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Abstract. In a traveling salesman problem, if the set of nodes is divided into clusters for a sin-
gle node from each cluster to be visited, then the problem is known as the generalized traveling
salesman problem (GTSP). Such problem aims to find a tour with minimum cost passing through
only a single node from each cluster. In attempt to show how a continuous optimization algo-
rithm can be used to solve a discrete/combinatorial optimization problem, this chapter presents a
standard continuous differential evolution algorithm along with a smallest position value (SPV)
rule and a unique solution representation to solve the GTSP. The performance of the differential
evolution algorithm is tested on a set of benchmark instances with symmetric distances ranging
from 51 (11) to 442 (89) nodes (clusters) from the literature. Computational results are presented
and compared to a random key genetic algorithm (RKGA) from the literature.

5.1 Introduction

The generalized traveling salesman problem (GTSP), one of several variations of the
traveling salesman problem (TSP), has been originated from diverse real life or poten-
tial applications. The TSP finds a routing of a salesman who starts from an origin (i.e. a
home location), visits a prescribed set of cities, and returns to the origin in such a way
that the total distance is minimum and each city is travelled once. On the other hand, in
the GTSP, a salesman when making a tour does not necessarily visit all nodes. But sim-
ilar to the TSP, the salesman will try to find a minimum-cost tour and travel each city
exactly once. Since the TSP in its generality represents a typical NP-Hard combinato-
rial optimization problem, the GTSP is also NP-hard. While many other combinatorial
optimization problems can be reduced to the GTSP problem [11], applications of the
GTSP spans over several areas of knowledge including computer science, engineering,
electronics, mathematics, and operations research, etc. For example, publications can
be found in postal routing [11], computer file processing [9], order picking in ware-
houses [17], process planning for rotational parts [3], and the routing of clients through
welfare agencies [24].
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Let us first define the GTSP, a complete graph G = (V,E) is a weighted undirected
whose edges are associated with non-negative costs. We denote the cost of an edge
e = (i, j) by ci j. Then, the set of V nodes is divided into m sets or clusters such that
V = {V1, ..,Vm} with V = {V1 ∪ ..∪Vm} and Vj ∩Vk = φ . The problem involves two
related decisions- choosing a node from the subset and finding a minimum cost tour
in the subgraph of G. In other words, the objective is to find a minimum tour length
containing exactly single node from each cluster Vj.

The GTSP was first addressed in [9, 24, 28]. Applications of various exact algorithms
can be found in Laporte et al. [12, 13], Laporte & Nobert [11], Fischetti et al. [7, 8], and
others in [4, 18]. Laporte & Nobert [11], developed an exact algorithm for GTSP by for-
mulating an integer programming and finding the shortest Hamiltonian cycle through
some clusters of nodes. Noon and Bean [18], presented a Lagrangean relaxation algo-
rithm. Fischetti et al. [8] dealt with the asymmetric version of the problem and devel-
oped a branch and cut algorithm to solve this problem. While exact algorithms are very
important, they are unreliable with respect to their running time which can easily reach
many hours or even days, depending on the problem sizes. Meanwhile several other
researchers use transformations from GTSP to TSP since a large variety of exact and
heuristic algorithms have been applied for the TSP [3],. Lien et. al. [15] first introduced
transformation of a GTSP into a TSP, where the number of nodes of the transformed
TSP was very large. Then Dimitrijevic and Saric [6] proposed another transformation
to decrease the size of the corresponding TSP. However, many such transformations
depend on whether or not the problem is symmetric; moreover, while the known trans-
formations usually allow to produce optimal GTSP tours from the obtained optimal
TSP tours, such transformations do not preserve suboptimal solutions. In addition, such
conversions of near-optimal TSP tours may result in infeasible GTSP solutions.

Because of the multitude of inputs and the time needed to produce best results, the
GTSP problems are harder and harder to solve. That is why, in such cases, applications
of several worthy heuristic approaches to the GTSP are considered. The most used con-
struction heuristic is the nearest-neighbor heuristic which, in its adaptation form, was
presented in Noon [17]. Similar adaptations of the farthest-insertion, nearest-insertion,
and cheapest-insertion heuristics are proposed in Fischetti et al. [8]. In addition, Renaud
& Boctor [20] developed one of the most sophisticated heuristics, called GI3 (Gener-
alized Initilialization, Insertion, and Improvement), which is a gen-eralization of the I3

heuristic in Renaud et al. [21]. GI3 contains three phases: in the Initialization phase, the
node close to the other clusters is chosen from each cluster and greedily built into a tour
that passes through some, but not necessarily all, of the chosen nodes. Next in the Inser-
tion phase, nodes from unvisited clusters are inserted between two consecutive clusters
on the tour in the cheapest possible manner, allowing the visited node to change for the
adjacent clusters; after each insertion, the heuristic performs a modification of the 3-opt
improvement method. In the Improvement phase, modifications of 2-opt and 3-opt are
used to improve the tour. Here the modifications, called G2-opt, G3-opt, and G-opt,
allow the visited nodes from each cluster to change as the tour is being re-ordered by
the 2-opt or 3-opt procedures.

Application of evolutionary algorithms specifically to the GTSP have been few in
the literature until Snyder & Daskin [26] who proposed a random key genetic algorithm
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(RKGA) to solve this problem. In their RKGA, a random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and ”swap”. In the search process, their ”swap” procedure is considered
as a speed-up method which basically removes a node j from a tour and inserts all
possible nodes ks from the corresponding cluster in between an edge (u,v) in a tour
(i.e., between the node u and the node v). Such insertion is based on a modified nearest-
neighbor criterion. These two local search heuristics have been separately embedded in
the level-I improvement and level-II improvement procedures.

For each individual in the population, they store the original (pre-improvement) cost
and the final cost after improvements have been made. When a new individual is created,
they compare its pre-improvement cost to the pre-improvement cost of the individual
at position p × N in the previous (sorted) population, where p ∈ [0,1] is a parameter
of the algorithm (they use p = 0.05 in their implementation). These two improvement
procedures in Snyder & Daskin [26] are implemented as follows:

1. If the new solution is worse than the pre-improvement cost of this individual, the
level-I improvement is considered. That is, one 2-opt exchange and one ”swap”
procedure (assuming a profitable one can be found) are performed and the resulting
individual are stored.

2. Otherwise, the level-II improvement is considered. So the 2-opts are executed un-
til no profitable 2-opts can be found, then the ”swap” procedures are carried out
until no profitable swaps can be found. The procedure is repeated until no further
improvements have been made in a given pass.

The RKGA focuses on designing the local search to spend more time on improving
solutions that seem promising to the previous solutions than the others. Both level-I
and level-II improvements consider a ”first-improvement” strategy, which means im-
plementing the first improvement of a move, rather than the best improvement of such
move.

Thereafter, Tasgetiren et al. [30, 31, 32] presented a discrete particle swarm opti-
mization (DPSO) algorithm, a genetic algorithm (GA) and a hybrid iterated greedy
(HIG) algorithm, respectively.They hybridized the above methods with a local search,
called variable neighborhood descend algorithm, to further improve the solution qual-
ity; at the same time, they applied some speed-up methods for greedy node insertions.
Silberholz & Golden proposed another GA in [25], which is denoted as mrOXGA.

Section 2 introduces a brief summary of discrete differential evolution algorithm.
Section 3 provides the details of solution representation. Insertion methods are summa-
rized in Section 4. Section 5 gives the details of the local search improvement heuristics.
The computational results on benchmark instances are discussed in Section 6. Finally,
Section 7 summarizes the concluding remarks.

5.2 Differential Evolution Algorithm

Differential evolution (DE) is a latest evolutionary optimization methods proposed by
Storn & Price [27]. Like other evolutionary-type algorithms, DE is a population-based
and stochastic global optimizer. The DE algorithm starts with establishing the initial
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population. Each individual has an m-dimensional vector with parameter values deter-
mined randomly and uniformly between predefined search ranges. In a DE algorithm,
candidate solutions are represented by chromosomes based on floating-point numbers.
In the mutation process of a DE algorithm, the weighted difference between two ran-
domly selected population members is added to a third member to generate a mutated
solution. Then, a crossover operator follows to combine the mutated solution with the
target solution so as to generate a trial solution. Thereafter, a selection operator is ap-
plied to compare the fitness function value of both competing solutions, namely, target
and trial solutions to determine who can survive for the next generation. Since DE
was first introduced to solve the Chebychev polynomial fitting problem by Storn &
Price [25], [27], it has been successfully applied in a variety of applications that can be
found in Corne et. al [5], Lampinen [10], Babu & Onwubolu [1]; and Price et al. [19].

Currently, there are several variants of DE algorithms. We follow the DE/rand/1/bin
scheme of Storn & Price [27] with the inclusion of SPV rule in the algorithm. Pseu-
docode of the DE algorithm is given in Fig 5.1.

Initialize parameters
Initialize the target population individuals
Find the tour of the target population individuals
Evaluate the target population individuals
Apply local search to the target population individuals (Optional)
Do{

Obtain the mutant population individuals
Obtain the trial population individuals
Find the tour of trial population individuals
Evaluate the trial population individuals
Do selection between the target and trial population individuals
Apply local searchto the target population individuals (Optional)

}While (Not Termination)

Fig. 5.1. DE Algorithm with Local Search

The basic elements of DE algorithm are summarized as follows:

Target individual: Xt
i denotes the ith individual in the population at generation t and

is defined as Xt
i =

[
xt

i1,x
t
i2, ...,x

t
in

]
, where xt

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Mutant individual: Vt
i denotes the ith individual in the population at generation t and

is defined as Vt
i =

[
vt

i1,v
t
i2, ...,v

t
in

]
, where vt

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Trial individual: Ut
i denotes the ith individual in the population at generation t and is

defined as Ut
i =

[
ut

i1,u
t
i2, ...,u

t
in

]
, where ut

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Target population: Xt is the set of NP individuals in the target population at generation
t, i.e., Xt = [Xt

1,X
t
2, ...,X

t
NP].
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Mutant population: Vt is the set of NP individuals in the mutant population at gener-
ation t, i.e., Vt = [Vt

1 ,V
t
2 , ...,V

t
NP].

Trial population: Ut is the set of NP individuals in the trial population at generation t,
i.e., Ut = [Ut

1,U
t
2, ...,U

t
NP].

Tour: a newly introduced variable π t
i , denoted a tour of the GTSP solution implied by

the individual Xt
i , is represented as π t

i =
[
π t

i1,π
t
i2, ...,π

t
in

]
, where π t

i j is the assignment
of node j of the individual i in the tour at generation t.

Mutant constant: F ∈ (0,2) is a real number constant which affects the differential
variation between two individuals.

Crossover constant: CR ∈ (0,1) is a real number constant which affects the diversity
of population for the next generation.

Fitness function: In a minimization problem, the objective function is fi (π t
i ← Xt

i ),
where π t

i denotes the corresponding tour of individual Xt
i .

5.2.1 Solution Representation

In this section, we present a solution representation which enables DEs to solve the
GTSP. Bean [2] suggested an encoding for the GA to solve the GTSP, where each
set Vj has a gene consisting of an integer part between

[
1,
∣∣Vj
∣∣] and a fractional part

between [0,1]. The integer part indicates which node from the cluster is included in the
tour, and the nodes are sorted by their fractional part to indicate the order. Similarly,
a continuous DE can be used to solve the GTSP. First, we say each parameter value
represents a cluster for the GTSP and is restricted to each cluster size of the GTSP
instances.

From the following example, consider a GTSP instance with V = {1, ..,20} and V1 =
{1, ..,5}, V2 = {6, , ..,10}, V3 = {11, ..,15} and V4 = {16, ..,20}. The parameter values
(x j) can be positive or negative, e.g. for dimension j equal to 4.23 and for dimension j
2 is -3.07, etc. This feature indicates the difference between the random key encoding
and the one in this chapter. Table 5.1 shows the solution representation of the DE for the
GTSP. Then the integer parts of these parameter values (x j) are respectively decoded as
node 4 (the fourth node in V1), node 8 (the third node in V2), node 11 (the first node in
V3), and node 18 (the third node in V1).

Table 5.1. Solution Representation

j 1 2 3 4

x j 4.23 -3.07 1.80 3.76
v j 4 8 11 18
s j 0.23 -0.07 0.80 0.76
π j 8 4 18 11

F (π) d8,4 d4,18 d18,11 d11,8
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Since the values of parameter x j can be positive or negative, to determine which node
(v j) should be taken, the absolute value of the parameter x j needs to be considered. Then
the random key values (s j) are determined by simply subtracting the integer part of the
parameter x j from its current value considering the negative signs, i.e., s j = x j − int(x j).
So for dimension 1, its parameter x1 is equal to 4.23 and the random key value s1 is
0.23 (S1 = 4.23 − 4). Finally, with respect to the random key values (s j), the smallest
position value (SPV) rule of Tasgetiren et. al. [29] is applied to the random key vector
to determine the tour π . As illustrated in Table 5.1, the objective function value implied
by a solution x with m nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (5.1)

However, with this proposed representation scheme, a problem may rise such that
when the DE update equations are applied, any parameter value might be outside of the
initial search range, which is restricted to the size of each cluster. Let xmin [ j] and xmax [ j]
represent the minimum and maximum value of each parameter value for dimension j.
Then they stand for the minimum and maximum cluster sizes of each dimension j.
Regarding the initial population, each parameter value for the set Vj is drawn uniformly
from [−Vj + 1,Vj + 1]. Obviously, xmax [ j] is restricted to [Vj + 1], whereas xmin [ j] is
restricted to −xmax [ j]. During the reproduction of the DE, when any parameter value is
outside of the cluster size, it is randomly re-assigned to the corresponding cluster size
again.

5.2.2 An Example Instance of the GTSP

In this section, we summarize the solution representation by using a GTSP instance of
11EIL51 from TSPLIB Library [23] with V = {1, ..,51}, where the clusters are V1 =
{19,40,41}, V2 = {3,20,35,36}, V3 = {24,43}, V4 = {33,39}, V5 = {11,12,27,32,46,
47,51}, V6 = {2,16,21,29,34,50}, V7 = {8,22,26,28,31}, V8 = {13,14,18,25},

Table 5.2. Clusters for the Instance 11EIL51

Cluster Node

V1 19 40 41
V2 3 20 35 36
V3 24 43
V4 33 39
V5 11 12 27 32 46 47 51
V6 2 16 21 29 34 50
V7 8 22 26 28 31
V8 13 14 18 25
V9 4 15 17 37 42 44 45
V10 1 6 7 23 48
V11 5 9 10 30 38 49
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Table 5.3. Clusters for the Instance 11EIL51

Cluster Node

j 1 2 3 4 5 6 7 8 9 10 11
x j 3.45 -2.66 1.86 1.11 -3.99 -6.24 -2.81 4.52 6.23 -1.89 3.02
v j 41 20 24 33 27 50 22 25 44 1 10
s j 0.45 -0.66 0.86 0.11 -0.99 -0.24 -0.81 0.52 0.23 -0.89 0.02
π j 27 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d27,1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,27

F (π) 8 7 15 21 17 12 17 20 21 14 22

V9 = {4,15,17,37,42,44,45}, V10 = {1,6,7,23,48}, and V11 = {5,9,10,30,38,49}.
To make clearer, we show the 11EIL51 instance in Table 5.2 below:

In order to establish the GTSP solution, each parameter value for the dimension j
is restricted to each cluster size such that −4 < x1 < 4, −5 < x2 < 5, −3 < x3 < 3,
−3 < x4 < 3, −8 < x5 < 8, −7 < x6 < 7, −6 < x7 < 6, −5 < x8 < 5, −8 < x9 < 8,
−6 < x10 < 6 and −7 < x11 < 7. This provides the feasibility of the GTSP solution
generated by the DE algorithm. Suppose that a DE solution is obtained by the traditional
update equations and the parameter values x′

js of the individual are given as in Table
5.3.

Similar to what we have explained via Table 5.1 example, the integer parts of the
individual parameter values (x j) are respectively decoded as node 41 (the third node
in V1), node 20 (the second node in V2), node 24 (the first node in V3), node 33 (the
first node in V4), node 27 (the third node in V5), node 50 (the sixth node in V6), node
22 (the second node in V7), node 25 (the fourth node in V8), node 44 (the sixth node in
V9), node 1 (the first node in V10) and node 10 (the third node in V11). Unlike the case
in the RKGA, where the random key is defined as another vector, the fractional part of
the individual parameter values (x j) can be directly obtained as a random key to obtain
the tour. As shown in Table 5.3, while applying the SPV rule to the random key vector
(s j), the tour (π j) can be obtained very easily. As well, the objective function value of
the individual X is given by

F (π) =
10
∑
j=1

dπ jπ j+1 + dπ10π1 = d27,1 + d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44

+d44,41 + d41,25 + d25,24 + d24,27

F (π) =
10

∑
j=1

dπ jπ j+1 + dπ11π1 = 8+7+15+21+17+12+17+20+21+14+22= 174

5.2.3 Complete Computational Procedure of DE

The complete computational procedure of the DE algorithm for the GTSP problem can
be summarized as follows:
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• Step 1: Initialization
– Set t = 0, NP =100
– Generate NP individuals randomly as in Table 5.1,

{
X0

i , i = 1,2, ...,NP
}

where
X0

i =
[
x0

i1,x
0
i2, ...,x

0
in

]
.

– Apply the SPV rule to find the tour π0
i =

[
π0

i1,π
0
i2, ...,π

0
in

]
of individual X0

i for
i = 1,2, ...,NP.

– Evaluate each individual i in the population using the objective function f 0
i(

πo
i ← X0

i

)
for i = 1,2, ...,NP.

• Step 2: Update generation counter
– t = t + 1

• Step 3: Generate mutant population
– For each target individual, Xt

i , i = 1,2, ...,NP, at generation t, a mutant individ-
ual, Vt

i =
[
vt

i1,v
t
i2, ...,v

t
in

]
, is determined such that:

Vt
i = Xt−1

ai
+ F

(
Xt−1

bi
− Xt−1

ci

)
(5.2)

where ai, bi and ci are three randomly chosen individuals from the population
such that (ai �= bi �= ci).

• Step 4: Generate trial population
– Following the mutation phase, the crossover (re-combination)operator is applied

to obtain the trial population. For each mutant individual, V t
i =

[
vt

i1,v
t
i2, ...,v

t
in

]
,

an integer random number between 1 and n, i.e., Di ∈ (1,2, ...,n), is chosen, and
a trial individual, Ut

i =
[
ut

i1,u
t
i2, ...,u

t
in

]
is generated such that:

ut
i j =

{
vt

i j, i f rt
i j ≤ CR or j = Di

xt−1
i j , Otherwise

(5.3)

where the index D refers to a randomly chosen dimension ( j = 1,2, ...,n), which
is used to ensure that at least one parameter of each trial individual Ut

i differs
from its counterpart in the previous generation Ut−1

i , CR is a user-defined cross-
over constant in the range (0, 1), and rt

i j is a uniform random number between
0 and 1. In other words, the trial individual is made up with some parameters
of mutant individual, or at least one of the parameters randomly selected, and
some other parameters of target individual.

• Step 5: Find tour
– Apply the SPV rule to find the tour π t

i =
[
π t

i1,π
t
i2, ...,π

t
in

]
for i = 1,2,...,NP.

• Step 6: Evaluate trial population
– Evaluate the trial population using the objective function f t

i (π t
i ← Ut

i ) for i =
1,2, ...,NP.

• Step 7: Selection
– To decide whether or not the trial individual Ut

i should be a member of the
target population for the next generation, it is compared to its counterpart target
individual Xt−1

i at the previous generation. The selection is based on the survival
of fitness among the trial population and target population such that:

Xt
i =

{
Ut

i , i f f (π t
i ← Ut

i ) ≤ f
(
π t−1

i ← Xt−1
i

)
Xt−1

i , otherwise
(5.4)
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• Step 8: Stopping criterion
– If the number of generations exceeds the maximum number of generations, or

some other termination criterion, then stop; otherwise go to step 2.

5.3 Insertion Methods

In this section of the chapter, the insertion methods denoted as LocalSearchSD() are
modified from the literature and facilitate the use of the local search. Insertion methods
are based on the insertion of node πR

k into m + 1 possible positions of a partial or de-
structed tour πD with m nodes and an objective function value of F

(
πD
)
. Note that as

an example, only a single node is considered to be removed from the current solution to
establish πR

k with a single node and re-inserted into the partial solution. Such insertion
of node πR

k into m−1 possible positions is actually proposed by Rosenkrantz et al. [22]
for the TSP. Snyder & Daskin [26] adopted it for the GTSP. It is based on the removal
and the insertion of node πR

k in an edge
(
πD

u ,πD
v

)
of a partial tour. However, it avoids the

insertion of node πR
k on the first and the last position of any given partial tour. Suppose

that node πR
k =27 will be inserted in a partial tour in Table 5.4.

Table 5.4. Partial Solution to Be Inserted for the Instance 11EIL51

j 1 2 3 4 5 6 7 8 9 10

πD
j 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,1

173 7 15 21 17 12 17 20 21 14 29

A Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπR

k πD
1

+ dπD
m πR

k

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Example A:

Remove = dπD
m πD

1
Remove = dπD

10πD
1

Remove = d24,1

Add = dπR
k πD

1
+ dπD

m πR
k

Add = dπR
1 πD

1
+ dπD

10πR
1

Add = d27,1 + d24,27

F (π) = F
(
πD
)
+ Add − Remove
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Table 5.5. Insertion of node πR
k =27 into the first position of partial solution for Case A

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 27 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d27,1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,27 d24,27

174 8 7 15 21 17 12 17 20 21 14 22

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,1 + d27,1 + d24,27 − d24,1

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d27,1 + d24,27

B Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπD

m πR
k
+ dπR

k πD
1

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Example B:

Remove = dπD
m πD

1
Remove = dπD

10πD
1

Remove = d24,1

Add = dπD
m πR

k
+ dπR

k πD
1

Add = dπD
10πR

1
+ dπR

1 πD
1

Add = d24,27 + d27,1

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25+
d25,24 + d24,1 + d24,27 + d27,1 − d24,1

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,27 + d27,1

C Insertion of node πR
k between an edge

(
πD

u ,πD
v

)
a Remove = dπD

u πD
v

b Add = dπD
u πR

k
+ dπR

k πD
v

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.
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Table 5.6. Insertion of node πR
k =27 into the last position of partial solution for Case B

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 1 22 20 50 10 33 44 41 25 24 27

dπ jπ j+1 d1,22 d22,50 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,27 d27,1

174 7 15 21 17 12 17 20 21 14 22 8

Example C:

u = 6
v = 7
Remove = dπD

u πD
v

Remove = dπD
6 πD

7
Remove = d33,44

Add = dπD
u πR

k
+ dπR

k πD
v

Add = dπD
6 πR

1
+ dπR

1 πD
7

Add = d33,27 + d27,44

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,1 + d33,27 + d27,44 − d33,44

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d44,41 + d41,25 + d25,24 + d24,1+
d33,27 + d27,44

Table 5.7. Insertion of node πR
k between an edge

(
πD

u ,πD
v
)

for Case C

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 1 22 20 50 10 33 27 44 41 25 24

dπ jπ j+1 d1,22 d22,50 d20,50 d50,10 d10,33 d33,27 d27,44 d44,41 d41,25 d25,24 d24,1

230 7 15 21 17 12 41 33 20 21 14 29

Note that Case B can actually be managed by Case C, since the tour is cyclic. Note
again that the above insertion approach is somewhat different than the one in Snyder &
Daskin [26], where the cost of an insertion of node πR

k in an edge
(
πD

u ,πD
v

)
.

5.3.1 Hybridization with Local Search

The hybridization of DE algorithm with local search heuristics is achieved by per-
forming a local search phase on every trial individual generated. The SWAP proce-
dure [26], denoted as LocalSearchSD in this chapter, and the 2-opt heuristic [21] were
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procedure LS (π)
h := 1
while (h ≤ m) do

π∗ := LocalSearchSD(π)
i f ( f (π∗) ≤ f (π)) then

π := π∗
h := 1

else
h := h+1

else
endwhile
return π

end procedure

Fig. 5.2. The Local Search Scheme

Procedure SWAP()
remove j f rom T
f or each k ∈ Vj

ck ← min
{

duk +dkv −duv/(u,v) is an edge in T
}

k∗ ← argmin
k∈Vj

{ck}
insert k∗ into T between (u,v)

Fig. 5.3. The SWAP Procedure

separately applied to each trial individual. The 2-opt heuristic finds two edges of a
tour that can be removed and two edges that can be inserted in order to generate a new
tour with a lower cost. More specifically, in the 2-opt heuristic, the neighborhood of a
tour is obtained as the set of all tours that can be replaced by changing two nonadjacent
edges in that tour. Note that the 2-opt heuristic is employed with the first improvement
strategy in this study. The pseudo code of the local search (LS) procedures is given in
Fig 5.2.

As to the LocalSearchSD procedure, it is based on the SWAP procedure and is
basically concerned with removing a node from a cluster and inserting a different node
from that cluster into the tour. The insertion is conducted using a modified nearest-
neighbour criterion, so that the new node may be inserted on the tour in a spot different.
Each node in the cluster is inserted into all possible spots in the current solution and the
best insertion is replaced with the current solution. The SWAP procedure of Snyder &
Daskin [26] is outlined in Fig 5.3, whereas the proposed DE algorithm is given in Fig
5.4. Note that in SWAP procedure, the followings are given such that tour T; set Vj;
node j ∈ Vj, j ∈ T ; distances duv between each u,v ∈ V .

5.4 Computational Results

Fischetti et al. [8] developed a branch-and-cut algorithm to solve the symmetric GTSP.
The benchmark set is derived by applying a partitioning method to standard TSP
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Procedure DE GT SP
Set CR,F,NP,TerCriterion
X =

(
x0

1,x
0
2, ..,x

0
NP

)
f
(
π0

i ← x0
i

)
i:=1,2,..,NP

π0
i ← x0

i = 2 opt
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
i ← x0

i = LS
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
g ← x0

i = argmin
{

f
(
π0

i ← x0
i

)}
i=1,2,..,NP

πB := π0
g ← x0

i
k := 1
while

(
Not TerCriterion

)
do

vk
i j := xk

ia +F
(
xk

ib +xk
ic

)
i:=1,2,..,NP, j=1,2,..,m

uk
i j =

{
vk

i j i f rk
i j < CR or j = D j

xk−1
i j otherwise

i=1,2,..,NP, j=1,2,..,m

f
(
πk

i ← uk
i

)
i:=1,2,..,NP

πk
i ← uk

i = 2 opt
(
πk

i ← uk
i

)
i=1,2,..,NP

πk
i ← uk

i = LS
(
πk

i ← uk
i

)
i=1,2,..,NP

xk
i =

{
uk

i i f f
(
πk

i ← uk
i

)
< f

(
πk−1

i ← xk−1
i

)
xk−1

i otherwise
i=1,2,..,NP

πk
g ← xk

g = argmin
{

f
(
πk

i ← xk
i

)
, f
(
πk−1

g ← xk−1
g
)}

i:=1,2,..,NP

πB = argmin
{

f (πB) , f
(
πk

g ← xk
g
)}

k := k +1
endwhile
return πB

Fig. 5.4. The DE Algorithm with Local Search Heuristics

instances from the TSPLIB library [23]. The benchmark set with optimal objective
function values for each of the problems is obtained through a personal communication
with Dr. Lawrence V. Snyder. The benchmark set contains between 51 (11) and 442
(89) nodes (clusters) with Euclidean distances and the optimal objective function value
for each of the problems is available. The DE algorithm was coded in Visual C++ and
run on an Intel Centrino Duo 1.83 GHz Laptop with 512MB memory.

We consider the RKGA by Snyder & Daskin [26] for comparison in this paper due to
the similarity in solution representation. The population size is taken as 100. Cross-over
and mutation probability are taken as 0.9 and 0.2, respectively. To be consistent with
Snyder & Daskin [26], the algorithm is terminated when 100 generations have been
carried out or when 10 consecutive generations have failed to improve the best-known
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Table 5.8. Computational Results of DE and RKGA Implementations

DE RKGA

Favg Δavg Favg Δavg

11EIL51 219.4 26.1 227.4 30.7
14ST70 473.8 49.9 450.8 42.7
16EIL76 358.8 71.7 352 68.4
16PR76 93586.2 44.1 85385.2 31.5
20KROA100 20663 112.8 20191 107.9
20KROB100 20764.2 101 18537.4 79.5
20KROC100 20597.2 115.6 17871.6 87.1
20KROD100 19730.2 108.8 18477 95.5
20KROE100 20409.2 114.3 19787.6 107.8
20RAT99 1049 111.1 1090 119.3
20RD100 7349.2 101.3 7353.4 101.5
21EIL101 530.8 113.2 526.4 111.4
21LIN105 16170.2 96.9 14559.4 77.3
22PR107 64129.8 129.9 57724.6 106.9
25PR124 91609.4 150.3 82713 126
26BIER127 146725.2 102.6 154703.2 113.6
28PR136 115003.4 170.2 112674.6 164.7
29PR144 112725.6 145.7 94969.2 107
30KROA150 34961.8 217.3 31199.2 183.2
30KROB150 35184.8 188.5 34685.2 184.4
31PR152 140603.6 172.6 118813.4 130.4
32U159 61456.6 171.2 59099.2 160.8
39RAT195 3332 290.2 2844.2 233
40D198 30688.6 190.7 26453 150.6
40KROA200 49109.6 266.3 46866.4 249.6
40KROB200 48553.2 270.3 47303.2 260.8
45TS225 237888.4 248.1 229495.2 235.8
46PR226 259453.2 305.4 263699 312
53GIL262 4497 343.9 4233.6 314.8
53PR264 165646.6 460.6 145789.4 393.4
60PR299 116716.2 416.1 110977.8 390.2
64LIN318 98943.8 376.5 94469.2 352.1
80RD400 37058.6 482.6 34502.2 436.1
84FL417 68102 605.6 65025.6 573.5
88PR439 365437.8 508.1 364282.4 504.5
89PCB442 132388 511.3 131711.8 498

solution. Five runs were carried out for each problem instance to report the statistics
based on the relative percent deviations (Δ ) from optimal solutions as follows:

Δavg =
R

∑
i=1

(
(Hi − OPT)× 100

OPT

)
/R (5.5)
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Table 5.9. Comparison for Optimal Instances of DE and RKGA Implementations

DE RKGA

Instance Favg Δavg Favg Δavg

11EIL51 0 0.08 0 0.2
14ST70 0 0.1 0 0.2
16EIL76 0 0.12 0 0.2
16PR76 0 0.14 0 0.4
20KROA100 0 0.21 0 0.4
20KROB100 0 0.22 0 0.3
20KROC100 0 0.2 0 0.4
20KROD100 0 0.21 0 0.6
20KROE100 0 0.2 0 0.5
20RAT99 0 0.2 0 0.5
20RD100 0 0.2 0 0.4
21EIL101 0 0.19 0 0.5
21LIN105 0 0.21 0 0.4
22PR107 0 0.23 0 0.8
25PR124 0 0.28 0 0.4
26BIER127 0 0.33 0 0.5
28PR136 0 1.27 0 1
29PR144 0 0.37 0 0.7
30KROA150 0 0.48 0 0.9
30KROB150 0 0.46 0 1.2
31PR152 0.01 1.49 0 0.8
32U159 0 0.55 0 1
39RAT195 0.07 4.6 0 1.6
40D198 0.04 3.54 0 1.8
40KROA200 0 1.81 0 1.9
40KROB200 0.04 2.03 0 2.1
45TS225 0.25 2.98 0.02 1.5
46PR226 0 0.76 0 1.9
53GIL262 1.24 5.65 0.75 2.1
53PR264 0.01 4.38 0 3.2
60PR299 0.71 10.4 0.11 3.5
64LIN318 0.77 8.89 0.62 5.9
80RD400 1.64 18.89 1.19 5.3
84FL417 0.09 25.26 0.05 9.5
88PR439 1.13 22.94 0.27 9
89PCB442 1.78 12.12 1.7 1.72

Avg 0.22 3.67 0.13 0.2

where Hi, OPT and R are the objective function values generated by the DE in each
run, the optimal objective function value, and the number of runs, respectively. For the
computational effort consideration, tavg denotes average CPU time in seconds to reach
the best solution found so far during the run, i.e., the point of time that the best so
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far solution does not improve thereafter. Favg represents the average objective function
values out of five runs.

Table 5.8 shows the computational results of implementing DE without the local
search methods and those adopted from Snyder & Daskin [26]. As seen in Table 5.8,
the DE results are very competitive to the RKGA of Snyder & Daskin [26], even though
a two-sided paired t-test favors the RKGA. However, our objective is just to show how
a continuous optimization algorithm can be used for solving a combinatorial optimiza-
tion problem. We would like to point out that with some better parameter tuning, the
DE results could be further improved. In addition, our observation reveals the fact that
the performance of the DE algorithm is tremendously affected by the mutation equa-
tion [14]. After applying the mutation operator, most dimension values fall outside of
search limits (cluster sizes). To force them to be in the search range, they are randomly
re-initialized between the search bounds in order to keep the DE algorithm search for
nodes from clusters predefined. However, the random re-initialization causes the DE
algorithm to conduct a random search, which ruins its learning ability. Based on our
observation, using some different levels of crossover and mutation probabilities as well
as other mutation operators did not have so much positive effect in the solution quality.

In spite of all the disadvantages above, the inclusion of local search improvement
heuristics in Snyder & Daskin [26] has led the DE algorithm to be somehow competi-
tive to the RKGA. The computational results with the local search heuristics are pre-
sented in Table 5.9.

As seen in Table 5.9, the DE algorithm with the local search improvement heuristics
was able to generate competitive results to the RKGA of Snyder & Daskin [26]. How-
ever, as seen in both Table 5.8 and 5.9, the success was mainly due to the use of the
local search improvement heuristics. A two-sided paired t-test on the relative percent
deviations in Table 5.9 confirms that both DE and RKGA were statistically equivalent,
since the p-value was 0.014. However, DE was computationally more expensive than
RKGA.

5.5 Conclusions

A continuous DE algorithm is presented to solve the GTSP on a set of benchmark
instances ranging from 51 (11) to 442 (89) nodes (clusters). The main contribution
of this chapter is due to use of a continuous DE algorithm to solve a combinatorial
optimization problem. For this reason, a unique solution representation is presented and
the SPV rule is used to determine the tour. The pure DE algorithm without local search
heuristics is competitive to RKGA. However, inclusion of the local search heuristics led
the DE algorithm to be very competitive to the RKGA of Snyder & Daskin [26].

As we mentioned before, with some better parameter tuning, the DE results could
have been further improved. However, our observation reveals the fact that the per-
formance of the DE algorithm is tremendously affected by the mutation equation [14].
After applying the mutation operator, most parameter values fall outside of search limits
(cluster sizes). To force them to be in the search range, they are randomly re-initialized
between the search bounds in order to keep the DE algorithm search for nodes from
clusters predefined. However, the random re-initialization causes the DE algorithm to
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conduct a random search, which ruins its learning ability. Based on our observation,
using some different levels of crossover and mutation probabilities as well as other
mutation operators did not have so much positive impact on the solution quality. In spite
of all the disadvantages above, this work clearly shows the applicability of a continuous
algorithm to solve a combinatorial optimization problem. .

For the future work, the current DE algorithm can be extended to solve some other
combinatorial/discrete optimization problems based on clusters such as resource con-
strained project scheduling (mode selection), generalized assignment problem (agent
selection), and so on. It will be also interesting to use the same representation for the
particle swarm optimization and harmony search algorithms to solve the GTSP.
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