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Abstract. In a traveling salesman problem, if the set of nodes is divided into clusters so that a
single node from each cluster can be visited, then the problem is known as the generalized trav-
eling salesman problem where the objective is to find a tour with minimum cost passing through
only a single node from each cluster. In this chapter, a discrete differential evolution algorithm
is presented to solve the problem on a set of benchmark instances. The discrete differential evo-
lution algorithm is hybridized with local search improvement heuristics to further improve the
solution quality. Some speed-up methods presented by the authors previously are employed to
accelerate the greedy node insertion into a tour. The performance of the hybrid discrete differ-
ential evolution algorithm is tested on a set of benchmark instances with symmetric distances
ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature. Computational results
show its highly competitive performance in comparison to the best performing algorithms from
the literature.

6.1 Introduction

The generalized traveling salesman problem (GTSP), one of several variations of the
traveling salesman problem (TSP), has been originated from diverse real life or poten-
tial applications. The TSP finds a routing of a salesman who starts from an origin (i.e. a
home location), visits a prescribed set of cities, and returns to the origin in such a way
that the total distance is minimum and each city is travelled once. On the other hand,
in the GTSP, a salesman when making a tour does not necessarily visit all nodes. But
similar to the TSP, the salesman will try to find a minimum-cost tour and travel each
city exactly once. Since the TSP in its generality represents a typical NP-Hard com-
binatorial optimization problem, the GTSP is also NP-hard. While many other combi-
natorial optimization problems can be reduced to the GTSP problem [11], applications
of the GTSP spans over several areas of knowledge including computer science, engi-
neering, electronics, mathematics, and operations research, etc. For example, publica-
tions can be found in postal routing [11], computer file processing [9], order picking in
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warehouses [18], process planning for rotational parts [3], and the routing of clients
through welfare agencies [28].

Let us first define the GTSP, a complete graph G = (V,E) is a weighted undirected
whose edges are associated with non-negative costs. We denote the cost of an edge
e = (i, j) by di j. Then, the set of N nodes is divided into m sets or clusters such that
N = {n1, ..,nm} with N = {n1 ∪ ..∪nm} and n j ∩ nk = φ . The problem involves two
related decisions- choosing a node from the subset and finding a minimum cost tour
in the subgraph of G. In other words, the objective is to find a minimum tour length
containing exactly single node from each cluster n j.

The GTSP was first addressed in [9, 28, 32]. Applications of various exact algorithms
can be found in Laporte et al. [12, 13], Laporte & Nobert [11], Fischetti et al. [7, 8], and
others in [4, 19]. Laporte & Nobert [11], developed an exact algorithm for GTSP by for-
mulating an integer programming and finding the shortest Hamiltonian cycle through
some clusters of nodes. Noon and Bean [19], presented a Lagrangean relaxation algo-
rithm. Fischetti et al. [8] dealt with the asymmetric version of the problem and devel-
oped a branch and cut algorithm to solve this problem. While exact algorithms are very
important, they are unreliable with respect to their running time which can easily reach
many hours or even days, depending on the problem sizes. Meanwhile several other
researchers use transformations from GTSP to TSP since a large variety of exact and
heuristic algorithms have been applied for the TSP [3],. Lien et. al. [15] first introduced
transformation of a GTSP into a TSP, where the number of nodes of the transformed
TSP was very large. Then Dimitrijevic and Saric [6] proposed another transformation
to decrease the size of the corresponding TSP. However, many such transformations
depend on whether or not the problem is symmetric; moreover, while the known trans-
formations usually allow to produce optimal GTSP tours from the obtained optimal
TSP tours, such transformations do not preserve suboptimal solutions. In addition, such
conversions of near-optimal TSP tours may result in infeasible GTSP solutions.

Because of the multitude of inputs and the time needed to produce best results, the
GTSP problems are harder and harder to solve. That is why, in such cases, applications
of several worthy heuristic approaches to the GTSP are considered. The most used con-
struction heuristic is the nearest-neighbor heuristic which, in its adaptation form, was
presented in Noon [18]. Similar adaptations of the farthest-insertion, nearest-insertion,
and cheapest-insertion heuristics are proposed in Fischetti et al. [8]. In addition, Renaud
& Boctor [24] developed one of the most sophisticated heuristics, called GI3 (Gener-
alized Initilialization, Insertion, and Improvement), which is a gen-eralization of the I3

heuristic in Renaud et al. [25]. GI3 contains three phases: in the Initialization phase, the
node close to the other clusters is chosen from each cluster and greedily built into a tour
that passes through some, but not necessarily all, of the chosen nodes. Next in the Inser-
tion phase, nodes from unvisited clusters are inserted between two consecutive clusters
on the tour in the cheapest possible manner, allowing the visited node to change for the
adjacent clusters; after each insertion, the heuristic performs a modification of the 3-opt
improvement method. In the Improvement phase, modifications of 2-opt and 3-opt are
used to improve the tour. Here the modifications, called G2-opt, G3-opt, and G-opt,
allow the visited nodes from each cluster to change as the tour is being re-ordered by
the 2-opt or 3-opt procedures.
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Application of evolutionary algorithms specifically to the GTSP have been few in
the literature until Snyder & Daskin [30] who proposed a random key genetic algorithm
(RKGA) to solve this problem. In their RKGA, a random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and “swap”. In the search process, their “swap” procedure is considered
as a speed-up method which basically removes a node j from a tour and inserts all
possible nodes ks from the corresponding cluster in between an edge (u,v) in a tour
(i.e., between the node u and the node v). Such insertion is based on a modified nearest-
neighbor criterion. These two local search heuristics have been separately embedded in
the level-I improvement and level-II improvement procedures.

For each individual in the population, they store the original (pre-improvement) cost
and the final cost after improvements have been made. When a new individual is created,
they compare its pre-improvement cost to the pre-improvement cost of the individual
at position p × N in the previous (sorted) population, where p ∈ [0,1] is a parameter
of the algorithm (they use p = 0.05 in their implementation). These two improvement
procedures in Snyder & Daskin [30] are implemented as follows:

1. If the new solution is worse than the pre-improvement cost of this individual, the
level-I improvement is considered. That is, one 2-opt exchange and one “swap”
procedure (assuming a profitable one can be found) are performed and the resulting
individual are stored.

2. Otherwise, the level-II improvement is considered. So the 2-opts are executed un-
til no profitable 2-opts can be found, then the “swap” procedures are carried out
until no profitable swaps can be found. The procedure is repeated until no further
improvements have been made in a given pass.

The RKGA focuses on designing the local search to spend more time on improv-
ing solutions that seem promising to the previous solutions than the others. Both level-I
and level-II improvements consider a “first-improvement” strategy, which means im-
plementing the first improvement of a move, rather than the best improvement of such
move.

Thereafter, Tasgetiren et al. [34, 35, 36] presented a discrete particle swarm optimiza-
tion (DPSO) algorithm, a genetic algorithm (GA) and a hybrid iterated greedy (HIG)
algorithm, respectively, whereas Silberholz & Golden proposed another GA in [29],
which is denoted as mrOXGA.

Section 2 introduces a brief summary of discrete differential evolution algorithm.
Section 3 provides the details of local search improvement heuristics. The computa-
tional results on benchmark instances are discussed in Section 4. Finally, Section 5
summarizes the concluding remarks.

6.2 Discrete Differential Evolution Algorithm

Differential evolution (DE) is a latest evolutionary optimization methods proposed by
Storn & Price [31]. Like other evolutionary-type algorithms, DE is a population-based
and stochastic global optimizer. The DE algorithm starts with establishing the initial
population. Each individual has an m-dimensional vector with parameter values deter-
mined randomly and uniformly between predefined search ranges. In a DE algorithm,
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candidate solutions are represented by chromosomes based on floating-point numbers.
In the mutation process of a DE algorithm, the weighted difference between two ran-
domly selected population members is added to a third member to generate a mutated
solution. Then, a crossover operator follows to combine the mutated solution with the
target solution so as to generate a trial solution. Thereafter, a selection operator is ap-
plied to compare the fitness function value of both competing solutions, namely, target
and trial solutions to determine who can survive for the next generation. Since DE
was first introduced to solve the Chebychev polynomial fitting problem by Storn &
Price [31], it has been successfully applied in a variety of applications that can be found
in Corne et. al [5], Lampinen [19], Babu & Onwubolu [1]; and Price et al. [22].

Currently, there are several variants of DE algorithms. We follow the DE/rand/1/bin
scheme of Storn & Price [31] with the inclusion of SPV rule in the algorithm. Pseu-
docode of the DE algorithm is given in Fig 6.1.

Initialize parameters
Initialize the target population individuals
Find the tour of the target population individuals
Evaluate the target population individuals
Apply local search to the target population individuals (Optional)
Do{

Obtain the mutant population individuals
Obtain the trial population individuals
Find the tour of trial population individuals
Evaluate the trial population individuals
Do selection between the target and trial population individuals
Apply local search to the target population individuals (Optional)

}While (Not Termination)

Fig. 6.1. DE Algorithm with Local Search

The basic elements of DE algorithm are summarized as follows:

Target individual: Xk
i denotes the ith individual in the population at generation t and

is defined as Xk
i =

[
xk

i1,x
k
i2, ...,x

k
in

]
, where xk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Mutant individual: V k
i denotes the ith individual in the population at generation t and

is defined as V k
i =

[
vk

i1,v
k
i2, ...,v

k
in

]
, where vk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Trial individual:Uk
i denotes the ith individual in the population at generation t and is

defined as Uk
i =

[
uk

i1,u
k
i2, ...,u

k
in

]
, where uk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Target population: Xk is the set of NP individuals in the target population at generation
t, i.e., Xk =

[
Xk

1 ,Xk
2 , ...,Xk

NP

]
.
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Mutant population: V k is the set of NP individuals in the mutant population at gener-
ation t, i.e., V k =

[
V k

1 ,V k
2 , ...,V k

NP

]
.

Trial population: Uk is the set of NP individuals in the trial population at generation t,
i.e., Uk =

[
Uk

1 ,Uk
2 , ...,Uk

NP

]
.

Mutant constant: F ∈ (0,2) is a real number constant which affects the differential
variation between two individuals.

Crossover constant: CR ∈ (0,1) is a real number constant which affects the diversity
of population for the next generation.

Fitness function: In a minimization problem, the objective function is given by fi
(
Xk

i

)
,

for the individual Xk
i .

Traditional DEs explained above are designed for continuous optimization problems
where chromosomes are floating-point numbers. To cope with discrete spaces, a sim-
ple and novel discrete DE (DDE) algorithm is presented in [36, 20], where solutions are
based on discrete/binary values. In the DDE algorithm, each target individual belonging
to the NP number of individuals is represented by a solution as Xk

i =
[
xk

i1,x
k
i2, ...,x

k
im

]
,

consisting of discrete values of a permutation of clusters as well as a tour of nodes
visited, at the generation k. The mutant individual is obtained by perturbing the gener-
ation best solution in the target population. So the differential variation is achieved in
the form of perturbations of the best solution from the generation best solution in the
target population. Perturbations are stochastically managed such that each individual in
the mutant population is expected to be distinctive. To obtain the mutant individual, the
following equation can be used:

V k
i =

{
DCd

(
Xk−1

g

)
i f r < Pm

insert
(
Xk−1

g

)
otherwise

(6.1)

Where Xk−1
g is the best solution in the target population at the previous generation; Pm is

the perturbation probability; DCd is the destruction and construction procedure with the
destruction size of d as a perturbation operator; and insert is a simple random insertion
move from a given node to another node in the same cluster. A uniform random number
r is generated between [0, 1]. If r is less than then the DCd operator is applied to generate
the mutant individual V k

i = DCd
(
Xk−1

g

)
; otherwise, the best solution from the previous

generation is perturbed with a random insertion move resulting in the mutant individual
V k

i = insert
(
Xk−1

g

)
. Equation 6.1 will be denoted as V k

i := Pm ⊕ DCd
(
Xk−1

g

)
i:=1,2,..,NP

to ease the

understanding of pseudocodes. Following the perturbation phase, the trial individual is
obtained such that:

Uk
i =

{
CR
(
V k

i ,Xk−1
i

)
i f r < Pc

V k
i otherwise

(6.2)

where CR is the crossover operator; and Pc is the crossover probability. In other words, if
a uniform random number r is less than the crossover probability Pc, then the crossover
operator is applied to generate the trial individual Uk

i = CR
(
V k

i ,Xk−1
i

)
. Otherwise the
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trial individual is chosen as Uk
i = V k

i . By doing so, the trial individual is made up either
from the outcome of perturbation operator or from the crossover operator. Equation 6.2
will be denoted as Uk

i := Pc ⊕CR
(
V k

i ,Xk−1
i

)
i:=1,2,..,NP

.

Finally, the selection operator is carried out based on the survival of the fitness among
the trial and target individuals such that:

Xk
i =

{
Uk

i i f f
(
πk

i ← Uk
i

)
< f

(
πk−1

i ← Xk−1
i

)
Xk−1

i otherwise
(6.3)

Equation 6.3 will be denoted as Xk
i = argmin

{
f
(
πk

i ← Uk
i

)
, f
(
πk−1

i ← Xk−1
i

)}
i:=1,2,..,NP

.

6.2.1 Solution Representation

We employ a path representation for the GTSP in this chapter. In the path representa-
tion, each consecutive node is listed in order. A disadvantage of this representation is
due to the fact that there is no guarantee that a randomly selected solution will be a
valid GTSP tour because there is no guarantee that each cluster is represented exactly
once in the path without some repair procedures. To handle the GTSP, we include both
cluster and tour information in the solution representation. The solution representation
is illustrated in Table 6.1 where dπ jπ j+1 shows the distance from node π j to node π j+1.
Population individuals can be constructed in such a way that first a permutation of clus-
ters is determined randomly, and then since each cluster contains one or more nodes, a
tour is established by randomly choosing a single node from each corresponding clus-
ter. For example, n j stands for the cluster in the jth dimension, whereas π j represents
the node to be visited from the cluster n j.

Table 6.1. Solution Representation

j 1 ... m−1 m

n j n1 ... nm−1 nm

π j π1 ... πm−1 πm

X dπ j π j+1 dπ1π2 ... dπm−1πm dπmπ1

m
∑

j=1
dπ jπ j+1 +dπmπ1

dπ1π2 ... dπm−1πm dπmπ1

As illustrated in Table 6.1, the objective function value implied by a solution X with
m nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (6.4)
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Table 6.2. Solution Representation

j 1 2 3 4 5

n j 3 1 5 2 4

X π j 14 5 22 8 16

dπ jπ j+1 d14,5 d5,22 d22,8 d8,16 d16,14

Now, consider a GTSP instance with N = {1, ..,25} where the clusters are n1 =
{1, ..,5}, n2 = {6, ..,10}, n3 = {11, ..,15}, n4 = {16, ..,20} and n5 = {21, ..,25}.
Table 6.2 illustrates the example solution in detail.

So, the fitness function of the individual is given by F (π) = d14,5 + d5,22 + d22,8 +
d8,16 + d16,14.

6.2.2 Complete Computational Procedure of DDE

The complete computational procedure of the DDE algorithm for the GTSP problem
can be summarized as follows:

• Step 1: Initialization
– Set t = 0, NP =100
– Generate NP individuals randomly as in Table 6.2,

{
X0

i , i = 1,2, ...,NP
}

where
X0

i =
[
x0

i1,x
0
i2, ...,x

0
im

]
.

– Evaluate each individual i in the population using the objective function
f 0
i

(
πo

i ← X0
i

)
for i = 1,2, ...,NP.

• Step 2: Update generation counter
– k = k + 1

• Step 3: Generate mutant population
– For each target individual, Xk

i , i = 1,2, ...,NP, at generation k, a mutant individ-
ual, V k

i =
[
vk

i1,v
k
i2, ...,v

k
im

]
, is determined such that:

V k
i = Xk−1

ai
+ F

(
Xk−1

bi
− Xk−1

ci

)
(6.5)

where ai, bi and ci are three randomly chosen individuals from the population
such that (ai �= bi �= ci).

• Step 4: Generate trial population
– Following the mutation phase, the crossover (re-combination) operator is ap-

plied to obtain the trial population. For each mutant individual, V k
i =[

vk
i1,v

k
i2, ...,v

k
im

]
, an integer random number between 1 and n, i.e., Di ∈

(1,2, ...,m), is chosen, and a trial individual, Uk
i =

[
uk

i1,u
t
i2, ...,u

k
im

]
is generated

such that:

uk
i j =

{
vk

i j, i f rk
i j ≤ CR or j = Di

xk−1
i j , Otherwise

(6.6)

where the index D refers to a randomly chosen dimension ( j = 1,2, ...,m), which
is used to ensure that at least one parameter of each trial individual Uk

i differs
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from its counterpart in the previous generation Uk−1
i , CR is a user-defined cross-

over constant in the range (0, 1), and rk
i j is a uniform random number between

0 and 1. In other words, the trial individual is made up with some parameters
of mutant individual, or at least one of the parameters randomly selected, and
some other parameters of target individual.

• Step 5: Evaluate trial population
– Evaluate the trial population using the objective function f k

i

(
πk

i ← Uk
i

)
for i =

1,2, ...,NP.
• Step 6: Selection

– To decide whether or not the trial individual Uk
i should be a member of the

target population for the next generation, it is compared to its counterpart target
individual Xk−1

i at the previous generation. The selection is based on the survival
of fitness among the trial population and target population such that:

Xk
i =

{
Uk

i , i f f
(
πk

i ← Uk
i

)≤ f
(
πk−1

i ← Xk−1
i

)
Xt−1

i , otherwise
(6.7)

• Step 7: Stopping criterion
– If the number of generations exceeds the maximum number of generations, or

some other termination criterion, then stop; otherwise go to step 2

6.2.3 NEH Heuristic

Due to the availability of the insertion methods from the TSP literature, which are mod-
ified in this chapter, it is possible to apply the NEH heuristic of Nawaz et al. [17] to the
GTSP. Without considering cluster information for simplicity, the NEH heuristic for the
GTSP can be summarized as follows:

1. Determine an initial tour of nodes. Let this tour be π .
2. The first two nodes (that is, π1 and π2) are chosen and two possible partial tours of

these two nodes are evaluated. Note that since a tour must be a Hamiltonian cycle,
partial tours will be evaluated with the first node being the last node as well. As an
example, partial tours, (π1,π2,π1) and (π2,π1,π2) are evaluated first.

3. Repeat the following steps until all nodes are inserted. In the kth step, node πk at
position k is taken and tentatively inserted into all the possible k positions of the
partial tour that are already partially completed. Select of these k tentative partial
tours the one that results in the minimum objective function value or a cost function
suitably predefined.

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solu-
tion with five nodes as π = {3,1,4,2,5}. Following example illustrates the implemen-
tation of the NEH heuristic for the GTSP:

1. Current solution is π = {3,1,4,2,5}
2. Evaluate the first two nodes as follows: {3,1,3} and {1,3,1}. Assume that the first

partial tour has a better objective function value than the second one. So the current
partial tour will be {3,1}.
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3. Insertions:
a) Insert node 4 into three possible positions of the current partial tour as follows:

{4,3,1,4}, {3,4,1,3} and {3,1,4,3}. Assume that the best objective function
value is with the partial tour {3,4,1,3}. So the current partial tour will be
{3,4,1}.

b) Next, insert node 2 into four possible positions of the current partial tour as fol-
lows: {2,3,4,1,2}, {3,2,4,1,3}, {3,4,2,1,3} and {3,4,1,2,3}. Assume that
the best objective function value is with the partial tour {3,2,4,1,3}. So the
current partial tour will be {3,2,4,1}.

c) Finally, insert node 5 into five possible positions of the current partial tour
as follows: {5,3,2,4,1,5}, {3,5,2,4,1,3}, {3,2,5,4,1,3}, {3,2,4,5,1,3} and
{3,2,4,1,5,3}. Assume that the best objective function value is with the partial
tour {3,2,4,5,1,3}. So the final complete tour will be π = {3,2,4,5,1}.

6.2.4 Insertion Methods

In this section of the chapter, the insertion methods are modified from the literature and
facilitate the use of the local search. It is important to note that for simplicity, we do
not include the cluster information in the following examples. However, whenever an
insertion move is carried out, the corresponding cluster is also inserted in the solution.
Insertion methods are based on the insertion of node πR

k into m+1 possible positions of
a partial or destructed tour πD with m nodes and an objective function value of F

(
πD
)
.

Note that as an example, only a single node is considered to be removed from the current
solution to establish πR

k with a single node and re-inserted into the partial solution. Such
insertion of node πR

k into m− 1 possible positions is actually proposed by Rosenkrantz
et al. [26] for the TSP. Snyder & Daskin [30] adopted it for the GTSP. It is based on the
removal and the insertion of node πR

k in an edge
(
πD

u ,πD
v

)
of a partial tour. However,

it avoids the insertion of node πR
k on the first and the last position of any given partial

tour. Suppose that node πR
k =8 will be inserted in a partial tour in Table 6.3.

Table 6.3. Current solution

j 1 2 3 4 j 1

nD
j 3 1 5 4 nR

j 2
πD

j 14 5 22 16 πR
j 8

dπ jπ j+1 d14,5 d5,22 d22,16 d16,14

A Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπR

k πD
1

+ dπD
m πR

k

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.
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Table 6.4. Insertion of node πR
k =8 in the first slot

j 1 2 3 4 5

n j 2 3 1 5 4
π j 8 14 5 22 16

dπ jπ j+1 d8,14 d14,5 d5,22 d22,16 d16,8

Remove = dπ4π1 = d16,14

Add = dπuπk + dπkπv = d14,8 + d8,5

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d14,5 + d5,22 + d22,16 + d16,14 + d8,14 + d16,8 − d16,14

F (π) = d14,5 + d5,22 + d22,16 + d8,14 + d16,8

B Insertion of node,pair πR
k in the last position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπD

m πR
k
+ dπR

k πD
1

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Table 6.5. Insertion of node πR
k =8 in the last slot

j 1 2 3 4 5

n j 3 1 5 4 2
π j 14 5 22 16 8

dπ jπ j+1 d14,5 d5,22 d22,16 d16,8 d8,14

Remove = dπ4π1 = d16,14

Add = dπ4πk + dπkπ1 = d16,8 + d8,14

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d14,5 + d5,22 + d22,16 + d16,14 + d16,8 + d8,14 − d16,14

F (π) = d14,5 + d5,22 + d22,16 + d16,8 + d8,14

C Insertion of node πR
k between the edge

(
πD

u ,πD
v

)
a Remove = dπD

u πD
v

b Add = dπD
u πR

k
+ dπR

k πD
v

b F (π) = F
(
πD
)
+ Add − Remove, where F (π) and F

(
πD
)

are fitness
function values of the complete and the partial solutions respectively.

Remove = dπuπv = d14,5

Add = dπuπk + dπkπv = d14,8 + d8,5

F (π) = F
(
πD
)
+ Add − Remove
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Table 6.6. Insertion of node πR
k =8 in between the edge

(
πD

u ,πD
v
)

j 1 2 3 4 5

n j 3 2 1 5 4
π j 14 8 5 22 16

dπ jπ j+1 d14,8 d8,5 d5,22 d22,16 d16,14

F (π) = d14,5 + d5,22 + d22,16 + d14,8 + d8,5 − d33,44 + d44,41 + d41,25 + d25,24+
d14,5

F (π) = d5,22 + d22,16 + d16,14 + d14,8 + d8,5

Note that Case B can actually be managed by Case C, since the tour is cyclic. Note
again that the above insertion approach is somewhat different than the one in Snyder &
Daskin [30], where the cost of an insertion of node πR

k in an edge
(
πD

u ,πD
v

)
is evaluated

by C = dπD
u πR

k
+dπR

k πD
v

−dπD
u πD

v
. Instead, we directly calculate the fitness function value

of the complete tour after using the insertion methods above, i.e., well suited for the
NEH insertion heuristic..

6.2.5 Destruction and Construction Procedure

We employ the destruction and construction (DC) procedure of the iterated greedy (IG)
algorithm [27] in the DDE algorithm. In the destruction step, a given number d of nodes,
randomly chosen and without repetition, are removed from the solution. This results in
two partial solutions. The first one with the size d of nodes is called XR and includes
the removed nodes in the order where they are removed. The second one with the size
m − d of nodes is the original one without the removed nodes, which is called XD. It
should be pointed out that we consider each corresponding cluster when the destruction
and construction procedures are carried out in order to keep the feasibility of the GTSP
tour. Note that the perturbation scheme is embedded in the destruction phase where p
nodes from XR are randomly chosen without repetition and they are replaced by some
other nodes from the corresponding clusters.

The construction phase requires a constructive heuristic procedure. We employ the
NEH heuristic described in the previous section. In order to reinsert the set XR into the
destructed solution XD in a greedy manner, the first node πR

1 in XR is inserted into all
possible m− d + 1 positions in the destructed solution XD generating m− d + 1 partial
solutions. Among these m− d + 1 partial solutions including node πR

1 , the best partial
solution with the minimum tour length is chosen and kept for the next iteration. Then
the second node πR

2 in XR is considered and so on until XR is empty or a final solution
is obtained. Hence XD is again of size m.

The DC procedure for the GTSP is illustrated through Table 6.7 and Table 6.12
using the GTSP instance in Table 6.2. Note that the destruction size is d = 2 and the
perturbation strength is p = 1 in this example. Perturbation strength p = 1 indicates
replacing (mutating) only a single node among two nodes with another one from the
same cluster.
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Table 6.7. Current Solution

j 1 2 3 4 5

n j 3 1 5 2 4
π j 14 5 22 8 16

Table 6.8. Destruction Phase

j 1 2 3 4 5

n j 3 1 5 2 4
π j 14 5 22 8 16

Table 6.9. Destruction Phase

j 1 2 3 j 1 2

nD
j 3 5 4 nR

j 1 2
πD

j 14 22 16 πR
j 5 8

Table 6.10. Destruction Phase-Mutation

j 1 2 3 j 1 2

nD
j 3 5 4 nR

j 1 2
πD

j 14 22 16 πR
j 5 9

Table 6.11. Construction Phase

j 1 2 3 4 j 1

nD
j 3 5 1 4 nR

j 2
πD

j 14 22 5 16 πR
j 9

Table 6.12. Final Solution

j 1 2 3 4 5

nD
j 3 2 5 1 4

πD
j 14 9 22 5 16
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Table 6.13. Two-Cut PTL Crossover Operator

j 1 2 3 4 5

P1 n j 5 1 4 2 3
π j 24 3 19 8 14

P2 n j 5 1 4 2 3
π j 24 3 19 8 14

O1 n j 4 2 5 1 3
π j 19 8 24 3 14

O2 n j 5 1 3 4 2
π j 24 3 14 19 8

Step 1.a. Choose d = 2 nodes with corresponding clusters, randomly.
Step 1.b. Establish πD = {14,22,16}, nD = {3,5,4}, πR = {5,8} and nR = {1,2}.
Step 1.c. Perturb πR = {5,8} to πR = {5,9} by randomly choosing nR

2 = 2 in the set
nR = {1,2}, and randomly replacing nR

2 = 8 with nR
2 = 9 from the same cluster n2.

Step2.a. After the best insertion of node πR
1 = 5 and the cluster πR

1 = 1.
Step2.b. After the best insertion of node nR

2 = 9 and the cluster πR
1 = 2.

F (π) = d5,22 + d22,16 + d16,14 + d14,8 + d8,5

6.2.6 PTL Crossover Operator

Two-cut PTL crossover operator developed by Pan et al. [21] is used in the DDE algo-
rithm. The two-cut PTL crossover operator is able to produce a pair of distinct offspring
even from two identical parents. An illustration of the two-cut PTL cross-over operator
is shown in Table 6.13.

In the PTL crossover, a block of nodes and clusters from the first parent is determined
by two cut points randomly. This block is either moved to the right or left corner of the
offspring. Then the offspring is filled out with the remaining nodes and corresponding
clusters from the second parent. This procedure will always produce two distinctive
offspring even from the same two parents as shown in Table 6.13. In this chapter, one
of these two unique offspring is chosen randomly with an equal probability of 0.5.

6.2.7 Insert Mutation Operator

Insert mutation operator is a modified insert mutation considering the clusters in the so-
lution representation. It is also used in the perturbation of the solution in the destruction
and construction procedure. It is basically related to removing a node from a tour of an
individual, and replacing that particular node with another one from the same cluster. It
is illustrated in Table 6.14.

As shown in Table 6.14, the cluster n2 = 5 is randomly selected and its corresponding
node π2 = 23 is replaced by node π2 = 22 from the same cluster n2 = 5.
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Table 6.14. Insert Mutation

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Xi n j 3 5 2 1 4
π j 12 22 8 4 19

6.2.8 DDE Update Operations

To figure out how the individuals are updated in the DDE algorithm, an example using
the GTSP instance in Table 6.2 is also illustrated through Table 6.15 and Table 6.18.
Assume that the mutation and crossover probabilities are 1.0, the two-cut PTL crossover

Table 6.15. An Example of Individual Update

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Gi n j 3 1 5 2 4
π j 15 4 24 7 17

Table 6.16. Insert Mutation

j 1 2 3 4 5

Xi n j 3 1 5 2 4
π j 15 4 24 7 17

Gi n j 3 1 5 2 4
π j 15 4 25 7 17

Table 6.17. Two-Cut PTL Crossover

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Gi n j 3 1 5 2 4
π j 15 4 25 7 17

Ui n j 2 1 3 5 4
π j 8 4 15 25 17
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Table 6.18. Selection For Next Generation

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Ui n j 2 1 3 5 4
π j 8 4 15 25 17

Assume that f (Ui) ≤ f (Xi) Xi = Ui

Ui n j 2 1 3 5 4
π j 8 4 15 25 17

and insert mutation operators are employed. Given the individual and the global best
(best so far solution for DDE) solution, the global best solution is first mutated by using
equation 6.1. For example, in Table 6.15, the dimensions u=3 is chosen randomly with
its corresponding cluster and node. Node πu = π3 = 25 is replaced by πu = π3 = 24 from
the same cluster nu = n3 = 5, thus resulting in the mutant individual Vi. Then the mutant
individual Vi is recombined with its corresponding individual Xi in the target population
to generate the trial individual Ui by using equation 6.2. Finally, the target individual Xi

is compared to the trial individual Ui to determine which one would survive for the next
generation based on the survival of the fittest by using equation 6.3.

6.3 Hybridization with Local Search

The hybridization of DE algorithm with local search heuristics is achieved by per-
forming a local search phase on every trial individual generated. The SWAP proce-
dure [30], denoted as LocalSearchSD in this chapter, and the 2-opt heuristic [16] were
separately applied to each trial individual. The 2-opt heuristic finds two edges of a
tour that can be removed and two edges that can be inserted in order to generate a new
tour with a lower cost. More specifically, in the 2-opt heuristic, the neighborhood of a
tour is obtained as the set of all tours that can be replaced by changing two nonadjacent
edges in that tour. Note that the 2-opt heuristic is employed with the first improvement
strategy in this study. The pseudo code of the local search (LS) procedures is given in
Fig 6.2.

As to the LocalSearchSD procedure, it is based on the SWAP procedure and is
basically concerned with removing a node from a cluster and inserting a different node
from that cluster into the tour. The insertion is conducted using a modified nearest-
neighbour criterion, so that the new node may be inserted on the tour in a spot different.
Each node in the cluster is inserted into all possible spots in the current solution and
the best insertion is replaced with the current solution. The SWAP procedure of Snyder
& Daskin [30] is outlined in Fig 6.3, whereas the proposed DDE algorithm is given in
Fig 6.4. Note that in SWAP procedure, the followings are given such that tour T; set Vj;
node j ∈ Vj, j ∈ T ; distances duv between each u,v ∈ V .
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procedure LS (π ← X)
h := 1
while (h ≤ m) do

π∗ := LocalSearchSD(π ← X)
i f ( f (π∗ ← X) ≤ f (π ← X)) then

π ← X := π∗ ← X
h := 1

else
h := h+1

else
endwhile
return π ← X

end procedure

Fig. 6.2. The Local Search Scheme

Procedure SWAP()
remove j f rom T
f or each k ∈ Vj

ck ← min
{

duk +dkv −duv/(u,v) is an edge in T
}

k∗ ← argmin
k∈Vj

{ck}
insert k∗ into T between (u,v)

Fig. 6.3. The SWAP Procedure

6.4 Computational Results

Fischetti et al. [8] developed a branch-and-cut algorithm to solve the symmetric GTSP.
The benchmark set is derived by applying a partitioning method to standard TSP in-
stances from the TSPLIB library [23]. The benchmark set with optimal objective func-
tion values for each of the problems is obtained through a personal communication
with Dr. Lawrence V. Snyder. The benchmark set contains between 51 (11) and 442
(89) nodes (clusters) with Euclidean distances and the optimal objective function value
for each of the problems is available. The DDE algorithm was coded in Visual C++
and run on an Intel Centrino Duo 1.83 GHz Laptop with 512MB memory. The popula-
tion size was fixed at 100. The initial population is constructed randomly and then the
NEH insertion heuristic was applied to each random solution. The destruction size and
perturbation strength were taken as 5 and 3, respectively. The crossover and mutation
probability were taken as 0.9 and 0.2, respectively. PTL [33] crossover operator is used
in the DDE algorithm. The DDE algorithm was terminated when the best so far solu-
tion was not improved after 50 consecutive generations. Five runs were carried out for
each problem instance to report the statistics based on the relative percent deviations(Δ )
from optimal solutions as follows

Δavg =
R

∑
i=1

(
(Hi − OPT)× 100

OPT

)
/R (6.8)
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Procedure DE GT SP
Set CR,F,NP,TerCriterion
X =

(
x0

1,x
0
2, ..,x

0
NP

)
f
(
π0

i ← x0
i

)
i:=1,2,..,NP

π0
i ← x0

i = 2 opt
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
i ← x0

i = LS
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
g ← x0

i = argmin
{

f
(
π0

i ← x0
i

)}
i=1,2,..,NP

πB := π0
g ← x0

i
k := 1
while

(
Not TerCriterion

)
do

V k
i j := xk

ia +F
(
Xk

ib +Xk
ic

)
i:=1,2,..,NP, j=1,2,..,m

uk
i j =

{
vk

i j i f rk
i j < CR or j = D j

xk−1
i j otherwise

i=1,2,..,NP, j=1,2,..,m

f
(
πk

i ← Uk
i

)
i:=1,2,..,NP

πk
i ← Uk

i = 2 opt
(
πk

i ← Uk
i

)
i=1,2,..,NP

πk
i ← Uk

i = LS
(
πk

i ← Uk
i

)
i=1,2,..,NP

Xk
i =

{
uk

i i f f
(
πk

i ← uk
i

)
< f

(
πk−1

i ← Xk−1
i

)
xk−1

i otherwise
i=1,2,..,NP

πk
g ← Xk

g = argmin
{

f
(
πk

i ← Xk
i

)
, f
(
πk−1

g ← Xk−1
g
)}

i:=1,2,..,NP

πB ← XB = argmin
{

f (πB ← XB) , f
(
πk

g ← Xk
g
)}

k := k +1
endwhile
return πB ← XB

Fig. 6.4. The DDE Algorithm with Local Search Heuristics

where Hi, OPT and R are the objective function values generated by the DDE in each
run, the optimal objective function value, and the number of runs, respectively. For the
computational effort consideration, tavg denotes average CPU time in seconds to reach
the best solution found so far during the run, i.e., the point of time that the best so
far solution does not improve thereafter. Favg represents the average objective function
values out of five runs.

6.4.1 Solution Quality

Table 6.19 gives the computational results for each of the problem instances in detail.
As seen in Table 6.19, the DDE algorithm was able to obtain optimal solutions in at
least two of the five runs for 35 out of 36 problems tested (97%). For 32 (89%) out of
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Table 6.19. Computational Results of DDE algorithm

Instance OPT nopt Δavg Δmin Δmax Iavg Imin Imax tavg tmin tmax

11EIL51 174 5 0 0 0 1 1 1 0.04 0.02 0.06
14ST70 316 5 0 0 0 1 1 1 0.04 0.03 0.05
16EIL76 209 5 0 0 0 1 1 1 0.05 0.05 0.06
16PR76 64925 5 0 0 0 1 1 1 0.06 0.05 0.06
20KROA100 9711 5 0 0 0 1 1 1 0.09 0.08 0.09
20KROB100 10328 5 0 0 0 1 1 1 0.09 0.08 0.09
20KROC100 9554 5 0 0 0 1 1 1 0.08 0.08 0.09
20KROD100 9450 5 0 0 0 1 1 1 0.08 0.08 0.09
20KROE100 9523 5 0 0 0 1 1 1 0.09 0.08 0.09
20RAT99 497 5 0 0 0 1 1 1 0.08 0.08 0.09
20RD100 3650 5 0 0 0 1 1 1 0.09 0.08 0.09
21EIL101 249 5 0 0 0 1 1 1 0.08 0.08 0.09
21LIN105 8213 5 0 0 0 1 1 1 0.1 0.09 0.11
22PR107 27898 5 0 0 0 1 1 1 0.1 0.09 0.11
25PR124 36605 5 0 0 0 1 1 1 0.13 0.13 0.14
26BIER127 72418 5 0 0 0 1 1 1 0.14 0.13 0.14
28PR136 42570 5 0 0 0 1 1 1 0.18 0.16 0.19
29PR144 45886 5 0 0 0 1 1 1 0.18 0.17 0.2
30KROA150 11018 5 0 0 0 1 1 1 0.2 0.19 0.2
30KROB150 12196 5 0 0 0 1 1 1 0.2 0.19 0.2
31PR152 51576 5 0 0 0 1.2 1 2 0.22 0.19 0.28
32U159 22664 5 0 0 0 1 1 1 0.23 0.22 0.24
39RAT195 854 5 0 0 0 1.4 1 2 0.42 0.36 0.48
40D198 10557 5 0 0 0 1.4 1 2 0.44 0.38 0.52
40KROA200 13406 5 0 0 0 1.2 1 2 0.41 0.38 0.48
40KROB200 13111 5 0 0 0 7 1 22 0.93 0.41 2.03
45TS225 68340 3 0.04 0 0.09 9.8 1 33 1.32 0.47 3.05
46PR226 64007 5 0 0 0 1 1 1 0.42 0.41 0.44
53GIL262 1013 2 0.41 0 0.69 11.4 1 44 2 0.72 5.36
53PR264 29549 5 0 0 0 1.4 1 3 0.79 0.67 1.23
60PR299 22615 2 0.05 0 0.09 11.2 6 19 3.24 2.5 5.36
64LIN318 20765 5 0 0 0 14.2 3 45 4.37 2.13 10.28
80RD400 6361 5 0 0 0 14.8 11 18 8.3 6.86 9.97
84FL417 9651 3 0.01 0 0.02 13.8 8 24 6.86 4.58 10.88
88PR439 60099 5 0 0 0 15.2 8 23 8.54 6.06 11.08
89PCB442 21657 5 0 0 0 19 10 35 11.72 7.86 17.8

Overal Avg 4.72 0.01 0 0.02 4.03 2.11 8.22 1.45 1 2.27

36 problems, the DDE algorithm obtained the optimal solution in every trial. The DDE
algorithm solved all the problems with a 0.01% deviation on average, 0.00% deviation
on minimum and 0.02% deviation on maximum. The overall hit ratio was 4.72, which
indicates that the DDE algorithm was able to find the 95% of the optimal solutions on
overall average. The worst case performance was never more than 0.02% above optimal
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on overall average. In other words, it indicates that the DDE algorithm has a tendency of
yielding consistent solutions across a wide variety of problem instances. To highlight
its consistency more, the range between the best and worst case was only 0.02% on
overall average, thus indicating a very robust algorithm.

6.4.2 Computation Time

Table 6.19 also gives necessary information about CPU time requirement for each of the
problem instances. The DDE algorithm is very fast in terms of CPU time requirement
due to the mean CPU time of less than 12 seconds for all instances. In addition, its
maximum CPU time was no more than 18 seconds for all instances. The DDE algorithm
was able to find its best solution in the first 4.03 generations on overall average and
spent most of the time waiting for the termination condition. It took 2.11 generations
at minimum and only 8.22 generations at maximum on overall average to find its best
solution for each problem instance. Since the local search heuristics are applied to each
problem instance at each generation, most of the running times have been devoted to
the local search improvement heuristics, which indicates the impact of the them on the
solution quality. It implies the fact that with some better local search heuristics such
as Renaud and Boctor’s G2-opt or G3-opt, as well as with some speed-up methods for
2-opt heuristic, its CPU time performance may be further improved.

6.4.3 Comparison to Other Algorithms

We compare the DDE algorithm to two genetic algorithms, namely, RKGA by Sny-
der & Daskin [30] and mrOXGA by Silberholz & Golden [29], where RKGA is
re-implemented under the same machine environment. Table 6.20 summarizes the so-
lution quality in terms of relative percent deviations from the optimal values and CPU
time requirements for all three algorithms. Note that our machine has a similar speed
as Silberholz & Golden [29]. A two-sided paired t-test which compares the results on
Table 6.20 with a null hypothesis that the algorithms were identical generated p-values
of 0.175 and 0.016 for DDE vs. mrOXGA and DDE vs. RKGA,respectively, suggesting
near-identical results between DDE and mrOXGA. On the other hand, the paired t-test
confirms that the differences between DDE and RKGA were significant on the behalf of
DDE subject to the fact that DDE was computationally less expensive than both RKGA
and mrOXGA since p-values were 0.001 for DDE vs. mrOXGA and 0.008 for DDE vs.
RKGA.

In addition to above, Silberholz & Golden [29] provided larger problem instances
ranging from 493 (99) to 1084 (217) nodes (clusters) where no optimal solutions are
available. However, they provided the results of mrOXGA and RKGA. We compare the
DDE results to those presented in Silberholz & Golden [29]. As seen in Table 6.21, DDE
generated consistently better results than both RKGA and mrOXGA in terms of both
solution quality and CPU time requirement even if the larger instances are considered.
In particular, 8 out 9 larger instances are further improved by the DDE algorithm. The
paired t-test on the objective function values on Table 6.21 confirms that the differences
between DDE and RKGA were significant since p-value was 0.033 (null hypothesis
is rejected), whereas DDE was equivalent to mrOXGA since p-value was 0.237. In
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Table 6.20. Comparison for Optimal Instances

DDE mrOXGA RKGA

Instance Δavg tavg Δavg tavg Δavg tavg

11EIL51 0 0.04 0 0.26 0 0.08
14ST70 0 0.04 0 0.35 0 0.07
16EIL76 0 0.05 0 0.37 0 0.11
16PR76 0 0.06 0 0.45 0 0.16
20KROA100 0 0.09 0 0.63 0 0.25
20KROB100 0 0.09 0 0.6 0 0.22
20KROC100 0 0.08 0 0.62 0 0.23
20KROD100 0 0.08 0 0.67 0 0.43
20KROE100 0 0.09 0 0.58 0 0.15
20RAT99 0 0.08 0 0.5 0 0.24
20RD100 0 0.09 0 0.51 0 0.29
21EIL101 0 0.08 0 0.48 0 0.18
21LIN105 0 0.1 0 0.6 0 0.33
22PR107 0 0.1 0 0.53 0 0.2
25PR124 0 0.13 0 0.68 0 0.26
26BIER127 0 0.14 0 0.78 0 0.28
28PR136 0 0.18 0 0.79 0.16 0.36
29PR144 0 0.18 0 1 0 0.44
30KROA150 0 0.2 0 0.98 0 0.32
30KROB150 0 0.2 0 0.98 0 0.71
31PR152 0 0.22 0 0.97 0 0.38
32U159 0 0.23 0 0.98 0 0.55
39RAT195 0 0.42 0 1.37 0 1.33
40D198 0 0.44 0 1.63 0.07 1.47
40KROA200 0 0.41 0 1.66 0 0.95
40KROB200 0 0.93 0.05 1.63 0.01 1.29
45TS225 0.04 1.32 0.14 1.71 0.28 1.09
46PR226 0 0.42 0 1.54 0 1.09
53GIL262 0.41 2 0.45 3.64 0.55 3.05
53PR264 0 0.79 0 2.36 0.09 2.72
60PR299 0.05 3.24 0.05 4.59 0.16 4.08
64LIN318 0 4.37 0 8.08 0.54 5.39
80RD400 0 8.3 0.58 14.58 0.72 10.27
84FL417 0.01 6.86 0.04 8.15 0.06 6.18
88PR439 0 8.54 0 19.06 0.83 15.09
89PCB442 0 11.72 0.01 23.43 1.23 11.74

Avg 0.01 1.45 0.04 2.99 0.13 2
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Table 6.21. Comparision to Silberholz & Golden-Time is milliseconds

DE mrOXGA RKGA

Instance Favg tavg Favg tavg Favg tavg

11EIL51 174 37.6 174 259.2 174 78.2
14ST70 316 43.8 316 353 316 65.6
16EIL76 209 50 209 369 209 106.4
16PR76 64925 56.4 64925 447 64925 156.2
20KROA100 9711 90.6 9711 628.2 9711 249.8
20KROB100 10328 87.6 10328 603.2 10328 215.6
20KROC100 9554 84.4 9554 621.8 9554 225
20KROD100 9450 81.2 9450 668.8 9450 434.4
20KROE100 9523 87.6 9523 575 9523 147
20RAT99 497 81.2 497 500 497 243.8
20RD100 3650 90.6 3650 506.2 3650 290.8
21EIL101 249 81.2 249 478.2 249 184.6
21LIN105 8213 96.8 8213 603.2 8213 334.4
22PR107 27898 96.8 27898.6 534.4 27898.6 197
25PR124 36605 134.2 36605 678 36605 259
26BIER127 72418 137.4 72418 784.4 72418 275.2
28PR136 42570 175 42570 793.8 42639.8 362.8
29PR144 45886 184.2 45886 1003.2 45887.4 437.6
30KROA150 11018 200 11018 981.2 11018 319
30KROB150 12196 200 12196 978.4 12196 712.4
31PR152 51576 218.8 51576 965.4 51576 381.2
32U159 22664 228.2 22664 984.4 22664 553.2
39RAT195 854 415.6 854 1374.8 854 1325
40D198 10557 437.6 10557 1628.2 10564 1468.6
40KROA200 13406 412.4 13406 1659.4 13406 950.2
40KROB200 13111 931.2 13117.6 1631.4 13112.2 1294.2
45TS225 68364 1322 68435.2 1706.2 68530.8 1087.4
46PR226 64007 421.8 64007 1540.6 64007 1094
53GIL262 1017.2 2000 1017.6 3637.4 1018.6 3046.8
53PR264 29549 793.8 29549 2359.4 29574.8 2718.6
60PR299 22627 3243.6 22627 4593.8 22650.2 4084.4
64LIN318 20765 4368.8 20765 8084.4 20877.8 5387.6
80RD400 6361 8303.2 6397.8 14578.2 6407 10265.6
84FL417 9651.6 6856.4 9654.6 8152.8 9657 6175.2
88PR439 60099 8543.6 60099 19059.6 60595.4 15087.6
89PCB442 21657 11718.8 21658.2 23434.4 21923 11743.8
99D493 20059.2 15574.8 20117.2 35718.8 20260.4 14887.8
115RAT575 2421 20240.2 2414.8 48481 2442.4 46834.4
131P654 27430 30428.4 27508.2 32672 27448.4 46996.8
132D657 22544.8 57900 22599 132243.6 22857.6 58449.8
145U724 17367.2 74687.4 17370.6 161815.2 17806.2 59625.2
157RAT783 3272.2 77000.2 3300.2 152147 3341 89362.4
201PR1002 114692.8 211025.2 114582.2 464356.4 117421.2 332406.2
212U1060 106460 247187.4 108390.4 594637.4 110158 216999.8
217VM1084 131718.2 292381.6 131884.6 562040.6 133743.4 390115.6

Overal Avg 27502.7 23971.9 27554.28 50930.41 27741.29 29503.03
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terms of CPU times, the paired t-test on the CPU times confirms that the differences
between DDE and mrOXGA were significant since the p-values was 0.020, whereas
it was failed to reject the null hypothesis of being equal difference between DDE and
RKGA due to the p-value of 0.129. Briefly, the paired t-test indicates that DDE was
able to generate lower objective function values with less CPU times than mrOXGA.
On the other hand, DDE yielded much better objective function values with identical
CPU times than RKGA.

6.5 Conclusions

A DDE algorithm is presented to solve the GTSP on a set of benchmark instances rang-
ing from 51 (11) to 1084 (217) nodes (clusters). The contributions of this paper can
be summarized as follows. A unique solution representation including both cluster and
tour information is presented, which handles the GTSP properly when carrying out the
DDE operations. To the best of our knowledge, this is the first reported application of
the DDE algorithm applied to the GTSP. The perturbation scheme is presented in the
destruction procedure. Furthermore, the DDE algorithm is donated with very effective
local search methods, 2-opt and SWAP procedure, in order to further improve the so-
lution quality. Ultimately, the DDE algorithm was able to find optimal solutions for a
large percentage of problem instances from a set of test problems from the literature.
It was also able to further improve 8 out of 9 larger instances from the literature. Both
solution quality and computation times are competitive to or even better than the best
performing algorithms from the literature. In particular, its performance on the larger
instances is noteworthy.
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