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Abstract. Discrete Set Handling and its application to permutative problems is presented in this
chapter. Discrete Set is applied to Differential Evolution Algorithm, in order to enable it to solve
strict-sence combinatorial problems. In addition to the theoretical framework and description,
benchmark Flow Shop Scheduling and Traveling Salesman Problems are solved. The results are
compared with published literature to illustrate the effectiveness of the developed approach. Also,
general applications of Discrete Set Handling to Chaotic, non-linear and symbolic regression
systems are given.

7.1 Introduction

In recent years, a broad class of algorithms has been developed for stochastic optimiza-
tion, i.e. for optimizing systems where the functional relationship between the indepen-
dent input variables x and output (objective function) y of a system S is not known.
Using stochastic optimization algorithms such as Genetic Algorithms (GA), Simulated
Annealing (SA) and Differential Evolution (DE), a system is confronted with a random
input vector and its response is measured. This response is then used by the algorithm
to tune the input vector in such a way that the system produces the desired output or
target value in an iterative process.

Most engineering problems can be defined as optimization problems, e.g. the find-
ing of an optimal trajectory for a robot arm, the optimal thickness of steel in pressure
vessels, the optimal set of parameters for controllers, optimal relations or fuzzy sets
in fuzzy models, etc. Solutions to such problems are usually difficult to find, since
their parameters usually include variables of different types, such as floating point or
integer variables. Evolutionary algorithms (EAs), such as the Genetic Algorithms and
Differential Evolutionary Algorithms, have been successfully used in the past for these
engineering problems, because they can offer solutions to almost any problem in a sim-
plified manner: they are able to handle optimizing tasks with mixed variables, including
the appropriate constraints, and they do not rely on the existence of derivatives or aux-
iliary information about the system, e.g. its transfer function.

Evolutionary algorithms work on populations of candidate solutions that are evolved
in generations in which only the best−suited − or fittest − individuals are likely to
survive. This article introduces Differential Evolution, a well known stochastic opti-
mization algorithm. It explains the principles of permutation optimization behind DE
and demonstrates how this algorithm can assist in solving of various permutation opti-
mization problems.
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Differential Evolution, which can also works on a population of individuals, is based
on a few simple arithmetic operations. Individuals are generated by means of a few
randomly selected individuals.

In the following text the principle of the DE algorithm and permutative optimiza-
tion will be explained. The description is divided into short sections to increase the
understandability of principles of DE and permutative optimization.

7.2 Permutative Optimization

A permutative optimization problem is one, where the solution representation is ordered
and discrete; implying that all the values in the solutions are firstly unique, and secondly
concrete.

In the general sense, if a problem representation is given as n, then the solution
representation is always given as some combination of range {1, ....,n}. For example,
given a problem of size 4, the solution representation is {1,2,3,4} and all its possible
permutative combinations.

Two of the problems solved in this chapter, which are of this nature, are the Traveling
Salesman Problem (TSP) and Flow Shop Scheduling (FSS) Problems as discussed in
the following sections. The third subsection describes the 2 Opt Local search, which is
a routine embedded in this heuristic to find better solutions within the neighbourhood
of a solution.

7.2.1 Travelling Salesman Problem

A TSP is a classical combinatorial optimization problem. Simply stated, the objective
of a travelling salesman is to move from city to city, visiting each city only once and
returning back to the starting city. This is called a tour of the salesman. In mathematical
formulation, there is a group of distinct cities {C1,C2,C3, ...,CN} , and there is given for
each pair of city

{
Ci,Cj

}
a distance d

{
Ci,Cj

}
. The objective then is to find an ordering

π of cities such that the total time for the salesman is minimised. The lowest possible
time is termed the optimal time. The objective function is given as:

N−1

∑
i=1

d
(
Cπ(i),Cπ(i+1)

)
+ d

(
Cπ(N),Cπ(1)

)
(7.1)

This quality is known as the tour length. Two branches of this problem exist, sym-
metric and asymmetric. A symmetric problem is one where the distance between two
cities is identical, given as: d

{
Ci,Cj

}
= d

{
Cj,Ci

}
for 1 ≤ i, j ≤ N and the asymmetric

is where the distances are not equal. An asymmetric problem is generally more difficult
to solve.

The TSP has many real world applications; VSLA fabrication [7] to X-ray crystal-
lography [1]. Another consideration is that TSP is NP-Hard as shown by [12], and so
any algorithm for finding optimal tours must have a worst-case running time that grows
faster than any polynomial (assuming the widely believed conjecture that P �= NP).

TSP has been solved to such an extent that traditional heuristics are able to find
good solutions to merely a small percantage error. It is normal for the simple 3-Opt
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heuristic typically getting with 3-4% to the optimal and the variable-opt algorithm
of [20] typically getting around 1-2%.

The objective for new emerging evolutionary systems is to find a guided approach to
TSP and leave simple local search heuristics to find better local regions, as is the case
for this chapter.

7.2.2 Flow Shop Scheduling Problem

A flow shop is a scheduling problem, typical for a manufacturing floor. The terminol-
ogy for this problem is typical of a manufacturing sector. Consider n number of jobs
j (i = 1, ...n), and a number of machines M: M ( j = 1, ....,m).

A job consists of m operation and the jth of each job must be processed on machine
j. So, one job can start on machine j if it is completed on machine j-1 and if machine j is
free. Each job has a known processing time pi, j. The operating sequence of the jobs is
the same on all the machines. If one job is at the ith position on machine 1, then it will
be on the ith position on all machines.

The objective function is then to find the minimal time for the completion of all the
jobs on all the machines. A job Ji is a sequence of operations, having one operation for
each of the M machines.

1. Ji = {Oi1,Oi2,Oi3, ..,OiM}, where Oi j represents the jth operation on Ji.
2. Oi j operation must be processed on Mj machine.
3. for each operation Oi j, there is a processing time pi, j.

Now let a permutation be represented as {∏1,∏2, ...,∏N}. The formulation of the
completion time for C (∏i, j), for the ith job on the jth machine can be given as:

C (∏1,1) = p∏,1
C (∏1,1) = C (∏i−1,1)+ p∏,1, i = 2, ...,N
C (∏1, j) = C (∏1, j − 1)+ p∏1, j, i = 2, ...,M
C (∏1, j) = max{C (∏i−1,1) ,C (∏1, j − 1)}+ p∏1, j, i = 2, ...,N; j = 2, ..,M

(7.2)

The makespan or the completion time is given as the C (∏N ,M), as the completion
time of the last job in the schedule on the last machine.

7.2.3 2 Opt Local Search

A local search heuristic is usually based on simple tour modifications (exchange heuris-
tics). Usually these are specified in terms of the class of operators (exchanges/moves),
which is used to modify one tour into another. This usually works on a feasible tour,
where a neighborhood is all moves, which can be reached, in a single move. The tour
iterates till a better tour is reached.

Among simple local search algorithms, the most famous are 2−Opt and 3−Opt. The
2-Opt algorithm was initially proposed by [2] although it was already suggested by [5].
This move deletes two edges, thus breaking the tour into two paths, and then reconnects
those paths in the other possible way as given in Fig 7.1.
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Fig. 7.1. 2-Opt exchange tour

7.3 Discrete Set Handling and Its Application

7.3.1 Introduction and Principle

In its canonical form, DE is only capable of handling continuous variables. However,
extending it for optimization of integer variables is rather easy. Only a couple of sim-
ple modifications are required. First, for evaluation of the cost-function, integer values
should be used. Despite this, the DE algorithm itself may still work internally with
continuous floating-point values. Thus,

fcost (yi) i = 1, ..,nparam

where :

yi =
{

xi for continuous variables
INT (xi) for integer variables

xi ∈ X

(7.3)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation. Trun-
cated values are not assigned elsewhere. Thus, EA works with a population of continu-
ous variables regardless of the corresponding object variable type. This is essential for
maintaining the diversity of the population and the robustness of the algorithm.

Secondly, in case of integer variables, the population should be initialized as follows:

P(0) = x(0)
i, j = ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i = 1, ...,npop, j = 1, ...,nparam

(7.4)

Additionally, the boundary constraint handling for integer variables should be per-
formed as follows:
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x(ML+1)
i, j =

⎧⎪⎪⎨
⎪⎪⎩

ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i f INT
(

x(ML+1)
i, j

)
< x(Low)

j ∨ INT
(

x(ML+1)
i, j

)
> x(High)

j

x(ML+1)
i, j otherwise

where,
i = 1, ...,npop, j = 1, ...,nparam

(7.5)

Discrete values can also be handled in a straight forward manner. Suppose that the
subset of discrete variables, X(d), contains i elements that can be assigned to variable x:

X (d) = x(d)
i i = 1, ..., l where x(d)

i < x(d)
i+1 (7.6)

Instead of the discrete value xi itself, its index, i, can be assigned to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained to
range {1,2,3, ..,N}. In order to evaluate the objective function, the discrete value, xi,
is used instead of its index i. In other words, instead of optimizing the value of the
discrete variable directly, the value of its index i is optimized. Only during evaluation
is the indicated discrete value used. Once the discrete problem has been converted into
an integer one, the previously described methods for handling integer variables can be
applied. The principle of discrete parameter handling is depicted in Fig 7.2.

Fig. 7.2. Discrete parameter handling

7.3.2 DSH Applications on Standard Evolutionary Algorithms

DSH has been used in many previous experiments in standard EAs as well as in ge-
netic programming like techniques. An example of the usage of DSH in mechanical
engineering problem in C++ language in given in Fig 7.3.

Here, only the set of discrete values is described in order to show that DSH is basi-
cally a field of values (real values) and individuals in integer form serve like pointers to
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�� Mixed problem �Integer � Continuous � Discrete� � Case B ������������������
�� New Ideas in Optimization � Table 9 : Allowable spring steel wire diameters
�� for the coil spring design problem
discrete�0� � 0.009; discrete�1� � 0.0095; discrete�2� � 0.0104; discrete�3� � 0.0118;
discrete�4� � 0.0128; discrete�5� � 0.0132; discrete�6� � 0.014; discrete�7� � 0.015;
discrete�8� � 0.0162; discrete�9� � 0.0173; discrete�10� � 0.018; discrete�11� � 0.020;
discrete�12� � 0.023; discrete�13� � 0.025; discrete�14� � 0.028; discrete�15� � 0.032;
discrete�16� � 0.035; discrete�17� � 0.041; discrete�18� � 0.047; discrete�19� � 0.054;
discrete�20� � 0.063; discrete�21� � 0.072; discrete�22� � 0.080; discrete�23� � 0.092;
discrete�24� � 0.105; discrete�25� � 0.120; discrete�26� � 0.135; discrete�27� � 0.148;
discrete�28� � 0.162; discrete�29� � 0.177; discrete�30� � 0.192; discrete�31� � 0.207;
discrete�32� � 0.225; discrete�33� � 0.244; discrete�34� � 0.263; discrete�35� � 0.283;
discrete�36� � 0.307; discrete�37� � 0.331; discrete�38� � 0.362; discrete�39� � 0.394;
discrete�40� � 0.4375; discrete�41� � 0.500;

Fig. 7.3. C++ DSH code

#include <stdlib.h>

int  tempval,MachineJob[25],Cmatrix[5][5];
int loop1,loop2;

//in C language is [0][0] the first item of defined field i.e. [1][1] of 
normaly defined matrix
MachineJob[0]=5;MachineJob[1]=7;MachineJob[2]=4;MachineJob[3]=3;MachineJob[4]=6;
MachineJob[5]=6;MachineJob[6]=5;MachineJob[7]=7;MachineJob[8]=6;MachineJob[9]=7;
MachineJob[10]=7;MachineJob[11]=8;MachineJob[12]=3;MachineJob[13]=8;MachineJob[14]=5;
MachineJob[15]=8;MachineJob[16]=6;MachineJob[17]=5;MachineJob[18]=5;MachineJob[19]=8;
MachineJob[20]=4;MachineJob[21]=4;MachineJob[22]=8;MachineJob[23]=7;MachineJob[24]=3;

for(loop1=0;loop1<25;loop1++)
{

   tempval=MachineJob[loop1];
MachineJob[loop1]=MachineJob[getIntPopulation(0,Individual)];

   MachineJob[getIntPopulation(0,Individual)]=tempval;
   };

//Competition time for all jobs on machine 1
Cmatrix[0][0]=MachineJob[0];
Cmatrix[0][1]=MachineJob[0]+MachineJob[1];
Cmatrix[0][2]=MachineJob[0]+MachineJob[1]+MachineJob[2];
Cmatrix[0][3]=MachineJob[0]+MachineJob[1]+MachineJob[2]+MachineJob[3];
Cmatrix[0][4]=MachineJob[0]+MachineJob[1]+MachineJob[2]+MachineJob[3]+MachineJob[4];

//Competition time jobs 1 on all machines
Cmatrix[1][0]=MachineJob[0]+MachineJob[5];
Cmatrix[2][0]=MachineJob[0]+MachineJob[5]+MachineJob[10];
Cmatrix[3][0]=MachineJob[0]+MachineJob[5]+MachineJob[10]+MachineJob[15];
Cmatrix[4][0]=MachineJob[0]+MachineJob[5]+MachineJob[10]+MachineJob[15]+

MachineJob[20];

for(loop1=1;loop1<5;loop1++)
for(loop2=1;loop2<5;loop2++)

Cmatrix[loop1][loop2]=max(Cmatrix[loop1-1][loop2],Cmatrix[loop1][loop2-1])+
MachineJob[5*loop1+loop2];

CostValue=Cmatrix[4][4];

Fig. 7.4. DSH FSS example

that field. A more complex example from FSS is now described in Fig 7.4. Discrete set
has the name MachineJob and contains different values. Individuals again serve like
an index.

More interesting applications of DSH can be found in genetic programming like
techniques.
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7.3.3 DSH Applications on Class of Genetic Programming Techniques

The term symbolic regression represents a process during which measured data sets are
fitted such thereby a corresponding mathematical formula is obtained in an analytical
way. An output of the symbolic expression could be, for example, x2 + y3/K, and the
like. For a long time, symbolic regression was a domain of human calculations but in
the last few decades it involves computers for symbolic computation as well.

The initial idea of symbolic regression by means of a computer program was pro-
posed in Genetic Programming (GP) [8, 9]. The other approaches are Grammati-
cal Evolution (GE) developed in [19, 13] and Analytic Programming (AP) in [27].
Oher interesting investigations using symbolic regression were carried out in [6] on
Artificial Immune Systems and Probabilistic Incremental Program Evolution (PIPE),
which generates functional programs from an adaptive probability distribution over
all possible programs. As an extension of GE to the another algorithms is also [14],
where DE was used with the GE. Symbolic regression, generally speaking, is a pro-
cess which combines, evaluates and creates more complex structures based on some
elementary and noncomplex objects, in an evolutionary way. Such elementary ob-
jects are usually simple mathematical operators (+,−,∗, ...), simple functions (sin,
cos, And, Not,.), user-defined functions (simple commands for robots − MoveLeft,
TurnRight,.), etc.

An output of symbolic regression is a more complex object (formula, function, com-
mand,.), solving a given problem like data fitting of the so-called Sextic and Quintic
problem described by Equation 7.7) [10, 26], randomly synthesized function by Equa-
tion 7.8 [26], Boolean problems of parity and symmetry solution (basically logical cir-
cuits synthesis) by Equation 7.9) [11, 27], synthesis of Chaos by utilizing DSH and
Evolutionary Algorithms [28] given in Table 7.1 and in Figs 7.7 − 7.10.

Synthesis of quite complex robot control command by Equation 7.10 [10, 15] is
also accomplished with DSH. Equation 7.7 − 7.10 mentioned are just a few samples
from numerous repeated experiments done by AP, which are used to demonstrate how
complex structures can be produced by symbolic regression in general for different
problems.

x

(
K1 +

(
x2K3

)
K4 (K5 + K6)

)
• (−1 + K2 + 2x(−x − K7)) (7.7)

√
t

(
1

log(t)

)sec−1(1.28)

logsec−1(1.28) (sinh(sec(cos(1)))) (7.8)

Nor��Nand�Nand�B �� B, B && A�, B�� && C && A && B,
Nor��� C && B && A �� � A && C && B �� � C && � B && � A� &&
�� C && B && A �� � A && C && B �� � C && � B && � A� ��
A && �� C && B && A �� � A && C && B �� � C && � B && � A�,
�C �� � C && B && A �� � A && C && B �� � C && � B && � A� && A��

(7.9)
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Fig. 7.5. Principle of the general functional set

TreeForm�IfFoodAhead�Move, Prog3�IfFoodAhead�Move, Right�,
Prog2�Right, Prog2�Left, Right��,
Prog2�IfFoodAhead�Move, Left�, Move����

(7.10)
The final method described here and used for experiments is called Analytic Pro-

gramming (AP), which has been compared to GP with very good results (see, for
example, [26, 15, 27]) or visit the online univeristy website [http://www.fai.utb.cz/
people/zelinka/ap].

The basic principles of AP were developed in 2001 and first published in [24, 25].
AP is also based on the set of functions, operators and terminals, which are usually
constants or independent variables alike, for example:

1. functions: sin, tan, tanh, And, Or
2. operators: +, -, *, /, dt,
3. terminals: 2.73, 3.14, t,

All these mathematical objects create a set, from which AP tries to synthesize an
appropriate solution. Because of the variability of the content of this set, it is called a
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Fig. 7.6. Main principles of AP based on DSH

Fig. 7.7. Bifurcation diagram, exhibiting chaos and generated by artificially synthesied equations

general functional set (GFS). The structure of GFS is nested, i.e., it is created by sub-
sets of functions according to the number of their arguments (The content of GFS is
dependent only on the user. Various functions and terminals can be mixed together. For
example, GFSall is a set of all functions, operators and terminals, GFS3arg is a subset
containing functions with maximally three arguments, GFS0arg represents only termi-
nals, etc. (see Fig 7.5).
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Table 7.1. Selected solutions synthesized by EA and DSH

Equation Bifurcations and
chaos

A− x

(
−A+

x
(− A

x + x+Ax
)

A+ x2

) {0.4}

A
(
2A−2x2 −3x(A− x−Ax)

)
−A+ x− x2

{0.1,0.13}
{0.8,1.2}

−x− 1−2A+2x+2A2x

1−A+ A2−x
x + x

{0.3,0.5}

x−A
(
A− x−2x2

)

−A− x+Ax2 −A
(
−A+ A3

x +2x
)

{0.4,0.5}

2A(−2A+2x)

x+ 1+A2+x
x

{0.4}

x

(3A+2x)
(
−1−A− x+ x(A+2x)

A2+x

)
{0.12,0.23}
{0.3,0.36}

Fig. 7.8. Another bifurcation diagram
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Fig. 7.9. Synthesized logical circuit by means of EA and DSH

Fig. 7.10. Realization of logical circuit from Equation 7.7

AP, is a mapping from set of individuals into set of posssible programs. Individuals
in population and used by AP consist of non-numerical expressions (operators, func
tions, .), as described above, which are in the evolutionary process represented by their
integer position indexes (Fig 7.6). This index then serves as a pointer into the set of
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expressions and AP uses it to synthesize the resulting function-program for cost func-
tion evaluation.

AP was evaluated in three versions. These three versions utilize for program syn-
thesis the same set of functions, terminals, etc., as in GP [9, 10]. The second version
labelled as APmeta (the first version, APbasic) is modified in the sense of constant estima-
tion. For example, the so-called sextic problem was used in [9] to randomly generate
constants, whereas AP here uses only one, called K, which is inserted into Equation
7.11 below at various places by the evolutionary process. When a program is synthe-
sized, all Ks are indexed as K1, K2,. , Kn to obtain Equation 7.12 in the formula, and
then all Kn are estimated by using a second evolutionary algorithm, the result of which
can be, for example, Equation 7.13. Because EA (slave) works under EA (master), i.e.,
EAmaster → program → K indexing → EAslave → estimation of Kn, this version is called
AP with metaevolution, denoted as APmeta.

x2 + K
πK (7.11)

x2 + K1

πK2
(7.12)

x2 + 3.56
π−229 (7.13)

Because this version is quite time-consuming, APmeta was further modified to the
third version, which differs from the second one in the estimation of K. This is accom-
plished by using a suitable method for nonlinear fitting (denoted APn f ). This method has
shown the most promising performance when unknown constants are present. Results
of some comparative simulations can be found in [25, 26, 27].

7.4 Differential Evolution in Mathematica Code

Differential Evolution used in all experiments reported in this chapter has been based
on the Mathematica Programming environment. The aim of this part is to describe the
structure of the DE code and final code development. Source codes reported here are
only a part of fully developed notebook in environment Mathematica. Only the main
ideas and some parts of the final code are described here.

For the beginning of DE code development, it is important to prepare the popula-
tion and set all DE algorithm parameters like F, CR, NP and Generation. Population is
initialized as shown in Fig 7.11.

In[25]:= Population � DoPopulation�NP, Specimen�

Out[25]= ��534.695, ��442.422, �188.47��, �191.21, �194.845, �437.931��,
��70.135, ��127.976, 99.3825��, ��208.07, �214.324, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.11. Population initialization
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In[26]:= Table�Random�Integer, �1, NP	�, �i, 3	�

Out[26]= �3, 6, 8�

Fig. 7.12. Random values

SelectOther�active�� :� Module��	,
rand � �0, 0, 0	;
While�rand��1�� �� rand��2�� �� rand��1�� �� rand��3�� �� rand��2��
�� rand��3�� �� active � rand��1�� �� active � rand��2�� ��
active � rand��3��, rand � Table�Random�Integer, �1, NP	�, �i, 3	��;

Return�rand�
�

Fig. 7.13. SelectOther function

SelectOther�active�� :� Module��rand � �0, 0, 0, 0, 0	, allvals	,
While�allvals � Append�rand, active�;
Length�allvals� �� Length�Union�allvals��,
rand � Table�Random�Integer, �1, NP	�, �i, 5	��;
Return�rand��

Fig. 7.14. SelectOther compressed function

In[29]:= SelectOther�1�

Out[29]= �2, 8, 3�

Fig. 7.15. Three random indexes

This command returns the initial population of individuals with the structure Cost-
Value, parameter1, parameter2, . . , parameterNP. NP is a size of the population.
Canonical version of the DE is based on the selection of the three (or more based on
DE version) randomly chosen individuals from the population. Random selection, or
more precisely, random selection of three pointers, can be done by command Table in
Fig 7.12.

The random values selects pointers to three individuals of NP. To avoid the possibil-
ity that two or more will be the same, SelectOther function is used. Its argument active
is a pointer to the actively selected individual − parent. SelectOther function is shown
in Fig 7.13.

SelectOther function can also be given in a compressed form as in Fig 7.14.
Counters {1,2, ..,NP} and {i,3} are used for selection of three different individuals

from NP individuals. Fig 7.15 shows three individuals selected from the first solution
(parent). Note that all these individuals differ from the first one (position 3).

Till this point, the initial population has been initialized and three individuals have
been randomly selected from the population. In the following step, the function Se-
lectOther is applied to the entire population at once. Mathematica language allows
parallel−like programming, which is visible throughout of the code. This is also the
case of the following command of function MapIndexed which is used to apply Selec-
tOther on all individuals, so that the virtual population of pointers (randomly selected



176 I. Zelinka

In[30]:= TRVIndex � MapIndexed�SelectOther��2��1��� &, Population�

Out[30]= ��7, 9, 8�, �5, 1, 7�, �6, 2, 10�, �10, 7, 6�,
�10, 6, 4�, �8, 7, 5�, �1, 2, 4�, �1, 7, 9�, �5, 3, 2�, �2, 9, 8��

Fig. 7.16. TVR Index of pointers

In[31]:= TRV � Population���1�� & �� TRVIndex

Out[31]= ���106.047, ��317.752, �402.607��, �464.407, �507.525, 502.251��,
��157.266, ��119.503, 163.852���, ���41.6243, ��236.027, �128.204��,
�534.695, ��442.422, �188.47��, �106.047, ��317.752, �402.607���,
��161.461, �335.943, 355.91��, �191.21, �194.845, �437.931��,
��62.8734, �160.401, �149.99���, ���62.8734, �160.401, �149.99��,
�106.047, ��317.752, �402.607��, �161.461, �335.943, 355.91���,
���62.8734, �160.401, �149.99��, �161.461, �335.943, 355.91��,
��208.07, �214.324, 244.138���, ���157.266, ��119.503, 163.852��,
�106.047, ��317.752, �402.607��, ��41.6243, ��236.027, �128.204���,
��534.695, ��442.422, �188.47��, �191.21, �194.845, �437.931��,
��208.07, �214.324, 244.138���, ��534.695, ��442.422, �188.47��,
�106.047, ��317.752, �402.607��, �464.407, �507.525, 502.251���,
���41.6243, ��236.027, �128.204��, ��70.135, ��127.976, 99.3825��,
�191.21, �194.845, �437.931���, ��191.21, �194.845, �437.931��,
�464.407, �507.525, 502.251��, ��157.266, ��119.503, 163.852����

Fig. 7.17. TVR Index of pointers for entire population

triplets) is created. Fig 7.16 shows the varible TRVIndex (trial vector index) created
from the MapIndexed function.

To unfold the code, the operator /@ (function Map) is used, which takes all the
arguments of pointers shown in Fig 7.16 and creates an entire array of pointers for the
population, given in Fig 7.17.

The result of Fig 7.17 is a list of physically selected individuals (three for each parent).
Application of mutation principle and all DE arithmetic operations on TRV list is straight
forward. It is accomplished by the means of the operator /@ which in this case applies
the arithmetic operation from the left to the elements of the TRV list. Entity #1[[X,2]]
in the arithmetic formula F∗(#1[[1,2]]− #1[[2,2]])+#1[[3,2]] represents Xth individual
from the selected triplets in TRV. The Noisy vector is thus calculated like in Fig 7.18.

Noisy � F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� TRV

���779.725, �560.034�, ��152.636, �354.393�, �273.28, 485.082�,
�718.466, 558.003�, �73.8901, �160.582�, ��77.4278, 324.963�,
��295.49, 443.706�, �407.789, 673.56�, �108.404, �620.�, ��369.647, �588.294��

Fig. 7.18. Noisy Vector

The output of Fig 7.18 is a set of Noisy vectors (cardinality of NP), which is con-
sequently used to generate trial vectors − individuals. Parameter selection from the
parent or noisy vector is done by the condition If[Cr < Random[]...]. Flatten is only
a cosmetic command which removes redundant brackets, generated by the command
Table. In the standard programming approach the command For would be used. To
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Trial � Flatten�Table�If�Cr � Random��,
Population��i, 2, j��, �1��i, j���,
�i, NP	, �j, Dim	� & �� �Noisy	, 1�

���442.422, �560.034�, �194.845, �354.393�, ��127.976, 99.3825�,
�718.466, 244.138�, ��236.027, �128.204�, �335.943, 355.91�,
��317.752, �402.607�, ��119.503, 163.852�, �507.525, 502.251�, �160.401, �149.99��

Fig. 7.19. Trial Vector

BoundaryChecking � Flatten�MapIndexed
�CheckInterval��1, �2� &, �1�

, 1� & �� �Trial�
���442.422, �2.47524�, �194.845, �354.393�, ��127.976, 99.3825�,
�300.954, 244.138�, ��236.027, �128.204�, �335.943, 355.91�,
��317.752, �402.607�, ��119.503, 163.852�, �507.525, 502.251�, �160.401, �149.99��

Fig. 7.20. Boundary Checking

In[44]:= IndividualsCostValue � �CostFunction��1�, �1	 & �� �BoundaryChecking�

Out[44]= ��364.224, ��442.422, �2.47524��, ��200.331, �194.845, �354.393��,
��70.135, ��127.976, 99.3825��, �279.978, �300.954, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.21. Individual Cost Value

NewPopulation � MapThread�If��1��1�� � �2��1��, �1, �2� &,
�Population, �IndividualsCostValue�	�

��364.224, ��442.422, �2.47524��, ��200.331, �194.845, �354.393��,
��70.135, ��127.976, 99.3825��, ��208.07, �214.324, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.22. Next Population Selection

avoid setting of local or global variables for the trial vector list, the Table command
is used instead of For. Trial vectors are returned in the list given in Fig 7.19, which is
created automatically.

All the Trial vectors are created at once. Before the fitness is calculated, the popula-
tion of the trial individuals are checked for boundary conditions. If some parameter is
out of the allowed boundary, then it is randomly returned back. The function is given in
Fig 7.20.

Now, there exists a repaired set of trial vectors, which is evaluated by the cost func-
tion. It is done by the function CostFunction applied by /@ on the BoundaryChecking
set. Note that the body of each individual in Fig 7.21 is enlarged by the function Indi-
vidualsCostValue.

The better individual of both parent and child is selected into the new population by
means of the MapThread function.
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NewPop�Pop�� :� Module��	,
TRVIndex � MapIndexed�SelectOther��2��1��� &, Population�;
TRV � Population���1�� & �� TRVIndex;
Noisy � F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� TRV;
Trial � Flatten�Table�If�Cr � Random��, Pop��i, 2, j��, �1��i, j���,

�i, NP	, �j, Dim	� & �� �Noisy	, 1�;
BoundaryChecking � Flatten�MapIndexed�CheckInterval��1, �2� &, �1�, 1�

& �� �Trial�;
IndividualsCostValue � �CostFunction��1�, �1	 & �� �BoundaryChecking�;
NewPopulation � MapThread�If��1��1�� � �2��1��, �1, �2� &,

�Population, �IndividualsCostValue�	�
�

Fig. 7.23. Compiled DE crossover code

In[47]:= np � NewPop�Population�;
MatrixForm�np�

Out[48]//MatrixForm=

�1.65327 �5, 11.2�

86.0232 ��297.175, �437.931�

�70.135 ��127.976, 99.3825�

�208.07 �214.324, 244.138�

�41.6243 ��236.027, �128.204�

161.461 �335.943, 355.91�

�341.433 ��297.175, �150.458�

�216.653 ��499.82, 163.852�

464.407 �507.525, 502.251�

�62.8734 �160.401, �149.99�

Fig. 7.24. Function call of New population

If all the preceding steps are joined together, then final DE code in Mathematica is
given in Fig 7.23.

When the function NewPop in Fig 7.23 is called with the variable Population like an
argument the new population is created as shown in Fig 7.24.

When the output of NewPop in Fig 7.24 is repeatedly used as an input in some loop
procedure (one loop − one generation), the DE algorithm is iterated.

Some additive procedures can also be used, like selection of the best individual from
the population. An example is given in Fig 7.25.

A more compressed (but less readable) and similar version of DE is shown in
Fig 7.26.

Canonical version of the DE described is a priori suitable for the real valued vari-
ables. However, due to the problems being solved here are based on integer−valued
variables and permutative problems, some additional subroutines have been added to
the DE code. The first one is a Repair subroutine. An input of this subroutine is an in-
fesible solution and the output is a repaired solution so that each variable only appears
once in the solution.The routine is shown in Fig 7.27.
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ExpForm�nmbr�� :� PaddedForm�nmbr, �6, 5	, ExponentFunction � ��1 &�,
NumberFormat � ��1 � "�E" � �3 &�, NumberSigns � �"�", "
"	�;

BestInd�pop�� :� Module��best, ind, str	,
best � Position����	, Min�������1����1�� & �� Transpose�pop���1��;
ind � pop��best��;
str � "Best individual is on position " � ToString�best� �
" with cost value " � ToString�ExpForm�ind��1���� � " and
parameters " � ToString�ind��2���;

Print�str�;
Return�Flatten��best, ind	, 1��
�
BestInd�np�

Best individual is on position 7 with cost
value �3.41433�E�2 and parameters ��297.175, �150.458�

�7, �341.433, ��297.175, �150.458��

Fig. 7.25. Best individual from population

NewPop�Pop�� :� MapThread�If��1��1�� � �2��1��, �1, �2� &,
�Pop, ��CostFunction��1�, �1	 & �� �Flatten

�MapIndexed�CheckInterval��1, �2� &, �1�, 1� & ��
�Flatten�Table�If�Cr � Random��, Pop��i, 2, j��,

�1��i, j���, �i, NP	, �j, Dim	� & �� �F	��1��1, 2��
� �1��2, 2��� 
 �1��3, 2�� & �� �Pop���1�� & �� MapIndexed

�SelectOther��2��1��� &, Pop��	, 1����	�

Fig. 7.26. Compressed DE form

Repair�Sol�� :� Module��Temp, MissingValue, Solution, Pos, Size	,
Solution � Sol; Size � Length�Solution�;
MissingValue � RandomRelist�Complement�Range�Size�, Solution��;
Pos � Position�Solution, �� & �� Range�Size�;
�Solution � Drop�Solution, ��	�� & �� �Pos � Sort�Flatten�MapIndexed

�Drop��1, 1� &, �1� &�MapIndexed�RandomRelist��1� &, �� &�
Join�Temp������ & �� ��1��� & �� Range�Length��1����� &�Flatten�
Position�Flatten�Dimensions �� �Temp � Flatten�Pos������ & ��

Range�Size���, �?�1 � � &�������, Greater��;
Pos � Sort�Pos, Less�;
MapThread��Solution � Insert�Solution, �1, �2�� &, �MissingValue, Pos	�
Return�Solution�

�

Fig. 7.27. Repair routine

The Repair function is broken down and explained in-depth. The initial process is
to find all the missing values in the solution. Since this is a permutative solution, each
value is exist only once in the solution. Therefore it stands to reason that if there are
more than one single value in the solution, then some values will be missing.

The function:
MissingValue = RandomRelist[Complement[Range[Size],Solution]]; finds the missing
values in the solution.
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The second phase is to map all the values in the solution. The routine:
Pos = Position[Solution,#]&/@Range[Size]; maps the occurrence of each value in the
solution.

The repetitive values are identified in the function:
Flatten[Position[Flatten[Dimensions/@

(Temp = Flatten[Pos[[#]]]&/@
Range[Size])], ?(1 < #&)]]

The routine: Join[Temp[[#]]]&/@(#1[[#&/@Range[Length[#1]]]])& calculates the
positions of the replicated values in the solution.

These replicated positions are randomly shuffled, since the objective is not to create
any bias to replacement. This routine is given in the function:
MapIndexed[RandomRelist[#1]&,#]&

The variable Pos isolates the positions of replicated values which will be replaced as
given in:
Pos = Sort[Flatten[MapIndexed[Drop[#1,1]&,#1]&

The routine: Drop[Solution,{#}]&/@ removes the replicated values from the
solution.

The final routine:
MapThread[(Solution = Insert[Solution,#1,#2])&,{MissingValue,Pos}]; inserts the
missing values from the array Missing Value into randomly allocated indexs identified
by variable Pos.

DE is consequently modified so that before the function CostFunction a Repair/
@DSH function is used as in Fig 7.28.

DERand1Bin�Pop�� :� MapThread
If��1��1�� � �2��1��, �1, �2� &,
�Pop, ��CostFunction��1, Prob, Mach�, �1	 & ��
�Repair��DSH�Flatten�MapIndexed�CheckInterval��1, �2� &,

�1�, 1� & �� �Flatten�Table�If�Cr � Random��, Pop��i, 2, j��,
�1��i, j���, �i, NP	, �j, Dim	� & ��

�F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� �Pop���1�� & �� MapIndexed�
SelectOtherRand1Bin��2��1��� &, Pop��	, 1��

�
��

Fig. 7.28. Repair DSH routine

In[86]:= DS � �M1, M2, M3, M4, M5, M6, M7, M8, M9, M10	

Out[86]= �M1, M2, M3, M4, M5, M6, M7, M8, M9, M10�

Fig. 7.29. Discrete Set

In[87]:= DSH�Pop�� :� Module��	,
RoundPop � Round�Pop�;
DS���1�� & �� �1 & �� RoundPop
�

Fig. 7.30. Discrete Set
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In[88]:= DSH�BoundaryChecking� �� MatrixForm
Out[88]//MatrixForm=

M4 M6 M3 M8 M3 M10 M7 M1 M4 M5

M2 M4 M8 M5 M5 M2 M7 M10 M10 M4

M8 M1 M2 M1 M6 M7 M9 M3 M3 M7

M7 M3 M9 M3 M6 M9 M2 M7 M8 M9

M4 M2 M8 M5 M7 M1 M5 M1 M2 M4

M6 M2 M9 M4 M1 M9 M2 M6 M6 M5

M9 M6 M7 M4 M6 M5 M9 M9 M10 M5

M3 M5 M9 M2 M7 M4 M9 M4 M10 M5

M9 M8 M6 M4 M9 M3 M5 M1 M4 M8

M2 M2 M4 M4 M9 M7 M6 M4 M5 M4

Fig. 7.31. Discrete Set Output

A discrete set can be created as shown in Fig 7.29.
The DSH function is given in Fig 7.30.
The result of applying the DSH set on the population is given in Fig 7.31.
Such or similar set can be used in other different methods (if needed) like fuzzy

logic etc. Due to the nature of permutative problems, (sequence has to be complete and
unique), the discrete set been set to the same sequence of numbers.

Due to the complex nature of permutative problems, a Local Search routine has been
added to the heuristic. Local search is used to search in the neighbourhood of the current
solutions. Keeping in mind the computational nature of the code, a 2 OPT local search
outine was selected as in Fig 7.32.

LocalSearch�Sol�� :�
Module��Solution, NewSolution, CostVal, NewCostVal, Temp	,
CostVal � Sol��1��; Solution � Sol��2��; NewCostVal � CostVal;

NewSolution � Solution;
Label�start�; CostVal � NewCostVal; NewSolution � Solution;
Do�
Temp � Solution��i��; Solution��i�� � Solution��j��;

Solution��j�� � Temp;
NewCostVal � CostFunction�Solution, Prob, Mach�;
If�NewCostVal � CostVal, Goto�start��,

�i, Job � 1	, �j, i 
 1, Job	�;
Solution � �CostVal, NewSolution	; Return�Solution�
�

Fig. 7.32. Local Search routine

The current fitness of the solution is kept in the variable CostVal, and the current
active solution is kept in Solution. The start flag is Label[start].

Two iterators are activated, i, which is the index to the current variable in the solution
and j, which is the iterator from the current position indexed by i till the end of the
solution given as {j, i+ 1,Job}.
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Each two values in the solution are taken pairwise and exchanged as
Temp = Solution[[i]];Solution[[i]] = Solution[[j]];Solution[[j]] = Temp, where Temp is
the intermediary placeholder. Another syntax for this process can be given as
{Solution[[i]],Solution[[j]]} = {Solution[[j]],Solution[[i]]}. Each value indexed by i and
j are exchanged.

The new fitness of the solution is calculated. If the new fitness is better than the old
value, then the new solution is admitted into the population and the starting position is
again set to Label[start] given as If[NewCostVal < CostVal,Goto[start]]. This process
iterates till the index i iterates to the end of the solution {i,Job − 1} taking into account
all the resets done by the finding of new solutions.

The outline of the entire code is given in Fig 7.33 and the data flow diagram is given
in Fig 7.34.

1.Input : D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1], initial bounds :x(lo),x(hi).
2.Initialize : DoPopulation[NP,Specimen]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Create TRVIndex by command :
T RVIndex = MapIndexed[SelectOther[#2[[1]]]&,Population]

Selection of three vectors by TRVIndex
T RV = Population[[#1]]&/@T RV Index

Create noisy vectors
Noisy = F ∗ (#1[[1,2]]−#1[[2,2]])+#1[[3,2]]&/@T RV

Create trial vectors :
Trial = Flatten[Table[I f [Cr < Random[],Pop[[i,2, j]],#1[[i, j]]],

{i,NP},{ j,Dim}]&/@{Noisy},1]
Check for boundary :

BoundaryChecking = Flatten[MapIndexed[CheckInterval[#1,#2]
&,#1],1]&/@(Trial)

Cost value
IndividualsCostValue = {CostFunction[#1],#1}&/@(BoundaryChecking)

DSH conversion :
Repair/@DSH

New population :
NewPopulation = MapT hread[I f [#1[[1]] < #2[[1]],#1,#2]&,

{Population,(IndividualsCostValue)}]
G = G+1

Fig. 7.33. DE outline

7.4.1 DE Flow Shop Scheduling

This section describes the application of Flow Shop scheduling as given in Fig 7.35. In
this function, the obtained solution is simply passed into the CostFunction function.

The first variable, JTime accumulates the processing time of all the jobs in the first
machine given as: JTime = Accumulate[#]&[Prob[[1,#]]&/@Solution];.

The second variable, LMach, computes the job times on all the subsequent machines
iteratively. Since the maximum of the processing times is taken between the jobs:
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Fig. 7.34. Data flow diagram of DE

CostFunction � Compile���Solution, �Integer, 1	, �Prob, �Integer, 2	, �Mach, �Integer		,
Module��JTime, LMach	,
JTime � Accumulate��� &�Prob��1, ��� & �� Solution�;
LMach � Accumulate��� &�Prob���, Solution��1���� & �� Range�Mach��;

Table�JTime��1�� � LMach��i 
 1��;
MapIndexed��JTime��First��2� 
 1�� � Max�JTime��First��2���, JTime��First��2� 
 1��� 


Prob��i 
 1, �1��� &, Rest�Solution��, �i, Mach � 1	�; Return�JTime���1���
��

Fig. 7.35. Flow Shop Schedluing routine

Max[JTime[[First[#2]]],JTime[[First[#2]+ 1]]]+ Prob[[i+1,#1]])&,Rest[Solution]], the
processing time value is simply accumulated in LMach.

For more information about Flow Shop, please see [17].

7.4.2 DE Traveling Salesman Problem

The Traveling salesman function is simply the accumulation of the distances from one
city to the next. The function is given in Fig 7.36.

The first routine simply picks up the times between the cities in the Solution. The
distance times are stored in the matrix Distance.
Time+ = (Distance[[Solution[[# + 1]],Solution[[#]]]])&/@Range[Size−1];.



184 I. Zelinka

CostFunction � Compile���Solution, �Integer, 1	, �Distance, �Real, 2	,
�Size, �Integer		,
Module��Time � 0.0	,
Time 
� �Distance��Solution��� 
 1��, Solution�������� & �� Range�Size � 1�;
Time 
� �Distance��Solution��1��, Solution��Size�����; Return�Time���

Fig. 7.36. Traveling Salesman routine

Once all the related city distances have been added, the distance from the last city to
the first city is added to complete the tour, given as:
Time+ = (Distance[[Solution[[1]],Solution[[Size]]]])

7.5 DE Example

The simplest approach of explaining the application of discrete set handling is to im-
plement a worked example. In that respect, a TSP problem is proposed with only five
cities, in order to make it more viable.

Assume a symmetric TSP problem given as in Table 7.2. Symmetric implies that the
distances between the two cities are equal both ways of travelling.

Table 7.2. Symmetric TSP problem

Cities A B C D E

A 0 5 10 14 24
B 5 0 5 9 19
C 10 5 0 10 14
D 14 9 10 0 10
E 24 19 14 10 0

Table 7.3. Decomposed symmetric TSP problem

Cities A B C D E

A 0
B 5 0
C 10 5 0
D 14 9 10 0
E 24 19 14 10 0

Since this is a symmetric TSP problem, the Distance Matrix can be decomposed to
the leading triangle as given in Table 7.3.

In order to use DE, some operational parameters are required, in this case the tuning
parameters of CR and F, and well as the size of the population NP and the number
of generations Gen. For the purpose of this example, the population is specified as 10
individuals.
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7.5.1 Initialization

The first phase is the initialization of the population. Since NP has been arbitrarily set
as 10, ten random permutative solutions are generated to fill the initial population as
given in Table 7.4.

Table 7.4. Initial population

Solution City 1 City 2 City 3 City 4 City 5

1 A D B E C
2 D B A C E
3 C A E B D
4 E C D A B
5 E B C D A
6 B D A E C
7 A D C E B
8 E C A D B
9 B E C A D
10 A C E B D

7.5.2 DSH Conversion

The second part is to create the discrete set for the solution. DSH assigns a raw number
for each position index in the solution. In this case the most logical phase is to assign
consecutive numbers for the consecutive alphabets as shown in Table 7.5.

The problem assignment now switches to the discrete set. This is given in Table 7.6.

Table 7.5. Discrete set for the cities

Cities A B C D E

Discrete
Set

1 2 3 4 5

Table 7.6. Initial Population

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
2 4 2 1 3 5
3 3 1 5 2 4
4 5 3 4 1 2
5 5 2 3 4 1
6 2 4 1 5 3
7 1 4 3 5 2
8 5 3 1 4 2
9 2 5 3 1 4
10 1 3 5 2 4
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Table 7.7. Distance matrix for Tour 1

Cities A D B E C

A
D 14
B 5 9
E 24 9 19
C 10 4 5 14

Table 7.8. Fitness for the population

Solution City 1 City 2 City 3 City 4 City 5 Fitness

1 1 4 2 5 3 66
2 4 2 1 3 5 48
3 3 1 5 2 4 48
4 5 3 4 1 2 62
5 5 2 3 4 1 72
6 2 4 1 5 3 66
7 1 4 3 5 2 62
8 5 3 1 4 2 66
9 2 5 3 1 4 66
10 1 3 5 2 4 66

7.5.3 Fitness Evaluation

The objective function for TSP is the cumulative distance between the cities, ending
and starting from the same city. Taking the example of the first solution in Table 7.6;
now termed Tour 1 = {A,D,B,E,C}, the equivalent representation is Tour 1 = =
{1,4,2,5,3}. The distance matrix can now be represented as in Table 7.7.

Since the tour is cyclic, the tour can further be completely represented as Tour 1 =
{A → D → B → E → C → A}. From distance matrix it is now the accumulation of the
tour distances Tour 1 = 14 + 9 + 19 + 14 + 10, which gives a total of 66.

Likewise, the total tour for all the solutions is calculated and is presented in
Table 7.8.

7.5.4 DE Application

The next step is the application of DE to each solution in the population. For this ex-
ample the DE Rand1Bin strategy is selected. At this point it is important to set the DE
scaling factor F. It can be given a value of 0.4.

DE application is simple. Starting from the first solution, each solution is evolved se-
quentially. Evolution in DE consists of a number of steps. The first step is to randomly
select two other solutions from the population, which are unique from the solution cur-
rently under evolution. If we take the assumption that Solution 1 is currently under
evolution, then we can randomly select Solution 4 and Solution 7 for example. These
make the batch of parent solutions as given in Table 7.9.
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Table 7.9. Parent solutions

Solution City 1 City 2 City 3 City 4 City 5 Fitness

1 1 4 2 5 3 66
4 5 3 4 1 2 62
7 1 4 3 5 2 62

Table 7.10. Parent solutions crossover

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
4 5 3 4 1 2
7 1 4 3 5 2

Index 4 5 1 2 3

The second DE operating parameter crossover CR can now be set as 0.4. The starting
point of evolution in the solution is randomly selected. In this example, solution index
3 is selected as the first variable for crossover as given in Table 7.10.

The mathematical representation of DE Rand1Bin is given as: xcurrent +
F • (

xrandom1 − xrandom2

)
. xrandom1 in this instance refers to the first randomly selected

solution 4, and xrandom2 is the second random solution 7. Since the starting index has
been randomly selected as 3, the linked values for the two solutions are subtracted as 4
− 3 = 1. This value is multiplied by F, which is 0.4 The result is (1 x 0.4 = 0.4). This
value is added to the current indexed solution 1: (0.4 + 2 = 2.4).

Likewise, applying the equation to the selected parent solutions yields the following
values given in Table 7.11:

Table 7.11. Parent solutions final values

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
4 5 3 4 1 2
7 1 4 3 5 2

Index 4 5 1 2 3

Final 2.6 3.6 2.4 3.4 3

The second part shown in Table 7.12 is to select which of the new variables in the
solutions will actually be accepted in the final child solution. The procedure of this is to
randomly generate random numbers between 0 and 1and if these random numbers are
greater than the user specified constant CR, then these values are accepted in the child
solution. Otherwise the current index values are retained.
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Table 7.12. CR Application

Solution City 1 City 2 City 3 City 4 City 5

Parent 1 4 2 5 3
Final 2.6 3.6 2.4 3.4 3

Random value 0.6 0.2 0.5 0.9 0.3

Table 7.13. Child solution

Solution City 1 City 2 City 3 City 4 City 5

Parent 1 4 2 5 3
Child 2.6 4 2.4 3.4 3

Table 7.14. Closest Integer Approach

Solution City 1 City 2 City 3 City 4 City 5

Child 2.6 4 2.4 3.4 3
Closest integer 3 4 2 3 3

Table 7.15. Hierarchical Approach

Solution City 1 City 2 City 3 City 4 City 5

Child 2.6 4 2.4 3.4 3
Hierarchical Approach 2 5 1 4 3

Since CR has been set as 0.4, all indexes with random values greater than 0.4 are
selected into the child population. The rest of the indexes are filled by the variables
from the parent solution as given in Table 7.13.

Two different approaches now can be used in order to realize the child solution.
The first is to closest integer approach. In this approach the integer value closest to the
obtained real value is used. This is given as in Table 7.14.

The second approach is the hierarchical approach. In this approach, the solutions
are listed according to their placement in the solution itself. This is given in Table 7.15.

The advantage of the hierarchical approach is that no repairment is needed to the
final solution. However, it does not reflect the placements of DE values, and can be
misleading. Due to this factor, the first approach of closest integer approach is now
described.

The next step is to check if any solution exists outside of the bounds. According
to [18], all out of bound variables are randomly repaired. If the case of this example all
the values are within the bounds specified by the problem.
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Table 7.16. Feasible solutions

Solution City 1 City 2 City 3 City 4 City 5

Child 3 4 2 3 3
Feasible - 4 2 - -

Table 7.17. Final solution

Solution City 1 City 2 City 3 City 4 City 5

Child 3 4 2 3 3
Final Solution 3 4 2 1 5

Table 7.18. Final solution fitness

Solution City 1 City 2 City 3 City 4 City 5 Fitness

Final Solution 3 4 2 1 5 62

Table 7.19. DSH application

Solution City 1 City 2 City 3 City 4 City 5

Final Solution 3 4 2 1 5

City C D B A E

The final routine is to repair the solution if repetitive solutions exist. It must be
stressed that not all the solutions obtained are infeasible.

The approach is to first isolate all the unique solutions as given in Table 7.16.
The missing values in this case are 1, 3, 5. Using random selection, each missing

value is replaced in the final solution in Table 7.17.
Random placement is selected since it has proven highly effective [3].
The new solution is vetted for its fitness.
The new fitness of 62 improves the old fitness of the parent solution of 66 and hense

the child solution is accepted in the population for the next generation. The correct
arrangement is obtained by converting back using DSH into City representation as given
in Table 7.19.

Using the above process, all the solutions are evolved from one generation to another.
At the termination of the algorithm, the best-placed solution is retrieved.

7.6 Experimentation

All experiments have been done on the grid cluster of the XServers (Apple technology).
Such a kind of computer technology is now commonly used for hard computing tasks.



190 I. Zelinka

Fig. 7.37. 1000 PC cluster 1

An example is the 1000 PCs used in genetic programming (Fig 7.37 − 7.38). In Czech
Republic, there also exists such grid computers. An example of a grid configuration
is the supercomputer named Amalka with 360 processors used in space research and
related problems shown in Fig 7.39.

The grid cluster used for the FSS and TSP experiments, consisted of 16 XServers 2
x 2 GHz Intel Xeon, 1 GB RAM, 80 GB HD (Fig 7.40 − 7.41). Each Xserve contain 4
computational cores, so there are in total 64 computational cores. Part of the computa-
tional force has been used for FSS and TSP calculations.

7.6.1 Flow Shop Scheduling Tuning

The main issue for almost all meta-heuristics, which does optimization without knowl-
edge of the system, is that there are parameters to tune in the algorithm. In DE, there
are two control parameters, F and CR. These parameters are required in order to induce
the stochastic process in the heuristic, which will enable it to find the optimal solution
for that specific problem.
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Fig. 7.38. 1000 PC cluster 2

[18] gave a brief outline for the different operating parameters as given in
Table 7.20.

These general outlines were formulated after experimentation [18], however they
were not intended for permutative problems. Since this is realized as a novel approach
for DE, it becomes than imperative to create a experiment procedure for the formulation
of these control values. Alongside these control values, these are altogether 7 general
operating DE strategies.

1. Rand 1 Bin
2. Rand 2 Bin
3. Best 2 Bin
4. Local to Best
5. Best 1 JIter
6. Rand 1 DIter
7. Rand 1 GenDIter
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Fig. 7.39. Amalka Grid

Table 7.20. Operating parameters for original DE

Control Variables Lo Hi Best? Comments

F : Scaling Factor 0 1.0+ 0.3 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 1.0 CR = 0, seperable

CR = 1, epistatic

Table 7.21. Tuning Parameters

Strategy CR F

Rand1Bin 0.1 0.1
Rand2Bin 0.2 0.2
Best2Bin 0.3 0.3
LocaltoBest 0.4 0.4
Best1JIter 0.5 0.5
Rand1DIter 0.6 0.6
Rand1Gen DIter 0.7 0.7

0.8 0.8
0.9 0.9
1 1
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Fig. 7.40. Emanuel Cluster at UTB

Table 7.22. FSS operating parameters

Parameters Values

Strategy Rand 1 DIter
F 0.5
CR 0.1

So the task then is to also find the optimal operating strategy alongside the two con-
trol variables. This in itself becomes a three phase permutative problem. The sampling
rate for the two control variables was kept as small as possible to 0.1.

The permutative outline for the tuning parameter is now given in Table 7.21.
Each value is permutated through the other values, so the total number of tuning

experimentation conducted is 7 x 10 x 10 = 700.
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Fig. 7.41. Emanuel Cluster at UTB

The second aspect is to select an appropriate test instance. For our purpose, a moder-
ately difficult instance of 50 jobs and 20 machines from the Taillard benchmark problem
set was selected.

Experimentation was conducted with Population set to 200 individuals and 100 gen-
erations allowed. The solution mesh is given in Fig 7.42.

A histogram projection in Fig 7.43. gives a better representation with the frequency
of makespan.

The optimal value obtained through this experimentation is given in Table 7.22.

7.6.2 Traveling Salesman Problem Tuning

The identical tuning procedure used for Flow shop was used for parameter tuning on
the Traveling Salesman Problem. Once again, 700 experimentations were conducted,
and for this problem set, the moderately difficult Eil51 city problem set was selected.
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Fig. 7.42. FSS tuning graphical display
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Fig. 7.43. Frequency display for FSS tuning

The solution mesh for TSP is given in Fig 7.44.
The histogram display for all the values is given in Fig 7.45.
The optimal value obtained through this experimentation is given in Table 7.23.
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Fig. 7.44. TSP tuning graphical display

Fig. 7.45. Frequency display for TSP tuning

Using these obtained values, extensive experimentation was conducted on both the
FSS and TSP problems. The core issue here is that it is shown that small changes in
the control variables leads to different results. The hypothesis that parameter tuning is
highly important for tuning of DE for permutative optimization is proven.
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Table 7.23. FSS operating parameters

Parameters Values

Strategy Rand 1 Bin
F 0.4
CR 0.1

7.6.3 Flow Shop Scheduling Results

The primary experimentation was conducted on Taillard benchmark Flowshop Schedul-
ing [21]. These sets are considered primary with a core mix of complexity and scale.
Altogether 120 problem sets are involved, 10 problem instances of n job and m machine
problems of 20x5, 20x10, 20x20, 50x5, 50x10, 50x20 100x5, 100x10, 100x20, 200x10,
200x20, and 500x10 are involved. For each problem instance, two bounds are given, the
upper bound and the lower bound. Most reference is taken from the upper bound, which
is the hypothetical optimal of a particular instance.

So the objective then is not to find the optimal solution (one can if one wants), but
to gauge how effective a heuristic is over the entire range of these problems. In others
words, to observe the consistency of the heuristic. To this effect, the results are presented
in the following format by applying Equation 7.14.

Δavg =
(H −U)• 100

U
(7.14)

Equation 7.14 is where H represents the obtained value and U is the bound specified
by [21]. The Δavg , gives the average value for all the instances in that particular class,
and gives the standard deviation across all the instances. This is important in order to
gauge the consistency of the heuristic.

The operating parameters of DE using Discrete Set Handling (DEDSH ) is given in
Table 7.24. The values of CR and F were obtained through extensive parameter tuning
and NP (population size) and Gen (number of generations) was kept at 700.

Table 7.24. DEDSH operating parameters

Parameters CR F NP Gen

Value 0.5 0.1 500 700

The collated results are presented in Table 7.25. These results are presented with the
results compiled by [22].

Generally, two classes of heuristics are observed: those, which are canonical, and
those, which have embedded local search. To the first class of heuristics belong GA (Ge-
netic Algorithm), PSOspv (Particle Swamp Optimization with smallest position value)
and DEspv (Differential Evolution with smallest position value). The second class has
DEspv+exchange , which is DEspv with local search.
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Table 7.25. Flowshop scheduling results

GA PSOspv DEspv DEspv+exchange DEDSH DEDSH+EXH

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 1.2 0.42 1.07 0.55
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 2.5 0.41 2.35 0.6
20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 2.52 0.32 1.92 0.53
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.41 0.37 0.84 0.56 0.5 0.56
50x10 5.61 1.41 4.83 1.16 4.12 1.1 2.41 0.9 5.09 1.02 3.21 1.11
50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 7.05 1.08 4.21 0.85
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.73 0.32 0.32 0.24
100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 3.11 1.2 1.5 1.08
100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 5.98 0.57 4.19 0.82
200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 3.77 1.31 1.781 1.1
200x20 9.82 0.7 4.32 0.68
500x10 6.28 0.39 4.13 0.41

Table 7.26. Comparison results of heuristics without local search

GA PSOspv DEspv DEDSH

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 1.2 0.42
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.5 0.41
20x20 4.22 1.31 2.84 1.15 3.03 0.98 2.52 0.32
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.84 0.56
50x10 5.61 1.41 4.83 1.16 4.12 1.1 5.09 1.02
50x20 6.95 1.09 6.68 1.35 5.56 1.22 7.05 1.08
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.73 0.32
100x10 3.12 0.95 3.26 1.04 2.28 0.75 3.11 1.2
100x20 6.32 0.89 7.19 0.99 6.78 1.12 5.98 0.57
200x10 2.08 0.45 2.47 0.71 1.88 0.69 3.77 1.31
200x20 9.82 0.7
500x10 6.28 0.39

The experimentation of DEDSH+EXH was done on two parts, one with local search
and one without. The comparison result of DEDSH is given in Table 7.26.

DEDSH was able to find the better average values for the problem sets of 20x5, 20x10,
20x20, 50x5 and 100x20. The others sets was dominated by DEspv. A graphical output
for the different sets is given in Fig 7.46. The deviation output is given in Fig 7.47.

The second set is the comparison of the heuristics with local search, namely
DEspv+exchange and DEDSH+EXC as presented in Table 7.27.

As observed DEspv+exchange is the better performing heuristic. The last two columns
gives the analysis comparisons and on average DEDSH+EXH is only 0.42% away from
DEspv+exchange. The graphical displays are given in Figs 7.48 and 7.49.



7 Discrete Set Handling 199

GA

GA

GA

GA

GA

GA

GA

GA

GA

GA
PSO

PSO
PSO

PSO

PSO

PSO

PSO

PSO

PSO

PSO
DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DEDSH

DEDSH DEDSH

DEDSH

DEDSH

DEDSH

DEDSH

DEDSH

DEDSH

DEDSH

20 x5 20 x10 20 x20 50 x5 50 x10 50 x20 100 x5 100 x10 100 x20 200 x10

1

2

3

4

5

6

7

Data Sets Taillard

A
ve

ra
ge

M
ak

es
pa

n
Makespan comparison of different heuristics

Fig. 7.46. Makespan display of different heuristics without local search

GA

GA

GA

GA

GA

GA

GA

GA
GA

GA

PSO
PSO PSO

PSO

PSO

PSO

PSO

PSO
PSO

PSO

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DESPV

DEDSH DEDSH
DEDSH

DEDSH

DEDSH
DEDSH

DEDSH

DEDSH

DEDSH

DEDSH

20 x5 20 x10 20 x20 50 x5 50 x10 50 x20 100 x5 100 x10 100 x20 200 x10
0.0

0.5

1.0

1.5

2.0

Data Sets Taillard

A
ve

ra
ge

D
ev

ia
ti

on

Deviation comparison of different heuristics

Fig. 7.47. Deviation display of different heuristics without local search
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Table 7.27. Comparison results of heuristics with local search

DEspv+exchange DEDSH+EXH Analysis

Δavg Δstd Δavg Δstd Δavg Δstd

20x5 0.69 0.64 1.07 0.42 0.38 0.22
20x10 2.01 0.93 2.35 0.41 0.34 0.52
20x20 1.85 0.87 1.92 0.32 0.06 0.55
50x5 0.41 0.37 0.5 0.56 0.09 0.19
50x10 2.41 0.9 3.21 1.02 0.8 0.12
50x20 3.59 0.78 4.21 1.08 0.62 0.3
100x5 0.21 0.21 0.32 0.32 0.11 0.11
100x10 1.41 0.57 1.5 1.2 0.09 0.63
100x20 3.11 0.55 4.19 0.57 1.08 0.02
200x10 1.06 0.35 1.78 1.31 0.72 0.96
200x20 4.32 0.7
500x10 4.13 0.39

Average 0.42 0.361
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Fig. 7.48. Makespan display of different heuristics with local search

In terms of average deviation, DEDSH+EXH generally has better values than
DEspv+exchange. This implies that DEDSH+EXC obtains solutions with greater regularity
and consistency than DEspv+exchange.
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Fig. 7.49. Deviation display of different heuristics with local search

7.6.4 Traveling Salesman Problem Results

7.6.4.1 Symmetric Traveling Salesman

The second set of problem set to be considered is the Traveling Salesman Problem
(TSP). TSP is a widely realized problem with many applications in real life problems.
However, to compensate for its myriad usage, a number of targeted heuristics have
evolved to solve it; often to optimal as is the case for all for all known problem instance
in the TSPLIB. For evolutionary heuristics to operate in TSP, it has become a norm for
them to employ local search, usually 3 opt [4]. Utilizing local search heuristics always
improve the quality of the results of the solutions, since triangle inequality rule and
Lin−Kernigham are very robust deterministic search heuristics.

The operating parameters for the TSP is given in Table 7.28.
A sample of TSP problem is given in Table 7.28. Comparison is done with the Ant

Colony (AC), Simulated Annealing (SA), Self Organising Map (SOM) and Furthest
Insertion (FI) of [4].

Δavg =
H −U

U
(7.15)

Table 7.28. DEDSH TSP operating parameters

Parameters CR F NP Gen

Value 0.4 0.1 500 700
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Table 7.29. STSP comparison results

Instance Optimal ACS3opt SA3opt SOM FI3opt DEDSH

City 1 5.84 0 0 0 0.002 0.002
City 2 5.99 0.002 0 0.002 0 0.03
City 3 5.57 0 0 0.002 0 0.059
City 4 5.06 0.12 0.12 0 0.13 0.16
City 5 6.17 0 0 0.003 0.03 0.01

Table 7.30. General STSP comparison results

Instance Optimal ACS3opt DEDSH

att532 27,686 0 0.17
d198 15,780 0.006 0.54
eil51 426 - 0.08
eil76 538 - 0.1
fl1577 8,806 0.03 1.23
kroA100 21,282 0 0.56
pcb442 50,779 0.01 0.32
rat783 8,806 - 0.92

Average 0.49

The results are presented in Table 7.29 as percentage increase upon the reported
optimal as given in Equation 7.15.

In this instance, DEDSH , was competitive to the other performing heuristics. As
shown, no one heuristic was able to find all optimal values, and some heuristic per-
formed better than other for specific instances.

The second set of experiment was conducted on some selective TSP instances [23].
The results are presented in Table 7.30.

The comparison is done with ACS3opt of [4]. ACS performs very well, almost achiev-
ing the optimal solution. DEDSH performs well, obtaining on average 0.49% to the op-
timal results for the entire set. The set contains instance′s ranging from sizes of 51 to
1577 cities.

7.6.4.2 Asymmetric Traveling Salesman

The second set of problems is that, which involves the asymmetric TSP. Asymmetric
TSP is one where the distances between two cities are not equal, to and from. This
implies that going from one city to another has a different distance than coming back
from that city to the original one. The results are presented in Table 7.31.

The results for ATSP are on average 1.112% over the optimal value. However, it
should be noted that the experimentation values was kept stagnant to fixed values, even
as the problem size was increased, hence the trend of worsening solutions as problem
size increases.
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Table 7.31. General ATSP comparison results

Instance Optimal ACS3opt DEDSH

ft70 38673 0.001 0.96
ftv170 2755 0.002 2.32
kro124p 36230 0 1.57
p43 5620 0 0.24
ry48p 14422 0 0.47

Average 1.112

7.7 Conclusion

Differential Evolution is an effective heuristic for optimization. This approach was an
attempt to show it effectiveness in permutative problems. The key approach was to
keep the conversion of the operational domain as simple as possible, as shown in this
variant of discrete set handling. Simplicity removes excess computation overhead to
this heuristic while at the same time delivering comparative results.

Two different problem scopes of Flow Shop scheduling and Traveling Salesman
problems were attempted. This was done in order to show that this generic version
of DE is able to work in different classes of problems, and not simply tailor made for
a special class. The core research focused on Flow Shop with Traveling Salesman pro-
viding a secondary comparison.

A principle direction as seen in this research has been the tuning of the heuristic.
Researchers, who generally take the default values, often overlook this process, however
it is imperative to check for the best values. As shown from the obtained results, the
operating values obtained for the two different problems were unique in all aspects.

The results obtained can be visualized as competitive for their own classes. The
most promising is the results obtained for Flow Shop, and the worst performing is the
Asymmetric Traveling Salesman. It is believed that a better local search heuristic, like
Lin−Kernighan or a 3 Opt heuristic will further improve the quality of the solutions.

Further directions for this approach will involve further testing with other problem
classes like Vehicle Routing and Quadratic Assignment, which are also realised in real
systems.
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