 and c = 1.

We think Rule 218 is one of the few CAs for which a non-trivial behavior can
be proven. Experimentally, we do not find many candidates in a class Θ(nk) with
k ≥ 2. This could imply that there are no other CAs with simple descriptions
(shortcuts). We should also point out that, if more than 2 states were allowed,
we could build CAs with arbitrary complexity. In fact, in [5] it is shown how to
construct a 3 state CA exhibiting a Θ(n3) behavior. But in the present work we
are dealing with the inverse problem.

1.5 Rule 218

The local function of CA Rule 218 is the following:

0
0 0 0

1
0 0 1

0
0 1 0

1
0 1 1

1
1 0 0

0
1 0 1

1
1 1 0

1
1 1 1

Its global dynamics is represented by the two matrices of Figure 3 and by the
space-time diagrams of Figure 4 (Rule 218 and Rule 164 are the same; 0s behave
as 1s and viceversa). We encountered Rule 218 when trying to find a (kind of)
double-quiescent palindrome-recognizer. Despite the fact that it belongs to class
2 (according to Wolfram’s classification), it mimics Rule 90 (class 3) for very
particular initial configurations.
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Fig. 3. M0,9
f218

(left) and M1,9
f218

(right)

Fig. 4. Two space-time diagram for Rule 218. Every row is a configuration and time
goes upward. Grey cells represent states which are undetermined from the bottom
(initial) configuration.

Authors in [13] were surprised when they found, “unexpectedly”, that the
rule exhibited 1/fα spectra. Rule 218 has also been proposed as a symmetric
cipher [19]. Nevertheless, it should be clear that the most relevant aspect of
Rule 218 is its behavior in this communication context. More precisely, Rule 218
seems to be one of the most complex CAs for which a reasonable protocol can
be found.

2 Two-Party Protocols

The communication complexity theory studies the information exchange re-
quired by different actors to accomplish a common computation when the data is
initially distributed among them. To tackle that kind of questions, A.C. Yao [23]
suggested the two-party model: two persons, say Alice and Bob, are asked to
compute together f(x, y), where Alice knows x only and Bob knows y only (x
and y belonging to finite sets). Moreover, they are asked to proceed in such a way
that the cost –the total number of exchanged bits– is minimal in the worst case.
Different restrictions on the communication protocol lead to different commu-
nication complexity measures. Whereas most studies concern the many-round
communication complexity, we focus only on the one-round.

Definition 1 (One-round communication complexity). A protocol P is
an AB-one-round f -protocol if only Alice is allowed to send information to Bob,
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and Bob is able to compute the function solely on its input and the received
information. The cost of the protocol cAB(P) is the (worst case) number of bits
Alice needs to send. Finally, the AB-one-round communication complexity of a
function f is cAB(f) = cAB(P∗), where P∗ is an AB-one-round f -protocol of
minimum cost. The BA-one-round communication complexity is defined in the
same way.

The following fact throws light on the interest of the one-round communication
complexity theory for our purpose: we can infer the exact cost of the optimal
AB-one-round protocol by just counting the number of different rows in the
matrix.

Fact 1 ([10]). Let f be a binary function of 2n variables and Mf ∈ {0, 1}2
n×2n

its matrix representation, defined by Mf(x, y) = f(xy) for x, y ∈ {0, 1}n. Let
d(Mf ) be the number of different rows in Mf . We have cAB(f) =

⌈
log

(
d(Mf )

)⌉
.

Example 1. Consider Rule 90, which is defined as follows: f(a, b, c) = a+ c (the
sum is mod 2). This is an additive rule and it satisfies the superposition principle.
More precisely, for every xn . . . x1 ∈ {0, 1}n, x̃n . . . x̃1 ∈ {0, 1}n, y1 . . . yn ∈
{0, 1}n, ỹ1 . . . ỹn ∈ {0, 1}n, c, c̃ ∈ {0, 1}:

fn(xn . . . x1, c, y1 . . . yn)+ fn(x̃n . . . x̃1, c̃, ỹ1 . . . ỹn) = fn(xn + x̃n . . . , c+ c̃, . . . yn + ỹn).

Therefore, there is a simple one-round communication protocol. Alice sends
one bit b to Bob. The bit is b = fn(xn . . . x1, c, 0 . . . 0). Then Bob outputs b +
fn(0 . . . 0, 0, y1 . . . yn). The same superposition principle holds for Rule 105 of
Figure 2. This simple protocol (together with Fact 1) explains why the number
of different rows is just 2.

3 The Protocols of Rule 218

Since Rule 218 is symmetric we are going to assume, w.l.g., that Alice is the
party that sends the information. Moreover, we are going to refer simply to one-
round protocols or one-round communication complexity (because the AB and
BA settings are in this case equivalent). We denote f218 simply by f .

Notice that we can easily extend the notion of t iterations to blocks of size
bigger than 2t + 1. In fact, for every m ≥ 2t + 1 and every finite configuration
z = z1 . . . zm ∈ {0, 1}m we define f0(z) = z,

f1(z) = (f(z1, z2, z3), . . . , f(zm−2, zm−1, zm)) ∈ {0, 1}m−2

and, recursively, f t(z) = f t−1(f(z)) ∈ {0, 1}m−2t.
Let c ∈ {0, 1}. Let x, y ∈ {0, 1}n. From now on in this section, in order to

simplify the notation, we are always assuming that these arbitrary values (i.e.,
n, c, x, y) have already been fixed.

Definition 2. We say that a word in {0, 1}∗ is additive if the 1s are isolated
and every consecutive couple of 1s is separated by an odd number of 0s.
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Lemma 1. If xcy ∈ {0, 1}2n+1 is additive, then fn(x, c, y) = fn(x, c, 0n) +
fn(0n, 0, y).

Proof. Rule 218 is “almost” the same as Rule 90 which is defined as follows:
(b−1, b0, b1) → b−1 + b1. The only case where the two rules differ is when
b−1b0b1 = 111. But for additive configurations the pattern 111 never appears
and therefore its dynamics corresponds to the one of Rule 90. This rule is addi-
tive and therefore the superposition principle applies. �


Notation 1. Let α be the maximum index i for which xi . . . x1c is additive. Let
β be the maximum index j for which cy1 . . . yj is additive. Let x′ = xα . . . x1 ∈
{0, 1}α and y′ = y1 . . . yβ ∈ {0, 1}β.

Notation 2. Let l be the minimum index i for which xi = 1. If such index does
not exist we define l = 0. Let r be the minimum index j for which yj = 1. If
such index does not exist we define r = 0.

3.1 The Lemmas

In this subsection we present all the lemmas we need in order to conclude the
correctness of the protocols. These protocols are going to be presented in the
next subsection. One could therefore begin by reading subsection 3.2 and check
the lemmas later.

Lemma 2. fn(x, c, y) = fn(1n−αx′, c, y) = fn(x, c, y′1n−β) = fn(1n−αx′, c,
y′1n−β).

Proof. By symmetry it is clear that it is enough to prove fn(x, c, y) = fn(1n−αx′,
c, y). If α = n then it is direct. If α < n then there is a non-negative integer
s such that xα+1 . . . xα−2s = 102s1 (notice that s could be 0). It follows that
fs(102s1) = 11. Notice that a word 11 acts as a wall through which information
does not flow. In fact, for all b ∈ {0, 1}, f(b, 1, 1) = f(1, 1, b) = 1. Therefore we
conclude that the result is independent of the information to the left of position
α + 1 and we can assume, w.l.g, that xn . . . xα+1 = 1n−α. �


Definition 3. A string z is called left additive if it satisfies one of the two
following conditions: either (i) z = 0 . . . 0, or (ii) z is additive while 1z is not.
For the right additivity definition we replace 1z by z1.

Lemma 3. Let 1 ≤ s ≤ n. Let z ∈ {0, 1}2n+1−s. If z is left additive then
f(1sz) = 1su with u ∈ {0, 1}2n−1−s being left additive. If z is right additive then
f(z1s) = u1s with u ∈ {0, 1}2n−1−s being right additive.

Proof. We will prove the left additivity case (the right case is analogous). First
we need to prove that the block of 1s moves to the right (see Figure 5 a). More
precisely, that f(1, z1, z2) = 1. We know that 1z1z2 
= 101 because in that case
1z would have been additive. Therefore f(1, z1, z2) = 1. On the other hand, since
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Fig. 5. a. f(1sz) = 1su. b. 02m−21 is a prefix of u.

f(z) = u, we know that u is additive. Now we need to prove that u = 0 . . . 0 or
that 1u is not additive. Let us analyze two cases.

Case z1 = 0. If z = 0 . . . 0 then u = 0 . . . 0. The other possibility is that z1
belongs to an even length block of 0s (bounded by two 1s). If the length is 2
then u1 = f(z1, z2, z3) = f(0, 0, 1) = 1 and therefore 1u is not additive. If the
length is even but bigger than two then the block shrinks in its two extremities
and it remains even. Therefore, 1u also is not additive.
Case z1 = 1. By the additivity of z we know that z2 = 0. If z3 = 0 then u1 = 1
and therefore 1u is not additive. Hence let us assume z3 = 1 (see Figure 5
b). Since z1z2z3 = 101 we must consider three cases: z = (10)m with m ≥ 2;
z = (10)m1 with m ≥ 1; and the case where (10)m0 is a prefix of z (with m ≥ 2).
In the first two cases u = 0 . . . 0. In the third case 02m−21 is a prefix of u and
therefore 1u is not additive. �


Lemma 4. Let 1 ≤ s ≤ n. Let z ∈ {0, 1}2n+1−s. If z is left additive then
fn(1sz) = 1. If z is right additive then fn(z1s) = 1.

Proof. Direct from Lemma 3. Let us just consider the left additivity case. It is
clear that the state of the leftmost cell (which is a 1 because s ≥ 1) propagates
to the right. Therefore, fn(1sz) = 1. �


Lemma 5. If x′cy′ is additive, then

1. If |α− β| ≥ 1 then fn(1n−αx′, c, y′1n−β) = 1.
2. If α = β = k then fn(1n−αx′, c, y′1n−β) = fk(x′, c, y′) = fk(x′, c, 0k) +

fk(0k, 0, y′).

Proof.
1. Let us assume, w.l.g., that α < β. Consider z = fα+1(1n−αx′, c, y′1n−β).
The number of bits of z is 2n + 1 − 2(α + 1) = 2(n − α − 1) + 1. If we denote
z = z−(n−α−1) . . . z0 . . . z(n−α−1) it follows that

z−(n−α−1) . . . z0 = fα+1(1n−αx′
α . . . x′

1cy
′
1 . . . y

′
α+1).

By Lemma 4 we conclude that z−(n−α−1) . . . z0 = 1n−α. If α = n − 1 then
z0 = 1 = fn(1n−αx′, c, y′1n−β) and the result is concluded. If α < n − 1 then
z−1z0 = 11. Since such a wall of size two never changes we conclude that the
central cell will always remain in state 1.
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2. If k = n then it is direct. Suppose k < n. Consider the configuration z =
fk(1n−kx′, c, y′1n−k). We conclude from Lemma 4 that z = 1n−kb1n−k, where
b = fk(x′, c, y′) ∈ {0, 1}. The results follows from the fact that f(1, b, 1) = b. �


Remark 1. The purpose of the following lemmas is to treat the case where x′0y′

is not additive (because x′1y′ is always additive). Therefore, we are interested
in the case where an even length block of 0s between two consecutive 1s appear
in x′0y′. In other words by recalling Notation 2, when |l + r − 1| is even or,
equivalently, when r 
= l (mod 2).

Lemma 6. If r 
= 0, l 
= 0, |l + r − 1| is even and l ≥ r − 1, then

fn(x, 0, y) =

{
fn(1n−l+10l−1, 0, y) if l ≥ r + 3,
1 if |l − r| = 1.

Proof. Notice that xl . . . x10y1 . . . yr = 10l+r−11. So f
l+r−1

2 (xl . . . x10y1 . . . yr) =
11. If l > r then this 11 wall (through which information can not flow) will be
located on the left side of the center cell. It follows that the final result will
not depend on xn . . . xl+1 (if l = n this is just the empty word). Then we can
assume, w.l.g, that xn . . . xl+1 = 1n−l.

For the particular cases l = r + 1 and l = r − 1, the 11 wall will appear
precisely in the center (and the result corresponds to 1). �


Lemma 7. If r 
= 0, l 
= 0, |l + r − 1| is even and l ≤ r − 3, then

fn(x, 0, y) =

{
fα(x′, 0, 0α) if r = α + 1,
1 if r 
= α + 1.

Proof. Since r > l, by the same argument used in the proof of Lemma 6, we know
that the result does not depend on yr+1 . . . yn and we can therefore assume that
yr+1 . . . yn = 1n−r. On the other hand, from Lemma 2, we can assume that
xn . . . xα+1 = 1n−α. It follows from the two previous remarks that

fn(x, 0, y) = fn(1n−αxα . . . x1, 0, 0r−11n−r+1).

Case r = α + 1. Let us denote

z−(n−α) . . . z0 . . . zn−α = fα(x, 0, y) = fα(1n−αxα . . . x1, 0, 0α1n−α).

Let us compute z−2z−1z0z1z2 (if α = n− 1 we only consider z−1z0z1). It fol-
lows that z−2 = fα(11xα . . . x3, x2, x10α−1), z−1 = fα(1xα . . . x2, x1, 0α), z1 =
fα(xα−1 . . . x10, 0, 0α−11), z2 = fα(xα−2 . . . x100, 0, 0α−211). From Lemma 4,
z−2 = z−1 = z1 = z2 = 1 (for z1 = 1 and z2 = 1 recall that |l − r +
1| is even). Therefore, the pattern 11z011 appears in the center. Since z0 =
fα(xα . . . x1, 0, 0α) the results follows (for the particular case α = n− 1 we have
that fn(x, 0, y) = f(z−1, z0, z1) = f(1, z0, 1) = z0 and the same conclusion is
obtained).
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Case r > α + 1. Let us denote

z−(n−α−1) . . . z0 . . . zn−α =fα+1(x, 0, y)=fα+1(1n−αxα . . . x1, 0, 0r−11n−r+1).

The result follows because z−1z0 = 11. In fact, z−1 = fα+1(11xα . . . x2, x1, 0α)
and z0 = fα+1(1xα . . . x1, 0, 0α+1). In both cases we apply Lemma 4.

Case r < α + 1. Let us denote

z−(n−r) . . . z0 . . . zn−r = f r(x, 0, y) = f r(1n−αxα . . . x1, 0, 0r−11n−r+1).

The result follows because z0z1 = 11. In fact, z0 = f r(xr . . . x1, 0, 0r−11)
and z1 = f r(xr−1 . . . x10, 0, 0r−211). In both cases we apply Lemma 4 (right
additivity because l + r − 1 is even). In the particular case where r = α = n we
have fn(x, 0, y) = z0 = 1. �


3.2 The Protocols

3.2.1 When c = 0
We are going to define a one-round protocol P0 for the case where the central
cell begins in state 0. Recall the Alice knows x and Bob knows y. P0 goes as
follows. Alice sends to Bob α, l, and a = fα(x′, 0, 0α). The number of bits is
therefore 2�log(n)�+ 1.

If l = 0 then Bob knows (by definition of l) that x = 0n and he outputs
fn(0n, 0, y). If r = 0 his output depends on α. If α = n he outputs a (Lemma 1)
and if α < n he outputs 1 (Lemma 5). We can assume now that neither l nor r
are 0. The way Bob proceed depends mainly on the parity of |l + r − 1|.

Case |l+r−1| is odd. In this case x′0y′ is additive and Bob can apply Lemma 5.
In fact, if |α− β| ≥ 1 he outputs 1. If α = β = k he outputs a + fk(0k, 0, y′).

Case |l + r − 1| is even. Bob compares r with l. If l ≥ r − 1 then he applies
Lemma 6. More precisely, he outputs fn(1n−l+10l−1, 0, y) if l ≥ r + 3 and 1
otherwise. If l ≤ r − 3 then he applies Lemma 7. More precisely, he outputs
a = fα(x′, 0, 0α) if r = α + 1 and 1 otherwise.

Proposition 1. P0 is a one-round f -protocol for c = 0 with cost 2�log(n)�+ 1.

3.2.2 When c = 1
We are going to define a one-round protocol P1 for the case where the central
cell begins in state 1. Alice sends to Bob α and a = fα(x′, 1, 0α). The number
of bits is therefore �log(n)�+ 1. Notice that x′1y′ ∈ {0, 1}α+β+1 is additive and
therefore Bob applies Lemma 5. More precisely, if α 
= β then fn(x, 1, y) = 1.
On the other hand, if α = β = k then fn(x, 1, y) = fk(x′, 1, y′) and Bob outputs
a + fk(0, 1, y′).

Proposition 2. P1 is a one-round f -protocol for c = 1 with cost �log(n)�+ 1.
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4 Optimality

In this section we exhibit lower bounds for d(M c,n
f ), the number of different rows

of M c,n
f . If these bounds appear to be tight then, from Fact 1, they can be used

for proving the optimality of our protocols.

4.1 Case c = 0

Consider the following subsets of {0, 1}n. First, S3 = {1n−3000}. Also, S5 =
{1n−500000, 1n−501000}. In general, for every k ≥ 2 such that 2k+1 ≤ n, we de-
fine S2k+1 = {1n−2k−102k+1}∪{1n−2k−10a10b| a odd, b odd, b ≥ 3, a + b = 2k}.

Lemma 8. Let xn . . . x1 ∈ S2k+1 and x̃n . . . x̃1 ∈ S2k̃+1 with k 
= k̃. It follows
that the rows of M c,n

f indexed by xn . . . x1 and x̃n . . . x̃1 are different.

Proof. We can first easily prove (by induction on n) that every zn . . . z1 ∈ {0, 1}n

satisfies fn(zn . . . z1, 0, z1 . . . zn) = 0. Let xn . . . x1 ∈ S2k+1 and x̃n . . . x̃1 ∈ S2k̃+1

(with k 
= k̃). From Lemma 5, fn(xn . . . x1, 0, x̃1 . . . x̃n) = fn(x̃n . . . x̃1, 0, x1 . . .
xn) = 1. �


Lemma 9. Let x = xn . . . x1, x̃ = x̃n . . . x̃1 ∈ S2k+1 with x 
= x̃. It follows that
there exists y = y1 . . . yn ∈ {0, 1}n such that fn(x, 0, y) 
= fn(x̃, 0, y).

Proof. Assume, w.l.g., that for some odd number b ≥ 3 the word 10b is a
suffix of x while 0b+2 is a suffix of x̃ (i.e., such b can be at most n − 4).
Let y = 0b−3101n−b+1. Let z−(n−b+1) . . . z0 . . . zn−b+1 = f b−1(x, 0, y). Then
z2 = f b−1(02b−51011) and z−2 = f b−1(10b−2, 0, 0b−1). It is direct that z−2 = 1.
On the other hand, from Lemma 4 (right additivity), we know that z2 = 1.
For z−1z0z1 notice that z−1z0z1 = f b−1(02b−2101). In this case the dynamics is
such that the configuration 0∗101 reappears every 2 steps. Since b− 1 is even we
conclude that z−1z0z1 = 101. So we have proven that the pattern 11011 appears
in the center and therefore fn(x, 0, y) = 0.

Let z̃−(n−b−2) . . . z̃0 . . . z̃n−b−2 = f b+2(x̃, 0, y). Then z̃1 = f b+2(02b−1101111)
and z̃0 = f b+2(0b+2, 0, 0b−310111). From Lemma 4, z̃0 = z̃1 = 1 and therefore
the wall 11 appears in the center. Since this means that fn(x̃, 0, y) = 1, the
lemma is proven. �


Proposition 3. The cost of any one-round f -protocol for c = 0 is at least
2�log(n)� − 5.

Proof. From Lemmas 8 and 9, the number of different rows in M0,n
f is∑

3≤2k+1≤n |S2k+1| =
∑
n

2 �−1
i=1 i. For sufficiently large n the sum is lower

bounded by 1
16n

2. Therefore d(M0,n
f ) ≥ �2 log(n)− 4� ≥ 2�log(n)� − 5. �
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4.2 Case c = 1

Proposition 4. The cost of any one-round f -protocol for c = 1 is at least
�log(n)�.

Proof. Consider the set T = {1n−k0k|1 ≤ k ≤ n}. All we need to prove is that
the rows indexed by any two different strings in T are different (because |T | = n).

Let x = 1n−a0a and x̃ = 1n−ã0ã with 1 ≤ a < ã ≤ n. It is easy to prove
(by induction on n) that fn(x, 1, 0a1n−a) = fn(x̃, 1, 0ã1n−ã) = 0. It remains to
prove that fn(x, 1, 0ã1n−ã) = fn(x̃, 1, 0a1n−a) = 1.

By Lemma 5 we directly conclude that fn(x, 1, 0ã1n−ã) = 1 except for the
case when ã = a+1 and a is odd. Let us therefore treat this last case now. First
notice that fa+1(1n−a0a, 1, 0a+11n−a−1) = 1n−a−1fa+1(10a, 1, 0a+1)1n−a−1.

Therefore, by additivity (a is odd) and by the fact that f(1, b, 1) = b for all
b ∈ {0, 1}, the final result is

fa+1(10a, 1, 0a+1) = fa+1(00a, 1, 0a+1) + fa+1(10a, 0, 0a+1) = 0 + 1 = 1. �
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Abstract. An inverter is a circuit which outputs ¬x1,¬x2, . . . ,¬xn for
any Boolean inputs x1, x2, . . . , xn. Beals, Nishino and Tanaka have given
a construction of an inverter which has size O(n log n) and depth O(log n)
and uses �log(n+1)
 NOT gates. In this paper we give a construction of
an inverter which has size O(n) and depth log1+o(1) n and uses log1+o(1) n
NOT gates. This is the first negation-limited inverter of linear size using
only o(n) NOT gates.

1 Introduction

No superlinear lower bound has been known so far on the size of Boolean circuits
computing an explicit Boolean function, while exponential lower bounds have
been known on the size of monotone circuits, which consist of only AND and OR
gates and do not contain NOT gates [2,5,16]. It is natural to ask: what happens
if a limited number of NOT gates are allowed? This motivates us to study the
negation-limited circuit complexity under various scenarios [3,4,6,10,18,21].

An inverter is a circuit which outputs ¬x1,¬x2, . . . ,¬xn for any n Boolean
inputs x1, x2, . . . , xn. One can easily construct an inverter by placing n NOT
gates in a row. We wish to construct an inverter by using fewer than n NOT
gates and an arbitrary number of AND gates and OR gates. It is known that
�log(n+1)� NOT gates are necessary and sufficient to construct an inverter [13].
(All logarithms in the paper are base 2.) Beals, Nishino and Tanaka constructed
an inverter of size O(n log n) and depth O(log n) using �log(n+1)�NOT gates [6],
while no inverter of linear size was known even for the case where the number
of NOT gates is o(n). In the paper, we give a construction of an inverter which
has size O(n) and depth log1+o(1) n and uses log1+o(1) n NOT gates. The results
above are summarized in Table 1.

It is known that a construction of a negation-limited inverter implies a relation
between negation-limited circuits and general circuits, which are circuits with no
limitation of the number of NOT gates, for these sizes. More precisely, if there
are a general circuit of size s1 computing an arbitrary Boolean function f and
an inverter of size s2 with r NOT gates, then there is a circuit of size 2s1 + s2
with at most r NOT gates computing f . In the paper, we give such a relation

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 605–614, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Table 1. Negation-limited inverters

# of NOTs size depth
trivial n n 1

this paper log1+o(1) n O(n) log1+o(1) n

Beals, Nishino, Tanaka [6] �log(n + 1)
 O(n log n) O(log n)

which is implied by our construction of inverters, and discuss two implications
of the relation.

2 Preliminaries

In the paper, a circuit is a combinational circuit which consists of AND gates
of fan-in two, OR gates of fan-in two and NOT gates. The size of a circuit C is
the number of gates in C, and denoted by size(C). The depth of C is the length
(number of gates) of the longest path in C, and denoted by depth(C). We denote
by not(C) the number of NOT gates in C.

The function log(i) x is defined recursively for nonnegative integers i and real
numbers x as follows:

log(i) x

=

⎧⎨⎩
x if i = 0;
log(log(i−1) x) if i > 0 and log(i−1) x > 0;
undefined if (i > 0) and (log(i−1) x ≤ 0 or log(i−1) x is undefined).

The iterated logarithm function log∗ x is defined as follows:

log∗ x = min
{
i ≥ 0 : log(i) x ≤ 1

}
.

In our construction, we use the following negation-limited inverter.

Proposition 1. (Beals, Nishino and Tanaka [6]) There is an inverter of size
O(n log n) and depth O(log n) using �log(n + 1)� NOT gates.

3 Negation-Limited Inverter

In this section, we construct an inverter of size O(n) and depth log1+o(1) n using
log1+o(1) n NOT gates.

3.1 Result

In fact we give a construction of an inverter with size O(n) such that both
the depth and the number of NOT gates are a little smaller than log1+o(1) n.



Negation-Limited Inverters of Linear Size 607

To state our result in detail, we introduce the following notation. We denote
log x log log x log log log x · · ·︸ ︷︷ ︸

i

simply by log[i] x. More precisely, we define log[i] x

for nonnegative integers i as follows:

log[i] x =

⎧⎪⎨⎪⎩
1 if i = 0;
log x if i = 1;
log[i−1] x · log(i) x if i > 1 and log(i) x is defined;
undefined if i > 1 and log(i) x is undefined.

The main result of this paper is the following.

Theorem 1. There is an inverter of size O(n) and depth O(log[log∗ n−c] n) using
log[log∗ n−c] n NOT gates for an arbitrary constant c ≥ 1.

Note that both the depth and the number of NOT gates in Theorem 1 are
log1+o(1) n, which can be confirmed as follows:

O(log[log∗ n−c] n) ≤ c′ log n log logn log log logn · · ·︸ ︷︷ ︸
log∗ n−c

≤ c′ log n · (log logn)log
∗ n−(c+1)

≤ log n · c′2log log log n·log∗ n

= log n · 2o(log log n)

= log n · logo(1) n

= log1+o(1) n,

where c′ is some constant. In the rest of this section, we prove Theorem 1.

3.2 Proof of Theorem 1

The inverter in Proposition 1 has size O(n logn) and depth O(log n) and uses
�log(n + 1)� NOT gates. Let cs and cd be the hidden constants in each of the
size O(n log n) and the depth O(logn). We call inverters which have n inputs
x1, x2, . . . , xn n-input inverters. Our inverter is recursively constructed, based
on the following lemma.

Lemma 1. Let n ≥ n0 be an integer for some constant n0. Let i be an integer
such that 1 ≤ i ≤ log∗ n− c0, for some constant c0. If, for all m ≥ n/(4 logn),
there is an m-input inverter I such that

size(I) ≤ 2csm log(i) m,

depth(I) ≤ cd(log[i−1] m)(log(i) m + 4),

not(I) ≤ (log[i−1] m)(log(i) m + 4),

then there is an n-input inverter I ′ such that

size(I ′) ≤ 2csn log(i+1) n,

depth(I ′) ≤ cd(log[i] n)(log(i+1) n + 4),

not(I ′) ≤ (log[i] n)(log(i+1) n + 4).

Using Lemma 1, one can easily prove Theorem 1.
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Proof of Theorem 1. We assume that the constant c in Theorem 1 satisfies that
c ≥ c0 − 2 and c ≥ 3, where c0 is the constant in Lemma 1. It is enough that we
give a proof on the assumptions, since an increase of c strengthens the condition
of the depth and the number of NOT gates in Theorem 1.

The m1-input inverter I1 in Proposition 1 satisfies

size(I1) ≤ csm1 logm1,

depth(I1) ≤ cd logm1,

not(I1) = �log(m1 + 1)�,

for all m1 ≥ n1/ log∗ n. Therefore, by Lemma 1 for i = 1, there is an m2-input
inverter I2 such that

size(I2) ≤ 2csm2 log logm2,

depth(I2) ≤ cd logm2(log logm2 + 4),
not(I2) ≤ logm2(log logm2 + 4),

for all m2 ≥ n2/ log∗ n. By applying Lemma 1 for each i, 1 ≤ i ≤ log∗ n− c− 2,
one can know that there is an m∗-input inverter I∗ such that

size(I∗) ≤ 2csm∗ log(log∗ n−c−1) m∗,

depth(I∗) ≤ cd(log[log∗ n−c−2] m∗)(log(log∗ n−c−1) m∗ + 4),

not(I∗) ≤ (log[log∗ n−c−2] m∗)(log(log∗ n−c−1) m∗ + 4),

for all m∗ ≥ n(log∗ n−c−2)/ log∗ n. Since n ≥ n(log∗ n−c−2)/ log∗ n, there is an n-
input inverter I such that

size(I) ≤ 2csn log(log∗ n−c−1) n

≤ 2csn · 222
··

·2
}

c
(1)

= O(n),

depth(I) ≤ cd(log[log∗ n−c−2] n)(log(log∗ n−c−1) n + 4)

≤ cd log[log∗ n−c] n

= O(log[log∗ n−c] n),

not(I) ≤ (log[log∗ n−c−2] n)(log(log∗ n−c−1) n + 4)

≤ log[log∗ n−c] n. �


As shown in Eq. (1), the hidden constant of the size O(n) in Theorem 1 may be
extremely large. Our construction is only of theoretical interest.

3.3 Proof of Lemma 1

Proof of Lemma 1. We give a construction of the inverter I ′ in Lemma 1. We
can assume that n is enough large since we choose some enough large constant
as n0 in Lemma 1.
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Fig. 1. Overall structure of the inverter I ′

See Fig. 1. We first partition n inputs x1, x2, . . . , xn of the inverter I ′ to
nb = �n/3�log(i) n�� blocks so that each block contains ni = 3�log(i) n� inputs.
If necessary, we pad the last block with constants 0’s so that the block contains
exactly ni inputs. For the kth block of inputs, 1 ≤ k ≤ nb, we construct an in-
verter Ck for the inputs in the block. As Ck we use the inverter in Proposition 1.
We choose the constant c0 in Lemma 1 so that the ni-input inverter of Proposi-
tion 1 exists. The input of Ck are xni(k−1)+1, . . . , xnik where for each l > n, xl is
replaced to 0. Ck is represented by a rectangle of solid lines in Fig. 1. The set of
inverters C1, C2, . . . , Cnb forms an inverter for x1, x2, . . . , xn. By Proposition 1,
for 1 ≤ k ≤ nb, the size and the depth of each Ck are as follows.

size(Ck) ≤ csni logni. (2)
depth(Ck) ≤ cd logni. (3)

Next we replace NOT gates in Ck’s to several inverters as follows. By Propo-
sition 1, each Ck contains �log(ni +1)� NOT gates. Let Nk

j be the jth NOT gate
from the input side in Ck for 1 ≤ j ≤ �log(ni + 1)� and 1 ≤ k ≤ nb. More pre-
cisely, we choose each number j so that there is no path from the output of Nk

j to
the input of Nk

j′ if j′ ≤ j. For each j, we replace nb NOT gates N1
j , N

2
j , . . . , N

nb

j
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to one nb-input inverter C′
j . C

′
j is represented by a rectangle of broken lines in

Fig. 1. As C′
j we use the inverter I in Lemma 1. The nb-input inverter I exists,

since nb = �n/3�log(i) n�� ≥ n/(4 logn).
The construction of the inverter I ′ has been completed. The obtained circuit

I ′ behaves as an inverter since at replacement no loop occurs in the circuit by
the following lemma.

Lemma 2. There is no loop in the circuit I ′.

Proof. We assume that there is a loop in I ′ and show a contradiction. Let l be
a loop in I ′. Since all Ck’s, 1 ≤ k ≤ nb, before replacement have no loop, l must
be through some C′

j ’s, 1 ≤ j ≤ �log(ni + 1)�. Let C′
j1
, C′

j2
, . . . , C′

jp
be all C′

j ’s
which l is through in the order. After C′

jp
, l goes to C′

j1 , since l is a loop. Since
there is no path from the output of Nk

j to the input of Nk
j′ if j′ ≤ j, ji < ji+1

for 1 ≤ i ≤ p− 1, and jp < j1. Thus a contradiction happens. �


In the rest, we confirm that the circuit I ′ satisfies the condition of the size, the
depth and the number of NOT gates. The size, the depth and the number of
NOT gates of I ′ are obtained from the ones of Ck’s and C′

j ’s. We have already
shown size(Ck) and depth(Ck) in Eq. (2) and Eq. (3), respectively. We do not
have to consider not(Ck) since all NOT gates in Ck’s have been replaced to C′

j ’s.
By the condition of I in Lemma 1, for 1 ≤ j ≤ �log(ni + 1)�, the size, the depth
and the number of NOT gates of each C′

j are as follows.

size(C′
j) ≤ 2csnb log(i) nb. (4)

depth(C′
j) ≤ cd(log[i−1] nb)(log(i) nb + 4). (5)

not(C′
j) ≤ (log[i−1] nb)(log(i) nb + 4). (6)

By Eq. (2) to Eq. (6), the size, the depth and the number of NOT gates of I ′

are as follows. In the following, we use the assumption that n is enough large.

size(I ′) ≤ nb · size(Ck) + �log(ni + 1)� · size(C′
j)

≤ nb · csni logni + �log(ni + 1)� · 2csnb log(i) nb

≤ csnb(ni + 2 log(i) nb)�log(ni + 1)�
≤ cs(�n/3�log(i) n��)(3�log(i) n�+ 2 log(i) n)�log(3�log(i) n�+ 1)�
≤ cs((n/3 log(i) n) + 1)(5 log(i) n + 3)(log(i+1) n + 3)

≤ cs(11/6)n(log(i+1) n + 3)

≤ 2csn log(i+1) n.

depth(I ′) ≤ depth(Ck) + �log(ni + 1)� · depth(C′
j) (7)

≤ cd logni + �log(ni + 1)� · cd(log[i−1] nb)(log(i) nb + 4)

≤ cd logni + cd(log[i−1] n)(log(i) n + 4) · �log(3�log(i) n�+ 1)�
≤ cd(log[i−1] n)(log(i) n + 4)(log(i+1) n + 3)
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≤ cd(log[i−1] n)(log(i) n)(log(i+1) n + 4)

= cd(log[i] n)(log(i+1) n + 4).

not(I ′) ≤ �log(ni + 1)� · not(C′
j)

≤ �log(ni + 1)� · (log[i−1] nb)(log(i) nb + 4)

≤ (log[i−1] n)(log(i) n + 4) · �log(3�log(i) n�+ 1)�
≤ (log[i−1] n)(log(i) n + 4)(log(i+1) n + 3)

≤ (log[i−1] n)(log(i) n)(log(i+1) n + 4)

= (log[i] n)(log(i+1) n + 4).

At Eq. (7), the fact that C1, C2, . . . , Cnb have the same construction is used. �


As proved above by Lemma 2, the constructed circuit I ′ has no loop, which is
guaranteed by replacing NOT gates N1

j , N
2
j , . . . , N

nb
j to one inverter C′

j for each
j. If we replace NOT gates including two NOT gates Nk

j1 and Nk
j2 for some k to

one inverter, the obtained circuit has a loop.

4 General Circuits and Negation-Limited Circuits

In this section, we give a relation between general circuits and negation-limited
circuits for these sizes and discuss two implications of the relation. We denote
by size(f) the size of the smallest circuit computing a function f and denote by
sizer(f) the size of the smallest circuit with at most r NOT gates computing f .

See Fig. 2. Let C be a general circuit computing an arbitrary Boolean function
f . The well-known technique based on DeMorgan’s laws can move all NOT gates
in the circuit C to the inputs side with at most twice increase of the size. If
we use an inverter with r NOT gates to obtain ¬x1,¬x2, . . . ,¬xn, the overall
circuit includes only r NOT gates. Beals, Nishino and Tanaka used the inverter of
Proposition 1 in the conversion of circuits and obtained the following corollary:

Corollary 1. (Beals, Nishino and Tanaka [6]) For every function f ,

size
log(n+1)�(f) ≤ 2size(f) + O(n log n).

Our construction gives the following corollary:

Corollary 2. For every function f ,

sizelog1+o(1) n(f) ≤ 2size(f) + O(n).

O(n log n) in Corollary 1 and O(n) in Corollary 2 are the size of the inverter
which is used in each conversion.

Corollary 2 is useful to prove upper bounds on the size for negation-limited
circuits computing some functions. Consider sorters for example. A sorter is
a circuit which sorts the inputs x1, x2, . . . , xn, i.e., outputs y1, y2, . . . , yn such
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Fig. 2. The conversion from a general circuit to a negation-limited circuit

that y1 ≥ y2 ≥ · · · ≥ yn and Σxi = Σyi. Negation-limited sorters or circuits
computing the merging function, which can be regarded as restricted sorters,
have been studied in several papers [4,14,19]. Although if the number of NOT
gates is not limited, then there is a sorter of size O(n) (Theorem 4.1 at p. 76
of [24]), it was not known whether there is a sorter of size O(n) using o(n) NOT
gates. Corollary 2 immediately gives the following theorem:

Theorem 2. There is a sorter of size O(n) using log1+o(1) n NOT gates.

Although by Corollary 1 we can prove that there is a sorter of size O(n log n)
using �log(n+1)� NOT gates, it has been known that a sorter of size O(n log n)
exists even if NOT gates are not allowed to use [1].

Another implication of Corollary 2 is an approach to prove a superlinear size
lower bound for general circuits. To prove a superlinear lower bound on the size
of general circuits computing an explicit function is one of the most challenging
open problems in computational complexity theory. By Corollary 2, when one try
to prove a superlinear size lower bound for general circuits, it is enough to prove
a superlinear size lower bound for circuits using at most log1+o(1) n NOT gates.
At the case of Corollary 1, an ω(n logn) size lower bound for circuits using at
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most �log(n+1)� NOT gates is needed. This difference between superlinear and
ω(n logn) lower bounds may be meaningful, since Ω(n logn) lower bounds are
known for some n-input n-output functions [11,12,15], although the lower bounds
are only for monotone circuits. Even for n-output functions, no superlinear size
lower bound for general circuits have been known.

5 Conclusion

In this paper we gave a construction of an inverter of size O(n) and depth
log1+o(1) n using log1+o(1) n NOT gates. The following question by Turán is
known as an open problem [6]: is the size of any inverter with O(log n) NOT
gates and O(log n) depth superlinear? Our construction implies that one can
construct an inverter of linear size if one can use a little more than O(log n)
NOT gates and the depth can be a little bigger than O(log n).

A natural next step towards a solution of Turán’s question is reducing the
number of NOT gates to O(log n) or the depth to O(log n). Our construction
has a recursive structure. Although we may be able to improve the number
of NOT gates or the depth to a smaller number than Theorem 1 by a similar
recursive structure, it is difficult to reduce it to O(log n). To achieve O(log n),
another construction is needed.
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Abstract. Under sub-exponential time hardness assumptions, we show that any
language in NP has a 3-message argument system in the bare public key (BPK)
model, that satisfies resettable zero-knowledge (i.e., it reveals no information to
any cheating verifier that can even reset provers) and bounded-resettable sound-
ness (i.e., a verifier cannot be convinced of a false theorem, even if the cheating
prover resets the verifier up to a fixed polynomial number of sessions). Our
protocol has essentially optimal soundness among 3-message protocols (in that
all stronger known soundness notions cannot be achieved with only 3 messages)
and zero-knowledge (in that it achieves the strongest known zero-knowledge
notion). We also show an extension of this protocol so that it achieves poly-
logarithmic communication complexity, although under very strong assumptions.

Keywords: Zero-knowledge arguments, resettable zero-knowledge, resettable
soundness, bare public-key model for zero-knowledge protocols.

1 Introduction

Zero knowledge proofs, introduced in the seminal paper [GMR89], have received
much attention from the research literature due to their significance and applications
to cryptography and computational complexity. Informally, a zero-knowledge proof is
a method for a prover to convince a verifier that a theorem of the type “x ∈ L”, x being
a string and L being a language, is true without revealing any additional information.
Zero-knowledge proofs are interactive protocols, with three requirements: complete-
ness, typically easy to satisfy, saying that if prover and verifier follow the protocol,
then the verifier accepts with very high probability; soundness, saying that a (cheating)
prover not following the protocol can make the verifier accept only with very small
probability; zero-knowledge, saying that a (cheating) verifier not following the pro-
tocol cannot obtain any information about a true statement. Since their introduction,
the following increasingly stronger variants of both soundness and zero-knowledge re-
quirements have been studied: one-time, meaning that the protocol remains sound/zero-
knowledge if a given theorem is proved at most once within a sequence of protocol
executions; sequential, where the protocol remains sound/zero-knowledge even if a se-
quence of protocol executions are performed; concurrent, where the protocol remains
sound/zero-knowledgeeven if the cheating prover/verifier can force an arbitrary concur-
rent scheduling of multiple protocol executions; resettable, where the protocol remains

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 615–627, 2008.
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sound/zero-knowledge even if the cheating prover/verifier can perform the previous
concurrent attack and additionally arbitrarily reset the honest verifier/prover.

In the “standard” interactive protocol model (i.e., without additional setup infrastruc-
tures or network assumptions), concurrent (and thus, resettable) zero-knowledge ar-
guments for non-trivial languages with black-box simulation require a super-constant
number of messages (see, e.g. [CKPR01]). On the other hand, only a few zero-
knowledge arguments with non-black-box simulation exist (see, e.g. [Bar01]) and
the current best protocol requires 5 messages and is only bounded-resettable zero-
knowledge. Designing 3-message zero-knowledge protocols with black-box simulation
is only possible for BPP languages [GK90] and is still open in the case of non-black-
box simulation. Given this state of the art in the standard model, other models are being
studied to achieve constant-message resettable or concurrent zero-knowledge protocols
for all NP languages. Among these, the model that seems to have the minimal set-up or
network assumptions is the bare public-key (BPK) model [CGGM00], where verifiers
register their public key in a public file during a set-up stage, and there is no interac-
tive preprocessing stage, trusted third party, trusted string, or assumption on the asyn-
chronicity of the network. In this model, a 3-message, one-time soundness, resettable
zero-knowledge argument system for all NP languages was given in [MR01a]. This was
improved in [ZDLZ03], whose main protocol additionally satisfies a bounded version of
concurrent soundness. Recently, [APV05] proved limitations on further improving the
soundess of such protocols, by showing that sequential soundness in 3 messages can
only be achieved for languages in BPP. Other results in the BPK model mainly focus on
≥ 4-message protocols (see, e.g., [CGGM00, BGG+01, DPV04a, DV05]) or 3-message
protocols in more stringent versions of the BPK model (see, e.g., [MR01b, DPV04b]).

Our results and comparison with previous work. We study argument systems for
NP languages in the BPK model with resettable attacks from provers and verifiers.
We define a new and natural notion of bounded-resettable soundness, which means,
informally, soundness against provers that can reset verifiers and force them to continue
using the same randomness for any fixed polynomial number of times (as opposed to an
arbitrary polynomial, as in resettable soundness).

Our main result is a 3-message argument system for any NP language, that satisfies
resettable zero-knowledge and bounded-resettable soundness, under subexponential-
time hardness assumptions. Our argument is black-box zero-knowledge and therefore
message-optimal unless NP is in BPP due to a lower bound from [MR01a]. Extending
results from [MR01a], we obtain that bounded-resettable soundness is strictly stronger
than bounded-concurrent soudness. Then we also show that bounded-resettable sound-
ness is strictly weaker than sequential soundness. Thus, our protocol bridges the gap
between the two previous best results for 3-message resettable zero-knowledge ar-
guments in the BPK model: the 3-message bounded-concurrent soundness, resettable
zero-knowledge argument system from [ZDLZ03] (of which our protocol is also con-
ceptually much simpler) and the impossibility for 3-message sequential soundness and
resettable zero-knowledge argument systems for languages not in BPP [APV05]. (See
also Figure 1 for more details.) Thus, our protocol has essentially optimal soundness
(in that the next stronger soundness notion, sequential soundness, cannot be achieved
in 3 messages) and optimal zero-knowledge (in that resettable zero-knowledge is the
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currently strongest zero-knowledge notion known). We also show an application of
this protocol to constructing a 3-message, polylogarithmic communication complex-
ity argument system for any NP language with bounded-resettable soundness and
resettable zero-knowledge, under additional assumptions (including very strong as-
sumptions, called extractability assumptions, for which the question of determining
whether they are false or reasonable is still unsettled.) This is obtained by combin-
ing our main protocol with a 2-message protocol in [DL08]. Many formal proofs are
omitted due to the space limit.

Number of Type of Type of bounded Resettable
Paper Model messages Soundness Soundness Zero-Knowledge

[MR01a] BPK 3 One-time One-time Resettable
[MR01b] UPK 3 Concurrent Concurrent Resettable

[ZDLZ03] WPK 3 Concurrent Concurrent Resettable
[DPV04b] cBPK 3 Concurrent Concurrent Resettable
[ZDLZ03] BPK 3 One-Time Concurrent Resettable
this paper BPK 3 One-Time Resettable Resettable

impossible BPK 3 Sequential Sequential Resettable
impossible any any Resettable

Fig. 1. Our result and comparison with previous 3-message NP arguments and impossibility re-
sults. Note the Upperbounded-BPK (UPK), Weak-BPK (WPK), Counter-BPK (cBPK), models
make further and stronger assumptions over the BPK model.

2 Definitions

We recall known definitions of the BPK model, and the notions of soundness and zero-
knowledge used in the paper, including a novel definition for bounded-resettable sound-
ness in the BPK model. (In the process, we use a simpler set of notations and model
both provers and verifiers’ resetting attacks as appropriate oracle queries.) Finally, we
recall three main cryptographic tools that we will use in our constructions. (We only
assume familiarity with pseudo-random function families [GGM86].)

Model description. The BPK model can be seen as a relaxed version of two previ-
ously considered models in Cryptography: the Public-Key Infrastructure model, and
the Preprocessing model. One main difference with the Preprocessing model is that in
the BPK model the preprocessing phase is reduced to users non-interactively posting
public keys on a public file, rather than a potentially long interaction between prover
and verifier. One main difference with the Public-Key Infrastructure model is that in the
BPK model only verifiers’ public keys are used in protocols. Formally, the BPK model
makes the following assumptions. (1) There exists a public file F that is a collection of
records, each containing a public key. (2) An (honest) prover is an interactive determin-
istic polynomial-time Turing machine that takes as input a security parameter 1n, F , an
n-bit string x, such that x ∈ L, for some language L, an auxiliary input y, a reference to
an entry of F and a random tape. (3) An (honest) verifier V is an interactive determin-
istic polynomial-time Turing machine that works in the following two stages: on input
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a security parameter 1n and a random tape, V generates a key pair (pk, sk) and stores
the public key pk in one entry of the file F ; later, V takes as input the secret key sk, a
statement x ∈ L and a random string, and outputs “accept” or “reject” after performing
an interactive protocol with a prover. (4) The first interaction between a prover and a
verifier starts after all verifiers have completed their first stage.

Malicious provers in the BPK model. Let p be a positive polynomial and P ∗ be a
probabilistic polynomial-time algorithm that, given as input security parameter 1n, and
public key pk of V , may perform≤ p(n) interactive protocols with V .

P ∗ is a p-resetting (malicious) prover if it makes queries to oracle V , where the
number of queries is at most p(n), and queries and replies are defined as follows. Each
query is a triple (i, x, tr), where tr may be a prefix of the transcript so far for a conver-
sation between P ∗ and V on input x and random tape ri, followed by a (unrestricted)
message from P ∗. An answer to this query is V ’s message on input ri as a random tape,
the n-bit language instance x common to P ∗ and V ; and transcript so far tr. (Note that
according to this definition P ∗ can perform a reset action by asking a query q′ to V
containing the same ri, x as in a previous query q, and a trancript that is a prefix of the
transcript in q, followed by a freshly-computed message from P ∗. Also, note that we
are parameterizing as p the number of queries by P ∗ rather than the number of resetted
sessions, however note that this formalization suffices as the number of sessions is at
most the number of queries by P ∗.)

Given a p-resetting malicious prover P ∗ and an honest verifier V , a p-resetting at-
tack is performed as follows: 1) the first stage of V is run on input 1n and a random
string, so that a pair (pk, sk) is obtained; 2) p(n) independently distributed random tapes
r1, . . . , rp(n) are generated, and P ∗ is run on input 1n and pk, making at most p(n)
queries to oracle V , each query being of the type (i, ·, ·), for some i ∈ {1, . . . , p(n)},
meaning that random tape ri should be used by V in answering the query.

Definition 1. Let L be a language. A pair (P, V ) satisfies completeness over L in the
BPK model if for all x ∈ L, the probability that the following happens is negligible:
1) the first stage of V is run on input 1n and a random string so that a pair (pk, sk)
is obtained; 2) P is run on input 1n, pk, and an n-bit string x, and interacts with V
that takes as input pk, sk, x. 3) At the end of the interaction, V outputs: “reject”. This
definition naturally extends to {(P, V )p}, i.e., when an additional parameter p is shared
by P and V .

Definition 2. Let p be a polynomial. A pair (P, V )p satisfies the p-resettable soundness
in the BPK model, if for all p-resetting malicious provers P ∗, for any false statement
“x ∈ L” the probability that in an execution of a p-resetting attack V outputs “ac-
cept” for such a statement is negligible in n. We say that {(P, V )p} satisfies bounded-
resettable soundness if for any polynomial p (called the bounded-resettability parame-
ter), (P, V )p satisfies p-resettable soundness.

Malicious verifiers in the BPK model. We say that V ∗ is a p-resetting (malicious)
verifier if it acts as follows. In the key-generation stage, it posts (at least) one public key
pk in the public file. In the proof stage, it can interact by making at most p(n) queries



3-Message NP Arguments in the BPK Model 619

to oracle P , where queries and replies are defined as follows. First, let r1, . . . , rp(n) be
independent random tapes for P . Then, each query can be written as a triple (i, x, tr),
where ri, for some i ∈ {1, . . . , p(n)}, is intended to be P ’s randomness; x is intended
to be the n-bit common input to P and V ∗; and tr is intended to be the transcript so
far for a conversation between P and V ∗ on input x. To this query, P replies with an
answer, to be intended as a continuation of transcript tr. (Note that according to this
definition V ∗ can perform a reset action by asking a query q′ to P containing the same
i, x as in a previous query q, and a trancript that is a prefix of the transcript in q followed
by a freshly-computed message from V ∗.)

Definition 3. We say that (P, V ) is resettably-zero-knowledge over L if for all positive
polynomials p, for any p-resetting verifier V �, there exists a probabilistic polynomial-
time algorithm SV � , called the simulator, such that for all distinct x1, . . . , xp(n) ∈ L,
the probability distributions {viewP

V �(x̄)} and {SV �(x̄)} are computationally indis-
tinguishable, where {viewP

V �(x̄)} is the distribution of the transcript seen by V � on its
input tape (i.e., x̄ = x1, . . . , xp(n)), random tape and communication tape during its in-
teraction with P . This definition naturally extends to {(P, V )p}, i.e., when an additional
parameter p is shared by P and V .

Cryptographic Tools. We review some cryptographic primitives that are used in the
rest of the paper: digital signature schemes secure against subexponential-time ad-
versaries, commitment schemes secure against subexponential-time adversaries and
extractable by subexponential-time algorithms, and 2-message public-coin witness-
indistinguishable proof systems (or, their slightly stronger version, called ZAPs).

Definition 4. Let k be a security parameter, and let σ be a constant such that 0 < σ < 1.
A σ-secure digital signature scheme SS is a triple of (probabilistic) polynomial-time al-
gorithms SS = (G, Sig,Ver) satisfying: (Correctness) For all messages m ∈ {0, 1}k,
Pr[ (pk, sk) ← G(1k); m̂ ← Sig(m, pk, sk) : Ver(m, m̂, pk) = 1 ] = 1; (Unforge-
ability) For all algorithms A running in time o(2kσ

), it holds that Pr[ (pk, sk) ←
G(1k); (m, m̂) ← AO(pk,sk)(pk) : m 
∈ Query and Ver(m, m̂, pk) = 1 ] is negligible
in k where O(pk, sk) is a signature oracle that on input a message returns as output a
signature of the message and Query is the set of messages for which A has requested a
signature fromO.

Signature schemes secure against polynomial-time adversaries exist under the assump-
tion of the existence of one-way functions secure against polynomial-time adver-
saries [R90, NY91]. We note that the same reduction applies if one considers both
primitives with respect to subexponential-time adversaries.

Definition 5. Let k be a security parameter, and let α, be a constant such that 0 <
α < 1. An α-extractable commitment scheme is a pair of (probabilistic) polynomial-
time algorithms (Com,Rec) satisfying: (Correctness) For all b ∈ {0, 1} and for all
k, Pr[ (com, dec) ← Com(b, 1k) : Rec(com, dec, b) = 1 ] = 1; (Perfect Binding)
For all k, and any string com, there exists at most one bit b ∈ {0, 1} such that
Rec(com, decb, b) = 1, for some string decb; (Computational Hiding) The distributions
{[(com, dec) ← Com(0, 1k) : com]}k>0 and {[(com, dec) ← Com(1, 1k) : com]}k>0
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are indistinguishable from algorithms running in polynomial time; (Extractability)
There exists an extractor algorithm E running in time 2kα

such that, for all commit-
ments com computed by a probabilistic polynomial-time committer adversary A, if A
succeeds in decommitting com as b with non-negligible probability, then the probability
that E(com) 
= b is negligible.

The above definitions can be easily extended to the case in which we wish to commit to a
string (instead of committing to a bit). Such a commitment scheme exists, for instance
under the assumption that there exist permutations that are one-way with respect to
polynomial-time adversaries but such that they can be inverted in subexponential time.
We note that this type of schemes were already used in [Pas03] to achieve straight-line
extractability in superpolynomial time.

Finally, we review the notion of a ZAP, introduced in [DN00]. Informally, a ZAP is a
2-message public-coin witness-indistinguishable proof system where the soundness and
witness-indistinguishable requirements hold even if a polynomial number of proofs are
given using the same message from the verifier, and the n-bit statements to be proved
are chosen after seeing the verifier’s message.

Definition 6. Let L be a language in NP. A triple of polynomial-time algorithms
(ZG,ZP,ZV ) is a ZAP for L iff it satisfies: (Completeness) Given a witness y for
“x ∈ L” and z = ZG(1k, L) then ZV (x, z, ZP (x, y, z)) = 1 with probability 1;
(Soundness) With overwhelming probability over choice of z = ZG(1k, L), there ex-
ists no x′ 
∈ L no string π′ such that ZV (x′, z, π′) = 1; (Witness-Indistinguishability)
Let y0, y1 be witnesses for “x ∈ L. Then, for each z, the distribution {ZP (x, y0, z)}
and {ZP (x, y1, z)} are indistinguishable by non-uniform probabilistic polynomial time
algorithms.

In [DN00] the existence of a ZAP for an NP-complete language is proved to be equiv-
alent to the existence of non-interactive zero-knowledge proofs for an NP-complete
language; thus, the existence of ZAPs is implied by the existence of one-way trapdoor
permutations or verifiable random functions. An important property of ZAPs, noted
in [BGG+01], is that they can be easily modified so to satisfy resettable soundness and
resettable witness-indistinguishability.

3 Bounded-Resettable Soundness vs. Sequential Soundness

We start our analysis by studying how the bounded-resettable soundness notion com-
pares with other known or natural types of soundness notions in the BPK model. Re-
call that in [MR01a] it was proved that resettable soundness strictly implies concurrent
soundness, which, in turn, strictly implies sequential soundness. It is not hard to ver-
ify that the same techniques can be used to prove that bounded-resettable soundness
strictly implies bounded concurrent soundness, which, in turn, strictly bounded sequen-
tial soundness. More interestingly, we observe that bounded-resettable soundness does
not imply sequential soundness. Specifically, we obtain the following

Theorem 1. Let L be a language and p be a polynomial. If there exists an argument
(P, V )p for L satisfying p-resettable soundness, and there exists a digital signature



3-Message NP Arguments in the BPK Model 621

scheme secure against chosen message attack, then there exists an argument (P ′, V ′)p

for L satisfying p-resettable sondness that does not satisfy sequential soundness. More-
over, if (P, V )p has a constant number of messages, then the same holds for (P ′, V ′)p.

We note that a much weaker fact (specifically, that bounded sequential soundness does
not imply sequential soundness) was proved in [ZDLZ03] assuming the existence of
families of pseudo-random functions.

Remarks. This theorem clarifies that there is a gap between possibility and impossibility
results for 3-message resettable zero-knowledge arguments for NP in the BPK model.
Specifically, the notion of bounded-resettable soundness is strictly stronger than the no-
tion of bounded-concurrent soundness achieved by the main protocol in [ZDLZ03], as
observed above, and, as a consequence of Theorem 1, strictly weaker than sequential
soundness, which is impossible to achieve in 3 messages resettable zero-knowledge ar-
guments for non-trivial languages in the BPK model [APV05]. Thus, a natural question
(which we solve in the next section) is the existence, or not, of 3-message resettable
zero-knowledge arguments for NP languages with bounded-resettable soundness.

4 Bounded-Resettable Soundness in 3 Messages

In this section we present a 3-message argument for any NP language in the public-
key model that satisfies resettable zero-knowledge and bounded-resettable soundness,
under subexponential-time hardness assumptions. Formally, we obtain the following

Theorem 2. Let L be a language in NP. Assuming the existence of α-extractable com-
mitment schemes, σ-secure signature schemes, for 0 < α < σ < 1, and ZAPs for
NP-complete languages, there exists a 3-message argument system for L that satisfies
completeness, bounded-resettable soundness, and resettable zero-knowledge.

The above result improves the best previous 3-message results in this model
(i.e., [MR01a, ZDLZ03]) by the (stronger) level of soundness achieved, and in the case
of [DPV04b, MR01b] by the generality of the model. We also note two additional in-
teresting properties of the above argument system: the length of the public key does not
depend on the bounded-resettability parameter p, and only the last message depends on
the statement being proved, so that it can be used to actually prove m on-line and inde-
pendent theorems in m + 2 messages, for m ≥ 1 (instead of 2m + 1, as for protocols
in [ZDLZ03, MR01a]). We now proceed with the proof of Theorem 2.

Informal description. Our argument system is based on the very often used ‘OR-based
paradigm’ for zero knowledge, first introduced by [FLS99] in the non-interactive model
for zero-knowledge proofs. According to the natural application of this paradigm in
interactive models, the prover proves to the verifier that either the original statement
is true or some other statement, obtained from the transcript τ of the communication
so far, is true. Specifically, the prover creates a certain NP statement stτ having the
following two properties: 1) if τ is generated by honest prover and verifier, then with
high probability statement stτ is false; 2) for any probabilistic polynomial-time verifier,
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there exists an efficient simulator that generates a transcript τ which is computationally
indistinguishable from the analogue transcript generated during a real execution of the
protocol between prover and this verifier, and such that stτ is true. Then, formally, in
order to prove the NP statement input ‘x ∈ L’, a prover will rather prove the statement
‘(x ∈ L) ∨ stτ ’. We now define the auxiliary language TL that we are going to use.

Definition 7. Let q = p(n) + 1. The triple (x, com, pk) belongs to the language TL if
x ∈ L or there exist m1, . . . ,mq, sig1, . . . , sigq, dec, r1, r2, sk such that

1. (pk, sk) = G(1k, r1);
2. mi 
= mj , for all distinct i, j ∈ {1, . . . , q};
3. Ver(mi, sigi, pk) = 1 for i = 1, . . . , q, and
4. (com, dec) = Com((m1, . . . ,mq, sig1, . . . , sigq), 1k, r2).

Informally speaking, triple (x, com, pk) belongs to TL if x belongs to L or if com is the
commitment of p(n) + 1 distinct n-bit strings and p(n) + 1 valid signatures sigi (with
respect to pk) for these strings.

Tools and assumptions. In our construction we assume the existence of the following
cryptographic tools.

1. a σ-secure digital signature scheme SS = (G, Sig,Ver), for 0 < σ < 1;
2. an hiding, perfectly-binding and α-extractable commitment scheme (Com,Rec),

where 0 < α < σ;
3. a ZAP (ZG,ZV, ZP ) for the language TL;
4. a pseudo-random family of functionsF (this follows from the existence of item 1).

High-level overview. Let k be the security parameter. The public entry of a verifier con-
tains a public key pk for the σ-secure signature scheme. The actual proof that x ∈ L
consists of a first message where the prover sends a random message m to the verifier.
The verifier replies with a signature sig of m and the first message z1 of a ZAP for
language TL. The prover continues iff sig is a valid signature of m, and it constructs
a commitment com to 2p + 2 strings mi = sigi = 0n, for i = 1, . . . , p, using the
perfectly-binding and α-extractable commitment scheme. Finally the prover computes
the second message x2 of the ZAP in which she proves that the triple (x, com, pk)
belongs to TL. All three messages by prover or verifier are computed using pseudo-
randomness generated as follows: first, the prover (or verifier) picks a fixed-length ran-
dom seed from its random tape, and then it generates a long pseudo-random string by
running the pseudo-random function on input the seed, the input common to prover and
verifier, any secret inputs, and the transcript of the conversation so far. This generates
sufficiently long randomness to be used in the rest of each step. Finally, the verifier
accepts if the second message of the ZAP is accepting.

Let us now informally argue the properties of our construction. We start with the
bounded-resettable soundness requirement. Since we assume that x 
∈ L, by the sound-
ness of the ZAP used, the only way that a prover can make V accept with non-negligible
probability is if (x, com, pk) ∈ TL because of the fact that com is a commitment to p+1
distinct messages and p + 1 valid signatures of them, according to the signature public
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key pk. Since the prover uses an α-extractable commitment scheme to compute com-
mitment key com, there exists an extractor running in time O(2nα

) that can compute
the messages and signatures committed through com. We then note that any prover that
resets at most p(n) times the verifier, is sent from the verifier signatures for at most
p(n) distinct messages. Therefore, the extractor and the prover can be composed to ob-
tain an algorithm that runs in time O(2nα

) and breaks the σ-secure signature scheme.
Note that we base the proof on a subexponential-time hardness assumption. Such a
telescopic use of the hardness of different cryptographic assumptions is referred to as
complexity leveraging and is often being used in proofs of the soundness requirements
for proposed resettable zero-knowledge arguments in the public-key model. The use of
an extractable commitment along with a ZAP is also discussed and used in [Pas03].

We now consider the resettable zero knowledge requirement. We first note that the
prover uses, as randomness to compute its messages, pseudo-random bits computed as
function of the common and secret inputs and the messages received until then. Then
any reset operations from the verifier will result in either: (1) a new session of the same
protocol being replayed with identical transcript and the prover reusing the same ran-
domness; or (2) a new session of the same protocol being replayed with identical first
message from the prover but different remaining part of the transcript. While this latter
case may give problems in obtaining the zero-knowledge property for protocols of the
‘cut-and-choose’ type1, it does not in our case, as we use a different type of protocol:
a ‘non-committing’ first message from the prover followed by a ZAP. A problem could
still arise if the verifier happens to see correlated prover’s answer on the same first mes-
sage for the ZAP, but this does not happen as the prover computes its second message
by using the output of the pseudo-random function on a new input (in fact, a new input
and a new seed) as a random tape, which will be indistinguishable from a new random
string to the verifier, and we can then use the witness-indistinguishability properties of
ZAPs. Then, the strategy of the simulator is that of rewinding verifier V ∗ so to obtain
p(n) + 1 signatures for distinct messages sent by the simulator, while playing as the
prover P . Here, we also avoid the subtle simulation problem solved in [GK90] due to
the cheating verifier V ∗ aborting with some non-zero probability. We can do that be-
cause the first message has the same distribution before and after the simulator rewinds
verifier V ∗, and thus the expected number of rewindings remains polynomial. After
p(n) + 1 signatures are obtained, the simulator can run the prover’s program as it has
a witness for the statement (x, com, pk) ∈ TL. A formal description of this protocol
(based on parameter p) is given on Fig. 2.

5 Application to Polylogarithmic-Communication Arguments

In this section we consider the problem of reducing the communication complexity of
the 3-message protocol from Section 4. An intriguing question is whether there exists
a protocol with the same soundness and zero-knowledge properties, that further has
communication complexity polylogarithmic in the input length.

1 By ‘cut-and-choose’ protocol, we denote here all protocols where the prover sends a commit-
ment, the verifier reveals a challenge and the prover sends an answer Most zero-knowledge
protocols in the literature are of this type or contain a subprotocol of this type.
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KEY GENERATION PHASE.

V: On input a security parameter k, run the key generator G for the σ-secure signature scheme
on input 1k obtaining the pair (spk, ssk). Let pk = spk and sk = ssk.

PROOF PHASE.

Common input: security parameter k, public file F = {(pk, . . .)}, instance x.
P’s private input: a witness y for x ∈ L.
V’s private input: private key sk.

P(message 1):
1. randomly choose seed s;
2. compute w = F(s, x|y|pk) and use w below as randomness;
3. randomly choose m ← {0, 1}n and send it to V ;

V(message 2):
1. randomly choose seed s′;
2. compute w′ = F(s′, x|y|pk|m) and use w′ below as randomness;
3. compute sig = Sig(m, sk) and z1 = ZG(1k; TL);
4. send sig, z1 to P ;

P(message 3):
1. if Ver(m, sig, pk) �= 1 then halt;
2. randomly choose seed s′′;
3. compute w′′ = F(s′′, x|y|pk|m|sig|z1) and use w′′ below as randomness;
4. let m′ be the (p(n) + 1)-tuple (0k, . . . , 0k) and let sig′ = m′;
5. compute commitment and decommitment keys (com, dec) = Com(m′|sig′, 1k) and
z2 = ZP (x, com, pk; y; z1);

6. send com, z2 to V;
V(decision):

1. verify that the ZAP is valid by checking that ZV on input instance (x, com, pk) and
transcript (z1, z2), returns 1.

Fig. 2. The 3-message bounded resettably sound and resettable zero-knowledge argument system
for NP in the BPK model

The previous result coming closer to solving this problem is the polylogarithmic-
communication zero-knowledge argument system from [K91]. We could think of two
variations of this protocol that can be implemented so to require only 4-messages in the
standard model and can even be compressed to 3 messages in the BPK model. How-
ever, both resulting protocols do not even satisfy 2-resettable soundness, as a cheating
prover can reset the honest verifier after learning the verifier’s challenge and then pre-
pare a first message for which he can answer that challenge. We then try a different
approach, based on a polylogarithmic-communication 2-message argument system. By
combining such an argument system with the protocol from Section 4, we obtain.

Theorem 3. Let L be a language in NP. There exists a 3-message argument sys-
tem for L that satisfies completeness, bounded-resettable soundness, resettable zero-
knowledge, and has communication complexity polylogarithmic in the input length, if
the following assumptions hold: the existence of α-extractable commitment schemes,
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of σ-secure signature schemes, for 0 < α < σ < 1, and of 2-message argument sys-
tems for an NP-complete language with communication complexity polylogarithmic in
the input length.

We stress that currently the only way to instantiate the latter assumption in the above
result is to use the argument system of [DL08]. Their argument system uses several
standard assumptions (like the existence of collision-intractable hash function fami-
lies and polylogarithmic-communication computationally private information retrieval
schemes) but also one very strong knowledge-based assumption called an extractable-
algorithm assumption in [DL08]. As already observed in [DL08] as well as previous
papers using similar assumptions, determining whether extractable-algorithm assump-
tions are false or reasonable remains an interesting question. We now proceed with the
proof of Theorem 3.

An informal description. Our argument system is obtained by modifying the
protocol in Section 4 as follows: first, using the input length n as the protocol’s se-
curity parameter, each used cryptographic primitive is deployed with security parame-
ter polylogarithmic in n; second, instead of requiring the prover to send (the long)
ZAP answer z2 and verifier to check it, prover and verifier apply the polylogarithmic-
communication 2-message argument system, denoted as (A,B), to prove/verify that
such z2 exists (here, any randomness needed by algorithm A is still drawn from w′′).
We formally define language metaTL as follows: the 4-tuple (x, com, pk, z1) belongs
to the language metaTL if x ∈ L or there exists z2 such that ZV (x′, z1, z2) = 1, where
x′ = (x, com, pk). Then, instead of proving that (x, com, pk) ∈ TL, the prover proves
that (x, com, pk, z1) ∈ metaTL. Note that metaTL ∈ NP.

Let us now informally argue the properties of our construction. The polylogarith-
mic communication complexity follows from the analogous property of protocol (A,B),
when zi = ∅ (i.e., using a 1-message ZAP [GOS06]), and by inspection of the rest of the
protocol in Fig. 2, where each primitive is used with security parameter polylogarithmic
in n. For the bounded-resettable soundness property, assume that x 
∈ L and the verifier
accepts. The messages obtained during a bounded-resettable attack do not help the at-
tacker to violate the soundness of (A,B) and thus, by the soundness of (A,B), we can
extract z2 that makes the verifier accept in a protocol almost identical to the protocol
in Fig. 2 (the only addition being that the verifier further sends B’s message). As the
latter also satisfies bounded-resettable soundness, we reach the desired contradiction.
Finally, the proof of the resettable zero knowledge requirement is directly obtained as
an extension of the same proof for the protocol in Fig. 2. Specifically, we use the same
simulator’s strategy of rewinding verifier V ∗ so to obtain p(n)+1 signatures for distinct
messages, which gives the simulator a witness for statement (x, com, pk) ∈ TL, and,
using ZP , a witness for statement (x, com, pk, z1) ∈ metaTL. Thus the simulator can
run prover A’s algorithm to successfully complete the simulation of message z2.
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Abstract. We address the problem of finding a polynomial-time approx-
imation scheme for shortest bounded-curvature paths in the presence of
obstacles. Given an arbitrary environment E consisting of polygonal ob-
stacles, two feasible configurations, a length �, and an approximation
factor ε, our algorithm either (i) verifies that every feasible bounded-
curvature path joining the two configurations is longer than � or (ii) con-
structs such a path Π whose length is at most (1 + ε) times the length
of the shortest such path. The run time of our algorithm is polynomial
in n (the total number of obstacle vertices and edges in E), m (the bit
precision of the input), ε−1, and �.

For general polygonal environments, there is no known upper bound
on the length, or description, of a shortest feasible bounded-curvature
path as a function of n and m. Furthermore, even if the length and
description of a shortest path are known to be linear in n and m, finding
such a path is known to be NP-hard [14].

Previous results construct (1 + ε) approximations to the shortest ε-
robust bounded-curvature path [11,3] in time that is polynomial in n
and ε−1. (Intuitively, a path is ε-robust if it remains feasible when si-
multaneously twisted by some small amount at each of its environment
contacts.) Unfortunately, ε-robust solutions do not exist for all prob-
lem instances that admit bounded-curvature paths. Furthermore, even
if a ε-robust path exists, the shortest bounded-curvature path may be
arbitrarily shorter than the shortest ε-robust path. In effect, these ear-
lier results confound two distinct sources of problem difficulty, measured
by ε−1 and �. Our result is not only more general, but it also clarifies
the critical factors contributing to the complexity of bounded-curvature
motion planning.

1 Introduction

We are interested in planning the collision-free motion of vehicles with a re-
stricted turning radius r in the presence of arbitrary polygonal obstacles (see
Fig. 1(a)). As in the bulk of previous work, we consider paths traced by a fixed
point on the vehicle (say, the mid-point of its rear axle), we prohibit reversal,
and we permit arbitrary changes in motion curvature as long as the curvature
remains bounded (in effect, the steering wheel has a restriction on how far, but
not how fast, it can turn). Specifically, we insist that the path be continuous and

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 628–643, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(a) Amidst obstacles. (b) Sandwiched.

Fig. 1. A bounded-curvature path amidst obstacles (left), and a bounded-curvature
path is wedged between constant-radius circles (right)

that |∆φ/∆l| < r−1 between any two points on the path, where ∆φ is the change
in forward direction measured in radians and ∆l is the distance traveled between
the points. Intuitively, this restriction means that every point on the path can
be locally sandwiched between two circles of radius r (see Fig. 1(b)). By suitable
scaling, we assume that r = 1. This is a standard assumption throughout the
literature, but it is essential to note because path length varies with scaling.

An (instantaneous) configuration of a point tracing a bounded-curvature path
is specified by its position and forward direction of motion. A problem instance
is specified with a start configuration αs, a terminal configuration αt, and a
set of polygonal obstacles E , that we refer to collectively as the environment. A
path that is disjoint from the interior of all obstacles in E is said to be feasi-
ble. Hereafter we restrict our attention to feasible paths, so when we refer to a
bounded-curvature path it is understood that it is feasible.

A solution to a problem instance is a feasible bounded-curvature path from
αs to α. By environment feature, we mean one of the corners (vertices) or walls
(edges) We denote by n the total number of features. We assume that continuous
data (e.g. configurations, corner co-ordinates, �, and ε) are represented using
fixed-point notation with a maximum of m digits.

Determining if a given problem instance admits a solution is decidable: For-
tune and Wilfong present an algorithm that is single-exponential in time and
space (2(n+m)O(1)

) [10]. They use a very compact representation for paths of fi-
nite but unbounded length. This representation prevents path recovery, so their
algorithm only returns a yes/no answer. More recently, Backer and Kirkpatrick
describe an algorithm that will construct a solution path in time polynomial in
n, m, and the descriptive complexity τ (essentially, the number of turns) of the
simplest bounded-curvature path, if a solution path exists [4]. However, since
there is no known upper bound on τ as a function of n and m, nor is there a re-
lationship between τ and the length of the shortest bounded-curvature path, this
algorithm provides neither a general decision procedure nor an approximation
scheme for shortest bounded-curvature paths.

Finding a shortest bounded-curvature path in the midst of arbitrary polygonal
obstacles is NP-hard [14], even if the length and description of a shortest path
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are known to be linear in n and m. Previous work on approximation algorithms
has provided a (1 + ε)-approximation to the shortest ε-robust bounded-curvature
path [11,3]. (The notion of ε-robustness is described precisely in the next section;
intuitively, a path is ε-robust if remains feasible when simultaneously twisted
by some small amount at each of its environment contacts.) Although these
results are very efficient (O

(
n2ε−4 logn

)
in [3]), the restriction to ε-robust paths

is non-negligible. Robust solutions do not exist for all problem instances that
admit bounded-curvature paths. Furthermore, even if a ε-robust path exists, the
shortest bounded-curvature path may be arbitrarily shorter than the shortest ε-
robust path. Finally, these approaches do not really address the difficulty exposed
by the NP-hardness result because the only feasible paths in the associated
reduction have very low robustness (2−Ω(n)); in other words, it is completely
consistent with existing approximation algorithms that no general polynomial-
time approximation scheme exists for shortest bounded-curvature paths.

In this paper, we describe an algorithm that unifies and extends previous
work on the feasibility and approximation of bounded-curvature paths. Given a
parameter �, the our algorithm either (i) verifies that every feasible bounded-
curvature path has length greater than � or (ii) returns a feasible bounded-
curvature path that is at most (1 + O(ε)) times longer than the shortest such
path. The run time of the algorithm is polynomially bounded1 in n, m, ε−1, and
�. (It follows, of course, that we could produce a true (1 + ε) approximation by
scaling ε appropriately. In fact, we will assume that our ε satisfies ε−1 ≥ λn2�,
for some sufficiently large constant λ.) Our new result exchanges a polynomial
dependence on τ , the minimal path description, for a polynomial dependence
on the minimal path length: in practice, the desired approximation Π can be
found in time dependent on its descriptive complexity but, since its length may
significantly exceed its description, we cannot avoid considering paths of much
higher descriptive complexity to verify that Π has length at most (1 + ε) times
the length of the shortest path.

In the remainder of this paper, we first describe a path normalisation proce-
dure that takes a shortest path and deforms it without increasing its length by
more than a factor of (1 + ε). After normalisation, the path has a combinatorial
description. This allows us to find a path by enumerating a finite (but poten-
tially exponential-size) space. We next describe the redundancy used to filter
the enumeration, which results in an efficient algorithm. This redundancy allows
us to associate a succinct set of configurations with every environment feature.
These configurations serve as an adequate set of potential checkpoints in the
construction of a path. The total size of these configuration sets is a dominant
factor in the complexity of our algorithm. Thus, the critical step in our analysis
is the demonstration that we can maintain a polynomial bound on the size of
these configuration sets while still achieving a good approximation. We conclude
with several interesting open questions.

1 We make no attempt here to minimise the degree of the polynomial bound. In fact,
we frequently sacrifice polynomial factors for the sake of simplicity in exposition.
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2 Path Normalisation

Prior algorithmic results in bounded-curvature motion planning either normalise
a given feasible path [10,5,4] or characterise shortest feasible paths [2,1,6,3,11].
The resulting structure enables a systematic search for a path and narrows the
space of paths considered. In this section, we combine these approaches by nor-
malising a given shortest feasible path.

A shortest bounded-curvature path is composed of arcs of a unit-radius cir-
cle (C-segments) and straight-line segments (L-segments)[9,10]. We distinguish
L-segments of length 0, denoted L0, as degenerate L-segments. Similarly, for rea-
sons that will become clear, we distinguish C-segments of lengths 0 or π, denoted
C0 and Cπ respectively, as degenerate C-segments. The (segment) structure of a
segmented path is the string in {C,L}∗ that describes the sequence of segment
types of which it is composed. We say that a segmented path has type Γ if the
structure of the path is Γ , where several of the segments may be degenerate.

Theorem 1. [9] In the absence of obstacles, a shortest bounded-curvature path
is type CLC or CCC. If its structure has type CCC, the middle C-segment has
length at least π.

We call a bounded-curvature path with the properties set out in Theorem 1 a
(Dubins) jump. Let Π be a bounded curvature path. A contact configuration θ
of Π is a configuration where Π just touches the environment boundary (i.e. a
point on Π arbitrarily close to θ does not touch the boundary). In the midst
of arbitrary polygonal obstacles, any shortest bounded-curvature path can be
expressed as a sequence of jumps.

Corollary 1. [11] Let Π be any shortest bounded-curvature path in the midst of
polygonal obstacles. When we split Π at its contact configurations, each resulting
contact-free subpath is a Dubins jump.

We call any path that satisfies the above property a Dubins path. Each Dubins
path Π has a succinct representation 〈θ0, θ1, . . . , θk+1〉 where θ0 is the start
configuration of Π , θk+1 is the terminal configuration of Π , and θ1, . . . , θk are
the internal contact configurations of Π in order from its beginning to end. This
representation reduces the problem of finding paths to that of determining which
contact configurations can be reached from a given start configuration. Fig. 2
represents a continuous range of Dubins paths from the same start configuration
to the same terminal configuration. Notice that there is a continuous range of
contact configurations, but in each case, only one configuration represents a
path of minimal length. Finding a shortest path requires identifying this single
configuration, but (as we shall see) approximating it only requires finding a
nearby configuration.

To this point, optimality has restricted our attention to a continuous space of
Dubins paths. To further restrict our attention to a countable set of paths, we
impose additional constraints: we perturb contact configurations while keeping
each such configuration θi in contact with every feature that it touches. Even
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αs αt

(a) Contact configuration can pivot
about a corner.

αt

αs

(b) Contact configuration can slide
along a wall.

Fig. 2. Contact configuration degree of freedom

with this restriction, θi may still have one degree of freedom: when θi contacts
a single corner, the position of θi is fixed, but its orientation may vary (see
Fig. 2(a)); when θi contacts the interior of a wall, the direction of θi is fixed, but
its position may vary (see Fig. 2(b)). These contact-preserving motions (pivoting
and sliding, respectively) are the only ways that we deform paths. When we
pivot, the perturbation distance is measured in radians; when we slide, the the
perturbation is measured in standard distance units.

Using this notion of perturbation, we can provide a more precise definition
of the notion of ε-robustness that is central to previous approximation results.
A jump between two contact configurations is ε-robust if every simultaneous
and independent ε-perturbation of its endpoint configurations can be joined by
another feasible jump of the same structure type. More generally, a Dubins path
is ε-robust if each if its constituent jumps is ε-robust. Note that a jump is non-
robust if, for some ε-perturbation of each of its endpoint configurations either
(i) the resulting configuration pair cannot be joined by a jump without violating
feasibility, or (ii) the resulting configuration pair can be joined by a feasible jump
but only by undergoing a structural change. It follows from condition (ii) that
the middle segment of every ε-robust jump must be non-degenerate.

The next lemma makes precise the intuition that small deformations of a jump
J result in at most a small increase its length ‖J‖.

Lemma 1. [3] Let J and J ′ be any pair of similar-type jumps between the same
two contact configurations. Then |‖J ′‖ − ‖J‖| is bounded by the sum of the
perturbation distances between the corresponding endpoints of J and J ′.

If a jump J between two contact configurations is ε-robust, ‖J‖ must be at
least ε. It follows from the lemma above that if we perturb the source and
destination configurations of J by at most O(ε2), the length of the result is at
most ‖J‖+ε2 ≤ (1+ε)‖J‖. Therefore, simultaneously and arbitrarily perturbing
each contact on an ε-robust path Π by O(ε2) causes the length of Π to increase
by a factor of at most (1 + ε).

Previous algorithms that find a (1+ ε) approximation to the shortest ε-robust
path can be described as follows [11,3]: (i) sample the space of possible contact
configurations with O(ε2) granularity, then (ii) find the shortest Dubins path
Π where each contact configuration is a sampled configuration. To see that Π
exists and is a good approximation, let Π ′ be the shortest ε-robust path. We
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can perturb each internal contact configuration of Π ′ by at most O(ε2) to get
Π ′′ where each contact configuration of Π ′′ is a sampled configuration. Then
Π ′′ is a (1 + ε) approximation of Π ′ by Lemma 1. Therefore, Π is a (1 + ε)
approximation of Π ′ because Π is no longer than Π ′′ by our choice of Π .

We now describe a new type of normalisation that copes with the degenera-
cies that prevent a Dubins path Π from being ε-robust. The general approach is
similar to what we used when finding a feasible path [4]. However, it is compli-
cated by that fact that, in order to consider only approximately-shortest paths,
we must now deal with a family of paths whose form is less restrictive. As with
the previous approximation approaches, we first uniformly sample the space
of possible contact configurations, at each of the O(n) obstacle features, with
granularity O(ε2). In addition, we identify, for each obstacle feature, the O(n)
contact configurations that lead, by a doubly-degenerate jump (a jump with at
least two degenerate segments), to a contact configuration on some other fea-
ture. Together, we refer to these sampled or doubly-degenerate configurations, in
addition to the start and terminal configurations of Π , as anchor configurations.
There are O(n2 + nε−2) such configurations in total.

Next, we continuously deform Π while preserving all of its contacts and seg-
ment degeneracies. The goal is to exercise any residual degrees of freedom in
the path to bring its internal contact configurations as close as possible to an
anchor configuration. If some contact configuration cannot be perturbed directly
to an anchor configuration, one of its incident jumps must either make a new
environment contact (on its middle segment) or become singly-degenerate (i.e.
at least one of its segments becomes degenerate). In the former case we split the
jump into two singly-degenerate jumps at the new contact.

We refer to the degenerated jumps that arise in the normalisation process as
Dubins hops, and to the functional relationship between the motions of contact
configurations that are joined by a hop as a link. In general, a path consists of a
set of maximal length disjoint chains of linked contact configurations, Any chain
containing an anchor configuration is said to be anchored.

The preservation of segment degeneracies ensures that all hops are preserved
under further deformation of the path. Thus, once a chain becomes anchored
it remains anchored and its constituent contact configurations cannot be fur-
ther perturbed. It follows that each normalisation step results in an unanchored
chain either (i) merging with some other chain, or (ii) becoming anchored. In
either case, the total number of unanchored chains is reduced. Consequently, the
normalisation process eventually terminates in a path Π ′ each of whose contact
configurations is anchored. We refer to any such path as an ε-discrete path.

In the following example, we talk about perturbing circles rather than their
underlying contact configurations because underlying circles are easier to visu-
alise. We assume that ε is quite large so that we can focus on the changes that
can occur before a configuration becomes anchored. In Fig. 3(a), we start by
pivoting an underlying circle X at corner x until X kisses the previous underly-
ing circle W . At this point, X is linked to W (by a hop of type CL0C); it is not
possible to pivot X further, if W remains stationary. So we simultaneously pivot
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Fig. 3. As we twist the underlying circle X in a counterclockwise direction, underlying
circles restrict each other, which forces us to simultaneously perturb the underlying
circles to make further progress

W and X , maintaining the WX-link throughout. We do this until the L-segment
on the jump from u to w touches the corner v. At this point, further pivoting
would make the jump from u to w infeasible. So we split the jump from u to w
into two jumps: one from u to v and the other from v to w. We illustrate this
by adding an underlying circle V at v to Fig. 3(b). At this point, we say that V
is linked to W (by a hop of type C0LC) and U is linked to V (by a hop of type
CLC0). We maintain the UV -, VW -, and WX-links by simultaneously pivoting
U , V , W , and X . In Fig. 3(c), the underlying circle U eventually touches another
obstacle at which point the contact configuration at u becomes an anchor.

We summarise our new normalisation result in the following:

Theorem 2. Let Π be an arbitrary bounded-curvature path of length ‖Π‖ from
a configuration αs to a configuration αt. Then there exists an ε-discrete path
Π ′ from αs to αt with length at most ‖Π‖(1 + O(nε2)) and O(n‖Π‖) contact
configurations.

Proof: We have already outlined the argument that our normalisation results
in a path Π ′ in which all contact configurations are anchored. To bound the
length of Π ′, we first observe that the shortest feasible bounded-curvature path
Π from αs to αt has O(n‖Π‖) contact configurations. The intuition behind this
claim is that the shortest bounded-curvature path from a feature to the same
feature is a unit radius circle. Hence, if we split Π into subpaths of length 2π,
each subpath touches each of the n features at most once.

This reasoning is precise for corners, but we must refine it for walls. Notice
that once Π reaches a wall w at a configuration θ, Π can follow w to reach other
contact configurations at w in the direction of θ. Hence, once Π leaves w after
θ, it must loop back (travel at least 2π) before reaching w in the direction of θ
because otherwise (as a shortest path) Π should not have left w. This implies
that each subpath of length at most 2π has O(1) contact configurations at any
particular wall.

The argument that the path Π ′ has O(n‖Π‖) contact configurations relies
on our earlier observation that during normalisation every new contact config-
uration that is introduced coincides with a reduction in the total number of
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unanchored chains. Since the path Π has at most O(n‖Π‖) unanchored chains,
it follows that the normalised path Π ′ also has O(n‖Π‖) contact configurations.

Since no contact configuration on Π ′ is perturbed by more than ε2 during the
normalisation process, it follows from Lemma 1 that none of the jumps that are
modified by the normalisation process is stretched by more than ε2. Thus the
total increase in path length is O(ε2n‖Π‖). �

An important property of all ε-discrete paths is that they admit a combinator-
ial description: each such path consists of a sequence of contact configurations
each of which is either an anchor configuration or is reachable from an anchor
configuration by a sequence of Dubins hops.

3 Systematic Search for Shortest ε-Discrete Paths

In this section, we describe an algorithm that constructs a feasible bounded-
curvature path that is at most (1 + ε) times longer than the shortest feasible
bounded-curvature path, provided that path has length at most �. By Theorem 2,
it suffices to construct a shortest ε-discrete path with at most O(n�) contact
configurations. We can systematically search for such a path because ε-discrete
paths have a combinatorial description.

To structure our search, we note that each ε-discrete path Π is the concatena-
tion of one or more subpaths that are (internally) free of anchor configurations.
This condition implies additional structure on these subpaths: they each consist
of a sequence of hops constrained by the start configuration α of the subpath
followed by a sequence of hops constrained by the terminal configuration of the
subpath. We call any such subpath an (α, α′)-linkage. Since every ε-discrete path
is a sequence of linkages, it suffices to find a shortest (α, α′)-linkage with at most
τ contact configurations, for every pair of anchor configurations α, α′, and every
τ bounded by some constant times n�.

Fig. 4 outlines a systematic way to find the shortest (α, α′)-linkage with at
most τ contact configurations, for every pair of anchor configurations α, α′. For
each feature F , we define the set Φα,F

h to be the set of all configurations at F that
can be reached by a sequence of h hops from the anchor configuration α. The
procedure Propagate builds the sets Φα,F

h incrementally: Propagate(Φα,F
h−1)

adds a configuration φ′ to Φα,G
h whenever there exists a configuration φ in Φα,F

h−1
such that φ′ can be reached from φ by a single hop.

Since checking if a given L- or C-segment avoids all obstacles can be done
in O(n) time, it is straightforward to confirm that procedure AllLinkages(τ)
can be implemented to run in time that is polynomial in the total number of
configurations generated by propagation.

Since there several features to which a hop from one contact configuration
can potentially go, the number of contact configurations that can be reached
from an anchor configuration by a sequence of h hops may grow exponentially
with h. Hence, the explicit generation of contact configurations described in
the procedure above may not be realised in polynomial time. Fortunately, it
suffices to discover only a single (α, α′)-linkage that is approximately the same
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AllLinkages(τ )
1 for all anchor configurations α

do for h = 1 to τ
do for all environment features F

do Propagate(Φα,F
h−1)

2 for all pairs of anchor configurations α, α′

do for all pairs of environment features F, F ′

do for all h ≤ τ

do determine if there exist configurations φ in Φα,F
h

and φ′ in Φα′,F ′

τ−h such that:
(i) the jump joining φ and φ′ is collision-free, and
(ii) the (α, α′)-linkage through φ and φ′ is shorter than
the shortest (α, α′)-linkage found so far.

Fig. 4. Procedure for the construction of all shortest (α, α′)-linkages with τ contact
configurations

length as the shortest (α, α′)-linkage. This allows us to identify and propagate
only a subset of reachable configurations at each feature in each propagation
phase provided that the subset is guaranteed (somehow) to capture at least one
such (α, α′)-linkage. The intuition is that if two reachable configurations at a
feature F are sufficiently similar then it should be possible to replace one by the
other in all paths that use the first without sacrificing feasibility, or significantly
increasing the length, of the path. While this intuition is basically correct, the
details of what constitutes “sufficiently similar”, as well as the analysis of the
impact of this redundancy elimination, are somewhat involved.

4 Redundancy among Contact Configurations

By allowing a factor (1+ε) increase in length, we were able to restrict our search
to a finite space of paths (for a fixed �). In this section, we use a further potential
increase in length to restrict our search to a space of paths that is polynomially
bounded in size.

At the core of our approach is a simple form of path subsumption. Let H
and H ′ be two hops of the same type from feature F to feature G. We call a
feasible jump from the source configuration of H to the destination configuration
of H ′ an H/H ′- splice. The solid curves in Fig. 5 illustrate three hops of type
CL0C from corner F to corner G. In this example, the broken lines in Fig. 5
denote an H1/H2-splice and an H1/H3-splice. In this instance, H1 subsumes H2
because the H1/H2-splice is feasible. On the other hand, H1 does not subsume
H3 because the H1/H3-splice is blocked by an obstacle.

We now apply this notion of redundancy to narrow our search for approx-
imately shortest (α, α′)-linkages. Suppose that H1 and H2 in Fig. 5 are hops
that extend chains P1 and P2 (the prefixes of H1 and H2, respectively) from the
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Fig. 5. The splice from H1 to H2 makes H2 redundant

anchor configuration α. Suppose further that P2 and H2 occur on some (α, α′)-
linkage Π . Consider the path Π ′ from α to α′ formed by replacing P2 with P1
and H2 with the H1/H2-splice. Since Π ′ has one unanchored chain (resulting
from the broken link corresponding to H2) it is not ε-discrete. However, if we
renormalise Π ′ we get an ε-discrete path Π ′′ that has at most one more contact
configuration than Π ′. The chain P1 is a prefix of Π ′′ because P1 is a prefix of
Π ′ and renormalisation does not alter contact configurations that are already
anchored.

In order to use this subsumption for approximation, we are careful to ensure
that Π ′′ is no more than 2ε2 longer than Π . To guarantee this, it suffices to
ensure that P1 is at most ε2 longer than P2 and the splice from H1 to H2 is
at most ε2 longer than H2. The latter follows immediately from Lemma 1 if
we assume that the endpoints configurations of H1 and H2 are separated by
perturbation distance at most ε2.

Using this form of subsumption, we construct subsets Φ̂α,F
h of the sets Φα,F

h .
Our new configuration sets Φ̂α,F

h are built by iterative propagation as before.
However, preceding every second propagation step we now filter the sets Φ̂α,F

h .
We refer to the configurations in Φ̂α,F

h that were not removed by filtering as
viable configurations. When we filter Φ̂α,F

h we guarantee the following property:

Completeness Property: Let θ2 be any configuration that was removed from
Φ̂α,F

h by filtering and suppose that H2 is a feasible hop from feature F to
feature G starting from configuration θ2. Then there exists a feasible hop H1,
of the same type as H2, from F to G starting from a viable configuration θ1
of Φ̂α,F

h such that

1. the prefix from α to θ1 is at most ε2 longer than the prefix from α to θ2,
2. the splice from H1 to H2 is at most ε2 longer than H2, and
3. the splice from H1 to H2 is feasible.

By Theorem 2, we only need to consider ε-discrete paths with O(n�) con-
tact configurations. However, since we now restrict our search to paths that use
only viable configurations, we need to ensure not only that sufficiently short
such paths exist but also that their number of contact configurations remains
bounded.

As before, we start with O(n�) configuration-propagation phases. However,
before every second phase of propagation, we filter our sets of contact configu-
rations that are reached by viable chains (chains of viable configurations). We



638 J. Backer and D. Kirkpatrick

AllViableLinkages(τ )
1 for all anchor configurations α

do for h = 1 to τ
do for all environment features F

do if (h is even)
then Φ̂α,F

h−1 ← Filter(Φ̂α,F
h−1)

Propagate(Φ̂α,F
h−1)

2 for all pairs of anchor configurations α, α′

do for all pairs of environment features F, F ′

do for all h ≤ τ

do determine if there exist configurations φ in Φ̂α,F
h

and φ′ in Φ̂α′,F ′

τ−h such that:
(i) there is a collision-free (φ,φ′)-linkage λ
with at most three hops, and
(ii) the (α, α′)-linkage through φ and φ′ using λ
is shorter than the shortest (α, α′)-linkage found so far.

Fig. 6. Procedure for the construction of all shortest viable (α, α′)-linkages with τ
contact configurations

construct minimum-length viable (α, α′)-linkages using only these viable chains.
Our modified procedure is described in Fig. 6.

Since every ε-discrete path is a sequence of linkages, it suffices to show that
(i) the set of all viable contact configurations is bounded by some polynomial
function of n, �, ε−1 and m, and (ii) the viable (α, α′)-linkages constructed by
the procedure above are at most a factor (1 + ε) longer than the corresponding
shortest (α, α′)-linkage that is not constrained to use only viable contact con-
figurations. These facts are established in the next section. We summarise our
central result in the following:

Theorem 3. Suppose that there exists a bounded-curvature path Π from a start
configuration αs to a terminal configuration αt with length at most �. Then
there is an ε-discrete path from αs to αt with length at most ‖Π‖(1 +O(ε)) and
O(n‖Π‖) contact configurations that can be constructed from the viable (α, α′)-
linkages produced by the procedure AllViableLinkages(n�).

5 Filtering Redundant Configurations

In this section, we outline how to filter a set Φα,F
h of contact configurations, while

maintaining the Completeness Property. The idea is to partition Φα,F
h in such

a way that it suffices to choose just one element from each partition to belong
to Φ̂α,F

h . To maintain the Completeness Property, we must satisfy three distinct
conditions. Accordingly, we split Φα,F

h into smaller subsets where it is easy to
satisfy one of the conditions.
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To satisfy the first condition, we partition Φα,F
h into subsets Φα,F

h [i] such
that the lengths of the chains from α to configurations in Φα,F

h [i] lie in the
range [(i− 1)ε2, iε2). Since we restrict our attention to paths of length at most
�(1 + O(ε)), the number of resulting partitions is at most �(1 + O(ε))/ε2.

To satisfy the second condition, we uniformly partition the space of contact
configurations at all features with granularity ε2, as before, to partition Φα,F

h [i]
into subsets Φα,F

h [i][j]. The second condition then follows directly from Lemma 1.
To satisfy the third condition, we further partition Φα,F

h [i][j] so that for any
pair of similar-type feasible hops H1 and H2 that start from configurations in a
given partition Φα,F

h [i][j][k] there exists a splice between H1 and H2. In partic-
ular, the partitions Φα,F

h [i][j][k] are sufficiently narrow that any pair of feasible
hops, of the same type and destination feature, originating in a given partition
are homotopic (i.e. they do not straddle any obstacles). Unfortunately, this alone
is not sufficient to guarantee that a splice exists. The essential question that re-
mains to be addressed is: how close (in terms of the perturbation distance of
their corresponding endpoints) do two hops, of the same type and homotopy
class, have to be in order to guarantee that there exists a splice between them?

For some hop types there is essentially no separation constraint, that is a
splice exists between all relevant hop pairs. For others, specifically hops of the
form CL0C that we have used in our illustrations, there is no fixed bound that
will guarantee the existence of a splice. Fortunately, in all cases we can derive a
relative separation bound that guarantees the existence of a splice. Specifically,

Lemma 2. Let H1 and H2 be any pair of similar-type Dubins hops between the
same two features F and G. Then a splice exists between H1 and H2 provided
that, at both F and G, the perturbation distance δ between the endpoint config-
urations of H1 and H2 is at most the square root of the distances from each of
these configurations to their closest anchor configuration.

The proof of Lemma 2 is somewhat involved. At its core is an argument about the
quadratic convergence of a sequence of splice-coverage regions, which we bound
by a geometric reduction to a simple Newton-Raphson root-finding process. A
sketch of this argument appears in [4]; the full details will be presented in an
expanded version.

Of course, even this relative separation bound does not preclude the existence
of an arbitrarily large set of similar hops that admit no splices. However (and
finally), we can use our assumption about bounded input precision to prove
that any two distinct anchored contact configurations must be reasonably well
separated.

Lemma 3. Let φ and φ′ be distinct contact configurations at some environment
feature F that belong to anchored chains with at most k links. Then, the pertur-
bation distance between φ and φ′ is at least 2−O(ckm) for some positive constant
c, where m is number of bits of the fixed-point input and n is the number of
obstacle features.
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Proof: The constraints between linked contact configurations can be expressed
as a system of equations involving +, −, ×, √ , and integers, that relate the co-
ordinates of underlying circles. Given such a system, Burnikel et al. describe
how to construct a quotient of irreducible polynomials with integer coefficients
such that the result of the arithmetic expression corresponds to a root of the
quotient [7]. The magnitude of a non-zero root is bounded above and below
by the degrees and coefficients of both polynomials. Rather than compute the
polynomials, they recursively compute the corresponding root bounds directly
from the expression.

Using a natural representation for configurations, Burnikel et al.’s technique
applied to linked jumps bounds the difference between distinct contact con-
figurations on ε-discrete paths, with the weak assumption that real values are
represented in fixed-point with m digits. �

It follows from Lemma 2 that the perturbation width of the partitions
Φα,F

h [i][j][k] converge quadratically to zero. By Lemma 3, we need not consider
partitions of width less than 2−O(ckm), for some positive constant c. Thus, there
is a polynomial bound on the total number of partitions Φα,F

h [i][j][k]. By con-
struction, the set Φ̂α,F

h needs to contain at most one configuration from each
partition. It remains to argue that these viable configurations suffice to con-
struct near-optimal length ε-discrete paths. In particular, we argue that every
minimum-length ε-discrete path, with at most n� jumps, is well-approximated
by some sequence of viable linkages containing O(n�) jumps in total.

To allow us to quantify the degree to which a given ε-discrete path differs
from a viable such path, we define the viability of an anchored chain to be the
number of jumps on its longest even-length prefix that consists entirely of viable
configurations, and the viability of an ε-discrete path Π , denoted v(Π), as the
sum of the viabilities of all of its anchored chains. We have observed that splicing,
and subsequent renormalisation, can be used to replace non-viable configurations
on a path by viable ones. However, this comes at a cost: it increases both the
path length and the total number of jumps. The associated trade-off between
the length, number of jumps and viability of ε-discrete paths is captured by
the following potential function P defined on all ε-discrete paths: Let L be any
linkage consisting of a two anchored chains with a total of r internal contact
configurations. Then the potential of L, denoted P(L), is given by ‖L‖/ε2 +
ξn�(r−v(L)), for some suitably chosen constant ξ. More generally, the potential,
P(Π), of an ε-discrete path Π is just the sum of the potentials of all if its
constituent linkages.

Let Π be any minimum length ε-discrete path. Recall that Π consists of
two chains, with O(n‖Π‖) internal contact configurations, anchored to its end
configurations α and α′. Thus, P(Π) < ‖Π‖/ε2 + O(n2�‖Π‖). Hence, if Π∗ is
any minimum potential ε-discrete path joining α and α′, then ‖Π∗‖ ≤ ε2P(Π)
(otherwise P(Π∗) > P(Π)). Hence, ‖Π∗‖ ≤ ‖Π‖ + O(n2�‖Π‖ε2) ≤ ‖Π‖(1 +
O(ε)), and it remains only to argue that Π∗ is well-approximated by viable
linkages.
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Suppose that Π∗ contains an (α, α′)-linkage L that starts with an anchored
chain α = θ0, θ1, . . . , θr, whose length exceeds its viability by at least three (the
case where L ends with such an anchored chain is symmetric). Let Fi denote
the feature associated with configuration θi. Let θ2j be the last configuration
on the longest even-length viable prefix of this chain. It follows that θ2j+1 be-
longs to Φ̂

α,F2j+1
2j+1 , but θ2j+2 was filtered from the set Φ̂

α,F2j+2
2j+2 . Hence, by the

Completeness Property, there is a configuration θ′2j+2 in Φ̂
α,F2j+2
2i+2 and a config-

uration θ′2j+3 at F2j+3 such that there is a feasible splice between the hop H ′,
joining θ′2i+2 and θ′2i+3, and the hop H , joining θ2i+2 and θ2i+3. If we perform
this splice, and renormalise the resulting path the linkage L is replaced by a
new ε-discrete path P̂ from α to α′ (and the remainder of Π is unaltered). By
construction, this new path P̂ has at most one more configuration than L, has
length O(n‖L‖ε2) more than ‖L‖, and has viability at least two more than L.
Hence P(P̂ )−P(L) ≤ O(n‖L‖)− ξn� < 0, for large enough ξ, contradicting the
minimality of Π∗.

It follows that every linkage L on Π∗ is composed of two almost completely
viable anchored chains. But this means that L itself is discovered by proce-
dure AllViableLinkages. (This was the reason why the procedure looks for
three-hop bridges between viable configurations). Hence, Π∗ (or some other,
even shorter, ε-discrete path) can be constructed from the linkages identified by
procedure AllViableLinkages.

6 Conclusion

We have presented an approximation algorithm for finding a bounded-curvature
path amidst polygonal obstacles. We used the approximation factor to reduce
the number of paths that we consider through path normalisation and filtering
before propagation. The run time of our algorithm is polynomially bounded
because filtering results in a polynomially sized set of configurations and we
only need to propagate and filter a polynomially bounded number of times.

Although the run time of our algorithm is a function of input precision m, we
have still exploited the Real RAM model of computation in our analysis. This is
similar to the (1+ε) approximation algorithm by developed by Papadimitriou for
finding the shortest unconstrained path amidst arbitrary polyhedra in three di-
mensions [12]. Subsequent work has shown that Papadimitriou’s approach works
in polynomial time in a bit model of computation [8]. It remains to be seen if
our algorithm also has a polynomially bounded complexity in a bit model.

The (implicit) polynomial bound on the run time of our algorithm is high
degree. In this paper, we have not made any attempts to optimise the asymp-
totic run time. However, the subtleties that lead to a high complexity bound
are real issues that any complete algorithm must address. Therefore, it is not
clear if any complete algorithm can be asymptotically competitive with the fast
O
(
n2ε−4 logn

)
approximation algorithm for ε-robust paths.

Note that the worst case paths that a complete algorithm must find are unre-
alistic for real-world robotic applications because they require touching obstacles



642 J. Backer and D. Kirkpatrick

and turning with great precision. The restriction to ε-robust paths reduces the
precision required, but paths must still brush up against the environment. A
bounded-curvature path is ε-safe if the center of an ε-radius ball can trace the
path without the ball touching any obstacles. This definition is distinct from the
notion of robustness: an ε-robust path is 0-safe because it is Dubins, and there
exist ε-safe paths in environments that only permit 0-robust solutions. Finding
an ε-safe path reduces to problems that we have already considered by taking a
Minkowski sum of the obstacles with an ε-radius ball. However, if we are willing
to find an approximation to an ε-safe path that is less safe (say ε/2-safe), the
problem may become easier: there is a non-uniform discretisation approach to
finding an approximation to the shortest ε-robust bounded-curvature path in
three or more dimensions [15], but the returned path is not ε-safe. Finding an
approximation to the shortest ε-safe bounded-curvature path in two dimensions
remains open.

Although we express the run-time of our algorithm in terms of the length �,
we use � only to bound the number of turns that we must consider. The number
of turns is a natural measure of the descriptive complexity of a Dubins path, and
we obtain tighter results when we rephrase our results in terms of this measure.
However, there are no known bound on this quantity in arbitrary polygonal
environments, which poses an interesting open problem. If the number of turns
can grow super-polynomially in the input size, finding a minimum-turn path is
another interesting open problem. This is analogous to finding a minimum-link
path when the path is unconstrained.

Shortest bounded-curvature paths with reversals are also composed of C-
segments and L-segments [13]. The feasibility problem is less interesting for this
class of paths because with reversals, bounded-curvature paths can arbitrar-
ily approximate any given continuous path by using a large number of turns.
However, the shortest path and minimum-turn motion planning variants are
interesting open problems when reversals are allowed.
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Abstract. In this paper we consider the problem of detecting commut-
ing patterns in a trajectory. For this we search for similar subtrajectories.
To measure spatial similarity we choose the Fréchet distance and the dis-
crete Fréchet distance between subtrajectories, which are invariant under
differences in speed. We give several approximation algorithms, and also
show that the problem of finding the ‘longest’ subtrajectory cluster is as
hard as MaxClique to compute and approximate.

1 Introduction

Technological advances of location-aware devices, surveillance systems and elec-
tronic transaction networks produce more and more opportunities to trace mov-
ing entities. Consequently, a variety of disciplines including geography, market
research, data base research, animal behavior research, surveillance, security and
transport analysis shows an increasing interest in movement patterns of entities
moving in various spaces over various times scales [9,14]. In the case of animals,
movement patterns can be viewed as the spatio-temporal expression of behav-
iors, e.g. flocking sheep or the seasonal migration of birds. In a transportation
context, such pattern could be a traffic jam or a commuting route.

In this paper we will focus on the problem of detecting commuting patterns
in a trajectory. For this we search for similar subtrajectories. To measure spa-
tial similarity we choose the Fréchet distance and the discrete Fréchet distance
between subtrajectories. Both of these are invariant under differences in speed:
for instance, in a transportation context, this allows to detect a commuting pat-
tern even in the presence of different traffic conditions and varying means of
transport. We will also consider how to detect a common movement pattern of
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(a) (b)

Fig. 1. (a) The two subtrajectories within the shaded region form a subtrajectory
cluster for m = 2 if the length of the longest subtrajectory is longer than � and the
distance between the two subtrajectories is at most d. (b) Illustrating a subtrajectory
cluster for m = 3 in the case when a set of trajectories is given as input.

a group of entities. That is, we want to find similar subtrajectories in a given
set of trajectories. This problems can be handled using the same approach as
for one entity. We will focus on the problem for one entity, but also discuss the
changes for a group of entities. Figure 1 shows examples for the two different
problem statements, i.e., similar subtrajectories of a single trajectory and of
several trajectories.

More formally, the input is a moving point object, called entity, whose location
is known at n consecutive time-steps. Thus, the trajectory of an entity is a
polygonal curve that can self-intersect. We assume that an entity moves between
two consecutive time steps on a straight line. Given the trajectory T of an entity
in the plane, an integer m > 0 and two positive real values � and d, we define a
commuting pattern as a set of m subtrajectories of T , where the time intervals
of two subtrajectories overlap in at most a point, the subtrajectories are within
distance d from each other, and at least one subtrajectory has length � between
its first and last vertex. See Fig. 1 for an example. As mentioned above, we will
use the Fréchet distance and the discrete Fréchet distance as distance measures,
which are natural distance measures for curves and polygonal curves.

Recently there has been considerable research in the area of analyzing and
modeling spatio-temporal data [2,3,13,16]. In the database community, research
has mainly focused on indexing databases so that basic spatio-temporal queries
concerning the data can be answered efficiently. Typical queries are spatio-
temporal range queries, spatial or temporal nearest neighbors [15,18]. Vlachos
et al. [19] state that in the area of spatio-temporal analysis it is an important
task to detect commuting patterns of a single entity, or to find objects that
moved in a similar way. Thus, an efficient clustering algorithm for trajectories,
or subtrajectories, is essential for such data analysis tasks. Gaffney et al. [11,10]
proposed a model-based clustering algorithm for trajectories. In this algorithm,
a set of trajectories is represented using a regression mixture model. Specifically,
their algorithm is used to determine the cluster memberships and it only clus-
ters whole trajectories. Mamoulis et al. [17] used a different approach to detect
periodic patterns. They assumed that the trajectories are given as a sequence
of spatial regions, for example ABC would denote that the entity started at
region A and then moved to region C via region B. Using this model data min-
ing tools such as association rule mining can be used. Vlachos et al. [19] also
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looked at discovering similar trajectories of moving objects. They mainly focused
on formalizing a similarity function based on the longest common subsequence
which they claim is very robust to noise. However, their approach matches the
vertices along the trajectories which requires that the vertices along the trajec-
tories are synchronized, or almost synchronized. Since it is not unusual that the
coordinates are recorded with a frequency of five per second it has recently been
argued [6,12] that this is an unreasonable assumption since trajectories will have
to be compressed (simplified) to allow fast computations. In this paper we will
make no such assumptions on the input.

The paper is organized as follows. In the next section we introduce the Fréchet
distance formally define the problem considered in this paper, and show hardness
results for the problem. In Sect. 3 we present approximation algorithms. For
omitted proofs we refer to the full version of this paper [4].

2 Preliminaries and Hardness

In this paper we will present algorithms that find clusters of subtrajectories of
a given trajectory. The idea is to select a reference subtrajectory and then to
find all subtrajectories that are close to this using the Fréchet distance. The
algorithms can be extended to handle subtrajectory clustering in the case when
the input is a set of trajectories and the aim is to find the longest subtrajectory
cluster where each subtrajectory in the cluster is a subtrajectory of an input tra-
jectory and no two trajectories in the cluster belong to the same input trajectory.
Specifying exactly which of the patterns should be reported is often a subject for
discussion. In this paper we consider the problems of finding the longest cluster
of a fixed size and the largest cluster of a fixed length. We say that a cluster C
of (sub)trajectories has length at least � if there exists a (sub)trajectory in C
whose length between the first and last vertex is at least �.

Definition 1. Given a trajectory T with n vertices, a subtrajectory cluster
CT (m, �, d) for T of length � consists of at least m non-identical subtrajecto-
ries T1, . . . , Tm of T such that the time intervals for two subtrajectories overlap
in at most a point, the distance between the subtrajectories is at most d, and at
least one subtrajectory has length �.

Problem 1. (Subtrajectory cluster — SC(m, �, d))
Given a trajectory T , the subtrajectory cluster problem SC(m, �, d) is the de-
cision problem: does there exist a subtrajectory cluster with these parameters?
We also define the related optimization problems SC(max, �, d), SC(m,max, d),
and SC(m, �,min), which keep two parameters fixed and aim to maximize or
minimize the third.

A variant of this problem is to find a subtrajectory cluster in a given set of
trajectories, as shown in Fig. 1(b). This variant has two further subvariants: for
each trajectory at most one subtrajectory is allowed, or several. By concatenating
the given set of trajectories to one trajectory, any instance of this problem can be
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made into an instance of the subtrajectory cluster problem. For the subvariant
where only one subtrajectory of each trajectory is allowed, this restriction has to
be enforced, as well. This subvariant can be seen as a partial matching problem
of curves. Partial matching problems for two curves using the Fréchet distance
that have been considered are matching a curve to a subcurve of a different
trajectory [1] and matching two curves where several subcurves may contribute
to the matching [5]. In Definition 1 we omitted to define the distance metric and
other distance functions than the Fréchet distance could be used.

The Fréchet distance is a distance measure for continuous shapes such as
curves and surfaces, and is defined using reparameterizations of the shapes. Since
it takes the continuity of the shapes into account it is generally regarded as being
a more appropriate distance measure than the Hausdorff distance for curves. For
polygonal curves, the discrete Fréchet distance is a natural variant of the Fréchet
distance. In this paper we will use the Fréchet distance [1] and discrete Fréchet
distance [8]. For a set of m > 2 curves there is a natural extension due to
Dumitrescu and Rote [7].

Definition 2. For a set of m curves F = {f1, . . . , fm}, fi : [ai, a
′
i] → R2 we

define the Fréchet distance as

δF (F) = inf
α1:[0,1]→[a1,a′

1]
...

αm:[0,1]→[am,a′
m]

max
t∈[0,1]1≤i,j≤m

|fi(α(t)) − fj(β(t))|,

where α1, . . . , αm range over continuous and increasing functions with αi(0) = ai

and αi(1) = a′i, i = 0, . . . ,m.

In this paper we will also consider the discrete Fréchet distance, which is a variant
of the Fréchet distance for polygonal curves. For the discrete Fréchet distance
only distances between vertices are computed. It is defined using couplings of the
vertices of the curves [8]. Consider two polygonal curves P,Q in Rc given by the
sequences of their vertices 〈p1, . . . , pn〉 and 〈q1, . . . , qm〉, respectively. A coupling
C of the vertices of P,Q is a sequence of pairs of vertices C = 〈C1, . . . , Ck〉
with Cr = (pi, qj) for all r = 1, . . . , k and some i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
fulfilling

– C1 = (p1, q1) and Ck = (pn, qm)
– Cr = (pi, qj) ⇒ Cr+1 ∈ {(pi+1, qj), (pi, qj+1), (pi+1, qj+1)} for r=1, . . . , k−1.

Definition 3. Let P,Q be two polygonal curves in Rc. Let | · | denote an un-
derlying norm on Rc. Then the discrete Fréchet distance δdF (f, g) is defined
as

δdF (f, g) = min
coupling C

max
(pi,qj)∈C

|pi − qj |,

where C ranges over all couplings of the vertices of f and g.

The study of the Fréchet distance from a computational point of view was initi-
ated by Alt and Godau [1]. They showed that the Fréchet distance between two
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curves with m and n segments respectively can be computed in O(mn logmn)
time, and the associated decision question can be answered in O(mn) time as-
suming the model of computation can do square roots in constant time. In the
following we will assume that the model of computation can do this for all results
concerning the Fréchet distance. This is not necessary for the discrete Fréchet
distance. The study of the discrete Fréchet distance was started by Eiter and
Mannila [8]. They gave a simple dynamic programming algorithm for comput-
ing the discrete Fréchet distance in O(mn) time. Sometimes, we will use the
term continuous Fréchet distance to contrast the Fréchet distance to the dis-
crete Fréchet distance.

In this paper we will focus on the optimization version of Problem 1 where
the length � is maximized, i.e., the longest subtrajectory cluster SC(m,max, d)
for fixed parameters m and d. The general decision problem SC(m, �, d) is NP-
complete (see full version [4]), so the optimization variants are also NP-hard.
Even more, a (2−φ)-distance approximation for any 0 < φ ≤ 1 of SC(m,max, d)
(and for SC(max, �, d)) is NP-hard, and any distance approximation is 3-SUM
hard. We speak of a distance approximation when we approximate d. For in-
stance, assume an optimal solution of SC(m,max, d) has length �∗; a c-distance
approximation algorithm for this problem would return a cluster CT (m, �∗, cd)
of length at least �∗ and with m subtrajectories of T within Fréchet distance
c ·d from each other. Since a (2−φ)-distance approximation is NP-hard, we will
turn our attention to 2-distance approximation algorithms.

In the following, for an instance of the SC problem we will always use n to
denote the number of vertices in the given trajectory. In the case of SC(max, �, d)
we will denote by m the maximum number of trajectories in a cluster and by
� the length of a cluster, in the case of SC(m,max, d) we will denote by � the
number of vertices of a (reference) curve in the cluster and by m the number of
curves in a cluster.

3 A 2-Distance Approximation Using the Fréchet
Distance

First we briefly outline the free space diagram of two polygonal curves f and
g, which is a geometric data structure introduced by Alt and Godau [1] for
computing the Fréchet distance. Let f be a polygonal curve with n vertices
p1, . . . , pn. We use φf to denote the following natural parameterization of f .
The map φf : [1, n] → Rc maps i ∈ {1, . . . , n} to pi and interpolates linearly
in between vertices, where c is any dimension. The free space diagram of two
polygonal curves f and g, with n and m vertices, respectively, is the set

Fd(f, g) = {(s, t) ∈ [1, n]× [1,m] : |φf (s), φg(t)| ≤ d}

which describes all tuples (s, t) such that the points φf (s) and φg(t) have Euclid-
ean distance at most d. See Fig. 3 for an example of a free space diagram. The
complexity of the free space diagram is O(nm) and it can be constructed in time
O(nm). Alt and Godau [1] showed that the Fréchet distance between f and g is
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less than d if and only if there exists a monotone path in the free space diagram
Fd(f, g) from (0, 0) to (n,m).

For the discrete Fréchet distance the free space diagram consists of the nm
grid points. Each grid point (x, y) is labeled free or not depending on whether
|φf (x) − φg(y)| is less than or equal to the distance d or not. A monotone path
is a sequence of free grid points from (0, 0) to (n,m) where a grid point (x, y)
is followed either by (x + 1, y), (x, y + 1) or (x + 1, y + 1) [8]. Analogous to the
continuous Fréchet distance, it holds that the discrete Fréchet distance is less
than d if and only if there is a monotone path in the free space diagram.

Cluster Curves in the Free Space. In our application, we have just one polygonal
curve: this input trajectory T . Now consider the free space diagram Fd(T, T ) of
two copies of T , and distance value d. Let s, t ∈ [1, n] be two points in time for the
trajectory T , and let ls and lt be the two vertical lines in Fd(T, T ) corresponding
to them. For the discrete Fréchet distance, we assume that s, t ∈ {1, . . . , n}, i.e.,
ls and lt fall on vertices in Fd(T, T ), see Fig. 2. For simplicity we assume that
the x- and y-axis of the diagram goes from 1 to n, i.e., from v1 to vn.

Definition 4. We say that there are m cluster curves between ls and lt in
Fd(T, T ) if and only if there are m non-identical curves starting at ls and ending
at lt such that:
– each curve is monotonically increasing in both coordinates from ls to lt, and
– the y-coordinates of two curves overlap in at most a point.

Figure 2 shows an example of Fd(T, T ), and the corresponding cluster of subtra-
jectories of T .

�s1 �t1

(a) (b)

s1

t1

s2

t2

s3

t3

s1

s2

s3

t1

t2

t3T

Fig. 2. (a) There exists a trajectory cluster with three subtrajectories between s and t
(b) A possible trajectory corresponding to the cluster curves. The subtrajectory s1, t1
is one of the subtrajectories.

We will make use of the two important implications in Lemma 2, which are
necessary for the algorithm in Sect. 3. For this, we use the following lemma of
Alt and Godau [1].
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Lemma 1 (Alt and Godau [1]). Two polygonal curves f and g in the plane,
with n and m vertices respectively, have Fréchet distance at most d, if and only if
there exists a curve in the corresponding free space diagram Fd(f, g) from (0, 0)
to (n,m) that is monotone in both coordinates.

Lemma 2. Let T be trajectory and T ′ the subtrajectory of T that starts at s
and ends at t, where t− s = �. Then the following holds:

– If there exist m cluster curves within the free space diagram Fd(T, T ) between
ls and lt, then there exists a subtrajectory cluster CT (m, �, 2d) containing T ′.

– If there exists a subtrajectory cluster CT (m, �, d) containing T ′, then there
exists a set of m cluster curves within the free space diagram Fd(T, T ) be-
tween ls and lt.

Lemma 2 implies that if there is no subtrajectory cluster CT (m, �, 2d) containing
T ′ then there do not exist m cluster curves between ta and tb. The simplest
variant of the algorithm is using the discrete Fréchet distance. We first present
and analyze this variant in Sect. 3.1 in full detail and then extend it to the
continuous Fréchet distance in Sect. 3.2 (with the details in the full version [4]).

3.1 Discrete Fréchet Distance

In this section we describe and analyze the algorithm for the discrete Fréchet
distance.

Algorithm. Recall that as input we are given a trajectory T with n vertices,
an integer m and a positive real value d. Consider the free space diagram F =
Fd(T, T ) of T . For the discrete Fréchet distance, this consists only of the at
most n2 grid points which lie in free space, i.e., where the distance between the
corresponding two vertices is less than or equal to d. We sweep two vertical lines
in F : ls and lt, with x-coordinates s and t, which represent the start point and
the end point of the reference trajectory, respectively. Initially ls and lt are at
the leftmost position in F . We will sweep ls and lt in discrete steps along the
x-coordinates {1, . . . , n}.

The algorithm proceeds as follows. Move lt to the right to the first position
for which there are less than m cluster curves between ls and lt. Next move ls
to the right until ls equals lt or there are at least m cluster curves between ls
and lt. Then move lt again, etc. This continues until ls reaches the rightmost
position in F . During the sweep we maintain the longest length of a reference
trajectory for which there exist at least m cluster curves between its endpoints.
It is easily seen that the two sweep lines of ls and lt move monotonically from
left to right over n event points. This implies that only O(n) possible pairs of
start and endpoints are considered.

What remains to be done is to build and update a data structure that allows
us to check if there are m monotone curves between ls and lt that overlap in at
most a point along the y-axis. For this, we will store the free space between ls and
lt as directed, labeled graph on the vertices in the free space. When updating lt,
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we add a new column of the free space. When updating ls, we delete the leftmost
column. For checking whether m curves exist between ls and lt, we will search
this graph. We will see that this data structure can be maintained in O(n) time
per step and using O(�n) space where � denotes the maximum number of vertices
of a reference trajectory occurring in a cluster of m curves.

Data structure. We store the free space between ls and lt as a directed, labeled
graph on the vertices in the free space (see Fig. 3). We store a directed edge
from p to p′ if p, p′ lie in the free space of the same cell and p is to the left or
above p′. We label each edge by the smallest x-coordinate reachable by a path
along this edge. This graph can be efficiently computed column-by-column from
left to right, and bottom to top within a column. The directed edges encode the
free space. The edge labels are easy to compute: An edge pointing to a vertex
without outgoing edges is labeled with the x-coordinate of that vertex. An edge
pointing to a vertex p with outgoing edges is labeled by the smallest label of the
outgoing edges of p. Since a vertex has outdegree at most three, an edge label
can be computed in constant time.

Update. We can update this graph in O(n) time per update: When lt is moved
one position to the right, we need to compute the new column of the free space
which has complexity O(n). When ls is moved one position to the right, we
simply delete the currently leftmost column of the free space.

Query. Using our data structure, we can determine whether there are m cluster
curves between ls and lt. We do this by greedily searching for monotone paths
from lt to ls. Let i be the x-coordinate of ls. We start at the topmost vertex on lt
which has an outgoing edge labeled less or equal than i. In each vertex we follow
the topmost edge which again has a label less or equal than i. This ends on a
vertex (i, j) on ls. We continue with the topmost vertex on lt at height at most j
which as before has an outgoing edge labeled less or equal than i. We stop when
we have found m curves, or no more vertices on lt with an outgoing edge labeled
less or equal than i exist. When we find a horizontal path in the free space, i.e.,
a path from (i′, j) on lt to (i, j) on ls, we continue with the topmost vertex on
lt at height at most j − 1 (else we would continue finding the same horizontal
path). Note that the edge labels prevent us from going into dead ends in the
graph.

Since we need to ensure that the reference subtrajectory is part of the output
cluster, must take care that the vertical span [s, t] is not used in any of the
curves. During the query, if the y coordinate of current vertex gets smaller than
t, then we do not increase the number of cluster curves and we skip down to s
and continue searching for cluster curves from the vertex (t, s).

This query takes O(n + m�) time, because the m curves will in total consist
of at most n edges directed downward and m� edges directed to the left (where
we count diagonal edges as either down or left directed). There may not be more
than n edges directed downward since the m curves cannot overlap in more than
a point.
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Fig. 3. Illustrating the associated data structure

Analysis. The description of the algorithm immediately gives the following
lemma. Note that in practice, m� should be of order n. Note that in practice, m�
should be of order n, i.e., the length � is roughly the total length of T divided
by the number of curves in the cluster, that is n/m.

Lemma 3. The data structure of the algorithm of size O(n�) can be maintained
in O(n) time per update such that number-of-cluster-curves queries can be an-
swered in O(n + m�) time.

In total we have the following theorem.

Theorem 1. A 2-distance approximation of the SC(m,max, d) problem can be
computed in O(n2 + nm�) time and O(n�) space using the discrete Fréchet dis-
tancewhere n denotes the number of vertices of the trajectory and � denotes the
maximum number of vertices occurring on a reference trajectory in a cluster of
m curves.

3.2 Fréchet Distance

In this section we extend the algorithm to the continuous Fréchet distance. We
first consider the case where subtrajectories in a cluster start and end at vertices
and then further extend to arbitrary subtrajectories. Note that in our application
it is realistic to assume that the subtrajectories in a cluster start and end at a
vertex since a commuting route most often is between two places where the
entity will stop and spend some time (i.e., work and home), hence generating
data points.

All Subtrajectories Start and End at Vertices. We first consider the con-
tinuous Fréchet distance with the restriction that all subtrajectories start and
end at vertices. In Fd(T, T ) each cell corresponds to two line segments of T and
the free space in one cell is the intersection of the cell with an ellipse, possibly
degenerated to the space between two parallel lines [1]. There are at most eight
intersection points of the boundary of the cell with free space. We call these
intersection points critical points. For each critical point, we put a vertex on it.
Furthermore, we propagate all critical points in the free space of the correspond-
ing row or column, respectively. That is, we propagate critical points on vertical
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cell boundaries horizontally, and critical points on horizontal cell boundaries ver-
tically. In the following, we use R to denote the set of propagated critical points
and vertices of the free space. Using the propagated critical points and convexity
of the free space in one cell we get the following. If there is a monotone path
from v to w for two vertices of v, w of R then there is a monotone polygonal
path from v to w having only vertices from R. By this it suffices to compute
monotone polygonal paths using vertices of R. We can extend the data struc-
ture and algorithm for the discrete Fréchet distance to work with vertices of
R instead of only vertices of the free space. The size of R is O(n3) since there
are a linear number of critical points in each cell. However, in our algorithm we
only store and update the part of the free space between the sweep lines ls and
lt. With this, we will get a space complexity of O(n�2). For the query we are
only interested in monotone paths between critical points on ls and lt, i.e., only
between critical points on vertical cell boundaries.

Reference Subtrajectory Starts and Ends at Vertices. In this section,
we consider the continuous Fréchet distance with the restriction that only the
reference subtrajectory has to start and end at vertices. The main modification
to the algorithm we need is that we need to perform the query on all points and
not only on the vertices of the free space. This does not change the time and
space complexity of the algorithm.

Theorem 2. A 2-distance approximation of the SC(m,max, d) problem can be
computed in O(n2�) time and O(n�2) space using the Fréchet distance in the case
when the all or only the reference subtrajectory must start and end at vertices
of the trajectory where n denotes the number of vertices of the trajectory and �
denotes the maximum number of vertices occurring on a reference trajectory in
a cluster of m curves.

Arbitrary Subtrajectories. We now consider the case where all subtrajec-
tories (including the reference subtrajectory) may start and end at arbitrary
points on the given trajectory. The algorithm requires two major changes: (1)
we add more critical points and event points and (2) we also need to search for
optimal solutions in between event points. The new critical and event points are
points where free space starts or ends within a cell. For the searching in between
event points we need to do computation on the quadratic curves describing the
cell boundaries of a free space cell. To our knowledge, this is the first algorithm
explicitly working on the boundaries of free space cells. A complete description
of the algorithm can be found in the full version [4].

Theorem 3. A 2-distance approximation of the SC(m,max, d) problem can be
computed in time O(n3m2α(n/m)(logn log(n/m)+m)) using O(n�2+nm2α(n/m))
space using the continuous Fréchet distance for arbitrary subtrajectories. In these
bounds, n denotes the size of the given trajectory and � the maximum number
of vertices occurring on a reference trajectory in a cluster of m curves, and we
assume that we can find the local maxima and intersections of algebraic functions
of degree 4 in constant time.
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3.3 Extensions

The algorithms can be modified to handle other settings (see full version [4]), in
particular the cases when

– the input is a set S of trajectories and the aim is to find the longest sub-
trajectory cluster of S, allowing either one or several subtrajectories of each
trajectory in S,

– the number of subtrajectories in a cluster is maximized provided the length
of the cluster is fixed, and

– the weak Fréchet distance is used as a distance measure.

3.4 A Note on the Experiments

To test our ideas we implemented two simplified versions of the algorithm for
the continuous Fréchet distance and tested them on a set of generated trajecto-
ries whose complexity varied from 50 to 25,000 vertices. We measured the time
required to run different experiments as well as the amount of memory each
experiment consumed. The running time increased rapidly with the complexity
of the trajectory (see full version [4]). To test the usefulness of our algorithm we
tested it on a real trajectory. The trajectory was obtained by carrying a GPS for
one month in a 50× 50 km region and it generated 82,160 time-points. Running
the memory efficient algorithm without any optimization options took approxi-
mately 7 hours and used 42 MB of memory. This is not manageable in practice
but there are many simple ideas that can be used to improve the running time.
A simple and effective improvement is to simplify the trajectory [12]. Using a
distance threshold of 10 meters compressed the trajectory to 5,228 time-steps
and is done in about 170ms. With the compressed trajectory the memory effi-
cient algorithm computed the clusters in roughly 2 minutes using 2.65 MB of
memory where the distance threshold d was set to 15 meters.
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Abstract. Let C be a compact and convex set in the plane that contains
the origin in its interior, and let S be a finite set of points in the plane.
The Delaunay graph DGC(S) of S is defined to be the dual of the Voronoi
diagram of S with respect to the convex distance function defined by C.
We prove that DGC(S) is a t-spanner for S, for some constant t that
depends only on the shape of the set C. Thus, for any two points p
and q in S, the graph DGC(S) contains a path between p and q whose
Euclidean length is at most t times the Euclidean distance between p
and q.

1 Introduction

Let S be a finite set of points in the plane and let G be a graph with vertex set
S, in which each edge (p, q) has a weight equal to the Euclidean distance |pq|
between p and q. For a real number t ≥ 1, we say that G is a t-spanner for S,
if for any two points p and q of S, there exists a path in G between p and q
whose Euclidean length is at most t|pq|. The smallest such t is called the stretch
factor of G. The problem of constructing spanners has received much attention;
see Narasimhan and Smid [12] for an extensive overview.

Spanners were introduced in computational geometry by Chew [3,4], who
proved the following two results. First, the L1-Delaunay graph, i.e., the dual of
the Voronoi diagram for the Manhattan metric, is a

√
10-spanner. Second, the

Delaunay graph based on the convex distance function defined by an equilateral
triangle, is a 2-spanner. We remark that in both these results, the stretch factor
is measured in the Euclidean metric. Chew also conjectured that the Delaunay
graph based on the Euclidean metric, is a t-spanner, for some constant t. (If not
all points of S are on a line, and if no four points of S are cocircular, then the
Delaunay graph is the well-known Delaunay triangulation.) This conjecture was
proved by Dobkin et al. [8], who showed that t ≤ π(1+

√
5)/2. The analysis was

improved by Keil and Gutwin [9], who showed that t ≤ 4π
√
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In this paper, we unify these results by showing that the Delaunay graph
based on any convex distance function has bounded stretch factor.

Throughout this paper, we fix a compact and convex set C in the plane. We
assume that the origin is in the interior of C. A homothet of C is obtained by
scaling C with respect to the origin, followed by a translation. Thus, a homothet
of C can be written as

x + λC = {x + λz : z ∈ C},

for some point x in the plane and some real number λ ≥ 0. We call x the center
of the homothet x + λC.

For two points x and y in the plane, we define

dC(x, y) := min{λ ≥ 0 : y ∈ x + λC}.

If x 
= y, then this definition is equivalent to the following: Consider the translate
x + C and the ray emanating from x that contains y. Let y′ be the (unique)
intersection between this ray and the boundary of x + C. Then

dC(x, y) = |xy|/|xy′|.

The function dC is called the convex distance function associated with C. Clearly,
we have dC(x, x) = 0 and dC(x, y) > 0 for all points x and y with x 
= y.
Chew and Drysdale [5] showed that the triangle inequality dC(x, z) ≤ dC(x, y)+
dC(y, z) holds. In general, the function dC is not symmetric, i.e., dC(x, y) is
not necessarily equal to dC(y, x). If C is symmetric with respect to the origin,
however, then dC is symmetric.

Let S be a finite set of points in the plane. For each point p in S, we define

V ′
C(p) := {x ∈ R2 : for all q ∈ S, dC(x, p) ≤ dC(x, q)}.

If C is not strictly convex, then the set V ′
C(p) may consist of a closed region of

positive area with an infinite ray attached to it. For example, in figure 1, the set
V ′

C(a) consists of the set of all points that are on or to the left of the leftmost
zig-zag line, together with the infinite horizontal ray that is at the same height as
the point a. Also, the intersection of two regions V ′

C(p) and V ′
C(q), where p and

q are distinct points of S, may have a positive area. As a result, the collection
V ′

C(p), where p ranges over all points of S, does not necessarily give a subdivision
of the plane in which the interior of each cell is associated with a unique point
of S. In order to obtain such a subdivision, we follow the approach of Klein and
Wood [10] (see also Ma [11]): first, infinite rays attached to regions of positive
area are not considered to be part of the region. Second, a point x in R2 that
is in the interior of more than one region V ′

C(p) is assigned to the region of the
lexicographically smallest point p in S for which x ∈ V ′

C(p).
To formally define Voronoi cells, let ≺ denote the lexicographical ordering on

the set of all points in the plane. Let p1 ≺ p2 ≺ . . . ≺ pn be the points of S,
sorted according to this order. Then the Voronoi cells VC(pi) of the points of S
are defined as VC(p1) := cl(int(V ′

C(p1))) and, for 1 < i ≤ n,
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VC(pi) := cl

⎛⎝int

⎛⎝V ′
C(pi) \

⎛⎝⋃
j<i

VC(pj)

⎞⎠⎞⎠⎞⎠ ,

where cl(X) and int(X) denote the closure and the interior of the set X ⊆ R2,
respectively.

Thus, in figure 1, the Voronoi cell VC(a) consists only of the set of all points
that are on or to the left of the leftmost zig-zag line; the infinite horizontal ray
that is at the same height as the point a is not part of this cell.

The Voronoi diagram VDC(S) of S with respect to C is defined to be the
collection of Voronoi cells VC(p), where p ranges over all points of S. An example
is given in figure 1.

As for the Euclidean case, the Voronoi diagram VDC(S) induces Voronoi
cells, Voronoi edges, and Voronoi vertices. Each point in the plane is either in
the interior of a unique Voronoi cell, in the relative interior of a unique Voronoi
edge, or a unique Voronoi vertex. Each Voronoi edge e belongs only to the two
Voronoi cells that contain e on their boundaries. Observe that Voronoi cells are
closed.

The Delaunay graph is defined to be the dual of the Voronoi diagram:

Definition 1. Let S be a finite set of points in the plane. The Delaunay graph
DGC(S) of S with respect to C is defined to be the dual of the Voronoi diagram
VDC(S). That is, the vertex set of DGC(S) is S and two distinct vertices p and
q are connected by an edge in DGC(S) if and only if the Voronoi cells VC(p) and
VC(q) share a Voronoi edge.

For example, the Delaunay graph DGC(S) for the point set in figure 1 consists
of the five edges (a, b), (a, d), (b, c), (b, d), and (d, e).

We consider the Delaunay graph DGC(S) to be a geometric graph, which
means that each edge (p, q) is embedded as the closed line segment with end-
points p and q.

a

b

c

d

e

Fig. 1. The Voronoi diagram VDC(S) for the set S = {a, b, c, d, e}. The set C is the
square as indicated by the dotted figure; the origin is at the center of C.
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Fig. 2. The two parameters associated with C

Before we can state the main result of this paper, we introduce two parameters
whose values depend on the shape of the set C. Let x and y be two distinct points
on the boundary ∂C of C. These points partition ∂C into two chains. For each
of these chains, there is an isosceles triangle with base xy and whose third vertex
is on the chain. Denote the base angles of these two triangles by αxy and α′

xy;
see figure 2 (left). We define

αC := min{max(αxy, α
′
xy) : x, y ∈ ∂C, x 
= y}.

Consider again two distinct points x and y on ∂C, but now assume that x, y,
and the origin are collinear. As before, x and y partition ∂C into two chains. Let
�xy and �′xy denote the lengths of these chains; see figure 2 (right). We define

κC,0 := max
{

max(�xy, �
′
xy)

|xy| : x, y ∈ ∂C, x 
= y, and x, y, and 0 are collinear
}
.

Clearly, the convex distance function dC and, therefore, the Voronoi diagram
VDC(S), depends on the location of the origin in the interior of C. Surprisingly,
the Delaunay graph DGC(S) does not depend on this location; see Ma [11,
Section 2.1.6]. We define

κC := min {κC,0 : 0 is in the interior of C} .

In this paper, we will prove the following result:

Theorem 1. Let C be a compact and convex set in the plane with a non-empty
interior, and let S be a finite set of points in the plane. The stretch factor of the
Delaunay graph DGC(S) is less than or equal to

tC :=

⎧⎨⎩2κC ·max
(

3
sin(αC/2) , κC

)
if DGC(S) is a triangulation,

2κ2
C ·max

(
3

sin(αC/2) , κC

)
otherwise.

Thus, for any two points p and q in S, the graph DGC(S) contains a path be-
tween p and q whose Euclidean length is at most tC times the Euclidean distance
between p and q.
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We emphasize that we do not make any “general position” assumption; our proof
of Theorem 1 is valid for any finite set of points in the plane.

Throughout the rest of this paper, we assume that the origin is chosen in the
interior of C such that κC = κC,0.

The rest of this paper is organized as follows. In Section 2, we prove some basic
properties of the Delaunay graph which are needed in the proof of Theorem 1.
Section 3 contains a proof of Theorem 1. This proof is obtained by showing
that the Delaunay graph satisfies the “diamond property” and a variant of the
“good polygon property” of Das and Joseph [6]. The proof of the latter property
is obtained by generalizing the analysis of Dobkin et al. [8] for the lengths of
so-called one-sided paths.

Due to the lack of space, some proofs are omitted or are sketched.

2 Some Properties of the Delaunay Graph

Recall that in the Euclidean Delaunay graph, if two points p and q of S are
connected by an edge, then there exists a disk having p and q on its boundary
that does not contain any point of S in its interior. The next lemma generalizes
this result to the Delaunay graph DGC(S).

Lemma 1. Let p and q be two points of S and assume that (p, q) is an edge in
the Delaunay graph DGC(S). Then, the following are true.

1. The line segment between p and q does not contain any point of S \ {p, q}.
2. For every point x in VC(p) ∩ VC(q), there exists a real λ > 0 such that

(a) the homothet x + λC contains p and q on its boundary, and
(b) the interior of x + λC does not contain any point of S.

Due to space constraints, the proof is omitted.
As can be seen in figure 1, Voronoi cells are, in general, not convex. They are,

however, star-shaped:

Lemma 2. Let p be a point of S and let x be a point in the Voronoi cell VC(p).
Then the line segment xp is completely contained in VC(p).

Due to space constraints, the proof is omitted.
It is well known that the Euclidean Delaunay graph is a plane graph; see, for

example, de Berg et al. [7, page 189]. The following lemma states that this is
true for the Delaunay graph DGC(S) as well.

Lemma 3. The Delaunay graph DGC(S) is a plane graph.

Even though this fact seems to be well known, we have not been able to find a
proof in the literature. The full proof is given in the full version of this paper.
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3 The Stretch Factor of Delaunay Graphs

In this section, we will prove Theorem 1. First, we show that the Delaunay
graph DGC(S) satisfies the diamond property and a variant of the good polygon
property of Das and Joseph [6]. According to the results of Das and Joseph, this
immediately implies that the stretch factor of DGC(S) is bounded. In fact, we
will obtain an upper bound on the stretch factor which is better than the one
that is implied by Das and Joseph’s result.

3.1 The Diamond Property

Let G be a plane graph with vertex set S and let α be a real number with
0 < α < π/2. For any edge e of G, let ∆1 and ∆2 be the two isosceles triangles
with base e and base angle α; see figure 3. We say that e satisfies the α-diamond
property, if at least one of the triangles ∆1 and ∆2 does not contain any point of
S in its interior. The graph G is said to satisfy the α-diamond property, if every
edge e of G satisfies this property.

Lemma 4. Consider the value αC that was defined in Section 1. The Delaunay
graph DGC(S) satisfies the αC-diamond property.

Proof. Let (p, q) be an arbitrary edge of DGC(S) and let x be any point in the
relative interior of VC(p)∩VC(q). By Lemma 1, there exists a real number λ > 0
such that p and q are on the boundary of the homothet x+λC and no point of S
is in the interior of x+λC. The points p and q partition ∂(x+λC) into two chains.
For each of these chains, there is an isosceles triangle with base pq and whose
third vertex is on the chain. We denote the base angles of these two triangles
by β and γ; see figure 4. We may assume without loss of generality that β ≥ γ.
Let a denote the third vertex of the triangle with base angle β. If we translate
x + λC so that x coincides with the origin and scale the translated homothet
by a factor of 1/λ, then we obtain the set C. This translation and scaling does

∆1

∆2

e

α

α
α

α
G

Fig. 3. The α-diamond property
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p

q β

βγ

γ

a

x + λC

Fig. 4. Illustrating the proof of Lemma 4

not change the angles β and γ. Thus, using the notation of Section 1 (see also
figure 2), we have {β, γ} = {αpq, α

′
pq}. The definition of αC then implies that

αC ≤ max(αpq, α
′
pq) = β.

Let ∆ be the isosceles triangle with base pq and base angle αC such that a
and the third vertex of ∆ are on the same side of pq. Then ∆ is contained in
the triangle with vertices p, q, and a. Since the latter triangle is contained in
x + λC, it does not contain any point of S in its interior. Thus, ∆ does not
contain any point of S in its interior. This proves that the edge (p, q) satisfies
the αC -diamond property. �


3.2 The Visible-Pair Spanner Property

For a real number κ ≥ 1, we say that the plane graph G satisfies the strong
visible-pair κ-spanner property, if the following is true: For every face f of G,
and for every two vertices p and q on the boundary of f , such that the open line
segment joining p and q is completely in the interior of f , the graph G contains
a path between p and q having length at most κ|pq|. If for every face f of G and
for every two vertices p and q on the boundary of f , such that the line segment
pq does not intersect the exterior of f , the graph G contains a path between p
and q having length at most κ|pq|, then we say that G satisfies the visible-pair
κ-spanner property. Observe that the former property implies the latter one.
Also, observe that these properties are variants of the κ-good polygon property
of Das and Joseph [6]: The κ-good polygon property requires that G contains a
path between p and q that is along the boundary of f and whose length is at
most κ|pq|; in the (strong) visible-pair spanner property, the path is not required
to be along the boundary of f .

In this subsection, we will prove that the Delaunay graph DGC(S) satisfies
the visible-pair κC -spanner property, where κC is as defined in Section 1. This
claim will be proved by generalizing results of Dobkin et al. [8] on so-called
one-sided paths.

Let p and q be two distinct points of S and assume that (p, q) is not an edge
of the Delaunay graph DGC(S). Consider the Voronoi diagram VDC(S). We
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consider the sequence of points in S whose Voronoi cells are visited when the
line segment pq is traversed from p to q. If pq does not contain any Voronoi
vertex, then this sequence forms a path in DGC(S) between p and q. Since, in
general, Voronoi cells are not convex, it may happen that this path contains
duplicates. In order to avoid this, we define the sequence in the following way.

In the rest of this section, we will refer to the line through p and q as the
X-axis, and we will say that p is to the left of q. This implies a left-to-right
order on the X-axis, the notion of a point being above or below the X-axis, as
well as the notions horizontal and vertical. (Thus, conceptually, we rotate and
translate all points of S , the set C, the Voronoi diagram VDC(S), and the
DGC(S), such that p and q are on a horizontal line and p is to the left of q.
Observe that VDC(S) is still defined based on the lexicographical order of the
points of S before this rotation and translation.) In the following, we consider
the (horizontal) line segment pq. If this segment contains a Voronoi vertex, then
we imagine moving pq vertically upwards by an infinitesimal amount. Thus, we
may assume that pq does not contain any Voronoi vertex of the (rotated and
translated) Voronoi diagram VDC(S).

The first point in the sequence is p0 := p. We define x1 ∈ R2 to be the point
on the line segment pq such that x1 ∈ VC(p0) and x1 is closest to q.

Let i ≥ 1 and assume that the points p0, p1, . . . , pi−1 of S and the points
x1, . . . , xi in R2 have already been defined, where xi is the point on the line
segment pq such that xi ∈ VC(pi−1) and xi is closest to q. If pi−1 = q, then the
construction is completed. Otherwise, observe that xi is in the relative interior
of a Voronoi edge. We define pi to be the point of S \ {pi−1} whose Voronoi cell
contains xi on its boundary, and define xi+1 to be the point on the line segment
pq such that xi+1 ∈ VC(pi) and xi+1 is closest to q.

Let p = p0, p1, . . . , pk = q be the sequence of points in S obtained in this
way. By construction, these k+1 points are pairwise distinct and for each i with
1 ≤ i ≤ k, the Voronoi cells VC(pi−1) and VC(pi) share an edge. Therefore, by
definition, (pi−1, pi) is an edge in DGC(S). Thus, p = p0, p1, . . . , pk = q defines
a path in DGC(S) between p and q. We call this path the direct path between p
and q. If all points p1, p2, . . . , pk−1 are strictly on one side of the line through p
and q, then we say that the direct path is one-sided.

We will show in Lemma 6 that the length of a one-sided path is at most
κC |pq|. The proof of this lemma uses a geometric property which we prove first.

Let C′ be a homothet of C whose center is on the X-axis, and let x and y be
two points on the boundary of C′ that are on or above the X-axis. The points
x and y partition the boundary of C′ into two chains. One of these chains is
completely on or above the X-axis; we denote this chain by arc(x, y;C′). The
length of this chain is denoted by |arc(x, y;C′)|.

For two points x and y on the X-axis, we write x <X y if x is strictly to the
left of y, and we write x ≤X y if x = y or x <X y.

We now state the geometric property, which is illustrated in figure 5. Recall
the value κC that was defined in Section 1.
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Fig. 5. Illustrating the proof of Lemma 5

Lemma 5. Let C1 = y1 + λ1C and C2 = y2 + λ2C be two homothets of C
whose centers y1 and y2 are on the X-axis. Assume that λ1 > 0, λ2 > 0, and
y1 <X y2. For i = 1, 2, let �i and ri be the leftmost and rightmost points of Ci

on the X-axis, respectively. Assume that r1 ≤X r2 and �1 ≤X �2 <X r1. Let x be
a point that is on the boundaries of both C1 and C2 and on or above the X-axis.
Let L1 = |arc(x, r1;C1)| and L2 = |arc(x, r2;C2)|. Then

L2 ≤ L1 + κC |r1r2|.

Proof. We define L3 = |arc(�2, x;C2)|. Let C′ be the homothet of C whose center
is on the X-axis such that the intersection between C′ and the X-axis is equal
to the line segment �2r1, and let L′ = |arc(�2, r1;C′)|; see Fig. 5. Observe that,
for λ := |�2r1|/|�2r2|, C′ is obtained from C2 by a scaling by a factor of λ. Thus,
since |arc(�2, r2;C2)| = L2 + L3, we have L′ = λ(L2 + L3).

Let C′′ be the homothet of C whose center is on the X-axis such that the
intersection between C′′ and the X-axis is equal to the line segment r1r2, and
let L′′ = |arc(r1, r2;C′′)|. Since C′′ is obtained from C2 by a scaling by a factor
of 1− λ, we have L′′ = (1− λ)(L2 + L3).

Thus, we have L′+L′′ = L2+L3. By convexity, we have C′ ⊆ C1∩C2. Then it
follows, again from convexity (see Benson [1, page 42]), that L′ ≤ L1 +L3. Thus,
we have L2 + L3 = L′ + L′′ ≤ L1 + L3 + L′′, which implies that L2 ≤ L1 + L′′.
Since, by the definition of κC , L′′ ≤ κC |r1r2|, the proof is complete. �


We are now ready to prove an upper bound on the length of a one-sided path.

Lemma 6. If the direct path between p and q is one-sided, then its length is at
most κC |pq|.

Due to space constraints, we only give a proof sketch.

Proof (Sketch). As above, we assume that p and q are on the X-axis and that p
is to the left of q. Consider the direct path p = p0, p1, . . . , pk = q in DGC(S) and
the sequence x1, x2, . . . , xk, as defined above. Since the direct path is one-sided,
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we may assume without loss of generality that the points p1, p2, . . . , pk−1 are
strictly above the X-axis.

Recall that, for each i with 1 ≤ i ≤ k, xi is in the relative interior of VC(pi−1)∩
VC(pi) and xi is on the line segment pq. Therefore, by Lemma 1, if we define λi :=
dC(xi, pi−1) (which is equal to dC(xi, pi)), then the homothet Ci := xi + λiC
contains pi−1 and pi on its boundary and no point of S is in its interior.

Remark that the length of the upper boundary of the union of the Ci is an
upper bound on the length of the one-sided path. If there are k edges, then the
upper boundary is composed of portions of boundaries of k homothets. Now we
proceed by induction on the number of edges (and thus of homothets):

For the base case, i.e., when there is one edge, the path is bounded by the
upper boundary of a single homothet, and thus the fact that the length of the
path between p and q is at most κC |pq| follows from the definition of κC .

Assume it is true for all paths up to length k. By Lemma 5, a case analysis
shows that when we add one more edge to the path, its length is not increasing
by more than κC times the length of the projection of the added edge on the
X-axis. This implies that the whole path has length less than κC |pq|. �


We are now ready to prove that the Delaunay graph satisfies the visible-pair
spanner property:

Lemma 7. The Delaunay graph DGC(S) satisfies the visible-pair κC-spanner
property.

Proof. Recall from Lemma 3, that the graph DGC(S) is plane. It suffices to
prove that DGC(S) satisfies the strong visible-pair κC -spanner property. Let f
be a face of G and let p and q be two vertices on f such that the open line
segment between p and q is contained in the interior of f . We have to show that
there is a path in DGC(S) between p and q whose length is at most κC |pq|.

As before, we assume that p and q are on the X-axis and that p is to the
left of q. Consider the direct path p = p0, p1, . . . , pk = q in DGC(S) and the
sequence x1, x2, . . . , xk, as defined in the beginning of this section. We will show
that the direct path is one-sided. The lemma then follows from Lemma 6.

Since the open line segment between p and q is in the interior of f , none of
the points p1, . . . , pk−1 is on the closed line segment pq. Assume that for some
i with 1 ≤ i < k, pi is on the X-axis. Then pi is either strictly to the left of p
or strictly to the right of q. We may assume without loss of generality that pi is
strictly to the right of q. Consider the point xi and the homothet Ci = xi +λiC
as in the proof of Lemma 6. Since xi is on pq and in the interior of Ci, and since
pi is on the boundary of Ci, it follows from convexity that q is in the interior
of Ci, which is a contradiction. Thus we have shown that none of the points
p1, . . . , pk−1 is on the X-axis.

Assume that the direct path is not one-sided. Then there is an edge (pi−1, pi)
on this path such that one of pi−1 and pi is strictly below the X-axis and the
other point is strictly above the X-axis. Let z be the intersection between pi−1pi

and the X-axis. By assumption, z is not on the open line segment joining p and
q, and by Lemma 1, z 
= p and z 
= q. Thus, z is either strictly to the left of
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p or strictly to the right of q. We may assume without loss of generality that
z is strictly to the right of q. Consider again the point xi and the homothet
Ci = xi + λiC as in the proof of Lemma 6. This homothet contains the points
xi, pi−1 and pi. Thus, by convexity, Ci contains the triangle with vertices xi,
pi−1, and pi. Since q is in the interior of this triangle, it follows that q is in the
interior of Ci, which is a contradiction. �


3.3 The Proof of Theorem 1

Das and Joseph [6] have shown that any plane graph satisfying the diamond
property and the good polygon property has a bounded stretch factor. The
analysis of the stretch factor was slightly improved by Bose et al. [2]. A close
inspection of the proof in [2] shows that the following holds: Let G be a geometric
graph with the following four properties:

1. G is plane.
2. G satisfies the α-diamond property.
3. The stretch factor of any one-sided path in G is at most κ.
4. G satisfies the visible-pair κ′-spanner property.

Then, G is a t-spanner for

t = 2κκ′ ·max
(

3
sin(α/2)

, κ

)
.

We have shown that the Delaunay graph DGC(S) satisfies all these properties:
By Lemma 3, DGC(S) is plane. By Lemma 4, DGC(S) satisfies the αC -diamond
property. By Lemma 6, the stretch factor of any one-sided path in DGC(S) is at
most κC . By Lemma 7, DGC(S) satisfies the visible-pair κC-spanner property.
If DGC(S) is a triangulation, then obviously, DGC(S) satisfies the visible-pair
1-spanner property. Therefore, we have completed the proof of Theorem 1.

4 Concluding Remarks

We have considered the Delaunay graph DGC(S), where C is a compact and
convex set with a non-empty interior and S is a finite set of points in the plane.
We have shown that the (Euclidean) stretch factor of DGC(S) is bounded from
above by a function of two parameters αC and κC that are determined only by
the shape of C. Roughly speaking, these two parameters give a measure of the
“fatness” of the set C.

Our analysis provides the first generic bound valid for any compact and convex
set C. In all previous works, only special examples of such sets C were considered.
Furthermore, our approach does not make any “general position” assumption
about the point set S.

Note that for the Euclidean Delaunay triangulation, we derive an upper bound
on the stretch factor of ≈ 24.6, which is worse than the currently best known
upper bound (4π

√
3/9 ≈ 2.42 as proved by Keil and Gutwin [9]). We leave

open the problem of improving our upper bound. In particular, is it possible to
generalize the techniques of Dobkin et al. [8] and Keil and Gutwin [9]?
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Abstract. In this paper we study the problem of finding a set of k
directions for a given simple polygon P , such that for each point p ∈ P
there is at least one direction in which the line through p intersects the
polygon only once. For k = 1, this is the classical problem of finding
directions in which the polygon is monotone, and all such directions can
be found in linear time for a simple n-gon. For k > 1, this problem
becomes much harder; we give an O(n5 log2 n)-time algorithm for k = 2,
and O(n3k+2)-time algorithm for k ≥ 3. These results are the first on
the generalization of the monotonicity problem.

1 Introduction

A polygon P is said to be monotone in a direction α if every line in direction
α intersects P in at most one connected component. Determining if a given
polygon is monotone is a well-studied problem. Preparata and Supowit [7] pre-
sented a linear time algorithm to find all directions in which a given polygon
is monotone. Rappaport and Rosenbloom [8] gave a linear time algorithm to
determine whether the boundary of a simple polygon can be decomposed into
two monotone chains.

In this paper we consider a generalization of the monotonicity problem: given
a simple polygon P , find a set D of k directions such that each point p ∈ P is
covered by at least one direction of D, in the sense that the line through p in this
direction intersects P in one connected component. A simple polygon having
such a set D of k directions is called k-monotone for D.

Only few generalization of the monotonicity has been known so far. Bose
and Kreveld [1][2] studied rotational plane sweep on a simple polygon with the
restriction that the sweep line intersects the polygon in at most one connected
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component. Monotonicity of three dimensional polyhedron was introduced by
Toussaint [9], and studied by Ha, Yoo and Hahn [4]. Up to our best knowledge,
our results are the first on the generalized k-monotonicity problem for the simple
polygon.

Our results. Our results are summarized as follows:

Theorem 1. Given a direction α and a simple polygon P with n vertices, we
can test in O(n2 log2 n) time if there is a direction β such that P is 2-monotone
for {α, β}.

Theorem 2. Given a simple polygon P with n vertices, we can find in
O(n5 log2 n) time all pairs of two directions for which P is 2-monotone. If no
such pair is found, then P is not 2-monotone.

Theorem 3. Given a simple polygon P with n vertices and a fixed number
k ≥ 3, we can find in O(n3k+2) time all sets of k directions for which P is
k-monotone. If no such set is found, then P is not k-monotone.

The remainder of this paper is organized as follows: We first consider the case
k = 2 in Section 3. In Section 3.1 and Section 3.2, we give algorithms proving
Theorems 1 and 2, respectively. We then consider the general case k ≥ 3 and
give an algorithm for Theorem 3 in Section 4.

2 Preliminaries

Throughout the paper, P = (v1, . . . , vn) is a simple polygon with n vertices
v1, . . . , vn ordered counterclockwise. We denote by ∂P the boundary of the poly-
gon P . Without loss of generality, we assume that the k directions lie in the range
[0, π).

There are three different notations of a line: we use �(p, q) to denote the line
through two points p and q, �(e) to denote the line containing an edge or a
segment e, and �γ(p) to denote the line through p in direction γ. We use pq to
denote the line segment connecting two points p and q. Note that a line defines
a direction (or an angle) in the angle range [0, π), so we will identify the line
with its direction. Similarly, an edge or a segment in P will be identified with
their directions in the range [0, π). A direction γ is said to cover a point p in P
if �γ(p) intersects P in one connected component.

Before proving the results, we first show that the candidate directions for
which a polygon is k-monotone are not necessarily directions defined by edges or
pairs of vertices. Consider a polygon with three reflex vertices u, u′ and v as in
Figure 1(a). To cover the points in the neighborhood of u, we must set the first
direction α to be between the directions of two edges incident to u. Indeed, any α
in the range covers the whole polygon, except the points in the gray region lying
below �α(v), as shown in Figure 1. If there is a second direction to cover this gray
region, then the polygon is 2-monotone. Take α in the middle of directions of two
edges incident to u, and define β to be the direction defined by u and the leftmost
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Fig. 1. There is only one pair of directions for which the polygon is 2-monotone. These
directions are not defined by edges or pairs of vertices.

intersection of �α(v) with the polygon boundary. Set the third reflex vertex u′

to lie on the line in direction β that passes through the rightmost intersection of
�α(v) with the polygon boundary. Then it is not difficult to see that the polygon
is 2-monotone for {α, β} and that it is the only pair of directions for which the
polygon is 2-monotone; for any other α, any direction β cannot cover all points
in the interior of the polygon. Clearly, these directions are not defined by any
edges or pairs of vertices.

3 Monotonicity for Two Directions

Given a direction α, let Pα be the set of points p ∈ P such that �α(p) ∩ P is
one connected component. In other words, Pα is the set of all the points in P
that are covered by α. Then P \ Pα is a collection of strips whose boundaries
are parallel to α. We call the closure of such a strip an α-bad strip. If two α-bad
strips share a vertex, we consider their union as one α-bad strip. The boundary
of an α-bad strip consists of at most two sides which are parallel to α, and at
most two polygonal chains from ∂P which connect endpoints of two sides. Then
P is partitioned into several strips parallel to α, which are α-bad and not α-bad
strips appearing in alternating order along y-axis, as illustrated in Figure 2. The
polygon in Figure 2 has five parallel strips, two of which are α-bad strips S and
S′; the strip S has two sides parallel to α, one of which passes through u. Its left
chain is the portion of ∂P between the left endpoints of the two sides.

If P is 2-monotone for α and some other direction β, every point p in α-
bad strips must be covered by β, i.e., �β(p) must intersect P in one connected
component. Thus we examine first a way of finding a direction β for given α
such that every α-bad strip of P is covered by β, and then extend it to find two
directions {α, β} for which P is 2-monotone.
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Fig. 2. For the horizontal direction α, the shaded regions in P are α-bad strips

3.1 Finding a Direction β for a Fixed Direction α

This section is devoted to the proof of Theorem 1: for given α, test in O(n2 log2 n)
time if there is a direction β such that P is 2-monotone for {α, β}.

We first compute the α-bad strips by plane sweep in O(n log n) time. The
second direction must cover all points in the α-bad strips. We say a direction β
is forbidden if there is a point p in an α-bad strip such that �β(p) intersects P in
more than one connected component. So for every point p in an α-bad strip, we
can define the set of angle intervals of the forbidden directions β such that �β(p)
intersects P in more than one connected component. From this, we can solve
the problem by computing the union of the forbidden intervals over all points in
the α-bad strips and checking if the union is the whole angle space. If the union
is the whole angle space, there is no valid second direction.

In the sequel, we will define an angle interval fα(S, v) of forbidden directions
for any pair of an α-bad strip S and a reflex vertex v of P . In Lemma 4 we will
show that the union of fα(S, v) for all pairs (S, v) equals to the union of fα(p)
for all points p in the α-bad strips. Without loss of generality, we assume that α
is the horizontal direction.

Forbidden intervals. We define the forbidden interval fα(S, v) for a pair (S, v)
where S is an α-bad strip and v is a reflex vertex of P .

Let e1 and e2 be the edges incident to v, where e1 appears right before e2
in counterclockwise order. Two extensions �(e1) and �(e2) partition the region
around v into four wedges as shown in Figure 3(a); the one containing the out-
side of P is denoted by W4(v), and by W2(v) its diagonally faced wedge. The
remaining two wedges are denoted by W1(v) and W3(v), where W1(v), W2(v),
W3(v), W4(v) are ordered in counterclockwise. The union of two wedges W1(v)
and W3(v) forms a double wedge W13(v). Depending on the geometric relation
between the wedges and S, we define the following three types of forbidden
intervals.

Type A: This is the case that v ∈ S. We set fα(S, v) to be the (open) angle
interval of W13(v). Any direction β ∈ fα(S, v) is forbidden because we can
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translate the line �β(v) slightly so that it intersects both edges e1 and e2
incident to v and still passes through some point in S, which means that
the line in direction β passing through that point in S intersects P in two
or more components. For instance, three vertices u, s, t in Figure 2 define
forbidden intervals of type A for the same α-bad strip S.

e1

e2

v

S

e1

e2

v

S

v′

(a) (b) (c)

e1 v

S

v′

W2(v)

W1(v)

W4(v)

W3(v) R(S, v)

� �

Fig. 3. Forbidden interval of Type B and Type C for a pair (S, v)

For the other two types, let v ∈ P \S. By the definition of α-bad strip, any point
of P having y-coordinate between the minimum and maximum y-coordinates of
points in S must be contained in S. Thus the y-coordinate of v must be either
higher or lower than that of any point in S. Without loss of generality, assume
that v is above S.

Type B: This is the case that S ∩W2(v) = ∅ as in Figure 3(a) and 3(b). Let �
be the line through v and tangent to S such that e1 and S lie in the same
side of �. Let v′ be the first intersection of the ray from v with ∂P in the
upward direction of �. If the segment vv′ is inside P , then it cuts P into
two pieces, and we denote the one not containing S by R(S, v). No point
of R(S, v) is visible from any point in S, i.e., for any pair of points p ∈ S
and q ∈ R(S, v), �(p, q) intersects P in more than one connected components
and thus the direction is forbidden. So we take the double wedge containing
R(S, v) and S whose boundaries are two (crossing) tangent lines between
them, as in Figure 3(b), and define fα(S, v) as the (open) angle interval of
this double wedge.

Type C: This is the case that S ∩W2(v) 
= ∅ as in Figure 3(c). Define fα(S, v)
as the (open) angle interval of the directions β such that �β(v) is in the
double wedge W13(v) and intersects S. We note that if �(e1) and �(e2) both
interest S, then the forbidden interval consists of two sub-intervals. We note
that if S is completely inside W2(v), then there is no forbidden interval, so
we set fα(S, v) = ∅. As in Type A, using the translation argument, we can
show that every direction in fα(S, v) is forbidden.

Lemma 4. Given α, let Fα be the union of fα(S, v) for all pairs of α-bad strips
S and reflex vertices v of P . Then Fα is the union of all forbidden second
directions.
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Proof. We have seen that any direction in Fα is forbidden in the type definition,
so what remains is to show that any forbidden direction for the points in α-bad
strips is contained in Fα. Let β be a forbidden second direction. Then there is
a point p in an α-bad strip S such that the line �β(p) intersects P in more than
one segment. Among the intersection points between �β(p) and ∂P , let q be the
closest point from p that are not visible from p, and let p′ be the closest point
of ∂P from p lying on pq. (Note that p′ and p may be identical.)

We now consider the geodesic shortest path from p to q in P . Since q is not
visible from p, it consists of more than one segment and all its vertices, except p′

and q, are reflex. Let v be a reflex vertex in the path such that �β(v) is tangent
to the path. Without loss of generality, assume that p and q lie in the left side
of �β(v). We have two cases depending on whether q is in S or not.

Case 1: q is in S. We claim that the reflex vertex v must be in S; otherwise,
v were strictly above (resp., below) the upper (resp., lower) side of S and a
horizontal line slightly above (resp., below) the side would intersect P in more
than one connected component, which contradicts the maximality of the α-bad
strip S. Hence this pair (S, v) defines the forbidden interval fα(S, v) of Type A,
being the angle interval of W13(v). Since the edges incident to v are both on the
same side of �β(v), β is contained in W13(v) and thus in fα(S, v).

Case 2: q is in P \ S. Let e1 and e2 be two edges incident to v, where they
appear in counterclockwise order. If �β(v) does not intersects S, then S lies com-
pletely in the left side of �β(v) and R(S, v) is defined. Since we defined q as the
closest invisible point from p among the points in �β(p) ∩ ∂P , one portion of
∂P between p′ and q is completely enclosed by the segment pq and the geodesic
path from p to q. Note that v lies between p′ and q along that portion, implying
that q lies in R(S, v). So the direction of pq, β, is contained in fα(S, v) of Type
B. Now consider the case that �β(v) intersects S. Then the line �β(v) separates
p from W2(v), and β is included in an angle interval fα(S, v) either of Type C
or of Type B, depending on whether W2(v) intersects S or not. This completes
the proof of Lemma 4.

Computing Fα. We now describe how to compute Fα. To answer the visibility
queries quickly, we preprocess P in O(n log n) time so that ray shooting queries
can be answered in O(log n) time [5]. In addition, we construct a data structure
on the vertices v1, . . . , vn of P in O(n log n) time such that for each pair (i, j)
with i < j, the convex hull of the vertices {vi, vi+1 . . . , vj} can be (implicitly)
constructed in O(log2 n) time [6].

We first compute all the α-bad strips S of P and their convex hulls CH(S), by
the plane sweep. This takesO(n log n) time since the total complexity of the strips
is linear. Next, we compute fα(S, v) for each pair of an α-bad strip S and a reflex
vertex v of P as follows: The type of fα(S, v) can be determined in O(log n) time,
by checking if v is in S and then if the extension of the incident edges of v intersects
S. Depending on the type of fα(S, v), we use different methods as follows:

Type A: For this type, fα(S, v) is the angle interval of W13(v) and thus can be
computed in O(1) time.
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Type B: For this type, we need to compute R(S, v) and the two tangent lines
between R(S, v) and S, as in Figure 3(b). To do this, we first compute two
tangent lines from v to S (in fact, from v to the convex hull of S) in O(log n)
time. To determine the cutting segment vv′ that defines R(S, v), we perform
a ray shooting query from v along the tangent line (which has S and the
incoming edge of v in the same side) in O(log n) time. If v′ is a point on
the edge (vi, vi+1) and v is equal to vj for i < j, we determine the convex
hull CH(R(S, v)) of {vi+1, . . . , vj} ∪ {v′} in O(log2 n) time, by inserting v′

into the pre-computed convex hull of {vi+1, . . . , vj}. We then compute the
two tangents between CH(R(S, v)) and CH(S) in O(log n) time by binary
searching.

Type C: For this type, we only need to compute the tangents from v to CH(S)
in O(log n) time by binary searching.

For each pair (S, v), we compute fα(S, v) in O(log2 n) time, so computing all such
intervals costs O(n2 log2 n) time. Finally we compute the union of the forbidden
intervals in O(n2 logn) time, by using a simple greedy algorithm after sorting the
interval endpoints, and check if the union is the whole angle space in O(1) time.
This completes the description of the algorithm and the proof of Theorem 1.

3.2 Finding Two Directions α and β

This section is devoted to the proof of Theorem 2: for given simple polygon P ,
compute in O(n5 log2 n) time all pairs {α, β} of two directions for which P is
2-monotone.

We initially set α to be the horizontal direction, and compute the interval
system Fα by the procedure described in the previous section. We then perform
a sweep over the angle space of α, and maintain the system Fα during the sweep.
Of course, since the exact values of the interval endpoints change continuously,
what we maintain is the combinatorial description of the intervals of Fα, i.e.,
the ordered sequence of the interval endpoints.

Let S be an α-bad strip in P . The boundary between S and its neighboring
strip is a line � with direction α through a vertex w (refer to Figure 2), and
there is a maximal segment s of positive length in �∩ P . We call this segment s
a lid of S and the vertex w an owner of S. In general, there are two (top and
bottom) lids and two (top and bottom) owners of an α-bad strip. In Figure 2
(for horizontal α), there are two α-bad strips: S with owners u and w, and S′

with owners u′ and w′. We denote by T (α) the set of endpoints of the lids of
all α-bad strips in P , and by V the set of vertices of P . Then we can show the
following lemma easily.

Lemma 5. Let S be an α-bad strip and v be a reflex vertex of P . The endpoints
of the forbidden interval fα(S, v) are defined by a pair of points from V ∪ T (α).

Data structures and preprocessing. As mentioned before, we maintain Fα during
the angular sweep of α. Lemma 5 implies that what we need to maintain are:
(i) the owners, lids, and convex hull of every α-bad strip S, (ii) the convex hull
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of R(S, v) for every pair (S, v) of an α-bad strip S and a reflex vertex v that
defines R(S, v), and finally (iii) all generating lines defined by pairs of points
from V ∪T (α). Dynamic data structures that can be used to maintain them are:

– Fα: During the sweep, we maintain all forbidden intervals fα(S, v) and their
union Fα, using the data structure I, due to Cheng and Janardan [3]. This
structure maintains the union of a set of m intervals, under insertions and
deletions of intervals in O(logm) time. The union of the intervals can be
listed in O(k) time, if there are k components. In particular, it can be tested
in O(1) time whether the union is trivial.

– S, R(S, v), CH(S) and CH(R(S, v)): Each of bad strips S or R(S, v) can
be represented as a simple polygon with a set of vertices or lid-endpoints
on the boundary in counterclockwise order. The data structure C, due to
Overmars and van Leeuwen [6], maintains the set of all bad strips S and
R(S, v) where computing their convex hulls or answering various queries
(such as computing tangents) can be done in O(log2 n) time.

– Next event α: The standard priority queue Q is used to store the values
of α at which the interval system changes combinatorially. This queue is
maintained dynamically in O(log n) time per insertion and deletion.

As a preprocessing step, we build a static data structure in O(n logn) time that
supports visibility queries in O(logn) time. This can be used when we need to
determine the first point at which a ray from a vertex of P hits ∂P . We build
another data structure of Overmars and van Leeuwen [6] in O(n log n) time that
enables us to (implicitly) determine the convex hull of {vi, . . . , vj} for any pair
of vertices vi and vj in O(log2 n) time.

Events. We define two types of events at which the combinatorial structure of
the interval system Fα in I or the associated information(e.g. owners or lids) of
bad strips in C change. The first type of events, called strip events, happens when
a bad strip is created, deleted, split into two, or two bad strips are merged into
one, or the owner or lid-endpoints of the strip are changed. Any of these events
result in creation/deletion of strips S and R(S, v) in C and creation/deletion of
intervals in I. The second type of events, called interval events, happens when
the combinatorial description of intervals in I changes.

(1) Strip events: These events are defined whenever a combinatorial change
arises in the dynamic structure C: bad strips are created, deleted, split into two,
merged into one, or the owners or lid-endpoints are changed.

– Merge/Split: Two strips S1 and S2 in C can be merged into a larger strip
S when the top owner of S1 and the bottom owner of S2 lie on a line with
direction α. At this event, we remove two bad strips S1 and S2 from C, and
then create a new strip S in C.

– Owner/Lid-endpoint Change: An owner of S can change if the old and new
owners are on a line with direction α. At this event, we remove S from C
and create the strip S with the new owner. An endpoint of a lid of S can
move from one edge to another if the owner of S and a vertex of P are on
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a line with direction α. For this event, we insert this vertex as a new vertex
into S of C and update all information of S.

– Creation/Deletion: Each event listed above results in some creation and dele-
tion of bad strips in C. Creating or deleting a strip S is followed by in-
serting/deleting R(S, v) for all reflex vertices v into/from C, angle intervals
into/from I and event moments α into/from Q.

The first two events arise when two vertices of P lie on a line with direction
α, and such a event calls O(1) creation or deletion of bad strips in C. Thus
we execute O(n2) creation or deletion of bad strips in C. Creation or deletion
of a bad strip causes O(n) insertion or deletion of R(S, v) in C and thus O(n)
interval operations in I and O(n) operations in Q. Therefore, the total number
of operations in C, I and Q that are caused by strip events during the sweep of
α is O(n3).

(2) Interval events: These events arise when the combinatorial structure of the
interval system in I changes. Every interval fα(S, v) = (xα, yα) in I is defined by
two generating lines �(xα) and �(yα), where xα and yα represent the endpoints of
this interval. According to Lemma 5, these lines �(xα) and �(yα) are determined
by two points in V ∪ T (α). During the sweep of α, the combinatorial change of
the interval system in I arises in three different ways.

– Type of fα(S, v) changes: Transition between Type A and Types B or C
happens when α is equal to the direction of one of the edges e1 and e2
incident to v. There are O(n) such directions. Transition from Type B to
Type C occurs in the following way. Assume that v is above S and �(e1)
intersects ∂P at edge e. Let pv := �(e1) ∩ e (i.e., pv is the first intersection
of the ray from v along �(e1) with ∂P ). Let w be the top owner of S and
tw(α) := �α(w) ∩ e. Let α′ be the direction of �(w, pv). As α approaches
to α′ in counterclockwise direction, tw(α) approaches pv. At the moment
that α = α′, i.e., that tw(α) arrives at pv, the type of fα(S, v) changes from
Type B to Type C. The angle α′ is defined by the owner w of S and the
intersection pv between �(e1) and e. Since there are at most n owners and
at most n intersection points, the number of such transitions is O(n2).

– Combinatorial description of �(xα) and �(yα) changes while the type of
fα(S, v) remains the same: If fα(S, v) is of Type A, then �(xα) and �(yα)
are extended lines of the edges incident to v, so they do not change as long
as the interval type remains the same. The case that fα(S, v) is of Type C
applies the similar argument as that of Type B, so we consider only when
fα(S, v) is of Type B. Line �(xα) (and �(yα)) is a tangent between S and
R(S, v), where �(xα) passes through two tangential points p(xα) ∈ CH(S)
and q(xα) ∈ CH(R(S, v)). The point p(xα) can be either a vertex of P or
a point of T (α) whereas q(xα) is a vertex of P . We have three different
situations as follows.
• While α rotates from α1 to α3, CH(S) remains unchanged. For α ≤ α2,

p(xα) is the vertex u, but p(xα) becomes a point of T (α) for α ≥ α2, so
the combinatorial description of �(xα) changes at α = α2. The direction
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α2 is determined by the owner of S and the intersection �(q(xα), u) ∩ e.
Since e is fixed for a strip S during α1 ≤ α < α3, there are O(n2)
directions for each S and thus O(n3) events in total.

• �(xα) can change combinatorially when CH(S) changes combinatorially.
While α rotates from α1 to α3, CH(S) has a new edge e′ on its boundary.
So the combinatorial description of �(xα) at α = α2 has changed. How-
ever, this event is also detected in the strip event caused by lid-endpoint
changes. (The direction α2 is defined by a strip owner and a vertex, so
there are O(n2) such directions for a single strip and thus O(n3) in total.)

• �(xα) can change when CH(R(S, v)) changes combinatorially. It is easy
to see that a change of CH(R(S, v)) for a fixed pair (S, v) happens O(n)
times, according to the directions defined by v and the other vertices in
R(S, v). Since there are O(n2) pairs (S, v), we have O(n3) such events.
In addition, we update the information of R(S, v) and CH(R(S, v)) in C
whenever they have changes.

– The order of intervals changes in I: This event happens when the endpoints
of two intervals change their relative (cyclic) order. To update the interval
system I, we first delete both intervals from I and then insert two new
intervals whose endpoints reflect the new order. Whenever an interval is
inserted or deleted in I (e.g., a new strip causes O(n) insertion of R(S, v)
into C and thus O(n) insertion of new intervals into I), we need to compute
all the moments α that the order between the new interval and the others
of I is changed. There are O(n2) intervals in I, so insertion/deletion of an
interval generates O(n2) ordering change moments and we need to push these
α into Q. We have seen that O(n3) insertion or deletion of intervals in I can
happen by strip events and the above two interval events, so we may need
O(n5) ordering change events in I.

In total, during the whole sweep there are O(n3) operations in C and O(n5)
operations in I and Q.

Overall algorithm. After the preprocessing step, we set α to be the horizontal
direction and compute all types of events for this configuration. We then initialize
the data structures I, C, and the event queue Q. While Q is not empty, we
repeat this process: we extract the smallest angle α from Q, and update the
data structures according to the event type of α in O(log2 n) time. After that,
we test in O(1) time if the updated intervals cover the whole angle space. The
total number of operations needed in the whole process is O(n5), so the algorithm
runs O(n5 log2 n) time. This completes the proof of Theorem 2.

4 Monotonicity for k ≥ 3 Directions

This section is devoted to the proof of Theorem 3: for fixed k ≥ 3 and given sim-
ple polygon P with n vertices, compute in O(n3k+2) time all sets of k directions
for which P is k-monotone.
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The general strategy is that we divide the space of all direction k-tuples into
cells, where we can show that in each cell, either all direction k-tuples cover the
polygon in this way, or none of them does. Then we just have to test a sample
direction k-tuple in each cell to decide whether there is some k-tuple that covers
the polygon. Our cell decomposition is generated by O(n3) hyper-surfaces in
that space of k-tuples; they divide this k-dimensional space into O(n3k) cells.
By this, we reduce the existence problem of a direction k-tuple covering the
polygon to O(n3k) decision problems, each deciding in O(n2) time if a specific
direction k-tuple covers the polygon. So the total complexity of the algorithms
will be O(n3k+2).

We define three types of hyper-surfaces for the subdivision of the k-dimensional
space of direction k-tuples:

– For a ∈ {1, . . . , k}, Sabc is the set of (ϕ1, . . . , ϕk) where the direction ϕa

coincides with the direction of the line through the polygon vertices vb and
vc.

– For b, d ∈ {1, . . . , k}, Tabcd is the set of (ϕ1, . . . , ϕk) where the line through
va with direction ϕb intersects the line through vc with direction ϕd in a
point on the polygon boundary.

– For b, d, f ∈ {1, . . . , k}, Rabcdef is the set of (ϕ1, . . . , ϕk) where the line
through va with direction ϕb intersects the line through vc with direction ϕd

in a point on the line through ve with direction ϕf .

There are O(n2k) hyper-surfaces of the first type, O(n2k2) of the second type,
and O(n3k3) of the third type, so for fixed k the total number of surfaces in our
arrangement is O(n3).

We now have to show that within each cell of the arrangement, the polygon is
either covered for all (ϕ1, . . . , ϕk), or not covered for any (ϕ1, . . . , ϕk). Suppose
that the polygon is covered for Φ = (ϕ1, . . . , ϕk), and not covered for Ψ =
(ψ1, . . . , ψk) in the same cell. Consider any path from Φ to Ψ . Along this path
there is a last stage in which the entire polygon is covered, and a first point u
that will be uncovered. There are several possibilities how a point can become
uncovered. Each boundary of a region covered by a direction is either an edge of
the polygon or a line in that direction through a vertex of the polygon. So the
uncovered region around u must be bounded by lines, which are either polygonal
edges or lines in one of the directions through a vertex of the polygon. We can
distinguish the following cases:

– If u is a vertex, then in the moment u becomes uncovered the line through
u goes through another vertex, so the path from Φ to Ψ crosses a surface of
the first type.

– If u is a point on an edge of the polygon, and
• the region becoming uncovered is bounded by a line parallel to the polyg-

onal edge, moving away from it, then the path from Φ to Ψ again crossed
a surface of the first type, or

• the region becoming uncovered is bounded by two lines intersecting the
polygonal edge, then in the moment that u becomes uncovered, these
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two lines intersect each other on the polygonal boundary, so the path
from Φ to Ψ crosses a surface of the second type.

– If u is an interior point of the polygon, and
• the region becoming uncovered is bounded by two parallel lines moving

away from each other, then the path from Φ to Ψ crosses a surface of the
first type, or

• the region becoming uncovered is bounded by three lines, then in the
moment that u became uncovered, these three lines intersect one another
in a point, so the path from Φ to Ψ crosses a surface of the third type.

Therefore it is sufficient to check one sample point from each cell of this arrange-
ment. To test whether a given k-tuple of directions actually covers a given n-gon,
we just construct the arrangement of all the lines of these directions through all
polygon vertices. This arrangement has O(n2k2) cells and can be constructed
in that time, and all potential boundaries of uncovered regions are among these
lines. So we just have to check whether each cell is covered. This finishes the
proof of Theorem 3.
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Abstract. In this paper, we analyze a graph-theoretic property moti-
vated by web crawling. We introduce a notion of stable cores, which is
the set of web pages that are usually contained in the crawling buffer
when the buffer size is smaller than the total number of web pages. We
analyze the size of core in a random graph model based on the bounded
Pareto power law distribution. We prove that a core of significant size
exists for a large range of parameters 2 < α < 3 for the power law.1

1 Introduction

Since the World Wide Web is continually changing, search engines [1] must
repeatedly crawl the web, and update the web graph. In an ideal world one would
search, discover, and store all web pages on each crawl. However, in practice
constraints allow indexing and storing only a fraction of the web graph [3]. This
raises the question as to what fraction of the web one needs to crawl in order to
maintain a relatively stable set of pages that contains all sufficiently important
web pages.

When a link to a web page is encountered, the page is said to be discovered.
When the page is retrieved and explored for its links, it is said to be explored.
Thus, we can partition the web into three types of pages. (1) Pages the crawl
has explored; (2) Pages the crawl has discovered but not explored; and (3) All
other pages.

Web crawling can be viewed as a dynamic process over the entire web graph.
As time goes by, these three sets change dynamically, depending on the crawling
algorithm as well as the space/time constraints. Let St be the set of pages that
have been discovered and explored at time t. The search engine typically ranks
pages in St. When users make queries during phase t, only pages from St are re-
turned. Presumably these are the pages that were deemed sufficiently important
to index and are used to answer queries. Let Ct be the set of pages that have
been discovered but not explored at time t. At this point the edges from pages
in Ct are not known since the search has not crawled these pages.
1 Most of this work was done while the authors were at Microsoft Research.
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Consider the subgraph of the web that consists of all web pages in St∪Ct and
all directed edges from pages in St ending in either St or Ct. At the next stage
the search engine would calculate the page rank of all pages in this graph and
select the set of size b of pages of highest page rank to be St+1. The pages in
St+1 would then be explored to produce a new set Ct+1 of pages reachable from
pages in St+1 but which are not in St+1. Here b is determined by the available
amount of storage.

The space constraints immediately raise several basic questions in web crawl-
ing and web search. An important question is how large b needs to be in order
for the search engine to maintain a core that contains all sufficiently important
pages from the web. Assuming the web is on the order of 100 billion pages, is a
buffer of size of 5 billion sufficient to ensure that the most important 100 mil-
lion pages are always in the buffer and hence available to respond to queries?
In general, what percent of pages are stable in the sense that they are always
in the buffer? What percent of pages are regularly moving in and out of the
buffer? What percent of the buffer is just random pages? What is the relation-
ship between the importance of a page (such as high page rank or high degree)
with the frequency that page is in the buffer? These questions are particular
interesting when the graph is changing with the time? How frequently must we
do a crawl where frequency is measured by the percentage of the graph that
changed between the crawls? How should we design high a quality crawl given
the space and time constraints? For example, should we completely explore the
highest page ranked pages or should we explore some fraction of links from a
larger number of pages, where the fraction is possibly determined by the page
rank or degree? How accurately do we need to calculate the page rank in order
to maintain the quality? Could we substitute in-degree for page rank?

Clearly the theoretical answers to above questions depend on how the un-
derlying graph is modeled. We investigate the behaviors of the web crawling
process and web crawling dynamics. The motivation behind our investigation is
to design better and robust algorithms for web crawling and web search.

We will focus on the stability of web crawling and its potential impact to web
search. In particular, we analyze a graph-theoretic property that we discovered
based on our initial experiments involving web crawling dynamics.

Suppose b pages are stored at each stage of the crawling. We have observed
that, for various choices of EXPLORE and STORE functions and large enough
b, the sets St do not converge. However, there exists t0 such that

(
∩∞

t≥t0
St

)
converges to a non-empty set. We call K =

(
∩∞

t≥t0
St

)
the core of the crawling

dynamics with (EXPLORE, STORE) transitions. Naturally, the size of the core
depends on b as well as on (EXPLORE, STORE). When b is small, the core might
be empty. Naturally, when b = |V |, the whole graph is the core. When b = 1, we
do not expect a non-empty core.

In this paper, we consider a simplified crawling algorithm with limited space.
Let

Ct = EXPLORE(St−1) = {v |(u→ v) ∈ E, for some u ∈ St−1} − St−1,
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be the set of direct neighbors of St−1. For each page v ∈ St−1 ∪Ct, let ∆t(v) be
the number of links from pages in St−1 to v. Then, STORE(St−1, Ct) is the set
of b pages with the largest ∆t value, where ties are broken according to some
predefined rule.

We analyze the size of the core in a random graph model based on the bounded
Pareto power law distribution [2,4]. We prove that a core of significant size exists
when the power law parameter α lies in the range [2 : 3).

2 The Core

Web crawling defines a sequence B0, ..., Bt,...,B∞, where Bt is the content of
the buffer at time t. If a page enters the buffer at some stage and stays in the
buffer after that, then we say the page is in the core of of the sequence.

For example, suppose the web graph is fixed and the crawl process is deter-
ministic, then since the number of the subsets of web pages of size b is finite,
the above sequence eventually become periodic. In other words, there exist a t0
and p such that Bt0 = Bt0+p. In this case, the core of the sequence is equal to
∩t0+p

t=t0 Bp. When the graph is fixed, but the web crawling is stochastic, we define
the core as those pages that stay in the buffer with high probability.

In the rest of the paper, we assume B0 is a set of size b uniformly chosen from
the vertices of the input graph. The core of this graph is then defined according
to the sequence produced by the crawling process.

3 Bounded Pareto Degree Distributions and Its Graphs

One of the objectives of this paper is to estimate the core size as a function of b,
for a directed graph G. Naturally, this quantity depend on G and the initial set
B0. It is well known that the web graph has power law degree distribution [5].
To present our concepts and results as clearly as possible we use the following
“first-order approximation” of the power-law graphs with bounded Pareto degree
distributions. We first define a degree vector, which is the expected degree of
a bounded Pareto degree distribution [2]. Then, we consider random graphs
with expected degrees specified by the degree vector. We will show the core size
depends on both the degree distribution and on the size of the buffer.

The expected number of vertices of degree k in the bounded Pareto degree
distribution with parameters α > 1 and positive integer n is Cnk−α where
C = 1/ (

∑∞
x=1 x

−α). We can construct a typical degree sequence as follows. Let
hi be the largest integer such that

∑∞
k=hi

Cnk−α ≥ i. The sequence starts with
the highest degrees (h1, ..., hi, ...). Note that hi is approximately(

C

α− 1

)1/(α−1) (n
i

)1/(α−1)
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To construct the degree vector dα,n, we start at the right with the degree one
vertices and work to the left. Let k0 be the smallest integer such that Cnk−α < 1.

– For each 1 ≤ k < k0, from right to left, assign the k to the next Cnk−α

entries in dα,n. To be more precise, when Cnk−α is not an integer, we first
assign k to �Cnk−α� entries, and then, with probability Cnk−α−�Cnk−α�,
add one more entry with value k. Suppose this step assigns n′ entries.

– For j = 1 : n− n′, assign the value hj to dα,n[n− n′ − j].

In other words, dα,n is a sorted vector of expected degrees, from the largest
to the smallest. In this vector, the smallest degree k that appear s times approx-
imately solves Cnk−α = s, implying k ≈ s−1/α (Cn)1/α

.
Note that for α > 2, the expected number of edges is proportional to n and

for α = 2 the expected number of edges is proportional to n logn. That is,

E [||dα,n||1] =
{
Θ(n) if α > 2, and
Θ(n log n) if α = 2.

The graph we analyze has n vertices, labeled 1 to n, and is generated by the
following random process: Let m = ||dα,n||1. Independently choose m directed
edges, by first selecting a vertex i randomly according to dα,n, and then choosing
another vertex j randomly, also according to dα,n. Note that this graph model
allows multiple edges and self-loops.

Call a random graph from this distribution a random (α, n)-BBPL graph.
This class of graphs has several statistical properties. The expected number of
vertices with in-degree 0 is highly concentrated around

∑
k=1 e

−kCnk−α, which
is a constant fraction of n.

Lemma 1. For h ≥ 3, the expected number of vertices with in-degree h or larger
in a random (α, n)-BPPL graph is highly concentrated around

C

Θ(n1/(1−α))∑
k=1

(
n

h

)(
k

n

)h
n

kα
≤ Θ

( n

h(α−1)(1+1/(2h))

)
.

4 Estimating the Core Size for Power-Law Graphs

Consider a buffer B of b vertices. These vertices induce a graph which we will
refer to as the buffer-induced graph of B. The buffer-induced degree of a vertex
is its degree in the buffer-induced graph.

4.1 A Simple Thought Process

When the buffer size is a fraction of n, a vertex with constant degree may have
buffer-induced degree of 0 and thus may drop out of the buffer. This implies
that the core size might be o(n), depending on the tie breaking rule. However,
in this section, we show that for any ε, the core size is Ω(n1−ε).
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Suppose we do a crawl with a buffer large enough to hold every vertex of
in-degree at least one in the web. This does not implies that the vertices with
indegree at least in the original graph may stay or enter the buffer, since its
buffer-induced may be 0. We show with high probability, the two highest degree
vertices, to be called 1 and 2, are mutually connected and will enter the buffer in
step 1. The fact that they are mutually connected means that they will always
remain in the buffer. In subsequent steps, all vertices reachable from 1 and 2 will
be added to the buffer and will remain in the buffer. Thus, the core contains all
these vertices. We now give a lower bound on the expected number of vertices
reachable from 1 and 2, which provides a lower bound on the core size.

Lemma 2. The probability that vertices 1 and 2 are mutually connected to each
other in a random (α, n)-BPPL graph is

1− e
Θ

�
−n

3−α
α−1

�
.

Proof. Let m be the number of edges in a random (α, n)-BPPL graph. Thus,
m = ||dα,n||1 and is linear in n. The probability that 1 and 2 are not mutually
connected to each other is at most(

1−Θ

(
n1/(α−1)

m

n1/(α−1)

m

))m

= e
−Θ

�
n

3−α
α−1

�
.

�

With a relatively small buffer of size Θ(n1−1/(α−1) logn) containing randomly
chosen vertices, the probability that vertices 1 and 2 will be in the buffer in the
next step is high. Note that for α = 3, this buffer size is only Θ(

√
n).

Lemma 3. Suppose G = (V,E) is a random (α, n)-BPPL graph and S is a
set of b randomly chosen vertices of V . There exists a constant c such that if
b ≥ cn1−1/(α−1) logn, then with high probability, there are edges from vertices in
S to both vertices 1 and 2.

Proof. Because in our model, the expected degree of each vertex is at least 1,∑
u∈S dα,n[u] ≥ b. The expected indegrees of vertices 1 and 2 are Θ(n1/(α−1)).

Their expected indegrees counting only edges from S are

Θ

(
n1/(α−1)

n

) ∑
u∈S0

dα,n[u] = Θ

(
n1/(α−1) b

n

)
≥ Θ(c log n).

As this bound is highly concentrated, when c is large enough, with high prob-
ability (e.g., 1 − n−Θ(c)), the buffer-induced in-degrees of vertices 1 and 2 are
larger than 1. �

Lemma 4. For 2 < α < 3, with high probability, the number of vertices reach-
able from {1, 2} in a random (α, n)-BPPL graph G is Ω(n1−ε).
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Here we will sketch an outline of the proof but skip some technical details since
we will give a stronger result later with all the details. To better illustrate the
analysis, instead of writing a proof for all α : 2 < α < 3, we choose a typical
value in this range and provide an explicit derivation. The proof is easily adapted
to handle all α : 2 < α < 3. Our choice of “typical” value is α = 11/4. In this
case, note that the expected degree of vertex 1 is Θ(n4/7). The expected number
of vertices directly reachable from {1, 2} is

Θ

(∑
k

[
1−

(
1− k

n

)n4/7]
n

k11/4

)
= Θ(n4/7).

The expected total degree of the nodes directly reachable from {1, 2} is

Θ

(∑
k

k

[
1−

(
1− k

n

)n4/7]
n

k11/4

)
= Θ

(∫ n3/7

1

n4/7

k3/4

)
= Θ(n19/28)

Let S0 = {1, 2}. Let St be the set defined by the set of vertices t hops away from
{1, 2}. Let ∆(St) be their expected degree. We thus have

E[|S1|] = Θ(n4/7), and E[|∆(S1)|] = Θ(n19/28).

The key to the analysis is that E[|∆(S1)|] is magnitudely larger than E[|S1|],
which means that the frontiers of the Breadth-First Search starting from {1, 2}
have good expansions. There are two types of out-links from St: the edges to
S0 ∪ ... ∪ St and the edges to St+1. We now bound the expected size of S2 and
the expected total degree ∆(S2) of S2. A similar analysis can be extended to
any t.

Let F1 = {v | (u→ v) ∈ E, for some u ∈ S1} and let B1 = F1 ∩ (S0 ∪S1). We
have S2 = F1 −B1. Note that E[|B1|] ≤ E[|S1|] + 2 = Θ(n4/7). Thus,

E[|S2|] = E[|F1|]− E[|B1|]

=

(∑[
1−

(
1− k

n

)n19/28]
n

k11/4

)
− E[|B1|]

= Θ

(∫ [
1−

(
1− k

n

)n19/28]
n

k11/4

)
− E[|B1|]

= Θ

(∫ n9/28

1

[
n19/28

(
k

n

)]
n

k11/4

)
− E[|B1|]

= Θ(n19/28)−Θ(n4/7) = Θ(n19/28).

We now bound E[∆(S2)], which is E[∆(F1)]−E[∆(B1)]. Because B1 = F1 ∩
(S0 ∪ S1), E[∆(B1)] ≤ E[∆(S0) + ∆(S1)] = Θ(n19/28). Thus,
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E[|∆(S2)|] = E[|∆(C1)|]− E[|∆(B1)|]

=

(∑
k

[
1−

(
1− k

n

)n19/28]
n

k11/4

)
− E[|∆(B1)|]

= Θ

(∫ [
1−

(
1− k

n

)n19/28]
n

k7/4

)
− E[|B1|]

= Θ

(∫ n9/28

1

[
n19/28

(
k

n

)]
n

k7/4

)
− E[|B1|]

= Θ(n85/112)−Θ(n19/28) = Θ(n85/112).

Note that S2 still has a polynomial expansion. So S3 will continue to grow.
As these bounds a highly concentrated, by repeating this argument a constant
number of times, to be formalized in the next subsection, we can show that the
expected number of vertices reachable from {1, 2} is Ω(n1−ε) for any ε > 0.

4.2 Crawling with Buffer of Size Constant Fraction of n

We now consider the case when the buffer is too small to contain all vertices of
in-degree 1. Let h be an integer such that the buffer is large enough to contain
all vertices of in-degree at least h − 1. We will use the following structure to
establish a lower bound on the core size: Let S0 = [1 : h]. Let the h-PYRAMID
of S0, denoted by PYRAMID(S0), be the following subgraph. For each i, let

Si = NEIGHBORS(Si−1)− ∪i−1
j=1Sj .

Then, PYRAMID(S0) is the subgraph induced by ∪iSi.
We will use the following lemma whose proof is straightforward.

Lemma 5. Suppose G = (V,E) is a directed graph and S0 is a subset of V
of size b. If there is a t0 such that St0 contains a subset C0 satisfying that the
indegree of every vertex in C0 in the induced subgraph G(C0) over C0 is at least
h, then PYRAMID(S0) is in the core if b is larger that the number of vertices
in G whose indegrees are h or more.

Below, we will show the h highest degree vertices form a clique. Furthermore,
if we start with a random set of b vertices, then with high probability, these h
vertices get in the buffer in the first step and will remain there. Again, we will
focus on α = 11/4. Let CLIQUE(h) be the event that the subgraph induced by
[1 : h] is a complete direct graph. We use [A] to denote that an event A is true.

Lemma 6. In a random (α, n)-BBPL graph G with α = 11/4,

Pr[[CLIQUE(h)]] ≥ 1− e
−n1/7

h8/7 .
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Proof. The expected degree of vertex i is Θ
((

n
i

)4/7
)
. By a union bound,

Pr[[not CLIQUE(h)]] ≤
∑

i,j≤h

⎛⎜⎝1−
(n

i )4/7

n

(
n
j

)4/7

n

⎞⎟⎠
n

≤
∑

i,j≤h

e
− n1/7

(ij)4/7 � e
−n1/7

h8/7

�

Note that if h < n1/8, then with high probability, [1 : h] induces a complete
directed clique.

Lemma 7. Let G = (V,E) be a random (α, n)-BPPL graph, for 2 < α < 3.
With high probability, there exists a constant c, such that for any h (not neces-
sarily a constant), for a set of b ≥ cn1−1/(α−1)h1+1/(α−1) logn randomly chosen
vertices S, the buffer-induced in-degrees of vertices 1,..., h are larger than h.

Proof. Note that at least 1, we have
∑

u∈S dα,n[u] ≥ b. The expected in-degrees
of vertices 1,..., h are bounded by

Θ

(
n1/(α−1)

n

)∑
u∈S

dα,n[u] =
(n

h

)1/(α−1) b

n
≥ ch logn.

As this bound is highly concentrated, thus if c is large enough, with high
probability (e.g., 1−n−Θ(c)), the buffer-induced in-degrees of vertices 1,...,h are
at least h. �

Lemma 8. In a random BPPL graph with parameters n and α = 11/4, the total
expected degrees of vertices [1 : h] is Θ

(
n4/7h3/7

)
.

Proof.
∑h

x=1

(
n
x

)4/7 = Θ(n4/7h3/7). �

We now analyze the size of pyramid.

Lemma 9. Let T0 be a subset of vertices of [1 : n] whose expected total degree is
Θ(nγ) and |T0| = o(nγ), for a constant γ. Suppose T0 has nγ random outgoing
edges chosen according to the BPPL distribution with parameters n and α =
11/4. Let T1 = NEIGHBORS(T0)− T0. Then, for any constant h ≥ 2,

E[|T1|] ≥ Θ
(
n(7/4)γ−3/4

)
.

Proof. Let T ′
1 = NEIGHBORS(T0). So, T1 = T ′

1−T0. For k ≤ n1−γ and h/ nγ ,
the probability that a weight k vertex receives at least h edges from T0 is(

nr

h

)(
k

n

)h

= Θ

(
min

(
(nγ)h

(
k

n

)h

, 1

))
(1)
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Thus, as h ≥ 2, the expected size of T1 is

E[|T1|] = E[|T ′
1|]− E[|T ′ ∩ T0|]

= Θ

⎛⎝n1−γ∑
1

n

k11/4 · n
γh

(
k

n

)h
⎞⎠− E[|T ′ ∩ T0|]

= Θ

(
nhγ−h+1

∫ n1−γ

1
kh−11/4

)
− o(nγ) (2)

= Θ
(
nhγ−h+1n(1−γ)(h−7/4)

)
= Θ

(
n(7/4)γ−3/4

)
. �

This bound is independent of h. If γ = 4/7, then (7/4)γ− 3/4 = 1/4. We would
like to remark that if h = 1, then the calculation follows from what we did in
the previous subsection. The integral there was a constant but is not here. The
next lemma bounds ∆(T1), the expected total degrees of vertices in T1.

Lemma 10. Let T0 be a subset of vertices of [1 : n] whose total expected degrees
is Θ(nγ) and |T0| = o(nγ), for a constant γ. Suppose T0 has nγ random outgoing
edges chosen according to the BPPL distribution with parameters n and α =
11/4. Let T1 = NEIGHBORS(T0)− T0. Then, for any constant h ≥ 2,

E[∆(T1)] ≥ Θ
(
n(3/4)γ+1/4

)
.

Proof. Let T ′
1 = NEIGHBORS(T0). We have T1 = T ′

1 − T0.

E[∆(T1)] = E[∆(T ′
1)]− E[∆(T ′

1 ∩ T0)]

≥ Θ

⎛⎝n1−γ∑
1

k
n

k11/4 · n
γh

(
k

n

)h
⎞⎠− |∆(T0)|

= Θ

(
nhγ−h+1

∫ n1−γ

1
kh−7/4

)
−Θ(nγ) (3)

= Θ
(
nhγ−h+1n(1−γ)(h−3/4)

)
=

(
n(3/4)γ+1/4

)
. �

We now apply Lemmas 9, 10 and 6, to prove the following theorem. Because we
need to apply these lemmas iteratively, we need to know the concentration of
the bounds in Lemmas 9 and 10. Recall the the original Hoeffding bounds states
that if Xi are independent random variables in [0, 1] (not necessarily binary) and
S =

∑
Xi, then

Pr [S > (1 + λ)E] ≤ e−λ2E[S]/2 (4)

Pr [S < (1− λ)E] ≤ e−λ2E[S]/3. (5)

In Lemma 9, the bound of E [|T1|] is the sum of random 0 and 1 variables.
We use the standard Chernoff bound to show that the sum is exponentially
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concentrated, i.e., with probability 1−e−nΘ(1)
. The bound of E [∆(T1)] in Lemma

10 is no longer the sum of random 0/1 variables or random variables whose value
is in the range of [0, 1]. We need the following restatement of Heoffding bound:
If Xi are independent random variables in [0, A] and S =

∑
Xi, then

Pr [S > (1 + λ)E] ≤ e−λ2E[S/A]/2 (6)

Pr [S < (1− λ)E] ≤ e−λ2E[S/A]/3. (7)

To obtain a concentration bound, we observe that k in Equation (3) is in
the range of [1 : n1−γ ]. Thus, the bound in Equation (3) is the sum of random
variables in range [1 : n1−γ ]. So, as long as n1−γ / n(3/4)γ+1/4, we can use this
restatement of Hoeffding bound to an 1−e−nΘ(1)

concentration. In our argument
below that uses Lemma 10, we will have γ ≥ 4/7. Thus, all our bounds are
exponentially concentrated.

Theorem 1 (Size of Pyramid: h is a constant). Let G = (V,E) be a random
(α, n)-BPPL graph with α = 11/4. For any constant h, let S0 be a random set of
size b, where b = Θ

(
n

hα−1(1+1/(2h))

)
. Then, for any constant ε > 0, the expected

size of PYRAMID(S0) is Θ(n1−ε).

Proof. Because S0 is a random set of b elements, by Lemma 7, with high prob-
ability, S1 contains [1 : h + 1]. Let γ = 4/7 and β = 3/7, i.e., γ = 1 − β. By
Lemmas 9 and 10, we have that the expected value of |S2| and ∆(S2) are[

Θ
(
n1− 7

4 β
)
, Θ

(
n1− 3

4 β
)]

(8)

By iteratively applying this analysis, for any constant t, the expected values of
|St| and ∆(St) are [

Θ
(
n1− 7

4 ( 3
4 )

t−1
β
)
, Θ

(
n1−( 3

4 )
t
β
)]

Moreover, these random variables are highly concentrated. Thus, for t =
�log4/3 ε�, we have E [|PYRAMID(S0)|] ≥ E [|St|] = Θ(n1−ε). �

By Lemma 1, if we set buffer size b = Θ
(

n
hα−1(1+1/(2h))

)
, with a sufficiently

large constant, every vertex that receives at least h votes will be in the buffer.

Theorem 2. For any constants 2 < α < 3, 0 < c < 1, and ε > 0, with high
probability, our crawling process with buffer size b = cn starting on a randomly
chosen set S0 of vertices of a random (α, n)-BPPL graph G has a core of expect
size Θ(n1−ε).

4.3 As Buffer Becomes Even More Smaller

When h is a function of n, e.g., h = nδ, we need to be a little more careful. But,
our analysis can still be extended to establish the following theorem similar to
Theorem 1.
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Theorem 3 (h: h = nΘ(1)). Let G = (V,E) be a random (α, n)-BPPL graph
with α = 11/4. For any δ ≤ 1/8 and ε > 0, letting h = nδ, if our crawling
process starting with a random set S0 of size b = Θ

(
n

hα−1(1+1/(2h))

)
has a core

with expect size Θ(n1− 7
4 δ−ε).

Proof. The main difference is that if h = nδ, then the estimation of the proba-
bility that a weight k vertex receives at least h edges from S0 is

Θ

((
enγ

h

)h (
k

n

)h
)

= Θ

((
enγ−δ

)h
(
k

n

)h
)

(9)

instead of Equation (1) used in the proof of Lemma 9. With the help of this
bound, the bound of Equation of 2 becomes

E[|S1|] = E[|S′
1|]− E[|S′ ∩ S0|] = Θ

(
n(7/4)γ− 3

4 δ−3/4
)
, (10)

and the bound of Equation of 3 becomes

E[∆(S1)] = E[∆(S′
1)]− E[∆(S′

1 ∩ S0)] = Θ
(
n(3/4)γ− 7

4 δ+1/4
)
. (11)

Applying these bounds in the analysis of Theorem 1, setting γ = 1−β = 4/7,
the expected value of |S2| and ∆(S2) are[

Θ
(
n1− 3

4 δ− 7
4 β
)
, Θ

(
n1− 7

4 δ− 3
4 β
)]

. (12)

By iteratively applying this analysis, if δ ≤ 1/8 (which ensures that Propo-
sition 6 holds), then for any constant t, the expected values of |St| and ∆(St)
are [

Θ
(
n1− 7

4 δ− 7
4 ( 3

4 )
t−1

β
)
, Θ

(
n1− 7

4 δ−( 3
4 )

t
β
)]

.

Again, these random variables are highly concentrated. Thus, the core is at
least n1−(7/4)δ−ε for all ε > 0, i.e., for large enough t, the expected values of |Tt|
and ∆(Tt) are [

Θ
(
n1− 7

4 δ−ε
)
, Θ

(
n1− 7

4 δ−ε
)]

.
�

4.4 Discussion

First of all, in our proof, we in fact consider the graph generated by the BBPL
process and remove the multiple edges and self-loops. If we use the self-loops
and multiple edges, we can further simplify the proof by starting with vertex 1
only, because its self-loop contribution is sufficient to keep it in the buffer. In
other words, we do not need to start with an h-clique.

Our analysis can be easily modified to apply to the following family of random
graphs: For vertex i, we add dα,n outward edges whose endpoints are chosen
according to dα,n. Again, in this model, we can remove self-loops and multiple



On the Stability of Web Crawling and Web Search 691

edges. All our lemmas and theorems can be extended to this model. The analysis
can also be extended to the following model with exact in and out degree. Let
A and B be the array of length ||dα,n||1, in which there are dα,n(i) entries with
value i. Now randomly permute A and B, and add a directed edge from A(i) to
B(i). Again, this graph may have multiple edges and self loops.

5 Final Remarks on Experiments and Future Directions

This paper is a step towards modeling web processing with limited space and
time. Its objective is to provide some theoretical intuition indicating why table
cores of non-trivial size exist. However, the models we consider here, both in
terms of the crawling process and in terms of the graphical models, are in some
respects unlike these usually encountered in practice. We have conducted lim-
ited experiments with some other models of power law graphs, for example, as
discussed in [4] as well as some segments of web graphs. These experiments have
shown the existence of non-trivial stable cores.

As the next step of this research, we would like to extend our result to other
more realistic power-law models. The following are a few examples. (1) This is
a growth model. Start with one node and at time t do the following based on a
uniform three-way coins: (i) add a new node and connect it from a link from the
existing nodes according the out degree distribution (plus some constant); (ii)
add a new node and connect it to a link from the existing nodes according the
in degree distribution (plus some constant); and (iii) choose a vertex according
to the out degree and a vertex according to in degree, and insert this edge.
(2)Given two vectors, IN and OUT and an integer m. Repeat m times, at each
time, choose a vertex according to the out degree and a vertex according to
the in degree, and insert this edge. In this model, we would like to study the
graph based on the properties of IN and OUT , such as, IN and OUT follows
some kind of power law. For example, in this paper, we analyze a particular
(IN,OUT ) pair. We would like to analyze the process for a larger family of
(IN,OUT ) distributions. (3) Start with one node and at time t, insert one new
vertex and three edges. One out of the new vertex and one into the new vertex,
and of course, according the in or out degree. (4) Other models in Chung and
Lu’s book.

References

1. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine.
Comput. Netw. ISDN Syst. 30, 107–117 (1998)

2. Bollobas, B., Riordan, O., Spencer, J., Tusnady, G.: The degree sequence of a scale-
free random process. Random Structures and Algorithms 18, 279–290 (2001)

3. Castillo, C.: Effective Web Crawling, Ph.D. Thesis, University of Chile (2004)
4. Chung, F., Lu, L.: Complex Graphs and Networks. AMS (2007)
5. Faloutsos, C., Faloutsos, M., Faloutsos, P.: On power-law relationships of the in-

ternee topology. In: Proc. SIGCOMM (1999)



Average Update Times for
Fully-Dynamic All-Pairs Shortest Paths

Tobias Friedrich1,2 and Nils Hebbinghaus1

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 International Computer Science Institute, Berkeley, CA, USA

Abstract. We study the fully-dynamic all pairs shortest path problem for
graphs with arbitrary non-negative edge weights. It is known for digraphs
that an update of the distance matrix costs Õ(n2.75)1 worst-case time
[Thorup, STOC ’05] and Õ(n2) amortized time [Demetrescu and Italiano,
J.ACM ’04] where n is the number of vertices. We present the first average-
case analysis of the undirected problem. For a random update we show
that the expected time per update is bounded by O(n4/3+ε) for all ε > 0.

Keywords: Dynamic graph algorithms, shortest paths, average-case
analysis, random graphs.

1 Introduction

Dynamic graph algorithms maintain a certain property (e. g., connectivity in-
formation) of a graph that changes (a new edge inserted or an existing edge
deleted) dynamically over time. They are used in a variety of contexts, e. g., op-
erating systems, information systems, database systems, network management,
assembly planning, VLSI design and graphical applications. An algorithm is
called fully-dynamic if both edge weight increases and edge weight decreases
are allowed. While a number of fully dynamic algorithms have been obtained
for various properties on undirected graphs (see [6]), the design and analysis of
fully-dynamic algorithms for directed graphs has turned out to be much harder
(e. g., [9, 13, 15, 16]).

In this article, we consider the fully-dynamic all-pairs shortest path problem
(APSP) for undirected graphs, which is one of the most fundamental problems
in dynamic graph algorithms. The problem has been studied intensively since
the late sixties (see [4] and references therein). We are interested in algorithms
that maintain a complete distance matrix as edges are inserted or deleted. The
static directed APSP problem can be solved in O(mn+ n2 logn) time [8] where
n is the number of vertices and m is the number of edges. This gives O(n3)
per update in the worst-case for a static recomputation from scratch. The first
major improvement that is provably faster than this only worked on digraphs
with small integer weights. King [10] presented a fully-dynamic APSP algorithm

1 Throughout the paper, we use Õ(f(n)) to denote O(f(n) polylog(n)).

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 692–703, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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for general directed graphs with positive integer weights less than C that sup-
ported updates in O(n2.5√C log n). In the remainder of the paper, we will only
consider non-negative real-valued edge weights. Demetrescu and Italiano pur-
sued this problem in a series of papers and showed that it can be solved in
O(n2 log3 n) amortized time per update. [4]. This has been slightly improved to
O(n2(logn + log2((m + n)/n))) amortized time per update by Thorup [17]. In
[18], Thorup showed a worst-case update time of Õ(n2.75).

We are interested in expected update times. The only known result for this is for
the undirected, unweighted, decremental, randomized, and approximate version
of the APSP problem. Roditty and Zwick [14] showed for this setting an expected
amortized time of Õ(n). For our setting of the problem on undirected graphs with
arbitrary non-negative edge weights, there is nothing known about the average-
case update times. We analyze a variant of Demetrescu and Italiano’s algorithm
described in Section 3. Let R(p) denote the expected runtime of our algorithm
for a single random edge update of a random graph G ∈ G(n, p). Let ε, ε′ > 0.
For arbitrary p, we can show R(p) = O(n4/3+ε). However, for most p we can
prove that the runtime is actually much smaller. The above bound is best only at
the phase transition around pn = 1, i. e., when the size of the largest component
rapidly grows from Θ(log n) to Θ(n). When the graph is sparser, our algorithm
is much faster. In this case, we can show R(p) = O(n2/3+ε) for pn ≤ 1 − n−1/3

and R(p) = O(nε) for pn < 1/2. Similarly, the algorithm becomes faster when
the graph has passed the critical window. We show R(p) = O(nε/p) for pn ≥
1+ ε′. The final result is given in Theorem 11. Additionally to these asymptotic
upper bounds on the expected runtime, we also examined the empirical average
runtime. Interestingly, this also shows that the update costs are first increasing
and later decreasing when more edges are inserted. This corresponds well with
the above phase distinction for the asymptotic bounds.

The remainder of this paper is organized as follows. The next section presents
all necessary graph theoretical notations. In Section 3 we present our algorithm.
In Section 4 we prove a number of random graph properties which are then used
in Section 5 to show the asymptotic bounds. The last section presents some
empirical results.

2 Preliminaries

Demetrescu and Italiano [5] performed several experiments on directed random
graphs. We want to bound the expected runtime of random updates on a random
graph of a very similar algorithm. We utilize the random graph model G(n, p)
introduced and popularized by Erdős and Rényi [7]. The G(n, p) model consists
of a graph with n vertices in which each edge is chosen independently with
probability p. In our model, a random update first chooses two vertices x and y
(x 
= y). Then, with (fixed) probability δ, it inserts the edge (x, y) with a random
weight w ∈ [0, 1]. If the edge was already in the graph, it changes its weight to w.
Otherwise, with probability 1−δ, a random update deletes the edge (x, y) if (x, y)
is in the graph (otherwise, it does nothing). Note that T random updates on a
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random graph G ∈ G(n, p) lead to a graph with edges present with probability
p′ = δ + (p− δ)(1− 1/

(
n
2

)
)T , but not necessarily mutually independent.

Throughout the paper, we use the following notations:

– G = (V,E) is an undirected graph with arbitrary non-negative edge weights.
– ∆ := maxv∈V deg(v) is the maximum degree of the graph G.
– dist(x, y) (distance) is the length of the shortest path from x to y.
– diam(G) (diameter) is the greatest distance between any two vertices of one

component.
– C(x) denotes the component that contains the vertex x.
– C(G) denotes the largest component of G.
– wxy denotes the weight of an edge (x, y).
– πxy = 〈u0, u1, . . . , uk〉 is a path from vertex x = u0 to vertex y = uk, i. e.,

a sequence of vertices such that with (ui, ui+1) ∈ E for each 0 ≤ i < k (no
repeated edges).

– w(πxy) =
∑k−1

i=0 wuiui+1 is the weight of a path.
– πxy ◦ πyz denotes the concatenation of two paths πxy and πyz.
– �(πxy) denotes the subpath πxa of πxy such that πxy = πxa ◦ 〈a, y〉.
– r(πxy) denotes the subpath πby of πxy such that πxy = 〈x, b〉 ◦ πby.

We assume without loss of generality that there is only one shortest path be-
tween each pair of vertices in G. Otherwise, ties can be broken as discussed in
Section 3.4 of [4].

3 Algorithm

We will now describe our algorithm. It is a slight modification of the algorithm
of Demetrescu and Italiano [5] as our aim is an average-case analysis of the
undirected problem while they were interested in the amortized costs for directed
graphs.

The main tool Demetrescu and Italiano [4] very cleverly introduced and ap-
plied is the concept of “locally shortest paths”. A path πxy is locally shortest if
every proper subpath is a shortest path or it consists of only a single vertex. The
algorithm maintains the following data structures:

– wxy weight of edge (x, y)
– Pxy priority queue of the locally shortest paths from x to y (priority w(πxy))
– P ∗

xy shortest path from x to y
– L(πxy) set of left-extensions 〈x′, x〉◦πxy of πxy that are locally shortest paths
– L∗(πxy) set of left-extensions 〈x′, x〉 ◦ πxy of πxy that are shortest paths
– R(πxy) set of right-extensions πxy ◦ 〈y, y′〉 of πxy that are locally shortest

paths
– R∗(πxy) set of right-extensions πxy ◦ 〈y, y′〉 of πxy that are shortest paths

Note that P ∗
xy ⊆ Pxy and that every minimum weight path in Pxy is also a

shortest path. Each path πxy ∈ Pxy is stored implicitly with constant space by
just storing two pointers to the subpaths �(πxy) and r(πxy).
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Update(u, v, w)
� Phase 1: Delete edge (u, v) and all paths containing edge (u, v),

store pairs of vertices affected by the update in list A
1 if (u, v) ∈ Puv then
2 Q ← {(u, v)}
3 while Q �= ∅ do
4 extract any πxy from Q
5 remove πxy from Pxy, L(r(πxy)), and R(�(πxy))
6 if πxy ∈ P ∗

xy then
7 remove πxy from P ∗

xy, L∗(r(πxy)), and R∗(�(πxy))
8 add (x, y) to A
9 add all paths in L(πxy) to Q

10 add all paths in R(πxy) to Q
� Phase 2: Insert edge (u, v) with weight w

11 if w < ∞ then
12 add (u, v) to A
13 add (u, v) to Puv, L(πvv), and R(πuu)

� Phase 3: Scan pairs in A
14 while A �= ∅ do
15 extract any pair (x, y) from A
16 add πxy with minimum w(πxy) to H (if any)

� Phase 4: Propagation loop
17 while H �= ∅ do
18 extract path πxy with minimum w(πxy) from H
19 if w(πxy) is larger than the smallest weight in Pxy then continue
20 add P ∗

xy to Q
21 add πxy to P ∗

xy, L∗(r(πxy)), and R∗(�(πxy))
22 for each πx′b ∈ L∗(�(πxy)) do
23 if (x′, x) ◦ πxy ∈ L(πxy) then continue
24 πx′y ← (x′, x) ◦ πxy

25 w(πx′y) ← wx′x + dxy

26 �(πx′y) ← πx′b, r(πx′y) ← πxy

27 add πx′y to Px′y , L(πxy), R(πx′b), and H
28 for each πay′ ∈ R∗(r(πxy)) do
29 if πxy ◦ (y, y′) ∈ R(πxy) then continue
30 πxy′ ← πxy ◦ (y, y′)
31 w(πxy′) ← dxy + wyy′

32 �(πxy′) ← πxy, r(πxy′) ← πay′

33 add πxy′ to Pxy′ , L(πay′), R(πxy), and H
� Phase 5: Delete all LSPs π that stopped being LSP

because �(π) or r(π) stopped being SP
34 while Q �= ∅ do
35 extract any πxy from Q
36 for each πx′y ∈ L(πxy) do
37 remove πx′y from R((x′, x) ◦ �(πx,y)) and L(πx,y)
38 for each πxy′ ∈ R(πxy) do
39 remove πxy′ from L(r(πx,y) ◦ (y, y′)) and R(πx,y)

Fig. 1. The slightly modified APSP algorithm of Demetrescu and Italiano [5]
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The pseudo-code of our algorithm is given in Figure 1. The first four phases
are equivalent to [5]. We will just describe them briefly. A detailed description
can be found in [4]. In the first phase, the algorithm deletes from the data
structure all the paths that would stop being locally shortest if we deleted the
edge (u, v). In doing so it stores the pairs of the endpoints of the affected paths
in the temporary list A. In the following phase it adds the edge (if it is an insert
or update operation) to the data structures. The third phase initializes the heap
H with the minimum weight paths πxy for all (x, y) ∈ A. In the fourth phase the
algorithm repeatedly extracts the cheapest path πxy from H . The first extracted
path for each pair (x, y) must be a shortest path. If this is the case, the path is
stored in the data structures. To propagate this information, also its left- and
right-extensions are updated and added to H to find all further extensions.

The amortized number of new locally shortest paths can be Ω(n3) per update.
To allow a better worst-case performance, Demetrescu and Italiano [4] had to
delay the update of the data structure in a very clever way. Their data structure
can contain paths in Pxy which are not locally shortest anymore. We avoid
this with the fifth phase. There, all locally shortest paths which stopped being
locally shortest because one of their two subpaths stopped being shortest path
are detected and deleted.

We analyze the expected time for the algorithm to insert a randomly chosen
edge e in the graph G ∈ G(n, p) and maintain the sets of shortest path and locally
shortest path. The weights of e and of the edges in G are chosen uniformly at
random from the set [0, 1].

4 Random Graph Properties

To bound the runtime of our algorithm in the next section, we first provide some
properties of random graphs G ∈ G(n, p). The main result of this section will be
Theorem 9. It bounds the quantity µ(p) which we define as the expected number
of locally shortest paths and shortest paths passing a fixed edge of G. Let lsp

denote the set of all locally shortest paths and sp the set of all shortest paths
in G.

The following four lemmas are well-known.

Lemma 1 (Bollobás [2]). Let G ∈ G(n, p) with pn < 1/2. Then,
Pr [|C(G)| ≤ 20 logn] = 1−O(n−2).

Lemma 2 (Bollobás [2]). For every α > 0 and G ∈ G(n, p) with pn = α logn,
Pr [G is connected] = 1−O(n1−2α).

Lemma 3 (Chung and Lu [3]). For every ε > 0 and G ∈ G(n, p) with pn =
1 + ε, Pr [diam(G) ≤ 2 logn] = 1− o(n−1).

Lemma 4 (Nachmias and Peres [12]). Let x ∈ G and G ∈ G(n, p) with
pn ≤ 1 + n−1/3. Then, Pr

[
|C(x)| > 2n2/3

]
= O(n−1/3).
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The following lemma gives a general upper bound on the expected diameter of
a random graph G ∈ G(n, p) for arbitrary p. Recall that we defined the diameter
of a disconnected graph as the maximum diameter of its components.

Lemma 5. Let G ∈ G(n, p). Then, E [diam(G)] = O(n1/3).

Proof. Let G be a complete graph on n vertices with edge weights uniformly
distributed at random in [0, 1]. Let G≤p = (V,E≤p) be the subgraph of G
containing all vertices but only those edges with weight less or equal p. Then
G≤p is a G(n, p)-graph. We apply Kruskal’s algorithm [11] for the construction
of a minimum spanning forest of G, i. e., we look at the edges in increasing
weight order and integrate every edge that does not introduce a cycle in the
current edge set. We stop this process if the current edge has weight greater
than p and denote the obtained subset of edges EKruskal,≤p. Let us also de-
note the edge set of the spanning forest which is returned from the completed
Kruskal algorithm by EKruskal. By Addario-Berry, Broutin, and Reed [1], the
expected diameter of GKruskal := (V,EKruskal) is of order Θ(n1/3). Clearly,
EKruskal,≤p ⊆ EKruskal ∩ E≤p. As GKruskal,≤p := (V,EKruskal,≤p) is a minimum
spanning forest of G≤p, we get

E [diam(G≤p)] ≤ E [diam(GKruskal,≤p)] ≤ E [diam(GKruskal)] = O(n1/3).

To prove the desired bound on µ(p) we also need the following three technical
lemmas.

Lemma 6. Let G ∈ G(n, p) with pn ≥ 4 logn. Then every shortest path in G

has weight O( log2 n
n ) with probability 1−O(n−2).

Proof. Let us consider two random graphs G1, G2 ∈ G(n, 2 log n
n ) on the same

set of vertices and let G∪ be the union of G1 and G2 (union of the edge sets).
Then we get G∪ ∈ G(n, 4 log n

n − 4 log2 n
n2 ). By Lemmas 2 and 3, Gi is connected

and and diam(Gi) ≤ 2 logn with probability 1 − O(n−1) for i = 1, 2. As the
two random graphs are chosen independently, at least one of them is connected
and has diameter O(logn) with probability 1 − O(n−2). By construction, this
also holds for G∪. Therefore all G ∈ G(n, p) with pn ≥ 4 logn are connected and
have a diameter of order O(log n) with probability 1−O(n−2).

We now prove that every shortest path in G has a total weight of O( log2 n
pn )

with probability 1 − O(n−2). Let us consider the subgraph G0 = (V,E≤ 4 log n
pn

)

consisting of all vertices but only those edges of G with weight at most 4 log n
pn .

This is a random graph G(n, 4 log n
n ) with weights chosen uniformly at random

from [0, 4 log n
pn ]. As we have shown above, G0 is connected and has diameter of

orderO(log n) with probability 1−O(n−2). This implies that every shortest path
in G0 has a total weight of O( log2 n

pn ) with probability 1 − O(n−2). This upper
bound also holds with the same probability for all shortest paths in G.
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Lemma 7. Let G ∈ G(n, p). The subgraph Gsp = (V,Esp) of all edges that are
shortest paths in G fulfills ∆(Gsp) ≤ nε with probability 1−O(n−2). In particular,
|lsp| ≤ |sp|nε with probability 1−O(n−2).

Proof. Let us first consider the case pn ≥ 4 logn. We know from Lemma 6 that
all elements of Esp have weight O( log2 n

pn ) with probability 1−O(n−2). Thus, Gsp

is a subgraph of a random graph in G(n, log2 n
n ). Therefore, we can prove the first

claim of the lemma by bounding ∆(G′) for G′ ∈ G(n, log2 n
n ). Using Stirling’s

formula, the probability for a vertex in G′ to have a degree greater or equal nε

is at most (
n

nε

)(
log2 n

n

)nε

≤ (log2 n)nε

√
2πnε

(
nε

e

)nε ≤ n−εnε/2

for n large enough. Hence, the probability for ∆(G′) to be greater or equal nε

is at most

1−
(
1− n−εnε/2

)n

≤ 1−
((

1− n−εnε/2
)nεnε/2

−1
)2n1−εnε/2

≤ 1− e−2n1−εnε/2

≤ n−nε/3
,

where we used 2n1−εnε/2 ≤ n−nε/3
for n large enough and 1 + x ≤ ex for all

x ∈ R. This proves ∆(Gsp) ≤ nε with probability 1−O(n−2). The second claim
is a consequence of the fact, that each locally shortest path from vertex x to
vertex y is uniquely determined by its first and also by its last edge. Moreover,
every locally shortest path with at least 2 edges starts and ends with edges that
are shortest paths themselves. Thus, there are at most O(nε) locally shortest
paths for each shortest path with probability at least 1−O(n−2), which proves
the lemma for pn ≥ 4 logn.

Let pn < 4 logn. We consider G′ ∈ G(n, 4 log n
n ) with edge weights chosen

randomly in [0, 4 log n
pn ]. Although the weights of this graph are scaled up by the

factor 4 log n
pn , we get ∆(G′

sp
) ≤ nε with probability 1−O(n−2), since the scaling

has no effect on the subgraph G′
sp

of all shortest path edges in G′. Now the
subgraph G of all edges of G′ with weight less or equal 1 is a G(n, p)-graph with
edge weights chosen uniformly at random from [0, 4 log n

pn ]. Hence, every edge that
is a shortest path in G is also a shortest path in G′. With this we get ∆(Gsp) ≤ nε

with probability 1−O(n−2). The second claim follows with the same arguments
as in the case pn ≥ 4 logn.

Lemma 8. Let G ∈ G(n, p) with pn ≥ 1/2. For all ε > 0, µ(p) =
O
(
E [diam(G)] |sp|nε−2 / p

)
.

Proof. We consider the subgraph G′ = (V,E<1/(2pn)) containing all vertices
of G but only those edges with weight less than 1/(2pn). Then by Lemma 1
G ∈ G(n, 1/(2n)) and the largest component of G′ is of order O(logn) with
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probability 1 − O(n−2). Thus, every path in G′ contains O(logn) edges with
probability 1 − O(n−2). The expected weight of the heaviest element of lsp is
at most E [diam(G)]. Moreover, in the case p ≥ 4 log n

n the expected weight of
the heaviest element of lsp is at most O( log2 n

pn ) as shown in Lemma 6. Thus, in
expectation the largest number of edges with a weight greater or equal 1/(2pn)
in an element of lsp is of order O(E [diamG] pn) and O(log2 n) if p ≥ 4 log n

n .
This implies an upper bound of O(E [diamG] log2 n) for the maximal number
of edges with weight greater or equal 1/(2pn) in locally shortest paths of G in
expectation for all p ≥ 1/(2pn).

By Lemma 7 we know that the bound |lsp| = O(|sp|nε/2) is violated with
probability O(n−2). In this case we can estimate the number of locally shortest
paths and shortest paths in G by O(n3) (the first edge and the other endpoint
of a locally shortest path determines the path uniquely) and the length of this
paths trivially by n − 1. Since the probability for this event is O(n−2), the
contribution to the expected number of edges in the multiset of all edges of
all (locally) shortest paths is O(n2). If |lsp| = O(|sp|nε/2), the maximal num-
ber of edges with weight greater or equal 1/(2pn) in locally shortest paths of
G is O(E [diamG] log2 n) in expectation. Now in every (locally) shortest path
in G there can only be consecutive parts of edges of G′ of order O(log n) and
they must be followed by an edge with weight greater or equal 1/(2pn). Since
there can only be O(E [diamG] log2 n) of these edges in the path in expecta-
tion, the total number of edges in the longest of all (locally) shortest paths is
O(E [diamG] log3 n) in expectation. Thus, the multiset of all edges of all (lo-
cally) shortest paths contains O(|sp|E [diamG]nε/2 log3 n) edges. By Chernoff
bounds G has Θ(pn2) edges. Therefore, the average number of (locally) shortest
paths through a fixed edge is O(E [diamG] |sp|nε−2/p).

We are now well-prepared to prove the main theorem of this section. It bounds
µ(p) which is the expected number of locally shortest paths and shortest paths
passing a fixed edge.

Theorem 9. Let G ∈ G(n, p). For all ε, ε′ > 0,

(i) µ(p) = O(1) for pn < 1/2,
(ii) µ(p) = O(n2/3) for 1/2 ≤ pn ≤ 1− n−1/3,
(iii) µ(p) = O(n1+ε) for 1− n−1/3 ≤ pn ≤ 1 + n−1/3,
(iv) µ(p) = O(n4/3+ε) for 1 + n−1/3 ≤ pn ≤ 1 + ε′,
(v) µ(p) = O(nε/p) for 1 + ε′ ≤ pn.

Proof. (i) We bound µ(p) by the total number of paths passing a fixed edge. Let
us first estimate the expected number of paths of a fixed length k in G going
through a fixed edge. There are k possible positions of the fixed edge in a path
of length k. Furthermore, we can choose the remaining k − 1 vertices of such a
path in

∏k−1
i=1 (n − i) different ways. Since every e ∈

([n]
2

)
is an edge of G with

probability p, the expected number of paths in G that go through a fixed edge
is bounded above by
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n−1∑
k=1

kpk−1
k−1∏
i=1

(n− i) ≤
n−1∑
k=1

k(pn)k−1 ≤ (pn)−1
n∑

k=1

k(pn)k.

Thus, the expected number of paths in G going through a fixed edge is at most

(pn)−1
n∑

k=1

n∑
i=k

(pn)k =
n∑

k=1

(pn)k−1−(pn)n

1−pn ≤ 1−(pn)n

(1−(pn))2 ≤
1

(1−pn)2 .

Thus, µ(p) = O(1) for pn ≤ 1/2.
(ii) Using the bound in (i), we get µ(p) = O(1/(1 − pn)2) = O(n2/3) for

pn ≤ 1− n−1/3.
(iii) Applying Lemma 4, we get |sp| = O(n5/3) with probability 1−O(n−1/3)

and |SP | = O(n2) otherwise. Combining this with Lemma 8 and Lemma 5 gives
µ(p) = O(n1+ε).

(iv) By Lemma 5, the expected diameter of G is O(n1/3). Thus, Lemma 8
yields µ(p) = O(n4/3+ε).

(v) By Lemma 3, we get E [diamG] = O(log n) . Now Lemma 8 yields µ(p) =
O(nε/p).

5 Runtime Analysis

In this section we describe the runtime of our algorithm in terms of the parameter
µ(p). With this, the main result Theorem 11 is an immediate corollary of the
bounds on µ(p) from the previous section.

Theorem 10. Let G ∈ G(n, p). The expected runtime of our algorithm for a
random edge update on G is O(µ(p)nε).

Proof. To bound the runtime, we will use the quantity µ(p) which is the expected
number of locally shortest paths and shortest paths through a fixed edge e of G.
If the algorithm performs the deletion of the edge e, this is exactly the number
of paths that stop being (locally) shortest. In the case of the insertion, we get
(almost) the same picture by making a backwards analysis. Instead of the inser-
tion of e to G = (V,E) we can also investigate the deletion of e from the graph
G′ = (V,E ∪ {e}). Therefore the quantity µ(p) is also the expected number of
paths in G′ that start being (locally) shortest. The slight modification that G′

contains one edge more than G has no consequence for the order of µ(p).
We bound the runtime of all five phases separately. The algorithm is running

through the first phase, only if the considered edge e is already in the graph and
has to be deleted or updated. If this is the case, the algorithm goes through the
while loop for every locally shortest path of G that contains the edge e at most
twice, since a locally shortest path can be added to Q as a left- and as a right-
extension. The only part of the while loop with more than constant runtime is
the removing of the path πxy from the lists Pxy, L(r(πxy)), and R(�(πxy)). Since
every locally shortest path is uniquely determined by the first (respectively the
last edge), we can bound the runtime of phase 1 by O(µ(p)nε) using Lemma 7.



Average Update Times for Fully-Dynamic All-Pairs Shortest Paths 701

current number of edges m

av
g.

ru
nt

im
e

[i
n

10
−

6
s
]

time

(a) Insertion of 3000 random edges.

current number of edges m

av
g.

ru
nt

im
e

[i
n

10
−

6
s
]

time

(b) Deletion of 3000 random edges.

Fig. 2. Experimental results for the algorithm of Demetrescu and Italiano [5]. We start
with an empty graph with n = 100 vertices and insert 3000 random edges. (a) shows the
measured runtimes depending on the number of inserted edges. Analogously, (b) shows
the measured runtimes for the deletion of 3000 edges in a random order till the empty
graph is obtained again. The horizontal axes describe the current number of edges m.
The vertical axes show the measured runtimes averaged over three million runs.

The runtime of the second phase is constant. The while loop in the third phase
has an expected length of O(µ(p)). Since adding the path πxy to the priority
queue H costs O(logn), the runtime of phase 3 is O(µ(p) log n).

For the analysis of the runtime of phase 4 it is crucial to observe that every
line in the for loops as well as every other line is executed O(µ(p)) times in
expectation. Moreover, the algorithm has to add the extended paths πx′y and
πxy′ to lists of locally shortest path and the priority queue H which is done in
time O(nε) in every execution. Thus, the runtime of the algorithm in phase 4 is
O(µ(p)nε).

If the algorithm performs an insertion or an update, the set Q in phase 5
contains all shortest paths of G that stop being shortest. If the algorithm per-
forms a deletion, Q is empty. Thus, the algorithm is running through the while
loop O(µ(p)) times in expectation. The for loops are both performed O(nε/2)
times using Lemma 7 in the same way as in the beginning of this proof but with
ε/2 instead of ε. In the same way, we can bound the expected runtime of the
lines in the for loops by O(nε/2). Altogether this gives an expected runtime of
O(µ(p)nε) in phase 5.

With this we can now conclude our main result.

Theorem 11. Let R(p) denote the expected runtime for an edge update in a
graph G ∈ G(n, p). For all ε, ε′ > 0 we have shown that

(i) R(p) = O(nε) for pn < 1/2,
(ii) R(p) = O(n2/3+ε) for pn ≤ 1− n−1/3,
(iii) R(p) = O(n1+ε) for pn ≤ 1 + n−1/3,
(iv) R(p) = O(n4/3+ε) for pn ≤ 1 + ε′,
(v) R(p) = O(nε/p) for pn ≥ 1 + ε′.
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Let us give an intuition how the properties of G(n, p) change when more and
more edges are inserted and how this affects R(p). In the early stage (i) of
the random graph process, the graph consists of many small components of size
O(log n) which are trees or unicyclic. There, it is very fast to update edges. Soon
after in stage (ii), the components become larger and it becomes likely for a new
edge to connect two of them. Therefore, the expected number of new (locally)
shortest paths increases significantly. In stage (iii) and (iv) a giant component
grows and the algorithm has to update many (locally) shortest paths whenever
the giant component catches other components of the graph. In (v) the last
isolated vertex joins the giant component and the graph becomes connected.
As the process evolves, the minimum degree and the connectivity grows and it
becomes less and less likely that an inserted edge is a shortest path. Thus, also
the expected insertion costs are going down.

6 Empirical Observations

To show that the theoretically observed behavior indeed occurs in practice, we
also performed some experiments. For this, we used the original algorithm of
Demetrescu and Italiano [5] available from www.dis.uniroma1.it/∼demetres/
experim/dsp/2. As the number of locally shortest paths between any pair of
nodes has been reported to be very small [5], we assume that the experimental
performance of our algorithm described in Section 3 should be similar to that of
Demetrescu and Italiano.

We start with an empty graph with n = 100 vertices and add 3000 edges in a
random order. Figure 2(a) shows the measured runtimes per insertion averaged
over three million runs. Afterwards, we examine the opposite direction and re-
move all edges in a random order. The measured average runtimes per deletion
are shown in Figure 2(b). Note that as predicted in Theorem 11, both charts
identify the largest update complexity shortly after the critical window.
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Computing Frequency Dominators and Related
Problems
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Abstract. We consider the problem of finding frequency dominators in
a directed graph with a single source vertex and a single terminal vertex.
A vertex x is a frequency dominator of a vertex y if and only if in each
source to terminal path, the number of occurrences of x is at least equal to
the number of occurrences of y. This problem was introduced in a paper
by Lee et al. [11] in the context of dynamic program optimization, where
an efficient algorithm to compute the frequency dominance relation in
reducible graphs was given. In this paper we show that frequency domina-
tors can be efficiently computed in general directed graphs. Specifically,
we present an algorithm that computes a sparse (O(n)-space), implicit
representation of the frequency dominance relation in O(m + n) time,
where n is the number of vertices and m is the number of arcs of the
input graph. Given this representation we can report all the frequency
dominators of a vertex in time proportional to the output size, and an-
swer queries of whether a vertex x is a frequency dominator of a vertex
y in constant time. Therefore, we get the same asymptotic complexity as
for the regular dominators problem. We also show that, given our rep-
resentation of frequency dominance, we can partition the vertex set into
regions in O(n) time, such that all vertices in the same region have equal
number of appearances in any source to terminal path. The computation
of regions has applications in program optimization and parallelization.

1 Introduction

Let G = (V,A, s, t) be a flowgraph with a distinguished source vertex s and
terminal vertex t, which is a directed graph such that every vertex is reachable
from s and reaches t. The concept of frequency dominators was introduced in [11]
with an application in dynamic program optimization. Formally, vertex x is a
frequency dominator of vertex y if and only if in each s-t path, the occurrences
of x are at least as many as the occurrences of y. We will denote by fdom(y) the
set of frequency dominators of y. Frequency dominators are related to the well-
studied problem of finding dominators, which has applications in several areas [9].
A vertex x dominates a vertex y if and only if every s-y path contains x. Similarly,
a vertex x postdominates a vertex y if and only if every y-t path contains x.
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x1
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x3

x4

t

z3

z4

z2

z1

y4

y3

y2

y1

vertex y fdom(y)
s {s, x1, t}
x1 {x1}
x2 {x2}
x3 {x3}
x4 {x4}
y1 {x1, x2, x3, x4, y1, y2, y3, y4}
y2 {x2, x3, x4, y2, y3, y4}
y3 {x3, x4, y3, y4}
y4 {x4, y4}
z1 {s, x1, z1, t}
z2 {s, x1, x2, z2, t}
z3 {s, x1, x2, x3, z3, t}
z4 {s, x1, x2, x3, x4, z4, t}
t {s, x1, t}

Fig. 1. The frequency dominators of a family of reducible graphs with n = 3k + 2
vertices and m = 5k + 2 arcs. (In this figure k = 4.) For each zi, fdom(zi) contains a
subset of the xj ’s. However, no pair of xj ’s is related under fdom. Hence, any transitive
reduction of the fdom relation without Steiner nodes requires Θ(k2) arcs.

This is equivalent to stating that y dominates x in the reverse flowgraph Gr =
(V,Ar, sr, tr), where Ar = {(x, y) | (y, x) ∈ A}, sr = t, and tr = s. We will denote
by dom(y) the set of dominators of y, and by domr(y) the set of postdominators
of y.

Both the dominance and the frequency dominance relations are reflexive and
transitive, but only the former is antisymmetric. The transitive reduction of dom
is the dominator tree, which we denote by D. This tree is rooted at s and satisfies
the following property: For any two vertices x and y, x dominates y if and only if
x is an ancestor of y in D [1]. For any vertex v 
= s, the immediate dominator of
v, denoted by d(v), is the parent of v in D. It is the unique vertex that dominates
v and is dominated by all the vertices in dom(v) \ {v}. On the other hand, a
transitive reduction of fdom can have complex structure; refer to Figure 1 for an
example.

Lee et al. [11] presented an efficient algorithm for computing frequency domi-
nators in reducible graphs. A flowgraph G is reducible when the repeated appli-
cation of the following operations

(i) delete a loop (v, v);
(ii) if (v, w) is the only arc entering w 
= s delete w and replace each arc (w, x)

with (v, x),

yields a single node. Equivalently, G is reducible if every loop has a single entry
vertex from s. Reducible graphs are useful in program optimization as they
represent the control flow in structured programs, i.e., in programs that use
a restricted set of constructs, such as if-then and while-do. However, the
use of goto constructs, or the transformations performed by some optimizing
compilers can often produce irreducible graphs. Although there are techniques
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that can transform an irreducible graph to an equivalent reducible graph, it has
been shown that there exist irreducible graphs such that any equivalent reducible
graph must be exponentially larger [5]. The algorithm of Lee et al. can compute
fdom(y), for any vertex y, in O(|fdom(y)|) time, after a preprocessing phase.
This preprocessing phase consists of computing the dominators, postdominators,
and the loop structure of G. Each of these computations can be performed in
O(m + n) time [4,8], or in O(mα(m,n))1 time with simpler and more practical
algorithms [12,14].

Another concept related to frequency dominators, that has also been used in
optimizing and parallelizing compilers, is that of regions [3]. Two vertices x and
y are in the same region if and only if they appear equal number of times in any
s-t path. Hence, x and y are in the same region if and only if x ∈ fdom(y) and
y ∈ fdom(x). Regions define an equivalence relation on the flowgraph vertices,
therefore we say that x and y are equivalent if and only if they belong to the
same region. Johnson et al. [10] showed that the problem of finding regions can
be solved by computing the cycle equivalence relation: Two vertices are cycle
equivalent if and only if they belong to the same set of cycles. Cycle equivalence
for edges can be defined similarly. In [10], Johnson et al. show that vertex cycle
equivalence can be easily reduced to edge cycle equivalence in an undirected
graph. Then, they develop an O(m + n)-time algorithm, based on depth-first
search, for computing edge cycle equivalence.

1.1 Overview and Results

In Section 2 we present an efficient algorithm for computing frequency domina-
tors in general flowgraphs. This algorithm is a generalization of the algorithm of
Lee et al. for reducible graphs, and achieves the same, asymptotically optimal,
time and space bounds. Then, in Section 3, we show that the equivalence relation
can be derived from our representation of the frequency dominance relation in
O(n) time. Our main results are summarized by the next theorem.

Theorem 1. Let G = (V,A, s, t) be any flowgraph with |V | = n vertices and
|A| = m arcs. We can compute an O(n)-space representation of the frequency
dominance relation of G in O(m + n) time, such that:

– For any vertex y we can report all the frequency dominators of y in
O(|fdom(y)|) time,

– for any two vertices x and y, we can test in constant time whether x ∈
fdom(y), and

– we can compute the regions of G in O(n) time.

Some of the methods we use to obtain these results may be useful in other graph
problems related to program optimization.

Finally, in Section 4, we describe a general framework that can express the
problems we considered in Sections 2 and 3 as a type of reachability problems
1 α(m, n) is a functional inverse of Ackermann’s function and is very slow-growing

[15].
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in graphs representing transitive binary relations, and for which an efficient
reporting algorithm is required. We believe that this formulation gives rise to
questions that deserve further investigation.

1.2 Preliminaries and Notation

We assume that G is represented by adjacency lists. With this representation
it is easy to construct the adjacency list representation of the reverse flowgraph
Gr in linear-time. Given a depth-first search (DFS) tree T of G rooted at s, the
notation “v ∗→ u” means that v is an ancestor of u in T and “v +→ u” means
that v is a proper ancestor of u in T . An arc a = (u, v) in G is a DFS-tree arc
if a ∈ T , a forward arc if u

+→ v and a 
∈ T , a back arc if v
+→ u, and a cross

arc otherwise (when u and v are unrelated in T ). For any rooted tree T , we
let pT (v) denote the parent of v in T , and we let T (v) denote the subtree of T
rooted at v. Finally, for any function or set f defined on G, we denote by f r the
corresponding function or set operating on Gr.

2 Efficient Computation of the fdom Relation

First we state some useful properties of frequency dominators. As noted in
[10,11], it is convenient to assume that G contains the arc (t, s); adding this
arc does not affect the fdom relation and allows us to avoid several boundary
cases. Henceforth we assume that (t, s) ∈ A, which implies that G is strongly
connected. In particular, note that there is a cycle containing all vertices in
dom(y)∪ domr(y), for any vertex y. We also have the following characterization
of the fdom relation.

Lemma 1 ([11]). For any vertices x and y, x ∈ fdom(y) if and only if x belongs
to all cycles containing y.

Obviously, reversing the orientation of all arcs in a directed graph does not
change the set of cycles that contain a vertex. Thus, from Lemma 1 we get:

Lemma 2. For any vertex y, fdom(y) = fdomr(y).

Our algorithm will be able to identify easily a subset of fdom(y) using certain
structures that are derived from G. The remaining vertices in fdom(y) will be
found by performing the symmetric computations on Gr.

Let T be a depth-first search tree of G rooted at s. We identify the vertices by
their preorder number with respect to the DFS: v < w means that v was visited
before w. For any vertex v 
= s, the head of v is defined as

h(v) = max{u : u 
= v and there is a path in G from v to u

containing only vertices in T (u)},

and we let h(s) = null. Informally, h(v) is the deepest ancestor u of v in T such
that G contains a v-u path visiting only vertices in T (u). Note that the h function
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is well-defined since G is strongly connected. The heads define a tree H , called
the interval tree of G, where h(v) = pH(v). It follows that the vertices in each
subtree H(v) of H induce a strongly connected subgraph of G, which contains
only vertices in T (v). Tarjan [16] gave a practical algorithm for computing the
interval tree in O(mα(m,n)) time using nearest common ancestor computations.
A more complicated linear-time construction was given by Buchsbaum et al. [4].

Now we also define

ĥ(v) =

{
v, if there is a back arc entering v,

h(v), otherwise.

We say that a vertex v is special if ĥ(v) = v. The following lemma provides
necessary conditions for frequency dominance.

Lemma 3. If x ∈ fdom(y) then the following statements hold:

(a) x ∈ dom(y) ∪ domr(y),
(b) x ∈ H(ĥ(y)), and
(c) x ∈ Hr(ĥr(y)).

Proof. The proof follows directly from the definitions. For (a), consider a vertex
x that neither dominates nor postdominates y. Then, there exist two paths P
and Q, from s to y and from y to t respectively, that both avoid x. The catenation
of P and Q followed by (t, s) is a cycle that passes through y but not x, hence
x 
∈ fdom(y) by Lemma 1. In order to show (b), suppose x ∈ fdom(y) but
x 
∈ H(ĥ(y)). Since H(ĥ(y)) induces a strongly connected subgraph, there is a
cycle C passing through y that contains only vertices in H(ĥ(y)). Then, x 
∈ C
which contradicts Lemma 1. Finally, (c) is implied by (b) and Lemma 2. �

Similarly to the algorithm given in [11], our algorithm is also based on computing
dominators and postdominators. Here, however, we make explicit use of the
reverse graph and of properties of depth-first search. In particular, we will need
the following fact.

Lemma 4 ([13]). Any path from x to y with x < y contains a common ancestor
of x and y.

Now we provide sufficient conditions for frequency dominance.

Lemma 5. If w is in H(ĥ(v)) and dominates v then w is a frequency dominator
of v.

Proof. Let w ∈ dom(v) and w ∈ H(ĥ(v)). Notice that w satisfies ĥ(v) ∗→ w
∗→ v.

Therefore, the lemma is trivially true when ĥ(v) = v. Now suppose ĥ(v) = h(v).
For contradiction, assume that w is not in fdom(v). Then, Lemma 1 implies that
there is a cycle C containing v but not w. Let z be the minimum vertex on C.
Note that by Lemma 4, z is an ancestor of v. Hence, v belongs to H(z) and by
the definition of h(v) we have that z

∗→ h(v). Also, w 
= z (because w 
∈ C),
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thus z
+→ w. Now observe that the DFS-tree path from s to z followed by the

part of C from z to v is an s-v path avoiding w. This contradicts the fact that
w ∈ dom(v). �

Now, from Lemma 5 and Lemma 2 we get:

Corollary 1. Let w be vertex such that

(a) w ∈ H(ĥ(v)) and w ∈ dom(v), or
(b) w ∈ Hr(ĥr(v)) and w ∈ domr(v).

Then w is a frequency dominator of v.

It is easy to show, using Lemma 3, that the above conditions suffice to compute
frequency dominators. (See Lemma 6 below.) Note that in general dom(v) ∩
domr(v) ⊇ {v}, so several vertices may satisfy both (a) and (b) of Corollary 1.
Also, we point out that a vertex w that satisfies w ∈ domr(v) and w ∈ H(ĥ(v))
may not be a frequency dominator of v. (Consider w = e and v = c in Figure 2
for an example.)

Preprocessing. In the preprocessing phase we compute the interval tree H , the
dominator tree D, and the ĥ function in G. We also compute the corresponding
structures in Gr. For the query algorithm we need to test in constant time if two
vertices are related in one of the trees that we have computed. To that end, we
assign to the vertices in each tree T ∈ {H,Hr, D,Dr} a preorder and a postorder
number2, denoted by preT and postT respectively. Then x is an ancestor of y in
T if and only if preT (x) ≤ preT (y) and postT (x) ≥ postT (y). Calculating these
numbers takes O(n) time.

Queries. To find fdom(y) we report y and all the proper ancestors x of y in D

such that x is a descendant of ĥ(y) in H . To that end, we visit the dominators
of y starting from d(y) and moving towards s. At each visited vertex x we test
whether x ∈ H(ĥ(y)), which can be done in constant time using the preH and
postH numberings. We show below that we can stop the reporting process as
soon as we find a dominator of y not in H(ĥ(y)). (See Lemma 6.) Similarly, we
report all the proper ancestors x of y in Dr such that x is a descendant of ĥr(y)
in Hr. Therefore, we can answer the reporting query in O(|fdom(y)|) time.

To test whether x ∈ fdom(y) in constant time, it suffices to test if condition
(a) or condition (b) of Corollary 1 holds. Again this is easily accomplished with
the use of the preorder and postorder numbers for D and Dr.

Figure 2 illustrates the computations performed by our algorithm. Next, we
show that the algorithm finds all the frequency dominators of a query vertex.

Lemma 6. The query algorithm is correct.
2 A preorder traversal of a tree visits a vertex before visiting its descendants; a pos-

torder traversal visits a vertex after visiting all its descendants. The corresponding
numberings are produced by assigning number i to the ith visited vertex.



710 L. Georgiadis

G

d e t

f

g h
b

a

c

e

t

g

h

s

d

f

D

s

a b

c

d

e

t

f

g

h

H

ba

s

c

g

fa b c

e

c

a

s

t

b

d

f

g

h

t

e

a

b

c

d g

f

h

s

t

e d

s h

Gr HrDr

vertex y dom(y) ∩ H(ĥ(y)) domr(y) ∩ Hr(ĥr(y)) fdom(y) region of y

s {s} {s} {s} {s}
a {s, a} {a, b, c, d} {s, a, b, c, d} {a}
b {b} {b, c, d} {b, c, d} {b, c, d}
c {b, c} {c, d} {b, c, d} {b, c, d}
d {b, c, d} {d} {b, c, d} {b, c, d}
e {e} {e, t} {e, t} {e, t}
f {f} {f, g} {f, g} {f, g}
g {f, g} {g} {f, g} {f, g}
h {f, g, h} {f, g, h} {f, g, h} {h}
t {e, t} {t} {e, t} {e, t}

Fig. 2. Computation of the fdom relation using dominator trees and interval trees. The
DFS-tree arcs of G and Gr are solid and remaining arcs are dashed. Special vertices
are filled in the interval trees.
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Proof. From Corollary 1 we have that all the vertices that are reported during
a query for fdom(y) are indeed frequency dominators of y. Now we argue that
any frequency dominator x of y that is not found using condition (a) of Corol-
lary 1 is found using condition (b). In this case, Lemma 3(a) implies that x is a
postdominator of y. This fact combined with Lemma 3(c) means that condition
(b) of Corollary 1 applies.

We also need to argue that we can stop the search procedure for the vertices
in fdom(y) as soon as we find the deepest dominator of y that is not in H(ĥ(y)).
To that end, note that for any vertex z such that ĥ(y) ∗→ z

∗→ y, z ∈ H(ĥ(y)).
Therefore, if x ∈ dom(y) and x 
∈ H(ĥ(y)) then x

+→ ĥ(y), which proves our
claim. �

Strict frequency dominance. Let us call vertex x a strict frequency dominator of
vertex y if and only if in each s-t path containing y, the number of appearances
of x is strictly greater than the number of appearances of y. E.g., in Figure
2, f and g are strict frequency dominators of h. We can show that such an x
must satisfy both conditions (a) and (b) of Corollary 1. Hence, with our fdom
structure we can test if x is a strict frequency dominator of y in constant time,
and report all the strict frequency dominators of y in O(|fdom(y)|) time. Note,
however, that this bound is not proportional to the size of the output.

Inverse frequency dominance. Let fdom−1(x) denote the set of vertices y such
that x ∈ fdom(y). The problem of reporting fdom−1(x) can be reduced to the
following task. We are given an arbitrary rooted tree T with n vertices, where
each vertex x is assigned an integer label �(x) in [1, n], and we wish to support
the following type of queries: For a vertex x and a label j, report all vertices
y ∈ T (x) with �(y) ≥ j. Let k be the number of such vertices. We can achieve an
O(k log n) query time (using O(n) space), thus getting an O(|fdom−1(x)| log n)
bound for reporting fdom−1(x).

3 Computing Regions

Recall that two vertices x and y are equivalent if and only if they appear equal
number of times in any s-t path. Hence, x and y are equivalent if and only if
x ∈ fdom(y) and y ∈ fdom(x). As in Section 2, we assume that G contains the
arc (t, s). Then, by Lemma 1 it follows that x and y are equivalent if and only
if they appear in the same set of cycles.

The structure of Section 2 clearly supports constant time queries that ask
if two vertices are equivalent. Therefore, it is also straightforward to find the
equivalence class of a given vertex y in O(|fdom(y)|) time. Still, with this method
we can only guarantee an O(n2) bound for computing the complete equivalence
relation for all vertices (i.e., the regions of G). In this section we show how to
achieve this computation in overall O(n) time, with a somewhat more involved
manipulation of the structure of Section 2.
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We start with a technical lemma that relates the structure of the dominator
tree to that of the interval tree.

Lemma 7. Let v be any vertex other than s. Then, all vertices w in H(v) such
that d(w) +→ v have the same immediate dominator x = d(v).

Proof. Let x be the minimum vertex that is an immediate dominator of any
vertex in H(v). Since v 
= s, d(v) is a proper ancestor of v and so x

+→ v. Let w
be a vertex such that d(w) = x. Then, w is not dominated by any vertex z that
satisfies x

+→ z
+→ w, thus for each such z there exists a path P from x to w that

avoids z. Also, since the vertices in H(v) induce a strongly connected subgraph,
then for any y ∈ H(v) there is a path Q from w to y that contains only vertices
in H(v). Therefore, the catenation of P and Q is a path from x to y avoiding z.
This implies that either d(y) = x or d(y) ∈ H(v). Setting y = v gives d(v) = x. �

From the above lemma we immediately get:

Corollary 2. The subgraph of D induced by the vertices in H(v) and d(v) is a
tree rooted at d(v).

We begin with an initial partition of the vertices, which after a refinement process
(described in Section 3.1) will produce the actual equivalence classes. Our first
step is to label each vertex w in D with ĥ(w). Then, each vertex has a unique
label and two vertices are equivalent only if they have the same label. Let L(v)
denote the set of vertices labeled with v. Note that L(v) = ∅ if v is not special;
otherwise L(v) consists of v and the children of v in H that are not special.
Our goal is to compute the equivalent vertices for each L(v) separately, using
information from the dominator tree D. To that end, let w be any vertex in L(v).
We define d̂(w) to be the nearest proper ancestor z of w in D with label v. If such
a z does not exist for w, then we set d̂(w) = d(v). A simple and efficient way to
compute the d̂ function is by using path compression: Starting from the parent
of w in D, we follow parent pointers until we reach a vertex z which is either the
first vertex in L(v) or d(v). Then, we set d̂(w) = z and make z the parent of all
the visited vertices. In order to guarantee that this process returns the correct
d̂(w) for all w, we need to process the sets L(v) in an appropriate order. We
argue that it suffices to process the special vertices by decreasing depth in H .

Lemma 8. Suppose that for each special vertex v, we process L(v) after we have
processed L(u) for all special vertices u ∈ H(v). Then, the path compression
algorithm computes the d̂ function correctly.

Proof. Let v be the currently processed special vertex. We denote by D̂ the
dominator tree after the changes due to the path compressions performed so far,
just before processing v. Let u be a special vertex in H(v). Then Corollary 2
implies that when the path compression algorithm was applied to L(u), only
vertices in H(u) ∪ {d(u)} were visited. Moreover, Lemma 7 and the fact that
H(u) ⊂ H(v) imply d(v) ∗→ d(u). Also note that the parent of d(u) did not
change. Now, since v is an ancestor of u in H , there is no vertex in H(u) with
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label v. Hence, for any y ∈ L(v) and x ∈ L(v) ∪ {d(v)}, x is an ancestor of y in
D̂ if and only if it is an ancestor of y in D. The claim follows. �

The worst-case running time of this algorithm is O(n logn) [17], but in practice
it is expected to be linear [9]. We can get an actual O(n) bound for computing
the d̂ function via a simple reduction to the marked ancestors problem [2]. In the
marked ancestors problem we are given a rooted tree T , the vertices of which
can be either marked or unmarked. We wish to support the following operations:
mark or unmark a given vertex, and find the nearest marked ancestor of a query
vertex. In our case T = D and initially all vertices are marked. Again we process
the special vertices by decreasing depth in H . When we process a special vertex
v we perform a nearest marked ancestor query for all w ∈ L(v); we set d̂(w)
to be the answer to such a query for w. Then we unmark all vertices in L(v).
It follows from similar arguments as in the proof of Lemma 8 that this process
computes the correct d̂ function. Also, since we never mark any vertices, this
process corresponds to a special case of the disjoint set union (DSU) problem,
for which the result of Gabow and Tarjan [7] gives constant amortized time
complexity per operation. Since we perform two DSU operations per vertex, the
O(n) time bound follows.

Now it remains to show how to compute the equivalence classes for each L(v)
using the d̂ function.

3.1 Equivalence Classes in L(v)

Let Dv be the graph with vertex set L(v)∪{d(v)} and edge set {(d̂(w), w) | w ∈
L(v)}. From Corollary 2 we have that Dv is a tree rooted at d(v). Let D′

v be
the forest that results after removing d(v) and its adjacent edges from Dv; the
trees in this forest are rooted at the children of d(v) in Dv. Let w be any vertex
in D′

v. Note that by condition (a) of Corollary 1 we have that all ancestors of
w in D′

v are in fdom(w). The next lemma allows us to compute the equivalence
classes in each tree of D′

v separately.

Lemma 9. Let x be a vertex in D, and let x1 and x2 be two distinct children
of x in D. Then no pair of vertices y1 ∈ D(x1) and y2 ∈ D(x2) are equivalent.
Also x can be equivalent with at most one of y1 and y2.

Proof. Let y and z be two equivalent vertices. Then y ∈ fdom(z) and z ∈
fdom(y). Since the dom relation is antisymmetric, Lemma 3(a) implies (with
no loss of generality) that y ∈ dom(z) and z ∈ domr(y). Hence, the vertices y1
and y2, defined in the statement of the lemma, cannot be equivalent. So, they
also cannot be both equivalent with x. �

Now we can consider a single tree T in D′
v. Lemma 9 also implies that only

vertices with ancestor-descendant relation in T can be equivalent. Our plan is
to process T bottom-up, and at each vertex w of T test if w ∈ fdom(pT (w)). If
the outcome of the test is true then we add pT (w) to the same equivalence class
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as w, since we already know that pT (w) ∈ fdom(w). If, on the other hand, the
outcome of the test is false, then the next lemma infers that no other vertex can
be in the same equivalence class with w.

Lemma 10. Let T be a tree of D′
v, and let w be a non-root vertex in T . If

w is not equivalent with pT (w) then w is not equivalent with any of its proper
ancestors in T .

Proof. For contradiction, assume w is equivalent with a proper ancestor z of
u = pT (w) in T . Notice that v

∗→ z
+→ u. Then, we either have a cycle C−u

through w and z but not u, or a cycle Cu through u but not w and z. The
first case contradicts the fact that u ∈ fdom(w). In the second case, let x be the
minimum vertex on Cu. From Lemma 4 and the fact that u ∈ L(v), we have
x

∗→ v
∗→ z. But then, the DFS-tree path from x to u, followed by the part of Cu

from u to x, forms a cycle through z that does not contain w. This contradicts
the fact that w and z are equivalent. �

4 A General Framework

We can show that the problems we have considered in this paper can be formu-
lated in more general terms as follows. We are given a collection G of k directed
graphs Gi = (Vi, Ai), 1 ≤ i ≤ k, where each graph Gi represents a transitive
binary relation Ri over a set of elements U ⊆ Vi. That is, for any a, b ∈ U , we
have aRib if and only if b is reachable from a in Gi. Let R be the relation defined
by: aRb if and only if aRib for all i ∈ {1, . . . , k}. I.e., b is reachable from a in all
graphs in G. (Note that R is also transitive.) For instance, consider the relation
that is defined by the pairs (a, b) of vertices of a directed graph, such that a is
both a dominator and a postdominator of b. In this case we have G = {D,Dr}
(where the edges of the dominator trees are directed from parent to child).

Our goal is to find an efficient representation of R with a data structure that,
for any given b ∈ U , can report fast all elements a satisfying aRb. Another
related problem is to bound the combinatorial complexity of R, i.e., the size of
a directed graph G = (V,A), with U ⊆ V , such that for any a, b ∈ U , aRb if and
only if b is reachable from a in G. Some interesting results can be obtained for
several special cases. For instance, in the simple case where k = 2 and G1 and
G2 are (directed) paths, it can be shown that the size of G is O(n log n), and
moreover that there exist paths that force any G to have Ω(n logn) size [18].
On the other hand, we can represent R with a Cartesian tree in O(n) space,
and answer reporting queries in time proportional to the number of reported
elements [6].
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Computing Best Swaps in
Optimal Tree Spanners�
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Abstract. In a densely connected communication network, represented
by a graph G with nonnegative edge-weights, it is often advantageous to
route all communication on a sparse, spanning subnetwork, typically a
spanning tree of G. With the communication overhead in mind, we con-
sider a spanning tree T of G which guarantees that for any two nodes,
their distance in T is at most k times their distance in G, where k, called
the stretch, is as small as possible. Such a spanning tree which minimizes
the stretch is called an optimal tree spanner, and it can be used for effi-
cient routing. However, for a communication tree, the failure of an edge
is catastrophic; it disconnects the tree. Functionality can be restored by
connecting both parts of the tree with another edge, while leaving the
two parts themselves untouched. In situations where the failure can be
repaired rapidly, such a quick fix is preferred over the recomputation of
an entirely new optimal tree spanner, because it is much closer to the
previous solution and hence requires far fewer adjustments in the rout-
ing scheme. We are therefore interested in the problem of finding for
any possibly failing edge in the spanner T a best swap edge to replace
it. The objective here is naturally to minimize the stretch of the new
tree. We show how all these best swap edges can be computed in to-
tal time O(m2 log n) in graphs with arbitrary nonnegative edge weights.
For graphs with unit weight edges (also called unweighted graphs), we
present an O(n3) time algorithm. Furthermore, we present a distributed
algorithm for computing the best swap for each edge in the spanner.

1 Introduction

In a typical communication network, there are often more links (i.e., communica-
tion channels) available than what is useful for performing most computations.
The presence of these additional links makes it possible to deal with failures in
the network. However, at any given time, only a subset of the links are actually
used for communication. For efficiency reasons, it is beneficial to maintain such a
sub-network and route all communication through this subnet. We represent the
original network as a connected, undirected graph G = (V,E), and the subnet is
a spanning tree T of this graph G. Instead of using any arbitrary spanning tree of
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G, we prefer one which has certain desirable properties supporting the required
computations. In this paper, we measure the overhead for communication as a
result of using the subnet T instead of the original network G as the largest
multiplicative increase in distance that any pair of nodes experiences. Thus, we
use a tree T which minimizes the maximum stretch between any two nodes in
T , where the stretch between nodes a, b ∈ T is the ratio of their distance in T
over their distance in G. Such a tree is called an optimal tree spanner of G. Tree
spanners are used for routing in communication networks because they achieve
a good tradeoff between the lengths of communication paths and the sizes of
routing tables needed [15].

A critical problem with which we are confronted in this context is what hap-
pens when one of the links, say edge e ∈ T fails, thereby disconnecting the tree.
There are at least two possible (and extreme) solutions to this: (1) recomputing
an entirely new optimal tree spanner for G − e, or (2) replacing just the failing
edge e by another edge (called a swap edge) that connects the two disconnected
parts of T − e in a best possible way, i.e., so that the stretch of the resulting
tree is as small as possible. For temporary network failures, the second approach
is much better suited than the first, because it is more efficient to use a swap
edge for the duration of the failure, so that we can quickly revert back to the
original spanner T , once the fault has been repaired. Furthermore, this approach
needs only a very small adjustment of routing tables and has therefore attracted
research attention in recent years for simpler spanning trees, under the name
of “on-the-fly rerouting” [6, 8, 10]. As an aside, note also that an entirely new
optimal tree spanner might not only require a total replacement of all routing
table entries, but is in addition NP-hard to find.

When choosing a swap edge for a failing edge e, it is natural to use the same
criterion as before, that is, minimizing the stretch. We always measure the stretch
of a tree with respect to distances in the original graph G, and not with respect
to distances in the (transient) fault-free subgraph G− e1. Interestingly enough,
by merely going for the best swap, for unweighted graphs we are guaranteed to
find a tree that is quite good also in comparison with an entirely new optimal
tree spanner: We show that the stretch of a new tree T ′ obtained by adding a
best swap edge is at most twice that of an optimal tree spanner of G− e (again,
measured w.r.t. distances in G). In order to quickly recover from an arbitrary
edge failure, we pre-compute the best swap edge for each possible failing edge.
The problem we consider in this paper is that of efficiently computing for every
edge in the tree T a best swap edge. This All-Best-Swaps (ABS) problem has
been studied for the cases when the tree T is a minimum spanning tree (MST),
a shortest paths tree (SPT), or a minimum diameter spanning tree (MDST),
with the corresponding different optimization criteria. Our paper is the first one
to study the problem of finding all best swaps for an optimal tree spanner. This
problem appears to be considerably more difficult than the previously studied
ones; none of the techniques used in earlier studies are applicable to our problem.

1 Note that this definition for the stretch of a tree is an upper bound for the stretch
measured with respect to G − e.
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Our Contributions. We first present and analyze a brute-force algorithm for
solving the problem in Section 2. This algorithm requires O(m2n) time for a
graph having n vertices and m edges. In Section 3, we describe a more efficient
algorithm that reduces the time complexity to O(m2 logn) and requires O(m)
space. We also present an O(n3) time and O(n2) space solution for unweighted
graphs in Section 4. Finally, in Section 5, we show how to compute all the best
swaps of a tree spanner in a distributed fashion. Our distributed algorithm solves
the problem in O(D) time with a communication cost of O(n∗ logn), where D
is the diameter of T and n∗ is the size of the transitive closure of T . Due to lack
of space, some details of our results are omitted and can be found in [3].

Related Work. The concept of graph spanners was introduced in [14] where
the authors used it to construct good synchronizers for communication networks.
Peleg and Upfal [15] showed that using spanners as a subnet for routing helps
in optimizing both the route lengths and the space required for storing routing
information. Graph spanners (and in particular sparse spanners) are useful in
many applications such as designing communication networks, distributed sys-
tems, parallel computers and also in motion planning [2].

The problem of finding a tree spanner that minimizes the maximum stretch,
called the MMST problem, was shown to be NP-hard [2]. It can be approximated
with ratio O(log n) in unweighted graphs [5].

As mentioned before, the All-Best-Swaps problem has been studied earlier
for different optimization criteria, where the original tree is either a minimum
spanning tree (MST) or a shortest paths tree (SPT) or a minimum diameter
spanning tree (MDST). For a MST, all the best swap edges can be found in
O(m) time [4]. When the original tree is a SPT and the objective is minimizing
the (maximum or total) distance from a fixed root, the ABS problem has been
solved in O(n2) time [12]. While these solutions are centralized, there also exist
distributed solutions for computing best swaps in both the SPT [8] and the
MST [7], where the efficiency is measured in terms of the communication cost in
performing the computation. For minimum spanning trees, a stronger version of
the problem was studied in [7] where the failures were assumed to occur at the
nodes of the network, thereby disabling several edges at the same time.

In the case of minimum diameter spanning trees (MDST), there exists a cen-
tralized solution [9] that requires O(m log n) time and O(m) space. The distrib-
uted version of the problem was solved in [10] using O(max{n∗,m}) messages
of constant size, where n∗ is the size of the transitive closure of the tree, when
the edges are directed towards the node initiating the computation.

2 Computing All Best Swaps

2.1 Some Definitions and Properties

We use the following definitions and notations throughout this paper.

1. A communication network is a 2-edge-connected, undirected graph G =
(V,E), with n = |V | vertices and m = |E| edges. Each edge e ∈ E has
a non-negative real length |e|.
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2. The length |P| of a path P = 〈p1, . . . , pr〉 is the sum of the lengths of its
edges, and the distance dH(x, y) between any two vertices x, y in a graph H
is the length of a shortest path in H between x and y.

3. The stretch of a spanning tree T of G is

max
x,y∈V

{dT (x, y)/dG(x, y)}

An optimal tree spanner is a spanning tree with minimum stretch.
4. We often consider a spanning tree T to be rooted at some node u. For each

node x 
= u, we then denote the parent of x by p(x) and the set of its children
by C(x). Furthermore, let Tx = (V (Tx), E(Tx)) be the subtree of T rooted
at x, including x.

5. The removal of any edge e = (x, y) from T partitions the spanning tree into
two disjoint trees T x and T y, where T x contains node x and T y contains y. A
swap edge f for e is any edge in E\ET that (re-)connects T x and T y, i.e., for
which Te/f := (V,ET \{e}∪{f}) is a spanning tree of G−e := (V,E\{e}). Let
S(e) be the set of swap edges for e. A best swap edge for e is any edge f ∈ S(e)
for which the stretch of Te/f , defined as maxx,y∈V {dTe/f

(x, y)/dG(x, y)}, is
minimum. Any edge f ∈ E\ET is called a candidate swap edge, as it is a
swap edge for at least one edge in T .

6. The All-Best-Swaps problem for a given graph G and a given optimal tree
spanner T of G consists of finding for every edge e ∈ ET a best swap edge.

The following property simplifies the computation of the stretch for a given swap
edge f with respect to a given failing edge e:

Observation 1 (follows from Lemma 16.1.1 in [13]). Let G = (V,E) be a
weighted, undirected graph and let T be an optimal tree spanner of G with stretch
k. Consider the spanning tree Te/f which results in deleting edge e from T and
inserting f instead. Let a, b ∈ V be two non-adjacent nodes in G, i.e., (a, b) /∈ E,
whose stretch in Te/f is k′ > k. Then, there exists an edge (x, y) ∈ E such that
the stretch of the pair (x, y) in Te/f is at least k′.

This observation motivates the following concepts, which we use for the descrip-
tion of our algorithms:

1. Each pair of nodes a, b with (a, b) ∈ E is called a stretch pair. A stretch pair
g = (a, b) is relevant for measuring the stretch of any swap edge replacing a
given failing edge e if the cycle which g forms with T contains the edge e (in
other words, if g is also a swap edge for e).

2. For any edge e ∈ T and any swap edge f = (u, v) ∈ E\ET for e, the stretch
of a relevant stretch pair (a, b) is the ratio of the distance between a and b
in Te/f , over the distance between them in G (i.e. dTe/f

(a, b) / dG(a, b)). We
can then express the stretch of Te/f as the maximum over the stretches of
all the stretch pairs which are relevant for f replacing e.
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Fig. 1. An example showing that minimizing detour length does not minimize the
stretch: On the left side, the 2-edge-connected graph G is shown, and on the right side
the given tree spanner with stretch 8 is shown. Assuming that all edges have equal
weight, the swap edge f minimizes the stretch to the value 9. However, the swap edge
minimizing the detour length is g, which yields a stretch of 10 (attained by the stretch
pair (a, b)), worse than choosing swap edge f .

2.2 Naive Approach

To compute the best swap edge for an edge e ∈ T , we need to compare all possible
candidate swap edges that are relevant for the failing edge e. Unfortunately, there
is no straightforward way of selecting the best among these candidates without
evaluating each possible candidate. A simple trick such as choosing the swap
edge minimizing the detour around the failure does not always give the optimal
solution. For instance, see the counter-example shown in Fig. 1 (This example
can be generalized to obtain an arbitrarily large difference between the stretch
for the best swap f and the minimum detour edge g.)

The brute-force method for solving the All-Best-Swaps problem in a tree
spanner is to compute the stretch of Te/f for every edge pair (e, f) where e ∈ T
and f is a candidate swap edge for replacing edge e. There are O(nm) such pairs
and for each pair (e, f), the stretch of the tree Te/f can be computed in O(m)
time due to the following lemma.

Lemma 1. After preprocessing in time O(mn + n2 logn), for any failing edge
e ∈ ET , swap edge f ∈ E\ET , and relevant stretch pair (u, v), the stretch of
(u, v) in Te/f can be computed in O(1) time.

The following preprocessing is required for the above computation. First we
obtain distances between all pairs of nodes in G in time O(nm+n2 logn), using
the standard “all-pairs shortest paths” algorithm. Next, we root the tree T at
an arbitrary node r and compute the “to-root” distance dT (r, v) for each node
v ∈ V (G), with a single pre-order traversal of T . Finally we construct a data
structure which provides the nearest common ancestor of any two given nodes
in constant time. (Such a data structure can be computed in O(n) time, for
example using the method described in [11].)



Computing Best Swaps in Optimal Tree Spanners 721

After the preprocessing, we consider each relevant stretch pair (u, v), i.e. each
(u, v) ∈ E\ET where u and v lie on different sides of the failing edge2. For
each such pair (u, v) we have dTe/f

(u, v) = dT (u, p) + |f | + dT (q, v). where f =
(p, q) and p lies on u’s side of the cut induced by e. In general, dT (u, p) =
dT (v, nca(u, p)) + dT (p, nca(u, p)). Both of these two terms can be computed as
the absolute difference between the “to-root” distance of the two nodes involved.
To summarize, dTe/f

(u, v) and thus, the stretch of (u, v) can be computed in
constant time, for each of the O(m) relevant stretch pairs, for a particular e and
f . This implies the following:

Theorem 1. The All-Best-Swaps problem in a tree spanner can be solved in
O(nm2) time.

In the following, we present some techniques to reduce this time complexity.

3 An O(m2 log n) Time Solution for Weighted Graphs

In the following, we describe an algorithm which computes all best swap edges
of a tree spanner in O(m2 logn) time and O(m + n) space.

f

e1

e2

ek
u = d1

v = dk+1

d2

d3

dk

T1

T2 T3

Tk

Tk+1

Fig. 2. The cycle that a non-tree edge f forms with the given spanning tree

The idea of the algorithm (called BestSwaps) is sketched in the following. We
consider each potential swap edge f ∈ E\ET separately, focusing on the cycle
which f = (u, v) forms with T (see Fig. 2). This cycle consists of the edges
e1, e2, . . . ek which form a path in T . Note that all nodes of V which are not
on the path in T from u = d1 to v = dk+1 lie in some subtree Ti of T which is
rooted at node di. For a given failing edge ei = (di, di+1) for which f is a relevant
swap edge, the set of relevant stretch pairs contain all pairs(edges) where one
endpoint lies in some tree attached to any of d1, . . . , di, and the other endpoint
lies in some tree attached to any of di+1, . . . , dk+1. We associate with each node
the index i of the subtree Ti containing it. For any edge (a, b) ∈ E \ ET , this
defines an order of the endpoints: we say that a is the lower endpoint if its index
is smaller than the index of b. In order to evaluate f as a potential swap edge,
2 This can be checked using a “preorder/inverted preorder” labelling. For details, see

e.g. [8], Section 3.2.
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we need to compute the stretch for every relevant stretch pair with respect to f
and some failing edge ei. Notice that irrespective of the failing edge, any relevant
stretch pair for f , would be an edge (a, b) ∈ E \ ET where the endpoints a and
b would have different indices. We maintain a data structure H described below
which stores these relevant stretch pairs.

We consider the potential failing edges e1, e2, . . . , ek, in that order and evalu-
ate f as potential best swap with respect to each ei in turn. To that end, observe
the following: if S(ei−1) is the set of relevant stretch pairs when considering f
as a swap for ei−1, then S(ei), the set of relevant stretch pairs when considering
f as a swap for ei, is S(ei) =

(
S(ei−1) ∪ Starti

)
\ Endi, where Starti is the

set of stretch pairs whose lower endpoint is di, and Endi is the set of stretch
pairs whose upper endpoint is di. We store the set S(ei) in our data structure
H and update it as we move from ei to ei+1. To compute S(ei) from S(ei−1),
all stretch pairs that become relevant are added to H and all stretch pairs that
become irrelevant are deleted from H . The data structure H we use to store
the set S(ei) can be implemented as a priority queue (or heap) where priority is
defined by the stretch value. The largest element in H yields the worst stretch
pair for f replacing ei. We simply check whether this value is smaller than the
stretch of the current best swap edge for ei (we maintain these in a separate
data structure) and update the current swap edge for ei if required. Once we
have repeated the above process for each edge f ∈ E \ET , we have obtained for
each edge in T a best swap edge. We have:

Theorem 2. The Algorithm BestSwaps computes all the best swap edges of a
tree spanner in O(m2 logn) time and using O(m) space.

4 An O(n3) Time Solution for Unweighted Graphs

In this section we consider a dynamic programming approach for computing all
best swaps in an unweighted graph. We compute the best swap edge for each
of the n − 1 edges of T in a separate computation, each requiring O(n2) time
and O(n2) space. For each failing edge e = (l, r), we root the two subtrees of
T − e, denoted by T l (for “left”) and T r (for “right”), at the nodes l and r,
respectively. Recall that by Observation 1, the stretch of a swap edge f = (a, b)
is obtained at some stretch pair x, y, whose stretch is dTe/f

(x, y)/dG(x, y). In
unweighted graphs, dG(x, y) = 1 and hence the maximum stretch is obtained
by the stretch pair x, y for which dTe/f

(x, y) is maximum3. Furthermore, for
a, x ∈ T l and b, y ∈ T r we have dTe/f

(x, y) = dTe/f
(x, a) + |(a, b)|+ dTe/f

(b, y) =
dT−e(x, a)+ |(x, y)|+dT−e(b, y). Therefore, the stretch of a swap edge f is equal
to the length of a longest simple path from a to b in G, using only edges of
T − e plus either exactly one candidate swap edge (x, y) ∈ E\ET , or the edge
e 4. In the following, we call paths of this nature the stretch paths of the node
3 Recall that any stretch pair’s endpoints are by definition connected by an edge in G.
4 We have to include e here because the stretch is measured with respect to G, not

with respect to G − e.
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pair a, b. In our approach, we compute the length of a longest stretch path for
each of the O(n2) node pairs a, b, even for those which are not linked by an
edge in G. It turns out that by partitioning the set of all stretch paths into nine
different types, and by computing the length of the longest stretch paths of a
particular type for each node pair a, b in a suitable order, all these lengths can
be computed in O(n2) time by dynamic programming. That is, the length of
a longest stretch path of a type i for a given node pair a, b can be computed
in constant time, given only information that was previously computed. In the
following, we describe this approach in detail.

The type of a stretch path P depends on which of the edges incident to a ∈ T l

and b ∈ T r it includes. If P contains the edge (a, p(a)), we say it goes up on
the left side. If P contains an edge (a, q) for some q ∈ C(a), we say it goes
down on the left side. Furthermore, if P uses a candidate swap edge incident to
a (and hence does not contain any other edge from T l), we say it stays at a.
The corresponding definitions hold for the right side of stretch paths. Hence, we
have the following nine types of paths (where the first word corresponds to the
left side of the path, and the second to the right side): Stay-Stay, Stay-Down,
Down-Stay, Stay-Up, Up-Stay, Down-Down, Down-Up, Up-Down, Up-Up. For each
TypeA-TypeB and each node pair a, b, we denote by TypeA-TypeB(a, b) the length
of a longest stretch path from a to b of type TypeA-TypeB. If no stretch path from
a to b of type TypeA-TypeB exists, then we define TypeA-TypeB(a, b) := −∞.

We compute the longest path of each type with an inductive computation
(dynamic programming) requiring O(n2) time. To that end, we first explain the
necessary recursive equations. We start with Stay-Stay paths: for a given node
pair a, b, the only possible path of that type is composed of the edge (a, b) (if
present). Thus, we have

Stay-Stay(a, b) =
{

1 if (a, b) ∈ E\ET

−∞ otherwise.

Clearly, Stay-Stay(a, b) for all a, b ∈ V can be obtained in O(n2) time.
The types Stay-Down, Down-Stay, Stay-Up and Up-Stay satisfy simple recur-

sive equations, and can be obtained in O(n2) time as well. Due to lack of space,
we omit these equations here. Consider now a Down-Down stretch path from a to
b (see Fig. 3(i)). We have:

Down-Down(a, b) = 1 + max
{

max
q∈C(a)

{Stay-Down(q, b), Down-Down(q, b)},

max
q′∈C(b)

{Down-Stay(a, q′), Down-Down(a, q′)}
}
.

In order to write a dynamic program corresponding to this recursion, the node
pairs a, b must be ordered such that both the a’s and the b’s occur in a postorder
(note that this is easily possible). Hence, Down-Down(a, b) for all a, b ∈ V can be
computed in O(n2) time.
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a b
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2 q′
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p(b)
p(p(b))
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1 q′
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p(a)

p(p(a))

(iii)

Fig. 3. Three of the possible stretch path types of the node pair a, b: (i) Down-Down,
(ii) Down-Up, (iii) Up-Up

Next, let us focus on the Down-Up paths (see Fig. 3(ii)). Here, we have

Down-Up(a, b) = max
{

1 + Down-Stay(a, p(b)), 1 + Down-Up(a, p(b)),

2 + max
q′∈C(p(b)),q′ �=b

Down-Down(a, q′)
}
.

We omit the equation for Up-Down(a, b), which is completely symmetric. By
considering all pairs a, b ∈ V such that the b’s occur in preorder, Down-Up(a, b)
and Up-Down(a, p(b)) is obtained in O(n2) time.

Finally, the length of a longest Up-Up stretch path for a, b can be expressed
as (see Fig. 3(iii))

Up-Up(a, b) = max
{

1 + Up-Stay(a, p(b)), 1 + Up-Up(a, p(b)),

1 + Stay-Up(p(a), b), 1 + Up-Up(p(a), b),

2 + max
q′∈C(p(b)),q′ �=b

Up-Down(a, q′), 2 + max
q∈C(p(a)),q �=a

Down-Up(q, b)
}
.

To obtain Up-Up(a, b) for all a, b ∈ V in O(n2) time, the pairs are considered in an
order in which both the a’s and the b’s occur in preorder. Each of these dynamic
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programs fills an (n× n)-matrix, and thus needs O(n2) space. As mentioned in
the beginning, we repeat these computations for each of the O(n) edges e ∈ ET .
Then, the algorithm computes, for each swap edge candidate f = (u, v), the
stretch of Te/f as

max
{

Stay-Stay(u, v), Stay-Down(u, v), Down-Stay(u, v),

Stay-Up(u, v), Up-Stay(u, v), Down-Down(u, v),

Down-Up(u, v), Up-Down(u, v), Up-Up(u, v)
}
,

in constant time. After each computation, we can delete the computed matrix
from memory, only storing the best swap edge found for the considered failing
edge e. Thus, the total space complexity of our approach is O(n2). In short, we
have the following:

Theorem 3. In unweighted graphs, all best swap edges of a tree spanner can be
computed in O(n3) time and O(n2) space.

5 A Distributed Solution to All-Best-Swaps for Spanners

In this section, we consider the scenario when each node in the network has
only local information about the network. We are interested in a distributed
algorithm which enables each node to compute the information required by it
to modify its local routing table whenever any of the edges in T fails. More
specifically, a node v having incident edges e1, e2, . . . et ∈ ET must compute the
best swap edges f1, f2, . . . ft corresponding to these incident edges. Note that
the information about the best swap edge for any particular edge e ∈ T , needs
to be stored only at the endpoints of e [10]. For the following, let n∗ denote the
size of the transitive closure of the tree T , when the edges are directed towards
the root node.

We make the following assumptions:

– The tree T is rooted at fixed node r, which is know to every node x ∈ G.
– Each node x ∈ G knows which of its incident edges connect to its children

in T and which edge connects to its parent in T .
– Each node x knows the weights of all edges in G that are incident to it.
– Each node x knows the distance dT (x, v) to any node v ∈ T . (Note that this

can be easily pre-computed using O(n∗) messages.)
– The nodes of the tree T are labelled in such a way that given the labels of

two nodes a, b ∈ T , it is possible to find the label of the nearest common
ancestor of a and b (i.e. nca(a, b)). This can be done using labels of size
O(log n) as shown in [1].

Given a rooted spanning tree T of G and any node v ∈ T , we define Tv as the
subtree of T that is rooted at v and we denote by Start(T, v) the set of all
non-tree edges whose one end-point is in Tv and the other end-point is outside



726 S. Das, B. Gfeller, and P. Widmayer

Tv. At each node x and for each edge e = (x, y) ∈ T , we wish to compute a list
of all swap edges with one end-point in T x and the other endpoint in T y. If x is
a child of y, then this list is same as Start(T, x). Otherwise this list is same as
Start(T, y).

The idea of our algorithm is to compute all these lists using the converge-cast
technique on the tree, once propagating information from the leaves of T up to
the root and then from the root back to the leaves again. Notice that each leaf
node already has the required information.

From the above computation, node x has a list of all potential swap edges
connecting Tx to Ty (along with their weights). Given any two such edges f =
(u, v) and g = (a, b), it is possible to compute the stretch dTe/f

(a, b) as follows:

dTe/f
(a, b) = (dT (a, u) + |f |+ dT (v, b))/|g|

dT (a, u) can be computed as dT (a, u) = dT (a, x) + dT (x, u) − 2·dT (x, nca(a, u)).
Similarly dT (v, b) can also be computed. Thus node x can compute the stretch
of every swap edge and thus determine the best swap edge for e.

Complexity of the Algorithm. The above algorithm requires only O(D)
time for trees of diameter D (measured as the number of “hops”), because the
message from the farthest leaf has to reach the root and vice versa. Note that
the only information exchanged between the nodes is the list of candidate swap
edges. Information about each swap edge f = (u, v) travels only along the path
in T from u to v. So the overall communication complexity is O(n∗) times the
size of node labels (and edge weights).

6 Swapping Versus Recomputing a New Tree Spanner

In this section, we investigate how a best swap tree compares with a newly
computed optimal tree spanner of G− e, with respect to the maximum stretch.
We show that at least for unweighted graphs, the stretch is at most twice as
large in the swap tree as in the tree spanner.

Lemma 2. For any failing edge e of an optimal tree spanner of an unweighted
graph G, the maximum stretch of the swap tree, measured w.r.t. distances in G,
is at most 2 times larger than the stretch of an optimal tree spanner of G − e,
also measured w.r.t. G. The bound of 2 is tight.

Proof. Let T be the optimal tree spanner of G, let k be the maximum stretch of
T , and let T ′ be the best swap tree when e fails. Let (a, b) be the pair of nodes
for which the stretch with respect to T ′ is maximum, i.e.

(a, b) = arg max
(i,j)∈E

dT ′(i, j)
dG(i, j)

.

Further, let (u′, v′) be the best swap edge for e. We have

dT ′(a, b)
dG(a, b)

≤ dT (a, b)− |(u, v)|+ dT (u′, v′) + |(u′, v′)|
dG(a, b)

≤ k +
dT (u′, v′)
dG(a, b)

≤ 2k.
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For any other spanning tree of G (including the optimal spanner of G− e), the
stretch must be at least k, and hence the result follows. It is easy to construct
an example that achieves the bound of 2 (see [3]). �
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Abstract. Given a set S of n points in the plane, the disjoint two-rectangle cov-
ering problem is to find a pair of disjoint rectangles such that their union contains
S and the area of the larger rectangle is minimized. In this paper we consider two
variants of this optimization problem: (1) the rectangles are free to rotate but must
remain parallel to each other, and (2) one rectangle is axis-parallel but the other
rectangle is allowed to have an arbitrary orientation. For both of the problems, we
present O(n2 log n)-time algorithms using O(n) space.

1 Introduction

For a set S of n points in the plane, the disjoint two-rectangle covering problem is to
find a pair of disjoint rectangles with arbitrary orientations such that the union of the
rectangles contains all the points in S and the area of the larger rectangle is minimized.
This is a fundamental optimization problem that deals with covering a point set S in the
plane by two geometric objects of the same type. The surveys by Agarwal and Sharir [1]
and by Segal [12] provide comprehensive reviews on a list of such problems.

More specifically, the disjoint two-rectangle covering is a generalization of the axis-
parallel two-rectangle covering problem in which the two rectangles are restricted to
be axis-parallel. Bespamyatnikh and Segal [3] studied the restricted version of the
problem and presented a simple O(n logn) time algorithm that finds the optimal axis-
parallel covering. They also extended the result into higher dimensions and presented
an O(n log n + nd−1) time algorithm for the problem in d-dimensional space.

For arbitrary orientations, Jaromczyk and Kowaluk [7] gave an O(n2) time algorithm
for the two-square covering problem with the restriction that the two squares are congru-
ent and parallel to each other. Later, Katz, Kedem and Segal [8] considered the discrete
rectilinear two-center problem: find two squares covering the point set S such that their
centers are constrained to be at points in S and the area of the larger square is mini-
mized. They presented algorithms for three variants of this problem: when two squares
are axis-parallel, an O(n log2 n)-time/O(n)-space algorithm; when two squares are par-
allel to each other but not necessarily axis-parallel, an O(n2 log4 n)-time/O(n2)-space
algorithm; when both can rotate independently, an O(n3 log2 n)-time/O(n2)-space al-
gorithm. Recently Saha and Das considered the two-rectangle covering problem with
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the Brain Korea 21 Project.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 728–739, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Covering a Point Set by Two Disjoint Rectangles 729

restriction that the two rectangles are parallel to each other, and presented an algorithm
that finds an optimal two-rectangle covering in time O(n3) using O(n2) space [11].

In this paper, we present an O(n2 logn) time algorithm that finds an optimal dis-
joint parallel two-rectangle covering of S in arbitrary orientation, which improves the
result of Saha and Das [11]. We also consider a variant of the problem in which one
rectangle is axis-parallel and the other is allowed to have an arbitrary orientation while
they remain disjoint. We present an O(n2 logn) time algorithm for this variant. Both of
our algorithms presented in this paper use only linear space. The general approach to
most of optimal covering problems is first to solve the corresponding decision problem,
then to apply an optimization scheme, such as the sorted matrices technique [5], the
expander-based technique [9], or parametric search [10]. In contrast, our algorithms are
rather intuitive: based on a few geometric observations and analysis of the area func-
tions of rectangles, they capture combinatorial changes in the configuration carefully
and maintain the optimal two-rectangle covering during rotation.

We also study another variant of the problem in which both rectangles are allowed to
have arbitrary orientations independently while they remain disjoint. However, it seems
that the same approach does not apply to this generalized case; this is mainly because
the area functions are too complicated to analyze. We discuss about this issue at the end
of the paper.

2 Covering Points by Two Disjoint Parallel Rectangles

Throughout this paper, a (directed) line � or a rectangle is called θ-oriented if it is
parallel (or directed) to an orientation θ. We denote by Bθ(P ) the θ-oriented bounding
box of a point set P .

Let S be a given set of n points in the plane. We assume that no three points lie on a
line. Consider a fixed orientation θ and an optimal two-rectangle covering of S whose
two rectangles are disjoint and parallel to θ. Then, we have a separating line � between
the two rectangles which is either θ-oriented or (θ+π/2)-oriented. Thus, we can focus
only on the case when � is θ-oriented for all θ ∈ [0, π).

For a fixed orientation θ, let � be a θ-oriented directed line which partitions S into
two subsets L� and R�, where L� contains points in S lying in the left side of � and
R� contains points in S lying in the right side of �; points lying on �, if any, can
belong to any of L� and R� so that L� ∪ R� = S. Then the optimal disjoint two-
rectangle covering problem with restriction to θ is to find a θ-oriented line � such that
max{|Bθ(L�)|, |Bθ(R�)|} is minimized, where | · | returns the area of a given rec-
tangle. We denote by f(θ) the optimal objective value for fixed orientation θ, that is,
f(θ) = min� max{|Bθ(L�)|, |Bθ(R�)|} for all θ-oriented directed lines �. This value
can be computed in O(n log n) time [3]; once the points in S are sorted in direction
θ + π/2, we can find an optimal partitioning line in linear time by using a plane sweep
algorithm over S in the direction.

Obviously, there can be infinitely many optimal partitioning lines. Our algorithm
implicitly maintains an optimal partitioning line �(θ) which is uniquely defined for any
θ ∈ [0, π). For the purpose, we consider a bit larger rectangles. For a θ-oriented directed
line �, let BL(�) and BR(�) be the minimum θ-oriented rectangles such that both have
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�(θ)

Bθ(L(θ))

Bθ(R(θ))
BL(�(θ))

BR(�(θ))

Fig. 1. For an orientation θ, the θ-oriented bisecting line �(θ) and the corresponding bounding
boxes. Shaded rectangles are the θ-oriented bounding boxes of L(θ) and of R(θ), and rectangles
with thick sides are BL(�(θ)) and BR(�(θ)).

one side on � while BL(�) coversL� and BR(�) coversR�. If we sweep the plane by � in
direction θ+π/2, it is easy to see that |BL(�)| is monotonically decreasing and |BR(�)|
is monotonically increasing. Note that |BL(�)| and |BR(�)| are discontinuous during
the plane sweep but the discontinuity occurs only when a point in S lies on �. We call
� a bisecting line in orientation θ if max{|BL(�)|, |BR(�)|} is minimized over all such
θ-oriented lines, and denote it by �(θ). For each orientation θ, �(θ) is uniquely deter-
mined because of the monotonicity of |BL(�)| and |BR(�)|. For simplicity of discus-
sion, we let L(θ) := L�(θ) and R(θ) := R�(θ). See Figure 1. In the following, we show
that the bisecting line �(θ) is indeed an optimal partitioning line. The proof can be found
in the full version of the paper.

Lemma 1. The bisecting line in orientation θ is an optimal partitioning line in θ.

Consider now that we are allowed to change the orientation θ. Then the optimal dis-
joint two-rectangle covering problem is to minimize f(θ) over θ ∈ [0, π). Before we
continue further, we need the following lemma.

Lemma 2 (Saha and Das [11] and Bae et al. [2]). Let P be a finite set of points in the
plane and (α, β) ⊂ [0, 2π) be an orientation interval where the sequence of the points
touching the sides of Bθ(P ) remains the same for any θ ∈ (α, β). Then the area of
Bθ(P ) can be expressed as a sinusoidal function of θ with angular frequency 2. That is,
|Bθ(P )| is of the form c1 sin(2θ+c2)+c3, where c1, c2, and c3 are constants depending
only on the points on the sides of Bθ(P ).

On the other hand, we can describe the θ-oriented bounding box Bθ(P ) of a point set
P by the sequence of the four touching points, one for each side. Therefore, the optimal
two-rectangle covering can be described by a sequence of eight touching points, four
from the θ-oriented bounding box of L(θ) followed by the other four from the other
bounding box. We denote by Dθ the sequence of eight touching points at orientation θ
and call the points the determinators of the two bounding boxes.

During the rotation, we encounter a number of changes in Dθ , which are captured
by events of following two types:
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1. a point crosses over the bisecting line �(θ), that is, a point in L(θ) moves into R(θ)
or a point in R(θ) moves into L(θ), or

2. a side of the bounding boxes touches two points.

We call an event of the first type a crossing event, and an event of the second type a
non-crossing event. Figure 2 shows how a crossing event occurs:

BL(�(θ))

�(θ)

p

BR(�(θ))

BL(�(θ′))

BR(�(θ′))�(θ′)

p

Fig. 2. A crossing event occurs during the rotation from θ to θ′(> θ): the point p lies in the right
side of the bisecting line �(θ) at θ but it lies in the left side of �(θ′)

2.1 Algorithm

Our algorithm works by maintaining L(θ) and R(θ) as θ increases continuously from
0 to π and minimizing the objective function in orientation intervals where no event
occurs.

Algorithm. ParallelTwoRectangleCover(S)
(∗ computes the optimal parallel two-rectangle covering over orientations in [0, π) ∗)
1. θ ← 0 and compute L(0), R(0), and D0
2. while θ < π
3. do compute the next non-crossing event at θn(> θ), assuming no crossing event
4. compute the next crossing event at θc in [θ, θn), if any
5. if θc is determined, then θ′ ← θc; otherwise, θ′ ← θn

6. minimize f(ϑ) in the interval [θ, θ′)
7. θ ← θ′

8. update Dθ, L(θ) and R(θ)
9. return the minimum objective value with its orientation.

Non-crossing events. A non-crossing event corresponds to an event when two points of
L(θ) (or R(θ)) lie on a side of Bθ(L(θ)) (Bθ(R(θ)), respectively). Hence, assuming no
further crossing event, the next non-crossing event after θ can be computed in constant
time once we know the convex hulls of L(θ) and of R(θ), and the determinators Dθ as
in rotating caliper [13]. For efficient handling of non-crossing events, we make use of
the dynamic convex hull structure by Brodal and Jacob [4]. It supports O(log n) worst-
case time update for insertion/deletion using O(n) space in our case. When updating the
invariants, we also update the convex hull of each of L(θ) and R(θ) in O(log n) time.
Also, we can easily bound the number of non-crossing events during the algorithm:
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when a non-crossing event occurs at θ, two points in S lie on a line which is either
θ-oriented or (θ + π/2)-oriented. Since we increase θ from 0 to π, the number of non-
crossing events to be handled in the algorithm is O(n2).

Lemma 3. The number of non-crossing events is at most O(n2).

Minimizing the objective function. It can be done in constant time to minimize f(ϑ) =
max{|Bϑ(L(ϑ))|, |Bϑ(R(ϑ))|} in domain [θ, θ′) where no event occurs due to the nice
property of the area functions. The following lemma is based on analysis on sinusoidal
functions of the certain form.

Lemma 4. The sinusoidal functions of the form c1 sin(2θ + c2) + c3 in the domain
[0, π) have at most two local minima. For two sinusoidal functions a and b, the equation
a(ϑ) = b(ϑ) has at most two zeros in the domain.

As observed in Lemma 2, both |Bϑ(L(ϑ))| and |Bϑ(R(ϑ))| are of the form in Lemma 4.
Thus, f(ϑ) can be expressed by at most three such pieces of functions, and hence f(ϑ)
can be minimized in constant time in domain [θ, θ′).

2.2 Crossing Events

What remains is to show how to compute the crossing events, and to bound the num-
ber of the events. Before we proceed, we need the following lemma. Let t(ϑ) :=
max{|BL(�(ϑ))|, |BR(�(ϑ))|}.

Lemma 5. The function t(ϑ) is continuous in the interval [0, π).

Proof. Assume to the contrary that the function is not continuous, that is, there is a
discontinuity at some orientation θ in the interval. This means that limϑ→θ+ t(ϑ) 
= t(θ)
or limϑ→θ− t(ϑ) 
= t(θ). We consider the latter case, and assume that t(θ) is larger than
limϑ→θ− t(ϑ) that for every ε in 0 < ε < γ, t(θ)−t(θ−ε) > δ for some fixed γ, δ > 0.
All the other cases can be handled symmetrically. Then there always exists a positive
ε′ < γ such that

t(θ − ε′)−max{|BL(�′)|, |BR(�′)|} < δ,

where �′ is the θ-oriented through the upper right corner of BL(�(θ− ε′)). This implies
that t(θ) > max{|BL(�′)|, |BR(�′)|}, which contradicts to the optimality of �(θ).

The following corollary comes directly from the previous lemma and the uniqueness of
the bisecting line.

Corollary 1. The bisecting line moves continuously during the rotation in the interval
[0, π).

Now assume that a point is about to cross the bisecting line at orientation θ. Let pL ∈
L(θ) be the last point lying on the right side of Bθ(L(θ)) in direction θ. Similarly, we
let pR ∈ R(θ) be the first point on the left side of Bθ(R(θ)) in direction θ. Since the
bisecting line moves continuously, the crossing event occurs by pL or pR.

We consider the case that pL crosses �(θ). The other case is symmetric. Consider
the moment of the crossing of pL: pL lies on �(θ) and BL(�(θ)) = Bθ(L(θ)). Here,
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we have two possibilities; either another point of S also lies on �(θ) or not. If pL is the
only point on �(θ), the crossing event occurs because |Bθ(L(θ))| ≥ |Bθ(R(θ))| and
|Bθ+ε(L(θ))| > |Bθ+ε(R(θ) ∪ {pL})| for some arbitrarily small positive ε.

We now characterize crossing events as follows. Let fL(θ) := |Bθ(L(θ))| and fR(θ)
:= |Bθ(R(θ))|. Then, f(θ) = max{fL(θ), fR(θ)}. We also let gL(θ) and gR(θ) de-
note the areas of Bθ(L(θ) \ {pL}) and Bθ(R(θ)∪ {pL}), respectively, and let g(θ) :=
max{gL(θ), gR(θ)}.
Lemma 6. If a crossing event occurs at θ, either (1) two points of S, including pL or
pR, lie on �(θ) or (2) f(θ) = g(θ).

Proof. Since no three or more points are co-linear, we consider only case (2). Without
loss of generality, we assume that pL is about to cross the bisecting line. The crossing
of pR can be also handled by symmetry.

Assume to the contrary that f(θ) 
= g(θ). If f(θ) > g(θ), then there always exists
a small positive δ such that f(θ − ε) > g(θ − ε) for any 0 < ε < δ. This contradicts
the optimality of �(θ − ε). Now assume that f(θ) < g(θ). Then again there always
exists a small positive δ such that max{|Bθ+ε(L(θ))|, |Bθ+ε(R(θ))|} < g(θ + ε) for
any 0 < ε < δ. This contradicts the optimality of �(θ + ε).

The next crossing event of case (1) from the current θ can be predicted easily: we check
if the line through pL and pR is parallel to some θ′ ∈ [θ, θn) for the case where two
points lying on the bisecting line are pL and pR. Otherwise, it occurs simultaneously
with a non-crossing event so that we check if pL should cross the bisecting line or not
at each non-crossing event. Thus, the candidates of the next crossing event of Case (1)
can be computed in constant time at each loop of the algorithm.

Hence, in the algorithm, we monitor not only f(θ) but also g(θ) and check when
they have the the same value after the current orientation θ. This can be done by solving
f(ϑ) = g(ϑ) in the interval [θ, θn) where no non-crossing event occurs and then taking
the smallest zero, at which we would have the next crossing event. By Lemma 4, each
of f(ϑ) and g(ϑ) has at most two breakpoints in domain [θ, θn) (where fL(ϑ) = fR(ϑ)
or gL(ϑ) = gR(ϑ) holds) and the equation f(ϑ) = g(ϑ) has at most constant number
of zeros (roughly at most 24.) The case when pR crosses �(θ) can be handled with
functions hL and hR defined symmetrically to be |Bθ(L(θ) ∪ {pR})| and |Bθ(R(θ) \
{pR})|. Therefore, at each step, once we are given Dθ, the functions f , g, and h are
determined and then we can find the candidates of the next crossing event of Case
(2) in constant time. Note that it is not true that we have a crossing event whenever
f(θ) = g(θ) or f(θ) = h(θ). Thus, when we compute the next crossing event, we
should test if it is a “real” crossing event; this can be done simply by checking the local
behavior of the functions also in constant time.

To bound the total number of crossing events, we count the number of possible cross-
ing events that occur on a certain point p ∈ S during the rotation. For this, we need the
following lemma. Let �p(θ) denote the θ-oriented directed line through p.

Lemma 7. The sequence of the four determinators of the θ-oriented bounding box of
the points lying strictly in the left side of �p(θ) changes at most O(n) times while θ
increases continuously from 0 to π.

Now we are ready to bound the number of crossing events.
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Lemma 8. The number of solutions to f(ϑ) = g(ϑ) or f(ϑ) = h(ϑ) for ϑ ∈ [0, π) is
at most O(n2). Also, there are at most O(n2) crossing events.

Proof. We discuss about the case where f(θ) = g(θ) only since the other case is
symmetric. Note that f(θ) = g(θ) if and only if fL(θ) = gR(θ).

Let fp
L(θ) := |Bθ(L�p(θ))| and gp

R(θ) := |Bθ(R�p(θ))|, where p belongs to L�p(θ).
In orientation θ, if p is the rightmost point of L(θ), then fp

L(θ) = fL(θ) and gp
R(θ) =

gR(θ). Hence, in this proof, we rotate �p(θ) by increasing θ and count the number of
times when fp

L(θ) = gp
R(θ) for all p ∈ S, which upper-bounds the possible number of

θ such that f(θ) = g(θ).
Consider an orientation interval (α, β) where we have no change in the 8 determina-

tors on the sides of the two bounding boxes. In such an interval, fp
L(θ) and gp

R(θ) are
expressed by sinusoidal functions by Lemma 2, and their graphs intersect at most twice
by Lemma 4. Therefore, in (α, β), there are at most two such θ that fp

L(θ) = gp
R(θ).

Thus, the only thing left is to bound the number of such intervals (α, β). Lemma 7
tells us that the sequence of the four determinators of Bθ(R�p(θ)) changes at most O(n)
times. For Bθ(L�p(θ)), we have one fixed determinator p; thus the number of changes
in its four determinators is also bounded by O(n). For each point p ∈ S, we have O(n)
such intervals (α, β), and thus the first statement is shown.

Recall Lemma 6. The number of crossing events falling in the first case that two
points of S lie on a line is simply bounded by O(n2). Also, whenever a crossing event
of the second case occurs, a point in S lies on the bisecting line �(θ) and we have
f(θ) = g(θ) or f(θ) = h(θ) by Lemma 6. Thus, the number of crossing events is
bounded by O(n2).

Consequently, we spend at most O(n2) time to compute all events in total, and thus
we repeat the main loop O(n2) times while each run of the main loop takes O(log n)
worst-case time. Finally, we conclude the following.

Theorem 1. Given a set S of n points, an optimal pair of two disjoint and parallel
rectangles containing all points in S can be computed in O(n2 log n) worst-case time
and O(n) space.

Tight example construction. Here, we describe how to construct a problem instance
which yields at least Ω(n2) number of events; thus, our upper bound is asymptotically
tight. For any positive integer n > 3, let m = 2�n

4 � + 1. Then, m is an odd number,
m = Θ(n), and n − m = Θ(n). Now, place m points at the corners of a regular m-
gon bounded by a unit circle centered at the origin, with one point placed at coordinate
(0, 1). The remaining n −m points are placed in a disk U centered at the origin with
radius ε > 0, where ε is sufficiently small positive number. Let Sn be this constructed
set of points.

The optimal two-rectangle coverings of S = Sn in orientation θ are as follows: If ε
is small enough, one of L(0) and R(0) includes all the points in S ∩ U . Without loss
of generality, suppose that L(0) includes S ∩ U as shown in Figure 3(a). On the other
hand, at orientation π/m, R(π/m) consists of the points near the origin; this is easy to
see since our point set is symmetric except for points near the origin (see Figure 3(b)).
Indeed, L(2iπ/m) includes the points near the origin S ∩ U but L((2i + 1)π/m) does
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(a)

�(0)

(b)

�(2
7π)

Fig. 3. Tight example construction when n = 13 and m = 7. The optimal two-rectangle covering
in orientation (a) 0 and (b) 2π/m = 2

7
π. The light gray rectangle is Bθ(L(θ)) and the dark gray

rectangle is Bθ(R(θ)).

not, for i = 0, . . . , �m/2�. Thus, we have at least n−m crossing events per each π/m
rotation of orientation, which implies that we have at least Ω(n2) number of events for
the instance Sn.

3 Covering Points by Two Disjoint Non-parallel Rectangles

In this section, we consider the two-rectangle covering problem where two bounding
boxes are not necessarily parallel. More specifically, we find an optimal pair of two
disjoint rectangles containing the given set S of points such that one rectangle is axis-
parallel and the other rectangle is not necessarily axis-parallel. Informally speaking,
one rectangle is free to rotate and we call it the free rectangle. We further consider the
variant of the problem where both rectangles are free.

Consider an optimal solution for S, consisting of an axis-parallel rectangle B1 and
a θ-oriented rectangle B2 for 0 ≤ θ < π/2. We observe that there always exists a
separating line � between B1 and B2 which supports one side of B1 or of B2. We have
two possibilities:

1. � supports a side of B1, therefore, is either horizontal or vertical, or
2. � supports a side of B2.

Our algorithm, to be described below, simply seeks an optimal two-rectangle covering
for S in each case above, from which we find the optimal one. Through arguments
below, we prove the following.

Theorem 2. Let S be a set of n points in the plane. One can compute in O(n2 logn)
time with O(n) space an optimal pair of two disjoint rectangles covering all points in
S such that one is axis-parallel and the other can have arbitrary orientation.

Case 1. We assume without loss of generality that � is horizontal and the axis-parallel
rectangle B1 lies below �. The other cases can be handled in a symmetric way. Since
we can assume a determinator on each side of the bounding box as discussed above, a
point in S lies on � and we have only n candidates for such �. Thus, in this case, we are
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done by computing the possible minimum free rectangle B2 above the horizontal line �
through each p ∈ S.

Let p1, . . . , pn be the list of the points in S sorted in the y-coordinate increasing
order, and �i be the horizontal line through pi. Let S1(i) := {p1, . . . , pi} be the subset
of S consisting of the points lying on or below �i and S2(i) := S \ S1(i). We define
f1(i) to be the area of B0(S1(i)) and

f2(i) := min
φ:Bφ(S2(i)) is disjoint from �i

|Bφ(S2(i))|.

We then seek a point pi ∈ S such that max{f1(i), f2(i)} is minimized for all 1 ≤ i ≤
n. Hence, the most difficult part of the algorithm is evaluating f2(i) in this case.

To evaluate f2(i), we compute the range Φi of φ where Bφ(S2(i)) is disjoint from
�i. Since S2(i) is fixed, we can compute the description of |Bϕ(S2(i))| as a function
of ϕ ∈ [0, π/2) in O(n log n) time by the rotating caliper technique [13]. If Bφ(S2(i))
and �i are not disjoint, then one corner of the rectangle lies below �i. Thus, we compute
the locus of the corners of Bϕ(S2(i)) as ϕ increases from 0 to π/2. This locus is a
simple closed curve consisting of O(n) circular arcs; this curve is known as the angle
hull AH := AH(CH(S2(i))) of the convex hull CH(S2(i)) of S2(i), defined to be the
locus of points x such that the two tangent lines to CH(S2(i)) through x make the right
angle [6].

Each point x on AH is mapped to an orientation φ ∈ [0, π/2) of the bounding box
of S2(i) one of whose corners lies at point x. Moreover, each endpoint of an arc ofAH
corresponds to a breakpoint of the function |Bϕ(S2(i))|, that is, an orientation φ where
two points of S2(i) lie on a side of Bφ(S2(i)). The following lemma follows directly
from earlier results [13].

Lemma 9. The value of f2(i) is realized as |Bφ(S2(i))| such that φ ∈ Φi, and either
(1) two points of S2(i) lie on one side of Bφ(S2(i)) or (2) one corner of Bφ(S2(i)) lies
on �i.

The first case in the above lemma can be handled by checking each breakpoint of
|Bϕ(S2(i))|; construct Bφ(S2(i)) for each such breakpoint φ and check whether it
intersects �i or not. This takes O(1) time per each breakpoint. For the second case,
we compute the intersection of �i and AH in O(n) time and take the minimum value
among |Bφ(S2(i))| for φ corresponding to each intersection point between �i andAH.
Then, f2(i) is the minimum value among those computed as above.

All this process for evaluating f2(i) takes only O(n) time once the convex hull of
S2(i) is computed. Hence, for each i, we can compute in O(n logn) time the convex
hull of S2(i), the description of function |Bφ(S2(i))|, the angle hull AH, the intersec-
tion of �i andAH, and the value of f2(i).

Lemma 10. An optimal solution falling in Case 1 can be found in O(n2 logn) time
with O(n) space.

Remarks: One might be curious about whether f2(i) is monotone or not; if it were
monotone, one could apply a binary search on i to get a better performance. However,
it is not necessarily true by a simple example. See Figure 4.



Covering a Point Set by Two Disjoint Rectangles 737

�1
�2

�1
�2
�3
�4

Fig. 4. An example of points S where f2(i) is not monotone. Observe that f2(3) < f2(1) <
f2(4) < f2(2).

The running time of the algorithm can be improved to O(n2) by using the dynamic
convex hull structure by Brodal and Jacob [4]. But this is not very meaningful since our
algorithm for the other case spends O(n2 logn) time anyway.

Case 2. In this case, we use a bit different approach. Consider a bipartition L and R of
S = L∪R by a partitioning line �, where R is the set of points lying to the right of � and
L = S \ R. Then, the set of valid orientations for � to get the bipartition is expressed
as an orientation interval (α, β) ⊂ [0, 2π) (after a proper rotation of the whole S). An
optimal solution with an axis-parallel rectangle B0(R) and a free rectangle Bθ(L) for
θ ∈ (α, β) can be found by computing B0(R) and finding the minimum Bθ(L) for
θ ∈ (α, β) such that both are disjoint from each other.

More formally, we let �p(θ) be the θ-oriented directed line passing through p ∈ S
and Lp(θ) and Rp(θ) be the bipartition of S by �p(θ) where p ∈ Lp(θ). Let fp

1 (θ) :=
|B0(Rp(θ))| and fp

2 (θ) := |Bθ(Lp(θ))|. We rotate �p(θ) by increasing θ from 0 to
2π and gather local minima of max{fp

1 (θ), fp
2 (θ)}. By Lemmas 2, 4, and 7, for fixed

p ∈ S, fp
2 (θ) has O(n) breakpoints and is divided into the same asymptotic num-

ber of sinusoidal pieces, in each of which we have no change of the determinators of
Bθ(Lp(θ)) and further those of B0(Rp(θ)). Here, we redefine three types of events to
be handled.

– Non-crossing event: When the determinators of Bθ(Lp(θ)) changes while Lp(θ)
remains the same.

– Crossing event: When Lp(θ) changes, that is, another point q ∈ S lies on �p(θ).
– Rectangle-touching event: When B0(Rp(θ)) touches �p(θ), that is, �p(θ) is tangent

to B0(Rp(θ)).

Our algorithm for this case is described as follows:

Algorithm. OneAxisParallelAndOneFreeRectangleCoverCase2(S)
(∗ computes the optimal two rectangles in Case 2 ∗)
1. for each p ∈ S
2. do Initialize a dynamic convex hull CH and an event queueQ
3. Compute Lp(0) and add the points of Lp(0) into CH, and compute Rp(0)

and B0(Rp(0))
4. θ ← 0
5. Compute all crossing events for p and put them into Q
6. Compute all non-crossing and rectangle-touching events before the first

crossing event and put them into Q
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7. while θ < 2π
8. do Pop the next upcoming event at θ′ fromQ
9. If for any ϑ ∈ (θ, θ′), B0(Rp(ϑ)) dose not intersect �p, we minimize

max{fp
1 (ϑ), fp

2 (ϑ)} over ϑ ∈ [θ, θ′)
10. If the event at θ′ is a crossing event, then update Lp(θ′), Rp(θ′),

CH, and B0(Rp(θ′)), and compute all non-crossing and rectangle-
touching events between θ′ and the next crossing event, and put them
into Q

11. θ ← θ′

12. return the minimum objective value with its orientation

Crossing events occur when q ∈ S with q 
= p lies on �p(θ); thus, they can be
computed before the while loop. Since Lp(θ) and Rp(θ) do not change between two
consecutive crossing events, we can compute all non-crossing and rectangle-touching
events in time proportional to the number of the events with CH and B0(Rp(θ)). By
Lemma 7, we know that the number of possible non-crossing events is O(n) for each
p ∈ S. The number of rectangle-touching events can be bound by the number of cross-
ing events; the number of lines through p which are tangent to a rectangle is at most
two unless p is a corner of the rectangle.

Lemma 11. The total number of events while θ increases from 0 to 2π is at most O(n)
for each p ∈ S.

Finally, we conclude the following. The proof can be found in the full version of the
paper.

Lemma 12. For each p ∈ S, the algorithm above computes all the local minima of
max{fp

1 (θ), fp
2 (θ)} in O(n log n) time with O(n) space for θ ∈ [0, 2π). Thus, an opti-

mal solution of Case 2 can be found in O(n2 logn) time and O(n) space.

3.1 Some Remarks about Two Free Rectangles

We conclude this paper with discussion about the case of two disjoint free rectangles.
To express the orientations of two such rectangles, we use two symbols θ and φ for their
orientations. As observed above, for any optimal disjoint two free rectangles (B1, B2)
for S, there exists a line � that separates B1 and B2 and supports one side of the two
rectangles. We thus can search only those rectangles such that B1 is θ-oriented, B2
is φ-oriented, B1 and B2 are disjoint, and a θ-oriented line � supporting a side of B1
separates B1 and B2 for each θ, φ ∈ [0, 2π).

For each p ∈ S, we let �p(θ) be the directed line through p in direction θ and
Lp(θ) and Rp(θ) be defined as above. Also, let fp

1 (θ) := |Bθ(Lp(θ))| and fp
2 (θ) :=

minφ∈Φp(θ) |Bφ(Rp(θ))|, where Φp(θ) is the set of orientations φ such that Bφ(Rp(θ))
is disjoint from �p(θ). As in Case 1 of the above, there always exists φ ∈ Φp(θ) such
that fp

2 (θ) = |Bφ(Rp(θ))| and either (1) a corner of Bφ(Rp(θ)) lies on �p(θ) or (2) two
points in Rp(θ) lies on a side of Bφ(Rp(θ)). Note that for fixed θ we can compute each
orientation φ where a corner of Bφ(Rp(θ)) lies on �p(θ) by intersecting the angle hull
AH and �p(θ). The difficulty here is that we should search every θ ∈ [0, 2π), and thus
each such φ is indeed expressed as a function φ(θ) of θ. Unfortunately, such a function
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φ(θ) is very complicated; it appears as the inverse of cosine of a function of sin θ and
cos θ containing a square root term:

arccos
(

sin θ (c1 sin θ)± cos θ
√

1− (c1 sin θ)2
)

+ c2,

where c1 and c2 are constants. It seems very difficult to analyze the functions of this
form and to take the same approach as in the previous variations of the problem.
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Abstract. Let G be a plane graph where each edge is a line segment. We
consider the problem of computing the maximum detour of G, defined
as the maximum over all pairs of distinct points p and q of G of the
ratio between the distance between p and q in G and the distance |pq|.
The fastest known algorithm for this problem has Θ(n2) running time
where n is the number of vertices. We show how to obtain O(n3/2 log3 n)
expected running time. We also show that if G has bounded treewidth,
its maximum detour can be computed in O(n log3 n) expected time.

1 Introduction

Given a geometric graph G, its stretch factor (or dilation) is the maximum over
all pairs of distinct vertices u and v of the ratio between the distance between u
and v in G and the Euclidean distance |uv| between u and v.

A spanner is a network with small stretch factor. Spanners that keep other
cost measures low, such as size, weight, degree, and diameter, are important
structures in areas such as VLSI design, distributed computing, and robotics.
For more on spanners, see [5,9,10].

An interesting dual problem is that of computing the stretch factor of a given
geometric graph. In this paper, we consider a related problem, namely that of
computing the maximum detour of a plane graph where edges are line segments.
Maximum detour is defined like stretch factor except that the maximum is taken
over all pairs of distinct points of the graph, i.e., interior points of edges as well
as the vertices.

If the graph is planar then its stretch factor can be computed in Θ(n2) time,
where n is the number of vertices, by applying the APSP algorithm in [6]. This
bound also holds for the problem of computing the maximum detour of a plane
graph [1]. It is an open problem whether subquadratic time algorithms exist.

For more special types of graphs such as paths, trees, cycles, and graphs
having bounded treewidth, faster algorithms are known for the stretch factor
and maximum detour problem [1,2].

In this paper, we show how to compute the maximum detour of a plane graph
with n vertices in O(n3/2 log3 n) expected time, thereby solving the open problem
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of whether a subquadratic time algorithm exists for this problem. We also show
that if the graph has bounded treewidth, its maximum detour can be computed
in O(n log3 n) expected time.

The organization of the paper is as follows. In Section 2, we give various defi-
nitions and introduce some notation. In Section 3, we make use of the separator
theorem by Lipton and Tarjan which enables us to apply the divide-and-conquer
paradigm to the input graph. We define colourings of points of a face of the
graph in Section 4, show some properties of these colourings and how to effi-
ciently compute them. In Section 5, we show how the colourings give an efficient
way of computing the maximum detour between points on a face of the graph
and this in turn gives an efficient algorithm for computing the maximum detour
of the entire graph. Finally, we make some concluding remarks in Section 6.

2 Definitions and Notation

Let G = (V,E) be a plane graph where each edge is a line segment and let PG

be the set of points of G (vertices as well as interior points of edges). Given two
points p, q ∈ PG, we define dG(p, q) as the length of a shortest path in G between
p and q, where the length of a path is measured as the sum of the Euclidean
lengths of the (parts of) edges on this path. If there is no such path, we define
dG(p, q) = ∞. If p 
= q then the detour δG(p, q) between p and q (in G) is defined
as the ratio dG(p, q)/|pq|. The maximum detour δG of G is the maximum of this
ratio over all pairs of distinct points of PG.

Where appropriate, we will regard a plane graph as the set of points belonging
to the graph. So for instance, if G and H are plane graphs then G∩H is the set
of points belonging to both G and H . If well-defined, we will regard the resulting
point set as a graph.

For a graph G, we let |G| denote its size, i.e. the number of vertices plus the
number of edges in G. Given two subsets P1 and P2 of the set PG of points of
G, we define

δG(P1, P2) = max
p∈P1,q∈P2,p�=q

δG(p, q).

If p is a point of G and P ⊆ PG, we write δG(p, P ) = δG(P, p) instead of
δG({p}, P ) and we write δG(P ) as a shorthand for δG(P, P ). We extend these
definitions to subgraphs, edges, and vertices by regarding them as sets of points.

Given paths P = p1 → p2 → . . . → pr and Q = q1 → q2 → . . . → qs, where
pr = q1, we let PQ denote the combined path p1 → p2 → . . . → pr−1 → q1 →
q2 → . . . → qs. For a vertex v, we let v → P denote the path v → p1 → p2 →
. . .→ pr.

3 Separating the Problem

In all the following, let G = (V,E) be an n-vertex plane graph in which edges
are line segments. We seek to compute δG in O(n3/2 log3 n) expected time. We
will assume that G is connected since otherwise, the problem is trivial.



742 C. Wulff-Nilsen

To compute δG, we apply the divide-and-conquer paradigm. Our strategy is
in some ways similar to that in [2], the main difference being that in the merge
step we use face colourings (Section 4) whereas range searching is used in [2].

In this section, we separate G into two smaller graphs, GA and GB , of roughly
the same size. We recursively compute δG(GA) and δG(GB) and in Section 5, we
describe an algorithm for efficiently obtaining the maximum detour δG(GA, GB).

To separate our problem, we use the separator theorem of Lipton and Tar-
jan [8]. This gives us, in O(n) time, a partition of V into three sets, A, B, and
P , such that the following three properties hold

1. no edge joins a vertex in A with a vertex in B,
2. neither A nor B contains more than n/2 vertices, and
3. P contains no more than 2

√
2

1−
√

2/3

√
n vertices.

We refer to vertices of P as portals. We must have P 
= ∅ since otherwise, one
of the sets A and B would be empty by property 1, implying that |A| = n or
|B| = n, contradicting property 2. In the following, let k ≥ 1 denote the number
of portals and let p1, . . . , pk denote the portals.

Having found this partition, we compute and store shortest path lengths from
each portal to each vertex of V . Using Dijkstra’s SSSP algorithm with, say,
binary heaps, this can be done in O(n log n) time for each portal, giving a total
running time of O(n3/2 logn).

Let GA be the subgraph of G induced by A∪P and let GB be the subgraph of
G induced by B∪P . We construct GA and GB and recursively compute δG(GA)
and δG(GB). Clearly,

δG = max{δG(GA), δG(GB), δG(GA, GB)}.

In the following, we deal with the problem of computing δG(GA, GB).
We will need the following lemma which is a generalization of a result in [4]

(we omit the proof since it is virtually identical to that in [4]).

Lemma 1. Maximum detour δG is achieved by a pair of co-visible points.

This result allows us to consider only detours between pairs of points of the
same face of G (here we include the external face). In all the following, let f
be a face of G, let fA = f ∩ GA, and let fB = f ∩ GB . We will show how to
compute δG(fA, fB) in O(|f |k log2 n) expected time. From this it will follow that
δG(GA, GB) can be found in O(n3/2 log2 n) expected time.

We will assume that f is an internal face of G. The external face is dealt
with in a similar way. We also assume that fA and fB do not share any edges
since any edge e shared by them must have portals as both endpoints and the
detours from points in e to all points in G will be considered in the two recursive
calls that compute δG(GA) and δG(GB), respectively. Hence, we may disregard
e when computing δG(fA, fB).

We assume that f is simple. The case where f is non-simple is handled in a
similar way.
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4 Colouring Points

In this section, we define colourings of points of f . As we shall see in Section 5,
these colourings will prove helpful when computing δG(fA, fB). More specifically,
they will speed up shortest path computations between pairs of points in f by
indicating, for each point pair, which portal is on some shortest path between
those two points.

Face f is defined by a simple cycle v1 → v2 → . . .→ vnf
→ v1 such that the

interior of f is to the left as we walk in the direction specified by the vertices.
For a point p ∈ f , we let df (p) denote the Euclidean length of the path from

v1 to p that visits vertices in the order specified above. We define an order <f
v1

of the set of points of f as follows. For two points p and q of f , p <f
v1

q if and
only if df (p) < df (q). Order p >f

v1
q is defined in a similar way. In the following,

we assume that the sum of lengths of all edges in f and df (vi) for all vi ∈ f are
precomputed.

By starting the walk in any other vertex vi of f , we can similarly define orders
<f

vi
and >f

vi
. It is easy to see that determining whether e.g. p <f

vi
q holds for

any points p, q ∈ f can be done in constant time using the above precomputed
values. Where appropriate, we will regard the points of f (or fA or fB) occuring
between two points w.r.t. order <f

vi
as an interval of points.

In the following, let a be a vertex in fA and let a′ ∈ f ∩ V be its successor
w.r.t. <f

a . We now consider associating with a a colouring of points in fB using
colours c1, . . . , ck. A point p ∈ fB is given colour ci if portal pi is on a shortest
path in G from a to p. In case of ties, pick the colour such that the corresponding
portal has minimum distance to a in G. In case of further ties, pick the colour
with the smaller index. We let ca(p) denote the colour assigned to p.

We will show that colours occur in intervals as we walk around fB with each
colour assigned to at most one interval. Furthermore, we will show that the order
of these intervals is induced by an order of the portals which we define next.

Let u0 and u1 be distinct vertices of G connected by an edge and consider a
portal pi. Choose edge (u1, u2) ∈ E such that u2 is on a shortest path from u1
to pi and such that u0 → u1 → u2 makes the sharpest possible left turn at u1 (if
a left turn is not possible we regard the least possible right turn as a sharpest
possible left turn and we regard a turn of angle π as a left turn of angle π).

Repeat this procedure by picking, for j = 3, . . . , r, an edge (uj−1, uj) such
that uj is on a shortest path from uj−1 to pi and such that uj−2 → uj−1 → uj

makes the sharpest possible left turn at uj−1; here, r is the smallest index such
that uj = pi. The resulting path u1 → u2 → . . . → ur is uniquely defined
and is a shortest path from u1 to pi. We denote it by

←−
Pi(u0, u1). We define

←−
Pi

′(u0, u1) = u0 →
←−
Pi(u0, u1). In the following, we will write

←−
Pi resp.

←−
P ′

i as a
shorthand for

←−
Pi(a′, a) resp.

←−
P ′

i (a
′, a), where a and a′ are defined as above.

For two distinct portals pi and pj we write pi ≺f
a pj if pi ∈

←−
Pj or if

←−
P ′

i makes
a sharper left turn than

←−
P ′

j at some shared interior vertex. As an example, in

Figure 1, pi ≺f
a pj since

←−
P ′

i makes a sharper left turn than
←−
P ′

j at vertex v.
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Lemma 2. If paths
←−
Pi and

←−
Pj split at a vertex v they cannot meet after v.

Lemma 3. The relation ≺f
a above is a strict total order of the portals.

We now show the relation between the order ≺f
a of portals and the order <f

a of
vertices in fB.

Theorem 1. Let p and q be two distinct points of fB and assume that ca(p) = ci

and ca(q) = cj, i 
= j. Then pi ≺f
a pj if and only if p <f

a q.

Proof. By symmetry, it is enough to show that if pi ≺f
a pj then p <f

a q.
So assume that pi ≺f

a pj. Since ca(q) = cj , we have pi /∈ ←−
Pj . It follows that

there is a vertex v at which
←−
Pi and

←−
Pj split and

←−
P ′

i makes a sharper left turn at
v than

←−
Pj

′. By Lemma 2, the two paths do not meet again after v. In particular,
←−
Pi does not cross

←−
Pj , see Figure 1.

a
a′

pq

f

v

pi
Pp

pj

Pq

a
a′

pq

f

pj

piPp

Pq

v

a
a′

pq

f

pi

pj

Pq

Pp

v

Fig. 1. The possible situations in the proof of Theorem 1 when pi ≺f
a pj

Let Pp be a shortest path from pi to p. Then Pp cannot intersect
←−
Pj since then

pi and pj would both be on a shortest path from a to q with dG(a, pi) < dG(a, pj),
contradicting the assumption that ca(q) = cj.

Let Pq be a shortest path from pj to q. Then
←−
Pi cannot intersect Pq since oth-

erwise, pi and pj would both be on a shortest path from a to p with dG(a, pj) <
dG(a, pi), contradicting the assumption that ca(p) = ci.

Furthermore, Pq cannot intersect Pp. For assume it did. Then there would be
a shortest path from a to p through pj and a shortest path from a to q through
pi. If dG(a, pi) < dG(a, pj) then ca(q) 
= cj and if dG(a, pj) < dG(a, pi) then
ca(p) 
= ci. Hence, dG(a, pi) = dG(a, pj). But then i < j would imply ca(q) 
= cj

and i > j would imply ca(p) 
= ci, contradicting the colours assigned to p and q.
It follows from the above that paths

←−
PiPp and

←−
PjPq do not intersect except in

the vertices they share until reaching v, see Figure 1. This implies that p <f
a q,

showing the theorem. �


Corollary 1. Interval fB can be split up into O(k) sub-intervals such that points
in the same sub-interval are assigned the same colour w.r.t. vertex a ∈ fA.

If the sub-intervals of Corollary 1 are picked such that they have maximal size,
we refer to them as colour intervals of a.

We now show how the colour intervals of a can be computed efficiently.
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Lemma 4. The order of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) time for preprocessing. The preprocessing step is in-
dependent of a and f .

Proof. We will prove the lemma by presenting a data structure that, given dis-
tinct portals pi and pj , determines whether pi ≺f

a pj and does so for any a and f .
We will show how to construct this data structure in O(kn logn) time such that
it can determine whether pi ≺f

a pj in O(log n) time. This will allow us to sort
the portals according to ≺f

a in time O(k log2 n) time using a sorting algorithm
like merge or heap sort since such an algorithm performs O(k log k) comparisons.
This result together with Theorem 1 will show the lemma.

We first show how to construct the data structure. In the following, let E′ be
the set of directed edges obtained by regarding each edge of E as two oppositely
directed edges.

With each edge e = (u, v) ∈ E′ and each portal pi, we associate pointers
πj(e, i), j = 0, . . . , je. Pointer πj(e, i) points to the edge ej of

←−
Pi(e) such that

the number of edges between e and ej in
←−
Pi(e) is 2j − 1, see Figure 2. Here, je

is the largest j such that ej exists. Note that je = O(log n) so the total number
of pointers over all edges e and all portals pi is O(kn logn).

pi

e

e1

π3(e, i)

π1(e, i)

π0(e, i)

π2(e, i)
e2

e0

e3

Fig. 2. Example with π-pointers from edge e to edges e0 = π0(e, i), e1 = π1(e, i),
e2 = π2(e, i), and e3 = π3(e, i) on

←−
Pi(e). Here, je = 3.

It is easy to show that all π-pointers can be computed in O(kn log n) time.
Now, given these pointers, for any edge e and any portals pi and pj , binary
search allows us to determine, in O(log n) time, the vertex at which

←−
Pi(e) and

←−
Pj(e) split. If they do not split, binary search will also detect this and determine
whether pi ∈

←−
Pj(e) or pj ∈

←−
Pi(e). From this it follows that we can determine

whether pi ≺f
a pj in O(log n) time, given these pointers. �


Theorem 2. Endpoints of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) preprocessing time. The preprocessing step is inde-
pendent of a and f .

Proof. We start by computing the order of colour intervals of a. By Lemma 4,
this can be done in O(k log2 n) time with O(kn logn) preprocessing time. Let π
be the permutation of {1, . . . , k} such that pπ(1) ≺f

a . . . ≺f
a pπ(k).
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We then compute the colour of the first point bmin and the last point bmax of
fB w.r.t. the order <f

a . This can be done in time proportional to the number k
of colours since SSSP lengths for each portal have been precomputed.

If ca(bmin) = ca(bmax) then by Theorem 1, all points between bmin and bmax
have this colour. In this case, the algorithm associates this colour with the sub-
interval between the two vertices and returns (the sub-interval is not stored
explicitly, only its end vertices bmin and bmax).

Otherwise, a vertex b ∈ fB is picked, such that the number of edges in
fB before resp. after b w.r.t. the order <f

a is (approximately) the same, and
its colour ca(b) is computed. Let i be the index such that cπ(i) = ca(b). The
algorithm calls itself recursively on vertices between bmin and b with colours
cπ(1), . . . , cπ(i). And it calls itself recursively on vertices between b and bmax with
colours cπ(i), . . . , cπ(k).

The recursion stops when bmin and bmax are the endpoints of a single edge
e of fB. If ca(bmin) = ca(bmax), the algorithm associates this colour with e and
returns. Otherwise, we need the following simple observation: there is a point p on
e such that all points on bminp have colour ca(bmin) and all points on pbmax have
colour ca(bmax). Furthermore, p can be computed in O(1) time, given these two
colours. The algorithm associates the two colours with their respective segments
of e and returns.

When the algorithm terminates, each colour ci is associated with O(log n) sub-
intervals and their union defines the colour interval of a with colour ci. Finding
the colour intervals of a from these O(k logn) sub-intervals takes O(k log n) time.
What remains is to show that the algorithm above has O(k log2 n) running time.

Let T (m, k) be a function expressing the time for the above algorithm where
m is the number of edges of fB and k is the number of colours. If we assume
that vertices of fB are stored in an array then the point b that splits points of
fB into two equal halves can be found in O(1) time. Thus, there is a constant
c′ > 0 such that the algorithm uses at most c′k time steps excluding time spent
in recursive calls. There is also a constant c′′ such that T (m, k) ≤ c′′k when
m ≤ 2. Let c = max{c′, c′′}. Then (ignoring floors and ceilings)

T (m, k) ≤ ck + T (m/2, k1) + T (m/2, k2).

where m > 2 and k1, k2 ∈ {1, . . . , k}, k1 + k2 = k + 1.
Let T̃ (m, k) be the running time T (m, k) minus a value of c logn charged to

each split vertex b encountered in the current and in recursive calls. Then it
can be shown by induction on m ≥ 2 that T̃ (m, k) < ck logm, implying that
T (m, k) ≤ ck logm+ xc log n, where x is the total number of split vertices. This
number is proportional to the number of sub-intervals returned by the algorithm
which is O(k logm). �


Note that a colour interval I need not be closed, i.e. one or both of the endpoints
need not belong to I. We conclude this section with the following simple result
which will prove useful when we compute detours between points that may be
interior points of edges.
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Lemma 5. Let p a point of edge e = (u, v) of G and let q be a point in G.
Suppose that pi is on a shortest path from u to q and that pj is on a shortest
path from v to q. Then either pi or pj is on a shortest path from p to q.

Proof. A shortest path from p to q goes through either u or v. �


5 The Detour of Points in a Face

In this section, we show how to compute δG(fA, fB) in O(|f |k log2 n) expected
time.

We start by computing, for each edge e = (u, v) ∈ fA, O(k) colour intervals
of u and of v using O(k log2 n) time (with O(kn logn) preprocessing) and take
the union of the endpoints of these colour intervals. This gives O(k) smaller
sub-intervals which we associate with e. The total running time for this over all
edges is O(|f |k log2 n).

Now, let P be one of the sub-intervals associated with edge e = (u, v). Then
there are i, j ∈ {1, . . . , k} such that cu(p) = ci and cv(p) = cj for all p ∈ P .
Hence, for any point q ∈ P , pi is on a shortest path from u to q and pj is on a
shortest path from v to q. Lemma 5 implies that for any point p ∈ e and any
point q ∈ P , either pi or pj is on a shortest path from p to q.

We refer to P as a type 1-interval (of e) if ci 
= cj and a type 2-interval (of e)
if ci = cj .

For any edge e of fA and any type i-interval P of e, i = 1, 2, we may assume
that P is a closed interval having endpoints in vertices of fB. For otherwise,
we could compute the maximum detour between e and the first resp. last edge
e′ of P (all other edges of P have endpoints in vertices of fB). Computing
δG(e, e′) is a constant-size problem (when SSSP lengths for each portal have
been precomputed) since we know that for each point p ∈ e and each point
p′ ∈ e, there is a shortest path from p to p′ through either of two portals pi and
pj . Thus, it takes O(1) time to compute δG(e, e′) (see also [1]). Over all e and
P , this amounts to O(|f |k) time.

The value δG(fA, fB) is computed in two phases. In phase i, the maximum
detour between points in edges of fA and points in associated type i-intervals is
computed, i = 1, 2.

5.1 Phase 1

We will show that phase 1 takes O(|f |k) time when shortest path lengths from
portals and colour intervals have been computed.

The algorithm for this phase is straightforward. For each edge e of fA it
considers all edges e′ of each type 1-interval of e and computes δG(e, e′) in
constant time.

To show that phase 1 takes O(f |k|) time, we need to show that the number of
edge pairs (e, e′) is O(f |k|). To this end, we introduce a so called dual colouring
of vertices of fA for each vertex of fB. Let b be a vertex of fB. Then vertex
a ∈ fA is given dual colour cb(a), defined as the colour ca(b).
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Assigning dual colours to all vertices of fA partitions this set into maximal
sub-intervals with vertices in each sub-interval having the same dual colour. We
call these sub-intervals the dual colour intervals of b. These dual colour intervals
will help us bound the number of edge pairs (e, e′). First, we need two lemmas.

Lemma 6. Let b be a vertex of fB and let a, a1, a2 be vertices of fA such that
a1 <f

b a <f
b a2, cb(a1) = cb(a2) = ci, and cb(a) = cj, i 
= j. Then for any vertex

a′ of fA, cb(a′) 
= cj if either a′ <f
b a1 or a′ >f

b a2.

Lemma 7. The number of dual colour intervals of a vertex b ∈ fB is O(k).

Proof. Let N(k) be the maximum number of dual colour intervals of b when
the number of distinct colours in these intervals is exactly k. We will show that
N(k) ≤ 2k − 1. The proof is by induction on k ≥ 1. If k = 1 then there is only
one dual colour interval and we have N(k) = 1 = 2k − 1.

Now, suppose that k > 1 and that N(k′) ≤ 2k′−1 for all k′ less than k. Let ci

be the colour of the first dual colour interval w.r.t. the order <f
b . By Lemma 6,

there is a finite number r of dual colour intervals with colour ci (in fact at most
k). Let I1, . . . , Is be the intervals between each consecutive pair of these dual
colour intervals and let k1, . . . , ks be the number of colours in each of them. Note
that s ≥ r−1. Also note that by the choice of ci and by Lemma 6, two points in
two different I-intervals cannot have the same colour since for at least one of the
two intervals, the colour of the dual colour interval preceding and succeeding it
is ci. From this and from the fact that the I-intervals do not contain colour ci,∑s

j=1 kj = k − 1. Applying the induction hypothesis, this gives

N(k) ≤ r+
s∑

j=1

N(kj) ≤ r+
s∑

j=1

2kj−1 = r−s+2(k−1) ≤ 1+2(k−1) = 2k−1.

�

We are now ready to bound the running time for the phase 1 algorithm.

Theorem 3. Phase 1 runs in O(|f |k) time.

Proof. Consider edges e = (u, v) ∈ fA and e′ = (u′, v′) ∈ fB such that e′ is an
edge of a type 1-interval of e. Let ci = cu(u′) = cu(v′) and let cj = cv(u′) =
cv(v′). Since u′ is a vertex of fB, dual colours cu′(u) = ci and cu′(v) = cj are
well-defined and since i 
= j by assumption, these two dual colours are distinct,
implying that two dual colour intervals of b meet at e.

It follows by the above and by Lemma 7 that for each e′, O(k) edges e are
picked. Thus, the total number of edge pairs considered by the algorithm is
O(|f |k). By our earlier discussion, this suffices to show the theorem. �


5.2 Phase 2

We now consider the problem of computing the maximum detour between points
of edges of fA and points of type 2-intervals.
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For any pair (e, P ), where e is an edge of fA and P is a type 2-interval of e,
there is a portal pi such that for any point p ∈ e and any point q ∈ P , pi is on a
shortest path from p to q. In the following, we consider all such pairs for a fixed
pi. We will show that computing the maximum detour δi over all these pairs can
be done in O(|f | log2 |f |) expected time. From this, it will follow that phase 2
takes O(|f |k log2 |f |) expected time.

Before showing how to compute δi, we need the idea of a canonical decompo-
sition of fB, defined next.

Canonical Decomposition. Define b1, . . . , bm as the interval of vertices of fB

ordered according to <f
a for some arbitrary vertex a ∈ fA. Consider splitting

this interval at vertex bj = b
m/2� and repeat this process recursively on the two
sub-intervals, stopping when an interval containing only two vertices is reached.
This gives us O(m) = O(|f |) intervals of total size O(|f | log |f |) which we refer to
as canonical intervals. The subgraphs of fB induced by these canonical intervals
are referred to as canonical subgraphs. The set of these subgraphs, which we
denote by C, can be found in O(|f | log |f |) time.

Every sub-interval of b1, . . . , bm can be decomposed into O(log |f |) canonical
intervals in O(log |f |) time. This is easily seen by applying a greedy algorithm
that picks canonical intervals as large as possible. We refer to such a decompo-
sition as a canonical decomposition.

Let e be an edge of fA. By the assumption earlier that type 2-intervals end in
vertices and by Theorem 1, the union of all type 2-intervals of e of colour ci is
exactly the set of points of fB between two vertices of b1, . . . , bm. We compute a
canonical decomposition of the sub-interval between these two vertices and add
a pointer to e from each canonical subgraph corresponding to canonical intervals
in this decomposition. This is done for all e in fA.

When finished we have a total of O(|f | log |f |) pointers from canonical sub-
graphs in C to edges of fA. Note that some canonical subgraphs may contain
pointers to several edges. The total time spent on constructing C and on finding
pointers is O(|f | log |f |).

Observe that δi is the maximum of δG(e, C) over all pairs consisting of an
edge e ∈ fA and a canonical subgraph C ∈ C with a pointer to e. We now show
how to compute this maximum in O(|f | log2 |f |) expected time.

Sweep-plane Algorithm. To efficiently compute the maximum over pairs of
edges and canonical subgraphs, we will use the idea of lifting and lowering points
followed by a sweep-plane algorithm as described in [7]. In order to do this, we
consider the following decision problem below: given δ ∈ R, is δi ≥ δ? If we can
answer this quickly we can compute δi in low expected time using a randomized
algorithm by Chan [3] as described in [7].

For each canonical subgraph C ∈ C, we lift each point p ∈ C to height
dG(pi, p). And for each edge e ∈ fA, we lower each point p ∈ e to height
−dG(p, pi). Since we have precomputed SSSP lengths for portal pi, this lift-
ing/lowering can be done in O(|f | log |f |) time since the total size of all canonical
subgraphs and edges is O(|f | log |f |).
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Let e be a vertex in fA and let C be a canonical subgraph with a pointer to
e. Then it is clear that the height difference between a point p ∈ e and a point
q ∈ C equals dG(p, q).

For each lifted and lowered point p, we associate a cone extending downwards
from p and spanning an angle of α = 2 arctan(1/δ). Then as shown in [7], δi ≥ δ
if and only if a cone of a lowered point of some edge is contained in a cone of a
lifted point of some canonical subgraph with a pointer to that edge.

Now, we sweep a plane over the cones. The sweep-plane is parallel to the
x-axis and forms an angle of (π−α)/2 with the xy-plane. During the sweep, we
maintain, for each canonical subgraph C, the intersection between the sweep-
plane and the upper envelope of lifted points of C together with lowered points
in edges that C points to. If it is detected that a cone of a lowered point is
contained in a cone of a lifted point, the algorithm reports that δi ≥ δ and if no
such event occurs, the algorithm reports that δi < δ.

It follows from the results of [7] that maintaining intersections between the
sweep-plane and upper envelopes takes a total of O(|f | log2 |f |) time since the
number of sweep-plane event points is O(|f | log |f |) and each event point takes
O(log |f |) time to handle. However, this is under the assumption that no cone of
a lifted resp. lowered point is contained in the interior of another cone of a lifted
resp. lowered point (see [7] for details). It can be shown that this assumption is
satisfied if we only consider values δ ≥ max{δG(GA), δG(GB)}.

So by recursively computing δG(GB) and δG(GA) before computing δG(GA, GB)
it follows that the above decision problem can be solved in O(|f | log2 |f |) time and
Chan’s algorithm gives us the following result.

Theorem 4. Phase 2 runs in O(|f |k log2 |f |) expected time.

We have shown that δG(GA, GB) can be computed in O(n3/2 log2 n) expected
time. Due to space constraints, we leave the details for recursively computing
δG(GA) and δG(GB). But it can be shown that the time spent in a level of the
recursion tree is O(n3/2 log2 n) and we get the main result of our paper.

Theorem 5. The maximum detour of a plane graph with n vertices can be com-
puted in O(n3/2 log3 n) expected time.

The second main result of this paper shows that if the graph has bounded
treewidth (see definition in [2]), faster running time can be obtained.

Theorem 6. The maximum detour of a plane graph with n vertices and bounded
treewidth can be computed in O(n log3 n) expected time.

The proof of Theorem 6 follows easily from our results above and from [2].

6 Concluding Remarks

In this paper, we showed how to compute the maximum detour of a plane graph
in O(n3/2 log3 n) expected time. This is an improvement over the best known
algorithm with Θ(n2) running time. We also showed that if the graph has
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bounded treewidth, its maximum detour can be computed in O(n log3 n) ex-
pected time.

We believe that by using parametric search as described in [1], we can obtain an
algorithm computing the maximum detour of a plane graph in O(n3/2 polylogn)
worst-case timeand inO(n polylog n)worst-case timewhen thegraphhasbounded
treewidth.

It would be interesting to try to beat the quadratic time bound also for the
problem of computing the stretch factor of a plane geometric graph. This problem
appears harder since pairs of vertices achieving the maximum detour need not
be co-visible.

References

1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the Detour and Spanning Ratio of Paths, Trees and Cycles in 2D
and 3D. Discrete and Computational Geometry 39(1), 17–37 (2008)

2. Caballo, S., Knauer, C.: Algorithms for Graphs With Bounded Treewidth Via
Orthogonal Range Searching, Berlin (manuscript, 2007)

3. Chan, T.M.: Geometric applications of a randomized optimization technique. Dis-
crete Comput. Geom. 22(4), 547–567 (1999)

4. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A Fast Algorithm for
Approximating the Detour of a Polygonal Chain. Comput. Geom. Theory Appl. 27,
123–134 (2004)

5. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Hand-
book of Computational Geometry, pp. 425–461. Elsevier Science Publishers, Ams-
terdam (2000)

6. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM J. Comput. 16, 1004–1022 (1987)

7. Langerman, S., Morin, P., Soss, M.: Computing the Maximum Detour and Span-
ning Ratio of Planar Paths, Trees and Cycles. In: Alt, H., Ferreira, A. (eds.) STACS
2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)

8. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. STAN-CS-
77-627 (October 1977)

9. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

10. Smid, M.: Closest point problems in computational geometry. In: Sack, J.-R., Urru-
tia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier Science
Publishers, Amsterdam (2000)



Finding Long Paths, Cycles and Circuits

Harold N. Gabow and Shuxin Nie

Department of Computer Science, University of Colorado, Boulder, CO 80309-0430
{hal,nies}@cs.colorado.edu

Abstract. We present a polynomial-time algorithm to find a cycle of
length exp(Ω(

√
log �)) in an undirected graph having a cycle of length

≥ �. This is a slight improvement over previously known bounds. In
addition the algorithm is more general, since it can similarly approximate
the longest circuit, as well as the longest S-circuit (i.e., for S an arbitrary
subset of vertices, a circuit that can visit each vertex in S at most once).
We also show that any algorithm for approximating the longest cycle can
approximate the longest circuit, with a square root reduction in length.
For digraphs, we show that the long cycle and long circuit problems have
the same approximation ratio up to a constant factor. We also give an
algorithm to find a vw-path of length ≥ log n/ log log n if one exists; this
is within a log log n factor of a hardness result.

1 Introduction

Finding a long path or cycle is a basic problem in graph theory – it obviously
includes the Hamiltonian path and cycle problems. There is a growing body of
work on approximation algorithms for these problems. But for undirected graphs
there remains a huge gap between known performance guarantees and known
hardness results. This paper improves the performance guarantee for undirected
graphs, generalizes it to the edge-simple case of finding long trails and circuits,
and presents an algorithm for long directed vw-paths. We now survey previous
work and then summarize our results. Throughout this paper, n and m denote
the number of vertices and edges of the given graph, respectively; � denotes the
length of a longest cycle or circuit, depending on context.

Previous Work. Early work by Monien [18] showed that finding paths and
cycles of length exactly k is fixed parameter tractable, as is finding an undirected
cycle of length ≥ k. Monien’s work implies that a path of length logn/ log logn
can be found in polynomial time. See also [2,8].

Alon, Yuster and Zwick [1] introduced the technique of color coding, which
finds a path of length logn in polynomial time if one exists. For digraphs, this
result is still the best known. See also [11,16].

Progress for undirected graphs was achieved by Vishwanathan [20] and also
Björklund and Husfeldt [3], the latter showing how to find an undirected path
of length Ω( log 2�/ log log �), for � the length of a longest path (see also [13]).
Gabow [12] extended Björklund and Husfeldt’s approach to find undirected paths
and cycles of length exp(Ω(

√
log �/ log log �)).

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 752–763, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Much better results are known for special classes of undirected graphs [6,10].
For instance Feder and Motwani [9] find a cycle of length exp(Ω( log n/ log logn))
in Hamiltonian graphs. This extends to graphs that are close to Hamiltonian.

We turn to digraphs. Gabow and Nie [13] find a directed cycle of length
Ω( logn/ log log n) in polynomial time. The best known hardness results are
by Björklund, Husfeldt and Khanna [4]: Assuming P 
= NP , for any ε > 0,
no polynomial-time algorithm can find a path or cycle of length ≥ nε in a
Hamiltonian digraph. But assuming the Exponential Time Hypothesis [15], the
lower bound improves to essentially Ω( log2n) for paths and Ω( log n) for cycles.
So for instance the results of [13] are within a log logn factor of optimal under
this hypothesis.

Hardness results for undirected graphs are much weaker. Karger, Motwani and
Ramkumar [16] showed that getting any constant factor approximation to the
longest undirected path is NP-hard. Furthermore for any ε > 0, approximating
to within a factor exp(O( log1−εn)) is quasi-NP-hard. These two results extend
to approximating the longest path in cubic Hamiltonian graphs, as shown by
Bazgan, Santha and Tuza [5].

Our Contribution. Our main concern is undirected graphs. We refine the ap-
proach of [12] to find long cycles. Our algorithm is simpler and more practical (we
give objective facts supporting this claim). We improve the performance guaran-
tee for finding paths or cycles from exp(Ω(

√
log �/ log log �)) to exp(Ω(

√
log �)).

In addition our algorithm is more general: We allow the requirement of vertex-
simplicity to be discarded at an arbitrarily chosen subset of vertices. More pre-
cisely let S be an arbitrary set of vertices. An S-trail is a trail that visits each
vertex of S at most once. (So an S-trail is an edge-simple path, but it needn’t
be vertex-simple unless S contains every vertex.) An S-circuit is defined simi-
larly. For example taking S empty shows that our algorithm can approximate
the longest trail or circuit.

To the best of our knowledge the long trail and circuit problems have not
been investigated seriously. Of course the problem can be solved exactly if some
circuit contains every edge, i.e, the graph is Eulerian. But the general problem
is more difficult, and again we achieve approximation ratio exp(Ω(

√
log �)).

Regardinghardnessobserve that ingraphswithmaximumdegree3acycle (path)
is the same as a circuit (trail). Hence the previously mentioned results of Bazgan
et.al. show that the long circuit/trail problem is hard. Thus like 2-SAT, the long
trail/circuit problem is easy when there is a perfect solution but hard in general.

We also give transformations between the long circuit and long cycle prob-
lems. For digraphs it is easy to see the problems are essentially equivalent. For
undirected graphs we give an efficient reduction from circuits to cycles. More
precisely, for any function CYC(·), an algorithm that finds a cycle of length
≥ CYC(�) on graphs having a cycle of length ≥ � yields an algorithm that finds
a circuit of length ≥

√
CYC(�) on graphs having a circuit of length ≥ �. However

our reduction is not valid for S-circuits that have S 
= ∅, V .
Our last result concerns digraphs. It generalizes the algorithm of [13] for

finding a long cycle: We show for any two given vertices v, w, a vw-path of



754 H.N. Gabow and S. Nie

length ≥ logn/ log logn can be found in polynomial time, if one exists1. The
main structural tool of [13], the Gap Theorem, fails for vw-paths. We achieve
our results using algorithmic techniques.

This section concludes by reviewing our terminology. Section 2 presents the
transformations between circuit and cycle problems. Section 3 sketches our algo-
rithm for undirected S-circuits (the detailed algorithm is given in the complete
version of this paper). Section 4 gives the algorithm for directed vw-paths.

Terminology. Our graph terminology is consistent with [21] whenever possible.
An element of a graph is a vertex or an edge. All graphs are assumed simple.
If H is a subgraph of G and S is a set of elements of G then S(H) denotes the
set of elements of H that belong to S. (For instance if G = (V,E), the notation
V (H) and E(H) have their usual meaning.) For X and Y disjoint vertex sets,
E[X,Y ] consists of all edges joining X and Y . Furthermore by convention writing
xy ∈ E[X,Y ] means x ∈ X and y ∈ Y .

A path has no repeated vertices. A trail has no repeated edges. A circuit is
a closed trail. If T is a trail we use T to denote a set of vertices or edges, as is
convenient; |T | always denotes the number of edges in T . If e is an element of
a graph an e-trail is a trail that includes e. Note that an algorithm that finds
a long e-circuit, for a given edge e, applies to all other variants of the problem
– e.g., it can find a long trail, circuit, vw-trail, v-trail or v-circuit, all with the
same length guarantee and time increased by only a polynomial factor.

For a trail T containing elements x,y with x preceding y, T [x, y] denotes the
subtrail from x to y. For a circuit C containing elements x, y and e, Ce[x, y]
denotes the subtrail of C from x to y that contains e. We extend this notation
to allow open-ended intervals, e.g., T (x, y] excludes x.

2 Long Cycles Versus Long Circuits

This section relates the approximability of the long cycle and long circuit prob-
lems: These problems, and even the S-circuit problem, are essentially the same
in digraphs. In undirected graphs we show that an algorithm for long cycles can
be used to find long circuits, with only moderate degradation of performance
guarantee. But our reduction does not generalize to S-circuits.

Let CYC(·) denote a function such that some polynomial-time algorithm finds
a cycle of length ≥ CYC(�) on any graph that has a cycle of length ≥ �. Let
CIRC(·) denote the analogous function for circuits.

Consider undirected graphs. Throughout this discussion ∆ denotes the maxi-
mum degree. Given a graph G = (V,E) in which we seek a long circuit, construct
a new graph H by replacing every vertex by a clique. More precisely replace each
edge e = (v, w) ∈ E by an edge (ve, we) that joins two new vertices ve, we, and

1 Going from long cycles to long vw-paths is easy in undirected graphs, by Menger’s
Theorem. But it is nontrivial in digraphs, because the analogous tool is the 2-Vertex-
Disjoint Directed Paths Problem which is NP-hard [4].
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for each vertex v ∈ V make all vertices ve adjacent. The relation between circuits
in G and cycles in H is simple:

Lemma 1. A circuit of length � in G gives a cycle of length 2� in H. A cycle
of length � > ∆ in H gives a circuit of length ≥ �/∆ in G.

The lemma enables us to find a circuit of length ≥ CYC(2�)/∆ if 2� > ∆. We
supplement this with a good method for finding circuits when ∆ is large. Recall
[19] that in a connected graph G = (V,E) with T ⊆ V , a T -join is a subgraph
that has T equal to the set of all vertices of odd degree. A T -join exists precisely
when |T | is even. A T -join can be found in linear time by a bottom-up traversal
of any spanning tree of G.

Let G be a bridgeless graph, with x a vertex of degree ∆.

Lemma 2. An x-circuit of length ≥ ∆ can be found in linear time.

Proof. Form the graph G − x. For each connected component C, apply the
following procedure. Let N be the set of all neighbors of x that belong to C.

Suppose |N | is odd. Take any v ∈ N . Form an (N − v)-join, and enlarge it to
an x-circuit by adding all the edges from x to N − v. Note that |N | ≥ 3 since
G is bridgeless. So the x-circuit is nontrivial and contains > |N | − 1 edges. The
case |N | even is similar.

Since 2� > � ≥ ∆ and max{CYC(2�)/∆, ∆} ≥
√

CYC(2�) we get the following:

Theorem 1. CIRC(�) ≥
√

CYC(2�).

Our approach does not appear to extend to S-circuits since Lemma 2 can fail.
For example take a graph consisting of two vertices v, w joined by many paths
of length two. ∆ = n − 2 yet for any set S containing v but not w, a longest
S-circuit has only four edges.

For digraphs our functions are essentially identical, even for S-circuits and
cycles: Transformations similar to Lemma 1 show CYC(2�)/2 ≤ CIRC(�) ≤
2CYC(��/2�).

3 Algorithm for Undirected Graphs

For any S ⊆ V and e ∈ E, an (S, e)-circuit is both an S-circuit and an e-circuit.
This section presents the approximation algorithm for long (S, e)-circuits on
undirected graphs. We start with a high-level overview. To simplify terminology
we describe the case of finding a long e-cycle in a given graph G = (V,E) (i.e.,
we assume S = V ) and we interject modifications needed for (S, e)-circuits.

As in [12] our algorithm is organized as a family of recursive algorithms Ap,
where Ap invokes both itself and Ap−1. An execution is always working on a
current e-cycle C and attempting to enlarge it by means of recursive invocations.
To improve the approximation ratio of [12], our goal is to increase the length of
C by a multiplicative factor rather than by an additive constant as in [12].
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Fig. 1. A circuit C and connected component X of GC,S . c1 and d belong to S. The
Extend Step combines the recursively found trail P with Ce[c0, c1].

In more detail Ap will return an e-cycle of length ≥ (3/2)p if G contains a
sufficiently long e-cycle, say a cycle C∗ of length ≥ Lp, for Lp a parameter of the
algorithm.Ap begins by invokingAp−1 to find an e-cycle C of length ≥ (3/2)p−1.
Assume |C| < (3/2)p since otherwise C is the desired cycle.

C∗ − V (C) consists of ≤ |C| segments, so at least one of those segments has
length ≥ Lp/(3/2)p. We will require this quantity to be ≥ Lp−1, i.e., we define

Lp = (3/2)pLp−1. (1)

Each segment of C∗−V (C) is contained in a connected component of G−V (C).
The algorithm invokes Ap−1 on each connected component X of G − V (C) to
find a long path P . (Strictly speaking Ap−1 finds P by finding an f -cycle in X ,
for an appropriate dummy edge f .) Condition (1) with the corresponding long
segment of C∗−V (C) guarantees that some invocation finds a path P of length
≥ (3/2)p−1. We will combine all of P with at least half of C to get an e-cycle of
length ≥ (3/2)(3/2)p−1 = (3/2)p as promised.

(1) implies that Lp = (3/2)p(3/2)p−1 · · · (3/2) = (3/2)Θ(p2). So if |C∗| = �,
taking p = Θ(

√
log �) shows that Ap finds a cycle of length exp(Ω(

√
log �)) as

desired.
How do we combine C and P? We use the Extend Step illustrated in Fig.1,

where the combined cycle consists of P , Ce[c0, c1], and edges c0x0, c1x1. (In
Fig.1 X contains vertices of C, specifically c1 and d – this can occur when we
are looking for a circuit rather than a cycle.) If

|Ce[c0, c1]| ≥ |C|/2 (2)

then the combined cycle has the desired length.
Suppose (2) fails. A simple example is when X has only two neighbors c0, c1

in C, and both neighbors are close to e but on opposite sides of it. Note that
in this case c0 and c1 separate the long segment of C∗ from e. Surprisingly [12]
shows that such a separating pair always exists whenever the Extend Step fails.
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We prove this holds for S-circuits as well, if we allow each ci to be an element
of G. More precisely, if a component X contains a long segment of C∗ and the
Extend Step does not enlarge C as desired then there is a separation pair r0, r1
such that some connected component T of G− {r0, r1} excludes e and contains
a long segment of C∗ that joins elements r0 and r1.

Given this theorem, the rest of our algorithm is similar to [12]: The algo-
rithm finds every possible candidate for the above separator r0, r1. It calls itself
recursively on the corresponding component T of G−{r0, r1} to find a long r0r1-
path Q. (This is efficient since the various components T are disjoint.) Then the
desired e-cycle is constructed according to one of two cases:

The first case is when C∗ has long segments passing through two of the above
components T , say Ti, i = 1, 2. The recursive call on Ti will find a path Qi

in Ti of length ≥ (3/2)p−1, for i = 1, 2. G has an e-cycle that contains both
Q1 and Q2. (To see this simply replace the portions of C∗ in Ti by Qi.) Our
algorithm can find such an e-cycle, for two reasons: First, although the algorithm
doesn’t know which of its components T are actually T1 and T2, it can try all
possibilities. Second, we find the desired e-cycle containing Q1, Q2 and e by using
the algorithm of [17] that finds a cycle through 3 given vertices. (This algorithm
easily generalizes from cycles to S-circuits.) Note that in this first caseAp returns
a cycle of length ≥ 2(3/2)p−1, even better than what we require.

The second case is when C∗ has only one long segment passing through a
component T . There appears to be no useful structure in this case. The algorithm
proceeds by brute force: Each recursive call2 adds ≥ 1 edge to the cycle that will
eventually be returned.. So roughly speaking we may need (3/2)p recursive calls
to find the desired e-cycle. In other words the time for our algorithm obeys the
recurrence (1) if we take Lp to be the time for Ap. Since S-circuits have � ≤ m,
our overall algorithm can choose p = Θ(

√
logm). So the total time is at most

(3/2)Θ(p2) = (3/2)Θ( log m) = mΘ(1) as desired.
This concludes the overview. Now we return to the general case of finding

(S, e)-circuits. The next two subsections present the crucial ideas and supporting
lemmas for our algorithm. A detailed statement of the algorithm and its analysis
is deferred to the complete paper.

3.1 The Extend Step

For the given graph G = (V,E), define S = V − S and ES = E ∪ S. After
constructing a circuit C, we are interested in the graph

GC,S = G− ES(C).

The Extend Step enlarges C by combining it with a recursively found path in
a connected component of GC,S (recall Fig.1). This subsection culminates in a
more detailed description of this step. We start with the concept of ES-block.

2 In order to program these recursive calls correctly, algorithm Ap actually calls Ap,
not Ap−1, on each component T . This does not apply to the Extend Step, which
as we said calls Ap−1 on each connected component X. But this entire issue can be
safely ignored in this overview.
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Fig. 2. An ES-block B, drawn dashed. Each solid circle represents a biconnected com-
ponent that is not a bridge. S vertices are drawn hollow, S solid. Any two labelled
vertices are ES-separated by B except for the pairs xi, yi, i = 1, 2, 3.

An ES-separator is a set of one or more elements of ES whose removal dis-
connects the graph. Recall that a block of a graph is a biconnected component
[21]. Analogously we define an ES-block to be a maximal subgraph that has no
singleton ES-separator (see Fig.2). Thus an ES-block B is a union of (ordinary)
blocks of G that is connected, and each of its cutpoints belongs to S. Further-
more for any such cutpoint x, B contains every block of G that contains x,
except for bridges of G.

Clearly an ES-block is bridgeless, i.e., it is 2-edge connected. More precisely
Menger’s Theorem shows that any two vertices v, w in the same ES-block are
joined by two paths that do not share an edge or a vertex of S −{v, w}. Finally
it is easy to see that any S-circuit is entirely contained within one ES-block.
This explains our interest in ES-blocks.

ES-blocks can be used to enlarge trails and circuits. This statement will be
made precise in the next two lemmas, which involve two more concepts. The
first is another variant of separation: A subgraph B is a (weak) ES-separator for
vertices x and y if every xy-path contains an element of ES(B) (this notation is
defined in Section 1). Fig.2 illustrates this concept. Note two special cases of the
definition: B is an ES-separator for any two of its vertices. Also if x ∈ S(B), B
is a weak ES-separator for x and any other vertex, including itself. (Such self-
separation is important.) We usually drop the modifier “weak” for convenience,
but we keep it when it is significant, as in the case of self-separation. Here are
some useful properties of this notion; the straightforward proofs are omitted.

Lemma 3. Let B be an ES-block, and let x, y be two arbitrary distinct vertices
of G. Then the following conditions are equivalent.

(i) B is an ES-separator for x and y.
(ii) Some xy-path contains an element of ES(B).
(iii) Some xy-path contains an edge of B or a bridge of G that is incident to

a vertex of S(B).
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(iv) Some xy S-trail contains an element of ES(B).
(v) Every xy S-trail contains an element of ES(B).

For any real value b > 2, an ES-block is b-round if it contains an S-circuit of ≥ b
edges. The following lemma shows this notion captures the situation of when an
ES-block can be used to enlarge a trail. The lemma and its proof are similar to
Lemma 2.4 of [12]. For two vertices x, y, let d(x, y) (DS(x, y)) denote the length
of a shortest xy-path (longest xy S-trail), respectively.

Lemma 4. Consider a connected graph and two distinct vertices x, y.

(i) If x and y are ES-separated by a b-round ES-block then DS(x, y) ≥ b/2.
This holds even if x = y (which implies x ∈ S).

(ii) If b = (DS(x, y)−d(x, y))/(d(x, y)+1) > 2 then x and y are ES-separated
by a b-round ES-block.

Proof.
(i) We just discuss the key case. Let B be an ES-block containing an S-circuit
C of length ≥ b. We prove the lemma assuming that x and y are vertices of B
(we allow x = y ∈ S).

It is easy to see that the previously mentioned Menger’s Theorem for B implies
B contains two paths, Px going from x to C and Py going from y to C, that do
not share an edge or a vertex of S −{x, y}. Let Px and Py end at vertices r and
s on C. Let C[r, s] be a subtrail of C having length ≥ b/2. We get the desired
xy S-trail by combining Px, Py and C[r, s].

(ii) Let T (P ) be a longest (shortest) xy S-trail. The proof analyzes P ⊕ T ,
which is a collection of circuits. The bound of (ii) is tight, e.g., form T from P
by attaching a long circuit of c edges at each vertex.

An S-circuit is maximal if it cannot be enlarged by adding a cycle, i.e., no cycle of
GC,S contains a vertex of S(C). The algorithm always makes its current circuit
C maximal.

We conclude this section with a more precise statement of the Extend Step.
For this statement, recall the notation E[·, ·] from Section 1. Define

b = 2Lp−1.

Consider a maximal S-circuit C and a connected component X of GC,S . Sup-
pose there are two edges cixi ∈ E[C,X −C], i = 0, 1 such that c0 and c1 satisfy
condition (2) and X contains a b-round ES-block B that is a weak ES-separator
for c0 and c1 in the graph X = X∪{c0x0, c1x1}.3 The Extend Step invokesAp−1
to find an (S, c0c1)-circuit in the graph X ∪ {c0c1}. Then it enlarges the current
circuit C, as illustrated in Fig.1.

3 This long hypothesis subsumes two different cases: If a ci is in S then cixi is already
an edge of X, but if ci ∈ S we add edge cixi to X. In that case cixi is a bridge of
X. (ES-separation and ci ∈ S implies c0 �= c1.) For that reason B is an ES-block
of X iff it is an ES-block of X. In particular this allows us to apply Lemma 4(i) in
the next paragraph.
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Note that the hypothesis of the Extend Step makes Lemma 4(i) applicable.
The lemma implies DS(c0, c1) ≥ Lp−1. Hence the call to Ap−1 returns a circuit
of the length ≥ (3/2)p−1 as desired (recall the overview).

It may not be clear how to implement this Extend Step efficiently – the
algorithm must decide whether or not an ES-block B is b-round, and this seems
to be a circular task. However the algorithm can simply try every ES-block B.
If B is in fact b-round, Ap−1 is guaranteed to find the desired circuit.

Note that the Extend Step is guaranteed to find its desired circuit of length
≥ (3/2)p−1 whenever X contains an appropriately long segment of the longest
(S, e)-circuit C∗. More precisely assume the following setting:
(∗) X is a connected component of GC,S . C∗ contains a subtrail

C∗[c0, c1] = c0, x0, . . . , x1, c1 with c0x0, c1x1 ∈ E[C, X − C],
C∗(c0, c1) ⊆ X , and |C∗[c0, c1]| ≥ L for some lower bound value L.

The graph X = X ∪ {c0x0, c1x1} has DS(c0, c1) ≥ L. So an appropriately large
value for L ensures the hypothesis of Lemma 4(ii) is satisfied for x, y = c0, c1.
(Note c0 
= c1: Otherwise c0 ∈ S since e ∈ C∗. But then the circuit C∗[c0, c1]
contradicts maximality of C.) This lemma implies c0 and c1 are ES-separated
(in X) by a b-round ES-block B of X . B is the ES-block needed by the Extend
Step. So if c0 and c1 satisfy condition (2) all hypotheses of the Extend Step are
satisfied, and it finds a circuit of the desired length.

3.2 Long Circuits Produce Separating Pairs

To show how the algorithm finds the separating pairs r0, r1 of the overview we
first define the notion of b-closeness. As in [12] it models the situation when the
Extend Step fails.

Definition 1. Consider a maximal S-circuit C and a connected component X
of GC,S. Let b > 2 be a real value. A subset F of E[C, X − C] is b-close if for
every pair of its edges, cixi ∈ F , i = 0, 1 no b-round ES-block of X is a weak
ES-separator for c0 and c1 in the graph X ∪ {c0x0, c1x1}.

Let us summarize the situation when the Extend Step fails. Specifically as-
sume this setting: (∗) holds. So as in the previous subsection c0 and c1 are ES-
separated (in X = X ∪ {c0x0, c1x1}) by a b-round ES-block B of X . Assume
the Extend Step for X fails, i.e., no choice of edges cixi satisfies the hypothesis
of the Extend Step.

First observe that E[C, X−C] can be partitioned into two nonempty subsets
Fi, i = 0, 1, with each set Fi being b-close. Here’s why: Clearly the two vertices
c0 and c1 of X do not satisfy condition (2). So Ce[c0, c1] is a short trail, with c0
on one side of e and c1 on the opposite side. For i = 0, 1 let Fi be the subset of
edges cx ∈ E[C, X − C] with c on the same side of e as ci. Any two edges in
the same set Fi satisfy condition (2). So each set Fi is b-close – if it weren’t, the
hypothesis of the Extend Step would hold.

We now show how, as promised in the overview, we find a pair r0, r1 that
separates a long subtrail of C∗ from e. In fact r0, r1 will separate B from e. (The
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portion of C∗ in B is easily seen to be long by Lemma 4(i).) Also r0, r1 will be
an ES-separating pair, i.e., r0, r1 ∈ ES. This is needed to properly handle the
structureless case, discussed in the last paragraph of the overview. The ri come
from the following lemma.

Lemma 5. Suppose Fi is b-close. There is an element ri ∈ ES such that for
every edge cx ∈ Fi, every path from c to B in X ∪ {cx} contains ri.

Proof. First observe that we never have c ∈ B. This follows since c ∈ X implies
c ∈ S. In that case the maximality of C shows c /∈ B.

Take any edge cx ∈ Fi. B is an ES-block of X ∪ {cx}. The definition of
ES-block, with c /∈ B, implies c is separated from B (in graph X ∪ {cx}) by an
element of ES. As illustrated in Fig.2, the element is either a cutpoint of S(B)
or a bridge with an end in S(B). Define ρ(cx) to be that separating element. To
prove the lemma we need only show that any two edges cjxj ∈ Fi, j = 0, 1 have
the same value ρ(cjxj). Suppose ρ(c0x0) 
= ρ(c1x1). We will assume c0 
= c1.
(That case makes the case c0 = c1 straightforward, so we omit it.)

Let Pj be a path from cj to ρ(cjxj). P0 and P1 are edge-disjoint. (If either
ρ(cjxj) is a vertex of S then P0 and P1 are vertex-disjoint. In the opposite case,
P0 and P1 end at two distinct bridges.) Join P0 and P1 by a path in B. The
resulting c0c1-path shows that in the graph X ∪ {c0x0, c1x1}, c0 and c1 are
ES-separated by B. (Here we use c0 
= c1 along with Lemma 3(ii).) But this
contradicts the b-closeness of Fi.

Note that V (B) ⊆ V (X−C), because C is maximal. Since E[C, X−C] = F0∪F1,
any path P from e to B goes through an edge of Fi. The lemma shows P contains
r0 or r1. Thus r0, r1 separates e from B and is the desired ES-separating pair.

These are the crucial ideas for the algorithm. Our algorithm improves the
approximation ratio of [12] and is also simpler and more practical: [12] uses a
brute-force base case for � ≤ 2256, while our algorithm uses the natural base case
based on ordinary breadth-first search; we do not use color coding or the Gap
Theorem of [13]; we use fewer numeric parameters (2 versus 6); our Extend Step
does not divide into different cases, and furthermore, it is not iterated, so our
algorithm makes fewer recursive calls.

4 Algorithm for Digraphs

Let G be a digraph with two given vertices v, w (possibly v = w) and a given
integer k. A vw-path of length ≥ k is called long. We prove the following result:

Theorem 2. A long directed vw-path can be found in time kO(k)nm logn if one
exists. In particular a directed vw-path of length ≥ logn/ log logn can be found
in polynomial time if one exists.

We present the algorithm as randomized and then give a trivial derandomization.
Call the last k edges of the desired path the tail. The idea is to guess the vertices
in the tail (not necessarily in correct order). The algorithm starts by guessing
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y
wrv x

Q

Fig. 3. The dashed path is a long vw-path with x the first vertex of the tail. Q is a
vx-path found by the algorithm. If P doesn’t exist, Q intersects the tail, as illustrated
by vertex r. The algorithm attempts to guess r.

the first vertex of the tail. Each iteration guesses a new vertex in the tail. As long
as the algorithm hasn’t yet found the desired path, the probability of guessing
correctly is high.

The algorithm is stated below and is illustrated in Fig.3. It uses color coding
[1] to find an ab-path of length exactly k, for specified vertices a, b.

It is obvious that any path returned by the algorithm is a long vw-path. So
we need only show that if the desired path exists, the probability of guessing
correctly is high. Let L be an arbitrary long vw-path, and let x be the first
vertex of its tail.

Lemma 6. Consider an iteration that starts with T contained in the tail of L.
If the iteration fails to find a long vw-path then it chooses r as a new vertex in
the tail of L with probability ≥ 1/k.

Proof. The hypothesis implies the path Q exists. The algorithm defines y so that
|Q[v, y]| ≤ k. So the algorithm’s choice of r shows we need only prove Q(v, y)
contains a vertex t that is in the tail of L but not in T . In fact since Q is chosen
disjoint from T − x, it suffices to show t is in the tail of L and t 
= x.

We are assuming the path P does not exist. Since we search for P in G −
V (Q) + x, it must be that Q contains a vertex u 
= x in the tail of L. If |Q| ≤ k
then we can take t = u. The case |Q| > k is similar.

Applying the lemma with |T | = k + 1 shows in that case the iteration must find
the desired path. So it is easy to see that the algorithm finds the desired path
with probability ≥ 1/nkk. The algorithm is simple to derandomize: The sample
space has < nkk points, so we try each one.

Since the derandomized version of color coding finds an ab-path of length k
in time 2O(k)m logn, the total time is nkk × 2O(k)m logn = kO(k)nm logn.
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Abstract. Given a graph embedded in a metric space, its dilation is
the maximum over all distinct pairs of vertices of the ratio between their
distance in the graph and the metric distance between them. Given such
a graph G with n vertices and m edges and consisting of at most two
connected components, we consider the problem of augmenting G with an
edge such that the resulting graph has minimum dilation. We show that
we can find such an edge in O((n4 log n)/

√
m) time using linear space

which solves an open problem of whether a linear-space algorithm with
o(n4) running time exists. We show that O(n2 log n) time is achievable
if G is a simple path or the union of two vertex-disjoint simple paths.
Finally, we show how to find an edge that maximizes the dilation of the
resulting graph in O(n3) time with O(n2) space and in O(n3 log n) time
with linear space.

1 Introduction

Given a set of cities, represented by points in the plane, consider the problem
of finding a road network that interconnects these cities. We seek a network
with low cost in which no large detours are required to get from any city to any
other city, that is, the road distance between the two cities should be at most a
constant factor larger than the Euclidean distance between them. Typical cost
measures of the network include size, length, diameter, and maximum degree.

Spanners are networks in which the largest detour is small, and the problem
of finding a low-cost spanner for a given point set has received a lot of attention
in recent years [3,5,6].

Typically however, one is not interested in constructing a network from scratch
but rather to modify a given network. Consider the following problem. Suppose
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we are given a network and we would like to extend it with new edge connections
to reduce the largest detour. A cost is involved in adding a connection and we can
only afford to add, say, a constant k ≥ 1 number of connections. The problem is
to pick these connections such that the largest detour in the resulting network
is minimized.

When k = 1, an optimal edge to add is called a best shortcut. Farshi et al. [4]
considered the problem of finding a best shortcut in a graph embedded in an
arbitrary metric space and showed how to solve it in O(n4) time with O(n2)
space and in O(n3m + n4 logn) time with linear space (linear in the size of the
input graph), where n is the number of vertices and m is the number of edges of
the given network. Various approximation algorithms with faster running times
were also presented. The authors posed the following open problem: is there an
(exact) algorithm with running time o(n4) using linear space?

An algorithm with O(n3 logn) running time was presented in [7]. It has O(n2)
space requirement however, leaving the problem in [4] open.

In this paper, we present a linear-space algorithm with O((n4 logn)/
√
m)

running time. Since it may be assumed that the input graph consists of at most
two connected components (otherwise, the problem is trivial), m = Ω(n). Hence,
we solve the open problem in [4].

For more special types of graphs, we give faster algorithms. We show how to
obtain O(n2 logn) running time when the graph is a simple path or the union
of two vertex-disjoint simple paths.

Finally, we consider the problem of finding a worst shortcut, i.e. an edge that
maximizes the largest detour of the resulting graph. This relates to a problem
in [1] where edge-deletions were considered. We show how to solve this for general
graphs in O(n3) time with O(n2) space and in O(n3 log n) time with linear space.

The organization of the paper is as follows. In Section 2, we give some defin-
itions and introduce some notation. In Section 3, we present our algorithm for
computing a best shortcut in a graph embedded in a metric space together with
the algorithms for special types of graphs. In Section 4, we present the algo-
rithm for finding a worst shortcut in a graph. Finally, we make some concluding
remarks in Section 5.

2 Definitions and Notation

Given a non-empty set M , a metric on M is a function d : M ×M → R such
that for all x, y, z ∈M ,

d(x, y) ≥ 0
d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y).

The pair (M,d) is called a metric space.
Let G = (V,E) be a graph embedded in metric space (V, d). We regard G

as a weighted graph where each edge e ∈ E is assigned cost d(e). For any two
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vertices u, v ∈ V , we define dG(u, v) as the length of a shortest path between u
and v in G. If no such path exists, we define dG(u, v) = ∞.

If u 
= v, the dilation (or detour) between u and v is defined as dG(u, v)/d(u, v)
and is denoted by δG(u, v). The dilation δG of G is defined as

δG = max
u,v∈V,u�=v

δG(u, v).

We define a shortcut (in G) as a vertex pair (u, v) ∈ V × V and call it a best
shortcut resp. worst shortcut if it minimizes resp. maximizes δG∪{(u,v)}.

3 Finding a Best Shortcut

In the following, let G = (V,E) be a graph embedded in metric space (V, d). In
this section, we present our algorithm for finding a best shortcut in G. Due to
space constraints, we only consider the case where G is connected. The discon-
nected case may be handled in a way similar to that in [7].

3.1 Staircase Functions

We start by introducing so called staircase functions as in [7]. Let u, v, w1, w2 ∈ V
be given with u 
= v. Define G′ as the graph obtained by augmenting G with
shortcut e = (w1, w2).

A shortest path from u to v in G′ either avoids e, visits e in direction w1 → w2,
or visits e in direction w2 → w1. Hence,

δG′(u, v) = min{dG(u,w1) + d(w1, w2) + dG(w2, v),
dG(u,w2) + d(w2, w1) + dG(w1, v),
dG(u, v)}/d(u, v).

Let us assume that dG(u,w2) < dG(u,w1) + d(w1, w2). Then no shortest path
from u in G′ visits e in direction w1 → w2. Thus, letting

x = dG(u,w2) + d(w2, w1)
a = 1/d(u, v)
b = dG(w1, v)/d(u, v)
c = δG(u, v),

we have

δG′(u, v) = min{ax + b, c} =
{
ax + b for x ≤ (c− b)/a
c for x ≥ (c− b)/a .

If we keep u, v, and w1 fixed, we see that a, b, and c are constants and that the
dilation between u and v in G′ may be expressed as a piecewise linear function
δ(u,v,w1)(x) of x = dG(u,w2) + d(w2, w1).

We define staircase function s(u,w1) : [0,∞)→ [0,∞) by

s(u,w1)(x) = max{δ(u,v,w1)(x)|v ∈ V \ {u}}.

Note that this function is piecewise linear and non-decreasing.
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3.2 The Algorithm

In this section, we present our O((n4 log n)/
√
m) time algorithm with linear

space for finding a best shortcut in G. In fact, we will show a more general result.
Letting M be a positive function of n and m with M = O(n2), we present an
algorithm with O(M +n) space requirement (in addition to the space for storing
G and a representation of the metric space) that finds a best shortcut in G in
time O((mn4 + n5 logn)/(M

√
M) + (n4 logn)/

√
M).

In the following, let v1, . . . , vn be an arbitrary ordering of the vertices of G.
Pseudo-code of the algorithm is shown in Figure 1. To simplify the code and the
following analysis, we have made the following assumptions:

√
M is an integer

that divides n and M/n is an integer that divides
√
M . It should be clear how

to modify the algorithm to handle the case where these assumptions are not
satisfied without affecting the asymptotic time and space bounds.

Let us give a high-level overview of the algorithm before proving its correctness
and bounding its time and space requirement. The main ideas are similar to those
in [7]: build a table T with n2 entries, one entry for each vertex pair, and fill

1. set δmin := ∞ and let umin, vmin be uninitialized vertex variables
2. for i := 1 to n −

√
M step

√
M

3. for j := 1 to n −
√

M step
√

M

4. initialize a table T [i, . . . , i +
√

M − 1][j, . . . , j +
√

M − 1]
5. with all entries set to zero
6. for r := i to i +

√
M − M/n step M/n

7. for s := 1 to n − M/n step M/n
8. for a := r to r + M/n − 1
9. compute and store SSSP distances in G with source va

10. for b := s to s + M/n − 1
11. compute and store SSSP distances in G with source vb

12. for a := r to r + M/n − 1
13. for b := s to s + M/n − 1
14. let (w1, u) = (va, vb)
15. compute staircase function s(u,w1)

16. for c := j to j +
√

M − 1
17. let w2 = vc

18. if dG(u, w2) < dG(u, w1) + d(w1, w2)
19. set T [a][c] := max{T [a][c], s(u,w1)(dG(u, w2) + d(w2, w1))}
20. free memory used to store SSSP distances
21. repeat lines 4 to 19 with the values of i and j swapped and
22. store values in another table T ′[j, . . . , j +

√
M − 1][i, . . . , i +

√
M − 1]

23. for r := i to i +
√

M − 1
24. for s := j to j +

√
M − 1

25. if r �= s and max{T [r][s], T ′[s][r]} < δmin

26. set δmin := max{T [r][s], T ′[s][r]}
27. set (umin, vmin) := (vr, vs)
28. return (umin, vmin) as a best shortcut

Fig. 1. Pseudo-code for algorithm to find a best shortcut in G
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in entries such that, at termination, max{T [u][v], T [v][u]} equals δG∪{(u,v)} for
each pair of distinct vertices (u, v).

However, now we only have O(M) space available so we subdivide T into
n2/M sub-tables each of width and height

√
M , see Figure 2.

Fig. 2. T is decomposed into n2/M sub-tables. Here, n/
√

M = 4. If the entries of T in
the two marked sub-tables are computed then max{T [u][v], T [v][u]} = δG∪{(u,v)} can
be obtained for all M vertex pairs (u, v) belonging to those two subtables.

We only keep two sub-tables in memory at a time. More precisely, for i =
1, . . . , n/

√
M and j = 1, . . . , n/

√
M , we fill in entries of the sub-table in row i

and column j and entries of the sub-table in row j and column i (this is the
reason why lines 4 to 19 in the pseudo-code are repeated with indices i and j
swapped) and from these entries we obtain max{T [u][v], T [v][u]} for vertex pairs
in those two sub-tables.

In the following, we show the correctness of the algorithm and then bound its
running time and space requirement.

Correctness. In order to prove the correctness of the algorithm it is enough to
show that each value max{T [r][s], T ′[s][r]} computed in line 25 equals δG∪{(vr,vs)}
for r 
= s since (r, s) covers all distinct pairs in {1, . . . , n}2 throughout the course
of the algorithm.

So consider any i-iteration and any j-iteration of the algorithm. At the end
of each iteration of the for-loop in lines 7 to 20, we have (with w1 = wa and
w2 = wc),

T [a][c] = max{s(u,w1)(dG(u,w2) + d(w2, w1))|u ∈ {vs, . . . , vs+M/n−1},
dG(u,w2) < dG(u,w1) + d(w1, w2)}.

or T [a][c] = 0 if there is no u ∈ {vs, . . . , vs+M/n−1} such that dG(u,w2) <

dG(u,w1) + d(w1, w2), for a = r, . . . , r + M/n − 1 and c = j, . . . , j +
√
M − 1,

a 
= c. Hence, at the end of each iteration of the for-loop in lines 6 to 20,

T [a][c] = max{s(u,w1)(dG(u,w2) + d(w2, w1))|u ∈ V,

dG(u,w2) < dG(u,w1) + d(w1, w2)}
=max{δG∪{(w1,w2)}(u, v)|u, v∈V, u
=v, dG(u,w2)<dG(u,w1)+d(w1, w2)}.
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for a = i, . . . , i +
√
M − 1 and c = j, . . . , j +

√
M − 1, a 
= c (this is well-defined

since u = w2 satisfies dG(u,w2) < dG(u,w1) + d(w1, w2).
Similarly, after lines 21 to 22,

T ′[c][a] = max{δG∪{(w1,w2)}(u, v)|u, v ∈ V, u �= v, dG(u, w1) < dG(u, w2) + d(w2, w1)}.

for a = i, . . . , i +
√
M − 1 and c = j, . . . , j +

√
M − 1, a 
= c.

For any u ∈ V , any w1 ∈ {vi, . . . , vi+
√

M−1}, and any w2 ∈ {vj, . . . , vj+
√

M−1}
withw1 
= w2, eitherdG(u,w2) < dG(u,w1)+d(w1, w2) ordG(u,w1) < dG(u,w2)+
d(w2, w1) for otherwise we get the contradiction

dG(u,w2) + d(w2, w1) ≤ dG(u,w1)
≤ dG(u,w2)− d(w1, w2)
< dG(u,w2) + d(w2, w1).

Hence, after lines 6 to 22,

max{T [a][c], T ′[c, a]} = max
u,v∈V,u�=v

δG∪{(w1,w2)}(u, v) = δG∪{(w1,w2)}.

for a = i, . . . , i +
√
M − 1 and c = j, . . . , j +

√
M − 1, a 
= c. This shows the

correctness of the algorithm.

Space Requirement. As for space requirement, we observe that each table
takes up

√
M

2
= M space. In lines 8 to 11, we store shortest path distances

from O(M/n) vertices to all vertices in G. This takes up a total of O(M) space.
Staircase function s(u,w1) can be represented using O(n) space since it consists
of O(n) line segments. Hence, the algorithm uses O(M + n) space.

Running Time. What remains is to bound the running time of the algorithm.
The total time spent in lines 4 to 5 is O(n2). The total number of iterations of the
for-loop in lines 7 to 19 is (n/

√
M)2(

√
M/(M/n))(n/(M/n)) = n5/(M2

√
M).

If we use Dijkstra’s SSSP algorithm in lines 9 and 11, the total time spent in
lines 8 to 11 is

O((n5/(M2
√
M))(M/n)(m + n logn)) = O((n4/(M

√
M))(m + n logn)).

Computing staircase function s(u,w1) in line 15 can be done in O(n log n) time
since it is the upper envelope of O(n) line segments (or halflines) and each line
segment can be found in constant time using the precomputed shortest path
distances. Since the total number of iterations of the for-loop in lines 13 to 19
is (n5/(M2

√
M))(M/n)2 = n3/

√
M , it follows that the time spent in line 15

throughout the course of the algorithm is O((n4 logn)/
√
M).

The number of iterations of the for-loop in lines 16 to 19 is (n3/
√
M)
√
M =

n3. The test in line 18 can be performed in constant time using the precom-
puted shortest path distances. Computing value s(u,w1)(dG(u,w2) + d(w2, w1)
can be done in O(log n) time with binary search since s(u,w1) is a non-decreasing
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piecewise linear function. Hence, the time spent in lines 16 to 19 throughout the
course of the algorithm is O(n3 logn).

Adding up, it follows that the total time spent in lines 4 to 20 is

O((n4/(M
√
M))(m + n logn) + (n4 logn)/

√
M + n3 logn)

which is
O((mn4 + n5 logn)/(M

√
M) + (n4 logn)/

√
M)

since M = O(n2). A similar argument shows that the total time spent in lines
21 to 22 is

O((mn4 + n5 logn)/(M
√
M) + (n4 logn)/

√
M).

Finally, the total time spent in lines 23 to 27 is O(n2).
We have now shown the following.

Theorem 1. A best shortcut in G can be found in O((mn4+n5 logn)/(M
√
M)+

(n4 logn)/
√
M) time using O(M + n) space.

Note the tradeoff between time and space. Setting M = m + n solves the open
problem in [4].

Corollary 1. A best shortcut in G can be found in O((n4 logn)/
√
m) time using

linear space.

Also note that by setting M = n2, it follows that a best shortcut can be found
in O(n3 logn) time using O(n2) space which is the result in [7].

Next, we consider special types of graphs and show that we can achieve faster
running times for these.

3.3 Best Shortcut of Two Vertex-Disjoint Simple Paths

In this section, we assume that G is the union of two simple vertex disjoint
simple paths L1 and L2. We will show that a best shortcut in G can be found
in O(n2 logn) time.

Clearly, we may restrict our attention to finding shortcuts that connect L1
and L2. In the following, let (w1, w2) denote a shortcut and assume w.l.o.g. that
w1 ∈ L1 and w2 ∈ L2. Let G′ denote the graph G ∪ {(w1, w2)}. Denote the
endpoints of L1 by v1 and v3 and the endpoints of L2 by v2 and v4. We do not
yet know how to pick w1 and w2 so let us regard them as variables and introduce
real parameters x1, x2, x3, and x4, defined by

x1 = dG(v1, w1) + d(w1, w2) + dG(w2, v2),
x2 = dG(v3, w1) + d(w1, w2) + dG(w2, v4),
x3 = dG(v3, w1) + d(w1, w2) + dG(w2, v2),
x4 = dG(v1, w1) + d(w1, w2) + dG(w2, v4),

see Figure 3.
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Fig. 3. Definition of four parameters for two vertex-disjoint simple paths

Now, let us express the dilation between vertices u ∈ L1 and v ∈ L2 by these
parameters. First define

δ1
G′(u, v) =

x1 − dG(u, v1)− dG(v, v2)
d(u, v)

,

δ2
G′(u, v) =

x2 − dG(u, v3)− dG(v, v4)
d(u, v)

,

δ3
G′(u, v) =

x3 − dG(u, v3)− dG(v, v2)
d(u, v)

,

δ4
G′(u, v) =

x4 − dG(u, v1)− dG(v, v4)
d(u, v)

.

The following lemma shows how to express δG′(u, v) as a function of x1, x2, x3,
and x4.

Lemma 1. δG′(u, v) = max{δ1
G′(u, v), δ2

G′(u, v), δ3
G′(u, v), δ4

G′(u, v)}.

Proof. Define Lw1vi as the subpath of L1 from w1 to vi, i = 1, 3. Similarly, define
Lw2vi as the subpath of L2 from w2 to vi, i = 2, 4. Then δG′(u, v) ≥ δ1

G′(u, v),
δG′(u, v) ≥ δ2

G′(u, v), δG′(u, v) ≥ δ3
G′(u, v), and δG′(u, v) ≥ δ4

G′(u, v).
Furthermore,

δG′(u, v) = δ1
G′(u, v) ⇔ u ∈ Lw1v1 and v ∈ Lw2v2 ,

δG′(u, v) = δ2
G′(u, v) ⇔ u ∈ Lw1v3 and v ∈ Lw2v4 ,
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δG′(u, v) = δ3
G′(u, v) ⇔ u ∈ Lw1v3 and v ∈ Lw2v2 ,

δG′(u, v) = δ4
G′(u, v) ⇔ u ∈ Lw1v1 and v ∈ Lw2v4 .

Since u ∈ L1 = Lw1vi ∪ Lw1v3 and v ∈ L2 = Lw2v2 ∪ Lw2v4 , we have δG′(u, v) =
max{δ1

G′(u, v), δ2
G′(u, v), δ3

G′(u, v), δ4
G′(u, v)}. �


From Lemma 1, it follows that

δG′ = max{δL1 , δL2 , max
i=1,2,3,4

{ max
u∈L1,v∈L2

δi
G′(u, v)}}.

We now give an algorithm that finds a vertex pair (w1, w2) that maximizes
the value maxu∈L1,v∈L2 δ

1
G′(u, v). By symmetry, it is enough to show that this

problem can be solved in O(n2 logn) time in order to prove our claim.
For each pair of distinct vertices u and v, δ1

G′(u, v) is a linear and non-
decreasing function of x1. Thus, maxu∈L1,v∈L2 δ

1
G′(u, v) is a piecewise linear,

non-decreasing function of x1 consisting of O(n2) line segments (and one halfline)
and it can be found in O(n2 logn) time.

Having found this upper envelope function, we determine an x1-value for
each pair of vertices w1 and w2 and compute the corresponding value of the
upper envelope function. Using binary search, this takes O(log n) time for each
vertex pair. The pair (w1, w2) with the largest value is the pair maximizing
maxu∈L1,v∈L2 δ

1
G′(u, v).

We have now obtained the following result.

Theorem 2. If G is the union of two vertex-disjoint simple paths, a best short-
cut in G can be found in O(n2 logn) time.

3.4 Best Shortcut of a Simple Path

We now show how to find a best shortcut in G when G is a simple path L.
Let v1 and v2 be the end vertices of L. By symmetry, we may restrict our

attention to shortcuts (w1, w2) where dG(w1, v1) < dG(w2, v1). And when finding
a pair (u, v) achieving the dilation of δG′ , G′ = G ∪ {(w1, w2)}, we only need to
consider pairs where dG(u, v1) < dG(u, v2).

We will present an algorithm for the above problem with O(n2 log n) running
time. The basic idea is the same as in Section 3.3. We introduce real parameters
x1, x2, x3, and x4, defined by

x1 = d(w1, w2) + dG(w1, w2),
x2 = dG(v1, w1) + d(w1, w2) + dG(w2, v2),
x3 = dG(v1, w1) + d(w1, w2) + dG(w2, v1),
x4 = dG(v2, w2) + d(w1, w2) + dG(w1, v2),

see Figure 4. And we define
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Fig. 4. Definition of four parameters for simple path

δ1
G′(u, v) = min{x1 − dG(u, v)

d(u, v)
, δG(u, v)},

δ2
G′(u, v) = min{x2 − dG(u, v1)− dG(v, v2)

d(u, v)
, δG(u, v)},

δ3
G′(u, v) = min{x3 − dG(u, v1)− dG(v, v1)

d(u, v)
, δG(u, v)},

δ4
G′(u, v) = min{x4 − dG(u, v2)− dG(v, v2)

d(u, v)
, δG(u, v)}.

We have the following result.

Lemma 2. δG′(u, v) = max{δ1
G′(u, v), δ2

G′(u, v), δ3
G′(u, v), δ4

G′(u, v)}
Proof. For each pair of vertices u′, v′ ∈ L, define Lu′v′ as the subpath of L from
u′ to v′. As in the proof of Lemma 1, we have δG′(u, v) ≥ δ1

G′(u, v), δG′(u, v) ≥
δ2
G′(u, v), δG′(u, v) ≥ δ3

G′(u, v), and δG′(u, v) ≥ δ4
G′(u, v).

Furthermore,

u, v ∈ Lw1w2 ⇒ δG′(u, v) = δ1
G′ ,

u ∈ Lv1w1 , v ∈ Lw2v2 ⇒ δG′(u, v) = δ2
G′ ,

u ∈ Lv1w1 , v ∈ Lv1w2 ⇒ δG′(u, v) = δ3
G′ ,

u ∈ Lw1v2 , v ∈ Lw2v2 ⇒ δG′(u, v) = δ4
G′ .

Since either u, v ∈ Lw1w2 , or u ∈ Lv1w1 , v ∈ Lw2v2 , or u ∈ Lv1w1 , v ∈ Lv1w2 , or
u ∈ Lw1v2 , v ∈ Lw2v2 , the lemma follows. �
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We can now use an algorithm similar to that in Section 3.3 to find a best shortcut
in G in O(n2 logn) time. The only difference is that we get upper envelopes not
just of halflines but also of line segments as in Section 3. This gives us the
following result.

Theorem 3. If G is a simple path, a best shortcut in G can be found in O(n2 logn)
time.

4 Finding a Worst Shortcut

We now describe an algorithm for a different problem, that of finding a worst
shortcut in G. We assume that G is connected. Furthermore, we only allow vertex
pairs (w1, w2) such that w1 
= w2 and such that (w1, w2) is not already an edge
in G since any other vertex pair would be a trivial worst shortcut.

We will need the following observation. Suppose that (w1, w2) is a worst short-
cut and let u and v be a pair of vertices such that δG′ = δG′(u, v). Then if
dG(u,w2) < dG(u,w1) + d(w1, w2), we may assume that w2 is a vertex in {w′

2 ∈
V |dG(u,w′

2) < dG(u,w1) + d(w1, w
′
2)} that maximizes dG(u,w′

2) + d(w′
2, w1).

The following algorithm finds a worst shortcut in G. A main loop iterates over
all vertices w1. In the following, consider one of these iterations.

For each u, a vertex w2 is picked (if any) such that dG(u,w2) < dG(u,w1) +
d(w1, w2), w1 
= w2, (w1, w2) /∈ E, and such that dG(u,w2) + d(w2, w1) is maxi-
mized and the maximum of δG′(u, v) over all v 
= u is computed. Over all u, this
gives at most n dilation values and we keep the largest of them together with a
w2 giving this dilation.

This is done for all w1, again giving at most n dilation values and we pick the
largest of them together with the (w1, w2)-pair giving this dilation.

From the observation above and the observation from Section 3.2 that either
dG(u,w2) < dG(u,w1) + d(w1, w2) or dG(u,w1) < dG(u,w2) + d(w2, w1) for all
u and w1 
= w2, it follows that the algorithm picks a worst shortcut in G.

If we precompute APSP distances using, say, the algorithm in [2], we obtain
an O(n3) time algorithm with O(n2) space requirement. We can also obtain
linear space requirement but then in each iteration of the main loop, we have
to compute SSSP distances with source w1 and with source u for each u. With
Dijkstra’s algorithm, this gives O(n3 logn) running time.

Theorem 4. A worst shortcut in G can be found in O(n3) time with O(n2)
space requirement and in O(n3 logn) time with linear space requirement.

5 Concluding Remarks

In this paper, we considered the problem of finding a best shortcut in a graph
G with at most two connected components embedded in a metric space. We
presented an algorithm with O((n4 log n)/

√
m) running time and linear space

requirement, where n is the number of vertices and m is the number of edges in
G. This solves an open problem of whether an o(n4) time algorithm with linear
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space requirement exists for this problem. We showed that if G is a simple path or
the union of two simple vertex-disjoint paths, a best shortcut in G can be found in
O(n2 logn) time. Finally, we considered the problem of finding a worst shortcut
in G. We gave an O(n3) time algorithm with O(n2) space requirement and an
O(n3 logn) time algorithm with linear space requirement for this problem.

It would be interesting to consider the more general case where a fixed number
of edges are inserted and to consider edge-removals. Another direction for future
research is to consider other special types of graphs like cycles and trees. Finally,
not much is known about lower bounds on running time. It is quite easy to show
that to find a best shortcut it is sometimes necessary to look at all entries of the
n× n-matrix defining the metric. Can this Ω(n2) bound be improved?
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Abstract. We consider labeled Traveling Salesman Problems, defined
upon a complete graph of n vertices with colored edges. The objective is
to find a tour of maximum (or minimum) number of colors. We derive
results regarding hardness of approximation, and analyze approxima-
tion algorithms for both versions of the problem. For the maximization
version we give a 1

2
-approximation algorithm and show that it is APX-

hard. For the minimization version, we show that it is not approximable
within n1−ε for every ε > 0. When every color appears in the graph at
most r times and r is an increasing function of n the problem is not
O(r1−ε)-approximable. For fixed constant r we analyze a polynomial-
time (r+Hr)/2-approximation algorithm (Hr is the r-th harmonic num-
ber), and prove APX-hardness. Analysis of the studied algorithms is
shown to be tight.

1 Introduction

We consider labeled versions of the Traveling Salesman Problem (TSP), de-
fined upon a complete graph Kn of n vertices along with an edge-labeling (or
coloring) function L : E(Kn) → {c1, . . . , cq}. The objective is to find a hamil-
tonian tour T of Kn optimizing (either maximizing or minimizing) |L(T )|, where
L(T ) = {L(e) : e ∈ T }. We refer to the corresponding problems with MaxLTSP

and MinLTSP respectively. The color frequency of a MinLTSP instance is the
maximum number of equi-colored edges. We use MinLTSP(r) to refer to the
class of MinLTSP instances with fixed color frequency r.

Labeled network optimization over colored graphs has seen extended study
[17,18,3,5,12,2,4,14,10,11,15]. Minimization of used colors models naturally the
need for using links with common properties, whereas the maximization case
can be viewed as a maximum covering problem with a certain network struc-
ture (in our case such a structure is a hamiltonian cycle). If for example every
color represents a technology consulted by a different vendor, then we wish to
use as few colors as possible, so as to diminish incompatibilities among different
technologies. For the maximization case, consider the situation of designing a
� Center for Algorithmic Game Theory, funded by the Carlsberg Foundation, Denmark.
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metropolitan peripheral ring road, where every color represents a different sub-
urban area that a certain link would traverse. In order to maximize the number
of suburban areas that such a peripheral ring covers, we seek a tour of a maxi-
mum number of colors. It was shown in [4] that both MaxLTSP and MinLTSP

are NP-hard.

Contribution. We present approximation algorithms and hardness results for
MaxLTSP and MinLTSP. In section 2 we provide a 1

2 -approximation local
improvement algorithm for the MaxLTSP problem and show that the problem
is APX-hard. In section 3 we show that MinLTSP is not approximable within
a factor n1−ε for every ε > 0 or within a factor O(r1−ε) when color frequency
r is an increasing function of n (paragraph 3.1). For the case of fixed constant
r, we analyze a simple greedy algorithm with approximation ratio (r + Hr)/2,
where Hr =

∑r
i=1

1
i is the r-th harmonic number (paragraph 3.2). For r = 2

MinLTSP(2) is shown to be APX-hard. We conclude with open problems.

Related Work. Identification of conditions for the existence of single-colored or
multi-colored cycles on colored graphs was first treated in [6]. A great amount
of work that followed concerned identification of such conditions and bounds
on the number of colors [4,1,7,9]. The optimization problems that we consider
here were shown to be NP-hard in [4]. To the best of our knowledge no further
theoretical development prior our work exists with respect to MaxLTSP and
MinLTSP. An experimental study of MinLTSP appeared in [19]. TSP under
categorization [17,18] generalizes several TSP problems, and is also a weighted
generalization of MinLTSP. For metric edge weights and at most q colors ap-
pearing in the graph a 2q approximation is achieved in [17,18].

The recent literature on labeled network optimization problems includes sev-
eral interesting results from both perspectives of hardness and approximation
algorithms. In [10] the authors investigate weighted generalizations of labeled
minimum spanning tree and shortest paths problems, where each label is also
associated with a positive weight and the objective generalizes to minimization
of the weighted sum of different labels used. They analyze approximation al-
gorithms and prove inapproximability results for both problems. NP-hardness
of finding paths with the fewest different colors was shown in [4]. The labeled
minimum spanning tree problem was introduced in [5]. In [12] a greedy approx-
imation algorithm is analyzed, and in [2] bounded color frequency is considered.
The labeled perfect matching problems were studied in [14,15], while Maffioli et
al. worked on a labeled matroid problem [13]. Complexity of approximation of
bottleneck labeled problems is studied in [11].

2 MaxLTSP: Constant Factor Approximation

A simple greedy algorithm yields a 1/3 approximation of MaxLTSP (see full
version).We analyze a 1

2 -approximation algorithm based on local search. The
algorithm grows iteratively by local improvements a subset S ⊆ E of edges, such
that (i) each label of L(S) appears at most once in S and (ii) S does not induce



778 B. Couëtoux et al.

vertices of degree three or more, or a cycle of length less than n. We call S a
labeled valid subset of edges. Finding a labeled valid subset S of maximum size
is clearly equivalent to MaxLTSP.

Given a labeled valid subset S of (Kn,L), a 1-improvement of S is a labeled
valid subset S ∪ {e1} where e1 /∈ S, whereas a 2-improvement of S is a labeled
valid subset (S \ {e}) ∪ {e1, e2} where e ∈ S and e1, e2 /∈ S \ {e}. An 1- or
2-improvement of S is a labeled valid subset S′ such that |S′| = |S| + 1. An
1-improvement can be viewed as a particular 2-improvement but we separate the
two cases for ease of presentation. The local improvement algorithm - denoted by
locim - initializes S = ∅ and performs iteratively either an 1- or a 2-improvement
on the current S as long as such an improvement exists. This algorithm works
clearly in polynomial-time. We denote by S the solution returned by locim and
by S∗ an optimal solution.

We introduce further notations. Given e ∈ S, let �(e) be the edge of S∗ with
the same label if such an edge exists. Formally, � : S → S∗ ∪ {⊥} is defined by:

�(e) =
{
⊥ if L(e) /∈ L(S∗)
e∗ ∈ S∗ such that L(e∗) = L(e) otherwise.

For e = [i, j] ∈ S, let N(e) be the edges of S∗ incident to i or j.

N(e) = {[k, l] ∈ S∗ | {k, l} ∩ {i, j} 
= ∅}

N(e) is partitionned into N1(e) and N0(e) as follows: e∗ ∈ N1(e) iff (S\{e})∪{e∗}
is a labeled valid subset, and N0(e) = N(e)\N1(e). In particular, N0(e) contains
the edges e∗ ∈ S∗ of N(e) such that (S \ {e})∪ {e∗} is not labeled valid subset.
Finally, for e∗ = [k, l] ∈ S∗, let N−1(e∗) be the edges of S incident to k or l.

N−1(e∗) = {[i, j] ∈ S | {k, l} ∩ {i, j} 
= ∅}

Property 1. Let e = [i, j] ∈ S and e∗ = [i, k] ∈ N1(e) with k 
= j, e∗ 
= �(e).
Either S has two edges incident to i, or S ∪ {e∗} contains a cycle through e, e∗.

Property 1 holds at the end of the algorithm since otherwise S ∪ {e∗} would be
an 1-improvement of S.

Property 2. Let e = [i, j] ∈ S and e∗1, e
∗
2 ∈ N1(e). Either both e∗1 and e∗2 are

adjacent to i (or to j) or there is a cycle in S ∪ {e∗1, e∗2} passing through e∗1, e
∗
2.

Property 2 holds at the end of the algorithm since otherwise (S \ {e})∪ {e∗1, e∗2}
would be a 2-improvement of S. In order to prove the 1

2 approximation factor for
locim we use charging/discharging arguments based on the following function
g : S → R:

g(e) =
{
|N0(e)|/4 + |N1(e)|/2 + 1− |N−1(�(e))|/4 if �(e) 
=⊥
|N0(e)|/4 + |N1(e)|/2 otherwise

For simplicity the proof of the 1/2-approximation is cut into two propositions.
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j
e∗
1

e∗
2 e∗

3

v1 v2

i

(a) |N1(e)| ≥ 3

e∗
2

v2

i je = (i, j)

l(e) = e∗
1

(b) |N−1(�(e))| = 1, �(e) ∈
N1(e)

Fig. 1. Cases studied in proof of proposition 1

Proposition 1. ∀e ∈ S, g(e) ≤ 2.

Proof. Let e = [i, j] be an edge of S. We study two cases, when e ∈ S ∩ S∗

and when e ∈ S \ S∗. If e ∈ S ∩ S∗ then �(e) = e. Observe that |N−1(e)| ≥
|N1(e)|, since otherwise an 1- or 2-improvement would be possible. Since |N(e)| =
|N0(e)|+ |N1(e)| ≤ 4 we obtain g(e) ≤ (|N0(e)|+ |N1(e)|)/4 + 1 ≤ 2.

Suppose now that e ∈ S \ S∗. Let us first show that |N1(e)| ≤ 2. By contra-
diction, suppose that {e∗1, e∗2, e∗3} ⊆ N1(e) and w.l.o.g., assume that e∗1 and e∗2
are incident to i (see Fig. 1a for an illustration).

The pairs e∗1, e
∗
3 and e∗2, e

∗
3 cannot be simultaneously adjacent since otherwise

{e∗1, e∗2, e∗3} would form a triangle. Then e∗1, e
∗
3 is a matching. Property 2 implies

that (S \ {e})∪{e∗1, e∗3} contains a cycle. This cycle must be (Pe \ {e})∪{e∗1, e∗3}
where Pe is the path containing e in S (see Fig. 1a: e∗1 = [i, v2] and e∗3 = [j, v1].
Note that e∗2 
= [i, v1] since e∗2 ∈ N1(e)). Then (S \ {e}) ∪ {e∗2, e∗3} would be a
2-improvement of S, a contradiction.

• If �(e) =⊥ or |N−1(�(e))| ≥ 2, we deduce from |N1(e)| ≤ 2 that g(e) ≤ 2.
• If �(e) 
=⊥ and |N−1(�(e))| = 1, then |N1(e)| ≤ 1. Otherwise, let {e∗1, e∗2} ⊆

N1(e). We have �(e) 
= e∗1 and �(e) 
= e∗2 since otherwise (S \ {e}) ∪ {e∗1, e∗2}
is a 2-improvement of S, see Fig. 1b for an illustration.
In this case, we deduce that (S \ {e})∪ {�(e), e∗2} or (S \ {e}) ∪ {�(e), e∗1} is
a 2-improvement of S, a contradiction. Hence, |N1(e)| ≤ 1 and g(e) ≤ 2.

• If �(e) 
=⊥ and |N−1(�(e))| = 0, then |N1(e)| = 0. Hence, g(e) ≤ 2. �

We apply a discharging method to establish a relationship between g and |S∗|.

Proposition 2.
∑

e∈S g(e) ≥ |S∗|.

Proof. Let f : S × S∗ → R be defined as:

f(e, e∗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/4 if e∗ ∈ N0(e) and �(e) 
= e∗

1/2 if e∗ ∈ N1(e) and �(e) 
= e∗

1− |N−1(e∗)|/4 if e∗ /∈ N(e) and �(e) = e∗

5/4− |N−1(e∗)|/4 if e∗ ∈ N0(e) and �(e) = e∗

3/2− |N−1(e∗)|/4 if e∗ ∈ N1(e) and �(e) = e∗

0 otherwise
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e2

v1 v2

e1 e2

e∗ e∗

v2

e1

Fig. 2. The case where N−1(e∗) = {e1, e2}

For all e ∈ S it is
∑

{e∗∈S∗} f(e, e∗) = g(e). Because of the following:∑
{e∈S}

g(e) =
∑

{e∗∈S∗}

∑
{e∈S}

f(e, e∗)

it is enough to show that
∑

{e∈S} f(e, e∗) ≥ 1 for all e∗ ∈ S∗. For an edge
e∗ ∈ S∗, we study two cases: L(e∗) ∈ L(S) and L(e∗) /∈ L(S). If L(e∗) ∈ L(S)
then there is e0 ∈ S such that �(e0) = e∗. We distinguish two possibilities:

• e∗ ∈ N(e0): it is possible that e0 = e∗ if e∗ ∈ N1(e0). Then
∑

{e∈S} f(e, e∗) ≥
f(e0, e

∗) +
∑

{e∈(N−1(e∗))\{e0}} f(e, e∗) ≥ 5
4 −

|N−1(e∗)|
4 + |N−1(e∗)|−1

4 = 1
• e∗ /∈ N(e0): then

∑
{e∈S} f(e, e∗) ≥ f(e0, e

∗) +
∑

{e∈N−1(e∗)} f(e, e∗) ≥ 1 −
|N−1(e∗)|

4 + |N−1(e∗)|
4 = 1.

Now consider L(e∗) /∈ L(S). Then |N−1(e∗)| ≥ 2, otherwise S ∪ {e∗} would be
an 1-improvement. We examine the following situations:

• N−1(e∗) = {e1, e2}: By Property 1 e1 and e2 are adjacent, or there is a cycle
passing through e∗, e1 and e2. In this case e∗ ∈ N1(e1) and e∗ ∈ N1(e2) (see
Fig. 2). Thus

∑
{e∈S} f(e, e∗) ≥ f(e1, e

∗) + f(e2, e
∗) = 1

2 + 1
2 = 1.

• N−1(e∗) = {e1, e2, e3}: Then, e∗ ∈ N1(e1) ∪ N1(e2) where e1 and e2 are
assumed adjacent. In the worst case e3 is the ending edge of a path in S
containing both e1 and e2. Assuming that e2 is between e1 and e3 in this
path we obtain e∗ ∈ N1(e2). In conclusion, we deduce

∑
{e∈S} f(e, e∗) ≥∑3

i=1 f(ei, e
∗) ≥ 1

2 + 2 1
4 = 1.

• N−1(e∗)={e1, e2, e3, e4}: then
∑

{e∈S} f(e, e∗)≥
∑4

i=1 f(ei, e
∗) ≥ 4 1

4=1. �


Theorem 1. locim is a 1/2-approximation algorithm and this ratio is tight.

Proof. By propositions 1 and 2, we have 2|S| ≥
∑

e∈S g(e) ≥ |S∗|. Fig. 3 gives
an example with approximation ratio 6

10 achieved by locim. This example can
be generalized to asymptotic 1

2 (to appear in the full version). �


Theorem 2. MaxLTSP is APX-hard.

Proof. (Sketch) We construct an L-reduction from the maximum hamiltonian
path problem on graphs with distances 1 and 2 (complete proof appears in the
full version). �
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c1 c2

c3

c4 c8

c3

c7 c5

c4

c6 c10

c5

c9 c1

c6

c2

Fig. 3. A critical instance: undrawn edges have label c1. locim returns the horizontal
path (colors c1 to c6). An optimum contains the other edges, using colors c1 to c10.

3 MinLTSP: Hardness and Approximation

We show that the MinLTSP is generally inapproximable, unless P = NP:
MinLTSP(r) where r is any increasing function of n is not r1−ε approximable
for any ε > 0. We focus subsequently on fixed color frequency r, and show that
a simple greedy algorithm exhibits a tight non-trivial approximation ratio equal
to (r +Hr)/2, where Hr is the harmonic number of order r. Finally we consider
the simple case of r = 2, for which the algorithm’s approximation ratio becomes
7
4 , and show that MinLTSP(2) is APX-hard.

3.1 Hardness of MinLTSP

Without restrictions on color frequency, any algorithm for MinLTSP will triv-
ially achieve an approximation factor of n. We show that this ratio is optimal,
unless P=NP, by reduction from the hamiltonian s − t-path problem which is
defined as follows: given a graph G = (V,E) with two specified vertices s, t ∈ V ,
decide whether G has a hamiltonian path from s to t. See [8] (problem [GT39]) for
this problem’s NP-completeness. The restriction of the hamiltonian s − t-path
problem on graphs where vertices s, t are of degree 1 remains NP-complete.
In the following let OPT (·) be the optimum solution value to some problem
instance.

Theorem 3. For all ε > 0, MinLTSP is not n1−ε-approximable unless P=NP,
where n is the number of vertices.

Proof. Let ε > 0 and let G = (V,E) be an instance of the hamiltonian s− t-path
problem on a graph with two specified vertices s, t ∈ V having degree 1 in G. Let
p = � 1

ε� − 1. We construct the following instance I of MinLTSP: take a graph
consisting of np copies of G, where the i-th copy is denoted by Gi = (Vi, Ei)
and si, ti are the corresponding copies of vertices s, t. Set L(e) = c0 for every
e ∈ ∪np

i=1Ei, L([ti, si+1]) = c0 for all i = 1, . . . , np − 1, and L([tnp , s1]) = c0.
Complete this graph by taking a new color per remaining edge. This construction
can obviously be done in polynomial time, and the resulting graph has np+1

vertices.
If G has a hamiltonian s − t-path, then OPT (I) = 1. Otherwise, G has no

hamiltonian path for any pair of vertices since vertices s, t ∈ V have a degree 1
in G. Hence OPT (I) ≥ np +1, because for each copy Gi either the restriction of
an optimal tour T ∗ (with value OPT (I)) in copy Gi is a hamiltonian path, and
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Algorithm 1. Greedy Tour
Let T ← ∅;
Let K ← {c1, . . . , cq};
while T is not a tour do

Consider cj ∈ K maximizing |E′| such that E′ ⊆ L−1(cj) and T ∪ E′ is valid;
T ← T ∪ E′;
K ← K \ {cj};

end
return T ;

T ∗ uses a new color (distinct of c0) or T ∗ uses at least two new colors linking Gi

to the other copies. Since |V (Knp+1)| = np+1, we deduce that it is NP-complete
to distinguish between OPT (I) = 1 and OPT (I) ≥ |V (Knp+1)|1−

1
p+1 + 1 >

|V (Knp+1)|1−ε. �

The hamiltonian s − t-path problem is also NP-complete in graphs of maxi-
mum degree 3 (problem [GT39] in [8]). Thus, applying the reduction given in
Theorem 3 to this restriction, we deduce that the color frequency r of I is upper
bounded by (3n+2

2 )np = O(np+1). Thus, when r grows with n we obtain:

Corollary 1. There exists c > 0 such that for all ε > 0, MinLTSP is not
c r1−ε-approximable where r is the color frequency, unless P=NP.

3.2 The Case of Fixed Color Frequency

We describe and analyze a greedy approximation algorithm (referred to as Greedy
Tour - algorithm 1) for the MinLTSP(r), for fixed r = O(1). In the description
of the algorithm Greedy Tour we use the notion of a valid subset of edges which
do not induce vertices of degree three or more and also do not induce a cycle of
length less than n. The algorithm augments iteratively a valid subset of edges
by a chosen subset E′, until a feasible tour of the input graph is formed. It
initializes the set of colors K and iteratively identifies the color that offers the
largest set of edges that is valid with respect to the current (partial) tour T and
adds it to the tour, while also eliminating the selected color from the current set
of colors. For constant r ≥ 1 Greedy Tour is of polynomially bounded complexity
proportional to O(nr+1). We introduce some definitions and notations that we
use in the analysis of Greedy Tour. Let T ∗ denote an optimum tour and T be a
tour produced by Greedy Tour.

Definition 1. (Blocks) For j = 1, . . . , r, the j-block with respect to the exe-
cution of Greedy Tour is the subset of iterations during which it was |E′| ≥ j.
Let Tj be the subset of edges selected by Greedy Tour during the j-block and
Vj = V (Tj) be the set of vertices that are endpoints of edges in Tj.

Definition 2. (Color Degree) For a color c ∈ L(T ∗) define its color degree
fj(c) in Vj to be fj(c) =

∑
v∈Vj

dGc(v), where Gc = (V,L−1(c)∩T ∗) and dGc(v)
is the degree of v in graph Gc.
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c1

x

y

c2

c1

z

c1
c2

c2

Fig. 4. Graphical illustration of definitions: if c1, c2 ∈ Lj(T ∗), apart from vertices
x, y, z, the remaining endpoints of paths are black terminals. Inner vertices are white
terminals (drawn white), while vertices outside the paths are optional vertices.

For j ∈ {2, . . . , r} let Lj(T ∗) be the set of colors that appear at least j times
in T ∗: Lj(T ∗) = {c ∈ L(T ∗) : |L−1(c) ∩ T ∗| ≥ j}. In general Tj contains k ≥ 0
paths (in case k = 0, Tj is a tour). We consider p vertices {v1, . . . , vp} ⊆ Vj of
degree 1 in Tj (i.e. they are endpoints of paths), such that each such vertex is
adjacent to two edges of T ∗ that have colors in Lj(T ∗). We refer to vertices of
{v1, . . . vp} as black terminals. We refer to vertices in Vj \ {v1, . . . , vp} as white
terminals and to vertices in V \Vj as optional (see Fig. 4 for an illustration). We
also assume the existence of q ≥ 0 path endpoints of Tj adjacent to one edge of
T ∗ with color in Lj(T ∗). Clearly p+ q ≤ 2k. We consider a partition of Lj(T ∗):
L∗

j,in and L∗
j,out. A color c ∈ Lj(T ∗) belongs in L∗

j,out if there is an edge with
this color incident to a black terminal of Vj . Then L∗

j,in = Lj(T ∗) \ L∗
j,out.

Lemma 1 (Color Degree Lemma). For any j = 2, . . . , r the following hold:

(i) If c ∈ L∗
j,in, then fj(c) ≥ |L−1(c) ∩ T ∗|+ 1− j.

(ii)
∑

c∈L∗
j,out

fj(c) ≥
∑

c∈L∗
j,out

(|L−1(c) ∩ T ∗|+ 1− j) + p.

Proof.
(i): Except of the |L−1(c) ∩ T ∗| ≥ j edges of color c in T ∗, at most j − 1
valid ones (with respect to Tj) may be missing from Tj (and possibly collected
in Tj−1): if there are more than j − 1, then they should have been collected by
Greedy Tour in Tj. Then at least |L−1(c) ∩ T ∗| − (j − 1) edges of color c must
have one endpoint in Vj , and the result follows.
(ii): First we note an important fact for each color c ∈ L∗

j,out: exactly one of the
two edges incident to a black terminal (suppose one with color c) belongs to the
set of at most j − 1 valid c-colored edges, that were not collected in Tj. Using
the same argument as in statement (i), we have that at least |L−1(c)∩T ∗|−(j−1)
c-colored edges that are incident to at least one vertex of Vj .

The fact that we mentioned can help us tighten this bound even further, by
counting to the color degree the contribution of one edge belonging to the set of
at most j − 1 valid ones: an edge incident to a black terminal is also incident to
either an optional vertex, or a terminal (black or white). Take one black terminal
vi of the two edges [x, vi], [vi, y] of T ∗ incident to it, and consider the cases:

– If x is a white or black terminal: then the color degree must be increased by
one, because this edge can be counted twice in the color degree. The same
fact also holds for y.
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– If x and y are optional vertices: then the color degree must be increased by at
least one, because each edge set {[x, vi]}∪Tj or {[vi, y]}∪Tj is valid (and was
subtracted from |L−1(c) ∩ T ∗| with the at most j − 1 valid ones). However,
if the both edges have the same color, the color degree only increases by one
unit since the set {[x, vi], [vi, y]} ∪ Tj is not valid.

Therefore we have an increase of one in the color degree of some colors in L∗
j,out

and, in fact, of p of them at least. Thus statement (ii) follows. �
Let y∗i and yi be the number of colors appearing exactly i times in T ∗ and T
respectively. Then we show that:

Lemma 2. For j = 2, . . . , r:
r∑

i=j

(i + 1− j)y∗i ≤
r∑

i=j

2i yi

Proof. We prove the inequality by upper and lower bounding the quantity F ∗
j =∑

c∈Lj(T ∗) fj(c). A lower bound stems from Lemma 1:

F ∗
j ≥

r∑
i=j

(i + 1− j)y∗i + p (1)

Assume now that Tj consists of k disjoint paths. Then |Vj | =
∑r

i=j iyi + k

and the number of internal vertices on all k paths of Tj is:
∑r

i=j iyi − k. Each
internal vertex of Vj may contribute at most twice to F ∗

j . Furthermore, each
black terminal of Tj , i.e. each vertex of {v1, . . . , vp}, also contributes twice by
definition. Assume that there are q endpoints of paths in Tj, each contributing
once to F ∗

j . Clearly p + q ≤ 2k. Then:

F ∗
j ≤ 2(

r∑
i=j

iyi − k) + 2p + q ≤
r∑

i=j

i2yi + p (2)

The result follows by combination of (1) and (2). �
We prove the approximation ratio of Greedy Tour by using Lemma 2:

Theorem 4. For any r ≥ 1 fixed, Greedy tour gives a r+Hr

2 −approximation for
MinLTSP(r) and the analysis is tight.

Proof. By summing up inequality of Lemma 2 with coefficient 1
2(j−1)j for j =

2, . . . , r, we obtain:

r∑
j=2

r∑
i=j

i + 1− j

2j(j − 1)
y∗i ≤

r∑
j=2

r∑
i=j

i

j(j − 1)
yi (3)

For the right-hand part of inequality (3) we have:
r∑

j=2

r∑
i=j

i

j(j − 1)
yi =

r∑
i=2

i yi

i∑
j=2

1
j(j − 1)

=
r∑

i=2

i yi

i∑
j=2

(
1

j − 1
− 1

j
)

=
r∑

i=2

i yi(1−
1
i
) =

r∑
i=2

(i− 1)yi
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For the left-hand part of inequality (3) we have:

r∑
j=2

r∑
i=j

i + 1− j

2j(j − 1)
y∗i =

r∑
i=2

y∗i
2

i∑
j=2

i + 1− j

j(j − 1)
(4)

But we also have:

i∑
j=2

i + 1− j

j(j − 1)
=

i∑
j=2

(
i− (j − 1)

j − 1
− i− j

j
)− (Hi − 1) = i−Hi (5)

where Hi =
∑i

k=1
1
k . Therefore relation (4) becomes by (5):

r∑
j=2

r∑
i=j

i + 1− j

2j(j − 1)
y∗i =

r∑
i=2

i−Hi

2
y∗i (6)

By plugging the right-hand equality and (6) into inequality (3), we obtain:

r∑
i=2

i−Hi

2
y∗i ≤

r∑
i=2

(i− 1)yi (7)

Denote by APX and OPT the number of colors used by Greedy Tour and by
the optimum solution respectively. Then

OPT =
r∑

i=1

y∗i , APX =
r∑

i=1

yi, and
r∑

i=1

iyi =
r∑

i=1

iy∗i = n (8)

where n = |T | = |T ∗| is the number of vertices of the graph. By (8) we can write
APX = n−

∑r
i=2(i− 1)yi, and using inequality (7), we deduce:

APX ≤
r∑

i=1

iy∗i −
r∑

i=2

i−Hi

2
y∗i =

r∑
i=1

i + Hi

2
y∗i

Finally, since i + Hi ≤ r + Hr when i ≤ r, we obtain:

APX ≤ r + Hr

2

r∑
i=1

y∗i =
r + Hr

2
OPT

Fig. 5 illustrates tightness for r = 2. Only colors appearing twice are drawn. The
optimal tour uses colors c1 to c4, whereas Greedy Tour takes c5 and completes
the tour with 6 new colors appearing once. This yields factor 7

4 = 2+H2
2 approx-

imation. A detailed example for r ≥ 3 is given in the full version. �


MinLTSP(2) proves as hard to approximate as the min-cost hamiltonian path
on a complete graph with edge costs 1 and 2 (MinHPP1,2 - [ND22] in [8]).

Theorem 5. A ρ-approximation for MinLTSP(2) can be polynomially trans-
formed into a (ρ + ε)-approximation for MinHPP1,2, for all ε > 0.
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c1

c1

c2c2

c3

c3

c4 c4

c5

c5

Fig. 5. Only colors appearing twice are represented. The others appears once.

Proof. Let I be an instance of MinHPP1,2, with V (Kn) = {v1, . . . , vn}, and d :
E(Kn)→ {1, 2}. We construct an instance I ′ of MinLTSP(2) on K2n as follows.
The vertex set of K2n is V (K2n) = {v1, . . . , vn} ∪ {v′1, . . . , v′n}. For every edge
e = [x, y] ∈ E(Kn) with d(x, y) = 1 we define two edges [x, y], [x′, y′] ∈ E(K2n)
with the same color L([x, y]) = L([x′, y′]) = ce. We complete the coloring of K2n

by adding a new color for each of the rest of the edges K2n.
Let P ∗ be an optimum hamiltonian path (with endpoints s and t) of Kn with

cost OPT (I). Build a tour T ′ of K2n by taking P ∗, the edges [x, x′], [y, y′] and
a copy of P ∗ on vertices {v′1, . . . , v′n}. Then |L(T ′)| = OPT (I) + 2, and:

OPT (I ′) ≤ OPT (I) + 2 (9)

Now let T ′ be a feasible solution of I ′. Assume that n2 colors appear twice in T ′

(thus 2n−2n2 colors appear once in T ′). In Kn, the set of edges with these colors
corresponds to a collection of disjoint paths P1, . . . , Pk with edges of distance 1.
Then, by adding exactly n−1−n2 edges we obtain a hamiltonian path P of Kn

with cost at most:

d(P ) ≤ |L(T ′)| − 2 (10)

where d(P ) =
∑

e∈P d(e). Using inequalities (9) and (10), we deduce OPT (I ′) =
OPT (I)+2. Now, if T is a ρ-approximation for MinLTSP(2), we deduce d(P ) ≤
ρOPT (I) + 2(ρ− 1) ≤ (ρ + ε)OPT (I) when n is large enough. �

Since the traveling salesman problem with distances 1 and 2 (MinTSP1,2) is
APX-hard, [16] (then, MinHPP1,2 is also APX-hard), we conclude by Theorem
5 that MinLTSP(2) is APX-hard. Moreover, MinLTSP(2) belongs to APX
because any feasible tour is 2-approximate.

Corollary 2. MinLTSP(2) is APX-complete.

4 Open Questions

Is there a better approximation algorithm for MinLTSP(r), when r is a fixed
small constant (e.g. r = 2)? For MaxLTSP, using k−improvements for fixed
k ≥ 3 could yield better performance but analysis appears quite non-trivial. It
is also interesting to study MaxLTSP(r) with bounded color frequency r.
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Abstract. Let G = (V, E) be a graph and T be a spanning tree of G.
We consider the following strategy in advancing in G from a vertex x
towards a target vertex y: from a current vertex z (initially, z = x),
unless z = y, go to a neighbor of z in G that is closest to y in T (break-
ing ties arbitrarily). In this strategy, each vertex has full knowledge of
its neighborhood in G and can use the distances in T to navigate in
G. Thus, additionally to standard local information (the neighborhood
NG(v)), the only global information that is available to each vertex v
is the topology of the spanning tree T (in fact, v can know only a very
small piece of information about T and still be able to infer from it the
necessary tree-distances). For each source vertex x and target vertex y,
this way, a path, called a greedy routing path, is produced. Denote by
gG,T (x, y) the length of a longest greedy routing path that can be pro-
duced for x and y using this strategy and T . We say that a spanning tree
T of a graph G is an additive r-carcass for G if gG,T (x, y) ≤ dG(x, y) + r
for each ordered pair x, y ∈ V . In this paper, we investigate the prob-
lem, given a graph family F , whether a small integer r exists such that
any graph G ∈ F admits an additive r-carcass. We show that rectilin-
ear p × q grids, hypercubes, distance-hereditary graphs, dually chordal
graphs (and, therefore, strongly chordal graphs and interval graphs), all
admit additive 0-carcasses. Furthermore, every chordal graph G admits
an additive (ω(G) + 1)-carcass (where ω(G) is the size of a maximum
clique of G), each 3-sun-free chordal graph admits an additive 2-carcass,
each chordal bipartite graph admits an additive 4-carcass. In particular,
any k-tree admits an additive (k+2)-carcass. All those carcasses are easy
to construct.

1 Introduction

As part of the recent surge of interest in different kind of networks, there has
been active research exploring strategies for navigating synthetic and real-world
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networks (modeled usually as graphs). These strategies specify some rules to be
used to advance in a graph (a network) from a given vertex towards a target
vertex along a path that is close to shortest. Current strategies include (but not
limited to): routing using full-tables, interval routing, routing labeling schemes,
greedy routing, geographic routing, compass routing, etc. in wired or wireless
communication networks and in transportation networks (see [19,20,27,33,25,40]
and papers cited therein); routing through common membership in groups, pop-
ularity, and geographic proximity in social networks and e-mail networks (see
[2,3,27,32] and literature cited therein).

In this paper we use terminology used mostly for communication networks.
Thus, navigation is performed using a routing scheme, i.e., a mechanism that
can deliver packets of information from any vertex of a network to any other
vertex. In most strategies, each vertex v of a graph has full knowledge of its
neighborhood and uses a piece of global information available to it about the
graph topology – some ”sense of direction” to each destination, stored locally at
v. Based only on this information and the address of a destination vertex, vertex
v needs to decide whether the packet has reached its destination, and if not, to
which neighbor of v to forward the packet.

1.1 Some Known Strategies

In routing using full-tables, each vertex v ofG knows for each destination u the first
edge along some shortest path from v to u (so-called complete routing table). When
v needs to send a message to u, it just sends the message along the edge stored for
destination u. While this approach guarantees routing along a shortest path, it is
too expensive for large systems since it requires to store locally O(n log δ) bits of
global information for an n-vertex graph with maximum degree δ.

Unfortunately, if one insists on a routing via shortest paths, Ω(n log δ) bits
is the lower bound on the memory requirements per vertex [24] (this much each
vertex needs to know at least). To obtain routing schemes for general graphs
that use o(n) of memory at each vertex, one has to abandon the requirement
that packets are always delivered via shortest paths, and settle instead for the
requirement that packets are routed on paths that are relatively close to shortest.
The efficiency of a routing scheme is measured in terms of its additive stretch,
called deviation (or multiplicative stretch, called delay), namely, the maximum
surplus (or ratio) between the length of a route, produced by the scheme for a
pair of vertices, and the shortest route. There is a tradeoff between the memory
requirements of a routing scheme (how much of global information is available
locally at a vertex) and the worst case stretch factor it guarantees. Any multi-
plicative t-stretched routing scheme must use Ω(n) bits for some vertices in some
graphs for t < 3 [21] (see also [17]), and Ω(n log n) bits for t < 1.4 [24]. These
lower bounds show that it is not possible to lower memory requirements of a
routing scheme for an arbitrary network if it is desirable to route messages along
paths close to optimal. Therefore, it is interesting, both from a theoretical and
a practical view point, to look for specific routing strategies on graph families
with certain topological properties.
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One specific way of routing, called interval routing, has been introduced in [36]
and later generalized in [31]. In this method, the complete routing tables are com-
pressedbygrouping thedestinationaddresseswhich correspond to the sameoutput
edge. Then each group is encoded as an interval, so that it is easy to check whether
a destination address belongs to the group. This approach requires O(δ logn) bits
of memory per vertex, where δ is the maximum degree of a vertex of the graph. A
graphmust satisfy some topological properties in order to support interval routing,
especially if one insists on paths close to optimal. Routing schemes for many graph
classes were obtained by using interval routing techniques. The classical and most
recent results in this field are presented in [19,20].

Recently, so-called routing labeling schemes [33] become very popular. A num-
ber of interesting results for general graphs and particular classes of graphs were
obtained. These are schemes that label the vertices of a graph with short labels
(describing some global topology information) in such a way that given the label
of a source vertex and the label of a destination, it is possible to compute effi-
ciently the edge from the source that heads in the direction of the destination.
In [18,40], a shortest path routing scheme for trees with O(log2 n/ log logn)-
bit labels is described. For general graphs, the most general result to date is
a multiplicative (4k − 5)-stretched routing labeling scheme that uses labels of
size Õ(kn1/k) bits1 is obtained in [40] for every k ≥ 2. For planar graphs, a
shortest path routing labeling scheme which uses 8n+ o(n) bits per vertex is de-
veloped in [22], and a multiplicative (1+ε)-stretched routing labeling scheme for
every ε > 0 which uses O(ε−1 log3 n) bits per vertex is developed in [39]. Rout-
ing in graphs with doubling dimension α has been considered in [1,10,37,38].
It was shown that any graph with doubling dimension α admits a multiplica-
tive (1 + ε)-stretched routing labeling scheme with labels of size ε−O(α) log2 n
bits. Recently, the routing result for trees of [18,40] was used in designing ad-
ditive O(1)-stretched routing labeling schemes with O(logO(1) n) bit labels for
several families of graphs, including chordal graphs, chordal bipartite graphs,
circular-arc graphs, AT-free graphs and their generalizations, the graphs with
bounded longest induced cycle, the graphs of bounded tree–length, the bounded
clique-width graphs, etc. (see [12,13,14,15] and papers cited therein).

In wireless networks, the most popular strategy is the geographic routing
(sometimes called also the greedy geographic routing), were each vertex forwards
the packet to the neighbor geographically closest to the destination (see survey
[25]). Each vertex of the network knows its position (e.g., Euclidean coordinates)
in the underlying physical space and forwards messages according to the coordi-
nates of the destination and the coordinates of neighbors. Although this greedy
method is effective in many cases, packets may get routed to where no neighbor
is closer to the destination than the current vertex. Many recovery schemes have
been proposed to route around such voids for guaranteed packet delivery as long
as a path exists [4,26,30]. These techniques typically exploit planar subgraphs
(e.g., Gabriel graph, Relative Neighborhood graph), and packets traverse faces
on such graphs using the well-known right-hand rule.

1 Here, Õ(f) means O(f polylog n).
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All earlier papers assumed that vertices are aware of their physical location,
an assumption which is often violated in practice for various of reasons (see
[16,28,35]). In addition, implementations of recovery schemes are either based
on non-rigorous heuristics or on complicated planarization procedures. To over-
come these shortcomings, recent papers [16,28,35] propose routing algorithms
which assign virtual coordinates to vertices in a metric space X and forward
messages using geographic routing in X . In [35], the metric space is the Euclid-
ean plane, and virtual coordinates are assigned using a distributed version of
Tutte’s ”rubber band” algorithm for finding convex embeddings of graphs. In
[16], the graph is embedded in Rd for some value of d much smaller than the
network size, by identifying d beacon vertices and representing each vertex by
the vector of distances to those beacons. The distance function on Rd used in
[16] is a modification of the �1 norm. Both [16] and [35] provide substantial ex-
perimental support for the efficacy of their proposed embedding techniques –
both algorithms are successful in finding a route from the source to the destina-
tion more than 95% of the time – but neither of them has a provable guarantee.
Unlike embeddings of [16] and [35], the embedding of [28] guarantees that the
geographic routing will always be successful in finding a route to the destination,
if such a route exists. Algorithm of [28] assigns to each vertex of the network
a virtual coordinate in the hyperbolic plane, and performs greedy geographic
routing with respect to these virtual coordinates. More precisely, [28] gets vir-
tual coordinates for vertices of a graph G by embedding in the hyperbolic plane
a spanning tree of G. The proof that this method guaranties delivery is relied
only on the fact that the hyperbolic greedy route is no longer than the span-
ning tree route between two vertices; even more, it could be much shorter as
greedy routes take enough short cuts (edges which are not in the spanning tree)
to achieve significant saving in stretch. However, although the experimental re-
sults of [28] confirm that the greedy hyperbolic embedding yields routes with
low stretch when applied to typical unit-disk graphs, the worst-case stretch is
still linear in the network size.

1.2 Our Approach

Motivated by the work of Robert Kleinberg [28], in this paper, we initiate ex-
ploration of the following strategy in advancing in a graph from a source vertex
towards a target vertex. Let G = (V,E) be a graph and T be a spanning tree
of G. To route/move in G from a vertex x towards a target vertex y, use the
following rule:

from a current vertex z (initially, z = x), unless z = y,
go to a neighbor of z in G that is closest to y in T
(break ties arbitrarily).

In this strategy, each vertex has full knowledge of its neighborhood in G and
can use the distances in T to navigate in G. Thus, additionally to standard
local information (the neighborhood NG(v)), the only global information that
is available to each vertex v is the topology of the spanning tree T . In fact, v
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can know only a very small piece of information about T and still be able to
infer from it the necessary tree-distances. It is known [23,34] that the vertices of
an n-vertex tree T can be labeled in O(n log n) total time with labels of up to
O(log2 n) bits such that given the labels of two vertices v, u of T , it is possible to
compute in constant time the distance dT (v, u), by merely inspecting the labels
of u and v. Hence, one may assume that each vertex v of G knows, additionally
to its neighborhood in G, only its O(log2 n) bit distance label. This distance
label can be viewed as a virtual coordinate of v.

For each source vertex x and target vertex y, by this routing strategy, a
path, called a greedy routing path, is produced (clearly, this routing strategy will
always be successful in finding a route to the destination). Denote by gG,T (x, y)
the length of a longest greedy routing path that can be produced for x and y
using this strategy and T . We say that a spanning tree T of a graph G is an
additive r-carcass for G if gG,T (x, y) ≤ dG(x, y)+r for each ordered pair x, y ∈ V
(in a similar way one can define also a multiplicative t-carcass of G).

In this paper, we start investigating the problem, given a graph family F ,
whether a small integer r exists such that any graph G ∈ F admits an additive
r-carcass, and give our preliminary results. We show that rectilinear p× q grids,
hypercubes, distance-hereditary graphs, dually chordal graphs (and, therefore,
strongly chordal graphs and interval graphs), all admit additive 0-carcasses.
Furthermore, every chordal graph G admits an additive (ω(G)+1)-carcass (where
ω(G) is the size of a maximum clique of G), each 3-sun-free chordal graph admits
an additive 2-carcass, each chordal bipartite graph admits an additive 4-carcass.
In particular, any k-tree admits an additive (k + 2)-carcass. All those carcasses
are easy to construct.

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, unweighted,
loopless and without multiple edges. In a graph G = (V,E) (n = |V |,m = |E|)
the length of a path from a vertex v to a vertex u is the number of edges in
the path. The distance dG(u, v) between the vertices u and v is the length of a
shortest path connecting u and v. The neighborhood of a vertex v of G is the
set NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] =
NG(v)∪{v}. The disk of radius k centered at v is the set of all vertices at distance
at most k to v, i.e., Dk(v) = {u ∈ V : dG(u, v) ≤ k}. A set S ⊆ V is a clique
(an independent set) of G if all vertices of S are pairwise adjacent (respectively,
nonadjacent) in G. A clique of G is maximal if it is not contained in any other
clique of G.

Next we recall the definitions of special graph classes mentioned in this paper
(see survey [8]). A graph is chordal if it does not have any induced cycle of length
greater than 3. A p-sun (p ≥ 3) is a chordal graph on 2p vertices whose vertex set
can be partitioned into two sets, U = {u0, . . . , up−1} and W = {w0, . . . , wp−1},
such that W is an independent set, U is a clique, and every wi is adjacent only to
ui and ui+1 (mod p). A chordal graph having no induced subgraphs isomorphic
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to p-suns (for any p ≥ 3) is called a strongly chordal graph. A chordal graph
having no induced subgraphs isomorphic to 3-sun is called a 3-sun-free chordal
graph. A graph is chordal bipartite if it is bipartite and has no induced cycles
of length greater than 4. A dually chordal graph is the intersection graph of the
maximal cliques of a chordal graph (see [8,7] for many equivalent definitions of
dually chordal graphs and strongly chordal graphs). A graph is interval if it is
the intersection graph of intervals of a line. It is known that interval graphs
are strongly chordal and strongly chordal graphs are dually chordal (see [8,7]).
A graph G is distance-hereditary if every induced path of G is shortest (see [8]
for many equivalent definitions of distance-hereditary graphs). The k-trees are
defined recursively: a clique of size k (denoted by Kk) is a k-tree; if G is a k-tree,
then a graph obtained from G by adding a new vertex v adjacent to all vertices
of some clique Kk of G is a k-tree. It is known (see [8]) that all k-trees are
chordal graphs and that maximal cliques of a k-tree have size at most k + 1.

Let now G = (V,E) be a graph and T be a spanning tree of G. In what follows,
we will use the following notations. For vertices v and u from V , denote by vTu
the (unique) path of T connecting vertices v and u. For a source vertex x and
a target vertex y in G, denote by RG,T (x, y) a greedy routing path obtained for
x and y by using tree T and the strategy described in Subsection 1.2. Clearly,
for the same pair of vertices x and y, breaking ties differently, different greedy
routing paths RG,T (x, y) can be produced. Denote, as before, by gG,T (x, y), the
length of a longest greedy routing path that can be produced for x and y. If no
confusion can arise, we will omit indexes G and T , i.e., use R(x, y) and g(x, y)
instead of RG,T (x, y) and gG,T (x, y).

For r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called an additive r-
carcass (a multiplicative t-carcass) for G if gG,T (x, y) ≤ dG(x, y)+r (respectively,
gG,T (x, y) ≤ t dG(x, y)) for each ordered pair x, y ∈ V .

Let x∗ be the neighbor of x in RG,T (x, y) and x′ be the neighbor of x in xTy.
Since both x∗ and x′ are in NG(x) and dT (x′, y) = dT (x, y) − 1, according to
our strategy dT (x∗, y) ≤ dT (x′, y) = dT (x, y) − 1 must hold. Furthermore, any
subpath of a greedy routing path RG,T (x, y) containing y is a greedy routing
path to y as well. Hence, one can conclude, by induction, that the length of any
greedy routing path RG,T (x, y) never exceeds dT (x, y). It is clear also, that a
greedy routing path RG,T (x, y) := (x := x0, x1, x2, . . . , y := x�) cannot have a
chord xixj ∈ E with j > i + 1 (since dT (xi+1, y) > dT (xj , y)), i.e., any greedy
routing path is an induced path. Thus, we have the following.

Observation 1.. Let G be an arbitrary graph and T be its arbitrary spanning
tree. Then, for any vertices x, y of G,

(a) gG,T (x, y) ≤ dT (x, y),
(b) any greedy routing path RG,T (x, y) is an induced path of G,
(c) a tale of any greedy routing path is a greedy routing path.

Since in distance-hereditary graphs each induced path is a shortest path, by
Observation 1(b), we conclude.
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Corollary 1. Any spanning tree of a distance-hereditary graph G is a 0-carcass
of G.

There are well-known notions of additive tree r-spanners and multiplicative tree
t-spanners. For r ≥ 0 and t ≥ 1, a spanning tree T of a graph G is called
an additive tree r-spanner (a multiplicative tree t-spanner) of G if dT (x, y) ≤
dG(x, y) + r (respectively, dT (x, y) ≤ t dG(x, y)) for each pair x, y ∈ V [9]. By
Observation 1(a), we obtain.

Corollary 2. Any additive tree r-spanner (multiplicative tree t-spanner) of a
graph G is an additive r-carcass (multiplicative t-carcass) of G.

Note that the converse of Corollary 2 is not generally true. As we will see in
next sections, there are many families of graphs which do not admit any tree
r-spanners (additive as well as multiplicative) for any constant r, yet they admit
very good carcasses. For example, there is no constant r such that any 2-tree
or any chordal bipartite graph has a tree r-spanner (additive or multiplicative),
but both these families of graphs admit additive 4-carcasses (see Section 5 for
details).

In what follows, in a rooted tree T , by f(v) we will denote the father of a
vertex v.

3 Rectilinear Grids and Hypercubes

In this section we show that the rectilinear grids and the hypercubes admit
additive 0-carcasses.

Consider a rectilinear p× q grid G and assume that it is naturally embedded
into the plane such that all inner faces of G are squares (see Fig. 1). First
we notice that G does not admit any good tree spanner. For this, consider an
arbitrary spanning tree T of G, and assume that p and q are odd integers and
p ≤ q. Since T is a planar graph with only the outer face, we can connect by a
Jordan curve C a point of the plane inside the central square of G with a point

Fig. 1. Rectilinear grids do not admit any (additive or multiplicative) tree r-spanners
with a constant r, but have additive 0-carcasses
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in the outer face of G without intersecting the tree T . Let R be the first square
of G crossed by C and x and y be two opposite vertices of R (see Fig. 1(a) for
an illustration). Clearly, for x and y, dT (x, y) ≥ p + 1 holds, while dG(x, y) = 2.
Here, we considered nonadjacent vertices of G since adjacent vertices are of
no interest in our greedy routing. Thus, there are no good tree spanners for
rectilinear grids. On the other hand, G admits an additive 0-carcass. Consider
a Hamiltonian path of G depicted on Fig. 1(b), called column-wise Hamiltonian
path. This path is an additive 0-carcass of G. We leave verification of this fact
to the reader.

Now we turn to the hypercubes. Let Hq = (V,E) be the q-dimensional hy-
percube whose vertices are binary words of length q and two vertices are adja-
cent if they differ in exactly one letter. Let a ∈ {0, 1} and i ∈ {1, . . . , q}. Let
Ha,i

q be a subgraph of Hq induced by vertices having letter a in the position
i. Then, H ′ := Ha,i

q is isomorphic to the (q − 1)-dimensional hypercube and
dHq (x, y) = dH′ (x, y), whenever the letter in the position i of x and y is a.

Let T be the Gray-Hamiltonian path of Hq defined recursively as follows. If
x1, . . . , x2q−1 is the Gray-Hamiltonian path for Hq−1, then T is given by T0T1,
where T0 = x10, . . . , x2q−10 and T1 = x2q−11, . . . , x11. By applying two steps of
previous recursion, it is clear that T can be decomposed into four consecutive
subpaths T = T00T10T11T01, where the subpath Tw contains all the vertices of
Hq ending with w. Notice that T0 is the Gray-Hamiltonian path for H0,q

q , T1
is the reverse of the Gray-Hamiltonian path for H1,q

q and T10T11 is the Gray-
Hamiltonian path for the hypercube H1,q−1

q .
By using induction on q, we prove that g(x, y) := gG,T (x, y) = dG(x, y),

where G = Hq and T is the Gray-Hamiltonian path of Hq. When x and y belong
to T0 (resp. T1), conclusion is obtained by applying induction hypothesis to
vertices x and y in the hypercube H0,q

q (resp. H1,q
q ) with the Gray-Hamiltonian

path T0 (resp. T1). Similarly, when x belongs to T10 and y belongs to T11, we
can apply induction in the hypercube H1,q−1

q with the Gray-Hamiltonian path
T10T11.

For the remaining cases, let x∗ denote the vertex next to x in a greedy routing
path RG,T (x, y). If x∗ and y belong to T1, and x belongs to T0, then dG(x∗, y) =
dG(x, y) − 1, since x∗ and y agree in their last letters. By applying induction
to x∗ and y using T1, we get that g(x∗, y) = dH1,q

q
(x∗, y) = dG(x∗, y). Hence,

g(x, y) = 1 + g(x∗, y) = 1 + dG(x∗, y) = dG(x, y). Let us now consider the case
when x and x∗ belong to T0, and y belongs to T1. As x has a neighbor in T1 and
we are assuming that x∗ belongs to T0, vertex y must belong to T11. We have
already considered the case when x belongs to T10. Hence, let us assume that x
belongs to T00. As x has a neighbor in T10, vertex x∗ must belong to T10. Since
in this case dG(x∗, y) = dG(x, y) − 1, we can conclude as before, by applying
induction to x∗ and y in H1,q−1

q with the Gray-Hamiltonian path T10T11.
So, we can state the following theorem.

Theorem 1. Every rectilinear grid and every hypercube admits an additive 0-
carcass (which is a Hamiltonian path) constructible in linear time.
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4 Locally Connected Spanning Trees Are Additive
0-Carcasses: Dually Chordal Graphs

In this section, we show that every dually chordal graph G = (V,E) admits an
additive 0-carcass constructible in linear time. Recall that every dually chordal
graph has an additive tree 3-spanner and there are dually chordal graphs without
any additive tree 2-spanners (see [6]). Clearly, those additive tree 3-spanners
are additive 3-carcasses, but it is not hard to see that they are not necessarily
additive 0-carcasses (see, e.g., Fig. 2).

Fig. 2. A dually chordal graph with an additive tree 3-spanner (on the left) and an
additive 0-carcass (on the right). This dually chordal graph does not have any additive
tree 2-spanner. A greedy routing path from x to y with respect to the corresponding
tree is shown on both pictures.

Let G be a graph. We say that a spanning tree T of G is locally connected if
the closed neighborhood NG[v] of any vertex v of G induces a subtree in T (i.e.,
T ∩NG[v] is a connected subgraph of T ). See the right picture on Fig. 2 for an
example of a locally connected spanning tree.

Theorem 2. If T is a locally connected spanning tree of a graph G, then T is
an additive 0-carcass of G.

Proof. Assume that we want to route from a source vertex x to a target vertex
y in G. Let v be an arbitrary vertex of G and v∗ be a vertex from NG[v] closest
to y in T . Since T ∩NG[v] is a connected subgraph of T , for each vertex v ∈ V
such a neighbor v∗ is unique (any subtree of a tree has only one vertex closest
in T to a given vertex y). Moreover, v∗ 
= v, unless v = y. In what follows, we
will assume that the tree T is rooted at vertex y.

Claim 1.. For any vertex v ∈ V , the vertex v∗ belongs to a shortest path of G
connecting v and y.

Proof. We prove by induction on dG(v, y). If dG(v, y) ≤ 1, then v∗ = y and
therefore v∗ belongs to any shortest path between v and y. So, assume that
dG(v, y) ≥ 2. Consider a shortest path P (v, y) := (v, a, b, . . . , y) in G connecting
v and y, where a and b are the first two (after v) vertices of this path. They exist
since dG(v, y) ≥ 2.
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To obtain the conclusion, we prove that v∗ and b are adjacent. For sake of
contradiction, let us assume that they are not adjacent. Since a, b∗ ∈ NG(b) and
T ∩NG[b] is a connected subgraph of T , we get that v∗ is not on path aT b∗. We
also know that a ∈ NG[v] ∩NG[b] and therefore both v∗ and b∗ are ancestors in
T of a (recall that we have rooted T at y). Hence, b∗ is on the path aTv∗. As
a, v∗ ∈ NG(v) and T ∩NG[v] is a connected subgraph of T , we get that v and b∗

are adjacent. By induction, b∗ belongs to a shortest path of G between b and y,
which leads to the following contradiction: dG(v, y) ≤ 1 + dG(b∗, y) = dG(b, y) <
dG(v, y). �(of Claim)

Now we prove by induction on dT (x, y) that g(x, y) = dG(x, y). Indeed, g(x, y) =
1 + g(x∗, y) and, by induction, g(x∗, y) = dG(x∗, y) as dT (x, y) > dT (x∗, y). By
Claim 1, we conclude g(x, y) = 1 + dG(x∗, y) = dG(x, y). �

It has been shown in [7] that the graphs admitting locally connected spanning
trees are precisely the dually chordal graphs. Furthermore, [7] showed that the
class of dually chordal graphs contains such known families of graphs as strongly
chordal graphs, interval graphs and others. Thus, we have the following corollary.

Corollary 3. Every dually chordal graph admits an additive 0-carcass construct-
ible in linear time. In particular, any strongly chordal graph (any interval graph)
admits an additive 0-carcass constructible in linear time.

Note that, in [5,7], it was shown that dually chordal graphs can be recognized in
linear time, and if a graph G is dually chordal, then a locally connected spanning
tree of G can be efficiently constructed.

5 Additive Carcasses for Chordal Graphs and Chordal
Bipartite Graphs

In this section, we just list our results for chordal graphs and chordal bipartite
graph. The proofs can be found in the journal version of this paper.

Theorem 3. Every chordal bipartite graph admits an additive 4-carcass con-
structible in linear time.

Recall that chordal bipartite graphs do not have any tree r-spanners (additive
or multiplicative) with a constant r (see, e.g., [11]).

Theorem 4. Any shortest path tree of a chordal graph G is an additive (ω(G)+
1)-carcass of G. Here ω(G) is the size of a maximum clique of G.

Since k-trees are chordal graphs with the size of a maximum clique at most k+1,
we conclude.
Corollary 4. Every k-tree admits an additive (k + 2)-carcass constructible in
linear time. In particular, any 2-tree admits an additive 4-carcass constructible
in linear time.
Recall that 2-trees do not have any tree r-spanners (additive or multiplicative)
with a constant r (see, e.g., [29]). We also have the following result.
Corollary 5. Every 3-sun-free chordal graph admits an additive 2-carcass.
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Abstract. In this paper, we consider the single vehicle scheduling prob-
lem (SVSP) on networks. Each job, located at some node, has a re-
lease time and a handling time. The vehicle starts from a node (depot),
processes all the jobs, and then returns back to the depot. The processing
of a job cannot be started before its release time, and its handling time
indicates the time needed to process the job. The objective is to find a
routing schedule of the vehicle that minimizes the completion time. When
the underlying network is a path, we provide a simple 3/2-approximation
algorithm for SVSP where the depot is arbitrarily located on the path,
and a 5/3-approximation algorithm for SVSP where the vehicle’s start-
ing depot and the ending depot are not the same. For the case when
the network is a tree network, we show that SVSP is polynomially ap-
proximable within 11/6 of optimal. All these results are improvements
of the previous results [2,4]. The approximation ratio is improved when
the tree network has constant number of leaf nodes. For cycle networks,
we propose a 9/5-approximation algorithm and show that SVSP without
handling times can be solved exactly in polynomial time. No such results
on cycle networks were previously known.

1 Introduction

In this paper, we study the single vehicle scheduling problem (SVSP) on a net-
work G = (V,E) with node set V and edge set E. Each edge e ∈ E is associated
with a positive travel time l(e). Let d(u, v) denote the total travel time cost of a
shortest path between two nodes u, v in G. A job is located at each node v ∈ V .
Each job v becomes available for processing at a time r(v) known as its release
time. Job v requires a specific amount of time h(v) for its completion known
as its handling time. Job handling is non-preemptive in the sense that if the
vehicle starts processing a job, it is required to complete the processing without
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interruption. The vehicle starts from the starting node called starting depot and
after processing all the jobs the vehicle returns to the ending node called ending
depot. Unless mentioned otherwise, we assume that the starting depot and the
ending depot are the same. Without any loss of generality, we assume a unit
vehicle speed, so that the travel time between any two nodes is equal to the
corresponding distances. Our goal is to determine the processing schedule of the
jobs such that the completion time is minimized.

It is known that SVSP is NP-hard even when G is a path [9]. The majority of
the research efforts on SVSP are focused on finding approximate solutions with
bounded cost (relative to the optimum) [1,2,3,4,6,7].

Psaraftis et al. [8] showed that SVSP on paths is 2-approximable, and that
if all handling times are zero, the problem is easily solvable in linear time when
the vehicle is required to return to the starting depot. When the vehicle is not
required to return back to the depot, a quadratic time solution exists. Tsitsiklis
[9] showed that if the jobs have non-zero release and handling times, SVSP on
paths is NP-complete. Karuno et al. [3] gave a 3/2-approximation algorithm for
SVSP on paths with non-zero release and handling times with some restriction
on the depot location, and in [2] Gaur et al. presented a 5

3 -approximation for
the problem with the same setting except that the depot is located arbitrarily
on the path network.

Nagamochi et al. showed that SVSP on trees, with release times only, is NP-
hard [7]. For SVSP on trees with release and handling times, Karuno et al. [4]
proposed a 2-approximation algorithm. PTAS algorithms are known [1,5] for
SVSP on trees with a fixed number of leaves. These schemes can also be applied
to the case when more than one vehicle is available for processing the jobs.

Not many results are known for SVSP in general settings e.g., when the un-
derlying graph is an undirected complete graph and the edge costs satisfy the
triangle inequality. Nagamochi et. al. [7] proposed a 2.5-approximation algo-
rithm for SVSP on general networks satisfying the triangle inequality. Tsitsiklis
[9] considered the complexity of SVSP with release and (or) handling times, and
proposed polynomial time solutions for some special cases of the problem, e.g.,
when the number of vertices in the graph is bounded by some constant (the
number of jobs may be arbitrary).

In this paper we focus on SVSP in the cases where the underlying network is
a path network, a tree network, or a cycle network.

2 SVSP on Path Networks

In this section we first present a 3/2-approximation algorithm for SVSP on a path
network P where the depot is located at some arbitrary location on the path. This
improves the previous best 5

3 -approximation result [2]. We also consider a more
generalized SVSP on P where the starting and the ending depots are different.

The path P has node set V = {v1, . . . , vn} and edge set E = {vivi+1 : i =
1, . . . , n− 1} with nodes v1 and vn designating the beginning and the end of the
path respectively. The depot o is assumed to be located at vs, 1 ≤ s ≤ n i.e.,
vs = o. We use C∗

P to denote the optimal completion time of the problem.
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Given a positive value t, let V≥t be the set of jobs whose release times are at
least t, and let V>t be the set of jobs whose release times are larger than t. We
also define the following notations. rmax = maxv∈V r(v);D = 2d(v1, vn);H≥t =∑

v∈V≥t
h(v), H = H≥0;H>t =

∑
v∈V>t

h(v).

2.1 Related Works

In [3], Karuno et al. showed that the optimal completion time C∗
P is at least

max {H + D, r(v) + h(v) + d(v, o), t + H≥t} for any node v ∈ V and any t with
0 ≤ t ≤ rmax. Based on this observation, Karuno et al. [3] proposed a 3/2-
approximation algorithm for SVSP where the depot is located either at v1 or at
vn. Gaur et al. [2] provided a 5

3 -approximation algorithm for SVSP where the
depot is at some arbitrary location of the path.

In the following, we give a brief overview of the algorithm of Karuno et al. [3].
The algorithm contains two phases, the forward and the backward phases. These
two phases are delineated by a suitably chosen t where H>t ≤ t ≤ H≥t. Clearly
H>t ≤ t ≤ 0.5C∗

P since t + H≥t ≤ C∗
P . In the forward phase, the vehicle starts

from depot v1 after waiting t time units, and then goes to the other end vn of
the path, processing all the nodes whose release times are at most t. This may
involve waiting at some nodes for their jobs to be released. During the backward
phase, the vehicle processes all the remaining jobs on its way back to v1.

In the event when there is no time spent on waiting in the backward phase,
Karuno et al. [3] showed that the completion time of this schedule is no more
than t + H + D which is at most 3

2C
∗
P . Otherwise, let vk be the last job in

the schedule where the vehicle is forced to wait before it is released during the
backward phase. In this case the completion time of this schedule is no more
than r(vk) + H>t + d(vk, o) which is at most 3

2C
∗
P [3].

2.2 Our Approach

In this section we study SVSP on P where the depot is located at vs, 1 ≤ s ≤ n.
Our approach is based on a new lower bound of the optimal completion time
C∗

P (shown in Lemma 1), where, for any time t(≤ rmax), the optimal completion
time is at least the sum of the time t, handling time H≥t, and the minimum
traveling time needed to visit all nodes in V≥t starting from the depot o = vs.

We describe below a few more notations.

dl(t) = max {0,max{d(vi, o)|1 ≤ i < s, vi ∈ V≥t}};

dr(t) = max {0,max {d(vi, o)|s ≤ i ≤ n, vi ∈ V≥t}}.
Here vl(t) is the leftmost node of vs in V≥t, and if there is no such node, then
vl(t) = vs. Similarly, vr(t) is the rightmost node of vs in V≥t and if there is no
such node then vr(t) = vs. Note that d(vl(t), o) = dl(t) and d(vr(t), o) = dr(t).

Lemma 1. The optimal completion timeC∗
P is at least t+H≥t+max {dl(t), dr(t)}

+ 2 min {dl(t), dr(t)}, for any t ≤ rmax.
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Proof. In an optimal schedule S :< vi1 , · · · , vin >, let v′ be the first job in this
schedule that is in V≥t. Firstly, the starting time t′ in S to process job v′ must
be at least r(v′). All the jobs in V≥t are processed after time t′. Hence, in the
sechdule S, the processing time needed after time t′ is at least H≥t. In order to
process all the jobs in V≥t and return to the depot vs, the traveling time required
is at least max {dl(t), dr(t)}+ 2 min {dl(t), dr(t)}.

Therefore, the completion time of schedule S is at least r(v′) + H≥t + max
{dl(t), dr(t)}+2 min {dl(t), dr(t)}, which is at least t+H≥t+max {dl(t), dr(t)}+
2 min {dl(t), dr(t)} since v′ ∈ V≥t. �

We compute t∗P such that t∗P = H>t∗

P
+ min {dl(t∗P ), dr(t∗P )} or H>t∗

P
+ min

{dl(t∗P ), dr(t∗P )} < t∗P ≤ H≥t∗
P

+ min {dl(t∗P ), dr(t∗P )}. Such t = t∗P always
exists, since H>t, H≥t, and min {dl(t), dr(t)} monotonically decrease with t.
Without any loss of generality we assume that dl(t∗P ) ≤ dr(t∗P ). Therefore,
H>t∗

P
+ 2dl(t∗P ) ≤ t∗P + dl(t∗P ) ≤ 0.5C∗

P , since dl(t∗P ) ≤ dr(t∗P ) and t∗P + H≥t∗
P

+
2dl(t∗P ) + dr(t∗P ) ≤ C∗

P (Lemma 1).
Our routing schedule of the vehicle to process jobs consists of four phases,

which are described as follows (Fig. 1)

v1 vnvs = o vr(t∗P )vl(t∗P )

dr(t∗P )dl(t∗P )

First phase:

Second phase:

Third phase:

Forth phase:

Initial waiting time:t∗
P − dl(t∗

P ).

Process jobs whose release times are ≤ t∗
P .

Process jobs whose release times are > t∗
P .

Fig. 1. Four phases in our routing schedule of the vehicle

First phase: The vehicle waits for t∗P − dl(t∗P ) time (note that t∗P ≥ dl(t∗P )) at
the depot o and then travels from o to v1 without processing any job. The time
spent in the first phase is exactly t∗P − dl(t∗P ) + d(v1, o), which is at least t∗P .

Second phase: The vehicle processes jobs on its way from v1 to vn whose release
times are no more than t∗P . Clearly, the vehicle does not wait for a job to be
released during this phase.

Third phase: The vehicle processes the remaining unprocessed jobs on its way
from vn to vl(t∗P ).

Fourth phase: The vehicle travels back to the depot node o from vl(t∗P ).
We have two cases in the third phase. If there is no waiting in the third phase,

then the completion time of the routing schedule is equal to

t∗P − dl(t∗P ) + d(v1, o) + d(v1, vn) + d(vn, vl(t∗P )) + d(vl(t∗P ), o) + H
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= t∗P + d(v1, o) + d(v1, vn) + d(vn, o) + d(vl(t∗P ), o) + H

= H + D + t∗P + dl(t∗P ) ≤ 1.5C∗
P ,

since d(vl(t∗P ), o) = dl(t∗P ), H + D ≤ C∗
P , and t∗P + dl(t∗P ) ≤ 0.5C∗

P . Recall that
D = 2d(v1, vn).

If there is some waiting in the third phase, let vk be the last job in the schedule
where the vehicle waited for the release of the job at vk. The completion time
of the schedule in this case is no more than r(vk) + d(vk, vl(t∗P )) + d(vl(t∗P ), o) +
H>t∗

P
≤ r(vk) + d(vk, o) + d(o, vl(t∗P )) + d(vl(t∗P ), o) +H>t∗

P
= r(vk) + d(vk, o) +

H>t∗
P

+ 2dl(t∗P ) ≤ 1.5C∗
P , since r(vk) + d(vk, o) ≤ C∗

P , d(vl(t∗P ), o) = dl(t∗P ), and
H>t∗

P
+ 2dl(t∗P ) ≤ 0.5C∗

P . Therefore,

Theorem 1. The approximation ratio of the algorithm for the SVSP problem
on a path network is at most 1.5.

2.3 SVSP with Different Starting and Ending Depots

Here we only consider the case where the starting depot is located at v1 and the
ending depot is located at vn. The algorithm generalizes easily for different pairs
of starting and ending depots.

The optimal completion time, denoted by C
∗
P , is lower bounded by max {H+

d(v1, vn), r(vk) + h(vk) + d(vk, vn),maxt≤rmax {t + H≥t + d(t)}}, where d(t) =
maxv∈V>td(v,vn).

We now consider the following two cases.

Case 1 (H ≤ 2
3C

∗
P ): The vehicle processes jobs one by one on its way from

v1 to vn. If there is no waiting, then the completion time is equal to C
∗
P .

Otherwise, if vk is the last job where the vehicle waited before processing,
then the completion time is no more than r(vk) + d(vk, vn) + H ≤ 5

3C
∗
P .

Case 2 (H > 2
3C

∗
P ): In this case d(v1, vn) < 1

3C
∗
P since H+d(v1, vn) ≤ C

∗
P . We

compute t
∗ such that t∗+d(t∗) = 0.5H>t∗ or 0.5H>t∗ < t

∗+d(t∗) ≤ 0.5H≥t∗ .
Such t

∗ always exists since H>t and H≥t monotonically decrease with t and
d(0) = d(v1, vn) < 0.5H = 0.5H≥0. Therefore, 0.5H>t∗ ≤ t

∗ + d(t∗) ≤ 1
3C

∗
P

since t
∗ + d(t∗) + H≥t

∗
P
≤ C

∗
P .

The schedule of the vehicle in this case consists of three phases. In phase
one the vehicle waits for t

∗ time at the starting depot v1 and then processes
jobs whose release times are no more than t

∗ on its way from v1 to vn. In
phase two the vehicle travels to the farthest node of V>t

∗ to vn without
processing any job. In the last phase the vehicle processes the remaining
unprocessed jobs on its way back to vn.

If there is no waiting in the last phase, then the completion time is no
more than t

∗ +H +d(v1, vn)+2d(t∗) < 5
3C

∗
P since d(t∗) ≤ d(v1, vn) < 1

3C
∗
P .

Otherwise, if vk is the last job where the vehicle waited before processing,
then the completion time is no more than r(vk) + d(vk, vn) + H>t∗ ≤ 5

3C
∗
P .

Combining the results for the cases H ≤ 2
3C

∗
P and H > 2

3C
∗
P , we have the

following theorem.
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Theorem 2. The approximation ratio of the algorithm for SVSP where the
starting and ending depots are located at the two ends of the path is ≤ 5/3.

3 SVSP on a Tree Network

In this section, we present our approximation algorithm for the SVSP on a tree
network T = (V (T ), E(T )) where the depot is located at the root node. Let C∗

T

denote the optimal completion time of the SVSP on T .
Let T≥t (resp. T>t) denote the spanning subtree of the node set V≥t∪{o} (resp.

V>t ∪ {o}). For a subtree T ′ of T , let E(T ′) denote the edge set of T ′ and L(T ′)
denote the total travel time of T ′ , i.e., L(T ′) =

∑
e∈E(T ′) l(e). Let v≥t (resp. v>t)

be the farthest node of T to o in V≥t (resp. V>t). Let dmax = maxv∈V (T ) d(o, v).
We have the following bounds for the optimum C∗

T of SVSP on T .

Lemma 2. The completion timeC∗
T of an optimal routing schedule for SVSP on a

tree T is at least t+H≥t+2L(T≥t)−d(o, v≥t), for any t ≤ max {rmax, H + 2L(T )}.

Proof. The proof is similar to the proof of the lower bound in Lemma 1. �


The following lemma establishes a useful monotonicity property which will be
used later.

Lemma 3. L(T≥t) − d(o, v≥t) ≥ L(T>t) − d(o, v>t) ≥ L(T≥t′) − d(o, v≥t′ ) ≥
L(T>t′)− d(o, v>t′), for any t and t′ with 0 ≤ t < t′ ≤ rmax.

Proof. Observe that T>t (resp. T>t′) is a subtree of T≥t (resp. T≥t′) and T≥t′ is
a subtree of T>t for any times t and t′ with 0 ≤ t < t′ ≤ rmax. �


3.1 First Routing Schedule of the Vehicle

Our first schedule on T is described as follows. We first find a time t∗1 such
that t∗1 = H>t∗

1
or H>t∗

1
< t∗1 ≤ H≥t∗

1
. In phase one the vehicle starts from the

depot after waiting for t∗1 time units and then visits all the nodes in T and then
stops at v>t∗

1
(the farthest node of V>t∗

1
). The vehicle will process a node if its

release time is ≤ t∗1. Obviously, there is no waiting time in phase one. Phase two
starts from node v>t∗

1
and travels the subtree T>t∗

1
. The vehicle processes all the

remaining unprocessed jobs on its return trip back to o. Note that in phase two,
the vehicle might have to wait at nodes for their jobs to be released.

Initial analysis on the first routing schedule. If there is no waiting time during
phase two of the schedule, then the completion time is no more than t∗1+2L(T )−
d(o, v>t∗

1
) + 2L(T>t∗

1
)− d(o, v>t∗

1
) +H ≤ C∗

T + t∗1 + 2L(T>t∗
1
)− 2d(o, v>t∗

1
), since

H + 2L(T ) ≤ C∗
T . Otherwise, if vk is the last job in the schedule where the

vehicle has to wait, we observe that the remaining traveling time after visiting
node vk in phase two is no more than 2L(T>t∗

1
) − 2d(o, v>t∗

1
) + d(vk, o). Hence,

the completion time of the first routing schedule in this case is no more than
r(vk) + H>t∗

1
+ 2L(T>t∗

1
) − 2d(o, v>t∗

1
) + d(vk, o) ≤ C∗

T + H>t∗
1

+ 2L(T>t∗
1
) −

2d(o, v>t∗
1
).
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3.2 Second Routing Schedule of the Vehicle

Let t∗2 be H + L(T ). The second schedule also consists of two phases. In phase
one, the vehicle starts from the depot o after waiting for t∗2 time units, and then
the vehicle traverses the tree in some order using L(T ) time units and processes
all the jobs whose release times are at most t∗2. Obviously, there is no waiting time
in phase one. In phase two, the vehicle processes all the remaining unprocessed
jobs on its way back to o. Note that the vehicle starts its phase two from the
location where it finishes phase one. The path of visiting nodes in two phases is
described below. It is similar to the depth-first search order.

Let PT be a depth-first path. Clearly, the length of PT is 2L(T ). Let pmid

denote the middle point of the path PT , which partitions PT into two sub-paths
of same length denoted by P1

T and P2
T . We consider two cases: the traveling path

of the vehicle in phase one is (a) P1
T or (b) the reverse of P2

T . In both cases, the
vehicle stops at pmid at the end of phase one and the vehicle processes all the
remaining unprocessed jobs on its way back to o from pmid in phase two. The
case that has smaller total travel time is chosen to be the ordering of visiting
nodes.

Lemma 4. The total travel time of the above routing schedule is no more than
2L(T ) + L(T>t∗

2
).

Proof. Let T1 and T2 be the subtrees visited in phase one and phase two, respec-
tively. It is easy to see that the total travel time in the case one and in the case two
described above are 2L(T )+2L((T1\T2)∩T>t∗

2
) and 2L(T )+2L((T2\T1)∩T>t∗

2
),

respectively. Since 2L((T1 \ T2) ∩ T>t∗
2
) + 2L((T2 \ T1) ∩ T>t∗

2
) ≤ 2L(T>t∗

2
), the

smaller total travel time is no more than 2L(T ) + L(T>t∗
2
), as desired. �


Initial analysis on the second routing schedule. If the vehicle did not spend any
time waiting in phase two, then the completion time is no more than t∗2 +L(T )+
L(T ) + L(T>t∗

2
) + H = H + 2L(T ) + t∗2 + L(T>t∗

2
) ≤ C∗

T + H +L(T ) +L(T>t∗
2
).

Otherwise, if vk is the last job in the schedule where the vehicle has to wait in
phase two, then the completion time of this schedule is no more than r(vk) +
H + L(T ) + L(T>t∗

2
) ≤ C∗

T + H + L(T ) + L(T>t∗
2
).

3.3 Final Analysis

In the first routing schedule on T , the selected time t∗1 satisfies that H>t∗
1
≤ t∗1 ≤

H≥t∗
1
. Suppose that L(T ) − dmax ≤ α · C∗

T , where 0 < α < 1. We can see that
C∗

T ≥ t∗1+H≥t∗
1
+2L(T≥t∗

1
)−d(o, v≥t∗

1
) (Lemma 2) ⇒ t∗1+L(T≥t∗

1
)− 1

2d(o, v≥t∗
1
) ≤

C∗
T

2 (since t∗1 ≤ H≥t∗
1
). Therefore, the solution of the first schedule has a cost no

more than

C∗
T + H>t∗

1
+ 2L(T>t∗

1
)− 2d(o, v>t∗

1
)

≤ C∗
T + t∗1 + 2L(T>t∗

1
)− 2d(o, v>t∗

1
) (since H>t∗

1
≤ t∗1)

≤ C∗
T +

C∗
T

2
+ L(T>t∗

1
)−

3d(o, v>t∗
1
)

2
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≤ C∗
T +

C∗
T

2
+ L(T≥t∗

1
)− d(o, v>t∗

1
)

≤ 1.5C∗
T + L(T )− dmax (Lemma 3)

≤ (1.5 + α)C∗
T (by assumption).

We consider the other case L(T ) − dmax > α · C∗
T in the following. Clearly,

H + L(T ) + dmax < (1 − α)C∗
T since H + 2L(T ) ≤ C∗

T .
According to Lemmas 2 and 3, 2L(T t∗

2
) ≤ 2L(T≥t∗

2
) ≤ C∗

T − t∗2 + d(o, v≥t∗
2
).

Therefore, the solution of the second schedule has a cost no more than C∗
T +

H + L(T ) + L(T>t∗
2
) ≤ C∗

T + H + L(T ) + 0.5(C∗
T − t∗2 + d(o, v≥t∗

2
)) = 1.5C∗

T +
0.5(H + L(T ) + d(o, v≥t∗

2
)) ≤ (2− 0.5α)C∗

T .
Thus the minimum completion time of the above routing schedules is bounded

within 11
6 C∗

T (assuming α = 1
3 ).

Theorem 3. The approximation ratio of the algorithm for SVSP on a tree net-
work is at most 11/6.

3.4 T Has b Leaf Nodes (Fixed b)

In the following, we consider the case where T has b (a fixed number) leaf nodes.
Let S′ be the routing schedule of the vehicle in which the nodes are visited in

the order given by the optimal algorithm due to Karuno et al. [7]. This algorithm
does not take into account the handling times, and its time complexity is O(nb).
Let CS′ be the completion time of the schedule S′ assuming all handling times are
0. We now consider a schedule in which the vertices are serviced (and handled)
in the same order as specified by S′. The completion time of such schedule is no
more than CS′ + H .

Let C∗
T denote the completion time of an optimal schedule on T with b leaf

nodes. It is easy to see that C∗
T ≥ CS′ . If H ≤ 2

3C
∗
T , then CS′ + H ≤ 5

3C
∗
T . We

assume that H > 2
3C

∗
T . Obviously, 2L(T ) < 1

3C
∗
T .

In the first routing schedule on T described above, C∗
T + H>t∗

1
+ 2L(T≥t∗

1
)−

2d(o, v≥t∗
1
) ≤ C∗

T +t∗1+2L(T≥t∗
1
)−2d(o, v≥t∗

1
) = C∗

T +(t∗1+L(T≥t∗
1
)− 1

2d(o, v≥t∗
1
))+

L(T≥t∗
1
)− 3

2d(o, v≥t∗
1
) ≤ C∗

T + 1
2C

∗
T + L(T≥t∗

1
) ≤ 5

3C
∗
T .

Therefore,

Theorem 4. The approximation ratio of the algorithm for SVSP on a tree net-
work with a fixed number of leaf nodes is at most 5

3 .

4 SVSP on a Cycle Network

In this section we study the SVSP problem on a cycle network A = (V,E).
The nodes on A are indexed as v1, v2, . . . , vn in the counterclockwise order. It is
assumed here that the depot is located at v1.

Let δ denote the travel time needed to visit all the edges of A. In the following
we assume that there is no edge whose travel cost is at least δ/2, otherwise, the
problem is reducible to SVSP on a path network. It is not hard to see that the
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v1

vf(1)

vf(2)

vf(k)

v1 v1

vf(k)
vf(k)

vf(1)

vf(j+1)

(a) (b) (c)

vf(1)

vf(j)

vf(2)

Fig. 2. Lemma 5

optimal completion time, denoted by C∗
A, is at least max{H + δ, r(vk) +h(vk)+

d(vk, v1) for any vk, max {t + H≥t + δ≥t}, for any t ≤ rmax}. Here δ≥t denotes
the shortest travel time needed to visit all the nodes in V≥t starting from the
depot v1, and d(vk, v1) denote the shortest travel time between v1 and vk.

We denote by π≥t a path, starting from v1, of travel time δ≥t that goes through
all the nodes in V≥t at least once. Let w(π≥t) be the other endpoint of π≥t. We
use dcc(vi, vj) to denote the travel time of the counterclockwise arcs from vi

to vj .

Lemma 5. For any t ≤ rmax, there exists a path π≥t of one of the following
types (Let V≥t = {vf(1), vf(2), . . . , vf(k)}, f(1) < f(2) < · · · < f(k)):

– the counterclockwise path from v1 to vf(k) (Fig. 2(a));
– the counterclockwise path from vf(1) to v1 if vf(1) 
= v1 (Fig. 2(b)) and the

counterclockwise path from vf(2) to v1 otherwise;
– for some j, 1 ≤ j ≤ k − 1, (assuming that dcc(v1, vf(j)) ≤ dcc(vf(j+1), v1)),

π≥t is composed of the counterclockwise path from v1 to vf(j) and the clock-
wise path from vf(j) to vf(j+1) (Fig. 2(c)).

From Lemma 5, it is not hard to see that δ≥t+d(w(π≥t), v1) ≤ δ for any t ≤ rmax.
We consider the following two cases for a fixed constant 0 ≤ β ≤ 0.5.

Case 1. δ ≤ (1−β)C∗
A: We compute t∗ ∈ [0, rmax] such that t∗+δ = H>t∗ +δ>t∗

or H>t∗ + δ>t∗ < t∗ + δ ≤ H≥t∗ + δ>t∗ . Such a t∗ always exists since H>t,
H≥t, and δ>t monotonically decrease with t and δ < H≥0 + δ>0& rmax + δ >
H>rmax + δ>rmax .

We thus see that H>t∗ +δ>t∗ ≤ t∗+δ ≤ (1− β
2 )C∗

A, since t∗+H>t∗ +δ>t∗ ≤ C∗
A

and δ ≤ (1− β)C∗
A.

The routing schedule in this case consists of three phases. Refer to Fig. 3(a).
Each phase is represented by a set of arrows with the phase number attached.
In phase one, the vehicle waits for t∗ time at v1 and then processes jobs whose
release time is no more than t∗ along the cycle < v1, v2, . . . , vn, v1 >. In phase
two, the vehicle travels to node w(π≥t∗) without processing any job. In phase
three, the vehicle processes the remaining jobs along the path π≥t∗ .

Analysis. Clearly, only the last phase might encounter some waiting time. If there
is no waiting time in the last phase, then the completion time is no more than
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π≥t∗

(a) D′ ≤ (1 − β)C∗
A (b) D′ > (1 − β)C∗

A

v1 v1

w(π≥t∗)

vivi+1

Fig. 3. Routing schedules for the two cases

t∗+H+δ+δ>t∗ +d(w(π≥t∗), v1)) ≤ (2− β
2 )C∗

A. Otherwise, if vk is the last job in
the schedule in phase three where the vehicle is forced to wait before its release
time, then the completion time is no more than r(vk)+δ>t∗ +H>t∗ ≤ (2− β

2 )C∗
A

since r(vk) > t∗.
Thus, the completion time of the algorithm for the case when δ ≤ (1− β)C∗

A

is no more than (2− β
2 )C∗

A.

Case 2. δ > (1 − β)C∗
A: In this case some edges are traveled at most once

in an optimal routing schedule, otherwise, if the vehicle travels each edge at
least twice in an optimal routing schedule, then the completion time is at least
2δ > (2 − 2β)C∗

A ≥ C∗
A. Moreover, if there is an edge that is not traveled

in an optimal routing schedule, then our 1.5-approximation algorithm for path
networks in Section 2.2 will provide a routing schedule with completion time
≤ 1.5C∗

A by considering all n candidate cut edges. Thus, we assume that each
edge is traveled at least once and that vivi+1 is the edge that was traveled once,
and all the edges from v1 to vi are traveled at least twice in an optimal schedule.
Without any loss of generality, we assume that the edge vivi+1 is traveled from
vi to vi+1. Clearly, H + δ + dcc(v1, vi) ≤ C∗

A.
The routing schedule in this case is as follows. Refer to Fig. 3(b). Firstly the

vehicle travels counterclockwise from v1 to vi+1 without processing any job, then
it processes jobs one by one along the path < vi+1, . . . , vn, v1, . . . , vi >. In the
last phase, the vehicle travels (clockwise) back to v1 from vi.

Analysis. If there is no waiting time in the above routing schedule then its
completion time is equal to H+δ+2dcc(v1, vi) ≤ (1+β)C∗

A, since H+dcc(v1, vi) <
βC∗

A. Otherwise, if vk is the last job in the schedule where the vehicle is forced
to wait before its release in phase two, then the completion time is no more than
r(vk) +H + dcc(vk, vi) + dcc(v1, vi) ≤ (1 + 2β)C∗

A since r(vk) + dcc(vk, v1) ≤ C∗
A

if i < k ≤ n (the edge vivi+1 is visited once in the optimal routing schedule) and
dcc(vk, vi) ≤ dcc(v1, vi) if 1 ≤ k ≤ i. Thus, the completion time of the algorithm
for the case when D′ > (1 − β)C∗

A is no more than (1 + 2β)C∗
A.

In summary, the completion times of the above schedules is bounded within
9
5C

∗
A (when β = 2

5 ).

Theorem 5. The approximation ratio of the algorithm for SVSP on a cycle
network is at most 9

5 .



810 B. Bhattacharya et al.

When the handling times of all the jobs in cycle networks are zero, it is possible
to design an optimal schedule in polynomial time.

No handling time for the jobs. Here we show that SVSP on A can be solved
optimally when h(vi) = 0(i = 1, . . . , n). This is based on a simple observation
that if the vehicle visits a node vj more than once in a routing schedule, then
the completion time remains unchanged when the vehicle only processes the job
(vj) during the last visit. Similar observation was also used in [8].

It is known that this problem (zero handling time) on a path where the vehicle
returns to the starting depot can be solved exactly in linear time [8]. Hence, if
there is one edge not used in an optimal schedule, then the problem on A can
be solved in O(n2) time. We therefore assume that all the edges of A are used
at least once in an optimal schedule.

We call the routing path vj+1 → vj → vj+1 a counterclockwise turn at node
vj and the routing path vj−1 → vj → vj−1 a clockwise turn at node vj .

Lemma 6. There exists an optimal routing schedule such that the routing path
between any two consecutive turn nodes goes through the depot v1.

From Lemma 6, we can see that in some optimal schedule there exist two nodes
x and y such that all edges in the path between them, which does not contain v1,
are visited only once and the other edges are visited at least twice. By combining
the result of Lemma 6 and the fact that every edge is visited at least once, we
can conclude that there exists one routing subpath without turn in an optimal
schedule that goes through all nodes on A. Therefore, there exists an optimal
schedule of the type < A, P̂ > where P̂ is the optimal schedule of the path from
y to x that contains v1. Using the algorithm in [8] we can determine P̂ in linear
time.

Therefore, we can compute an optimal schedule for A by considering all pos-
sible pairs of nodes x and y. For each such pair, the vehicle first travels to x
without processing any job, and then processes all jobs along the path from x to
y. After traveling back to v1 from y, we use the algorithm in [8] to find an opti-
mal schedule for all remaining jobs on the path between x and y that contains
v1. Hence we have the following theorem.

Theorem 6. SVSP on a cycle network without handling times can be solved in
O(n3) time.

5 Conclusion

We considered the single vehicle scheduling problems on paths, trees and cycles,
all of which are known to be NP-hard. In this paper, we improved the approxi-
mation ratio of the optimal schedule from 5

3 to 1.5 when the underlying network
is a path and the depot is situated at some arbitrary node. The main idea used
in the improved algorithms is a new lower bound of the optimal completion time.

For the case where the underlying network is a tree, we proposed a 11/6-
approximation algorithm, which improved on the previous best result [4]. When
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the underlying tree network only contains a fixed number of leaf nodes, a better
approximation ratio of 5/3 can be obtained.

We then showed that for cycle networks, the ideas developed for paths and
trees can be extended, and as a result we obtained a 9/5-approximation algo-
rithm. When all the jobs have zero handling times, SVSP on cycle networks can
be optimally solved.

There are many issues that are still unresolved. We would like to know whether
the approximation bounds obtained in this paper are tight. It is straightforward
to design a 2.5-approximation algorithm for SVSP on general networks satisfying
the triangle inequality [7]. A better approximation bound for the general network
is desirable. There are many variants of this problem class. Psaraftis et al [8] in
their paper discussed these variants in greater detail. Most of these variants are
still open.
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Abstract. In a recent work [1], we proposed a point-to-point shortest
paths algorithm which applies bidirectional search on time-dependent
road networks. The algorithm is based on A∗ and runs a backward search
in order to bound the set of nodes that have to be explored by the for-
ward search. In this paper we extend the bidirectional time-dependent
search algorithm in order to allow core routing, which is a very effec-
tive technique introduced for static graphs that consists in carrying out
most of the search on a subset of the original node set. Moreover, we
tackle the dynamic scenario where the piecewise linear time-dependent
arc cost functions are not fixed, but can have their coefficients updated.
We provide extensive computational results to show that our approach
is a significant speed-up with respect to the original algorithm, and it is
able to deal with the dynamic scenario requiring only a small computa-
tional effort to update the cost functions and related data structures.

1 Introduction

The Shortest Path Problem (SPP) on static graphs has received a great deal of
attention in recent years, because it has interesting practical applications (e.g.
route planners for GPS devices, web services) and provides an algorithmic chal-
lenge. Several works propose efficient algorithms for the SPP: see [2] for a review,
and [3] for an interesting analysis of possible combinations of speed-up techniques.

Much of the focus is now moving to the Time-Dependent Shortest Path Prob-
lem (TDSPP), which can be formally stated as follows: given a directed graph
G = (V,A), a source node s ∈ V , a destination node t ∈ V , an interval of time
instants T , a departure time τ0 ∈ T and a time-dependent arc cost function
c : A × T → R+, find a path p = (s = v1, . . . , vk = t) in G such that its
time-dependent cost γτ0(p), defined recursively as follows:

γτ0(v1, v2) = c(v1, v2, τ0) (1)
γτ0(v1, . . . , vi) = γτ0(v1, . . . , vi−1) + c(vi−1, vi, τ0 + γτ0(v1, . . . , vi−1)) (2)

for all 2 ≤ i ≤ k, is minimum.
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The TDSPP has been first addressed by [4] with a recursion formula; Dijk-
stra’s algorithm [5] is then extended to the dynamic case in [6], and the FIFO
property, which is necessary to guarantee correctness, is implicitly assumed. The
FIFO property is also called the non-overtaking property, because it states that
if T1 leaves u at time τ0 and T2 at time τ1 > τ0, T2 cannot arrive at v before T1
using the arc (u, v). The TDSPP in FIFO networks is polynomially solvable [7],
while it is NP-hard in non-FIFO networks [8]. We focus on the FIFO variant.
The A∗ algorithm [9] has been adapted to efficiently compute shortest paths on
static road networks in [10,11]. Those ideas have been used in [12] on dynamic
graphs as well, while the time-dependent case on graphs with the FIFO property
has been addressed in [13,12,1]. The SHARC-algorithm [14], which employs a hi-
erarchical approach combined with goal directed search via arc flags [15], allows
fast unidirectional shortest path calculations in large scale networks; it has been
recently extended in [16] to compute optimal paths even on time-dependent
graphs, and represents the fastest known algorithm so far for time-dependent
shortests path computations.

Bidirectional search cannot be directly applied on time-dependent graphs,
the optimal arrival time at the destination being unknown. In [1], we tackled
this problem running a forward search on the time-dependent graph, and a
backward search on a time-independent graph with the purpose of bounding the
set of nodes explored by the forward search. To the best of our knowledge, it
was the first method allowing practical shortest path computations (i.e., in less
than 300 msec) on large scale time-dependent road networks. In this paper we
extend those concepts in order to include core routing on the time-dependent
graph, and we analyze a dynamic scenario as well, in order to take into account
updates of the cost function. Core routing is a well known technique for shortest
path algorithms on static graphs [3], whose main idea is to shrink the original
graph in order to get a new graph (core) with a smaller number of vertices. Most
of the search is then carried out on the core, yielding a reduced search space.

Throughout the rest of this paper we will consider a lower bounding function
λ : A→ R+ such that ∀(u, v) ∈ A, τ ∈ T we have λ(u, v) ≤ c(u, v, τ). In practice,
λ can easily be computed, given an arc length and the maximum allowed speed
on that arc. In the experimental evaluation we will consider piecewise linear
time-dependent arc cost functions.

The rest of this paper is organized as follows. In Section 2 we briefly review A∗

and the bidirectional A∗ algorithm applied on a time-dependent graph described
in [1]. In Section 3 we describe core routing on static graphs and generalize it
to the time-dependent case. In Section 4 we discuss the dynamic scenario. In
Section 5 we provide a detailed experimental evaluation of our method, and
analyze the results.

2 A∗ with Landmarks

A∗ is an algorithm for goal-directed search which is very similar to Dijkstra’s
algorithm. The difference between the two algorithms lies in the priority key.
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For A∗, the priority key of a node v is made up of two parts: the length of the
tentative shortest path from the source to v (as in Dijkstra’s algorithm), and an
underestimation of the distance to reach the target from v. The function which
estimates the distance between a node and the target is called potential function
π; the use of π has the effect of giving priority to nodes that are (supposedly)
closer to target node t. If the potential function is such that π(v) ≤ d(v, t)∀v ∈ V ,
where d(v, t) is the distance from v to t, then A∗ always finds shortest paths [9];
otherwise, it becomes a heuristic. A∗ is guaranteed to explore no more nodes
than Dijkstra’s algorithm.

On a road network, Euclidean distances can be used to compute the poten-
tial function, possibly dividing by the maximum allowed speed if arc costs are
travelling times instead of distances. A significant improvement over Euclid-
ean potentials can be achieved using landmarks [10]. The main idea is to select
a small set of nodes in the graph, sufficiently spread over the whole network
(several heuristic selection strategies have been proposed — see [17]), and pre-
compute all distances between landmarks and any node of the vertex set. Then,
by triangle inequalities, it is possible to derive lower bounds to the distance be-
tween any two nodes. Suppose we have selected a set L ⊂ V of landmarks, and
we have stored all distances d(v, �), d(�, v)∀v ∈ V, � ∈ L; the following triangle
inequalities hold: d(u, t) + d(t, �) ≥ d(u, �) and d(�, u) + d(u, t) ≥ d(�, t). There-
fore πf (u) = max�∈L{d(u, �) − d(t, �), d(�, t) − d(�, u)} is a lower bound for the
distance d(u, t), and it can be used as a valid potential function for the forward
search [10]. Bidirectional search can be applied, but the potential function must
be consistent for the forward and backward search [11]. Bidirectional A∗ with
the potential function described above is called ALT; an experimental evalua-
tion on static graphs can be found in [11]. It is straightforward to observe that,
if arc costs can only increase with respect to their original value, the potential
function associated with landmarks yields valid lower bound, even on a time-
dependent graph; in [12] this idea is applied to a real road network in order to
analyse the algorithm’s performance both in the case of arc cost updates and of
time-dependent cost functions, but in the latter scenario the ALT algorithm is
applied in an unidirectional way.

In a recent work [1], a bidirectional ALT algorithm on time-dependent
road networks was proposed. The algorithm is based on restricting the scope
of a time-dependent A∗ search from the source using a set of nodes defined by
a time-independent A∗ search from the destination. The backward search is a
reverse search on the graph G weighted by the lower bounding function λ.

Given a graph G = (V,A), source and destination vertices s, t ∈ V , and a
departure time τ0 ∈ T , let p∗ be the shortest path from s to t leaving node s at
τ0. The algorithm for computing p∗ works in three phases.

1. A bidirectional A∗ search occurs on G, where the forward search is run on the
graph weighted by c with the path cost defined by (1)-(2), and the backward
search is run on the graph weighted by the lower bounding function λ. All
nodes settled by the backward search are included in a set M . Phase 1
terminates as soon as the two search scopes meet.
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2. Suppose that v ∈ V is the first vertex in the intersection of the heaps of
the forward and backward search; then the time dependent cost µ = γτ0(pv)
of the path pv going from s to t passing through v is an upper bound to
γτ0(p∗). Let β be the key of the minimum element of the backward search
queue; phase 2 terminates as soon as β > µ. Again, all nodes settled by the
backward search are included in M .

3. Only the forward search continues, with the additional constraint that only
nodes in M can be explored. The forward search terminates when t is settled.

We call this algorithm Time-Dependent ALT (TDALT). Given a constant
K > 1, K-approximated solutions can be computed switching from phase 2
to phase 3 as soon as β > Kµ; as the search stops sooner, the number of
explored nodes decreases. We use the backward potential function π∗

b (w) =
max{πb(w), d(s, v, τ0) + πf (v) − πf (w)} described in [1], where πf and πb are
the landmark potential functions for, respectively, the forward and the back-
ward search, and v is a node already settled by the forward search. To guarantee
correctness of this approach (see [1]), we do the following: we set up 10 check-
points during the query; when a checkpoint is reached, the node v is updated,
and the backward search queue is flushed and filled again using the updated π∗

b .
We always pick v as the last node settled by the forward search before the check-
point. The checkpoints are calculated comparing the initial lower bound πf (t)
and the current distance from the source node, both for the forward search.

3 Time-Dependent Core-Based Routing

Core-based routing is a powerful approach which has been widely used for short-
est paths algorithms on static graphs [3]. The main idea is to use contraction [18]:
a routine iteratively removes nodes and adds edges to preserve correct distances
between the remaining nodes, so that we have a smaller network where most of
the search can be carried out. Note that in principle we can use any contrac-
tion routine which removes nodes from the graph and inserts edges to preserve
distances. When the contracted graph GC = (VC , AC) has been computed, it is
merged with the original graph to obtain GF = (V,A ∪AC).

Suppose that we have a contraction routine which works on a time-dependent
graph: that is, ∀u, v ∈ VC , for each departure time τ0 ∈ T there is a shortest
path between u and v in GC with the same cost as the shortest path between
u and v in G with the same departure time. We propose the following query
algorithm.

1. Initialization phase: start a Dijkstra search from both the source and the
destination node on GF , using the time-dependent costs for the forward
search and the time-independent costs λ for the backward search, pruning the
search (i.e. not relaxing outgoing arcs) at nodes ∈ VC . Add each node settled
by the forward search to a set S, and each node settled by the backward
search to a set T . Iterate between the two searches until: (i) S ∩ T 
= ∅ or
(ii) the priority queues are empty.
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2. Main phase: (i) If S ∩ T 
= ∅, then start an unidirectional Dijkstra search
from the source on GF until the target is settled. (ii) If the priority queues
are empty and we still have S∩T = ∅, then start TDALT on the graph GC ,
initializing the forward search queue with all leaves of S and the backward
search queue with all leaves of T , using the distance labels computed during
the initialization phase. The forward search is also allowed to explore any
node v ∈ T , throughout the 3 phases of the algorithm. Stop when t is settled
by the foward search.

In other words, the forward search “hops on” the core when it reaches a node
u ∈ S ∩ VC , and “hops off” at all nodes v ∈ T ∩ VC . Note that landmark
distances need be computed and stored only for vertices in VC (see [3]). This
means that the landmark potential function cannot be used to apply the forward
A∗ search on the nodes in T . However, we can use the backward distance labels
computed with Dijkstra’s algorithm during the initialization phase, which are
valid distances on Gλ. We call this algorithm Time-Dependent Core-based

ALT (TDCALT).

Proposition 3.1. TDCALT is correct.

Since landmark distances are available only for nodes in VC , the ALT potential
function cannot be used “as is” whenever the source or the destination node do
not belong to the core. In order to compute valid lower bounds to the distances
from s or to t, proxy nodes have been introduced in [19] and used for the CALT

algorithm (i.e. core-based ALT on a static graph) in [3]. We briefly report here
the main idea: on the graph G weighted by λ, let t′ = arg minv∈VC{d(t, v)} be
the core node closest to t. By triangle inequalities it is easy to derive a valid
potential function for the forward search which uses landmark distances for t′ as
a proxy for t: πf (u) = max�∈L{d(u, �)−d(t′, �)−d(t, t′), d(�, t′)−d(�, u)−d(t, t′)}.
The same calculations yield the potential function for the backward search πb

using a proxy node s′ for the source s and the distance d(s′, s).

Contraction. For the contraction phase, i.e., the routine which selects which
nodes have to be bypassed and then adds shortcuts to preserve shortest paths,
we use the same algorithm proposed in [16]. We define the expansion [19] of a
node u as the quotient between the number of added shortcuts and the number
of edges removed if u is bypassed, and the hop-number of a shortcut as the
number of edges that the shortcut represents. We iterate the contraction routine
until the expansion of all remaining nodes exceeds a limit c or the hop-number
exceeds a limit h. At the end of contraction, we perform an edge-reduction step
which removes unnecessary shortcuts from the graph (cf. [16] for details).

Outputting Shortest Paths. TDCALT adds shortcuts to the graph in order to
accelerate queries. Hence, if we want to retrieve the complete shortest path (and
not only the distance) we must expand those shortcuts. In [20], an efficient un-
packing routine based on storing all the edges a shortcut represents is introduced.
However, in the static case a shortcut represents exactly one path, whereas in the
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time-dependent case a shortcut may represent a different path for each different
traversal times. We solve this problem by allowing multi-edges: whenever a node
is bypassed, a shortcut is inserted to represent each pair of incoming and outgo-
ing edges, even if another edge between the two endpoints already exists. With
this modification each shortcut represents exactly one path, so we can directly
apply the unpacking routine from [20].

4 Dynamic Time-Dependent Costs

Up to now, time-dependent routing algorithms assumed complete knowledge of
the time-dependent cost functions on arcs. However, since the speed profiles on
which these functions are based are generated using historical data gathered
from sensors (or cams), it is reasonable to assume that also real-time traffic in-
formation is available through these sensors. Moreover, other technologies exist
to be aware of traffic jams even without having access to real-time speed in-
formation (e.g., TMC1). In the end, a procedure to update the time-dependent
cost functions depending on real-time traffic information would be desirable for
practical applications. Since we use piecewise linear functions stored as a list of
breakpoints, we will consider modifications in the value of these.

Update procedure. Let (VC , AC) be the core of G. Suppose that the cost function
of one arc a ∈ A is modified; the set of core nodes VC need not change, as long
as AC is updated in order to preserve distances with respect to the uncontracted
graph G = (V,A) with the new cost function. There are two possible cases: either
the new values of the modified breakpoints are smaller than the previous ones, or
they are larger. In the first case, then all arcs on the core AC must be recomputed
by running a label-correcting algorithm between the endpoints of each shortcut,
as we do not know which shortcuts the updated arc may contribute to. In the
second case, then the cost function for core arcs (i.e. shortcuts) may change for
all those arcs a′ ∈ AC such that a′ contains a in its decomposition for at least
one time instant τ . In other words, if a contributed to a shortcut a′, then the
cost of a′ has to be recomputed. As the cost of a has increased, then a cannot
possibly contribute to other shortcuts, thus we can restrict the update only to
the shortcuts that contain the arc. To do so, we store for each a ∈ A the set
S(a) of all shortcuts that a contributes to. Then, if one or more breakpoints of
a have their value changed, we do the following.

Let [τ1, τn−1] be the smallest time interval that contains all modified break-
points of arc a. If the breakpoints preceding and following [τ1, τn−1] are, respec-
tively, at times τ0 and τn the cost function of a changes only in the interval
[τ0, τn]. For each shortcut a′ ∈ S(a), let a′0, . . . , a

′
d, with a′i ∈ A∀i, be its decom-

position in terms of the original arcs, let λj =
∑j−1

i=0 λ(a′i) and µj =
∑j−1

i=0 µ(a′i),
where ∀a ∈ A we define µ(a) = maxτ∈T c(a, τ), i.e., µ(a) is an upper bound on
the cost of arc a. If a is the arc with index j in the decomposition of a′, then
a′ may be affected by the change in the cost function of a only if the departure
1 http://www.tmcforum.com/

http://www.tmcforum.com/


818 D. Delling and G. Nannicini

time from the starting point of a′ is in the interval [τ0 − µj , τn − λj ]. This is
because a can be reached from the starting node of a′ no sooner than λj , and
no later than µj . Thus, in order to update the shortcut a′, we need to run a
label-correcting algorithm between its two endpoints only in the time interval
[τ0−µj , τn−λj ], as the rest of the cost function is not affected by the change. In
practice, if the length of the time interval [τ0, τn] is larger than a given threshold
we run a label-correcting algorithm between the shortcut’s endpoints over the
whole time period, as the gain obtained by running the algorithm over a smaller
time interval does not offset the overhead due to updating only a part of the
profile with respect to computing from scratch.

The procedure described above is valid only when the value of breakpoints
increases. In a typical realistic scenario, this is often the case: the initial cost
profiles are used to model normal traffic conditions, and cost updates occur
only to add temporary slowdowns due to unexpected traffic jams. When the
temporary slowdowns are no longer valid we would like to restore the initial cost
profiles, i.e. lower breakpoints to their initial values, without recomputing the
whole core. If we want to allow fast updates as long as the new breakpoint values
are larger than the ones used for the initial core construction, without requiring
that the values can only increase, then we have to manage the sets S(a)∀a ∈ A
accordingly. We provide an example that shows how problems could arise.

Example 4.1. Given a ∈ A, suppose that the cost of its breakpoint at time τ ∈ T
increases, and all shortcuts ∈ S(a) are updated. Suppose that, for a shortcut
a′ ∈ S(a), a does not contibute to a′ anymore due to the increased breakpoint
value. If a′ is removed from S(a) and at a later time the value of the breakpoint
at τ is restored to the original value, then a′ would not be updated because
a′ 
∈ S(a), thus a′ would not be optimal.

Our approach to tackle this problem is the following: for each arc a ∈ A, we
update the sets S(a) whenever a breakpoint value changes, with the additional
constraint that elements of S(a) after the initial core construction phase cannot
be removed from the set. Thus, S(a) contains all shortcuts that a contributes to
with the current cost function, plus all shortcuts that a contributed to during the
initial core construction. As a consequence we may update a shortcut a′ ∈ S(a)
unnecessarily, if a contributed to a′ during the initial core construction but ceased
contributing after an update step; however, this guarantees correctness for all
changes in the breakpoint values, as long as the new values are not strictly smaller
than the values used during the initial graph contraction. From a practical point
of view, this is a reasonable assumption.

Since the sets S(a)∀a ∈ A are stored in memory, the computational time
required by the core update is largely dominated by the time required to run the
label-correcting algorithm between the endpoints of shortcuts. Thus, we have a
trade-off between query speed and update speed: if we allow the contraction rou-
tine to build long shortcuts (in terms of number of bypassed nodes, i.e. “hops”,
as well as travelling time) then we obtain a faster query algorithm, because we
are able to skip more nodes during the shortest path computations. On the other
hand, if we allow only limited-length shortcuts, then the query search space is
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larger, but the core update is significantly faster as the label-correcting algo-
rithm takes less time. In Section 5 we provide an experimental evaluation for
different scenarios.

5 Experiments

In this section, we present an extensive experimental evaluation of our time-
dependent ALT algorithm. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on
one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine is
clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program
was compiled with GCC 4.2, using optimization level 3.

We use 32 avoid landmarks [10], computed on the core of the input graph using
the lower bounding function λ to weight edges, and we use the tightened potential
function π∗

b described in Section 2 as potential function for the backward search,
with 10 checkpoints. When performing random s-t queries, the source s, target
t, and the starting time τ0 are picked uniformly at random and results are based
on 10 000 queries. In the following, we restrict ourselves to the scenario where
only distances — not the complete paths — are required. However, our shortcut
expansion routine for TDCALT needs less than 1 ms to output the whole path;
the additional space overhead is ≈ 4 bytes per node.

Input. We tested our algorithm on the road network of Western Europe provided
by PTV AG for scientific use, which has approximately 18 million vertices and
42.6 million arcs. A travelling time in uncongested traffic situation was assigned
to each arc using that arc’s category (13 different categories) to determine the
travel speed. Since we are not aware of a large publicly available real-world road
network with time-dependent arc costs we used artificially generated costs. In or-
der to model the time-dependent costs on each arc, we developed a heuristic al-
gorithm, based on statistics gathered using real-world data on a limited-size road
network, which is described in [1] and ensures spatial coherency for traffic jams.

Contraction Rates. Table 1 shows the performance of TDCALT for different
contraction parameters (cf. Section 3). In this setup, we fix the approximation
constant K to 1.15, which was found to be a good compromise between speed
and quality of computed paths (see [1]). As the performed TDCALT queries
may compute approximated results instead of optimal solutions when K > 1, we
record three different statistics to characterize the solution quality: error rate,
average relative error, maximum relative error. By error rate we denote the
percentage of computed suboptimal paths over the total number of queries. By
relative error on a particular query we denote the relative percentage increase of
the approximated solution over the optimum, computed as ω/ω∗− 1, where ω is
the cost of the approximated solution computed by our algorithm and ω∗ is the
cost of the optimum computed by Dijkstra’s algorithm. We report average and
maximum values of this quantity over the set of all queries. Note that contraction
parameters of c = 0.0 and h = 0 yield a pure TDALT setup.
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Table 1. Performance of TDCALT for different contraction rates. c denotes the max-
imum expansion of a bypassed node, h the hop-limit of added shortcuts. The third
column records how many nodes have not been bypassed applying the corresponding
contraction parameters. Preprocessing effort is given in time and additional space in
bytes per node. Moreover, we report the increase in number of edges and interpolation
points of the merged graph compared to the original input.

Core Preprocessing Error Query

param. core time space increase in relative #settled time
c h nodes [min] [B/n] #edges #points rate avg. max nodes [ms]

0.0 0 100.0% 28 256 0.0% 0.0% 40.1% 0.303% 10.95% 250 248 188.2
0.5 10 35.6% 15 99 9.8% 21.1% 38.7% 0.302% 11.14% 99 622 78.2
1.0 20 6.9% 18 41 12.6% 69.6% 34.7% 0.288% 10.52% 19 719 21.7
2.0 30 3.2% 30 45 9.9% 114.1% 34.9% 0.287% 10.52% 9 974 13.2
2.5 40 2.5% 39 50 9.1% 138.0% 34.1% 0.275% 8.74% 8 093 11.4
3.0 50 2.0% 50 56 8.7% 161.2% 32.8% 0.267% 9.58% 7 090 10.3
3.5 60 1.8% 60 61 8.5% 181.1% 33.8% 0.280% 8.69% 6 227 9.2
4.0 70 1.5% 88 74 8.5% 223.1% 32.8% 0.265% 8.69% 5 896 8.8
5.0 90 1.2% 134 89 8.6% 273.5% 32.6% 0.266% 8.69% 5 812 8.4

As expected, increasing the contraction parameters has a positive effect on
query performance. Interestingly, the space overhead first decreases from 256
bytes per node to 41 (c = 1.0, h = 20), and then increases again. The reason for
this is that the core shrinks very quickly, hence we store landmark distances only
for 6.9% of the nodes. On the other hand, the number of interpolation points
for shortcuts increases by up to a factor ≈ 4 with respect to the original graph.
Storing these additional points is expensive and explains the increase in space
consumption.

It is also interesting to note that the maximum error rate decreases when we
allow more and longer shortcuts to be built. We believe that this is due to the fact
that long shortcuts decrease the number of settled nodes and have large costs,
so at each iteration of TDCALT the key of the backward search priority queue
β increases by a large amount. As the algorithm switches from phase 2 to phase
3 when µ/β < K, and β increases by large steps, phase 3 starts with a smaller
maximum approximation value for the current query µ/β. This is especially true
for short distance queries, where the value of µ is small.

Query speed. Table 2 reports the results of TDCALT for different approximation
values K using the European road network as input. In this experiment we used
contraction parameters c = 3.5 and h = 60, i.e. we allow long shortcuts to be
built to favour query speed. For comparison, we also report the results on the
same road network for the time-dependent versions of Dijkstra, unidirectional
ALT, TDALT and the time-dependent SHARC algorithm [16].

Table 2 shows that TDCALT yields a significant improvement over TDALT

with respect to error rates, preprocessing space, size of the search space and
query times. The latter two figures are improved by one order of magnitude.
For exact queries, TDCALT is faster than unidirectional ALT by one order of
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Table 2. Performance of time-dependent Dijkstra, unidirectional ALT, SHARC,
TDALT and TDCALT with different approximation values K

Preproc. Error Query

time space relative # settled time
technique K [min] [B/n] rate av. max nodes [ms]
Dijkstra - 0 0 0.0% 0.000% 0.00% 8 877 158 5 757.4
uni-ALT - 28 256 0.0% 0.000% 0.00% 2 056 190 1 865.4
SHARC - 511 112 0.0% 0.000% 0.00% 84 234 75.3
TDALT 1.00 28 256 0.0% 0.000% 0.00% 2 931 080 2 939.3

1.15 28 256 40.1% 0.303% 10.95% 250 248 188.2
1.50 28 256 52.8% 0.734% 21.64% 113 040 71.2

TDCALT 1.00 60 61 0.0% 0.000% 0.00% 60 961 121.4
1.05 60 61 2.7% 0.010% 3.94% 32 405 62.5
1.10 60 61 16.6% 0.093% 7.88% 12 777 21.9
1.15 60 61 33.0% 0.259% 8.69% 6 365 9.2
1.20 60 61 39.8% 0.435% 12.37% 4 707 6.4
1.30 60 61 43.0% 0.611% 16.97% 3 943 5.0
1.50 60 61 43.7% 0.679% 20.73% 3 786 4.8
2.00 60 61 43.7% 0.682% 27.61% 3 781 4.8

Table 3. CPU time required to update the core in case of traffic jams for different
contraction parameters. The length of shortcuts is limited to 20 minutes of travel time
(10 minutes for the values in parentheses).

cont. space single traffic jam batch update (1 000 jams) query
c h [B/n] av.[ms] max[ms] av.[ms] max[ms] time [ms]

0.0 0 256 (256) 0 (0) 0 (0) 0 (0) 0 (0) 188.2 (188.2)
0.5 10 100 (103) 1 (1) 49 (49) 820 (619) 1200 (799) 76.8 (85.2)
1.0 20 45 (50) 37 (21) 2231 (778) 30787 (20329) 39470 (22734) 22.8 (27.1)
2.0 30 51 (56) 220 (90) 5073 (3868) 187595 (79092) 206569 (85259) 16.4 (22.8)

magnitude, and the improvement over Dijkstra’s algorithm is of a factor ≈ 50.
Comparing TDCALT to SHARC, we see that for exact queries SHARC yields
better query times by a factor ≈ 1.6, although preprocessing time and space
for SHARC are larger. However, SHARC cannot efficiently deal with dynamic
scenarios. If we can accept a maximum approximation factor K ≥ 1.05 then
TDCALT is faster than SHARC, by one order of magnitude for K ≥ 1.20. The
size of the search space decreases by even larger factors, but in terms of time
spent per node SHARC is faster than TDCALT, as we observed in [1].

Dynamic Updates. In order to evaluate the performance of the core update pro-
cedure (see Section 4) we generated several traffic jams as follows: for each traffic
jam, we select a path in the network covering 4 minutes of uncongested travel
time on motorways. Then we randomly select a breakpoint between 6AM and
9 PM, and for all edges on the path we multiply the corresponding breakpoint
value by a factor 5. As also observed in [12], updates on motorway edges are
the most difficult to deal with, since those edges contribute to a large number
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of shortcuts. In Table 3 we report average and maximum required time over
1 000 runs to update the core in case of a single traffic jam, applying differ-
ent contraction parameters. Moreover, we report the corresponding figures for a
batch-update of 1000 traffic jams (100 runs), in order to reduce the fluctuations
and give a clearer indication of required CPU time when performing multiple
updates. Note that for this experiment we limit the length of shortcuts to 20
minutes (10 for the values in parentheses) of uncongested travel time. This is be-
cause in the dynamic scenario the length of shortcuts plays the most important
role when determining the required CPU effort for an update operation, and
if we allow the shortcuts length to grow indefinitely we may have unpractical
update times. Hence, we also report query times with K = 1.15.

As expected, the effort to update the core becomes more expensive with in-
creasing contraction parameters. However, for c = 1.0, h = 20 with maximum
shortcut length of 20 minutes, we have reasonable update times together with
query times of 22.8 ms: an update of 1 000 traffic jams can be done in less than
40 seconds, which should be sufficient in most applications. In most cases, the
required time to update the core for a single traffic jam is of a few milliseconds,
and query times are fast even with limited length shortcuts. We observe a clear
trade off between query times and update times depending on the contraction
parameters, so that for those applications which require frequent updates we can
minimize update costs while keeping query times < 100 ms, and for applications
which require very few or no updates we can minimize query times. If most of the
graph’s edges have their cost changed we can rerun the core edges computation,
which takes less than 15 minutes.

6 Conclusion

We have proposed a bidirectional ALT algorithm for time-dependent graphs
which uses a hierarchical approach: the bidirectional search starts on the full
graph, but is soon restricted to a smaller network in order to reduce the number
of explored nodes. This algorithm is flexible and allows us to deal with the dy-
namic scenario, where the piecewise linear time-dependent cost functions on arcs
are not fixed, but can have their coefficients updated. Extensive computational
experiments show a significant improvement over existing time-dependent algo-
rithms, with query times reduced by at least an order of magnitude in almost all
scenarios, and a faster and less space consuming preprocessing phase. Updates in
the cost functions are dealt with in a practically efficient way, so that traffic jams
can be added in a few milliseconds, and we can parameterize the preprocessing
phase in order to balance the trade off between query speed and update speed.
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Bandwidth of Bipartite Permutation Graphs
(Extended Abstract)

Ryuhei Uehara
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Abstract. The bandwidth problem is finding a linear layout of vertices in a graph
in such a way that minimizes the maximum distance between two vertices joined
by an edge. The bandwidth problem is one of the classicNP-complete problems.
Especially, the problem is NP-complete even for trees. The bandwidth problem
can be solved in polynomial time for a few graph classes. Efficient algorithms for
computing the bandwidth for three graph classes are presented. The first one is a
linear time algorithm for a threshold graph, and the second one is a linear time
algorithm for a chain graph. The last algorithm solves the bandwidth problem for
a bipartite permutation graph in O(n2) time. The former two algorithms improve
the previously known upper bounds to optimal, and the last one improves recent
result, and they give positive answers to some open problems.

Keywords: Bandwidth, bipartite permutation graphs, chain graphs, interval
graphs, threshold graphs.

1 Introduction

A layout of a graph G = (V, E) is a bijection π between the vertices in V and the set
{1, 2, . . . , |V |}. The bandwidth of a layout π equals max{|π(u) − π(v)| | {u, v} ∈ E}. The
bandwidth of G is the minimum bandwidth of all layouts of G. The bandwidth has
been studied since the 1950s; it has applications in sparse matrix computations (see
[5,17] for survey). From the graph theoretical viewpoint, the bandwidth of a graph is
strongly related to the proper interval completion problem [10], which is motivated by
problems in molecular biology, and hence it attracts much attention (see, e.g., [11]).
However, computing the bandwidth of a graph is one of basic and classicNP-complete
problems [21] (see also [7, GT40]). Especially, it isNP-complete even if G is restricted
to a caterpillar with hair length 3 [20]; that is, it is NP-complete for trees and chordal
graphs. Moreover, it is also NP-complete for split graphs [13]. Few graph classes have
been known for which the bandwidth problem can be solved in polynomial time; chain
graphs [14], cographs [15], and interval graphs [12,19,23] (see [15] for a survey).

One of the interesting graph classes above is the class of interval graphs. The class
was introduced in the 1950’s by Hajös and Benzer independently (see [8]). In 1987,
Kratsch proposed a polynomial time algorithm of the bandwidth problem for the class
[16]. Unfortunately, it has a flaw, which was fixed by Mahesh et al. [19]. Kleitman
and Vohra also showed a polynomial time algorithm [12], and Sprague improved the
time complexity to O(n log n) by a smart implementation of the algorithm [23]. All

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 824–835, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the algorithms above solve the decision problem that asks if an interval graph G has
bandwidth at most k for given G and k. Thus, using binary search for k, we can com-
pute the bandwidth bw(G) of an interval graph G in O(M(n) · log bw(G)) time, where
M(n) = O(n log n) is the time complexity to solve the decision problem [23]. There are
two unsolved problems for interval graphs mentioned in the literature. The first one is
direct computation of the bandwidth of an interval graph. All the known algorithms are
strongly depending on the given bound k to construct a desired layout. The second one
is to improve the time complexity to linear time. Interval graphs have so simple struc-
ture that manyNP-hard problems can be solved in linear time on an interval graph (see,
e.g., [2,18]).

Another interesting class is the class of chain graphs that plays an important role as
a compact subclass of bipartite permutation graphs (the intersection of bipartite graphs
and permutation graphs; see [4,25]). Kloks, Kratsch, and Müller gave an O(n2 log n)
time algorithm for a chain graph [14]. It uses the algorithm for an interval graph as a
subroutine, and the factor O(n log n) comes from the time complexity of the subroutine.

We propose three algorithms of the bandwidth problem for three graph classes.
The first algorithm computes the bandwidth of a threshold graph G in O(n) time and

space. We note that threshold graphs form a proper subclass of interval graphs, and each
graph can be represented in O(n) space. The algorithm directly constructs an optimal
layout, that is, we give a partial answer to the open problem for interval graphs, and
improve the previously known upper bound O(n log n log bw(G)) to optimal.

Extending the first algorithm, we next show an algorithm that computes the band-
width of a chain graph in O(n) time and space. It also directly constructs an optimal
layout, and improves the previously known bound O(n2 log n) in [14] to optimal.

The last algorithm solves the decision problem for bandwidth of a bipartite permu-
tation graph. That is, for any given bipartite permutation graph G of n vertices and any
integer k, the algorithm determines if G has a layout of bandwidth at most k in O(n2)
time and O(n) space. Thus the bandwidth of a bipartite permutation graph G of n ver-
tices can be computed in O(n2 log bw(G)) time and O(n) space.

Recently, Heggernes, Kratsch, and Meister also propose a polynomial time algo-
rithm of the bandwidth problem for bipartite permutation graphs [9]. They take a new
approach to the bandwidth problem; they do not use the previously known techniques
and algorithms for the other graph classes, and obtain an O(n4 log n) time algorithm.

Here we compare our last result with the recent result in [9]. Essentially, Heggernes
et al. only use a characterization of a bipartite permutation graph based on a vertex
ordering called strong ordering. They do not rely on the previously known techniques
and results for the bandwidth problem in literature, and give a new approach to the
bandwidth problem for the class. On the other hand, our result is an extension of the
known results for interval graphs and chain graphs with a new characterization of bipar-
tite permutation graphs based on a graph decomposition in [4,25]. We sophisticate and
adapt the known results to threshold graphs and chain graphs that admit us to extend
and apply these results on bipartite permutation graphs.

Due to space limitation, some proofs are outlined.
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2 Preliminaries

The neighborhood of a vertex v in a graph G = (V, E) is the set NG(v) = {u ∈ V |
{u, v} ∈ E}, and the degree of a vertex v is |NG(v)| denoted by dG(v). If no confusion
arise we will omit the index G. For a subset U of V , the subgraph of G induced by U is
denoted by G[U]. Given a graph G = (V, E), its complement Ḡ = (V, Ē) is defined by
Ē = {{u, v} | {u, v} � E}. A vertex set I is an independent set iff G[I] contains no edges,
and then the graph Ḡ[I] is said to be a clique. For a graph G = (V, E), a sequence of
distinct vertices v0, v1, . . . , vl is a path, denoted by (v0, v1, . . . , vl), if {v j, v j+1} ∈ E for
each 0 ≤ j < l. The length of a path is the number of edges on the path. For two vertices
u and v, the distance of the vertices, denoted by dist(u, v), is the minimum length of the
paths joining u and v. A graph G = (V, E) is bipartite iff V can be partitioned into two
sets X and Y such that every edge joins a vertex in X and the other vertex in Y.

A graph G = (V, E) is called a threshold graph when there exist nonnegative
weights w(v) for v ∈ V and t such that {u, v} ∈ E iff w(u) + w(v) ≥ t. A graph
(V, E) with V = {v1, v2, . . . , vn} is an interval graph if there is a finite set of intervals
I = {Iv1 , Iv2 , . . . , Ivn } on the real line such that {vi, v j} ∈ E iff Ivi ∩ Iv j � ∅ for each i
and j with 0 < i, j ≤ n. We call the set I of intervals an interval representation of the
graph. For each interval I, we denote by R(I) and L(I) the right and left endpoints of
the interval, respectively (therefore we have L(I) ≤ R(I) and I = [L(I),R(I)]). For any
interval representation I and a point p, N[p] denotes the set of intervals that contain
the point p. An interval representation is called proper iff L(I) ≤ L(J) and R(I) ≤ R(J)
for every pair of intervals I and J or vice versa. An interval graph is proper iff it has a
proper interval representation. It is known that the class of proper interval graphs coin-
cide with the class of unit interval graphs [22]. That is, any proper interval graph has a
proper interval representation that consists of intervals of unit length (explicit and sim-
ple construction is given in [1]). Moreover, each connected proper interval graph has
essentially unique proper (or unit) interval representation up to reversal in the following
sense (see, e.g., [6, Corollary 2.5]):

Proposition 1. For any proper interval graph G = (V, E), there is a unique ordering
(up to reversal) v1, v2, . . . , vn of n vertices such that G has a unique proper interval
representation I(G) such that L(Iv1 ) < L(Iv2) < · · · < L(Ivn).

A bipartite graph (X, Y, E) with X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′ }
is an interval bigraph if there are families of intervals IX = {Ix1 , Ix2 , . . . , Ixn} and
IY = {Iy1 , Iy2 , . . . , Iyn′ } such that {xi, y j} ∈ E iff Ixi ∩ Iy j � ∅ for each i and j with
1 ≤ i ≤ n and 1 ≤ j ≤ n′. Let G = (X, Y, E) be a bipartite graph with X = {x1, x2, . . .
, xn} and Y = {y1, y2, . . . , yn′ }. The ordering of X has the adjacency property iff, for
each vertex y ∈ Y, N(y) consists of vertices that are consecutive in the ordering of X.
A bipartite graph G = (X, Y, E) is biconvex iff there are orderings of X and Y that fulfill
the adjacency property, and that is convex iff there is an ordering of X or Y that fulfills
the adjacency property. A biconvex graph G = (X, Y, E) is said to be a chain graph iff
it has a vertex ordering of X such that N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1). (This property
implies that we can sort Y as N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′); see, e.g., [24].)

A graph G = (V, E) with V = {v1, v2, . . . , vn} is said to be a permutation graph
iff there is a permutation σ over V such that {vi, v j} ∈ E iff (i − j)(σ(vi) − σ(v j)) < 0.
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Intuitively, each vertex v in a permutation graph corresponds to a line segment �v joining
two points on two parallel lines L1 and L2. Then two vertices v and u are adjacent iff
the corresponding line segments �v and �u intersect. The ordering of vertices gives the
ordering of the points on L1, and the permutation of the ordering gives the ordering of
the points on L2. We call the intersection model a line representation of the permutation
graph. When a permutation graph is bipartite, it is said to be a bipartite permutation
graph. The following proper inclusions are known (see, e.g., [3,24]):

Lemma 1. (1) Threshold graphs ⊂ interval graphs, (2) chain graphs ⊂ bipartite per-
mutation graphs.

A layout of a graph G = (V, E) on n vertices is a bijection π between the vertices in V and
the set {1, 2, . . . , n}. The bandwidth of a layout π equals max{|π(u) − π(v)| | {u, v} ∈ E}.
The bandwidth of G, denoted by bw(G), is the minimum bandwidth of all layouts of G.
A layout achieving bw(G) is called an optimal layout.

For given graph G = (V, E), a proper interval completion of G is a superset E′ of E
such that G′ = (V, E′) is a proper interval graph. Hereafter, we will omit the “proper
interval” since we always consider proper interval completions. We say a completion
E′ is minimum iff |C′| ≤ |C′′| for maximum cliques C′ in G′ = (V, E′) and C′′ in
G′′ = (V, E′′) for any other completion E′′.

For any graph G and its minimum completion E′, it is known that bw(G) = |C′| − 1,
where C′ is a maximum clique in G′ = (V, E′) [10]. Let G = (V, E) be an interval graph
with interval representation I = {Iv1 , Iv2 , . . . , Ivn}. For each maximal clique C, there is a
point p such that N[p] induces the clique C by Helly property. Thus we can compute
bw(G) by the following algorithm for any given graph G;

Input : Graph G = (V, E)
Output: bw(G)
generate a proper interval graph G′ = (V, E′) that gives a minimum completion of G;1

make a unique interval representation I(G′) of G′;2

find a point p such that |N[p]| ≥ |N[p′]| for any other point p′ on I(G′);3

return (|N[p]| − 1).4

The following observation can be derived from the results in [10]:

Observation 1. For a minimum completion G′ = (V, E′) of G = (V, E), let I(G′) =
(Iv1 , Iv2 , . . . , Ivn) be the unique proper interval representation of G′ given in Proposition
1. Then the ordering v1, v2, . . . , vn gives an optimal layout of G, and vice versa.

Here we show a technical lemma for proper interval subgraphs of an interval graph that
will play an important role of our results.

Lemma 2. Let G = (V, E) be an interval graph with V = {v1, v2, . . . , vn}, and
I = {Iv1 , Iv2 , . . . , Ivn} an interval representation of G. Let J = {Ju1 , Ju2 , . . . , Juk } be
a subset of I such that J forms a proper interval representation. That is, we have
U = {u1, . . . , uk} ⊆ V, and we can order J as L(Jui ) ≤ L(Jui+1 ) and R(Jui) ≤ R(Jui+1) for
each 1 ≤ i < k. Let ρ be the injection fromJ to I with Jvi = Ivρ(i) for each 1 ≤ i ≤ k ≤ n.
Then, G has an optimal layout π such that each interval Jui appears according to the
ordering in J . More precisely, for each i with 1 ≤ i < k, we have π(Ivρ(i)) < π(Ivρ(i+1)).
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Proof (Outline). The main idea is based on the algorithm by Kleitman and Vohra in
[12]. We assume that we give the interval representation I and bw(G) as an input to
the algorithm in [12]. It constructs an optimal layout π that achieves bw(G). By careful
analysis of the algorithm, we can show that it does not change the ordering in J in the
optimal layout π. Thus it labels all intervals in J from left to right. ��

3 Polynomial Time Algorithms

3.1 Linear Time Algorithm for Threshold Graphs

We first show a linear time algorithm for computing bw(G) of a threshold graph G. For
a threshold graph G = (V, E), there exist nonnegative weights w(v) for v ∈ V and t such
that {u, v} ∈ E if and only if w(u) + w(v) ≥ t. We assume that G is connected and V
is already ordered as {v1, v2, . . . , vn} with w(vi) ≤ w(vi+1) for 1 ≤ i < n (this sort can
be done in O(n) time by bucket sort using the degrees of vertices). We can find � such
that w(v�−1) + w(v�) < t and w(v�) + w(v�+1) ≥ t in O(n) time. Then G has the following
interval representation I(G):

· For 1 ≤ i ≤ �, vi corresponds to the point i, that is, Ivi = [i, i].
· For � < i ≤ n, vi corresponds to the interval [ j, �], where j is the minimum index with
w(vi) + w(v j) ≥ t.

For example, Fig. 1(a) is a threshold graph; each number in a circle is its weight, and
threshold value is 5. We have � = 5 and its interval representation is given in Fig. 1(b).

Theorem 2. Assume that a connected threshold graph G = (V, E) is given in the inter-
val representation I(G) stated above. We can compute bw(G) in O(n) time and space.

Proof (Outline). First observe that L(Ivi) < L(Ivi+1) and R(Ivi) < R(Ivi+1) for each i with
1 ≤ i < �, and L(Ivi) ≥ L(Ivi+1) and R(Ivi) = R(Ivi+1) = � for each i with � < i < n. That is,
G consists of two proper interval graphs induced by {v1, v2, . . . , v�} and {v�, v�+1, . . . , vn}
(v� is shared). Their proper interval representations also appear in I(G). Hence, by
Lemma 2, there exists an optimal layout π of V = {v1, . . . , vn} such that π(v1) < π(v2) <
· · · < π(v�) and π(v�) > π(v�+1) > π(v�+2) > · · · > π(vn). Thus we can obtain an optimal
layout by merging two sequences of vertices.

To obtain an optimal layout, by Observation 1, we construct a minimum completion
of G from two sequences. Since G is connected, [L(Ivn),R(Ivn)] = [1, �] is the longest
interval. Hence we extend all intervals (except Ivn ) to length � − 1 and construct a mini-
mum completion. We denote the extended interval Ivi by I′vi

. The extension of intervals

(a)

v1 v2 v3 v4 v5

v6

v7 v8 v9

v10

3 3 3 4 4

1 1 2 2 2

v1 v2 v3 v4 v5

v6
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v8
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v10

(b)

Fig. 1. (a) Threshold graph and (b) its in-
terval representation
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Fig. 2. Construction of a minimum completion
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Algorithm 1. Bandwidth of a threshold graph

Input : Threshold graph G = (V, E) with w(v1) ≤ w(v2) ≤ · · · ≤ w(vn) and t
Output: bw(G)
let � be the minimum index with w(v�) + w(v�+1) ≥ t;1

set bw := ∞;2

for m = 1, 2, . . . , � − 1 do3

set lc := 0; // size of a maximum clique at points in [1..m]4

for i = 1, 2, . . . ,m do5

let j be the minimum index with w(vi) + w(vj) ≥ t;6

if lc < (m − i + 1) + (n − j + 1) then set lc := (m − i + 1) + (n − j + 1);7

end8

if max{lc, n − m} < bw then bw := max{lc, n − m};9

end10

return (bw − 1).11

Ivi for i > � is straightforward (Fig. 2); just extend them to right, which does not increase
the size of a maximum clique. Thus we focus on the points Ivi = [i, i] with i ≤ �, which
are extended to I′vi

with length � − 1. We can observe that I′vi
contains either 1 or �. In

the former case we can set R(I′vi
) = i, and otherwise L(I′vi

) = i with loss of generality.
Thus, a minimum completion is given by the following proper interval representation

of n intervals of length � − 1 for some m with 1 ≤ m < �: (0) for each i > �, L[Ivi ] = j,
where j is the minimum index with w(vi) +w(v j) ≥ t; (1) for each 1 ≤ i ≤ m, R[Ivi] = i,
and (2) for each m < i ≤ �, L[Ivi ] = i (Fig. 2). Thus, to construct a minimum completion,
we search the index m that minimizes a maximum clique in the proper interval graph
represented by above proper interval representation determined by m.

On the minimum completion, there are � distinct cliques Ci induced at each point
i with 1 ≤ i ≤ �. Now we consider a maximum clique of the corresponding proper
interval graph for a fixed m ∈ [1..�].

At points in [m + 1, �], N[m + 1] ⊆ · · · ⊆ N[�] and hence N[�] induces a maximum
clique of size n − m. At each point i in [1,m], N[i] induces a clique that consists of
{vi, vi+1, . . . , vm} and {v j, v j+1, . . . , vn}, where j is the minimum index with w(vi)+w(v j) ≥
t. Hence we have a clique of size (m − i + 1) + (n − j + 1) for each point i in [1,m].

Thus, for a fixed m, we compute these two candidates of a maximum clique from
[1..m] and [m + 1..�], compare them, and obtain a maximum one. We compute the
minimum size of the maximum cliques for all m, which gives bw(G) + 1. Therefore,
we can compute bw(G) by Algorithm 1. The correctness of Algorithm 1 follows from
Observation 1, Lemma 2 and above discussions.

Algorithm 1 runs in O(n2) time and O(n) space by a straightforward implementation.
However, careful implementation achieves linear time, which is omitted here. ��

3.2 Linear Time Algorithm for Chain Graphs

We next show a linear time algorithm for computing bw(G) of a connected chain graph
G = (X, Y, E). We assume that X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′ } are al-
ready ordered by inclusion of neighbors; N(xn) ⊆ N(xn−1) ⊆ · · · ⊆ N(x1) = Y and
N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(yn′ ) = X. We assume that a chain graph G = (X, Y, E) with
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Fig. 3. (a) Chain graph and (b)-(e) its corresponding representations

|X| = n and |Y | = n′ is given in O(n+n′) space; each vertex y ∈ Y stores two endpoints 1
and d(y) such that N(y) = {x1, x2, . . . , xd(y)}, and each vertex x ∈ X stores two endpoints
n′ and n′ − d(x) + 1 such that N(x) = {yn′ , yn′−1, . . . , yn′−d(x)+1}. (We abuse the degree
d(·) as a maximum index of the neighbors.) A chain graph has an intersection model
of horizontal and vertical line segments (Fig. 3(a)(c)); X corresponds to horizontal line
segments, and all left endpoints have the same coordinates, and Y corresponds to verti-
cal line segments, and all top endpoints have the same coordinates. By the property of
the inclusions of neighbors, vertices in X can be put from top to bottom, and vertices in
Y can be put from right to left. It also can be transformed to the line representation of a
bipartite permutation graph in a natural way (Fig. 3(b)). The endpoints on L1 are sorted
as xn, . . . , x1, yn′ , . . . , y1 from left to right.

For a chain graph G = (X, Y, E), a supergraph Hi = (X ∪ Y, Ei) is defined as follows
[14]: We first define H0 = (X ∪ Y, E0) by a graph obtained from G by making a clique
of X. For 1 ≤ i ≤ n − 1, let Ci be a set {x1, x2, . . . , xi} ∪ N(xi+1). Then the graph Hi is
obtained from G by making a clique of Ci. More precisely, Ei = E ∪ {{xi′ , xi′′ } | 1 ≤
i′, i′′ ≤ i} ∪ {{y j′ , y j′′ } | (n′ − d(xi+1) + 1) ≤ j′, j′′ ≤ n′}. The following lemma plays an
important role in the algorithm in [14].

Lemma 3 ([14]). (1) Hi is an interval graph for each i. (2) bw(G) = mini bw(Hi).

We first observe that H0 is a threshold graph that has an interval representation in the
form shown in Fig. 3(c) by regarding each y ∈ Y as a point and each x ∈ X as an interval.
Thus, by Theorem 2, bw(H0) can be computed in O(n + n′) time and space. Hereafter,
we construct all minimum completions of Hi directly for 1 ≤ i ≤ n − 1.

We introduce a wiper(xi) which is a line segment joining two points p1 on L1 and p2

on L2 of the line representation of a chain graph G = (X, Y, E) as follows (Fig. 3(b));
p1 is fixed on L1 between x1 and yn′ , and p2 is a point on L2 between xi+1 and q,
where q is the right neighbor point of xi+1 on L2. More precisely, q is either (1) xi if
N(xi) = N(xi+1), or (2) the maximum vertex y j in N(xi) \ N(xi+1) if N(xi) \ N(xi+1) � ∅.
Using wiper(xi), Hi is obtained from G by making a clique Ci which consists of the
vertices corresponding to line segments intersecting wiper(xi) on the line representation.

Intuitively, the interval representation of Hi can be obtained as follows; first, we
construct a line representation of G and put the wiper(xi) (Fig. 3(b)), second, we modify
it to the intersection model of horizontal and vertical line segments with wiper(xi),
which is placed between xi and xi+1 on y j, where y j is the minimum vertex in N(xi+1)
(Fig. 3(c)), and finally, we stretch the wiper(xi) to vertical, or regard as a point at 0 on
an interval representation, and arrange the line segments corresponding to the vertices
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Algorithm 2. Bandwidth of a chain graph
Input : Chain graph G = (X,Y, E) with N(xn) ⊆ · · · ⊆ N(x1) and N(y1) ⊆ · · · ⊆ N(yn′ )
Output: bw(G)
bw := bw(H0) // by Algorithm 11

for i = 1, 2, . . . , n − 1 do2

construct the interval representation I(Hi) of the graph Hi with wiper(xi);3

for � = n, n − 1, . . . , i + 1 do4

for r = 1, 2, . . . , n′ − d(xi+1) do5

if max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|} < bw then6

bw = max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|};
end7

end8

end9

return (bw − 1).10

in X and Y (Fig. 3(d)). We note that the interval representation of Hi is a combination
of two interval representations of two threshold graphs (Fig. 1(b)). Precisely, formal
construction of the interval representation of Hi is as follows. By Helly property, the
intervals in the clique Ci share a common point 0, corresponding to wiper(xi). For the
point, we can construct a symmetric interval representation as follows (Fig. 3(d)); (1)
each xi′ ∈ X with i′ ≤ i corresponds to an interval [0, (d(xi′) − d(xi))], (2) each xi′ ∈ X
with i′ > i corresponds to the point i − i′(< 0), (3) each y j ∈ Y with j > n′ − d(xi+1)
corresponds to an interval [(i − d(y j)), 0], and (4) each y j ∈ Y with j ≤ n′ − d(xi+1)
corresponds to the point i − j + 1. Let XR

i = {xi′ ∈ X | i′ ≤ i}, XL
i = {xi′ ∈ X | i′ > i},

YL
i = {y j ∈ Y | j > n′ − d(xi+1)}, and YR

i = {y j ∈ Y | j ≤ n′ − d(xi+1)}. Two induced
subgraphs Hi[XL

i ∪ YL
i ] and Hi[XR

i ∪ YR
i ] of Hi are threshold graphs, which allow us to

use the algorithm in Section 3.1. We are ready to show the main theorem in this section.

Theorem 3. We assume that a chain graph G = (X, Y, E) is given in O(n + n′) space
stated above. Then we can compute bw(G) in O(n + n′) time and space.

Proof (Outline). By Lemma 3, we can compute bw(G) by computing the minimum
bw(Hi) for i = 0, 1, 2, . . . , n− 1. Since H0 is a threshold graph, we can compute bw(H0)
in linear time and space by Theorem 2. We assume that 1 ≤ i ≤ n − 1.

We here fix the index i. The basic idea is the combination of the algorithm for a
threshold graph. We directly construct a minimum completion of Hi. When G is a
threshold graph, we put a midpoint m such that each point i less than or equal to m
is extended to an interval with R[i] = i, and each point i greater than m is extended
to an interval with L[i] = i. Similarly, we put two midpoints � in Hi[XL

i ∪ YL
i ] and

r in Hi[XR
i ∪ YR

i ]. Now we make a proper interval representation. For two midpoints
� and r, we make a proper interval representation as follows; (1) for each xi′ ∈ XL

i
with i′ ≥ �, I′xi′ = [i − n, i − i′], (2) for each xi′ ∈ XL

i with � < i′, I′xi′ = [i − i′, 0],
(3) for each y j ∈ YR

i with r < j(≤ n′ − d(xi+1)), I′y j
= [0, i − j + 1], and (4)

for each y j ∈ YR
i with j ≤ r, I′y j

= [i − j + 1, i]. In Fig. 3(e), we give an exam-
ple with � = 5 and r = 1. For each possible pair of (�, r) with i + 2 ≤ � ≤ n
and 1 ≤ r ≤ n′ − d(xi+1) − 1, we compute the size of a maximum clique in the
proper interval representation. In this time, we have three candidates of a maximum
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clique at the left, center, and right parts of the proper interval representation. Pre-
cisely, for fixed i, �, and r, we define three maximum cliques RCi(�, r), CCi(�, r), and
LCi(�, r) in three proper interval graphs induced by {x�, x�+1, . . . , xn} ∪ {y j, y j+1, . . . , yn′ }
where y j is the minimum vertex in N(x�), {x1, x2, . . . , x�−1} ∪ {yr+1, yr+2, . . . , yn′ }, and
{x1, x2, . . . , xi′ } ∪ {y1, y2, . . . , yr} where xi′ is the maximum vertex in N(yr), respectively.
For each pair (�, r), we compute max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|}, and we take the
minimum value of max{|RCi(�, r)|, |CCi(�, r)|, |LCi(�, r)|} for all pairs, which is equal to
bw(Hi) + 1 for the fixed i. We next compute the minimum one for all i, which gives
bw(G) + 1. Summarizing up, we have Algorithm 2. Correctness and linear time imple-
mentation are omitted here. ��

3.3 Polynomial Time Algorithm for Bipartite Permutation Graphs

Now we turn to a bipartite permutation graph. Let G = (X, Y, E) be a connected bipartite
permutation graph. We assume that G is given in the line representation (like Fig. 3(b)),
and the vertices in X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′ } are ordered from left to
right on the representation. The main theorem in this section is the following.

Theorem 4. For a bipartite permutation graph G = (X, Y, E) and a positive integer k,
we can find a layout that achieves bw(G) ≤ k if it exists in O((|X|+ |Y |)2) time and space.

We note that we aim at solving the decision problem for given k.
We first observe that the vertex orderings x1, x2, . . . , xn and y1, y2, . . . , yn′ correspond

to the strong ordering for G in [9]. Therefore we have the following lemma:

Lemma 4 ([9, Observation 4]). Let G = (X, Y, E) be a bipartite permutation graph
with the line representation, where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′ } are
ordered from left to right in this orderings. Then, there is an optimal layout π such that
π(xi) < π(xi+1) for each 1 ≤ i < n and π(yi′) < π(yi′+1) for each 1 ≤ i′ < n′.

Thus, intuitively, we can obtain an optimal layout by merging these two sequences
of vertices. We here define a partition of the vertex sets X and Y by V0 = {x1} and
V j = {v | dist(x1, v) = j}. Thus, there is no edge between V j and V j′ if | j − j′| > 1,
V0 ∪ V2 ∪ V4 ∪ · · · = X and V1 ∪ V3 ∪ · · · = Y, and each Vi is an independent set.
Let m denote the index with Vm � ∅ and Vm+1 = ∅. The partition can be computed in
O(n + n′) time and space. Hereafter, we denote the induced subgraph G[V j ∪ V j+1] for
each j = 0, 1, . . . ,m − 1 by G j = (V j ∪ V j+1, E j). Then we have the following lemma:

Lemma 5 ([4,25]). For a bipartite permutation graph G = (X, Y, E) with the partition
V0,V1,V2, . . . ,Vm of X ∪ Y, each induced subgraph G j = (V j ∪V j+1, E j) is a connected
chain graph with 0 ≤ j < m.

The algorithm is based on dynamic programming technique for the sequence of the
chain graphs. For each j = 0, 1, . . . ,m − 1, we compute an optimal layout of G0 ∪G1 ∪
· · · ∪G j with constraint bw(G0 ∪ · · · ∪G j) ≤ k.

In the construction, we fix each chain graph G j, and use the algorithm in Theorem 3.
Then we have several H j

i , each of which is a combination of two threshold graphs.

We consider two midpoints � j and r j for H j
i , and obtain three candidates of maximum
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Fig. 4. A part of a bipartite permutation graph

cliques LC j
i (�

j, r j), CC j
i (�

j, r j), and RC j
i (�

j, r j). The difficulty occurs when we switch
to G j+1 = (V j+1,V j+2, E j+1). The vertices in V j+1 were already used in the current graph
G j = (V j,V j+1, E j), and some vertices in V j are placed among them on the current
layout. More precisely, when we deal with G j+1, since V j+1 is already used in G j, we
have some vertices in V j carried over from G j to G j+1 since they have been put among
V j+1 in the layout already. One example is shown in Fig. 4. Here we define the carry set
S j

i to deal with the vertices in V j carried over G j+1; S j
i contains the vertices in V j that

have influences to the layout of the vertices in G j+1. We have the following observation.

Observation 5. The carry set S j
i is equal to CC j

i ∩ V j.

By Lemma 5, we can compute the partition V0,V1, . . . ,Vm in O(n + n′) time and space.
For each j with 0 ≤ j < m, we compute a layout up to bw(G0 ∪ · · · ∪ G j) ≤ k in this
order. The modification of Algorithm 2 to deal with a carry set is tedious, and hence
omitted here. Summarizing up, we have Algorithm 3. Now we are ready to prove the
main theorem.

Proof (Sketch). If Algorithm 3 outputs a layout, it achieves that bw(G) ≤ k. Hence
we show that if bw(G) ≤ k, a layout should be found by Algorithm 3. By Lemma 4,
it is sufficient to consider the orderings that satisfy π(x1) < π(x2) < · · · < π(xn) and
π(y1) < π(y2) < · · · < π(yn′). Each chain graph Gi is a subgraph of G. Hence we have
bw(Gi) ≤ bw(G). When all carry sets are empty, the correctness follows from the proof
of Theorem 3. Hereafter, we assume that there exists a nonempty carry set S j

i . During
the computation from left to right, each carry set S j

i achieves the best possible layout for
each pair of i and j; LC j

i and CC j
i are saturated for given k in general, and the vertices

in S j
i = CC j

i ∩ V j (Observation 5) are put at as left-side as possible. Intuitively, the
“margin” in RC j

i is maximized for each i and j, and we can move no vertex in S j
i to left

any more. Therefore, there exists no better layout than the output of Algorithm 3 under
the constraint of k.

For each i, time complexity for performing the modified algorithm of Algorithm 2 is
linear. In steps 6 and 7, when H j

i is constructed, we have to deal with the table for V j
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Algorithm 3. Bandwidth of a bipartite permutation graph
Input : Bipartite permutation graph G = (X,Y, E) in a line representation with

X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn′ }, and positive integer k
Output: Layout with bw(G) ≤ k if it exists, or otherwise “No”
compute the partition V0 = {x1},V1,V2, . . . ,Vm of X ∪ Y ;1

let S −1
i = ∅ for each i // no carry for G02

for j = 0, 1, . . . ,m − 1 do3

construct chain graph G j = (Vj,Vj+1, Ej);4

for i = 0, 1, . . . ,
∣∣∣Vj

∣∣∣ do5

construct an interval graph H j
i ;6

compute a layout of H j
i with carry S j−1

i satisfying bw(H j
i ) ≤ k by a modified7

algorithm of Algorithm 2;
end8

if there is no layout that achieves bw(H j
i ) ≤ k then9

return (“No”)10

end11

end12

return (obtained layout).13

which is fixed in H j−1
i . This step requires O(

∣∣∣V j−1

∣∣∣∣∣∣V j

∣∣∣). Hence, the total running time
can be bounded above by O(

∑m−1
j=0

∣∣∣V j

∣∣∣∣∣∣V j+1

∣∣∣) = O((|X| + |Y |)2). ��
Corollary 1. For a bipartite permutation graph G = (X, Y, E), we can compute bw(G)
and find an optimal layout in O((|X| + |Y |)2 log bw(G)) time and O(|X| + |Y |) space.

4 Concluding Remarks

In the proof of Theorem 4, we implement the algorithm straightforwardly. Using a
subtle implementation based on the maintenance of “differences” of V j with a carry set,
which is a similar idea in the proof of Theorem 3, we would be able to improve the
time complexity to linear. However, the algorithm is pretty complicated, and hence the
straightforward implementation seems to be better from the practical viewpoint.

A straightforward extension of our algorithm to permutation graphs yields an expo-
nential time algorithm. Thus the complexity for permutation graphs is still open.
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Abstract. A graph is König-Egerváry if the size of a minimum vertex cover
equals the size of a maximum matching in the graph. We show that the problem
of deleting at most k vertices to make a given graph König-Egerváry is fixed-
parameter tractable with respect to k. This is proved using interesting structural
theorems on matchings and vertex covers which could be useful in other contexts.

We also show an interesting parameter-preserving reduction from the vertex-
deletion version of red/blue-split graphs [4,9] to a version of Vertex Cover and
as a by-product obtain

1. the best-known exact algorithm for the optimization version of Odd Cycle
Transversal [15];

2. fixed-parameter algorithms for several vertex-deletion problems including
the following: deleting k vertices to make a given graph (a) bipartite [17],
(b) split [5], and (c) red/blue-split [7].

1 Introduction

The classical notions of matchings and vertex covers have been at the center of se-
rious study for several decades in the area of Combinatorial Optimization [11]. In
1931, König and Egerváry independently proved a result of fundamental importance:
in a bipartite graph the size of a maximum matching equals that of a minimum ver-
tex cover [11]. This led to a polynomial-time algorithm for finding a minimum ver-
tex cover in bipartite graphs. In fact, a maximum matching can be used to obtain a
2-approximation algorithm for the Minimum Vertex Cover problem in general graphs,
which is still the best-known approximation algorithm for this problem. Interestingly,
this min-max relationship holds for a larger class of graphs known as König-Egerváry
graphs and it includes bipartite graphs as a proper subclass. König-Egerváry graphs will
henceforth be called König graphs.

König graphs have been studied for a fairly long time from a structural point of
view [1,3,9,10,18,15]. Both Deming [3] and Sterboul [18] gave independent characteri-
zations of König graphs and showed that König graphs can be recognized in polynomial
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time. Lovász [10] used the theory of matching-covered graphs to give an excluded-
subgraph characterization of König graphs that contain a perfect matching. Korach
et al. [9] generalized this and gave an excluded-subgraph characterization for the class
of all König graphs.

A natural optimization problem associated with a graph class G is the following:
given a graph G, what is the minimum number of vertices to be deleted from G to ob-
tain a graph in G? For example, when G is the class of empty graphs, forests or bipartite
graphs, the corresponding problems are Vertex Cover, Feedback Vertex Set and Odd
Cycle Transversal, respectively. We call the vertex-deletion problem corresponding
to class of König graphs the König Vertex Deletion problem. A set of vertices whose
deletion makes a given graph König is called a König vertex deletion set. In the para-
meterized setting, the parameter for vertex-deletion problems is the solution size, that
is, the number of vertices to be deleted so that the resulting graph belongs to the given
graph class.

An algorithmic study of the König Vertex Deletion problem was initiated in [12],
where it was shown that when restricted to the class of graphs with a perfect match-
ing, König Vertex Deletion fixed-parameter reduces to a problem known as Min 2-Cnf
Deletion. This latter problem was shown to be fixed-parameter tractable by Razgon
and O’Sullivan [16]. This immediately implies that König Vertex Deletion is fixed-
parameter tractable for graphs with a perfect matching. But the parameterized com-
plexity of the problem in general graphs remained open.

In this paper, we first establish interesting structural connections between minimum
vertex covers and minimum König vertex deletion sets. Using these, we show that

1. the parameterized König Vertex Deletion problem is fixed-parameter tractable,
and

2. there exists an O∗(1.221n) algorithm1 for the optimization version of KönigVertex
Deletion problem, where n denotes the number of vertices in the graph.

Note that König graphs are not hereditary, that is, not closed under taking induced sub-
graphs. For instance, a 3-cycle is not König but attaching an edge to one of the vertices
of the 3-cycle results in a König graph. In fact, König Vertex Deletion is one of the
few vertex-deletion problems associated with a non-hereditary graph class whose para-
meterized complexity has been resolved. Another such example can be found in [13].

Our second result is an interesting parameter-preserving reduction from the vertex-
deletion version of red/blue-split graphs [4,9] to a version of Vertex Cover called
Above Guarantee Vertex Cover. A red/blue graph [7] is a tuple (G = (V, E), c),
where G = (V, E) is a simple undirected graph and c : E → 2{r,b} \ ∅ is an assignment of
“colors” red and blue to the edges of the graph. An edge may be assigned both red and
blue simultaneously and we require that R, the set of red edges, and B, the set of blue
edges, both be nonempty. A red/blue graph G = (V,R ∪ B) is red/blue-split if its vertex
set can be partitioned into a red independent set VR and a blue independent set VB. A
red (resp. blue) independent set is an independent set in the red graph GR = (V,R) (resp.
blue graph GB = (V, B)). A graph G is split if its vertex set can be partitioned into an

1 The O∗(·) notation suppresses polynomial terms. We write O∗(T (n)) for a time complexity of
the form O(T (n) · poly(n)), where T (n) grows exponentially with n.
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independent set and a clique. A 2-clique graph is a graph whose vertex set can be parti-
tioned into two cliques. Note that a graph is 2-clique if and only if it is the complement
of a bipartite graph. We will see that red/blue-split graphs are a generalization of König
(and hence bipartite) graphs, split and 2-clique graphs [7].

As a by-product of the reduction from Red/Blue-Split Vertex Deletion to Above
Guarantee Vertex Cover we obtain:

1. an O∗(1.49n) algorithm for the optimization version of Red/Blue-Split Vertex
Deletion, Odd Cycle Transversal, Split Vertex Deletion and 2-Clique Vertex
Deletion.2

2. fixed parameter algorithms for all the above problems.

For Odd Cycle Transversal, this gives the best-known exact algorithm for the opti-
mization version improving over the previous best of O∗(1.62n) [15].

This paper is organized as follows. In Section 2 we give a brief outline of parameter-
ized complexity, the notations and known results that we use in the rest of the paper. In
Section 3 we show the KönigVertex Deletion problem to be fixed-parameter tractable.
In Section 4 we show that a number of vertex-deletion problems fixed-parameter reduce
to Red/Blue-Split Vertex Deletion which fixed-parameter reduces to Above Guaran-
tee Vertex Cover. Finally in Section 5 we end with some concluding remarks and
directions for further research.

2 Preliminaries

In this section we summarize the necessary concepts concerning parameterized com-
plexity, fix our notation and outline some results that we make use of in the paper.

2.1 Parameterized Complexity

A parameterized problem is a subset of Σ∗ × Z≥0, where Σ is a finite alphabet and Z≥0

is the set of nonnegative numbers. An instance of a parameterized problem is therefore
a pair (I, k), where k is the parameter. In the framework of parameterized complexity,
the running time of an algorithm is viewed as a function of two quantities: the size of
the problem instance and the parameter. A parameterized problem is said to be fixed-
parameter tractable (FPT) if there exists an algorithm that takes as input (I, k) and
decides whether it is a yes or no-instance in time O( f (k) · |I|O(1)), where f is a function
depending only on k. The class FPT consists of all fixed parameter tractable problems.

A parameterized problem π1 is fixed-parameter reducible to a parameterized prob-
lem π2 if there exist functions f , g : Z≥0 → Z≥0, Φ : Σ∗ × Z≥0 → Σ∗ and a polynomial
p(·) such that for any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable
in time f (k) · p(|I|) and (I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2. Two parame-
terized problems are fixed-parameter equivalent if they are fixed-parameter reducible
to each other. The basic complexity class for fixed-parameter intractability is W[1] as

2 Since a 2-clique graph is the complement of a bipartite graph, the 2-Clique Vertex Deletion
problem is NP-complete [17].
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there is strong evidence that W[1]-hard problems are not fixed-parameter tractable. To
show that a problem is W[1]-hard, one needs to exhibit a fixed-parameter reduction
from a known W[1]-hard problem to the problem at hand. For more on parameterized
complexity see [14].

2.2 Notation

Given a graph G, we use µ(G), β(G) and κ(G) to denote, respectively, the size of a
maximum matching, a minimum vertex cover and a minimum König vertex deletion
set of G. When the graph being referred to is clear from the context, we simply use
µ, β and κ. Given a graph G = (V, E) and two disjoint vertex subsets V1,V2 of V ,
we let (V1,V2) denote the bipartite graph with vertex set V1 ∪ V2 and edge set {{u, v} :
{u, v} ∈ E and u ∈ V1, v ∈ V2}. If B is a bipartite graph with vertex partition L�R then we
let µ(L,R) denote the size of the maximum matching of B. If M is matching and {u, v} ∈
M then we say that u is the partner of v in M. If the matching being referred to is
clear from the context we simply say u is a partner of v. The vertices of G that are the
endpoints of edges in the matching M are said to be saturated by M; all other vertices
are unsaturated by M.

2.3 Related Results

We next mention some known results about König graphs and the Above Guarantee
Vertex Cover problem.

Fact 1 (See for instance [12]). A graph G = (V, E) is König if and only if there exists
a polynomial-time algorithm that partitions V(G) into V1 and V2 such that V1 is a
minimum vertex cover of G and there exists a matching across the cut (V1,V2) saturating
every vertex of V1.

Given a graph G it is clear that β(G) ≥ µ(G). The AboveGuaranteeVertexCover prob-
lem is this: given a graph G and an integer parameter k decide whether β(G) ≤ µ(G)+ k.
As was shown in [12], for this problem we may assume that the input graph G = (V, E)
has a perfect matching.

Theorem 1 [12]. Let G = (V, E) be a graph with a maximum matching M and let I :=
V \V(M). Construct G′ by replacing every vertex u ∈ I by a vertex pair u, u′ and adding
the edges {u, u′} and {u′, v} for all {u, v} ∈ E. Then G has a vertex cover of size µ(G)+ k
if and only if G′ has a vertex cover of size µ(G′) + k.

In [12], we also showed that the Above Guarantee Vertex Cover problem fixed-
parameter reduces to Min 2-SatDel which is the problem of deciding whether k clauses
can be deleted from a given 2-Cnf Sat formula to make it satisfiable. Since Min 2-Sat
Del is fixed-parameter tractable [16], so is Above Guarantee Vertex Cover. The algo-
rithm for AboveGuaranteeVertex Cover actually outputs a vertex cover of size µ(G)+
k if there exists one.

Corollary 1. Given a graph G = (V, E) and an integer k, one can decide whether G
has a vertex cover of size at most µ(G) + k in time O(15k · k · |E|3). If G has a vertex
cover of size µ(G) + k then the algorithm actually outputs one such vertex cover.
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Note that Theorem 1 says that for the Above Guarantee Vertex Cover problem it
is sufficient to consider graphs with a perfect matching. In [12], we showed that the
König Vertex Deletion problem on graphs with a perfect matching fixed-parameter
reduces to AboveGuaranteeVertexCover. This shows that KönigVertexDeletion on
graphs with a perfect matching is fixed-parameter tractable. However this does not seem
to resolve the parameterized complexity status of König Vertex Deletion in general
graphs. We do not know of a fixed-parameter reduction from the general case to the case
with a perfect matching as in the case of Above Guarantee Vertex Cover. However,
in the next section, we show the general problem to be fixed-parameter tractable using
some new structural results between maximum matchings and vertex covers.

3 The König Vertex Deletion Problem

We now consider the König Vertex Deletion Problem in general graphs and show it
fixed-parameter tractable.

Suppose Y is a vertex cover in a graph G = (V, E). Consider a maximum matching
M between Y and V \ Y. If M saturates every vertex of Y then the graph is König.
If not, then Y \ V(M), the set of vertices of Y unsaturated by M, is a König deletion
set by Fact 1. What we prove in this section is that if Y is a minimum vertex cover,
then Y \ V(M) is a minimum König vertex deletion set.

Our first observation is that any minimum König vertex deletion set is contained in
some minimum vertex cover.

Theorem 2. Let G be an undirected graph with a minimum König vertex deletion set K.
Let V(G \ K) = V1 � V2 where V2 is independent and there is a matching M from V1

to V2 saturating V1. Then V1 ∪ K is a minimum vertex cover for G.

Proof. Suppose S is a vertex cover of G such that |S | < |V1| + |K|. We will show
that there exists a König vertex deletion set of size smaller than |K|, contradicting our
hypothesis. Define V ′1 = V1 ∩ S , V ′2 = V2 ∩ S and K′ = K ∩ S . Let A1 be the vertices
of V ′1 whose partner in M is in V ′2 and let A2 be the vertices of V ′1 whose partner in M is
not in V ′2. See Figure 1. We claim that A1 ∪ K′ is a König vertex deletion set of G and
|A1 ∪ K′| < |K|, which will produce the required contradiction and prove the theorem.
This claim is proved using the following three claims:

V1 V2

K

K′

V′1
V′2

A1

A2

M

Fig. 1. The sets that appear in the proof of Theorem 2. The matching M consists of the solid edges
across V1 and V2.
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Claim 1. |A1 ∪ K′| < |K|.
Claim 2. A2 ∪ V ′2 is a vertex cover in G \ (A1 ∪ K′).

Claim 3. There exists a matching between A2 ∪ V ′2 and V \ (V ′1 ∪ K′ ∪ V ′2) saturating
every vertex of A2 ∪ V ′2.

Proof of Claim 1. Clearly |S | = |V ′1| + |V ′2| + |K′|. Note that S intersects |A1| of the
edges of M in both end points and |M| − |A1| edges of M in one end point (in either V ′1
or V ′2). Furthermore V ′2 has |V ′2 \V(M)| vertices of S that do not intersect any edge of M.
Hence |M|+ |A1|+ |V ′2 \V(M)| = |V ′1|+ |V ′2|. That is, |V ′1|+ |V ′2| = |V1|+ |A1|+ |V ′2 \V(M)|
(as |M| = |V1|). Hence |S | < |V1| + |K| implies that |A1| + |V ′2 \ V(M)| + |K′| < |K| which
implies that |A1| + |K′| < |K| proving the claim.

Proof of Claim 2. Since S = A1 ∪ A2 ∪ V ′2 ∪ K′ is a vertex cover of G, clearly A2 ∪ V ′2
covers all edges in G \ (A1 ∪ K′).

Proof of Claim 3. Since the partner of a vertex in A2 in M is in V \ (V ′1 ∪ K′ ∪ V ′2), we
can use the edges of M to saturate vertices in A2. To complete the proof, we show that
in the bipartite graph (V ′2, (V1 \ V ′1) ∪ (K \ K′)) there is a matching saturating V ′2. To
see this, note that any subset D ⊆ V ′2 has at least |D| neighbors in (V1 \ V ′1) ∪ (K \ K′).
For otherwise, let D′ be the set of neighbors of D in (V1 \ V ′1) ∪ (K \ K′) where we
assume |D| > |D′|. Then (S \ D) ∪ D′ is a vertex cover of G of size strictly less than |S |,
contradicting the fact that S is a minimum vertex cover. To see that (S \ D) ∪ D′ is
indeed a vertex cover of G, note that S \ V ′2 covers all edges of G except those in the
graph (V ′2, (V1 \ V ′1)∪ (K \K′)) and all these edges are covered by (V ′2 \D)∪D′. Hence
by Hall’s theorem, there exists a matching saturating all vertices of V ′2 in the bipartite
graph (V ′2, (V1 \ V ′1) ∪ (K \ K′)), proving the claim.

This completes the proof of the theorem. ��
Theorem 2 has interesting consequences.

Corollary 2. For any two minimum König vertex deletion sets (KVDSs) K1 and K2,
µ(G \ K1) = µ(G \ K2).

Proof. Since K1 is a minimum KVDS of G, β(G \ K1) = µ(G \ K1). By Theorem 2,
β(G \ K1) + |K1| = β(G) and β(G \ K2) + |K2| = β(G). Since |K1| = |K2|, it follows
that β(G \ K1) = β(G \ K2) and hence µ(G \ K1) = µ(G \ K2). ��
From Theorem 2 and Fact 1, we get

Corollary 3. Given a graph G = (V, E) and a minimum König vertex deletion set for G,
one can construct a minimum vertex cover for G in polynomial time.

Our goal now is to prove the “converse” of Corollary 3. In particular, we would like to
construct a minimum König vertex deletion set from a minimum vertex cover. Our first
step is to show that if we know that a given minimum vertex cover contains a minimum
König vertex deletion set then we can find the König vertex deletion set in polynomial
time. Recall that given a graph G = (V, E) and A, B ⊆ V such that A ∩ B = ∅, we
use µ(A, B) to denote a maximum matching in the bipartite graph comprising of the
vertices in A ∪ B and the edges in {{u, v} ∈ E : u ∈ A, v ∈ B}. We denote this graph
by (A, B).
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Lemma 1. Let K be a minimum KVDS and Y a minimum vertex cover of a graph G =
(V, E) such that K ⊆ Y. Then µ(G \ K) = µ(Y,V \ Y) and |K| = |Y | − µ(Y,V \ Y).

Proof. If G is König then the theorem clearly holds. Therefore assume that K � ∅.
Note that Y \ K is a minimum vertex cover of the König graph G \ K. Thus µ(G \ K) =
µ(Y \ K,V \ Y). We claim that µ(Y \ K,V \ Y) = µ(Y,V \ Y). For if not, we must
have µ(Y \ K,V \ Y) < µ(Y,V \ Y). Then let M be a maximum matching in the bipartite
graph (Y,V \ Y) and K′ ⊆ Y be the set of vertices unsaturated by M. Note that K′ � ∅
is a KVDS for G. Since µ(Y,V \ Y) = |Y | − |K′| and µ(Y \ K,V \ Y) = |Y | − |K| we
have |K′| < |K|, a contradiction, since by hypothesis K is a smallest KVDS for G.
Therefore we must have µ(G \ K) = µ(Y,V \ Y) and |K| = |Y | − µ(Y,V \ Y). ��
The next lemma says that µ(Y,V \ Y) is the same for all minimum vertex covers Y of
a graph G. Together with Lemma 1, this implies that if K is a minimum König vertex
deletion set and Y is a minimum vertex cover of a graph G = (V, E), then µ(G \ K) =
µ(Y,V \ Y). This result is crucial to our FPT-algorithm for the König Vertex Deletion
problem.

Lemma 2. For any two minimum vertex covers Y1 and Y2 of G, µ(Y1,V \ Y1) = µ(Y2,
V \ Y2).

Proof. Suppose without loss of generality that µ(Y1,V \ Y1) > µ(Y2,V \ Y2). Let M1 be
a maximum matching in the bipartite graph (Y1,V \Y1). To arrive at a contradiction, we
study how Y2 intersects the sets Y1 and V \ Y1 with respect to the matching M1. To this
end, we define the following sets (see Figure 2):

Y1 V \ Y1

B

P

A1

A2
M1

Fig. 2. The sets that appear in the proof of Lemma 2. The solid edges across Y1 and V \ Y1

constitute the matching M1.

– A = Y2 ∩ Y1 ∩ V(M1).
– B = Y2 ∩ (V \ Y1) ∩ V(M1).
– A1 is the set of vertices in A whose partners in M1 are also in Y2.
– A2 is the set of vertices in A whose partners in M1 are not in Y2.

We first show that

Claim. In the bipartite graph (Y2,V \ Y2) there is a matching saturating each vertex
in A2 ∪ B.

It will follow from the claim that µ(Y2,V \ Y2) ≥ |A2| + |B|. However, note that Y2 in-
tersects every edge of M1 at least once (as Y2 is a vertex cover). More specifically, Y2
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intersects |A1| edges of M1 twice and |M1| − |A1| edges once (either in Y1 or in V \ Y1).
Hence, |A|+|B| = |M1|+|A1| and so |A2|+|B| = |M1| and so µ(Y2,V\Y2) ≥ |A2|+|B| = |M1|
a contradiction to our assumption at the beginning of the proof. Thus it suffices to prove
the claim.

Proof of Claim. Let P denote the partners of the vertices of A2 in M1. Since P ⊆ V \ Y2,
we use the edges of M1 to saturate vertices of A2. Hence it is enough to show that
the bipartite graph B = (B, (V \ Y2) \ P) contains a matching saturating the vertices
in B. Suppose not. By Hall’s Theorem there exists a set D ⊆ B such that |NB(D)| <
|D|. We claim that the set Y′2 := Y2 \ D + NB(D) is a vertex cover of G. To see this,
note that the vertices in Y2 \ D cover all the edges of G except those in the bipartite
graph (D, Y1 ∩ (V \ Y2)) and these are covered by NB(D). Therefore Y′2 is a vertex cover
of size strictly smaller than Y2, a contradiction. This proves that there exists a matching
in (Y2,V \ Y2) saturating each vertex in A2 ∪ B.

This completes the proof of the lemma. ��
The next theorem shows how we can obtain a minimum König vertex deletion set from
a minimum vertex cover in polynomial time.

Theorem 3. Given a graph G = (V, E), let Y be any minimum vertex cover of G and M
a maximum matching in the bipartite graph (Y,V \Y). Then K := Y \V(M) is a minimum
König vertex deletion set of G.

Proof. Clearly K is a KVDS. Let K1 be a minimum KVDS of G. By Theorem 2, there
exists a minimum vertex cover Y1 such that K1 ⊆ Y1 and

|K1| = |Y1| − µ(Y1,V \ Y1) (By Lemma 1.)
= |Y | − µ(Y1,V \ Y1) (Since Y1 and Y are minimum vertex covers.)
= |Y | − µ(Y,V \ Y) (By Lemma 2.)
= |K|

This proves that K is a minimum KVDS. ��
Corollary 4. Given a graph G = (V, E) and a minimum vertex cover for G, one can
construct a minimum König vertex deletion set for G in polynomial time.

Note that although both these problems–Vertex Cover and König Vertex Deletion
Set–are NP-complete, we know of very few pairs of such parameters where we can
obtain one from the other in polynomial time (e.g. edge dominating set and minimum
maximal matching, see [8]). In fact, there are parameter-pairs such as dominating set
and vertex cover where such a polynomial-time transformation is not possible unless
P = NP. This follows since in bipartite graphs, for instance, a minimum vertex cover
is computable in polynomial time whereas computing a minimum dominating set is
NP-complete.

To show that the König Vertex Deletion problem is fixed-parameter tractable we
make use of the following

Lemma 3. [12] If G is a graph such that β(G) = µ(G) + k, then k ≤ κ(G) ≤ 2k.
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We are now ready to prove that the König Vertex Deletion problem is fixed-parameter
tractable in general graphs.

Theorem 4. Given a graph G = (V, E) and an integer parameter k, the problem of
whether G has a subset of at most k vertices whose deletion makes the resulting graph
König can be decided in time O(15k · k2 · |E|3).

Proof. Use the FPT algorithm from Corollary 1 to test whether G has a vertex cover
of size at most µ(G) + k. If not, by Lemma 3, we know that the size of a minimum
König vertex deletion set is strictly more than k. Therefore return no. If yes, then find
the size of a minimum vertex cover by applying Corollary 1 with every integer value
between 0 and k for the excess above µ(G). Note that for yes-instances of the Above
Guarantee Vertex Cover problem, the FPT algorithm actually outputs a vertex cover
of size µ(G) + k. We therefore obtain a minimum vertex cover of G. Use Theorem 3 to
get a minimum König vertex deletion set in polynomial time and depending on its size
answer the question. It is easy to see that all this can be done in time O(15k ·k2 · |E|3). ��
We know that computing a maximum independent set (or equivalently a minimum ver-
tex cover) in an n-vertex graph can be done in time O∗(20.288n) [6]. By Corollary 4,
we can compute a minimum König vertex deletion set in the same exponential time.
Given a graph G together with a tree-decomposition for it of width w, one can ob-
tain a minimum vertex cover in time O∗(2w) [14]. For the definitions of treewidth and
tree-decomposition, refer [14]. In general, algorithms on graphs of bounded treewidth
are based on dynamic programming over the tree-decomposition of the graph. It is not
obvious how to find such a dynamic programming algorithm for the König Vertex
Deletion problem. By applying Corollary 4, we can find a minimum König deletion set
in time O∗(2w) in graphs of treewidth w. The above discussion results in the following
corollary.

Corollary 5

1. Given a graph G = (V, E) on n vertices we can find a minimum König vertex dele-
tion set in time O∗(20.288n) = O∗(1.221n).

2. If a tree-decomposition for G of width w is given, we can find a minimum König
vertex deletion set in time O∗(2w).

4 Red/Blue-Split Graphs and above Guarantee Vertex Cover

In this section we introduce the Red/Blue-Split Vertex Deletion problem and show
that a number of vertex-deletion problems fixed-parameter reduce to it. Recall that a
red/blue-graph is one in which the edges are colored red or blue and where an edge
may receive multiple colors. A red/blue-graph G = (V,R ∪ B) is red/blue-split if its
vertex set can be partitioned into a red independent set and a blue independent set,
where a red (blue) independent set is an independent set in the red graph G = (V,R)
(blue graph G = (V, B)). In what follows we use r/b as an abbreviation for red/blue
and Ec to denote the set of edges assigned color c.
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The R/B-Split Vertex Deletion problem is the following: given an r/b-graph G =
(V,R ∪ B) and an integer k, are there k vertices whose deletion makes G r/b-split?
We first show that R/B-Split Vertex Deletion fixed-parameter reduces to the Above
Guarantee Vertex Cover problem. Since Above Guarantee Vertex Cover is fixed-
parameter tractable, this will show that R/B-Split Vertex Deletion is fixed-parameter
tractable too.

At this point, we note that r/b-split graphs can be viewed as a generalization of König
graphs as follows. A graph G = (V, E) with a maximum matching M is König if and
only if the 2-colored graph G′ = (V,R ∪ B), where R = E and B = M, is r/b-split. It
is important to realize that while this gives a recognition algorithm for König graphs
using one for r/b-split graphs, it does not seem to give any relationship between the
corresponding vertex-deletion problems. In fact, we do not know of any parameter-
preserving reduction from König Vertex Deletion to the R/B-Split Vertex Deletion
problem for general graphs.

For graphs with a perfect matching, we show by an independent argument based
on the structure of a minimum König vertex deletion set that the König Vertex Dele-
tion problem does indeed fixed-parameter reduce to Above Guarantee Vertex Cover
(and also to R/B-Split Vertex Deletion) [12]. But this structural characterization of
minimum König vertex deletion sets does not hold in general graphs. Therefore the
fixed-parameter tractability result for König Vertex Deletion Set cannot be obtained
from that of R/B-Split Vertex Deletion.

Theorem 5. Let G = (V, E = Er ∪ Eb) be an r/b graph. Construct G′ = (V ′, E′) as
follows: the vertex set V ′ consists of two copies V1,V2 of V and for all u ∈ V, u1 ∈ V1

and u2 ∈ V2 the edge set E′ = {{u1, u2} : u ∈ V} ∪ {{u1, v1} : {u, v} ∈ Er} ∪ {{u2, v2} :
{u, v} ∈ Eb}. Then there exists k vertices whose deletion makes G r/b-split if and only
if G′ has a vertex cover of size µ(G′) + k.

Proof. Clearly G′ has 2|V | vertices and a perfect matching of size |V |. It suffices to show
that G has an r/b-split subgraph on t vertices if and only if G′ has an independent set of
size t. This would prove that there exists |V |−t vertices whose deletion makes G r/b-split
if and only if G′ has a vertex cover of size 2|V | − t. Finally, plugging in k = |V | − t will
prove the theorem.

Therefore let H be an r/b-split subgraph of G on t vertices with a red independent
set Vr and a blue independent set Vb. Then the copy V1

r of Vr in V1 and the copy V2
b

of Vb in V2 are independent sets in G′. Since Vr ∩Vb = ∅, V1
r ∪V2

b is an independent set
in G′ on t vertices. Conversely if H′ is an independent set in G′ of size t, then for i = 1, 2
let V(H′) ∩ Vi = Wi and |Wi| = ti so that t1 + t2 = t. For i = 1, 2, let W̃i be the vertices
in V(G) corresponding to the vertices in Wi. Then W̃1 is an independent set of size t1
in the red graph Gr = (V(G), Er) and W̃2 is an independent set of size t2 in the blue
graph Gb = (V(G), Eb). Since W1 and W2 do not both contain copies of the same vertex
of V(G), as W1 ∪ W2 is independent, we have W̃1 ∩ W̃2 = ∅. Thus G[W̃1 ∪ W̃2] is an
r/b-split graph of size t in G. ��
Since a maximum independent set in an n-vertex graph can be obtained in time O∗
(20.288n) [6], we immediately have the following
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Corollary 6. The optimization version of the R/B-Split Vertex Deletion problem can
be solved in time O∗(20.576n) = O∗(1.49n) on input graphs on n vertices.

Since Above Guarantee Vertex Cover is fixed-parameter tractable (Corollary 1) we
have

Corollary 7. The parameterized version of the R/B-Split Vertex Deletion problem is
fixed-parameter tractable and can be solved in time O(15k · k2 · m3), where m is the
number of edges in the input graph.

As mentioned before, König (and hence bipartite) and split graphs can be viewed as r/b-
split graphs. Since 2-clique graphs are complements of bipartite graphs it follows that
they can also be viewed as r/b-split graphs. The vertex-deletion problems Odd Cycle
Transversal, Split Vertex Deletion and 2-Clique Vertex Deletion fixed-parameter
reduce to R/B-SplitVertexDeletion. We show this reduction for OddCycle Transver-
sal as the proofs in the other cases are quite similar.

Theorem 6. Given a simple undirected graph G = (V, E), construct an r/b-graph G′ =
(V ′, E′) as follows: define V ′ = V and E′ = E; Er(G′) = E and Eb(G′) = E. Then there
exists k vertices whose deletion makes G bipartite if and only if there exist k vertices
whose deletion makes G′ r/b-split.

Proof. Suppose deleting k vertices from G makes it bipartite with vertex bipartition V1∪
V2. Then V1 and V2 are independent in both the red graph G′r = (V ′, Er) and in the blue
graph G′b = (V ′, Eb). Thus G′[V1 ∪ V2] is r/b-split. Conversely if k vertices can be
deleted from G′ to make it r/b-split, let Vr and Vb be the red and blue independent sets
respectively. Then both these sets must be independent in G and therefore the subgraph
of G induced on Vr ∪ Vb is bipartite. ��
From Theorem 6 and Corollaries 6 and 7 the following result follows immediately.

Corollary 8. The parameterized version of Odd Cycle Transversal, Split Vertex
Deletion and 2-Clique Vertex Deletion are fixed-parameter tractable and their op-
timization versions can be solved in time O∗(20.576n) = O∗(1.49n) on input graphs on n
vertices.

5 Conclusion

We showed that the König Vertex Deletion problem is fixed-parameter tractable in
general graphs. To prove this, we made use of a number of structural results involving
minimum vertex covers, minimum König vertex deletion sets and maximum matchings.
We also showed that a number of vertex-deletion problems, in particular, R/B-Split
Vertex Deletion, and Odd Cycle Transversal fixed-parameter reduce to AboveGuar-
anteeVertex Cover. Since the latter problem is FPT, all these vertex-deletion problems
are also FPT.

An interesting open problem is the parameterized complexity of the König Edge
Deletion problem: given G = (V, E) and an integer parameter k, does there exist at
most k edges whose deletion makes the resulting graph König? Deriving a problem
kernel for König Vertex Deletion Set is an interesting open problem. Another natural
open problem to design better FPT algorithms for Above Guarantee Vertex Cover
perhaps without using the reduction to Min 2-Sat Deletion.
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Abstract. We present the first polynomial-time algorithm to solve the
Maximum Weight Independent Set problem for apple-free graphs, which
is a common generalization of several important classes where the prob-
lem can be solved efficiently, such as claw-free graphs, chordal graphs
and cographs. Our solution is based on a combination of two algorithmic
techniques (modular decomposition and decomposition by clique sepa-
rators) and a deep combinatorial analysis of the structure of apple-free
graphs. Our algorithm is robust in the sense that it does not require the
input graph G to be apple-free; the algorithm either finds an independent
set of maximum weight in G or reports that G is not apple-free.

Keywords: Maximum independent set, clique separators, modular de-
composition, polynomial-time algorithm, claw-free graphs, apple-free
graphs.

1 Introduction

In 1965, Edmonds solved the maximum matching problem [15] by implement-
ing the idea of augmenting chains due to Berge [1]. Moreover, in [16] Edmonds
showed how to solve the problem in case of weighted graphs. Lovász and Plum-
mer observed in their book “Matching Theory” [22] that Edmonds’ solution is
“among the most involved of combinatorial algorithms.” This algorithm also
witnesses that the maximum weight independent set (MWIS) problem, be-
ing NP-hard in general, admits a polynomial-time solution when restricted to
the class of line graphs. In 1980, Minty [24] and Sbihi [27] independently of
each other generalized the idea of Edmonds and extended his solution from line
graphs to claw-free graphs. With a small repair from Nakamura and Tamura [25],
the Minty’s algorithm also works for weighted graphs. In the present paper, we
further develop this fundamental line of research and extend polynomial-time
solvability of the MWIS problem from claw-free graphs to apple-free graphs.

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 848–858, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Independent Sets of Maximum Weight in Apple-Free Graphs 849

�

�

�

�

�
�

�

�

�

�

�

�
�

�
�

�
�

�
�

���
���

�
�

��

�
�
��

Fig. 1. Two smallest apples A4 and A5

An apple Ak is a graph obtained from a chordless cycle Ck of length k ≥ 4
by adding a vertex that has exactly one neighbor on the cycle (see Figure 1). A
graph G is apple-free if it contains no Ak, k ≥ 4, as an induced subgraph. Odd
apples were introduced by De Simone in [14], and Olariu in [26] called the apple-
free graphs pan-free. The fact that the apple-free graphs include all claw-free
graphs follows from the observation that every apple contains an induced claw
centered at the unique vertex of degree 3 (see Figure 1). Along with maximum
independent sets in claw-free graphs, our solution extends several other key
results in algorithmic graph theory.

In particular, the class of apple-free graphs generalizes that of chordal graphs,
since each apple contains a chordless cycle of length at least 4. Chordal graphs
enjoy many attractive properties, one of which is that any non-complete graph
in this class has a separating clique, i.e., a clique deletion of which increases the
number of connected components (see e.g. [21]). This decomposability property
finds applications in many algorithmic graph problems, including the problem of
our interest. An efficient procedure to detect a separating clique in a graph was
proposed by Tarjan [29] in 1985. Recently [2], an interest to this technique was
revived by combining it with another important decomposition scheme, known
as modular decomposition. The graphs that are completely decomposable with
respect to modular decomposition are called complement reducible graphs [13],
or cographs, and this is one more important class covered by our solution.

Our approach is based on a combination of the two decomposition techniques
mentioned above and a deep combinatorial analysis of the structure of apple-free
graphs. An important feature of our solution is that it does not require the input
graph G to be apple-free; it either finds an independent set of maximum weight
in G or reports that G is not apple-free. Such algorithms are called robust in [28].

In an obvious way, our algorithm can be used to find a minimum weight vertex
cover in G or a maximum weight clique in the complement of G. We also believe
that the structural analysis given in the paper can be used to extend many of
the combinatorial properties of claw-free graphs established in the recent line of
research by Chudnovsky and Seymour [5,6,7,8,9,10,11,12] to apple-free graphs.

This paper is organized as follows. In Section 2, we introduce basic notations
and definitions, describe algorithmic techniques used in our approach and present
preliminary information about the structure of apple-free graphs. In Section 3,
we give a robust polynomial time algorithm for a subclass of apple-free graphs. In
Section 4, we develop more tools for proving the main result, and in Section 5, we
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present the main result and a robust polynomial-time algorithm for the MWIS
problem on apple-free graphs. Due to space limitation, most of the proofs are
given in an appendix.

2 Preliminaries

Throughout this paper, G = (V,E) is a finite undirected simple graph with
|V | = n and |E| = m. We also denote the vertex set of G as V (G). For a vertex
v ∈ V , let N(v) = {w ∈ V | vw ∈ E} denote the neighborhood of v and let
N(v) = {w ∈ V | w 
= v and vw 
∈ E} denote the antineighborhood of v. If
vw ∈ E then v sees w and vice versa, and if vw /∈ E then v misses w and
vice versa. For a subset U ⊆ V of vertices let G[U ] denote the induced subgraph
of G, i.e., the subgraph of G with vertex set U and two vertices of U being
adjacent in G[U ] if and only if they are adjacent in G. We say that G is a vertex-
weighted graph if each vertex of G is assigned a positive integer, the weight of
the vertex. Let Pk, k ≥ 2, denote a chordless path with k vertices and k − 1
edges, and let Ck, k ≥ 4, denote a chordless cycle with k vertices, say 1, 2, . . . , k
and k edges, say (i, i + 1) for i ∈ {1, 2, . . . , k} (index arithmetic modulo k). A
chordless cycle with at least 6 vertices will be called a long cycle. A graph is
chordal if it contains no induced subgraph Ck, k ≥ 4. A graph is a cograph if it
contains no induced P4. See [4] for various properties of chordal graphs and of
cographs. A claw K consists of four vertices, say a, b, c, d with edges ab, ac, ad;
then a is the midpoint of K and b, c, d are the endpoints of K, also denoted as
K = (a; b, c, d) to emphasize the difference between midpoint and endpoints. A
graph is claw-free if it contains no induced claw.

An independent set in G is a subset of pairwise nonadjacent vertices. A clique
is a set of pairwise adjacent vertices. For disjoint vertex sets X,Y ⊂ V , we say
that there is a join between X and Y if each vertex in X sees each vertex in
Y . A K2,3 has 5 vertices, say a1, a2 and b1, b2, b3 such that A = {a1, a2} and
B = {b1, b2, b3} are independent vertex sets and there is a join between A and
B. In an undirected graph G with vertex weight function w, the maximum total
weight of an independent set in G is called the weighted independence number
of G and is denoted by αw(G). The following identity obviously holds.

αw(G) = max
x∈V (G)

{w(x) + αw(G[N(x)])}. (1)

An immediate consequence of (1) is the following.

Proposition 1. If for every vertex x ∈ V (G), the MWIS problem can be solved
for G[N(x)] in time T , then it can be solved for G in time n·T , where n = |V (G)|.

If, for instance, for every vertex x ∈ V (G), G[N(x)] is chordal then by the linear-
time algorithm for the MWIS problem given in [18], these problem can be solved
for G in time O(n ·m); we call such graphs nearly chordal. More generally, for a
graph class C, a graph G is nearly C if for all x ∈ V (G), G[N(x)] is in C.
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Now we recall two decomposition techniques used in our algorithm. A clique
separator in a connected graph G is a subset Q of vertices of G which induces a
complete graph, such that the graph G[V \Q] is disconnected. Tarjan showed in
[29] that the MWIS problem can be reduced in polynomial time to graphs with-
out clique separators (also called atoms), and a clique separator decomposition
of a given graph can be determined in polynomial time (see also [30]).

Let G = (V,E) be a graph, U ⊂ V and x ∈ V \U . We say that x distinguishes
U if x has both a neighbor and a non-neighbor in U . A subset U ⊂ V is a
module in G if no vertex outside U distinguishes U . A module U is nontrivial
if 1 < |U | < |V |, otherwise it is trivial. A graph is prime if all its modules are
trivial.

It is well known that the MWIS problem can be reduced in polynomial time
from any hereditary (i.e., closed under taking induced subgraphs) class C to
prime graphs in C. Recently, in [2], decomposition by clique separators was com-
bined with modular decomposition in a more general decomposition scheme:

Theorem 1 ([2]). Let C be a hereditary class of graphs. If the MWIS problem
can be solved in time T for those induced subgraphs of graphs in C which are
prime and have no clique separators, then MWIS is solvable in time O(n2 · T )
for graphs in C.

In [2,3], some examples are given where this technique can be applied. The aim
of this paper is to show that this approach leads to a polynomial-time solution
for MWIS on apple-free graphs. By Theorem 1, we can assume that throughout
this paper, we deal with prime apple-free atoms. The following lemma will also
allow us to assume that our graphs are K2,3-free.

Lemma 1. Prime A4-free graphs are K2,3-free.

Proof. Suppose to the contrary that a prime A4-free graph G contains an induced
K2,3, say with vertices a1, a2 in one color class and b1, b2, b3 in the other, i.e., the
edges are aibj for i ∈ {1, 2} and j ∈ {1, 2, 3}. Then the co-connected component
Q in G[N(b1) ∩ N(b2) ∩ N(b3)] containing a1 and a2 is no module. Let a′1, a

′
2

be two vertices in Q such that a′1a
′
2 /∈ E which are distinguished by a vertex

z /∈ Q, say za′1 ∈ E and za′2 
∈ E. If zb1 
∈ E then z is adjacent to at most
one of the vertices b2 and b3 else b2, z, b3, a

′
2, b1 is an A4. Suppose that zb2 
∈ E;

then b2, a
′
2, b1, a

′
1, z is an A4 - contradiction. Thus zb1 ∈ E, and by an analogous

argument, also zb2 ∈ E and zb3 ∈ E, but now z is in Q, a contradiction. �


Let G be a prime apple-free atom, C a chordless cycle Ck with k ≥ 4 in G, and
v a vertex of G outside C. Denote by NC(v) the set of neighbors of v in C. We
say that v is universal for C if v is adjacent to every vertex of C. Let Fu denote
the set of all universal vertices for C. Moreover, for i ≥ 0, we say that v is a
vertex of type i or an i-vertex for C if it has exactly i neighbors in C, and we
denote by Fi the set of all vertices of type i (for C). The following facts are easy
to see:

Fact 1. Every nonuniversal vertex for C is of type 0, 2, 3 or 4.
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Fact 2. Every vertex of type 2 has two consecutive neighbors in C, every vertex
of type 3 has three consecutive neighbors in C and every vertex of type 4 has two
pairs of consecutive neighbors in C.

Directly from Fact 2 we conclude that

Fact 3. Any vertex v outside C adjacent to vertex i in C is also adjacent to
i− 1 or i + 1 (i.e., v has no isolated neighbor in C).

Fact 4. If two distinct nonadjacent vertices x, y ∈ F2 see vertices of the same
connected component in G[F0] then NC(x) 
= NC(y).

Now we analyze the adjacencies between vertices of different types. Observe that
in the next five facts we assume that the cycle C has length at least 6.

Fact 5. If C is long, then no vertex in F0 can see a vertex in F3 ∪ F4.

Fact 6. If C is long, then every vertex in Fu sees every vertex in F3 ∪ F4.

Fact 7. If C is long, then the set Fu of C-universal vertices is a clique.

Fact 8. Let C be a chordless cycle of length at least 6 and let v ∈ F2 and w ∈ F3.
If NC(v) ⊂ NC(w) then vw ∈ E. If NC(v) ∩NC(w) = ∅, then vw /∈ E.

Fact 9. Let C be a chordless cycle of length at least 6 and let v ∈ F2 and w ∈ F4.
If |NC(v) ∩ NC(w)| ≤ 1 then vw /∈ E. If NC(v) ⊂ NC(w) then vw ∈ E unless
NC(w) = {i− 1, i, i + 1, i + 2} and NC(v) = {i, i + 1} in which case vw /∈ E.

Before we proceed to detailed analysis of the structure of apple-free graphs and
algorithms in the next sections, let us introduce more notations. Let F2(i, i+ 1)
denote the set of vertices in F2 which see exactly i and i + 1 on C. Similarly,
we denote by F3(i, i+ 1, i+ 2) the set of vertices in F3 which see exactly i, i+ 1
and i + 2, and we denote by F4(i, i + 1, j, j + 1) the set of vertices in F4 which
see exactly i, i + 1 and j, j + 1. We will distinguish between vertices of type 4
with consecutive neighbors and vertices of type 4 with opposite neighbors (if the
neighbors are not consecutive in C). Also, for a vertex v ∈ F0, let

– F0(v) denote the connected component in G[F0] containing v and let
– S(v) := {x | x sees F0(v) and C} (we call S(v) the set of contact vertices of

C and F0(v)).

Obviously, S(v) is a separator between v and C, and since G is an atom, S(v)
cannot be a clique.

We complete this section with an outline of our proof of polynomial-time
solvability of the MWIS problem in the class of apple-free graphs. As one of the
main results (Theorem 3 (i)), we show that a prime apple-free atom contain-
ing a chordless cycle Ck with k ≥ 7 is claw-free. This reduces the problem to
(A4, A5, A6, C7, C8, . . .)-free graphs.

To solve the problem for a (A4, A5, A6, C7, C8, . . .)-free graph G, we apply the
decomposition scheme of Theorem 1 twice: first to the graph G and then to the
subgraph G[N(v)] for each vertex v ∈ V (G). We show that if the resulting graph
(obtained by double application) contains a C6, then it is claw-free (Theorem 3
(ii)), otherwise it is nearly chordal (Section 3).
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3 MWIS on (A4, A5, C6, C7, . . .)-Free Graphs

Lemma 2. Prime (A4, C5, C6, C7, . . .)-free atoms are nearly chordal.

Proof. Suppose that a prime (A4, C5, C6, C7, . . .)-free atom G is not nearly
chordal. Then there is a vertex v in G such that G[N(v)] contains an induced C4,
say C. Since G is A4-free, the set S(v) of contact vertices contains only 2-vertices
and universal vertices. We claim that S(v) is a clique: By Lemma 1, and since G is
A4-free, S(v)∩Fu is a clique. Moreover, by Lemma 1, 2-vertices have consecutive
neighbors in C and since G is (A4, C5, C6, C7, . . .)-free, every set S(v)∩F2(i, i+1)
of 2-vertices in S(v) is a clique. Finally, since G is (A4, C5, C6, C7, . . .)-free, there
is a join between S(v)∩Fu and every S(v)∩F2(i, i+1), i ∈ {1, . . . , 4}, and there
is a join between S(v) ∩ F2(i, i + 1) and S(v) ∩ F2(j, j + 1) for i 
= j (note that
if S(v) ∩ F2(i, i + 1) 
= ∅ then S(v) ∩ F2(i + 1, i + 2) = ∅). Now S(v) is a clique
cutset between v and C, a contradiction. Thus, G is nearly chordal. �


Lemma 3. Prime (A4, A5, C6, C7, . . .)-free atoms are nearly C5-free.

Proof. Suppose that a prime (A4, A5, C6, C7, . . .)-free atom G is not nearly C5-
free. Then there is a vertex v such that G[N(v)] contains an induced C5, say
C. Clearly, C has no 1-vertex. We first claim that S(v) contains only 2-vertices
and universal vertices: If x ∈ S(v) is a 3-vertex for C, it must have consecutive
neighbors i, i + 1, i + 2 in C, but then a neighbor y of x in F0(v), x and i, i +
2, i + 3, i− 1 would induce an A5 in G. A similar argument holds for 4-vertices
of C.

Next, we claim that S(v) is a clique: By Lemma 1, and since G is A4-free,
S(v)∩Fu is a clique. Moreover, 2-vertices have consecutive neighbors in C, and
every set S(v)∩F2(i, i+1) is a clique since G is (A4, A5, C6, C7, . . .)-free. Finally,
since G is (A4, A5, C6, C7, . . .)-free, there is a join between S(v) ∩ Fu and every
S(v)∩F2(i, i+1), i ∈ {1, 2, . . . , 5}, and there is a join between S(v)∩F2(i, i+1)
and S(v) ∩ F2(j, j + 1) for i 
= j (note that if S(v) ∩ F2(i, i + 1) 
= ∅ then
S(v) ∩ F2(i + 1, i + 2) = ∅). Now S(v) is a clique cutset between v and C, a
contradiction. Thus, G is nearly C5-free. �


Corollary 1. In a prime (A4, A5, C6, C7, . . .)-free atom G, for every vertex v ∈
V (G), the prime atoms of G[N(v)] are nearly chordal.

Together with Theorem 1, Corollary 1 implies polynomial-time solvability of the
MWIS problem in the class of (A4, A5, C6, C7, . . .)-free graphs. We formally state
this conclusion in Theorem 2 below and describe the solution in the following
Algorithm 1. To simplify the description, we assume, by Theorem 1, that the
input graph is a prime atom.

Algorithm 1

Input: A vertex-weighted prime atom G.
Output: A maximum weight independent set in G or the output
‘G is not (A4, A5, C6, C7, . . .)-free’.
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(a) Check whether for every vertex v ∈ V (G), the prime atoms of G[N(v)] are
nearly chordal.

(b) If yes, apply a polynomial time algorithm for the MWIS problem on chordal
graphs [18,19] and combine the partial results according to equation (1) and
Theorem 1.

(c) Otherwise, G is not (A4, A5, C6, C7, . . .)-free.

Theorem 2. Algorithm 1 solves the MWIS problem on (A4, A5, C6, C7, . . .)-free
graphs (and an even larger class) in polynomial time in a robust way.

4 More Tools

According to Theorem 2, we may restrict ourselves to apple-free graphs con-
taining long cycles, i.e., chordless cycles of length at least 6. Throughout this
section, C will denote a chordless cycle Ck, k ≥ 6, with vertices {1, . . . , k} and
edges {i, i+ 1} (index arithmetic modulo k). A fundamental separator property
which will be frequently used, is the following:

Lemma 4. Let G be a prime apple-free atom and let C be an induced cycle Ck

with k ≥ 6 in G, and let v miss C, i.e., v ∈ F0. Then for the set S(v) of contact
vertices, the following properties hold:

(i) S(v) ⊆ F2 ∪ Fu;
(ii) S(v) is no clique;
(iii) if x and y are two distinct nonadjacent vertices in S(v), then x, y ∈ F2 and

NC(x) 
= NC(y).

Proof. Condition (i) follows from Fact 5. For (ii), note that S(v) is a separator
between v and C and G is an atom. For (iii), let x, y ∈ S(v) with x 
= y and
xy /∈ E. Recall that Fu is a clique (Fact 7). Thus, at least one of x, y is not
in Fu. Moreover, if x ∈ Fu and y ∈ F2, say y ∈ F2(1, 2) then let Pxy denote a
shortest path in F0(v) connecting x and y. Now, 3, x, Pxy, y, 1 is an apple. Thus,
x, y ∈ F2, and by Fact 4, NC(x) 
= NC(y). �


Theorem 3, as our main result, says that a prime apple-free atom G containing
a chordless cycle of length at least 7 is claw-free. If G is (A4, A5, A6, C7, C8, . . .)-
free but contains a C6 then the situation is slightly more complicated: We need
to exclude two other graphs, the D6 and E6 (see Figure 2).

Lemma 5. Prime (A4, A5, A6, C7, C8, . . .)-free atoms are nearly D6- and E6-
free.

Proof. Let G be a prime (A4, A5, A6, C7, C8, . . .)-free atom. Suppose that v is
a vertex with a cycle C of length 6 in N(v). By Lemma 4, there are w1, w2 ∈
S(v) ∩ F2 with w1w2 /∈ E. Since G is (C7, C8, . . .)-free, w1 and w2 see opposite
edges of C, i.e., if w1 sees i and i + 1 then w2 sees i + 3 and i + 4, and we can
assume that w1 and w2 have a common neighbor v′ in F0(v) (otherwise, there
is a Ck with k ≥ 7, in G).
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Fig. 2. The graphs D6 (left) and E6 (right)

Now assume that x is a vertex of type 4 with x ∈ F4(1, 2, 3, 4). Then if w1 sees
2 and 3, and w2 sees 5 and 6 then by Fact 3, w1x /∈ E since otherwise w1 has
the isolated neighbor x in the C5 = (1, x, 4, 5, 6), and very similarly, w2x /∈ E,
but then (v′, w1, 2, x, 4, 5, w2) is a C7 in G, a contradiction.

Thus, up to symmetry, the only possibility for contact vertices to a C6 with
a 4-vertex x ∈ F4(1, 2, 3, 4) is w1 ∈ F2(3, 4) and w2 ∈ F2(6, 1) in which case
w1x ∈ E by Fact 3 with respect to the C5 = (1, x, 4, 5, 6) and w1, and w2x /∈ E
by Fact 3 with respect to the C4 = (v′, w1, x, w2) and vertex 2.

For a D6 in N(v) with 4-vertices x ∈ F4(1, 2, 3, 4) and y ∈ F4(3, 4, 5, 6),
xy /∈ E, the above discussion implies that w1 ∈ F2(2, 3) and w2 ∈ F2(5, 6)
is impossible, and also w1 ∈ F2(1, 2) and w2 ∈ F2(4, 5) is impossible. Thus,
w1 ∈ F2(3, 4) and w2 ∈ F2(6, 1). Then w1 sees x and y but now v′, w1, y, 6, 1, x
is an A5, a contradiction.

For an E6 in N(v) with 4-vertices x ∈ F4(1, 2, 3, 4) and y ∈ F4(4, 5, 6, 1)
with xy ∈ E, the above discussion implies, without loss of generality, that w1 ∈
F2(3, 4) and w2 ∈ F2(6, 1). Then w1 sees x but not y while w2 sees y but not x
but now v′, w1, x, y, w2, 5 is an A5, a contradiction. �


The proof of our main result, namely Theorem 3, will be prepared by various
other lemmas.

Lemma 6. If C is either

(i) a chordless cycle Ck with k ≥ 7 in a prime apple-free atom or
(ii) a chordless cycle C6 in a prime (A4, A5, A6, D6, C7, C8, . . .)-free atom,

then C has no universal vertex.

Lemma 7. If C is either

(i) a chordless cycle Ck with k ≥ 7 in a prime apple-free atom or
(ii) a chordless cycle C6 in a prime (A4, A5, A6, D6, C7, C8, . . .)-free atom,

then every set F2(i, i + 1), i ∈ {1, 2, . . . , k}, is a clique.

Lemma 8. Let G be an apple-free atom containing a claw K and a long cycle C.
If K and C are chosen so that the distance between them is as small as possible
and K ∩ C = ∅, then C sees the midpoint of K.
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5 Main Result and Algorithm

Theorem 3 is the main result of this paper; the algorithmic consequences are
based on it.

Theorem 3. Let G be a prime apple-free atom.

(i) If G contains a chordless cycle Ck with k ≥ 7, then G is claw-free.
(ii) If G is (D6, E6, C7, C8, . . .)-free and contains C6 then G is claw-free.

In order to solve the MWIS problem for apple-free graphs, we apply twice the de-
composition scheme of Theorem 1 that reduces the problem from general graphs
to prime atoms. We outline the procedure solving the problem in Algorithm 2 be-
low. To simplify the description, we assume that the input graph is a prime atom.

Algorithm 2

Input: A vertex-weighted prime atom G.
Output: A maximum weight independent set in G or ‘G is not apple-free’.

(a) If G is claw-free apply a polynomial time algorithm for MWIS on claw-free
graphs [24,25], and output the solution.

(b) For every vertex v ∈ V (G), apply the decomposition scheme of Theorem 1
to G[N(v)], and let G1, . . . , Gk be the list of all prime atoms obtained in this
way.

(c) If for each i = 1, . . . , k,
• either Gi is claw-free
• or for each vertex u ∈ V (Gi), the prime atoms of Gi[N(u)] are nearly

chordal,
then solve the problem for Gi and use the obtained solutions to compose a
solution S for G, and output S.

(d) Otherwise, output ‘G is not apple-free’.

Theorem 4. Algorithm 2 is correct and solves the MWIS problem in polynomial
time for apple-free graphs.

Proof. Let G be an input graph (not necessarily apple-free). If Algorithm 2
outputs an independent set S, then obviously S is a solution for the MWIS
problem in G. Therefore, to prove the correctness, we have to show that if G is
apple-free, then the output of the algorithm is an independent set.

Let G be a prime apple-free atom. If the algorithm does not return an in-
dependent set after step (a), then G contains a claw, and hence by Theorem 3
(i), G is (A4, A5, A6, C7, C8, . . .)-free. In step (b), we apply the decomposition
scheme of Theorem 1 to G[N(v)] for each vertex v ∈ V (G), and reduce the
problem to prime atoms G1, . . . , Gk. Let Gi be an arbitrary graph in this list. If
Gi is claw-free, we can solve the problem for it. Otherwise, by Theorem 3 (ii),
Gi is C6-free and hence the problem can be solved for Gi by Corollary 1. This
completes the proof of the correctness.

A polynomial-time bound follows from polynomial-time solvability of the
problem on claw-free graphs and chordal graphs, and polynomial-time recog-
nition algorithms for claw-free and chordal graphs. �
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6 Conclusion

The class of apple-free graphs is a natural generalization of claw-free graphs,
chordal graphs, cographs, and various other classes (such as (A4, P5)-free graphs
[23,3], (A4, C5, C6, . . .)-free graphs [20]) which have been extensively studied in
the literature. For each of these classes, the Maximum Weight Independent Set
problem is efficiently solvable in completely different ways; for cographs, it uses
the cotree in a bottom-up way, for claw-free graphs, it is based on matching and
for chordal graphs, it uses perfect elimination orderings and perfection or clique
separator decomposition.

In this paper, we have shown that the Maximum Weight Independent Set
problem can be solved in polynomial time on apple-free graphs. Our approach
is based on a combination of clique separator decomposition and modular de-
composition, and our algorithm does not require to recognize whether the input
graph is apple-free; it solves the MWIS problem on a larger class (which is recog-
nizable in polynomial time) given by the conditions in Algorithm 2. Some other
important problems such as Maximum Clique and Chromatic Number are known
to be NP-complete on claw-free graphs (see e.g. [17]) and thus remain hard on
apple-free graphs.

Open Problem. What is the complexity of recognizing apple-free graphs?
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17. Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs – a survey. Discrete

Math. 164, 87–147 (1997)
18. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In:

Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Ab-
erdeen 1975), pp. 211–226 (1975); Congressus Numerantium No. XV, Utilitas
Math., Winnipeg, Man. (1976)

19. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput-
ing 1, 180–187 (1972)

20. Gerber, M.U., Lozin, V.V.: Robust algorithms for the stable set problem. Graphs
and Combinatorics 19, 347–356 (2003)

21. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, 2nd edn. Annals of
Discrete Mathematics, vol. 57. Elsevier Science B.V, Amsterdam (2004)

22. Lovász, L., Plummer, M.D.: Matching theory. Annals of Discrete Mathematics 29
(1986)

23. Lozin, V.V.: Stability in P5- and banner-free graphs. European Journal of Opera-
tional Research 125, 292–297 (2000)

24. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Com-
binatorial Theory, Ser. B 28, 284–304 (1980)

25. Nakamura, D., Tamura, A.: A revision of Minty’s algorithm for finding a maximum
weight stable set of a claw-free graph. J. Oper. Res. Soc. Japan 44, 194–204 (2001)

26. Olariu, S.: The strong perfect graph conjecture for pan-free graphs. J. Combin. Th.
(B) 47, 187–191 (1989)

27. Sbihi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un
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Abstract. A graph is chordal if and only if it has no chordless cycle of
length more than three. The set of maximal cliques in a chordal graph
admits special tree structures called clique trees. A perfect sequence is
a sequence of maximal cliques obtained by using the reverse order of
repeatedly removing the leaves of a clique tree. This paper addresses the
problem of enumerating all the perfect sequences. Although this problem
has statistical applications, no efficient algorithm has been proposed.
There are two difficulties with developing this type of algorithms. First,
a chordal graph does not generally have a unique clique tree. Second,
a perfect sequence can normally be generated by two or more distinct
clique trees. Thus it is hard using a straightforward way to generate
perfect sequences from each possible clique tree. In this paper, we propose
a method to enumerate perfect sequences without constructing clique
trees. As a result, we have developed the first polynomial delay algorithm
for dealing with this problem. In particular, the time complexity of the
algorithm on average is O(1) for each perfect sequence.

Keywords: Chordal graph, clique tree, enumeration, perfect sequence.

1 Introduction

A graph is said to be chordal if every cycle of length at least 4 has a chord.
Chordal graphs have been investigated for a long time for many areas. From
the viewpoint of graph theory, this class has a simple characterization; a graph
is chordal if and only if it is an intersection graph of the subtrees of a tree.
That is, there is a set of subtrees Tv of a tree T that correspond to the vertices
v of a chordal graph G such that u and v are adjacent in G if and only if
the corresponding subtrees Tu and Tv have non-empty intersection. From an
algorithmic point of view, a chordal graph is characterized by a simple vertex
ordering called a perfect elimination ordering (PEO). Its geometrical property
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of rigidity plays an important role in many practical areas, and the property of
its adjacency matrix is useful in matrix manipulations. Since the class appears
in different contexts in so many areas they also are called “rigid circuit graphs”
or “triangulated graphs” (see e.g., [12,5]).

Recently, the probabilistic relationships between random variables are repre-
sented by a graph called “graphical model” in the science of statistics. On a
graphical model, the random variables are represented by the vertices and the
conditional dependencies are represented by the edges. In particular, if a graph-
ical model is chordal, we can easily compute its maximum likelihood estimator.
In the computation, a chordal graph is decomposed into its subgraphs by remov-
ing a separator which induces a clique. Therefore, chordal graphs are also called
“decomposable graphs” or “decomposable models” in this area (see, e.g., [9]).
Even if a given graphical model is not decomposable, we sometimes add edges
to make it decomposable to obtain a good approximation value of the maximum
likelihood estimator of the graphical model (see, e.g., [4]). This corresponds to
the notion of “chordal completion” in the area of graph algorithms [8]. Hence
chordal graphs play an important role in graphical modeling in statistics.

Perfect sequences are the sequences of maximal cliques in a given chordal
graph that satisfy certain properties. The notion arises from the decomposable
models, and all perfect sequences are required and must not have repetitions
(see, e.g., [7]) From the viewpoint of graph theory, perfect sequences can be
seen in the following way. As mentioned, a chordal graph G can be represented
by the intersection graph of the subtrees of a tree T . That is, each vertex v of
G = (V,E) corresponds to a subtree Tv of T , and {u, v} ∈ E if and only if Tv

and Tu intersect. We can make each node ci of tree T correspond to a maximal
clique Ci of G; Ci consists of all the vertices v in G such that Tv contains the
node ci. Therefore, the tree T is called a clique tree of G. From the clique tree
T , we make an ordering π over the set of maximal cliques {C1, C2, . . . , Ck} of G
such that Cπ(i) is a leaf of tree Ti which is a subgraph of T induced by Cπ(1),
Cπ(2), . . ., Cπ(i) for each i. Intuitively, we can construct such a sequence from T
by repeatedly pruning leaves and put them on the top of the sequence until T
is empty. Then the sequence of maximal cliques in a chordal graph is called a
perfect sequence, and it is known that a graph is chordal if and only if it has a
perfect sequence.

In 2006, Hara and Takemura proposed a sampling algorithm for the perfect
sequences of a given chordal graph [6] that used the Lauritzen’s method [9].
However their algorithm does not generate each perfect sequence uniformly at
random, and to our knowledge, no enumeration algorithm of perfect sequences
exists. There are two major reasons for the difficulty in enumerating perfect
sequences. First, the clique tree is not generally unique for a chordal graph. That
is, a chordal graph has many distinct (non-isomorphic) clique trees in general.
For a clique tree, we can define a set of perfect sequences consistent to the clique
tree. Then, secondly, the sets of perfect sequences consistent with the distinct
clique trees are not disjoint. That is, we can obtain one perfect sequence from
possibly many distinct clique trees. Therefore, a straightforward algorithm based
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on a simple idea (generate all clique trees, and generate all perfect sequences for
each clique tree) cannot avoid redundancy.

In this paper, we propose an algorithm enumerating all the perfect sequences
of a chordal graph. The algorithm enumerates all the perfect sequences on an
average of O(1) time per sequence. In order to avoid redundancy, our algorithm
makes a weighted intersection graph of maximal cliques first instead of explicitly
constructing the clique trees. The intersection graph is uniquely constructed, and
each maximum weighted spanning tree of the intersection graph gives a clique
tree of a chordal graph. Then the algorithm generates each perfect sequence
from the union of maximum weighted spanning trees without any repetitions.
The algorithm is based on a new idea that characterizes the union of maximum
weighted spanning trees, and that also gives us insight into the properties of the
set of clique trees of a chordal graph.

We note that the set of perfect sequences is strongly related to the set of
PEOs. The PEO is a standard characterization of a chordal graph in the area of
graph algorithms. Any PEO can be obtained by repeatedly removing a simpli-
cial vertex, and any sequence of removals of simplicial vertices is a PEO. This
property admits us to enumerate all PEOs by recursively removing simplicial
vertices. The enumeration of all PEOs is investigated by Chandran et al. [3]. In-
tuitively, any perfect sequence can be obtained by removing a set of “equivalent”
simplicial vertices together repeatedly. However, each removal has to follow (a
kind of) lexicographical ordering. A removal of a set of simplicial vertices may
produce a new set of simplicial vertices or change another set of simplicial ver-
tices, and the new set cannot be chosen before the old sets. Thus the family of
sets of equivalent simplicial vertices has to follow a partial ordering defined by
the appearance in the graph to obtain a perfect sequence. This fact also implies
that while some PEOs can be obtained from a perfect sequence easily, but some
PEOs cannot be obtained from any perfect sequence straightforwardly by the
constraint of the partial ordering. Therefore, the correspondence between the set
of perfect sequences and the set of PEOs is not straightforward and hence we
have to analyze some special cases. Indeed, using this approach, we can obtain
another enumeration algorithm of all perfect sequences from the enumeration
algorithm of all PEOs. However this approach does not allow us to enumerate
efficiently; the algorithm takes O(|V |+ |E|) time for each perfect sequence. This
is the reason why we take completely different approach based on a maximum
weighted spanning tree of a weighted clique graph, which admits us to improve
the time to O(1) on average.

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈
V | {u, v} ∈ E}, and the degree of a vertex v is |NG(v)| and is denoted by
degG(v). For a vertex subset U of V we denote by NG(U) the set {v ∈ V |
v ∈ NG(u) for some u ∈ U}. If no confusion arises we will omit the subscript
G. Given a graph G = (V,E) and a subset U ⊆ V , the subgraph of G induced
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by U is the graph (U,F ), where F = {{u, v} ∈ E | u, v ∈ U}, and denoted by
G[U ]. A vertex set I is an independent set of G if G[I] contains no edge, and a
vertex set C is a clique in G if any pair of vertices in C is connected by an edge
in G. An edge e in a connected graph G = (V,E) is called a bridge if its removal
partitions G into two connected components.

For a given graph G = (V,E), consider a sequence (v0, v1, . . . , v�) of vertices
in V such that {vj−1, vj} ∈ E for each 0 < j ≤ �. Such a sequence is a path if
the vertices v0, . . . , v� are all distinct, and it is a cycle if the vertices v0, . . . , v�−1
are distinct and v0 = v�. The length of such a path and a cycle is the number
�. An edge that joins the two vertices of a cycle, but is not itself an edge of the
cycle, is a chord of the cycle. A graph is chordal if each cycle of length at least
4 has a chord.

Given a graph G = (V,E), a vertex v ∈ V is simplicial in G if N(v) is a clique
in G. An ordering v1, . . . , vn of the vertices of V is a perfect elimination ordering
of G if the vertex vi is simplicial in G[{vi, vi+1, . . . , vn}] for all i = 1, . . . , n. It is
known that a graph is chordal if and only if it has a perfect elimination ordering
[2, Section 1.2]. Given a chordal graph, a perfect elimination ordering of the
graph can be found in linear time [11,13].

For a chordal graph G = (V,E), we can associate a tree T , called a clique tree
of G, as satisfying the following three properties. (A) The nodes1 of T are the
maximal cliques of G. (B) Two nodes of T are adjacent only if the intersection
of the corresponding maximal cliques is non-empty. (C) For every vertex v of G,
the subgraph Tv of T induced by the maximal cliques containing v is connected.
(Here, condition (A) is sometimes weakened as each node is not necessarily
maximal.) It is well known that a graph is chordal if and only if it has a clique
tree, and in such a case a clique tree can be constructed in linear time. On the
tree, each vertex v in V corresponds to a subtree Tv of T . That is, Tv consists
of maximal cliques that contain v. Then, the graph G is an intersection graph
of subtrees Tv of a tree T . Some of these details are explained in books [2,12].

For a given chordal graph G = (V,E), we denote the set of all maximal
cliques of G by C(G). (It is known that |C(G)| ≤ |V |.) Let k = |C(G)|, C(G) =
{C1, C2, . . . , Ck}, and π be a permutation of k elements. Then, the ordering
Cπ(1), Cπ(2), . . . , Cπ(k) on C(G) is said to be a perfect sequence if there is a clique
tree T such that each Cπ(i) is a leaf of the subtree T [{Cπ(1), Cπ(2), . . . , Cπ(i)}]
which is the subgraph of T induced by {Cπ(1), Cπ(2), . . . , Cπ(i)}, for each i with
1 ≤ i ≤ k. Intuitively, we have two explanations for this. One is that we can
prune all the leaves off a clique tree in the reverse order Cπ(k), . . . , Cπ(2), Cπ(1)
of any perfect sequence. On the other hand, according to the perfect sequence
Cπ(1), Cπ(2), . . . , Cπ(k), we can construct a clique tree T by repeatedly attaching
Cπ(i) as a leaf.

We here note that, in general, a clique tree for a chordal graph G is not
uniquely determined up to isomorphism. For example, for the chordal graph
G = (V,E) in Fig. 1(a), there are four distinct clique trees given in Fig. 1(b).

1 In this paper, “vertex” is in a chordal graph G, and “node” corresponds to a clique
in G to distinguish them.



Enumeration of Perfect Sequences of Chordal Graph 863

C1

C2

C3

C4 C5

C1

C2

C3

C4 C5

C1

C2

C3

C4 C5

C1

C2

C3

C4 C5

C1C2C3C4C5
C1C2C4C3C5
C1C2C4C5C3
C1C3C2C4C5
C1C3C4C2C5
C1C3C4C5C2
C2C1C3C4C5
C2C1C4C3C5
C2C1C4C5C3
C2C3C1C4C5
C2C3C4C1C5
C2C3C4C5C1
C3C2C1C4C5
C3C2C4C1C5
C3C2C4C5C1

(b) Clique trees of G. 
During our algorithm, 
they are not explicitly given. 

T4

T3

T2

T1

(c) Perfect sequences
of  clique trees.

C1 C2
C3

C4
C5

(a) Chordal graph 
G = ( V, E )

C1

C2

C3

C4 C5

(d) Weighted clique 
graph CG(G).

1
1

1

1 1

2

Fig. 1. (a) Chordal graph G, (b) its clique trees, (c) corresponding perfect sequences,
and (d) its weighted clique graph CG(G) = (C(G),E)

Moreover, two or more distinct clique trees of the same chordal graph G can
generate the same perfect sequence. For example, for the chordal graph G =
(V,E) in Fig. 1(a), a perfect sequence C2C1C3C4C5 can be generated from two
trees, T1 and T2, as depicted in Fig. 1(b)(c).

For a chordal graph G = (V,E) and the set C(G) of all maximal cliques,
we define the weighted clique graph CG(G) = (C(G), E) with a weight function
w : E → Z as follows. For two maximal cliques C1 and C2 in C(G), E contains the
edge {C1, C2} if and only if C1∩C2 
= ∅. For each edge {C1, C2} in E , w({C1, C2})
is defined by |C1 ∩C2| (therefore every edge in E has a positive integer weight
less than |V |). The CG(G) = (C(G), E) of a chordal graph G = (V,E) in Fig. 1(a)
is given in Fig. 1(d). The weights of the edges are all 1 except for {C2, C3} which
has a weight 2.

We recall that each edge in a clique tree T of G corresponds to a nonempty in-
tersection of two maximal cliques. Thus, T is a spanning tree of CG(G). However,
some spanning trees of CG(G) may not be clique trees of G. The characterization
of a clique tree is given as follows.

Lemma 1 (e.g., [1,10]). Let G = (V,E) be a chordal graph and CG(G) =
(C(G), E) be the weighted clique graph with a weight function w. A spanning tree
T of CG(G) is a clique tree of G if and only if it has the maximum weight.
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For the CG(G) = (C(G), E) in Fig. 1(d) of the chordal graph G = (V,E) in
Fig. 1(a), the only spanning trees that contain the edge {C2, C3} are clique trees
of G. We note that any chordal graph of n vertices contains n maximal cliques at
the most. Therefore, CG(G) contains O(n) nodes. On the other hand, although a
star Sn of n vertices contains n vertices, n− 1 edges, and n− 1 maximal cliques,
the clique graph CG(Sn) is a complete graph Kn−1 with n−1 nodes that contains(
n−1

2

)
= O(n2) edges. Therefore, we only have a trivial upper bound O(|V |2) for

the number of edges in the clique graph CG(G) of a chordal graph G = (V,E),
even if |E| = O(|V |).

Hereafter, we assume that the input graph G is connected without loss of
generality; in case G is not connected, we allow the use of h weight-zero edges
to join the h connected components. The modification of the algorithms in this
paper is straightforward, and omitted.

We show here a technical lemma for a clique tree that will be referred to
later:

Lemma 2. Suppose T is a clique tree of a chordal graph G = (V,E) that consists
of at least two maximal cliques (in the other words, G is not a complete graph).
Let C be a leaf in T and C′ be the unique neighbor of C. Then for each vertex
v in C, v is simplicial in G if and only if v is in C \ C′.

Proof. If v is in C \C′, it is easy to see that N(v) = C \ {v}, and therefore, v is
simplicial. Now suppose a simplicial vertex v is in C∩C′ to derive a contradiction.
Since v is in C, N(v) contains all the vertices in C, except v. On the other hand,
if v is also in C′, N(v) contains all the vertices in C′, except v. However, C and
C′ are distinct maximal cliques. Therefore, there are two vertices u ∈ C and
w ∈ C′ with {u,w} 
∈ E, which contradicts that v is simplicial. Therefore, v is
in C \ C′. �


3 Enumeration Algorithm

The idea for enumerating perfect sequences is simple. We construct a graph rep-
resenting the adjacency of maximal cliques, and recursively remove the maximal
cliques that can be leaves of a clique tree. Since the clique tree is a spanning tree
of the graph and the removed maximal clique is a leaf of the clique tree, after
removing the maximal cliques, we still have a clique (sub)tree that is a spanning
tree of the resultant graph. Since any tree has at least two leaves, we always have
at least two maximal cliques that correspond to the leaves of the spanning tree.
Therefore, we invariably get a perfect sequence by repeating the removal process.
During the algorithm, the spanning tree is not explicitly given, and we have to
deal with all the potential spanning trees that can generate perfect sequences.
The following outlines a description of the algorithm.

The graph CG(G)∗ is a subgraph of CG(G) that excludes unnecessary edges
described later.
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Algorithm 1. Outline of Enumeration
Input : Chordal graph G = (V,E);
Output: All perfect sequences of G;
construct weighted clique graph CG(G);1

compute arbitrary maximum weighted spanning tree T ∗ of CG(G);2

construct graph CG(G)∗ composed of edges that can be included in clique3

trees from CG(G) and T ∗;
enumerate all sequences of maximal cliques obtained by repeatedly4

removing maximal cliques that can be leaves of some clique trees.

To efficiently find the maximal cliques that can be leaves, we first compute
any maximum weighted spanning tree T ∗. Then, we use a (unweighted) graph
CG(G)∗ obtained from CG(G) and T ∗. We say an edge in CG(G) is unnecessary if
it cannot be included in any maximum weighted spanning tree of CG(G). On the
other hand, an edge is indispensable if it appears in every maximum weighted
spanning tree of CG(G). The other edges are called dispensable, which means
they appear in some (but not all) maximum weighted spanning trees. Let e be
an edge not in T ∗. Since T ∗ is a spanning tree of CG(G), the addition of e to T ∗

produces a unique cycle Ce which consists of e and the other edges in T ∗. We call
Ce an elementary cycle of e (the terminology comes from the matroid theory).
The unnecessary, dispensable, and indispensable edges are characterized by the
following lemmas.

Lemma 3. For an edge e not in T ∗, w(e) ≤ w(e′) holds for any e′ ∈ Ce \ {e}.
Moreover, e is unnecessary if and only if w(e) < w(e′) holds for any e′ ∈ Ce\{e}.
On the other hand, e is dispensable if and only if w(e) = w(e′) holds for some
e′ ∈ Ce \ {e}.
Proof. If we have w(e) > w(ei) for some 1 ≤ i < k, by swapping e and ei,
we can obtain a heavier spanning tree, which contradicts the fact that T ∗ is a
maximum weighted spanning tree. Therefore, w(e) ≤ w(ei) for each 1 ≤ i < k.
When w(e) = w(ei) for some 1 ≤ i < k, we can obtain a maximum weight
spanning tree T ′ by removing e′ and adding e to T ∗. T ∗ does not include e
while T ′ includes e, which implies e is dispensable. �

Lemma 4. An edge e in T ∗ is an indispensable edge if w(e) > w(e′) for all
edges e′ such that e′ is not on T ∗ and Ce′ contains e.

Proof is analogous to proof of Lemma 3, and hence omitted.
We note that any bridge is indispensable by Lemma 4; there is no edge e′ not

in T ∗ such that Ce′ contains e and w(e′) ≥ w(e).
We denote the sets of unnecessary, indispensable, and dispensable edges by Eu,

Ei, and Ed, respectively. They partition the edge set E of CG(G) into three disjoint
sets. The sets can be computed by the following algorithm in O(|C(G)|3) =
O(|V |3) time. We note that by using a dynamic programming technique starting
from the bottom of the tree, the run time can be reduced to O(|C(G)|2), which
is omitted here since it is too complex and tedious.
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Algorithm 2. Search for Unnecessary, Indispensable, and Dispensable
Edges
Input : The weighted clique graph CG(G) = (C(G), E) and an arbitrary

maximum weighted spanning tree T ∗ of CG(G);
Output: Sets Eu, Ei, and Ed of the unnecessary, indispensable, and

dispensable edges;
set Eu := ∅; Ed := ∅; Ei := ∅;1

foreach e not in T ∗ do2

if w(e) < w(e′) for all e′ ∈ Ce then3

Eu := Eu ∪ {e};4

else5

Ed := Ed ∪ {e};6

foreach e′ ∈ Ce satisfying w(e) = w(e′) do Ed := Ed ∪ {e′};7

end8

end9

Ei := E \ (Eu ∪ Ed);10

return (Ei, Eu, Ed);11

We now define an unweighted graph CG(G)∗ by (C(G), Ei ∪ Ed).

Observation 1. Any spanning tree of CG(G)∗ that contains all the edges in Ei

gives a maximum weighted spanning tree of CG(G).

Now, we have characterized clique trees by using spanning trees in CG(G). Next,
we take the characterization of maximal cliques that can be leaves of some clique
trees into consideration.

Lemma 5. A maximal clique C can be a leaf of a clique tree if and only if C
satisfies (1) C is incident to at most one edge in Ei, and (2) C is not a cut
vertex in CG(G)∗.

Proof. First, we suppose that C is a leaf of a clique tree T . Since T is a clique
tree of G, T is a spanning tree in CG(G)∗ that includes all the edges in Ei. Since
C is a leaf of T , C is incident to at most one edge of Ei, and C is not a cut
vertex of CG(G)∗. Thus, C satisfies the conditions.

We next suppose that C satisfies the conditions. We assume that CG(G) con-
tains two or more nodes. We choose any edge e from Ei ∪ Ed that is incident to
C. We always can choose e since CG(G) is connected. Then, we remove C from
CG(G)∗. Since C is not a cut vertex, the resultant graph CG(G)′ is still con-
nected. Therefore, CG(G)′ has a spanning tree T ′ which contains all the edges
in Ei \ {e}. Then, by adding e to T ′, we have a spanning tree T that contains
all the edges in Ei, and C is a leaf of T . This concludes the proof. �


Hereafter, the pair of two conditions in Lemma 5 is said to be a leaf condition.
A perfect sequence is obtained by removing a leaf of a clique tree T . Thus,
any perfect sequence is obtained by iteratively removing the maximal cliques
satisfying a leaf condition. The converse is shown by the following lemma.
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Lemma 6. Any maximal clique sequence S = (C1, . . . , Ck) obtained by itera-
tively removing a maximal clique satisfying the leaf condition is a perfect se-
quence.

Proof. Let T1 be a tree in CG(G)∗ that consists of one vertex C1, and Ti be a tree
in CG(G)∗ obtained by adding Ci to Ti−1 and an edge e of CG(G)∗ connecting
Ci and a vertex in Ti−1. If there is an edge of Ei connecting Ci and a vertex in
Ti−1, we choose the edge as e. Note that there is at most one such edge by the
leaf condition. We observe that any Ci is a leaf of Ti, and Ti−1 is obtained by
removing a leaf Ci from Ti. Thus, S = (C1, . . . , Ck) is a perfect sequence. �


This lemma ensures that by repeatedly removing maximal cliques satisfying the
leaf condition, we can obtain any perfect sequence. This yields the following
algorithm to enumerate all perfect sequences.

Algorithm 3. All Perfect Sequences
Input : Chordal graph G = (V,E);
Output: All perfect sequences of G;
construct CG(G);1

find maximum weighted spanning tree T ∗ of CG(G);2

by using T ∗, compute sets Eu, Ei, Ed of unnecessary, indispensable, and3

dispensable edges, respectively;
set P to empty sequence; // keep current perfect sequence4

let CG(G)∗ := (C(G), Ei ∪ Ed);5

call Enumerate(CG(G)∗, P );6

Procedure Enumerate(CG(G)∗ = (C(G), Ei ∪ Ed), P)

[H]
Output: A perfect sequence at the last node;
if C(G) contains one node C then7

output (C + P ); // C + P denotes concatenation of node C and8

sequence P

else9

compute S := {C ∈ C(G) | C satisfies the leaf condition};10

foreach C ∈ S do11

call Enumerate(CG(G) \ C, C + P );12

end13

end14

A part of the computation tree for the chordal graph in Fig. 1(a) is given in
Fig. 2. The unweighted graph CG(G)∗ contains two indispensable edges, {C2, C3}
and {C4, C5}. Now we are ready to show the main theorem in this paper.

Theorem 1. For any chordal graph G = (V,E), with O(|V |3) time and O(|V |2)
space pre-computation, all perfect sequences can be enumerated in O(1) time per
sequence on average and O(|V |2) space.
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Fig. 2. Part of computation tree that enumerates all perfect sequences

Proof. From Lemmas 5 and 6, we can see that Algorithm 3 generates all perfect
sequences. Since each iteration adds a maximal clique on the top of the sequence
when it generates a recursive call, no two iterations can output the same perfect
sequence. Thereby any perfect sequence is generated exactly once. This shows
the correctness of the algorithm.

Therefore, we concentrate on the analysis of the time complexity. The space
complexity is easy to see. We first observe that the computation of set S in step
10 takes O(n2) time, where n = |C(G)| in the procedure. Therefore, the time
complexity of each procedure call of Enumerate can be bounded above by cn2

time for a positive constant c except for the computation time spent for the
recursive calls generated by the procedure.

Now, a procedure call of Enumerate where CG(G) = (C(G), Ei ∪ Ed) is called
a k-level call if |C(G)| = k. Let t(k) be the total computation time for k-level
calls. When k = 1, we have a perfect sequence for each call. Therefore, we have
t(1) ≤ cN , where N is the number of perfect sequences.

When k > 1, there are at least two maximal cliques in C(G) satisfying the
leaf condition. Therefore, there are at least two cliques in S, and the number of
k-level calls is at most half of the number of (k − 1)-level calls. Thus, we have
t(k) ≤ k2

2k−1 cN if k > 1. We can see that t(2)+t(3)+t(4) ≤ (2+ 9
4 +2)cN = 25

4 cN .
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For any k > 4, we have k2

2k−1 ≤ 8
9

(k−1)2

2k−2 . Thus, we have
∑∞

k=5 t(k) ≤ (8
9 +(8

9 )2 +
· · · )t(4) < 8t(4) ≤ 16cN . Therefore, each perfect sequence can be obtained on
average in O(1) time. �

We note here that we can include the time to output in O(1) time for each
perfect sequence on average. The first idea is to output the difference of the
previous output. The second idea is to output at each step when the clique of
the sequence is found. More precisely, we replace step 8 of Enumerate by the
following three steps

output +C;
output “end of reverse of a perfect sequence”;
output −C;

and replace step 12 of Enumerate by the following three steps

output +C;
call Enumerate(CG(G) \ C,C + P );
output −C;

Then we will incrementally have all perfect sequences, and the time complexity
is still O(1) time for each perfect sequence on average.

We also note that the delay in Algorithm 3, which is the maximum time between
two consecutive perfect sequences, is O(|V |3) with a straightforward implemen-
tation. This time complexity comes from (1) the distance between two perfect se-
quences in the computation tree isO(n) and (2) each computation of the setS takes
O(n2) time in step10.However,wedonotneed to computeS completely every time.
We can update S incrementally for each removal and addition with a suitable data
structure, and the computation time can be reduced to O(n) time. Hence it is not
difficult to reduce the delay to O(n2), but the details are omitted here.

4 Conclusion

We propose an algorithm to enumerate all the perfect sequences of a given
chordal graph. The time complexity for each perfect sequence is O(1), which
is the optimal time complexity. From the proof of the main theorem, we can
see that the number of perfect sequences might be exponential in the size of
the graph in general, and thus for large graphs the algorithm is impractical.
Therefore, one of our future works is to construct an efficient random sampling
algorithm. Our approach does not use clique trees, and thus, with polynomial
time convergence, there is the possibility for efficient sampling.
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Abstract. From the theory of graph minors we know that the class of
planar graphs is the only critical class with respect to tree-width. In
the present paper, we reveal a critical class with respect to clique-width,
a notion generalizing tree-width. This class is known in the literature
under different names, such as unit interval, proper interval or indiffer-
ence graphs, and has important applications in various fields, including
molecular biology. We prove that the unit interval graphs constitute a
minimal hereditary class of unbounded clique-width. As an application,
we show that list coloring is fixed parameter tractable in the class of
unit interval graphs.

Keywords: Tree-width, Clique-width, Unit interval graphs, Fixed pa-
rameter tractability.

1 Introduction

The tree- and clique-width are two graph parameters which are of primary im-
portance in algorithmic graph theory due to the fact that many problems, being
NP-hard in general, admit polynomial-time solutions when restricted to graphs
of bounded tree- or clique-width. Determining whether one of these parameters
is bounded in a class of graphs X is not a trivial question. For tree-width, an
answer to this question can be found with the help of the following two results:

(1) in the study of tree-width one can be restricted to minor-closed graph classes,
as the tree-width of a graph cannot be less than the tree-width of any of
its minors. In other words, if X is not a minor-closed graph class, it can
be extended, without loss of generality, to a minor-closed class by adding
to X all minors of graphs in X . Observe that such an extension can be
characterized by finitely many forbidden minors [24].

(2) in the family of minor-closed graph classes there is a unique minimal class
of unbounded tree-width, namely, the class of planar graphs [23]. In other
words, the tree-width of graphs in a minor-closed class X is bounded if and
only if X excludes at least one planar graph.

In the present paper we study clique-width of graphs, a notion generalizing
that of tree-width in the sense that graphs of bounded tree-width have bounded

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 871–882, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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clique-width. In the study of clique-width the restriction to minor-closed graph
classes is not valid anymore. Instead, we restrict ourselves to hereditary classes,
i.e., those containing with each graph G all induced subgraphs of G. This restric-
tion can be made without loss of generality, because the clique-width of a graph
cannot be less than the clique-width of any of its induced subgraphs [6]. The
family of hereditary classes generalizes that of minor-closed classes, and this gen-
eralization provides a natural analog of (1). However, (2) does not admit such
a simple generalization. Moreover, apparently the family of hereditary classes
contains many (if not infinitely many) classes which are critical with respect to
clique-width. In the present paper, we reveal the first class of this type, the unit
interval graphs, also known in the literature as proper interval graphs [3] and
indifference graphs [22]. Graphs in this class enjoy many attractive properties
and find important applications in various fields, including molecular biology
[17]. The structure of unit interval graphs is relatively simple, allowing efficient
algorithms for recognizing and representing these graphs [16], as well as for many
other computational problems (see e.g. [2,4,5]). Nonetheless, some algorithmic
problems remain NP-hard when restricted to the class of unit interval graphs
[20], the complexity of some others is unknown [7], and most width parameters
(including clique-width [14]) are unbounded in this class. In the present paper,
we show that the unit interval graphs constitute a minimal hereditary class of
unbounded clique-width. As an application, we show that the list coloring

problem is fixed parameter tractable in this class.
The organization of the paper is as follows. In the rest of this section, we

introduce basic notations and terminology. In section 2, we describe some struc-
tural properties of unit interval graphs. Section 3 is devoted to clique-width of
unit interval graphs and Section 4 discusses algorithmic applications.

All graphs in this paper are undirected, without loops and multiple edges.
For a graph G, we denote by V (G) and E(G) the vertex set and the edge set
of G, respectively. The neighborhood of a vertex v ∈ V (G), denote NG(v), is
the set of vertices adjacent to v. If there is no confusion about G we simply
write N(v). We say that G is an H-free graph if no induced subgraph of G is
isomorphic to H . The subgraph of G induced by a subset U ⊆ V (G) is denoted
G[U ]. Two vertices of U ⊆ V (G) will be called U -similar if they have the same
neighborhood outside U . Clearly, the similarity is an equivalence relation. The
number of equivalence classes of U in G will be denoted µG(U) (or µ(U) if no
confusion arises). A graph G is said to be prime if µG(U) = 1 implies |U | = 1 or
U = V (G). When determining the clique-width of graphs in a hereditary class
X one can be restricted to prime graphs in X , because the clique-width of a
graph G equals the clique-width of a maximal prime induced subgraph of G [6].

2 Unit Interval Graphs

A graph G is an interval graph if it is the intersection graph of intervals on the
real line. G is a unit interval graph if all the intervals in the intersection model
are of the same length. In this section, we describe some structural properties
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of unit interval graphs. We start by introducing unit interval graphs of a special
form that will play an important role in our considerations. Denote by Hm,n the
graph with mn vertices which can be partitioned into m cliques

V1 = {v1,1, . . . , v1,n}

. . .

Vm = {vm,1, . . . , vm,n}

so that for each i = 1, . . . ,m−1 and for each j = 1, . . . , n, vertex vi,j is adjacent
to vertices vi+1,1, vi+1,2, . . . , vi+1,j and there are no other edges in the graph.
An example of the graph H5,5 is given in Figure 1 (for clarity of the picture,
each clique Vi is represented by an oval without inside edges). We will call the
vertices of Vi the i-th row of Hm,n, and the vertices v1,j , . . . , vm,j the j-th column
of Hm,n.

It is not difficult to see (and will follow from Theorem 1) that Hm,n is a
unit interval graph. Moreover, below we will prove that Hn,n contains every unit
interval graph on n vertices as an induced subgraph. That’s why we call the
graph Hm,n a canonical unit interval graph.

Now consider the special case of Hm,n when m = 2. The complement of this
graph is bipartite and is known in the literature under various names such as
a difference graph [15] or a chain graph [18]. The latter name is due to the fact
that the neighborhoods of vertices in each part of the graph form a chain, i.e.,
the vertices can be ordered under inclusion of their neighborhoods. We will call
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Fig. 1. Canonical graph H5,5
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an ordering x1, . . . , xk increasing if i < j implies N(xi) ⊆ N(xj) and decreasing
if i < j implies N(xj) ⊆ N(xi). The class of all bipartite chain graphs can
be characterized in terms of forbidden induced subgraphs as 2K2-free bipartite
graphs (2K2 is the complement of the chordless cycle on 4 vertices). In general,
the two parts of a bipartite chain graph can be of different size. But a prime
graph in this class has equally many vertices in both parts, i.e., it is of the form
H2,n with V1 and V2 being independent sets (see e.g. [12]).

In what follows, we call the complements of bipartite chain graphs co-chain
graphs. Let G be a co-chain graph with a given bipartition into two cliques V1
and V2, and let n be a maximum number such that G contains the graph H2,n

as an induced subgraph. Consider two vertices w1 ∈ V1 and w2 ∈ V2 in the
same column of H2,n and let W1 = {v ∈ V1 | N(v) ∩ V2 = N(w1) ∩ V2} and
W2 = {v ∈ V2 | N(v)∩ V1 = N(w2)∩ V1}. It is not difficult to see that W1 ∪W2
is a clique and we will call this clique a cluster of G. The vertices of V1 that have
no neighbors in V2 will be called a trivial cluster of G. Similarly, we define a
trivial cluster which is a subset of V2. Clearly the set of all clusters of G defines
a partition of V (G). For instance, the graph H2,n consists of n clusters, each
containing two vertices of the same column.

To derive a structural characterization of unit interval graphs, we use the
ordinary intersection model: with each vertex v we associate an interval I(v) on
the real line with endpoints l(v) and r(v) such that r(v) = l(v)+1. We will write
I(u) ≤ I(v) to indicate that l(u) ≤ l(v).

Theorem 1. A connected graph G is a unit interval graph if and only if the
vertex set of G can be partitioned into cliques Q0, . . . , Qt in such a way that

(a) any two vertices in non-consecutive cliques are non-adjacent,
(b) any two consecutive cliques Qj−1 and Qj induce a co-chain graph, denoted

Gj,
(c) for each j = 1, . . . , t − 1, there is an ordering of vertices in the clique Qj,

which is decreasing in Gj and increasing in Gj+1.

Proof. Necessity. Let G be a connected unit interval graph given by an inter-
section model. We denote by p0 a vertex of G with the leftmost interval in the
model, i.e., I(p0) ≤ I(v) for each vertex v.

Define Qj to be the subset of vertices of distance j from p0 (in the graph-
theoretic sense, i.e., a shortest path from any vertex of Qj to p0 consists of j
edges). From the intersection model, it is obvious that if u is not adjacent to v
and is closer to p0 in the geometric sense, then it is closer to p0 in the the graph-
theoretic sense. Therefore, each Qj is a clique. For each j > 0, let pj denote a
vertex of Qj with the rightmost interval in the intersection model.

We will prove that the partition Q0∪Q1∪ . . .∪Qt satisfies all three conditions
of the theorem.

Condition (a) is due to the definition of the partition. Condition (b) will be
proved by induction. Moreover, we will show by induction on j that
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(1) Gj is a co-chain graph,
(2) pj−1 is adjacent to each vertex in Qj,
(3) for every v ∈ Qi with i ≥ j, I(pj−1) ≤ I(v).

For j = 1, statements (1), (2), (3) are obvious. To make the inductive step,
assume by contradiction that vertices x1, x2 ∈ Qj−1 and y1, y2 ∈ Qj induce
a chordless cycle with edges x1y1 and x2y2 (i.e., these vertices induce a 2K2
in the complement of Gj). By the induction hypothesis, both I(x1) and I(x2)
intersect I(pj−2), and also I(pj−2) ≤ I(y1), I(y2). Assuming without loss of gen-
erality that I(x1) ≤ I(x2), we must conclude that I(y1) intersects both I(x1)
and I(x2), which contradicts the assumption. Hence, (1) is correct. To prove (2)
and (3), consider a vertex v ∈ Qi, i ≥ j, non-adjacent to pj−1. By the induc-
tion hypothesis, I(pj−2) intersects I(pj−1), and also I(pj−2) ≤ I(v), therefore
I(pj−1) ≤ I(v), which proves (3). Moreover, by the choice of pj−1, this also im-
plies that v does not have neighbors in Qj−1. Therefore, v 
∈ Qj and hence (2)
is valid.

To prove (c), we will show that for every pair of vertices u and v in Qj ,
NGj(u) ⊂ NGj (v) implies NGj+1(v) ⊆ NGj+1(u). Assume the contrary: s ∈
NGj(v) − NGj (u) and t ∈ NGj+1(v) − NGj+1(u). From (2) we conclude that
s 
= pj−1. Therefore, j > 1. Due to the choice of pj−1 we have I(s) ≤ I(pj−1),
and from (3) we have I(pj−1) ≤ I(u) and I(pj−1) ≤ I(v). Therefore, I(v) ≤
I(u) by geometric considerations. But now, geometric arguments lead us to the
conclusion that tv ∈ E(G) implies tu ∈ E(G). This contradiction proves (c).

Sufficiency. Consider a graph G with a partition of the vertex set into cliques
Q0, Q1, . . . , Qt satisfying conditions (a), (b), (c). We assume that the vertices of
Qj = {vj,1, vj,2, . . . , vj,kj} are listed in the order that agrees with (c). Let us con-
struct an intersection model for G as follows. Each clique Qj will be represented
in the model by a set of intervals in such a way that l(vj,i) < l(vj,k) < r(vj,i)
whenever i < k. For j = 0, there are no other restrictions. For j > 0, we proceed
inductively: for every vertex u ∈ Qj with neighbors vj−1,s, vj−1,s+1, . . . , vj−1,kj−1

in Qj−1, we place l(u) between l(vj−1,s) and l(vj−1,s+1) (or simply to the right of
l(vj−1,s) if vj−1,s+1 does not exist). It is not difficult to see that the constructed
model represents G. �


From this theorem it follows in particular that Hm,n is a unit interval graph.
Any partition of a connected unit interval graph G agreeing with (a), (b) and
(c) will be called a canonical partition of G and the cliques Q0, . . . , Qt the layers
of the partition; cliques Q0 and Qt will be called marginal layers. Any cluster of
any co-chain graph Gj in a canonical partition of G will be also called a cluster
of G. Thus, Hm,n consists of (m− 1)n clusters.

Now we turn to showing that any connected unit interval graph with n vertices
that admits a canonical partition into m layers is contained in the graph Hm,n

as an induced subgraph. The proof will be given by induction on the number of
layers and we start with the basis of the induction.

Lemma 1. The graph H2,n contains every co-chain graph with n vertices as an
induced subgraph.
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Proof. Let G be an n-vertex co-chain graph with a bipartition into cliques V1
and V2. We will assume that the vertices of V1 are ordered increasingly according
to their neighborhoods in V2, while the vertices of V2 are ordered decreasingly.
The graph H2,n containing G will be created by adding to G some new vertices
and edges. Let W 1, . . . ,W p be the clusters of G and W j

i = Vi ∩W j .
For each W j

1 we add to G a set U j
2 of new vertices of size k = |W j

1 | and create
on W j

1 ∪ U j
2 the graph H2,k. Also, create a clique on the set V ′

2 = U1
2 ∪W 1

2 ∪
. . . ∪ Up

2 ∪W p
2 , and for each i < j connect every vertex of W j

1 to every vertex
of U i

2. Symmetrically, for each W j
2 we add to G a set U j

1 of new vertices of size
k = |W j

2 | and create on W j
2 ∪U j

1 the graph H2,k. Also, create a clique on the set
V ′

1 = W 1
1 ∪ U1

1 ∪ . . . ∪W p
1 ∪ Up

1 , and for each i < j connect every vertex of U j
1

to every vertex of W i
2 ∪U i

2. It is not difficult to see that the set V ′
1 ∪ V ′

2 induces
the graph H2,n and this graph contains G as an induced subgraph. �


Now we proceed to the general case.

Lemma 2. Let G be a connected unit interval graph with n vertices that admits
a canonical partition into m layers Q1, . . . , Qm. Then G is an induced subgraph
of Hm,n.

Proof. We will show by induction on m that Hm,n contains G as an induced
subgraph, moreover, the i-th layer Qi of G belongs to the i-th row Vi of Hm,n.
Lemma 1 provides the basis of the induction. Now assume that the statement is
valid for any connected unit interval graph with less than m layers, and let G
contain m layers. For j = 1, . . . ,m, denote nj = |Qj | and p = n1 + . . . + nm−1.

Let Hm−1,p be the canonical graph containing the first m− 1 layers of G as
an induced subgraph. Now we create an auxiliary graph H ′ out of Hm−1,p by

(1) adding to Hm−1,p the clique Qm,
(2) connecting the vertices of Qm−1 ⊆ Vm−1 to the vertices of Qm as in G,
(3) connecting the vertices of Vm−1 \Qm−1 to the vertices of Qm so as to make

the existing order of vertices in Vm−1 decreasing in the subgraph induced
by Vm−1 and Qm. More formally, whenever vertex wm−1,i ∈ Vm−1 \ Qm−1
is connected to a vertex v ∈ Qm, every vertex wm−1,j with j < i must be
connected to v too.

According to (2) and (3) the subgraph of H ′ induced by Vm−1 and Qm is a
co-chain graph. We denote this subgraph by G′. Clearly H ′ contains G as an
induced subgraph. To extend H ′ to a canonical graph containing G we apply the
induction hypothesis twice. First, we extend G′ to a canonical co-chain graph
as described in Lemma 1. This will add p new vertices to the m-th row and nm

new vertices to (m − 1)-th row of the graph. Then we use the induction once
more to extend the first m− 1 rows to a canonical form. �


We summarize the above two lemmas as follows.

Theorem 2. Hn,n is an n-universal unit interval graph, i.e., every unit interval
graph with n vertices is an induced subgraph of Hn,n.
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Proof. We use induction on the number of connected components of a unit in-
terval graph G. If G is connected, the result follows from Lemma 2. Now assume
that G is disconnected. Denote by G1 a connected component of G and by G2
the rest of the graph. Also let k1 = |V (G1)| and k2 = |V (G2)|. The intersection
of the first k1 columns and the first k1 rows of Hn,n induces the graph Hk1,k1 ,
which, according to Lemma 2, contains G1 as an induced subgraph. The remain-
ing k2 columns and k2 rows of Hn,n induce the graph Hk2,k2 , which contains G2
according to the induction hypothesis. Notice that no vertex of the Hk1,k1 is
adjacent to a vertex of the Hk2,k2 . Therefore, Hn,n contains G as an induced
subgraph. �


3 Clique-Width of Unit Interval Graphs

The clique-width of a graph G is the minimum number of labels needed to con-
struct G by means of the following four operations:

– Creation of a new vertex v with label i (denoted i(v)).
– Disjoint union of two labeled graphs G and H (denoted G⊕H).
– Joining by an edge each vertex with label i to each vertex with label j

(denoted ηi,j).
– Renaming label i to j (denoted ρi→j).

Finding the exact value of the clique-width of a graph is known to be an
NP-hard problem [11]. In general, this value can be arbitrarily large. Moreover,
it is unbounded in many restricted graph families, including the unit interval
graphs [14]. On the other hand, in some specific classes of graphs the clique-
width is bounded by a constant. Consider, for instance, a chordless path P5 on
five consecutive vertices a, b, c, d, e. By means of the four operations described
above this graph can be constructed as follows:

η3,2(3(e)⊕ ρ3→2(ρ2→1(η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a))))))))).

This expression uses only three different labels. Therefore, the clique-width of
P5 is at most 3. Obviously, in a similar way we can construct any chordless path
with the help of at most three labels. This simple example suggests the main
idea for the construction of Hk,k-free unit interval graphs with bounded number
of labels. We describe this idea in the following lemma.

Lemma 3. If the vertices of a graph G can be partitioned into subsets V1, V2, . . .
in such a way that for every i, the clique-width of G[Vi] is at most k ≥ 2,
µ(Vi) ≤ l and µ(V1 ∪ . . . ∪ Vi) ≤ l, then the clique-width of G is at most kl.

Proof. If G[V1] can be constructed with at most k labels and µ(V1) ≤ l, then
G[V1] can be constructed with at most kl different labels in such a way that
in the process of constructing, any two vertices in different equivalence classes
of V1 have different labels, and by the end of the process, any two vertices
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in the same equivalence class of V1 have the same label. So, the construction of
G[V1] finishes with at most l different labels corresponding to the equivalence
classes of V1.

Now assume we have constructed the graph Gi = G[V1 ∪ . . . ∪ Vi] with the
help of kl different labels making sure that the construction finishes with a
set A of at most l different labels corresponding to the equivalence classes of
V1 ∪ . . . ∪ Vi. Separately, we construct G[Vi+1] with the help of kl different
labels and complete the construction with a set B of at most l different labels
corresponding to the equivalence classes of Vi+1. We choose the labels so that
the sets A and B are disjoint. Now we use operations ⊕ and η to build the
graph Gi+1 = G[V1 ∪ . . . ∪ Vi ∪ Vi+1] out of Gi and G[Vi+1]. Notice that any
two vertices in the same equivalence class of V1 ∪ . . . ∪ Vi or Vi+1 belong to the
same equivalence class of V1∪ . . .∪Vi∪Vi+1. Therefore, the construction of Gi+1
can be completed with a set of at most l different labels corresponding to the
equivalence classes of the graph.

The conclusion now follows by induction. �


This lemma implies in particular that

Corollary 1. The clique-width of Hm,n is at most 3m.

Proof. To build Hm,n we partition it into subsets V1, V2, . . . , Vn by including in Vi

the vertices of the i-th column of Hm,n. Then the clique-width of G[Vi] is at most
3. Trivially, µ(Vi) = m. Also, it is not difficult to see that µ(V1 ∪ . . . ∪ Vi) = m.
Therefore, the conclusion follows by Lemma 3. �


Now we prove the key lemma of the paper.

Lemma 4. For every natural k, there is a constant c(k) such that the clique-
width of any Hk,k-free unit interval graph G is at most c(k).

Proof. Without loss of generality, we will assume that G is prime. In particular,
G is connected. To better understand the global structure of G, let us asso-
ciate with it another graph which will be denoted B(G). To define B(G) we
first partition the vertices of G into layers Q0, . . . , Qt as described in Theorem 1
and then partition each co-chain graph Gj induced by two consecutive cliques
Qj−1, Qj into clusters as described in the last but one paragraph before Theo-
rem 1. Without loss of generality we may assume that no Gj contains a trivial
cluster. Indeed, if such a cluster exists, it contains at most one vertex due to pri-
mality of G. Each Gj contains at most two trivial clusters. Therefore, by adding
at most two vertices to each layer of G, we can extend it to a unit interval graph
G′ such that G′ has no trivial clusters, G′ contains G as an induced subgraph
and G′ is Hk,k+2-free.

With each cluster of G we associate a vertex of the graph B(G) and connect
two vertices of B(G) if and only if the respective clusters have a non-empty
intersection. For instance, B(Hm,n) is the set of n disjoint paths of length m− 2
each. Clearly the vertices of B(G) representing clusters of the same co-chain
graph Gj in the partition of G form an independent set and we will call this



From Tree-Width to Clique-Width: Excluding a Unit Interval Graph 879

set a level of B(G). In the proof we will use a graphical representation of B(G)
obtained by arranging the vertices of the same level on the same horizontal
line (different lines for different levels) according to the order of the respective
clusters in the canonical partition of G. From this representation it is obvious
that B(G) is a plane graph.

Since G is prime, any two clusters of G have at most one vertex in common.
Therefore, each edge of B(G) corresponds to a vertex of G (this correspondence
can be made one-to-one by adding to the two marginal levels of B(G) pendant
edges representing the vertices of the two marginal layers of G).

Now let us consider any k consecutive layers in the canonical partition of G
and denote the subgraph of G induced by these layers G∗. The respective graph
B(G∗) will be denoted B∗; it has k−1 levels denoted B1, . . . , Bk−1. Since G (and
G∗) is Hk,k-free, the two marginal levels of B∗ are connected to each other by a
set P of at most k− 1 disjoint paths. Denote s = |P|. Without loss of generality
we may assume that the first path in P is formed by the leftmost vertices of
B∗, while the last one by the rightmost vertices of B∗. The s paths of P cut B∗

into s − 1 stripes, i.e., subgraphs induced by two consecutive paths and all the
vertices between them.

Since s is the maximum number of disjoint paths connecting B1 to Bk−1, by
Menger’s Theorem (see e.g. [9]), these two levels can be separated from each
other by a set S of s ≤ k − 1 vertices, containing exactly one vertex in each of
the paths. To visualize this situation, let us draw a curve Ω that separates B1
from Bk−1 and crosses B∗ at precisely s points (the vertices of S; no edge of B∗

is crossed by or belongs to Ω). We claim that without loss of generality we may
assume that this curve traverses each stripe of B∗ “monotonically”, meaning
that its “y-coordinate” changes within a stripe either non-increasingly or non-
decreasingly. Indeed, assume Ω has a “local maximum” within a stripe, and let
v be a vertex (below the curve) that gives rise to this maximum. Obviously, v
does not belong to B1 (since otherwise B1 is not separated from Bk−1), and
v must have a neighbor at a higher level within the stripe (since there are no
trivial clusters in G). But then the edge connecting v to that neighbor would
cross Ω, which is impossible according to the definition of Ω.

The above discussion allows us to conclude that whenever Ω separates vertices
of the same level within a stripe, the two resulting sets form “intervals”, i.e., their
vertices appear in the representation of B∗ consecutively.

Now let us translate the above discussion in terms of the graph G∗. The
partition of the edges of B∗ defined by Ω results in a respective partition of
the vertices of G∗ into two parts, say X and Y . Let Qi be a layer of G∗. As
we mentioned before, the vertices of Qi correspond to the edges between two
consecutive levels of B∗. We partition these edges and the respective vertices of
Qi into at most 4s − 1 subsets Qi,1, . . . , Qi,4s−1 of three types as follows. The
first type consists of s 1-element subsets corresponding to the edges of the s
paths of P . For each such an edge e, we form at most two subsets of the second
type, each consisting of the edges that have a common vertex with e and belong
to the same stripe. The remaining edges form the third group consisting of at
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most s− 1 subsets, each representing the edges of the same stripe. Observe that
the vertices of each Qi,j form an “interval”, i.e., they are consecutive in Qi. The
curve Ω partitions each Qi,j into at most two “sub-intervals” corresponding to
X and Y , respectively. We claim that no vertex of Y can distinguish the vertices
of Qi,j∩X . Assume the contrary: a vertex y ∈ Y is not adjacent to x1 ∈ Qi,j∩X
but is adjacent to x2 ∈ Qi,j ∩ X . Then y ∈ Qi+1, x2 and y belong to the same
cluster U of Gi+1, while x1 does not belong to U . Let u denote the vertex of B∗

representing U . Also, let ex1 , ex2 , ey be the edges of B∗ corresponding to vertices
x1, x2, and y, respectively. Since ex2 and ey are incident to u but separated by
Ω, vertex u belongs to Ω and hence to the separator S. Therefore, u belongs to
a path from P . But then Qi,j is of the second type and therefore ex1 must also
be incident to u. This contradicts the fact that x1 does not belong U and shows
that any two vertices of the same Qi,j ∩X have the same neighborhood in Y .
Therefore, µG∗(X) is at most the number of different Qi,js, which is at most
k(4s− 1) ≤ 4k2 − 5k. Symmetrically, µG∗(Y ) ≤ 4k2 − 5k.

To complete the proof, we partition G into subsets V1, V2 . . . according to
the following procedure. Set i := 1. If the canonical partition of G consists of
less than k layers, then define Vi := V (G) and stop. Otherwise consider the
first k layers of G and partition the subgraph induced by these layers into sets
X and Y as described above. Denote Vi := X and repeat the procedure with
G := G − Vi and i := i + 1. By Lemma 2 and Corollary 1, each Vi induces a
graph of clique-width at most 3k, and from the above discussion we know that
µ(Vi) ≤ 4k2 − 5k and µ(V1 ∪ . . . ∪ Vi) ≤ 4k2 − 5k. Therefore, by Lemma 3 the
clique-width of G is at most 12k3 − 15k2. With the correction on the possible
existence of trivial clusters, we conclude that the clique-width of G is at most
12k3 + 72k2 − 36k + 96. �


Theorem 3. Let X be a proper hereditary subclass of unit interval graphs. Then
the clique-width of graphs in X is bounded by a constant.

Proof. Since X is hereditary, it admits a characterization in terms of forbidden
induced subgraphs. Since X is a proper subclass of unit interval graphs, it must
exclude at least one unit interval graph. Let G be such a graph with minimum
number of vertices. If |V (G)| = k, then G is an induced subgraph of Hk,k by
Theorem 2. Therefore, X is a subclass of Hk,k-free unit interval graphs. But then
the clique-width of graphs in X is bounded by a constant by Lemma 4. �


4 Application and Open Problem

One of the consequences of Theorem 3 is that the local clique-width of unit
interval graphs is bounded. The local variant of width parameters was first in-
troduced with respect to tree-width: we say that the local tree-width of a graph
G is bounded if the tree-width of G is bounded by a function of its diameter.
The local tree-width has been shown to be bounded in the class of planar graphs
and, more generally, in any minor-closed graph class that does not contain all
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apex graphs [8,10]. Graphs of bounded local tree-width allow polynomial-time
approximation schemes for some combinatorial optimization problems that are
NP-hard in general [1,13].

In the class of unit interval graphs, the local tree-width is not bounded (as
the tree-width is not bounded on the cliques, i.e., graphs of diameter 1), but the
local clique-width is bounded. Indeed, a unit interval graph G of diameter d has
a canonical partition with at most d + 1 layers and hence the clique-width of G
is at most 3d + 3. We now apply this result to the following problem:

list k-coloring

Input: A graph G, a set C of k colors and a list l(v) ⊆ C associated with each
vertex v of G.

Question: Is there a proper coloring ψ : V (G) → C such that ψ(v) ∈ l(v) for
each v ∈ V (G)?

This problem is NP-complete on unit interval graphs, because precoloring

extension (a restricted variant of list coloring) is NP-complete in this class
[20]. However, parameterized complexity of this problem is unknown. We propose
the following parameterization of list k-coloring on unit interval graphs.

It is known that list k-coloring on n-vertex graphs of clique-width at most
c can be solved in O(22kckc3n) time [19] provided that a c-expression of the
input graph is given. If an expression defining the input graph G is not given,
we can apply a procedure from [21] that either concludes that the clique-width
of G is strictly greater than c or outputs a (23c+2 − 1)-expression defining G in
O(n4) time. This discussion can be summarized as follows.

Theorem 4. Let G be a unit interval graph with n vertices and diameter d.
Then the list k-coloring problem can be solved for G in time O(f(k, d)n4).

Theorem 3 provides many more ways to parameterize the problem, for instance,
with respect to the maximum vertex degree of G, the size of a maximum clique
in G, etc.

Among various open problems, let us distinguish the following one. Motivated
by molecular biology, Kaplan and Shamir studied the problem of completion of
a given graph to a unit interval graph. In general, this is an NP-hard problem.
They showed in [17] that completion to a unit interval graph with clique size at
most k is polynomial-time solvable (though not fixed parameter tractable). We
believe that Theorem 3 can be used to generalize this result.
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Abstract. Integer multiplication as one of the basic arithmetic func-
tions has been in the focus of several complexity theoretical investiga-
tions and ordered binary decision diagrams (OBDDs) are one of the most
common dynamic data structures for Boolean functions. Analyzing the
limits of symbolic graph algorithms for the reachability problem Sawitzki
(2006) has presented the first exponential lower bound on the π-OBDD
size for the most significant bit of integer multiplication according to one
predefined variable order π. Since the choice of the variable order is a
main issue to obtain OBDDs of small size the investigation is continued.
As a result a new upper bound method and the first non-trivial upper
bound on the size of OBDDs according to an arbitrary variable order is
presented. Furthermore, Sawitzki’s lower bound is improved.

1 Introduction and Results

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms and
small circuits and in determining its complexity. For one of the latest results see,
e.g., [7]. When working with Boolean functions as in circuit verification, syn-
thesis, and model checking, ordered binary decision diagrams, denoted OBDDs,
introduced by Bryant (1986), are one of the most often used data structures sup-
porting all fundamental operations on Boolean functions. Furthermore, in the
last years a research branch has emerged which is concerned with the theoretical
design and analysis of so-called symbolic algorithms which solve graph problems
on OBDD-represented graph instances (see, e.g., [8], [11]). Although many ex-
ponential lower bounds on the OBDD size of Boolean functions are known and
the lower bound methods are simple, it is often a more difficult task to prove
large lower bounds for some predefined and interesting functions. Despite the
well-known lower bounds on the OBDD size of the so-called middle bit of multi-
plication ([6], [14]), only recently it has been shown that the OBDD complexity
of the most significant bit of integer multiplication is also exponential answering
an open question posed by Wegener [13].

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able order π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.
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In the following a variable order π is sometimes identified with the corresponding
order xπ(1), . . . , xπ(n) of the variables if the meaning in clear from the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V,E) whose
sinks are labeled by Boolean constants and whose non sink (or inner) nodes are
labeled by Boolean variables from Xn. Each inner node has two outgoing edges
one labeled by 0 and the other by 1. The edges between inner nodes have to
respect the variable order π, i.e., if an edge leads from an xi-node to an xj-node,
π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v represents a
Boolean function fv : {0, 1}n → {0, 1} defined in the following way. In order
to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching an xi-node choose the
outgoing edge with label bi until a sink is reached. The label of this sink defines
fv(b). The size of the π-OBDD G is equal to the number of its nodes and the
π-OBDD size of a function f , denoted by π-OBDD(f), is the size of the minimal
π-OBDD representing f .

The size of the minimal π-OBDD representing a Boolean function f on n vari-
ables, i.e., f ∈ Bn, is described by the following structure theorem [12].

Theorem 1. The number of xπ(i)-nodes of the π-OBDD for f is the number
si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1}, essen-
tially depending on xπ(i) (a function g depends essentially on a variable z if
g|z=0 
= g|z=1).

It is well known that the size of an OBDD representing a function f depends on
the chosen variable order. Since in applications the variable order is not given
in advance we have the freedom (and the problem) to choose a good or even an
optimal order for the representation of f .

Definition 3. The OBDD size or OBDD complexity of f is the minimum of all
π-OBDD(f).

Lower and upper bounds for integer multiplication are motivated by the general
interest in the complexity of important arithmetic functions.

Definition 4. The Boolean function MULi,n ∈ B2n maps two n-bit integers x =
xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product , i.e., MULi,n(x, y) =
zi, where x · y = z2n−1 . . . z0 and x0, y0, z0 denote the least significant bits.

The bit z2n−1 is the most important bit of integer multiplication in the following
sense. Since it has the highest value, for the approximation of the value of the
product of two n-bit numbers x and y it is the most interesting one. On the
other hand for space bounded models of computation z2n−1 is easy to compute
in the sense that if it cannot be computed with size s(n), then any other bit zi,
2n− 1 > i ≥ 0, cannot be computed with size s(i/4).

The first exponential lower bounds have been proved for the middle bit of
integer multiplication MULn−1,n. For OBDDs Bryant [6] has presented a lower
bound of 2n/8 and Woelfel [14] has improved this lower bound to Ω(2n/2) by an
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approach using universal hashing. Exponential lower bounds for the middle bit
of multiplication have also been proved for more general binary decision diagram
models (see, e.g., [9], [3], [4], and [10]).

Despite these well-known lower bounds for the middle bit, only recently it has
been shown that the OBDD complexity of the most significant bit of multipli-
cation is exponential [2]. Since it is a monotone function it seems to be easier
to compute than the middle bit. The known upper bounds on the OBDD size
confirms this intuition. Amano and Maruoka [1] have presented an upper bound
of O(2n) on the OBDD size of the most significant bit of multiplication accord-
ing to the variable order π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0), whereas the
best known upper bound for the middle bit is O(2(6/5)n) for the variable order
π = (x0, y0, x1, y1, . . . , xn−1, yn−1). In [14] an upper bound of O(2(4/3)n) has
been presented for the representation of the middle bit and the variable order
π = (x0, . . . , xn−1, y0, . . . , yn−1). Furthermore, in the lower bound proofs on the
OBDD size for MULn−1,n it has been shown that for an arbitrary variable order
π there exists an assignment b to one of the input vectors such that the π-OBDD
size for the resulting subfunction is exponential. In contrast it is not difficult to
see that the π-OBDD size for any subfunction of MUL2n−1,n where one of the
input vectors is a constant is O(n2).

Computing the set of nodes that are reachable from some source s ∈ V in a
digraph G = (V,E) is an important problem in computer-aided design, hard-
ware verification, and model checking. Proving exponential lower bounds on the
space complexity of a common class of OBDD-based algorithms for the reach-
ability problem, Sawitzki [11] has presented the first exponential lower bound
on the size of π-OBDDs representing the most significant bit of multiplication
for the variable order π where the variables are tested according to increasing
significance, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). For the lower bounds on the
space complexity of the OBDD-based algorithms he has used the assumption
that the output OBDDs use the same variable order as the input OBDDs. But
in contrast, practical algorithms usually run variable reordering heuristics on in-
termediate OBDD results in order to minimize their size. Therefore, the OBDD
complexity of MUL2n−1,n is further investigated.

In this paper we present the following results:

– Let π be an arbitrary variable order, where all x-variables are before the
y-variables or vice versa (denoted by π = (x, y) or π = (y, x)). The π-OBDD
size for the representation of MUL2n−1,n is Θ(2n).

– Let π be an arbitrary variable order. The π-OBDD size for the representation
of MUL2n−1,n is O(2(4/3)n).

– Let π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The π-OBDD size for the rep-
resentation of MUL2n−1,n is O(2(4/5)n) and Ω(2n/4).

For the last result we construct a so-called fooling set and because of the
symmetric definition of fooling sets we also improve Sawitzki’s lower bound
of Ω(2n/6) on the π-OBDD size of MUL2n−1,n for the variable order π =
(x0, y0, x1, y1, . . . , xn−1, yn−1) [11] up to Ω(2n/4) using a much simpler proof.
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In Section 2 the lower and upper bound on the size of π-OBDDs representing
the most significant bit of integer multiplication according to a variable order
π = (x, y) are shown. The main result of the paper, the first non-trivial upper
bound on the OBDD size of the most significant bit of integer multiplication,
is presented in Section 3. For this result a new upper bound method is applied.
Furthermore, in Section 4 a lower bound on the size of π-OBDDs according to
the assumed best variable order π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0) is given
which is the best known lower bound on the size of OBDDs according to so-called
interleaved variable orders, i.e., variable orders where the x- and y-variables are
alternately ordered.

2 The π-OBDD Size for the Most Significant Bit of
Integer Multiplication with Respect to π = (x, y)

In this section we prove that the π-OBDD size for MUL2n−1,n is Θ(2n), where
π = (x, y) (obviously the same can be shown for π = (y, x)).

Lemma 1. Let π = (x, y). The π-OBDD size for the representation of MUL2n−1,n

is O(2n).

Proof. First, the x-variables are tested and the upper part of the OBDD is a
complete binary tree of size 2n. For the upper bound on the lower part of the
OBDD we use the following fact. If one factor is given we only have to know
the smallest value of the other one such that their product is at least 22n−1.
Since there are only 2i possible assignments to the remaining y-variables if n− i
y-variables have already been tested, we can conclude that the size of the lower
part of the OBDD is at most 2n+1. Altogether, we have shown that the OBDD
size is O(2n). �

Lemma 2. Let π = (x, y). The π-OBDD size for the representation of MUL2n−1,n

is Ω(2n).

Proof. Weprove that there are at leastΩ(2n) different subfunctions ofMUL2n−1,n

if all x-variables are replaced by constants. For this reason we use the following ob-
servations. An assignment to the x-variables can be seen as the binary representa-
tion of an integer. Let a ∈ {2n−1 +1, . . . , 2n−1}. It is easy to see that the smallest
integer ba such that the product a · ba is at least 22n−1 is at least a/2. Otherwise
a · ba < a2/2 < (2n)2/2 = 22n−1. It is also easy to see that ba is at most 2n − 1. If
we can prove that for two arbitrary integers a, a′ ∈ {2n−1 + 1, . . . , 2n − 1}, where
a ≥ a′ + 2, the corresponding smallest integers ba and ba′ such that the products
a · ba and a′ · ba′ are at least 22n−1 have to be different, we are done. Because of
the definition of ba we know that (ba− 1) · a is less than 22n−1. Using the following
inequations we can conclude that the product a′ · ba is less than 22n−1:

a ≤ 2ba ⇔ a · ba − 2ba ≤ a · ba − a⇔ (a− 2) · ba ≤ a · (ba − 1).

Therefore, a′ · ba < 22n−1 and ba′ > ba. �
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3 Upper Bounds on the Size of OBDDs Representing the
Most Significant Bit of Integer Multiplication

In this section we prove the main result of the paper. First, an upper bound
on the size of OBDDs according to an arbitrary variable order representing the
most significant bit of integer multiplication is presented. Afterwards, we prove
the best known upper bound on the size of OBDDs representing MUL2n−1,n

according to the variable order π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0).
We start our proof of the general upper bound with some simple but useful

observations. Let n ∈ N be arbitrary but fixed in the rest of the paper.

Lemma 3. Let f : R+ → R+ be defined as f(x) := 22n−1

x . For arbitrary
∆x,∆y > 0 there exists exactly one value x ∈ R+ with f(x)− f(x +∆x) = ∆y.

Definition 5. For c, d ∈ R and n ∈ N we define the function fc,d : R → R in
the following way:

fc,d(x) :=
22n−1

c + x
− d.

A tuple (x, y) belongs to the functions fc,d or the function fc,d contains the tuple
(x, y) iff fc,d(x) = y.

Obviously the function value fc,d(x) is y, iff c 
= −x and d satisfies

d =
22n−1

c + x
− y.

Since fc,d is considered throughout the whole proof we start our investigations
with some of its properties.

Lemma 4. Increasing the parameter c by ∆c (parameter d by ∆d) shifts the
graph of the function fc,d ∆c units to the left (∆d units downwards).

Lemma 5. Let (x0, y0) with x0, y0 > 0 be given and (c, d) and (c′, d′) with c and
c′ both positive, c′ < c, and d respectively d′ the corresponding parameters, for
which (x0, y0) belongs to the functions fc,d and fc′,d′ . Then the function value
fc′,d′(x) is greater than fc,d(x) for 0 ≤ x < x0, and smaller for x > x0.

If we replace (c, d) to (c′, d′), the curve of the function fc,d seems visually to
rotate to the graph of the function fc′,d′ , because point (x0, y0) stays on the
graph, whereas all points left of x0 are shifted upwards and the other ones
downwards. Nevertheless the graph’s shape does not change since the rotation
can be decomposed to a vertical and a horizontal movement (see Figure 1).

Ourproof ideaof theupperboundonthe sizeofOBDDsrepresentingMUL2n−1,n

is to use the functions fc,d in order to analyze the number of different subfunctions
of MUL2n−1,n that can be obtained by replacing i x- and j y-variables to constants.
For this reason we have to relate the functions fc,d to subfunctions of MUL2n−1,n.
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(1)

(1)

(2)

(2)

fc′,d

fc,d

fc′,d′

(x0, y0)

Fig. 1. Rotation of the graph of the function fc,d

Definition 6. For a given function fc,d and two arbitrary finite sets A,B ⊆ N
and A,B 
= ∅ the corresponding step function fA,B

c,d : A→ B is defined as

fA,B
c,d (x) := min{y ∈ B|y ≥ fc,d(x)}.

MUL2n−1,n can be described by fA,B
0,0 , where A,B = {0, . . . , 2n− 1}. The tuples

(x, y), x ∈ A and fA,B
0,0 (x) = y, are significant points of MUL2n−1,n. Obviously

there can be several functions fc,d that lead to the same step function. Our aim
is to show that a not too large number of bits is sufficient to represent functions
fc,d whose corresponding step functions identify the subfunctions of the most
significant bit of integer multiplication. It is easy to see that each function fc,d

can be characterized by two tuples (x1, y1) and (x2, y2), where fc,d(xi) = yi and
xi, yi ∈ R for i ∈ {1, 2}, but the length of the numbers could be large. In order
to find a small representation for fc,d our idea is to modify fc,d without changing
essentially the corresponding step function.

We start to analyze the effect of moderate modifications of the parameters c
and d.

Lemma 6. Let c, d ∈ R+ and A,B be two arbitrary finite, nonempty subsets
of N. Let y be the largest element in B that is smaller than fc,d(x) and εx :=
f−1

c,d (y)−x, if y is defined, otherwise εx := ∞. We define εmin := min{εx|x ∈ A}.
Then fA,B

c,d = fA,B
c+εmin/2,d.

Lemma 7. Let c, d ∈ R+ and A,B be two arbitrary finite, nonempty subsets of
N. For x ∈ A let εx := fA,B

c,d (x)− fc,d(x) if fA,B
c,d (x) is defined and ∞ otherwise.

We define εmin := min{εx|x ∈ A}. Then fA,B
c,d−εmin

= fA,B
c,d .
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Lemma 7 tells us that we are allowed to move the graph of the function fc,d

upwards, right until it hits its corresponding step function for the first time,
without changing the step function.

Lemma 8. Let c, d ∈ R+ and A,B be two arbitrary finite, nonempty subsets of
N, such that there exists at least one element x0 ∈ A where fc,d(x0) = fA,B

c,d (x0),
and there are at least two elements x1, x2 ∈ A where min{y|y ∈ B} < fc,d(xi) ≤
max{y|y ∈ B}, i ∈ {1, 2}. We define the following rotation operation for fc,d

with respect to (x0, y0): decrease c continuously to c′ and adjust d to d′ at the
same time such that fc,d(x0) = fc′,d′(x0) is always fulfilled until there exists
another element x′ ∈ A with fc′,d′(x′) ∈ B.

1. The rotation operation is finite.
2. The function fA,B

c,d can be reconstructed from fc′,d′ in the following way:

fA,B
c,d (x) =

{
min{y ∈ B|y ≥ fc′,d′(x)}, if x ≤ x0,

min{y ∈ B|y > fc′,d′(x)}, if x > x0.

Now applying Lemma 4 - 8 we are able to prove our general upper bound on the
π-OBDD size for MUL2n−1,n.

Theorem 2. Let π be an arbitrary variable order. The π-OBDD size for the
representation of MUL2n−1,n is O(2(4/3)n).

Proof. Let π be an arbitrary variable order. Our aim is to prove an upper bound
of 22(n−i)+2(n−j)+2 on the number of subfunctions of MUL2n−1,n which can be
obtained by replacing i x- and j y-variables by constants.

If i = 0 or j = 0, we are done. Therefore, we assume that i 
= 0 and j 
= 0.
In the following let XS be the set of i arbitrary x-variables and YS be the set of

j arbitrary y-variables, XT := {x0, . . . xn−1}\XS, and YT := {y0, . . . , yn−1}\YS .
Let aS be an assignment to the XS-variables, aS(xk) ∈ {0, 1} the assignment to
xk ∈ XS , and ‖aS‖ :=

∑
xk∈XS

aS(xk) · 2k. Let aT , ‖aT ‖, bS , ‖bS‖, bT , ‖bT ‖ be
defined in the same way.

MUL2n−1,n answers the question, whether for a given assignment (a, b) of
the variables, the product ‖a‖ · ‖b‖ is at least 22n−1. Therefore, the function
MUL2n−1,n can be described by specifying for every possible assignment a of

the x-variables, the assignment b of the y-variables with ‖b‖ =
⌈

22n−1

‖a‖

⌉
. Figure 2

shows MUL2n−1,n, where for a value ‖a‖ the smallest corresponding value ‖b‖
that fulfills MUL2n−1,n is dotted. Such pairs of assignments are called significant
points. (For sake of simplicity the possible values are at least 2n−1 because for
smaller numbers the product cannot be at least 22n−1.)

Let c := ‖aS‖ and d := ‖bS‖. We define AT as the set of possible values
‖aT ‖ that can be expressed by the variables from XT . Let BT be defined in
the same way. These sets AT and BT are independent of the choice of c and
d. A grid can be defined for the ‖aT ‖- and ‖bT ‖-values, which has the same
appearance for all possible assignments c and d. A subfunction of MUL2n−1,n
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2n − 1

2n − 1

‖a‖

‖b‖

2n−1 + 1

2n−1 + 1

Fig. 2. Significant points for the evaluation of MUL2n−1,n

obtained by replacing the variables in XS to aS and YS to bS can be described by
the pairs of AT - and BT -values (‖aT ‖ , ‖bT ‖), so that ‖bT ‖ is the minimal value
that fulfills ‖bT ‖ ≥ 22n−1

c+‖aT ‖ −d. Therefore, the subfunction of MUL2n−1,n can be

characterized by the step function fAT ,BT

c,d (see Definition 6) for the underlying
function fc,d. Figure 3 shows an example for two different step functions that
result from two different assignments to the variables in XS ∪ YS .

Since the subfunctions obtained by replacing the variables in XS and YS by
constants can uniquely be described by their step functions, our aim is to prove
the existence of a small representation such that the corresponding step function
and therefore the corresponding subfunction of MUL2n−1,n can be reconstructed
later on. Since each representation implicates at most one possible step function,
the number of different representations is an upper bound on the number of
different subfunctions. If the length of such a representation is not too large,
there cannot be too many different representations.

The idea is to transform the function fc,d in a moderate way into a function
fc′,d′ , such that fc′,d′ contains at least two points from AT × BT and the step
function fAT ,BT

c,d can easily be obtained from fc′,d′ . In the following we assume
that for at least two AT -values, the function fc,d is greater than 0 and smaller or
equal to the greatest value in BT . The other cases will be considered later on. If c
equals 0, we have to make some extra considerations. Since the function fc,d is not
defined for the value ‖aT ‖ = 0, we use Lemma 6 to move the graph a tiny distance
to the left. As a result we obtain the function fc′,d and fAT ,BT

c′,d = fAT ,BT

c,d .
According to Lemma 7 we now move the graph upwards by decreasing the

parameter d, right until the graph cuts the graph of its step function. Let fc′,d′ be
the resulting function and fAT ,BT

c′,d′ its step function. Obviously fAT ,BT

c′,d′ = fAT ,BT

c′,d .
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0
0 ‖aT ‖

‖bT ‖

Fig. 3. Two different step functions

We now have at least one position p1 ∈ AT , so that fc′,d′(p1) = fAT ,BT

c′,d′ (p1) =
q1. If fc′,d′ contains another point (p2, q2) ∈ AT × BT , we can be sure that
q2 is not equal to q1 because the function is strictly monotonic. In this case
we stop the transformation and encode the step function fA,B

c′,d′ by the triple
((p1, q1), (p2, q2), z) and z = 1, where z indicates that we stopped at this point.

In all other cases we modify the function fc′,d′ again to hit a second point of
AT × BT . Using Lemma 8 we rotate the graph clockwise by decreasing c′ and
adjusting d′, so that the point (p1, q1) stays on the graph. We get a new function
fc′′,d′′ and another point (p2, q2) ∈ AT ×BT with fc′′,d′′(p2) = q2.

Now we have achieved that the function fc′′,d′′ contains two points (p1, q1) and
(p2, q2) that can be addressed by the variables in XT ∪YT . In order to use Lemma
3, we have to be sure that the distance between these points can be specified
without knowledge of the assignment to the variables in XS ∪ YS . Therefore let
(c∗, d∗) be an arbitrary assignment to these variables. In composition with the
assignments to the variables in XT ∪ YT we can calculate the decimal value of
the investigated points:

‖p∗1‖ := ‖c∗‖+ ‖p1‖ , ‖q∗1‖ := ‖d∗‖+ ‖q1‖ ,
‖p∗2‖ := ‖c∗‖+ ‖p2‖ , ‖q∗2‖ := ‖d∗‖+ ‖q2‖ .

Obviously the distances ∆p = | ‖p∗1‖ − ‖p∗2‖ | and ∆q = | ‖q∗1‖ − ‖q∗2‖ |, are
independent of (c∗, d∗). Moreover, we have to be sure, that (p1, q1) and (p2, q2)
can be used to identify a so-called shifted cutting of the initial graph 22n−1

x , i.e.,
22n−1

x → 22n−1

c′′+x −d′′, with positive numbers in the denominator. The modification



892 B. Bollig and J. Klump

∆p

∆q

0
0 ‖aT ‖

‖bT ‖

(p2, q2)

(p1, q1)

Fig. 4. Reconstruction of the step function

of d is not critical, because it does not have any influence on the denominator. For
the values c we assure at the beginning that c is greater that 0 (either because
c = ‖aS‖ is greater than 0 or by using εmin/2). Just the rotation operation
decreases c. But as we continuously check, whether the value of fc′′,d′′ hits a
point in AT × BT , it is impossible that the function’s pole will be translated
across any point of the grid. Therefore, Lemma 3 can be used to identify the
underlying function fc′′,d′′ with (p1, q1) and (p2, q2).

Our last step is now the reconstruction of the original step function fAT ,BT

c,d . If
we have just moved the graph upwards without rotating it, then for every x ∈ AT

the corresponding value of the step function fAT ,BT

c,d is the smallest value of BT

that is at least fc′,d′(x). In the other case we can use the second statement
of Lemma 8 to reconstruct the original step function. Figure 4 illustrates the
reconstruction of the step function fAT ,BT

c,d .
As we have seen a triple that consists of two points and an additional bit

z can encode any possible step function that itself represents a subfunction of
MUL2n−1,n obtained by replacing i x- and j y-variables by constants. As this
subfunction can by uniquely reconstructed by this representative, there cannot
be two different subfunctions with the same representations. The maximal num-
ber of these representations is

2n−i · 2n−j︸ ︷︷ ︸
(p1,q1)

· 2n−i · 2n−j︸ ︷︷ ︸
(p2,q2)

· 2︸︷︷︸
bit z

= 22(n−i)+2(n−j)+1.
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Up to now we have assumed that for at least two AT -values the function fc,d

is greater than 0 and smaller or equal to the greatest value in BT . A subfunction
that is not of this type can be characterized by only one point (p, q) of the step
function fAT ,BT

c,d . So there can be at most

2n−i︸︷︷︸
p

· 2n−j︸︷︷︸
q

< 22(n−i)+2(n−j)+1

of these functions. All in all there are less than

22(n−i)+2(n−j)+1 + 22(n−i)+2(n−j)+1 = 22(n−i)+2(n−j)+2

different subfunctions.
Obviously there are at most 2i+j different subfunctions obtained by the re-

placement of i + j variables by constants. Using the minimum of the two upper
bounds for each layer we obtain the result that the π-OBDD size for MUL2n−1,n

is O(2(4/3)n) for any variable order π. �

Corollary 1. Let π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0). The π-OBDD size
for the representation of MUL2n−1,n is O(2(4/5)n).

Proof. In [1] it has been proved that the number of subfunctions obtained by
replacing the variables xn−1, . . . , xn−i and yn−1, . . . , yn−i by constants is at most
2i+6 and therefore the number of subfunctions obtained by replacing the vari-
ables xn−1, . . . , xn−(i+1) and yn−1, . . . , yn−i can be at most 2i+7. From the proof
of Theorem 2 we know that there are at most 24n−4i+2 different subfunctions
after replacing these variables by constants. Using the minimum of the two up-
per bounds for each layer we can prove that the π-OBDD size for MUL2n−1,n is
O(2(4/5)n). �

4 A Lower Bound on the Size of π-OBDDs
Representing MUL2n−1,n with Respect to
π = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0)

Using techniques from analytical number theory Sawitzki [11] has presented a
lower bound of 2n/6 on the size of π-OBDDs representing the most significant bit
of integer multiplication for the variable order π where the variables are tested
according to increasing significance, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). A
larger lower bound can be proved in an easier way and without analytical number
theory using the following two observations. For a number 2n−1 + �2n/2, � ≤
2n/4−1, the corresponding smallest number such that the product of the two
numbers is at least 22n−1 is 2n − �2n/2+1 + 4�2 −

⌊
4�3

2n/2−1+�

⌋
. Furthermore,

2n/2 > 4�2 −
⌊

4�3

2n/2−1 + �

⌋
> 4(�− 1)2
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for 0 < � ≤ 2n/4−1. Using these two facts it is not difficult to construct a
so-called fooling set of size 2n/4−1 and therefore to prove a lower bound of
Ω(2n/4) on the π-OBDD size. The same facts can be used for the proof of a
lower bound of 2n/4−1 on the size of π′-OBDDs for the most significant bit,
where π′ = (xn−1, yn−1, xn−2, yn−2, . . . , x0, y0).

The next challenge is to improve the general lower bound on the OBDD com-
plexity of MUL2n−1,n which is up to now Ω(2n/288). Furthermore, the complexity
of MUL2n−1,n for more general models than OBDDs is open.
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Abstract. Knuth introduced the problem of sorting numbers using a sequence of
stacks. Tarjan extended this idea to sorting with acyclic networks of stacks (and
queues), where items to be sorted move from a source through the network to a
sink while they may be stored temporarily at nodes (the stacks). Both character-
ized which permutations are sortable this way; but they ignored the associated
optimization problem (minimize the number of moves) and its complexity.

Given a complete, thus cyclic, network of k ≥ 2 stacks, any permutation is
obviously sortable. The important question now is how to actually sort with a
minimum number of shuffles, i.e., moves in between stacks. This is a natural
algorithmic complement to the structural questions asked by Knuth, Tarjan, and
others. It is the first time shuffles are considered in stack sorting—despite of the
great practical importance of this optimization version.

We show that it is NP-hard to approximate the minimum number of shuffles
within O(n1−ε ) for networks of k≥ 4 stacks, even when the problem is restricted
to complete networks, by relating stack sorting to MIN k-PARTITION on circle
graphs (for which we prove a stronger inapproximability result of independent
interest). For complete networks, a simple merge sort algorithm achieves an ap-
proximation ratio of O(n log n) for k ≥ 3; however, closing the logarithmic gap
to our lower bound appears to be an intriguing open question. Yet, on the posi-
tive side, we present a tight approximation algorithm which computes a solution
with a linear approximation guarantee, using a resource augmentation to αk +1
stacks, given an α-approximation algorithm for coloring circle graphs.

When there are constraints as to which items may be placed on top of each
other, deciding about sortability becomes non-trivial again. We show that this
problem is PSPACE-complete, for every fixed k ≥ 3.

1 Introduction

Stacks, as a fundamental data structure, play an important role in theoretical computer
science, artificial intelligence, and combinatorial optimization. At the same time, stacks
also model a wide range of applications in logistics and motion planning, where the
access to items is restricted in a last-in first-out fashion.

We investigate a problem, in which k stacks are used for sorting. The k stacks form a
directed network which we assume to be complete for most of the paper. A permutation
of items to be sorted is given at a source node, and all items must arrive at a sink in
correct order. Items may move along arcs in the network and may be stored temporarily
on a stack at each node. When the network contains a cycle, any permutation can be
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sorted. Popping an item from one stack, moving it along an arc and then pushing it to
the next stack is called a shuffle, and our goal is to minimize the number of shuffles
needed to sort the given permutation.

Our Contribution. Our paper is the first primarily algorithmic view on stack sorting; it
explicitly captures the essence of shuffles in sorting with a network of stacks. We prove
that it is NP-hard to approximate the minimum number of shuffles within O(n1−ε) for
k ≥ 4 and any fixed ε > 0, even when the network of stacks is restricted to be com-
plete, by relating STACK SORTING to the MIN k-PARTITION problem on circle graphs.
For the latter problem we prove inapproximability within O(n2−ε) as an intermediate
result which is of interest in its own. For the case of complete networks and k ≥ 3,
a simple merge sort algorithm computes an O(n logn)-approximation, but closing the
gap to our lower bound appears to require significantly new insight into the problem (or
into graph coloring, a we discuss). Still, we present an O(n)-approximation algorithm
which needs a resource augmentation to αk + 1 stacks instead of only k, using an α-
approximation algorithm for coloring circle graphs. We discuss that this is best possible
in a certain sense. Furthermore, we prove that it is PSPACE-complete to decide whether
a given permutation is sortable using a complete network of k ≥ 3 stacks, when there
are constraints as to which items may be placed on top of one another. We conclude
with several challenging open problems.

Our results have direct consequences for various practical stacking problems from
the operations research literature, e.g., [2,3,6,9,16], as well as for blocks world models
in artificial intelligence [12,17], among others.

Related Work

Stack Sorting. Knuth introduced the idea of stack sorting using the language of railway
sidings [15]; he characterized permutations which can be sorted using k stacks in series.
Tarjan extended these ideas to sorting with acyclic networks of stacks (and queues) [18].
Even and Itai considered the sortability of permutations using k parallel stacks [7]. They
related this question to the problem of deciding k-colorability of a circle graph, which
was proven to be NP-complete for k≥ 4 by Unger [19].

In all these papers (and those which followed), an item, once popped from a stack,
may never be pushed back on it again. The point of interest has always been a character-
ization of which permutations can be sorted using a particular configuration of stacks.
This (mathematically beautiful) point of view is surveyed by Bóna in [4]; he states, that
“virtually nothing can be proved” for general networks of stacks.

Inspired by personal discussions about our work on this paper, Felsner and Pergel
recently considered stack sorting from the perspective of extremal combinatorics [8].
Assuming that all items have to be moved to stacks before the first item may move to
the sink, they consider instances in which an optimal solution has a maximum number
of shuffles. They give good bounds on this number for different magnitudes of k.

Applications. In recent years, the operations research literature dealt with a number of
practical applications involving stack sorting: Assigning incoming trains [6] or trams [3]
to tracks of a switching yard or depot; parking buses in parking lots [9]; and stowage
planning for container ships [2], to mention only a few. All of these ask whether it
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is possible to assign items to stacks such that items can be retrieved in a desired order
without blocking each other. Even though shuffles are a natural part of real life stacking,
researchers asked for sortability with parallel stacks, where shuffles are not an issue,
instead of asking for sorting with few shuffles using a complete network of stacks,
which would model many of the above applications more accurately: shunting rail cars
with fewest moves, stowing containers with minimal number of re-stacking operations,
etc. Our paper is a first step towards investigating these optimization problems.

König et al. have recently introduced a mathematical model and a heuristic for a
particularly rich stacking problem which has the minimization of shuffles as objective.
They model in great detail stacking problems occurring in the logistics of integrated
steel production and in container terminal operation [16], which among other things
include limited stack heights. PSPACE-completeness of deciding sortability is shown.

2 Problem Formulation and Relations to Graph Coloring

A formal definition of STACK SORTING is as follows. We are given a directed graph
G = (V ∪{s,t},E) where s has no in- and t has no out-edges. To avoid trivialities, we
require that any v ∈V is on an s-t-path in G, |V |= k≥ 2, and that G contains a cycle. A
permutation π of items 1, . . . ,n (the input sequence) is given at s, and has to be sorted,
i.e., all items have to arrive at t in ascending order. Items may only move along arcs
in G. When an item arrives at node v 
= t, it is stored on a stack Sv. A stack may be
accessed on one end only, its top, so items may only leave in the reverse order they
arrived. Naturally, items may only leave s in the order prescribed by π . Whenever an
item moves along an arc (v,w) where v 
= s and w 
= t, we say it is shuffled. The question
is how to move items such that all items arrive at t in the correct order, using the smallest
number of shuffles?

When (s,v),(v,t) ∈ E for all v ∈ V , i.e., items can be moved from the source to any
stack and from any stack to the sink, there is an interesting relationship between STACK

SORTING and graph coloring. A graph coloring is an assignment of colors to the nodes
of a graph. We call a coloring proper, if nodes which share an edge receive different
colors; a k-coloring uses at most k colors. A circle graph is a graph the nodes of which
can be drawn as chords of a circle such that two chords intersect iff the corresponding
nodes share an edge. Even and Itai noted that deciding if a permutation π is sortable
with k parallel stacks, i.e., E = {(s,v) : v∈V}∪{(v, t) : v∈V}, is equivalent to deciding
k-colorability of a circle graph the nodes of which are the items in π [7], which is hard
for k ≥ 4 [19]. Obviously, shuffles are impossible in the case of parallel stacks.

The class of circle graphs is equivalent to the so called overlap graphs [10]: Their
nodes can be represented as intervals such that two nodes share an edge iff their corre-
sponding intervals intersect but none of the two contains the other. With the latter rep-
resentation, the correspondence of k-colorings to sorting with k parallel stacks becomes
clear immediately: We define n intervals with unique start and end points in a discrete
set of 2n points in time. The start points of the intervals are ordered corresponding to
π . Immediately after the start of an interval, we insert the endpoints of all intervals cor-
responding to items i such that all intervals corresponding to items 1, . . . , i have already
started, in ascending order. When two nodes do not share an edge, either their intervals
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Fig. 1. Optimally sorting π = 24361875 with one shuffle using k = 2 stacks; (a) shows the circle
representation of the permutation, (b) the circle graph with a shuffle-optimal coloring of the
nodes; (c) depicts the assignment of items to stacks before the shuffle, (d) the assignment after
the shuffle and after moving the first four items out and all remaining items to the stacks

do not intersect, which means the latter of the corresponding items arrives after the first
has already left the buffer, or one of their intervals contains the other, which means that
the corresponding items arrive at a stack in the reverse order they need to leave it. In
both cases, the items can be put on the same stack. In any other case, the two items
would block each other leaving the stack, which could be a reason for not putting them
on the same stack.

In a proper k-coloring of the nodes of the circle graph, the color of a node determines
to which of the k stacks the corresponding item has to be moved to from s in order for
all items to be able to arrive at t in correct order without shuffles. We now make the
important observation that, if a proper k-coloring is impossible, monochromatic edges
are unavoidable (edges with both endpoints in the same color), and this relates STACK

SORTING to another coloring problem, the MIN k-PARTITION problem. The following
example, cf. Fig. 1, illustrates the connection between circle graphs and STACK SORTING

assuming G to be complete, i.e., E = {(s,v) : v∈V}∪{(v,w) : v,w∈V}∪{(v, t) : v∈V}.
It also demonstrates that, quite counterintuitively, while a proper k-coloring of a circle
graph does correspond to a solution to STACK SORTING without shuffles, asking for a
coloring with fewest monochromatic edges is not the same as asking for few shuffles.

The circle graph in Fig. 1(b) is clearly not 2-colorable. So obviously, at least one
shuffle is necessary. The improper 2-coloring of the nodes represents the sorting of the
permutation on two stacks shown in 1(c) and 1(d), which has exactly one shuffle and
thus is optimal. The coloring has two monochromatic edges and is suboptimal in this
sense: Changing the color of node 6 from green (circle) to red (square) would yield a
coloring with just one monochromatic edge. However, the sorting of the permutation
implied by this new coloring would have at least two shuffles.

At the core of the relationship between monochromatic edges in a coloring of a
circle graph and the number of shuffles in sorting with complete networks of stacks
lies the following observation: Suppose in a k-coloring of a circle graph, there is a
color class with c nodes and many, say c− 1, monochromatic edges. Consider a stack
containing the corresponding c items. On one hand, all monochromatic edges could be
incident to the item on top of the stack. In this case, shuffling this one item would,
so to speak, resolve all c− 1 monochromatic edges. On the other hand, each of the
c−1 monochromatic edges could connect two neighboring items on the stack—in this
case, at least c

2 shuffles would be necessary. The point is, that in a coloring, the number
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of monochromatic edges for one color class does not depend on a certain ordering of
its nodes, while on a stack, the order of its items is the single most important factor
determining the number of shuffles necessary.

Yet, as we will see, the circle graph representation for sorting with complete net-
works of stacks is useful for proving hardness of approximation for STACK SORTING.

3 Hardness of Approximation

We show that it is NP-hard to approximate the minimum number of shuffles in STACK

SORTING within a factor better than O(n). We start with the MIN k-PARTITION prob-
lem on graphs: one asks for deleting a minimum number of edges such that the remain-
ing graph is k-colorable. We prove a strong inapproximability for this problem on circle
graphs using ideas from [14] where the same result was shown for dense graphs.

Theorem 1. Let G be a circle graph. For any k ≥ 4, it is NP-hard to approximate the
minimum number of monochromatic edges γ(G,k) in a k-coloring of G within O(n2−ε).

Proof. Let I = (H,k) an instance of the k-COLORING problem for a circle graph H =
(V ′,E ′) with n nodes. Deciding if I is a yes-instance (which is equivalent to deciding
if the minimum number γ∗ of monochromatic edges in a k-coloring of H is 0) is NP-
complete [19]. We will construct an instance J = (G,k) of MIN k-PARTITION where G
is a circle graph with N nodes, such that approximating the minimum number γ(G,k)
of monochromatic edges in a k-coloring of G within O(N2−ε) is equivalent to deciding
γ∗ = 0, and thus to deciding I. In other words, our construction will create a quadratic
gap in the possible optimal values of J, thus amplifying the hardness of deciding I to
the hardness of approximating the optimal value of J.

Let s := n
2
ε−1. We construct G = (V,E) as follows:

V := {v1,v2, . . . ,vs : v ∈V ′},
E := {(vi,wj) : (v,w) ∈ E ′; i, j = 1, . . . ,s; i 
= j}.

In terms of the chord diagram of the circle graph, we obtain G from H by replacing
each chord in H by s parallel chords in G. So G is a circle graph with N := sn nodes
and s2m edges.

Now every k-coloring c of G can be transformed to a coloring c′ in which all copies
vi ∈V of a node v∈V ′ have the same color without increasing the number of monochro-
matic edges: For each v ∈ V ′, pick the vi ∈ V with the fewest incident monochromatic
edges and color all of v’s copies in vi’s color. By this, it follows immediately that every
optimal k-coloring c of G either has no or at least s2 monochromatic edges: When there
is at least one monochromatic edge, compute c′ from c as described above. Let (vi,wj)
be a monochromatic edge in c′. Since all s copies of wj are neighbors of all s copies of
vi, there are at least s2 monochromatic edges. Furthermore, we have

s2 = n
4
ε−2 = n

2
ε (2−ε) = N2−ε .

Now suppose there was an algorithm computing an O(N2−ε)-approximate solution to
J with γ monochromatic edges. Then,
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– γ ∈ o(N2−ε) ⇒ γ∗ = 0 ⇒ H is k-colorable
– γ ∈Ω(N2−ε ) ⇒ γ∗ ≥ 1 ⇒ H is not k-colorable.

Thus, such an algorithm would decide I. �


We now establish some bounds relating monochromatic edges in the coloring of a circle
graph and shuffles in solutions to the corresponding instance of STACK SORTING.

Lemma 1. Let � be a solution to an instance I of STACK SORTING with k stacks re-
quiring L shuffles. Let c� : V → {1, . . . ,k} be the coloring of the corresponding circle
graph G = (V,E) obtained by assigning each node the color corresponding to the stack
its item was first placed on, and let γ� denote the number of monochromatic edges in c�.
Then,

γ� ≤ (n−1) ·L.

Proof. From the correspondence between G and I it is clear, that for each monochro-
matic edge in c�, at least one of the items corresponding with its end points must be
shuffled from its original stack in order to move both items to the output sequence. On
the other hand, each item can only be incident to at most n−1 other items in G, so each
shuffle can only “pay” for the need to shuffle items of at most n− 1 monochromatic
edges. �


Lemma 2. Let c : V → {1, . . . ,k} be a coloring of a circle graph G = (V,E) with γ
monochromatic edges. Let I be the instance of STACK SORTING with a complete net-
work of stacks corresponding to G. One can easily obtain a solution �c to I with Lc = 2 ·γ
shuffles from c.

Proof. The construction of �c happens in phases. A phase p ends whenever a prefix ap

of the identity permutation of all items not moved to the sink yet has been removed
from the source, e.g., phase one ends immediately after item 1 has been removed from
the source. During each phase, items are moved from the source to stacks as prescribed
by c. When phase p ends, we move all items in ap to the sink before continuing with the
next phase: If the item needed next, say i, is not on top of its stack, we shuffle away all
items above it to some arbitrary stack, move i to the sink, and then reverse all shuffles.

Note that for any item j which has to be shuffled in order to access i, we have i < j.
On the other hand, when j was removed from the source, not all items m with m < i had
been removed from the source yet (otherwise i would have been moved to the sink in a
previous phase). So from the correspondence between G and I, it is clear that (i, j) ∈ E ,
and this edge is monochromatic in c since i and j are on the same stack. So for each
two shuffles in �c, there is a distinct monochromatic edge in c. �


We are now ready to proof the main result of this section.

Theorem 2. Approximating the minimum number L∗ of shuffles in STACK SORTING

within O(n1−ε) is NP-hard, even when restricted to complete graphs with a fixed num-
ber of k≥ 4 stacks.
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Proof. For an arbitrary circle graph G, let I denote the corresponding instance of STACK

SORTING with a complete network of k ≥ 4 stacks. Now suppose there was an n1−ε-
approximation algorithm for STACK SORTING. Then, for any instance, we can compute
a solution � with L ≤ n1−εL∗ shuffles, where L∗ denotes the number of shuffles in an
optimal solution. As before, let c� be the coloring with γ� monochromatic edges ob-
tained from assigning each node in G the color corresponding to the stack which the
corresponding item was first placed on in �. By Lem. 1, we have

γ� ≤ (n−1) ·L ≤ n2−ε L∗ ≤ n2−ε Lc∗ ≤ 2 ·n2−ε · γ∗

where c∗ denotes a coloring of G with the minimum number γ∗ of monochromatic
edges. The last inequalities follow from the fact that L∗ is the minimum number of
shuffles possible and Lem. 2.

Thus, anO(n1−ε)-approximation algorithm for STACK SORTING immediately implies
an O(n2−ε)-approximation algorithms for MIN k-PARTITION on circle graphs. �


Due to the generality of STACK SORTING, Thm. 2 has numerous consequences: The
hardness of approximation immediately carries over to most applications involving sort-
ing with stacks, and also to many blocks world planning models in artificial intelligence
where table capacity, i.e., the number of stacks, is limited.

4 Approximation Algorithms for Complete Networks

We will now state our positive results. Even though their tightness w.r.t. our hardness
result is unsatisfactory, we will discuss that they are the best we may currently hope for.

Fact 1. STACK SORTING with k ≥ 3 stacks can be done with 2 · (n logn) shuffles.

This fact follows immediately from the application of a merge sort algorithm on stacks.
An elaborate proof of this can be found in [8], where the authors also argue that there
are instances for which Ω(n logn) shuffles are needed when k is constant.

Remark 1. It follows from Fact 1, that in order to close the gap to the lower bound from
Thm. 2, it would suffice to obtain an algorithm A which has a linear approximation
guarantee only for instances, for which an optimal solution requires o(logn) shuffles.
Returning the better solution of algorithm A and the mentioned merge sort would result
in a linear approximation algorithm.

Closing the gap between hardness of sublinear approximation and the straight-forward
O(n logn) approximation appears to be very intriguing. One way to achieve this is at
the expense of a resource augmentation.

Theorem 3. There is an efficient algorithm which computes a solution with 3n ·L∗ shuf-
fles using αk+1 stacks where L∗ denotes the minimum number of shuffles using k stacks,
given an α-approximation algorithm for coloring circle graphs.
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Proof. Our algorithm proceeds in phases, the lengths of which are determined by re-
peatedly employing an α-approximation algorithm A for coloring circle graphs. Itera-
tively considering longer prefixes of π , we apply A to the circle graph defined by the
current prefix, to determine the longest prefix which is still αk-colorable by A. We move
the corresponding set P of items of the current phase to the first αk stacks according to
the computed αk-coloring, meanwhile moving items to the output whenever possible.
Since there may be items, which the coloring of the subgraph of this phase assumes
to be movable to the output, but which we cannot actually move out yet, we use stack
Sαk+1 to store these items temporarily.

As a result, the items in P on each stack are now ordered from top to bottom on the
first αk stacks and from bottom to top on Sαk+1. We will now perform shuffles in order
to have all these items on one stack, linearly ordered from bottom to top.

Let S1 be the stack containing the set Q of all items from previous phases. We pick
another arbitrary stack S2 and merge all items in X := P∩ (S1∪ S2) onto a third stack
S3. We then merge all items in Q∪X ∪ Sαk+1 onto S2, now having all stacks ordered
from top to bottom and S1 empty. Finally, we merge all items from all stacks onto S1

while moving items to the output whenever possible and, quite importantly, inserting
the next item in π at the correct position, thus having sorted a part of π for which A
could not find an αk-coloring. We have obtained a stack containing all items up to the
current phase ordered from bottom to top.

Note that in one phase, we have shuffled each item at most three times. Hence, our
algorithm needs L≤ 3pn shuffles where p denotes the number of phases.

On the other hand, any solution to STACK SORTING requires at least one shuffle for
each phase of our algorithm: Whenever the number of colors needed by A exceeds αk,
the chromatic number of the circle graph exceeds k, thus at least one shuffle is necessary.
Also, at the beginning of the next phase, our algorithm has moved the maximum number
of items possible to the output and it may use all stacks available without restrictions.
This is naturally the best possible situation for an optimal solution as well. Thus, the
number of shuffles needed by an optimal solution is L∗ ≥ p, and L≤ 3n ·L∗.

The runtime of our algorithm is obviously dominated by the n calls to A. �


Remark 2. As the chromatic number of circle graphs cannot be determined exactly in
polynomial time, a resource augmentation of at least one stack is unavoidable with our
algorithm. This is rooted in the structure of circle graphs itself: In the stack assignment
obtained from a proper coloring of the corresponding circle graph, the stacks do only
remain sorted as needed by the algorithm as long as items are moved to the output
immediately whenever possible. Thus, it is impossible to assign more than one color
class to one stack: It may always happen, that items in an additional color class on the
same stack keep items in the first color class from being moved to the output in time,
thus destroying the linear order of items within one color class in the stack and possibly
causing a non-constant number of additional shuffles in each phase of the algorithm. In
that sense, our resource augmentation is best possible.

The relation to (improper) coloring circle graphs is our only algorithmic handle to
approximating STACK SORTING (despite considerable efforts). Lower bounds for ap-
proximate colorings, in turn, classically rely on (a) maximum clique size ω , or (b) the
number of vertices divided by the cardinality of a largest independent set. While for
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(b) a simple example shows that the bound is trivial (linear gap) for circle graphs, it is
known for (a) that no better factor than logω can be obtained (this is mentioned in [1],
citing a Russian paper by Kostochka; note that this falsifies Unger’s claim of having
obtained a 2-approximation [19]). In fact, the best known approximation factor for col-
oring circle graphs is α = logn [5], and no improvement to a constant factor is possible
without a new lower bound on the chromatic number of graphs.

Alternatively, abandoning colorings, one is tempted to characterize instances which
need “few” shuffles (in the sense of Remark 1), yet, even deciding whether no shuffles
are needed is NP-hard. On the other hand, if the permutation π avoids the pattern 1-2-3,
no shuffles are needed if k ≥ 5 (this is the result that every triangle free circle graph is
5-colorable, see again [1]). It becomes clear once more why circle graphs “frustrated
mathematicians for some years” [11], and still continue to do so.

5 Stacking Constraints

We finally consider the generalization in which items may not be placed arbitrarily on
top of others. An instance of STACK SORTING WITH CONFLICTS is an instance of
STACK SORTING plus such constraints, which can be modeled as a directed graph D
with node set {1, . . . ,n} such that an edge (i, j) in D signifies that item i may not be put
directly on top of item j. This is a practically relevant extension [16], and sortability
becomes a justified question again.

Deciding sortability in a more general setting is PSPACE-complete: In [16], initially,
some items need to be placed on stacks in a well-defined configuration; in addition,
there are height bounds on the stacks. Also, the number of stacks k is part of the input
and this fact is crucial in the reduction proving hardness there.

We give a more elaborate construction, eliminating all these additional assumptions
and prove the following significantly stronger result.

Theorem 4. For any fixed k≥ 3, deciding whether there exists a feasible solution to an
instance of STACK SORTING WITH CONFLICTS is PSPACE-complete.

Proof. We give a reduction from a special case of CONFIGURATION TO EDGE shown
to be PSPACE-complete in [13]: An instance NCL = (G,C,e∗) of this problem is based
on a 3-regular undirected graph G = (V,E), node weights c : V → R with c ≡ 2 and
edge weights w : E →R with w(e) ∈ {1,2} ∀e ∈ E . C denotes a feasible configuration,
given by an orientation of the edges in E such that the sum of the weights of edges
pointing into a node is at least the node weight, i.e., ∑e∈δ−(v) w(e)≥ c(v) ∀v ∈V , where
δ−(v) and δ+(v) denote the sets of incoming and outgoing edges of a node v ∈V in C,
respectively. e∗ ∈ E denotes a certain edge of the graph and the question is: Is there a
sequence of feasible edge reversals such that the orientation of e∗ is finally reversed?

We call edges with weight two heavy, all other edges light. G may only contain two
types of nodes: Nodes with three heavy incident edges, called OR-nodes, and nodes
with one heavy and two light incident edges, called AND-nodes.

The construction of an instance J of STACK SORTING WITH CONFLICTS for fixed
k ≥ 3 from an instance NCL of this special case works in three steps: First, we define
basic gadgets consisting of items on two stacks for OR- and AND-nodes, respectively;
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Fig. 2. Basic gadgets: Figs. (b) and (d) show stack representations of feasible configurations (a)
and (c) at an OR-node and an AND-node respectively

then, we prove that the items of all gadgets can be put on any fixed number of k ≥ 3
stacks without losing their properties crucial to the reduction; finally, we prove that we
can number all items in the construction such that there exist a permutation π which
forces the items into a configuration on stacks corresponding to the initial configuration
C in NCL, and that a subsequent feasible reversal of e∗ in NCL corresponds exactly to
sortability of π . A complete proof for Thm. 4 is given in the full version of this paper;
here, we only state its main ideas.

Fig. 2 shows the basic gadget for each OR- and AND-node. Each node v ∈ V is
associated with two stacks S1

v and S2
v , and for each edge e ∈ E , we introduce an item ie.

A feasible configuration C in NCL corresponds to a configuration of items on stacks as
follows: Item ie is on stack S1

v or S2
v iff e ∈ δ+(v) in C. We specify stacking constraints,

such that only items corresponding to edges incident to a node v can be placed on the
stacks corresponding to v. Also, we introduce some additional items, which may only
be placed on the stacks of one single basic gadget (cf. Fig 2). Items ie corresponding to
heavy edges may only be placed on items hv, items corresponding to light items only on
items �v, and in any case it is required that e∈ δ (v), i.e., e is incident to v. It is fairly easy
to check, that feasible stackings on S1

v and S2
v correspond exactly with configurations in

NCL which are feasible at v.
Fig. 3 shows how we can now assign all items from all basic gadgets to only three

stacks while preserving their properties essential for the reduction. We separate the
items of each stack of a basic gadget by items t with proper stacking constraints. Then
we have one stack S3 holding the items of stacks in the basic gadgets in reverse order.
In order to change the orientation of one edge, we shuffle items from S3 to the other two
stacks S1, S2, such that the stacks of two basic gadgets in between which we would like
to shuffle an item ie are exposed on top of S1 and S2 (cf. Fig. 3). Due to the stacking
constraints specified, items from different basic gadgets never mix in the process.
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Fig. 3. Only using three stacks: Fig. (b) shows the stacking in which item ie can be shuffled from
S1

w to S2
v . This corresponds to changing the orientation of e in Fig. (a).

The stack of the basic gadget containing ie∗ is at the bottom of S3, in correct order.
Directly underneath ie∗ is an item α , which clearly may only be moved, if the direction
of e∗ is feasibly changed before. With the help of some more additional items b, we
can now define a numbering of the items and a permutation π in which α comes before
all other items of basic gadgets, such that the constructed instance of STACK SORTING

WITH CONFLICTS is sortable iff the orientation of e∗ can be feasibly changed. �


6 Conclusions

Sorting with stacks is not a surprising connection between a fundamental data structure
and a classic algorithmic theme. It is surprising however, that theory avoided the appar-
ent need for shuffles—only sortability, not sorting itself has been considered so far. Our
hardness results partially explain this lack of elegant and efficient algorithms.

Open Problems

Our work spawns some challenging open complexity issues. Hardness of approxima-
tion, i.e., Thm. 2, only holds for k≥ 4. Indeed, it is not even known whether polynomial
time algorithms exist for k = 2 and k = 3.

There is still an annoying logarithmic gap between our inapproximability result and
the best known approximation algorithm, which we only manage to close by resource
augmentation. As pointed out in Sec. 4, the lower bound we use—the minimum number
of monochromatic edges in a k-coloring of a circle graph—is not suited for a better
result. Since (improper) coloring circle graphs is the only known handle to approximate
STACK SORTING, what is an alternative lower bound on the number of shuffles?

Finally, also queues could be considered for intermediate storage of items (as e.g.,
Tarjan did). This is closely related to the so-called “midnight constraint” present in some
applications, where all items have to be removed from the source, before the first item
may be moved to the sink. The circle graphs then become permutation graphs which
can be properly colored in polynomial time; thus, our hardness of approximation does
not apply. But is this case really significantly easier?
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Abstract. The main objective of this paper is to show that the quantum
query complexity Q(f) of an N-bit Boolean function f is bounded by a
function of a simple and natural parameter, i.e., M = |{x | f(x) = 1}| or
the size of f ’s on-set. We prove that: (i) For poly(N) ≤ M ≤ 2Nd

for some
constant 0 < d < 1, the upper bound of Q(f) is O(

�
N log M/ log N).

This bound is tight, namely there is a Boolean function f such that
Q(f) = Ω(

�
N log M/ log N). (ii) For the same range of M , the (also

tight) lower bound of Q(f) is Ω(
√

N). (iii) The average value of Q(f)
is bounded from above and below by Q(f) = O(log M +

√
N) and

Q(f) = Ω(log M/ log N +
√

N), respectively. The first bound gives a
simple way of bounding the quantum query complexity of testing some
graph properties. In particular, it is proved that the quantum query com-
plexity of planarity testing for a graph with n vertices is Θ(N3/4) where
N = n(n−1)

2
.

1 Introduction

Query complexities for Boolean functions are one of the most fundamental and
popular topics in quantum computation. It is well known that a quadratic speed-
up, i.e., Ω(N) classically to O(

√
N) quantumly, is possible for several Boolean

functions including OR, AND, AND-OR trees [18,19,17,6]. On the other hand, we
can obtain only a constant-factor speed-up (i.e., Ω(N) are needed both classically
and quantumly) for other Boolean functions such as PARITY [10], and this is
also the case for almost all Boolean functions with N variables [3,13]. Thus

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 907–918, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



908 A. Ambainis et al.

our knowledge about the quantum query complexity for Boolean functions is
relatively good for these typical cases, but much less is known for the others,
especially for quantitative properties based on nontrivial parameters. In this
paper, we show that the size of the on-set of a Boolean function f plays a
key role for this purpose, i.e., to non-trivially bound the f ’s quantum query
complexity.

Obviously this line of research started with the Grover’s quantum search al-
gorithm [18], which can be directly used to compute the Boolean OR function of
N variables in the same O(

√
N) queries. Since then, a sequence of results have

extensively appeared in the literature, showing that similar speed-ups are possi-
ble for many other, more general Boolean functions. For example, if a Boolean
function is given by a constant-depth balanced AND-OR trees (OR is by a single-
depth tree), it can be computed in O(

√
N) queries [19]. This was recently ex-

tended to any AND-OR tree with O(N
1
2+o(1)) queries by using the quantum walk

technique [6]. Another famous example is monotone Boolean functions describ-
ing monotone graph properties (if a graph has n vertices then the corresponding
Boolean function has N = n(n − 1)/2 variables, one for each possible edge).
In the quantum setting, it is known that O(N13/20) queries suffice to decide if
the given graph G includes a triangle [22,21], O(N3/4) queries if G includes a
star [11] (with zero error), and O(N3/4) queries if G is connected [16]. Classical
query complexities for those functions are all Ω(N).

Note that each of these Boolean functions, for which quantum query complex-
ities are significantly smaller than classical query complexities, has a certain kind
of “structure”. In other words, researchers have been working on the question
of what kind of structures help for efficient quantum computation. Our ques-
tion in this paper is quite different; namely we ask if there is a “non-structural”
parameter that greatly affects the quantum complexity of Boolean functions.

Our contribution: Let FM be a family of N -variable Boolean functions f
whose on-set is of size M , namely, f has output 1 (true) for M 0/1 assignments
among the total 2N ones. Then we can show that for any Boolean function f in
Fpoly(N), its query complexity is Θ(

√
N) and the complexity gradually increases

as M grows up to 2Nd

for some constant d (0 < d < 1). More in detail, let
Q(f) be the (true) query complexity of f . Then we investigate the upper bound
C(FM ), the lower bound c(FM ), and the average value, C̃(FM ), of Q(f) over
all functions f in FM . Our results are as follows: (i) For poly(N) ≤ M ≤ 2Nd

for some constant 0 < d < 1, C(FM ) = Θ(
√

N logM/ logN). This means that
for any function in FM , its query complexity is O(

√
N logM/ logN) and there

exists a function in FM such that its complexity is Ω(
√

N logM/ logN). (ii) For
the same range of M , c(FM ) = Θ(

√
N), meaning that for any function in FM

its complexity is Ω(
√
N) and there exists a function such that its complexity is

O(
√
N). Thus our results are tight for both C(FM ) and c(FM ). Unfortunately,

there is a logN factor gap in the evaluation of C̃(FM ), namely (iii) C̃(FM ) =
O(logM +

√
N) and C̃(FM ) = Ω(logM/ logN +

√
N).
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A direct application of our upper bound result reduces bounding the query
complexity of graph property testing to counting all graphs with a given prop-
erty: For the family F of all graphs with a given property, O(

√
N log |F|/ logN)

queries suffice to test if a given graph has the property. An interesting special
case is that O(N3/4) queries can decide if a given graph G is isomorphic to
an arbitrary fixed graph G′. The bound is optimal in the worst case over all
G′. Another interesting case is to test planarity, one of the most fundamental
graph properties. We show the tight bound of Θ(N3/4) for the quantum query
complexity of planarity testing. The upper bound is by just bounding the num-
ber of planar graphs with the fact that they are sparse. The interesting part
is its lower bound. Our proof is based on the quantum adversary method [4],
which requires us to find carefully two graphs which are almost the same but
have different answers. We also prove that the lower bound of the classical query
complexity is Ω(N), thus adding the new nontrivial property into the class of
graph properties for which there is a significant gap between the quantum and
classical query complexities.

Related works: A large literature exists for the quantum query complexity of
Boolean functions. Other than OR and AND-OR trees, the complexity of the
threshold function [10] was tightly characterized in the early stages. Element
distinctness was also tightly shown to be Θ(N2/3) while the upper bound [5] and
lower bound [2] of its complexity were obtained after exhaustive work of many
researchers, which gave many technical contributions in (not for only quantum)
complexity theory. For the monotone graph properties, Dürr et al. [16] showed
the tight complexity Θ(N3/4) of connectivity. The quantum query complexities
of total functions are polynomially related to the classical equivalents [10], and
the maximum gap is conjectured to be quadratic.

The two major lower bound methods of quantum query complexity are poly-
nomial methods [10] and adversary methods [4] (see [20] for its excellent survey.)
Our lower bound of planarity testing is inspired by the application of adversary
methods to connectivity in [16], which uses one-cycle vs. two-cycles as the two
graphs with different answers. A similar choice of graphs is also used in [24] to
get the lower bounds of several graph problems such as bipartiteness.

There have been few studies on the complexity of “non-structural” Boolean
functions. All Boolean functions have quantum query complexity at most N/2+
O(
√
N) [13] while almost all functions have quantum query complexity at least

N/4 + Ω(
√
N) [3,15].

2 Preliminaries

We assume the oracle (or black-box) model in the quantum setting (e.g., [10]).
In this model, an input (i.e., a problem instance) is given as an oracle. For any
input x = (x1, . . . , xN ) ∈ {0, 1}N , a unitary operator O, corresponding to a single
query to an oracle, maps |i〉|b〉|w〉 to |i〉|b⊕xi〉|w〉 for each i ∈ [N ] = {1, 2, . . . , N}
and b ∈ {0, 1}, where w denotes workspace. A quantum computation of the oracle
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model is a sequence of unitary transformations U0 → O → U1 → O → · · · →
O → Ut, where Uj may be any unitary transformation that does not depend on
the input. The above computation sequence involves t oracle calls, which is our
measure of the complexity: The quantum query complexity Q(P ) of a problem P
whose input is given as an N -bit string is defined to be the number of quantum
queries needed to solve P with bounded-error, i.e., with success probability at
least 1/2 + c where c is some constant.

In this paper, our problem P is to evaluate the value (0 or 1) of a Boolean
function f(x1, . . . , xN ) over N variables, assuming that the truth table of f
is known. The on-set of f is the set of assignments (x1, . . . , xN ) satisfying
f(x1, . . . , xN ) = 1. We denote the family of all functions whose on-set is of
size M by FM .

Our algorithms in this paper use the algorithm in [8] for the oracle identifica-
tion problem defined as follows. Notice that there are 2N different oracles with
length N .

Definition 1 (Oracle Identification Problem (OIP) [7,8]). Given an ora-
cle x and a set S of M oracle candidates out of 2N ones, determine which oracle
in S is identical to x with the promise that x is a member of S.

Improving the previous result in [7], Ambainis et al. [8] showed the following
upper bound for the quantum query complexity of OIP when M is not so large,
which is asymptotically optimal.

Theorem 1 (Optimal bound of OIP [8]). OIP can be quantumly solved with

a constant success probability by making O(
√

N log M
log N ) queries to the given oracle

if poly(N) ≤M ≤ 2Nd

for some constant d (0 < d < 1).

3 Worst-Case Analysis

In this section, we study both upper and lower bounds for the quantum query
complexity of Boolean functions in FM . First, we show the upper bound.

Theorem 2 (Upper Bound). Any function f ∈ FM has quantum query com-

plexity O(
√

N log M
log N ) if poly(N) ≤M ≤ 2Nd

for some constant d (0 < d < 1).

Proof. Recall that OIP is the problem that we are requested to find a hidden
oracle, with the promise that it is a member of oracle candidate set S. To use
this for evaluation of the Boolean function f , let S be the on-set of f , which
can be constructed from the known truth table of f . Note that |S| = M since
f ∈ FM . We then invoke the OIP algorithm of Theorem 1 to find the hidden
oracle with O(

√
N log M

log N ) queries, assuming the promise that the current oracle

x is in S (actually, the promise does not hold if f(x) = 0). Let z ∈ {0, 1}N be
the string obtained by the OIP algorithm.

If f(x) = 1, the promise of the above OIP is indeed satisfied; z is equal to x
with high probability.
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If f(x) = 0, the promise does not hold; the OIP algorithm outputs some
answer z ∈ S such that z 
= x. To recognize this case, it suffices to check whether
z is equal to x by using Grover search [18] with O(

√
N)(∈ O(

√
N log M

log N )) queries.
This completes the proof. �


In fact, this upper bound is optimal for the threshold function with threshold
Θ(logM/ logN), which has a query complexity of Ω(

√
N log M

log N ) due to the re-
sults in [10]. The following corollary is immediate.

Corollary 1. For M ∈ poly(N), any function f ∈ FM has quantum query
complexity O(

√
N).

This corollary together with the next lower bound theorem implies that if M is
in poly(N), then any function f ∈ FM has essentially the same complexity up
to a constant factor as the OR function.

Theorem 3 (Lower Bound). If M ≤ 2
N

2+ε for any positive constant ε, any
f ∈ FM has quantum query complexity Ω(

√
N).

Proof. We use the sensitivity argument. Recall that the sensitivity sx(f) of a
Boolean function f on x ∈ {0, 1}N is the number of variables xi such that
f(x) 
= f(xi), where xi is the string obtained from x by flipping the value of xi.
The sensitivity s(f) of f is the maximum of sx(f) over all x. The results of Beals
et al. [10] implies Q(f) = Ω(

√
s(f)). By the definition of s(f) and the result by

Beals et al., we can see that Q(f) = Ω(
√
|Z|), where Z is the set of 0-points,

elements whose values of f is 0, “around” an arbitrarily chosen element in the
on-set (1-point). Here, “around” means the Hamming distance is 1. Therefore,
if there is a 1-point around which there are Ω(N) 0-points, Q(f) = Ω(

√
N).

To prove by contradiction, we assume that, around every 1-point, there are
o(N) 0-points, i.e., there are (N − o(N)) 1-points. Suppose that (0, 0, . . . , 0) is
a 1-point (otherwise, we can give a similar argument using some 1-point). Set
S0 = {(0, 0, . . . , 0)}. Define Sk inductively to be the set of all 1 points around
all points in Sk−1, whose Hamming weight is k. By assumption, the number
of 1-points around every point in Sk−1 is N − o(N) = N(1 − α) for any small
α = o(1). For each point x in Sk−1, there exist at most (k−1) 1-points around x
in Sk−2. Thus, for each point x in Sk−1, there exist at least (N(1−α)− (k− 1))
1-points around x in Sk. Similarly, for each point x in Sk, there exist at most
k 1-points around x in Sk−1. Thus, |Sk| ≥ |Sk−1|(N(1 − α) − (k − 1))/k. From
this inductive inequality and |S0| = 1, we have |Sk| ≥ (N(1 − α))(N(1 − α) −
1)(N(1− α)− 2) · · · (N(1− α)− (k − 1))/k!. The number of inputs x such that
f(x) = 1 and the Hamming weight of x is at most k is T (k) = |S0|+ · · ·+ |Sk|.
We will show T (k) > M for some k ≤ N/2, a contradiction, as follows. T (k) >

|Sk| ≥ (N(1−α))(N(1−α)− 1) · · · (N(1−α)− (k− 1))/k! >
(

N(1−α)
k

)k

. For

k = N
2+ε , we obtain T (k) > 2

N
2+ε ≥M . �
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The above lower bound is tight, since it is easy to construct a Boolean function
for any M ≤ 2

N
2+ε such that its query complexity is O(

√
N). Thus we have shown

that there are Boolean functions, f1 and f2, which are “easiest” and “hardest”
in class FM , such that Q(f1) = Θ(

√
N) and Q(f2) = Θ

(√
N log M

log N

)
.

4 Average-Case Analysis

This section considers upper and lower bounds for the quantum query com-
plexity for almost all functions in FM . They are essentially O(logM) and
Ω(logM/ logN), thus having a logN factor gap. Note that the bounds hold
for the entire range of M .

Theorem 4 (Upper Bound). Almost all Boolean functions in FM have quan-
tum query complexity O(logM +

√
N).

Proof. It suffices to show the statement for poly(N) < M < 2
N
3 since the case

of M ∈ poly(N) is obtained by Corollary 1, and the case of M ≥ 2
N
3 leads to

the trivial bound. We can make the following claim (proof will be given later):

Claim. If we generate a random Boolean function f whose on-set Sf has size
M , then, for almost all cases, any two of M elements in Sf differ from each
other in the first k bits, where k = 3 logM (which is smaller than N).

Now the following algorithm works by using the claim. Below we will use k as
k = 3 logM . First, we identify the first k bits of the current input x by making k
classical queries. Then we can decide that f(x) = 0 regardless of the remaining
bits, if the k-bit string is different from the first-k-bit string of any element in the
on-set. Otherwise, f(x) can have value 1, depending on the remaining N−k bits.
For the latter case, the claim implies that, for almost all functions, there is only
one possible way of assigning 0/1 to the remaining N − k bits that determines
f(x) = 1. Thus, we just check whether the remaining bits are subject to such
one possibility or not by using Grover search. In total, the query complexity is
O(k +

√
N) = O(logM +

√
N).

What remains is to show the above claim. The number of all functions whose
on-set has size M is

(2N

M

)
. Among such functions, we count the number of our

desired functions, i.e., the functions such that any two inputs in the on-set differ
from each other in the first k bits. We first consider the number of possible
assignments to the first k bits of M inputs. The number of possibilities is

(2k

M

)
since we need to choose different M k-bit strings among the 2k possibilities.
We then choose the remaining (N−k) bits arbitrarily, i.e., 2N−k possibilities for
each of the M assignments to the first k bits. Thus, the number of possibilities of
assigning the remaining (N − k) bits for all M inputs is (2(N−k))M = 2M(N−k).
In conclusion, the number of our desired functions is

(2k

M

)
2M(N−k). The ratio of

our desired functions is (2k

M)2M(N−k)

(2N

M )
. We can show that, by using k = 3 logM ,
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this ratio is larger than exp(− M2−M
2(M3−M+1) ). Hence, the ratio approaches 1 as N

(and hence M) goes to infinity. �


Theorem 5 (Lower Bound). Almost all Boolean functions in FM have quan-
tum query complexity Ω(logM/ logN +

√
N).

Proof. For almost all f ∈ FM , we prove that Q(f) = Ω(logM/ logN) when
M > N

√
N since by Theorem 3 the lower bound Ω(

√
N) holds for M ≤ N

√
N .

Moreover, we assume that M ≤ 2N−1 without loss of generality. We shall show
the lower bound for the unbounded-error setting, where the success probability
suffices to be at least 1/2 + ε, for any positive ε (which does not need to be a
constant as in the bounded-error setting). Obviously, any lower bound in this
setting also holds in the bounded-error setting.

The lower bound of unbounded-error query complexity of a Boolean function
f is characterized by the minimum degree of its sign-representing polynomial p,
a real-valued polynomial with properties that p(x) is positive whenever f(x) = 0
and p(x) is negative whenever f(x) = 1, for all N -bit strings x. There are two nice
properties of sign-representing polynomials, which are useful for our proof. First,
as shown in [23] (also, implicitly in [12]), the unbounded-error quantum query
complexity of f is exactly half of the minimum degree of its sign-representing
polynomial. Secondly, the number of Boolean functions of N variables whose
minimum degrees of sign-representing polynomials are at most d, denoted as
T (N, d), is also known to be at most 2

∑D−1
k=0

(2N−1
k

)
, for D =

∑d
i=0

(
N
i

)
as

proved in [9].
Hence to show that almost all Boolean functions in FM have unbounded-

error quantum query complexity Ω(logM/ logN) , it suffices to show that
T (N, log M

2 log N ) is small compared to
(2N

M

)
, i.e., the size of FM . Notice that in

this case D =
∑log M/(2 log N)

i=0

(
N
i

)
≤ N

log M
2 log N =

√
M , and therefore,

T (N, logM/(2 logN))(2N

M

) ≤
2
∑D−1

k=0

(2N−1
k

)(2N

M

) ≤
2
∑√

M−1
k=0

(2N

k

)(2N

M

) ≤
2
√
M

( 2N
√

M

)(2N

M

) .

(1)
Moreover, the right-hand side of (1) is bounded by

2
√
M

( 2N√
M

)(2N

M

) = 2
√
M

M · · · (
√
M + 1)

(2N −
√
M) · · · (2N −M + 1)

≤ 2
√
M

2N −M + 1
. (2)

By the assumption that M ≤ 2N−1, the right-hand side of (2) goes to 0 as N
goes to infinity, which completes the proof. �


5 Applications

As application of Theorem 2, we consider the problem of graph property testing,
i.e., the problem of testing, for a given graph G as an oracle, if G has a certain
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property. More precisely, an n-vertex graph is given as n(n− 1)/2 Boolean vari-
ables, xi for i ∈ {1, . . . , n(n−1)/2}, representing the existence of the ith possible
edge ei, i.e., xi = 1 if and only if ei exists. In this setting, graph property testing
is just to evaluate a Boolean function f depending on the n(n − 1)/2 variables
such that f(x1, . . . , xn(n−1)/2) = 1 if and only if the graph has a certain property.
An interpretation of graph property testing according to Theorem 2 is to decide
if G is a member of F for the family F of all graphs with certain properties. Thus,
Theorem 2 directly gives the next theorem with M = |F| and N = n(n− 1)/2.

Theorem 6. For graph family F defined as in the above, graph property testing
can be solved with O(

√
n2 log |F|/ logn) quantum queries, if poly(n) ≤ |F| ≤

2n2d

for some constant d (0 < d < 1).

An interesting special case of the problem is graph isomorphism testing: the prob-
lem of deciding if a given graph G is isomorphic to an arbitrary fixed graph G′.

Corollary 2. Graph isomorphism testing can be solved with O(n1.5) quantum
queries.

Proof. The number of graphs isomorphic to G′ is at most the number of permu-
tations over the vertex set, which is n! = 2O(n log n). �


This upper bound is optimal in the worst case, since the lower bound Ω(n1.5)
of connectivity testing problem in [16] is essentially that of deciding whether a
given graph is isomorphic to one cycle or two cycles. Another interesting special
case is planarity testing, the problem of testing if a given graph is planar.

Corollary 3. Planarity testing can be solved with O(n1.5) quantum queries.

Proof. Since the number of edges of any planar graph is at most 3n−6 < 3n [14],
the number of planar graphs is at most

(
n(n−1)/2

3n

)
< n2·3n = 26n log n. �


For verifying optimality, we prove a lower bound of Ω(n1.5) for this problem. We
also prove a tight classical lower bound of Ω(n2).

To prove the lower bounds, we use the next two theorems.

Theorem 7 (Quantum adversary method [4], reformulated by [1]).
Let A ⊆ F−1 (0) and B ⊆ F−1 (1) be sets of inputs to function F . Let
R (A,B) ≥ 0 be a real-valued function, and for A ∈ A, B ∈ B, and location

i, letθ (A, i) =
�

B∗∈B : A(i)�=B∗(i) R(A,B∗)
�

B∗∈B R(A,B∗) , θ (B, i) =
�

A∗∈A : A∗(i) �=B(i) R(A∗,B)
�

A∗∈A R(A∗,B) ,

where A(i) and B(i) denotes the value of the ith variable for A and B, respec-
tively, the denominators are all nonzero. Then the number of quantum queries
needed to evaluate F with probability at least 9/10 is Ω (1/υgeom), where

υgeom = max
A∈A, B∈B, i :

R(A,B)>0, A(i) �=B(i)

√
θ (A, i) θ (B, i).
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Theorem 8 (Classical adversary method [1]). Let A,B, R, θ be the same
as in Theorem 7. Then the number of randomized queries needed to evaluate F
with probability at least 9/10 is Ω (1/υmin), where

υmin = max
A∈A, B∈B, i :

R(A,B)>0, A(i) �=B(i)

min {θ (A, i) , θ (B, i)} .

Now we are ready to present our lower bound.

Theorem 9. Solving planarity testing needs Ω(n1.5) queries in the quantum
setting, and Ω(n2) queries in the classical setting.

Proof. Before giving our formal proof, we briefly describe our proof idea. To
apply the adversary method, we need to take two sets, A and B, of non-planar
graphs and planar graphs, respectively, such that for “many” pairs (A,B) ∈
A×B, A and B are hard to distinguish. We define A as a set of subdivisions of
the complete graph K5. Focusing on one cycle included in each A ∈ A, we define
B be a set of planar graphs B obtained by dividing the cycle to two cycles. We
then give a relation between graphs A ∈ A and graphs B ∈ B. The relation is
seemingly similar to that defined in [16] for proving the quantum lower bound of
connectivity. However, their relation is not enough to keep “many” pairs in our
case. Different from the case of [16], we place a careful restriction on the way of
transforming A to B as well as B to A.

Our formal proof is as follows. To get lower bounds by using Theorems 7 and
8, we will define sets A and B, and function R : A × B → {0, 1}. Let a, b, c, d
be any four vertices of complete graph K5 with five vertices. Let A be the set
of graphs obtained by replacing edges (a, c) and (b, d) of the K5 with path Pac

between a and c and path Pbd between b and d, respectively, on which there are
n−5 vertices except a, b, c, d, and each one of which is at most three times longer
than the other. Every graph in A is not planar and has n vertices, since it is a
subdivision of K5, i.e., it becomes K5 by contracting all but one edges on each of
Pac and Pbd. An example of an instance in A is shown at the left side in Fig. 1.
Let B be the set of graphs obtained by replacing (a, c) and (b, d) of the K5 with
path Pad between a and d and path Pbc between b and c, respectively, on which
there are n− 5 vertices except a, b, c, d, and one of which is at most three times
longer than the other. It is easy to see that every graph in B is planar and has
n vertices. An example of an instance in B is shown at the right side in Fig. 1.

Now, we define B ∈ B such that R(A,B) = 1 for every A ∈ A. For every
graph A ∈ A, let (ea, ec) be any edge on Pac, where ea is assumed to be closer
to a on the path, and let (eb, ed) be any edge on Pbd, where eb is assumed to
be closer to b on the path (see the left graph in Fig. 1). If we replace (ea, ec)
and (eb, ed) with (ea, ed) and (eb, ec), the resulting graph has paths Pad and Pbc

instead of Pac and Pbd (see the right graph in Fig. 1). We can guarantee that
each of Pad and Pbc is at most three times longer than the other by imposing
some restriction on the choice of (eb, ed) for each (ea, ec), which will be proved
later; the resulting graph is a member of B. Similarly, we define A ∈ A such that
R(A,B) = 1 for every B ∈ B. For every graph B ∈ B, let (ea, ed) be any edge
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ed

eb

Instance A (non-planar) 

a

cb

d

Instance B (planar)

ebec

ea
ed

a

cb

d

ec

ea

Fig. 1. Instance A ∈ A and instance B ∈ B

on Pad, where ea is assumed to be closer to a on the path, and let (eb, ec) be
any edge on Pbc, where eb is assumed to be closer to b on the path. If we replace
(ea, ed) and (eb, ec) with (ea, ec) and (eb, ed), the resulting graph has paths Pac

and Pbd instead of Pad and Pbc. Since we can guarantee that each of Pac and Pbd

is at most three times longer than the other by imposing a similar restriction
(shown later) on the choice of (eb, ec) for each (ea, ed), the resulting graph is a
member of A.

We here show the restriction on the choice of (eb, ed) for each (ea, ec) when
relating A to B (a similar restriction works when relating B to A). Without loss
of generality, Pac is shorter than or equal to Pbd (otherwise, we just switch Pac

and Pbd). Let the length of paths Pac and Pbd be cL and (1− c)L, respectively,
for 1/4 ≤ c ≤ 1/2, where L = n − 3. Notice that the sum of the lengths of Pac

and Pbd is always (n−3). If the subpath between a and ea of Pac is of length k ∈
{0, . . . , cL−1}, we choose (eb, ed) such that the subpath of Pbd between eb and d
has the length of at least max{L/4− k, 1} and at most min{3L/4− k, (1− c)L}.
Then after replacing (ea, ec) and (eb, ed) with (ea, ed) and (eb, ec), the lengths of
Pad and Pbc are each at least L/4 and at most 3L/4. This edge replacement is
always possible in many ways, since there are many edges (eb, ed) that satisfies
the condition, as proved below. More precisely, there are at least L/4 choices of
(eb, ed): ∆ ≡ min{3L/4− k, (1− c)L} −max{L/4− k, 1} ≥ L/4.

If min{3L/4− k, (1− c)L} = 3/4L− k,

∆ = 3/4L− k −max{L/4− k, 1} = min{L/2, 3L/4− k − 1},

which is at least min{L/2, 3L/4− cL} ≥ L/4.
If min{3L/4− k, (1− c)L} = (1− c)L,

∆ = (1− c)L−max{L/4− k, 1} = min{(3/4− c)L + k, (1− c)L− 1},

which is at least min{(3/4− c)L, (1− c)L− 1} ≥ L/4.
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This means that, for each (ea, ec), there are Ω(L) choices of (eb, ed). Since
there are cL choices of (ea, ec),

∑
B∗∈B R (A,B∗) = Ω(cL ·L) = Ω(n2), implying

Θ(n2). Similarly,
∑

A∗∈A R (A∗, B) = Θ(n2).
For any fixed A ∈ A,

∑
B∗∈B : A(i)=1,B∗(i)=0 R (A,B∗) attains the maximum

value of Θ(n), when i is the index of an edge on the shorter path of Pac and Pbd.
For any fixed B ∈ B,

∑
A∗∈A : A∗(i)=1,B(i)=0 R (A∗, B) is a positive constant

Θ(1) for all i such that there exists at least one A∗ satisfying that A∗ (i) =
1, B (i) = 0 and R(A∗, B) = 1. This is because, to flip xi, we need to pick up
a pair of edges which are adjacent to the ith possible edge, and replace the
edge pair with another pair of edges including the ith possible edge. Thus, for
every A and B such that R(A,B) = 1, maxi:A(i)=1,B(i)=0

√
θ(A, i)θ(B, i) =

Θ(
√

(n/n2)(1/n2)) = Θ(1/n1.5). Similarly, maxi:A(i)=0,B(i)=1
√

θ(A, i)θ(B, i) =
Θ(1/n1.5). The quantum lower bound follows from Theorem 7.

The classical lower bound can be obtained by a similar argument. For any
A and B such that R(A,B) = 1, maxi:A(i)=1,B(i)=0 min{θ(A, i), θ(B, i)} =
Θ(1/n2), and maxi:A(i)=0,B(i)=1 min{θ(A, i), θ(B, i)} = Θ(1/n2), since the small-
est value of θ(A, i) and θ(B, i) is Θ(1/n2). The classical lower bound follows from
Theorem 8. �
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Abstract. This work studies the quantum query complexity of Boolean
functions in an unbounded-error scenario where it is only required that
the query algorithm succeeds with a probability strictly greater than 1/2.
We first show that, just as in the communication complexity model, the
unbounded-error quantum query complexity is exactly half of its classical
counterpart for any (partial or total) Boolean function. Next, connect-
ing the query and communication complexity results, we show that the
“black-box” approach to convert quantum query algorithms into commu-
nication protocols by Buhrman-Cleve-Wigderson [STOC’98] is optimal
even in the unbounded-error setting. We also study a related setting,
called the weakly unbounded-error setting. In contrast to the case of
communication complexity, we show a tight multiplicative Θ(log n) sep-
aration between quantum and classical query complexity in this setting
for a partial Boolean function.

1 Introduction

Many models in computational complexity have several settings where different
restrictions are placed on the success probability to evaluate a Boolean func-
tion f . The most basic one is the exact setting: it requires that the computation
of f is always correct. In the polynomial-time complexity model, this corre-
sponds to the complexity class P. If we require the success probability to be
only “high” (say, 2/3), such a setting is called bounded error. The corresponding
polynomial-time complexity class is known as BPP. The unbounded-error set-
ting is also standard. In this setting, it suffices to have a “positive hint”, even
infinitesimal, towards the right answer. That is, the unbounded-error setting
requires that the success probability to compute Boolean functions is strictly
larger than 1/2. The most famous model for this setting is also polynomial-time
complexity, and PP is the corresponding complexity class. This setting also has
connections with important concepts such as polynomial threshold functions in
computational learning theory.

There are two major computing models which have been introduced to develop
the lower bound method in complexity theory. The first one is the communication
complexity (CC) model. The CC model measures the amount of communication
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for several parties, which have distributed inputs, to compute Boolean functions.
The second one is the query complexity (QC) model. The QC model measures the
amount of queries required for a machine with no input to compute a Boolean
function by querying the input given in a black-box. The CC and QC models
are also studied in the quantum setting, and there are many results on the
performance gaps between classical and quantum computation [25].

So far, the unbounded-error setting has also been studied in the CC and QC
models. In the classical CC model, a large literature has developed since its in-
troduction by Paturi and Simon [22]. In the quantum case, Iwama et al. [18]
showed that the quantum CC of any Boolean function is almost half of its clas-
sical CC. Furthermore, a variant of the unbounded-error setting was studied,
which is often called the weakly unbounded-error setting. Here the cost of a
protocol is defined by q + log(1/2(p− 1/2)), where q is the number of communi-
cation (qu)bits and p > 1/2 is the success probability. This concept appeared in
[5,16], and was later studied in [19]. Halstenberg and Reischuck [16] showed that
weakly unbounded-error protocols correspond to so-called “majority nondeter-
ministic” protocols, while Klauck [19] showed a close connection between this
setting and the discrepancy method in communication complexity. Recently,
Buhrman et al. [10] and Sherstov [24] independently showed that there is a
Boolean function that exponentially separates the classical weakly unbounded-
error CC and unbounded-error CC. On the other hand, there can only be a
constant gap between quantum and classical CCs for Boolean functions in the
weakly unbounded-error setting [18,19].

The study of the QC model in the unbounded-error setting has been de-
veloped implicitly as the study of the sign-representing polynomial (say, [4,7])
since Beals et al. [6] gave the nice characterization of the (quantum) QC by
polynomials. In fact, Buhrman et al. [10] mentioned the close relation between
sign-representing polynomials and QCs of Boolean functions. However, there is
no explicit literature on unbounded-error quantum QC.

Our Results. In this paper we deal with the unbounded-error quantum QC
and study its relations to the other unbounded-error concepts. In Section 3, we
show that, as in the case of CC, the unbounded-error quantum QC of some (to-
tal/partial) Boolean function is always exactly half of its classical counterpart.
In Section 4, we discuss the relation between the unbounded-error quantum QC
and CC. A powerful result by Buhrman, Cleve and Wigderson [9] is often used
to “reduce” quantum CC to quantum QC, which is a “black-box” approach to
convert quantum query algorithms into communication protocols with O(log n)
overhead. It is a natural question whether their black-box approach is opti-
mal, that is, Ω(log n) overhead is inevitable. We show that the overhead of the
black-box approach of [9] is optimal in the unbounded-error setting. Moreover,
we show that this bound on overhead factor also holds under nondeterministic
and exact settings. In Section 5, we develop the weakly unbounded-error QC,
which is a natural measure to trade off queries and success probability, as the
correspondence of the weakly unbounded-error CC. We show a multiplicative
separation, T (n) vs. Ω(T (n) log(n/T (n))) for any monotone increasing function
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satisfying T (n) ≤ n, between the weakly unbounded-error quantum and classi-
cal QCs of some partial function. This result contrasts with the only constant
quantum-classical gaps of the weakly unbounded-error CC [18,19] as well as the
unbounded-error QC.

Related Work. In a similar direction, de Wolf [26] characterized the nondeter-
ministic (or one-sided unbounded-error) quantum QC and CC by, respectively,
nondeterministic degree of approximating polynomials and nondeterministic rank
of communication matrices. When comparing classical and quantum complexities
under these models, de Wolf showed strong separations; an unbounded gap for
QC and an exponential gap for CC (the first unbounded gap for CC was shown
before in [20]). Under a different (certificate based) type of nondeterminism, a
quadratic separation between quantum and classical CC is known for some total
function [15].

2 Definition and Models

We first list some useful definitions, starting with unbounded-error polynomials.

Definition 1. Let f : {0, 1}n → {0, 1} be a Boolean function of n variables,
and q : {0, 1}n → [0, 1] be a real multilinear polynomial. We say that q is an
unbounded-error polynomial for f if for any x ∈ {0, 1}n, q(x) > 1/2 if f(x) = 1
and q(x) < 1/2 if f(x) = 0. We denote the lowest degree among all unbounded-
error polynomials for f as udeg(f).

Note that this definition is given in terms of total Boolean functions, but we can
naturally extend it to partial functions. Throughout this paper, we use the term
“Boolean functions” for results that hold for both partial and total functions; if
not, we mention it explicitly.

There have been many studies and extensive results in the literature on
polynomials that sign-represent Boolean functions [4,7,21]. A polynomial p :
{0, 1}n → R is said to sign-represent f if p(x) > 0 whenever f(x) = 1, and
p(x) < 0 whenever f(x) = 0. If |p(x)| ≤ 1 for all x, we say that p is normalized.
The bias of a normalized polynomial p is defined as β = minx |p(x)|. Denoting
the minimum degree of polynomials that sign-represent f as sdeg(f), it is easy
to see that udeg(f) = sdeg(f). In the following, we will use some results about
polynomials that sign-represent f to characterize the unbounded-error QC.

It is folklore that every real multilinear polynomial q of degree at most d can
be represented in the so-called Fourier basis. Namely,

q(x) =
∑

S∈Sd

q̂(S)(−1)xS , (1)

where Sd denotes the set of all index sets S ⊆ [n] of at most d variables, and
xS denotes the XOR (or PARITY) of the bits of x on index set S, namely,
xS = ⊕i∈Sxi.

Next, we give the definitions of unbounded-error QC and CC, as well as their
weak counterparts.
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Definition 2. Let UQ(f) and UC(f) be the unbounded-error quantum and clas-
sical, respectively, QCs of a Boolean function f . Namely, UQ(f) (resp. UC(f))
is the minimum number of quantum (resp. classical) queries to a black box that
holds the input x ∈ {0, 1}n to f such that f can be computed with a suc-
cess probability greater than 1/2. Let UQcc(g) and UCcc(g) be the unbounded-
error quantum and classical, respectively, CCs of a distributed Boolean function
g : A×B → {0, 1}, where A ⊆ {0, 1}n1 and B ⊆ {0, 1}n2 denote the sets of inputs
each given to Alice and Bob, respectively. Namely, UQcc(g) (resp. UCcc(g)) is
the minimum number of quantum (resp. classical) bits exchanged between Alice
and Bob to compute g with success probability greater than 1/2.

Define the bias β of a quantum or classical query algorithm (resp. commu-
nication protocol) which succeeds with probability p > 1/2 as p− 1/2. Then the
weakly unbounded-error cost of such an algorithm (resp. protocol) is equal to
the number of queries (resp. communicated bits or qubits) plus log 1/2β. Let
WUQ(f), WUC(f), WUQcc(g) and WUCcc(g) be the weakly unbounded-error
counterparts of the previous measures, given by the minimum weakly unbounded
cost over all quantum or classical query algorithms and communication protocols,
respectively.

Notice that some previous work defines the weakly unbounded-error cost as the
number of queries plus log 1/β [10,18]. However, we prefer the present definition,
as it ensures that weakly unbounded QC or CC is never greater than its exact
counterpart.

3 Unbounded-Error Quantum and Classical QCs

In [18], it was shown that UQcc(f) is always almost half of UCcc(f) for any
(partial or total) Boolean function f . We will show that in the unbounded-error
QC model, the equivalent (and rather tighter) result – that quantum query
complexity is always exactly half of its classical counterpart – also holds for any
Boolean function. For this purpose, we need the following three lemmas. The
first lemma, shown by Beals et al. [6], gives a lower bound on the number of
queries in terms of the minimum degree of representing polynomials.

Lemma 1 ([6]). The amplitude of the final basis states of a quantum algorithm
using T queries can be written as a multilinear polynomial of degree at most T .

The second lemma, shown by Beals et al. [6] and Farhi et al. [13], gives an exact
quantum algorithm for computing the parity of n variables with just n/2 queries.

Lemma 2 ([6,13]). Let S ⊆ [n] be a set of indices of variables. There exists a
quantum algorithm for computing xS with �|S|/2� queries. That is, there exists
a unitary transformation Uf which needs exactly �|S|/2� queries: for any b ∈
{0, 1},

Uf |S〉|0m〉|b〉 = |S〉|ψS〉|b ⊕ xS〉,
where |0m〉 and |ψS〉 are the workspace quantum registers before and after the
unitary transformation, respectively.
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The third lemma was shown recently by Buhrman et al. [10]. It turns out to be
very useful in characterizing the unbounded-error QC of Boolean functions.

Lemma 3 ([10]). Suppose that there exists a multilinear polynomial p of d-degree
that sign-represents f : {0, 1}n → {0, 1} with bias β. Define N =

∑d
i=0

(
n
i

)
. Then

there also exists a multilinear polynomial q(x) =
∑

S∈Sd
q̂(S)(−1)xS of the same

degree and bias β/
√
N that sign-represents f such that

∑
S∈Sd

|q̂(S)| = 1.

Now, we are ready to prove the exact relation between UQ and UC.

Theorem 1. For any Boolean function f : X → {0, 1} such that X ⊆ {0, 1}n,
it holds that: UQ(f) =

⌈
UC(f)

2

⌉
=
⌈

udeg(f)
2

⌉
.

Proof. [UC(f) = udeg(f)] This follows from a result in Buhrman et al. [10]: an
unbounded-error randomized algorithm for f using d queries is equivalent to a
d-degree polynomial p that sign-represents f .

[UQ(f) ≥ udeg(f)/2] By Lemma 1, the acceptance probability of a quantum
algorithm using UQ(f) queries can be written as a multilinear polynomial of
degree at most 2UQ(f). Hence, udeg(f) ≤ 2UQ(f).

[UQ(f) ≤ �udeg(f)/2�] This follows from Lemmas 3 and 2. First, let δ(y) = 1
if y > 0, and δ(y) = 0 otherwise. With regard to the Fourier representation of
polynomial p that sign-represents f as in Eq. (1), and for a fixed x ∈ {0, 1}n, we
can write p(x) =

∑
S∈Sudeg(f)

p̂(S)(−1)xS =
∑

S∈S+
x
|p̂(S)| −

∑
S∈S−

x
|p̂(S)|, such

that S+
x = {S|xS⊕ δ(p̂(S)) = 1}, and S−

x = {S|xS⊕ δ(p̂(S)) = 0}. By Lemma 3,
we can assume that

∑
S∈Sudeg(f)

|p̂(S)| = 1.
Then, we have

∑
S∈S+

x
|p̂(S)| > 1/2 if f(x) = 1, and

∑
S∈S+

x
|p̂(S)| < 1/2

otherwise. Thus, the unbounded-error quantum algorithm for f can be obtained
by computing xS (by Lemma 2 with �|S|/2� ≤ �udeg(f)/2� queries), and its
XOR with δ(p̂(S)), and measure its result. �

From Theorem 1 and classical results in [12], we immediately obtain the fol-
lowing corollary, which implies that almost every function has unbounded-error
quantum QC n(1/4 + o(1)). By contrast, there remains a gap in the bounded-
error setting: Almost every function has bounded-error quantum QC between
n/4 + Ω(

√
n) [2,12] and n/2 + O(

√
n) [11].

Corollary 1. Almost every function f : {0, 1}n → {0, 1} has unbounded-error
quantum QC bounded by n/4 ≤ UQ(f) ≤ n/4 + O(

√
n logn).

4 Tightness of Reducing CC to QC

Buhrman, Cleve and Wigderson [9] gave a method for reducing a quantum
communication protocol to a quantum query algorithm with O(log n) overhead,
which we call the BCW reduction, as follows.
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Theorem 2 ([9]). Let F : {0, 1}n → {0, 1}, and FL : {0, 1}n×{0, 1}n → {0, 1}
denote the distributed function of F induced by the bitwise function L : {0, 1} ×
{0, 1} → {0, 1}, that is defined by FL(x, y) = F (z) such that each bit of z is
zi = L(xi, yi). If there is a quantum algorithm that computes F using T queries
with some success probability, then there is a T (2 logn + 4)-qubit communication
protocol for FL, where Alice has input x and Bob has input y, with the same
success probability.

In the reverse direction, this implies that any lower bound C in the CC side
is translated into a lower bound Ω(C/ logn) in the QC side. The BCW reduc-
tion is exact: the success probability of the communication protocol is the same
as that of the query computation. In fact, [9] proved some interesting results
using this reduction, such as the first non-trivial quantum protocol for the dis-
jointness problem, which used O(

√
n logn) communication by a reduction to

Grover’s quantum search algorithm. This upper bound was eventually improved
to O(

√
n), which matches the lower bound shown in [23], by Aaronson and Am-

bainis using ingenious techniques [1]. However, unlike the results of [9], those
techniques seem to be limited only to specific functions such as disjointness.

Thus, it is of interest to know whether there exists a universal reduction similar
to the BCW reduction but with o(log n) overhead and preserving the success
probability. This might be achieved by designing new reduction methods. In
addition, smaller overhead might be achieved by relaxing the success probability
condition, that is, allowing the success probability of the resulting protocol to be
significantly lower than that of the original algorithm. To look for the possibility
of such a universal reduction, one can consider relations between quantum QC
and CC by using such a reduction as a “black-box” under various settings for
the required success probability.

Our result in this section is the optimality of the BCW reduction in the exact,
nondeterministic, and unbounded-error settings, as showed in the following the-
orem. Here, for a Boolean function F : {0, 1}n → {0, 1}, the distributed function
of F induced by the bitwise XOR (resp. AND), denoted by F⊕ (resp. F∧), is
defined by F⊕(x, y) = F (x⊕ y) (resp. F∧(x, y) = F (x ∧ y)).

Theorem 3. Let T (n) be a monotone increasing function satisfying T (n) ≤ n.
The following hold:

(1) Assume that there is a procedure A that, for any function F : {0, 1}n →
{0, 1}, converts a nondeterministic (exact, resp.) quantum algorithm for F us-
ing T (n) queries into a nondeterministic (exact, resp.) quantum communication
protocol for F⊕ using O(T (n)D(n)) qubits. Then, D(n) = Ω(log(n/T (n))).

(2) Assume that there is a procedure A that, for any function F : {0, 1}n →
{0, 1}, converts an unbounded-error quantum algorithm for F using T (n) queries
into an unbounded-error quantum communication protocol for F∧ which uses
O(T (n)D(n)) qubits. Then, D(n) = Ω(log(n/T (n))).

The proof is based on the existence of Boolean functions whose quantum QCs are
T (n), while the CCs of their distributed counterparts are Ω(T (n) log(n/T (n))),
where n is the input length. We should remark that for bounded-error case, the
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same function for showing the optimality of BCW reduction in nondeterministic
(exact) case can also be used to show that log logn factor is necessary while we
do not know if logn factor is necessary (i.e., BCW reduction is optimal).

4.1 Nondeterministic and Exact Cases

The following partial Boolean function, which is a variant of the Fourier Sampling
problem of Bernstein and Vazirani [8], will be the base of the proof of the first
part of Theorem 3.

Definition 3. For x, r ∈ {0, 1}m, let F r be a bit string of length n = 2m whose
x-th bit is F r

x =
∑

i xi · ri mod 2. Let also g be another bit string of length n.
The Fourier Sampling (FS) of F r and g is defined by FS(F r, g) = gr. When
Alice and Bob are given (F a, g) and (F b, h), respectively, as their inputs where
a, b ∈ {0, 1}m and g, h ∈ {0, 1}n, the Distributed Fourier Sampling (DFS) on
their inputs is DFS((F a, g), (F b, h)) = FS(F a ⊕ F b, g ⊕ h).

Now, let us consider the AND of T = T (N) instances of FS, namely, FS(F r1 , g1)∧
. . . ∧ FS(F rT , gT ) where N = 2Tn is the length of the input string (note that
n, the length of F ri and gi, is a function of N). The proof of the first part of
Theorem 3 is given in the following lemma.

Lemma 4. The exact quantum QC of the AND of T instances of FS is O(T ),
while the nondeterministic quantum CC of its distributed function induced by
the bitwise XOR is Ω(T log(N/T )).

Proof. For the QC part, note that for each instance of FS we can construct the
following two-query quantum algorithm: Given input (F r, g) (in a black-box),
(i) Determine r with one query to F r with certainty by the quantum algorithm
of [8]. (ii) Output FS(F r, g) = gr with one query to g. Thus, the exact quantum
QC of the AND of T instances of FS is O(T ).

For the CC part, we first prove that the nondeterministic (and hence exact)
CC of DFS is Ω(log n), and use this result for showing the lower bound of the
AND of T instances of DFS. For this purpose, let us consider the set of inputs
((F a, g), (F b, h)) ∈ ({0, 1}n)2 × ({0, 1}n)2 such that g ⊕ h = 10n−1. For such
inputs, DFS((F a, g), (F b, h)) = 1 (resp. 0) implies a = b (resp. a 
= b) since
DFS((F a, g), (F b, h)) = FS(F a ⊕ F b, g ⊕ h) = FS(F a⊕b, 10n−1) = (10n−1)a⊕b

(the (a ⊕ b)-th bit of 10n−1). This means that if the nondeterministic CC of
DFS is o(log n), then that of EQlog n (the equality on two logn bits a and b) is
also o(logn), which contradicts the fact that the nondeterministic quantum CC
of EQlog n is Ω(log n) [26]. Next, notice that any protocol for the AND of T in-
stances of DFS problem can also be used for EQT log n. Thus, its nondeterministic
quantum CC should be Ω(T log(N/T )), as claimed. �

4.2 Unbounded-Error Case

Here we show the proof of the second part of Theorem 3, that is, the impossibility
of converting a quantum query algorithm into the corresponding communication
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protocol with o(log n) overhead, even with the success probability of the result-
ing protocol becomes very close to half. The base function is ODD-MAX-BIT
function, a total Boolean function introduced in [7]. First, we give the definition
of ODD-MAX-BITn (or OMBn for short) and its distributed variant DOMBn.

Definition 4. For any x ∈ {0, 1}n, let us define OMBn(x) = k mod 2, where
k is the largest index of x such that xk = 1 (k = 0 for x = 0n). For any
a, b ∈ {0, 1}n, let us also define DOMBn(a, b) = OMBn(a∧ b), where a∧ b is the
bitwise AND of a and b.

The proof of the second part of Theorem 3 follows from the complexities of the
XOR of T instances of OMB and DOMB, as given in the following lemma.

Lemma 5. The unbounded-error quantum QC of the XOR of T instances of
OMB is O(T ), while the unbounded-error quantum CC of the distributed function
induced by the bitwise AND is Ω(T log(N/T )) where N = Tn is the input length.

Proof. The QC part is easy since one instance of OMBn can be solved with
only one query by the following classical algorithm: Query xi with probability
pi = 2i

2n+1−2 . Then, output i mod 2 if xi = 1, and the result of a random coin
flip if xi = 0. It can be seen that the success probability is always bigger than
1/2 for all positive integers n. It is not difficult to see that if each instance can
be solved with probability more than half, so can the XOR of T instances.

For the CC part, we first show UQcc(DOMBn) ≥ (logn− 3)/2, and use this
result for proving the lower bound of the XOR of T instances of DOMB. The
bound for UQcc(DOMBn) ≥ (logn − 3)/2 follows from the lower bound on
quantum random access coding (which is also known as the INDEX function)
shown in [17]. For a ∈ {0, 1}n and b ∈ {0, 1}logn, INDEXn(a, b) is defined as
the value of the b-th bit of a, or ab. Then, we consider the case when Alice
uses x = a10a20 . . . an0, and Bob uses y = y1y2y3 . . . y2n such that yj = 1 iff
j = 2b − 1, as inputs to the protocol for DOMB2n. Clearly, DOMB2n(x, y) =
INDEXn(a, b). However, according to [17], UQcc(INDEXn) ≥ 1

2 log(n + 1) − 1
(Here, −1 comes from the difference between two-way and one-way CC [18]).
Therefore, UQcc(DOMBn) ≥ 1

2 log(n/2 + 1)− 1 ≥ (logn− 3)/2.
Next, we show that the XOR of T instances of DOMBn can be used to com-

pute the inner product of two distributed T log(n/2) bits. Let Alice and Bob’s
inputs for the inner product be x and y, respectively. To compute the answer∑T log(n/2)

i=1 xiyi mod 2, they divide their input strings into T parts, each of
length log(n/2) bits, and for each part they compute the inner product, which is
done by the reduction to INDEXn/2 (and hence DOMBn) as follows: Alice writes
the inner product of her part with all possible Bob’s part, which results in a bit
string of length n/2 as her input to INDEXn/2. By setting the corresponding
Bob’s part as the other input to INDEXn/2, they can compute the inner prod-
uct for each part by applying the protocol for INDEXn/2. Since the quantum
CC lower bound of the inner product on distributed inputs of T log(n/2) bits is
Ω(T log(n/2)) = Ω(T log(N/T )) [14,18], we obtain the desired result. �
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5 Weakly Unbounded-Error Quantum and Classical QCs

In this section, we study the weakly unbounded-error QC (WUQ). There are
two reasons why this model, which at first sight seems somewhat contrived, may
be of interest: (i) The separation between quantum and classical QCs appears
to be different for different success probability settings. For example, the best
known separation for a total function is quadratic in the bounded-error setting,
but we showed earlier that only a factor of two is possible in the unbounded-error
setting. The WUQ model gives a natural way to trade off queries and success
probability. (ii) Weakly unbounded-error CC is closely related to the well-studied
notion of discrepancy [19]. WUQ is thus a QC analogue of a natural CC quantity.

5.1 Tight Gaps between WUQ and WUC for Partial Functions

In the CC model, Klauck [19] showed that weakly unbounded-error quantum
and classical CCs are within some constant factor (see also [18]). It turns out
that the gap is a bit different in the QC model: there exists a Boolean function f
such that its classical weakly unbounded-error QC is Ω(logn)-times worse than
its quantum correspondence. To show this, we will use a probabilistic method
requiring the following Chernoff bound lemma from Appendix A of [3].

Lemma 6. Let S = {Xi} be a set of N independent random variables with
Pr[Xi = 1] = Pr[Xi = −1] = 1

2 . Then Pr
[∣∣∣∑N

i=1 Xi

∣∣∣ > a
]
< 2e−a2/2N .

Lemma 7. There exists a partial Boolean function f such that WUC(f) =
Ω(log n) and WUQ(f) = 2.

Proof. We will again consider the Fourier Sampling problem FS(F a, g) = ga,
which (as shown in Section 4) can be solved exactly with two quantum queries for
any choice of g. For the classical lower bound, we fix a string g (to be determined
shortly), and assume that g is already known, so the algorithm need only make
queries to F a.

We use the Yao minimax principle that the minimum number of queries re-
quired in the worst case for a randomized algorithm to compute some function f
with success probability at least p for any input is equal to the maximum, over
all distributions on the inputs, of the minimum number of queries required for
a deterministic algorithm to compute f correctly on a p fraction of the inputs.
Thus, in order to show a lower bound on the number of queries used by any
randomized algorithm that succeeds with probability 1/2+β, it suffices to show
a lower bound on the number of queries required for a deterministic algorithm
to successfully output ga for a 1/2 + β fraction of the functions F a (under some
distribution). We will use the uniform distribution over all strings F a – recall
that F a

x =
∑

i xi · ai mod 2 – which are also known as Hadamard codewords.
Now consider a fixed deterministic algorithm which makes an arbitrary se-

quence of 1
3 logn distinct queries to F a, and then guesses the bit ga. Assume

without loss of generality that the algorithm makes exactly 1
3 logn queries on all
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inputs and that n1/3 is an integer. There are at most n1/3 possible answers to
the queries, dividing the set S of n inner product functions into at most k ≤ n1/3

non-empty subsets {Si}, where |Si| ≥ n2/3 for all i (this is because each query
will either split the set of remaining functions exactly in half, or will do nothing).
Each subset will contain between 0 and |Si| functions F a such that ga = 0, with
the remainder of the functions having ga = 1. For any i, define mi

0 (resp. mi
1) as

the number of remaining functions F a ∈ Si such that ga = 0 (resp. ga = 1). To
succeed on the largest possible fraction of the inputs, the deterministic algorithm
should guess the value with which the majority of the remaining bit strings in
the subset Si picked out by the answers to the queries are associated. It is thus
easy to see that this deterministic algorithm can succeed on at most a p fraction
of the inputs, where p = 1

2 + 1
2n

∑k
i=1 |mi

0 −mi
1|. We now turn to finding a g

such that this expression is close to 1/2 for all possible deterministic algorithms.
Our string g will be picked uniformly at random from the set of all n-bit

strings. This implies that, for an arbitrary fixed deterministic algorithm and for
any i, mi

0 and mi
1 are random variables. Lemma 6 can thus be used to upper

bound the fraction of the inputs on which this algorithm succeeds:

Pr[p > 1/2 + β] ≤ Pr[
1

2n2/3 |m
1
0 −m1

1| > β] < 2e−2β2n2/3
,

where it is sufficient for the bound to consider a fixed i with |Si| = n2/3, w.l.o.g.
assuming that this is true for i = 1. The remainder of the proof is a simple
counting argument. We find a rough upper bound on the number of determin-
istic algorithms using exactly q queries on every input by noting that such an
algorithm is a complete binary tree with q + 1 levels, where each leaf is labelled
with 0 or 1 (corresponding to the output of the algorithm) and each internal
node is labelled with a number from [n] (corresponding to the input variable to
query). There are thus fewer than n2q+1

deterministic algorithms using exactly q

queries. For q = 1
3 logn, there are fewer than 22n1/3 log n algorithms. We can now

use a union bound to determine an upper bound on the probability p′, taken over
random strings g, that any of these algorithms succeeds on a 1/2+ β fraction of
the inputs.

Pr[p′ > 1/2 + β] < 22n1/3 log n+1e−2β2n2/3
< 2e2n1/3(log n−β2n1/3).

Let us pick β = n−1/7. It can easily be verified that Pr[p′ > 1/2 + β] < 1
for sufficiently large n, so there exists some g such that no classical algorithm
that uses at most 1

3 logn queries can succeed on more than 1/2 + n−1/7 of the
inputs. By Yao’s principle, this implies that for this g, no randomized algorithm
that uses at most 1

3 logn queries can solve FS(F a, g) with a bias greater than
n−1/7. Therefore, we have the desired separation: WUQ(FS) = 2 (by the proof
of Lemma 4) while WUC(FS) = Ω(logn). �

Indeed, we can use this function to obtain a more general multiplicative separa-
tion between WUC and WUQ.
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Theorem 4. Let T (N) be any monotone increasing function satisfying T (N) ≤
N . Then there exists a partial Boolean function g on N variables such that
WUC(g) = Ω(T (N) log(N/T (N))) and WUQ(g) ≤ T (N) + 2.

Proof. Let k = T (N) and n = N/T (N). For an arbitrary (partial/total) function
f(x1, . . . , xn) on n bits, define a new function fk on N = nk bits by encoding
each input bit xi by the parity of k bits (yi1, . . . , yik), i.e. fk(y11, . . . , ynk) =
f(y11⊕· · ·⊕y1k, . . . , yn1⊕· · ·⊕ynk). By Lemma 2, WUQ(fk) ≤ �k/2�WUQ(f) ≤
(k/2+1)WUQ(f). On the contrary, it is essentially immediate that WUC(fk) =
kWUC(f) since no sequence of queries to fewer than k of the bits (yi1, . . . , yik)
can guess the parity (yi1⊕ · · · ⊕ yik) with probability > 1/2. Taking f to be the
FS function, the theorem follows from Lemma 7. �

This gap is asymptotically almost optimal, as we show with the following lemma.

Lemma 8. For any function f : {0, 1}n → {0, 1}, WUC(f) ≤ 2WUQ(f) logn.

Proof. Let A be an algorithm achieving WUQ(f), i.e., A uses d queries and has
the success probability 1/2 + β such that WUQ(f) = d + log(1/2β). By the
result of [6], we know that there exists a polynomial that sign-represents f such
that its degree is 2d, and its bias is β. Now we can use Lemma 3, which says
that given such a polynomial, we can produce a randomized algorithm using at
most 2d queries with success probability at least 1/2+β/

√
nd. This implies that

WUC(f) ≤ 2d + log(1/2β) + d logn ≤ 2WUQ(f) log n. �

6 Concluding Remarks

We have given the tight quantum-classical gap between weakly unbounded-error
QC for partial functions. We conjecture that for all total functions f , it holds
that WUC(f) = O(WUQ(f)). Indeed, we have the following theorem (where
|x| denotes the Hamming weight of x) that proves the conjecture for threshold
functions (a class of total Boolean functions that includes AND and OR). The
proof is omitted due to space restriction.

Theorem 5. For the threshold function defined by THk(x) = 1 iff |x| > k,
UC(THk) = UQ(THk) = 1 and WUC(THk) = WUQ(THk) = Θ(log n).
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Super-Exponential Size Advantage of Quantum
Finite Automata with Mixed States�

Rūsiņš Freivalds

Department of Computer Science, University of Latvia,
Raiņa bulvāris 29, R̄ıga, Latvia

Abstract. Quantum finite automata with mixed states are proved to be
super-exponentially more concise rather than quantum finite automata
with pure states. It was proved earlier by A.Ambainis and R.Freivalds
that quantum finite automata with pure states can have exponentially
smaller number of states than deterministic finite automata recognizing
the same language. There was a never published ”folk theorem” proving
that quantum finite automata with mixed states are no more than super-
exponentially more concise than deterministic finite automata. It was not
known whether the super-exponential advantage of quantum automata
is really achievable.

We use a novel proof technique based on Kolmogorov complexity to
prove that there is an infinite sequence of distinct integers n such that
there are languages Ln in a 4-letter alphabet such that there are quantum
finite automata with mixed states with 2n + 1 states recognizing the
language Ln with probability 3

4
while any deterministic finite automaton

recognizing Ln needs to have at least eO(nlnn) states.

1 Introduction

A.Ambainis and R.Freivalds proved in [4] that for recognition of some languages
the quantum finite automata can have smaller number of the states than deter-
ministic ones, and this difference can even be exponential. The proof contained a
slight non-constructiveness, and the exponent was not shown explicitly. For prob-
abilistic finite automata exponentiality of such a distinction was not yet proved.
The best (smaller) gap was proved by Ambainis [2]. The languages recognized
by automata in [4] were presented explicitly but the exponent was not. In a
very recent paper by R.Freivalds [13] the non-constructiveness is modified, and
an explicit (and seemingly much better) exponent is obtained at the expense of
having only non-constructive description of the languages used. Moreover, the
best estimate proved in this paper is proved under assumption of the well-known
Artin’s Conjecture (1927) in Number Theory. [13] contains also a theorem that
does not depend on any open conjectures but the estimate is worse, and the
description of the languages used is even less constructive. This seems to be
the first result in finite automata depending on open conjectures in Number
Theory.
� This research is supported by Grant No.05.1528 from the Latvian Council of Science.
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The following two theorems are proved in [13]:

Theorem 1. Assume Artin’s Conjecture. There exists an infinite sequence of
regular languages L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence
of positive integers z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with (z(j) states recognizing Lj

with the probability 19
36 ,

2. any deterministic finite automaton recognizing Lj has at least (21/4)z(j) =
= (1.1892071115 . . .)z(j) states,

Theorem 2. There exists an infinite sequence of regular languages
L1, L2, L3, . . . in a 2-letter alphabet and an infinite sequence of positive integers
z(1), z(2), z(3), . . . such that for arbitrary j:

1. there is a probabilistic reversible automaton with z(j) states recognizing Lj

with the probability 68
135 ,

2. any deterministic finite automaton recognizing Lj has at least (7
1
14 )z(j) =

= (1.1149116725 . . .)z(j) states,

The paper [13] concluded a long research on relative size of probabilistic and
deterministic automata [8,9,10,11,16,2,15,13,14]. The two theorems above are
formulated in [13] as assertions about reversible probabilistic automata. For
probabilistic automata (reversible or not) it was unknown before the paper [13]
whether the gap between the size of probabilistic and deterministic automata
can be exponential. It is easy to re-write the proofs in order to prove counter-
parts of Theorems 1 and 2 for quantum finite automata with pure states. The
aim of this paper is to prove a counterpart of these theorems for quantum finite
automata with mixed states.

Quantum algorithms with mixed states were first considered by D.Aharonov,
A.Kitaev, N.Nisan [1]. More detailed description of quantum finite automata
with mixed states can be found in A.Ambainis, et al.[3].

The automaton is defined by the initial density matrix ρ0. Every symbol ai in
the input alphabet is associated with a unitary matrix Ai. When the automaton
reads the symbol ai the current density matrix ρ is transformed into A∗

i ρAi. When
the reading of the input word is finished and the end-marker $ is read, the current
density matrix ρ is transformed into A∗

endρAend and separate measurements of all
states are performed. After that the probabilities of all the accepting states are
totaled, and the probabilities of all the rejecting states are totaled.

Like quantum finite automata with pure states described by A.Kondacs and
J.Watrous [19] we allow measurement of the accepting states and rejecting states
after every step of the computation.

The main result in our paper is:

Theorem 3. There is an infinite sequence of distinct integers n such that there
are languages L′

n in a 4-letter alphabet such that there are quantum finite au-
tomata with mixed states with 2n + 1 states recognizing the language L′

n with
probability 3

4 while any deterministic finite automaton recognizing L′
n needs to

have at least eO(nlnn) states.
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Proof is delayed till Section 5.
Since the numbers of the states for deterministic automata and quantum

automata with pure states differ no more than exponentially, we have

Theorem 4. There is an infinite sequence of distinct integers n such that there
are languages Ln in a 4-letter alphabet such that there are quantum finite au-
tomata with mixed states with 2n + 1 states recognizing the language Ln with
probability 3

4 while any quantum finite automaton with pure states recognizing
Ln with bounded error needs to have at least eO(nlnn) states.

2 Permutations and Hamming Distance

Permutation of the set Nn is a 1-1 correspondence from Nn onto itself. Let f be
such a permutation. The fact that it is onto means that for any k ∈ Nn there
exists i ∈ Nn such that f(i) = k.

We need a notion similar to Hamming codes for permutations. Since Ham-
ming distance between permutations is already considered in several well-known
textbooks (e.g. [6]), it seemed natural that the corresponding theory might be
already published. Very far from truth!

Hamming distance between two objects is the number of changes one needs
to perform to obtain one object from the. The Hamming distance between two
binary words (of the same length) is defined to be the number of positions
at which they differ. For instance, we consider a set of three binary words
{0011, 0110, 1100}. The first word is at Hamming distance 3 from the other
two. Additionally, every word in this set is at Hamming distance at least 2 from
any other. Such systems of words are called codes. They are important because
they allow us to eliminate accidental errors when transmitting the words through
noisy information channels.

We consider Hamming distance between permutations. Hamming distance
between the permutation s of the set {1, 2, 3, · · ·n} and the permutation r of the
same set is the number of distinct numbers i such that s(i) 
= r(i). For instance,
let s be a permutation of the set {1, 2, 3, · · ·n} and the number of it’s fixed points
be p. Then the Hamming distance between the permutation s and the identity
permutation is the number n− p.

Lemma 1. Let d be an arbitrary real number such that 0 ≤ d ≤ 1. No more than
2dnlnn permutations can be on Hamming distance less or equal than dn from the
identity permutation.

Proof. By Stirling formula, n! = en.lnn−o(nlnn). Let π be an arbitrary n-
permutation. How many there are distinct n-permutations differing from the
permutation π in no more than dn positions? The differing positions can be
chosen in

≤
(
n
d

)
< 2n

ways and these ≤ dn positions are permuted. Hence there are no more than
2n.2dnlnn−o(nlnn) ≤ 2dnlnn permutations of this type.
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Theorem 5. For arbitrary constant c < 1 such that for arbitrary n there is a set
Gn of n-permutations containing eΩ(n log n) permutations such that the Hamming
distance of any two permutations is at least c · n.

Proof. Immediately from Lemma 1.

3 Permutations and Automata

Definition 1. The Hamming distance or simply distance d(r, s) between two
n-permutations r and s on the set S is the number of elements x ∈ S such that
r(x) 
= s(x). The similarity e(r, s) is the number of x ∈ S such that r(x) = s(x).
Note that d(r, s) + e(r, s) = |S| = n.

Theorem 6. Let c be a fixed constant and let there be an infinite sequence of
distinct integers n such that for each n there exists a group Gn of permutations
of the set {1, 2, . . . , n}, the group has order(Gn) elements and k generating el-
ements, and the Hamming distance of any two permutations is at least c · n.
Then there is an infinite sequence of distinct integers n such that for each n
there is a language Ln in a k-letter alphabet that can be recognized with probabil-
ity c

2 by a quantum finite automata with mixed states that has 2n states, while
any deterministic finite automaton recognizing Ln must have at least order(Gn)
states.

Proof. For each permutation group Gn we define the language Ln as follows:

The letters of Ln are the k generators of the group Gn and
it consists of words s1s2s3 . . . sm such that the product

s1 ◦ s2 ◦ s3 ◦ · · · ◦ sm differs from the identity permutation.

(A) Any deterministic automaton recognizing Ln is to remember the first
input letter by a specific state.

(B) We will construct a quantum automaton with mixed states. It has 4n
states and the initial density matrix ρ0 is a diagonal block-matrix that consists
of n blocks ρ̃0:

ρ̃0 =
1
2n

⎛⎜⎜⎝
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠
For each of k generators gi ∈ Gn we will construct the corresponding unitary

matrix Ui as follows – it is a 2n × 2n permutation matrix, that permutes the
elements in the even positions according to permutation gi, but leaves the odd
positions unpermuted.

For example, g = 3241 can be expressed as the following permutation matrix
that acts on a column vector:

g =

⎛⎜⎜⎝
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠
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The initial density matrix ρ0 for n = 4 and the unitary matrix U that corre-
sponds to the permutation matrix (3) of permutation g are as follows:

ρ0 =
1
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The unitary matrix U$ for the end-marker is also a diagonal block-matrix. It
consists of n blocks that are the Hadamard matrices

H̃ =
1√
2

(
1 1
1 −1

)
Notice how the Hadamard matrix H̃ acts on two specific 2× 2 density matrices:

if ρ =
1
2n

(
1 1
1 1

)
, then H̃ρH̃† =

1
2n

(
2 0
0 0

)
,

if ρ =
1
2n

(
1 0
0 1

)
, then H̃ρH̃† =

1
2n

(
1 0
0 1

)
.

For example, when the letter g is read, the unitary matrix U is applied to
the density matrix ρ0 (both are given in equation (3)) and the density matrix
ρ1 = Uρ0U

† is obtained. When the end-marker “$” is read, the density matrix
becomes ρ$ = U$ρ1U

†
$ . Matrices ρ1 and ρ$ are as follows:

ρ1 =
1
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ρ$ =

1
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
2

1
2

1
2 − 1

2
0 1 0 0 − 1

2 −
1
2

1
2 − 1

2
0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0
1
2 − 1

2 0 0 1 0 1
2

1
2

1
2 − 1

2 0 0 0 1 − 1
2 −

1
2

1
2

1
2 0 0 1

2 − 1
2 1 0

− 1
2 −

1
2 0 0 1

2 − 1
2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we declare the states in the even positions to be accepting, but the
states in the odd positions to be rejecting. Therefore one must sum up the
diagonal entries that are in the even positions of the final density matrix to find
the probability that a given word is accepted.

In our example the final density matrix ρ$ is given in (3). It corresponds to
the input word “g$”, which is accepted with probability 1

8 (1 + 0 + 1 + 1) = 3
8

and rejected with probability 1
8 (1 + 2 + 1 + 1) = 5

8 . Note that the accepting and
rejecting probabilities sum up to 1.
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It is easy to see, that the words that do not belong to the language Ln are
rejected with certainty, because the matrix U$ρ0U

†
$ has all zeros in the even po-

sitions on the main diagonal. However, the words that belong to Ln are accepted
with the probability at least d

2n = cn
2n = c

2 , because all permutations are at least
at the distance d from the identity permutation.

It is also easy to see that any deterministic automaton that recognizes the
language Ln must have at least order(Gn) states. If the number of states is
less than order(Gn), then there are two distinct words u and v such that the
deterministic automaton ends up in the same state no matter which one of the
two words it reads. Since Gn is a group, for each word we can find an inverse,
that returns the automaton in the initial state (the only rejecting state). Since
u and v are different, they have different inverses and u ◦ u−1 is the identity
permutation and must be rejected, but v ◦ u−1 is not the identity permutation
and must be accepted – a contradiction. �


4 Super-Exponential Size Advantage

Now we wish to prove a theorem differing from Theorem 3 only in one way. In
this section we allow the alphabets of the languages Ln to grow with n.

Consider the following infinite sequence of languages. For every n take the
set Gn considered in Theorem 5. The language L′

n consists of all the words aa
(of the length 2) where a is a symbol for an arbitrary element from Gn. Hence
there are eΩ(n log n) letters in the alphabet of the language L′

n and equally many
words in L′

n.

Theorem 7. There is an infinite sequence of distinct integers n such that there
are languages L′

n such that there are quantum finite automata with mixed states
with 2n+1 states recognizing the language L′

n with probability 3
4 while any deter-

ministic finite automaton recognizing L′
n needs to have at least eO(nlnn) states.

Proof is similar to the proof of Theorem 6.
It would be nice to improve our theorem in the natural way by finding al-

gebraic groups Gn of n-permutations such that they are generated by a small
(constant) number of generating elements and at the same time the order of Gn

(the number of elements) would be superexponentially large with the respect to
n. This would give us a natural proof for Theorem 3. Unfortunately, there exists
a paper [17] by J.Kempe et al. where it is proven that large Hamming distance
between all the n-permutations in a group implies that the order of the group is
no more than exponential with the respect to n.

5 4-Letter Input Alphabet

We consider 2 algebraic groups in this Section. The set of all permutations of the
set 1, ..., n with algebraic operation ”product of permutations” can be considered
as the group G1. This group has two generating elements, the permutations
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(123 · · ·n) and (12)(3)(4) · · · (n). The other group G2 is defined as follows. Two
binary strings α1 and α2 , each one of the length nlog2n are taken and two real-
valued unitary matrices are constructed. The corresponding unitary operators
are rotations around axes depending, correspondingly, on α1 and α2. The angle
of rotation is a multiple of 2π

p where p is a prime slightly exceeding n3. The
inverses of these operators again are unitary, and their matrices are real-valued.
The group direct product G1×G2 is again a group G with 4 generating elements
and the elements of this group can be represented by n-dimensional unitary
operators. G has the following properties.

Property 1. For arbitrary fixed pair (α1, α2) distinct n-permutations generate
distinct unitary operators.

Property 2. For arbitrary fixed n-permutation distinct pairs (α1, α2) generate
distinct unitary operators.

Property 3. The n-permutation and the pair (α1, α2) is transformed into the
unitary operator described above by an algorithmic process.

Property 4. The n-permutation and the unitary operator can be transformed
into the pair (α1, α2) by an algorithmic process.

These properties will be used below to prove the main result, to prove
Theorem 3. At first we construct a quantum finite automaton with mixed states
having 2n states. This automaton has the following initial density matrix (we
use an 8× 8-matrix instead of formal description of n×n-matrix for the sake of
easier readability).

ρ0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8 0 0 0 1

8 0 0 0
0 1

8 0 0 0 1
8 0 0

0 0 1
8 0 0 0 1

8 0
0 0 0 1

8 0 0 0 1
8

1
8 0 0 0 1

8 0 0 0
0 1

8 0 0 0 1
8 0 0

0 0 1
8 0 0 0 1

8 0
0 0 0 1

8 0 0 0 1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
At every step an input letter ai (one of four possible input letters a1, a2, a3 or

a4) is read from the input. Hence the density matrix ρx is changed into U∗
i ρxUi.

Hence if x = x1x2x3 · · ·xt then the currentUx equals U∗
t U

∗
t−1 · · ·U∗

2U
∗
1 ρ0U1U2 · · ·

Ut−1Ut.
Let the matrix

Ux =

⎛⎜⎜⎜⎜⎝
u11 u12 · · · u1n

u21 u22 · · · u2n

u31 u32 · · · u3n

· · ·
un1 un2 · · · unn

⎞⎟⎟⎟⎟⎠
be the n×n-matrix corresponding to the input word x. We associate a 2n× 2n-
matrix Mx
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Mx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
· · ·
0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 u11 u12 · · · u1n

0 0 · · · 0 u21 u22 · · · u2n

0 0 · · · 0 u31 u32 · · · u3n

· · ·
0 0 · · · 0 un1 un2 u · · · unn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to it. We use the initial density matrix and the following property

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 u11 u12 u13 u14
0 0 0 0 u21 u22 u23 u24
0 0 0 0 u31 u32 u33 u34
0 0 0 0 u41 u42 u43 u44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8 0 0 0 1

8 0 0 0
0 1

8 0 0 0 1
8 0 0

0 0 1
8 0 0 0 1

8 0
0 0 0 1

8 0 0 0 1
8

1
8 0 0 0 1

8 0 0 0
0 1

8 0 0 0 1
8 0 0

0 0 1
8 0 0 0 1

8 0
0 0 0 1

8 0 0 0 1
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 u11 u21 u31 u41
0 0 0 0 u12 u22 u32 u42
0 0 0 0 u13 u23 u33 u43
0 0 0 0 u14 u24 u34 u44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8 0 0 0 u11

8
u21
8

u31
8

u41
8

0 1
8 0 0 u12

8
u22
8

u32
8

u42
8

0 0 1
8 0 u13

8
u23
8

u33
8

u43
8

0 0 0 1
8

u14
8

u24
8

u34
8

u44
8

u11
8

u12
8

u13
8

u14
8

1
8 0 0 0

u21
8

u22
8

u23
8

u24
8 0 1

8 0 0
u31
8

u32
8

u33
8

u34
8 0 0 1

8 0
u41
8

u42
8

u43
8

u44
8 0 0 0 1

8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
to justify the correspondence between the n × n-matrices Ux and the 2n × 2n-
matrices Mx at every moment. When all the input word is read the end-marker
$ comes in, the unitary matrix Mx corresponding to the end-marker $ is

M$ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 1√
2

0 0 0
0 1√

2
0 0 0 1√

2
0 0

0 0 1√
2

0 0 0 1√
2

0
0 0 0 1√

2
0 0 0 1√

2
1√
2

0 0 0 − 1√
2

0 0 0
0 1√

2
0 0 0 − 1√

2
0 0

0 0 1√
2

0 0 0 − 1√
2

0
0 0 0 1√

2
0 0 0 − 1√

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



Super-Exponential Size Advantage of Quantum Finite Automata 939

This matrix can be regarded as a block matrix with blocks of size 2 × 2. It is
worth to remember that

(
1√
2

1√
2

1√
2
− 1√

2

)(
a11 a12
a21 a22

)(
1√
2

1√
2

1√
2
− 1√

2

)
=

(
a11+a21+a12+a22

2
a11+a21−a12−a22

2
a11−a21+a12−a22

2
a11−a21−a12+a22

2

)
.

If the input word is such that the corresponding member of the free group G1
equals the empty word then the final density matrix becomes

ρfinal =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4 0 0 0 0 0 0 0
0 1

4 0 0 0 0 0 0
0 0 1

4 0 0 0 0 0
0 0 0 1

4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Otherwise the total of the first n elements on the main diagonal is less than 1.
At the end separate measurements of all states are performed. After that the

probabilities of all the accepting states are totaled, and the probabilities of all
the rejecting states are totaled. What is the probability of the acceptance in the
case when the member of the free group G1 does not equal the empty word?
It depends on the values of (α1 , α2). We will prove in the subsequent sections
that if the Kolmogorov complexity of (α1 , α2) is maximal then this probability
is MUCH less than 1.

6 Kolmogorov Complexity

The theorems in this section are well-known results in spite of the fact that it is
not easy to find exact references for all of them.

Definition 2. We say that the numbering Ψ = {Ψ0(x), Ψ1(x), Ψ2(x), . . .} of 1-
argument partial recursive functions is computable if the 2-argument function
U(n, x) = Ψn(x) is partial recursive.

Definition 3. We say that a numbering Ψ is reducible to the numbering η if
there exists a total recursive function f(n) such that, for all n and x, Ψn(x) =
ηf(n)(x).

Definition 4. We say that a computable numbering ϕ of all 1-argument partial
recursive functions is a Gödel numbering if every computable numbering (of
any class of 1-argument partial recursive functions) is reducible to ϕ.

Theorem. [7] There exists a Gödel numbering.
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Definition 5. We say that a Gödel numbering ϑ is a Kolmogorov numbering
if for arbitrary computable numbering Ψ (of any class of 1-argument partial
recursive functions) there exist constants c > 0, d > 0, and a total recursive
function f(n) such that:

1. for all n and x, Ψn(x) = ϑf(n)(x),
2. for all n, f(n) ≤ c · n + d.

Kolmogorov Theorem. [18] There exists a Kolmogorov numbering.

7 Back to Automata

We denote by U(τ, α) the pair of unitary matrices generated from the n-
permutation τ and the binary string α of the length 2|τ |log2|τ | (later divided
into the pair (α1, α2)) each one of the length |τ |log2|τ | .

There exist many distinct Kolmogorov numberings. We now fix one of them
and denote it by η. Since Kolmogorov numberings give indices for all partial re-
cursive functions, for arbitrary τ and n there is an i such that ηi(τ, n) = x.
Let i(τ, n) be the minimal i such that ηi(τ, n) = α. It is easy to see that
if x1 
= x2, then i(α1, n) 
= i(α2, n). We consider all binary words α cor-
responding to n and denote by α(n) the word α such i(α, n) exceeds i(β, n)
for all binary words β corresponding to n different from α. It is obvious that
i ≥ 22n(log2n)−1.

Until now we considered generating matrices U(τ, α) for independently chosen
τ and α. From now on we consider only α corresponding to i(τ, n). We wish to
prove that if n is sufficiently large, then Hamming distances between the vectors
1
n ,

1
n ,

1
n , · · · ,

1
n and a11, a22, · · · , ann in the matrix ρfinal exceeds 1

18 .
We introduce a partial recursive function µ(z, n) defined as follows. Above

when defining U(τ, α) we considered auxiliary function U(τ, α). To define µ(z, n)
we consider all binary words α of the length 2|τ |log2|τ |. If z is not a binary word
of such a length, then µ(z, n) is not defined. If z is a binary word of length
2|τ |log2|τ |, then we consider all α ∈ {0, 1}2|τ |log2|τ | such that U(τ, α) = z. If
there are no such α, then µ(z, n) is not defined. If there is only one such α, then
µ(z, n) = α.

If there are more than two such x, then µ(z, n) is not defined.
Now we introduce a computable numbering of some partial recursive func-

tions. This numbering is independent of n.
For each n (independently from other values of n) we order the set of all the

22|τ |log2|τ | binary words z of the length 2|τ |log2|τ | : z0, z1, z2, . . . , z22|τ|log2|τ|−1.
We define z0 as the word 000 . . .0. The words z1, z2, . . . , z22p are words with
exactly one symbol 1. We strictly follow a rule ”if the word zi contains less
symbols 1 than the word zj , then i < j”. Words with equal number of the
symbol 1 are ordered lexicographically. Hence z22p−1 = 111 . . .1.
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For each n, we define w = |τ |log2|τ | and

Ψ0(n) = µ(z0, n)
Ψ1(n) = µ(z0, n)
Ψ2(n) = µ(z1, n)
. . .
Ψ22w+1−2(p) = µ(z22w−1, n)
Ψ22w+1−1(p) = µ(z22w−1, n)

For j ≥ 22w+1, Ψj(w) is undefined.
We have fixed a Kolmogorov numbering η and we have just constructed a

computable numbering Ψ of some partial recursive functions.

Lemma 2. There exist constants c > 0 and d > 0 (independent of p) such that
for arbitrary i there is a j such that

1. Ψi(t) = ηj(t) for all t, and
2. j ≤ ci + d.

Proof. Immediately from Kolmogorov Theorem.

The rest of the proof of Theorem 3 is from the contrary. Suppose that n is suf-
ficiently large (because Kolmogorov numbering is optimal only for large lengths
of the words) and for α(n) the value of a11 + a22 + · · ·+ ann had exceeded 17

18 in
the unitary matrix U(τ, α). Then our α could be uniquely and algorithmically
be described in more concise way than our obvious assertion i(τ) ≥ 2nlog2n− 1
allows. Contradiction.

This way we have proved that the languages Ln can be recognized by 2n-state
quantum finite automata with mixed states so that every word in the language
is accepted with the probability 1 and every word not in Ln is accepted with
probability less than 17

18 . If we add one more state to the automata we can get
automata with a cut-point 1

2 and a uniformly bounded error.
It remains only to find the complexity (the number of states) of deterministic

finite automata recognizing these languages. Theorem 5 above shows that there
are eO(nlnn) n-permutations τj with pairwise Hamming distances no less than
const.n. These n-permutations can be constructed using no more than n3 gen-
erating elements (123 · · ·n) and (12)(3)(4) · · · (n). Input words corresponding to
these eO(nlnn) n-permutations τj should be remembered by distinct states of any
deterministic finite automaton recognizing the language.
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