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Abstract. The chapter clarifies the differences between wide-sense combinatorial optimization
and strict-sense combinatorial optimization and then presents a number of combinatorial prob-
lems encountered in practice. Then overviews of the different permutative-based combinatorial
approaches presented in the book are given. The chapter also includes an anatomy of the differ-
ent permutative-based combinatorial approaches in the book, previously carried out elsewhere to
show their strengths and weaknesses.

2.1 Introduction

It is first necessary to define what combinatorial problems are. In combinatorial prob-
lems, parameters can assume only a finite number of discrete states, so the number of
possible vectors is also finite. Several classic algorithmic problems of a purely combi-
natorial nature include sorting and permutation generation, both of which were among
the first non−numerical problems arising on electronic computers. A permutation de-
scribes an arrangement, or ordering, of parameters that define a problem. Many algo-
rithmic problems tend to seek the best way to order a set of objects. Any algorithm for
solving such problems exactly must construct a series of permutations. [10] classify
wide-sense and strict−sense combinatorial optimization.

2.1.1 Wide-Sense Combinatorial Optimization

Consider switching networks which can be divided into fully connected non-blocking
networks, and fully connected but blocking networks. Non−blocking switching net-
works can be re−arrangeable non-blocking networks, wide-sense non-blocking net-
works, and strictly non-blocking networks. A network is classified as rearrangeable if
any idle input may be connected to any idle output provided that existing connections
are allowed to be rearranged. A strictly non−blocking network on the other hand is
always able to connect any idle input to any idle output without interfering with the ex-
isting connections. Wide−sense non-blocking network achieves strictly non-blocking
property with the help of an algorithm.
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Let us consider another example. In this case we consider nuts having pitch diameters
which are expressed in decimal places such as 2.5 mm, 3.6 mm,..., 5.3 mm, 6.2 mm, etc.
These nuts are grouped into classes so that Class A nuts belong to those nuts whose pitch
diameters lie between 2.5 mm−3.6 mm, Class B nuts belong to those nuts whose pitch
diameters lie between 3.65 mm−4.8 mm, etc. In this case the classes are wide sense but
the actual dimensions are continuous in nature. Therefore picking nuts based on their
classes could be viewed as a wide−sense combinatorial problem because dimensional
properties of a nut are continuous variables.

2.1.2 Strict-Sense Combinatorial Optimization

There are a number of strict-sense combinatorial problems, such as the traveling sales-
man problem, the knapsack problem, the shortest-path problem, facility layout problem,
vehicle routing problem, etc. These are strict-sense combinatorial problems because
they have no continuous counterpart [10]. These strict-sense combinatorial problems
require some permutation of some sort. The way the objects are arranged may affect the
overall performance of the system being considered. Arranging the objects incorrectly
may affect the overall performance of the system. If there is a very large number of
the object, then the number of ways of arranging the objects introduces another dimen-
sion of problem known as combinatorial explosion. Classical DE was not designed to
solve this type of problem because these problems have hard constraints. Strong con-
straints like those imposed in the traveling salesman problem or facility layout problem
make strict-sense combinatorial problems notoriously difficult for any optimization al-
gorithm. It is this class of problems that this book is aimed at solving. A number of
techniques have been devised to stretch the capabilities of DE to solve this type of hard
constraint-type problems.

2.1.3 Feasible Solutions versus “Repairing” Infeasible Solutions for Strict-Sense
Combinatorial Optimization

In DE′s case, the high proportion of infeasible vectors caused by constraints prevents the
population from thoroughly exploring the objective function surface. [10] concluded
that in order to minimize the problems posed by infeasible vectors, algorithms can either
generate only feasible solutions, or “repair” infeasible ones.

The opinion expressed in this book is that all good heuristics are able to transform a
combinatorial problem into a space which is amenable for search, and that there is no
such thing as an “all-cure” algorithm for combinatorial problems. For example, particle
swarm optimization (PSO) works fairly well for combinatorial problems, but only in
combination with a good tailored heuristic (see for example, [8]). If such a heuristic is
used, then PSO can locate promising regions. The same logic applies to a number of
optimization approaches.

2.2 Combinatorial Problems

A wide range of strict-sense combinatorial problems exist for which the classical
DE approach cannot solve because these problems are notoriously difficult for any
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optimization algorithm. In this section, some of these problems are explained and
their objective functions are formulated. The knapsack problem, travelling salesman
problem (TSP), drilling location and hit sequencing, dynamic pick and place (DPP)
model in robotic environment, vehicle routing problem (VRP), and facility layout prob-
lem, which are examples of strict-sense combinatorial problems, are discussed in this
sub-section.

2.2.1 Knapsack Problem

For example, the single constraint (bounded) knapsack problem reflects the dilemma
faced by a hiker who wants to pack as many valuable items in his or her knapsack as
possible without exceeding the maximum weight he or she can carry. In the knapsack
problem, each item has a weight, wj, and a value, c j (Equation 2.1); the constraints are
in (Equation 2.1). The goal is to maximize the value of items packed without exceeding
the maximum weight, b. The term represents the number of items with weight wj and
value, c j :

maximize:
D−1

∑
j=0

c jx j , x j ≥ 0 , integers (2.1)

subject to:
D−1

∑
j=0

wjx j ≤ b , wj ≥ 0 , b > 0. (2.2)

The solution to this problem will be a set of integers that indicate how many items of
each type should be packed. As such, the knapsack problem is a strict-sense combinato-
rial problem because its parameters are discrete, solutions are constrained and it has no
continuous counterpart (only a whole number of items can be placed in the knapsack).

2.2.2 Travelling Salesman Problem (TSP)

In the TSP, a salesman must visit each city in his designated area and then return home.
In our case, the worker (tool) must perform each job and then return to the starting con-
dition. The problem can be visualised on a graph. Each city (job) becomes a node. Arc
lengths correspond to the distance between the attached cities (job changeover times).
The salesman wants to find the shortest tour of the graph. A tour is a complete cycle.
Starting at a home city, each city must be visited exactly one time before returning
home. Each leg of the tour travels on an arc between two cities. The length of the tour
is the sum of the lengths of the arcs selected. Fig 2.1 illustrates a five-city TSP. Trip
lengths are shown on the arcs in Fig 2.1, the distance from city i to j is denoted by ci j.
We have assumed in the figure that all paths (arcs) are bi-directional. If arc lengths dif-
fer depending on the direction of the arc the TSP-formulation is said to be asymmetric,
otherwise it is symmetric. A possible tour is shown in Fig 2.2. The cost of this tour is
c12 + c24 + c43 + c35 + c51.

Several mathematical formulations exist for the TSP. One approach is to let xi j be 1
if city j is visited immediately after i, and be 0 if otherwise. A formal statement of TSP
is given as follows:



16 G. Onwubolu and D. Davendra

1

2

34

5

n City n
cij = cjic15 c12c14 c13

c45 c35 c24 c23

c34

c25

(a) Complete TSP Graph
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Fig. 2.2. (b) TSP illustrated on a graph

minimise
N

∑
i=1

N

∑
j=1

ci jxi j (2.3)

subject to
N

∑
j=1

xi j = 1;∀i (2.4)
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N

∑
i=1

xi j = 1;∀i (2.5)

No subtours

xi j = 0 or 1 (2.6)

No subtours mean that there is no need to return to a city prior to visiting all other
cities. The objective function accumulates time as we go from city i to j. Constraint 2.4
ensures that we leave each city. Constraint 2.5 ensures that we visit (enter) each city.
A subtour occurs when we return to a city prior to visiting all other cities. Restriction
6.6 enables the TSP-formulation, differ from a linear assignment programming (LAP)
formulation. Unfortunately, the non-subtour constraint significantly complicates model
solution. One reasonable construction procedure for solving TSP is the closest insertion
algorithm. This is now discussed.

The Traveling Salesman Problem (TSP) is a fairly universal, strict-sense combi-
natorial problem into which many other strict-sense combinatorial problems can be
transformed. Consequently, many findings about DE′s performance on the TSP can be
extrapolated to other strict-sense combinatorial problems.

2.2.2.1 TSP Using Closest Insertion Algorithm
The closest insertion algorithm starts by selecting any city. We then proceed through
N − 1 stages, adding a new city to the sequence at each stage. Thus a partial sequence
is always maintained, and the sequence grows by one city each stage. At each stage
we select the city from those currently unassigned that is closest to any city in the
partial sequence. We add the city to the location that causes the smallest increase in the
tour length. The closest insertion algorithm can be shown to produce a solution with a
cost no worse than twice the optimum when the cost matrix is symmetric and satisfies
the triangle inequality. In fact, the closest insertion algorithm may be a useful seed-
solution for combinatorial search methods when large problems are solved. Symmetric
implies ci j = c ji where ci j is the cost to go from city i directly to city j. Unfortunately,
symmetry need not exist in our changeover problem. Normally, the triangular inequality
(ci j ≤ cik +ck j) will be satisfied, but this alone does not suffice to ensure the construction
of a good solution. We may also try repeated application of the algorithm choosing a
different starting city each time and then choose the best sequence found. Of course,
this increases our workload by a factor of N. Alternatively, a different starting city may
be chosen randomly for a specific number of times, less than the total number of cities.
This option is preferred for large problem instances.

We now state the algorithm formally. Let Sa be the set of available (unassigned) cities
at any stage. Sp will be the partial sequence in existence at any stage and is denoted
Sp = {s1,s2, ...,sn}, implying that city s2 immediately follows s1. For each unassigned
city j, we use r ( j) to keep track of the city in the partial sequence that is closest to j. We
store r ( j) only to avoid repeating calculations at each stage. Last, bracketed subscripts
[i] refer to the ith city in the current partial sequence. The steps involved are:
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STEP 0. Initialize, N = 1,Sp = {1} ,Sa = {2, ..,N} .For j = 2, ...,N.r ( j) = 1
STEP 1. Select new city. Find j∗ = argmin

j∈Sa

{
c j,c( j), or cc( j), j

}
.Set n = n + 1

STEP 2. Insert j∗, update r ( j) Sa = Sa − j∗. Find City i∗ ∈ Sp such that i∗ =
argmin[i]∈Sp

{
c[i] j∗ + c j∗,[i+1] − c[i],[i+1]

}
. Update Sp = {s1, .., i∗, j∗, i∗ + 1, ..,sn}. For all

j ∈ Sa if min
{

c j, j∗ ,c j∗, j
}

< c j,r(1) then r ( j) = j∗. If n < N, go to 2.
As can be seen, the closest insertion algorithms a constructive method. In order to

understand the steps involved, let us consider an example related to changeover times
for a flexible manufacturing cell (FMC).

Example 2.1

Table 2.1 shows the changeover times for a flexible manufacturing-cell. A machine is
finishing producing batch T1 and other batches are yet to be completed. We are to use
the closest insertion heuristic to find a job sequence, treating the problem as a TSP.

Table 2.1. Changeover times (hrs)

From/To T1 T2 T3 T4 T5

T1 - 8 14 10 12
T2 4 - 15 11 13
T3 12 17 - 1 3
T4 12 17 5 - 3
T5 13 18 15 2 -

Solution

Step 0 Sp = {1} ,Sa = {2,3,4,5} ,r ( j)
j∈Sa

= 1; j = 2, ..,5 This is equivalent to choosing

the first city from the partial-list and eliminating this city form the available list.
Step 1 Select the new city: find j∗ = argmin

j∈Sa

{
c j,r[ j]

}
and set n = n + 1

min
j∈Sa

{c12,c13,c14,c15,c21,c31,c41,c51} = min{8,14,10,12,0,0,0,0} = 8 ; j∗ =

2. But ignore c21,c31,c41andc51 because city 1 is already considered in Sa.
Step 2 Insert city 2, and update r ( j) for the remaining jobs 3, 4, and 5 Sp = {1,2} ;Sa =

{3,4,5} ,c12 + c21 − c14 = 8 + 4 − 0 = 12

Step 1 Select new city:
min{c23,c24,c25,c32,c42,c52} = {15,11,13,17,17,18} = 11; j∗ = 4;n = 3. So
we have job 4 after job 1 or 2.

Step 2 Insert job 4 There are the following possibilities from {1,2} : {1,2,4}or
{1,4,2}
For{1,2,4} ,c12 + c24 − c14 = 8 + 11 − 10 = 9
For{1,4,2} ,c14 + c42 − c12 = 10 + 17 − 8 = 19
The minimum occurs for inserting job 2 after job 4. Update r ( j) for remaining
jobs 3, 5 i.e., r(3) = r(5) = 4
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Step 1 Select new job.
min
j∈Sa

{c34,c54,c43,c45} = min{1,2,5,3} ; j∗ = 3

min = c34 but 4 is already considered. Hence, j∗ = 3.
Step 2 Insert job 3

There are the following possibilities from {1,2,4}:
{1,2,4,3} : c43 + c31 − c41 = 5 + 12 − 12 = 5
{1,2,3,4} : c23 + c34 − c24 = 15 + 1 − 11 = 5
{1,3,2,4} : c13 + c32 − c12 = 14 + 17 − 8 = 25
Choosing {1,2,4,3} breaks the tie. Updating r [5] = 3

Step 1 Select new job.
Since job 5 remains, j∗ = 5

Step 2 Insert job 5
There are the following possibilities from {1,2,4,3}
{1,2,4,3,5} : c35 + c51 − c31 = 3 + 13 − 12 = 4
{1,2,3,4,3} : c45 + c53 − c43 = 3 + 15 − 5 = 13
{1,3,2,4,3} : c25 + c54 − c24 = 13 + 2 − 11 = 4
{1,5,2,4,3} : c15 + c52 − c12 = 12 + 18 − 8 = 22
Choosing {1,2,4,3,5} breaks the tie as the final sequence. The cost = c12 +
c24 + c43 + c35 = 8 + 11 + 5 + 3 = 27

The TSP construction is shown in Fig 2.3. The meaning of this solution is that batch
1 is first produced, followed by batch 2, then batch 4, then batch 3, and finally batch 5.

4

5

21

3

5

3

11

8

Fig. 2.3. TSP solution for Example 2.1
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2.2.3 Automated Drilling Location and Hit Sequencing

Consider an automated drilling machine that drills holes on a flat sheet. The turret has
to be loaded with all the tools required to hit the holes. There is no removing or adding
of tools. The machine bed carries the flat plate and moves from home, locating each
scheduled hit on the flat plate under the machine turret. Then the turret rotates and
aligns the proper tool under the hit. This process continues until all hits are completed
and the bed returns to the home position.

There are two problems to be solved here. One is to load tools to the turrets and
the other is to locate or sequence hits. The objective is to minimize the cycle time
such that the appropriate tools are loaded and the best hits-sequence is obtained. The
problem can therefore be divided into two: (i) solve a TSP for the inter−hit sequencing;
(ii) solve a quadratic assignment problem (QAP) for the tool loading. [21] developed a
mathematical formulation to this problem and iterated between the TSP and QAP. Once
the hit sequence is known, the sequence of tools to be used is then fixed since each hit
requires specific tool. On the other hand, if we know the tool assignment on the turret,
we need to know the inter-hit sequence. Connecting each hit in the best sequence is
definitely a TSP, where we consider the machine bed home as the home for the TSP,
and each hit, a city. Inter−hit travel times and the rotation of the turret are the costs
involved and we take the maximum between them, i.e. inter−hit cost = max (inter−hit
travel time, turret rotation travel time). The cost to place tool k in position i and tool l
in position j is the time it takes the turret to rotate from i to j multiplied by the number
of times the turret switches from tool k to l.

The inter-hit travel times are easy to estimate from the geometry of the plate to be
punched and the tools required per punch. The inter−hits times are first estimated and
then adjusted according to the turret rotation times. This information constitutes the
data for solving the TSP. Once the hit sequence is obtained from the TSP, the tools
are placed, by solving the QAP. Let us illustrate the TSP−QAP solution procedure by
considering an example.

Example 2.2

A numerically controlled (NC) machine is to punch holes on a flat metal sheet and the
hits are shown in Fig 2.4. The inter-hit times are shown in Table 2.2. There are four tools
{a,b,c,d} and the hits are {1,2,3,4,5,6,7}. The machine turret can hold five tools and
rotates in clockwise or anti-clockwise direction. When the turret rotates from one tool
position to an adjacent position, it takes 60 time units. It takes 75 time units and 90
time units to two locations and three locations respectively. The machine bed home is
marked 0. Assign tools to the turret and sequence the hits.

Solution

From the given inter−hit times, modified inter-hit times have to be calculated using
the condition: inter−hit cost = max (inter-hit travel time, turret rotation travel time).
For example, for inter−hit between locations 1 and 2, the inter-hit travel time is 50
time units. Now, the tool for hit 1 is c while the tool for hit 2 is a. This means there is
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Table 2.2. Inter−hit travel times

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200
1 50 - 50 100 50 100 150 150
2 100 50 - 150 100 50 200 100
3 50 100 150 - 50 100 50 150
4 100 50 100 50 - 50 100 100
5 150 100 50 100 50 - 150 50
6 100 150 200 50 100 150 - 100
7 200 150 100 150 100 50 100 -

2a 5b 7a

1c 4d

3a 6c

100

100

0
Fig. 2.4. Flat metal sheet to be punched

change in tools because that the turret will rotate. The cost of rotation is 60 time units,
which exceeds the 50 inter-hit time unit. This means that the modified inter−hit time
between locations 1 and 2 is 60 time units. From the home to any hit is not affected. The
modified inter−hit times are shown in Table 2.3. This information is used for TSP. One
TSP solution for Table 2.2 is {0,1,2,3,4,5,6,7}, with a cost of 830. We used the DE
heuristic to obtain tool sequence of c → d → b → a → c → a, and the cost is 410. As can
be seen a better solution is obtain by the latter. Let us explain how we obtained the tool
sequence. Solving the TSP using DE, the sequence obtaineed is {2,5,6,8,7,4,1,3} or
{1,4,5,7,6,3,0,2}. What we do is to refer to Fig 2.4 and get the labels that corrspond
to this sequence as {c,d,b,a,c,a,a}. Hence the optimum sequence is c−d −b−a− c.
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Table 2.3. Modified inter−hit travel times (considering turret movements)

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200
1 50 - 60 100 60 100 150 150
2 100 60 - 150 100 60 200 100
3 50 100 150 - 60 100 60 150
4 100 60 100 60 - 60 100 100
5 150 100 60 100 60 - 150 60
6 100 150 200 60 100 150 - 100
7 200 150 100 150 100 60 100 -

2.2.4 Dynamic Pick and Place (DPP) Model of Placement Sequence and
Magazine Assignment

Products assembled by robots are typical in present manufacturing system. To satisfy
growing large scale demand of products efficient methods of product assemble is es-
sential to reduce time frame and maximize profit. The Dynamic Pick and Place (DPP)
model of Placement Sequence and magazine Assignment (SMA) is an interesting prob-
lem that could be solved using standard optimizing techniques, such as discrete or per-
mutative DE. DPP model is a system consists of robot, assemble board and magazine
feeder which move together with different speeds and directions depends on relative
distances between assemble points and also on relative distances between magazine
components. Major difficulty to solve this problem is that the feeder assignment de-
pends on assembly sequence and vice versa. Placement sequence and magazine assign-
ment (SMA) system has three major components robot, assembly board and component
slots. Robot picks components from horizontal moving magazine and places into the
predefined positions in the horizontal moving assembly board. To optimize production
time frame assembly sequence and feeder assignment need to be determined. There are
two models for this problem: Fixed Pick and place model and Dynamic Pick and Place
model. In the FPP model, the magazine moves in x direction only while the board moves
in both x-y directions and the robot arm moves between fixed “pick” and “place” points.
In the DPP model, both magazine and board moves along x-axis while the robot arm
moves between dynamic “pick” and “place” points. See Fig 2.5. Principal objective is
to minimize total tardiness of robot movement hence minimize total assembly time.

There are few researchers who had solved the assembly sequence and feeder assign-
ment problem by the DPP model. This is because this problem is quite challenging. [12]
had proved that DPP has eliminated the robot waiting time by the FPP model. [11] used
simulated annealing algorithm and obtained solutions better than previous approaches
but the computation efficiency was quite low. Wang et al. have developed their own
heuristic approach to come up with some good solutions. [19] proposed a new heuris-
tic to improve Wang′s approach based on the fact that assembly time depends on the
relative position of picking points as well as placement points. The main objective of
DPP model is to eliminate the robot waiting time. To avoid tardiness robot arm tends to
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movement direction

movement direction

Assembly

Feeder Magazine

x

y

Fig. 2.5. Robot movement

move in shortest possible path (i.e. always tries to move in vertical direction) if vertical
movement is not possible than it needs to stretch/compress its arm to avoid tardiness.
This section reveals the formulation of DPP problem statement using the following
notations:

Va speed of assembly arm
Vb speed of board
V¬m speed of magazine
N number of placement components
K number of component types (K ≤ N)
b(i) ith placement in a placement sequence
m(i) ith placement in a pick sequence
xm

i+1 = M1
i+1 + M2

i+1 interception distance of robot arm and
magzine

xb
i+1 = B1

i+1 + B2
i+1 interception distance of robot arm and

board
T (m(i) ,b(i)) robot arm travel time from magazine loca-

tion m(i) to board location m(i).
T (b(i) ,b(i)) robot arm travel time from board location

b(i) to magazine location m(i).
T place time taken to place the component
T pick time taken to pick the component
CT total assembly time

Fig 2.6 shows possible movements of board and magazine in DPP model [19]. Sup-
pose the robot arm has finished placing the ith component at point B(i) then moves to
pick the next (i+ 1)th component from slot M(i+1) on the magazine. If magazine is able
to travel distance d(a,c) = ||a − c|| before the robot actually arrives vertically towards



24 G. Onwubolu and D. Davendra

B

a b cM i( )

M i +1( )

x

y

Fig. 2.6. DPP model

magazine then no interception will occur, but if the magazine fails then robot has to
compress/stretch (intercept) its arm in x-direction of distance d(a,b) = ||a − b|| to get
the component without waiting for the component M(i+1) to arrive at point a.

Fig 2.6 shows that slot M (i+ 1) at point c has to reach at point a through travelling
distance d(a,c) = ||a − c|| to avoid robot interception. Suppose magazine only man-
aged to travel distance d(b,c) = ||b − c|| before the robot reached to the magazine i.e.

T (M(i),b(i))+ Tplace + yi
vr

≥ d(a,c)
vm

. Then the robot has to stretch its arm to get to the
point b. Hence tardiness is eliminated by robot interception. Exactly same movement
principles are applied when robot arm moves from magazine to board.

Where total assembly time CT need to be minimized subject to constraints:

1. Board to magazine

f (T (m(i),b(i))+ Tplace + yi
vr

≥ d(a,c)
vm

) T hen
T (b(i),m(i+ 1)) = yi

vm

else

T (b(i),m(i+ 1) =

√
(y2

i +(xm
i+1)

2)
vr

Endi f

2. Magazine to board

i f (T (b(i),m(i+ 1))+ Tpick + yi
vr

≥ d(a,c)
vb ) T hen

T (m(i+ 1),b(i+ 1)) = yi
vm

else

T (m(i+ 1),b(i+ 1) =

√
(y2

i+1+(xb
i+1)

2)
vr

Endi f
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The formulation of this problem shows that DPP model is a function of ith placement
in a sequence b(i), and ith component in a pick sequence, m(i). This is obviously a
permutative-based combinatorial optimization problem which is challenging to solve.

2.2.5 Vehicle Routing Problem

Vehicle routing problem is delivery of goods to customers by a vehicle from a depot
(see Fig 2.7). The goal here is to minimize the travelling distance and hence save cost.
Here too an objective function would be created and inserted into the optimizer in order
to obtain the best travelling path for which the cost is minimized. The application of
vehicle routing problem can be applied in many places. One example is bin−picking
problem. In some countries, the City Council bears a lot of extra costs on bin-picking
vehicle by not following shortest path.

Depot

routes

customer

Fig. 2.7. DPP model

The CVRP is described as follows: n customers must be served from a unique depot.
Each customer asks for a quantity for quantity qi (where i = 1,2,3, ...,n) of goods and
a vehicle of capacity Q is available for delivery. Since the vehicle capacity is limited,
the vehicle has to periodically return to the depot for reloading. Total tour demand is at
most Q (which is vehicle capacity) and a customer should be visited only once [5].

2.2.6 Facility Location Problem

In facility location problem, we are given n potential facility location and m customers
that must be served from these locations. There is a fixed cost c j of opening facility j.
There is a cost di j associated with serving customer i from facility j. We then have two
sets of binary variables which are y j is 1 if facility j is opened, 0 otherwise xi j is 1 if
customer i is served by facility j, 0 otherwise.
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Mathematically the facility location problem can be formulated as

min
n
∑
j=1

c jy j +
m
∑

i=1

n
∑
j=1

di jxi j

s.t.
n
∑
j=1

xi j = K ∀i

xi j ≤ y j ∀i, j
xi j ,y j ∈ {0, i} ∀i, j

(2.7)

2.3 Permutation-Based Combinatorial Approaches

This section describes two permutation−based combinatorial DE approaches which
were merely described in [10] and three other permutation−based combinatorial DE
approaches which are detailed in this book.

2.3.1 The Permutation Matrix Approach

The permutation matrix approach is the idea of Price, but Storn did the experiments that
document its performance [10]. The permutative matrix approach is based on the idea
of finding a permutative matrix that relates two vectors. For example, given two vectors
xr1 and xr1 defined in Equation 2.8:

xr1 =

⎛
⎜⎜⎜⎜⎝

1
3
4
5
2

⎞
⎟⎟⎟⎟⎠ , xr2 =

⎛
⎜⎜⎜⎜⎝

1
4
3
5
2

⎞
⎟⎟⎟⎟⎠ ; (2.8)

These two vectors encode tours, each of which is a permutation. The permutation
matrix, P, that xr1 and xr1 is defined as:

xr2 = P.xr1, with P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.9)

for(i = 1; i < M;i++) //search all columns of P
{
if(elementp(i, i) of P is 0) // 1 not on diagonal
{
if(rand() >δdel) //if random number ex [0,1] exceeds δdel

{
j = 1; // find row where p(j, i) = 1
while(p(j, i)! = 1)j++;

}
}

}

Fig. 2.8. Algorithm to apply the factor δ to the difference permutation, P
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Price gives an algorithm that scales the effect of the permutation matrix as shown in
Fig 2.8.

2.3.2 Adjacency Matrix Approach

Storn developed the adjacency matrix approach outlined in this section [10]. There are
some rules that govern the adjacency matrix approach. When tours are encoded as city
vectors, the difference between rotated but otherwise identical tours is never zero. Ro-
tation, however, has no effect on a tour′s representation if it is encoded as an adjacency
matrix. Storn defined the notation

(x + y) mod 2 = x ⊕ y (2.10)

which is shorthand for modulo 2 addition, also known as the “exclusive or” logical
operation for the operation of the matrices. The difference matrix Δi j,

Δi j = Ai ⊕ A j (2.11)

is defined as the analog of DE′s traditional difference vector. Consider for example, the
valid TSP matrices A1 and A2,

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
1 0 1 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎟⎠ , (2.12)

and their difference given as

Δ1,2 = A1 ⊕ A2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠ (2.13)

From the definition of A1 there are 1′s in column 1 in rows {2 and 5}, in column 2
there are 1′s in rows {1 and 4}, in column 3 there are 1′s in rows {4 and 5}, in column 4
there are 1′s in rows {2 and 3}, in column 5 there are 1′s in rows {1 and 3} respectively.
These pair−wise numbers define the adjacency relationships. Considering {2 and 5}
and {4 and 5} it is shown that ′5′ is common and {2 and 4} are adjacent. Considering
{1 and 4} and {1 and 3} it is shown that ′1′ is common and {1 and 3} are adjacent.
Continuing in this manner it could be observed that Fig 2.9 shows the graphical inter-
pretation of A1, A2 and Δi j.

2.3.3 Relative Position Indexing

In the relative position indexing approach [4], permutations are obtained by determin-
ing the relative sizes of the different parameters defining an instance. Let there be an
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c1
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c3

c4

c5

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

A1 A2 1,2 = A1 A2

Fig. 2.9. Graphical interpretations of A1, A2 and the difference matrix Δi j

instance of four cities that define a tour such that these are initially generated by DE as
x1, f = {0.5 0.8 0.2 0.6}. Another instance of such four cities could simple be simply
defined as x2, f = {0.6 0.1 0.3 0.4}. In relative indexing, these instances encode per-
mutations given as x1 = {2 4 1 3} and x2 = {4 1 2 3} respectively. In the first case
for example the lowest value which is 0.2 is in the third position so it is allocated a label
of 1; the next higher value is 0.5 which occupies the first position and it is allocated the
label 2 and so on. Let there be a third instance denoted as x3, f = {0.6 0.8 0.3 0.5}.
Then we have x3 = {3 4 1 2}. The concept is fairly simple. The subscript f indicates
floating point.

The basic idea behind DE is that two vectors define a difference that can then be
added to another vector as a mutation. The same idea transfers directly to the realm
of permutations, or the permutation group. Just as two vectors in real space define a
difference vector that is also a vector, two permutations define a mapping that is also
a permutation. Therefore, when mutation is applied to with F = 0.5, the floating-point
mutant vector, v f , is

v f = xr3, f + F
(
xr1, f − xr2, f

)
= {0.6 0.8 0.3 0.5}+ 0.5{−0.1 0.7 − 0.1 0.2}
= {0.55 1.15 0.25 0.6}

(2.14)

The floating-point mutant vector, v f , is then transformed back into the integer do-
main by assigning the smallest floating value (0.25) to the smallest integer (1), the
next highest floating value (0.55) to the next highest integer (2), and so on to ob-
tain v = {2 4 1 3}. [10] noted that this backward transformation, or “relative position
indexing”, always yields a valid tour except in the unlikely event that two or more
floating−point values are the same. When such an event occurs, the trial vector must be
either discarded or repaired.

2.3.4 Forward/Backward Transformation Approach

The forward/backward transformation approach is the idea of [6], and is generally re-
ferred to as Onwubolu′s approach [10]. There are two steps involved:
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Forward Transformation

The transformation scheme represents the most integral part of the code. [6] developed
an effective routine for the conversion of permutative-based indices into the continuous
domain. Let a set of integer numbers be represented as xi ∈ xi,G which belong to solution
x j,i,G=0. The formulation of the forward transformation is given as:

x′
i = −1 + α xi (2.15)

where the value α is a small number.

Backward Transformation

The reverse operation to forward transformation, converts the real value back into inte-
ger as given in 2.16 assuming x′ to be the real value obtained from 2.15.

int [xi] =
(
1 + x′

i

)
/α (2.16)

The value xi is rounded to the nearest integer. [9], [2, 3] have applied this method
to an enhanced DE for floor shop problems.

2.3.5 Smallest Position Value Approach

The smallest position value (SPV) approach is the idea of [20] in which a unique solu-
tion representation of a continuous DE problem formulation is presented and the SPV
rule is used to determine the permutations. Applying this concept to the GTSP, in which
a tour is required, integer parts of the parameter values (s j) in a continuous DE problem
formulation represent the nodes (v j). Then the random key values (s j) are determined
by simply subtracting the integer part of the parameter x j from its current value consid-
ering the negative signs, i.e., s j = x j − int(x j). Finally, with respect to the random key
values (s j) , the smallest position value (SPV) rule of [20] is applied to the random key
vector to determine the tour π . They adapted the encoding concept of [1] for solving the
GTSP using GA approach, where each set Vj has a gene consisting of an integer part
between

[
1,

∣∣Vj
∣∣] and a fractional part between [0,1]. The integer part indicates which

node from the cluster is included in the tour, and the nodes are sorted by their fractional
part to indicate the order. The objective function value implied by a solution x with m
nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (2.17)

V = {1, ..,20} and V1 = {1, ..,5}, V2 = {6, , ..,10}, V3 = {11, ..,15} and V4 =
{16, ..,20}. Table 2.4 shows the solution representation of the DE for the GTSP.

In Table 2.4, noting that
[
1,

∣∣Vj
∣∣], the integer parts of the parameter values (s j) are

respectively decoded as {4,3,1,3}. These decoded values are used to extract the nodes
from the clusters V1,V2,V3,V4. The first node occupies the fourth position in V1, the
second node occupies the third position in V2, the third node occupies the first position in
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Table 2.4. SPV Solution Representation

j 1 2 3 4

x j 4.23 -3.07 1.80 3.76
v j 4 8 11 18
s j 0.23 -0.07 0.80 0.76
π j 8 4 18 11

F (π) d8,4 d4,18 d18,11 d11,8

V3, while the fourth node occupies the third position in V4. Extracting these labels show
that the nodes are {4,8,11,18} The random key values are {0.23,−0.07,0.80,0.76};
finally, with respect to the random key values (s j), the smallest position value (SPV)
rule is applied to the random key vector by arranging the values in a non-descending
order {−0.07,0.23,0.76,0.08} to determine the tour π {8,4,18,11}. Using equation
2.17, the total tour length is then obtained as

F (π) =
m−1
∑
j=1

dπ jπ j+1 + dπmπ1 = d8,4 + d4,18 + d18,11 + d11,8

In this approach, a problem may rise such that when the DE update equations are
applied, any parameter value might be outside of the initial search range, which is re-
stricted to the size of each cluster. Let xmin [ j] and xmax [ j] represent the minimum and
maximum value of each parameter value for dimension j. Then they stand for the mini-
mum and maximum cluster sizes of each dimension j. Regarding the initial population,
each parameter value for the set Vj is drawn uniformly from [−Vj + 1,Vj + 1]. Obvi-
ously, xmax [ j] is restricted to [Vj + 1], whereas xmin [ j] is restricted to −xmax [ j]. During
the reproduction of the DE, when any parameter value is outside of the cluster size, it
is randomly reassigned to the corresponding cluster size again.

2.3.6 Discrete/Binary Approach

Tasgetiren et al. present for the first time in this chapter, the application of the DDE
algorithm to the GTSP. They construct a unique solution representation including both
cluster and tour information is presented, which handles the GTSP properly when car-
rying out the DDE operations. The Population individuals can be constructed in such
a way that first a permutation of clusters is determined randomly, and then since each
cluster contains one or more nodes, a tour is established by randomly choosing a single
node from each corresponding cluster. For example, n j stands for the cluster in the jth

dimension, whereas π j represents the node to be visited from the cluster n j.
Now, consider a GTSP instance with N = {1, ..,25} where the clusters are n1 =

{1, ..,5}, n2 = {6, ..,10}, n3 = {11, ..,15}, n4 = {16, ..,20} and n5 = {21, ..,25}.
Table 2.5 shows the discrete/binary solution representation of the DDE for the GTSP.

A permutation of clusters is determined randomly as {4,1,5,2,3}. This means that
the first node is randomly chosen from the fourth cluster (here 16 is randomly chosen);
the second node is randomly chosen from the first cluster (here 5 is randomly chosen);
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Table 2.5. Discrete/binary Solution Representation

j 1 2 3 4 5

n j 4 1 5 2 3

X π j 16 5 22 8 14

dπ j π j+1 d16,5 d5,22 d22,8 d8,14 d14,16

the third node is randomly chosen from the fifth cluster (here 22 is randomly chosen); the
fourth node is randomly chosen from the second cluster (here 8 is randomly chosen); and
the fifth node is randomly chosen from the third cluster (here 14 is randomly chosen).

As already illustrated, the objective function value implied by a solution x with m
nodes is the total tour length, which is given by:

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (2.18)

This leads to the total tour length being obtained as

F (π) =
m−1
∑
j=1

dπ jπ j+1 + dπmπ1 = d16,5 + d5,22 + d22,8 + d8,14 + d14,16

2.3.7 Discrete Set Handling Approach

Discrete set handling is an algorithmic approach how to handle in a numerical way
objects from discrete set. Discrete set usually consist of various elements with non-
numerical nature. In its canonical form DE is only capable of handling continuous vari-
ables. However extending it for optimization of discrete variables is rather easy. Only a
couple of simple modifications are required. In evolution instead of the discrete value
xi itself, we may assign its index, i, to x. Now the discrete variable can be handled as
an integer variable that is boundary constrained to range < 1,2,3, .....,N >. So as to
evaluate the objective function, the discrete value, xi, is used instead of its index i. In
other words, instead of optimizing the value of the discrete variable directly, we opti-
mize the value of its index i. Only during evaluation is the indicated discrete value used.
Once the discrete problem has been converted into an integer one, the methods for han-
dling integer variables can be applied. The principle of discrete parameter handling is
depicted in chapter 7.3.

2.3.8 Anatomy of Some Approaches

[10] carried out anatomy of the four permutation−based combinatorial DE approaches
described in their book (see Table 2.6). This exercise excludes smallest position value,
discrete/binary and discrete set handling approaches.
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Table 2.6. Anatomy of four permutation-based combinatorial DE approaches+

Approach Observations

Permutation Matrix In practice, this approach tends to stagnate because moves derived
from the permutation matrix are seldom productive. In addition, this
method is unable to distinguish rotated but otherwise equal tours.
Because they display a unique binary signature, equal tours can be
detected by other means, although this possibility is not exploited
in the algorithm described in Fig 2.8.

Adjacency Matrix (1) This scheme preserves good sections of the tour if the popu-
lation has almost converged, i.e., if most of the TSP matrices in
the population contain the same sub−tours. When the population
is almost converged, there is a high probability that the difference
matrix will contain just a few ones, which means that there are only
a few cities available for a 2−exchange.

Relative Position Indexing (1) This approach resembles traditional DE because they both use
vector addition, although their ultimate effect is to shuffle values
between parameters, i.e., generate permutations.
(2) This approach impedes DE′s self-steering mechanism because
it fails to recognize rotated tours as equal.
(3) A closer look, however, reveals that DE′s mutation scheme
together with the forward and backward transformations is, in
essence, a shuffling generator.
(4) In addition, this approach does not reliably detect identical
tours because the difference in city indices has no real signifi-
cance. For example, vectors with rotated entries, e.g., (2,3,4,5,1)
and (1,2,3,4,5), are the same tour, but their difference, e.g.,
(1,1,1,1,−4), is not zero.

Forward/backward Transfor-
mation

(1) This approach resembles traditional DE because they both use
vector addition, although their ultimate effect is to shuffle values
between parameters, i.e., generate permutations.
(2) This approach impedes DE′s self−steering mechanism because
it fails to recognize rotated tours as equal.
(3) In addition, Onwubolu′s method usually generates invalid tours
that must be repaired. Even though competitive results are reported
in Onwubolu there is reason to believe that the success of this ap-
proach is primarily a consequence of prudently chosen local heuris-
tics and repair mechanisms, not DE mutation.

+ Described in Price et al. (2005).

2.4 Conclusions

There has been some reservation that although DE has performed well on wide−sense
combinatorial problems, its suitability as a combinatorial optimizer is still a topic of
considerable debate and a definitive judgment cannot be given at this time. Moreover, it
is said that although the DE mutation concept extends to other groups, like the permuta-
tion group, there is no empirical evidence that such operators are particularly effective.
The opinion expressed in this book is similar to that of [18] that all good heuristics are
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able to transform a combinatorial problem into a space which is amenable for search,
and that there is no such thing as an “all-cure” algorithm for combinatorial problems.
For example, particle swarm optimization (PSO) works fairly well for combinatorial
problems, but only in combination with a good tailored heuristic. If such a heuristic is
used, then PSO can locate promising regions. The same logic applies to a number of
optimization approaches.

While the anatomy described in Table 2.6 favors the adjacency matrix and permuta-
tion matrix approaches, compared to the forward/backward transformation relative po-
sition indexing approaches, it is not known in the literature where the adjacency matrix
and permutation matrix approaches have been applied to real−life permutation-based
combinatorial problems.

In this book, it is therefore concluded that:

1. The original classical DE which Storn and Price developed was designed to solve
only problems characterized by continuous parameters. This means that only a sub-
set of real-world problems could be solved by the original canonical DE.

2. For quite some time, this deficiency made DE not to be employed to a vast number
of real-world problems which characterized by permutative-based combinatorial
parameters.

3. This book complements that of [10] and vice versa. Taken together therefore, both
books will be needed by practitioners and students interested in DE in order to
have the full potentials of DE at their disposal. In other words, DE as an area of
optimization is incomplete unless it can deal with real−life problems in the areas
of continuous space as well as permutative-based combinatorial domain.
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