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Abstract. Forward Backward Transformation and its realization, Enhanced Differential Evo-
lution algorithm is one of the permutative versions of Differential Evolution, which has been
developed to solve permutative combinatorial optimization problems. Novel domain conversions
routines, alongside special enhancement routines and local search heuristic have been incorpo-
rated into the canonical Differential Evolution in order to make it more robust and effective.

Three unique and challenging problems of Flow Shop Scheduling, Quadratic Assignment and
Traveling Salesman have been solved, utilizing this new approach. The promising results obtained
have been compared and analysed against other benchmark heuristics and published work.

3.1 Introduction

Complexity and advancement of technology have been in synch since the industrial
revolution. As technology advances, so does the complexity of formulation of these
resources.

Current technological trends require a great deal of sophisticated knowledge, both
hardware and software supported. This chapter discusses a specific notion of this knowl-
edge, namely the advent of complex heuristics of problem solving.

The notion of evolutionary heuristics is one which has its roots in common surround-
ing. Its premise is that co-operative behavior between many agents leads to better and
somewhat faster utilisation of the provided resources in the objective of finding the op-
timal solution to the proposed problem. The optimal solution here refers to a solution,
not necessarily the best, but one which can be accepted given the constraints.

Agent based heuristics are those which incorporate a multitude of solutions (unique
or replicated) which are then processed using some defined operators to yield new so-
lutions which are presumably better then the previous solutions. These solutions in turn
form the next generation of solutions. This process iterates for a distinct and predefined
number of generations.

One of the most prominent heuristic in the scope of real domain problems in Dif-
ferential Evolution (DE) Algorithm proposed by [31]. Real domain problems are those
whose values are essentially real numbers, and the entire solution string can have repli-
cated values. Some of the prominent problems are “De Jong” and “Shwafel” problems
which are multi−dimensional.
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The aim of the research was to ascertain the feasibility of DE to solve a unique class
of problems; Permutative Problems. Permutative problems belong to the Nondetermin-
istic Polynomial−Time hard (NP hard) problems. A problem is assigned to such a class
if it is solvable in polynomial time by a nondeterministic Turing Machine.

Two different versions of permutative DE are presented. The first is the Discrete
Differential Evolution [23, 26, 6] and its superset Enhanced Differential Evolution
Algorithm [8, 9].

3.2 Differential Evolution

In order to describe DE, a schematic is given in Fig 3.1.
There are essentially five sections to the code. Section 1 describes the input to the

heuristic. D is the size of the problem, Gmax is the maximum number of generations,
NP is the total number of solutions, F is the scaling factor of the solution and CR is
the factor for crossover. F and CR together make the internal tuning parameters for the
heuristic.

Section 2 outlines the initialisation of the heuristic. Each solution xi, j,G=0 is created
randomly between the two bounds x(lo) and x(hi) . The parameter j represents the in-
dex to the values within the solution and i indexes the solutions within the population.
So, to illustrate, x4,2,0 represents the second value of the fourth solution at the initial
generation.

After initialisation, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers

r1,r2,r3 are selected, unique to each other and to the current indexed solution i in the
population in 4.1. Henceforth, a new index jrand is selected in the solution. jrand points
to the value being modified in the solution as given in 4.2. In 4.3, two solutions, x j,r1,G

and x j,r2,G are selected through the index r1 and r2 and their values subtracted. This

1.Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and initial bounds :x(lo),x(hi).

2.Initialize :

{
∀i ≤ NP ∧∀ j ≤ D : xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4. Mutate and recombine :
4.1 r1,r2,r3 ∈ {1,2, ....,NP},

randomly selected,except :r1 �= r2 �= r3 �= i
4.2 jrand ∈ {1,2, ...,D}, randomly selected once each i

4.3 ∀ j ≤ D,u j,i,G+1 =

⎧⎨
⎩

x j,r3,G +F · (x j,r1 ,G −x j,r2 ,G)
if (rand j [0,1] < CR∨ j = jrand)
x j,i,G otherwise

5. Select

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1

Fig. 3.1. Canonical Differential Evolution Algorithm
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value is then multiplied by F, the predefined scaling factor. This is added to the value
indexed by r3 .

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then
the new value replaces the old value in the current solution. Once all the values in
the solution are obtained, the new solution is vetted for its fitness or value and if this
improves on the value of the previous solution, the new solution replaces the previous
solution in the population. Hence the competition is only between the new child solution
and its parent solution.

[32] have suggested ten different working strategies. It mainly depends on the prob-
lem on hand for which strategy to choose. The strategies vary on the solutions to be
perturbed, number of difference solutions considered for perturbation, and finally the
type of crossover used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G + F • (

xr2,G − xr3,G
)

Strategy 3: DE/rand−best/1/exp: ui,G+1 = xi,G + λ • (
xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 4: DE/best/2/exp: ui,G+1 = xbest,G + F • (
xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 5: DE/rand/2/exp: ui,G+1 = x5,G + F • (

xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 6: DE/best/1/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 7: DE/rand/1/bin: ui,G+1 = xr1,G + F • (

xr2,G − xr3,G
)

Strategy 8: DE/rand−best/1/bin: ui,G+1 = xi,G + λ • (
xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 9: DE/best/2/bin: ui,G+1 = xbest,G + F • (
xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 10: DE/rand/2/bin: ui,G+1 = x5,G + F • (

xr1,G − xr2,G − xr3,G − xr4,G
)

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x repre-
sents a string denoting the solution to be perturbed, y is the number of difference solu-
tions considered for perturbation of x, and z is the type of crossover being used (exp:
exponential; bin: binomial).

DE has two main phases of crossover: binomial and exponential. Generally a child
solution ui,G+1 is either taken from the parent solution xi,G or from a mutated donor
solution vi,G+1 as shown: u j,i,G+1 = v j,i,G+1 = x j,r3,G + F • (

x j,r1,G − x j,r2,G
)
.

The frequency with which the donor solution vi,G+1 is chosen over the parent solu-
tion xi,G as the source of the child solution is controlled by both phases of crossover.
This is achieved through a user defined constant, crossover CR which is held constant
throughout the execution of the heuristic.

The binomial scheme takes parameters from the donor solution every time that the
generated random number is less than the CR as given by rand j [0,1] < CR, else all
parameters come from the parent solution xi,G.

The exponential scheme takes the child solutions from xi,G until the first time that
the random number is greater than CR, as given by rand j [0,1] < CR, otherwise the
parameters comes from the parent solution xi,G.
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To ensure that each child solution differs from the parent solution, both the expo-
nential and binomial schemes take at least one value from the mutated donor solution
vi,G+1.

3.2.1 Tuning Parameters

Outlining an absolute value for CR is difficult. It is largely problem dependent. However
a few guidelines have been laid down [31]. When using binomial scheme, intermediate
values of CR produce good results. If the objective function is known to be separable,
then CR = 0 in conjunction with binomial scheme is recommended. The recommended
value of CR should be close to or equal to 1, since the possibility or crossover occurring
is high. The higher the value of CR, the greater the possibility of the random number
generated being less than the value of CR, and thus initiating the crossover.

The general description of F is that it should be at least above 0.5, in order to provide
sufficient scaling of the produced value.

The tuning parameters and their guidelines are given in Table 3.1

Table 3.1. Guide to choosing best initial control variables

Control Variables Lo Hi Best? Comments

F: Scaling Factor 0 1.0+ 0.3 – 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 − 1.0 CR = 0, seperable

CR = 1, epistatic

3.3 Discrete Differential Evolution

The canonical DE cannot be applied to discrete or permutative problems without modi-
fication. The internal crossover and mutation mechanism invariably change any applied
value to a real number. This in itself will lead to in-feasible solutions.

The objective then becomes one of transformation, either that of the population or
that of the internal crossover/mutation mechanism of DE. For this chapter, it was de-
cided not to modify in any way the operation of DE strategies, but to manipulate the
population in such a way as to enable DE to operate unhindered.

Since the solution for the population is permutative, a suitable conversion routine was
required in order to change the solution from integer to real and then back to integer
after crossover. The population was generated as a permutative string. Two conversions
routines were devised, one was Forward transformation and the other Backward trans-
formation for the conversion between integer and real values. This new heuristic was
termed Discrete Differential Evolution (DDE) [28].

The basic outline DDE is given below.

1. Initial Phase
a) Population Generation: An initial number of discrete trial solutions are gener-

ated for the initial population.
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2. Conversion
a) Discrete to Floating Conversion: This conversion schema transforms the parent

solution into the required continuous solution.
b) DE Strategy: The DE strategy transforms the parent solution into the child

solution using its inbuilt crossover and mutation schemas.
c) Floating to Discrete Conversion: This conversion schema transforms the con-

tinuous child solution into a discrete solution.
3. Selection

a) Validation: If the child solution is feasible, then it is evaluated and accepted in
the next population, if it improves on the parent solution.

3.3.1 Permutative Population

The first part of the heuristic generates the permutative population. A permutative so-
lution is one, where each value within the solution is unique and systematic. A basic
description is given in Equation 3.1.

PG = {x1,G,x2,G, ...,xNP,G}, xi,G = x j,i,G

x j,i,G=0 = (int)
(

rand j [0,1]•
(

x(hi)
j + 1 − x(lo)

j

)
+

(
x(lo)

j

))

i f x j,i /∈ {
x0,i,x1,i, ...,x j−1,i

}
i = {1,2,3, ...,NP} , j = {1,2,3, ..,D} (3.1)

where PG represents the population, x j,i,G=0 represents each solution within the popu-

lation and x(lo)
j and x(hi)

j represents the bounds. The index i references the solution from
1 to NP, and j which references the values in the solution.

3.3.2 Forward Transformation

The transformation schema represents the most integral part of the code. [23] developed
an effective routine for the conversion.

Let a set of integer numbers be represented as in Equation 3.2:

xi ∈ xi,G (3.2)

which belong to solution x j,i,G=0 . The equivalent continuous value for xi is given as
1 • 102 < 5 • 102 ≤ 102.

The domain of the variable xi has length = 5 as shown in 5•102. The precision of the
value to be generated is set to two decimal places (2 d.p.) as given by the superscript
two (2) in 102 . The range of the variable xi is between 1 and 103. The lower bound
is 1 whereas the upper bound of 103 was obtained after extensive experimentation.
The upper bound 103 provides optimal filtering of values which are generated close
together [27].

The formulation of the forward transformation is given as:

x′
i = −1 +

xi • f • 5
103 − 1

(3.3)
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Equation 3.3 when broken down, shows the value xi multiplied by the length 5 and
a scaling factor f. This is then divided by the upper bound minus one (1). The value
computed is then decrement by one (1). The value for the scaling factor f was estab-
lished after extensive experimentation. It was found that when f was set to 100, there
was a tight grouping of the value, with the retention of optimal filtration′s of values.
The subsequent formulation is given as:

x′
i = −1 +

xi • f • 5
103 − 1

= −1 +
xi • f • 5
103 − 1

(3.4)

Illustration:

Take a integer value 15 for example. Applying Equation 3.3, we get:

x′
i = −1 +

15 • 500
999

= 6.50751

This value is used in the DE internal representation of the population solution pa-
rameters so that mutation and crossover can take place.

3.3.3 Backward Transformation

The reverse operation to forward transformation, backward transformation converts the
real value back into integer as given in Equation 3.5 assuming xi to be the real value
obtained from Equation 3.4.

int [xi] =
(1 + xi)• (

103 − 1
)

5 • f
=

(1 + xi)• (
103 − 1

)
500

(3.5)

The value xi is rounded to the nearest integer.

Illustration:

Take a continuous value -0.17. Applying equation Equation 3.5:

int [xi] =
(1 +−0.17)• (

103 − 1
)

500
= |3.3367| = 3

The obtained value is 3, which is the rounded value after transformation.
These two procedures effectively allow DE to optimise permutative solutions.

3.3.4 Recursive Mutation

Once the solution is obtained after transformation, it is checked for feasibility. Feasibil-
ity refers to whether the solutions are within the bounds and unique in the solution.

xi,G+1 =

⎧⎨
⎩

ui,G+1 if

{
u j,i,G+1 �= {

u1,i,G+1, ...,u j−1,i,G+1
}

x(lo) ≤ u j,i,G+1 ≤ x(lo)

xi,G

(3.6)
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Input :D,Gmax,NP≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],bounds :x(lo),x(hi).

Initialize :

⎧
⎪⎨
⎪⎩

∀i≤ NP∧∀ j ≤ D

{
xi, j,G=0 = x(lo)j + rand j [0,1]•

(
x(hi)j − x(lo)j

)

i f x j,i /∈ {
x0,i,x1,i, ...,x j−1,i

}
i= {1,2, ...,NP}, j = {1,2, ...,D},G= 0,rand j[0,1] ∈ [0,1]

Cost :∀i≤ NP : f (xi,G=0)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G< Gmax

∀i≤ NP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ....,NP}, randomly selected, except :r1 �= r2 �= r3 �= i

jrand ∈ {1,2, ...,D}, randomly selected once each i

∀ j ≤ D,u j,i,G+1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
γ j,r3,G

) ← (
x j,r3,G

)
:
(
γ j,r1,G

) ← (
x j,r1,G

)
:
(
γ j,r2,G

) ← (
x j,r2,G

)
Forward Transformation

γ j,r3,G +F · (γ j,r1,G− γ j,r2,G)
if (rand j[0,1] <CR∨ j = jrand)(

γ j,i,G
) ← (

x j,i,G
)

otherwise(
u′i,G+1

)
=

(
ρ j,i,G+1

) ← (
ϕ j,i,G+1

)
Backward Transformation

Recursive Mutation :

ui,G+1 =

⎧
⎨
⎩
ui,G+1if

{
u j,i,G+1 �=

{
u1,i,G+1, ..,u j−1,i,G+1

}
x(lo) ≤ u j,i,G+1 ≤ x(hi)

xi,G otherwise
Select :

xi,G+1 =
{
ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G= G+1

Fig. 3.2. DDE schematic

Recursive mutation refers to the fact that if a solution is deemed in-feasible, it is
discarded and the parent solution is retained in the population as given in Equation 3.6.

The general schematic is given in Figure 3.2.
A number of experiments were conducted by DDE on Flowshop Scheduling prob-

lems. These are collectively given in the results section of this chapter.

3.4 Enhanced Differential Evolution

Enhanced Differential Evolution (EDE) [7, 8, 9], heuristic is an extension of the DDE
variant of DE. One of the major drawbacks of the DDE algorithm was the high fre-
quency of in-feasible solutions, which were created after evaluation. However, since
DDE showed much promise, the next logical step was to devise a method, which would
repair the in-feasible solutions and hence add viability to the heuristic.

To this effect, three different repairment strategies were developed, each of which
used a different index to repair the solution. After repairment, three different enhance-
ment features were added. This was done to add more depth to the code in order to solve
permutative problems. The enhancement routines were standard mutation, insertion and
local search. The basic outline is given below.

1. Initial Phase
a) Population Generation: An initial number of discrete trial solutions are gener-

ated for the initial population.
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2. Conversion
a) Discrete to Floating Conversion: This conversion schema transforms the parent

solution into the required continuous solution.
b) DE Strategy: The DE strategy transforms the parent solution into the child

solution using its inbuilt crossover and mutation schemas.
c) Floating to Discrete Conversion: This conversion schema transforms the con-

tinuous child solution into a discrete solution.
3. Mutation

a) Relative Mutation Schema: Formulates the child solution into the discrete so-
lution of unique values.

4. Improvement Strategy
a) Mutation: Standard mutation is applied to obtain a better solution.
b) Insertion: Uses a two-point cascade to obtain a better solution.

5. Local Search
a) Local Search: 2 Opt local search is used to explore the neighborhood of the

solution.

3.4.1 Repairment

In order to repair the solutions, each solution is initially vetted. Vetting requires the res-
olution of two parameters: firstly to check for any bound offending values, and secondly
for repeating values in the solution. If a solution is detected to have violated a bound, it
is dragged to the offending boundary.

Input : D
Array Solution,ViolateVal,MissingVal
int Counter
for (int i = 0; i < D; i++){

for (int j = 0; j < D; j ++){
if(i == Solution [ j]){

Counter ++;}
}
if(Counter > 1){

int Index = 0;
for(int j = 0; j < D; j ++){

if(i = Solution [ j]){
Index++
if(Index > 1){
ViolateVal

Append← j;}
}}}
if(Counter == 0){

MissingVal
Append← i;}

Counter = 0;
}

Fig. 3.3. Pseudocode for replication detection
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u j,i,G+1 =
{

x(lo) if u j,i,G+1 < x(lo)

x(hi) if u j,i,G+1 > x(hi) (3.7)

Each value, which is replicated, is tagged for its value and index. Only those values,
which are deemed replicated, are repaired, and the rest of the values are not manip-
ulated. A second sequence is now calculated for values, which are not present in the
solution. It stands to reason that if there are replicated values, then some feasible values
are missing. The pseudocode if given in Fig 3.3.

Three unique repairment strategies were developed to repair the replicated values:
front mutation, back mutation and random mutation, named after the indexing used for
each particular one.

3.4.1.1 Front Mutation
Front mutation indexes the repairment from the front of the replicated array with values
randomly selected from the missing value array as shown in Fig 3.4.

Array Solution,ViolateVal,MissingVal;
for(int i = 0; i < sizeo fViolateVal; i++)

Solution [ViolateVal [i]] = Random [MissingVal] ;
}

Fig. 3.4. Pseudocode for front mutation

Illustration:

In order to understand front mutation, assume an in−feasible solution of dimension
D = 10: x = {3,4,2,1,3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown, the values 3 and 5 are
repeated in the solution.

All first occurring values are now set as default: x = {3,4,2,1,3,5,6,7,10,5}.
So now only two positions are replicated, index 5 and 10 as given: x = {3,4,2,1,3

5
,5,

6,7,10, 5
10

}.

An array of missing values is now generated as MV = {8,9}, since values 8 and 9
are missing from the solution.

An insertion array is now randomly generated, which specifies the position of the
insertion of each value: IA = {2,1}. Since only two values were missing so only
two random numbers are generated. In this respect, the first value 2 in IA, outlines
that the value pointed by index 1 in MV which is 8 is to be placed in the sec-
ond indexed in-feasible solution and likewise for the other missing value given as:
x = {3,4,2,1,9

1
,5,6,7,10,8

2
}.
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3.4.1.2 Back Mutation
Back mutation is the opposite of front mutation, and indexes the repairment from the
rear of the replicated array as given in Fig 3.5.

Array Solution,ViolateVal,MissingVal;
for(int i = sizeo fViolateVal; i > 0; i++)

Solution [ViolateVal [i]] = Random [MissingVal] ;
}

Fig. 3.5. Pseudocode for back mutation

Illustration:

In order to understand back mutation assume the same in-feasible solution as in the
previous example: x = {3,4,2,1,3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown the values 3 and 5 are
repeated in the solution.

All last occurring values are now set as default: x = {3,4,2,1,3,5,6,7,10,5}. So
now only two positions are replicated, index 1 and 6 as given: x = {3

1
,4,2,1,3,5

6
,6,

7,10,5}.
An array of missing values is now generated as MV = {8,9}, since values 8 and 9

are missing from the solution.
An insertion array is now randomly generated, which specifies the position of the

insertion of each value: IA = {2,1}. Since only two values were missing so only two
random numbers are generated. In this respect, the first value 1 in IA, outlines that
the value pointed by index 1 in MV which is 8 is to be placed in the first indexed in-
feasible solution and likewise for the other missing value given as: x = {8

1
,4,2,1,3,9

2
,

6,7,10,5}.

3.4.1.3 Random Mutation
The most complex repairment schema is the random mutation routine. Each value is
selected randomly from the replicated array and replaced randomly from the missing
value array as given in Fig 3.6.

Array Solution,ViolateVal,MissingVal;
for(int i = sizeo fViolateVal; i > 0; i++)

Solution
[
ViolateValRandom[i]

]
= MissingValRandom[i];

ViolateVal
delete← ViolateValRandom[i];

MissingVal
delete← MissingValRandom[i];

}
Fig. 3.6. Pseudocode for random mutation
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Since each value is randomly selected, the value has to be removed from the array
after selection in order to avoid duplication. Through experimentation it was shown that
random mutation was the most effective in solution repairment.

Illustration:

Following the previous illustrations, assume the same in-feasible solution: x = {3,4,2,1,
3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown the values 3 and 5 are
repeated in the solution.

A random array is created which sets the default values: DV = {2,1}, . Here, it
shows that the first replicated value which is 3 should be set as default on its second
occurrence. The second replicated value 5 should be set as default on its first occurrence:
x = {3,4,2,1,3,5,6,7,10,5}. The in-feasible values are now in index 1 and 10 given
as x = {3

1
,4,2,1,3,5,6,7,10, 5

10
}

An array of missing values is now generated as MV = {8,9}, since values 8 and 9
are missing from the solution.

An insertion array is now randomly generated, which specifies the position of the in-
sertion of each value: IA = {1,2} . Since only two values were missing so only two ran-
dom numbers are generated. In this respect, the first value 1 in IA, outlines that the value
pointed by index 1 in MV which is 8 is to be placed in the first indexed in-feasible so-
lution and likewise for the other missing value given as: x = {8

1
,4,2,1,3,5,6,7,10, 9

10
}.

3.4.2 Improvement Strategies

Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one
time application based. What this entails is that, once a solution is created each strategy
is applied only once to that solution. If improvement is shown, then it is accepted as the
new solution, else the original solution is accepted in the next population.

3.4.2.1 Standard Mutation
Standard mutation is used as an improvement technique, to explore random regions of
space in the hopes of finding a better solution. Standard mutation is simply the exchange
of two values in the single solution.

Two unique random values are selected r1,r2 ∈ rand [1,D], where as r1 �= r2 . The

values indexed by these values are exchanged: Solutionr1

exchange↔ Solutionr1 and the so-
lution is evaluated. If the fitness improves, then the new solution is accepted in the
population.

Illustration:

In Standard Mutation assume a solution given as: x = {8,4,2,1,3,5,6,7,10,9} . Two
random numbers are generated within the bounds: Rnd = {3,8}. These are the indexes
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of the values in the solution: x = {8,4,2
3
,1,3,5,6,7

8
,10,9}. The values are exchanged

x = {8,4,7,1,3,5,6,2,10,9} and the solution is evaluated for its fitness.

3.4.2.2 Insertion
Insertion is a more complicated form of mutation. However, insertion is seen as provid-
ing greater diversity to the solution than standard mutation.

As with standard mutation, two unique random numbers are selected r1,r2 ∈ rand
[1,D]. The value indexed by the lower random number Solutionr1 is removed and the
solution from that value to the value indexed by the other random number is shifted one
index down. The removed value is then inserted in the vacant slot of the higher indexed
value Solutionr2 as given in Fig 3.7.

temp = Solutionr1 ;
for (int i = r1; i < r2; i++)

Solutioni = Solutioni++;
}
Solutionr2 = temp;

Fig. 3.7. Pseudocode for Insertion

Illustration:

In this Insertion example, assume a solution given as: x = {8,4,2,1,3,5,6,7,10,9}.
Two random numbers are generated within the bounds: Rnd = {4,7}. These are the in-

dexes of the values in the solution: x = {8,4,7,

∣∣∣∣14 ,3,5, 6
7

∣∣∣∣ ,2,10,9}. The lower indexed

value is removed from the solution x = {8,4,7,

∣∣∣∣4 ,3,5, 6
7

∣∣∣∣ ,2,10,9}, and all values from

the upper index are moved one position down x = {8,4,7, |3 ,5,6, | ,2,10,9}. The lower
indexed value is then slotted in the upper index: x = {8,4,7,3,5,6,1,2,10,9}.

3.4.3 Local Search

There is always a possibility of stagnation in Evolutionary Algorithms. DE is no ex-
emption to this phenomenon.

Stagnation is the state where there is no improvement in the populations over a period
of generations. The solution is unable to find new search space in order to find global
optimal solutions. The length of stagnation is not usually defined. Sometimes a period
of twenty generation does not constitute stagnation. Also care has to be taken as not
be confuse the local optimal solution with stagnation. Sometimes better search space
simply does not exist. In EDE, a period of five generations of non-improving optimal
solution is classified as stagnation. Five generations is taken in light of the fact that EDE
usually operates on an average of hundred generations. This yields to the maximum of
twenty stagnations within one run of the heuristic.
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α = /0
while α |< D

i = rand [1,D] , i /∈ α
β = {i}
while β |< D

j = rand [1,D] , j /∈ β

If Δ (x, i, j) < 0;

{
xi = x j
x j = xi

β = β ∪{ j}
α = α ∪{ j}

Fig. 3.8. Pseudocode for 2 Opt Local Search

To move away from the point of stagnation, a feasible operation is a neighborhood
or local search, which can be applied to a solution to find better feasible solution in the
local neighborhood. Local search in an improvement strategy. It is usually independent
of the search heuristic, and considered as a plug-in to the main heuristic. The point of
note is that local search is very expensive in terms of time and memory. Local search
can sometimes be considered as a brute force method of exploring the search space.
These constraints make the insertion and the operation of local search very delicate
to implement. The route that EDE has adapted is to check the optimal solution in the
population for stagnation, instead of the whole population. As mentioned earlier five
(5) non-improving generations constitute stagnation. The point of insertion of local
search is very critical. The local search is inserted at the termination of the improvement
module in the EDE heuristic.

Local Search is an approximation algorithm or heuristic. Local Search works on a
neighborhood. A complete neighborhood of a solution is defined as the set of all solu-
tions that can be arrived at by a move. The word solution should be explicitly defined
to reflect the problem being solved. This variant of the local search routine is described
in [24] as is generally known as a 2-opt local search.

The basic outline of a Local Search technique is given in Fig 3.8. A number α is
chosen equal to zero (0) (α = /0). This number iterates through the entire population,
by choosing each progressive value from the solution. On each iteration of α , a random
number i is chosen which is between the lower (1) and upper (D) bound. A second
number β starts at the position i, and iterates till the end of the solution. In this second
iteration another random number j is chosen, which is between the lower and upper
bound and not equal to value of β . The values in the solution indexed by i and j are
swapped. The objective function of the new solution is calculated and only if there is
an improvement given as Δ (x, i, j) < 0, then the new solution is accepted.

Illustration:

To understand how this local search operates, consider two solutions x1 and x2. The
operations parameters of these solutions are:
Upper bound x(hi) = 5
Lower bound x(lo) = 1
Solution size D = 5
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Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and bounds :x(lo),x(hi).

Initialize :

⎧⎪⎨
⎪⎩

∀i ≤ NP∧∀ j ≤ D

{
xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i f x j,i /∈ {x0,i,x1,i, ...,x j−1,i

}
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]

Cost : ∀i ≤ NP : f
(
xi,G=0

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ....,NP}, randomly selected, except :r1 �= r2 �= r3 �= i
jrand ∈ {1,2, ...,D}, randomly selected once each i

∀ j ≤ D,u j,i,G+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
γ j,r3,G

)← (
x j,r3,G

)
:
(
γ j,r1,G

)← (
x j,r1 ,G

)
:(

γ j,r2,G
)← (

x j,r2,G
)

Forward Transformation
γ j,r3,G +F · (γ j,r1,G − γ j,r2,G)

if (rand j[0,1] < CR∨ j = jrand)(
γ j,i,G

)← (
x j,i,G

)
otherwise

(
u′

i,G+1

)
=

⎧⎪⎨
⎪⎩

(
ρ j,i,G+1

)← (
ϕ j,i,G+1

)
Backward Transformation(

u j,i,G+1
)mutate← (

ρ j,i,G+1
)

Mutate Schema

if
(

u′
j,i,G+1

)
/∈ {(u0,i,G+1

)
,
(
u1,i,G+1

)
, ..
(
u j−1,i,G+1

)}
(
u j,i,G+1

)←
(

u′
i,G+1

)
Standard Mutation(

u j,i,G+1
)←

(
u′

i,G+1

)
Insertion

Select :

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1
Local Search xbest = Δ (xbest , i, j) if stagnation

Fig. 3.9. EDE Template

x1 = {2,5,4,3,1} and x1 = {2,5,4,3,1}
Each value in x1 and x2 are paired up and considered.

Δ (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

{2,4} ,{2,2} ,{2,1} ,{2,5} ,{2,3} ,
{5,4} ,{5,2} ,{5,1} ,{5,5} ,{5,3} ,
{3,4} ,{3,2} ,{3,1} ,{3,5} ,{3,3} ,
{1,4} ,{1,2} ,{1,1} ,{1,5} ,{1,3}

⎫⎪⎪⎬
⎪⎪⎭

The cost of the move Δ (x, i, j) is evaluated. If this value is negative the objective
function value for the problem is decrement by Δ (x, i, j). Hence the solution is im-
proved to a near optimal solution.

The complete template of Enhanced Differential Evolution is given in Fig 3.9.

3.5 Worked Example

This worked example outlines how EDE is used to solve the flowshop scheduling prob-
lem. The problem to be solved is the one represented in Table 3.26 (Section 3.6.1: Flow
Shop Scheduling Example).
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Table 3.2. Table of solutions

Solution 1 2 3 4 5

1 1 2 3 4 5
2 2 1 4 3 5
3 4 5 3 1 2
4 3 1 4 5 2
5 4 2 5 3 1
6 5 4 3 2 1
7 3 5 4 1 2
8 1 2 3 5 4
9 2 5 1 4 3
10 5 3 1 2 4

Table 3.3. Table of initial population with fitness

Fitness Population

32 1 2 3 4 5
31 2 1 4 3 5
33 4 5 3 1 2
35 3 1 4 5 2
34 4 2 5 3 1
31 5 4 3 2 1
33 3 5 4 1 2
32 1 2 3 5 4
32 2 5 1 4 3
31 5 3 1 2 4

As presented, this is a 5 job - 4 machine problem.
This example follows the schematic presented in Fig 3.10.
Initially the operating parameters are outlined:

NP = 10
D = 5
Gmax = 1

For the case of illustration, the operating parameter of NP and Gmax are kept at a
minimum. The other parameters x(lo), x(hi) and D are problem dependent.

Step (1) initialises the population to the required number of solutions.
Since NP is initialised to 10, only 10 permutative solutions are generated. Table 3.2

gives the solution index which represents the positions of each value in the solution in
the leading row.

The next procedure is to calculate the objective function of each solution in the pop-
ulation. The time flow matrix for each solution is presented. For detailed explanation
on the construction of the time flow matrix, please see Section 3.6.1.
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Solution1 =

6 10 14 19 20
10 16 18 23 26
13 19 23 24 29
17 23 28 31 32

Solution2 =

4 10 15 19 20
10 14 19 21 24
13 17 20 25 28
17 21 24 30 31

Solution3 =

5 6 10 16 20
9 12 14 20 26

10 15 19 23 29
13 26 24 28 33

Solution4 =

4 10 15 16 20
6 14 19 22 28

10 17 20 25 31
15 21 24 26 35

Solution5 =

5 9 10 14 20
9 15 18 20 24

10 18 21 25 28
13 22 23 30 34

Solution6 =

1 6 10 14 20
4 10 12 20 24
7 11 16 23 27
8 14 21 27 31

Solution7 =

4 5 10 16 20
6 9 14 20 26

10 13 15 23 29
15 16 19 27 33

Solution8 =

6 10 14 15 20
10 16 18 21 25
13 19 23 26 27
17 23 28 29 32

Solution9 =

4 5 11 16 20
10 13 17 21 23
13 16 20 22 27
17 18 24 27 32

Solution10 =

1 5 11 15 20
4 7 15 21 25
7 11 18 24 26
8 16 22 28 3

The fitness of each solution is given as the last right bottom entry in each solu-
tion matrix for that particular solution. The population can now be represented as in
Table 3.3.

The optimal value and its corresponding solution, for the current generation is
highlighted.

Step (2) is the forward transformation of the solution into real numbers. Using Equa-
tion 3.3, each value in the solution is transformed. An example of the first Solution1 =
{1,2,3,4,5} is given as an illustration:

x1 = −1 + 1•500
999 = −0.499 x2 = −1 + 2•500

999 = 0.001

x3 = −1 + 3•500
999 = 0.501 x4 = −1 + 4•500

999 = 1.002

x5 = −1 + 5•500
999 = 1.502

Table 3.4 gives the table with values in real numbers. The results are presented in 3
d.p. format.

In Step (3), DE strategies are applied to the real population in order to find better
solutions.

An example of DE operation is shown. Strategy DE/rand/1/exp is used for this ex-
ample: ui,G+1 = xr1,G + F • (xr2,G − xr3,G

)
.
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Table 3.4. Table of initial solutions in real number format

Solution 1 2 3 4 5
Index

1 0.001 -0.499 1.002 0.501 1.502
2 -0.499 0.001 0.501 1.002 1.502
3 1.002 1.502 0.501 -0.499 0.001
4 0.501 -0.499 1.002 1.502 0.001
5 1.002 0.001 1.502 0.501 -0.499
6 1.502 1.002 0.501 0.001 -0.499
7 0.501 1.502 1.002 -0.499 0.001
8 -0.499 0.001 0.501 1.502 1.002
9 0.001 1.502 -0.499 1.002 0.501
10 1.502 0.501 -0.499 0.001 1.002

Table 3.5. Table of selected solutions

Operation 1 2 3 4 5

X1 -0.499 0.001 0.501 1.002 1.502
X2 0.501 -0.499 1.002 1.502 0.001
X3 1.502 1.002 0.501 0.001 -0.499
(X1 - X2) -1 0.5 -0.501 -0.5 1.501
F (X1 - X2) -0.2 0.1 -0.1002 -0.1 0.3002
X3 + F (X1 - X2) 1.302 1.102 0.4008 -0.099 -0.1988

Three random numbers are required to index the solutions in the population given as
r1,r2 and r3. These numbers can be chosen as 2, 4 and 6. F is set as 0.2. The procedure
is given in Table 3.5.

Table 3.6. Table of final solutions in real number format

Solution 1 2 3 4 5
Index

1 -0.435 0.321 0.432 1.543 0.987
2 1.302 1.102 0.401 -0.099 -0.198
3 0.344 1.231 -2.443 -0.401 0.332
4 0.334 -1.043 1.442 0.621 1.551
5 -1.563 1.887 2.522 0.221 -0.432
6 0.221 -0.344 -0.552 0.886 -0.221
7 0.442 1.223 1.423 2.567 0.221
8 -0.244 1.332 0.371 1.421 1.558
9 0.551 0.384 0.397 0.556 0.213
10 -0.532 1.882 -0.345 -0.523 0.512
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Table 3.7. Table of solutions with backward transformation

Solution 1 2 3 4 5
Index

1 1.128 2.639 2.86 5.08 3.97
2 4.599 4.199 2.798 1.8 1.6
3 2.685 4.457 -2.883 1.196 2.661
4 2.665 -0.085 4.879 3.238 5.096
5 -1.124 5.768 7.036 2.439 1.134
6 2.439 1.31 0.895 3.768 1.556
7 2.881 4.441 4.841 7.126 2.439
8 1.51 4.659 2.739 4.837 5.11
9 3.098 2.765 2.791 3.108 2.423
10 0.935 5.758 1.308 0.953 3.02

Table 3.8. Rounded solutions

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 -3 1 3
4 3 -1 5 3 5
5 -1 6 7 2 1
6 2 1 1 4 2
7 3 4 5 7 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 6 1 1 3

Using the above procedure the final solution for the entire population can be given
as in Table 3.6.

Backward transformation is applied to each solution in Step (4). Taking the first
Solution1 = {−0.435,0.321,0.432,1.543,0.987}, a illustrative example is given using
Equation 3.5.

x1 = (1+−0.435)•999
500 = 1.128 x2 = (1+0.001)•999

500 = 2.639

x3 = (1+0.501)•999
500 = 2.86 x4 = (1+1.002)•999

500 = 5.08

x5 = (1+1.502)•999
500 = 3.97

The raw results are given in Table 3.7 with tolerance of 3 d.p.
Each value in the population is rounded to the nearest integer as given in Table 3.8.
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Table 3.9. Bounded solutions

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Table 3.10. Replucated values

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Recursive mutation is applied in Step (5). For this illustration, the random mutation
schema is used as this was the most potent and also the most complicated.

The first routine is to drag all bound offending values to the offending boundary. The
boundary constraints are given as x(lo) = 1 and x(hi) = 5 which is lower and upper bound
of the problem. Table 3.9 gives the bounded solution.

In random mutation, initially all the duplicated values are isolated as given in
Table 3.10.

The next step is to randomly set default values for each replication. For example,
in Solution 1, the value 3 is replicated in 2 indexes; 2 and 3. So a random number is
generated to select the default value of 3. Let us assume that index 3 is generated. In
this respect, only value 3 indexed by 2 is labelled as replicated. This routine is applied
to the entire population, solution piece wise in order to set the default values.

A possible representation can be given as in Table 3.11.
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Table 3.11. Ramdomly replaced values

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Table 3.12. Missing values

Solution 1 2 3
Index

1 2
2 1
3 2 5
4 2 4
5 3 4
6 3 5
7 1
8 1 4
9 1 4 5
10 2 4

The italicised values in Table 3.11 have been selected as default through randomisa-
tion. The next phase is to find those values which are not present in the solution. All the
missing values in the solutions are given in Table 3.12.

In the case of Solutions 1, 2 and 7, it is very simple to repair the solution, since there
is only one missing value. The missing value is simply placed in the replicated index for
that solution. In the other cases, positional indexes are randomly generated. A positional
index tells as to where the value will be inserted in the solution. A representation is
given in Table 3.13.

Table 3.13 shows that the first missing value will be placed in the second replicated
value index in the solution, and the second missing value will be placed in the first
replicated index value. The final placement is given in Table 3.14.

The solutions are now permutative. The fitness for each solution is calculated in
Table 3.15.
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Table 3.13. Positional Index

Solution 1 2 3
Index

1 2
2 1
3 2 5
4 2 4
5 3 4
6 3 5
7 1
8 1 4
9 1 4 5
10 2 4

Table 3.14. Final placement of missing values

Solution 1 2 3 4 5
Index

1 1 2 3 5 4
2 5 4 3 2 1
3 5 4 1 2 3
4 2 1 4 3 5
5 3 5 4 2 1
6 2 1 5 4 3
7 3 4 5 1 2
8 2 1 3 5 4
9 1 5 3 4 2
10 1 5 4 2 3

Table 3.15. Fitness of new population

Fitness Population

32 1 2 3 5 4
31 5 4 3 2 1
34 5 4 1 2 3
31 2 1 4 3 5
31 3 5 4 2 1
32 2 1 5 4 3
33 3 4 5 1 2
30 2 1 3 5 4
33 1 5 3 4 2
35 1 5 4 2 3
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Table 3.16. Random Index

Solution Index

1 4 2
2 1 4
3 2 3
4 3 5
5 1 5
6 2 4
7 1 2
8 3 4
9 3 1
10 2 4

Table 3.17. Fitness of new mutated population

Solution Fitness Solution Index

1 2 3 4 5

1 32 1 5 3 2 4
2 31 2 4 3 5 1
3 34 5 1 4 2 3
4 32 2 1 5 3 4
5 35 1 5 4 2 3
6 33 2 4 5 1 3
7 32 4 3 5 1 2
8 32 2 1 5 3 4
9 33 3 5 1 4 2
10 35 1 2 4 5 3

Table 3.18. Population after mutation

Fitness Population

32 1 2 3 5 4
31 5 4 3 2 1
34 5 4 1 2 3
31 2 1 4 3 5
31 3 5 4 2 1
32 2 1 5 4 3
32 4 3 5 1 2
30 2 1 3 5 4
33 1 5 3 4 2
35 1 5 4 2 3
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Table 3.19. Random Index

Solution Index

1 2 4
2 1 3
3 2 5
4 1 5
5 2 4
6 3 5
7 1 4
8 3 5
9 1 4
10 2 5

Table 3.20. Insertion process 1

Index 1 2 3 4 5

Solution 1 1 3 5 4

Table 3.21. Insertion process 2

Index 1 2 3 4 5

Solution 1 1 3 5 4

Step (6) describes the Standard Mutation schema. In standard mutation, a single
value swap occurs. Assume that a list of random indexes in Table 3.16 are generated
which show which values are to be swapped.

It can be seen from Table 3.16, that the values indexed by 4 and 2 are to be swapped
in Solution 1 and so forth for all the other solutions. The new possible solutions are
given in Table 3.17 with their calculated fitness values. The highlighted values are the
mutated values.

Only solution 7 improved in the mutation schema and replaces the old solution on
position 7 in the population. The final population is given in Table 3.18.

Step (7), Insertion also requires the generation of random indexes for cascading of
the solutions. A new set of random numbers can be visualized as in Table 3.19.

In Table 3.19 the values are presented in ascending order. Taking solution 1, the
first process is to remove the value indexed by the first lower index (2) as shown in
Table 3.20.

The second process is to move all the values from the upper index (4) to the lower
index as in Table 3.21.

The last part is to insert the first removed value from the lower index into the place
of the now vacant upper index aas shown in Table 3.22.
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Table 3.22. Insertion process 3

Index 1 2 3 4 5

Solution 1 1 3 5 2 4

Table 3.23. Population after insertion

Fitness Population

31 1 3 5 2 4
31 4 3 5 2 1
32 5 1 2 3 4
33 1 4 3 5 2
33 3 4 2 5 1
31 2 1 4 3 5
33 3 5 1 4 2
32 2 1 5 4 3
33 5 3 4 1 2
34 1 4 2 3 5

Table 3.24. Final population

Fitness Population

31 1 3 5 2 4
31 4 3 5 2 1
32 5 1 2 3 4
33 1 4 3 5 2
33 3 4 2 5 1
31 2 1 4 3 5
33 3 5 1 4 2
32 2 1 5 4 3
33 5 3 4 1 2
34 1 4 2 3 5

Likewise, all the solutions are cascaded in the population and their new fitness cal-
culated. The population is then represented as in Table 3.23.

After Insertion, four better solutions were found. These solutions replace the older
solution in the population. The final population is given in Table 3.24.

DE postulates that each child solution replaces it direct parent in the population
if it has better fitness. Comparing the final population in Table 3.24 with the initial
population in Table 3.2, it can be seen that seven solutions produced even or better
fitness than the solutions in the old population. Thus these child solutions replace the
parent solutions in the population for the next generation as given in Table 3.25.
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Table 3.25. Final population with fitness

Fitness Population

31 1 3 5 2 4
31 5 4 3 2 1
33 4 5 3 1 2
31 2 1 4 3 5
31 3 5 4 2 1
31 2 1 4 3 5
32 4 3 5 1 2
30 2 1 3 5 4
32 2 5 1 4 3
31 5 3 1 2 4

The new solution has a fitness of 30, which is a new fitness from the previous gen-
eration. This population is then taken into the next generation. Since we specified the
Gmax = 1, only 1 iteration of the routine will take place.

Using the above outlined process, it is possible to formulate the basis for most per-
mutative problems.

3.6 Flow Shop Scheduling

One of the common manufacturing tasks is scheduling. Often in most manufacturing
systems, a number of tasks have to be completed on every job. Usually all these jobs
have to follow the same route through the different machines, which are set up in a
series. Such an environment is called a flow shop (FSS) [30].

The standard three-field notation [20] used is that for representing a scheduling prob-
lem as α|β |F (C), where α describes the machine environment, β describes the de-
viations from standard scheduling assumptions, and F (C) describes the objective C
being optimised. This research solves the generic flow shop problem represented as
n/m/F||F (Cmax).

Stating these problem descriptions more elaborately, the minimization of completion
time (makespan) for a flow shop schedule is equivalent to minimizing the objective
function ℑ:

ℑ =
n

∑
j=1

Cm, j (3.8)

s.t.

Ci, j = max
(
Ci−1, j,Ci, j−1

)
+ Pi, j (3.9)

where, Cm, j = the completion time of job j, Ci, j = k (any given value), Ci, j =
j

∑
k=1

C1,k;

Ci, j =
j

∑
k=1

Ck,1 machine number, j job in sequence, Pi, j processing time of job j on
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P1, j1 P1, j2

P2, j1

Pm, j1

Pi, jk Pi, jk+1

Pi+1, jk+1Pi+1, jk

P1, jn

Pm, jn

Fig. 3.10. Directed graph representation for the makespan

machine i. For a given sequence, the mean flow time, MFT = 1
n

m
∑

i=1

n
∑
j=1

ci j, while the

condition for tardiness is cm, j > d j. The constraint of Equation 3.9 applies to these two
problem descriptions.

3.6.1 Flow Shop Scheduling Example

Generally, two versions of flowshop problems exist. Finding an optimal solution when
the sequence changes within the schedule are flexible and changes allowed are generally
harder to formulate and calculate. The schedules which are fixed are simpler to calculate
and are known as permutative flow shops.

A simple representation of flowshop is given through the directed graph method. The
critical path in the directed graph gives the makespan for the current schedule. For a
given sequence j1, .., jn , the graph is constructed as follows: For each operation of a
specific job jk on a specific machine i, there is a node (i, jk) with the processing time
for that job on that machine. Node (i, jk), i = 1, ...,m− 1 and k = 1, ....,n − 1 , has arcs
going to nodes (i+ 1, jk) and (i, jk+1). Nodes corresponding to machine m have only
one outgoing arc, as do the nodes in job jn. Node (m, jn), has no outgoing arcs as it
is the terminating node and the total weight of the path from first to last node is the
makespan for that particular schedule [30]. A schmetic is given in Fig 3.10.

Assume a representation of five jobs on four machines given in Table 3.26.
Given a schedule {1,2,3,4,5} which is the schedule { j1, j2, j3, j4, j5}, implying that

all jobs in that sequence will transverse all the machines.
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Table 3.26. Example of job times

jobs j1 j2 j3 j4 j5

P1, jk 6 4 4 5 1
P2, jk 4 6 2 4 3
P3, jk 3 3 4 1 3
P4, jk 4 4 5 3 1

6 4 4 5 1

4

4

4

4

1 33

3

3

3 155

6 2

Fig. 3.11. Directed graph representation of the schedule

The directed graph representation for this schedule is given in Fig 3.11.
Each node on the graph represents the time taken to process that particular job on

that particular machine. The bold lines represent the critical path for that particular
schedule.

The Gantt chart for this schedule is represented in Fig 3.12.
The critical path is highlighted The critical path represents jobs, which are not de-

layed or buffered. This is important for those shops, which have machines with no
buffering between them. The total time for this schedule is 34. However, from this rep-
resentation, it is difficult to make out the time. A better representation of the directed
graph and critical path is given in Fig 3.13.

The cumulative time nodes gives the time accumulated at each node. The final node
gives the makespan for the total schedule.

The total time Gantt chart is presented in Fig 3.14.
As the schedule is changed, so does the directed graph.
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6 4 4 5 1

4 6 2 4 3

3 3 4 1 3

4 4 5 13

Makespan

Fig. 3.12. Gantt chart representation of the schedule

6 10 14 19 20

10

17

23

23

24 2913

26

19

31 322823

16 18

Fig. 3.13. Directed time graph and critical path

3.6.2 Experimentation for Discrete Differential Evolution Algorithm

The first phase of experimentation was used on FSS utilising DDE algorithm. Eight
varying problem instances were selected from the literature, which represents a range
of problem complexity. The syntax of the problem n x m represents n machines and m
jobs. These problem instances were generated randomly for previous tests and range
from small problem types (4x4 to 15x25), medium problem type (20x50) and large
problem types (25x75 and 30x100).
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6 10 14 19 20

10 16 18 23 26

13 19 23 24 29

17 23 28 3231

Makespan

Fig. 3.14. Accumulated time Gantt Chart

Table 3.27. DDE FSS operational values

Parameter Values

NP 150
CR 0.9
F 0.3

Table 3.28. Comparison of 10 DE-strategies using the 10x25 problem data set

Strategy

1 2 3 4 5 6 7a 8 9 10

Makespan 211.8 209.2 212.2 212.4 208.6 210.6 207.8 212.4 210 207.2
Total tardiness 3001.8 3034.6 3021.4 3089.2 3008 2987.8 2936.4 3034.2 2982.8 2990.6
Mean flowtime 105.75 105.11 105.52 107.71 104.68 103.03 103.17 105.32 104.7 104.16

aStrategy 7 is the best.

In order to operate, the first phase is to obtain the optimal tuning parameters. All
parameters were obtained empirically. The values are given in Table 3.27.

The second phase was to obtain the optimal strategy. Through experience in solving
these problems, it became evidently clear that not all the strategies behaved similarly,
hence the need to isolate the most promising one from the ten different.

An arbitrary problem of average difficulty was selected, in this case the 10x25 job
problem, and using the selected parameters, ten iterations were done. The average val-
ues are presented in Table 3.28. Using the multi-objective function of makespan, tardi-
ness and flowtime, Strategy 7 was selected as the optimal.
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Table 3.29. DDE FSS makespan

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 44 39 -
5x10 5 79 79 -
8x15 5 143 138 -
10x25 5 205 202 -
15x25 5 248 253 98.02
20x50 5 468 470 99.57
25x75 5 673 715.4 94.07
30x100 5 861 900.4 95.62

Table 3.30. DDE FSS total tardiness

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 54 52.6 -
5x10 5 285 307 92.83
8x15 5 1072 1146 93.54
10x25 5 2869 2957 97.02
15x25 5 3726 3839.4 97.06
20x50 5 13683 14673.6 93.25
25x75 5 30225 33335.6 90.67
30x100 5 51877 55735.6 93.07

With all the experimentation parameters selected, the FSS problems were evaluated.
Three different objective functions were to be analysed. The first was the makespan.
The makespan is equivalent to the completion time for the last job to leave the system.
The results are presented in Table 3.29.

The second objective is the tardiness. Tardiness relates to the number of tardy jobs;
jobs which will not meet their due dates and which are scheduled last. This reflects the
on-time delivery of jobs and is of paramount importance to production planning and
control [30]. The results are given in Table 3.30.

The final objective is the mean flowtime of the system. It is the sum of the weighted
completion time of the n jobs which gives an indication of the total holding or inventory
costs incurred by the schedule. The results are presented in Table 3.31.

Tables 3.29 − 3.31 show the comparison between Genetic Algorithm (GA) devel-
oped in a previous study for flowshop scheduling [28], compared with DDE. Upon
analysis it is seen that, DE algorithm performs better than GA for small-sized prob-
lems, and competes appreciably with GA for medium to large-sized problems. These
results are not compared to the traditional methods since earlier study of [4] show that
GA based algorithm for flow shop problems outperform the best existing traditional
approaches such as the ones proposed by [16] and [39].
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Table 3.31. DDE Mean Flowtime

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 21.38 22.11 -
5x10 5 35.3 36.34 97.14
8x15 5 63.09 66.41 95
10x25 5 98.74 103.89 95.04
15x25 5 113.85 122.59 93.03
20x50 5 216 234.32 92.18
25x75 5 317 354.77 89.35
30x100 5 399.13 435.49 91.56

Table 3.32. EDE FSS operational values

Parameter Values

Strategy 9
NP 150
CR 0.3
F 0.1

These obtained results formed the basic for the enhancement of DDE. It should be
noted that even with a very high percentage of in-feasible solutions obtained, DDE
managed to outperform GA.

3.6.3 Experimentation for Enhanced Differential Evolution Algorithm

The second phase of experiments outline experimentation of EDE to FSS. As with
the DDE, operational parameters were empirically obtained as given in Table 3.32. As
can be noticed the parameters are very different from those used in DDE for the same
problems. This is attributed to the new routines added to DDE which adds another layer
of stochastically to EDE.

The first section of experimentation was conducted on the same group of FSS prob-
lems as GA and DDE to obtain comparison results. In this respect, only makespan
was evaluated. For all the problem instances, EDE performs optimally compared to the
other two heuristics. Columns 5 to 7 in Table 3.33 gives the effectiveness comparisons
of EDE, DDE and GA, with EDE outperforming both DDE and GA.

With the validation completed for EDE, more extensive experimentation was con-
ducted to test its complete operational range in FSS.

The second set of benchmark problems is from the three papers of [3], [33] and [15].
All these problem sets are available in the OR Library [29]. The EDE results are com-
pared with the optimal values reported for these problems as given in Table 3.34. The
conversion is given in Equation 3.10:
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Δ =
(H −U)• 100

U
(3.10)

where H represents the obtained value and U is the reported optimal. For the Car and
Hel set of problems, EDE easily obtains the optimal values, and on average around 1%
above the optimal for the reC instances.

Table 3.33. FSS comparison

DDE GA EDE % % %
DDE−GA EDE−DDE EDE−GA

F 5 x 10 79.4 - 78 - 101.79 -
F 8 x 15 138.6 143 134 103.17 103.43 106.71
F 10 x 25 207.6 205 194 98.74 107.01 105.67
F 15 x 25 257.6 248 240 96.27 107.33 103.33
F 20 x 50 474.8 468 433 98.56 109.65 108.08
F 25 x 75 715.4 673 647 94.07 110.57 104.01
F 30 x 100 900.4 861 809 95.62 111.29 106.42
Ho Chang 213 213 213 100 100 100

Table 3.34. Comparison of FSS instances

Instance Size Optimal EDE % to Opti-
mal

Car 1 11 x 5 7038 7038 0
Car 2 13 x 4 7166 7166 0
Car 3 12 x 5 7312 7312 0
Car 4 14 x 4 8003 8003 0
Car 5 10 x 6 7720 7720 0
Car 6 8 x 9 8505 8505 0
Car 7 7 x 7 6590 6590 0
Car 8 8 x 8 8366 8366 0
Hel 2 20 x 10 135 135 0
reC 01 20 x 5 1247 1249 0.16
reC 03 20 x 5 1109 1111 0.18
reC 05 20 x 5 1242 1249 0.56
reC 07 20 x 10 1566 1584 1.14
reC 09 20 x 10 1537 1574 2.4
reC 11 20 x 10 1431 1464 2.3
reC 13 20 x 15 1930 1957 1.39
reC 15 20 x 15 1950 1984 1.74
reC 17 20 x 15 1902 1957 2.89
reC 19 30 x 10 2093 2132 1.86
reC 21 30 x 10 2017 2065 2.37
reC 23 30 x 10 2011 2073 3.08
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Table 3.35. EDE comparison with DEspv and PSO over the Taillard benchmark problem

GA PSOspv DEspv DEspv+exchange EDE

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77
20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.41 0.37 0.4 0.36
50x10 5.61 1.41 4.83 1.16 4.12 1.1 2.41 0.9 3.18 0.94
50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29
100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36
100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36
200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18
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F 30 x 100 History

Fig. 3.15. Sample output of the F30x100 FSS problem.

The third experimentation module is referenced from [37]. These sets of problems
have been extensively evaluated (see [22, 34]). This benchmark set contains 100 par-
ticularly hard instances of 10 different sizes, selected from a large number of randomly
generated problems.

A maximum of ten iterations was done for each problem instance. The population
was kept at 100, and 100 generations were specified. The results represented in Table
3.35, are as quality solutions with the percentage relative increase in makespan with
respect to the upper bound provided by [37] as given by Equation 3.10.
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The results obtained are compared with those produced by GA, Particle Swarm Op-
timisation (PSOspv) DE (DEspv) and DE with local search (DEspv+exchange) as in [38].
The results are tabulated in Table 3.35.

It can be observed that EDE compares outstandingly with other algorithms. EDE
basically outperforms GA, PSO and DEspv. The only serious competition comes from
the new variant of DEspv+exchange. EDE and DEspv+exchange are highly compatible. EDE
outperforms DEspv+exchange on the data sets of 20x10, 20x20, 50x5 and 200x5. In the
remainder of the sets EDE performs remarkbly to the values reported by DEspv+exchange.
On average EDE displays better standard deviation than that of DEspv+exchange. This
validates the consistency of EDE compared to DEspv+exchange. It should be noted that
DEspv+exchange utilises local search routine as its search engine.

A sample generation for the F 30 x 100 FSS problem is given in Fig 3.15.

3.7 Quadratic Assignment Problem

The second class of problems to be conducted by EDE was the Quadratic Assignment
Problem (QAP). QAP is a NP-hard optimisation problem [35] which was stated for the
first time by [18]. It is considered as one of the hardest optimisation problems as general
instances of size n ≥ 20 cannot be solved to optimally [10].

It can be described as follows: Given two matrices

A = (ai j) (3.11)

B = (bi j) (3.12)

find the permutation π∗ minimising

min
π∈∏(n)

f (π) =
n

∑
i=1

n

∑
j=1

ai j • bπ(i)π( j) (3.13)

where ∏(n) is a set of permutations of n elements.
The problem instances selected for the QAP are from the OR Library [29] and re-

ported in [13]. There are two separate problem modules; regular and irregular.
The difference between regular and irregular problems is based on the flow−

dominance. Irregular problems have a flow−dominance statistics larger than 1.2. Most
of the problems come from practical applications or have been randomly generated with
non-uniform laws, imitating the distributions observed in real world problems.

In order to differentiate among the classes of QAP instances, the flow dominance fd
is used. It is defined as a coefficient of variation of the flow matrix entries multiplied by
100. That is:

f d =
100σ

μ
(3.14)

where:

μ =
1
n2 •

n

∑
i=1

n

∑
j=1

bi j (3.15)
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σ =

√
1
n2 •

n

∑
i=1

n

∑
j=1

(bi j − μ)2 (3.16)

3.7.1 Quadratic Assignment Problem Example

As example for the QAP is given as the faculty location problem given in Fig 3.16.
The objective is to allocate location to faculties. There is a specific distance be-

tween the faculties, and there is a specified flow between the different faculties, as
shown by the thickness of the lines. An arbitrary schedule can be {2,1,4,3}, as given in
Fig 3.16. Two distinct matrices are required: one distance and one flow matrix as given
in
Tables 3.36 and 3.37.

Applying the QAP formula, the function becomes:

Sequence =

⎧⎪⎪⎨
⎪⎪⎩

D(1,2)• F (1,2)+
D(1,3)• F (2,4)+
D(2,3)• F (1,4)+
D(3,4)• F (3,4)

⎫⎪⎪⎬
⎪⎪⎭

Flow

Loc 4, Fac 3

Loc 1, Fac 2

Loc 2, Fac 1

Loc 3, Fac 4

Fig. 3.16. Faculty location diagram for 2, 1, 4, 3
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Table 3.36. Distance Matrix

Distance Value

D(1,2) 22
D(1,3) 53
D(2,3) 40
D(3,4) 55

Table 3.37. Flow Matrix

Flow Value

F(2,4) 1
F(1,4) 2
F(1,2) 3
F(3,4) 4

Flow

Loc 4, Fac 2

Loc 1, Fac 3

Loc 2, Fac 4

Loc 3, Fac 1

Fig. 3.17. Faculty location diagram for 3, 4, 1, 2

Cost =

⎧⎪⎪⎨
⎪⎪⎩

(22 • 3)+
(53 • 1)+
(40 • 2)+
(55 • 4)

⎫⎪⎪⎬
⎪⎪⎭

= 419

Now, assume a different permutation: {3,4,1,2}. The faculty location diagram is
now given in Fig 3.17.
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The solution for this permutation is 395, The flow matrix remains the same, and only
the distance matrix changes to reflect the new faculty location.

3.7.2 Experimentation for Irregular QAP

The first phase as with FSS, was to empirically obtain the operational values as given
in Table 3.38. These values were used for both regular and irregular instances.

The first set of experimentations was on irregular instances. These are those with
flow dominance of greater than 1.

The results are presented in Table 3.39. The results are presented as the factor dis-
tance from the optimal: Δ = (H−U)

U ; where H is the obtained result and U is the optimal.

Table 3.38. EDE QAP operational values

Parameter Value

Strategy 1
CR 0.9
F 0.3

Table 3.39. EDE Irregular QAP comparison

Instant flow
dom

n Optimal TT RTS SA GH HAS-
QAP

EDE

bur26a 2.75 26 5246670 0.208 - 0.1411 0.012 0 0.006
bur26b 2.75 26 3817852 0.441 - 0.1828 0.0219 0 0.0002
bur26c 2.29 26 5426795 0.17 - 0.0742 0 0 0.00005
bur26d 2.29 26 3821225 0.249 - 0.0056 0.002 0 0.0001
bur26e 2.55 26 5386879 0.076 - 0.1238 0 0 0.0002
bur26f 2.55 26 3782044 0.369 - 0.1579 0 0 0.000001
bur26g 2.84 26 10117172 0.078 - 0.1688 0 0 0.0001
bur26h 2.84 26 7098658 0.349 - 0.1268 0.0003 0 0.0001
chr25a 4.15 26 3796 15.969 16.844 12.497 2.6923 3.0822 0.227
els19 5.16 19 17212548 21.261 6.714 18.5385 0 0 0.0007
kra30a 1.46 30 88900 2.666 2.155 1.4657 0.1338 0.6299 0.0328
kra30b 1.46 30 91420 0.478 1.061 1.065 0.0536 0.0711 0.0253
tai20b 3.24 20 122455319 6.7 - 14.392 0 0.0905 0.0059
tai25b 3.03 25 344355646 11.486 - 8.831 0 0 0.003
tai30b 3.18 30 637117113 13.284 - 13.515 0.0003 0 0.0239
tai35b 3.05 35 283315445 10.165 - 6.935 0.1067 0.0256 0.0101
tai40b 3.13 40 637250948 9.612 - 5.43 0.2109 0 0.027
tai50b 3.1 50 458821517 7.602 - 4.351 0.2124 0.1916 0.001
tai60b 3.15 60 608215054 8.692 - 3.678 0.2905 0.0483 0.0144
tai80b 3.21 80 818415043 6.008 - 2.793 0.8286 0.667 0.0287
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The comparison is done with Tabu Search (TT) [36], Reative Tabu Search (RTS) [1],
Simulated Annealing (SA) [5], Genetic Hybrid (GH) [2] and Hybrid Ant Colony
(HAS) [13].

Two trends are fairly obvious. The first is that for bur instances, HAS obtains the
optimal, and is very closely followed by EDE by a margin of only 0.001 on average.
For the tai instances, EDE competes very well, obtaining the best values for the larger
problems and also obtains the best values for the kra problems. TT and RTS are shown
to be not well adapted to irregular problems, producing 10% worse solution at times.
GH which does not have memory retention capabilities does well, but does not produce
optimal results with any regularity.

3.7.3 Experimentation for Regular QAP

The second section of QAP problems is discussed in this section. This is the set of
regular problem as discussed in [13]. Regular problems are distinguished as having a
flow−dominance of less than 1.2.

Comparison was done with the same heuristics as in the previous section. The results
are presented in Table 3.40.

Three different set of instances are presented: nug, sko, tai and wil. Apart for the
nug20 instance, EDE finds the best solutions for all the reported instances. It can be
observed that TT, GH and SA perform best for sko problems and RTS performs best
for tai problems. On comparison with the optimal values, EDE obtains values with
tolerance of only 0.01 on average for all instances.

A sample generation for Bur26a problem is given in Fig 3.18.

Table 3.40. EDE Regular QAP comparison

Instant flow
dom

n Optimal TT RTS SA GH HAS-
QAP

EDE

nug20 0.99 20 2570 0 0.911 0.07 0 0 0.018
nug30 1.09 30 6124 0.032 0.872 0.121 0.007 0.098 0.005
sko42 1.06 42 15812 0.039 1.116 0.114 0.003 0.076 0.009
sko49 1.07 49 23386 0.062 0.978 0.133 0.04 0.141 0.009
sko56 1.09 56 34458 0.08 1.082 0.11 0.06 0.101 0.012
sko64 1.07 64 48498 0.064 0.861 0.095 0.092 0.129 0.013
sko72 1.06 72 66256 0.148 0.948 0.178 0.143 0.277 0.011
sko81 1.05 81 90998 0.098 0.88 0.206 0.136 0.144 0.011
tai20a 0.61 20 703482 0.211 0.246 0.716 0.628 0.675 0.037
tai25a 0.6 25 1167256 0.51 0.345 1.002 0.629 1.189 0.026
tai30a 0.59 30 1818146 0.34 0.286 0.907 0.439 1.311 0.018
tai35a 0.58 35 2422002 0.757 0.355 1.345 0.698 1.762 0.038
tai40a 0.6 40 3139370 1.006 0.623 1.307 0.884 1.989 0.032
tai50a 0.6 50 4941410 1.145 0.834 1.539 1.049 2.8 0.033
tai60a 0.6 60 7208572 1.27 0.831 1.395 1.159 3.07 0.037
tai80a 0.59 80 13557864 0.854 0.467 0.995 0.796 2.689 0.031
wil50 0.64 50 48816 0.041 0.504 0.061 0.032 0.061 0.004
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Fig. 3.18. Sample output of the Bur26a problem

3.8 Traveling Salesman Problem

The third and final problem class to be experimented is the Traveling Salesman Problem
(TSP). The TSP is a very well known optimisation problem. A traveling salesman has
a number, N, cities to visit. The sequence in which the salesperson visits different cities
is called a tour. A tour is such that every city on the list is visited only once, except that
the salesperson returns to the city from which it started. The objective to is minimise
the total distance the salesperson travels, among all the tours that satisfy the criterion.

Several mathematical formulations exist for the TSP. One approach is to let xi j be 1
if city j is visited immediately after i, and be 0 if otherwise [24, 25]. The formulation of
TSP is given in Equations 3.17 to 3.20.

min
N

∑
i=1

N

∑
j=1

ci j • xi j (3.17)

Each city is left after visiting subject to

N

∑
j=1

xi j = 1;∀i (3.18)

Ensures that each city is visited
N

∑
i=1

xi j = 1;∀ j (3.19)

No subtours
xi j = 0 or 1 (3.20)
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Table 3.41. City distance matrix

City A B C D

E 2 3 2 4
D 1 5 1
C 2 3
B 1

No subtours mean that there is no need to return to a city before visiting all the
other cities. The objective function accumulates time as you go from city i to j. Con-
straint 3.18 ensures that the salesperson leaves each city. Constraint 3.19 ensures that
the salesperson enters each city. A subtour occurs when the salesperson returns to a city
prior to visiting all other cities. Restriction 3.20 enables the TSP formulation differs
from the Linear Assignment Problem programming (LAP) formulation.

3.8.1 Traveling Salesman Problem Example

Assume there are five cities {A,B,C,D,E}, for a traveling salesman to visit as shown
in Fig 3.19. The distance between each city is labelled in the vertex.

In order to understand TSP, assume a tour, where a salesman travels through all the
cities and returns eventually to the original city. Such a tour can be given as A → B →
C → D → E → A. The graphical representation for such a tour is given in Fig 3.20.
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Fig. 3.19. TSP distance node graph
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Fig. 3.20. Graphical representation for the tour A → B → C → D → E → A
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Fig. 3.21. Graphical representation for the tour A → D → C → E → B → A
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The total cost for this tour is 11.
The objective of TSP optimisation is to find a tour with the minimal value. Assume

now another tour A → D → C → E → B → A . The graphical representation is given in
Fig 3.21.

The cost for this new tour is 8, which is a decrease from the previous tour of 11. This
is now an improved tour. Likewise many other tours can be found which have better
values.

3.8.2 Experimentation on Symmetric TSP

Symmetric TSP problem is one, where the distance between two cities is the same to
and fro. This is considered the easiest branch of TSP problem.

The operational parameters for TSP is given in Table 3.42.
Experimentation was conducted on the City problem instances. These instances are

of 50 cities and the results are presented in Table 3.43. Comparison was done with Ant
Colony (ACS) [11], Simulated Annealing (SA) [21], Elastic Net (EN) [12], and Self
Organising Map (SOM) [17]. The time values are presented alongside.

In comparison, ACS is the best performing heuristic for TSP. EDE performs well,
with tolerance of 0.1 from the best performing heuristics on average.

3.8.3 Experimentation on Asymmetric TSP

Asymmetric TSP is the problem where the distance between the different cities is dif-
ferent, depending on the direction of travel. Five different instances were evaluated and
compared with Ant Colony (ACS) with local search [11]. The experimetational results
are given in Table 3.44.

Table 3.42. EDE TSP operational values

Parameter Value

Strategy 9
CR 0.9
F 0.1

Table 3.43. EDE STSP comparison

Instant ACS SA EN SOM EDE
(average) (average) (average) (average) (average)

City set 1 5.88 5.88 5.98 6.06 5.98
City set 2 6.05 6.01 6.03 6.25 6.04
City set 3 5.58 5.65 5.7 5.83 5.69
City set 4 5.74 5.81 5.86 5.87 5.81
City set 5 6.18 6.33 6.49 6.7 6.48
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Table 3.44. EDE ATSP comparison

Instant Optimal ACS 3-OPT ACS 3-OPT EDE
best average

p43 5620 5620 5620 5639
ry48p 14422 14422 14422 15074
ft70 38673 38673 38679.8 40285
kro124p 36230 36230 36230 41180
ftv170 2755 2755 2755 6902
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Fig. 3.22. Sample output of the City set 1 problem

ACS heuristic performs very well, obtaining the optimal value, whereas EDE has an
average performance. The difference is that ACS employs 3−Opt local search on each
generation of its best solution, where as EDE has a 2−Opt routine valid only in local
optima stagnation.

A sample generation for City set 1 problem is given in Fig 3.22.

3.9 Analysis and Conclusion

One the few ways in which the validation of a permutative approach for a real domain
based heuristic can be done is empirically; through expensive experimentation’s across
different problem classes, as attempted here. Through the results obtained, it can be
stated that EDE is a valid approach for permutative problems. One of the differing evi-
dent features, is that the operating parameters for each class of problems is unique. No
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definite conclusions can be made on this aspect, apart from the advise for simulations
for tuning.

Another important feature of EDE is the level of stochasticity. DE has two levels;
first the initial population and secondly the crossover. EDE has five; in addition to the
two mentioned, the third is repairment, the fourth is mutation and fifth is crossover. All
these three are embedded on top of the DE routine, so the DE routines are a directive
search guide with refinement completed in the subsequent routines.

Local search was included in EDE because permutative problems usually require
triangle inequality routines. TSP is notorious in this respect, and most heuristics have
to employ local search in order to find good solutions. ACS [11], Scatter Search [14]
apply local search on each and every solution. This increases computational time and
reduces effectiveness of the heuristic for practical applications. The idea of EDE was to
only employ local search when stagnation is detected, and to employ the simplest and
time economical one.

In terms of produced results, EDE is effective, and more so since it was left in non-
altered form for all the problem classes. This is a very important feature since it negates
re-programming for other problem instances. Another important feature is that EDE
is fairly fast for these problems. Naturally, the increase in problem size increases the
execution time, however EDE does not employ any analytical formulation within its
heuristic, which keeps down the execution time while producing the same results as
with other heuristics.

It is hoped that the basic framework of this approach will be improved to include
more problem instances, like Job Shop Scheduling and other manufacturing scheduling
problems.
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