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Abstract  Conservation genetic studies make use of molecular methods to obtain 
valuable information which help optimizing management strategies especially 
for threatened species. This chapter presents an overview of different molecular 
markers (microsatellites, AFLPs, RFLPs, RAPDs, mtDNA, allozymes) and their 
applications in conservation and genetic studies. Microsatellites have shown to be, 
though expensive, currently the most popular genetic marker as the high degree 
of polymorphism is ideal to study small geographical scales of species. RFLPs, 
RAPDs and allozymes still represent useful markers for studies of both, small and 
larger geographical scales. Low degree of polymorphism, no detection of alleles 
and low reproducibility characterize some drawbacks. To examine phylogeography 
MtDNA seems to be the best choice.

1 � Introduction

Conservation studies rely increasingly on molecular methods to evaluate species 
“status quo,” historical distributions (biogeographical traits), and to develop man-
agement strategies for the restoration of populations. Since the invention of the 
polymerase chain reaction in the late 1980s (Mullis et al. 1996), further possibilities 
have opened up to apply genetic tools for diverse biological methods (see Fig. 1). 
Zhang and Hewitt (2003) revealed that, among the 1,758 primary papers and primer 
notes published between 1994 and 2003 in the journal of Molecular Ecology, 29.8 
and 42.5% were indexed with mitochondrial and microsatellite DNA markers, 
respectively. Nevertheless, many more genetic methods exist to answer different 
ecological and genetic questions. Scientists, unfamiliar with the most commonly 
used genetic methods in the “conservation genetics field,” tend to get lost in the 
different molecular techniques as each has its own advantages and disadvantages, 
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and can be applied in diverse forms. However, all these molecular techniques aim 
to detect genetic variation and differences within species, populations, or even 
individuals. This is generally achieved by comparing special DNA sections 
“marked” by the individual genetic method.

This chapter aims to present an overview of the most commonly used molecular 
methods during the last two decades (microsatellites, AFLPs, RFLPs, RAPDs, 
mtDNA, and allozymes) and the variety of ecological questions which can be 
answered with each method.

2 � Molecular Markers and Their Application

2.1 � Microsatellites

Microsatellites consist of short, tandemly repeated sequences of 1–6 base pairs 
within the nucleus of the cell (Palo et al. 1995; Ashley 1999). They have an elevated 
rate of mutation due to “slipped-strand mispairing” (Levinson and Gutman 1987; 
Palo et al. 1995; Eisen 1999), resulting in a high proportion of polymorphism even 
between closely related lines (Semagn et al. 2006 and references therein). Resulting 
variations (alleles) are scored through differing banding patterns. This marker is 
neutral to selection and is inherited co-dominantly as a standard Mendelian trait 
(Meglécz and Solignac 1998; Ashley 1999; Luikart and England 1999).

Microsatellites are the most commonly applied molecular marker in ecological 
research (Fig. 1). Their use in ecology and conservation studies is very broad and 
ranges from the identification of population genetic differentiation, demographic 

Fig.  1  Number of publications (selected biological subject) between 1970 and 2007 employing 
mtDNA, Allozymes, Microsatellites, RFLPs, RAPDs and AFLPs found via ISI web of knowledge
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changes (e.g., bottlenecks, changes in effective population sizes (Ne), genetic drift), 
to parentage analysis and the definition of management units (e.g., Jones and Ardren 
2003; Wan et al. 2004; Leberg 2005; Olivieri et al. 2008; Orsini et al. 2008). Minimal 
preserved or dry samples are suitable for the microsatellite technique, allowing the 
analysis of ancient population patterns and genetic changes over time (Bruford and 
Wayne 1993; Meglécz and Solignac 1998). However, microsatellites may have 
limited phylogenetic value due to homoplasy (Goldstein and Pollock 1997; Doyle 
et al. 1998; Selkoe and Toonen 2006). An informative review about microsatellites 
and their drawbacks can be found in the study by Selkoe and Toonen (2006).

2.2 � Mitochondrial DNA

Mitochondrial DNA (mtDNA) is an extra-chromosomal genome in the cell mito-
chondria that resides outside of the nucleus, and is inherited from mother with no 
paternal contribution (Avise 1991). The obtained PCR products are sequenced and 
banding patterns analyzed.

The theory of relatively constant mutation rates (molecular clock) (Lushai et al. 
2003) is used to estimate time scales in which populations are split up, allowing the 
detection of, e.g., species dispersals and dispersal centers (Riddle and Honeycutt 
1990; Rocha et al. 2008). Thus, genetic variation can be investigated on a broader 
geographical scale to unravel the historic (historical or recent) barriers to gene flow 
(Avise 2000) and genetic basis of speciation and evolution of species and genera. Due 
to higher evolutionary rates of mtDNA relative to the nuclear genome (Wan et  al. 
2004 and references therein), this marker is preferred in constructing phylogenies and 
inferring evolutionary history, and is therefore ideal for within- and between-species 
comparisons (DeYoung and Honeycutt 2005; Behura 2006). Furthermore, mtDNA is 
believed to be the best tool for resolving taxonomic problems (Wan et  al. 2004), 
identifying regions of endemism (Proudfoot et al. 2006), and Evolutionary Significant 
Units (ESUs) (Wan et al. 2004). Drawbacks of mtDNA analyses include hybridiza-
tion, introgression, and incomplete lineage sorting. Moreover, mtDNA is of little use 
in investigating the recent loss of genetic variation and any individual-level events 
such as identity, individual dispersal, and mating systems (Wan et al. 2004).

2.3 � Allozyme

Allozymes are enzyme variants due to allelic differences and can be visualized through 
protein electrophoresis. This technique was developed to quantify the genetic 
and geographic variation in wildlife populations, and it remains a cost-effective and 
straightforward method (Avise 1994). Genetic variations caused by mutations are 
expressed as amino acid replacements due to changes in protein compositions, and are 
resolved as bands (alleles) on electrophoretic gels (DeYoung and Honeycutt 2005).
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Allozymes have been important in plant biosystematics (see van der Bank et al. 
2001) and are suitable for the detection of genetic variation within and between 
populations (Steiner and Joslyn 1979; Bartlett 1981; Loxdale et al. 1985). Due to a 
relatively low average heterozygosity, the application of this marker is suitable for 
geographically broader scales of extant species (van der Bank et al. 2001; Schmitt 
2007). Even the analysis of parentage as single-locus polymorphism is sometimes 
possible with this marker (Chakraborty and Hedrick 1983; Meagher and Thompson 
1986). Similarly, levels of hybridization, introgression, gene flow, and polyploidy 
can be studied. On the contrary, allozymes have limited phylogenetic value (e.g., 
Lowe et al. 2004 and references therein), represent phenotypic traits, and might be 
subject to selection. Another significant drawback is that only fresh material can be 
used to extract the proteins.

2.4 � Multilocus DNA Marker Systems

Three of the commonly used multilocus DNA marker systems in evolutionary, 
taxonomic, ecological, phylogenetic, and genetic studies are RFLPs, RAPDs, and 
AFLPs (DeYoung and Honeycutt 2005; Behura 2006; Agarwal et  al. 2008). All 
these markers generate banding patterns that are scored for variation. In all three 
markers, the detected variation is caused by either point mutation within recogni-
tion sequences as well as insertions and/or deletions between the recognition sites, 
which may lead to an underestimation of genetic variation (DeYoung and Honeycutt 
2005). Since none of the described multilocus markers is specific to a certain target 
organism DNA, there is a risk of false variation generated by contaminations 
(Sunnucks 2000). Furthermore, dominance of some of the markers (RAPD and 
AFLP) does not allow for a detection of alleles.

Depending on the sampling strategy, these markers can cover a wide spatial 
range, allowing for a detailed fine scale analysis of population structure between 
individuals, especially with AFLPs (Meudt and Clarke 2007), up to taxonomically 
and spatially coarse studies (e.g., Despres et  al. 2003). While RFLP, RAPD, or 
AFLP are unsuitable to estimate mutation rates or alike, and are thus inappropriate 
for temporal studies (i.e., evolutionary), they provide a detailed image of the present 
species or population genetic state.

2.4.1 � RFLP: Restriction Fragment Length Polymorphism

Restriction fragment length polymorphisms (Botstein et al. 1980) are highly poly-
morphic, co-dominantly inherited markers based on the use of restriction enzymes 
which can be applied as single and multilocus probes with the banding patterns 
resulting from multilocus probes.

The technique generates highly reproducible banding patterns and is character-
ized by a high heritability (Lowe et al. 2004; Semagn et al. 2006; Agarwal et al. 
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2008). It is used in areas such as population and conservation genetics, diversity 
(e.g., Apostolidis et al. 2008), phylogenetics (e.g., Hu et al. 2008), linkage mapping 
(e.g., Tanksley et al. 1989), or cultivar identification (e.g., Busti et al. 2004), though 
their main application is within human genetics (Weising et al. 2005). As RFLPs 
require relatively large amounts of DNA, they have recently been replaced by PCR-
RFLPs or AFLP analyses in most ecological studies.

2.4.2 � RAPD: Random Amplified Polymorphic DNA

The dominant marker system RAPD, introduced by Williams et al. (1990), is based 
on arbitrarily amplifying DNA sequences during PCR, without prior knowledge of 
the organism sequence, using 10 nucleotide primers (Lowe et  al. 2004, Weising 
et al. 2005). One of the main problems associated with RAPDs is their susceptibil-
ity to changes in reaction conditions leading to reproducibility problems (Jones 
et al. 1997; Agarwal et al. 2008; Assmann et al. 2007). Due to these problems, some 
peer-reviewed journals (e.g., Molecular Ecology) have recently changed their pol-
icy and publish RAPD data only in exceptional cases.

RAPDs have been used in many fields, among them are studies on population 
and conservation genetics (e.g., Kim et  al. 2008), phylogenetics (e.g., Simmons 
et al. 2007), and linkage mapping (e.g., Sun et al. 2008).

2.4.3 � AFLP: Amplified Fragment Length Polymorphism

AFLPs are dominant markers based on a combination of the RFLP and PCR tech-
niques and were developed by Vos et  al. (1995). Also, they do not require any 
previous sequence information and are based on the digestion of DNA by restric-
tion enzymes and adapter ligation (resulting in universal primer binding sites), with 
two subsequent PCRs using specific primers. AFLPs are highly reproducible 
(Meudt and Clarke 2007; Agarwal et  al. 2008) and primers can be combined to 
yield a large set of combinations, though this may also lead to a clustering of mark-
ers with certain restriction enzymes (Keim et al. 1997; Young et al. 1999; Saal and 
Wricke 2002).

AFLPs find wide application in studies on population genetics, diversity, and 
differentiation (e.g., Abbott et al. 2008; Tang et al. 2008), phylogenetics and tax-
onomy (e.g., Brouat et al. 2004; Schenk et al. 2008), hybridization (e.g., Volkova 
et  al. 2008), linkage, gene, and genome mapping (e.g., Olmstead et  al. 2008; 
Radoev et al. 2008), assignments (e.g., Yang et al. 2008) and kinship (e.g., Hardy 
et al. 2006). Although they are dominant markers, the large number of loci gives 
them a high statistical power (Meudt and Clarke 2007). Therefore, they are well 
suited for intraspecific studies (distinguishing between closely related individuals), 
where many loci are necessary (i.e., high genomic heterogeneity, low genetic vari-
ability), in polyploids, and in systems with hybridization occurring (Meudt and 
Clarke 2007).
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3 � Conclusions

The molecular methods presented in this chapter have question-related advantages 
and disadvantages (see Table 1). Before choosing a marker, it is essential to evalu-
ate (1) which ecological question ought to be answered, (2) the spatial and temporal 
scales which ought to be explored, and (3) how exhaustive populations can be 
sampled (sample design; for detailed sample strategies, see Lowe et al. (2004), and 
(4) the available financial resources. Furthermore, the popularity of a specific 
marker might be important for the acceptance in a high ranking peer-reviewed 
journal, even though many markers could be suitable to answer the same question 
(Assmann et al. 2007).

In conclusion, we can say that microsatellites are currently one of the most 
popular genetic markers in ecological studies (see Fig. 1). Especially, the elevated 
rate of polymorphism is ideal to study small geographical scales of extant species 
(e.g., Finger et al. 2009). The use of allozyme markers is decreasing since several 
years (Fig. 1), although the low costs allow a high throughput for studying large 
geographical scales of extant species (Schmitt 2007). Similarly, AFLPs, RAPDs, 
and RFLPs can be used to study small to large geographical scales. These markers 
have their own drawbacks (AFLPs: no detection of alleles, RAPDs: low reproduc-
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Fig. 2  Different time and geographical scales applicable using mtDNA, Allozymes, Microsatellites, 
RFLPs, RAPDs, and AFLPs
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ibility, RFLPs: high amount of DNA required, see Table 1). Finally, mtDNA is the 
best choice to study species history and phylogeography on broad geographical 
scales or deeper timescales (see Fig. 2).
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