
4

Relative Position Indexing Approach

Daniel Lichtblau

Wolfram Research, Inc., 100 Trade Center Dr., Champaign, IL 61820, USA
danl@wolfram.com

Abstract. We introduce some standard types of combinatorial optimization problems, and indi-
cate ways in which one might attack them using Differential Evolution. Our main focus will be on
indexing by relative position (also known as order based representation); we will describe some
related approaches as well. The types of problems we will consider, which are abstractions of
ones from engineering, go by names such as knapsack problems, set coverings, set partitioning,
and permutation assignment. These are historically significant types of problems, as they show
up frequently, in various guises, in engineering and elsewhere. We will see that a modest amount
of programming, coupled with a sound implementation of Differential Evolution optimization,
can lead to good results within reasonable computation time. We will also show how Differential
Evolution might be hybridized with other methods from combinatorial optimization, in order to
obtain better results than might be found with the individual methods alone.

4.1 Introduction

The primary purpose of this chapter is to introduce a few standard types of combina-
torial optimization problems, and indicate ways in which one might attack them using
Differential Evolution. Our main focus will be on indexing by relative position (also
known as order based representation); we will describe some related approaches as
well. We will not delve much into why these might be regarded as “interesting” prob-
lems, as that would be a chapter– or, more likely, book– in itself. Suffice it to say that
many problems one encounters in the combinatorial optimization literature have their
origins in very real engineering problems, e.g. layout of hospital wings, electronic chip
design, optimal task assignments, boolean logic optimization, routing, assembly line
design, and so on. The types of problems we will consider, which are abstractions of
the ones from engineering, go by names such as knapsack problems, set coverings, set
partitioning, and permutation assignment. A secondary goal of this chapter will be to
introduce a few ideas regarding hybridization of Differential Evolution with some other
methods from optimization.

I will observe that, throughout this chapter at least, we regard Differential Evolu-
tion as a soft optimization tool. Methods we present are entirely heuristic in nature. We
usually do not get guarantees of result quality; generally this must be assessed by in-
dependent means (say, comparison with other tactics such as random search or greedy
algorithms, or a priori problem-specific knowledge). So we use the word optimization
a bit loosely, and really what we usually mean is improvement. While this may seem to
be bad from a theoretical point of view, it has advantages. For one, the field is relatively

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 81–120.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

82 D. Lichtblau

young and is amenable to an engineering mind set. One need not invent a new branch
of mathematics in order to make progress. At the end of the chapter we will see a few
directions that might, for the ambitious reader, be worthy of further pursuit.

Another caveat is that I make no claim as to Differential Evolution being the best
method for the problems we will discuss. Nor do I claim that the approaches to be seen
are the only, let alone best, ways to use it on these problems (if that were the case, this
would be a very short book indeed). What I do claim is that Differential Evolution is
quite a versatile tool, one that can be adapted to get reasonable results on a wide range
of combinatorial optimization problems. Even more, this can be done using but a small
amount of code. It is my hope to convey the utility of some of the methods I have used
with success, and to give ideas of ways in which they might be further enhanced.

As I will illustrate the setup and solving attempts using Mathematica [13], I need
to describe in brief how Differential Evolution is built into and accessed within that
program. Now recall the general setup for this method. We have some number of vec-
tors, or chromosomes, of continuous-valued genes. They mate according to a crossover
probability, mutate by differences of distinct other pairs in the pool, and compete with
a parent chromosome to see who moves to the next generation. All these are as de-
scribed by Price and Storn, in their Dr. Dobbs Journal article from 1997 [10]. In par-
ticular, crossover and mutation parameters are as described therein. In Mathematica
the relevant options go by the names of CrossProbability, ScalingFactor,
and SearchPoints. Each variable corresponds to a gene on every chromosome.
Using the terminology of the article, CrossProbability is the CR parameter,
SearchPoints corresponds to NP (size of the population, that is, number of chro-
mosome vectors), and ScalingFactor is F. Default values for these parameters are
roughly as recommended in that article.

The function that invokes these is called NMinimize. It takes a Method option that
can be set to DifferentialEvolution. It also takes a MaxIterations option
that, for this method, corresponds to the number of generations. Do not be concerned if
this terminology seems confusing. Examples to be shown presently will make it all clear.

One explicitly invokes Differential Evolution in Mathematica as follows.

NMinimize[objective,constraints,NMinimize[objective,constraints,NMinimize[objective,constraints,
variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]

Here methodoptions might include setting to nondefault values any or all of the
options indicated below. We will show usage of some of them as we present examples.
Further details about these options may be found in the program documentation. All of
which is available online; see, for example,
http://reference.wolfram.com/mathematica/ref/NMinimize.html

Here are the options one can use to control behavior of NMinimize. Note that
throughout this chapter, code input is in bold facebold facebold face, and output, just below the input, is
not.

Options[NMinimizèDifferentialEvolution]Options[NMinimizèDifferentialEvolution]Options[NMinimizèDifferentialEvolution]

{CrossProbability → 1
2 , InitialPoints → Automatic,

PenaltyFunction → Automatic,PostProcess → Automatic,

4 Relative Position Indexing Approach 83

RandomSeed → 0,ScalingFactor → 3
5 ,

SearchPoints → Automatic,Tolerance → 0.001}

There are some issues in internal implementation that need discussion to avoid later
confusion. First is the question of how constraints are enforced. This is particularly im-
portant since we will often constrain variables to take on only integer values, and in
specific ranges. For integrality enforcement there are (at least) two viable approaches.
One is to allow variables to take on values in a continuum, but use penalty functions
to push them toward integrality [2]. For example, one could add, for each variable x,
a penalty term of the form (x − round(x))2 (perhaps multiplied by some suitably large
constant). NMinimize does not use this approach, but a user can choose to assist it
to do so by explicitly using the PenaltyFunctionmethod option. Another method,
the one used by NMinimize, is to explicitly round all (real-valued) variables before
evaluating in the objective function. Experience in the development of this function
indicated this was typically the more successful approach.

This still does not address the topic of range enforcement. For example, say we are
using variables in the range {1, . . . ,n} to construct a permutation of n elements. If a
value slips outside the range then we might have serious difficulties. For example, in
low level programming languages such as C, having an out-of-bounds array reference
can cause a program to crash. While this would not as likely happen in Mathematica,
the effect would still be bad, for example a hang or garbage result due to process-
ing of a meaningless symbolic expression. So it is important either that our code, or
NMinimize, carefully enforce variable bounds. As it happens, the implementation
does just this. If a variable is restricted to lie between a low and high bound (this is
referred to as a rectangular, or box, constraint), then the NMinimize code will force
it back inside the boundary. Here I should mention that this is really a detail of the
implementation, and should not in general be relied upon by the user. I point it out so
that the reader will not be mystified upon seeing code that blithely ignores the issue
throughout the rest of this chapter. I also note that it is not hard to make alterations e.g.
to an objective function, to preprocess input so that bound constraints are observed; in
order to maximize simplicity of code, I did not do this.

I will make a final remark regarding use of Mathematica before proceeding to the
material of this chapter. It is not expected that readers are already familiar with this
program. A consequence is that some readers will find parts of the code we use to be
less than obvious. This is to be expected any time one first encounters a new, compli-
cated computer language. I will try to explain in words what the code is doing. Code
will also be preceded by a concise description, in outline form, that retains the same
order as the code itself and thus serves as a form of pseudocode. The code details are
less important. Remember that the emphasis is on problem solving approaches using
Differential Evolution in general; specifics of a particular language or implementation,
while of independent interest, take a back seat to the Big Picture.

In the literature on combinatorial (and other) optimization via evolutionary means,
one frequently runs across notions of genotype and phenotype. The former refers to the
actual chromosome values. Recall the basic workings of Differential Evolution. One typ-
ically forms a new chromosome from mating its parent chromosome with a mutation of a

84 D. Lichtblau

random second parent. Said mutation is in turn given as a difference of two other random
chromosomes. These operations are all done at the genotype level. It is in translating the
chromosome to a combinatorial object e.g. a permutation, that one encounters the phe-
notype. This refers, roughly, to the expression of the chromosome as something we can
use for objective function evaluation. Said slightly differently, one decodes a genotype
to obtain a phenotype. We want genotypes that are amenable to the mutation and mat-
ing operations of Differential Evolution, and phenotypes that will respond well to the
genotype, in the sense of allowing for reasonable improvement of objective function.
Discussion of these matters, with respect to the particulars of Differential Evolution,
may be found in [11]. Early discussion of these issues, and methods for handling them,
appear in [4] and [3].

4.2 Two Simple Examples

I like to start discussion of Differential Evolution in discrete optimization by presenting
two fairly straightforward examples. They serve to get the reader acclimated to how we
might set up simple problems, and also to how they look as input to Mathematica. These
are relatively simple examples of discrete optimization, not involving combinatorial
problems, and hence are good for easing into the main material of this chapter.

4.2.1 Pythagorean Triples

First we will search for Pythagorian triples. These, as one may recall from high school,
are integer triples (x,y,z) such that x2 + y2 = z2. So we wish to find integer triples that
satisfy this equation. One way to set up such a problem is to form the square of the
difference, x2 +y2 −z2. We seek integer triples that make this vanish, and moreover this
vanishing is a minimization condition (because we have a square). Note that this is to
some extent arbitrary, and minimizing the absolute value rather than the square would
suffice just as well for our purpose.

We constrain all variables to be between 5 and 25 inclusive. We also specify explicitly
that the variables are integer valued. We will say a bit more about this in a moment.

NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],
5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]

{0.,{x → 7,y → 24,z → 25}}

We see that NMinimize is able to pick an appropriate method by default. Indeed,
it uses DifferentialEvolution when variables are specified as discrete, that is,
integer valued.

Now we show how to obtain different solutions by specifying that the random seed
used by the DifferentialEvolution method change for each run. We will sup-
press warning messages (the algorithm mistakenly believes it is not converging). After
all, we are only interested in the results; we can decide for ourselves quite easily if they
work.

4 Relative Position Indexing Approach 85

Quiet[Quiet[Quiet[
Timing[Timing[Timing[
Table[NMinimize[{(x2 + y2 − z2)2,Table[NMinimize[{(x2 + y2 − z2)2,Table[NMinimize[{(x2 + y2 − z2)2,

Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},
{x,y,z},{x,y,z},{x,y,z},
Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],

{20}]]]{20}]]]{20}]]]

{17.1771,{{0.,{x → 9,y → 12,z → 15}},{0.,{x → 15,y → 20,z → 25}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 7,y → 24,z → 25}},
{0.,{x → 15,y → 20,z → 25}},{0.,{x → 15,y → 20,z → 25}},
{0.,{x → 15,y → 20,z → 25}},{0.,{x → 8,y → 15,z → 17}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 9,y → 12,z → 15}},
{0.,{x → 9,y → 12,z → 15}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 15,y → 20,z → 25}}}}

We observe that each of these is a valid Pythagorean triple (of course, there are several
repeats). Recalling our objective function, any failure would appear as a false minimum,
that is to say, a square integer strictly larger than zero.

4.2.1.1 A Coin Problem
We start with a basic coin problem. We are given 143,267 coins in pennies, nickels,
dimes, and quarters, of total value $12563.29, and we are to determine how many coins
might be of each type. There are several ways one might set up such a problem in
NMinimize. We will try to minimize the sum of squares of differences between ac-
tual values and desired values of the two linear expressions implied by the information
above. For our search space we will impose obvious range constraints on the various
coin types. In order to obtain different results we will want to alter the seeding of the
random number generator; this changes the random initial parameters used to seed the
optimization code. That is why we specify the method with this option added. We will
do 10 runs of this.

Timing[Table[Timing[Table[Timing[Table[
{min,sol} = NMinimize[{min,sol} = NMinimize[{min,sol} = NMinimize[
{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,
{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,
0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},

{p,n,d,q},MaxIterations → 1000,{p,n,d,q},MaxIterations → 1000,{p,n,d,q},MaxIterations → 1000,
Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],

{10}]]{10}]]{10}]]

86 D. Lichtblau

NMinimize::cvmit : Failed to converge to the
requested accuracy or precision within 1000 iterations.

{229.634,{{0.,{p → 22554,n → 70469,d → 24978,q → 25266}},
{0.,{p → 4094,n → 79778,d → 42102,q → 17293}},
{0.,{p → 23139,n → 64874,d → 31502,q → 23752}},
{0.,{p → 26649,n → 72620,d → 15558,q → 28440}},
{0.,{p → 2914,n → 76502,d → 48358,q → 15493}},
{0.,{p → 9714,n → 49778,d → 73110,q → 10665}},
{0.,{p → 26019,n → 26708,d → 77782,q → 12758}},
{0.,{p → 58229,n → 31772,d → 19494,q → 33772}},
{0.,{p → 8609,n → 70931,d → 46674,q → 17053}},
{0.,{p → 35049,n → 55160,d → 25398,q → 27660}}}}

We obtained valid solutions each time. Using only, say, 400 iterations we tend to get
solutions about half the time and “near” solutions the other half (wherein either the
number of coins and/or total value is off by a very small amount). Notice that this type
of problem is one of constraint satisfaction. An advantage to such problems is that we
can discern from the proposed solution whether it is valid; those are exactly the cases
for which we get an object value of zero, with all constraints satisfied.

4.3 Maximal Determinants

In this section we illustrate a heuristic methods on certain extremal matrix problems
of modest size. As motivation for looking at this particular problem, I remark that it is
sometimes important to understand extremal behavior of random polynomials or matri-
ces comprised of elements from a given set.

Below we apply knapsack-style optimization to study determinants of matrices of
integers with all elements lying in the set {-1,0,1}. The problem is to minimize the
determinant of such a matrix (since we can multiply any row by -1 and still satisfy the
constraints, the smallest negative value corresponds to the largest positive value). We
will make the simplifying assumption that all diagonal elements are 1. Strictly speaking
this is not combinatorial optimization, but it is a close relative, and will help to get the
reader acquainted with the programming commands we will be using in this chapter.
Thus is also a good example with which to begin this chapter.

Our objective function is simply the determinant. We want it only to evaluate when
the variables have been assigned numeric values. This is quite important because sym-
bolic determinants are quite slow to compute. So we set up the function so that it is only
defined when numeric values are plugged in.

detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]

Our code will take a matrix dimension as argument, and also an optional argument
specifying whether to print the constraints. We use that in a small problem to show the

4 Relative Position Indexing Approach 87

constraints explicitly, so that the reader may check that we have set this up correctly.
Before showing the actual code we first outline the process.

Outline of detMindetMindetMin

1. Input: the dimension, and the parameter settings we will use for NMinimize.
2. Create a matrix of variables.
3. Create a set of constraints.

All variables must be integers.
All variables lie in the range [−1,1].
Variables corresponding to the diagonal elements are all set to 1.

4. Call NMinimize on the objective function, using the above constraints and
taking program parameters from the argument list.

5. Return the optimum found by NMinimize, along with the matrix that gives
this value.

Here is the actual program to do this.

detMin[n ,cp ,sp , it ,printsetup :False]:=Module[detMin[n ,cp ,sp , it ,printsetup :False]:=Module[detMin[n ,cp ,sp , it ,printsetup :False]:=Module[
{mat,vars,problemlist, j,best},{mat,vars,problemlist, j,best},{mat,vars,problemlist, j,best},
mat = Array[x,{n,n}];mat = Array[x,{n,n}];mat = Array[x,{n,n}];
vars = Flatten[mat];vars = Flatten[mat];vars = Flatten[mat];
problemlist =problemlist =problemlist =
{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],

Table[x[j, j] == 1,{ j,n}]}]};Table[x[j, j] == 1,{ j,n}]}]};Table[x[j, j] == 1,{ j,n}]}]};
If[printsetup,Print[problemlist[[2]]]];If[printsetup,Print[problemlist[[2]]]];If[printsetup,Print[problemlist[[2]]]];
best = NMinimize[problemlist,vars,MaxIterations → it,best = NMinimize[problemlist,vars,MaxIterations → it,best = NMinimize[problemlist,vars,MaxIterations → it,
Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];
{best[[1]],mat/.best[[2]]}{best[[1]],mat/.best[[2]]}{best[[1]],mat/.best[[2]]}
]]]

Here is our result for three-by-three matrices. We also show the constraints for this
small example.

Timing[{min,mat} = detMin[3, .1,20,20,True]]Timing[{min,mat} = detMin[3, .1,20,20,True]]Timing[{min,mat} = detMin[3, .1,20,20,True]]

{(x[1,1]|x[1,2]|x[1,3]|x[2,1]|x[2,2]|x[2,3]|x[3,1]|x[3,2]|x[3,3])∈ Integers,
− 1 ≤ x[1,1] ≤ 1,−1 ≤ x[1,2] ≤ 1,−1 ≤ x[1,3] ≤ 1,
− 1 ≤ x[2,1] ≤ 1,−1 ≤ x[2,2] ≤ 1,−1 ≤ x[2,3] ≤ 1,
− 1 ≤ x[3,1] ≤ 1,−1 ≤ x[3,2] ≤ 1,−1 ≤ x[3,3] ≤ 1,
x[1,1] == 1,x[2,2] == 1,x[3,3] == 1}

{0.528033,{−4.,{{1,1,1},{1,1,−1},{1,−1,1}}}}

88 D. Lichtblau

We obtain -4 as the minimum (can you do better?) We now try at dimension 7. We
will use a larger search space and more iterations. Indeed, our option settings were de-
termined by trial and error. Later we will say more about how this might systematically
be done.

Timing[{min,mat} = detMin[7, .1,80,80]]Timing[{min,mat} = detMin[7, .1,80,80]]Timing[{min,mat} = detMin[7, .1,80,80]]

{54.6874,{−576.,{{1,1,−1,−1,1,−1,1},{1,1,−1,1,−1,−1,−1},
{1,−1,1,1,1,−1,−1},{−1,−1,−1,1,1,1,1},{1,1,−1,−1,1,1,−1},
{1,1,1,1,1,1,1},{1,−1,−1,−1,−1,1,1}}}}

Readers familiar with the Hadamard bound for absolute values of matrix determinants
will recognize that the minimum must be no smaller than the ceiling of −7

7
2 , or −907.

(In brief, this bound is the product of the lengths of the rows of a matrix; for our family,
the maxinal length of each row is

√
7. That this product maximizes the absolute value

of the determinant can be observed from the fact that this absolute value is the volume
of the rectangular prism formed by the row vectors of the matrix. This volume can be no
larger than the product of their lengths; it achieves that value precisely when the rows
are pairwise orthogonal.)

We can ask how good is the quality of our result. Here is one basis for comparison. A
random search that took approximately twice as long as the code above found nothing
smaller than −288. Offhand I do not know if -576 is the true minimum, though I suspect
that it is.

It is interesting to see what happens when we try this with dimension increased to
eight.

Timing[{min,mat} = detMin[8,1/50,100,200]]Timing[{min,mat} = detMin[8,1/50,100,200]]Timing[{min,mat} = detMin[8,1/50,100,200]]

{222.618,{−4096.,{{1,−1,1,1,1,−1,−1,−1},{−1,1,−1,1,1,1,−1,−1},
{−1,1,1,1,1,−1,1,1},{1,1,−1,1,−1,−1,−1,1},
{−1,−1,−1,−1,1,−1,−1,1},{1,1,1,−1,1,1,−1,1},
{1,1,−1,−1,1,−1,1,−1},{1,−1,−1,1,1,1,1,1}}}}

In this case we actually attained the Hadamard bound; one can check that the rows
(and likewise the columns) are all pairwise orthogonal, as must be the case in order
to attain the Hadamard bound. Indeed, when the dimension is a power of two, one
can always attain this bound. The motivated reader might try to work out a recursive
(or otherwise) construction that gives such pairwise orthogonal sets.

4.4 Partitioning a Set

The last sections were a warmup to the main focus of this chapter. We introduced a bit
of Mathematica coding, and in particular use of Differential Evolution, in the contect
of discrete optimization. We now get serious in discussing combinatorial optimization
problems and techniques.

4 Relative Position Indexing Approach 89

We start with the Set Partitioning Problem. We will illustrate this with an old example
from computational folklore: we are to partition the integers from 1 to 100 into two sets
of 50, such that the sums of the square roots in each set are as close to equal as possible.

There are various ways to set this up as a problem for NMinimize. We will show
two of them. First we will utilize a simple way of choosing 50 elements from a set of
100. We will use 100 real values, all between 0 and 1. (Note that we are using continuous
variables even though the problem itself involves a discrete set.) We take their relative
positions as defining a permutation of the integers from 1 to 100. A variant of this
approach to decoding permutations is described in [4, 3].

In more detail: their sorted ordering (obtained, in our code, from the Mathematica
Ordering function) determines which is to be regarded as first, which as second, and
so on. As this might be confusing, we illustrate the idea on a smaller set of six values.
We begin with our range of integers from 1 to 6.

smallset = Range[6]smallset = Range[6]smallset = Range[6]

{1,2,3,4,5,6}
Now suppose we also have a set of six real values between 0 and 1.

vals = RandomReal[1,{6}]vals = RandomReal[1,{6}]vals = RandomReal[1,{6}]

{0.131973,0.80331,0.28323,0.694475,0.677346,0.255748}
We use this second set of values to split smallset into two subsets of three, simply
by taking as one such subset the elements with positions corresponding to those of the
three smallest member of vals. The complementary subset would therefore be the
elements with positions corresponding to those of the three largest members of vals.
One can readily see (and code below will confirm) that the three smallest elements of
vals, in order of increasing size, are the first, sixth, and third elements.

Ordering[vals]Ordering[vals]Ordering[vals]

{1,6,3,5,4,2}
We split this into the positions of the three smallest, and those of the three largest, as
below.

{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]

{{1,6,3},{5,4,2}}
We now split smallset according to these two sets of indices. Because it is simply the
values one through six, the subsets are identical to their positions.

{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]

{{1,6,3},{5,4,2}}

90 D. Lichtblau

The same idea applies to splitting any set of an even number of elements (small modi-
fications could handle an odd number, or a split into subsets of unequal lengths).

With this at hand we are now ready to try our first method for attacking this problem.

4.4.1 Set Partitioning via Relative Position Indexing

Here is the code we actually use to split our 100 integers into two sets of indices.

Outline of splitRangesplitRangesplitRange

1. Input: a vector of real numbers, of even length.
2. Return the positions of the smaller half of elements, followed by those of the

larger half.

splitRange[vec]:=With[splitRange[vec]:=With[splitRange[vec]:=With[
{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},
{Take[newvec,halflen],Drop[newvec,halflen]}]{Take[newvec,halflen],Drop[newvec,halflen]}]{Take[newvec,halflen],Drop[newvec,halflen]}]

Just to see that it works as advertised, we use it to replicate the result from our small
example above.

splitRange[vals]splitRange[vals]splitRange[vals]

{{1,6,3},{5,4,2}}

Once we have a way to associate a pair of subsets to a given set of 100 values in the
range from 0 to 1, we form our objective function. A convenient choice is simply an ab-
solute value of a difference; this is often the case in optimization problems. We remark
that squares of differences are also commonly used, particularly when the optimization
method requires differentiability with respect to all program variables. This is not an
issue for Differential Evolution, as it is a derivative-free optimization algorithm.

Here is an outline of the objective function, followed by the actual code.

Outline of spfunspfunspfun

1. Input: a vector of real numbers, of even length.
2. Use splitRange to find positions of the smaller half of elements, and the posi-

tions of the larger half.
3. Sum the square roots of the first set of positions, and likewise sum the square

roots of the second set.
4. Return the absolute value of the difference of those two sums.

4 Relative Position Indexing Approach 91

spfun[vec : { Real}]:=spfun[vec : { Real}]:=spfun[vec : { Real}]:=
With[{vals = splitRange[vec]},With[{vals = splitRange[vec]},With[{vals = splitRange[vec]},
Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]

It may be a bit difficult to see what this does, so we illustrate again on our small exam-
ple. Supposing we have split smallset into two subsets as above, what is the objective
function? Well, what we do is take the first, sixth, and third elements, add their square
roots, and do likewise with the fifth, fourth, and second elements. We subtract one of
these sums from the other and take the absolute value of this difference. For speed we do
all of this in machine precision arithmetic. In exact form it would be:

sqrts = Sqrt[splitRange[vals]]sqrts = Sqrt[splitRange[vals]]sqrts = Sqrt[splitRange[vals]]
{{

1,
√

6,
√

3
}

,
{√

5,2,
√

2
}}

sums = Total[sqrts,{2}]sums = Total[sqrts,{2}]sums = Total[sqrts,{2}]

{
1 +

√
3+

√
6,2 +

√
2+

√
5
}

sumdifference = Apply[Subtract,sums]sumdifference = Apply[Subtract,sums]sumdifference = Apply[Subtract,sums]

−1 −√
2+

√
3−√

5+
√

6

abssummdiffs = Abs[sumdifference]abssummdiffs = Abs[sumdifference]abssummdiffs = Abs[sumdifference]

1 +
√

2−√
3+

√
5−√

6

approxabs = N[abssummdiffs]approxabs = N[abssummdiffs]approxabs = N[abssummdiffs]

0.468741

As a check of consistency, observe that this is just what we get from evaluating our
objective function on vals.

spfun[vals]spfun[vals]spfun[vals]

0.468741

We now put these components together into a function that provides our set partition.

Outline of getHalfSetgetHalfSetgetHalfSet

1. Input: An even integer n, and options to pass along to NMinimize.
2. Create a list of variables, vars, of length n.
3. Set up initial ranges that the variables all lie between 0 and 1 (these are not

hard constraints but just tell NMinimize where to take random initial values).

92 D. Lichtblau

4. Call NMinimize, passing it obfun[vars] as objective function.
5. Return the minimum value found, and the two complementary subsets of the

original integer set {1, . . . ,n} that give rise to this value.

getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},
vars = Array[xx,n];vars = Array[xx,n];vars = Array[xx,n];
ranges = Map[{#,0,1}&,vars];ranges = Map[{#,0,1}&,vars];ranges = Map[{#,0,1}&,vars];
{nmin,vals} = NMinimize[spfun[vars], ranges,opts];{nmin,vals} = NMinimize[spfun[vars], ranges,opts];{nmin,vals} = NMinimize[spfun[vars], ranges,opts];
{nmin,Map[Sort,splitRange[vars/.vals]]}]{nmin,Map[Sort,splitRange[vars/.vals]]}]{nmin,Map[Sort,splitRange[vars/.vals]]}]

As in previous examples, we explicitly set the method so that we can more readily
pass it nondefault method-specific options. Finally, we set this to run many iterations
with a lot of search points. Also we turn off post-processing. Why do we care about
this? Well, observe that our variables are not explicitly integer valued. We are in ef-
fect fooling NMinimize into doing a discrete (and in fact combinatorial) optimization
problem, without explicit use of discrete variables. Hence default heuristics are likely
to conclude that we should attempt a “local” optimization from the final configuration
produced by the differential evolution code. This will almost always be unproductive,
and can take considerable time. So we explicitly disallow it. Indeed, if we have the
computation time to spend, we are better off increasing our number of generations, or
the size of each generation, or both.

Timing[{min,{s1,s2}} =Timing[{min,{s1,s2}} =Timing[{min,{s1,s2}} =
getHalfSet[100,MaxIterations → 10000,getHalfSet[100,MaxIterations → 10000,getHalfSet[100,MaxIterations → 10000,
Method → {DifferentialEvolution,CrossProbability → .8,Method → {DifferentialEvolution,CrossProbability → .8,Method → {DifferentialEvolution,CrossProbability → .8,

SearchPoints → 100,PostProcess → False}]]SearchPoints → 100,PostProcess → False}]]SearchPoints → 100,PostProcess → False}]]

{2134.42,{2.006223098760529̀*∧-7,
{{1,2,4,6,7,11,13,15,16,17,19,21,23,25,26,27,31,34,
37,41,43,44,45,47,50,51,52,54,56,66,67,69,72,73,
75,77,78,79,80,86,87,88,89,90,91,93,96,97,98,100},

{3,5,8,9,10,12,14,18,20,22,24,28,29,30,32,33,35,36,
38,39,40,42,46,48,49,53,55,57,58,59,60,61,62,63,64,
65,68,70,71,74,76,81,82,83,84,85,92,94,95,99}}}}

We obtain a fairly small value for our objective function. I do not know if this in fact
the global minimum, and the interested reader might wish to take up this problem with
an eye toward obtaining a better result.

A reasonable question to ask is how would one know, or even suspect, where to set
the CrossProbability parameter? A method I find useful is to do “tuning runs”.
What this means is we do several runs with a relatively small set of search points and a
fairly low bound on the number of generations (the MaxIterations option setting,
in NMinimize). Once we have a feel for which values seem to be giving better results,
we use them in the actual run with options settings at their full values. Suffice it to say

4 Relative Position Indexing Approach 93

that this approach is far from scientific. About the best one can say is that, while it is not
obviously fantastic, it is also not obviously bad. Note that this sort of situation happens
often in engineering, and that is why one can make nice incremental improvements to a
technology such as optimization.

4.4.2 Set Partitioning via Knapsack Approach

Another approach to this problem is as follows. We take the full set and pick 100 corre-
sponding random integer values that are either 0 or 1. An element in the set is put into
one or the other subset according to the value of the bit corresponding to that element.
For this to give an even split we also must impose a constraint that the size of each
subset is half the total size. To get an idea of what these constraints are, we show again
on our small example of size six.

vars = Array[x,6];vars = Array[x,6];vars = Array[x,6];
ranges = Map[(0<=#<=1)&,vars];ranges = Map[(0<=#<=1)&,vars];ranges = Map[(0<=#<=1)&,vars];
Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]

{0 ≤ x[1] ≤ 1,0 ≤ x[2] ≤ 1,0 ≤ x[3] ≤ 1,0 ≤ x[4] ≤ 1,
0 ≤ x[5] ≤ 1,0 ≤ x[6] ≤ 1,(x[1]|x[2]|x[3]|x[4]|x[5]|x[6]) ∈ Integers,
x[1]+ x[2]+ x[3]+ x[4]+ x[5]+ x[6]== 3}

We are now ready to define our new objective function.

Outline of spfun2spfun2spfun2

1. Input: a vector of integers, of even length n. All entries are 0 or 1.
2. Convert every 0 to -1.
3. Form a list of square roots of the integers in {1, . . . ,n}.
4. Multiply, componentwise, with the list of ones and negative ones.
5. Return the absolute value of the sum from step (4).

spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]

Again we use our small example. What would our objective function be if the vector
has ones in the first two and last places, and zeros in the middle three? First we find the
exact value.

exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]

1 +
√

2−√
3+

√
5−√

6

N[exactval]N[exactval]N[exactval]

0.468741

We see that, as expected, this agrees with our objective function.

94 D. Lichtblau

spfun2[{1,0,1,0,0,1}]spfun2[{1,0,1,0,0,1}]spfun2[{1,0,1,0,0,1}]

0.468741

With this knowledge it is now reasonably straightforward to write the code that will
perform our optimization. We create a set of variables, one for each element in the set.
We constrain the variables to take on values that are either 0 or 1, and such that the sum
is exactly half the cardinality of the set (that is, 100/2, or 50, in the example of interest to
us). Since we force variables to be integer valued, NMinimize will automatically use
DifferentialEvolution for its method. Again, we might still wish to explicitly
request it so that we can set option to nondefault values.

Outline of getHalfSet2getHalfSet2getHalfSet2

1. Input: An even integer n, and options to pass along to NMinimize.
2. Create a list of variables, vars, of length n.
3. Set up constraints.

All variables lie between 0 and 1.
All variables are integers.
Their total is n

2 .
4. Call NMinimize, passing it spfun2[vars] as objective function, along

with the constraints and the option settings that were input.
5. Return the minimum value found, and the two complementary subsets of the

original integer set {1, . . . ,n} that give rise to this value.

getHalfSet2[n ,opts]:=Module[getHalfSet2[n ,opts]:=Module[getHalfSet2[n ,opts]:=Module[
{vars,x,nmin,vals, ranges,s1},{vars,x,nmin,vals, ranges,s1},{vars,x,nmin,vals, ranges,s1},
vars = Array[x,n];vars = Array[x,n];vars = Array[x,n];
ranges = Map[(0 ≤ # ≤ 1)&,vars];ranges = Map[(0 ≤ # ≤ 1)&,vars];ranges = Map[(0 ≤ # ≤ 1)&,vars];
{nmin,vals} ={nmin,vals} ={nmin,vals} =
NMinimize[{spfun2[vars],NMinimize[{spfun2[vars],NMinimize[{spfun2[vars],
Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];

s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];
{nmin,{s1,Complement[Range[n],s1]}}]{nmin,{s1,Complement[Range[n],s1]}}]{nmin,{s1,Complement[Range[n],s1]}}]

Timing[Timing[Timing[
{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →
{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]

{1732.97,{0.000251303,
{1,4,5,7,12,13,14,15,16,19,20,22,23,31,32,36,37,38,41,42,
43,44,45,46,47,49,50,51,52,55,59,60,62,65,66,71,73,78,
79,83,84,87,88,89,90,91,94,97,99,100},

4 Relative Position Indexing Approach 95

{2,3,6,8,9,10,11,17,18,21,24,25,26,27,28,29,30,33,34,35,
39,40,48,53,54,56,57,58,61,63,64,67,68,69,70,72,74,75,
76,77,80,81,82,85,86,92,93,95,96,98}}}}

One unfamiliar with the subject might well ask what this has to do with knapsacks.
The gist is as follows. A Knapsack Problem involves taking, or not taking, an element
from a given set, and attempting to optimize some condition that is a function of those
elements taken. There is a large body of literature devoted to such problems, as they
subsume the Integer Linear Programming Problem (in short, linear program, but with
variables constrained to be integer valued). It is a pleasant quality of Differential Evo-
lution that it can be adapted to such problems.

4.4.3 Discussion of the Two Methods

The second method we showed is a classical approach in integer linear programming.
One uses a set of variables constrained to be either 0 or 1 (that is, binary variables). We
constrain their sum so that we achieve a particular goal, in this case it is that exactly half
be put into one of the two subsets. While not quite a relative position indexing method,
it is similar in that positions of zeros or ones determine which of two complementary
subsets receives elements of the parent set.

The first method, which seemed to work better for Differential Evolution (at least
with parameter settings we utilized) is less common. It is a bit mysterious, in that we
use the ordering of an ensemble of reals to determine placement of individual elements
of a set. This implies a certain nonlocality in that a change to one value can have a
big effect on the interpretation of other entries. This is because it is their overall sorted
ordering, and not individual values, that gets used by the objective function. Though
it is not obvious that this would be useful, we saw in this example that we can get a
reasonably good result.

4.5 Minimal Covering of a Set by Subsets

The problem below was once posed in the Usenet news group comp.soft-sys.math.
mathematica. It is an archetypical example of the classical subset covering problem.
In this example we are given a set of sets, each containing integers between 1 and 64.
Their union is the set of all integers in that range, and we want to find a set of 12 subsets
that covers that entire range. In general we would want to find a set of subsets of mini-
mal cardinality; this is an instance where we know in advance that that cardinality is 12.

subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},
{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},
{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},
{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},
{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},
{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},
{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},

96 D. Lichtblau

{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},
{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},
{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},
{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},
{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},
{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},
{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},
{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},
{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},
{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},
{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},
{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},
{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},
{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},
{64,63,61,57,49,33,1}};{64,63,61,57,49,33,1}};{64,63,61,57,49,33,1}};

We do a brief check that the union of the subset elements is indeed the set of integers
from 1 through 64.

Union[Flatten[subsets]] == Range[64]Union[Flatten[subsets]] == Range[64]Union[Flatten[subsets]] == Range[64]

True

4.5.1 An Ad Hoc Approach to Subset Covering

We will set up our objective function as follows. We represent a set of 12 subsets of this
master set by a set of 12 integers in the range from 1 to the number of subsets (which
in this example is, coincidently, also 64). This set is allowed to contain repetitions. Our
objective function to minimize will be based on how many elements from 1 through 64
are “covered”. Specifically it will be 2 raised to the #(elements not covered) power. The
code below does this.

Outline of scfunscfunscfun

1. Input: a vector V of integers, a set S of subsets, and an integer n to denote the
range of integers {1, . . . ,n}.

2. Compute U , the union of elements contained in the subsets S j, for all j ∈ V .
3. Calculate c, the cardinality of the complement of our initial range by U .

More succinctly this is |{1, . . . ,n}−U |, where subtraction is taken to mean
set complement, and |S| denotes the cardinality of S.

4. Return 2c.

scfun[n : { Integer},set ,mx Integer]:=scfun[n : { Integer},set ,mx Integer]:=scfun[n : { Integer},set ,mx Integer]:=
2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]

4 Relative Position Indexing Approach 97

This may be a bit elusive. We will examine its behavior on a specific set of subsets.
Suppose we take the first 12 of our subsets.

first12 = Take[subsets,12]first12 = Take[subsets,12]first12 = Take[subsets,12]

{{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},
{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},
{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},
{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53}}

Their union is

elementsinfirst12 = Union[Flatten[first12]]elementsinfirst12 = Union[Flatten[first12]]elementsinfirst12 = Union[Flatten[first12]]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,28,
29,30,31,32,53,54,55,56,57,58,59,60,61,62,63,64}

Our objective function for this set of subsets raises 2 to the power that is the cardinality
of the set of integers 1 through 64 complemented by this set. So how many elements
does this union miss?

missed = Complement[Range[64],elementsinfirst12]missed = Complement[Range[64],elementsinfirst12]missed = Complement[Range[64],elementsinfirst12]

{17,18,19,20,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52}

Length[missed]Length[missed]Length[missed]

24

2∧Length[missed]2∧Length[missed]2∧Length[missed]

16777216

Does this agree with the function we defined above? Indeed it does.

scfun[Range[12],subsets,64]scfun[Range[12],subsets,64]scfun[Range[12],subsets,64]

16777216

We now give outline and code to find a set of spanning subsets.

Outline of spanningSetsspanningSetsspanningSets

1. Input: a set S of m subsets, an integer k specifying how many we are to use for
our cover, and option values to pass to NMinimize. We assume the union of
all subsets covers some range {1, . . . ,n}.

2. Create a vector of k variables.

98 D. Lichtblau

3. Set up constraints.
All variables are between 1 and m.
All variables are integer valued.

4. Call NMinimize, using the constraints and scfun as defined above, along
with option settings.

5. Return the minimal value (which we want to be 1, in order that there be full
coverage), and the list of positions denoting which subsets we used in the
cover.

spanningSets[set ,nsets , iter ,sp ,cp]:=Module[spanningSets[set ,nsets , iter ,sp ,cp]:=Module[spanningSets[set ,nsets , iter ,sp ,cp]:=Module[
{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},
vars = Array[xx,nsets];vars = Array[xx,nsets];vars = Array[xx,nsets];
rnges = Map[(1 ≤ # ≤ max)&,vars];rnges = Map[(1 ≤ # ≤ max)&,vars];rnges = Map[(1 ≤ # ≤ max)&,vars];
{nmin,vals} = NMinimize[{nmin,vals} = NMinimize[{nmin,vals} = NMinimize[
{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},
vars,MaxIterations → iter,vars,MaxIterations → iter,vars,MaxIterations → iter,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];

vals = Union[vars/.vals];vals = Union[vars/.vals];vals = Union[vars/.vals];
{nmin,vals}]{nmin,vals}]{nmin,vals}]

In small tuning runs I found that a fairly high crossover probability setting seemed
to work well.

Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]

{365.099,{1.,{1,7,14,21,24,28,34,35,47,52,54,57}}}

Length[Union[Flatten[subsets[[sets]]]]]Length[Union[Flatten[subsets[[sets]]]]]Length[Union[Flatten[subsets[[sets]]]]]

64

While this is not lightning fast, we do obtain a good result in a few minutes of run
time.

We note that while this was not coded explicitly to use relative position indexing,
it could have been. That is, we could have used vectors of 64 values between 0 and 1,
and taken the positions of the smallest 12 to give 12 members of subsets. The interested
reader may wish to code this variant.

4.5.2 Subset Covering via Knapsack Formulation

Another method is to cast this as a standard knapsack problem. First we transform
each of our set of subsets into a bit vector representation. In this form each subset is
represented by a positional list of zeros and ones. In effect we are translating from a
sparse to a dense representation.

4 Relative Position Indexing Approach 99

Outline of densevecdensevecdensevec

1. Input: a set S of integers and a length n. It is assumed that the members of S
all lie in {1, . . . ,n}.

2. Create a vector V of length n. Initialize all elements to be 0.
3. Loop: For each j ∈ S, set the jth element of V to be 1.
4. Return V .

densevec[spvec , len]:=Module[densevec[spvec , len]:=Module[densevec[spvec , len]:=Module[
{vec = Table[0,{len}]},{vec = Table[0,{len}]},{vec = Table[0,{len}]},
Do[vec[[spvec[[j]]]] = 1,{ j,Length[spvec]}];Do[vec[[spvec[[j]]]] = 1,{ j,Length[spvec]}];Do[vec[[spvec[[j]]]] = 1,{ j,Length[spvec]}];
vec]vec]vec]

We now apply this function to each member of our set of subsets, that is, make a dense
representation of each subset.

mat = Map[densevec[#,64]&,subsets];mat = Map[densevec[#,64]&,subsets];mat = Map[densevec[#,64]&,subsets];

It might not be obvious what we have done, so we illustrate using the fourth of our
64 matrix rows.

mat[[4]]mat[[4]]mat[[4]]

{1,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,1,0,0,0}

We have ones at positions that correspond to the elements contained in our fourth subset,
and zeros elsewhere. Specifically, the ones are at the positions shown below.

Flatten[Position[mat[[4]],1]]Flatten[Position[mat[[4]],1]]Flatten[Position[mat[[4]],1]]

{1,3,4,5,13,29,61}

But this is, up to ordering, exactly the elements in the fourth subset. That is, we pass a
basic consistency check.

Sort[subsets[[4]]]Sort[subsets[[4]]]Sort[subsets[[4]]]

{1,3,4,5,13,29,61}

As in our last knapsack problem, we again work with binary variables and minimize
their sum, subject to certain constraints. We use a binary variables to represent each
subset. A one means we use that subset in our set cover, and a zero means we do not.

100 D. Lichtblau

Let us consider the vector of those zeros and ones. Now our requirement is that we fully
cover the superset, that is, the range of integers from 1 to 64.

How might we impose this? Well, let us take a look at the dot product of such a vec-
tor with the matrix of bit vectors that we already formed. Again we use as an example
the first 12 subsets, so our vector representing this has ones in the first 12 slots, and
zeros in the remaining 64-12=52 slots.

first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]

{1,1,1,1,1,1,1,1,1,1,1,1,0,
0,0}

What does the dot product of this vector with our matrix of bit vectors represent? Well,
let’s consider the meaning of this matrix for a moment. A one in row j, column k
means that subset j contains element k. One then realizes that the dot product gives
us the following information. The kth element in the result will be a nonnegative num-
ber (possibly zero), and represent the number of times that k appears in the union of
subsets represented by first12vec. So the condition we will need to impose in our
optimization is that the dot product of this vector with our matrix of bitvectors has all
positive entries. Notice that first12vec fails to satisfy this condition.

first12vec.matfirst12vec.matfirst12vec.mat

{4,4,4,4,5,5,5,5,4,4,4,4,2,2,2,2,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}

Outline of spanningSets2spanningSets2spanningSets2

1. Input: a set S of m subsets (each now represented as a bit vector), and option
values to pass to NMinimize. We assume the union of all subsets covers
some range {1, . . . ,n}.

2. Create a vector of m variables, vars.
3. Set up constraints.

All variables lie between 0 and 1.
All variables are integer valued.
The union of subsets corresponding to variables with value of 1 covers the

full range {1, . . . ,n}. This is done by checking that each elements of S.vars is
greater or equal to 1.

4. Call NMinimize to minimize the sum of vars, subject to the above con-
straints, using the input option settings.

5. Return the minimal value and the list of positions denoting which subsets we
used in the cover.

4 Relative Position Indexing Approach 101

spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[
{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},
vars = Array[xx,max];vars = Array[xx,max];vars = Array[xx,max];
rnges = Map[(0 ≤ # ≤ 1)&,vars];rnges = Map[(0 ≤ # ≤ 1)&,vars];rnges = Map[(0 ≤ # ≤ 1)&,vars];
{nmin,vals} ={nmin,vals} ={nmin,vals} =
NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},
Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,
Method → {DifferentialEvolution,CrossProbability → cp,Method → {DifferentialEvolution,CrossProbability → cp,Method → {DifferentialEvolution,CrossProbability → cp,

SearchPoints → sp,RandomSeed → seed}];SearchPoints → sp,RandomSeed → seed}];SearchPoints → sp,RandomSeed → seed}];
vals = vars/.vals;vals = vars/.vals;vals = vars/.vals;
{nmin,vals}]{nmin,vals}]{nmin,vals}]

Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]

{1930.4Second,{12.,{0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1}}}

We have again obtained a result that uses 12 subsets. We check that it covers the entire
range.

Total[Map[Min[#,1]&,sets.mat]]Total[Map[Min[#,1]&,sets.mat]]Total[Map[Min[#,1]&,sets.mat]]

64

We see that this method was much slower. Experience indicates that it needs a lot of
iterations and careful setting of the CrossProbability option. So at present NMinimize
has difficulties with this formulation. All the same it is encouraging to realize that one
may readily set this up as a standard knapsack problem, and still hope to solve it using
Differential Evolution. Moreover, as the alert reader may have observed, we actually
had an added benefit from using this method: nowhere did we need to assume that
minimal coverings require 12 subsets.

4.6 An Assignment Problem

Our next example is a benchmark from the literature of discrete optimization. We are
given two square matrices. We want a permutation that, when applied to the rows and
columns of the second matrix, multiplied element-wise with corresponding elements of
the first, and all elements summed, gives a minimum value. The matrices we use have
25 rows. This particular example is known as the NUG25 problem. It is an example of
a Quadratic Assignment Problem (QAP). The optimal result is known and was verified
by a large parallel computation. We mention that the methods of handling this problem
can, with minor modification, be applied to related problems that require the selecting
of a permutation (for example, the traveling salesman problem).

102 D. Lichtblau

mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},
{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},
{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},
{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},
{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},
{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},
{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},
{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},
{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},
{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},
{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},
{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},
{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},
{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},
{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},
{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},
{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},
{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},
{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},
{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},
{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},
{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},
{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},
{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},
{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};

mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},
{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},
{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},
{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},
{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},
{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},
{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},
{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},
{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},
{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},
{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},
{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},
{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},
{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},
{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},
{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},
{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},
{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},
{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},

4 Relative Position Indexing Approach 103

{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},
{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},
{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},
{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},
{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},
{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};

First we define a function to permute rows and columns of a matrix. It simply rear-
ranges the matrix so that both rows and columns are reordered according to a given
permutation.

Outline of permuteMatrixpermuteMatrixpermuteMatrix

1. Input: a square matrix M and a permutation P of the set {1, . . . ,n}, where n is
the dimension of M.

2. Form M̃, the matrix obtained by rearranging rows and columns of M as speci-
fied by P.

3. Return M̃.

permuteMatrix[mat ,perm]:=mat[[perm,perm]]permuteMatrix[mat ,perm]:=mat[[perm,perm]]permuteMatrix[mat ,perm]:=mat[[perm,perm]]

We use a small matrix to see how this works.

MatrixForm[mat = Array[x,{4,4}]]MatrixForm[mat = Array[x,{4,4}]]MatrixForm[mat = Array[x,{4,4}]]

⎛
⎜⎜⎝

x[1,1] x[1,2] x[1,3] x[1,4]
x[2,1] x[2,2] x[2,3] x[2,4]
x[3,1] x[3,2] x[3,3] x[3,4]
x[4,1] x[4,2] x[4,3] x[4,4]

⎞
⎟⎟⎠

Now we move rows/columns (4,1,3,2) to positions (1,2,3,4), and observe the result.

MatrixForm[permuteMatrix[mat,{4,1,2,3}]]MatrixForm[permuteMatrix[mat,{4,1,2,3}]]MatrixForm[permuteMatrix[mat,{4,1,2,3}]]

⎛
⎜⎜⎝

x[4,4] x[4,1] x[4,2] x[4,3]
x[1,4] x[1,1] x[1,2] x[1,3]
x[2,4] x[2,1] x[2,2] x[2,3]
x[3,4] x[3,1] x[3,2] x[3,3]

⎞
⎟⎟⎠

Let us return to the NUG25 problem. Below is an optimal permutation (it is not
unique). We remark that the computation that verified the optimality took substantial
time and parallel resources.

104 D. Lichtblau

p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};

We compute the objective function value we obtain from this permutation. As a sort
of baseline, we show the result one obtains from applying no permutation. We then
compute results of applying several random permutations. This gives some idea of how
to gauge the results below.

best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]

3744

baseline = Apply[Plus,Flatten[mat1∗ mat2]]baseline = Apply[Plus,Flatten[mat1∗ mat2]]baseline = Apply[Plus,Flatten[mat1∗ mat2]]

4838

randomvals = Table[randomvals = Table[randomvals = Table[
perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];
Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]

{4858,5012,5380,5088,4782,4994,5032,5044,5088,5094}
A substantially longer run over random permutations gives an indication of how hard it
is to get good results via a naive random search.

SeedRandom[1111];SeedRandom[1111];SeedRandom[1111];
Timing[randomvals = Table[Timing[randomvals = Table[Timing[randomvals = Table[

perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];
Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],
{1000000}];]{1000000}];]{1000000}];]

{449.06,Null}
Min[randomvals]Min[randomvals]Min[randomvals]

4284

4.6.1 Relative Position Indexing for Permutations

We must decide how to make a set of values into a permutation. Our first approach is
nearly identical to the ensemble order method we used on the set partition problem.
Specifically, we will let the Ordering function of a set of real values determine a
permutation.

Outline of QAPQAPQAP

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n. Give them initial ranges from 0 to 1.

4 Relative Position Indexing Approach 105

3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix.

The permutation is determined by the ordering of values of the variables
vector. (Remark: some readers might recognize this as a matrix inner product
computed via the matrix trace of the usual matrix product).

For improved speed (at the cost of memory) we memoize values of the ob-
jective function. What that means is we record them once computed, so that
recomputation is done by fast lookup. Readers familiar with data structure
methods may recognize this as an application of hashing.

4. Call NMinimize on the objective function, using the above ranges, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP[mat1 ,mat2 ,cp , it ,sp ,sc]:=Module[QAP[mat1 ,mat2 ,cp , it ,sp ,sc]:=Module[QAP[mat1 ,mat2 ,cp , it ,sp ,sc]:=Module[
{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];
obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];

obfunc2[perm]:=obfunc2[perm] =obfunc2[perm]:=obfunc2[perm] =obfunc2[perm]:=obfunc2[perm] =
Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];

{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,

ScalingFactor → sc,PostProcess → False}];ScalingFactor → sc,PostProcess → False}];ScalingFactor → sc,PostProcess → False}];
Clear[obfunc2];Clear[obfunc2];Clear[obfunc2];
{nmin,Ordering[vars/.vals]}]{nmin,Ordering[vars/.vals]}]{nmin,Ordering[vars/.vals]}]

Again we face the issue that this problem requires nonstandard values for options to the
DifferentialEvolution method, in order to achieve a reasonable result. While
this is regretable it is clearly better than having no recourse at all. The idea behind
having CrossProbability relatively small is that we do not want many crossovers
in mating a pair of vectors. This in turn is because of the way we define a permutation.
In particular it is not just values but relative values across the entire vector that give
us the permutation. Thus disrupting more than a few, even when mating a pair of good
vectors, is likely to give a bad vector. This was also the case with the set partitioning
example we encountred earlier.

We saw that the baseline permutation (do nothing) and random permutations tend to
be far from optimal, and even a large random sampling will get us only about half way
from baseline to optimal. A relatively brief run with “good” values for the algorithm
parameters, on the other hand, yields something notably better. (In the next subsection
we explicitly show how one might use short tuning runs to find such parameter settings.)

106 D. Lichtblau

SeedRandom[11111];SeedRandom[11111];SeedRandom[11111];
Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]

{13.5048,{3864.,
{22,20,17,12,5,13,15,23,25,2,19,10,9,
8,4,1,7,6,16,18,24,21,14,3,11}}}

We now try a longer run.

SeedRandom[11111];SeedRandom[11111];SeedRandom[11111];
Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]

{394.881,{3884.,
{15,20,19,10,13,22,1,16,7,4,9,25,6,23,
12,8,11,21,14,17,5,2,18,3,24}}}

We learn a lesson here. Sometimes a short run is lucky, and a longer one does not fare
as well. We will retry with a different crossover, more iterations, and a larger set of
chromosomes.

Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]

{2186.43,{3826.,
{5,2,18,11,4,12,25,8,14,24,17,3,16,6,21,
20,23,9,7,10,22,15,19,1,13}}}

This result is not bad.

4.6.2 Representing and Using Permutations as Shuffles

The method we now show will generate a permutation as a shuffle of a set of integers.
We first describe a standard way to shuffle, with uniform probability, a set of n elements.
First we randomly pick a number j1 in the range {1, . . . ,n} and, if j1 �= 1, we swap the
first and j1th elements. We then select at random an element j2 in the range {2, . . . ,n}.
If j2 �= 2 we swap the second and j2th elements. The interested reader can convince
him or herself that this indeed gives a uniform random shuffle (in contrast, selecting all
elements in the range {1, . . . ,n} fails to be uniform).

Our goal, actually, is not directly to generate shuffles, but rather to use them. Each
chromosome will represent a shuffle, encoded as above by a set of swaps to perform. So
the effective constraint on the first variable is that it be an integer in the range {1, . . . ,n},
while the second must be an integer in the range {2, . . . ,n}, and so on (small point: we
do not actually require an nth variable, since its value must always be n). We require a
utility routine to convert quickly from a shuffle encoding to a simple permutation vector.
The code below will do this. We use the Compile function of Mathematica to get a
speed boost.

4 Relative Position Indexing Approach 107

Outline of getPermgetPermgetPerm

1. Input: a shuffle S encoded as n−1 integers in the range{1, . . . ,n}, with the jth
actually restricted to lie in the subrange { j, . . . ,n}.

2. Initialize a vector P of length n to be the identity permutation (that is, the
ordered list {1, . . . ,n}).

3. Iterate over S.
4. Swap the jth element of P with the element whose index is the (current) jth

element of S.
5. Return P.

getPerm = Compile[{{shuffle, Integer,1}},Module[getPerm = Compile[{{shuffle, Integer,1}},Module[getPerm = Compile[{{shuffle, Integer,1}},Module[
{perm, len = Length[shuffle]+ 1},{perm, len = Length[shuffle]+ 1},{perm, len = Length[shuffle]+ 1},
perm = Range[len];perm = Range[len];perm = Range[len];
Do[perm[[{ j,shuffle[[j]]}]] = perm[[{shuffle[[j]], j}]],{ j, len − 1}];Do[perm[[{ j,shuffle[[j]]}]] = perm[[{shuffle[[j]], j}]],{ j, len − 1}];Do[perm[[{ j,shuffle[[j]]}]] = perm[[{shuffle[[j]], j}]],{ j, len − 1}];
perm]];perm]];perm]];

Okay, maybe that was a bit cryptic. Here is a brief example that will shed light on
this process. Say our shuffle encoding for a set of five elements is {2,4,5,4}. What
would this do to permute the set {1,2,3,4,5}? First we swap elements 1 and 2, so we
have {2,1,3,4,5}. We next swap elements 2 and 4, giving {2,4,3,1,5}. Then we swap
elements 3 and 5 to obtain {2,4,5,1,3}. Finally, as the fourth element in our shuffle is
a 4, we do no swap. Let us check that we did indeed get the permutation we claim.

getPerm[{2,4,5,4}]getPerm[{2,4,5,4}]getPerm[{2,4,5,4}]

{2,4,5,1,3}
The constraints we would like to enforce are that all chromosome elements be integers,
and that the jth such element be between j and the total length inclusive. The bit of
code below will show how we might set up such constraints.

len = 5;len = 5;len = 5;
vars = Array[x, len − 1];vars = Array[x, len − 1];vars = Array[x, len− 1];
constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]

{(x[1]|x[2]|x[3]|x[4]) ∈ Integers,1 ≤ x[1] ≤ 5,2 ≤ x[2] ≤ 5,3 ≤ x[3] ≤ 5,4 ≤ x[4] ≤ 5}

There is a small wrinkle. It is often faster not to insist on integrality, but rather to use
real numbers and simply round off (or truncate). To get uniform probabilities initially,
using rounding, we constrain so that a given variable is at least its minimal allowed
integer value minus 1/2, and at most its maximal integer value plus 1/2.

Without further fuss, we give an outline and code for this optimization approach.

108 D. Lichtblau

Outline of QAP2QAP2QAP2

1. Input: square matrices M1 and M2 each of dimension n, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n−1. For j in {1, . . . ,n−1} constrain the
jth variable to lie in the range { j − .499 . . . ,n + 1.499}.

3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix. The vari-
ables vector, with entries rounded to nearest integers, may be viewed as a
shuffle on a set of n elements. The permutation is determined by invoking
getPerm on the variables vector.

4. Call NMinimize on the objective function, using the above variables, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP2[mat1 ,mat2 ,cp , it ,sp]:=Module[QAP2[mat1 ,mat2 ,cp , it ,sp]:=Module[QAP2[mat1 ,mat2 ,cp , it ,sp]:=Module[
{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];
obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=
Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];

{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,
PostProcess → False},MaxIterations → it,Compiled → False];PostProcess → False},MaxIterations → it,Compiled → False];PostProcess → False},MaxIterations → it,Compiled → False];

{nmin,getPerm[Round[vars/.vals]]}]{nmin,getPerm[Round[vars/.vals]]}]{nmin,getPerm[Round[vars/.vals]]}]

We show a sample tuning run. We keep the number of iterations and number of chro-
mosomes modest, and try cross probabilities between 0.05 and 0.95, at increments of
.05.

Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]

{{5,4364.},{10,4436.},{15,4538.},{20,4428.},{25,4522.},
{30,4506.},{35,4518.},{40,4550.},{45,4512.},{50,4456.},
{55,4530.},{60,4474.},{65,4520.},{70,4412.},{75,4474.},
{80,4454.},{85,4410.},{90,4314.},{95,4324.}}

From this we home in on the region of the larger values since they seem to be consis-
tently a bit better than other values (it is interesting that this is the opposite of what I
had found for the relative index positioning approach in the previous subsection). We

4 Relative Position Indexing Approach 109

now do larger runs to get a better idea of what are the relative merits of these various
cross probability parameter settings.

Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]

{{87,4298.},{88,4418.},{89,4346.},{90,4314.},{91,4396.},{92,4416.},
{93,4300.},{94,4308.},{95,4274.},{96,4322.},{97,4282.},{98,4298.}}

We will finally try a longer run with cross probability set to 0.975.

Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]

{2590.27,{3814.,
{5,2,11,22,15,18,25,16,9,1,17,3,6,8,
19,12,14,7,23,20,24,4,21,10,13}}}

This gets us reasonably close to the global minimum with a scant 15 lines of code. While
it is mildly more complicated than the 10 line relative position indexing method, it has
the advantage that it is slightly less dependent on fine tuning of the cross probability
parameter.

4.6.3 Another Shuffle Method

There are other plausible ways to set up permutations, such that they behave in a rea-
sonable manner with6 respect to mutation and mating operations. Here is one such.

We have for our vector a set of integers from 1 to n, the length of the set in ques-
tion (again we will actually work with reals, and round off to get integers). The range
restriction is the only stipulation and in particular it may contain repeats. We associate
to it a unique permutation as follows. We initialize a list to contain n zeros. The first
element in our list is then set to the first element in the vector. We also have a marker
set telling us that that first element is now used. We iterate over subsequent elements
in our list, setting them to the corresponding values in vector provided those values
are not yet used. Once done with this iteration we go through the elements that have
no values, assigning them in sequence the values that have not yet been assigned. This
method, which is used in [7], is similar to that of GeneRepair [8]. It is also related to
a method of [12], although they explicitly alter the recombination (that is, the genotype)
rather than the resulting phenotype.

Outline of getPerm2getPerm2getPerm2

1. Input: a shuffle S encoded as n integers in the range{1, . . . ,n}.
2. Create vectors P1 and P2 of length n. The first will be for the permutation we

create, and the second will mark as “used” those elements we have encoun-
tered. Initialize elements of each to be 0.

110 D. Lichtblau

3. Loop over S. Denote by k the jth element of S. If the kth element of P2 is 0,
this means we have not yet used k in our permutation.

Set P2(k) to j to mark it as used.
Set P1(j) to k.

4. Initialize a counter k to 1.
5. Loop over P1. If the jth element, P1(j), is 0 then it needs to be filled in with a

positive integer not yet used.
Find smallest k for which P2(k) is 0 (telling us that k is not used as yet in the

permutation).
For that k, set P1(j) to be k, and mark P2(k) nonzero (alternatively, could

simply increment k so it will not revisit this value).
6. Return P1.

getPerm2 = Compile[{{vec, Integer,1}},Module[getPerm2 = Compile[{{vec, Integer,1}},Module[getPerm2 = Compile[{{vec, Integer,1}},Module[
{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];
Do[k = vec[[j]];Do[k = vec[[j]];Do[k = vec[[j]];
If[p2[[k]] == 0,p2[[k]] = j;p1[[j]] = k;],{ j, len}];If[p2[[k]] == 0,p2[[k]] = j;p1[[j]] = k;],{ j, len}];If[p2[[k]] == 0,p2[[k]] = j;p1[[j]] = k;],{ j, len}];

k = 1;k = 1;k = 1;
Do[If[p1[[j]] == 0,While[p2[[k]] �= 0,k++];Do[If[p1[[j]] == 0,While[p2[[k]] �= 0,k++];Do[If[p1[[j]] == 0,While[p2[[k]] �= 0,k++];
p1[[j]] = k;p1[[j]] = k;p1[[j]] = k;
p2[[k]] = j],{ j, len}];p2[[k]] = j],{ j, len}];p2[[k]] = j],{ j, len}];

p1]];p1]];p1]];

We illustrate with a small example. Say we have the vector {4,1,4,3,1}. What permu-
tation does this represent? Well, we have a 4 in the first slot, so the resulting permutation
vector starts with 4. Then we have a 1, so that’s the next element in the permutation.
Next is a 4, which we have already used. We defer on that slot. Next is a 3, so the fourth
slot in our permutation is 3. last is a 1, which we have already encountered, so we defer
on filling in the fifth position of our permutation. We have completed one pass through
the permutation. The entries we were unable to use were in positions 3 and 5. The val-
ues not yet used are 2 and 5 (because we filled in a vector as {4,1,x,3,y}, where x and y
are not yet known). We now simply use these in order, in the empty slots. That is, entry
3 is 2 and entry 5 is 5. We obtain as our permutation {4,1,2,3,5}.

getPerm2[{4,1,4,3,1}]getPerm2[{4,1,4,3,1}]getPerm2[{4,1,4,3,1}]

{4,1,2,3,5}
This notion of associating a list with repeats to a distinct shuffle has a clear drawback
insofar as earlier elements are more likely than later ones to be assigned to their cor-
responding values in the vector. All the same, this provides a reasonable way to make
a chromosome vector containing repeats correspond to a permutation (and once the
method has started to produce permutations, mating/mutation will not cause too many
repeats provided the crossover probability is either fairly low or fairly high). Moreover,
one can see that any sensible mating process of two chromosomes will less drastically

4 Relative Position Indexing Approach 111

alter the objective function than would be the case in the ensemble ordering, as the cor-
responding permutation now depends far less on overall ordering in the chromosomes.
The advantage is that this method will thus be somewhat less in need of intricate tuning
for the crossover probability parameter (but we will do that anyway).

Outline of QAP3QAP3QAP3

1. Input: square matrices M1 and M2 each of dimension n, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n. Constrain each variable to lie in the
range {.501 . . . ,n + .499}.

3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix.

The variables vector, with entries rounded to nearest integers, may be
viewed as a shuffle on a set of n elements. The permutation is determined
by invoking getPerm2 on the variables vector.

4. Call NMinimize on the objective function, using the above variables, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP3[mat1 ,mat2 ,cp , it ,sp]:=Module[QAP3[mat1 ,mat2 ,cp , it ,sp]:=Module[QAP3[mat1 ,mat2 ,cp , it ,sp]:=Module[
{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];
obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=
Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];

{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,
Method → {DifferentialEvolution,SearchPoints → sp,Method → {DifferentialEvolution,SearchPoints → sp,Method → {DifferentialEvolution,SearchPoints → sp,

CrossProbability → cp,PostProcess → False},CrossProbability → cp,PostProcess → False},CrossProbability → cp,PostProcess → False},
MaxIterations → it,Compiled → False];MaxIterations → it,Compiled → False];MaxIterations → it,Compiled → False];

{nmin,getPerm2[Round[vars/.vals]]}]{nmin,getPerm2[Round[vars/.vals]]}]{nmin,getPerm2[Round[vars/.vals]]}]

We’ll start with a tuning run.

Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]

{{5,4486.},{10,4498.},{15,4464.},{20,4492.},{25,4430.},
{30,4516.},{35,4482.},{40,4396.},{45,4432.},{50,4472.},
{55,4548.},{60,4370.},{65,4460.},{70,4562.},{75,4398.},
{80,4466.},{85,4378.},{90,4426.},{95,4354.}}

I did a second run (not shown), in the upper range of crossover probabilities, and with
more iterations and larger numbers of search points. It homed in on .93 as a reasonably
good choice for a crossover probability setting.

112 D. Lichtblau

Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]

{2380.2,{3888.,
{7,20,11,8,13,4,25,10,19,18,17,22,6,3,5,15,24,
14,23,21,1,16,2,12,9,26}}}

4.7 Hybridizing Differential Evolution for the Assignment
Problem

Thus far we have seen methods that, for a standard benchmark problem from the
quadratic assignment literature, take us to within shouting distance of the optimal value.
These methods used simple tactics to formulate permutations from a vector chromo-
some, and hence could be applied within the framework of Differential Evolution. We
now show a method that hybridizes Differential Evolution with another approach.

A common approach to combinatorial permutation problems is to swap pairs (this
is often called 2-opt), or reorder triples, of elements (also reversal of segments is
common). With Differential Evolution one might do these by modifying the objective
function to try them, and then recording the new vector (if we choose to use it) in the
internals of the algorithm. This can be done in NMinimize, albeit via alteration of an
entirely undocumented internal variable. We show this below, using a simple set of pair
swaps. When we obtain improvement in this fashion, we have gained something akin
to a local hill climbing method. I remark that such hybridization, of an evolutionary
method with a local improvement scheme, is often referred to as a memetic algorithm.
Nice expositions of such approaches can be found in [9] and [6].

The code creates a random value to decide when to use a swap even if it resulted in
no improvement. This can be a useful way to maintain variation in the chromosome set.
We also use a print flag: if set to True, whenever we get an improvement on the current
best permutation, we learn what is the new value and how much time elapsed since the
last such improvement. We also learn when we get such an improvement arising from
a local change (that is, a swap).

As an aside, the use of a swap even when it gives a worse result has long standing
justification. The idea is that we allow a decrease in quality in the hope that it will
later help in finding an improvement. This is quite similar to the method of simulated
annealing, except we do not decrease the probability, over the course of generations, of
accepting a decrease in quality.

Outline of QAP4QAP4QAP4

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter
settings to pass to NMinimize, and a probability level p between 0 and 1
to determine when to retain an altered chromosome that gives a decrease in
quality.

2. Form a vector of variables of length n.

4 Relative Position Indexing Approach 113

3. Give them initial ranges from 0 to 1.
4. Form an objective function that sums the n2 products of elements of the first

matrix and elements of the row-and-column permuted second matrix. As in
QAP, the permutation is determined by the ordering of values of the variables
vector.

5. Iterate some number of times (a reasonable value is 4).
Swap a random pair of elements in the variables vector.
Check whether we got improvement in the objective function.
If so, keep this improved vector.
If not, possibly still keep it depending on whether a random value between

0 and 1 is larger than p, and also whether the better vector is the best seen thus
far (we never replace the best one we have).

Depending on an input flag setting, either restart the swapping (if we are not
done iterating) with our original vector, or else continue with the one created
from prior swaps.

6. Call NMinimize on the objective function, using the above ranges, con-
straints, and input option settings.

7. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,
printFlag :False]:=Module[printFlag :False]:=Module[printFlag :False]:=Module[
{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,
bestvec, indx = 0, i = 0, tt = TimeUsed[]},bestvec, indx = 0, i = 0, tt = TimeUsed[]},bestvec, indx = 0, i = 0, tt = TimeUsed[]},

vars = Array[vv, len];vars = Array[vv, len];vars = Array[vv, len];
rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];
objfunc2[vec]:=objfunc2[vec] =objfunc2[vec]:=objfunc2[vec] =objfunc2[vec]:=objfunc2[vec] =
Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];
objfunc[vec : { Real}]:=Module[objfunc[vec : { Real}]:=Module[objfunc[vec : { Real}]:=Module[
{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},
{vec1,vec2} = {vec1,vec2}/max;{vec1,vec2} = {vec1,vec2}/max;{vec1,vec2} = {vec1,vec2}/max;
val1 = objfunc2[Ordering[vec1]];val1 = objfunc2[Ordering[vec1]];val1 = objfunc2[Ordering[vec1]];
While[j ≤ maxj,While[j ≤ maxj,While[j ≤ maxj,
j++;j++;j++;
{r1, r2} = RandomInteger[{1, len},{2}];{r1, r2} = RandomInteger[{1, len},{2}];{r1, r2} = RandomInteger[{1, len},{2}];
If[restorevector,vec2 = vec1];If[restorevector,vec2 = vec1];If[restorevector,vec2 = vec1];
vec2[[{r1, r2}]] = vec2[[{r2, r1}]];vec2[[{r1, r2}]] = vec2[[{r2, r1}]];vec2[[{r1, r2}]] = vec2[[{r2, r1}]];
val2 = objfunc2[Ordering[vec2]];val2 = objfunc2[Ordering[vec2]];val2 = objfunc2[Ordering[vec2]];
If[val2 < best, j–;If[val2 < best, j–;If[val2 < best, j–;

If[printFlag,Print[“locally improved”,{best,val2}]]];If[printFlag,Print[“locally improved”,{best,val2}]]];If[printFlag,Print[“locally improved”,{best,val2}]]];
If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),
OptimizèNMinimizeDump̀vec = vec2;OptimizèNMinimizeDump̀vec = vec2;OptimizèNMinimizeDump̀vec = vec2;
If[val2 < val1,vec1 = vec2];If[val2 < val1,vec1 = vec2];If[val2 < val1,vec1 = vec2];

114 D. Lichtblau

val1 = Min[val1,val2],val1 = Min[val1,val2],val1 = Min[val1,val2],
OptimizèNMinimizeDump̀vec = vec1];OptimizèNMinimizeDump̀vec = vec1];OptimizèNMinimizeDump̀vec = vec1];

If[val1 < best,If[val1 < best,If[val1 < best,
best = val1;best = val1;best = val1;
vec1 = bestvec = OptimizèNMinimizeDump̀vec;vec1 = bestvec = OptimizèNMinimizeDump̀vec;vec1 = bestvec = OptimizèNMinimizeDump̀vec;
If[printFlag,If[printFlag,If[printFlag,

Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,
{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[];];{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[];];{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[];];

];];];
val1];val1];val1];

bestvec = Range[len];bestvec = Range[len];bestvec = Range[len];
best = Total[Flatten[mat1∗ mat2]];best = Total[Flatten[mat1∗ mat2]];best = Total[Flatten[mat1∗ mat2]];
{nmin,vals} = NMinimize[objfunc[vars], rnges,{nmin,vals} = NMinimize[objfunc[vars], rnges,{nmin,vals} = NMinimize[objfunc[vars], rnges,

MaxIterations → it,Compiled → False,StepMonitor :→ i++,MaxIterations → it,Compiled → False,StepMonitor :→ i++,MaxIterations → it,Compiled → False,StepMonitor :→ i++,
Method → {DifferentialEvolution,SearchPoints → sp, ,Method → {DifferentialEvolution,SearchPoints → sp, ,Method → {DifferentialEvolution,SearchPoints → sp, ,

CrossProbability → cpScalingFactor → sc,PostProcess → False}];CrossProbability → cpScalingFactor → sc,PostProcess → False}];CrossProbability → cpScalingFactor → sc,PostProcess → False}];
Clear[objfunc2];Clear[objfunc2];Clear[objfunc2];
{Total[Flatten[mat1∗ permuteMatrix[mat2,{Total[Flatten[mat1∗ permuteMatrix[mat2,{Total[Flatten[mat1∗ permuteMatrix[mat2,

Ordering[bestvec]]]],Ordering[bestvec]}]Ordering[bestvec]]]],Ordering[bestvec]}]Ordering[bestvec]]]],Ordering[bestvec]}]

We now show a run with printout included. The parameter settings are, as usual, based
on shorter tuning runs.

Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]

locally improved{4838,4788}
new low 1 {iteration, elapsed time, new value} {0,0.280017,4788}
locally improved{4788,4724}
new low 2 {iteration, elapsed time, new value} {0,0.012001,4724}
locally improved{4724,4696}
new low 3 {iteration, elapsed time, new value} {0,0.,4696}
locally improved{4696,4644}
new low 4 {iteration, elapsed time, new value} {0,0.,4644}
locally improved{4644,4612}
new low 5 {iteration, elapsed time, new value} {0,0.240015,4612}
locally improved{4612,4594}
new low 6 {iteration, elapsed time, new value} {0,0.100006,4594}
locally improved{4594,4566}
new low 7 {iteration, elapsed time, new value} {0,0.004,4566}
locally improved{4566,4498}
new low 8 {iteration, elapsed time, new value} {0,0.,4498}
locally improved{4498,4370}
new low 9 {iteration, elapsed time, new value} {0,0.972061,4370}
locally improved{4370,4348}
new low 10 {iteration, elapsed time, new value} {0,0.004,4348}
locally improved{4348,4322}
new low 11 {iteration, elapsed time, new value} {10,21.3933,4322}

4 Relative Position Indexing Approach 115

new low 12 {iteration, elapsed time, new value} {11,0.96806,4308}
new low 13 {iteration, elapsed time, new value} {20,19.0252,4304}
locally improved{4304,4242}
new low 14 {iteration, elapsed time, new value} {20,1.88812,4242}
locally improved{4242,4184}
new low 15 {iteration, elapsed time, new value} {22,4.29227,4184}
new low 16 {iteration, elapsed time, new value} {29,14.7769,4174}
new low 17 {iteration, elapsed time, new value} {31,4.57229,4102}
locally improved{4102,4096}
new low 18 {iteration, elapsed time, new value} {37,12.3448,4096}
locally improved{4096,4092}
new low 19 {iteration, elapsed time, new value} {41,8.0405,4092}
new low 20 {iteration, elapsed time, new value} {51,22.2414,4082}
new low 21 {iteration, elapsed time, new value} {55,8.28452,4076}
new low 22 {iteration, elapsed time, new value} {56,3.51622,4072}
new low 23 {iteration, elapsed time, new value} {56,0.396025,3980}
new low 24 {iteration, elapsed time, new value} {62,13.1488,3964}
new low 25 {iteration, elapsed time, new value} {64,3.03619,3952}
locally improved{3952,3948}
new low 26 {iteration, elapsed time, new value} {71,16.385,3948}
new low 27 {iteration, elapsed time, new value} {75,8.38452,3940}
new low 28 {iteration, elapsed time, new value} {78,6.30839,3934}
new low 29 {iteration, elapsed time, new value} {85,14.0169,3930}
new low 30 {iteration, elapsed time, new value} {85,0.980061,3924}
new low 31 {iteration, elapsed time, new value} {86,1.71611,3922}
locally improved{3922,3894}
new low 32 {iteration, elapsed time, new value} {89,7.22845,3894}
locally improved{3894,3870}
new low 33 {iteration, elapsed time, new value} {109,42.1226,3870}
new low 34 {iteration, elapsed time, new value} {119,22.5814,3860}
new low 35 {iteration, elapsed time, new value} {134,33.4381,3856}
locally improved{3856,3840}
new low 36 {iteration, elapsed time, new value} {142,16.269,3840}
new low 37 {iteration, elapsed time, new value} {146,8.72855,3830}
new low 38 {iteration, elapsed time, new value} {174,57.7716,3816}
new low 39 {iteration, elapsed time, new value} {196,44.6508,3800}
new low 40 {iteration, elapsed time, new value} {203,13.5768,3788}
new low 41 {iteration, elapsed time, new value} {203,0.400025,3768}
locally improved{3768,3750}
new low 42 {iteration, elapsed time, new value} {222,34.3741,3750}

{590.045,{3750,
{1,19,22,15,13,7,10,9,20,23,21,6,14,4,17,16,3,8,25,12,24,18,11,2,5}}}
This is now quite close to the global minimum. As might be observed from the

printout, the swaps occasionally let us escape from seemingly sticky local minima. So,

116 D. Lichtblau

for the problem at hand, this hybridization truly appears to confer an advantage over
pure Differential Evolution. I will remark that it seems a bit more difficult to get this
type of hybridization to cooperate well with the various shuffle methods of creating
permutations.

For contrast we go to the opposite extreme and do a huge number of swaps, on a
relatively smaller number of chromosomes and using far fewer iterations. We will reset
our vector with swapped pairs to the original (or best variant found thereof, if we get
improvements). This is to avoid straying far from reasonable vectors, since we now do
many swaps.

This is thus far a 2-opt approach rather than Differential Evolution per se. Nonethe-
less, we notice that the later stages of improvement do come during the actual iterations
of Differential Evolution, and quite possibly those final improvements are due in part to
the maintaining of diversity and the use of mutation and recombination.

Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]

locally improved{4838,4808}
new low 1 {iteration, elapsed time, new value} {0,0.048003,4808}
locally improved{4808,4786}
new low 2 {iteration, elapsed time, new value} {0,0.004001,4786}
locally improved{4786,4738}
new low 3 {iteration, elapsed time, new value} {0,0.,4738}
locally improved{4738,4690}
new low 4 {iteration, elapsed time, new value} {0,0.004,4690}
locally improved{4690,4614}
new low 5 {iteration, elapsed time, new value} {0,0.,4614}
locally improved{4614,4502}
new low 6 {iteration, elapsed time, new value} {0,0.,4502}
locally improved{4502,4406}
new low 7 {iteration, elapsed time, new value} {0,0.,4406}
locally improved{4406,4370}
new low 8 {iteration, elapsed time, new value} {0,0.,4370}
locally improved{4370,4342}
new low 9 {iteration, elapsed time, new value} {0,0.004,4342}
locally improved{4342,4226}
new low 10 {iteration, elapsed time, new value} {0,0.,4226}
locally improved{4226,4178}
new low 11 {iteration, elapsed time, new value} {0,0.016001,4178}
locally improved{4178,4174}
new low 12 {iteration, elapsed time, new value} {0,0.,4174}
locally improved{4174,4170}
new low 13 {iteration, elapsed time, new value} {0,0.016001,4170}
locally improved{4170,4158}
new low 14 {iteration, elapsed time, new value} {0,0.012001,4158}
locally improved{4158,4114}
new low 15 {iteration, elapsed time, new value} {0,0.004,4114}

4 Relative Position Indexing Approach 117

locally improved{4114,4070}
new low 16 {iteration, elapsed time, new value} {0,0.004,4070}
locally improved{4070,4046}
new low 17 {iteration, elapsed time, new value} {0,0.016001,4046}
locally improved{4046,4042}
new low 18 {iteration, elapsed time, new value} {0,0.060004,4042}
locally improved{4042,4014}
new low 19 {iteration, elapsed time, new value} {0,0.080005,4014}
locally improved{4014,3982}
new low 20 {iteration, elapsed time, new value} {0,0.008001,3982}
locally improved{3982,3978}
new low 21 {iteration, elapsed time, new value} {0,0.008,3978}
locally improved{3978,3970}
new low 22 {iteration, elapsed time, new value} {0,0.052003,3970}
locally improved{3970,3966}
new low 23 {iteration, elapsed time, new value} {0,0.096006,3966}
locally improved{3966,3964}
new low 24 {iteration, elapsed time, new value} {0,0.012001,3964}
locally improved{3964,3960}
new low 25 {iteration, elapsed time, new value} {0,0.,3960}
locally improved{3960,3944}
new low 26 {iteration, elapsed time, new value} {0,0.032002,3944}
locally improved{3944,3926}
new low 27 {iteration, elapsed time, new value} {0,0.036002,3926}
locally improved{3926,3916}
new low 28 {iteration, elapsed time, new value} {0,0.004001,3916}
locally improved{3916,3896}
new low 29 {iteration, elapsed time, new value} {0,0.032002,3896}
locally improved{3896,3892}
new low 30 {iteration, elapsed time, new value} {0,0.112007,3892}
locally improved{3892,3888}
new low 31 {iteration, elapsed time, new value} {0,0.096006,3888}
locally improved{3888,3868}
new low 32 {iteration, elapsed time, new value} {0,0.104006,3868}
locally improved{3868,3864}
new low 33 {iteration, elapsed time, new value} {0,2.18414,3864}
locally improved{3864,3860}
new low 34 {iteration, elapsed time, new value} {0,0.116007,3860}
locally improved{3860,3852}
new low 35 {iteration, elapsed time, new value} {0,1.84411,3852}
locally improved{3852,3838}
new low 36 {iteration, elapsed time, new value} {0,0.028002,3838}
locally improved{3838,3834}
new low 37 {iteration, elapsed time, new value} {0,0.016001,3834}
locally improved{3834,3818}

118 D. Lichtblau

new low 38 {iteration, elapsed time, new value} {0,0.072004,3818}
locally improved{3818,3812}
new low 39 {iteration, elapsed time, new value} {0,3.55622,3812}
locally improved{3812,3786}
new low 40 {iteration, elapsed time, new value} {0,0.084006,3786}
locally improved{3786,3780}
new low 41 {iteration, elapsed time, new value} {0,1.6361,3780}
locally improved{3780,3768}
new low 42 {iteration, elapsed time, new value} {0,0.048003,3768}
locally improved{3768,3758}
new low 43 {iteration, elapsed time, new value} {0,0.096006,3758}
locally improved{3758,3756}
new low 44 {iteration, elapsed time, new value} {7,315.692,3756}
locally improved{3756,3754}
new low 45 {iteration, elapsed time, new value} {10,108.415,3754}
locally improved{3754,3752}
new low 46 {iteration, elapsed time, new value} {10,0.15601,3752}
locally improved{3752,3748}
new low 47 {iteration, elapsed time, new value} {16,245.787,3748}
locally improved{3748,3744}
new low 48 {iteration, elapsed time, new value} {16,0.076005,3744}

{872.687,{3744,
{22,15,20,11,5,1,9,8,25,2,19,6,3,16,18,10,7,14,21,24,13,23,4,12,17}}}

Notice that this permutation is not identical to the one we presented at the outset, which
in turn comes from benchmark suite results in the literature. Also note that we seem to
get good results from swaps early on (indeed, we almost get a global minimizer prior
to the main iterations). This raises the question of whether it might be useful to plug
in a different sort of heuristic, say larger swaps, or perhaps use of local (continuous)
quadratic programming. The interested reader may wish to explore such possibilities.

4.8 Future Directions

We have seen several examples of discrete optimization problems, and indicated ways
in which one might approach them using Differential Evolution. Problems investigated
include basic integer programming, set partitioning, set covering by subsets, and the
common permutation optimization problem of quadratic assignment. The main issues
have been to adapt Differential Evolution to enforce discrete or combinatorial structure,
e.g. that we obtain integrality, partitions, or permutations from chromosome vectors.

There are many open questions and considerable room for development. Here are a
few of them.

• Figure out better ways to attack quadratic assignment problems so that we are less
likely to encounter difficulty in tuning parameter values, premature convergence,
and so on.

4 Relative Position Indexing Approach 119

• Make the Differential Evolution program adaptive, that is, allow algorithm param-
eters themselves to be modified during the course of a run. This might make results
less sensitive to tuning of parameters such as CrossProbability.

• Alternatively, develop a better understanding of how to select algorithm parame-
ters in a problem-specific manner. Our experience has been that settings for cross
probability should usually be around .9 (which is quite high as compared to what
is typical for continuous optimization). It would be useful to have a more refined
understanding of this and other tuning issues.

• Figure out how to sensibly alter parameters over the course of the algorithm, not by
evolution but rather by some other measure, say iteration count. For example, one
might do well to start of with a fairly even crossover (near 0.5, that is), and have
it either go up toward 1, or drop toward 0, as the algorithm progresses. Obviously
it is not hard to code Differential Evolution to do this. What might be interesting
research is to better understand when and how such progression of algorithm pa-
rameters could improve performance.

• Implement a two-level version of Differential Evolution, wherein several short runs
are used to generate initial values for a longer run.

• Use Differential Evolution in a hybridized form, say, with intermediate steps of
local improvement. This would involving modifying chromosomes “in plac”, so
that improvements are passed along to subsequent generations. We showed a very
basic version of this but surely there must be improvements to be found.

We remark that some ideas related to item 2 above are explored in [5]. Issues of
self-adaptive tuning of Differential Evolution are discussed in some detail in [1]. A nice
exposition of early efforts along these lines, for genetic algorithms, appears in [3].

References

1. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parame-
ters in differential evolution: a comparative study on numerical benchmark problems. IEEE
Trans. Evol. Comput. 10, 646–657 (2006)

2. Gisvold, K., Moe, J.: A method for nonlinear mixed-integer programming and its application
to design problems. J. ENg. Ind. 94, 353–364 (1972)

3. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., Boston (1989)

4. Goldberg, D., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Proceedings
of the 1st International Conference on Genetic Algorithms, pp. 154–159. Lawrence Erlbaum
Associates, Inc., Mahwah (1985)

5. Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Pub-
lishers Inc., San Francisco (2001)

6. Krasnogor, N., Smith, J.: A tutorial for competent memetic algorithms: Model, taxonomy
and design issues. IEEE Trans. Evol. Comput. 9, 474–488 (2005)

7. Lichtblau, D.: Discrete optimization using Mathematica. In: Proceedings of the World Con-
ference on Systemics, Cybernetics, and Informatics. International Institute of Informatics
and Systemics, vol. 16, pp. 169–174 (2000)

120 D. Lichtblau

8. Mitchell, G., O’Donoghue, D., Barnes, D., McCarville, M.: GeneRepair: a repair operator for
genetic algorithms. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-
M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter,
M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO
2003. LNCS, vol. 2724. Springer, Heidelberg (2003)

9. Moscato, P.: On evolution, search, optimization, genetic algorithms, and martial arts. Con-
current Computation Program 826, California Institute of Technology (1989)

10. Price, K., Storn, R.: Differential evolution. Dr. Dobb’s Journal 78, 18–24 (1997)
11. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global

Optimization. Natural Computing Series. Springer, New York (2005)
12. Tate, D., Smith, A.: A genetic approach to the quadratic assignment problem. Computers and

Operations Research 22(1), 73–83 (1995)
13. Wolfram Research, Inc., Champaign, Illinois, USA, Mathematica 6 (2007) (Cited September

25, 2008),
http://reference.wolfram.com/mathematica/ref/NMinimize.html

