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Foreword

What is combinatorial optimization? Traditionally, a problem is considered to be com-
binatorial if its set of feasible solutions is both finite and discrete, i.e., enumerable. For
example, the traveling salesman problem asks in what order a salesman should visit
the cities in his territory if he wants to minimize his total mileage (see Sect. 2.2.2).
The traveling salesman problem’s feasible solutions - permutations of city labels - com-
prise a finite, discrete set. By contrast, Differential Evolution was originally designed
to optimize functions defined on real spaces. Unlike combinatorial problems, the set of
feasible solutions for real parameter optimization is continuous.

Although Differential Evolution operates internally with floating-point precision, it
has been applied with success to many numerical optimization problems that have tra-
ditionally been classified as combinatorial because their feasible sets are discrete. For
example, the knapsack problem’s goal is to pack objects of differing weight and value
so that the knapsack’s total weight is less than a given maximum and the value of the
items inside is maximized (see Sect. 2.2.1). The set of feasible solutions - vectors whose
components are nonnegative integers - is both numerical and discrete. To handle such
problems while retaining full precision, Differential Evolution copies floating-point so-
lutions to a temporary vector that, prior to being evaluated, is truncated to the nearest
feasible solution, e.g., by rounding the temporary parameters to the nearest nonnegative
integer.

By truncating real-valued parameters to their nearest feasible value, Differential Evo-
lution can be applied to combinatorial tasks whose parameters are discrete but numeri-
cal. If, however, objective function parameters are symbolic - as they are in the traveling
salesman problem - then Differential Evolution is inapplicable because it relies in part
on arithmetic operators. Unlike the knapsack problem’s integral vectors, the permuta-
tions that are the traveling salesman problem’s feasible solutions cannot be added, sub-
tracted or scaled without first being given a numerical representation (“arithmetized”).

In the traveling salesman problem, labels for cities may be drawn from any al-
phabet and assigned in any order provided that no two cities share the same label.
Since cities can be labeled with symbols drawn from any alphabet, they can be distin-
guished by non-negative integers, in which case feasible solutions for the n-city prob-
lem are permutations of the sequence [0,1,2, ...,n − 1]. There is then a sense in which
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permutations can be added, subtracted and scaled like the knapsack problem’s integral
vectors. For example, if we assign 0 to Chicago, 1 to Miami, 2 to Denver and 3 to Port-
land, then the tour Chicago-Miami-Denver-Portland becomes a = [0,1,2,3], while the
tour Portland-Denver-Chicago-Miami is b = [3,2,0,1]. For this particular mapping of
numerals to cities, the modulo 4 difference between the two tours’ numerical represen-
tations is (a − b) = [1,3,2,2].

Although the freedom to label cities with numerals makes it possible to numeri-
cally encode permutations, the freedom to assign numerals in any order means that the
“difference” between two permutations depends on the (arbitrary) initial assignment of
numerals to cities. If the preceding example had assigned 3 to Chicago, 1 to Miami, 0
to Denver and 2 to Portland, then a = [3,1,0,2], b = [2,0,3,1] and (a − b) modulo 4 be-
comes [1,1,1,1], not [1,3,2,2]. Consequently, this simple numeral assignment scheme
fails to provide a meaningful metric because the difference - and by extension, the (Eu-
clidean) distance - between two permutations does not depend on their properties, but
on an arbitrary choice. Since Differential Evolution depends heavily on vector/matrix
differences, a meaningful metric will be crucial to its success.

Alternatively, permutations can be numerically encoded as n-by-n adjacency matri-
ces (see Sect. 2.3.2). Each city indexes both a row and a column so that the entry in row
i and column j is 1 if cities i and j are adjacent in the corresponding permutation and 0
if they are not. Unlike arbitrary numeral assignment, the adjacency matrix numerically
encodes a property of the permutation - its connectedness. Furthermore, the modulo 2
difference between two adjacency matrices reveals those connections that the two per-
mutations do not share. If cities are arbitrarily reassigned so that they index different
rows and columns, the adjacency matrices for a given pair of permutations will change,
but the modulo 2 difference between their new representations will still identify the
connections that they do not share. When compared to the nave numeral assignment
scheme, the adjacency matrix approach is a more rational way to numerically encode
permutations because the difference between two adjacency matrix representations is
not arbitrary.

In summary, applying Differential Evolution to numerical combinatorial optimiza-
tion problems is relatively straightforward. Symbolic combinatorial problems, however,
require a property-based function to map symbolic solutions to numerical ones and an
inverse transformation to map the numerical solutions proposed by Differential Evo-
lution back into symbolic ones. The configurations generated by these mappings may
need “repair” to become feasible, but with well chosen transformations - like those ex-
plored in this book - Differential Evolution can be an effective tool for combinatorial
optimization.

Vacaville California, September 2008 Kenneth V. Price



Preface

The original classical Differential Evolution (DE) which Storn and Price developed was
designed to solve only problems characterized by continuous parameters. This means
that only a subset of real-world problems could be solved by the original canonical
DE. For quite some time, this deficiency made DE not to be employed to a vast num-
ber of real-world problems which characterized by permutative-based combinatorial
parameters. Over the years, some researchers have been working in the area of DE
permutative-based combinatorial optimization and they have found that DE is quite ap-
propriate for combinatorial optimization and that it is effective and competitive with
other approaches in this domain. Some of the DE permutative-based combinatorial op-
timization approaches that have proved effective include: Forward/Backward Trans-
formation Approach; Relative Position Indexing Approach; Smallest Position Value
Approach; Discrete/Binary Approach; and Discrete Set Handling Approach.

To date, there are very few books that present the classical DE which is continuous
based, and to the best of our knowledge there is no book that presents DE permutative-
based combinatorial optimization approaches. The main purpose of this book therefore
is to present the work done by the originators of a number of DE permutative-based
combinatorial optimization variants listed above.

The book discusses and differentiates both the continuous space DE formulation and
the permutative-based combinatorial DE formulation and shows that these formulations
complement each other and none of them is complete on its own. Therefore we have
shown that this book complements that of Price et al. (2005) and vice versa. Taken
together therefore, both books will be needed by practitioners and students interested in
DE in order to have the full potentials of DE at their disposal. In other words, DE as an
area of optimization is incomplete unless it can deal with real-life problems in the areas
of continuous space as well as permutative-based combinatorial domain.

Chapter authors background: Chapter authors are to the best of our knowledge the
originators or closely related to the originators of the above mentioned DE permutative-
based combinatorial optimization approaches. Hence, this book will be one of the lead-
ing books in DE permutative-based combinatorial optimization approaches.



X Preface

Organization of the Chapters: Onwubolu and Davendra, present “Motivation for Dif-
ferential Evolution for Permutative - based Combinatorial Problems” in Chapter 1 as
well as “Differential Evolution for Permutation-based Combinatorial Problems”, in
Chapter 2 in order to show the rationale and give an overview of the book. Onwubolu
and Davendra also present “Forward/Backward Transformation Approach” in Chapter
3; Onwubolu is the originator of this approach and Davendra extended its capability to
realize the enhanced DE version. Daniel Lichtblau, the originator of “Relative Position
Indexing Approach” presents Chapter 4. Tasgetiren, Chen, Gencyilmaz and Gattoufi,
the originators of “Smallest Position Value Approach” present Chapter 5. Also, Tasge-
tiren, Liang, Pan and Suganthan, the originators of “Discrete/Binary Approach” present
Chapter 6. Ivan Zelinka the originator of “Discrete Set Handling Approach” presents
Chapter 7.

Audience: The book will be an instructional material for senior undergraduate and
entry-point graduate students in computer science, applied mathematics, statistics, man-
agement and decision sciences, and engineering, who are working in the area of modern
optimization. Researchers who want to know how to solve permutative-based combina-
torial optimization problems using DE will find this book a very useful handbook and
the starting point. The book will be a resource handbook and material for practition-
ers who want to apply these methods that solve real-life problems to their challenging
applications.

Appendix: The book will have all Source Codes for Chapters 3 - 7 in accompanying
CD ROM.

Canada and Czech Republic, Godfrey Onwubolu
September 2008 Donald Davendra
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Motivation for Differential Evolution for
Permutative−Based Combinatorial Problems

Godfrey Onwubolu1 and Donald Davendra2

1 Knowledge Management & Mining, Inc., Richmond Hill, Ontario, Canada
onwubolu−g@dsgm.ca

2 Tomas Bata Univerzity in Zlin, Faculty of Applied Informatics, Nad Stranemi 4511,
Zlin 76001, Czech Republic
davendra@fai.utb.cz

Abstract. It is generally accepted that Differential Evolution (DE) was originally designed to
solve problems which are defined in continuous form. Some researchers have however, felt that
this is a limiting factor on DE, hence there have been vigorous research work to extend the
functionalities of DE to include permutative-based combinatorial problems. This chapter sets the
scene for the book by discussing the motivation for presenting the foundational theories for a
number of variants of DE for permutative-based combinatorial problems. These DE variants are
presented by their initiators or proposers, to the best of our knowledge.

1.1 Introduction

Whether in industry or in research, users generally demand that a practical optimization
technique should fulfil three requirements:

1. the method should find the true global minimum, regardless of the initial system
parameter values;

2. convergence should be fast; and
3. the program should have a minimum of control parameters so that it will be easy to

use.

[2] invented the differential evolution (DE) algorithm in a search for a technique that
would meet the above criteria. DE is a method, which is not only astonishingly simple,
but also performs extremely well on a wide variety of test problems. It is inherently
parallel because it is a population based approach and hence lends itself to computation
via a network of computers or processors. The basic strategy employs the difference of
two randomly selected parameter vectors as the source of random variations for a third
parameter vector.

There are broadly speaking two types of real−world problems that may be solved:

1. those that are characterized by continuous parameters; and
2. those that are characterized by permutative-based combinatorial parameters..

This classification is important in the context of the motivation for this book. The
original canonical DE which Storn and Price developed was designed to solve only

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 1–11.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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DE

Continuous Space Optimization 
DE

Permutative-based Combinatorial 
Optimization DE

(i) Differential Evolution: A Practical 
Approach to Global Optimization

(ii) Differential Evolution: A Handbook for 
Global Permutative-based Optimization

Fig. 1.1. DE framework (i) Existing book (Price et al. 2005); (ii) Present book

problems characterized by continuous parameters. This means that only a subset of
real-world problems could be solved by the original canonical DE. For quite some time,
this deficiency made DE not to be employed to a vast number of real-world problems
which characterized by permutative-based combinatorial parameters. Fig 1.1 shows the
framework into which the current book fits, showing that there are two mainstreams of
philosophical schools that need to be considered in presenting DE for solving real-world
problems. This framework is important as it shows that the current book compliments
the first book on DE which only addresses one aspect: continuous parameters.

1.1.1 Continuous Space Optimization DE Problems

A typical continuous space optimization DE problem is the generalized Rosenbrock
function given as:

f (x) =
D−2
∑
j=0

(
100.

(
x j+1 − x2

j

)2
+(x j − 1)2

)
,

−30 ≤ x ≤ 30, j = 0, 1, ..., D− 1, D > 1,
f (x∗) = 0, x∗

j = 1, ε = 1.0 × 10−6.

(1.1)

The solution of this problem is shown in Fig 1.2.

1.1.2 Permutative−Based Combinatorial Optimization DE Problem

A typical permutative-based combinatorial optimization DE problem is the flow shop
scheduling five-job-four machine problem whose operation times are shown in
Table 1.1 The objective is to find the best sequence to realize the optimal completion
time (makespan). As we see, this problem is very different from the continuous space
problem because we are interested in sequence such as 1, 2, 3, 4, 5 which is permutative
in nature.

The minimization of completion time (makespan) for a flow shop schedule is equiv-
alent to minimizing the objective function ℑ:

ℑ =
n

∑
j=1

Cm, j (1.2)
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Fig. 1.2. The generalized Rosenbrock function problem

Table 1.1. Example of job times

jobs j1 j2 j3 j4 j5

P1, jk 6 4 4 5 1
P2, jk 4 6 2 4 3
P3, jk 3 3 4 1 3
P4, jk 4 4 5 3 1

such that:
Ci, j = max

(
Ci−1, j, Ci, j−1

)
+ Pi, j (1.3)

For this problem the schedule of {2,1,4,3,5} gives a fitness (makespan) of 31. The
solution includes a permutative schedule as well as the fitness. It is not feasible to solve
this kind of problem using the canonical DE that solves only continuous problems as
already discussed.

1.1.3 Suitability of Differential Evolution as a Combinatorial Optimizer

An extract from the summary of Section 4.4 of [2] reads:

”Although DE has performed well on wide-sense combinatorial problems, its
suitability as a combinatorial optimizer is still a topic of considerable debate
and a definitive judgment cannot be given at this time”.
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Over the years, some researchers have been working in the area of DE permutative−
based combinatorial optimization and they have found that DE is quite appropriate
for combinatorial optimization and that it is effective and competitive with other ap-
proaches in this domain. Some of the DE permutative−based combinatorial optimiza-
tion approaches that have proved effective include:

1. Forward/Backward Transformation Approach;
2. Relative Position Indexing Approach;
3. Smallest Position Value Approach;
4. Discrete/Binary Approach; and
5. Discrete Set Handling Approach.

These approaches have been applied to combinatorial optimization problems with
competitive results when compared to other optimization approaches, and they form
the basis for writing this book. The remainder of this book explores available DE ap-
proaches for solving permutative-based combinatorial problems. Although there have
been discussions regarding DE approaches that rely to varying degrees on repair mecha-
nisms, it is now generally agreed that in order to solve permutative-based combinatorial
problems, it is necessary to employ some heuristics as some other evolutionary com-
putation approaches do, rather than insisting on approaches that generate only feasible
solutions. Each method proposes an analog of DE′s differential mutation operator to
solve permutative-based combinatorial problems.

1.2 Canonical Differential Evolution for Continuous Optimization
Problems

The parameters used in DE are ℑ = cost or the value of the objective function, D =
problem dimension, NP = population size, P = population of X−vectors, G = generation
number, Gmax = maximum generation number, X = vector composed of D parameters,
V = trial vector composed of D parameters, CR = crossover factor. Others are F =
scaling factor (0 < F ≤ 1.2), (U) = upper bound, (L) = lower bound, u, and v = trial

vectors, x(G)
best = vector with minimum cost in generation G, x(G)

i = ith vector in generation

G, b(G)
i = ith buffer vector in generation G, x(G)

r1 , x(G)
r2 = randomly selected vector, L

= random integer (0 < L < D− 1). In the formulation, N = number of cities. Some
integers used are i, j.

Differential Evolution (DE) is a novel parallel direct search method, which utilizes
NP parameter vectors

x(G)
i , i = 0,1,2, ...,NP− 1 (1.4)

as a population for each generation, G. The population size, NP does not change dur-
ing the minimization process. The initial population is generated randomly assuming a
uniform probability distribution for all random decisions if there is no initial intelligent
information for the system. The crucial idea behind DE is a new scheme for generating
trial parameter vectors. DE generates new parameter vectors by adding the weighted
difference vector between two population members to a third member. If the resulting
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vector yields a lower objective function value than a predetermined population mem-
ber, the newly generated vector replaces the vector with which it was compared. The
comparison vector can, but need not be part of the generation process mentioned above.

In addition the best parameter vector x(G)
best , is evaluated for every generation G in order

to keep track of the progress that is made during the minimization process. Extracting
distance and direction information from the population to generate random deviations
result in an adaptive scheme with excellent convergence properties [3].

Descriptions for the earlier two most promising variants of DE (later known as DE2
and DE3) are presented in order to clarify how the search technique works, then a
complete list of the variants to date are given thereafter. The most comprehensive book
that describes DE for continuous optimization problems is [2].

Scheme DE2

Initialization
As with all evolutionary optimization algorithms, DE works with a population of solu-
tions, not with a single solution for the optimization problem. Population P of genera-
tion G contains NP solution vectors called individuals of the population and each vector
represents potential solution for the optimization problem:

P(G) = X (G)
i i = 1, ...,NP; G = 1, ...,Gmax (1.5)

Additionally, each vector contains D parameters:

X (G)
i = x(G)

j,i i = 1, ...,NP; j = 1, ...,D (1.6)

In order to establish a starting point for optimum seeking, the population must be
initialized. Often there is no more knowledge available about the location of a global
optimum than the boundaries of the problem variables. In this case, a natural way to
initialize the population P(0) (initial population) is to seed it with random values within
the given boundary constraints:

P(0) = x(0)
j,i = x(L)

j + rand j[0,1]•
(

x(U)
j − x(L)

j

)
∀i ∈ [1,NP]; ∀ j ∈ [1,D] (1.7)

where rand j[0, 1] represents a uniformly distributed random value that ranges from
zero to one. The lower and upper boundary constraints are,X (L) and X (L), respectively:

x(L)
j ≤ x j ≤ x(U)

j ∀ j ∈ [1,D] (1.8)

For this scheme and other schemes, three operators are crucial: mutation, crossover
and selection. These are now briefly discussed.

Mutation

The first variant of DE works as follows: for each vector x(G)
i , i = 0,1,2, ..,NP − 1, a

trial vector v is generated according to

v(G+1)
j,i = x(G)

j,r1 + F •
(

x(G)
j,r2 − x(G)

j,r3

)
(1.9)
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Minimum

★ NP Parameter vectors from generation G

 Newly generated parameter vector v
F xr2 ,G xr3 ,G( )

x2

x1

★

★

★

★

★
★

★

★

★

★

★

xi,G

xr1 ,Gxr2 ,G

xr3 ,G

v = xr1 ,G + F xr2 ,G xr3 ,G( )

Fig. 1.3. Contour lines and the process for generating v in scheme DE1

where i ∈ [1,NP]; j ∈ [1,D] , F > 0, and the integers r1, r2, r3 ∈ [1,NP] are generated
randomly selected, except: r1 �= r2 �= r3 �= i.

Three randomly chosen indexes, r1, r2, and r3 refer to three randomly chosen vectors
of population. They are mutually different from each other and also different from the
running index i. New random values for r1, r2, and r3 are assigned for each value of
index i (for each vector). A new value for the random number rand[0, 1] is assigned for
each value of index j (for each vector parameter). F is a real and constant factor, which
controls the amplification of the differential variation. A two dimensional example that
illustrates the different vectors which play a part in DE2 are shown in Fig 1.3.

Crossover

In order to increase the diversity of the parameter vectors, the vector

u = (u1,u2, ...,uD)T (1.10)

u(G)
j =

⎧⎨
⎩

v(G)
j f or j = 〈n〉D ,〈n + 1〉D , ...,〈n + L− 1〉D(

x(G)
i

)
j

otherwise
(1.11)

is formed where the acute brackets 〈〉D denote the modulo function with modulus D. This
means that a certain sequence of the vector elements of u are identical to the elements

of v, the other elements of u acquire the original values of x(G)
i . Choosing a subgroup of

parameters for mutation is similar to a process known as crossover in genetic algorithm.
This idea is illustrated in Fig 1.4 for D = 7, n = 2 and L = 3. The starting index n in (12)
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xi,G v = xr1 ,G + F xr2 ,G xr3 ,G( ) u

j = 0 j = 0 j = 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

Parameter vector containing the parameters 

}

x j , j = 0,1,...,D 1{ }

n = 2

n = 3

n = 4

Fig. 1.4. Crossover process for D = 7, n = 2 and L = 3

is a randomly chosen integer from the interval [0, D-1]. The integer L is drawn from
the interval [0, D-1] with the probability Pr(L = v) = (CR)v. CR ∈ [0,1] is the crossover
probability and constitutes a control variable for the DE2-scheme. The random decisions
for both n and L are made anew for each trial vector v.

Crossover

In order to decide whether the new vector u shall become a population member of gen-

eration G+1, it will be compared to x(G)
i . If vector u yields a smaller objective function

value than x(G)
i , x(G+1)

i is set to u, otherwise the old value x(G)
i is retained.

Scheme DE3

Basically, scheme DE3 works the same way as DE2 but generates the vector v
according to
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Minimum

★ NP Parameter vectors from generation G

 Newly generated parameter vector v
F xr2 ,G xr3 ,G( )

x2

x1

★

★

★

★

★
★

★

★

★

★

★

xi,G

xr2 ,G

xr3 ,G

xbest ,G

v

v = xi,G + xbest xi,G( )

Fig. 1.5. Contour lines and the process for generating v in scheme DE3.

v = x(G)
i + λ •

(
x(G)

best − x(G)
i

)
+ F •

(
x(G)

r2 − x(G)
r3

)
(1.12)

introducing an additional control variable λ . The idea behind λ is to provide a means

to enhance the greediness of the scheme by incorporating the current best vector x(G)
best .

This feature can be useful for non−critical objective functions. Fig 1.5 illustrates the
vector−generation process defined by Equation 1.12. The construction of u from v and
as well as the decision process are identical to DE2.

DE Strategies

[1] have suggested ten different working strategies of DE and some guidelines in ap-
plying these strategies for any given problem (see Table1.2). Different strategies can be
adopted in the DE algorithm depending upon the type of problem for which it is ap-
plied. The strategies can vary based on the vector to be perturbed, number of difference
vectors considered for perturbation, and finally the type of crossover used.

The general convention used above is as follows: DE/x/y/z. DE stands for differen-
tial evolution algorithm, x represents a string denoting the vector to be perturbed, y is
the number of difference vectors considered for perturbation of x, and z is the type of
crossover being used. Other notations are exp: exponential; bin: binomial). Thus, the
working algorithm outline by [2] is the seventh strategy of DE, that is, DE/rand/1/bin.
Hence the perturbation can be either in the best vector of the previous generation or in
any randomly chosen vector. Similarly for perturbation, either single or two vector dif-
ferences can be used. For perturbation with a single vector difference, out of the three
distinct randomly chosen vectors, the weighted vector differential of any two vectors
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Table 1.2. DE Strategies

Strategy Formulation

Strategy 1: DE/best/1/exp: v= x(G)
best +F •

(
x(G)
r2 − x(G)

r3

)

Strategy 2: DE/rand/1/exp: v= x(G)
r1 +F •

(
x(G)
r2 − x(G)

r3

)

Strategy 3: DE/rand-to-best/1/exp v= x(G)
i +λ •

(
x(G)
best − x(G)

i

)
+F •

(
x(G)
r1 − x(G)

r2

)

Strategy 4: DE/best/2/exp: v= x(G)
best +F •

(
x(G)
r1 + x(G)

r2 − x(G)
r3 − x(G)

r4

)

Strategy 5: DE/rand/2/exp: v= x(G)
r5 +F •

(
x(G)
r1 + x(G)

r2 − x(G)
r3 − x(G)

r4

)

Strategy 6: DE/best/1/bin: v= x(G)
best +F •

(
x(G)
r2 − x(G)

r3

)

Strategy 7: DE/rand/1/bin: v= x(G)
r1 +F •

(
x(G)
r2 − x(G)

r3

)

Strategy 8: DE/rand-to-best/1/bin: v= x(G)
i +λ •

(
x(G)
best − x(G)

i

)
+F •

(
x(G)
r1 − x(G)

r2

)

Strategy 9: DE/best/2/bin v= x(G)
best +F •

(
x(G)
r1 + x(G)

r2 − x(G)
r3 − x(G)

r4

)

Strategy 10: DE/rand/2/bin: v= x(G)
r5 +F •

(
x(G)
r1 + x(G)

r2 − x(G)
r3 − x(G)

r4

)

is added to the third one. Similarly for perturbation with two vector differences, five
distinct vectors other than the target vector are chosen randomly from the current pop-
ulation. Out of these, the weighted vector difference of each pair of any four vectors is
added to the fifth one for perturbation.

In exponential crossover, the crossover is performed on the D (the dimension or
number of variables to be optimized) variables in one loop until it is within the CR
bound. For discrete optimization problems, the first time a randomly picked number
between 0 and 1 goes beyond the CR value, no crossover is performed and the remaining
D variables are left intact. In binomial crossover, the crossover is performed on each
the D variables whenever a randomly picked number between 0 and 1 is within the CR
value. Hence, the exponential and binomial crossovers yield similar results.

1.3 Differential Evolution for Permutative−Based Combinatorial
Optimization Problems

The canonical DE cannot be applied to discrete or permutative problems without modi-
fication. The internal crossover and mutation mechanism invariably change any applied
value to a real number. This in itself will lead to infeasible solutions. The objective
then becomes one of transformation, either that of the population or that of the internal
crossover/mutation mechanism of DE. A number of researchers have decided not to
modify in any way the operation of DE strategies, but to manipulate the population in
such a way as to enable DE to operate unhindered. Since the solution for a population
is permutative, suitable conversion routines are required in order to change the solution
from integer to real and then back to integer after crossover.

Application areas where DE for permutative-based combinatorial optimization prob-
lems can be applied include but not limited to the following:
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Table 1.3. Building blocks and the enhanced versions of DE

Building Blocks Enhanced DE versions Chapter

Forward/Backward Transformation Approach Enhanced DE (EDE) 3
Relative Position Indexing Approach HPS 4
Smallest Position Value Approach - 5
Discrete/Binary Approach - 6
Discrete Set Handling Approach DE DSH 7

1. Scheduling: Flow Shop, Job Shop, etc.
2. Knapsack
3. Linear Assignment Problem (LAP)
4. Quadratic Assignment Problem (QAP)
5. Traveling Salesman Problem (TSP)
6. Vehicle Routine Problem (VRP)
7. Dynamic pick-and-place model of placement sequence and magazine assignment

in robots

In this book, some methods for realizing DE for permutative-based combinatorial
optimization problems that are presented in succeeding chapters are as follows:

1. Forward/Backward Transformation Approach: [chapter 3];
2. Relative Position Indexing Approach: [chapter 4];
3. Smallest Position Value Approach: [chapter 5];
4. Discrete/Binary Approach: [chapter 6]; and
5. Discrete Set Handling Approach: [chapter 7].

While the above−listed foundations have been presented in the book, it should be
mentioned that a number of enhancement routines have been realized which are based
on these fundamental building blocks. For example, the enhanced DE (EDE) is based on
fundamentals of the forward/backward transformation approach presented in chapter 3.
This philosophy threads throughout the book and should be borne in mind when reading
the chapters. Consequently, we have the building blocks and the enhanced versions of
DE listed in Table 1.3.

1.4 Conclusions

This chapter has discussed and differentiated both the continuous space DE formulation
and the permutative-based combinatorial DE formulation and shown that these formu-
lations compliment each other and none of them is complete on its own. Therefore
we have shown that this book complements that of [2] and vice versa. Taken together
therefore, both books will be needed by practitioners and students interested in DE in
order to have the full potentials of DE at their disposal. In other words, DE as an area
of optimization is incomplete unless it can deal with real-life problems in the areas of
continuous space as well as permutative-based combinatorial domain.
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At least five DE permutative-based combinatorial optimization approaches that have
proved effective have been presented in this book and they have been used to solve real-
life problems. The results obtained are found to be quite competitive for each approach
presented in chapters 3 to 7. Some of these approaches have become the building blocks
for realizing higher-order or enhanced version of DE permutative-based combinatorial
optimization approaches. Some of these enhanced versions have presented in some of
the chapters. Their results are better in terms of quality than the basic versions; and some
cases computation times have been drastically reduced when these enhanced version are
used for solving the same real-life problems which the basic versions are used for.
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Abstract. The chapter clarifies the differences between wide-sense combinatorial optimization
and strict-sense combinatorial optimization and then presents a number of combinatorial prob-
lems encountered in practice. Then overviews of the different permutative-based combinatorial
approaches presented in the book are given. The chapter also includes an anatomy of the differ-
ent permutative-based combinatorial approaches in the book, previously carried out elsewhere to
show their strengths and weaknesses.

2.1 Introduction

It is first necessary to define what combinatorial problems are. In combinatorial prob-
lems, parameters can assume only a finite number of discrete states, so the number of
possible vectors is also finite. Several classic algorithmic problems of a purely combi-
natorial nature include sorting and permutation generation, both of which were among
the first non−numerical problems arising on electronic computers. A permutation de-
scribes an arrangement, or ordering, of parameters that define a problem. Many algo-
rithmic problems tend to seek the best way to order a set of objects. Any algorithm for
solving such problems exactly must construct a series of permutations. [10] classify
wide-sense and strict−sense combinatorial optimization.

2.1.1 Wide-Sense Combinatorial Optimization

Consider switching networks which can be divided into fully connected non-blocking
networks, and fully connected but blocking networks. Non−blocking switching net-
works can be re−arrangeable non-blocking networks, wide-sense non-blocking net-
works, and strictly non-blocking networks. A network is classified as rearrangeable if
any idle input may be connected to any idle output provided that existing connections
are allowed to be rearranged. A strictly non−blocking network on the other hand is
always able to connect any idle input to any idle output without interfering with the ex-
isting connections. Wide−sense non-blocking network achieves strictly non-blocking
property with the help of an algorithm.

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 13–34.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Let us consider another example. In this case we consider nuts having pitch diameters
which are expressed in decimal places such as 2.5 mm, 3.6 mm,..., 5.3 mm, 6.2 mm, etc.
These nuts are grouped into classes so that Class A nuts belong to those nuts whose pitch
diameters lie between 2.5 mm−3.6 mm, Class B nuts belong to those nuts whose pitch
diameters lie between 3.65 mm−4.8 mm, etc. In this case the classes are wide sense but
the actual dimensions are continuous in nature. Therefore picking nuts based on their
classes could be viewed as a wide−sense combinatorial problem because dimensional
properties of a nut are continuous variables.

2.1.2 Strict-Sense Combinatorial Optimization

There are a number of strict-sense combinatorial problems, such as the traveling sales-
man problem, the knapsack problem, the shortest-path problem, facility layout problem,
vehicle routing problem, etc. These are strict-sense combinatorial problems because
they have no continuous counterpart [10]. These strict-sense combinatorial problems
require some permutation of some sort. The way the objects are arranged may affect the
overall performance of the system being considered. Arranging the objects incorrectly
may affect the overall performance of the system. If there is a very large number of
the object, then the number of ways of arranging the objects introduces another dimen-
sion of problem known as combinatorial explosion. Classical DE was not designed to
solve this type of problem because these problems have hard constraints. Strong con-
straints like those imposed in the traveling salesman problem or facility layout problem
make strict-sense combinatorial problems notoriously difficult for any optimization al-
gorithm. It is this class of problems that this book is aimed at solving. A number of
techniques have been devised to stretch the capabilities of DE to solve this type of hard
constraint-type problems.

2.1.3 Feasible Solutions versus “Repairing” Infeasible Solutions for Strict-Sense
Combinatorial Optimization

In DE′s case, the high proportion of infeasible vectors caused by constraints prevents the
population from thoroughly exploring the objective function surface. [10] concluded
that in order to minimize the problems posed by infeasible vectors, algorithms can either
generate only feasible solutions, or “repair” infeasible ones.

The opinion expressed in this book is that all good heuristics are able to transform a
combinatorial problem into a space which is amenable for search, and that there is no
such thing as an “all-cure” algorithm for combinatorial problems. For example, particle
swarm optimization (PSO) works fairly well for combinatorial problems, but only in
combination with a good tailored heuristic (see for example, [8]). If such a heuristic is
used, then PSO can locate promising regions. The same logic applies to a number of
optimization approaches.

2.2 Combinatorial Problems

A wide range of strict-sense combinatorial problems exist for which the classical
DE approach cannot solve because these problems are notoriously difficult for any
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optimization algorithm. In this section, some of these problems are explained and
their objective functions are formulated. The knapsack problem, travelling salesman
problem (TSP), drilling location and hit sequencing, dynamic pick and place (DPP)
model in robotic environment, vehicle routing problem (VRP), and facility layout prob-
lem, which are examples of strict-sense combinatorial problems, are discussed in this
sub-section.

2.2.1 Knapsack Problem

For example, the single constraint (bounded) knapsack problem reflects the dilemma
faced by a hiker who wants to pack as many valuable items in his or her knapsack as
possible without exceeding the maximum weight he or she can carry. In the knapsack
problem, each item has a weight, wj, and a value, c j (Equation 2.1); the constraints are
in (Equation 2.1). The goal is to maximize the value of items packed without exceeding
the maximum weight, b. The term represents the number of items with weight wj and
value, c j :

maximize:
D−1

∑
j=0

c jx j , x j ≥ 0 , integers (2.1)

subject to:
D−1

∑
j=0

wjx j ≤ b , wj ≥ 0 , b > 0. (2.2)

The solution to this problem will be a set of integers that indicate how many items of
each type should be packed. As such, the knapsack problem is a strict-sense combinato-
rial problem because its parameters are discrete, solutions are constrained and it has no
continuous counterpart (only a whole number of items can be placed in the knapsack).

2.2.2 Travelling Salesman Problem (TSP)

In the TSP, a salesman must visit each city in his designated area and then return home.
In our case, the worker (tool) must perform each job and then return to the starting con-
dition. The problem can be visualised on a graph. Each city (job) becomes a node. Arc
lengths correspond to the distance between the attached cities (job changeover times).
The salesman wants to find the shortest tour of the graph. A tour is a complete cycle.
Starting at a home city, each city must be visited exactly one time before returning
home. Each leg of the tour travels on an arc between two cities. The length of the tour
is the sum of the lengths of the arcs selected. Fig 2.1 illustrates a five-city TSP. Trip
lengths are shown on the arcs in Fig 2.1, the distance from city i to j is denoted by ci j.
We have assumed in the figure that all paths (arcs) are bi-directional. If arc lengths dif-
fer depending on the direction of the arc the TSP-formulation is said to be asymmetric,
otherwise it is symmetric. A possible tour is shown in Fig 2.2. The cost of this tour is
c12 + c24 + c43 + c35 + c51.

Several mathematical formulations exist for the TSP. One approach is to let xi j be 1
if city j is visited immediately after i, and be 0 if otherwise. A formal statement of TSP
is given as follows:
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Fig. 2.1. (a) TSP illustrated on a graph
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Fig. 2.2. (b) TSP illustrated on a graph

minimise
N

∑
i=1

N

∑
j=1

ci jxi j (2.3)

subject to
N

∑
j=1

xi j = 1;∀i (2.4)
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N

∑
i=1

xi j = 1;∀i (2.5)

No subtours

xi j = 0 or 1 (2.6)

No subtours mean that there is no need to return to a city prior to visiting all other
cities. The objective function accumulates time as we go from city i to j. Constraint 2.4
ensures that we leave each city. Constraint 2.5 ensures that we visit (enter) each city.
A subtour occurs when we return to a city prior to visiting all other cities. Restriction
6.6 enables the TSP-formulation, differ from a linear assignment programming (LAP)
formulation. Unfortunately, the non-subtour constraint significantly complicates model
solution. One reasonable construction procedure for solving TSP is the closest insertion
algorithm. This is now discussed.

The Traveling Salesman Problem (TSP) is a fairly universal, strict-sense combi-
natorial problem into which many other strict-sense combinatorial problems can be
transformed. Consequently, many findings about DE′s performance on the TSP can be
extrapolated to other strict-sense combinatorial problems.

2.2.2.1 TSP Using Closest Insertion Algorithm
The closest insertion algorithm starts by selecting any city. We then proceed through
N − 1 stages, adding a new city to the sequence at each stage. Thus a partial sequence
is always maintained, and the sequence grows by one city each stage. At each stage
we select the city from those currently unassigned that is closest to any city in the
partial sequence. We add the city to the location that causes the smallest increase in the
tour length. The closest insertion algorithm can be shown to produce a solution with a
cost no worse than twice the optimum when the cost matrix is symmetric and satisfies
the triangle inequality. In fact, the closest insertion algorithm may be a useful seed-
solution for combinatorial search methods when large problems are solved. Symmetric
implies ci j = c ji where ci j is the cost to go from city i directly to city j. Unfortunately,
symmetry need not exist in our changeover problem. Normally, the triangular inequality
(ci j ≤ cik +ck j) will be satisfied, but this alone does not suffice to ensure the construction
of a good solution. We may also try repeated application of the algorithm choosing a
different starting city each time and then choose the best sequence found. Of course,
this increases our workload by a factor of N. Alternatively, a different starting city may
be chosen randomly for a specific number of times, less than the total number of cities.
This option is preferred for large problem instances.

We now state the algorithm formally. Let Sa be the set of available (unassigned) cities
at any stage. Sp will be the partial sequence in existence at any stage and is denoted
Sp = {s1,s2, ...,sn}, implying that city s2 immediately follows s1. For each unassigned
city j, we use r ( j) to keep track of the city in the partial sequence that is closest to j. We
store r ( j) only to avoid repeating calculations at each stage. Last, bracketed subscripts
[i] refer to the ith city in the current partial sequence. The steps involved are:
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STEP 0. Initialize, N = 1,Sp = {1} ,Sa = {2, ..,N} .For j = 2, ...,N.r ( j) = 1
STEP 1. Select new city. Find j∗ = argmin

j∈Sa

{
c j,c( j), or cc( j), j

}
.Set n = n + 1

STEP 2. Insert j∗, update r ( j) Sa = Sa − j∗. Find City i∗ ∈ Sp such that i∗ =
argmin[i]∈Sp

{
c[i] j∗ + c j∗,[i+1] − c[i],[i+1]

}
. Update Sp = {s1, .., i∗, j∗, i∗ + 1, ..,sn}. For all

j ∈ Sa if min
{

c j, j∗ ,c j∗, j
}

< c j,r(1) then r ( j) = j∗. If n < N, go to 2.
As can be seen, the closest insertion algorithms a constructive method. In order to

understand the steps involved, let us consider an example related to changeover times
for a flexible manufacturing cell (FMC).

Example 2.1

Table 2.1 shows the changeover times for a flexible manufacturing-cell. A machine is
finishing producing batch T1 and other batches are yet to be completed. We are to use
the closest insertion heuristic to find a job sequence, treating the problem as a TSP.

Table 2.1. Changeover times (hrs)

From/To T1 T2 T3 T4 T5

T1 - 8 14 10 12
T2 4 - 15 11 13
T3 12 17 - 1 3
T4 12 17 5 - 3
T5 13 18 15 2 -

Solution

Step 0 Sp = {1} ,Sa = {2,3,4,5} ,r ( j)
j∈Sa

= 1; j = 2, ..,5 This is equivalent to choosing

the first city from the partial-list and eliminating this city form the available list.
Step 1 Select the new city: find j∗ = argmin

j∈Sa

{
c j,r[ j]

}
and set n = n + 1

min
j∈Sa

{c12,c13,c14,c15,c21,c31,c41,c51} = min{8,14,10,12,0,0,0,0} = 8 ; j∗ =

2. But ignore c21,c31,c41andc51 because city 1 is already considered in Sa.
Step 2 Insert city 2, and update r ( j) for the remaining jobs 3, 4, and 5 Sp = {1,2} ;Sa =

{3,4,5} ,c12 + c21 − c14 = 8 + 4 − 0 = 12

Step 1 Select new city:
min{c23,c24,c25,c32,c42,c52} = {15,11,13,17,17,18} = 11; j∗ = 4;n = 3. So
we have job 4 after job 1 or 2.

Step 2 Insert job 4 There are the following possibilities from {1,2} : {1,2,4}or
{1,4,2}
For{1,2,4} ,c12 + c24 − c14 = 8 + 11 − 10 = 9
For{1,4,2} ,c14 + c42 − c12 = 10 + 17 − 8 = 19
The minimum occurs for inserting job 2 after job 4. Update r ( j) for remaining
jobs 3, 5 i.e., r(3) = r(5) = 4
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Step 1 Select new job.
min
j∈Sa

{c34,c54,c43,c45} = min{1,2,5,3} ; j∗ = 3

min = c34 but 4 is already considered. Hence, j∗ = 3.
Step 2 Insert job 3

There are the following possibilities from {1,2,4}:
{1,2,4,3} : c43 + c31 − c41 = 5 + 12 − 12 = 5
{1,2,3,4} : c23 + c34 − c24 = 15 + 1 − 11 = 5
{1,3,2,4} : c13 + c32 − c12 = 14 + 17 − 8 = 25
Choosing {1,2,4,3} breaks the tie. Updating r [5] = 3

Step 1 Select new job.
Since job 5 remains, j∗ = 5

Step 2 Insert job 5
There are the following possibilities from {1,2,4,3}
{1,2,4,3,5} : c35 + c51 − c31 = 3 + 13 − 12 = 4
{1,2,3,4,3} : c45 + c53 − c43 = 3 + 15 − 5 = 13
{1,3,2,4,3} : c25 + c54 − c24 = 13 + 2 − 11 = 4
{1,5,2,4,3} : c15 + c52 − c12 = 12 + 18 − 8 = 22
Choosing {1,2,4,3,5} breaks the tie as the final sequence. The cost = c12 +
c24 + c43 + c35 = 8 + 11 + 5 + 3 = 27

The TSP construction is shown in Fig 2.3. The meaning of this solution is that batch
1 is first produced, followed by batch 2, then batch 4, then batch 3, and finally batch 5.

4

5

21

3

5

3

11

8

Fig. 2.3. TSP solution for Example 2.1



20 G. Onwubolu and D. Davendra

2.2.3 Automated Drilling Location and Hit Sequencing

Consider an automated drilling machine that drills holes on a flat sheet. The turret has
to be loaded with all the tools required to hit the holes. There is no removing or adding
of tools. The machine bed carries the flat plate and moves from home, locating each
scheduled hit on the flat plate under the machine turret. Then the turret rotates and
aligns the proper tool under the hit. This process continues until all hits are completed
and the bed returns to the home position.

There are two problems to be solved here. One is to load tools to the turrets and
the other is to locate or sequence hits. The objective is to minimize the cycle time
such that the appropriate tools are loaded and the best hits-sequence is obtained. The
problem can therefore be divided into two: (i) solve a TSP for the inter−hit sequencing;
(ii) solve a quadratic assignment problem (QAP) for the tool loading. [21] developed a
mathematical formulation to this problem and iterated between the TSP and QAP. Once
the hit sequence is known, the sequence of tools to be used is then fixed since each hit
requires specific tool. On the other hand, if we know the tool assignment on the turret,
we need to know the inter-hit sequence. Connecting each hit in the best sequence is
definitely a TSP, where we consider the machine bed home as the home for the TSP,
and each hit, a city. Inter−hit travel times and the rotation of the turret are the costs
involved and we take the maximum between them, i.e. inter−hit cost = max (inter−hit
travel time, turret rotation travel time). The cost to place tool k in position i and tool l
in position j is the time it takes the turret to rotate from i to j multiplied by the number
of times the turret switches from tool k to l.

The inter-hit travel times are easy to estimate from the geometry of the plate to be
punched and the tools required per punch. The inter−hits times are first estimated and
then adjusted according to the turret rotation times. This information constitutes the
data for solving the TSP. Once the hit sequence is obtained from the TSP, the tools
are placed, by solving the QAP. Let us illustrate the TSP−QAP solution procedure by
considering an example.

Example 2.2

A numerically controlled (NC) machine is to punch holes on a flat metal sheet and the
hits are shown in Fig 2.4. The inter-hit times are shown in Table 2.2. There are four tools
{a,b,c,d} and the hits are {1,2,3,4,5,6,7}. The machine turret can hold five tools and
rotates in clockwise or anti-clockwise direction. When the turret rotates from one tool
position to an adjacent position, it takes 60 time units. It takes 75 time units and 90
time units to two locations and three locations respectively. The machine bed home is
marked 0. Assign tools to the turret and sequence the hits.

Solution

From the given inter−hit times, modified inter-hit times have to be calculated using
the condition: inter−hit cost = max (inter-hit travel time, turret rotation travel time).
For example, for inter−hit between locations 1 and 2, the inter-hit travel time is 50
time units. Now, the tool for hit 1 is c while the tool for hit 2 is a. This means there is
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Table 2.2. Inter−hit travel times

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200
1 50 - 50 100 50 100 150 150
2 100 50 - 150 100 50 200 100
3 50 100 150 - 50 100 50 150
4 100 50 100 50 - 50 100 100
5 150 100 50 100 50 - 150 50
6 100 150 200 50 100 150 - 100
7 200 150 100 150 100 50 100 -

2a 5b 7a

1c 4d

3a 6c

100

100

0
Fig. 2.4. Flat metal sheet to be punched

change in tools because that the turret will rotate. The cost of rotation is 60 time units,
which exceeds the 50 inter-hit time unit. This means that the modified inter−hit time
between locations 1 and 2 is 60 time units. From the home to any hit is not affected. The
modified inter−hit times are shown in Table 2.3. This information is used for TSP. One
TSP solution for Table 2.2 is {0,1,2,3,4,5,6,7}, with a cost of 830. We used the DE
heuristic to obtain tool sequence of c → d → b → a → c → a, and the cost is 410. As can
be seen a better solution is obtain by the latter. Let us explain how we obtained the tool
sequence. Solving the TSP using DE, the sequence obtaineed is {2,5,6,8,7,4,1,3} or
{1,4,5,7,6,3,0,2}. What we do is to refer to Fig 2.4 and get the labels that corrspond
to this sequence as {c,d,b,a,c,a,a}. Hence the optimum sequence is c−d −b−a− c.
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Table 2.3. Modified inter−hit travel times (considering turret movements)

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200
1 50 - 60 100 60 100 150 150
2 100 60 - 150 100 60 200 100
3 50 100 150 - 60 100 60 150
4 100 60 100 60 - 60 100 100
5 150 100 60 100 60 - 150 60
6 100 150 200 60 100 150 - 100
7 200 150 100 150 100 60 100 -

2.2.4 Dynamic Pick and Place (DPP) Model of Placement Sequence and
Magazine Assignment

Products assembled by robots are typical in present manufacturing system. To satisfy
growing large scale demand of products efficient methods of product assemble is es-
sential to reduce time frame and maximize profit. The Dynamic Pick and Place (DPP)
model of Placement Sequence and magazine Assignment (SMA) is an interesting prob-
lem that could be solved using standard optimizing techniques, such as discrete or per-
mutative DE. DPP model is a system consists of robot, assemble board and magazine
feeder which move together with different speeds and directions depends on relative
distances between assemble points and also on relative distances between magazine
components. Major difficulty to solve this problem is that the feeder assignment de-
pends on assembly sequence and vice versa. Placement sequence and magazine assign-
ment (SMA) system has three major components robot, assembly board and component
slots. Robot picks components from horizontal moving magazine and places into the
predefined positions in the horizontal moving assembly board. To optimize production
time frame assembly sequence and feeder assignment need to be determined. There are
two models for this problem: Fixed Pick and place model and Dynamic Pick and Place
model. In the FPP model, the magazine moves in x direction only while the board moves
in both x-y directions and the robot arm moves between fixed “pick” and “place” points.
In the DPP model, both magazine and board moves along x-axis while the robot arm
moves between dynamic “pick” and “place” points. See Fig 2.5. Principal objective is
to minimize total tardiness of robot movement hence minimize total assembly time.

There are few researchers who had solved the assembly sequence and feeder assign-
ment problem by the DPP model. This is because this problem is quite challenging. [12]
had proved that DPP has eliminated the robot waiting time by the FPP model. [11] used
simulated annealing algorithm and obtained solutions better than previous approaches
but the computation efficiency was quite low. Wang et al. have developed their own
heuristic approach to come up with some good solutions. [19] proposed a new heuris-
tic to improve Wang′s approach based on the fact that assembly time depends on the
relative position of picking points as well as placement points. The main objective of
DPP model is to eliminate the robot waiting time. To avoid tardiness robot arm tends to
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movement direction

movement direction

Assembly

Feeder Magazine

x

y

Fig. 2.5. Robot movement

move in shortest possible path (i.e. always tries to move in vertical direction) if vertical
movement is not possible than it needs to stretch/compress its arm to avoid tardiness.
This section reveals the formulation of DPP problem statement using the following
notations:

Va speed of assembly arm
Vb speed of board
V¬m speed of magazine
N number of placement components
K number of component types (K ≤ N)
b(i) ith placement in a placement sequence
m(i) ith placement in a pick sequence
xm

i+1 = M1
i+1 + M2

i+1 interception distance of robot arm and
magzine

xb
i+1 = B1

i+1 + B2
i+1 interception distance of robot arm and

board
T (m(i) ,b(i)) robot arm travel time from magazine loca-

tion m(i) to board location m(i).
T (b(i) ,b(i)) robot arm travel time from board location

b(i) to magazine location m(i).
T place time taken to place the component
T pick time taken to pick the component
CT total assembly time

Fig 2.6 shows possible movements of board and magazine in DPP model [19]. Sup-
pose the robot arm has finished placing the ith component at point B(i) then moves to
pick the next (i+ 1)th component from slot M(i+1) on the magazine. If magazine is able
to travel distance d(a,c) = ||a − c|| before the robot actually arrives vertically towards
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y

Fig. 2.6. DPP model

magazine then no interception will occur, but if the magazine fails then robot has to
compress/stretch (intercept) its arm in x-direction of distance d(a,b) = ||a − b|| to get
the component without waiting for the component M(i+1) to arrive at point a.

Fig 2.6 shows that slot M (i+ 1) at point c has to reach at point a through travelling
distance d(a,c) = ||a − c|| to avoid robot interception. Suppose magazine only man-
aged to travel distance d(b,c) = ||b − c|| before the robot reached to the magazine i.e.

T (M(i),b(i))+ Tplace + yi
vr

≥ d(a,c)
vm

. Then the robot has to stretch its arm to get to the
point b. Hence tardiness is eliminated by robot interception. Exactly same movement
principles are applied when robot arm moves from magazine to board.

Where total assembly time CT need to be minimized subject to constraints:

1. Board to magazine

f (T (m(i),b(i))+ Tplace + yi
vr

≥ d(a,c)
vm

) T hen
T (b(i),m(i+ 1)) = yi

vm

else

T (b(i),m(i+ 1) =

√
(y2

i +(xm
i+1)

2)
vr

Endi f

2. Magazine to board

i f (T (b(i),m(i+ 1))+ Tpick + yi
vr

≥ d(a,c)
vb ) T hen

T (m(i+ 1),b(i+ 1)) = yi
vm

else

T (m(i+ 1),b(i+ 1) =

√
(y2

i+1+(xb
i+1)

2)
vr

Endi f
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The formulation of this problem shows that DPP model is a function of ith placement
in a sequence b(i), and ith component in a pick sequence, m(i). This is obviously a
permutative-based combinatorial optimization problem which is challenging to solve.

2.2.5 Vehicle Routing Problem

Vehicle routing problem is delivery of goods to customers by a vehicle from a depot
(see Fig 2.7). The goal here is to minimize the travelling distance and hence save cost.
Here too an objective function would be created and inserted into the optimizer in order
to obtain the best travelling path for which the cost is minimized. The application of
vehicle routing problem can be applied in many places. One example is bin−picking
problem. In some countries, the City Council bears a lot of extra costs on bin-picking
vehicle by not following shortest path.

Depot

routes

customer

Fig. 2.7. DPP model

The CVRP is described as follows: n customers must be served from a unique depot.
Each customer asks for a quantity for quantity qi (where i = 1,2,3, ...,n) of goods and
a vehicle of capacity Q is available for delivery. Since the vehicle capacity is limited,
the vehicle has to periodically return to the depot for reloading. Total tour demand is at
most Q (which is vehicle capacity) and a customer should be visited only once [5].

2.2.6 Facility Location Problem

In facility location problem, we are given n potential facility location and m customers
that must be served from these locations. There is a fixed cost c j of opening facility j.
There is a cost di j associated with serving customer i from facility j. We then have two
sets of binary variables which are y j is 1 if facility j is opened, 0 otherwise xi j is 1 if
customer i is served by facility j, 0 otherwise.
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Mathematically the facility location problem can be formulated as

min
n
∑
j=1

c jy j +
m
∑

i=1

n
∑
j=1

di jxi j

s.t.
n
∑
j=1

xi j = K ∀i

xi j ≤ y j ∀i, j
xi j ,y j ∈ {0, i} ∀i, j

(2.7)

2.3 Permutation-Based Combinatorial Approaches

This section describes two permutation−based combinatorial DE approaches which
were merely described in [10] and three other permutation−based combinatorial DE
approaches which are detailed in this book.

2.3.1 The Permutation Matrix Approach

The permutation matrix approach is the idea of Price, but Storn did the experiments that
document its performance [10]. The permutative matrix approach is based on the idea
of finding a permutative matrix that relates two vectors. For example, given two vectors
xr1 and xr1 defined in Equation 2.8:

xr1 =

⎛
⎜⎜⎜⎜⎝

1
3
4
5
2

⎞
⎟⎟⎟⎟⎠ , xr2 =

⎛
⎜⎜⎜⎜⎝

1
4
3
5
2

⎞
⎟⎟⎟⎟⎠ ; (2.8)

These two vectors encode tours, each of which is a permutation. The permutation
matrix, P, that xr1 and xr1 is defined as:

xr2 = P.xr1, with P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ (2.9)

for(i = 1; i < M;i++) //search all columns of P
{
if(elementp(i, i) of P is 0) // 1 not on diagonal
{
if(rand() >δdel) //if random number ex [0,1] exceeds δdel

{
j = 1; // find row where p(j, i) = 1
while(p(j, i)! = 1)j++;

}
}

}

Fig. 2.8. Algorithm to apply the factor δ to the difference permutation, P
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Price gives an algorithm that scales the effect of the permutation matrix as shown in
Fig 2.8.

2.3.2 Adjacency Matrix Approach

Storn developed the adjacency matrix approach outlined in this section [10]. There are
some rules that govern the adjacency matrix approach. When tours are encoded as city
vectors, the difference between rotated but otherwise identical tours is never zero. Ro-
tation, however, has no effect on a tour′s representation if it is encoded as an adjacency
matrix. Storn defined the notation

(x + y) mod 2 = x ⊕ y (2.10)

which is shorthand for modulo 2 addition, also known as the “exclusive or” logical
operation for the operation of the matrices. The difference matrix Δi j,

Δi j = Ai ⊕ A j (2.11)

is defined as the analog of DE′s traditional difference vector. Consider for example, the
valid TSP matrices A1 and A2,

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 0 1 0
0 0 0 1 1
0 1 1 0 0
1 0 1 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎟⎠ , (2.12)

and their difference given as

Δ1,2 = A1 ⊕ A2 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 0 1
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠ (2.13)

From the definition of A1 there are 1′s in column 1 in rows {2 and 5}, in column 2
there are 1′s in rows {1 and 4}, in column 3 there are 1′s in rows {4 and 5}, in column 4
there are 1′s in rows {2 and 3}, in column 5 there are 1′s in rows {1 and 3} respectively.
These pair−wise numbers define the adjacency relationships. Considering {2 and 5}
and {4 and 5} it is shown that ′5′ is common and {2 and 4} are adjacent. Considering
{1 and 4} and {1 and 3} it is shown that ′1′ is common and {1 and 3} are adjacent.
Continuing in this manner it could be observed that Fig 2.9 shows the graphical inter-
pretation of A1, A2 and Δi j.

2.3.3 Relative Position Indexing

In the relative position indexing approach [4], permutations are obtained by determin-
ing the relative sizes of the different parameters defining an instance. Let there be an
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c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

c1

c2

c3

c4

c5

A1 A2 1,2 = A1 A2

Fig. 2.9. Graphical interpretations of A1, A2 and the difference matrix Δi j

instance of four cities that define a tour such that these are initially generated by DE as
x1, f = {0.5 0.8 0.2 0.6}. Another instance of such four cities could simple be simply
defined as x2, f = {0.6 0.1 0.3 0.4}. In relative indexing, these instances encode per-
mutations given as x1 = {2 4 1 3} and x2 = {4 1 2 3} respectively. In the first case
for example the lowest value which is 0.2 is in the third position so it is allocated a label
of 1; the next higher value is 0.5 which occupies the first position and it is allocated the
label 2 and so on. Let there be a third instance denoted as x3, f = {0.6 0.8 0.3 0.5}.
Then we have x3 = {3 4 1 2}. The concept is fairly simple. The subscript f indicates
floating point.

The basic idea behind DE is that two vectors define a difference that can then be
added to another vector as a mutation. The same idea transfers directly to the realm
of permutations, or the permutation group. Just as two vectors in real space define a
difference vector that is also a vector, two permutations define a mapping that is also
a permutation. Therefore, when mutation is applied to with F = 0.5, the floating-point
mutant vector, v f , is

v f = xr3, f + F
(
xr1, f − xr2, f

)
= {0.6 0.8 0.3 0.5}+ 0.5{−0.1 0.7 − 0.1 0.2}
= {0.55 1.15 0.25 0.6}

(2.14)

The floating-point mutant vector, v f , is then transformed back into the integer do-
main by assigning the smallest floating value (0.25) to the smallest integer (1), the
next highest floating value (0.55) to the next highest integer (2), and so on to ob-
tain v = {2 4 1 3}. [10] noted that this backward transformation, or “relative position
indexing”, always yields a valid tour except in the unlikely event that two or more
floating−point values are the same. When such an event occurs, the trial vector must be
either discarded or repaired.

2.3.4 Forward/Backward Transformation Approach

The forward/backward transformation approach is the idea of [6], and is generally re-
ferred to as Onwubolu′s approach [10]. There are two steps involved:
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Forward Transformation

The transformation scheme represents the most integral part of the code. [6] developed
an effective routine for the conversion of permutative-based indices into the continuous
domain. Let a set of integer numbers be represented as xi ∈ xi,G which belong to solution
x j,i,G=0. The formulation of the forward transformation is given as:

x′
i = −1 + α xi (2.15)

where the value α is a small number.

Backward Transformation

The reverse operation to forward transformation, converts the real value back into inte-
ger as given in 2.16 assuming x′ to be the real value obtained from 2.15.

int [xi] =
(
1 + x′

i

)
/α (2.16)

The value xi is rounded to the nearest integer. [9], [2, 3] have applied this method
to an enhanced DE for floor shop problems.

2.3.5 Smallest Position Value Approach

The smallest position value (SPV) approach is the idea of [20] in which a unique solu-
tion representation of a continuous DE problem formulation is presented and the SPV
rule is used to determine the permutations. Applying this concept to the GTSP, in which
a tour is required, integer parts of the parameter values (s j) in a continuous DE problem
formulation represent the nodes (v j). Then the random key values (s j) are determined
by simply subtracting the integer part of the parameter x j from its current value consid-
ering the negative signs, i.e., s j = x j − int(x j). Finally, with respect to the random key
values (s j) , the smallest position value (SPV) rule of [20] is applied to the random key
vector to determine the tour π . They adapted the encoding concept of [1] for solving the
GTSP using GA approach, where each set Vj has a gene consisting of an integer part
between

[
1,

∣∣Vj
∣∣] and a fractional part between [0,1]. The integer part indicates which

node from the cluster is included in the tour, and the nodes are sorted by their fractional
part to indicate the order. The objective function value implied by a solution x with m
nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (2.17)

V = {1, ..,20} and V1 = {1, ..,5}, V2 = {6, , ..,10}, V3 = {11, ..,15} and V4 =
{16, ..,20}. Table 2.4 shows the solution representation of the DE for the GTSP.

In Table 2.4, noting that
[
1,

∣∣Vj
∣∣], the integer parts of the parameter values (s j) are

respectively decoded as {4,3,1,3}. These decoded values are used to extract the nodes
from the clusters V1,V2,V3,V4. The first node occupies the fourth position in V1, the
second node occupies the third position in V2, the third node occupies the first position in



30 G. Onwubolu and D. Davendra

Table 2.4. SPV Solution Representation

j 1 2 3 4

x j 4.23 -3.07 1.80 3.76
v j 4 8 11 18
s j 0.23 -0.07 0.80 0.76
π j 8 4 18 11

F (π) d8,4 d4,18 d18,11 d11,8

V3, while the fourth node occupies the third position in V4. Extracting these labels show
that the nodes are {4,8,11,18} The random key values are {0.23,−0.07,0.80,0.76};
finally, with respect to the random key values (s j), the smallest position value (SPV)
rule is applied to the random key vector by arranging the values in a non-descending
order {−0.07,0.23,0.76,0.08} to determine the tour π {8,4,18,11}. Using equation
2.17, the total tour length is then obtained as

F (π) =
m−1
∑
j=1

dπ jπ j+1 + dπmπ1 = d8,4 + d4,18 + d18,11 + d11,8

In this approach, a problem may rise such that when the DE update equations are
applied, any parameter value might be outside of the initial search range, which is re-
stricted to the size of each cluster. Let xmin [ j] and xmax [ j] represent the minimum and
maximum value of each parameter value for dimension j. Then they stand for the mini-
mum and maximum cluster sizes of each dimension j. Regarding the initial population,
each parameter value for the set Vj is drawn uniformly from [−Vj + 1,Vj + 1]. Obvi-
ously, xmax [ j] is restricted to [Vj + 1], whereas xmin [ j] is restricted to −xmax [ j]. During
the reproduction of the DE, when any parameter value is outside of the cluster size, it
is randomly reassigned to the corresponding cluster size again.

2.3.6 Discrete/Binary Approach

Tasgetiren et al. present for the first time in this chapter, the application of the DDE
algorithm to the GTSP. They construct a unique solution representation including both
cluster and tour information is presented, which handles the GTSP properly when car-
rying out the DDE operations. The Population individuals can be constructed in such
a way that first a permutation of clusters is determined randomly, and then since each
cluster contains one or more nodes, a tour is established by randomly choosing a single
node from each corresponding cluster. For example, n j stands for the cluster in the jth

dimension, whereas π j represents the node to be visited from the cluster n j.
Now, consider a GTSP instance with N = {1, ..,25} where the clusters are n1 =

{1, ..,5}, n2 = {6, ..,10}, n3 = {11, ..,15}, n4 = {16, ..,20} and n5 = {21, ..,25}.
Table 2.5 shows the discrete/binary solution representation of the DDE for the GTSP.

A permutation of clusters is determined randomly as {4,1,5,2,3}. This means that
the first node is randomly chosen from the fourth cluster (here 16 is randomly chosen);
the second node is randomly chosen from the first cluster (here 5 is randomly chosen);
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Table 2.5. Discrete/binary Solution Representation

j 1 2 3 4 5

n j 4 1 5 2 3

X π j 16 5 22 8 14

dπ j π j+1 d16,5 d5,22 d22,8 d8,14 d14,16

the third node is randomly chosen from the fifth cluster (here 22 is randomly chosen); the
fourth node is randomly chosen from the second cluster (here 8 is randomly chosen); and
the fifth node is randomly chosen from the third cluster (here 14 is randomly chosen).

As already illustrated, the objective function value implied by a solution x with m
nodes is the total tour length, which is given by:

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (2.18)

This leads to the total tour length being obtained as

F (π) =
m−1
∑
j=1

dπ jπ j+1 + dπmπ1 = d16,5 + d5,22 + d22,8 + d8,14 + d14,16

2.3.7 Discrete Set Handling Approach

Discrete set handling is an algorithmic approach how to handle in a numerical way
objects from discrete set. Discrete set usually consist of various elements with non-
numerical nature. In its canonical form DE is only capable of handling continuous vari-
ables. However extending it for optimization of discrete variables is rather easy. Only a
couple of simple modifications are required. In evolution instead of the discrete value
xi itself, we may assign its index, i, to x. Now the discrete variable can be handled as
an integer variable that is boundary constrained to range < 1,2,3, .....,N >. So as to
evaluate the objective function, the discrete value, xi, is used instead of its index i. In
other words, instead of optimizing the value of the discrete variable directly, we opti-
mize the value of its index i. Only during evaluation is the indicated discrete value used.
Once the discrete problem has been converted into an integer one, the methods for han-
dling integer variables can be applied. The principle of discrete parameter handling is
depicted in chapter 7.3.

2.3.8 Anatomy of Some Approaches

[10] carried out anatomy of the four permutation−based combinatorial DE approaches
described in their book (see Table 2.6). This exercise excludes smallest position value,
discrete/binary and discrete set handling approaches.
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Table 2.6. Anatomy of four permutation-based combinatorial DE approaches+

Approach Observations

Permutation Matrix In practice, this approach tends to stagnate because moves derived
from the permutation matrix are seldom productive. In addition, this
method is unable to distinguish rotated but otherwise equal tours.
Because they display a unique binary signature, equal tours can be
detected by other means, although this possibility is not exploited
in the algorithm described in Fig 2.8.

Adjacency Matrix (1) This scheme preserves good sections of the tour if the popu-
lation has almost converged, i.e., if most of the TSP matrices in
the population contain the same sub−tours. When the population
is almost converged, there is a high probability that the difference
matrix will contain just a few ones, which means that there are only
a few cities available for a 2−exchange.

Relative Position Indexing (1) This approach resembles traditional DE because they both use
vector addition, although their ultimate effect is to shuffle values
between parameters, i.e., generate permutations.
(2) This approach impedes DE′s self-steering mechanism because
it fails to recognize rotated tours as equal.
(3) A closer look, however, reveals that DE′s mutation scheme
together with the forward and backward transformations is, in
essence, a shuffling generator.
(4) In addition, this approach does not reliably detect identical
tours because the difference in city indices has no real signifi-
cance. For example, vectors with rotated entries, e.g., (2,3,4,5,1)
and (1,2,3,4,5), are the same tour, but their difference, e.g.,
(1,1,1,1,−4), is not zero.

Forward/backward Transfor-
mation

(1) This approach resembles traditional DE because they both use
vector addition, although their ultimate effect is to shuffle values
between parameters, i.e., generate permutations.
(2) This approach impedes DE′s self−steering mechanism because
it fails to recognize rotated tours as equal.
(3) In addition, Onwubolu′s method usually generates invalid tours
that must be repaired. Even though competitive results are reported
in Onwubolu there is reason to believe that the success of this ap-
proach is primarily a consequence of prudently chosen local heuris-
tics and repair mechanisms, not DE mutation.

+ Described in Price et al. (2005).

2.4 Conclusions

There has been some reservation that although DE has performed well on wide−sense
combinatorial problems, its suitability as a combinatorial optimizer is still a topic of
considerable debate and a definitive judgment cannot be given at this time. Moreover, it
is said that although the DE mutation concept extends to other groups, like the permuta-
tion group, there is no empirical evidence that such operators are particularly effective.
The opinion expressed in this book is similar to that of [18] that all good heuristics are
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able to transform a combinatorial problem into a space which is amenable for search,
and that there is no such thing as an “all-cure” algorithm for combinatorial problems.
For example, particle swarm optimization (PSO) works fairly well for combinatorial
problems, but only in combination with a good tailored heuristic. If such a heuristic is
used, then PSO can locate promising regions. The same logic applies to a number of
optimization approaches.

While the anatomy described in Table 2.6 favors the adjacency matrix and permuta-
tion matrix approaches, compared to the forward/backward transformation relative po-
sition indexing approaches, it is not known in the literature where the adjacency matrix
and permutation matrix approaches have been applied to real−life permutation-based
combinatorial problems.

In this book, it is therefore concluded that:

1. The original classical DE which Storn and Price developed was designed to solve
only problems characterized by continuous parameters. This means that only a sub-
set of real-world problems could be solved by the original canonical DE.

2. For quite some time, this deficiency made DE not to be employed to a vast number
of real-world problems which characterized by permutative-based combinatorial
parameters.

3. This book complements that of [10] and vice versa. Taken together therefore, both
books will be needed by practitioners and students interested in DE in order to
have the full potentials of DE at their disposal. In other words, DE as an area of
optimization is incomplete unless it can deal with real−life problems in the areas
of continuous space as well as permutative-based combinatorial domain.
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Abstract. Forward Backward Transformation and its realization, Enhanced Differential Evo-
lution algorithm is one of the permutative versions of Differential Evolution, which has been
developed to solve permutative combinatorial optimization problems. Novel domain conversions
routines, alongside special enhancement routines and local search heuristic have been incorpo-
rated into the canonical Differential Evolution in order to make it more robust and effective.

Three unique and challenging problems of Flow Shop Scheduling, Quadratic Assignment and
Traveling Salesman have been solved, utilizing this new approach. The promising results obtained
have been compared and analysed against other benchmark heuristics and published work.

3.1 Introduction

Complexity and advancement of technology have been in synch since the industrial
revolution. As technology advances, so does the complexity of formulation of these
resources.

Current technological trends require a great deal of sophisticated knowledge, both
hardware and software supported. This chapter discusses a specific notion of this knowl-
edge, namely the advent of complex heuristics of problem solving.

The notion of evolutionary heuristics is one which has its roots in common surround-
ing. Its premise is that co-operative behavior between many agents leads to better and
somewhat faster utilisation of the provided resources in the objective of finding the op-
timal solution to the proposed problem. The optimal solution here refers to a solution,
not necessarily the best, but one which can be accepted given the constraints.

Agent based heuristics are those which incorporate a multitude of solutions (unique
or replicated) which are then processed using some defined operators to yield new so-
lutions which are presumably better then the previous solutions. These solutions in turn
form the next generation of solutions. This process iterates for a distinct and predefined
number of generations.

One of the most prominent heuristic in the scope of real domain problems in Dif-
ferential Evolution (DE) Algorithm proposed by [31]. Real domain problems are those
whose values are essentially real numbers, and the entire solution string can have repli-
cated values. Some of the prominent problems are “De Jong” and “Shwafel” problems
which are multi−dimensional.

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 35–80.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The aim of the research was to ascertain the feasibility of DE to solve a unique class
of problems; Permutative Problems. Permutative problems belong to the Nondetermin-
istic Polynomial−Time hard (NP hard) problems. A problem is assigned to such a class
if it is solvable in polynomial time by a nondeterministic Turing Machine.

Two different versions of permutative DE are presented. The first is the Discrete
Differential Evolution [23, 26, 6] and its superset Enhanced Differential Evolution
Algorithm [8, 9].

3.2 Differential Evolution

In order to describe DE, a schematic is given in Fig 3.1.
There are essentially five sections to the code. Section 1 describes the input to the

heuristic. D is the size of the problem, Gmax is the maximum number of generations,
NP is the total number of solutions, F is the scaling factor of the solution and CR is
the factor for crossover. F and CR together make the internal tuning parameters for the
heuristic.

Section 2 outlines the initialisation of the heuristic. Each solution xi, j,G=0 is created
randomly between the two bounds x(lo) and x(hi) . The parameter j represents the in-
dex to the values within the solution and i indexes the solutions within the population.
So, to illustrate, x4,2,0 represents the second value of the fourth solution at the initial
generation.

After initialisation, the population is subjected to repeated iterations in section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers

r1,r2,r3 are selected, unique to each other and to the current indexed solution i in the
population in 4.1. Henceforth, a new index jrand is selected in the solution. jrand points
to the value being modified in the solution as given in 4.2. In 4.3, two solutions, x j,r1,G

and x j,r2,G are selected through the index r1 and r2 and their values subtracted. This

1.Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and initial bounds :x(lo),x(hi).

2.Initialize :

{
∀i ≤ NP ∧∀ j ≤ D : xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4. Mutate and recombine :
4.1 r1,r2,r3 ∈ {1,2, ....,NP},

randomly selected,except :r1 �= r2 �= r3 �= i
4.2 jrand ∈ {1,2, ...,D}, randomly selected once each i

4.3 ∀ j ≤ D,u j,i,G+1 =

⎧⎨
⎩

x j,r3,G +F · (x j,r1 ,G −x j,r2 ,G)
if (rand j [0,1] < CR∨ j = jrand)
x j,i,G otherwise

5. Select

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1

Fig. 3.1. Canonical Differential Evolution Algorithm
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value is then multiplied by F, the predefined scaling factor. This is added to the value
indexed by r3 .

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then
the new value replaces the old value in the current solution. Once all the values in
the solution are obtained, the new solution is vetted for its fitness or value and if this
improves on the value of the previous solution, the new solution replaces the previous
solution in the population. Hence the competition is only between the new child solution
and its parent solution.

[32] have suggested ten different working strategies. It mainly depends on the prob-
lem on hand for which strategy to choose. The strategies vary on the solutions to be
perturbed, number of difference solutions considered for perturbation, and finally the
type of crossover used. The following are the different strategies being applied.

Strategy 1: DE/best/1/exp: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 2: DE/rand/1/exp: ui,G+1 = xr1,G + F • (

xr2,G − xr3,G
)

Strategy 3: DE/rand−best/1/exp: ui,G+1 = xi,G + λ • (
xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 4: DE/best/2/exp: ui,G+1 = xbest,G + F • (
xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 5: DE/rand/2/exp: ui,G+1 = x5,G + F • (

xr1,G − xr2,G − xr3,G − xr4,G
)

Strategy 6: DE/best/1/bin: ui,G+1 = xbest,G + F • (xr1,G − xr2,G)
Strategy 7: DE/rand/1/bin: ui,G+1 = xr1,G + F • (

xr2,G − xr3,G
)

Strategy 8: DE/rand−best/1/bin: ui,G+1 = xi,G + λ • (
xbest,G − xr1,G

)
+F • (xr1,G − xr2,G)

Strategy 9: DE/best/2/bin: ui,G+1 = xbest,G + F • (
xr1,G − xr2,G − xr3,G − xr4,G

)
Strategy 10: DE/rand/2/bin: ui,G+1 = x5,G + F • (

xr1,G − xr2,G − xr3,G − xr4,G
)

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x repre-
sents a string denoting the solution to be perturbed, y is the number of difference solu-
tions considered for perturbation of x, and z is the type of crossover being used (exp:
exponential; bin: binomial).

DE has two main phases of crossover: binomial and exponential. Generally a child
solution ui,G+1 is either taken from the parent solution xi,G or from a mutated donor
solution vi,G+1 as shown: u j,i,G+1 = v j,i,G+1 = x j,r3,G + F • (

x j,r1,G − x j,r2,G
)
.

The frequency with which the donor solution vi,G+1 is chosen over the parent solu-
tion xi,G as the source of the child solution is controlled by both phases of crossover.
This is achieved through a user defined constant, crossover CR which is held constant
throughout the execution of the heuristic.

The binomial scheme takes parameters from the donor solution every time that the
generated random number is less than the CR as given by rand j [0,1] < CR, else all
parameters come from the parent solution xi,G.

The exponential scheme takes the child solutions from xi,G until the first time that
the random number is greater than CR, as given by rand j [0,1] < CR, otherwise the
parameters comes from the parent solution xi,G.
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To ensure that each child solution differs from the parent solution, both the expo-
nential and binomial schemes take at least one value from the mutated donor solution
vi,G+1.

3.2.1 Tuning Parameters

Outlining an absolute value for CR is difficult. It is largely problem dependent. However
a few guidelines have been laid down [31]. When using binomial scheme, intermediate
values of CR produce good results. If the objective function is known to be separable,
then CR = 0 in conjunction with binomial scheme is recommended. The recommended
value of CR should be close to or equal to 1, since the possibility or crossover occurring
is high. The higher the value of CR, the greater the possibility of the random number
generated being less than the value of CR, and thus initiating the crossover.

The general description of F is that it should be at least above 0.5, in order to provide
sufficient scaling of the produced value.

The tuning parameters and their guidelines are given in Table 3.1

Table 3.1. Guide to choosing best initial control variables

Control Variables Lo Hi Best? Comments

F: Scaling Factor 0 1.0+ 0.3 – 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 − 1.0 CR = 0, seperable

CR = 1, epistatic

3.3 Discrete Differential Evolution

The canonical DE cannot be applied to discrete or permutative problems without modi-
fication. The internal crossover and mutation mechanism invariably change any applied
value to a real number. This in itself will lead to in-feasible solutions.

The objective then becomes one of transformation, either that of the population or
that of the internal crossover/mutation mechanism of DE. For this chapter, it was de-
cided not to modify in any way the operation of DE strategies, but to manipulate the
population in such a way as to enable DE to operate unhindered.

Since the solution for the population is permutative, a suitable conversion routine was
required in order to change the solution from integer to real and then back to integer
after crossover. The population was generated as a permutative string. Two conversions
routines were devised, one was Forward transformation and the other Backward trans-
formation for the conversion between integer and real values. This new heuristic was
termed Discrete Differential Evolution (DDE) [28].

The basic outline DDE is given below.

1. Initial Phase
a) Population Generation: An initial number of discrete trial solutions are gener-

ated for the initial population.
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2. Conversion
a) Discrete to Floating Conversion: This conversion schema transforms the parent

solution into the required continuous solution.
b) DE Strategy: The DE strategy transforms the parent solution into the child

solution using its inbuilt crossover and mutation schemas.
c) Floating to Discrete Conversion: This conversion schema transforms the con-

tinuous child solution into a discrete solution.
3. Selection

a) Validation: If the child solution is feasible, then it is evaluated and accepted in
the next population, if it improves on the parent solution.

3.3.1 Permutative Population

The first part of the heuristic generates the permutative population. A permutative so-
lution is one, where each value within the solution is unique and systematic. A basic
description is given in Equation 3.1.

PG = {x1,G,x2,G, ...,xNP,G}, xi,G = x j,i,G

x j,i,G=0 = (int)
(

rand j [0,1]•
(

x(hi)
j + 1 − x(lo)

j

)
+

(
x(lo)

j

))

i f x j,i /∈ {
x0,i,x1,i, ...,x j−1,i

}
i = {1,2,3, ...,NP} , j = {1,2,3, ..,D} (3.1)

where PG represents the population, x j,i,G=0 represents each solution within the popu-

lation and x(lo)
j and x(hi)

j represents the bounds. The index i references the solution from
1 to NP, and j which references the values in the solution.

3.3.2 Forward Transformation

The transformation schema represents the most integral part of the code. [23] developed
an effective routine for the conversion.

Let a set of integer numbers be represented as in Equation 3.2:

xi ∈ xi,G (3.2)

which belong to solution x j,i,G=0 . The equivalent continuous value for xi is given as
1 • 102 < 5 • 102 ≤ 102.

The domain of the variable xi has length = 5 as shown in 5•102. The precision of the
value to be generated is set to two decimal places (2 d.p.) as given by the superscript
two (2) in 102 . The range of the variable xi is between 1 and 103. The lower bound
is 1 whereas the upper bound of 103 was obtained after extensive experimentation.
The upper bound 103 provides optimal filtering of values which are generated close
together [27].

The formulation of the forward transformation is given as:

x′
i = −1 +

xi • f • 5
103 − 1

(3.3)
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Equation 3.3 when broken down, shows the value xi multiplied by the length 5 and
a scaling factor f. This is then divided by the upper bound minus one (1). The value
computed is then decrement by one (1). The value for the scaling factor f was estab-
lished after extensive experimentation. It was found that when f was set to 100, there
was a tight grouping of the value, with the retention of optimal filtration′s of values.
The subsequent formulation is given as:

x′
i = −1 +

xi • f • 5
103 − 1

= −1 +
xi • f • 5
103 − 1

(3.4)

Illustration:

Take a integer value 15 for example. Applying Equation 3.3, we get:

x′
i = −1 +

15 • 500
999

= 6.50751

This value is used in the DE internal representation of the population solution pa-
rameters so that mutation and crossover can take place.

3.3.3 Backward Transformation

The reverse operation to forward transformation, backward transformation converts the
real value back into integer as given in Equation 3.5 assuming xi to be the real value
obtained from Equation 3.4.

int [xi] =
(1 + xi)• (

103 − 1
)

5 • f
=

(1 + xi)• (
103 − 1

)
500

(3.5)

The value xi is rounded to the nearest integer.

Illustration:

Take a continuous value -0.17. Applying equation Equation 3.5:

int [xi] =
(1 +−0.17)• (

103 − 1
)

500
= |3.3367| = 3

The obtained value is 3, which is the rounded value after transformation.
These two procedures effectively allow DE to optimise permutative solutions.

3.3.4 Recursive Mutation

Once the solution is obtained after transformation, it is checked for feasibility. Feasibil-
ity refers to whether the solutions are within the bounds and unique in the solution.

xi,G+1 =

⎧⎨
⎩

ui,G+1 if

{
u j,i,G+1 �= {

u1,i,G+1, ...,u j−1,i,G+1
}

x(lo) ≤ u j,i,G+1 ≤ x(lo)

xi,G

(3.6)
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Input :D,Gmax,NP≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],bounds :x(lo),x(hi).

Initialize :

⎧
⎪⎨
⎪⎩

∀i≤ NP∧∀ j ≤ D

{
xi, j,G=0 = x(lo)j + rand j [0,1]•

(
x(hi)j − x(lo)j

)

i f x j,i /∈ {
x0,i,x1,i, ...,x j−1,i

}
i= {1,2, ...,NP}, j = {1,2, ...,D},G= 0,rand j[0,1] ∈ [0,1]

Cost :∀i≤ NP : f (xi,G=0)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G< Gmax

∀i≤ NP

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ....,NP}, randomly selected, except :r1 �= r2 �= r3 �= i

jrand ∈ {1,2, ...,D}, randomly selected once each i

∀ j ≤ D,u j,i,G+1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
γ j,r3,G

) ← (
x j,r3,G

)
:
(
γ j,r1,G

) ← (
x j,r1,G

)
:
(
γ j,r2,G

) ← (
x j,r2,G

)
Forward Transformation

γ j,r3,G +F · (γ j,r1,G− γ j,r2,G)
if (rand j[0,1] <CR∨ j = jrand)(

γ j,i,G
) ← (

x j,i,G
)

otherwise(
u′i,G+1

)
=

(
ρ j,i,G+1

) ← (
ϕ j,i,G+1

)
Backward Transformation

Recursive Mutation :

ui,G+1 =

⎧
⎨
⎩
ui,G+1if

{
u j,i,G+1 �=

{
u1,i,G+1, ..,u j−1,i,G+1

}
x(lo) ≤ u j,i,G+1 ≤ x(hi)

xi,G otherwise
Select :

xi,G+1 =
{
ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G= G+1

Fig. 3.2. DDE schematic

Recursive mutation refers to the fact that if a solution is deemed in-feasible, it is
discarded and the parent solution is retained in the population as given in Equation 3.6.

The general schematic is given in Figure 3.2.
A number of experiments were conducted by DDE on Flowshop Scheduling prob-

lems. These are collectively given in the results section of this chapter.

3.4 Enhanced Differential Evolution

Enhanced Differential Evolution (EDE) [7, 8, 9], heuristic is an extension of the DDE
variant of DE. One of the major drawbacks of the DDE algorithm was the high fre-
quency of in-feasible solutions, which were created after evaluation. However, since
DDE showed much promise, the next logical step was to devise a method, which would
repair the in-feasible solutions and hence add viability to the heuristic.

To this effect, three different repairment strategies were developed, each of which
used a different index to repair the solution. After repairment, three different enhance-
ment features were added. This was done to add more depth to the code in order to solve
permutative problems. The enhancement routines were standard mutation, insertion and
local search. The basic outline is given below.

1. Initial Phase
a) Population Generation: An initial number of discrete trial solutions are gener-

ated for the initial population.
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2. Conversion
a) Discrete to Floating Conversion: This conversion schema transforms the parent

solution into the required continuous solution.
b) DE Strategy: The DE strategy transforms the parent solution into the child

solution using its inbuilt crossover and mutation schemas.
c) Floating to Discrete Conversion: This conversion schema transforms the con-

tinuous child solution into a discrete solution.
3. Mutation

a) Relative Mutation Schema: Formulates the child solution into the discrete so-
lution of unique values.

4. Improvement Strategy
a) Mutation: Standard mutation is applied to obtain a better solution.
b) Insertion: Uses a two-point cascade to obtain a better solution.

5. Local Search
a) Local Search: 2 Opt local search is used to explore the neighborhood of the

solution.

3.4.1 Repairment

In order to repair the solutions, each solution is initially vetted. Vetting requires the res-
olution of two parameters: firstly to check for any bound offending values, and secondly
for repeating values in the solution. If a solution is detected to have violated a bound, it
is dragged to the offending boundary.

Input : D
Array Solution,ViolateVal,MissingVal
int Counter
for (int i = 0; i < D; i++){

for (int j = 0; j < D; j ++){
if(i == Solution [ j]){

Counter ++;}
}
if(Counter > 1){

int Index = 0;
for(int j = 0; j < D; j ++){

if(i = Solution [ j]){
Index++
if(Index > 1){
ViolateVal

Append← j;}
}}}
if(Counter == 0){

MissingVal
Append← i;}

Counter = 0;
}

Fig. 3.3. Pseudocode for replication detection
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u j,i,G+1 =
{

x(lo) if u j,i,G+1 < x(lo)

x(hi) if u j,i,G+1 > x(hi) (3.7)

Each value, which is replicated, is tagged for its value and index. Only those values,
which are deemed replicated, are repaired, and the rest of the values are not manip-
ulated. A second sequence is now calculated for values, which are not present in the
solution. It stands to reason that if there are replicated values, then some feasible values
are missing. The pseudocode if given in Fig 3.3.

Three unique repairment strategies were developed to repair the replicated values:
front mutation, back mutation and random mutation, named after the indexing used for
each particular one.

3.4.1.1 Front Mutation
Front mutation indexes the repairment from the front of the replicated array with values
randomly selected from the missing value array as shown in Fig 3.4.

Array Solution,ViolateVal,MissingVal;
for(int i = 0; i < sizeo fViolateVal; i++)

Solution [ViolateVal [i]] = Random [MissingVal] ;
}

Fig. 3.4. Pseudocode for front mutation

Illustration:

In order to understand front mutation, assume an in−feasible solution of dimension
D = 10: x = {3,4,2,1,3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown, the values 3 and 5 are
repeated in the solution.

All first occurring values are now set as default: x = {3,4,2,1,3,5,6,7,10,5}.
So now only two positions are replicated, index 5 and 10 as given: x = {3,4,2,1,3

5
,5,

6,7,10, 5
10

}.

An array of missing values is now generated as MV = {8,9}, since values 8 and 9
are missing from the solution.

An insertion array is now randomly generated, which specifies the position of the
insertion of each value: IA = {2,1}. Since only two values were missing so only
two random numbers are generated. In this respect, the first value 2 in IA, outlines
that the value pointed by index 1 in MV which is 8 is to be placed in the sec-
ond indexed in-feasible solution and likewise for the other missing value given as:
x = {3,4,2,1,9

1
,5,6,7,10,8

2
}.
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3.4.1.2 Back Mutation
Back mutation is the opposite of front mutation, and indexes the repairment from the
rear of the replicated array as given in Fig 3.5.

Array Solution,ViolateVal,MissingVal;
for(int i = sizeo fViolateVal; i > 0; i++)

Solution [ViolateVal [i]] = Random [MissingVal] ;
}

Fig. 3.5. Pseudocode for back mutation

Illustration:

In order to understand back mutation assume the same in-feasible solution as in the
previous example: x = {3,4,2,1,3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown the values 3 and 5 are
repeated in the solution.

All last occurring values are now set as default: x = {3,4,2,1,3,5,6,7,10,5}. So
now only two positions are replicated, index 1 and 6 as given: x = {3

1
,4,2,1,3,5

6
,6,

7,10,5}.
An array of missing values is now generated as MV = {8,9}, since values 8 and 9

are missing from the solution.
An insertion array is now randomly generated, which specifies the position of the

insertion of each value: IA = {2,1}. Since only two values were missing so only two
random numbers are generated. In this respect, the first value 1 in IA, outlines that
the value pointed by index 1 in MV which is 8 is to be placed in the first indexed in-
feasible solution and likewise for the other missing value given as: x = {8

1
,4,2,1,3,9

2
,

6,7,10,5}.

3.4.1.3 Random Mutation
The most complex repairment schema is the random mutation routine. Each value is
selected randomly from the replicated array and replaced randomly from the missing
value array as given in Fig 3.6.

Array Solution,ViolateVal,MissingVal;
for(int i = sizeo fViolateVal; i > 0; i++)

Solution
[
ViolateValRandom[i]

]
= MissingValRandom[i];

ViolateVal
delete← ViolateValRandom[i];

MissingVal
delete← MissingValRandom[i];

}
Fig. 3.6. Pseudocode for random mutation
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Since each value is randomly selected, the value has to be removed from the array
after selection in order to avoid duplication. Through experimentation it was shown that
random mutation was the most effective in solution repairment.

Illustration:

Following the previous illustrations, assume the same in-feasible solution: x = {3,4,2,1,
3,5,6,7,10,5}.

The first step is to isolate all repetitive values in the solution. These are highlighted
in the following array: x = {3,4,2,1,3,5,6,7,10,5}. As shown the values 3 and 5 are
repeated in the solution.

A random array is created which sets the default values: DV = {2,1}, . Here, it
shows that the first replicated value which is 3 should be set as default on its second
occurrence. The second replicated value 5 should be set as default on its first occurrence:
x = {3,4,2,1,3,5,6,7,10,5}. The in-feasible values are now in index 1 and 10 given
as x = {3

1
,4,2,1,3,5,6,7,10, 5

10
}

An array of missing values is now generated as MV = {8,9}, since values 8 and 9
are missing from the solution.

An insertion array is now randomly generated, which specifies the position of the in-
sertion of each value: IA = {1,2} . Since only two values were missing so only two ran-
dom numbers are generated. In this respect, the first value 1 in IA, outlines that the value
pointed by index 1 in MV which is 8 is to be placed in the first indexed in-feasible so-
lution and likewise for the other missing value given as: x = {8

1
,4,2,1,3,5,6,7,10, 9

10
}.

3.4.2 Improvement Strategies

Improvement strategies were included in order to improve the quality of the solutions.
Three improvement strategies were embedded into the heuristic. All of these are one
time application based. What this entails is that, once a solution is created each strategy
is applied only once to that solution. If improvement is shown, then it is accepted as the
new solution, else the original solution is accepted in the next population.

3.4.2.1 Standard Mutation
Standard mutation is used as an improvement technique, to explore random regions of
space in the hopes of finding a better solution. Standard mutation is simply the exchange
of two values in the single solution.

Two unique random values are selected r1,r2 ∈ rand [1,D], where as r1 �= r2 . The

values indexed by these values are exchanged: Solutionr1

exchange↔ Solutionr1 and the so-
lution is evaluated. If the fitness improves, then the new solution is accepted in the
population.

Illustration:

In Standard Mutation assume a solution given as: x = {8,4,2,1,3,5,6,7,10,9} . Two
random numbers are generated within the bounds: Rnd = {3,8}. These are the indexes
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of the values in the solution: x = {8,4,2
3
,1,3,5,6,7

8
,10,9}. The values are exchanged

x = {8,4,7,1,3,5,6,2,10,9} and the solution is evaluated for its fitness.

3.4.2.2 Insertion
Insertion is a more complicated form of mutation. However, insertion is seen as provid-
ing greater diversity to the solution than standard mutation.

As with standard mutation, two unique random numbers are selected r1,r2 ∈ rand
[1,D]. The value indexed by the lower random number Solutionr1 is removed and the
solution from that value to the value indexed by the other random number is shifted one
index down. The removed value is then inserted in the vacant slot of the higher indexed
value Solutionr2 as given in Fig 3.7.

temp = Solutionr1 ;
for (int i = r1; i < r2; i++)

Solutioni = Solutioni++;
}
Solutionr2 = temp;

Fig. 3.7. Pseudocode for Insertion

Illustration:

In this Insertion example, assume a solution given as: x = {8,4,2,1,3,5,6,7,10,9}.
Two random numbers are generated within the bounds: Rnd = {4,7}. These are the in-

dexes of the values in the solution: x = {8,4,7,

∣∣∣∣14 ,3,5, 6
7

∣∣∣∣ ,2,10,9}. The lower indexed

value is removed from the solution x = {8,4,7,

∣∣∣∣4 ,3,5, 6
7

∣∣∣∣ ,2,10,9}, and all values from

the upper index are moved one position down x = {8,4,7, |3 ,5,6, | ,2,10,9}. The lower
indexed value is then slotted in the upper index: x = {8,4,7,3,5,6,1,2,10,9}.

3.4.3 Local Search

There is always a possibility of stagnation in Evolutionary Algorithms. DE is no ex-
emption to this phenomenon.

Stagnation is the state where there is no improvement in the populations over a period
of generations. The solution is unable to find new search space in order to find global
optimal solutions. The length of stagnation is not usually defined. Sometimes a period
of twenty generation does not constitute stagnation. Also care has to be taken as not
be confuse the local optimal solution with stagnation. Sometimes better search space
simply does not exist. In EDE, a period of five generations of non-improving optimal
solution is classified as stagnation. Five generations is taken in light of the fact that EDE
usually operates on an average of hundred generations. This yields to the maximum of
twenty stagnations within one run of the heuristic.
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α = /0
while α |< D

i = rand [1,D] , i /∈ α
β = {i}
while β |< D

j = rand [1,D] , j /∈ β

If Δ (x, i, j) < 0;

{
xi = x j
x j = xi

β = β ∪{ j}
α = α ∪{ j}

Fig. 3.8. Pseudocode for 2 Opt Local Search

To move away from the point of stagnation, a feasible operation is a neighborhood
or local search, which can be applied to a solution to find better feasible solution in the
local neighborhood. Local search in an improvement strategy. It is usually independent
of the search heuristic, and considered as a plug-in to the main heuristic. The point of
note is that local search is very expensive in terms of time and memory. Local search
can sometimes be considered as a brute force method of exploring the search space.
These constraints make the insertion and the operation of local search very delicate
to implement. The route that EDE has adapted is to check the optimal solution in the
population for stagnation, instead of the whole population. As mentioned earlier five
(5) non-improving generations constitute stagnation. The point of insertion of local
search is very critical. The local search is inserted at the termination of the improvement
module in the EDE heuristic.

Local Search is an approximation algorithm or heuristic. Local Search works on a
neighborhood. A complete neighborhood of a solution is defined as the set of all solu-
tions that can be arrived at by a move. The word solution should be explicitly defined
to reflect the problem being solved. This variant of the local search routine is described
in [24] as is generally known as a 2-opt local search.

The basic outline of a Local Search technique is given in Fig 3.8. A number α is
chosen equal to zero (0) (α = /0). This number iterates through the entire population,
by choosing each progressive value from the solution. On each iteration of α , a random
number i is chosen which is between the lower (1) and upper (D) bound. A second
number β starts at the position i, and iterates till the end of the solution. In this second
iteration another random number j is chosen, which is between the lower and upper
bound and not equal to value of β . The values in the solution indexed by i and j are
swapped. The objective function of the new solution is calculated and only if there is
an improvement given as Δ (x, i, j) < 0, then the new solution is accepted.

Illustration:

To understand how this local search operates, consider two solutions x1 and x2. The
operations parameters of these solutions are:
Upper bound x(hi) = 5
Lower bound x(lo) = 1
Solution size D = 5
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Input :D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1],and bounds :x(lo),x(hi).

Initialize :

⎧⎪⎨
⎪⎩

∀i ≤ NP∧∀ j ≤ D

{
xi, j,G=0 = x(lo)

j + rand j [0,1]•
(

x(hi)
j −x(lo)

j

)
i f x j,i /∈ {x0,i,x1,i, ...,x j−1,i

}
i = {1,2, ...,NP}, j = {1,2, ...,D},G = 0,rand j [0,1] ∈ [0,1]

Cost : ∀i ≤ NP : f
(
xi,G=0

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mutate and recombine :
r1,r2,r3 ∈ {1,2, ....,NP}, randomly selected, except :r1 �= r2 �= r3 �= i
jrand ∈ {1,2, ...,D}, randomly selected once each i

∀ j ≤ D,u j,i,G+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
γ j,r3,G

)← (
x j,r3,G

)
:
(
γ j,r1,G

)← (
x j,r1 ,G

)
:(

γ j,r2,G
)← (

x j,r2,G
)

Forward Transformation
γ j,r3,G +F · (γ j,r1,G − γ j,r2,G)

if (rand j[0,1] < CR∨ j = jrand)(
γ j,i,G

)← (
x j,i,G

)
otherwise

(
u′

i,G+1

)
=

⎧⎪⎨
⎪⎩

(
ρ j,i,G+1

)← (
ϕ j,i,G+1

)
Backward Transformation(

u j,i,G+1
)mutate← (

ρ j,i,G+1
)

Mutate Schema

if
(

u′
j,i,G+1

)
/∈ {(u0,i,G+1

)
,
(
u1,i,G+1

)
, ..
(
u j−1,i,G+1

)}
(
u j,i,G+1

)←
(

u′
i,G+1

)
Standard Mutation(

u j,i,G+1
)←

(
u′

i,G+1

)
Insertion

Select :

xi,G+1 =
{

ui,G+1 if f (ui,G+1) ≤ f (xi,G)
xi,G otherwise

G = G+1
Local Search xbest = Δ (xbest , i, j) if stagnation

Fig. 3.9. EDE Template

x1 = {2,5,4,3,1} and x1 = {2,5,4,3,1}
Each value in x1 and x2 are paired up and considered.

Δ (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

{2,4} ,{2,2} ,{2,1} ,{2,5} ,{2,3} ,
{5,4} ,{5,2} ,{5,1} ,{5,5} ,{5,3} ,
{3,4} ,{3,2} ,{3,1} ,{3,5} ,{3,3} ,
{1,4} ,{1,2} ,{1,1} ,{1,5} ,{1,3}

⎫⎪⎪⎬
⎪⎪⎭

The cost of the move Δ (x, i, j) is evaluated. If this value is negative the objective
function value for the problem is decrement by Δ (x, i, j). Hence the solution is im-
proved to a near optimal solution.

The complete template of Enhanced Differential Evolution is given in Fig 3.9.

3.5 Worked Example

This worked example outlines how EDE is used to solve the flowshop scheduling prob-
lem. The problem to be solved is the one represented in Table 3.26 (Section 3.6.1: Flow
Shop Scheduling Example).
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Table 3.2. Table of solutions

Solution 1 2 3 4 5

1 1 2 3 4 5
2 2 1 4 3 5
3 4 5 3 1 2
4 3 1 4 5 2
5 4 2 5 3 1
6 5 4 3 2 1
7 3 5 4 1 2
8 1 2 3 5 4
9 2 5 1 4 3
10 5 3 1 2 4

Table 3.3. Table of initial population with fitness

Fitness Population

32 1 2 3 4 5
31 2 1 4 3 5
33 4 5 3 1 2
35 3 1 4 5 2
34 4 2 5 3 1
31 5 4 3 2 1
33 3 5 4 1 2
32 1 2 3 5 4
32 2 5 1 4 3
31 5 3 1 2 4

As presented, this is a 5 job - 4 machine problem.
This example follows the schematic presented in Fig 3.10.
Initially the operating parameters are outlined:

NP = 10
D = 5
Gmax = 1

For the case of illustration, the operating parameter of NP and Gmax are kept at a
minimum. The other parameters x(lo), x(hi) and D are problem dependent.

Step (1) initialises the population to the required number of solutions.
Since NP is initialised to 10, only 10 permutative solutions are generated. Table 3.2

gives the solution index which represents the positions of each value in the solution in
the leading row.

The next procedure is to calculate the objective function of each solution in the pop-
ulation. The time flow matrix for each solution is presented. For detailed explanation
on the construction of the time flow matrix, please see Section 3.6.1.
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Solution1 =

6 10 14 19 20
10 16 18 23 26
13 19 23 24 29
17 23 28 31 32

Solution2 =

4 10 15 19 20
10 14 19 21 24
13 17 20 25 28
17 21 24 30 31

Solution3 =

5 6 10 16 20
9 12 14 20 26

10 15 19 23 29
13 26 24 28 33

Solution4 =

4 10 15 16 20
6 14 19 22 28

10 17 20 25 31
15 21 24 26 35

Solution5 =

5 9 10 14 20
9 15 18 20 24

10 18 21 25 28
13 22 23 30 34

Solution6 =

1 6 10 14 20
4 10 12 20 24
7 11 16 23 27
8 14 21 27 31

Solution7 =

4 5 10 16 20
6 9 14 20 26

10 13 15 23 29
15 16 19 27 33

Solution8 =

6 10 14 15 20
10 16 18 21 25
13 19 23 26 27
17 23 28 29 32

Solution9 =

4 5 11 16 20
10 13 17 21 23
13 16 20 22 27
17 18 24 27 32

Solution10 =

1 5 11 15 20
4 7 15 21 25
7 11 18 24 26
8 16 22 28 3

The fitness of each solution is given as the last right bottom entry in each solu-
tion matrix for that particular solution. The population can now be represented as in
Table 3.3.

The optimal value and its corresponding solution, for the current generation is
highlighted.

Step (2) is the forward transformation of the solution into real numbers. Using Equa-
tion 3.3, each value in the solution is transformed. An example of the first Solution1 =
{1,2,3,4,5} is given as an illustration:

x1 = −1 + 1•500
999 = −0.499 x2 = −1 + 2•500

999 = 0.001

x3 = −1 + 3•500
999 = 0.501 x4 = −1 + 4•500

999 = 1.002

x5 = −1 + 5•500
999 = 1.502

Table 3.4 gives the table with values in real numbers. The results are presented in 3
d.p. format.

In Step (3), DE strategies are applied to the real population in order to find better
solutions.

An example of DE operation is shown. Strategy DE/rand/1/exp is used for this ex-
ample: ui,G+1 = xr1,G + F • (xr2,G − xr3,G

)
.
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Table 3.4. Table of initial solutions in real number format

Solution 1 2 3 4 5
Index

1 0.001 -0.499 1.002 0.501 1.502
2 -0.499 0.001 0.501 1.002 1.502
3 1.002 1.502 0.501 -0.499 0.001
4 0.501 -0.499 1.002 1.502 0.001
5 1.002 0.001 1.502 0.501 -0.499
6 1.502 1.002 0.501 0.001 -0.499
7 0.501 1.502 1.002 -0.499 0.001
8 -0.499 0.001 0.501 1.502 1.002
9 0.001 1.502 -0.499 1.002 0.501
10 1.502 0.501 -0.499 0.001 1.002

Table 3.5. Table of selected solutions

Operation 1 2 3 4 5

X1 -0.499 0.001 0.501 1.002 1.502
X2 0.501 -0.499 1.002 1.502 0.001
X3 1.502 1.002 0.501 0.001 -0.499
(X1 - X2) -1 0.5 -0.501 -0.5 1.501
F (X1 - X2) -0.2 0.1 -0.1002 -0.1 0.3002
X3 + F (X1 - X2) 1.302 1.102 0.4008 -0.099 -0.1988

Three random numbers are required to index the solutions in the population given as
r1,r2 and r3. These numbers can be chosen as 2, 4 and 6. F is set as 0.2. The procedure
is given in Table 3.5.

Table 3.6. Table of final solutions in real number format

Solution 1 2 3 4 5
Index

1 -0.435 0.321 0.432 1.543 0.987
2 1.302 1.102 0.401 -0.099 -0.198
3 0.344 1.231 -2.443 -0.401 0.332
4 0.334 -1.043 1.442 0.621 1.551
5 -1.563 1.887 2.522 0.221 -0.432
6 0.221 -0.344 -0.552 0.886 -0.221
7 0.442 1.223 1.423 2.567 0.221
8 -0.244 1.332 0.371 1.421 1.558
9 0.551 0.384 0.397 0.556 0.213
10 -0.532 1.882 -0.345 -0.523 0.512
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Table 3.7. Table of solutions with backward transformation

Solution 1 2 3 4 5
Index

1 1.128 2.639 2.86 5.08 3.97
2 4.599 4.199 2.798 1.8 1.6
3 2.685 4.457 -2.883 1.196 2.661
4 2.665 -0.085 4.879 3.238 5.096
5 -1.124 5.768 7.036 2.439 1.134
6 2.439 1.31 0.895 3.768 1.556
7 2.881 4.441 4.841 7.126 2.439
8 1.51 4.659 2.739 4.837 5.11
9 3.098 2.765 2.791 3.108 2.423
10 0.935 5.758 1.308 0.953 3.02

Table 3.8. Rounded solutions

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 -3 1 3
4 3 -1 5 3 5
5 -1 6 7 2 1
6 2 1 1 4 2
7 3 4 5 7 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 6 1 1 3

Using the above procedure the final solution for the entire population can be given
as in Table 3.6.

Backward transformation is applied to each solution in Step (4). Taking the first
Solution1 = {−0.435,0.321,0.432,1.543,0.987}, a illustrative example is given using
Equation 3.5.

x1 = (1+−0.435)•999
500 = 1.128 x2 = (1+0.001)•999

500 = 2.639

x3 = (1+0.501)•999
500 = 2.86 x4 = (1+1.002)•999

500 = 5.08

x5 = (1+1.502)•999
500 = 3.97

The raw results are given in Table 3.7 with tolerance of 3 d.p.
Each value in the population is rounded to the nearest integer as given in Table 3.8.
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Table 3.9. Bounded solutions

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Table 3.10. Replucated values

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Recursive mutation is applied in Step (5). For this illustration, the random mutation
schema is used as this was the most potent and also the most complicated.

The first routine is to drag all bound offending values to the offending boundary. The
boundary constraints are given as x(lo) = 1 and x(hi) = 5 which is lower and upper bound
of the problem. Table 3.9 gives the bounded solution.

In random mutation, initially all the duplicated values are isolated as given in
Table 3.10.

The next step is to randomly set default values for each replication. For example,
in Solution 1, the value 3 is replicated in 2 indexes; 2 and 3. So a random number is
generated to select the default value of 3. Let us assume that index 3 is generated. In
this respect, only value 3 indexed by 2 is labelled as replicated. This routine is applied
to the entire population, solution piece wise in order to set the default values.

A possible representation can be given as in Table 3.11.
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Table 3.11. Ramdomly replaced values

Solution 1 2 3 4 5
Index

1 1 3 3 5 4
2 5 4 3 2 2
3 3 4 1 1 3
4 3 1 5 3 5
5 1 5 5 2 1
6 2 1 1 4 2
7 3 4 5 5 2
8 2 5 3 5 5
9 3 3 3 3 2
10 1 5 1 1 3

Table 3.12. Missing values

Solution 1 2 3
Index

1 2
2 1
3 2 5
4 2 4
5 3 4
6 3 5
7 1
8 1 4
9 1 4 5
10 2 4

The italicised values in Table 3.11 have been selected as default through randomisa-
tion. The next phase is to find those values which are not present in the solution. All the
missing values in the solutions are given in Table 3.12.

In the case of Solutions 1, 2 and 7, it is very simple to repair the solution, since there
is only one missing value. The missing value is simply placed in the replicated index for
that solution. In the other cases, positional indexes are randomly generated. A positional
index tells as to where the value will be inserted in the solution. A representation is
given in Table 3.13.

Table 3.13 shows that the first missing value will be placed in the second replicated
value index in the solution, and the second missing value will be placed in the first
replicated index value. The final placement is given in Table 3.14.

The solutions are now permutative. The fitness for each solution is calculated in
Table 3.15.
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Table 3.13. Positional Index

Solution 1 2 3
Index

1 2
2 1
3 2 5
4 2 4
5 3 4
6 3 5
7 1
8 1 4
9 1 4 5
10 2 4

Table 3.14. Final placement of missing values

Solution 1 2 3 4 5
Index

1 1 2 3 5 4
2 5 4 3 2 1
3 5 4 1 2 3
4 2 1 4 3 5
5 3 5 4 2 1
6 2 1 5 4 3
7 3 4 5 1 2
8 2 1 3 5 4
9 1 5 3 4 2
10 1 5 4 2 3

Table 3.15. Fitness of new population

Fitness Population

32 1 2 3 5 4
31 5 4 3 2 1
34 5 4 1 2 3
31 2 1 4 3 5
31 3 5 4 2 1
32 2 1 5 4 3
33 3 4 5 1 2
30 2 1 3 5 4
33 1 5 3 4 2
35 1 5 4 2 3
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Table 3.16. Random Index

Solution Index

1 4 2
2 1 4
3 2 3
4 3 5
5 1 5
6 2 4
7 1 2
8 3 4
9 3 1
10 2 4

Table 3.17. Fitness of new mutated population

Solution Fitness Solution Index

1 2 3 4 5

1 32 1 5 3 2 4
2 31 2 4 3 5 1
3 34 5 1 4 2 3
4 32 2 1 5 3 4
5 35 1 5 4 2 3
6 33 2 4 5 1 3
7 32 4 3 5 1 2
8 32 2 1 5 3 4
9 33 3 5 1 4 2
10 35 1 2 4 5 3

Table 3.18. Population after mutation

Fitness Population

32 1 2 3 5 4
31 5 4 3 2 1
34 5 4 1 2 3
31 2 1 4 3 5
31 3 5 4 2 1
32 2 1 5 4 3
32 4 3 5 1 2
30 2 1 3 5 4
33 1 5 3 4 2
35 1 5 4 2 3
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Table 3.19. Random Index

Solution Index

1 2 4
2 1 3
3 2 5
4 1 5
5 2 4
6 3 5
7 1 4
8 3 5
9 1 4
10 2 5

Table 3.20. Insertion process 1

Index 1 2 3 4 5

Solution 1 1 3 5 4

Table 3.21. Insertion process 2

Index 1 2 3 4 5

Solution 1 1 3 5 4

Step (6) describes the Standard Mutation schema. In standard mutation, a single
value swap occurs. Assume that a list of random indexes in Table 3.16 are generated
which show which values are to be swapped.

It can be seen from Table 3.16, that the values indexed by 4 and 2 are to be swapped
in Solution 1 and so forth for all the other solutions. The new possible solutions are
given in Table 3.17 with their calculated fitness values. The highlighted values are the
mutated values.

Only solution 7 improved in the mutation schema and replaces the old solution on
position 7 in the population. The final population is given in Table 3.18.

Step (7), Insertion also requires the generation of random indexes for cascading of
the solutions. A new set of random numbers can be visualized as in Table 3.19.

In Table 3.19 the values are presented in ascending order. Taking solution 1, the
first process is to remove the value indexed by the first lower index (2) as shown in
Table 3.20.

The second process is to move all the values from the upper index (4) to the lower
index as in Table 3.21.

The last part is to insert the first removed value from the lower index into the place
of the now vacant upper index aas shown in Table 3.22.
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Table 3.22. Insertion process 3

Index 1 2 3 4 5

Solution 1 1 3 5 2 4

Table 3.23. Population after insertion

Fitness Population

31 1 3 5 2 4
31 4 3 5 2 1
32 5 1 2 3 4
33 1 4 3 5 2
33 3 4 2 5 1
31 2 1 4 3 5
33 3 5 1 4 2
32 2 1 5 4 3
33 5 3 4 1 2
34 1 4 2 3 5

Table 3.24. Final population

Fitness Population

31 1 3 5 2 4
31 4 3 5 2 1
32 5 1 2 3 4
33 1 4 3 5 2
33 3 4 2 5 1
31 2 1 4 3 5
33 3 5 1 4 2
32 2 1 5 4 3
33 5 3 4 1 2
34 1 4 2 3 5

Likewise, all the solutions are cascaded in the population and their new fitness cal-
culated. The population is then represented as in Table 3.23.

After Insertion, four better solutions were found. These solutions replace the older
solution in the population. The final population is given in Table 3.24.

DE postulates that each child solution replaces it direct parent in the population
if it has better fitness. Comparing the final population in Table 3.24 with the initial
population in Table 3.2, it can be seen that seven solutions produced even or better
fitness than the solutions in the old population. Thus these child solutions replace the
parent solutions in the population for the next generation as given in Table 3.25.



3 Forward Backward Transformation 59

Table 3.25. Final population with fitness

Fitness Population

31 1 3 5 2 4
31 5 4 3 2 1
33 4 5 3 1 2
31 2 1 4 3 5
31 3 5 4 2 1
31 2 1 4 3 5
32 4 3 5 1 2
30 2 1 3 5 4
32 2 5 1 4 3
31 5 3 1 2 4

The new solution has a fitness of 30, which is a new fitness from the previous gen-
eration. This population is then taken into the next generation. Since we specified the
Gmax = 1, only 1 iteration of the routine will take place.

Using the above outlined process, it is possible to formulate the basis for most per-
mutative problems.

3.6 Flow Shop Scheduling

One of the common manufacturing tasks is scheduling. Often in most manufacturing
systems, a number of tasks have to be completed on every job. Usually all these jobs
have to follow the same route through the different machines, which are set up in a
series. Such an environment is called a flow shop (FSS) [30].

The standard three-field notation [20] used is that for representing a scheduling prob-
lem as α|β |F (C), where α describes the machine environment, β describes the de-
viations from standard scheduling assumptions, and F (C) describes the objective C
being optimised. This research solves the generic flow shop problem represented as
n/m/F||F (Cmax).

Stating these problem descriptions more elaborately, the minimization of completion
time (makespan) for a flow shop schedule is equivalent to minimizing the objective
function ℑ:

ℑ =
n

∑
j=1

Cm, j (3.8)

s.t.

Ci, j = max
(
Ci−1, j,Ci, j−1

)
+ Pi, j (3.9)

where, Cm, j = the completion time of job j, Ci, j = k (any given value), Ci, j =
j

∑
k=1

C1,k;

Ci, j =
j

∑
k=1

Ck,1 machine number, j job in sequence, Pi, j processing time of job j on
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P1, j1 P1, j2

P2, j1

Pm, j1

Pi, jk Pi, jk+1

Pi+1, jk+1Pi+1, jk

P1, jn

Pm, jn

Fig. 3.10. Directed graph representation for the makespan

machine i. For a given sequence, the mean flow time, MFT = 1
n

m
∑

i=1

n
∑
j=1

ci j, while the

condition for tardiness is cm, j > d j. The constraint of Equation 3.9 applies to these two
problem descriptions.

3.6.1 Flow Shop Scheduling Example

Generally, two versions of flowshop problems exist. Finding an optimal solution when
the sequence changes within the schedule are flexible and changes allowed are generally
harder to formulate and calculate. The schedules which are fixed are simpler to calculate
and are known as permutative flow shops.

A simple representation of flowshop is given through the directed graph method. The
critical path in the directed graph gives the makespan for the current schedule. For a
given sequence j1, .., jn , the graph is constructed as follows: For each operation of a
specific job jk on a specific machine i, there is a node (i, jk) with the processing time
for that job on that machine. Node (i, jk), i = 1, ...,m− 1 and k = 1, ....,n − 1 , has arcs
going to nodes (i+ 1, jk) and (i, jk+1). Nodes corresponding to machine m have only
one outgoing arc, as do the nodes in job jn. Node (m, jn), has no outgoing arcs as it
is the terminating node and the total weight of the path from first to last node is the
makespan for that particular schedule [30]. A schmetic is given in Fig 3.10.

Assume a representation of five jobs on four machines given in Table 3.26.
Given a schedule {1,2,3,4,5} which is the schedule { j1, j2, j3, j4, j5}, implying that

all jobs in that sequence will transverse all the machines.
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Table 3.26. Example of job times

jobs j1 j2 j3 j4 j5

P1, jk 6 4 4 5 1
P2, jk 4 6 2 4 3
P3, jk 3 3 4 1 3
P4, jk 4 4 5 3 1

6 4 4 5 1

4

4

4

4

1 33

3

3

3 155

6 2

Fig. 3.11. Directed graph representation of the schedule

The directed graph representation for this schedule is given in Fig 3.11.
Each node on the graph represents the time taken to process that particular job on

that particular machine. The bold lines represent the critical path for that particular
schedule.

The Gantt chart for this schedule is represented in Fig 3.12.
The critical path is highlighted The critical path represents jobs, which are not de-

layed or buffered. This is important for those shops, which have machines with no
buffering between them. The total time for this schedule is 34. However, from this rep-
resentation, it is difficult to make out the time. A better representation of the directed
graph and critical path is given in Fig 3.13.

The cumulative time nodes gives the time accumulated at each node. The final node
gives the makespan for the total schedule.

The total time Gantt chart is presented in Fig 3.14.
As the schedule is changed, so does the directed graph.
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6 4 4 5 1

4 6 2 4 3

3 3 4 1 3

4 4 5 13

Makespan

Fig. 3.12. Gantt chart representation of the schedule
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Fig. 3.13. Directed time graph and critical path

3.6.2 Experimentation for Discrete Differential Evolution Algorithm

The first phase of experimentation was used on FSS utilising DDE algorithm. Eight
varying problem instances were selected from the literature, which represents a range
of problem complexity. The syntax of the problem n x m represents n machines and m
jobs. These problem instances were generated randomly for previous tests and range
from small problem types (4x4 to 15x25), medium problem type (20x50) and large
problem types (25x75 and 30x100).
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6 10 14 19 20

10 16 18 23 26

13 19 23 24 29

17 23 28 3231

Makespan

Fig. 3.14. Accumulated time Gantt Chart

Table 3.27. DDE FSS operational values

Parameter Values

NP 150
CR 0.9
F 0.3

Table 3.28. Comparison of 10 DE-strategies using the 10x25 problem data set

Strategy

1 2 3 4 5 6 7a 8 9 10

Makespan 211.8 209.2 212.2 212.4 208.6 210.6 207.8 212.4 210 207.2
Total tardiness 3001.8 3034.6 3021.4 3089.2 3008 2987.8 2936.4 3034.2 2982.8 2990.6
Mean flowtime 105.75 105.11 105.52 107.71 104.68 103.03 103.17 105.32 104.7 104.16

aStrategy 7 is the best.

In order to operate, the first phase is to obtain the optimal tuning parameters. All
parameters were obtained empirically. The values are given in Table 3.27.

The second phase was to obtain the optimal strategy. Through experience in solving
these problems, it became evidently clear that not all the strategies behaved similarly,
hence the need to isolate the most promising one from the ten different.

An arbitrary problem of average difficulty was selected, in this case the 10x25 job
problem, and using the selected parameters, ten iterations were done. The average val-
ues are presented in Table 3.28. Using the multi-objective function of makespan, tardi-
ness and flowtime, Strategy 7 was selected as the optimal.
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Table 3.29. DDE FSS makespan

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 44 39 -
5x10 5 79 79 -
8x15 5 143 138 -
10x25 5 205 202 -
15x25 5 248 253 98.02
20x50 5 468 470 99.57
25x75 5 673 715.4 94.07
30x100 5 861 900.4 95.62

Table 3.30. DDE FSS total tardiness

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 54 52.6 -
5x10 5 285 307 92.83
8x15 5 1072 1146 93.54
10x25 5 2869 2957 97.02
15x25 5 3726 3839.4 97.06
20x50 5 13683 14673.6 93.25
25x75 5 30225 33335.6 90.67
30x100 5 51877 55735.6 93.07

With all the experimentation parameters selected, the FSS problems were evaluated.
Three different objective functions were to be analysed. The first was the makespan.
The makespan is equivalent to the completion time for the last job to leave the system.
The results are presented in Table 3.29.

The second objective is the tardiness. Tardiness relates to the number of tardy jobs;
jobs which will not meet their due dates and which are scheduled last. This reflects the
on-time delivery of jobs and is of paramount importance to production planning and
control [30]. The results are given in Table 3.30.

The final objective is the mean flowtime of the system. It is the sum of the weighted
completion time of the n jobs which gives an indication of the total holding or inventory
costs incurred by the schedule. The results are presented in Table 3.31.

Tables 3.29 − 3.31 show the comparison between Genetic Algorithm (GA) devel-
oped in a previous study for flowshop scheduling [28], compared with DDE. Upon
analysis it is seen that, DE algorithm performs better than GA for small-sized prob-
lems, and competes appreciably with GA for medium to large-sized problems. These
results are not compared to the traditional methods since earlier study of [4] show that
GA based algorithm for flow shop problems outperform the best existing traditional
approaches such as the ones proposed by [16] and [39].
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Table 3.31. DDE Mean Flowtime

m x n Generated
problems

GA DE (Solution)
GA/DE

4x4 5 21.38 22.11 -
5x10 5 35.3 36.34 97.14
8x15 5 63.09 66.41 95
10x25 5 98.74 103.89 95.04
15x25 5 113.85 122.59 93.03
20x50 5 216 234.32 92.18
25x75 5 317 354.77 89.35
30x100 5 399.13 435.49 91.56

Table 3.32. EDE FSS operational values

Parameter Values

Strategy 9
NP 150
CR 0.3
F 0.1

These obtained results formed the basic for the enhancement of DDE. It should be
noted that even with a very high percentage of in-feasible solutions obtained, DDE
managed to outperform GA.

3.6.3 Experimentation for Enhanced Differential Evolution Algorithm

The second phase of experiments outline experimentation of EDE to FSS. As with
the DDE, operational parameters were empirically obtained as given in Table 3.32. As
can be noticed the parameters are very different from those used in DDE for the same
problems. This is attributed to the new routines added to DDE which adds another layer
of stochastically to EDE.

The first section of experimentation was conducted on the same group of FSS prob-
lems as GA and DDE to obtain comparison results. In this respect, only makespan
was evaluated. For all the problem instances, EDE performs optimally compared to the
other two heuristics. Columns 5 to 7 in Table 3.33 gives the effectiveness comparisons
of EDE, DDE and GA, with EDE outperforming both DDE and GA.

With the validation completed for EDE, more extensive experimentation was con-
ducted to test its complete operational range in FSS.

The second set of benchmark problems is from the three papers of [3], [33] and [15].
All these problem sets are available in the OR Library [29]. The EDE results are com-
pared with the optimal values reported for these problems as given in Table 3.34. The
conversion is given in Equation 3.10:
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Δ =
(H −U)• 100

U
(3.10)

where H represents the obtained value and U is the reported optimal. For the Car and
Hel set of problems, EDE easily obtains the optimal values, and on average around 1%
above the optimal for the reC instances.

Table 3.33. FSS comparison

DDE GA EDE % % %
DDE−GA EDE−DDE EDE−GA

F 5 x 10 79.4 - 78 - 101.79 -
F 8 x 15 138.6 143 134 103.17 103.43 106.71
F 10 x 25 207.6 205 194 98.74 107.01 105.67
F 15 x 25 257.6 248 240 96.27 107.33 103.33
F 20 x 50 474.8 468 433 98.56 109.65 108.08
F 25 x 75 715.4 673 647 94.07 110.57 104.01
F 30 x 100 900.4 861 809 95.62 111.29 106.42
Ho Chang 213 213 213 100 100 100

Table 3.34. Comparison of FSS instances

Instance Size Optimal EDE % to Opti-
mal

Car 1 11 x 5 7038 7038 0
Car 2 13 x 4 7166 7166 0
Car 3 12 x 5 7312 7312 0
Car 4 14 x 4 8003 8003 0
Car 5 10 x 6 7720 7720 0
Car 6 8 x 9 8505 8505 0
Car 7 7 x 7 6590 6590 0
Car 8 8 x 8 8366 8366 0
Hel 2 20 x 10 135 135 0
reC 01 20 x 5 1247 1249 0.16
reC 03 20 x 5 1109 1111 0.18
reC 05 20 x 5 1242 1249 0.56
reC 07 20 x 10 1566 1584 1.14
reC 09 20 x 10 1537 1574 2.4
reC 11 20 x 10 1431 1464 2.3
reC 13 20 x 15 1930 1957 1.39
reC 15 20 x 15 1950 1984 1.74
reC 17 20 x 15 1902 1957 2.89
reC 19 30 x 10 2093 2132 1.86
reC 21 30 x 10 2017 2065 2.37
reC 23 30 x 10 2011 2073 3.08
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Table 3.35. EDE comparison with DEspv and PSO over the Taillard benchmark problem

GA PSOspv DEspv DEspv+exchange EDE

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 0.98 0.66
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 1.81 0.77
20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 1.75 0.57
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.41 0.37 0.4 0.36
50x10 5.61 1.41 4.83 1.16 4.12 1.1 2.41 0.9 3.18 0.94
50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 4.05 0.65
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.41 0.29
100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 1.46 0.36
100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 3.61 0.36
200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 0.95 0.18

0 50 100 150 200

820

840

860

880

900

920

Number of Generations

F
it

ne
ss

F 30 x 100 History

Fig. 3.15. Sample output of the F30x100 FSS problem.

The third experimentation module is referenced from [37]. These sets of problems
have been extensively evaluated (see [22, 34]). This benchmark set contains 100 par-
ticularly hard instances of 10 different sizes, selected from a large number of randomly
generated problems.

A maximum of ten iterations was done for each problem instance. The population
was kept at 100, and 100 generations were specified. The results represented in Table
3.35, are as quality solutions with the percentage relative increase in makespan with
respect to the upper bound provided by [37] as given by Equation 3.10.
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The results obtained are compared with those produced by GA, Particle Swarm Op-
timisation (PSOspv) DE (DEspv) and DE with local search (DEspv+exchange) as in [38].
The results are tabulated in Table 3.35.

It can be observed that EDE compares outstandingly with other algorithms. EDE
basically outperforms GA, PSO and DEspv. The only serious competition comes from
the new variant of DEspv+exchange. EDE and DEspv+exchange are highly compatible. EDE
outperforms DEspv+exchange on the data sets of 20x10, 20x20, 50x5 and 200x5. In the
remainder of the sets EDE performs remarkbly to the values reported by DEspv+exchange.
On average EDE displays better standard deviation than that of DEspv+exchange. This
validates the consistency of EDE compared to DEspv+exchange. It should be noted that
DEspv+exchange utilises local search routine as its search engine.

A sample generation for the F 30 x 100 FSS problem is given in Fig 3.15.

3.7 Quadratic Assignment Problem

The second class of problems to be conducted by EDE was the Quadratic Assignment
Problem (QAP). QAP is a NP-hard optimisation problem [35] which was stated for the
first time by [18]. It is considered as one of the hardest optimisation problems as general
instances of size n ≥ 20 cannot be solved to optimally [10].

It can be described as follows: Given two matrices

A = (ai j) (3.11)

B = (bi j) (3.12)

find the permutation π∗ minimising

min
π∈∏(n)

f (π) =
n

∑
i=1

n

∑
j=1

ai j • bπ(i)π( j) (3.13)

where ∏(n) is a set of permutations of n elements.
The problem instances selected for the QAP are from the OR Library [29] and re-

ported in [13]. There are two separate problem modules; regular and irregular.
The difference between regular and irregular problems is based on the flow−

dominance. Irregular problems have a flow−dominance statistics larger than 1.2. Most
of the problems come from practical applications or have been randomly generated with
non-uniform laws, imitating the distributions observed in real world problems.

In order to differentiate among the classes of QAP instances, the flow dominance fd
is used. It is defined as a coefficient of variation of the flow matrix entries multiplied by
100. That is:

f d =
100σ

μ
(3.14)

where:

μ =
1
n2 •

n

∑
i=1

n

∑
j=1

bi j (3.15)
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σ =

√
1
n2 •

n

∑
i=1

n

∑
j=1

(bi j − μ)2 (3.16)

3.7.1 Quadratic Assignment Problem Example

As example for the QAP is given as the faculty location problem given in Fig 3.16.
The objective is to allocate location to faculties. There is a specific distance be-

tween the faculties, and there is a specified flow between the different faculties, as
shown by the thickness of the lines. An arbitrary schedule can be {2,1,4,3}, as given in
Fig 3.16. Two distinct matrices are required: one distance and one flow matrix as given
in
Tables 3.36 and 3.37.

Applying the QAP formula, the function becomes:

Sequence =

⎧⎪⎪⎨
⎪⎪⎩

D(1,2)• F (1,2)+
D(1,3)• F (2,4)+
D(2,3)• F (1,4)+
D(3,4)• F (3,4)

⎫⎪⎪⎬
⎪⎪⎭

Flow

Loc 4, Fac 3

Loc 1, Fac 2

Loc 2, Fac 1

Loc 3, Fac 4

Fig. 3.16. Faculty location diagram for 2, 1, 4, 3
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Table 3.36. Distance Matrix

Distance Value

D(1,2) 22
D(1,3) 53
D(2,3) 40
D(3,4) 55

Table 3.37. Flow Matrix

Flow Value

F(2,4) 1
F(1,4) 2
F(1,2) 3
F(3,4) 4

Flow

Loc 4, Fac 2

Loc 1, Fac 3

Loc 2, Fac 4

Loc 3, Fac 1

Fig. 3.17. Faculty location diagram for 3, 4, 1, 2

Cost =

⎧⎪⎪⎨
⎪⎪⎩

(22 • 3)+
(53 • 1)+
(40 • 2)+
(55 • 4)

⎫⎪⎪⎬
⎪⎪⎭

= 419

Now, assume a different permutation: {3,4,1,2}. The faculty location diagram is
now given in Fig 3.17.



3 Forward Backward Transformation 71

The solution for this permutation is 395, The flow matrix remains the same, and only
the distance matrix changes to reflect the new faculty location.

3.7.2 Experimentation for Irregular QAP

The first phase as with FSS, was to empirically obtain the operational values as given
in Table 3.38. These values were used for both regular and irregular instances.

The first set of experimentations was on irregular instances. These are those with
flow dominance of greater than 1.

The results are presented in Table 3.39. The results are presented as the factor dis-
tance from the optimal: Δ = (H−U)

U ; where H is the obtained result and U is the optimal.

Table 3.38. EDE QAP operational values

Parameter Value

Strategy 1
CR 0.9
F 0.3

Table 3.39. EDE Irregular QAP comparison

Instant flow
dom

n Optimal TT RTS SA GH HAS-
QAP

EDE

bur26a 2.75 26 5246670 0.208 - 0.1411 0.012 0 0.006
bur26b 2.75 26 3817852 0.441 - 0.1828 0.0219 0 0.0002
bur26c 2.29 26 5426795 0.17 - 0.0742 0 0 0.00005
bur26d 2.29 26 3821225 0.249 - 0.0056 0.002 0 0.0001
bur26e 2.55 26 5386879 0.076 - 0.1238 0 0 0.0002
bur26f 2.55 26 3782044 0.369 - 0.1579 0 0 0.000001
bur26g 2.84 26 10117172 0.078 - 0.1688 0 0 0.0001
bur26h 2.84 26 7098658 0.349 - 0.1268 0.0003 0 0.0001
chr25a 4.15 26 3796 15.969 16.844 12.497 2.6923 3.0822 0.227
els19 5.16 19 17212548 21.261 6.714 18.5385 0 0 0.0007
kra30a 1.46 30 88900 2.666 2.155 1.4657 0.1338 0.6299 0.0328
kra30b 1.46 30 91420 0.478 1.061 1.065 0.0536 0.0711 0.0253
tai20b 3.24 20 122455319 6.7 - 14.392 0 0.0905 0.0059
tai25b 3.03 25 344355646 11.486 - 8.831 0 0 0.003
tai30b 3.18 30 637117113 13.284 - 13.515 0.0003 0 0.0239
tai35b 3.05 35 283315445 10.165 - 6.935 0.1067 0.0256 0.0101
tai40b 3.13 40 637250948 9.612 - 5.43 0.2109 0 0.027
tai50b 3.1 50 458821517 7.602 - 4.351 0.2124 0.1916 0.001
tai60b 3.15 60 608215054 8.692 - 3.678 0.2905 0.0483 0.0144
tai80b 3.21 80 818415043 6.008 - 2.793 0.8286 0.667 0.0287
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The comparison is done with Tabu Search (TT) [36], Reative Tabu Search (RTS) [1],
Simulated Annealing (SA) [5], Genetic Hybrid (GH) [2] and Hybrid Ant Colony
(HAS) [13].

Two trends are fairly obvious. The first is that for bur instances, HAS obtains the
optimal, and is very closely followed by EDE by a margin of only 0.001 on average.
For the tai instances, EDE competes very well, obtaining the best values for the larger
problems and also obtains the best values for the kra problems. TT and RTS are shown
to be not well adapted to irregular problems, producing 10% worse solution at times.
GH which does not have memory retention capabilities does well, but does not produce
optimal results with any regularity.

3.7.3 Experimentation for Regular QAP

The second section of QAP problems is discussed in this section. This is the set of
regular problem as discussed in [13]. Regular problems are distinguished as having a
flow−dominance of less than 1.2.

Comparison was done with the same heuristics as in the previous section. The results
are presented in Table 3.40.

Three different set of instances are presented: nug, sko, tai and wil. Apart for the
nug20 instance, EDE finds the best solutions for all the reported instances. It can be
observed that TT, GH and SA perform best for sko problems and RTS performs best
for tai problems. On comparison with the optimal values, EDE obtains values with
tolerance of only 0.01 on average for all instances.

A sample generation for Bur26a problem is given in Fig 3.18.

Table 3.40. EDE Regular QAP comparison

Instant flow
dom

n Optimal TT RTS SA GH HAS-
QAP

EDE

nug20 0.99 20 2570 0 0.911 0.07 0 0 0.018
nug30 1.09 30 6124 0.032 0.872 0.121 0.007 0.098 0.005
sko42 1.06 42 15812 0.039 1.116 0.114 0.003 0.076 0.009
sko49 1.07 49 23386 0.062 0.978 0.133 0.04 0.141 0.009
sko56 1.09 56 34458 0.08 1.082 0.11 0.06 0.101 0.012
sko64 1.07 64 48498 0.064 0.861 0.095 0.092 0.129 0.013
sko72 1.06 72 66256 0.148 0.948 0.178 0.143 0.277 0.011
sko81 1.05 81 90998 0.098 0.88 0.206 0.136 0.144 0.011
tai20a 0.61 20 703482 0.211 0.246 0.716 0.628 0.675 0.037
tai25a 0.6 25 1167256 0.51 0.345 1.002 0.629 1.189 0.026
tai30a 0.59 30 1818146 0.34 0.286 0.907 0.439 1.311 0.018
tai35a 0.58 35 2422002 0.757 0.355 1.345 0.698 1.762 0.038
tai40a 0.6 40 3139370 1.006 0.623 1.307 0.884 1.989 0.032
tai50a 0.6 50 4941410 1.145 0.834 1.539 1.049 2.8 0.033
tai60a 0.6 60 7208572 1.27 0.831 1.395 1.159 3.07 0.037
tai80a 0.59 80 13557864 0.854 0.467 0.995 0.796 2.689 0.031
wil50 0.64 50 48816 0.041 0.504 0.061 0.032 0.061 0.004
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Fig. 3.18. Sample output of the Bur26a problem

3.8 Traveling Salesman Problem

The third and final problem class to be experimented is the Traveling Salesman Problem
(TSP). The TSP is a very well known optimisation problem. A traveling salesman has
a number, N, cities to visit. The sequence in which the salesperson visits different cities
is called a tour. A tour is such that every city on the list is visited only once, except that
the salesperson returns to the city from which it started. The objective to is minimise
the total distance the salesperson travels, among all the tours that satisfy the criterion.

Several mathematical formulations exist for the TSP. One approach is to let xi j be 1
if city j is visited immediately after i, and be 0 if otherwise [24, 25]. The formulation of
TSP is given in Equations 3.17 to 3.20.

min
N

∑
i=1

N

∑
j=1

ci j • xi j (3.17)

Each city is left after visiting subject to

N

∑
j=1

xi j = 1;∀i (3.18)

Ensures that each city is visited
N

∑
i=1

xi j = 1;∀ j (3.19)

No subtours
xi j = 0 or 1 (3.20)
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Table 3.41. City distance matrix

City A B C D

E 2 3 2 4
D 1 5 1
C 2 3
B 1

No subtours mean that there is no need to return to a city before visiting all the
other cities. The objective function accumulates time as you go from city i to j. Con-
straint 3.18 ensures that the salesperson leaves each city. Constraint 3.19 ensures that
the salesperson enters each city. A subtour occurs when the salesperson returns to a city
prior to visiting all other cities. Restriction 3.20 enables the TSP formulation differs
from the Linear Assignment Problem programming (LAP) formulation.

3.8.1 Traveling Salesman Problem Example

Assume there are five cities {A,B,C,D,E}, for a traveling salesman to visit as shown
in Fig 3.19. The distance between each city is labelled in the vertex.

In order to understand TSP, assume a tour, where a salesman travels through all the
cities and returns eventually to the original city. Such a tour can be given as A → B →
C → D → E → A. The graphical representation for such a tour is given in Fig 3.20.
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Fig. 3.19. TSP distance node graph



3 Forward Backward Transformation 75

1 3

1

4

2

Fig. 3.20. Graphical representation for the tour A → B → C → D → E → A
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Fig. 3.21. Graphical representation for the tour A → D → C → E → B → A
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The total cost for this tour is 11.
The objective of TSP optimisation is to find a tour with the minimal value. Assume

now another tour A → D → C → E → B → A . The graphical representation is given in
Fig 3.21.

The cost for this new tour is 8, which is a decrease from the previous tour of 11. This
is now an improved tour. Likewise many other tours can be found which have better
values.

3.8.2 Experimentation on Symmetric TSP

Symmetric TSP problem is one, where the distance between two cities is the same to
and fro. This is considered the easiest branch of TSP problem.

The operational parameters for TSP is given in Table 3.42.
Experimentation was conducted on the City problem instances. These instances are

of 50 cities and the results are presented in Table 3.43. Comparison was done with Ant
Colony (ACS) [11], Simulated Annealing (SA) [21], Elastic Net (EN) [12], and Self
Organising Map (SOM) [17]. The time values are presented alongside.

In comparison, ACS is the best performing heuristic for TSP. EDE performs well,
with tolerance of 0.1 from the best performing heuristics on average.

3.8.3 Experimentation on Asymmetric TSP

Asymmetric TSP is the problem where the distance between the different cities is dif-
ferent, depending on the direction of travel. Five different instances were evaluated and
compared with Ant Colony (ACS) with local search [11]. The experimetational results
are given in Table 3.44.

Table 3.42. EDE TSP operational values

Parameter Value

Strategy 9
CR 0.9
F 0.1

Table 3.43. EDE STSP comparison

Instant ACS SA EN SOM EDE
(average) (average) (average) (average) (average)

City set 1 5.88 5.88 5.98 6.06 5.98
City set 2 6.05 6.01 6.03 6.25 6.04
City set 3 5.58 5.65 5.7 5.83 5.69
City set 4 5.74 5.81 5.86 5.87 5.81
City set 5 6.18 6.33 6.49 6.7 6.48
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Table 3.44. EDE ATSP comparison

Instant Optimal ACS 3-OPT ACS 3-OPT EDE
best average

p43 5620 5620 5620 5639
ry48p 14422 14422 14422 15074
ft70 38673 38673 38679.8 40285
kro124p 36230 36230 36230 41180
ftv170 2755 2755 2755 6902
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Fig. 3.22. Sample output of the City set 1 problem

ACS heuristic performs very well, obtaining the optimal value, whereas EDE has an
average performance. The difference is that ACS employs 3−Opt local search on each
generation of its best solution, where as EDE has a 2−Opt routine valid only in local
optima stagnation.

A sample generation for City set 1 problem is given in Fig 3.22.

3.9 Analysis and Conclusion

One the few ways in which the validation of a permutative approach for a real domain
based heuristic can be done is empirically; through expensive experimentation’s across
different problem classes, as attempted here. Through the results obtained, it can be
stated that EDE is a valid approach for permutative problems. One of the differing evi-
dent features, is that the operating parameters for each class of problems is unique. No
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definite conclusions can be made on this aspect, apart from the advise for simulations
for tuning.

Another important feature of EDE is the level of stochasticity. DE has two levels;
first the initial population and secondly the crossover. EDE has five; in addition to the
two mentioned, the third is repairment, the fourth is mutation and fifth is crossover. All
these three are embedded on top of the DE routine, so the DE routines are a directive
search guide with refinement completed in the subsequent routines.

Local search was included in EDE because permutative problems usually require
triangle inequality routines. TSP is notorious in this respect, and most heuristics have
to employ local search in order to find good solutions. ACS [11], Scatter Search [14]
apply local search on each and every solution. This increases computational time and
reduces effectiveness of the heuristic for practical applications. The idea of EDE was to
only employ local search when stagnation is detected, and to employ the simplest and
time economical one.

In terms of produced results, EDE is effective, and more so since it was left in non-
altered form for all the problem classes. This is a very important feature since it negates
re-programming for other problem instances. Another important feature is that EDE
is fairly fast for these problems. Naturally, the increase in problem size increases the
execution time, however EDE does not employ any analytical formulation within its
heuristic, which keeps down the execution time while producing the same results as
with other heuristics.

It is hoped that the basic framework of this approach will be improved to include
more problem instances, like Job Shop Scheduling and other manufacturing scheduling
problems.
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Abstract. We introduce some standard types of combinatorial optimization problems, and indi-
cate ways in which one might attack them using Differential Evolution. Our main focus will be on
indexing by relative position (also known as order based representation); we will describe some
related approaches as well. The types of problems we will consider, which are abstractions of
ones from engineering, go by names such as knapsack problems, set coverings, set partitioning,
and permutation assignment. These are historically significant types of problems, as they show
up frequently, in various guises, in engineering and elsewhere. We will see that a modest amount
of programming, coupled with a sound implementation of Differential Evolution optimization,
can lead to good results within reasonable computation time. We will also show how Differential
Evolution might be hybridized with other methods from combinatorial optimization, in order to
obtain better results than might be found with the individual methods alone.

4.1 Introduction

The primary purpose of this chapter is to introduce a few standard types of combina-
torial optimization problems, and indicate ways in which one might attack them using
Differential Evolution. Our main focus will be on indexing by relative position (also
known as order based representation); we will describe some related approaches as
well. We will not delve much into why these might be regarded as “interesting” prob-
lems, as that would be a chapter– or, more likely, book– in itself. Suffice it to say that
many problems one encounters in the combinatorial optimization literature have their
origins in very real engineering problems, e.g. layout of hospital wings, electronic chip
design, optimal task assignments, boolean logic optimization, routing, assembly line
design, and so on. The types of problems we will consider, which are abstractions of
the ones from engineering, go by names such as knapsack problems, set coverings, set
partitioning, and permutation assignment. A secondary goal of this chapter will be to
introduce a few ideas regarding hybridization of Differential Evolution with some other
methods from optimization.

I will observe that, throughout this chapter at least, we regard Differential Evolu-
tion as a soft optimization tool. Methods we present are entirely heuristic in nature. We
usually do not get guarantees of result quality; generally this must be assessed by in-
dependent means (say, comparison with other tactics such as random search or greedy
algorithms, or a priori problem-specific knowledge). So we use the word optimization
a bit loosely, and really what we usually mean is improvement. While this may seem to
be bad from a theoretical point of view, it has advantages. For one, the field is relatively
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young and is amenable to an engineering mind set. One need not invent a new branch
of mathematics in order to make progress. At the end of the chapter we will see a few
directions that might, for the ambitious reader, be worthy of further pursuit.

Another caveat is that I make no claim as to Differential Evolution being the best
method for the problems we will discuss. Nor do I claim that the approaches to be seen
are the only, let alone best, ways to use it on these problems (if that were the case, this
would be a very short book indeed). What I do claim is that Differential Evolution is
quite a versatile tool, one that can be adapted to get reasonable results on a wide range
of combinatorial optimization problems. Even more, this can be done using but a small
amount of code. It is my hope to convey the utility of some of the methods I have used
with success, and to give ideas of ways in which they might be further enhanced.

As I will illustrate the setup and solving attempts using Mathematica [13], I need
to describe in brief how Differential Evolution is built into and accessed within that
program. Now recall the general setup for this method. We have some number of vec-
tors, or chromosomes, of continuous-valued genes. They mate according to a crossover
probability, mutate by differences of distinct other pairs in the pool, and compete with
a parent chromosome to see who moves to the next generation. All these are as de-
scribed by Price and Storn, in their Dr. Dobbs Journal article from 1997 [10]. In par-
ticular, crossover and mutation parameters are as described therein. In Mathematica
the relevant options go by the names of CrossProbability, ScalingFactor,
and SearchPoints. Each variable corresponds to a gene on every chromosome.
Using the terminology of the article, CrossProbability is the CR parameter,
SearchPoints corresponds to NP (size of the population, that is, number of chro-
mosome vectors), and ScalingFactor is F. Default values for these parameters are
roughly as recommended in that article.

The function that invokes these is called NMinimize. It takes a Method option that
can be set to DifferentialEvolution. It also takes a MaxIterations option
that, for this method, corresponds to the number of generations. Do not be concerned if
this terminology seems confusing. Examples to be shown presently will make it all clear.

One explicitly invokes Differential Evolution in Mathematica as follows.

NMinimize[objective,constraints,NMinimize[objective,constraints,NMinimize[objective,constraints,
variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]variables,Method → {“DifferentialEvolution”,methodoptions},otheropts]

Here methodoptions might include setting to nondefault values any or all of the
options indicated below. We will show usage of some of them as we present examples.
Further details about these options may be found in the program documentation. All of
which is available online; see, for example,
http://reference.wolfram.com/mathematica/ref/NMinimize.html

Here are the options one can use to control behavior of NMinimize. Note that
throughout this chapter, code input is in bold facebold facebold face, and output, just below the input, is
not.

Options[NMinimizèDifferentialEvolution]Options[NMinimizèDifferentialEvolution]Options[NMinimizèDifferentialEvolution]

{CrossProbability → 1
2 , InitialPoints → Automatic,

PenaltyFunction → Automatic,PostProcess → Automatic,
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RandomSeed → 0,ScalingFactor → 3
5 ,

SearchPoints → Automatic,Tolerance → 0.001}

There are some issues in internal implementation that need discussion to avoid later
confusion. First is the question of how constraints are enforced. This is particularly im-
portant since we will often constrain variables to take on only integer values, and in
specific ranges. For integrality enforcement there are (at least) two viable approaches.
One is to allow variables to take on values in a continuum, but use penalty functions
to push them toward integrality [2]. For example, one could add, for each variable x,
a penalty term of the form (x − round(x))2 (perhaps multiplied by some suitably large
constant). NMinimize does not use this approach, but a user can choose to assist it
to do so by explicitly using the PenaltyFunctionmethod option. Another method,
the one used by NMinimize, is to explicitly round all (real-valued) variables before
evaluating in the objective function. Experience in the development of this function
indicated this was typically the more successful approach.

This still does not address the topic of range enforcement. For example, say we are
using variables in the range {1, . . . ,n} to construct a permutation of n elements. If a
value slips outside the range then we might have serious difficulties. For example, in
low level programming languages such as C, having an out-of-bounds array reference
can cause a program to crash. While this would not as likely happen in Mathematica,
the effect would still be bad, for example a hang or garbage result due to process-
ing of a meaningless symbolic expression. So it is important either that our code, or
NMinimize, carefully enforce variable bounds. As it happens, the implementation
does just this. If a variable is restricted to lie between a low and high bound (this is
referred to as a rectangular, or box, constraint), then the NMinimize code will force
it back inside the boundary. Here I should mention that this is really a detail of the
implementation, and should not in general be relied upon by the user. I point it out so
that the reader will not be mystified upon seeing code that blithely ignores the issue
throughout the rest of this chapter. I also note that it is not hard to make alterations e.g.
to an objective function, to preprocess input so that bound constraints are observed; in
order to maximize simplicity of code, I did not do this.

I will make a final remark regarding use of Mathematica before proceeding to the
material of this chapter. It is not expected that readers are already familiar with this
program. A consequence is that some readers will find parts of the code we use to be
less than obvious. This is to be expected any time one first encounters a new, compli-
cated computer language. I will try to explain in words what the code is doing. Code
will also be preceded by a concise description, in outline form, that retains the same
order as the code itself and thus serves as a form of pseudocode. The code details are
less important. Remember that the emphasis is on problem solving approaches using
Differential Evolution in general; specifics of a particular language or implementation,
while of independent interest, take a back seat to the Big Picture.

In the literature on combinatorial (and other) optimization via evolutionary means,
one frequently runs across notions of genotype and phenotype. The former refers to the
actual chromosome values. Recall the basic workings of Differential Evolution. One typ-
ically forms a new chromosome from mating its parent chromosome with a mutation of a
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random second parent. Said mutation is in turn given as a difference of two other random
chromosomes. These operations are all done at the genotype level. It is in translating the
chromosome to a combinatorial object e.g. a permutation, that one encounters the phe-
notype. This refers, roughly, to the expression of the chromosome as something we can
use for objective function evaluation. Said slightly differently, one decodes a genotype
to obtain a phenotype. We want genotypes that are amenable to the mutation and mat-
ing operations of Differential Evolution, and phenotypes that will respond well to the
genotype, in the sense of allowing for reasonable improvement of objective function.
Discussion of these matters, with respect to the particulars of Differential Evolution,
may be found in [11]. Early discussion of these issues, and methods for handling them,
appear in [4] and [3].

4.2 Two Simple Examples

I like to start discussion of Differential Evolution in discrete optimization by presenting
two fairly straightforward examples. They serve to get the reader acclimated to how we
might set up simple problems, and also to how they look as input to Mathematica. These
are relatively simple examples of discrete optimization, not involving combinatorial
problems, and hence are good for easing into the main material of this chapter.

4.2.1 Pythagorean Triples

First we will search for Pythagorian triples. These, as one may recall from high school,
are integer triples (x,y,z) such that x2 + y2 = z2. So we wish to find integer triples that
satisfy this equation. One way to set up such a problem is to form the square of the
difference, x2 +y2 −z2. We seek integer triples that make this vanish, and moreover this
vanishing is a minimization condition (because we have a square). Note that this is to
some extent arbitrary, and minimizing the absolute value rather than the square would
suffice just as well for our purpose.

We constrain all variables to be between 5 and 25 inclusive. We also specify explicitly
that the variables are integer valued. We will say a bit more about this in a moment.

NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],NMinimize[{(x2 + y2 − z2)2,Element[{x,y,z}, Integers],
5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},{x,y,z}]

{0.,{x → 7,y → 24,z → 25}}

We see that NMinimize is able to pick an appropriate method by default. Indeed,
it uses DifferentialEvolution when variables are specified as discrete, that is,
integer valued.

Now we show how to obtain different solutions by specifying that the random seed
used by the DifferentialEvolution method change for each run. We will sup-
press warning messages (the algorithm mistakenly believes it is not converging). After
all, we are only interested in the results; we can decide for ourselves quite easily if they
work.
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Quiet[Quiet[Quiet[
Timing[Timing[Timing[
Table[NMinimize[{(x2 + y2 − z2)2,Table[NMinimize[{(x2 + y2 − z2)2,Table[NMinimize[{(x2 + y2 − z2)2,

Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},Element[{x,y,z}, Integers],5 ≤ x ≤ 25,5 ≤ y ≤ 25,5 ≤ z ≤ 25,x ≤ y},
{x,y,z},{x,y,z},{x,y,z},
Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],Method → “DifferentialEvolution”,RandomSeed → RandomInteger[1000]],

{20}]]]{20}]]]{20}]]]

{17.1771,{{0.,{x → 9,y → 12,z → 15}},{0.,{x → 15,y → 20,z → 25}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 7,y → 24,z → 25}},
{0.,{x → 15,y → 20,z → 25}},{0.,{x → 15,y → 20,z → 25}},
{0.,{x → 15,y → 20,z → 25}},{0.,{x → 8,y → 15,z → 17}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 9,y → 12,z → 15}},
{0.,{x → 9,y → 12,z → 15}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 6,y → 8,z → 10}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 5,y → 12,z → 13}},
{0.,{x → 5,y → 12,z → 13}},{0.,{x → 15,y → 20,z → 25}}}}

We observe that each of these is a valid Pythagorean triple (of course, there are several
repeats). Recalling our objective function, any failure would appear as a false minimum,
that is to say, a square integer strictly larger than zero.

4.2.1.1 A Coin Problem
We start with a basic coin problem. We are given 143,267 coins in pennies, nickels,
dimes, and quarters, of total value $12563.29, and we are to determine how many coins
might be of each type. There are several ways one might set up such a problem in
NMinimize. We will try to minimize the sum of squares of differences between ac-
tual values and desired values of the two linear expressions implied by the information
above. For our search space we will impose obvious range constraints on the various
coin types. In order to obtain different results we will want to alter the seeding of the
random number generator; this changes the random initial parameters used to seed the
optimization code. That is why we specify the method with this option added. We will
do 10 runs of this.

Timing[Table[Timing[Table[Timing[Table[
{min,sol} = NMinimize[{min,sol} = NMinimize[{min,sol} = NMinimize[
{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,{(p + 5n + 10d+ 25q − 1256329)2+(p + n + d+ q − 143267)2,
{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,{p,n,d,q} ∈ Integers,0 ≤ p ≤ 1256329,0 ≤ n ≤ 1256329/5,
0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},0 ≤ d ≤ 1256329/10,0 ≤ q ≤ 1256329/25},

{p,n,d,q},MaxIterations → 1000,{p,n,d,q},MaxIterations → 1000,{p,n,d,q},MaxIterations → 1000,
Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],Method → {DifferentialEvolution,RandomSeed → Random[Integer,1000]}],

{10}]]{10}]]{10}]]
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NMinimize::cvmit : Failed to converge to the
requested accuracy or precision within 1000 iterations.

{229.634,{{0.,{p → 22554,n → 70469,d → 24978,q → 25266}},
{0.,{p → 4094,n → 79778,d → 42102,q → 17293}},
{0.,{p → 23139,n → 64874,d → 31502,q → 23752}},
{0.,{p → 26649,n → 72620,d → 15558,q → 28440}},
{0.,{p → 2914,n → 76502,d → 48358,q → 15493}},
{0.,{p → 9714,n → 49778,d → 73110,q → 10665}},
{0.,{p → 26019,n → 26708,d → 77782,q → 12758}},
{0.,{p → 58229,n → 31772,d → 19494,q → 33772}},
{0.,{p → 8609,n → 70931,d → 46674,q → 17053}},
{0.,{p → 35049,n → 55160,d → 25398,q → 27660}}}}

We obtained valid solutions each time. Using only, say, 400 iterations we tend to get
solutions about half the time and “near” solutions the other half (wherein either the
number of coins and/or total value is off by a very small amount). Notice that this type
of problem is one of constraint satisfaction. An advantage to such problems is that we
can discern from the proposed solution whether it is valid; those are exactly the cases
for which we get an object value of zero, with all constraints satisfied.

4.3 Maximal Determinants

In this section we illustrate a heuristic methods on certain extremal matrix problems
of modest size. As motivation for looking at this particular problem, I remark that it is
sometimes important to understand extremal behavior of random polynomials or matri-
ces comprised of elements from a given set.

Below we apply knapsack-style optimization to study determinants of matrices of
integers with all elements lying in the set {-1,0,1}. The problem is to minimize the
determinant of such a matrix (since we can multiply any row by -1 and still satisfy the
constraints, the smallest negative value corresponds to the largest positive value). We
will make the simplifying assumption that all diagonal elements are 1. Strictly speaking
this is not combinatorial optimization, but it is a close relative, and will help to get the
reader acquainted with the programming commands we will be using in this chapter.
Thus is also a good example with which to begin this chapter.

Our objective function is simply the determinant. We want it only to evaluate when
the variables have been assigned numeric values. This is quite important because sym-
bolic determinants are quite slow to compute. So we set up the function so that it is only
defined when numeric values are plugged in.

detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]detfunc[a : {{ ?NumberQ..}..}]/;Length[a] == Length[First[a]]:=Det[a]

Our code will take a matrix dimension as argument, and also an optional argument
specifying whether to print the constraints. We use that in a small problem to show the
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constraints explicitly, so that the reader may check that we have set this up correctly.
Before showing the actual code we first outline the process.

Outline of detMindetMindetMin

1. Input: the dimension, and the parameter settings we will use for NMinimize.
2. Create a matrix of variables.
3. Create a set of constraints.

All variables must be integers.
All variables lie in the range [−1,1].
Variables corresponding to the diagonal elements are all set to 1.

4. Call NMinimize on the objective function, using the above constraints and
taking program parameters from the argument list.

5. Return the optimum found by NMinimize, along with the matrix that gives
this value.

Here is the actual program to do this.

detMin[n ,cp ,sp , it ,printsetup :False]:=Module[detMin[n ,cp ,sp , it ,printsetup :False]:=Module[detMin[n ,cp ,sp , it ,printsetup :False]:=Module[
{mat,vars,problemlist, j,best},{mat,vars,problemlist, j,best},{mat,vars,problemlist, j,best},
mat = Array[x,{n,n}];mat = Array[x,{n,n}];mat = Array[x,{n,n}];
vars = Flatten[mat];vars = Flatten[mat];vars = Flatten[mat];
problemlist =problemlist =problemlist =
{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],{detfunc[mat],Flatten[{Element[vars, Integers],Map[−1 ≤ # ≤ 1&,vars],

Table[x[ j, j] == 1,{ j,n}]}]};Table[x[ j, j] == 1,{ j,n}]}]};Table[x[ j, j] == 1,{ j,n}]}]};
If[printsetup,Print[problemlist[[2]]]];If[printsetup,Print[problemlist[[2]]]];If[printsetup,Print[problemlist[[2]]]];
best = NMinimize[problemlist,vars,MaxIterations → it,best = NMinimize[problemlist,vars,MaxIterations → it,best = NMinimize[problemlist,vars,MaxIterations → it,
Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];Method → {DifferentialEvolution,CrossProbability → cp,SearchPoints → sp}];
{best[[1]],mat/.best[[2]]}{best[[1]],mat/.best[[2]]}{best[[1]],mat/.best[[2]]}
]]]

Here is our result for three-by-three matrices. We also show the constraints for this
small example.

Timing[{min,mat} = detMin[3, .1,20,20,True]]Timing[{min,mat} = detMin[3, .1,20,20,True]]Timing[{min,mat} = detMin[3, .1,20,20,True]]

{(x[1,1]|x[1,2]|x[1,3]|x[2,1]|x[2,2]|x[2,3]|x[3,1]|x[3,2]|x[3,3])∈ Integers,
− 1 ≤ x[1,1] ≤ 1,−1 ≤ x[1,2] ≤ 1,−1 ≤ x[1,3] ≤ 1,
− 1 ≤ x[2,1] ≤ 1,−1 ≤ x[2,2] ≤ 1,−1 ≤ x[2,3] ≤ 1,
− 1 ≤ x[3,1] ≤ 1,−1 ≤ x[3,2] ≤ 1,−1 ≤ x[3,3] ≤ 1,
x[1,1] == 1,x[2,2] == 1,x[3,3] == 1}

{0.528033,{−4.,{{1,1,1},{1,1,−1},{1,−1,1}}}}
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We obtain -4 as the minimum (can you do better?) We now try at dimension 7. We
will use a larger search space and more iterations. Indeed, our option settings were de-
termined by trial and error. Later we will say more about how this might systematically
be done.

Timing[{min,mat} = detMin[7, .1,80,80]]Timing[{min,mat} = detMin[7, .1,80,80]]Timing[{min,mat} = detMin[7, .1,80,80]]

{54.6874,{−576.,{{1,1,−1,−1,1,−1,1},{1,1,−1,1,−1,−1,−1},
{1,−1,1,1,1,−1,−1},{−1,−1,−1,1,1,1,1},{1,1,−1,−1,1,1,−1},
{1,1,1,1,1,1,1},{1,−1,−1,−1,−1,1,1}}}}

Readers familiar with the Hadamard bound for absolute values of matrix determinants
will recognize that the minimum must be no smaller than the ceiling of −7

7
2 , or −907.

(In brief, this bound is the product of the lengths of the rows of a matrix; for our family,
the maxinal length of each row is

√
7. That this product maximizes the absolute value

of the determinant can be observed from the fact that this absolute value is the volume
of the rectangular prism formed by the row vectors of the matrix. This volume can be no
larger than the product of their lengths; it achieves that value precisely when the rows
are pairwise orthogonal.)

We can ask how good is the quality of our result. Here is one basis for comparison. A
random search that took approximately twice as long as the code above found nothing
smaller than −288. Offhand I do not know if -576 is the true minimum, though I suspect
that it is.

It is interesting to see what happens when we try this with dimension increased to
eight.

Timing[{min,mat} = detMin[8,1/50,100,200]]Timing[{min,mat} = detMin[8,1/50,100,200]]Timing[{min,mat} = detMin[8,1/50,100,200]]

{222.618,{−4096.,{{1,−1,1,1,1,−1,−1,−1},{−1,1,−1,1,1,1,−1,−1},
{−1,1,1,1,1,−1,1,1},{1,1,−1,1,−1,−1,−1,1},
{−1,−1,−1,−1,1,−1,−1,1},{1,1,1,−1,1,1,−1,1},
{1,1,−1,−1,1,−1,1,−1},{1,−1,−1,1,1,1,1,1}}}}

In this case we actually attained the Hadamard bound; one can check that the rows
(and likewise the columns) are all pairwise orthogonal, as must be the case in order
to attain the Hadamard bound. Indeed, when the dimension is a power of two, one
can always attain this bound. The motivated reader might try to work out a recursive
(or otherwise) construction that gives such pairwise orthogonal sets.

4.4 Partitioning a Set

The last sections were a warmup to the main focus of this chapter. We introduced a bit
of Mathematica coding, and in particular use of Differential Evolution, in the contect
of discrete optimization. We now get serious in discussing combinatorial optimization
problems and techniques.
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We start with the Set Partitioning Problem. We will illustrate this with an old example
from computational folklore: we are to partition the integers from 1 to 100 into two sets
of 50, such that the sums of the square roots in each set are as close to equal as possible.

There are various ways to set this up as a problem for NMinimize. We will show
two of them. First we will utilize a simple way of choosing 50 elements from a set of
100. We will use 100 real values, all between 0 and 1. (Note that we are using continuous
variables even though the problem itself involves a discrete set.) We take their relative
positions as defining a permutation of the integers from 1 to 100. A variant of this
approach to decoding permutations is described in [4, 3].

In more detail: their sorted ordering (obtained, in our code, from the Mathematica
Ordering function) determines which is to be regarded as first, which as second, and
so on. As this might be confusing, we illustrate the idea on a smaller set of six values.
We begin with our range of integers from 1 to 6.

smallset = Range[6]smallset = Range[6]smallset = Range[6]

{1,2,3,4,5,6}
Now suppose we also have a set of six real values between 0 and 1.

vals = RandomReal[1,{6}]vals = RandomReal[1,{6}]vals = RandomReal[1,{6}]

{0.131973,0.80331,0.28323,0.694475,0.677346,0.255748}
We use this second set of values to split smallset into two subsets of three, simply
by taking as one such subset the elements with positions corresponding to those of the
three smallest member of vals. The complementary subset would therefore be the
elements with positions corresponding to those of the three largest members of vals.
One can readily see (and code below will confirm) that the three smallest elements of
vals, in order of increasing size, are the first, sixth, and third elements.

Ordering[vals]Ordering[vals]Ordering[vals]

{1,6,3,5,4,2}
We split this into the positions of the three smallest, and those of the three largest, as
below.

{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]{smallindices, largeindices} = {Take[#,3],Drop[#,3]}&[Ordering[vals]]

{{1,6,3},{5,4,2}}
We now split smallset according to these two sets of indices. Because it is simply the
values one through six, the subsets are identical to their positions.

{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]{s1,s2} = Map[smallset[[#]]&,{smallindices, largeindices}]

{{1,6,3},{5,4,2}}
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The same idea applies to splitting any set of an even number of elements (small modi-
fications could handle an odd number, or a split into subsets of unequal lengths).

With this at hand we are now ready to try our first method for attacking this problem.

4.4.1 Set Partitioning via Relative Position Indexing

Here is the code we actually use to split our 100 integers into two sets of indices.

Outline of splitRangesplitRangesplitRange

1. Input: a vector of real numbers, of even length.
2. Return the positions of the smaller half of elements, followed by those of the

larger half.

splitRange[vec ]:=With[splitRange[vec ]:=With[splitRange[vec ]:=With[
{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},{newvec = Ordering[vec],halflen = Floor[Length[vec]/2]},
{Take[newvec,halflen],Drop[newvec,halflen]}]{Take[newvec,halflen],Drop[newvec,halflen]}]{Take[newvec,halflen],Drop[newvec,halflen]}]

Just to see that it works as advertised, we use it to replicate the result from our small
example above.

splitRange[vals]splitRange[vals]splitRange[vals]

{{1,6,3},{5,4,2}}

Once we have a way to associate a pair of subsets to a given set of 100 values in the
range from 0 to 1, we form our objective function. A convenient choice is simply an ab-
solute value of a difference; this is often the case in optimization problems. We remark
that squares of differences are also commonly used, particularly when the optimization
method requires differentiability with respect to all program variables. This is not an
issue for Differential Evolution, as it is a derivative-free optimization algorithm.

Here is an outline of the objective function, followed by the actual code.

Outline of spfunspfunspfun

1. Input: a vector of real numbers, of even length.
2. Use splitRange to find positions of the smaller half of elements, and the posi-

tions of the larger half.
3. Sum the square roots of the first set of positions, and likewise sum the square

roots of the second set.
4. Return the absolute value of the difference of those two sums.
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spfun[vec : { Real}]:=spfun[vec : { Real}]:=spfun[vec : { Real}]:=
With[{vals = splitRange[vec]},With[{vals = splitRange[vec]},With[{vals = splitRange[vec]},
Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]Abs[(Apply[Plus,Sqrt[N[First[vals]]]]− Apply[Plus,Sqrt[N[Last[vals]]]])]]

It may be a bit difficult to see what this does, so we illustrate again on our small exam-
ple. Supposing we have split smallset into two subsets as above, what is the objective
function? Well, what we do is take the first, sixth, and third elements, add their square
roots, and do likewise with the fifth, fourth, and second elements. We subtract one of
these sums from the other and take the absolute value of this difference. For speed we do
all of this in machine precision arithmetic. In exact form it would be:

sqrts = Sqrt[splitRange[vals]]sqrts = Sqrt[splitRange[vals]]sqrts = Sqrt[splitRange[vals]]
{{

1,
√

6,
√

3
}

,
{√

5,2,
√

2
}}

sums = Total[sqrts,{2}]sums = Total[sqrts,{2}]sums = Total[sqrts,{2}]

{
1 +

√
3+

√
6,2 +

√
2+

√
5
}

sumdifference = Apply[Subtract,sums]sumdifference = Apply[Subtract,sums]sumdifference = Apply[Subtract,sums]

−1 −√
2+

√
3−√

5+
√

6

abssummdiffs = Abs[sumdifference]abssummdiffs = Abs[sumdifference]abssummdiffs = Abs[sumdifference]

1 +
√

2−√
3+

√
5−√

6

approxabs = N[abssummdiffs]approxabs = N[abssummdiffs]approxabs = N[abssummdiffs]

0.468741

As a check of consistency, observe that this is just what we get from evaluating our
objective function on vals.

spfun[vals]spfun[vals]spfun[vals]

0.468741

We now put these components together into a function that provides our set partition.

Outline of getHalfSetgetHalfSetgetHalfSet

1. Input: An even integer n, and options to pass along to NMinimize.
2. Create a list of variables, vars, of length n.
3. Set up initial ranges that the variables all lie between 0 and 1 (these are not

hard constraints but just tell NMinimize where to take random initial values).
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4. Call NMinimize, passing it obfun[vars] as objective function.
5. Return the minimum value found, and the two complementary subsets of the

original integer set {1, . . . ,n} that give rise to this value.

getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},getHalfSet[n ,opts Rule]:=Module[{vars,xx, ranges,nmin,vals},
vars = Array[xx,n];vars = Array[xx,n];vars = Array[xx,n];
ranges = Map[{#,0,1}&,vars];ranges = Map[{#,0,1}&,vars];ranges = Map[{#,0,1}&,vars];
{nmin,vals} = NMinimize[spfun[vars], ranges,opts];{nmin,vals} = NMinimize[spfun[vars], ranges,opts];{nmin,vals} = NMinimize[spfun[vars], ranges,opts];
{nmin,Map[Sort,splitRange[vars/.vals]]}]{nmin,Map[Sort,splitRange[vars/.vals]]}]{nmin,Map[Sort,splitRange[vars/.vals]]}]

As in previous examples, we explicitly set the method so that we can more readily
pass it nondefault method-specific options. Finally, we set this to run many iterations
with a lot of search points. Also we turn off post-processing. Why do we care about
this? Well, observe that our variables are not explicitly integer valued. We are in ef-
fect fooling NMinimize into doing a discrete (and in fact combinatorial) optimization
problem, without explicit use of discrete variables. Hence default heuristics are likely
to conclude that we should attempt a “local” optimization from the final configuration
produced by the differential evolution code. This will almost always be unproductive,
and can take considerable time. So we explicitly disallow it. Indeed, if we have the
computation time to spend, we are better off increasing our number of generations, or
the size of each generation, or both.

Timing[{min,{s1,s2}} =Timing[{min,{s1,s2}} =Timing[{min,{s1,s2}} =
getHalfSet[100,MaxIterations → 10000,getHalfSet[100,MaxIterations → 10000,getHalfSet[100,MaxIterations → 10000,
Method → {DifferentialEvolution,CrossProbability → .8,Method → {DifferentialEvolution,CrossProbability → .8,Method → {DifferentialEvolution,CrossProbability → .8,

SearchPoints → 100,PostProcess → False}]]SearchPoints → 100,PostProcess → False}]]SearchPoints → 100,PostProcess → False}]]

{2134.42,{2.006223098760529̀*∧-7,
{{1,2,4,6,7,11,13,15,16,17,19,21,23,25,26,27,31,34,
37,41,43,44,45,47,50,51,52,54,56,66,67,69,72,73,
75,77,78,79,80,86,87,88,89,90,91,93,96,97,98,100},

{3,5,8,9,10,12,14,18,20,22,24,28,29,30,32,33,35,36,
38,39,40,42,46,48,49,53,55,57,58,59,60,61,62,63,64,
65,68,70,71,74,76,81,82,83,84,85,92,94,95,99}}}}

We obtain a fairly small value for our objective function. I do not know if this in fact
the global minimum, and the interested reader might wish to take up this problem with
an eye toward obtaining a better result.

A reasonable question to ask is how would one know, or even suspect, where to set
the CrossProbability parameter? A method I find useful is to do “tuning runs”.
What this means is we do several runs with a relatively small set of search points and a
fairly low bound on the number of generations (the MaxIterations option setting,
in NMinimize). Once we have a feel for which values seem to be giving better results,
we use them in the actual run with options settings at their full values. Suffice it to say
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that this approach is far from scientific. About the best one can say is that, while it is not
obviously fantastic, it is also not obviously bad. Note that this sort of situation happens
often in engineering, and that is why one can make nice incremental improvements to a
technology such as optimization.

4.4.2 Set Partitioning via Knapsack Approach

Another approach to this problem is as follows. We take the full set and pick 100 corre-
sponding random integer values that are either 0 or 1. An element in the set is put into
one or the other subset according to the value of the bit corresponding to that element.
For this to give an even split we also must impose a constraint that the size of each
subset is half the total size. To get an idea of what these constraints are, we show again
on our small example of size six.

vars = Array[x,6];vars = Array[x,6];vars = Array[x,6];
ranges = Map[(0<=#<=1)&,vars];ranges = Map[(0<=#<=1)&,vars];ranges = Map[(0<=#<=1)&,vars];
Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]Join[ranges,{Element[vars, Integers],Apply[Plus,vars] == 3}]

{0 ≤ x[1] ≤ 1,0 ≤ x[2] ≤ 1,0 ≤ x[3] ≤ 1,0 ≤ x[4] ≤ 1,
0 ≤ x[5] ≤ 1,0 ≤ x[6] ≤ 1,(x[1]|x[2]|x[3]|x[4]|x[5]|x[6]) ∈ Integers,
x[1]+ x[2]+ x[3]+ x[4]+ x[5]+ x[6]== 3}

We are now ready to define our new objective function.

Outline of spfun2spfun2spfun2

1. Input: a vector of integers, of even length n. All entries are 0 or 1.
2. Convert every 0 to -1.
3. Form a list of square roots of the integers in {1, . . . ,n}.
4. Multiply, componentwise, with the list of ones and negative ones.
5. Return the absolute value of the sum from step (4).

spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]spfun2[vec : { Integer}]:=Abs[(2 ∗ vec− 1).Sqrt[N[Range[Length[vec]]]]]

Again we use our small example. What would our objective function be if the vector
has ones in the first two and last places, and zeros in the middle three? First we find the
exact value.

exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]exactval = Abs[Total[Sqrt[smallset[[{1,6,3}]]]]− Total[Sqrt[smallset[[{5,4,2}]]]]]

1 +
√

2−√
3+

√
5−√

6

N[exactval]N[exactval]N[exactval]

0.468741

We see that, as expected, this agrees with our objective function.
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spfun2[{1,0,1,0,0,1}]spfun2[{1,0,1,0,0,1}]spfun2[{1,0,1,0,0,1}]

0.468741

With this knowledge it is now reasonably straightforward to write the code that will
perform our optimization. We create a set of variables, one for each element in the set.
We constrain the variables to take on values that are either 0 or 1, and such that the sum
is exactly half the cardinality of the set (that is, 100/2, or 50, in the example of interest to
us). Since we force variables to be integer valued, NMinimize will automatically use
DifferentialEvolution for its method. Again, we might still wish to explicitly
request it so that we can set option to nondefault values.

Outline of getHalfSet2getHalfSet2getHalfSet2

1. Input: An even integer n, and options to pass along to NMinimize.
2. Create a list of variables, vars, of length n.
3. Set up constraints.

All variables lie between 0 and 1.
All variables are integers.
Their total is n

2 .
4. Call NMinimize, passing it spfun2[vars] as objective function, along

with the constraints and the option settings that were input.
5. Return the minimum value found, and the two complementary subsets of the

original integer set {1, . . . ,n} that give rise to this value.

getHalfSet2[n ,opts ]:=Module[getHalfSet2[n ,opts ]:=Module[getHalfSet2[n ,opts ]:=Module[
{vars,x,nmin,vals, ranges,s1},{vars,x,nmin,vals, ranges,s1},{vars,x,nmin,vals, ranges,s1},
vars = Array[x,n];vars = Array[x,n];vars = Array[x,n];
ranges = Map[(0 ≤ # ≤ 1)&,vars];ranges = Map[(0 ≤ # ≤ 1)&,vars];ranges = Map[(0 ≤ # ≤ 1)&,vars];
{nmin,vals} ={nmin,vals} ={nmin,vals} =
NMinimize[{spfun2[vars],NMinimize[{spfun2[vars],NMinimize[{spfun2[vars],
Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];Join[ranges,{Element[vars, Integers],Total[vars] == n/2}]},vars,opts];

s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];s1 = Select[Inner[Times,Range[n],(vars/.vals),List],# �= 0&];
{nmin,{s1,Complement[Range[n],s1]}}]{nmin,{s1,Complement[Range[n],s1]}}]{nmin,{s1,Complement[Range[n],s1]}}]

Timing[Timing[Timing[
{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →{min,{s1,s2}} = getHalfSet2[100,MaxIterations → 1000,Method →
{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]{DifferentialEvolution,CrossProbability → .8,SearchPoints → 100}]]

{1732.97,{0.000251303,
{1,4,5,7,12,13,14,15,16,19,20,22,23,31,32,36,37,38,41,42,
43,44,45,46,47,49,50,51,52,55,59,60,62,65,66,71,73,78,
79,83,84,87,88,89,90,91,94,97,99,100},
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{2,3,6,8,9,10,11,17,18,21,24,25,26,27,28,29,30,33,34,35,
39,40,48,53,54,56,57,58,61,63,64,67,68,69,70,72,74,75,
76,77,80,81,82,85,86,92,93,95,96,98}}}}

One unfamiliar with the subject might well ask what this has to do with knapsacks.
The gist is as follows. A Knapsack Problem involves taking, or not taking, an element
from a given set, and attempting to optimize some condition that is a function of those
elements taken. There is a large body of literature devoted to such problems, as they
subsume the Integer Linear Programming Problem (in short, linear program, but with
variables constrained to be integer valued). It is a pleasant quality of Differential Evo-
lution that it can be adapted to such problems.

4.4.3 Discussion of the Two Methods

The second method we showed is a classical approach in integer linear programming.
One uses a set of variables constrained to be either 0 or 1 (that is, binary variables). We
constrain their sum so that we achieve a particular goal, in this case it is that exactly half
be put into one of the two subsets. While not quite a relative position indexing method,
it is similar in that positions of zeros or ones determine which of two complementary
subsets receives elements of the parent set.

The first method, which seemed to work better for Differential Evolution (at least
with parameter settings we utilized) is less common. It is a bit mysterious, in that we
use the ordering of an ensemble of reals to determine placement of individual elements
of a set. This implies a certain nonlocality in that a change to one value can have a
big effect on the interpretation of other entries. This is because it is their overall sorted
ordering, and not individual values, that gets used by the objective function. Though
it is not obvious that this would be useful, we saw in this example that we can get a
reasonably good result.

4.5 Minimal Covering of a Set by Subsets

The problem below was once posed in the Usenet news group comp.soft-sys.math.
mathematica. It is an archetypical example of the classical subset covering problem.
In this example we are given a set of sets, each containing integers between 1 and 64.
Their union is the set of all integers in that range, and we want to find a set of 12 subsets
that covers that entire range. In general we would want to find a set of subsets of mini-
mal cardinality; this is an instance where we know in advance that that cardinality is 12.

subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},subsets = {{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},
{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},
{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},
{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53},
{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},{13,14,16,12,4,20,52},{14,13,15,11,3,19,51},{15,16,14,10,2,18,50},
{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},{16,15,13,9,1,17,49},{17,18,20,24,32,16,48},{18,17,19,23,31,15,47},
{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},{19,20,18,22,30,14,46},{20,19,17,21,29,13,45},{21,22,24,20,28,12,44},
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{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},{22,21,23,19,27,11,43},{23,24,22,18,26,10,42},{24,23,21,17,25,9,41},
{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},{25,26,28,32,24,8,40},{26,25,27,31,23,7,39},{27,28,26,30,22,6,38},
{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},{28,27,25,29,21,5,37},{29,30,32,28,20,4,36},{30,29,31,27,19,3,35},
{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},{31,32,30,26,18,2,34},{32,31,29,25,17,1,33},{33,34,36,40,48,64,32},
{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},{34,33,35,39,47,63,31},{35,36,34,38,46,62,30},{36,35,33,37,45,61,29},
{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},{37,38,40,36,44,60,28},{38,37,39,35,43,59,27},{39,40,38,34,42,58,26},
{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},{40,39,37,33,41,57,25},{41,42,44,48,40,56,24},{42,41,43,47,39,55,23},
{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},{43,44,42,46,38,54,22},{44,43,41,45,37,53,21},{45,46,48,44,36,52,20},
{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},{46,45,47,43,35,51,19},{47,48,46,42,34,50,18},{48,47,45,41,33,49,17},
{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},{49,50,52,56,64,48,16},{50,49,51,55,63,47,15},{51,52,50,54,62,46,14},
{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},{52,51,49,53,61,45,13},{53,54,56,52,60,44,12},{54,53,55,51,59,43,11},
{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},{55,56,54,50,58,42,10},{56,55,53,49,57,41,9},{57,58,60,64,56,40,8},
{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},{58,57,59,63,55,39,7},{59,60,58,62,54,38,6},{60,59,57,61,53,37,5},
{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},{61,62,64,60,52,36,4},{62,61,63,59,51,35,3},{63,64,62,58,50,34,2},
{64,63,61,57,49,33,1}};{64,63,61,57,49,33,1}};{64,63,61,57,49,33,1}};

We do a brief check that the union of the subset elements is indeed the set of integers
from 1 through 64.

Union[Flatten[subsets]] == Range[64]Union[Flatten[subsets]] == Range[64]Union[Flatten[subsets]] == Range[64]

True

4.5.1 An Ad Hoc Approach to Subset Covering

We will set up our objective function as follows. We represent a set of 12 subsets of this
master set by a set of 12 integers in the range from 1 to the number of subsets (which
in this example is, coincidently, also 64). This set is allowed to contain repetitions. Our
objective function to minimize will be based on how many elements from 1 through 64
are “covered”. Specifically it will be 2 raised to the #(elements not covered) power. The
code below does this.

Outline of scfunscfunscfun

1. Input: a vector V of integers, a set S of subsets, and an integer n to denote the
range of integers {1, . . . ,n}.

2. Compute U , the union of elements contained in the subsets S j, for all j ∈ V .
3. Calculate c, the cardinality of the complement of our initial range by U .

More succinctly this is |{1, . . . ,n}−U |, where subtraction is taken to mean
set complement, and |S| denotes the cardinality of S.

4. Return 2c.

scfun[n : { Integer},set ,mx Integer]:=scfun[n : { Integer},set ,mx Integer]:=scfun[n : { Integer},set ,mx Integer]:=
2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]2∧Length[Complement[Range[mx],Union[Flatten[set[[n]]]]]]
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This may be a bit elusive. We will examine its behavior on a specific set of subsets.
Suppose we take the first 12 of our subsets.

first12 = Take[subsets,12]first12 = Take[subsets,12]first12 = Take[subsets,12]

{{1,2,4,8,16,32,64},{2,1,3,7,15,31,63},{3,4,2,6,14,30,62},
{4,3,1,5,13,29,61},{5,6,8,4,12,28,60},{6,5,7,3,11,27,59},
{7,8,6,2,10,26,58},{8,7,5,1,9,25,57},{9,10,12,16,8,24,56},
{10,9,11,15,7,23,55},{11,12,10,14,6,22,54},{12,11,9,13,5,21,53}}

Their union is

elementsinfirst12 = Union[Flatten[first12]]elementsinfirst12 = Union[Flatten[first12]]elementsinfirst12 = Union[Flatten[first12]]

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,21,22,23,24,25,26,27,28,
29,30,31,32,53,54,55,56,57,58,59,60,61,62,63,64}

Our objective function for this set of subsets raises 2 to the power that is the cardinality
of the set of integers 1 through 64 complemented by this set. So how many elements
does this union miss?

missed = Complement[Range[64],elementsinfirst12]missed = Complement[Range[64],elementsinfirst12]missed = Complement[Range[64],elementsinfirst12]

{17,18,19,20,33,34,35,36,37,38,39,40,41,42,43,44,
45,46,47,48,49,50,51,52}

Length[missed]Length[missed]Length[missed]

24

2∧Length[missed]2∧Length[missed]2∧Length[missed]

16777216

Does this agree with the function we defined above? Indeed it does.

scfun[Range[12],subsets,64]scfun[Range[12],subsets,64]scfun[Range[12],subsets,64]

16777216

We now give outline and code to find a set of spanning subsets.

Outline of spanningSetsspanningSetsspanningSets

1. Input: a set S of m subsets, an integer k specifying how many we are to use for
our cover, and option values to pass to NMinimize. We assume the union of
all subsets covers some range {1, . . . ,n}.

2. Create a vector of k variables.
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3. Set up constraints.
All variables are between 1 and m.
All variables are integer valued.

4. Call NMinimize, using the constraints and scfun as defined above, along
with option settings.

5. Return the minimal value (which we want to be 1, in order that there be full
coverage), and the list of positions denoting which subsets we used in the
cover.

spanningSets[set ,nsets , iter ,sp ,cp ]:=Module[spanningSets[set ,nsets , iter ,sp ,cp ]:=Module[spanningSets[set ,nsets , iter ,sp ,cp ]:=Module[
{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},
vars = Array[xx,nsets];vars = Array[xx,nsets];vars = Array[xx,nsets];
rnges = Map[(1 ≤ # ≤ max)&,vars];rnges = Map[(1 ≤ # ≤ max)&,vars];rnges = Map[(1 ≤ # ≤ max)&,vars];
{nmin,vals} = NMinimize[{nmin,vals} = NMinimize[{nmin,vals} = NMinimize[
{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},{scfun[vars,set,max],Append[rnges,Element[vars, Integers]]},
vars,MaxIterations → iter,vars,MaxIterations → iter,vars,MaxIterations → iter,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp}];

vals = Union[vars/.vals];vals = Union[vars/.vals];vals = Union[vars/.vals];
{nmin,vals}]{nmin,vals}]{nmin,vals}]

In small tuning runs I found that a fairly high crossover probability setting seemed
to work well.

Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]Timing[{min,sets} = spanningSets[subsets,12,700,200, .94]]

{365.099,{1.,{1,7,14,21,24,28,34,35,47,52,54,57}}}

Length[Union[Flatten[subsets[[sets]]]]]Length[Union[Flatten[subsets[[sets]]]]]Length[Union[Flatten[subsets[[sets]]]]]

64

While this is not lightning fast, we do obtain a good result in a few minutes of run
time.

We note that while this was not coded explicitly to use relative position indexing,
it could have been. That is, we could have used vectors of 64 values between 0 and 1,
and taken the positions of the smallest 12 to give 12 members of subsets. The interested
reader may wish to code this variant.

4.5.2 Subset Covering via Knapsack Formulation

Another method is to cast this as a standard knapsack problem. First we transform
each of our set of subsets into a bit vector representation. In this form each subset is
represented by a positional list of zeros and ones. In effect we are translating from a
sparse to a dense representation.
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Outline of densevecdensevecdensevec

1. Input: a set S of integers and a length n. It is assumed that the members of S
all lie in {1, . . . ,n}.

2. Create a vector V of length n. Initialize all elements to be 0.
3. Loop: For each j ∈ S, set the jth element of V to be 1.
4. Return V .

densevec[spvec , len ]:=Module[densevec[spvec , len ]:=Module[densevec[spvec , len ]:=Module[
{vec = Table[0,{len}]},{vec = Table[0,{len}]},{vec = Table[0,{len}]},
Do[vec[[spvec[[ j]]]] = 1,{ j,Length[spvec]}];Do[vec[[spvec[[ j]]]] = 1,{ j,Length[spvec]}];Do[vec[[spvec[[ j]]]] = 1,{ j,Length[spvec]}];
vec]vec]vec]

We now apply this function to each member of our set of subsets, that is, make a dense
representation of each subset.

mat = Map[densevec[#,64]&,subsets];mat = Map[densevec[#,64]&,subsets];mat = Map[densevec[#,64]&,subsets];

It might not be obvious what we have done, so we illustrate using the fourth of our
64 matrix rows.

mat[[4]]mat[[4]]mat[[4]]

{1,0,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0}

We have ones at positions that correspond to the elements contained in our fourth subset,
and zeros elsewhere. Specifically, the ones are at the positions shown below.

Flatten[Position[mat[[4]],1]]Flatten[Position[mat[[4]],1]]Flatten[Position[mat[[4]],1]]

{1,3,4,5,13,29,61}

But this is, up to ordering, exactly the elements in the fourth subset. That is, we pass a
basic consistency check.

Sort[subsets[[4]]]Sort[subsets[[4]]]Sort[subsets[[4]]]

{1,3,4,5,13,29,61}

As in our last knapsack problem, we again work with binary variables and minimize
their sum, subject to certain constraints. We use a binary variables to represent each
subset. A one means we use that subset in our set cover, and a zero means we do not.
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Let us consider the vector of those zeros and ones. Now our requirement is that we fully
cover the superset, that is, the range of integers from 1 to 64.

How might we impose this? Well, let us take a look at the dot product of such a vec-
tor with the matrix of bit vectors that we already formed. Again we use as an example
the first 12 subsets, so our vector representing this has ones in the first 12 slots, and
zeros in the remaining 64-12=52 slots.

first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]first12vec = Join[ConstantArray[1,12],ConstantArray[0,52]]

{1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

What does the dot product of this vector with our matrix of bit vectors represent? Well,
let’s consider the meaning of this matrix for a moment. A one in row j, column k
means that subset j contains element k. One then realizes that the dot product gives
us the following information. The kth element in the result will be a nonnegative num-
ber (possibly zero), and represent the number of times that k appears in the union of
subsets represented by first12vec. So the condition we will need to impose in our
optimization is that the dot product of this vector with our matrix of bitvectors has all
positive entries. Notice that first12vec fails to satisfy this condition.

first12vec.matfirst12vec.matfirst12vec.mat

{4,4,4,4,5,5,5,5,4,4,4,4,2,2,2,2,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}

Outline of spanningSets2spanningSets2spanningSets2

1. Input: a set S of m subsets (each now represented as a bit vector), and option
values to pass to NMinimize. We assume the union of all subsets covers
some range {1, . . . ,n}.

2. Create a vector of m variables, vars.
3. Set up constraints.

All variables lie between 0 and 1.
All variables are integer valued.
The union of subsets corresponding to variables with value of 1 covers the

full range {1, . . . ,n}. This is done by checking that each elements of S.vars is
greater or equal to 1.

4. Call NMinimize to minimize the sum of vars, subject to the above con-
straints, using the input option settings.

5. Return the minimal value and the list of positions denoting which subsets we
used in the cover.
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spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[spanningSets2[set , iter ,sp ,seed ,cp :.5]:=Module[
{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},{vars, rnges,max = Length[set],nmin,vals},
vars = Array[xx,max];vars = Array[xx,max];vars = Array[xx,max];
rnges = Map[(0 ≤ # ≤ 1)&,vars];rnges = Map[(0 ≤ # ≤ 1)&,vars];rnges = Map[(0 ≤ # ≤ 1)&,vars];
{nmin,vals} ={nmin,vals} ={nmin,vals} =
NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},NMinimize[{Apply[Plus,vars],Join[rnges,{Element[vars, Integers]},
Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,Thread[vars.set ≥ Table[1,{max}]]]},vars,MaxIterations → iter,
Method → {DifferentialEvolution,CrossProbability → cp,Method → {DifferentialEvolution,CrossProbability → cp,Method → {DifferentialEvolution,CrossProbability → cp,

SearchPoints → sp,RandomSeed → seed}];SearchPoints → sp,RandomSeed → seed}];SearchPoints → sp,RandomSeed → seed}];
vals = vars/.vals;vals = vars/.vals;vals = vars/.vals;
{nmin,vals}]{nmin,vals}]{nmin,vals}]

Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]Timing[{min,sets} = spanningSets2[mat,2000,100,0, .9]]

{1930.4Second,{12.,{0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,
0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1}}}

We have again obtained a result that uses 12 subsets. We check that it covers the entire
range.

Total[Map[Min[#,1]&,sets.mat]]Total[Map[Min[#,1]&,sets.mat]]Total[Map[Min[#,1]&,sets.mat]]

64

We see that this method was much slower. Experience indicates that it needs a lot of
iterations and careful setting of the CrossProbability option. So at present NMinimize
has difficulties with this formulation. All the same it is encouraging to realize that one
may readily set this up as a standard knapsack problem, and still hope to solve it using
Differential Evolution. Moreover, as the alert reader may have observed, we actually
had an added benefit from using this method: nowhere did we need to assume that
minimal coverings require 12 subsets.

4.6 An Assignment Problem

Our next example is a benchmark from the literature of discrete optimization. We are
given two square matrices. We want a permutation that, when applied to the rows and
columns of the second matrix, multiplied element-wise with corresponding elements of
the first, and all elements summed, gives a minimum value. The matrices we use have
25 rows. This particular example is known as the NUG25 problem. It is an example of
a Quadratic Assignment Problem (QAP). The optimal result is known and was verified
by a large parallel computation. We mention that the methods of handling this problem
can, with minor modification, be applied to related problems that require the selecting
of a permutation (for example, the traveling salesman problem).
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mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},mat1 = {{0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7,4,5,6,7,8},
{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},{1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7},
{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},{2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6},
{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},{3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4,7,6,5,4,5},
{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},{4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3,8,7,6,5,4},
{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},{1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6,3,4,5,6,7},
{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},{2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6},
{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},{3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5},
{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},{4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3,6,5,4,3,4},
{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},{5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2,7,6,5,4,3},
{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},{2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5,2,3,4,5,6},
{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},{3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4,3,2,3,4,5},
{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},{4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3,4,3,2,3,4},
{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},{5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2,5,4,3,2,3},
{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},{6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1,6,5,4,3,2},
{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},{3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4,1,2,3,4,5},
{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},{4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3,2,1,2,3,4},
{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},{5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2,3,2,1,2,3},
{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},{6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,4,3,2,1,2},
{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},{7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0,5,4,3,2,1},
{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},{4,5,6,7,8,3,4,5,6,7,2,3,4,5,6,1,2,3,4,5,0,1,2,3,4},
{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},{5,4,5,6,7,4,3,4,5,6,3,2,3,4,5,2,1,2,3,4,1,0,1,2,3},
{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},{6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1,2},
{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},{7,6,5,4,5,6,5,4,3,4,5,4,3,2,3,4,3,2,1,2,3,2,1,0,1},
{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};{8,7,6,5,4,7,6,5,4,3,6,5,4,3,2,5,4,3,2,1,4,3,2,1,0}};

mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},mat2 = {{0,3,2,0,0,10,5,0,5,2,0,0,2,0,5,3,0,1,10,0,2,1,1,1,0},
{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},{3,0,4,0,10,0,0,2,2,1,5,0,0,0,0,0,1,6,1,0,2,2,5,1,10},
{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},{2,4,0,3,4,5,5,5,1,4,0,4,0,4,0,3,2,5,5,2,0,0,3,1,0},
{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},{0,0,3,0,0,0,2,2,0,6,2,5,2,5,1,1,1,2,2,4,2,0,2,2,5},
{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},{0,10,4,0,0,2,0,0,0,0,0,0,0,0,2,0,0,2,0,5,0,2,1,0,2},
{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},{10,0,5,0,2,0,10,10,5,10,6,0,0,10,2,10,1,5,5,2,5,0,2,0,1},
{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},{5,0,5,2,0,10,0,1,3,5,0,0,2,4,5,10,6,0,5,5,5,0,5,5,0},
{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},{0,2,5,2,0,10,1,0,10,2,5,2,0,3,0,0,0,4,0,5,0,5,2,2,5},
{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},{5,2,1,0,0,5,3,10,0,5,6,0,1,5,5,5,2,3,5,0,2,10,10,1,5},
{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},{2,1,4,6,0,10,5,2,5,0,0,1,2,1,0,0,0,0,6,6,4,5,3,2,2},
{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},{0,5,0,2,0,6,0,5,6,0,0,2,0,4,2,1,0,6,2,1,5,0,0,1,5},
{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},{0,0,4,5,0,0,0,2,0,1,2,0,2,1,0,3,10,0,0,4,0,0,4,2,5},
{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},{2,0,0,2,0,0,2,0,1,2,0,2,0,4,5,0,1,0,5,0,0,0,5,1,1},
{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},{0,0,4,5,0,10,4,3,5,1,4,1,4,0,0,0,2,2,0,2,5,0,5,2,5},
{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},{5,0,0,1,2,2,5,0,5,0,2,0,5,0,0,2,0,0,0,6,3,5,0,0,5},
{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},{3,0,3,1,0,10,10,0,5,0,1,3,0,0,2,0,0,5,5,1,5,2,1,2,10},
{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},{0,1,2,1,0,1,6,0,2,0,0,10,1,2,0,0,0,5,2,1,1,5,6,5,5},
{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},{1,6,5,2,2,5,0,4,3,0,6,0,0,2,0,5,5,0,4,0,0,0,0,5,0},
{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},{10,1,5,2,0,5,5,0,5,6,2,0,5,0,0,5,2,4,0,5,4,4,5,0,2},
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{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},{0,0,2,4,5,2,5,5,0,6,1,4,0,2,6,1,1,0,5,0,4,4,1,0,2},
{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},{2,2,0,2,0,5,5,0,2,4,5,0,0,5,3,5,1,0,4,4,0,1,0,10,1},
{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},{1,2,0,0,2,0,0,5,10,5,0,0,0,0,5,2,5,0,4,4,1,0,0,0,0},
{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},{1,5,3,2,1,2,5,2,10,3,0,4,5,5,0,1,6,0,5,1,0,0,0,0,0},
{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},{1,1,1,2,0,0,5,2,1,2,1,2,1,2,0,2,5,5,0,0,10,0,0,0,2},
{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};{0,10,0,5,2,1,0,5,5,2,5,5,1,5,5,10,5,0,2,2,1,0,0,2,0}};

First we define a function to permute rows and columns of a matrix. It simply rear-
ranges the matrix so that both rows and columns are reordered according to a given
permutation.

Outline of permuteMatrixpermuteMatrixpermuteMatrix

1. Input: a square matrix M and a permutation P of the set {1, . . . ,n}, where n is
the dimension of M.

2. Form M̃, the matrix obtained by rearranging rows and columns of M as speci-
fied by P.

3. Return M̃.

permuteMatrix[mat ,perm ]:=mat[[perm,perm]]permuteMatrix[mat ,perm ]:=mat[[perm,perm]]permuteMatrix[mat ,perm ]:=mat[[perm,perm]]

We use a small matrix to see how this works.

MatrixForm[mat = Array[x,{4,4}]]MatrixForm[mat = Array[x,{4,4}]]MatrixForm[mat = Array[x,{4,4}]]

⎛
⎜⎜⎝

x[1,1] x[1,2] x[1,3] x[1,4]
x[2,1] x[2,2] x[2,3] x[2,4]
x[3,1] x[3,2] x[3,3] x[3,4]
x[4,1] x[4,2] x[4,3] x[4,4]

⎞
⎟⎟⎠

Now we move rows/columns (4,1,3,2) to positions (1,2,3,4), and observe the result.

MatrixForm[permuteMatrix[mat,{4,1,2,3}]]MatrixForm[permuteMatrix[mat,{4,1,2,3}]]MatrixForm[permuteMatrix[mat,{4,1,2,3}]]

⎛
⎜⎜⎝

x[4,4] x[4,1] x[4,2] x[4,3]
x[1,4] x[1,1] x[1,2] x[1,3]
x[2,4] x[2,1] x[2,2] x[2,3]
x[3,4] x[3,1] x[3,2] x[3,3]

⎞
⎟⎟⎠

Let us return to the NUG25 problem. Below is an optimal permutation (it is not
unique). We remark that the computation that verified the optimality took substantial
time and parallel resources.
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p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};p = {5,11,20,15,22,2,25,8,9,1,18,16,3,6,19,24,21,14,7,10,17,12,4,23,13};

We compute the objective function value we obtain from this permutation. As a sort
of baseline, we show the result one obtains from applying no permutation. We then
compute results of applying several random permutations. This gives some idea of how
to gauge the results below.

best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]best = Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2, p]]]

3744

baseline = Apply[Plus,Flatten[mat1∗ mat2]]baseline = Apply[Plus,Flatten[mat1∗ mat2]]baseline = Apply[Plus,Flatten[mat1∗ mat2]]

4838

randomvals = Table[randomvals = Table[randomvals = Table[
perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];
Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]Apply[Plus,Flatten[mat1∗ permuteMatrix[mat2,perm]]],{10}]

{4858,5012,5380,5088,4782,4994,5032,5044,5088,5094}
A substantially longer run over random permutations gives an indication of how hard it
is to get good results via a naive random search.

SeedRandom[1111];SeedRandom[1111];SeedRandom[1111];
Timing[randomvals = Table[Timing[randomvals = Table[Timing[randomvals = Table[

perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];perm = Ordering[RandomReal[{0,1},{25}]];
Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]],
{1000000}]; ]{1000000}]; ]{1000000}]; ]

{449.06,Null}
Min[randomvals]Min[randomvals]Min[randomvals]

4284

4.6.1 Relative Position Indexing for Permutations

We must decide how to make a set of values into a permutation. Our first approach is
nearly identical to the ensemble order method we used on the set partition problem.
Specifically, we will let the Ordering function of a set of real values determine a
permutation.

Outline of QAPQAPQAP

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n. Give them initial ranges from 0 to 1.
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3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix.

The permutation is determined by the ordering of values of the variables
vector. (Remark: some readers might recognize this as a matrix inner product
computed via the matrix trace of the usual matrix product).

For improved speed (at the cost of memory) we memoize values of the ob-
jective function. What that means is we record them once computed, so that
recomputation is done by fast lookup. Readers familiar with data structure
methods may recognize this as an application of hashing.

4. Call NMinimize on the objective function, using the above ranges, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP[mat1 ,mat2 ,cp , it ,sp ,sc ]:=Module[QAP[mat1 ,mat2 ,cp , it ,sp ,sc ]:=Module[QAP[mat1 ,mat2 ,cp , it ,sp ,sc ]:=Module[
{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},{len = Length[mat1],obfunc,obfunc2,vars,x,nmin,vals, rnges},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];
obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];obfunc[vec : { Real}]:=obfunc2[Ordering[vec]];

obfunc2[perm ]:=obfunc2[perm] =obfunc2[perm ]:=obfunc2[perm] =obfunc2[perm ]:=obfunc2[perm] =
Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];Total[Flatten[mat1∗ permuteMatrix[mat2,perm]]];

{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,{nmin,vals} = NMinimize[obfunc[vars], rnges,MaxIterations → it,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,

ScalingFactor → sc,PostProcess → False}];ScalingFactor → sc,PostProcess → False}];ScalingFactor → sc,PostProcess → False}];
Clear[obfunc2];Clear[obfunc2];Clear[obfunc2];
{nmin,Ordering[vars/.vals]}]{nmin,Ordering[vars/.vals]}]{nmin,Ordering[vars/.vals]}]

Again we face the issue that this problem requires nonstandard values for options to the
DifferentialEvolution method, in order to achieve a reasonable result. While
this is regretable it is clearly better than having no recourse at all. The idea behind
having CrossProbability relatively small is that we do not want many crossovers
in mating a pair of vectors. This in turn is because of the way we define a permutation.
In particular it is not just values but relative values across the entire vector that give
us the permutation. Thus disrupting more than a few, even when mating a pair of good
vectors, is likely to give a bad vector. This was also the case with the set partitioning
example we encountred earlier.

We saw that the baseline permutation (do nothing) and random permutations tend to
be far from optimal, and even a large random sampling will get us only about half way
from baseline to optimal. A relatively brief run with “good” values for the algorithm
parameters, on the other hand, yields something notably better. (In the next subsection
we explicitly show how one might use short tuning runs to find such parameter settings.)
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SeedRandom[11111];SeedRandom[11111];SeedRandom[11111];
Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,200,40, .6]]

{13.5048,{3864.,
{22,20,17,12,5,13,15,23,25,2,19,10,9,
8,4,1,7,6,16,18,24,21,14,3,11}}}

We now try a longer run.

SeedRandom[11111];SeedRandom[11111];SeedRandom[11111];
Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]Timing[{min,perm} = QAP[mat1,mat2, .06,4000,100, .6]]

{394.881,{3884.,
{15,20,19,10,13,22,1,16,7,4,9,25,6,23,
12,8,11,21,14,17,5,2,18,3,24}}}

We learn a lesson here. Sometimes a short run is lucky, and a longer one does not fare
as well. We will retry with a different crossover, more iterations, and a larger set of
chromosomes.

Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]Timing[{min,perm} = QAP[mat1,mat2, .11,10000,200, .6]]

{2186.43,{3826.,
{5,2,18,11,4,12,25,8,14,24,17,3,16,6,21,
20,23,9,7,10,22,15,19,1,13}}}

This result is not bad.

4.6.2 Representing and Using Permutations as Shuffles

The method we now show will generate a permutation as a shuffle of a set of integers.
We first describe a standard way to shuffle, with uniform probability, a set of n elements.
First we randomly pick a number j1 in the range {1, . . . ,n} and, if j1 �= 1, we swap the
first and j1th elements. We then select at random an element j2 in the range {2, . . . ,n}.
If j2 �= 2 we swap the second and j2th elements. The interested reader can convince
him or herself that this indeed gives a uniform random shuffle (in contrast, selecting all
elements in the range {1, . . . ,n} fails to be uniform).

Our goal, actually, is not directly to generate shuffles, but rather to use them. Each
chromosome will represent a shuffle, encoded as above by a set of swaps to perform. So
the effective constraint on the first variable is that it be an integer in the range {1, . . . ,n},
while the second must be an integer in the range {2, . . . ,n}, and so on (small point: we
do not actually require an nth variable, since its value must always be n). We require a
utility routine to convert quickly from a shuffle encoding to a simple permutation vector.
The code below will do this. We use the Compile function of Mathematica to get a
speed boost.
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Outline of getPermgetPermgetPerm

1. Input: a shuffle S encoded as n−1 integers in the range{1, . . . ,n}, with the jth
actually restricted to lie in the subrange { j, . . . ,n}.

2. Initialize a vector P of length n to be the identity permutation (that is, the
ordered list {1, . . . ,n}).

3. Iterate over S.
4. Swap the jth element of P with the element whose index is the (current) jth

element of S.
5. Return P.

getPerm = Compile[{{shuffle, Integer,1}},Module[getPerm = Compile[{{shuffle, Integer,1}},Module[getPerm = Compile[{{shuffle, Integer,1}},Module[
{perm, len = Length[shuffle]+ 1},{perm, len = Length[shuffle]+ 1},{perm, len = Length[shuffle]+ 1},
perm = Range[len];perm = Range[len];perm = Range[len];
Do[perm[[{ j,shuffle[[ j]]}]] = perm[[{shuffle[[ j]], j}]],{ j, len − 1}];Do[perm[[{ j,shuffle[[ j]]}]] = perm[[{shuffle[[ j]], j}]],{ j, len − 1}];Do[perm[[{ j,shuffle[[ j]]}]] = perm[[{shuffle[[ j]], j}]],{ j, len − 1}];
perm]];perm]];perm]];

Okay, maybe that was a bit cryptic. Here is a brief example that will shed light on
this process. Say our shuffle encoding for a set of five elements is {2,4,5,4}. What
would this do to permute the set {1,2,3,4,5}? First we swap elements 1 and 2, so we
have {2,1,3,4,5}. We next swap elements 2 and 4, giving {2,4,3,1,5}. Then we swap
elements 3 and 5 to obtain {2,4,5,1,3}. Finally, as the fourth element in our shuffle is
a 4, we do no swap. Let us check that we did indeed get the permutation we claim.

getPerm[{2,4,5,4}]getPerm[{2,4,5,4}]getPerm[{2,4,5,4}]

{2,4,5,1,3}
The constraints we would like to enforce are that all chromosome elements be integers,
and that the jth such element be between j and the total length inclusive. The bit of
code below will show how we might set up such constraints.

len = 5;len = 5;len = 5;
vars = Array[x, len − 1];vars = Array[x, len − 1];vars = Array[x, len− 1];
constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]constraints = Prepend[Map[(#[[1]] ≤ # ≤ len)&,vars],Element[vars, Integers]]

{(x[1]|x[2]|x[3]|x[4]) ∈ Integers,1 ≤ x[1] ≤ 5,2 ≤ x[2] ≤ 5,3 ≤ x[3] ≤ 5,4 ≤ x[4] ≤ 5}

There is a small wrinkle. It is often faster not to insist on integrality, but rather to use
real numbers and simply round off (or truncate). To get uniform probabilities initially,
using rounding, we constrain so that a given variable is at least its minimal allowed
integer value minus 1/2, and at most its maximal integer value plus 1/2.

Without further fuss, we give an outline and code for this optimization approach.
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Outline of QAP2QAP2QAP2

1. Input: square matrices M1 and M2 each of dimension n, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n−1. For j in {1, . . . ,n−1} constrain the
jth variable to lie in the range { j − .499 . . . ,n + 1.499}.

3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix. The vari-
ables vector, with entries rounded to nearest integers, may be viewed as a
shuffle on a set of n elements. The permutation is determined by invoking
getPerm on the variables vector.

4. Call NMinimize on the objective function, using the above variables, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP2[mat1 ,mat2 ,cp , it ,sp ]:=Module[QAP2[mat1 ,mat2 ,cp , it ,sp ]:=Module[QAP2[mat1 ,mat2 ,cp , it ,sp ]:=Module[
{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1]− 1,obfunc,vars,x,nmin,vals,constraints},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];constraints = Map[(#[[1]]− .499 ≤ # ≤ len+ 1.499)&,vars];
obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=
Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm[Round[vec]]]]];

{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,
Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,Method → {DifferentialEvolution,SearchPoints → sp,CrossProbability → cp,
PostProcess → False},MaxIterations → it,Compiled → False];PostProcess → False},MaxIterations → it,Compiled → False];PostProcess → False},MaxIterations → it,Compiled → False];

{nmin,getPerm[Round[vars/.vals]]}]{nmin,getPerm[Round[vars/.vals]]}]{nmin,getPerm[Round[vars/.vals]]}]

We show a sample tuning run. We keep the number of iterations and number of chro-
mosomes modest, and try cross probabilities between 0.05 and 0.95, at increments of
.05.

Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]

{{5,4364.},{10,4436.},{15,4538.},{20,4428.},{25,4522.},
{30,4506.},{35,4518.},{40,4550.},{45,4512.},{50,4456.},
{55,4530.},{60,4474.},{65,4520.},{70,4412.},{75,4474.},
{80,4454.},{85,4410.},{90,4314.},{95,4324.}}

From this we home in on the region of the larger values since they seem to be consis-
tently a bit better than other values (it is interesting that this is the opposite of what I
had found for the relative index positioning approach in the previous subsection). We
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now do larger runs to get a better idea of what are the relative merits of these various
cross probability parameter settings.

Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]Quiet[Table[{ j,First[QAP2[mat1,mat2, j/100,80,20]]},{ j,87,98,1}]]

{{87,4298.},{88,4418.},{89,4346.},{90,4314.},{91,4396.},{92,4416.},
{93,4300.},{94,4308.},{95,4274.},{96,4322.},{97,4282.},{98,4298.}}

We will finally try a longer run with cross probability set to 0.975.

Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]Quiet[Timing[{min,perm} = QAP2[mat1,mat2, .975,10000,100]]]

{2590.27,{3814.,
{5,2,11,22,15,18,25,16,9,1,17,3,6,8,
19,12,14,7,23,20,24,4,21,10,13}}}

This gets us reasonably close to the global minimum with a scant 15 lines of code. While
it is mildly more complicated than the 10 line relative position indexing method, it has
the advantage that it is slightly less dependent on fine tuning of the cross probability
parameter.

4.6.3 Another Shuffle Method

There are other plausible ways to set up permutations, such that they behave in a rea-
sonable manner with6 respect to mutation and mating operations. Here is one such.

We have for our vector a set of integers from 1 to n, the length of the set in ques-
tion (again we will actually work with reals, and round off to get integers). The range
restriction is the only stipulation and in particular it may contain repeats. We associate
to it a unique permutation as follows. We initialize a list to contain n zeros. The first
element in our list is then set to the first element in the vector. We also have a marker
set telling us that that first element is now used. We iterate over subsequent elements
in our list, setting them to the corresponding values in vector provided those values
are not yet used. Once done with this iteration we go through the elements that have
no values, assigning them in sequence the values that have not yet been assigned. This
method, which is used in [7], is similar to that of GeneRepair [8]. It is also related to
a method of [12], although they explicitly alter the recombination (that is, the genotype)
rather than the resulting phenotype.

Outline of getPerm2getPerm2getPerm2

1. Input: a shuffle S encoded as n integers in the range{1, . . . ,n}.
2. Create vectors P1 and P2 of length n. The first will be for the permutation we

create, and the second will mark as “used” those elements we have encoun-
tered. Initialize elements of each to be 0.
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3. Loop over S. Denote by k the jth element of S. If the kth element of P2 is 0,
this means we have not yet used k in our permutation.

Set P2(k) to j to mark it as used.
Set P1( j) to k.

4. Initialize a counter k to 1.
5. Loop over P1. If the jth element, P1( j), is 0 then it needs to be filled in with a

positive integer not yet used.
Find smallest k for which P2(k) is 0 (telling us that k is not used as yet in the

permutation).
For that k, set P1( j) to be k, and mark P2(k) nonzero (alternatively, could

simply increment k so it will not revisit this value).
6. Return P1.

getPerm2 = Compile[{{vec, Integer,1}},Module[getPerm2 = Compile[{{vec, Integer,1}},Module[getPerm2 = Compile[{{vec, Integer,1}},Module[
{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];{p1,p2, len = Length[vec],k},p1 = p2 = Table[0,{len}];
Do[k = vec[[ j]];Do[k = vec[[ j]];Do[k = vec[[ j]];
If[p2[[k]] == 0,p2[[k]] = j;p1[[ j]] = k; ],{ j, len}];If[p2[[k]] == 0,p2[[k]] = j;p1[[ j]] = k; ],{ j, len}];If[p2[[k]] == 0,p2[[k]] = j;p1[[ j]] = k; ],{ j, len}];

k = 1;k = 1;k = 1;
Do[If[p1[[ j]] == 0,While[p2[[k]] �= 0,k++];Do[If[p1[[ j]] == 0,While[p2[[k]] �= 0,k++];Do[If[p1[[ j]] == 0,While[p2[[k]] �= 0,k++];
p1[[ j]] = k;p1[[ j]] = k;p1[[ j]] = k;
p2[[k]] = j],{ j, len}];p2[[k]] = j],{ j, len}];p2[[k]] = j],{ j, len}];

p1]];p1]];p1]];

We illustrate with a small example. Say we have the vector {4,1,4,3,1}. What permu-
tation does this represent? Well, we have a 4 in the first slot, so the resulting permutation
vector starts with 4. Then we have a 1, so that’s the next element in the permutation.
Next is a 4, which we have already used. We defer on that slot. Next is a 3, so the fourth
slot in our permutation is 3. last is a 1, which we have already encountered, so we defer
on filling in the fifth position of our permutation. We have completed one pass through
the permutation. The entries we were unable to use were in positions 3 and 5. The val-
ues not yet used are 2 and 5 (because we filled in a vector as {4,1,x,3,y}, where x and y
are not yet known). We now simply use these in order, in the empty slots. That is, entry
3 is 2 and entry 5 is 5. We obtain as our permutation {4,1,2,3,5}.

getPerm2[{4,1,4,3,1}]getPerm2[{4,1,4,3,1}]getPerm2[{4,1,4,3,1}]

{4,1,2,3,5}
This notion of associating a list with repeats to a distinct shuffle has a clear drawback
insofar as earlier elements are more likely than later ones to be assigned to their cor-
responding values in the vector. All the same, this provides a reasonable way to make
a chromosome vector containing repeats correspond to a permutation (and once the
method has started to produce permutations, mating/mutation will not cause too many
repeats provided the crossover probability is either fairly low or fairly high). Moreover,
one can see that any sensible mating process of two chromosomes will less drastically
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alter the objective function than would be the case in the ensemble ordering, as the cor-
responding permutation now depends far less on overall ordering in the chromosomes.
The advantage is that this method will thus be somewhat less in need of intricate tuning
for the crossover probability parameter (but we will do that anyway).

Outline of QAP3QAP3QAP3

1. Input: square matrices M1 and M2 each of dimension n, along with parameter
settings to pass to NMinimize.

2. Form a vector of variables of length n. Constrain each variable to lie in the
range {.501 . . . ,n + .499}.

3. Form an objective function that sums the n2 products of elements of the first
matrix and elements of the row-and-column permuted second matrix.

The variables vector, with entries rounded to nearest integers, may be
viewed as a shuffle on a set of n elements. The permutation is determined
by invoking getPerm2 on the variables vector.

4. Call NMinimize on the objective function, using the above variables, con-
straints, and input option settings.

5. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP3[mat1 ,mat2 ,cp , it ,sp ]:=Module[QAP3[mat1 ,mat2 ,cp , it ,sp ]:=Module[QAP3[mat1 ,mat2 ,cp , it ,sp ]:=Module[
{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},{len = Length[mat1],obfunc,vars,x,nmin,vals,constraints},
vars = Array[x, len];vars = Array[x, len];vars = Array[x, len];
constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];constraints = Map[(.501 ≤ # ≤ len+ 0.499)&,vars];
obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=obfunc[vec : { Real}]:=
Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];Total[Flatten[mat1∗ permuteMatrix[mat2,getPerm2[Round[vec]]]]];

{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,{nmin,vals} = NMinimize[{obfunc[vars],constraints},vars,
Method → {DifferentialEvolution,SearchPoints → sp,Method → {DifferentialEvolution,SearchPoints → sp,Method → {DifferentialEvolution,SearchPoints → sp,

CrossProbability → cp,PostProcess → False},CrossProbability → cp,PostProcess → False},CrossProbability → cp,PostProcess → False},
MaxIterations → it,Compiled → False];MaxIterations → it,Compiled → False];MaxIterations → it,Compiled → False];

{nmin,getPerm2[Round[vars/.vals]]}]{nmin,getPerm2[Round[vars/.vals]]}]{nmin,getPerm2[Round[vars/.vals]]}]

We’ll start with a tuning run.

Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]Quiet[Table[{ j,First[QAP3[mat1,mat2, j/100,50,20]]},{ j,5,95,5}]]

{{5,4486.},{10,4498.},{15,4464.},{20,4492.},{25,4430.},
{30,4516.},{35,4482.},{40,4396.},{45,4432.},{50,4472.},
{55,4548.},{60,4370.},{65,4460.},{70,4562.},{75,4398.},
{80,4466.},{85,4378.},{90,4426.},{95,4354.}}

I did a second run (not shown), in the upper range of crossover probabilities, and with
more iterations and larger numbers of search points. It homed in on .93 as a reasonably
good choice for a crossover probability setting.
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Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]Timing[Quiet[QAP3[mat1,mat2, .93,8000,100]]]

{2380.2,{3888.,
{7,20,11,8,13,4,25,10,19,18,17,22,6,3,5,15,24,
14,23,21,1,16,2,12,9,26}}}

4.7 Hybridizing Differential Evolution for the Assignment
Problem

Thus far we have seen methods that, for a standard benchmark problem from the
quadratic assignment literature, take us to within shouting distance of the optimal value.
These methods used simple tactics to formulate permutations from a vector chromo-
some, and hence could be applied within the framework of Differential Evolution. We
now show a method that hybridizes Differential Evolution with another approach.

A common approach to combinatorial permutation problems is to swap pairs (this
is often called 2-opt), or reorder triples, of elements (also reversal of segments is
common). With Differential Evolution one might do these by modifying the objective
function to try them, and then recording the new vector (if we choose to use it) in the
internals of the algorithm. This can be done in NMinimize, albeit via alteration of an
entirely undocumented internal variable. We show this below, using a simple set of pair
swaps. When we obtain improvement in this fashion, we have gained something akin
to a local hill climbing method. I remark that such hybridization, of an evolutionary
method with a local improvement scheme, is often referred to as a memetic algorithm.
Nice expositions of such approaches can be found in [9] and [6].

The code creates a random value to decide when to use a swap even if it resulted in
no improvement. This can be a useful way to maintain variation in the chromosome set.
We also use a print flag: if set to True, whenever we get an improvement on the current
best permutation, we learn what is the new value and how much time elapsed since the
last such improvement. We also learn when we get such an improvement arising from
a local change (that is, a swap).

As an aside, the use of a swap even when it gives a worse result has long standing
justification. The idea is that we allow a decrease in quality in the hope that it will
later help in finding an improvement. This is quite similar to the method of simulated
annealing, except we do not decrease the probability, over the course of generations, of
accepting a decrease in quality.

Outline of QAP4QAP4QAP4

1. Input: square matrices M1 and M2 each of dimensionn, along with parameter
settings to pass to NMinimize, and a probability level p between 0 and 1
to determine when to retain an altered chromosome that gives a decrease in
quality.

2. Form a vector of variables of length n.
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3. Give them initial ranges from 0 to 1.
4. Form an objective function that sums the n2 products of elements of the first

matrix and elements of the row-and-column permuted second matrix. As in
QAP, the permutation is determined by the ordering of values of the variables
vector.

5. Iterate some number of times (a reasonable value is 4).
Swap a random pair of elements in the variables vector.
Check whether we got improvement in the objective function.
If so, keep this improved vector.
If not, possibly still keep it depending on whether a random value between

0 and 1 is larger than p, and also whether the better vector is the best seen thus
far (we never replace the best one we have).

Depending on an input flag setting, either restart the swapping (if we are not
done iterating) with our original vector, or else continue with the one created
from prior swaps.

6. Call NMinimize on the objective function, using the above ranges, con-
straints, and input option settings.

7. Return the minimal value found, along with the permutation that gives rise to
that value.

QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,QAP4[mat1 ,mat2 ,cp , it ,sp ,sc ,maxj :4,keep :0.4, restorevector ,
printFlag :False]:=Module[printFlag :False]:=Module[printFlag :False]:=Module[
{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,{len = Length[mat1],objfunc,objfunc2,vars,vv,nmin,vals, rnges,best,
bestvec, indx = 0, i = 0, tt = TimeUsed[]},bestvec, indx = 0, i = 0, tt = TimeUsed[]},bestvec, indx = 0, i = 0, tt = TimeUsed[]},

vars = Array[vv, len];vars = Array[vv, len];vars = Array[vv, len];
rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];rnges = Map[{#,0,1}&,vars];
objfunc2[vec ]:=objfunc2[vec] =objfunc2[vec ]:=objfunc2[vec] =objfunc2[vec ]:=objfunc2[vec] =
Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];Total[Flatten[mat1∗ permuteMatrix[mat2,vec]]];
objfunc[vec : { Real}]:=Module[objfunc[vec : { Real}]:=Module[objfunc[vec : { Real}]:=Module[
{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},{val1,val2, r1, r2,vec1 = vec,vec2 = vec,max = Max[Abs[vec]], j = 0},
{vec1,vec2} = {vec1,vec2}/max;{vec1,vec2} = {vec1,vec2}/max;{vec1,vec2} = {vec1,vec2}/max;
val1 = objfunc2[Ordering[vec1]];val1 = objfunc2[Ordering[vec1]];val1 = objfunc2[Ordering[vec1]];
While[ j ≤ maxj,While[ j ≤ maxj,While[ j ≤ maxj,
j++;j++;j++;
{r1, r2} = RandomInteger[{1, len},{2}];{r1, r2} = RandomInteger[{1, len},{2}];{r1, r2} = RandomInteger[{1, len},{2}];
If[restorevector,vec2 = vec1];If[restorevector,vec2 = vec1];If[restorevector,vec2 = vec1];
vec2[[{r1, r2}]] = vec2[[{r2, r1}]];vec2[[{r1, r2}]] = vec2[[{r2, r1}]];vec2[[{r1, r2}]] = vec2[[{r2, r1}]];
val2 = objfunc2[Ordering[vec2]];val2 = objfunc2[Ordering[vec2]];val2 = objfunc2[Ordering[vec2]];
If[val2 < best, j–;If[val2 < best, j–;If[val2 < best, j–;

If[printFlag,Print[“locally improved”,{best,val2}]]];If[printFlag,Print[“locally improved”,{best,val2}]]];If[printFlag,Print[“locally improved”,{best,val2}]]];
If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),If[val2 ≤ val1‖(val1 > best&&RandomReal[] > keep),
OptimizèNMinimizeDump̀vec = vec2;OptimizèNMinimizeDump̀vec = vec2;OptimizèNMinimizeDump̀vec = vec2;
If[val2 < val1,vec1 = vec2];If[val2 < val1,vec1 = vec2];If[val2 < val1,vec1 = vec2];
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val1 = Min[val1,val2],val1 = Min[val1,val2],val1 = Min[val1,val2],
OptimizèNMinimizeDump̀vec = vec1];OptimizèNMinimizeDump̀vec = vec1];OptimizèNMinimizeDump̀vec = vec1];

If[val1 < best,If[val1 < best,If[val1 < best,
best = val1;best = val1;best = val1;
vec1 = bestvec = OptimizèNMinimizeDump̀vec;vec1 = bestvec = OptimizèNMinimizeDump̀vec;vec1 = bestvec = OptimizèNMinimizeDump̀vec;
If[printFlag,If[printFlag,If[printFlag,

Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,Print[“new low ”,++indx,“ {iteration,elapsedtime,newvalue} ”,
{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[]; ];{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[]; ];{i,TimeUsed[]− tt,best}]]; tt = TimeUsed[]; ];

];];];
val1];val1];val1];

bestvec = Range[len];bestvec = Range[len];bestvec = Range[len];
best = Total[Flatten[mat1∗ mat2]];best = Total[Flatten[mat1∗ mat2]];best = Total[Flatten[mat1∗ mat2]];
{nmin,vals} = NMinimize[objfunc[vars], rnges,{nmin,vals} = NMinimize[objfunc[vars], rnges,{nmin,vals} = NMinimize[objfunc[vars], rnges,

MaxIterations → it,Compiled → False,StepMonitor :→ i++,MaxIterations → it,Compiled → False,StepMonitor :→ i++,MaxIterations → it,Compiled → False,StepMonitor :→ i++,
Method → {DifferentialEvolution,SearchPoints → sp, ,Method → {DifferentialEvolution,SearchPoints → sp, ,Method → {DifferentialEvolution,SearchPoints → sp, ,

CrossProbability → cpScalingFactor → sc,PostProcess → False}];CrossProbability → cpScalingFactor → sc,PostProcess → False}];CrossProbability → cpScalingFactor → sc,PostProcess → False}];
Clear[objfunc2];Clear[objfunc2];Clear[objfunc2];
{Total[Flatten[mat1∗ permuteMatrix[mat2,{Total[Flatten[mat1∗ permuteMatrix[mat2,{Total[Flatten[mat1∗ permuteMatrix[mat2,

Ordering[bestvec]]]],Ordering[bestvec]}]Ordering[bestvec]]]],Ordering[bestvec]}]Ordering[bestvec]]]],Ordering[bestvec]}]

We now show a run with printout included. The parameter settings are, as usual, based
on shorter tuning runs.

Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]Timing[QAP4[mat1,mat2, .08,400,320, .4,4, .4,False,True]]

locally improved{4838,4788}
new low 1 {iteration, elapsed time, new value} {0,0.280017,4788}
locally improved{4788,4724}
new low 2 {iteration, elapsed time, new value} {0,0.012001,4724}
locally improved{4724,4696}
new low 3 {iteration, elapsed time, new value} {0,0.,4696}
locally improved{4696,4644}
new low 4 {iteration, elapsed time, new value} {0,0.,4644}
locally improved{4644,4612}
new low 5 {iteration, elapsed time, new value} {0,0.240015,4612}
locally improved{4612,4594}
new low 6 {iteration, elapsed time, new value} {0,0.100006,4594}
locally improved{4594,4566}
new low 7 {iteration, elapsed time, new value} {0,0.004,4566}
locally improved{4566,4498}
new low 8 {iteration, elapsed time, new value} {0,0.,4498}
locally improved{4498,4370}
new low 9 {iteration, elapsed time, new value} {0,0.972061,4370}
locally improved{4370,4348}
new low 10 {iteration, elapsed time, new value} {0,0.004,4348}
locally improved{4348,4322}
new low 11 {iteration, elapsed time, new value} {10,21.3933,4322}
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new low 12 {iteration, elapsed time, new value} {11,0.96806,4308}
new low 13 {iteration, elapsed time, new value} {20,19.0252,4304}
locally improved{4304,4242}
new low 14 {iteration, elapsed time, new value} {20,1.88812,4242}
locally improved{4242,4184}
new low 15 {iteration, elapsed time, new value} {22,4.29227,4184}
new low 16 {iteration, elapsed time, new value} {29,14.7769,4174}
new low 17 {iteration, elapsed time, new value} {31,4.57229,4102}
locally improved{4102,4096}
new low 18 {iteration, elapsed time, new value} {37,12.3448,4096}
locally improved{4096,4092}
new low 19 {iteration, elapsed time, new value} {41,8.0405,4092}
new low 20 {iteration, elapsed time, new value} {51,22.2414,4082}
new low 21 {iteration, elapsed time, new value} {55,8.28452,4076}
new low 22 {iteration, elapsed time, new value} {56,3.51622,4072}
new low 23 {iteration, elapsed time, new value} {56,0.396025,3980}
new low 24 {iteration, elapsed time, new value} {62,13.1488,3964}
new low 25 {iteration, elapsed time, new value} {64,3.03619,3952}
locally improved{3952,3948}
new low 26 {iteration, elapsed time, new value} {71,16.385,3948}
new low 27 {iteration, elapsed time, new value} {75,8.38452,3940}
new low 28 {iteration, elapsed time, new value} {78,6.30839,3934}
new low 29 {iteration, elapsed time, new value} {85,14.0169,3930}
new low 30 {iteration, elapsed time, new value} {85,0.980061,3924}
new low 31 {iteration, elapsed time, new value} {86,1.71611,3922}
locally improved{3922,3894}
new low 32 {iteration, elapsed time, new value} {89,7.22845,3894}
locally improved{3894,3870}
new low 33 {iteration, elapsed time, new value} {109,42.1226,3870}
new low 34 {iteration, elapsed time, new value} {119,22.5814,3860}
new low 35 {iteration, elapsed time, new value} {134,33.4381,3856}
locally improved{3856,3840}
new low 36 {iteration, elapsed time, new value} {142,16.269,3840}
new low 37 {iteration, elapsed time, new value} {146,8.72855,3830}
new low 38 {iteration, elapsed time, new value} {174,57.7716,3816}
new low 39 {iteration, elapsed time, new value} {196,44.6508,3800}
new low 40 {iteration, elapsed time, new value} {203,13.5768,3788}
new low 41 {iteration, elapsed time, new value} {203,0.400025,3768}
locally improved{3768,3750}
new low 42 {iteration, elapsed time, new value} {222,34.3741,3750}

{590.045,{3750,
{1,19,22,15,13,7,10,9,20,23,21,6,14,4,17,16,3,8,25,12,24,18,11,2,5}}}
This is now quite close to the global minimum. As might be observed from the

printout, the swaps occasionally let us escape from seemingly sticky local minima. So,
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for the problem at hand, this hybridization truly appears to confer an advantage over
pure Differential Evolution. I will remark that it seems a bit more difficult to get this
type of hybridization to cooperate well with the various shuffle methods of creating
permutations.

For contrast we go to the opposite extreme and do a huge number of swaps, on a
relatively smaller number of chromosomes and using far fewer iterations. We will reset
our vector with swapped pairs to the original (or best variant found thereof, if we get
improvements). This is to avoid straying far from reasonable vectors, since we now do
many swaps.

This is thus far a 2-opt approach rather than Differential Evolution per se. Nonethe-
less, we notice that the later stages of improvement do come during the actual iterations
of Differential Evolution, and quite possibly those final improvements are due in part to
the maintaining of diversity and the use of mutation and recombination.

Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]Timing[QAP4[mat1,mat2, .08,20,60, .4,2000, .6,True,True]]

locally improved{4838,4808}
new low 1 {iteration, elapsed time, new value} {0,0.048003,4808}
locally improved{4808,4786}
new low 2 {iteration, elapsed time, new value} {0,0.004001,4786}
locally improved{4786,4738}
new low 3 {iteration, elapsed time, new value} {0,0.,4738}
locally improved{4738,4690}
new low 4 {iteration, elapsed time, new value} {0,0.004,4690}
locally improved{4690,4614}
new low 5 {iteration, elapsed time, new value} {0,0.,4614}
locally improved{4614,4502}
new low 6 {iteration, elapsed time, new value} {0,0.,4502}
locally improved{4502,4406}
new low 7 {iteration, elapsed time, new value} {0,0.,4406}
locally improved{4406,4370}
new low 8 {iteration, elapsed time, new value} {0,0.,4370}
locally improved{4370,4342}
new low 9 {iteration, elapsed time, new value} {0,0.004,4342}
locally improved{4342,4226}
new low 10 {iteration, elapsed time, new value} {0,0.,4226}
locally improved{4226,4178}
new low 11 {iteration, elapsed time, new value} {0,0.016001,4178}
locally improved{4178,4174}
new low 12 {iteration, elapsed time, new value} {0,0.,4174}
locally improved{4174,4170}
new low 13 {iteration, elapsed time, new value} {0,0.016001,4170}
locally improved{4170,4158}
new low 14 {iteration, elapsed time, new value} {0,0.012001,4158}
locally improved{4158,4114}
new low 15 {iteration, elapsed time, new value} {0,0.004,4114}
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locally improved{4114,4070}
new low 16 {iteration, elapsed time, new value} {0,0.004,4070}
locally improved{4070,4046}
new low 17 {iteration, elapsed time, new value} {0,0.016001,4046}
locally improved{4046,4042}
new low 18 {iteration, elapsed time, new value} {0,0.060004,4042}
locally improved{4042,4014}
new low 19 {iteration, elapsed time, new value} {0,0.080005,4014}
locally improved{4014,3982}
new low 20 {iteration, elapsed time, new value} {0,0.008001,3982}
locally improved{3982,3978}
new low 21 {iteration, elapsed time, new value} {0,0.008,3978}
locally improved{3978,3970}
new low 22 {iteration, elapsed time, new value} {0,0.052003,3970}
locally improved{3970,3966}
new low 23 {iteration, elapsed time, new value} {0,0.096006,3966}
locally improved{3966,3964}
new low 24 {iteration, elapsed time, new value} {0,0.012001,3964}
locally improved{3964,3960}
new low 25 {iteration, elapsed time, new value} {0,0.,3960}
locally improved{3960,3944}
new low 26 {iteration, elapsed time, new value} {0,0.032002,3944}
locally improved{3944,3926}
new low 27 {iteration, elapsed time, new value} {0,0.036002,3926}
locally improved{3926,3916}
new low 28 {iteration, elapsed time, new value} {0,0.004001,3916}
locally improved{3916,3896}
new low 29 {iteration, elapsed time, new value} {0,0.032002,3896}
locally improved{3896,3892}
new low 30 {iteration, elapsed time, new value} {0,0.112007,3892}
locally improved{3892,3888}
new low 31 {iteration, elapsed time, new value} {0,0.096006,3888}
locally improved{3888,3868}
new low 32 {iteration, elapsed time, new value} {0,0.104006,3868}
locally improved{3868,3864}
new low 33 {iteration, elapsed time, new value} {0,2.18414,3864}
locally improved{3864,3860}
new low 34 {iteration, elapsed time, new value} {0,0.116007,3860}
locally improved{3860,3852}
new low 35 {iteration, elapsed time, new value} {0,1.84411,3852}
locally improved{3852,3838}
new low 36 {iteration, elapsed time, new value} {0,0.028002,3838}
locally improved{3838,3834}
new low 37 {iteration, elapsed time, new value} {0,0.016001,3834}
locally improved{3834,3818}
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new low 38 {iteration, elapsed time, new value} {0,0.072004,3818}
locally improved{3818,3812}
new low 39 {iteration, elapsed time, new value} {0,3.55622,3812}
locally improved{3812,3786}
new low 40 {iteration, elapsed time, new value} {0,0.084006,3786}
locally improved{3786,3780}
new low 41 {iteration, elapsed time, new value} {0,1.6361,3780}
locally improved{3780,3768}
new low 42 {iteration, elapsed time, new value} {0,0.048003,3768}
locally improved{3768,3758}
new low 43 {iteration, elapsed time, new value} {0,0.096006,3758}
locally improved{3758,3756}
new low 44 {iteration, elapsed time, new value} {7,315.692,3756}
locally improved{3756,3754}
new low 45 {iteration, elapsed time, new value} {10,108.415,3754}
locally improved{3754,3752}
new low 46 {iteration, elapsed time, new value} {10,0.15601,3752}
locally improved{3752,3748}
new low 47 {iteration, elapsed time, new value} {16,245.787,3748}
locally improved{3748,3744}
new low 48 {iteration, elapsed time, new value} {16,0.076005,3744}

{872.687,{3744,
{22,15,20,11,5,1,9,8,25,2,19,6,3,16,18,10,7,14,21,24,13,23,4,12,17}}}

Notice that this permutation is not identical to the one we presented at the outset, which
in turn comes from benchmark suite results in the literature. Also note that we seem to
get good results from swaps early on (indeed, we almost get a global minimizer prior
to the main iterations). This raises the question of whether it might be useful to plug
in a different sort of heuristic, say larger swaps, or perhaps use of local (continuous)
quadratic programming. The interested reader may wish to explore such possibilities.

4.8 Future Directions

We have seen several examples of discrete optimization problems, and indicated ways
in which one might approach them using Differential Evolution. Problems investigated
include basic integer programming, set partitioning, set covering by subsets, and the
common permutation optimization problem of quadratic assignment. The main issues
have been to adapt Differential Evolution to enforce discrete or combinatorial structure,
e.g. that we obtain integrality, partitions, or permutations from chromosome vectors.

There are many open questions and considerable room for development. Here are a
few of them.

• Figure out better ways to attack quadratic assignment problems so that we are less
likely to encounter difficulty in tuning parameter values, premature convergence,
and so on.
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• Make the Differential Evolution program adaptive, that is, allow algorithm param-
eters themselves to be modified during the course of a run. This might make results
less sensitive to tuning of parameters such as CrossProbability.

• Alternatively, develop a better understanding of how to select algorithm parame-
ters in a problem-specific manner. Our experience has been that settings for cross
probability should usually be around .9 (which is quite high as compared to what
is typical for continuous optimization). It would be useful to have a more refined
understanding of this and other tuning issues.

• Figure out how to sensibly alter parameters over the course of the algorithm, not by
evolution but rather by some other measure, say iteration count. For example, one
might do well to start of with a fairly even crossover (near 0.5, that is), and have
it either go up toward 1, or drop toward 0, as the algorithm progresses. Obviously
it is not hard to code Differential Evolution to do this. What might be interesting
research is to better understand when and how such progression of algorithm pa-
rameters could improve performance.

• Implement a two-level version of Differential Evolution, wherein several short runs
are used to generate initial values for a longer run.

• Use Differential Evolution in a hybridized form, say, with intermediate steps of
local improvement. This would involving modifying chromosomes “in plac”, so
that improvements are passed along to subsequent generations. We showed a very
basic version of this but surely there must be improvements to be found.

We remark that some ideas related to item 2 above are explored in [5]. Issues of
self-adaptive tuning of Differential Evolution are discussed in some detail in [1]. A nice
exposition of early efforts along these lines, for genetic algorithms, appears in [3].
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Abstract. In a traveling salesman problem, if the set of nodes is divided into clusters for a sin-
gle node from each cluster to be visited, then the problem is known as the generalized traveling
salesman problem (GTSP). Such problem aims to find a tour with minimum cost passing through
only a single node from each cluster. In attempt to show how a continuous optimization algo-
rithm can be used to solve a discrete/combinatorial optimization problem, this chapter presents a
standard continuous differential evolution algorithm along with a smallest position value (SPV)
rule and a unique solution representation to solve the GTSP. The performance of the differential
evolution algorithm is tested on a set of benchmark instances with symmetric distances ranging
from 51 (11) to 442 (89) nodes (clusters) from the literature. Computational results are presented
and compared to a random key genetic algorithm (RKGA) from the literature.

5.1 Introduction

The generalized traveling salesman problem (GTSP), one of several variations of the
traveling salesman problem (TSP), has been originated from diverse real life or poten-
tial applications. The TSP finds a routing of a salesman who starts from an origin (i.e. a
home location), visits a prescribed set of cities, and returns to the origin in such a way
that the total distance is minimum and each city is travelled once. On the other hand, in
the GTSP, a salesman when making a tour does not necessarily visit all nodes. But sim-
ilar to the TSP, the salesman will try to find a minimum-cost tour and travel each city
exactly once. Since the TSP in its generality represents a typical NP-Hard combinato-
rial optimization problem, the GTSP is also NP-hard. While many other combinatorial
optimization problems can be reduced to the GTSP problem [11], applications of the
GTSP spans over several areas of knowledge including computer science, engineering,
electronics, mathematics, and operations research, etc. For example, publications can
be found in postal routing [11], computer file processing [9], order picking in ware-
houses [17], process planning for rotational parts [3], and the routing of clients through
welfare agencies [24].

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 121–138.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Let us first define the GTSP, a complete graph G = (V,E) is a weighted undirected
whose edges are associated with non-negative costs. We denote the cost of an edge
e = (i, j) by ci j. Then, the set of V nodes is divided into m sets or clusters such that
V = {V1, ..,Vm} with V = {V1 ∪ ..∪Vm} and Vj ∩Vk = φ . The problem involves two
related decisions- choosing a node from the subset and finding a minimum cost tour
in the subgraph of G. In other words, the objective is to find a minimum tour length
containing exactly single node from each cluster Vj.

The GTSP was first addressed in [9, 24, 28]. Applications of various exact algorithms
can be found in Laporte et al. [12, 13], Laporte & Nobert [11], Fischetti et al. [7, 8], and
others in [4, 18]. Laporte & Nobert [11], developed an exact algorithm for GTSP by for-
mulating an integer programming and finding the shortest Hamiltonian cycle through
some clusters of nodes. Noon and Bean [18], presented a Lagrangean relaxation algo-
rithm. Fischetti et al. [8] dealt with the asymmetric version of the problem and devel-
oped a branch and cut algorithm to solve this problem. While exact algorithms are very
important, they are unreliable with respect to their running time which can easily reach
many hours or even days, depending on the problem sizes. Meanwhile several other
researchers use transformations from GTSP to TSP since a large variety of exact and
heuristic algorithms have been applied for the TSP [3],. Lien et. al. [15] first introduced
transformation of a GTSP into a TSP, where the number of nodes of the transformed
TSP was very large. Then Dimitrijevic and Saric [6] proposed another transformation
to decrease the size of the corresponding TSP. However, many such transformations
depend on whether or not the problem is symmetric; moreover, while the known trans-
formations usually allow to produce optimal GTSP tours from the obtained optimal
TSP tours, such transformations do not preserve suboptimal solutions. In addition, such
conversions of near-optimal TSP tours may result in infeasible GTSP solutions.

Because of the multitude of inputs and the time needed to produce best results, the
GTSP problems are harder and harder to solve. That is why, in such cases, applications
of several worthy heuristic approaches to the GTSP are considered. The most used con-
struction heuristic is the nearest-neighbor heuristic which, in its adaptation form, was
presented in Noon [17]. Similar adaptations of the farthest-insertion, nearest-insertion,
and cheapest-insertion heuristics are proposed in Fischetti et al. [8]. In addition, Renaud
& Boctor [20] developed one of the most sophisticated heuristics, called GI3 (Gener-
alized Initilialization, Insertion, and Improvement), which is a gen-eralization of the I3

heuristic in Renaud et al. [21]. GI3 contains three phases: in the Initialization phase, the
node close to the other clusters is chosen from each cluster and greedily built into a tour
that passes through some, but not necessarily all, of the chosen nodes. Next in the Inser-
tion phase, nodes from unvisited clusters are inserted between two consecutive clusters
on the tour in the cheapest possible manner, allowing the visited node to change for the
adjacent clusters; after each insertion, the heuristic performs a modification of the 3-opt
improvement method. In the Improvement phase, modifications of 2-opt and 3-opt are
used to improve the tour. Here the modifications, called G2-opt, G3-opt, and G-opt,
allow the visited nodes from each cluster to change as the tour is being re-ordered by
the 2-opt or 3-opt procedures.

Application of evolutionary algorithms specifically to the GTSP have been few in
the literature until Snyder & Daskin [26] who proposed a random key genetic algorithm
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(RKGA) to solve this problem. In their RKGA, a random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and ”swap”. In the search process, their ”swap” procedure is considered
as a speed-up method which basically removes a node j from a tour and inserts all
possible nodes ks from the corresponding cluster in between an edge (u,v) in a tour
(i.e., between the node u and the node v). Such insertion is based on a modified nearest-
neighbor criterion. These two local search heuristics have been separately embedded in
the level-I improvement and level-II improvement procedures.

For each individual in the population, they store the original (pre-improvement) cost
and the final cost after improvements have been made. When a new individual is created,
they compare its pre-improvement cost to the pre-improvement cost of the individual
at position p × N in the previous (sorted) population, where p ∈ [0,1] is a parameter
of the algorithm (they use p = 0.05 in their implementation). These two improvement
procedures in Snyder & Daskin [26] are implemented as follows:

1. If the new solution is worse than the pre-improvement cost of this individual, the
level-I improvement is considered. That is, one 2-opt exchange and one ”swap”
procedure (assuming a profitable one can be found) are performed and the resulting
individual are stored.

2. Otherwise, the level-II improvement is considered. So the 2-opts are executed un-
til no profitable 2-opts can be found, then the ”swap” procedures are carried out
until no profitable swaps can be found. The procedure is repeated until no further
improvements have been made in a given pass.

The RKGA focuses on designing the local search to spend more time on improving
solutions that seem promising to the previous solutions than the others. Both level-I
and level-II improvements consider a ”first-improvement” strategy, which means im-
plementing the first improvement of a move, rather than the best improvement of such
move.

Thereafter, Tasgetiren et al. [30, 31, 32] presented a discrete particle swarm opti-
mization (DPSO) algorithm, a genetic algorithm (GA) and a hybrid iterated greedy
(HIG) algorithm, respectively.They hybridized the above methods with a local search,
called variable neighborhood descend algorithm, to further improve the solution qual-
ity; at the same time, they applied some speed-up methods for greedy node insertions.
Silberholz & Golden proposed another GA in [25], which is denoted as mrOXGA.

Section 2 introduces a brief summary of discrete differential evolution algorithm.
Section 3 provides the details of solution representation. Insertion methods are summa-
rized in Section 4. Section 5 gives the details of the local search improvement heuristics.
The computational results on benchmark instances are discussed in Section 6. Finally,
Section 7 summarizes the concluding remarks.

5.2 Differential Evolution Algorithm

Differential evolution (DE) is a latest evolutionary optimization methods proposed by
Storn & Price [27]. Like other evolutionary-type algorithms, DE is a population-based
and stochastic global optimizer. The DE algorithm starts with establishing the initial
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population. Each individual has an m-dimensional vector with parameter values deter-
mined randomly and uniformly between predefined search ranges. In a DE algorithm,
candidate solutions are represented by chromosomes based on floating-point numbers.
In the mutation process of a DE algorithm, the weighted difference between two ran-
domly selected population members is added to a third member to generate a mutated
solution. Then, a crossover operator follows to combine the mutated solution with the
target solution so as to generate a trial solution. Thereafter, a selection operator is ap-
plied to compare the fitness function value of both competing solutions, namely, target
and trial solutions to determine who can survive for the next generation. Since DE
was first introduced to solve the Chebychev polynomial fitting problem by Storn &
Price [25], [27], it has been successfully applied in a variety of applications that can be
found in Corne et. al [5], Lampinen [10], Babu & Onwubolu [1]; and Price et al. [19].

Currently, there are several variants of DE algorithms. We follow the DE/rand/1/bin
scheme of Storn & Price [27] with the inclusion of SPV rule in the algorithm. Pseu-
docode of the DE algorithm is given in Fig 5.1.

Initialize parameters
Initialize the target population individuals
Find the tour of the target population individuals
Evaluate the target population individuals
Apply local search to the target population individuals (Optional)
Do{

Obtain the mutant population individuals
Obtain the trial population individuals
Find the tour of trial population individuals
Evaluate the trial population individuals
Do selection between the target and trial population individuals
Apply local searchto the target population individuals (Optional)

}While (Not Termination)

Fig. 5.1. DE Algorithm with Local Search

The basic elements of DE algorithm are summarized as follows:

Target individual: Xt
i denotes the ith individual in the population at generation t and

is defined as Xt
i =

[
xt

i1,x
t
i2, ...,x

t
in

]
, where xt

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Mutant individual: Vt
i denotes the ith individual in the population at generation t and

is defined as Vt
i =

[
vt

i1,v
t
i2, ...,v

t
in

]
, where vt

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Trial individual: Ut
i denotes the ith individual in the population at generation t and is

defined as Ut
i =

[
ut

i1,u
t
i2, ...,u

t
in

]
, where ut

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,n).

Target population: Xt is the set of NP individuals in the target population at generation
t, i.e., Xt = [Xt

1,X
t
2, ...,X

t
NP].
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Mutant population: Vt is the set of NP individuals in the mutant population at gener-
ation t, i.e., Vt = [Vt

1 ,V
t
2 , ...,V

t
NP].

Trial population: Ut is the set of NP individuals in the trial population at generation t,
i.e., Ut = [Ut

1,U
t
2, ...,U

t
NP].

Tour: a newly introduced variable π t
i , denoted a tour of the GTSP solution implied by

the individual Xt
i , is represented as π t

i =
[
π t

i1,π
t
i2, ...,π

t
in

]
, where π t

i j is the assignment
of node j of the individual i in the tour at generation t.

Mutant constant: F ∈ (0,2) is a real number constant which affects the differential
variation between two individuals.

Crossover constant: CR ∈ (0,1) is a real number constant which affects the diversity
of population for the next generation.

Fitness function: In a minimization problem, the objective function is fi (π t
i ← Xt

i ),
where π t

i denotes the corresponding tour of individual Xt
i .

5.2.1 Solution Representation

In this section, we present a solution representation which enables DEs to solve the
GTSP. Bean [2] suggested an encoding for the GA to solve the GTSP, where each
set Vj has a gene consisting of an integer part between

[
1,
∣∣Vj
∣∣] and a fractional part

between [0,1]. The integer part indicates which node from the cluster is included in the
tour, and the nodes are sorted by their fractional part to indicate the order. Similarly,
a continuous DE can be used to solve the GTSP. First, we say each parameter value
represents a cluster for the GTSP and is restricted to each cluster size of the GTSP
instances.

From the following example, consider a GTSP instance with V = {1, ..,20} and V1 =
{1, ..,5}, V2 = {6, , ..,10}, V3 = {11, ..,15} and V4 = {16, ..,20}. The parameter values
(x j) can be positive or negative, e.g. for dimension j equal to 4.23 and for dimension j
2 is -3.07, etc. This feature indicates the difference between the random key encoding
and the one in this chapter. Table 5.1 shows the solution representation of the DE for the
GTSP. Then the integer parts of these parameter values (x j) are respectively decoded as
node 4 (the fourth node in V1), node 8 (the third node in V2), node 11 (the first node in
V3), and node 18 (the third node in V1).

Table 5.1. Solution Representation

j 1 2 3 4

x j 4.23 -3.07 1.80 3.76
v j 4 8 11 18
s j 0.23 -0.07 0.80 0.76
π j 8 4 18 11

F (π) d8,4 d4,18 d18,11 d11,8



126 F. Tasgetiren et al.

Since the values of parameter x j can be positive or negative, to determine which node
(v j) should be taken, the absolute value of the parameter x j needs to be considered. Then
the random key values (s j) are determined by simply subtracting the integer part of the
parameter x j from its current value considering the negative signs, i.e., s j = x j − int(x j).
So for dimension 1, its parameter x1 is equal to 4.23 and the random key value s1 is
0.23 (S1 = 4.23 − 4). Finally, with respect to the random key values (s j), the smallest
position value (SPV) rule of Tasgetiren et. al. [29] is applied to the random key vector
to determine the tour π . As illustrated in Table 5.1, the objective function value implied
by a solution x with m nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (5.1)

However, with this proposed representation scheme, a problem may rise such that
when the DE update equations are applied, any parameter value might be outside of the
initial search range, which is restricted to the size of each cluster. Let xmin [ j] and xmax [ j]
represent the minimum and maximum value of each parameter value for dimension j.
Then they stand for the minimum and maximum cluster sizes of each dimension j.
Regarding the initial population, each parameter value for the set Vj is drawn uniformly
from [−Vj + 1,Vj + 1]. Obviously, xmax [ j] is restricted to [Vj + 1], whereas xmin [ j] is
restricted to −xmax [ j]. During the reproduction of the DE, when any parameter value is
outside of the cluster size, it is randomly re-assigned to the corresponding cluster size
again.

5.2.2 An Example Instance of the GTSP

In this section, we summarize the solution representation by using a GTSP instance of
11EIL51 from TSPLIB Library [23] with V = {1, ..,51}, where the clusters are V1 =
{19,40,41}, V2 = {3,20,35,36}, V3 = {24,43}, V4 = {33,39}, V5 = {11,12,27,32,46,
47,51}, V6 = {2,16,21,29,34,50}, V7 = {8,22,26,28,31}, V8 = {13,14,18,25},

Table 5.2. Clusters for the Instance 11EIL51

Cluster Node

V1 19 40 41
V2 3 20 35 36
V3 24 43
V4 33 39
V5 11 12 27 32 46 47 51
V6 2 16 21 29 34 50
V7 8 22 26 28 31
V8 13 14 18 25
V9 4 15 17 37 42 44 45
V10 1 6 7 23 48
V11 5 9 10 30 38 49
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Table 5.3. Clusters for the Instance 11EIL51

Cluster Node

j 1 2 3 4 5 6 7 8 9 10 11
x j 3.45 -2.66 1.86 1.11 -3.99 -6.24 -2.81 4.52 6.23 -1.89 3.02
v j 41 20 24 33 27 50 22 25 44 1 10
s j 0.45 -0.66 0.86 0.11 -0.99 -0.24 -0.81 0.52 0.23 -0.89 0.02
π j 27 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d27,1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,27

F (π) 8 7 15 21 17 12 17 20 21 14 22

V9 = {4,15,17,37,42,44,45}, V10 = {1,6,7,23,48}, and V11 = {5,9,10,30,38,49}.
To make clearer, we show the 11EIL51 instance in Table 5.2 below:

In order to establish the GTSP solution, each parameter value for the dimension j
is restricted to each cluster size such that −4 < x1 < 4, −5 < x2 < 5, −3 < x3 < 3,
−3 < x4 < 3, −8 < x5 < 8, −7 < x6 < 7, −6 < x7 < 6, −5 < x8 < 5, −8 < x9 < 8,
−6 < x10 < 6 and −7 < x11 < 7. This provides the feasibility of the GTSP solution
generated by the DE algorithm. Suppose that a DE solution is obtained by the traditional
update equations and the parameter values x′

js of the individual are given as in Table
5.3.

Similar to what we have explained via Table 5.1 example, the integer parts of the
individual parameter values (x j) are respectively decoded as node 41 (the third node
in V1), node 20 (the second node in V2), node 24 (the first node in V3), node 33 (the
first node in V4), node 27 (the third node in V5), node 50 (the sixth node in V6), node
22 (the second node in V7), node 25 (the fourth node in V8), node 44 (the sixth node in
V9), node 1 (the first node in V10) and node 10 (the third node in V11). Unlike the case
in the RKGA, where the random key is defined as another vector, the fractional part of
the individual parameter values (x j) can be directly obtained as a random key to obtain
the tour. As shown in Table 5.3, while applying the SPV rule to the random key vector
(s j), the tour (π j) can be obtained very easily. As well, the objective function value of
the individual X is given by

F (π) =
10
∑
j=1

dπ jπ j+1 + dπ10π1 = d27,1 + d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44

+d44,41 + d41,25 + d25,24 + d24,27

F (π) =
10

∑
j=1

dπ jπ j+1 + dπ11π1 = 8+7+15+21+17+12+17+20+21+14+22= 174

5.2.3 Complete Computational Procedure of DE

The complete computational procedure of the DE algorithm for the GTSP problem can
be summarized as follows:
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• Step 1: Initialization
– Set t = 0, NP =100
– Generate NP individuals randomly as in Table 5.1,

{
X0

i , i = 1,2, ...,NP
}

where
X0

i =
[
x0

i1,x
0
i2, ...,x

0
in

]
.

– Apply the SPV rule to find the tour π0
i =

[
π0

i1,π
0
i2, ...,π

0
in

]
of individual X0

i for
i = 1,2, ...,NP.

– Evaluate each individual i in the population using the objective function f 0
i(

πo
i ← X0

i

)
for i = 1,2, ...,NP.

• Step 2: Update generation counter
– t = t + 1

• Step 3: Generate mutant population
– For each target individual, Xt

i , i = 1,2, ...,NP, at generation t, a mutant individ-
ual, Vt

i =
[
vt

i1,v
t
i2, ...,v

t
in

]
, is determined such that:

Vt
i = Xt−1

ai
+ F

(
Xt−1

bi
− Xt−1

ci

)
(5.2)

where ai, bi and ci are three randomly chosen individuals from the population
such that (ai �= bi �= ci).

• Step 4: Generate trial population
– Following the mutation phase, the crossover (re-combination)operator is applied

to obtain the trial population. For each mutant individual, V t
i =

[
vt

i1,v
t
i2, ...,v

t
in

]
,

an integer random number between 1 and n, i.e., Di ∈ (1,2, ...,n), is chosen, and
a trial individual, Ut

i =
[
ut

i1,u
t
i2, ...,u

t
in

]
is generated such that:

ut
i j =

{
vt

i j, i f rt
i j ≤ CR or j = Di

xt−1
i j , Otherwise

(5.3)

where the index D refers to a randomly chosen dimension ( j = 1,2, ...,n), which
is used to ensure that at least one parameter of each trial individual Ut

i differs
from its counterpart in the previous generation Ut−1

i , CR is a user-defined cross-
over constant in the range (0, 1), and rt

i j is a uniform random number between
0 and 1. In other words, the trial individual is made up with some parameters
of mutant individual, or at least one of the parameters randomly selected, and
some other parameters of target individual.

• Step 5: Find tour
– Apply the SPV rule to find the tour π t

i =
[
π t

i1,π
t
i2, ...,π

t
in

]
for i = 1,2,...,NP.

• Step 6: Evaluate trial population
– Evaluate the trial population using the objective function f t

i (π t
i ← Ut

i ) for i =
1,2, ...,NP.

• Step 7: Selection
– To decide whether or not the trial individual Ut

i should be a member of the
target population for the next generation, it is compared to its counterpart target
individual Xt−1

i at the previous generation. The selection is based on the survival
of fitness among the trial population and target population such that:

Xt
i =

{
Ut

i , i f f (π t
i ← Ut

i ) ≤ f
(
π t−1

i ← Xt−1
i

)
Xt−1

i , otherwise
(5.4)
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• Step 8: Stopping criterion
– If the number of generations exceeds the maximum number of generations, or

some other termination criterion, then stop; otherwise go to step 2.

5.3 Insertion Methods

In this section of the chapter, the insertion methods denoted as LocalSearchSD() are
modified from the literature and facilitate the use of the local search. Insertion methods
are based on the insertion of node πR

k into m + 1 possible positions of a partial or de-
structed tour πD with m nodes and an objective function value of F

(
πD
)
. Note that as

an example, only a single node is considered to be removed from the current solution to
establish πR

k with a single node and re-inserted into the partial solution. Such insertion
of node πR

k into m−1 possible positions is actually proposed by Rosenkrantz et al. [22]
for the TSP. Snyder & Daskin [26] adopted it for the GTSP. It is based on the removal
and the insertion of node πR

k in an edge
(
πD

u ,πD
v

)
of a partial tour. However, it avoids the

insertion of node πR
k on the first and the last position of any given partial tour. Suppose

that node πR
k =27 will be inserted in a partial tour in Table 5.4.

Table 5.4. Partial Solution to Be Inserted for the Instance 11EIL51

j 1 2 3 4 5 6 7 8 9 10

πD
j 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,1

173 7 15 21 17 12 17 20 21 14 29

A Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπR

k πD
1

+ dπD
m πR

k

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Example A:

Remove = dπD
m πD

1
Remove = dπD

10πD
1

Remove = d24,1

Add = dπR
k πD

1
+ dπD

m πR
k

Add = dπR
1 πD

1
+ dπD

10πR
1

Add = d27,1 + d24,27

F (π) = F
(
πD
)
+ Add − Remove
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Table 5.5. Insertion of node πR
k =27 into the first position of partial solution for Case A

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 27 1 22 20 50 10 33 44 41 25 24

dπ jπ j+1 d27,1 d1,22 d22,20 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,27 d24,27

174 8 7 15 21 17 12 17 20 21 14 22

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,1 + d27,1 + d24,27 − d24,1

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d27,1 + d24,27

B Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπD

m πR
k
+ dπR

k πD
1

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Example B:

Remove = dπD
m πD

1
Remove = dπD

10πD
1

Remove = d24,1

Add = dπD
m πR

k
+ dπR

k πD
1

Add = dπD
10πR

1
+ dπR

1 πD
1

Add = d24,27 + d27,1

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25+
d25,24 + d24,1 + d24,27 + d27,1 − d24,1

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,27 + d27,1

C Insertion of node πR
k between an edge

(
πD

u ,πD
v

)
a Remove = dπD

u πD
v

b Add = dπD
u πR

k
+ dπR

k πD
v

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.
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Table 5.6. Insertion of node πR
k =27 into the last position of partial solution for Case B

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 1 22 20 50 10 33 44 41 25 24 27

dπ jπ j+1 d1,22 d22,50 d20,50 d50,10 d10,33 d33,44 d44,41 d41,25 d25,24 d24,27 d27,1

174 7 15 21 17 12 17 20 21 14 22 8

Example C:

u = 6
v = 7
Remove = dπD

u πD
v

Remove = dπD
6 πD

7
Remove = d33,44

Add = dπD
u πR

k
+ dπR

k πD
v

Add = dπD
6 πR

1
+ dπR

1 πD
7

Add = d33,27 + d27,44

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d33,44 + d44,41 + d41,25 + d25,24+
d24,1 + d33,27 + d27,44 − d33,44

F (π) = d1,22 + d22,20 + d20,50 + d50,10 + d10,33 + d44,41 + d41,25 + d25,24 + d24,1+
d33,27 + d27,44

Table 5.7. Insertion of node πR
k between an edge

(
πD

u ,πD
v
)

for Case C

j 1 2 3 4 5 6 7 8 9 10 11

πD
j 1 22 20 50 10 33 27 44 41 25 24

dπ jπ j+1 d1,22 d22,50 d20,50 d50,10 d10,33 d33,27 d27,44 d44,41 d41,25 d25,24 d24,1

230 7 15 21 17 12 41 33 20 21 14 29

Note that Case B can actually be managed by Case C, since the tour is cyclic. Note
again that the above insertion approach is somewhat different than the one in Snyder &
Daskin [26], where the cost of an insertion of node πR

k in an edge
(
πD

u ,πD
v

)
.

5.3.1 Hybridization with Local Search

The hybridization of DE algorithm with local search heuristics is achieved by per-
forming a local search phase on every trial individual generated. The SWAP proce-
dure [26], denoted as LocalSearchSD in this chapter, and the 2-opt heuristic [21] were
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procedure LS (π)
h := 1
while (h ≤ m) do

π∗ := LocalSearchSD(π)
i f ( f (π∗) ≤ f (π)) then

π := π∗
h := 1

else
h := h+1

else
endwhile
return π

end procedure

Fig. 5.2. The Local Search Scheme

Procedure SWAP()
remove j f rom T
f or each k ∈ Vj

ck ← min
{

duk +dkv −duv/(u,v) is an edge in T
}

k∗ ← argmin
k∈Vj

{ck}
insert k∗ into T between (u,v)

Fig. 5.3. The SWAP Procedure

separately applied to each trial individual. The 2-opt heuristic finds two edges of a
tour that can be removed and two edges that can be inserted in order to generate a new
tour with a lower cost. More specifically, in the 2-opt heuristic, the neighborhood of a
tour is obtained as the set of all tours that can be replaced by changing two nonadjacent
edges in that tour. Note that the 2-opt heuristic is employed with the first improvement
strategy in this study. The pseudo code of the local search (LS) procedures is given in
Fig 5.2.

As to the LocalSearchSD procedure, it is based on the SWAP procedure and is
basically concerned with removing a node from a cluster and inserting a different node
from that cluster into the tour. The insertion is conducted using a modified nearest-
neighbour criterion, so that the new node may be inserted on the tour in a spot different.
Each node in the cluster is inserted into all possible spots in the current solution and the
best insertion is replaced with the current solution. The SWAP procedure of Snyder &
Daskin [26] is outlined in Fig 5.3, whereas the proposed DE algorithm is given in Fig
5.4. Note that in SWAP procedure, the followings are given such that tour T; set Vj;
node j ∈ Vj, j ∈ T ; distances duv between each u,v ∈ V .

5.4 Computational Results

Fischetti et al. [8] developed a branch-and-cut algorithm to solve the symmetric GTSP.
The benchmark set is derived by applying a partitioning method to standard TSP
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Procedure DE GT SP
Set CR,F,NP,TerCriterion
X =

(
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1,x
0
2, ..,x

0
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)
f
(
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)
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i

)
i=1,2,..,NP
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(
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)
i=1,2,..,NP

π0
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i = argmin
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f
(
π0

i ← x0
i

)}
i=1,2,..,NP

πB := π0
g ← x0

i
k := 1
while

(
Not TerCriterion

)
do

vk
i j := xk

ia +F
(
xk

ib +xk
ic

)
i:=1,2,..,NP, j=1,2,..,m

uk
i j =

{
vk

i j i f rk
i j < CR or j = D j

xk−1
i j otherwise

i=1,2,..,NP, j=1,2,..,m

f
(
πk

i ← uk
i

)
i:=1,2,..,NP

πk
i ← uk

i = 2 opt
(
πk

i ← uk
i

)
i=1,2,..,NP

πk
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i = LS
(
πk

i ← uk
i

)
i=1,2,..,NP

xk
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{
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i i f f
(
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)
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(
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i otherwise
i=1,2,..,NP
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{
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(
πk
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)
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(
πk−1
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g
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i:=1,2,..,NP

πB = argmin
{

f (πB) , f
(
πk

g ← xk
g
)}

k := k +1
endwhile
return πB

Fig. 5.4. The DE Algorithm with Local Search Heuristics

instances from the TSPLIB library [23]. The benchmark set with optimal objective
function values for each of the problems is obtained through a personal communication
with Dr. Lawrence V. Snyder. The benchmark set contains between 51 (11) and 442
(89) nodes (clusters) with Euclidean distances and the optimal objective function value
for each of the problems is available. The DE algorithm was coded in Visual C++ and
run on an Intel Centrino Duo 1.83 GHz Laptop with 512MB memory.

We consider the RKGA by Snyder & Daskin [26] for comparison in this paper due to
the similarity in solution representation. The population size is taken as 100. Cross-over
and mutation probability are taken as 0.9 and 0.2, respectively. To be consistent with
Snyder & Daskin [26], the algorithm is terminated when 100 generations have been
carried out or when 10 consecutive generations have failed to improve the best-known
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Table 5.8. Computational Results of DE and RKGA Implementations

DE RKGA

Favg Δavg Favg Δavg

11EIL51 219.4 26.1 227.4 30.7
14ST70 473.8 49.9 450.8 42.7
16EIL76 358.8 71.7 352 68.4
16PR76 93586.2 44.1 85385.2 31.5
20KROA100 20663 112.8 20191 107.9
20KROB100 20764.2 101 18537.4 79.5
20KROC100 20597.2 115.6 17871.6 87.1
20KROD100 19730.2 108.8 18477 95.5
20KROE100 20409.2 114.3 19787.6 107.8
20RAT99 1049 111.1 1090 119.3
20RD100 7349.2 101.3 7353.4 101.5
21EIL101 530.8 113.2 526.4 111.4
21LIN105 16170.2 96.9 14559.4 77.3
22PR107 64129.8 129.9 57724.6 106.9
25PR124 91609.4 150.3 82713 126
26BIER127 146725.2 102.6 154703.2 113.6
28PR136 115003.4 170.2 112674.6 164.7
29PR144 112725.6 145.7 94969.2 107
30KROA150 34961.8 217.3 31199.2 183.2
30KROB150 35184.8 188.5 34685.2 184.4
31PR152 140603.6 172.6 118813.4 130.4
32U159 61456.6 171.2 59099.2 160.8
39RAT195 3332 290.2 2844.2 233
40D198 30688.6 190.7 26453 150.6
40KROA200 49109.6 266.3 46866.4 249.6
40KROB200 48553.2 270.3 47303.2 260.8
45TS225 237888.4 248.1 229495.2 235.8
46PR226 259453.2 305.4 263699 312
53GIL262 4497 343.9 4233.6 314.8
53PR264 165646.6 460.6 145789.4 393.4
60PR299 116716.2 416.1 110977.8 390.2
64LIN318 98943.8 376.5 94469.2 352.1
80RD400 37058.6 482.6 34502.2 436.1
84FL417 68102 605.6 65025.6 573.5
88PR439 365437.8 508.1 364282.4 504.5
89PCB442 132388 511.3 131711.8 498

solution. Five runs were carried out for each problem instance to report the statistics
based on the relative percent deviations (Δ ) from optimal solutions as follows:

Δavg =
R

∑
i=1

(
(Hi − OPT)× 100

OPT

)
/R (5.5)
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Table 5.9. Comparison for Optimal Instances of DE and RKGA Implementations

DE RKGA

Instance Favg Δavg Favg Δavg

11EIL51 0 0.08 0 0.2
14ST70 0 0.1 0 0.2
16EIL76 0 0.12 0 0.2
16PR76 0 0.14 0 0.4
20KROA100 0 0.21 0 0.4
20KROB100 0 0.22 0 0.3
20KROC100 0 0.2 0 0.4
20KROD100 0 0.21 0 0.6
20KROE100 0 0.2 0 0.5
20RAT99 0 0.2 0 0.5
20RD100 0 0.2 0 0.4
21EIL101 0 0.19 0 0.5
21LIN105 0 0.21 0 0.4
22PR107 0 0.23 0 0.8
25PR124 0 0.28 0 0.4
26BIER127 0 0.33 0 0.5
28PR136 0 1.27 0 1
29PR144 0 0.37 0 0.7
30KROA150 0 0.48 0 0.9
30KROB150 0 0.46 0 1.2
31PR152 0.01 1.49 0 0.8
32U159 0 0.55 0 1
39RAT195 0.07 4.6 0 1.6
40D198 0.04 3.54 0 1.8
40KROA200 0 1.81 0 1.9
40KROB200 0.04 2.03 0 2.1
45TS225 0.25 2.98 0.02 1.5
46PR226 0 0.76 0 1.9
53GIL262 1.24 5.65 0.75 2.1
53PR264 0.01 4.38 0 3.2
60PR299 0.71 10.4 0.11 3.5
64LIN318 0.77 8.89 0.62 5.9
80RD400 1.64 18.89 1.19 5.3
84FL417 0.09 25.26 0.05 9.5
88PR439 1.13 22.94 0.27 9
89PCB442 1.78 12.12 1.7 1.72

Avg 0.22 3.67 0.13 0.2

where Hi, OPT and R are the objective function values generated by the DE in each
run, the optimal objective function value, and the number of runs, respectively. For the
computational effort consideration, tavg denotes average CPU time in seconds to reach
the best solution found so far during the run, i.e., the point of time that the best so
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far solution does not improve thereafter. Favg represents the average objective function
values out of five runs.

Table 5.8 shows the computational results of implementing DE without the local
search methods and those adopted from Snyder & Daskin [26]. As seen in Table 5.8,
the DE results are very competitive to the RKGA of Snyder & Daskin [26], even though
a two-sided paired t-test favors the RKGA. However, our objective is just to show how
a continuous optimization algorithm can be used for solving a combinatorial optimiza-
tion problem. We would like to point out that with some better parameter tuning, the
DE results could be further improved. In addition, our observation reveals the fact that
the performance of the DE algorithm is tremendously affected by the mutation equa-
tion [14]. After applying the mutation operator, most dimension values fall outside of
search limits (cluster sizes). To force them to be in the search range, they are randomly
re-initialized between the search bounds in order to keep the DE algorithm search for
nodes from clusters predefined. However, the random re-initialization causes the DE
algorithm to conduct a random search, which ruins its learning ability. Based on our
observation, using some different levels of crossover and mutation probabilities as well
as other mutation operators did not have so much positive effect in the solution quality.

In spite of all the disadvantages above, the inclusion of local search improvement
heuristics in Snyder & Daskin [26] has led the DE algorithm to be somehow competi-
tive to the RKGA. The computational results with the local search heuristics are pre-
sented in Table 5.9.

As seen in Table 5.9, the DE algorithm with the local search improvement heuristics
was able to generate competitive results to the RKGA of Snyder & Daskin [26]. How-
ever, as seen in both Table 5.8 and 5.9, the success was mainly due to the use of the
local search improvement heuristics. A two-sided paired t-test on the relative percent
deviations in Table 5.9 confirms that both DE and RKGA were statistically equivalent,
since the p-value was 0.014. However, DE was computationally more expensive than
RKGA.

5.5 Conclusions

A continuous DE algorithm is presented to solve the GTSP on a set of benchmark
instances ranging from 51 (11) to 442 (89) nodes (clusters). The main contribution
of this chapter is due to use of a continuous DE algorithm to solve a combinatorial
optimization problem. For this reason, a unique solution representation is presented and
the SPV rule is used to determine the tour. The pure DE algorithm without local search
heuristics is competitive to RKGA. However, inclusion of the local search heuristics led
the DE algorithm to be very competitive to the RKGA of Snyder & Daskin [26].

As we mentioned before, with some better parameter tuning, the DE results could
have been further improved. However, our observation reveals the fact that the per-
formance of the DE algorithm is tremendously affected by the mutation equation [14].
After applying the mutation operator, most parameter values fall outside of search limits
(cluster sizes). To force them to be in the search range, they are randomly re-initialized
between the search bounds in order to keep the DE algorithm search for nodes from
clusters predefined. However, the random re-initialization causes the DE algorithm to
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conduct a random search, which ruins its learning ability. Based on our observation,
using some different levels of crossover and mutation probabilities as well as other
mutation operators did not have so much positive impact on the solution quality. In spite
of all the disadvantages above, this work clearly shows the applicability of a continuous
algorithm to solve a combinatorial optimization problem. .

For the future work, the current DE algorithm can be extended to solve some other
combinatorial/discrete optimization problems based on clusters such as resource con-
strained project scheduling (mode selection), generalized assignment problem (agent
selection), and so on. It will be also interesting to use the same representation for the
particle swarm optimization and harmony search algorithms to solve the GTSP.
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Abstract. In a traveling salesman problem, if the set of nodes is divided into clusters so that a
single node from each cluster can be visited, then the problem is known as the generalized trav-
eling salesman problem where the objective is to find a tour with minimum cost passing through
only a single node from each cluster. In this chapter, a discrete differential evolution algorithm
is presented to solve the problem on a set of benchmark instances. The discrete differential evo-
lution algorithm is hybridized with local search improvement heuristics to further improve the
solution quality. Some speed-up methods presented by the authors previously are employed to
accelerate the greedy node insertion into a tour. The performance of the hybrid discrete differ-
ential evolution algorithm is tested on a set of benchmark instances with symmetric distances
ranging from 51 (11) to 1084 (217) nodes (clusters) from the literature. Computational results
show its highly competitive performance in comparison to the best performing algorithms from
the literature.

6.1 Introduction

The generalized traveling salesman problem (GTSP), one of several variations of the
traveling salesman problem (TSP), has been originated from diverse real life or poten-
tial applications. The TSP finds a routing of a salesman who starts from an origin (i.e. a
home location), visits a prescribed set of cities, and returns to the origin in such a way
that the total distance is minimum and each city is travelled once. On the other hand,
in the GTSP, a salesman when making a tour does not necessarily visit all nodes. But
similar to the TSP, the salesman will try to find a minimum-cost tour and travel each
city exactly once. Since the TSP in its generality represents a typical NP-Hard com-
binatorial optimization problem, the GTSP is also NP-hard. While many other combi-
natorial optimization problems can be reduced to the GTSP problem [11], applications
of the GTSP spans over several areas of knowledge including computer science, engi-
neering, electronics, mathematics, and operations research, etc. For example, publica-
tions can be found in postal routing [11], computer file processing [9], order picking in

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 139–162.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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warehouses [18], process planning for rotational parts [3], and the routing of clients
through welfare agencies [28].

Let us first define the GTSP, a complete graph G = (V,E) is a weighted undirected
whose edges are associated with non-negative costs. We denote the cost of an edge
e = (i, j) by di j. Then, the set of N nodes is divided into m sets or clusters such that
N = {n1, ..,nm} with N = {n1 ∪ ..∪nm} and n j ∩ nk = φ . The problem involves two
related decisions- choosing a node from the subset and finding a minimum cost tour
in the subgraph of G. In other words, the objective is to find a minimum tour length
containing exactly single node from each cluster n j.

The GTSP was first addressed in [9, 28, 32]. Applications of various exact algorithms
can be found in Laporte et al. [12, 13], Laporte & Nobert [11], Fischetti et al. [7, 8], and
others in [4, 19]. Laporte & Nobert [11], developed an exact algorithm for GTSP by for-
mulating an integer programming and finding the shortest Hamiltonian cycle through
some clusters of nodes. Noon and Bean [19], presented a Lagrangean relaxation algo-
rithm. Fischetti et al. [8] dealt with the asymmetric version of the problem and devel-
oped a branch and cut algorithm to solve this problem. While exact algorithms are very
important, they are unreliable with respect to their running time which can easily reach
many hours or even days, depending on the problem sizes. Meanwhile several other
researchers use transformations from GTSP to TSP since a large variety of exact and
heuristic algorithms have been applied for the TSP [3],. Lien et. al. [15] first introduced
transformation of a GTSP into a TSP, where the number of nodes of the transformed
TSP was very large. Then Dimitrijevic and Saric [6] proposed another transformation
to decrease the size of the corresponding TSP. However, many such transformations
depend on whether or not the problem is symmetric; moreover, while the known trans-
formations usually allow to produce optimal GTSP tours from the obtained optimal
TSP tours, such transformations do not preserve suboptimal solutions. In addition, such
conversions of near-optimal TSP tours may result in infeasible GTSP solutions.

Because of the multitude of inputs and the time needed to produce best results, the
GTSP problems are harder and harder to solve. That is why, in such cases, applications
of several worthy heuristic approaches to the GTSP are considered. The most used con-
struction heuristic is the nearest-neighbor heuristic which, in its adaptation form, was
presented in Noon [18]. Similar adaptations of the farthest-insertion, nearest-insertion,
and cheapest-insertion heuristics are proposed in Fischetti et al. [8]. In addition, Renaud
& Boctor [24] developed one of the most sophisticated heuristics, called GI3 (Gener-
alized Initilialization, Insertion, and Improvement), which is a gen-eralization of the I3

heuristic in Renaud et al. [25]. GI3 contains three phases: in the Initialization phase, the
node close to the other clusters is chosen from each cluster and greedily built into a tour
that passes through some, but not necessarily all, of the chosen nodes. Next in the Inser-
tion phase, nodes from unvisited clusters are inserted between two consecutive clusters
on the tour in the cheapest possible manner, allowing the visited node to change for the
adjacent clusters; after each insertion, the heuristic performs a modification of the 3-opt
improvement method. In the Improvement phase, modifications of 2-opt and 3-opt are
used to improve the tour. Here the modifications, called G2-opt, G3-opt, and G-opt,
allow the visited nodes from each cluster to change as the tour is being re-ordered by
the 2-opt or 3-opt procedures.
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Application of evolutionary algorithms specifically to the GTSP have been few in
the literature until Snyder & Daskin [30] who proposed a random key genetic algorithm
(RKGA) to solve this problem. In their RKGA, a random key representation is used and
solutions generated by the RKGA are improved by using two local search heuristics
namely, 2-opt and “swap”. In the search process, their “swap” procedure is considered
as a speed-up method which basically removes a node j from a tour and inserts all
possible nodes ks from the corresponding cluster in between an edge (u,v) in a tour
(i.e., between the node u and the node v). Such insertion is based on a modified nearest-
neighbor criterion. These two local search heuristics have been separately embedded in
the level-I improvement and level-II improvement procedures.

For each individual in the population, they store the original (pre-improvement) cost
and the final cost after improvements have been made. When a new individual is created,
they compare its pre-improvement cost to the pre-improvement cost of the individual
at position p × N in the previous (sorted) population, where p ∈ [0,1] is a parameter
of the algorithm (they use p = 0.05 in their implementation). These two improvement
procedures in Snyder & Daskin [30] are implemented as follows:

1. If the new solution is worse than the pre-improvement cost of this individual, the
level-I improvement is considered. That is, one 2-opt exchange and one “swap”
procedure (assuming a profitable one can be found) are performed and the resulting
individual are stored.

2. Otherwise, the level-II improvement is considered. So the 2-opts are executed un-
til no profitable 2-opts can be found, then the “swap” procedures are carried out
until no profitable swaps can be found. The procedure is repeated until no further
improvements have been made in a given pass.

The RKGA focuses on designing the local search to spend more time on improv-
ing solutions that seem promising to the previous solutions than the others. Both level-I
and level-II improvements consider a “first-improvement” strategy, which means im-
plementing the first improvement of a move, rather than the best improvement of such
move.

Thereafter, Tasgetiren et al. [34, 35, 36] presented a discrete particle swarm optimiza-
tion (DPSO) algorithm, a genetic algorithm (GA) and a hybrid iterated greedy (HIG)
algorithm, respectively, whereas Silberholz & Golden proposed another GA in [29],
which is denoted as mrOXGA.

Section 2 introduces a brief summary of discrete differential evolution algorithm.
Section 3 provides the details of local search improvement heuristics. The computa-
tional results on benchmark instances are discussed in Section 4. Finally, Section 5
summarizes the concluding remarks.

6.2 Discrete Differential Evolution Algorithm

Differential evolution (DE) is a latest evolutionary optimization methods proposed by
Storn & Price [31]. Like other evolutionary-type algorithms, DE is a population-based
and stochastic global optimizer. The DE algorithm starts with establishing the initial
population. Each individual has an m-dimensional vector with parameter values deter-
mined randomly and uniformly between predefined search ranges. In a DE algorithm,
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candidate solutions are represented by chromosomes based on floating-point numbers.
In the mutation process of a DE algorithm, the weighted difference between two ran-
domly selected population members is added to a third member to generate a mutated
solution. Then, a crossover operator follows to combine the mutated solution with the
target solution so as to generate a trial solution. Thereafter, a selection operator is ap-
plied to compare the fitness function value of both competing solutions, namely, target
and trial solutions to determine who can survive for the next generation. Since DE
was first introduced to solve the Chebychev polynomial fitting problem by Storn &
Price [31], it has been successfully applied in a variety of applications that can be found
in Corne et. al [5], Lampinen [19], Babu & Onwubolu [1]; and Price et al. [22].

Currently, there are several variants of DE algorithms. We follow the DE/rand/1/bin
scheme of Storn & Price [31] with the inclusion of SPV rule in the algorithm. Pseu-
docode of the DE algorithm is given in Fig 6.1.

Initialize parameters
Initialize the target population individuals
Find the tour of the target population individuals
Evaluate the target population individuals
Apply local search to the target population individuals (Optional)
Do{

Obtain the mutant population individuals
Obtain the trial population individuals
Find the tour of trial population individuals
Evaluate the trial population individuals
Do selection between the target and trial population individuals
Apply local search to the target population individuals (Optional)

}While (Not Termination)

Fig. 6.1. DE Algorithm with Local Search

The basic elements of DE algorithm are summarized as follows:

Target individual: Xk
i denotes the ith individual in the population at generation t and

is defined as Xk
i =

[
xk

i1,x
k
i2, ...,x

k
in

]
, where xk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Mutant individual: V k
i denotes the ith individual in the population at generation t and

is defined as V k
i =

[
vk

i1,v
k
i2, ...,v

k
in

]
, where vk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Trial individual:Uk
i denotes the ith individual in the population at generation t and is

defined as Uk
i =

[
uk

i1,u
k
i2, ...,u

k
in

]
, where uk

i j is the parameter value of the ith individual

with respect to the jth dimension ( j = 1,2, ...,m).

Target population: Xk is the set of NP individuals in the target population at generation
t, i.e., Xk =

[
Xk

1 ,Xk
2 , ...,Xk

NP

]
.
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Mutant population: V k is the set of NP individuals in the mutant population at gener-
ation t, i.e., V k =

[
V k

1 ,V k
2 , ...,V k

NP

]
.

Trial population: Uk is the set of NP individuals in the trial population at generation t,
i.e., Uk =

[
Uk

1 ,Uk
2 , ...,Uk

NP

]
.

Mutant constant: F ∈ (0,2) is a real number constant which affects the differential
variation between two individuals.

Crossover constant: CR ∈ (0,1) is a real number constant which affects the diversity
of population for the next generation.

Fitness function: In a minimization problem, the objective function is given by fi
(
Xk

i

)
,

for the individual Xk
i .

Traditional DEs explained above are designed for continuous optimization problems
where chromosomes are floating-point numbers. To cope with discrete spaces, a sim-
ple and novel discrete DE (DDE) algorithm is presented in [36, 20], where solutions are
based on discrete/binary values. In the DDE algorithm, each target individual belonging
to the NP number of individuals is represented by a solution as Xk

i =
[
xk

i1,x
k
i2, ...,x

k
im

]
,

consisting of discrete values of a permutation of clusters as well as a tour of nodes
visited, at the generation k. The mutant individual is obtained by perturbing the gener-
ation best solution in the target population. So the differential variation is achieved in
the form of perturbations of the best solution from the generation best solution in the
target population. Perturbations are stochastically managed such that each individual in
the mutant population is expected to be distinctive. To obtain the mutant individual, the
following equation can be used:

V k
i =

{
DCd

(
Xk−1

g

)
i f r < Pm

insert
(
Xk−1

g

)
otherwise

(6.1)

Where Xk−1
g is the best solution in the target population at the previous generation; Pm is

the perturbation probability; DCd is the destruction and construction procedure with the
destruction size of d as a perturbation operator; and insert is a simple random insertion
move from a given node to another node in the same cluster. A uniform random number
r is generated between [0, 1]. If r is less than then the DCd operator is applied to generate
the mutant individual V k

i = DCd
(
Xk−1

g

)
; otherwise, the best solution from the previous

generation is perturbed with a random insertion move resulting in the mutant individual
V k

i = insert
(
Xk−1

g

)
. Equation 6.1 will be denoted as V k

i := Pm ⊕ DCd
(
Xk−1

g

)
i:=1,2,..,NP

to ease the

understanding of pseudocodes. Following the perturbation phase, the trial individual is
obtained such that:

Uk
i =

{
CR
(
V k

i ,Xk−1
i

)
i f r < Pc

V k
i otherwise

(6.2)

where CR is the crossover operator; and Pc is the crossover probability. In other words, if
a uniform random number r is less than the crossover probability Pc, then the crossover
operator is applied to generate the trial individual Uk

i = CR
(
V k

i ,Xk−1
i

)
. Otherwise the
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trial individual is chosen as Uk
i = V k

i . By doing so, the trial individual is made up either
from the outcome of perturbation operator or from the crossover operator. Equation 6.2
will be denoted as Uk

i := Pc ⊕CR
(
V k

i ,Xk−1
i

)
i:=1,2,..,NP

.

Finally, the selection operator is carried out based on the survival of the fitness among
the trial and target individuals such that:

Xk
i =

{
Uk

i i f f
(
πk

i ← Uk
i

)
< f

(
πk−1

i ← Xk−1
i

)
Xk−1

i otherwise
(6.3)

Equation 6.3 will be denoted as Xk
i = argmin

{
f
(
πk

i ← Uk
i

)
, f
(
πk−1

i ← Xk−1
i

)}
i:=1,2,..,NP

.

6.2.1 Solution Representation

We employ a path representation for the GTSP in this chapter. In the path representa-
tion, each consecutive node is listed in order. A disadvantage of this representation is
due to the fact that there is no guarantee that a randomly selected solution will be a
valid GTSP tour because there is no guarantee that each cluster is represented exactly
once in the path without some repair procedures. To handle the GTSP, we include both
cluster and tour information in the solution representation. The solution representation
is illustrated in Table 6.1 where dπ jπ j+1 shows the distance from node π j to node π j+1.
Population individuals can be constructed in such a way that first a permutation of clus-
ters is determined randomly, and then since each cluster contains one or more nodes, a
tour is established by randomly choosing a single node from each corresponding clus-
ter. For example, n j stands for the cluster in the jth dimension, whereas π j represents
the node to be visited from the cluster n j.

Table 6.1. Solution Representation

j 1 ... m−1 m

n j n1 ... nm−1 nm

π j π1 ... πm−1 πm

X dπ j π j+1 dπ1π2 ... dπm−1πm dπmπ1

m
∑

j=1
dπ jπ j+1 +dπmπ1

dπ1π2 ... dπm−1πm dπmπ1

As illustrated in Table 6.1, the objective function value implied by a solution X with
m nodes is the total tour length, which is given by

F (π) =
m−1

∑
j=1

dπ jπ j+1 + dπmπ1 (6.4)
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Table 6.2. Solution Representation

j 1 2 3 4 5

n j 3 1 5 2 4

X π j 14 5 22 8 16

dπ jπ j+1 d14,5 d5,22 d22,8 d8,16 d16,14

Now, consider a GTSP instance with N = {1, ..,25} where the clusters are n1 =
{1, ..,5}, n2 = {6, ..,10}, n3 = {11, ..,15}, n4 = {16, ..,20} and n5 = {21, ..,25}.
Table 6.2 illustrates the example solution in detail.

So, the fitness function of the individual is given by F (π) = d14,5 + d5,22 + d22,8 +
d8,16 + d16,14.

6.2.2 Complete Computational Procedure of DDE

The complete computational procedure of the DDE algorithm for the GTSP problem
can be summarized as follows:

• Step 1: Initialization
– Set t = 0, NP =100
– Generate NP individuals randomly as in Table 6.2,

{
X0

i , i = 1,2, ...,NP
}

where
X0

i =
[
x0

i1,x
0
i2, ...,x

0
im

]
.

– Evaluate each individual i in the population using the objective function
f 0
i

(
πo

i ← X0
i

)
for i = 1,2, ...,NP.

• Step 2: Update generation counter
– k = k + 1

• Step 3: Generate mutant population
– For each target individual, Xk

i , i = 1,2, ...,NP, at generation k, a mutant individ-
ual, V k

i =
[
vk

i1,v
k
i2, ...,v

k
im

]
, is determined such that:

V k
i = Xk−1

ai
+ F

(
Xk−1

bi
− Xk−1

ci

)
(6.5)

where ai, bi and ci are three randomly chosen individuals from the population
such that (ai �= bi �= ci).

• Step 4: Generate trial population
– Following the mutation phase, the crossover (re-combination) operator is ap-

plied to obtain the trial population. For each mutant individual, V k
i =[

vk
i1,v

k
i2, ...,v

k
im

]
, an integer random number between 1 and n, i.e., Di ∈

(1,2, ...,m), is chosen, and a trial individual, Uk
i =

[
uk

i1,u
t
i2, ...,u

k
im

]
is generated

such that:

uk
i j =

{
vk

i j, i f rk
i j ≤ CR or j = Di

xk−1
i j , Otherwise

(6.6)

where the index D refers to a randomly chosen dimension ( j = 1,2, ...,m), which
is used to ensure that at least one parameter of each trial individual Uk

i differs
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from its counterpart in the previous generation Uk−1
i , CR is a user-defined cross-

over constant in the range (0, 1), and rk
i j is a uniform random number between

0 and 1. In other words, the trial individual is made up with some parameters
of mutant individual, or at least one of the parameters randomly selected, and
some other parameters of target individual.

• Step 5: Evaluate trial population
– Evaluate the trial population using the objective function f k

i

(
πk

i ← Uk
i

)
for i =

1,2, ...,NP.
• Step 6: Selection

– To decide whether or not the trial individual Uk
i should be a member of the

target population for the next generation, it is compared to its counterpart target
individual Xk−1

i at the previous generation. The selection is based on the survival
of fitness among the trial population and target population such that:

Xk
i =

{
Uk

i , i f f
(
πk

i ← Uk
i

)≤ f
(
πk−1

i ← Xk−1
i

)
Xt−1

i , otherwise
(6.7)

• Step 7: Stopping criterion
– If the number of generations exceeds the maximum number of generations, or

some other termination criterion, then stop; otherwise go to step 2

6.2.3 NEH Heuristic

Due to the availability of the insertion methods from the TSP literature, which are mod-
ified in this chapter, it is possible to apply the NEH heuristic of Nawaz et al. [17] to the
GTSP. Without considering cluster information for simplicity, the NEH heuristic for the
GTSP can be summarized as follows:

1. Determine an initial tour of nodes. Let this tour be π .
2. The first two nodes (that is, π1 and π2) are chosen and two possible partial tours of

these two nodes are evaluated. Note that since a tour must be a Hamiltonian cycle,
partial tours will be evaluated with the first node being the last node as well. As an
example, partial tours, (π1,π2,π1) and (π2,π1,π2) are evaluated first.

3. Repeat the following steps until all nodes are inserted. In the kth step, node πk at
position k is taken and tentatively inserted into all the possible k positions of the
partial tour that are already partially completed. Select of these k tentative partial
tours the one that results in the minimum objective function value or a cost function
suitably predefined.

To picture out how the NEH heuristic can be adopted for the GTSP, consider a solu-
tion with five nodes as π = {3,1,4,2,5}. Following example illustrates the implemen-
tation of the NEH heuristic for the GTSP:

1. Current solution is π = {3,1,4,2,5}
2. Evaluate the first two nodes as follows: {3,1,3} and {1,3,1}. Assume that the first

partial tour has a better objective function value than the second one. So the current
partial tour will be {3,1}.
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3. Insertions:
a) Insert node 4 into three possible positions of the current partial tour as follows:

{4,3,1,4}, {3,4,1,3} and {3,1,4,3}. Assume that the best objective function
value is with the partial tour {3,4,1,3}. So the current partial tour will be
{3,4,1}.

b) Next, insert node 2 into four possible positions of the current partial tour as fol-
lows: {2,3,4,1,2}, {3,2,4,1,3}, {3,4,2,1,3} and {3,4,1,2,3}. Assume that
the best objective function value is with the partial tour {3,2,4,1,3}. So the
current partial tour will be {3,2,4,1}.

c) Finally, insert node 5 into five possible positions of the current partial tour
as follows: {5,3,2,4,1,5}, {3,5,2,4,1,3}, {3,2,5,4,1,3}, {3,2,4,5,1,3} and
{3,2,4,1,5,3}. Assume that the best objective function value is with the partial
tour {3,2,4,5,1,3}. So the final complete tour will be π = {3,2,4,5,1}.

6.2.4 Insertion Methods

In this section of the chapter, the insertion methods are modified from the literature and
facilitate the use of the local search. It is important to note that for simplicity, we do
not include the cluster information in the following examples. However, whenever an
insertion move is carried out, the corresponding cluster is also inserted in the solution.
Insertion methods are based on the insertion of node πR

k into m+1 possible positions of
a partial or destructed tour πD with m nodes and an objective function value of F

(
πD
)
.

Note that as an example, only a single node is considered to be removed from the current
solution to establish πR

k with a single node and re-inserted into the partial solution. Such
insertion of node πR

k into m− 1 possible positions is actually proposed by Rosenkrantz
et al. [26] for the TSP. Snyder & Daskin [30] adopted it for the GTSP. It is based on the
removal and the insertion of node πR

k in an edge
(
πD

u ,πD
v

)
of a partial tour. However,

it avoids the insertion of node πR
k on the first and the last position of any given partial

tour. Suppose that node πR
k =8 will be inserted in a partial tour in Table 6.3.

Table 6.3. Current solution

j 1 2 3 4 j 1

nD
j 3 1 5 4 nR

j 2
πD

j 14 5 22 16 πR
j 8

dπ jπ j+1 d14,5 d5,22 d22,16 d16,14

A Insertion of node πR
k in the first position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπR

k πD
1

+ dπD
m πR

k

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.



148 F. Tasgetiren et al.

Table 6.4. Insertion of node πR
k =8 in the first slot

j 1 2 3 4 5

n j 2 3 1 5 4
π j 8 14 5 22 16

dπ jπ j+1 d8,14 d14,5 d5,22 d22,16 d16,8

Remove = dπ4π1 = d16,14

Add = dπuπk + dπkπv = d14,8 + d8,5

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d14,5 + d5,22 + d22,16 + d16,14 + d8,14 + d16,8 − d16,14

F (π) = d14,5 + d5,22 + d22,16 + d8,14 + d16,8

B Insertion of node,pair πR
k in the last position of the partial tour πD

a Remove = dπD
m πD

1
b Add = dπD

m πR
k
+ dπR

k πD
1

b F (π) = F
(
πD
)

+ Add − Remove, where F (π) and F
(
πD
)

are fit-
ness function values of the tour after insertion and the partial tour,
respectively.

Table 6.5. Insertion of node πR
k =8 in the last slot

j 1 2 3 4 5

n j 3 1 5 4 2
π j 14 5 22 16 8

dπ jπ j+1 d14,5 d5,22 d22,16 d16,8 d8,14

Remove = dπ4π1 = d16,14

Add = dπ4πk + dπkπ1 = d16,8 + d8,14

F (π) = F
(
πD
)
+ Add − Remove

F (π) = d14,5 + d5,22 + d22,16 + d16,14 + d16,8 + d8,14 − d16,14

F (π) = d14,5 + d5,22 + d22,16 + d16,8 + d8,14

C Insertion of node πR
k between the edge

(
πD

u ,πD
v

)
a Remove = dπD

u πD
v

b Add = dπD
u πR

k
+ dπR

k πD
v

b F (π) = F
(
πD
)
+ Add − Remove, where F (π) and F

(
πD
)

are fitness
function values of the complete and the partial solutions respectively.

Remove = dπuπv = d14,5

Add = dπuπk + dπkπv = d14,8 + d8,5

F (π) = F
(
πD
)
+ Add − Remove
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Table 6.6. Insertion of node πR
k =8 in between the edge

(
πD

u ,πD
v
)

j 1 2 3 4 5

n j 3 2 1 5 4
π j 14 8 5 22 16

dπ jπ j+1 d14,8 d8,5 d5,22 d22,16 d16,14

F (π) = d14,5 + d5,22 + d22,16 + d14,8 + d8,5 − d33,44 + d44,41 + d41,25 + d25,24+
d14,5

F (π) = d5,22 + d22,16 + d16,14 + d14,8 + d8,5

Note that Case B can actually be managed by Case C, since the tour is cyclic. Note
again that the above insertion approach is somewhat different than the one in Snyder &
Daskin [30], where the cost of an insertion of node πR

k in an edge
(
πD

u ,πD
v

)
is evaluated

by C = dπD
u πR

k
+dπR

k πD
v

−dπD
u πD

v
. Instead, we directly calculate the fitness function value

of the complete tour after using the insertion methods above, i.e., well suited for the
NEH insertion heuristic..

6.2.5 Destruction and Construction Procedure

We employ the destruction and construction (DC) procedure of the iterated greedy (IG)
algorithm [27] in the DDE algorithm. In the destruction step, a given number d of nodes,
randomly chosen and without repetition, are removed from the solution. This results in
two partial solutions. The first one with the size d of nodes is called XR and includes
the removed nodes in the order where they are removed. The second one with the size
m − d of nodes is the original one without the removed nodes, which is called XD. It
should be pointed out that we consider each corresponding cluster when the destruction
and construction procedures are carried out in order to keep the feasibility of the GTSP
tour. Note that the perturbation scheme is embedded in the destruction phase where p
nodes from XR are randomly chosen without repetition and they are replaced by some
other nodes from the corresponding clusters.

The construction phase requires a constructive heuristic procedure. We employ the
NEH heuristic described in the previous section. In order to reinsert the set XR into the
destructed solution XD in a greedy manner, the first node πR

1 in XR is inserted into all
possible m− d + 1 positions in the destructed solution XD generating m− d + 1 partial
solutions. Among these m− d + 1 partial solutions including node πR

1 , the best partial
solution with the minimum tour length is chosen and kept for the next iteration. Then
the second node πR

2 in XR is considered and so on until XR is empty or a final solution
is obtained. Hence XD is again of size m.

The DC procedure for the GTSP is illustrated through Table 6.7 and Table 6.12
using the GTSP instance in Table 6.2. Note that the destruction size is d = 2 and the
perturbation strength is p = 1 in this example. Perturbation strength p = 1 indicates
replacing (mutating) only a single node among two nodes with another one from the
same cluster.
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Table 6.7. Current Solution

j 1 2 3 4 5

n j 3 1 5 2 4
π j 14 5 22 8 16

Table 6.8. Destruction Phase

j 1 2 3 4 5

n j 3 1 5 2 4
π j 14 5 22 8 16

Table 6.9. Destruction Phase

j 1 2 3 j 1 2

nD
j 3 5 4 nR

j 1 2
πD

j 14 22 16 πR
j 5 8

Table 6.10. Destruction Phase-Mutation

j 1 2 3 j 1 2

nD
j 3 5 4 nR

j 1 2
πD

j 14 22 16 πR
j 5 9

Table 6.11. Construction Phase

j 1 2 3 4 j 1

nD
j 3 5 1 4 nR

j 2
πD

j 14 22 5 16 πR
j 9

Table 6.12. Final Solution

j 1 2 3 4 5

nD
j 3 2 5 1 4

πD
j 14 9 22 5 16
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Table 6.13. Two-Cut PTL Crossover Operator

j 1 2 3 4 5

P1 n j 5 1 4 2 3
π j 24 3 19 8 14

P2 n j 5 1 4 2 3
π j 24 3 19 8 14

O1 n j 4 2 5 1 3
π j 19 8 24 3 14

O2 n j 5 1 3 4 2
π j 24 3 14 19 8

Step 1.a. Choose d = 2 nodes with corresponding clusters, randomly.
Step 1.b. Establish πD = {14,22,16}, nD = {3,5,4}, πR = {5,8} and nR = {1,2}.
Step 1.c. Perturb πR = {5,8} to πR = {5,9} by randomly choosing nR

2 = 2 in the set
nR = {1,2}, and randomly replacing nR

2 = 8 with nR
2 = 9 from the same cluster n2.

Step2.a. After the best insertion of node πR
1 = 5 and the cluster πR

1 = 1.
Step2.b. After the best insertion of node nR

2 = 9 and the cluster πR
1 = 2.

F (π) = d5,22 + d22,16 + d16,14 + d14,8 + d8,5

6.2.6 PTL Crossover Operator

Two-cut PTL crossover operator developed by Pan et al. [21] is used in the DDE algo-
rithm. The two-cut PTL crossover operator is able to produce a pair of distinct offspring
even from two identical parents. An illustration of the two-cut PTL cross-over operator
is shown in Table 6.13.

In the PTL crossover, a block of nodes and clusters from the first parent is determined
by two cut points randomly. This block is either moved to the right or left corner of the
offspring. Then the offspring is filled out with the remaining nodes and corresponding
clusters from the second parent. This procedure will always produce two distinctive
offspring even from the same two parents as shown in Table 6.13. In this chapter, one
of these two unique offspring is chosen randomly with an equal probability of 0.5.

6.2.7 Insert Mutation Operator

Insert mutation operator is a modified insert mutation considering the clusters in the so-
lution representation. It is also used in the perturbation of the solution in the destruction
and construction procedure. It is basically related to removing a node from a tour of an
individual, and replacing that particular node with another one from the same cluster. It
is illustrated in Table 6.14.

As shown in Table 6.14, the cluster n2 = 5 is randomly selected and its corresponding
node π2 = 23 is replaced by node π2 = 22 from the same cluster n2 = 5.
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Table 6.14. Insert Mutation

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Xi n j 3 5 2 1 4
π j 12 22 8 4 19

6.2.8 DDE Update Operations

To figure out how the individuals are updated in the DDE algorithm, an example using
the GTSP instance in Table 6.2 is also illustrated through Table 6.15 and Table 6.18.
Assume that the mutation and crossover probabilities are 1.0, the two-cut PTL crossover

Table 6.15. An Example of Individual Update

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Gi n j 3 1 5 2 4
π j 15 4 24 7 17

Table 6.16. Insert Mutation

j 1 2 3 4 5

Xi n j 3 1 5 2 4
π j 15 4 24 7 17

Gi n j 3 1 5 2 4
π j 15 4 25 7 17

Table 6.17. Two-Cut PTL Crossover

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Gi n j 3 1 5 2 4
π j 15 4 25 7 17

Ui n j 2 1 3 5 4
π j 8 4 15 25 17
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Table 6.18. Selection For Next Generation

j 1 2 3 4 5

Xi n j 3 5 2 1 4
π j 12 23 8 4 19

Ui n j 2 1 3 5 4
π j 8 4 15 25 17

Assume that f (Ui) ≤ f (Xi) Xi = Ui

Ui n j 2 1 3 5 4
π j 8 4 15 25 17

and insert mutation operators are employed. Given the individual and the global best
(best so far solution for DDE) solution, the global best solution is first mutated by using
equation 6.1. For example, in Table 6.15, the dimensions u=3 is chosen randomly with
its corresponding cluster and node. Node πu = π3 = 25 is replaced by πu = π3 = 24 from
the same cluster nu = n3 = 5, thus resulting in the mutant individual Vi. Then the mutant
individual Vi is recombined with its corresponding individual Xi in the target population
to generate the trial individual Ui by using equation 6.2. Finally, the target individual Xi

is compared to the trial individual Ui to determine which one would survive for the next
generation based on the survival of the fittest by using equation 6.3.

6.3 Hybridization with Local Search

The hybridization of DE algorithm with local search heuristics is achieved by per-
forming a local search phase on every trial individual generated. The SWAP proce-
dure [30], denoted as LocalSearchSD in this chapter, and the 2-opt heuristic [16] were
separately applied to each trial individual. The 2-opt heuristic finds two edges of a
tour that can be removed and two edges that can be inserted in order to generate a new
tour with a lower cost. More specifically, in the 2-opt heuristic, the neighborhood of a
tour is obtained as the set of all tours that can be replaced by changing two nonadjacent
edges in that tour. Note that the 2-opt heuristic is employed with the first improvement
strategy in this study. The pseudo code of the local search (LS) procedures is given in
Fig 6.2.

As to the LocalSearchSD procedure, it is based on the SWAP procedure and is
basically concerned with removing a node from a cluster and inserting a different node
from that cluster into the tour. The insertion is conducted using a modified nearest-
neighbour criterion, so that the new node may be inserted on the tour in a spot different.
Each node in the cluster is inserted into all possible spots in the current solution and
the best insertion is replaced with the current solution. The SWAP procedure of Snyder
& Daskin [30] is outlined in Fig 6.3, whereas the proposed DDE algorithm is given in
Fig 6.4. Note that in SWAP procedure, the followings are given such that tour T; set Vj;
node j ∈ Vj, j ∈ T ; distances duv between each u,v ∈ V .
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procedure LS (π ← X)
h := 1
while (h ≤ m) do

π∗ := LocalSearchSD(π ← X)
i f ( f (π∗ ← X) ≤ f (π ← X)) then

π ← X := π∗ ← X
h := 1

else
h := h+1

else
endwhile
return π ← X

end procedure

Fig. 6.2. The Local Search Scheme

Procedure SWAP()
remove j f rom T
f or each k ∈ Vj

ck ← min
{

duk +dkv −duv/(u,v) is an edge in T
}

k∗ ← argmin
k∈Vj

{ck}
insert k∗ into T between (u,v)

Fig. 6.3. The SWAP Procedure

6.4 Computational Results

Fischetti et al. [8] developed a branch-and-cut algorithm to solve the symmetric GTSP.
The benchmark set is derived by applying a partitioning method to standard TSP in-
stances from the TSPLIB library [23]. The benchmark set with optimal objective func-
tion values for each of the problems is obtained through a personal communication
with Dr. Lawrence V. Snyder. The benchmark set contains between 51 (11) and 442
(89) nodes (clusters) with Euclidean distances and the optimal objective function value
for each of the problems is available. The DDE algorithm was coded in Visual C++
and run on an Intel Centrino Duo 1.83 GHz Laptop with 512MB memory. The popula-
tion size was fixed at 100. The initial population is constructed randomly and then the
NEH insertion heuristic was applied to each random solution. The destruction size and
perturbation strength were taken as 5 and 3, respectively. The crossover and mutation
probability were taken as 0.9 and 0.2, respectively. PTL [33] crossover operator is used
in the DDE algorithm. The DDE algorithm was terminated when the best so far solu-
tion was not improved after 50 consecutive generations. Five runs were carried out for
each problem instance to report the statistics based on the relative percent deviations(Δ )
from optimal solutions as follows

Δavg =
R

∑
i=1

(
(Hi − OPT)× 100

OPT

)
/R (6.8)
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Procedure DE GT SP
Set CR,F,NP,TerCriterion
X =

(
x0

1,x
0
2, ..,x

0
NP

)
f
(
π0

i ← x0
i

)
i:=1,2,..,NP

π0
i ← x0

i = 2 opt
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
i ← x0

i = LS
(
π0

i ← x0
i

)
i=1,2,..,NP

π0
g ← x0

i = argmin
{

f
(
π0

i ← x0
i

)}
i=1,2,..,NP

πB := π0
g ← x0

i
k := 1
while

(
Not TerCriterion

)
do

V k
i j := xk

ia +F
(
Xk

ib +Xk
ic

)
i:=1,2,..,NP, j=1,2,..,m

uk
i j =

{
vk

i j i f rk
i j < CR or j = D j

xk−1
i j otherwise

i=1,2,..,NP, j=1,2,..,m

f
(
πk

i ← Uk
i

)
i:=1,2,..,NP

πk
i ← Uk

i = 2 opt
(
πk

i ← Uk
i

)
i=1,2,..,NP

πk
i ← Uk

i = LS
(
πk

i ← Uk
i

)
i=1,2,..,NP

Xk
i =

{
uk

i i f f
(
πk

i ← uk
i

)
< f

(
πk−1

i ← Xk−1
i

)
xk−1

i otherwise
i=1,2,..,NP

πk
g ← Xk

g = argmin
{

f
(
πk

i ← Xk
i

)
, f
(
πk−1

g ← Xk−1
g
)}

i:=1,2,..,NP

πB ← XB = argmin
{

f (πB ← XB) , f
(
πk

g ← Xk
g
)}

k := k +1
endwhile
return πB ← XB

Fig. 6.4. The DDE Algorithm with Local Search Heuristics

where Hi, OPT and R are the objective function values generated by the DDE in each
run, the optimal objective function value, and the number of runs, respectively. For the
computational effort consideration, tavg denotes average CPU time in seconds to reach
the best solution found so far during the run, i.e., the point of time that the best so
far solution does not improve thereafter. Favg represents the average objective function
values out of five runs.

6.4.1 Solution Quality

Table 6.19 gives the computational results for each of the problem instances in detail.
As seen in Table 6.19, the DDE algorithm was able to obtain optimal solutions in at
least two of the five runs for 35 out of 36 problems tested (97%). For 32 (89%) out of
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Table 6.19. Computational Results of DDE algorithm

Instance OPT nopt Δavg Δmin Δmax Iavg Imin Imax tavg tmin tmax

11EIL51 174 5 0 0 0 1 1 1 0.04 0.02 0.06
14ST70 316 5 0 0 0 1 1 1 0.04 0.03 0.05
16EIL76 209 5 0 0 0 1 1 1 0.05 0.05 0.06
16PR76 64925 5 0 0 0 1 1 1 0.06 0.05 0.06
20KROA100 9711 5 0 0 0 1 1 1 0.09 0.08 0.09
20KROB100 10328 5 0 0 0 1 1 1 0.09 0.08 0.09
20KROC100 9554 5 0 0 0 1 1 1 0.08 0.08 0.09
20KROD100 9450 5 0 0 0 1 1 1 0.08 0.08 0.09
20KROE100 9523 5 0 0 0 1 1 1 0.09 0.08 0.09
20RAT99 497 5 0 0 0 1 1 1 0.08 0.08 0.09
20RD100 3650 5 0 0 0 1 1 1 0.09 0.08 0.09
21EIL101 249 5 0 0 0 1 1 1 0.08 0.08 0.09
21LIN105 8213 5 0 0 0 1 1 1 0.1 0.09 0.11
22PR107 27898 5 0 0 0 1 1 1 0.1 0.09 0.11
25PR124 36605 5 0 0 0 1 1 1 0.13 0.13 0.14
26BIER127 72418 5 0 0 0 1 1 1 0.14 0.13 0.14
28PR136 42570 5 0 0 0 1 1 1 0.18 0.16 0.19
29PR144 45886 5 0 0 0 1 1 1 0.18 0.17 0.2
30KROA150 11018 5 0 0 0 1 1 1 0.2 0.19 0.2
30KROB150 12196 5 0 0 0 1 1 1 0.2 0.19 0.2
31PR152 51576 5 0 0 0 1.2 1 2 0.22 0.19 0.28
32U159 22664 5 0 0 0 1 1 1 0.23 0.22 0.24
39RAT195 854 5 0 0 0 1.4 1 2 0.42 0.36 0.48
40D198 10557 5 0 0 0 1.4 1 2 0.44 0.38 0.52
40KROA200 13406 5 0 0 0 1.2 1 2 0.41 0.38 0.48
40KROB200 13111 5 0 0 0 7 1 22 0.93 0.41 2.03
45TS225 68340 3 0.04 0 0.09 9.8 1 33 1.32 0.47 3.05
46PR226 64007 5 0 0 0 1 1 1 0.42 0.41 0.44
53GIL262 1013 2 0.41 0 0.69 11.4 1 44 2 0.72 5.36
53PR264 29549 5 0 0 0 1.4 1 3 0.79 0.67 1.23
60PR299 22615 2 0.05 0 0.09 11.2 6 19 3.24 2.5 5.36
64LIN318 20765 5 0 0 0 14.2 3 45 4.37 2.13 10.28
80RD400 6361 5 0 0 0 14.8 11 18 8.3 6.86 9.97
84FL417 9651 3 0.01 0 0.02 13.8 8 24 6.86 4.58 10.88
88PR439 60099 5 0 0 0 15.2 8 23 8.54 6.06 11.08
89PCB442 21657 5 0 0 0 19 10 35 11.72 7.86 17.8

Overal Avg 4.72 0.01 0 0.02 4.03 2.11 8.22 1.45 1 2.27

36 problems, the DDE algorithm obtained the optimal solution in every trial. The DDE
algorithm solved all the problems with a 0.01% deviation on average, 0.00% deviation
on minimum and 0.02% deviation on maximum. The overall hit ratio was 4.72, which
indicates that the DDE algorithm was able to find the 95% of the optimal solutions on
overall average. The worst case performance was never more than 0.02% above optimal
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on overall average. In other words, it indicates that the DDE algorithm has a tendency of
yielding consistent solutions across a wide variety of problem instances. To highlight
its consistency more, the range between the best and worst case was only 0.02% on
overall average, thus indicating a very robust algorithm.

6.4.2 Computation Time

Table 6.19 also gives necessary information about CPU time requirement for each of the
problem instances. The DDE algorithm is very fast in terms of CPU time requirement
due to the mean CPU time of less than 12 seconds for all instances. In addition, its
maximum CPU time was no more than 18 seconds for all instances. The DDE algorithm
was able to find its best solution in the first 4.03 generations on overall average and
spent most of the time waiting for the termination condition. It took 2.11 generations
at minimum and only 8.22 generations at maximum on overall average to find its best
solution for each problem instance. Since the local search heuristics are applied to each
problem instance at each generation, most of the running times have been devoted to
the local search improvement heuristics, which indicates the impact of the them on the
solution quality. It implies the fact that with some better local search heuristics such
as Renaud and Boctor’s G2-opt or G3-opt, as well as with some speed-up methods for
2-opt heuristic, its CPU time performance may be further improved.

6.4.3 Comparison to Other Algorithms

We compare the DDE algorithm to two genetic algorithms, namely, RKGA by Sny-
der & Daskin [30] and mrOXGA by Silberholz & Golden [29], where RKGA is
re-implemented under the same machine environment. Table 6.20 summarizes the so-
lution quality in terms of relative percent deviations from the optimal values and CPU
time requirements for all three algorithms. Note that our machine has a similar speed
as Silberholz & Golden [29]. A two-sided paired t-test which compares the results on
Table 6.20 with a null hypothesis that the algorithms were identical generated p-values
of 0.175 and 0.016 for DDE vs. mrOXGA and DDE vs. RKGA,respectively, suggesting
near-identical results between DDE and mrOXGA. On the other hand, the paired t-test
confirms that the differences between DDE and RKGA were significant on the behalf of
DDE subject to the fact that DDE was computationally less expensive than both RKGA
and mrOXGA since p-values were 0.001 for DDE vs. mrOXGA and 0.008 for DDE vs.
RKGA.

In addition to above, Silberholz & Golden [29] provided larger problem instances
ranging from 493 (99) to 1084 (217) nodes (clusters) where no optimal solutions are
available. However, they provided the results of mrOXGA and RKGA. We compare the
DDE results to those presented in Silberholz & Golden [29]. As seen in Table 6.21, DDE
generated consistently better results than both RKGA and mrOXGA in terms of both
solution quality and CPU time requirement even if the larger instances are considered.
In particular, 8 out 9 larger instances are further improved by the DDE algorithm. The
paired t-test on the objective function values on Table 6.21 confirms that the differences
between DDE and RKGA were significant since p-value was 0.033 (null hypothesis
is rejected), whereas DDE was equivalent to mrOXGA since p-value was 0.237. In
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Table 6.20. Comparison for Optimal Instances

DDE mrOXGA RKGA

Instance Δavg tavg Δavg tavg Δavg tavg

11EIL51 0 0.04 0 0.26 0 0.08
14ST70 0 0.04 0 0.35 0 0.07
16EIL76 0 0.05 0 0.37 0 0.11
16PR76 0 0.06 0 0.45 0 0.16
20KROA100 0 0.09 0 0.63 0 0.25
20KROB100 0 0.09 0 0.6 0 0.22
20KROC100 0 0.08 0 0.62 0 0.23
20KROD100 0 0.08 0 0.67 0 0.43
20KROE100 0 0.09 0 0.58 0 0.15
20RAT99 0 0.08 0 0.5 0 0.24
20RD100 0 0.09 0 0.51 0 0.29
21EIL101 0 0.08 0 0.48 0 0.18
21LIN105 0 0.1 0 0.6 0 0.33
22PR107 0 0.1 0 0.53 0 0.2
25PR124 0 0.13 0 0.68 0 0.26
26BIER127 0 0.14 0 0.78 0 0.28
28PR136 0 0.18 0 0.79 0.16 0.36
29PR144 0 0.18 0 1 0 0.44
30KROA150 0 0.2 0 0.98 0 0.32
30KROB150 0 0.2 0 0.98 0 0.71
31PR152 0 0.22 0 0.97 0 0.38
32U159 0 0.23 0 0.98 0 0.55
39RAT195 0 0.42 0 1.37 0 1.33
40D198 0 0.44 0 1.63 0.07 1.47
40KROA200 0 0.41 0 1.66 0 0.95
40KROB200 0 0.93 0.05 1.63 0.01 1.29
45TS225 0.04 1.32 0.14 1.71 0.28 1.09
46PR226 0 0.42 0 1.54 0 1.09
53GIL262 0.41 2 0.45 3.64 0.55 3.05
53PR264 0 0.79 0 2.36 0.09 2.72
60PR299 0.05 3.24 0.05 4.59 0.16 4.08
64LIN318 0 4.37 0 8.08 0.54 5.39
80RD400 0 8.3 0.58 14.58 0.72 10.27
84FL417 0.01 6.86 0.04 8.15 0.06 6.18
88PR439 0 8.54 0 19.06 0.83 15.09
89PCB442 0 11.72 0.01 23.43 1.23 11.74

Avg 0.01 1.45 0.04 2.99 0.13 2
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Table 6.21. Comparision to Silberholz & Golden-Time is milliseconds

DE mrOXGA RKGA

Instance Favg tavg Favg tavg Favg tavg

11EIL51 174 37.6 174 259.2 174 78.2
14ST70 316 43.8 316 353 316 65.6
16EIL76 209 50 209 369 209 106.4
16PR76 64925 56.4 64925 447 64925 156.2
20KROA100 9711 90.6 9711 628.2 9711 249.8
20KROB100 10328 87.6 10328 603.2 10328 215.6
20KROC100 9554 84.4 9554 621.8 9554 225
20KROD100 9450 81.2 9450 668.8 9450 434.4
20KROE100 9523 87.6 9523 575 9523 147
20RAT99 497 81.2 497 500 497 243.8
20RD100 3650 90.6 3650 506.2 3650 290.8
21EIL101 249 81.2 249 478.2 249 184.6
21LIN105 8213 96.8 8213 603.2 8213 334.4
22PR107 27898 96.8 27898.6 534.4 27898.6 197
25PR124 36605 134.2 36605 678 36605 259
26BIER127 72418 137.4 72418 784.4 72418 275.2
28PR136 42570 175 42570 793.8 42639.8 362.8
29PR144 45886 184.2 45886 1003.2 45887.4 437.6
30KROA150 11018 200 11018 981.2 11018 319
30KROB150 12196 200 12196 978.4 12196 712.4
31PR152 51576 218.8 51576 965.4 51576 381.2
32U159 22664 228.2 22664 984.4 22664 553.2
39RAT195 854 415.6 854 1374.8 854 1325
40D198 10557 437.6 10557 1628.2 10564 1468.6
40KROA200 13406 412.4 13406 1659.4 13406 950.2
40KROB200 13111 931.2 13117.6 1631.4 13112.2 1294.2
45TS225 68364 1322 68435.2 1706.2 68530.8 1087.4
46PR226 64007 421.8 64007 1540.6 64007 1094
53GIL262 1017.2 2000 1017.6 3637.4 1018.6 3046.8
53PR264 29549 793.8 29549 2359.4 29574.8 2718.6
60PR299 22627 3243.6 22627 4593.8 22650.2 4084.4
64LIN318 20765 4368.8 20765 8084.4 20877.8 5387.6
80RD400 6361 8303.2 6397.8 14578.2 6407 10265.6
84FL417 9651.6 6856.4 9654.6 8152.8 9657 6175.2
88PR439 60099 8543.6 60099 19059.6 60595.4 15087.6
89PCB442 21657 11718.8 21658.2 23434.4 21923 11743.8
99D493 20059.2 15574.8 20117.2 35718.8 20260.4 14887.8
115RAT575 2421 20240.2 2414.8 48481 2442.4 46834.4
131P654 27430 30428.4 27508.2 32672 27448.4 46996.8
132D657 22544.8 57900 22599 132243.6 22857.6 58449.8
145U724 17367.2 74687.4 17370.6 161815.2 17806.2 59625.2
157RAT783 3272.2 77000.2 3300.2 152147 3341 89362.4
201PR1002 114692.8 211025.2 114582.2 464356.4 117421.2 332406.2
212U1060 106460 247187.4 108390.4 594637.4 110158 216999.8
217VM1084 131718.2 292381.6 131884.6 562040.6 133743.4 390115.6

Overal Avg 27502.7 23971.9 27554.28 50930.41 27741.29 29503.03
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terms of CPU times, the paired t-test on the CPU times confirms that the differences
between DDE and mrOXGA were significant since the p-values was 0.020, whereas
it was failed to reject the null hypothesis of being equal difference between DDE and
RKGA due to the p-value of 0.129. Briefly, the paired t-test indicates that DDE was
able to generate lower objective function values with less CPU times than mrOXGA.
On the other hand, DDE yielded much better objective function values with identical
CPU times than RKGA.

6.5 Conclusions

A DDE algorithm is presented to solve the GTSP on a set of benchmark instances rang-
ing from 51 (11) to 1084 (217) nodes (clusters). The contributions of this paper can
be summarized as follows. A unique solution representation including both cluster and
tour information is presented, which handles the GTSP properly when carrying out the
DDE operations. To the best of our knowledge, this is the first reported application of
the DDE algorithm applied to the GTSP. The perturbation scheme is presented in the
destruction procedure. Furthermore, the DDE algorithm is donated with very effective
local search methods, 2-opt and SWAP procedure, in order to further improve the so-
lution quality. Ultimately, the DDE algorithm was able to find optimal solutions for a
large percentage of problem instances from a set of test problems from the literature.
It was also able to further improve 8 out of 9 larger instances from the literature. Both
solution quality and computation times are competitive to or even better than the best
performing algorithms from the literature. In particular, its performance on the larger
instances is noteworthy.
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Abstract. Discrete Set Handling and its application to permutative problems is presented in this
chapter. Discrete Set is applied to Differential Evolution Algorithm, in order to enable it to solve
strict-sence combinatorial problems. In addition to the theoretical framework and description,
benchmark Flow Shop Scheduling and Traveling Salesman Problems are solved. The results are
compared with published literature to illustrate the effectiveness of the developed approach. Also,
general applications of Discrete Set Handling to Chaotic, non-linear and symbolic regression
systems are given.

7.1 Introduction

In recent years, a broad class of algorithms has been developed for stochastic optimiza-
tion, i.e. for optimizing systems where the functional relationship between the indepen-
dent input variables x and output (objective function) y of a system S is not known.
Using stochastic optimization algorithms such as Genetic Algorithms (GA), Simulated
Annealing (SA) and Differential Evolution (DE), a system is confronted with a random
input vector and its response is measured. This response is then used by the algorithm
to tune the input vector in such a way that the system produces the desired output or
target value in an iterative process.

Most engineering problems can be defined as optimization problems, e.g. the find-
ing of an optimal trajectory for a robot arm, the optimal thickness of steel in pressure
vessels, the optimal set of parameters for controllers, optimal relations or fuzzy sets
in fuzzy models, etc. Solutions to such problems are usually difficult to find, since
their parameters usually include variables of different types, such as floating point or
integer variables. Evolutionary algorithms (EAs), such as the Genetic Algorithms and
Differential Evolutionary Algorithms, have been successfully used in the past for these
engineering problems, because they can offer solutions to almost any problem in a sim-
plified manner: they are able to handle optimizing tasks with mixed variables, including
the appropriate constraints, and they do not rely on the existence of derivatives or aux-
iliary information about the system, e.g. its transfer function.

Evolutionary algorithms work on populations of candidate solutions that are evolved
in generations in which only the best−suited − or fittest − individuals are likely to
survive. This article introduces Differential Evolution, a well known stochastic opti-
mization algorithm. It explains the principles of permutation optimization behind DE
and demonstrates how this algorithm can assist in solving of various permutation opti-
mization problems.

G.C. Onwubolu and D. Davendra (Eds.): Differential Evolution, SCI 175, pp. 163–205.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Differential Evolution, which can also works on a population of individuals, is based
on a few simple arithmetic operations. Individuals are generated by means of a few
randomly selected individuals.

In the following text the principle of the DE algorithm and permutative optimiza-
tion will be explained. The description is divided into short sections to increase the
understandability of principles of DE and permutative optimization.

7.2 Permutative Optimization

A permutative optimization problem is one, where the solution representation is ordered
and discrete; implying that all the values in the solutions are firstly unique, and secondly
concrete.

In the general sense, if a problem representation is given as n, then the solution
representation is always given as some combination of range {1, ....,n}. For example,
given a problem of size 4, the solution representation is {1,2,3,4} and all its possible
permutative combinations.

Two of the problems solved in this chapter, which are of this nature, are the Traveling
Salesman Problem (TSP) and Flow Shop Scheduling (FSS) Problems as discussed in
the following sections. The third subsection describes the 2 Opt Local search, which is
a routine embedded in this heuristic to find better solutions within the neighbourhood
of a solution.

7.2.1 Travelling Salesman Problem

A TSP is a classical combinatorial optimization problem. Simply stated, the objective
of a travelling salesman is to move from city to city, visiting each city only once and
returning back to the starting city. This is called a tour of the salesman. In mathematical
formulation, there is a group of distinct cities {C1,C2,C3, ...,CN} , and there is given for
each pair of city

{
Ci,Cj

}
a distance d

{
Ci,Cj

}
. The objective then is to find an ordering

π of cities such that the total time for the salesman is minimised. The lowest possible
time is termed the optimal time. The objective function is given as:

N−1

∑
i=1

d
(
Cπ(i),Cπ(i+1)

)
+ d

(
Cπ(N),Cπ(1)

)
(7.1)

This quality is known as the tour length. Two branches of this problem exist, sym-
metric and asymmetric. A symmetric problem is one where the distance between two
cities is identical, given as: d

{
Ci,Cj

}
= d

{
Cj,Ci

}
for 1 ≤ i, j ≤ N and the asymmetric

is where the distances are not equal. An asymmetric problem is generally more difficult
to solve.

The TSP has many real world applications; VSLA fabrication [7] to X-ray crystal-
lography [1]. Another consideration is that TSP is NP-Hard as shown by [12], and so
any algorithm for finding optimal tours must have a worst-case running time that grows
faster than any polynomial (assuming the widely believed conjecture that P �= NP).

TSP has been solved to such an extent that traditional heuristics are able to find
good solutions to merely a small percantage error. It is normal for the simple 3-Opt
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heuristic typically getting with 3-4% to the optimal and the variable-opt algorithm
of [20] typically getting around 1-2%.

The objective for new emerging evolutionary systems is to find a guided approach to
TSP and leave simple local search heuristics to find better local regions, as is the case
for this chapter.

7.2.2 Flow Shop Scheduling Problem

A flow shop is a scheduling problem, typical for a manufacturing floor. The terminol-
ogy for this problem is typical of a manufacturing sector. Consider n number of jobs
j (i = 1, ...n), and a number of machines M: M ( j = 1, ....,m).

A job consists of m operation and the jth of each job must be processed on machine
j. So, one job can start on machine j if it is completed on machine j-1 and if machine j is
free. Each job has a known processing time pi, j. The operating sequence of the jobs is
the same on all the machines. If one job is at the ith position on machine 1, then it will
be on the ith position on all machines.

The objective function is then to find the minimal time for the completion of all the
jobs on all the machines. A job Ji is a sequence of operations, having one operation for
each of the M machines.

1. Ji = {Oi1,Oi2,Oi3, ..,OiM}, where Oi j represents the jth operation on Ji.
2. Oi j operation must be processed on Mj machine.
3. for each operation Oi j, there is a processing time pi, j.

Now let a permutation be represented as {∏1,∏2, ...,∏N}. The formulation of the
completion time for C (∏i, j), for the ith job on the jth machine can be given as:

C (∏1,1) = p∏,1
C (∏1,1) = C (∏i−1,1)+ p∏,1, i = 2, ...,N
C (∏1, j) = C (∏1, j − 1)+ p∏1, j, i = 2, ...,M
C (∏1, j) = max{C (∏i−1,1) ,C (∏1, j − 1)}+ p∏1, j, i = 2, ...,N; j = 2, ..,M

(7.2)

The makespan or the completion time is given as the C (∏N ,M), as the completion
time of the last job in the schedule on the last machine.

7.2.3 2 Opt Local Search

A local search heuristic is usually based on simple tour modifications (exchange heuris-
tics). Usually these are specified in terms of the class of operators (exchanges/moves),
which is used to modify one tour into another. This usually works on a feasible tour,
where a neighborhood is all moves, which can be reached, in a single move. The tour
iterates till a better tour is reached.

Among simple local search algorithms, the most famous are 2−Opt and 3−Opt. The
2-Opt algorithm was initially proposed by [2] although it was already suggested by [5].
This move deletes two edges, thus breaking the tour into two paths, and then reconnects
those paths in the other possible way as given in Fig 7.1.
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Fig. 7.1. 2-Opt exchange tour

7.3 Discrete Set Handling and Its Application

7.3.1 Introduction and Principle

In its canonical form, DE is only capable of handling continuous variables. However,
extending it for optimization of integer variables is rather easy. Only a couple of sim-
ple modifications are required. First, for evaluation of the cost-function, integer values
should be used. Despite this, the DE algorithm itself may still work internally with
continuous floating-point values. Thus,

fcost (yi) i = 1, ..,nparam

where :

yi =
{

xi for continuous variables
INT (xi) for integer variables

xi ∈ X

(7.3)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation. Trun-
cated values are not assigned elsewhere. Thus, EA works with a population of continu-
ous variables regardless of the corresponding object variable type. This is essential for
maintaining the diversity of the population and the robustness of the algorithm.

Secondly, in case of integer variables, the population should be initialized as follows:

P(0) = x(0)
i, j = ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i = 1, ...,npop, j = 1, ...,nparam

(7.4)

Additionally, the boundary constraint handling for integer variables should be per-
formed as follows:



7 Discrete Set Handling 167

x(ML+1)
i, j =

⎧⎪⎪⎨
⎪⎪⎩

ri, j

(
x(High)

j − x(Low)
j + 1

)
+ x(Low)

j

i f INT
(

x(ML+1)
i, j

)
< x(Low)

j ∨ INT
(

x(ML+1)
i, j

)
> x(High)

j

x(ML+1)
i, j otherwise

where,
i = 1, ...,npop, j = 1, ...,nparam

(7.5)

Discrete values can also be handled in a straight forward manner. Suppose that the
subset of discrete variables, X(d), contains i elements that can be assigned to variable x:

X (d) = x(d)
i i = 1, ..., l where x(d)

i < x(d)
i+1 (7.6)

Instead of the discrete value xi itself, its index, i, can be assigned to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained to
range {1,2,3, ..,N}. In order to evaluate the objective function, the discrete value, xi,
is used instead of its index i. In other words, instead of optimizing the value of the
discrete variable directly, the value of its index i is optimized. Only during evaluation
is the indicated discrete value used. Once the discrete problem has been converted into
an integer one, the previously described methods for handling integer variables can be
applied. The principle of discrete parameter handling is depicted in Fig 7.2.

Fig. 7.2. Discrete parameter handling

7.3.2 DSH Applications on Standard Evolutionary Algorithms

DSH has been used in many previous experiments in standard EAs as well as in ge-
netic programming like techniques. An example of the usage of DSH in mechanical
engineering problem in C++ language in given in Fig 7.3.

Here, only the set of discrete values is described in order to show that DSH is basi-
cally a field of values (real values) and individuals in integer form serve like pointers to
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�� Mixed problem �Integer � Continuous � Discrete� � Case B ������������������
�� New Ideas in Optimization � Table 9 : Allowable spring steel wire diameters
�� for the coil spring design problem
discrete�0� � 0.009; discrete�1� � 0.0095; discrete�2� � 0.0104; discrete�3� � 0.0118;
discrete�4� � 0.0128; discrete�5� � 0.0132; discrete�6� � 0.014; discrete�7� � 0.015;
discrete�8� � 0.0162; discrete�9� � 0.0173; discrete�10� � 0.018; discrete�11� � 0.020;
discrete�12� � 0.023; discrete�13� � 0.025; discrete�14� � 0.028; discrete�15� � 0.032;
discrete�16� � 0.035; discrete�17� � 0.041; discrete�18� � 0.047; discrete�19� � 0.054;
discrete�20� � 0.063; discrete�21� � 0.072; discrete�22� � 0.080; discrete�23� � 0.092;
discrete�24� � 0.105; discrete�25� � 0.120; discrete�26� � 0.135; discrete�27� � 0.148;
discrete�28� � 0.162; discrete�29� � 0.177; discrete�30� � 0.192; discrete�31� � 0.207;
discrete�32� � 0.225; discrete�33� � 0.244; discrete�34� � 0.263; discrete�35� � 0.283;
discrete�36� � 0.307; discrete�37� � 0.331; discrete�38� � 0.362; discrete�39� � 0.394;
discrete�40� � 0.4375; discrete�41� � 0.500;

Fig. 7.3. C++ DSH code

#include <stdlib.h>

int  tempval,MachineJob[25],Cmatrix[5][5];
int loop1,loop2;

//in C language is [0][0] the first item of defined field i.e. [1][1] of 
normaly defined matrix
MachineJob[0]=5;MachineJob[1]=7;MachineJob[2]=4;MachineJob[3]=3;MachineJob[4]=6;
MachineJob[5]=6;MachineJob[6]=5;MachineJob[7]=7;MachineJob[8]=6;MachineJob[9]=7;
MachineJob[10]=7;MachineJob[11]=8;MachineJob[12]=3;MachineJob[13]=8;MachineJob[14]=5;
MachineJob[15]=8;MachineJob[16]=6;MachineJob[17]=5;MachineJob[18]=5;MachineJob[19]=8;
MachineJob[20]=4;MachineJob[21]=4;MachineJob[22]=8;MachineJob[23]=7;MachineJob[24]=3;

for(loop1=0;loop1<25;loop1++)
{

   tempval=MachineJob[loop1];
MachineJob[loop1]=MachineJob[getIntPopulation(0,Individual)];

   MachineJob[getIntPopulation(0,Individual)]=tempval;
   };

//Competition time for all jobs on machine 1
Cmatrix[0][0]=MachineJob[0];
Cmatrix[0][1]=MachineJob[0]+MachineJob[1];
Cmatrix[0][2]=MachineJob[0]+MachineJob[1]+MachineJob[2];
Cmatrix[0][3]=MachineJob[0]+MachineJob[1]+MachineJob[2]+MachineJob[3];
Cmatrix[0][4]=MachineJob[0]+MachineJob[1]+MachineJob[2]+MachineJob[3]+MachineJob[4];

//Competition time jobs 1 on all machines
Cmatrix[1][0]=MachineJob[0]+MachineJob[5];
Cmatrix[2][0]=MachineJob[0]+MachineJob[5]+MachineJob[10];
Cmatrix[3][0]=MachineJob[0]+MachineJob[5]+MachineJob[10]+MachineJob[15];
Cmatrix[4][0]=MachineJob[0]+MachineJob[5]+MachineJob[10]+MachineJob[15]+

MachineJob[20];

for(loop1=1;loop1<5;loop1++)
for(loop2=1;loop2<5;loop2++)

Cmatrix[loop1][loop2]=max(Cmatrix[loop1-1][loop2],Cmatrix[loop1][loop2-1])+
MachineJob[5*loop1+loop2];

CostValue=Cmatrix[4][4];

Fig. 7.4. DSH FSS example

that field. A more complex example from FSS is now described in Fig 7.4. Discrete set
has the name MachineJob and contains different values. Individuals again serve like
an index.

More interesting applications of DSH can be found in genetic programming like
techniques.
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7.3.3 DSH Applications on Class of Genetic Programming Techniques

The term symbolic regression represents a process during which measured data sets are
fitted such thereby a corresponding mathematical formula is obtained in an analytical
way. An output of the symbolic expression could be, for example, x2 + y3/K, and the
like. For a long time, symbolic regression was a domain of human calculations but in
the last few decades it involves computers for symbolic computation as well.

The initial idea of symbolic regression by means of a computer program was pro-
posed in Genetic Programming (GP) [8, 9]. The other approaches are Grammati-
cal Evolution (GE) developed in [19, 13] and Analytic Programming (AP) in [27].
Oher interesting investigations using symbolic regression were carried out in [6] on
Artificial Immune Systems and Probabilistic Incremental Program Evolution (PIPE),
which generates functional programs from an adaptive probability distribution over
all possible programs. As an extension of GE to the another algorithms is also [14],
where DE was used with the GE. Symbolic regression, generally speaking, is a pro-
cess which combines, evaluates and creates more complex structures based on some
elementary and noncomplex objects, in an evolutionary way. Such elementary ob-
jects are usually simple mathematical operators (+,−,∗, ...), simple functions (sin,
cos, And, Not,.), user-defined functions (simple commands for robots − MoveLeft,
TurnRight,.), etc.

An output of symbolic regression is a more complex object (formula, function, com-
mand,.), solving a given problem like data fitting of the so-called Sextic and Quintic
problem described by Equation 7.7) [10, 26], randomly synthesized function by Equa-
tion 7.8 [26], Boolean problems of parity and symmetry solution (basically logical cir-
cuits synthesis) by Equation 7.9) [11, 27], synthesis of Chaos by utilizing DSH and
Evolutionary Algorithms [28] given in Table 7.1 and in Figs 7.7 − 7.10.

Synthesis of quite complex robot control command by Equation 7.10 [10, 15] is
also accomplished with DSH. Equation 7.7 − 7.10 mentioned are just a few samples
from numerous repeated experiments done by AP, which are used to demonstrate how
complex structures can be produced by symbolic regression in general for different
problems.

x

(
K1 +

(
x2K3

)
K4 (K5 + K6)

)
• (−1 + K2 + 2x(−x − K7)) (7.7)

√
t

(
1

log(t)

)sec−1(1.28)

logsec−1(1.28) (sinh(sec(cos(1)))) (7.8)

Nor��Nand�Nand�B �� B, B && A�, B�� && C && A && B,
Nor��� C && B && A �� � A && C && B �� � C && � B && � A� &&
�� C && B && A �� � A && C && B �� � C && � B && � A� ��
A && �� C && B && A �� � A && C && B �� � C && � B && � A�,
�C �� � C && B && A �� � A && C && B �� � C && � B && � A� && A��

(7.9)
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Fig. 7.5. Principle of the general functional set

TreeForm�IfFoodAhead�Move, Prog3�IfFoodAhead�Move, Right�,
Prog2�Right, Prog2�Left, Right��,
Prog2�IfFoodAhead�Move, Left�, Move����

(7.10)
The final method described here and used for experiments is called Analytic Pro-

gramming (AP), which has been compared to GP with very good results (see, for
example, [26, 15, 27]) or visit the online univeristy website [http://www.fai.utb.cz/
people/zelinka/ap].

The basic principles of AP were developed in 2001 and first published in [24, 25].
AP is also based on the set of functions, operators and terminals, which are usually
constants or independent variables alike, for example:

1. functions: sin, tan, tanh, And, Or
2. operators: +, -, *, /, dt,
3. terminals: 2.73, 3.14, t,

All these mathematical objects create a set, from which AP tries to synthesize an
appropriate solution. Because of the variability of the content of this set, it is called a
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Fig. 7.6. Main principles of AP based on DSH

Fig. 7.7. Bifurcation diagram, exhibiting chaos and generated by artificially synthesied equations

general functional set (GFS). The structure of GFS is nested, i.e., it is created by sub-
sets of functions according to the number of their arguments (The content of GFS is
dependent only on the user. Various functions and terminals can be mixed together. For
example, GFSall is a set of all functions, operators and terminals, GFS3arg is a subset
containing functions with maximally three arguments, GFS0arg represents only termi-
nals, etc. (see Fig 7.5).
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Table 7.1. Selected solutions synthesized by EA and DSH

Equation Bifurcations and
chaos

A− x

(
−A+

x
(− A

x + x+Ax
)

A+ x2

) {0.4}

A
(
2A−2x2 −3x(A− x−Ax)

)
−A+ x− x2

{0.1,0.13}
{0.8,1.2}

−x− 1−2A+2x+2A2x

1−A+ A2−x
x + x

{0.3,0.5}

x−A
(
A− x−2x2

)

−A− x+Ax2 −A
(
−A+ A3

x +2x
)

{0.4,0.5}

2A(−2A+2x)

x+ 1+A2+x
x

{0.4}

x

(3A+2x)
(
−1−A− x+ x(A+2x)

A2+x

)
{0.12,0.23}
{0.3,0.36}

Fig. 7.8. Another bifurcation diagram
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Fig. 7.9. Synthesized logical circuit by means of EA and DSH

Fig. 7.10. Realization of logical circuit from Equation 7.7

AP, is a mapping from set of individuals into set of posssible programs. Individuals
in population and used by AP consist of non-numerical expressions (operators, func
tions, .), as described above, which are in the evolutionary process represented by their
integer position indexes (Fig 7.6). This index then serves as a pointer into the set of
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expressions and AP uses it to synthesize the resulting function-program for cost func-
tion evaluation.

AP was evaluated in three versions. These three versions utilize for program syn-
thesis the same set of functions, terminals, etc., as in GP [9, 10]. The second version
labelled as APmeta (the first version, APbasic) is modified in the sense of constant estima-
tion. For example, the so-called sextic problem was used in [9] to randomly generate
constants, whereas AP here uses only one, called K, which is inserted into Equation
7.11 below at various places by the evolutionary process. When a program is synthe-
sized, all Ks are indexed as K1, K2,. , Kn to obtain Equation 7.12 in the formula, and
then all Kn are estimated by using a second evolutionary algorithm, the result of which
can be, for example, Equation 7.13. Because EA (slave) works under EA (master), i.e.,
EAmaster → program → K indexing → EAslave → estimation of Kn, this version is called
AP with metaevolution, denoted as APmeta.

x2 + K
πK (7.11)

x2 + K1

πK2
(7.12)

x2 + 3.56
π−229 (7.13)

Because this version is quite time-consuming, APmeta was further modified to the
third version, which differs from the second one in the estimation of K. This is accom-
plished by using a suitable method for nonlinear fitting (denoted APn f ). This method has
shown the most promising performance when unknown constants are present. Results
of some comparative simulations can be found in [25, 26, 27].

7.4 Differential Evolution in Mathematica Code

Differential Evolution used in all experiments reported in this chapter has been based
on the Mathematica Programming environment. The aim of this part is to describe the
structure of the DE code and final code development. Source codes reported here are
only a part of fully developed notebook in environment Mathematica. Only the main
ideas and some parts of the final code are described here.

For the beginning of DE code development, it is important to prepare the popula-
tion and set all DE algorithm parameters like F, CR, NP and Generation. Population is
initialized as shown in Fig 7.11.

In[25]:= Population � DoPopulation�NP, Specimen�

Out[25]= ��534.695, ��442.422, �188.47��, �191.21, �194.845, �437.931��,
��70.135, ��127.976, 99.3825��, ��208.07, �214.324, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.11. Population initialization
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In[26]:= Table�Random�Integer, �1, NP	�, �i, 3	�

Out[26]= �3, 6, 8�

Fig. 7.12. Random values

SelectOther�active�� :� Module��	,
rand � �0, 0, 0	;
While�rand��1�� �� rand��2�� �� rand��1�� �� rand��3�� �� rand��2��
�� rand��3�� �� active � rand��1�� �� active � rand��2�� ��
active � rand��3��, rand � Table�Random�Integer, �1, NP	�, �i, 3	��;

Return�rand�
�

Fig. 7.13. SelectOther function

SelectOther�active�� :� Module��rand � �0, 0, 0, 0, 0	, allvals	,
While�allvals � Append�rand, active�;
Length�allvals� �� Length�Union�allvals��,
rand � Table�Random�Integer, �1, NP	�, �i, 5	��;
Return�rand��

Fig. 7.14. SelectOther compressed function

In[29]:= SelectOther�1�

Out[29]= �2, 8, 3�

Fig. 7.15. Three random indexes

This command returns the initial population of individuals with the structure Cost-
Value, parameter1, parameter2, . . , parameterNP. NP is a size of the population.
Canonical version of the DE is based on the selection of the three (or more based on
DE version) randomly chosen individuals from the population. Random selection, or
more precisely, random selection of three pointers, can be done by command Table in
Fig 7.12.

The random values selects pointers to three individuals of NP. To avoid the possibil-
ity that two or more will be the same, SelectOther function is used. Its argument active
is a pointer to the actively selected individual − parent. SelectOther function is shown
in Fig 7.13.

SelectOther function can also be given in a compressed form as in Fig 7.14.
Counters {1,2, ..,NP} and {i,3} are used for selection of three different individuals

from NP individuals. Fig 7.15 shows three individuals selected from the first solution
(parent). Note that all these individuals differ from the first one (position 3).

Till this point, the initial population has been initialized and three individuals have
been randomly selected from the population. In the following step, the function Se-
lectOther is applied to the entire population at once. Mathematica language allows
parallel−like programming, which is visible throughout of the code. This is also the
case of the following command of function MapIndexed which is used to apply Selec-
tOther on all individuals, so that the virtual population of pointers (randomly selected
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In[30]:= TRVIndex � MapIndexed�SelectOther��2��1��� &, Population�

Out[30]= ��7, 9, 8�, �5, 1, 7�, �6, 2, 10�, �10, 7, 6�,
�10, 6, 4�, �8, 7, 5�, �1, 2, 4�, �1, 7, 9�, �5, 3, 2�, �2, 9, 8��

Fig. 7.16. TVR Index of pointers

In[31]:= TRV � Population���1�� & �� TRVIndex

Out[31]= ���106.047, ��317.752, �402.607��, �464.407, �507.525, 502.251��,
��157.266, ��119.503, 163.852���, ���41.6243, ��236.027, �128.204��,
�534.695, ��442.422, �188.47��, �106.047, ��317.752, �402.607���,
��161.461, �335.943, 355.91��, �191.21, �194.845, �437.931��,
��62.8734, �160.401, �149.99���, ���62.8734, �160.401, �149.99��,
�106.047, ��317.752, �402.607��, �161.461, �335.943, 355.91���,
���62.8734, �160.401, �149.99��, �161.461, �335.943, 355.91��,
��208.07, �214.324, 244.138���, ���157.266, ��119.503, 163.852��,
�106.047, ��317.752, �402.607��, ��41.6243, ��236.027, �128.204���,
��534.695, ��442.422, �188.47��, �191.21, �194.845, �437.931��,
��208.07, �214.324, 244.138���, ��534.695, ��442.422, �188.47��,
�106.047, ��317.752, �402.607��, �464.407, �507.525, 502.251���,
���41.6243, ��236.027, �128.204��, ��70.135, ��127.976, 99.3825��,
�191.21, �194.845, �437.931���, ��191.21, �194.845, �437.931��,
�464.407, �507.525, 502.251��, ��157.266, ��119.503, 163.852����

Fig. 7.17. TVR Index of pointers for entire population

triplets) is created. Fig 7.16 shows the varible TRVIndex (trial vector index) created
from the MapIndexed function.

To unfold the code, the operator /@ (function Map) is used, which takes all the
arguments of pointers shown in Fig 7.16 and creates an entire array of pointers for the
population, given in Fig 7.17.

The result of Fig 7.17 is a list of physically selected individuals (three for each parent).
Application of mutation principle and all DE arithmetic operations on TRV list is straight
forward. It is accomplished by the means of the operator /@ which in this case applies
the arithmetic operation from the left to the elements of the TRV list. Entity #1[[X,2]]
in the arithmetic formula F∗(#1[[1,2]]− #1[[2,2]])+#1[[3,2]] represents Xth individual
from the selected triplets in TRV. The Noisy vector is thus calculated like in Fig 7.18.

Noisy � F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� TRV

���779.725, �560.034�, ��152.636, �354.393�, �273.28, 485.082�,
�718.466, 558.003�, �73.8901, �160.582�, ��77.4278, 324.963�,
��295.49, 443.706�, �407.789, 673.56�, �108.404, �620.�, ��369.647, �588.294��

Fig. 7.18. Noisy Vector

The output of Fig 7.18 is a set of Noisy vectors (cardinality of NP), which is con-
sequently used to generate trial vectors − individuals. Parameter selection from the
parent or noisy vector is done by the condition If[Cr < Random[]...]. Flatten is only
a cosmetic command which removes redundant brackets, generated by the command
Table. In the standard programming approach the command For would be used. To
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Trial � Flatten�Table�If�Cr � Random��,
Population��i, 2, j��, �1��i, j���,
�i, NP	, �j, Dim	� & �� �Noisy	, 1�

���442.422, �560.034�, �194.845, �354.393�, ��127.976, 99.3825�,
�718.466, 244.138�, ��236.027, �128.204�, �335.943, 355.91�,
��317.752, �402.607�, ��119.503, 163.852�, �507.525, 502.251�, �160.401, �149.99��

Fig. 7.19. Trial Vector

BoundaryChecking � Flatten�MapIndexed
�CheckInterval��1, �2� &, �1�

, 1� & �� �Trial�
���442.422, �2.47524�, �194.845, �354.393�, ��127.976, 99.3825�,
�300.954, 244.138�, ��236.027, �128.204�, �335.943, 355.91�,
��317.752, �402.607�, ��119.503, 163.852�, �507.525, 502.251�, �160.401, �149.99��

Fig. 7.20. Boundary Checking

In[44]:= IndividualsCostValue � �CostFunction��1�, �1	 & �� �BoundaryChecking�

Out[44]= ��364.224, ��442.422, �2.47524��, ��200.331, �194.845, �354.393��,
��70.135, ��127.976, 99.3825��, �279.978, �300.954, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.21. Individual Cost Value

NewPopulation � MapThread�If��1��1�� � �2��1��, �1, �2� &,
�Population, �IndividualsCostValue�	�

��364.224, ��442.422, �2.47524��, ��200.331, �194.845, �354.393��,
��70.135, ��127.976, 99.3825��, ��208.07, �214.324, 244.138��,
��41.6243, ��236.027, �128.204��, �161.461, �335.943, 355.91��,
�106.047, ��317.752, �402.607��, ��157.266, ��119.503, 163.852��,
�464.407, �507.525, 502.251��, ��62.8734, �160.401, �149.99���

Fig. 7.22. Next Population Selection

avoid setting of local or global variables for the trial vector list, the Table command
is used instead of For. Trial vectors are returned in the list given in Fig 7.19, which is
created automatically.

All the Trial vectors are created at once. Before the fitness is calculated, the popula-
tion of the trial individuals are checked for boundary conditions. If some parameter is
out of the allowed boundary, then it is randomly returned back. The function is given in
Fig 7.20.

Now, there exists a repaired set of trial vectors, which is evaluated by the cost func-
tion. It is done by the function CostFunction applied by /@ on the BoundaryChecking
set. Note that the body of each individual in Fig 7.21 is enlarged by the function Indi-
vidualsCostValue.

The better individual of both parent and child is selected into the new population by
means of the MapThread function.
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NewPop�Pop�� :� Module��	,
TRVIndex � MapIndexed�SelectOther��2��1��� &, Population�;
TRV � Population���1�� & �� TRVIndex;
Noisy � F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� TRV;
Trial � Flatten�Table�If�Cr � Random��, Pop��i, 2, j��, �1��i, j���,

�i, NP	, �j, Dim	� & �� �Noisy	, 1�;
BoundaryChecking � Flatten�MapIndexed�CheckInterval��1, �2� &, �1�, 1�

& �� �Trial�;
IndividualsCostValue � �CostFunction��1�, �1	 & �� �BoundaryChecking�;
NewPopulation � MapThread�If��1��1�� � �2��1��, �1, �2� &,

�Population, �IndividualsCostValue�	�
�

Fig. 7.23. Compiled DE crossover code

In[47]:= np � NewPop�Population�;
MatrixForm�np�

Out[48]//MatrixForm=

�1.65327 �5, 11.2�

86.0232 ��297.175, �437.931�

�70.135 ��127.976, 99.3825�

�208.07 �214.324, 244.138�

�41.6243 ��236.027, �128.204�

161.461 �335.943, 355.91�

�341.433 ��297.175, �150.458�

�216.653 ��499.82, 163.852�

464.407 �507.525, 502.251�

�62.8734 �160.401, �149.99�

Fig. 7.24. Function call of New population

If all the preceding steps are joined together, then final DE code in Mathematica is
given in Fig 7.23.

When the function NewPop in Fig 7.23 is called with the variable Population like an
argument the new population is created as shown in Fig 7.24.

When the output of NewPop in Fig 7.24 is repeatedly used as an input in some loop
procedure (one loop − one generation), the DE algorithm is iterated.

Some additive procedures can also be used, like selection of the best individual from
the population. An example is given in Fig 7.25.

A more compressed (but less readable) and similar version of DE is shown in
Fig 7.26.

Canonical version of the DE described is a priori suitable for the real valued vari-
ables. However, due to the problems being solved here are based on integer−valued
variables and permutative problems, some additional subroutines have been added to
the DE code. The first one is a Repair subroutine. An input of this subroutine is an in-
fesible solution and the output is a repaired solution so that each variable only appears
once in the solution.The routine is shown in Fig 7.27.
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ExpForm�nmbr�� :� PaddedForm�nmbr, �6, 5	, ExponentFunction � ��1 &�,
NumberFormat � ��1 �
 "�E
" �
 �3 &�, NumberSigns � �"�", "
"	�;

BestInd�pop�� :� Module��best, ind, str	,
best � Position����	, Min�������1����1�� & �� Transpose�pop���1��;
ind � pop��best��;
str � "Best individual is on position " �
 ToString�best� �

" with cost value " �
 ToString�ExpForm�ind��1���� �
 " and
parameters " �
 ToString�ind��2���;

Print�str�;
Return�Flatten��best, ind	, 1��
�
BestInd�np�

Best individual is on position 7 with cost
value �3.41433�E�2 and parameters ��297.175, �150.458�

�7, �341.433, ��297.175, �150.458��

Fig. 7.25. Best individual from population

NewPop�Pop�� :� MapThread�If��1��1�� � �2��1��, �1, �2� &,
�Pop, ��CostFunction��1�, �1	 & �� �Flatten

�MapIndexed�CheckInterval��1, �2� &, �1�, 1� & ��
�Flatten�Table�If�Cr � Random��, Pop��i, 2, j��,

�1��i, j���, �i, NP	, �j, Dim	� & �� �F	��1��1, 2��
� �1��2, 2��� 
 �1��3, 2�� & �� �Pop���1�� & �� MapIndexed

�SelectOther��2��1��� &, Pop��	, 1����	�

Fig. 7.26. Compressed DE form

Repair�Sol�� :� Module��Temp, MissingValue, Solution, Pos, Size	,
Solution � Sol; Size � Length�Solution�;
MissingValue � RandomRelist�Complement�Range�Size�, Solution��;
Pos � Position�Solution, �� & �� Range�Size�;
�Solution � Drop�Solution, ��	�� & �� �Pos � Sort�Flatten�MapIndexed

�Drop��1, 1� &, �1� &�MapIndexed�RandomRelist��1� &, �� &�
Join�Temp������ & �� ��1��� & �� Range�Length��1����� &�Flatten�
Position�Flatten�Dimensions �� �Temp � Flatten�Pos������ & ��

Range�Size���, �?�1 � � &�������, Greater��;
Pos � Sort�Pos, Less�;
MapThread��Solution � Insert�Solution, �1, �2�� &, �MissingValue, Pos	�
Return�Solution�

�

Fig. 7.27. Repair routine

The Repair function is broken down and explained in-depth. The initial process is
to find all the missing values in the solution. Since this is a permutative solution, each
value is exist only once in the solution. Therefore it stands to reason that if there are
more than one single value in the solution, then some values will be missing.

The function:
MissingValue = RandomRelist[Complement[Range[Size],Solution]]; finds the missing
values in the solution.
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The second phase is to map all the values in the solution. The routine:
Pos = Position[Solution,#]&/@Range[Size]; maps the occurrence of each value in the
solution.

The repetitive values are identified in the function:
Flatten[Position[Flatten[Dimensions/@

(Temp = Flatten[Pos[[#]]]&/@
Range[Size])], ?(1 < #&)]]

The routine: Join[Temp[[#]]]&/@(#1[[#&/@Range[Length[#1]]]])& calculates the
positions of the replicated values in the solution.

These replicated positions are randomly shuffled, since the objective is not to create
any bias to replacement. This routine is given in the function:
MapIndexed[RandomRelist[#1]&,#]&

The variable Pos isolates the positions of replicated values which will be replaced as
given in:
Pos = Sort[Flatten[MapIndexed[Drop[#1,1]&,#1]&

The routine: Drop[Solution,{#}]&/@ removes the replicated values from the
solution.

The final routine:
MapThread[(Solution = Insert[Solution,#1,#2])&,{MissingValue,Pos}]; inserts the
missing values from the array Missing Value into randomly allocated indexs identified
by variable Pos.

DE is consequently modified so that before the function CostFunction a Repair/
@DSH function is used as in Fig 7.28.

DERand1Bin�Pop�� :� MapThread
If��1��1�� � �2��1��, �1, �2� &,
�Pop, ��CostFunction��1, Prob, Mach�, �1	 & ��
�Repair��DSH�Flatten�MapIndexed�CheckInterval��1, �2� &,

�1�, 1� & �� �Flatten�Table�If�Cr � Random��, Pop��i, 2, j��,
�1��i, j���, �i, NP	, �j, Dim	� & ��

�F	��1��1, 2�� � �1��2, 2��� 
 �1��3, 2�� & �� �Pop���1�� & �� MapIndexed�
SelectOtherRand1Bin��2��1��� &, Pop��	, 1��

�


��

Fig. 7.28. Repair DSH routine

In[86]:= DS � �M1, M2, M3, M4, M5, M6, M7, M8, M9, M10	

Out[86]= �M1, M2, M3, M4, M5, M6, M7, M8, M9, M10�

Fig. 7.29. Discrete Set

In[87]:= DSH�Pop�� :� Module��	,
RoundPop � Round�Pop�;
DS���1�� & �� �1 & �� RoundPop
�

Fig. 7.30. Discrete Set
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In[88]:= DSH�BoundaryChecking� �� MatrixForm
Out[88]//MatrixForm=

M4 M6 M3 M8 M3 M10 M7 M1 M4 M5

M2 M4 M8 M5 M5 M2 M7 M10 M10 M4

M8 M1 M2 M1 M6 M7 M9 M3 M3 M7

M7 M3 M9 M3 M6 M9 M2 M7 M8 M9

M4 M2 M8 M5 M7 M1 M5 M1 M2 M4

M6 M2 M9 M4 M1 M9 M2 M6 M6 M5

M9 M6 M7 M4 M6 M5 M9 M9 M10 M5

M3 M5 M9 M2 M7 M4 M9 M4 M10 M5

M9 M8 M6 M4 M9 M3 M5 M1 M4 M8

M2 M2 M4 M4 M9 M7 M6 M4 M5 M4

Fig. 7.31. Discrete Set Output

A discrete set can be created as shown in Fig 7.29.
The DSH function is given in Fig 7.30.
The result of applying the DSH set on the population is given in Fig 7.31.
Such or similar set can be used in other different methods (if needed) like fuzzy

logic etc. Due to the nature of permutative problems, (sequence has to be complete and
unique), the discrete set been set to the same sequence of numbers.

Due to the complex nature of permutative problems, a Local Search routine has been
added to the heuristic. Local search is used to search in the neighbourhood of the current
solutions. Keeping in mind the computational nature of the code, a 2 OPT local search
outine was selected as in Fig 7.32.

LocalSearch�Sol�� :�
Module��Solution, NewSolution, CostVal, NewCostVal, Temp	,
CostVal � Sol��1��; Solution � Sol��2��; NewCostVal � CostVal;

NewSolution � Solution;
Label�start�; CostVal � NewCostVal; NewSolution � Solution;
Do�
Temp � Solution��i��; Solution��i�� � Solution��j��;

Solution��j�� � Temp;
NewCostVal � CostFunction�Solution, Prob, Mach�;
If�NewCostVal � CostVal, Goto�start��,

�i, Job � 1	, �j, i 
 1, Job	�;
Solution � �CostVal, NewSolution	; Return�Solution�
�

Fig. 7.32. Local Search routine

The current fitness of the solution is kept in the variable CostVal, and the current
active solution is kept in Solution. The start flag is Label[start].

Two iterators are activated, i, which is the index to the current variable in the solution
and j, which is the iterator from the current position indexed by i till the end of the
solution given as {j, i+ 1,Job}.
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Each two values in the solution are taken pairwise and exchanged as
Temp = Solution[[i]];Solution[[i]] = Solution[[j]];Solution[[j]] = Temp, where Temp is
the intermediary placeholder. Another syntax for this process can be given as
{Solution[[i]],Solution[[j]]} = {Solution[[j]],Solution[[i]]}. Each value indexed by i and
j are exchanged.

The new fitness of the solution is calculated. If the new fitness is better than the old
value, then the new solution is admitted into the population and the starting position is
again set to Label[start] given as If[NewCostVal < CostVal,Goto[start]]. This process
iterates till the index i iterates to the end of the solution {i,Job − 1} taking into account
all the resets done by the finding of new solutions.

The outline of the entire code is given in Fig 7.33 and the data flow diagram is given
in Fig 7.34.

1.Input : D,Gmax,NP ≥ 4,F ∈ (0,1+) ,CR ∈ [0,1], initial bounds :x(lo),x(hi).
2.Initialize : DoPopulation[NP,Specimen]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.While G < Gmax

∀i ≤ NP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Create TRVIndex by command :
T RVIndex = MapIndexed[SelectOther[#2[[1]]]&,Population]

Selection of three vectors by TRVIndex
T RV = Population[[#1]]&/@T RV Index

Create noisy vectors
Noisy = F ∗ (#1[[1,2]]−#1[[2,2]])+#1[[3,2]]&/@T RV

Create trial vectors :
Trial = Flatten[Table[I f [Cr < Random[],Pop[[i,2, j]],#1[[i, j]]],

{i,NP},{ j,Dim}]&/@{Noisy},1]
Check for boundary :

BoundaryChecking = Flatten[MapIndexed[CheckInterval[#1,#2]
&,#1],1]&/@(Trial)

Cost value
IndividualsCostValue = {CostFunction[#1],#1}&/@(BoundaryChecking)

DSH conversion :
Repair/@DSH

New population :
NewPopulation = MapT hread[I f [#1[[1]] < #2[[1]],#1,#2]&,

{Population,(IndividualsCostValue)}]
G = G+1

Fig. 7.33. DE outline

7.4.1 DE Flow Shop Scheduling

This section describes the application of Flow Shop scheduling as given in Fig 7.35. In
this function, the obtained solution is simply passed into the CostFunction function.

The first variable, JTime accumulates the processing time of all the jobs in the first
machine given as: JTime = Accumulate[#]&[Prob[[1,#]]&/@Solution];.

The second variable, LMach, computes the job times on all the subsequent machines
iteratively. Since the maximum of the processing times is taken between the jobs:
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Fig. 7.34. Data flow diagram of DE

CostFunction � Compile���Solution, �Integer, 1	, �Prob, �Integer, 2	, �Mach, �Integer		,
Module��JTime, LMach	,
JTime � Accumulate��� &�Prob��1, ��� & �� Solution�;
LMach � Accumulate��� &�Prob���, Solution��1���� & �� Range�Mach��;

Table�JTime��1�� � LMach��i 
 1��;
MapIndexed��JTime��First��2� 
 1�� � Max�JTime��First��2���, JTime��First��2� 
 1��� 


Prob��i 
 1, �1��� &, Rest�Solution��, �i, Mach � 1	�; Return�JTime���1���
��

Fig. 7.35. Flow Shop Schedluing routine

Max[JTime[[First[#2]]],JTime[[First[#2]+ 1]]]+ Prob[[i+1,#1]])&,Rest[Solution]], the
processing time value is simply accumulated in LMach.

For more information about Flow Shop, please see [17].

7.4.2 DE Traveling Salesman Problem

The Traveling salesman function is simply the accumulation of the distances from one
city to the next. The function is given in Fig 7.36.

The first routine simply picks up the times between the cities in the Solution. The
distance times are stored in the matrix Distance.
Time+ = (Distance[[Solution[[# + 1]],Solution[[#]]]])&/@Range[Size−1];.
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CostFunction � Compile���Solution, �Integer, 1	, �Distance, �Real, 2	,
�Size, �Integer		,
Module��Time � 0.0	,
Time 
� �Distance��Solution��� 
 1��, Solution�������� & �� Range�Size � 1�;
Time 
� �Distance��Solution��1��, Solution��Size�����; Return�Time���

Fig. 7.36. Traveling Salesman routine

Once all the related city distances have been added, the distance from the last city to
the first city is added to complete the tour, given as:
Time+ = (Distance[[Solution[[1]],Solution[[Size]]]])

7.5 DE Example

The simplest approach of explaining the application of discrete set handling is to im-
plement a worked example. In that respect, a TSP problem is proposed with only five
cities, in order to make it more viable.

Assume a symmetric TSP problem given as in Table 7.2. Symmetric implies that the
distances between the two cities are equal both ways of travelling.

Table 7.2. Symmetric TSP problem

Cities A B C D E

A 0 5 10 14 24
B 5 0 5 9 19
C 10 5 0 10 14
D 14 9 10 0 10
E 24 19 14 10 0

Table 7.3. Decomposed symmetric TSP problem

Cities A B C D E

A 0
B 5 0
C 10 5 0
D 14 9 10 0
E 24 19 14 10 0

Since this is a symmetric TSP problem, the Distance Matrix can be decomposed to
the leading triangle as given in Table 7.3.

In order to use DE, some operational parameters are required, in this case the tuning
parameters of CR and F, and well as the size of the population NP and the number
of generations Gen. For the purpose of this example, the population is specified as 10
individuals.
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7.5.1 Initialization

The first phase is the initialization of the population. Since NP has been arbitrarily set
as 10, ten random permutative solutions are generated to fill the initial population as
given in Table 7.4.

Table 7.4. Initial population

Solution City 1 City 2 City 3 City 4 City 5

1 A D B E C
2 D B A C E
3 C A E B D
4 E C D A B
5 E B C D A
6 B D A E C
7 A D C E B
8 E C A D B
9 B E C A D
10 A C E B D

7.5.2 DSH Conversion

The second part is to create the discrete set for the solution. DSH assigns a raw number
for each position index in the solution. In this case the most logical phase is to assign
consecutive numbers for the consecutive alphabets as shown in Table 7.5.

The problem assignment now switches to the discrete set. This is given in Table 7.6.

Table 7.5. Discrete set for the cities

Cities A B C D E

Discrete
Set

1 2 3 4 5

Table 7.6. Initial Population

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
2 4 2 1 3 5
3 3 1 5 2 4
4 5 3 4 1 2
5 5 2 3 4 1
6 2 4 1 5 3
7 1 4 3 5 2
8 5 3 1 4 2
9 2 5 3 1 4
10 1 3 5 2 4
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Table 7.7. Distance matrix for Tour 1

Cities A D B E C

A
D 14
B 5 9
E 24 9 19
C 10 4 5 14

Table 7.8. Fitness for the population

Solution City 1 City 2 City 3 City 4 City 5 Fitness

1 1 4 2 5 3 66
2 4 2 1 3 5 48
3 3 1 5 2 4 48
4 5 3 4 1 2 62
5 5 2 3 4 1 72
6 2 4 1 5 3 66
7 1 4 3 5 2 62
8 5 3 1 4 2 66
9 2 5 3 1 4 66
10 1 3 5 2 4 66

7.5.3 Fitness Evaluation

The objective function for TSP is the cumulative distance between the cities, ending
and starting from the same city. Taking the example of the first solution in Table 7.6;
now termed Tour 1 = {A,D,B,E,C}, the equivalent representation is Tour 1 = =
{1,4,2,5,3}. The distance matrix can now be represented as in Table 7.7.

Since the tour is cyclic, the tour can further be completely represented as Tour 1 =
{A → D → B → E → C → A}. From distance matrix it is now the accumulation of the
tour distances Tour 1 = 14 + 9 + 19 + 14 + 10, which gives a total of 66.

Likewise, the total tour for all the solutions is calculated and is presented in
Table 7.8.

7.5.4 DE Application

The next step is the application of DE to each solution in the population. For this ex-
ample the DE Rand1Bin strategy is selected. At this point it is important to set the DE
scaling factor F. It can be given a value of 0.4.

DE application is simple. Starting from the first solution, each solution is evolved se-
quentially. Evolution in DE consists of a number of steps. The first step is to randomly
select two other solutions from the population, which are unique from the solution cur-
rently under evolution. If we take the assumption that Solution 1 is currently under
evolution, then we can randomly select Solution 4 and Solution 7 for example. These
make the batch of parent solutions as given in Table 7.9.
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Table 7.9. Parent solutions

Solution City 1 City 2 City 3 City 4 City 5 Fitness

1 1 4 2 5 3 66
4 5 3 4 1 2 62
7 1 4 3 5 2 62

Table 7.10. Parent solutions crossover

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
4 5 3 4 1 2
7 1 4 3 5 2

Index 4 5 1 2 3

The second DE operating parameter crossover CR can now be set as 0.4. The starting
point of evolution in the solution is randomly selected. In this example, solution index
3 is selected as the first variable for crossover as given in Table 7.10.

The mathematical representation of DE Rand1Bin is given as: xcurrent +
F • (

xrandom1 − xrandom2

)
. xrandom1 in this instance refers to the first randomly selected

solution 4, and xrandom2 is the second random solution 7. Since the starting index has
been randomly selected as 3, the linked values for the two solutions are subtracted as 4
− 3 = 1. This value is multiplied by F, which is 0.4 The result is (1 x 0.4 = 0.4). This
value is added to the current indexed solution 1: (0.4 + 2 = 2.4).

Likewise, applying the equation to the selected parent solutions yields the following
values given in Table 7.11:

Table 7.11. Parent solutions final values

Solution City 1 City 2 City 3 City 4 City 5

1 1 4 2 5 3
4 5 3 4 1 2
7 1 4 3 5 2

Index 4 5 1 2 3

Final 2.6 3.6 2.4 3.4 3

The second part shown in Table 7.12 is to select which of the new variables in the
solutions will actually be accepted in the final child solution. The procedure of this is to
randomly generate random numbers between 0 and 1and if these random numbers are
greater than the user specified constant CR, then these values are accepted in the child
solution. Otherwise the current index values are retained.
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Table 7.12. CR Application

Solution City 1 City 2 City 3 City 4 City 5

Parent 1 4 2 5 3
Final 2.6 3.6 2.4 3.4 3

Random value 0.6 0.2 0.5 0.9 0.3

Table 7.13. Child solution

Solution City 1 City 2 City 3 City 4 City 5

Parent 1 4 2 5 3
Child 2.6 4 2.4 3.4 3

Table 7.14. Closest Integer Approach

Solution City 1 City 2 City 3 City 4 City 5

Child 2.6 4 2.4 3.4 3
Closest integer 3 4 2 3 3

Table 7.15. Hierarchical Approach

Solution City 1 City 2 City 3 City 4 City 5

Child 2.6 4 2.4 3.4 3
Hierarchical Approach 2 5 1 4 3

Since CR has been set as 0.4, all indexes with random values greater than 0.4 are
selected into the child population. The rest of the indexes are filled by the variables
from the parent solution as given in Table 7.13.

Two different approaches now can be used in order to realize the child solution.
The first is to closest integer approach. In this approach the integer value closest to the
obtained real value is used. This is given as in Table 7.14.

The second approach is the hierarchical approach. In this approach, the solutions
are listed according to their placement in the solution itself. This is given in Table 7.15.

The advantage of the hierarchical approach is that no repairment is needed to the
final solution. However, it does not reflect the placements of DE values, and can be
misleading. Due to this factor, the first approach of closest integer approach is now
described.

The next step is to check if any solution exists outside of the bounds. According
to [18], all out of bound variables are randomly repaired. If the case of this example all
the values are within the bounds specified by the problem.
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Table 7.16. Feasible solutions

Solution City 1 City 2 City 3 City 4 City 5

Child 3 4 2 3 3
Feasible - 4 2 - -

Table 7.17. Final solution

Solution City 1 City 2 City 3 City 4 City 5

Child 3 4 2 3 3
Final Solution 3 4 2 1 5

Table 7.18. Final solution fitness

Solution City 1 City 2 City 3 City 4 City 5 Fitness

Final Solution 3 4 2 1 5 62

Table 7.19. DSH application

Solution City 1 City 2 City 3 City 4 City 5

Final Solution 3 4 2 1 5

City C D B A E

The final routine is to repair the solution if repetitive solutions exist. It must be
stressed that not all the solutions obtained are infeasible.

The approach is to first isolate all the unique solutions as given in Table 7.16.
The missing values in this case are 1, 3, 5. Using random selection, each missing

value is replaced in the final solution in Table 7.17.
Random placement is selected since it has proven highly effective [3].
The new solution is vetted for its fitness.
The new fitness of 62 improves the old fitness of the parent solution of 66 and hense

the child solution is accepted in the population for the next generation. The correct
arrangement is obtained by converting back using DSH into City representation as given
in Table 7.19.

Using the above process, all the solutions are evolved from one generation to another.
At the termination of the algorithm, the best-placed solution is retrieved.

7.6 Experimentation

All experiments have been done on the grid cluster of the XServers (Apple technology).
Such a kind of computer technology is now commonly used for hard computing tasks.
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Fig. 7.37. 1000 PC cluster 1

An example is the 1000 PCs used in genetic programming (Fig 7.37 − 7.38). In Czech
Republic, there also exists such grid computers. An example of a grid configuration
is the supercomputer named Amalka with 360 processors used in space research and
related problems shown in Fig 7.39.

The grid cluster used for the FSS and TSP experiments, consisted of 16 XServers 2
x 2 GHz Intel Xeon, 1 GB RAM, 80 GB HD (Fig 7.40 − 7.41). Each Xserve contain 4
computational cores, so there are in total 64 computational cores. Part of the computa-
tional force has been used for FSS and TSP calculations.

7.6.1 Flow Shop Scheduling Tuning

The main issue for almost all meta-heuristics, which does optimization without knowl-
edge of the system, is that there are parameters to tune in the algorithm. In DE, there
are two control parameters, F and CR. These parameters are required in order to induce
the stochastic process in the heuristic, which will enable it to find the optimal solution
for that specific problem.
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Fig. 7.38. 1000 PC cluster 2

[18] gave a brief outline for the different operating parameters as given in
Table 7.20.

These general outlines were formulated after experimentation [18], however they
were not intended for permutative problems. Since this is realized as a novel approach
for DE, it becomes than imperative to create a experiment procedure for the formulation
of these control values. Alongside these control values, these are altogether 7 general
operating DE strategies.

1. Rand 1 Bin
2. Rand 2 Bin
3. Best 2 Bin
4. Local to Best
5. Best 1 JIter
6. Rand 1 DIter
7. Rand 1 GenDIter
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Fig. 7.39. Amalka Grid

Table 7.20. Operating parameters for original DE

Control Variables Lo Hi Best? Comments

F : Scaling Factor 0 1.0+ 0.3 0.9 F ≥ 0.5
CR: Crossover probability 0 1 0.8 1.0 CR = 0, seperable

CR = 1, epistatic

Table 7.21. Tuning Parameters

Strategy CR F

Rand1Bin 0.1 0.1
Rand2Bin 0.2 0.2
Best2Bin 0.3 0.3
LocaltoBest 0.4 0.4
Best1JIter 0.5 0.5
Rand1DIter 0.6 0.6
Rand1Gen DIter 0.7 0.7

0.8 0.8
0.9 0.9
1 1
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Fig. 7.40. Emanuel Cluster at UTB

Table 7.22. FSS operating parameters

Parameters Values

Strategy Rand 1 DIter
F 0.5
CR 0.1

So the task then is to also find the optimal operating strategy alongside the two con-
trol variables. This in itself becomes a three phase permutative problem. The sampling
rate for the two control variables was kept as small as possible to 0.1.

The permutative outline for the tuning parameter is now given in Table 7.21.
Each value is permutated through the other values, so the total number of tuning

experimentation conducted is 7 x 10 x 10 = 700.
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Fig. 7.41. Emanuel Cluster at UTB

The second aspect is to select an appropriate test instance. For our purpose, a moder-
ately difficult instance of 50 jobs and 20 machines from the Taillard benchmark problem
set was selected.

Experimentation was conducted with Population set to 200 individuals and 100 gen-
erations allowed. The solution mesh is given in Fig 7.42.

A histogram projection in Fig 7.43. gives a better representation with the frequency
of makespan.

The optimal value obtained through this experimentation is given in Table 7.22.

7.6.2 Traveling Salesman Problem Tuning

The identical tuning procedure used for Flow shop was used for parameter tuning on
the Traveling Salesman Problem. Once again, 700 experimentations were conducted,
and for this problem set, the moderately difficult Eil51 city problem set was selected.
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Fig. 7.42. FSS tuning graphical display
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Fig. 7.43. Frequency display for FSS tuning

The solution mesh for TSP is given in Fig 7.44.
The histogram display for all the values is given in Fig 7.45.
The optimal value obtained through this experimentation is given in Table 7.23.
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Fig. 7.44. TSP tuning graphical display

Fig. 7.45. Frequency display for TSP tuning

Using these obtained values, extensive experimentation was conducted on both the
FSS and TSP problems. The core issue here is that it is shown that small changes in
the control variables leads to different results. The hypothesis that parameter tuning is
highly important for tuning of DE for permutative optimization is proven.
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Table 7.23. FSS operating parameters

Parameters Values

Strategy Rand 1 Bin
F 0.4
CR 0.1

7.6.3 Flow Shop Scheduling Results

The primary experimentation was conducted on Taillard benchmark Flowshop Schedul-
ing [21]. These sets are considered primary with a core mix of complexity and scale.
Altogether 120 problem sets are involved, 10 problem instances of n job and m machine
problems of 20x5, 20x10, 20x20, 50x5, 50x10, 50x20 100x5, 100x10, 100x20, 200x10,
200x20, and 500x10 are involved. For each problem instance, two bounds are given, the
upper bound and the lower bound. Most reference is taken from the upper bound, which
is the hypothetical optimal of a particular instance.

So the objective then is not to find the optimal solution (one can if one wants), but
to gauge how effective a heuristic is over the entire range of these problems. In others
words, to observe the consistency of the heuristic. To this effect, the results are presented
in the following format by applying Equation 7.14.

Δavg =
(H −U)• 100

U
(7.14)

Equation 7.14 is where H represents the obtained value and U is the bound specified
by [21]. The Δavg , gives the average value for all the instances in that particular class,
and gives the standard deviation across all the instances. This is important in order to
gauge the consistency of the heuristic.

The operating parameters of DE using Discrete Set Handling (DEDSH ) is given in
Table 7.24. The values of CR and F were obtained through extensive parameter tuning
and NP (population size) and Gen (number of generations) was kept at 700.

Table 7.24. DEDSH operating parameters

Parameters CR F NP Gen

Value 0.5 0.1 500 700

The collated results are presented in Table 7.25. These results are presented with the
results compiled by [22].

Generally, two classes of heuristics are observed: those, which are canonical, and
those, which have embedded local search. To the first class of heuristics belong GA (Ge-
netic Algorithm), PSOspv (Particle Swamp Optimization with smallest position value)
and DEspv (Differential Evolution with smallest position value). The second class has
DEspv+exchange , which is DEspv with local search.
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Table 7.25. Flowshop scheduling results

GA PSOspv DEspv DEspv+exchange DEDSH DEDSH+EXH

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 0.69 0.64 1.2 0.42 1.07 0.55
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.01 0.93 2.5 0.41 2.35 0.6
20x20 4.22 1.31 2.84 1.15 3.03 0.98 1.85 0.87 2.52 0.32 1.92 0.53
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.41 0.37 0.84 0.56 0.5 0.56
50x10 5.61 1.41 4.83 1.16 4.12 1.1 2.41 0.9 5.09 1.02 3.21 1.11
50x20 6.95 1.09 6.68 1.35 5.56 1.22 3.59 0.78 7.05 1.08 4.21 0.85
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.21 0.21 0.73 0.32 0.32 0.24
100x10 3.12 0.95 3.26 1.04 2.28 0.75 1.41 0.57 3.11 1.2 1.5 1.08
100x20 6.32 0.89 7.19 0.99 6.78 1.12 3.11 0.55 5.98 0.57 4.19 0.82
200x10 2.08 0.45 2.47 0.71 1.88 0.69 1.06 0.35 3.77 1.31 1.781 1.1
200x20 9.82 0.7 4.32 0.68
500x10 6.28 0.39 4.13 0.41

Table 7.26. Comparison results of heuristics without local search

GA PSOspv DEspv DEDSH

Δavg Δstd Δavg Δstd Δavg Δstd Δavg Δstd

20x5 3.13 1.86 1.71 1.25 2.25 1.37 1.2 0.42
20x10 5.42 1.72 3.28 1.19 3.71 1.24 2.5 0.41
20x20 4.22 1.31 2.84 1.15 3.03 0.98 2.52 0.32
50x5 1.69 0.79 1.15 0.7 0.88 0.52 0.84 0.56
50x10 5.61 1.41 4.83 1.16 4.12 1.1 5.09 1.02
50x20 6.95 1.09 6.68 1.35 5.56 1.22 7.05 1.08
100x5 0.81 0.39 0.59 0.34 0.44 0.29 0.73 0.32
100x10 3.12 0.95 3.26 1.04 2.28 0.75 3.11 1.2
100x20 6.32 0.89 7.19 0.99 6.78 1.12 5.98 0.57
200x10 2.08 0.45 2.47 0.71 1.88 0.69 3.77 1.31
200x20 9.82 0.7
500x10 6.28 0.39

The experimentation of DEDSH+EXH was done on two parts, one with local search
and one without. The comparison result of DEDSH is given in Table 7.26.

DEDSH was able to find the better average values for the problem sets of 20x5, 20x10,
20x20, 50x5 and 100x20. The others sets was dominated by DEspv. A graphical output
for the different sets is given in Fig 7.46. The deviation output is given in Fig 7.47.

The second set is the comparison of the heuristics with local search, namely
DEspv+exchange and DEDSH+EXC as presented in Table 7.27.

As observed DEspv+exchange is the better performing heuristic. The last two columns
gives the analysis comparisons and on average DEDSH+EXH is only 0.42% away from
DEspv+exchange. The graphical displays are given in Figs 7.48 and 7.49.
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Fig. 7.46. Makespan display of different heuristics without local search
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Fig. 7.47. Deviation display of different heuristics without local search
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Table 7.27. Comparison results of heuristics with local search

DEspv+exchange DEDSH+EXH Analysis

Δavg Δstd Δavg Δstd Δavg Δstd

20x5 0.69 0.64 1.07 0.42 0.38 0.22
20x10 2.01 0.93 2.35 0.41 0.34 0.52
20x20 1.85 0.87 1.92 0.32 0.06 0.55
50x5 0.41 0.37 0.5 0.56 0.09 0.19
50x10 2.41 0.9 3.21 1.02 0.8 0.12
50x20 3.59 0.78 4.21 1.08 0.62 0.3
100x5 0.21 0.21 0.32 0.32 0.11 0.11
100x10 1.41 0.57 1.5 1.2 0.09 0.63
100x20 3.11 0.55 4.19 0.57 1.08 0.02
200x10 1.06 0.35 1.78 1.31 0.72 0.96
200x20 4.32 0.7
500x10 4.13 0.39

Average 0.42 0.361
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Fig. 7.48. Makespan display of different heuristics with local search

In terms of average deviation, DEDSH+EXH generally has better values than
DEspv+exchange. This implies that DEDSH+EXC obtains solutions with greater regularity
and consistency than DEspv+exchange.
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Fig. 7.49. Deviation display of different heuristics with local search

7.6.4 Traveling Salesman Problem Results

7.6.4.1 Symmetric Traveling Salesman

The second set of problem set to be considered is the Traveling Salesman Problem
(TSP). TSP is a widely realized problem with many applications in real life problems.
However, to compensate for its myriad usage, a number of targeted heuristics have
evolved to solve it; often to optimal as is the case for all for all known problem instance
in the TSPLIB. For evolutionary heuristics to operate in TSP, it has become a norm for
them to employ local search, usually 3 opt [4]. Utilizing local search heuristics always
improve the quality of the results of the solutions, since triangle inequality rule and
Lin−Kernigham are very robust deterministic search heuristics.

The operating parameters for the TSP is given in Table 7.28.
A sample of TSP problem is given in Table 7.28. Comparison is done with the Ant

Colony (AC), Simulated Annealing (SA), Self Organising Map (SOM) and Furthest
Insertion (FI) of [4].

Δavg =
H −U

U
(7.15)

Table 7.28. DEDSH TSP operating parameters

Parameters CR F NP Gen

Value 0.4 0.1 500 700
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Table 7.29. STSP comparison results

Instance Optimal ACS3opt SA3opt SOM FI3opt DEDSH

City 1 5.84 0 0 0 0.002 0.002
City 2 5.99 0.002 0 0.002 0 0.03
City 3 5.57 0 0 0.002 0 0.059
City 4 5.06 0.12 0.12 0 0.13 0.16
City 5 6.17 0 0 0.003 0.03 0.01

Table 7.30. General STSP comparison results

Instance Optimal ACS3opt DEDSH

att532 27,686 0 0.17
d198 15,780 0.006 0.54
eil51 426 - 0.08
eil76 538 - 0.1
fl1577 8,806 0.03 1.23
kroA100 21,282 0 0.56
pcb442 50,779 0.01 0.32
rat783 8,806 - 0.92

Average 0.49

The results are presented in Table 7.29 as percentage increase upon the reported
optimal as given in Equation 7.15.

In this instance, DEDSH , was competitive to the other performing heuristics. As
shown, no one heuristic was able to find all optimal values, and some heuristic per-
formed better than other for specific instances.

The second set of experiment was conducted on some selective TSP instances [23].
The results are presented in Table 7.30.

The comparison is done with ACS3opt of [4]. ACS performs very well, almost achiev-
ing the optimal solution. DEDSH performs well, obtaining on average 0.49% to the op-
timal results for the entire set. The set contains instance′s ranging from sizes of 51 to
1577 cities.

7.6.4.2 Asymmetric Traveling Salesman

The second set of problems is that, which involves the asymmetric TSP. Asymmetric
TSP is one where the distances between two cities are not equal, to and from. This
implies that going from one city to another has a different distance than coming back
from that city to the original one. The results are presented in Table 7.31.

The results for ATSP are on average 1.112% over the optimal value. However, it
should be noted that the experimentation values was kept stagnant to fixed values, even
as the problem size was increased, hence the trend of worsening solutions as problem
size increases.
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Table 7.31. General ATSP comparison results

Instance Optimal ACS3opt DEDSH

ft70 38673 0.001 0.96
ftv170 2755 0.002 2.32
kro124p 36230 0 1.57
p43 5620 0 0.24
ry48p 14422 0 0.47

Average 1.112

7.7 Conclusion

Differential Evolution is an effective heuristic for optimization. This approach was an
attempt to show it effectiveness in permutative problems. The key approach was to
keep the conversion of the operational domain as simple as possible, as shown in this
variant of discrete set handling. Simplicity removes excess computation overhead to
this heuristic while at the same time delivering comparative results.

Two different problem scopes of Flow Shop scheduling and Traveling Salesman
problems were attempted. This was done in order to show that this generic version
of DE is able to work in different classes of problems, and not simply tailor made for
a special class. The core research focused on Flow Shop with Traveling Salesman pro-
viding a secondary comparison.

A principle direction as seen in this research has been the tuning of the heuristic.
Researchers, who generally take the default values, often overlook this process, however
it is imperative to check for the best values. As shown from the obtained results, the
operating values obtained for the two different problems were unique in all aspects.

The results obtained can be visualized as competitive for their own classes. The
most promising is the results obtained for Flow Shop, and the worst performing is the
Asymmetric Traveling Salesman. It is believed that a better local search heuristic, like
Lin−Kernighan or a 3 Opt heuristic will further improve the quality of the solutions.

Further directions for this approach will involve further testing with other problem
classes like Vehicle Routing and Quadratic Assignment, which are also realised in real
systems.
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A

Smallest Position Value Approach

A.1 Clusters for the Instance 11EIL51

Table A.1. Clusters for the Instance 11EIL51

Cluster Node

N1 19 40 41
N2 3 20 35 36
N3 24 43
N4 33 39
N5 11 12 27 32 46 47 51
N6 2 16 21 29 34 50
N7 8 22 26 28 31
N8 13 14 18 25
N9 4 15 17 37 42 44 45
N10 1 6 7 23 48
N11 5 9 10 30 38 49

A.2 Pseudo Code for Distance Calculation

Double x[MaxNode],y[MaxNode],xd, yd, distance[MaxNode][MaxNode];
For(i = 0; i < MaxNode; i++)Do

For(j = i; j < MaxNode; j++)Do
xd = x[i]− x[j];
yd = y[i]− y[j];
distance[j][i] = distance[i][j] = nint(sqrt(xd ∗ xd + yd ∗ yd));

EndDo
EndDo

nint: round to the nearest integer.
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A.3 Distance
(
i j, di j

)
Information for the Instance 11EIL51

1 1 0 1 2 12 1 3 19 1 4 31 1 5 22 1 6 17 1 7 23 1 8 12 1 9 24 1 10 34 1 11 12 1 12 21
1 13 42 1 14 27 1 15 36 1 16 19 1 17 31 1 18 28 1 19 46 1 20 21 1 21 27 1 22 7 1 23 22 1 24 29
1 25 33 1 26 19 1 27 8 1 28 16 1 29 21 1 30 33 1 31 17 1 32 6 1 33 43 1 34 31 1 35 27 1 36 31
1 37 30 1 38 19 1 39 43 1 40 56 1 41 44 1 42 45 1 43 34 1 44 38 1 45 42 1 46 14 1 47 23 1 48 12
1 49 26 1 50 24 1 51 14 2 1 12 2 2 0 2 3 15 2 4 37 2 5 21 2 6 28 2 7 35 2 8 22 2 9 16
2 10 28 2 11 11 2 12 25 2 13 50 2 14 38 2 15 35 2 16 9 2 17 34 2 18 36 2 19 51 2 20 12 2 21 15
2 22 11 2 23 34 2 24 41 2 25 43 2 26 29 2 27 19 2 28 19 2 29 9 2 30 24 2 31 23 2 32 11 2 33 39
2 34 20 2 35 19 2 36 24 2 37 32 2 38 15 2 39 35 2 40 62 2 41 50 2 42 48 2 43 46 2 44 39 2 45 40
2 46 20 2 47 29 2 48 25 2 49 21 2 50 14 2 51 21 3 1 19 3 2 15 3 3 0 3 4 50 3 5 36 3 6 35
3 7 35 3 8 21 3 9 31 3 10 43 3 11 25 3 12 38 3 13 61 3 14 46 3 15 51 3 16 23 3 17 48 3 18 47
3 19 64 3 20 8 3 21 24 3 22 12 3 23 37 3 24 46 3 25 52 3 26 25 3 27 27 3 28 9 3 29 17 3 30 37
3 31 16 3 32 23 3 33 54 3 34 32 3 35 10 3 36 12 3 37 47 3 38 30 3 39 49 3 40 75 3 41 63 3 42 62
3 43 47 3 44 54 3 45 56 3 46 32 3 47 42 3 48 28 3 49 36 3 50 27 3 51 33 4 1 31 4 2 37 4 3 50
4 4 0 4 5 20 4 6 21 4 7 37 4 8 38 4 9 33 4 10 31 4 11 27 4 12 13 4 13 15 4 14 18 4 15 19
4 16 35 4 17 8 4 18 8 4 19 15 4 20 49 4 21 45 4 22 38 4 23 31 4 24 29 4 25 18 4 26 43 4 27 24
4 28 47 4 29 44 4 30 38 4 31 46 4 32 27 4 33 31 4 34 42 4 35 56 4 36 61 4 37 13 4 38 27 4 39 41
4 40 25 4 41 13 4 42 16 4 43 41 4 44 15 4 45 25 4 46 18 4 47 8 4 48 29 4 49 28 4 50 38 4 51 17
5 1 22 5 2 21 5 3 36 5 4 20 5 5 0 5 6 25 5 7 40 5 8 33 5 9 12 5 10 14 5 11 11 5 12 9
5 13 35 5 14 30 5 15 15 5 16 16 5 17 15 5 18 23 5 19 32 5 20 33 5 21 25 5 22 27 5 23 36 5 24 39
5 25 34 5 26 40 5 27 21 5 28 37 5 29 25 5 30 18 5 31 39 5 32 16 5 33 21 5 34 21 5 35 40 5 36 45
5 37 11 5 38 7 5 39 24 5 40 42 5 41 33 5 42 28 5 43 49 5 44 18 5 45 20 5 46 12 5 47 15 5 48 29
5 49 8 5 50 17 5 51 14 6 1 17 6 2 28 6 3 35 6 4 21 6 5 25 6 6 0 6 7 16 6 8 18 6 9 34
6 10 40 6 11 22 6 12 18 6 13 27 6 14 10 6 15 34 6 16 32 6 17 25 6 18 15 6 19 35 6 20 38 6 21 41
6 22 23 6 23 11 6 24 14 6 25 17 6 26 22 6 27 9 6 28 30 6 29 37 6 30 42 6 31 27 6 32 17 6 33 45
6 34 42 6 35 44 6 36 47 6 37 27 6 38 27 6 39 50 6 40 44 6 41 32 6 42 37 6 43 23 6 44 33 6 45 41
6 46 14 6 47 16 6 48 9 6 49 33 6 50 36 6 51 11 7 1 23 7 2 35 7 3 35 7 4 37 7 5 40 7 6 16
7 7 0 7 8 14 7 9 46 7 10 54 7 11 33 7 12 34 7 13 40 7 14 22 7 15 51 7 16 41 7 17 41 7 18 30
7 19 50 7 20 40 7 21 50 7 22 26 7 23 6 7 24 14 7 25 27 7 26 11 7 27 20 7 28 26 7 29 44 7 30 55
7 31 21 7 32 27 7 33 60 7 34 53 7 35 45 7 36 46 7 37 44 7 38 40 7 39 64 7 40 58 7 41 47 7 42 53
7 43 12 7 44 50 7 45 57 7 46 28 7 47 32 7 48 11 7 49 47 7 50 47 7 51 26 8 1 12 8 2 22 8 3 21
8 4 38 8 5 33 8 6 18 8 7 14 8 8 0 8 9 36 8 10 46 8 11 24 8 12 30 8 13 45 8 14 28 8 15 46
8 16 30 8 17 39 8 18 32 8 19 52 8 20 26 8 21 37 8 22 12 8 23 16 8 24 25 8 25 34 8 26 7 8 27 14
8 28 13 8 29 30 8 30 44 8 31 9 8 32 17 8 33 54 8 34 42 8 35 31 8 36 33 8 37 40 8 38 30 8 39 55
8 40 62 8 41 50 8 42 53 8 43 26 8 44 47 8 45 53 8 46 23 8 47 31 8 48 9 8 49 38 8 50 35 8 51 22
9 1 24 9 2 16 9 3 31 9 4 33 9 5 12 9 6 34 9 7 46 9 8 36 9 9 0 9 10 12 9 11 13 9 12 21
9 13 48 9 14 41 9 15 23 9 16 8 9 17 27 9 18 35 9 19 44 9 20 25 9 21 13 9 22 26 9 23 43 9 24 48
9 25 45 9 26 43 9 27 27 9 28 35 9 29 16 9 30 8 9 31 39 9 32 19 9 33 24 9 34 9 9 35 32 9 36 38
9 37 23 9 38 7 9 39 19 9 40 54 9 41 45 9 42 39 9 43 56 9 44 28 9 45 26 9 46 21 9 47 27 9 48 35
9 49 6 9 50 6 9 51 23 10 1 34 10 2 28 10 3 43 10 4 31 10 5 14 10 6 40 10 7 54 10 8 46 10 9 12
10 10 0 10 11 22 10 12 23 10 13 46 10 14 44 10 15 16 10 16 20 10 17 24 10 18 36 10 19 39 10 20 37 10 21 24
10 22 37 10 23 50 10 24 53 10 25 47 10 26 53 10 27 34 10 28 47 10 29 28 10 30 9 10 31 50 10 32 28 10 33 12
10 34 16 10 35 43 10 36 49 10 37 19 10 38 15 10 39 10 10 40 48 10 41 41 10 42 32 10 43 63 10 44 22 10 45 16
10 46 26 10 47 28 10 48 43 10 49 8 10 50 17 10 51 28 11 1 12 11 2 11 11 3 25 11 4 27 11 5 11 11 6 22
11 7 33 11 8 24 11 9 13 11 10 22 11 11 0 11 12 14 11 13 40 11 14 30 11 15 26 11 16 10 11 17 23 11 18 26
11 19 40 11 20 23 11 21 20 11 22 16 11 23 31 11 24 36 11 25 35 11 26 31 11 27 14 11 28 26 11 29 17 11 30 21
11 31 28 11 32 6 11 33 31 11 34 21 11 35 30 11 36 35 11 37 21 11 38 7 11 39 31 11 40 51 11 41 40 11 42 37
11 43 44 11 44 29 11 45 31 11 46 10 11 47 19 11 48 22 11 49 14 11 50 15 11 51 12 12 1 21 12 2 25 12 3 38
12 4 13 12 5 9 12 6 18 12 7 34 12 8 30 12 9 21 12 10 23 12 11 14 12 12 0 12 13 27 12 14 21 12 15 17
12 16 23 12 17 10 12 18 14 12 19 26 12 20 37 12 21 33 12 22 27 12 23 29 12 24 30 12 25 25 12 26 36 12 27 16
12 28 37 12 29 31 12 30 27 12 31 37 12 32 16 12 33 27 12 34 30 12 35 44 12 36 49 12 37 10 12 38 14 12 39 33
12 40 37 12 41 26 12 42 24 12 43 41 12 44 17 12 45 23 12 46 7 12 47 6 12 48 24 12 49 17 12 50 25 12 51 8
13 1 42 13 2 50 13 3 61 13 4 15 13 5 35 13 6 27 13 7 40 13 8 45 13 9 48 13 10 46 13 11 40 13 12 27
13 13 0 13 14 18 13 15 32 13 16 50 13 17 22 13 18 14 13 19 14 13 20 62 13 21 59 13 22 49 13 23 34 13 24 27
13 25 13 13 26 48 13 27 34 13 28 57 13 29 58 13 30 53 13 31 54 13 32 39 13 33 44 13 34 57 13 35 69 13 36 73
13 37 27 13 38 41 13 39 55 13 40 19 13 41 9 13 42 22 13 43 39 13 44 27 13 45 37 13 46 30 13 47 21 13 48 36
13 49 43 13 50 52 13 51 29 14 1 27 14 2 38 14 3 46 14 4 18 14 5 30 14 6 10 14 7 22 14 8 28 14 9 41
14 10 44 14 11 30 14 12 21 14 13 18 14 14 0 14 15 35 14 16 40 14 17 24 14 18 10 14 19 29 14 20 48 14 21 50
14 22 34 14 23 16 14 24 11 14 25 6 14 26 30 14 27 19 14 28 40 14 29 46 14 30 48 14 31 37 14 32 26 14 33 47
14 34 50 14 35 54 14 36 58 14 37 28 14 38 34 14 39 54 14 40 37 14 41 25 14 42 33 14 43 23 14 44 32 14 45 42
14 46 20 14 47 16 14 48 18 14 49 39 14 50 44 14 51 18 15 1 36 15 2 35 15 3 51 15 4 19 15 5 15 15 6 34
15 7 51 15 8 46 15 9 23 15 10 16 15 11 26 15 12 17 15 13 32 15 14 35 15 15 0 15 16 30 15 17 11 15 18 25
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15 19 23 15 20 47 15 21 37 15 22 41 15 23 46 15 24 46 15 25 36 15 26 53 15 27 33 15 28 51 15 29 39 15 30 25
15 31 53 15 32 30 15 33 12 15 34 30 15 35 54 15 36 59 15 37 7 15 38 21 15 39 23 15 40 33 15 41 26 15 42 16
15 43 57 15 44 6 15 45 7 15 46 23 15 47 19 15 48 41 15 49 17 15 50 29 15 51 25 16 1 19 16 2 9 16 3 23
16 4 35 16 5 16 16 6 32 16 7 41 16 8 30 16 9 8 16 10 20 16 11 10 16 12 23 16 13 50 16 14 40 16 15 30
16 16 0 16 17 31 16 18 36 16 19 48 16 20 18 16 21 10 16 22 19 16 23 39 16 24 45 16 25 45 16 26 37 16 27 23
16 28 28 16 29 9 16 30 15 16 31 32 16 32 15 16 33 32 16 34 12 16 35 24 16 36 30 16 37 28 16 38 9 16 39 27
16 40 59 16 41 48 16 42 44 16 43 52 16 44 34 16 45 34 16 46 20 16 47 28 16 48 30 16 49 14 16 50 6 16 51 22
17 1 31 17 2 34 17 3 48 17 4 8 17 5 15 17 6 25 17 7 41 17 8 39 17 9 27 17 10 24 17 11 23 17 12 10
17 13 22 17 14 24 17 15 11 17 16 31 17 17 0 17 18 14 17 19 17 17 20 46 17 21 40 17 22 37 17 23 36 17 24 35
17 25 25 17 26 45 17 27 25 17 28 47 17 29 40 17 30 31 17 31 47 17 32 25 17 33 23 17 34 35 17 35 53 17 36 58
17 37 5 17 38 22 17 39 33 17 40 28 17 41 18 17 42 14 17 43 47 17 44 9 17 45 18 17 46 17 17 47 9 17 48 32
17 49 22 17 50 32 17 51 17 18 1 28 18 2 36 18 3 47 18 4 8 18 5 23 18 6 15 18 7 30 18 8 32 18 9 35
18 10 36 18 11 26 18 12 14 18 13 14 18 14 10 18 15 25 18 16 36 18 17 14 18 18 0 18 19 20 18 20 47 18 21 46
18 22 35 18 23 24 18 24 21 18 25 11 18 26 36 18 27 20 18 28 43 18 29 44 18 30 41 18 31 41 18 32 25 18 33 37
18 34 44 18 35 54 18 36 58 18 37 19 18 38 28 18 39 46 18 40 30 18 41 17 18 42 23 18 43 33 18 44 22 18 45 32
18 46 16 18 47 8 18 48 23 18 49 31 18 50 39 18 51 15 19 1 46 19 2 51 19 3 64 19 4 15 19 5 32 19 6 35
19 7 50 19 8 52 19 9 44 19 10 39 19 11 40 19 12 26 19 13 14 19 14 29 19 15 23 19 16 48 19 17 17 19 18 20
19 19 0 19 20 63 19 21 57 19 22 53 19 23 44 19 24 39 19 25 26 19 26 57 19 27 39 19 28 62 19 29 57 19 30 47
19 31 61 19 32 41 19 33 33 19 34 52 19 35 70 19 36 75 19 37 21 19 38 39 19 39 46 19 40 11 19 41 5 19 42 9
19 43 52 19 44 17 19 45 26 19 46 32 19 47 22 19 48 44 19 49 38 19 50 49 19 51 32 20 1 21 20 2 12 20 3 8
20 4 49 20 5 33 20 6 38 20 7 40 20 8 26 20 9 25 20 10 37 20 11 23 20 12 37 20 13 62 20 14 48 20 15 47
20 16 18 20 17 46 20 18 47 20 19 63 20 20 0 20 21 17 20 22 15 20 23 41 20 24 49 20 25 54 20 26 32 20 27 29
20 28 17 20 29 10 20 30 31 20 31 23 20 32 22 20 33 49 20 34 25 20 35 7 20 36 13 20 37 44 20 38 26 20 39 43
20 40 74 20 41 62 20 42 60 20 43 52 20 44 51 20 45 51 20 46 31 20 47 41 20 48 32 20 49 31 20 50 21 20 51 32
21 1 27 21 2 15 21 3 24 21 4 45 21 5 25 21 6 41 21 7 50 21 8 37 21 9 13 21 10 24 21 11 20 21 12 33
21 13 59 21 14 50 21 15 37 21 16 10 21 17 40 21 18 46 21 19 57 21 20 17 21 21 0 21 22 25 21 23 48 21 24 55
21 25 55 21 26 44 21 27 33 21 28 31 21 29 7 21 30 16 21 31 37 21 32 24 21 33 36 21 34 9 21 35 21 21 36 27
21 37 36 21 38 18 21 39 27 21 40 67 21 41 58 21 42 52 21 43 61 21 44 42 21 45 39 21 46 30 21 47 38 21 48 39
21 49 20 21 50 8 21 51 32 22 1 7 22 2 11 22 3 12 22 4 38 22 5 27 22 6 23 22 7 26 22 8 12 22 9 26
22 10 37 22 11 16 22 12 27 22 13 49 22 14 34 22 15 41 22 16 19 22 17 37 22 18 35 22 19 53 22 20 15 22 21 25
22 22 0 22 23 26 22 24 34 22 25 40 22 26 19 22 27 15 22 28 10 22 29 18 22 30 34 22 31 13 22 32 12 22 33 47
22 34 31 22 35 21 22 36 24 22 37 36 22 38 22 22 39 45 22 40 63 22 41 51 22 42 51 22 43 38 22 44 44 22 45 47
22 46 21 22 47 30 22 48 17 22 49 30 22 50 24 22 51 21 23 1 22 23 2 34 23 3 37 23 4 31 23 5 36 23 6 11
23 7 6 23 8 16 23 9 43 23 10 50 23 11 31 23 12 29 23 13 34 23 14 16 23 15 46 23 16 39 23 17 36 23 18 24
23 19 44 23 20 41 23 21 48 23 22 26 23 23 0 23 24 9 23 25 21 23 26 16 23 27 17 23 28 29 23 29 43 23 30 52
23 31 24 23 32 25 23 33 56 23 34 51 23 35 46 23 36 49 23 37 38 23 38 36 23 39 60 23 40 52 23 41 40 23 42 47
23 43 13 23 44 44 23 45 52 23 46 24 23 47 27 23 48 9 23 49 43 23 50 45 23 51 22 24 1 29 24 2 41 24 3 46
24 4 29 24 5 39 24 6 14 24 7 14 24 8 25 24 9 48 24 10 53 24 11 36 24 12 30 24 13 27 24 14 11 24 15 46
24 16 45 24 17 35 24 18 21 24 19 39 24 20 49 24 21 55 24 22 34 24 23 9 24 24 0 24 25 14 24 26 25 24 27 22
24 28 38 24 29 50 24 30 56 24 31 34 24 32 31 24 33 57 24 34 56 24 35 55 24 36 58 24 37 38 24 38 41 24 39 63
24 40 46 24 41 35 24 42 44 24 43 12 24 44 43 24 45 52 24 46 27 24 47 26 24 48 17 24 49 47 24 50 50 24 51 25
25 1 33 25 2 43 25 3 52 25 4 18 25 5 34 25 6 17 25 7 27 25 8 34 25 9 45 25 10 47 25 11 35 25 12 25
25 13 13 25 14 6 25 15 36 25 16 45 25 17 25 25 18 11 25 19 26 25 20 54 25 21 55 25 22 40 25 23 21 25 24 14
25 25 0 25 26 36 25 27 25 25 28 46 25 29 52 25 30 52 25 31 43 25 32 32 25 33 48 25 34 54 25 35 60 25 36 64
25 37 30 25 38 38 25 39 57 25 40 32 25 41 21 25 42 31 25 43 26 25 44 33 25 45 43 25 46 25 25 47 19 25 48 25
25 49 42 25 50 49 25 51 23 26 1 19 26 2 29 26 3 25 26 4 43 26 5 40 26 6 22 26 7 11 26 8 7 26 9 43
26 10 53 26 11 31 26 12 36 26 13 48 26 14 30 26 15 53 26 16 37 26 17 45 26 18 36 26 19 57 26 20 32 26 21 44
26 22 19 26 23 16 26 24 25 26 25 36 26 26 0 26 27 20 26 28 16 26 29 37 26 30 51 26 31 10 26 32 25 26 33 61
26 34 49 26 35 35 26 36 36 26 37 46 26 38 38 26 39 62 26 40 66 26 41 54 26 42 58 26 43 22 26 44 53 26 45 59
26 46 29 26 47 36 26 48 13 26 49 45 26 50 42 26 51 28 27 1 8 27 2 19 27 3 27 27 4 24 27 5 21 27 6 9
27 7 20 27 8 14 27 9 27 27 10 34 27 11 14 27 12 16 27 13 34 27 14 19 27 15 33 27 16 23 27 17 25 27 18 20
27 19 39 27 20 29 27 21 33 27 22 15 27 23 17 27 24 22 27 25 25 27 26 20 27 27 0 27 28 23 27 29 28 27 30 35
27 31 22 27 32 8 27 33 41 27 34 34 27 35 35 27 36 39 27 37 26 27 38 20 27 39 44 27 40 49 27 41 37 27 42 39
27 43 30 27 44 33 27 45 39 27 46 9 27 47 17 27 48 9 27 49 27 27 50 28 27 51 8 28 1 16 28 2 19 28 3 9
28 4 47 28 5 37 28 6 30 28 7 26 28 8 13 28 9 35 28 10 47 28 11 26 28 12 37 28 13 57 28 14 40 28 15 51
28 16 28 28 17 47 28 18 43 28 19 62 28 20 17 28 21 31 28 22 10 28 23 29 28 24 38 28 25 46 28 26 16 28 27 23
28 28 0 28 29 24 28 30 43 28 31 6 28 32 22 28 33 57 28 34 38 28 35 19 28 36 20 28 37 46 28 38 32 28 39 54
28 40 72 28 41 60 28 42 61 28 43 38 28 44 54 28 45 57 28 46 30 28 47 39 28 48 22 28 49 39 28 50 33 28 51 30
29 1 21 29 2 9 29 3 17 29 4 44 29 5 25 29 6 37 29 7 44 29 8 30 29 9 16 29 10 28 29 11 17 29 12 31
29 13 58 29 14 46 29 15 39 29 16 9 29 17 40 29 18 44 29 19 57 29 20 10 29 21 7 29 22 18 29 23 43 29 24 50
29 25 52 29 26 37 29 27 28 29 28 24 29 29 0 29 30 21 29 31 30 29 32 20 29 33 40 29 34 15 29 35 16 29 36 22
29 37 37 29 38 18 29 39 33 29 40 68 29 41 57 29 42 53 29 43 55 29 44 43 29 45 42 29 46 28 29 47 37 29 48 34
29 49 22 29 50 11 29 51 29 30 1 33 30 2 24 30 3 37 30 4 38 30 5 18 30 6 42 30 7 55 30 8 44 30 9 8
30 10 9 30 11 21 30 12 27 30 13 53 30 14 48 30 15 25 30 16 15 30 17 31 30 18 41 30 19 47 30 20 31 30 21 16
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30 22 34 30 23 52 30 24 56 30 25 52 30 26 51 30 27 35 30 28 43 30 29 21 30 30 0 30 31 47 30 32 28 30 33 21
30 34 7 30 35 36 30 36 42 30 37 26 30 38 15 30 39 12 30 40 57 30 41 49 30 42 41 30 43 65 30 44 30 30 45 25
30 46 29 30 47 33 30 48 43 30 49 10 30 50 10 30 51 31 31 1 17 31 2 23 31 3 16 31 4 46 31 5 39 31 6 27
31 7 21 31 8 9 31 9 39 31 10 50 31 11 28 31 12 37 31 13 54 31 14 37 31 15 53 31 16 32 31 17 47 31 18 41
31 19 61 31 20 23 31 21 37 31 22 13 31 23 24 31 24 34 31 25 43 31 26 10 31 27 22 31 28 6 31 29 30 31 30 47
31 31 0 31 32 23 31 33 60 31 34 43 31 35 26 31 36 26 31 37 47 31 38 35 31 39 58 31 40 71 31 41 59 31 42 61
31 43 32 31 44 54 31 45 59 31 46 30 31 47 39 31 48 18 31 49 42 31 50 37 31 51 30 32 1 6 32 2 11 32 3 23
32 4 27 32 5 16 32 6 17 32 7 27 32 8 17 32 9 19 32 10 28 32 11 6 32 12 16 32 13 39 32 14 26 32 15 30
32 16 15 32 17 25 32 18 25 32 19 41 32 20 22 32 21 24 32 22 12 32 23 25 32 24 31 32 25 32 32 26 25 32 27 8
32 28 22 32 29 20 32 30 28 32 31 23 32 32 0 32 33 37 32 34 26 32 35 29 32 36 34 32 37 25 32 38 13 32 39 37
32 40 52 32 41 40 32 42 40 32 43 38 32 44 32 32 45 36 32 46 9 32 47 19 32 48 16 32 49 21 32 50 20 32 51 10
33 1 43 33 2 39 33 3 54 33 4 31 33 5 21 33 6 45 33 7 60 33 8 54 33 9 24 33 10 12 33 11 31 33 12 27
33 13 44 33 14 47 33 15 12 33 16 32 33 17 23 33 18 37 33 19 33 33 20 49 33 21 36 33 22 47 33 23 56 33 24 57
33 25 48 33 26 61 33 27 41 33 28 57 33 29 40 33 30 21 33 31 60 33 32 37 33 33 0 33 34 27 33 35 55 33 36 61
33 37 18 33 38 25 33 39 14 33 40 41 33 41 37 33 42 25 33 43 68 33 44 17 33 45 7 33 46 32 33 47 30 33 48 50
33 49 18 33 50 29 33 51 34 34 1 31 34 2 20 34 3 32 34 4 42 34 5 21 34 6 42 34 7 53 34 8 42 34 9 9
34 10 16 34 11 21 34 12 30 34 13 57 34 14 50 34 15 30 34 16 12 34 17 35 34 18 44 34 19 52 34 20 25 34 21 9
34 22 31 34 23 51 34 24 56 34 25 54 34 26 49 34 27 34 34 28 38 34 29 15 34 30 7 34 31 43 34 32 26 34 33 27
34 34 0 34 35 30 34 36 36 34 37 31 34 38 16 34 39 18 34 40 62 34 41 53 34 42 46 34 43 64 34 44 36 34 45 32
34 46 30 34 47 36 34 48 42 34 49 14 34 50 6 34 51 32 35 1 27 35 2 19 35 3 10 35 4 56 35 5 40 35 6 44
35 7 45 35 8 31 35 9 32 35 10 43 35 11 30 35 12 44 35 13 69 35 14 54 35 15 54 35 16 24 35 17 53 35 18 54
35 19 70 35 20 7 35 21 21 35 22 21 35 23 46 35 24 55 35 25 60 35 26 35 35 27 35 35 28 19 35 29 16 35 30 36
35 31 26 35 32 29 35 33 55 35 34 30 35 35 0 35 36 6 35 37 51 35 38 33 35 39 48 35 40 81 35 41 69 35 42 67
35 43 57 35 44 58 35 45 58 35 46 38 35 47 48 35 48 38 35 49 38 35 50 27 35 51 39 36 1 31 36 2 24 36 3 12
36 4 61 36 5 45 36 6 47 36 7 46 36 8 33 36 9 38 36 10 49 36 11 35 36 12 49 36 13 73 36 14 58 36 15 59
36 16 30 36 17 58 36 18 58 36 19 75 36 20 13 36 21 27 36 22 24 36 23 49 36 24 58 36 25 64 36 26 36 36 27 39
36 28 20 36 29 22 36 30 42 36 31 26 36 32 34 36 33 61 36 34 36 36 35 6 36 36 0 36 37 56 36 38 38 36 39 54
36 40 86 36 41 74 36 42 72 36 43 58 36 44 63 36 45 64 36 46 43 36 47 53 36 48 40 36 49 44 36 50 33 36 51 44
37 1 30 37 2 32 37 3 47 37 4 13 37 5 11 37 6 27 37 7 44 37 8 40 37 9 23 37 10 19 37 11 21 37 12 10
37 13 27 37 14 28 37 15 7 37 16 28 37 17 5 37 18 19 37 19 21 37 20 44 37 21 36 37 22 36 37 23 38 37 24 38
37 25 30 37 26 46 37 27 26 37 28 46 37 29 37 37 30 26 37 31 47 37 32 25 37 33 18 37 34 31 37 35 51 37 36 56
37 37 0 37 38 18 37 39 28 37 40 31 37 41 23 37 42 16 37 43 50 37 44 7 37 45 14 37 46 17 37 47 12 37 48 34
37 49 17 37 50 28 37 51 18 38 1 19 38 2 15 38 3 30 38 4 27 38 5 7 38 6 27 38 7 40 38 8 30 38 9 7
38 10 15 38 11 7 38 12 14 38 13 41 38 14 34 38 15 21 38 16 9 38 17 22 38 18 28 38 19 39 38 20 26 38 21 18
38 22 22 38 23 36 38 24 41 38 25 38 38 26 38 38 27 20 38 28 32 38 29 18 38 30 15 38 31 35 38 32 13 38 33 25
38 34 16 38 35 33 38 36 38 38 37 18 38 38 0 38 39 24 38 40 49 38 41 39 38 42 35 38 43 49 38 44 25 38 45 26
38 46 14 38 47 20 38 48 28 38 49 8 38 50 11 38 51 16 39 1 43 39 2 35 39 3 49 39 4 41 39 5 24 39 6 50
39 7 64 39 8 55 39 9 19 39 10 10 39 11 31 39 12 33 39 13 55 39 14 54 39 15 23 39 16 27 39 17 33 39 18 46
39 19 46 39 20 43 39 21 27 39 22 45 39 23 60 39 24 63 39 25 57 39 26 62 39 27 44 39 28 54 39 29 33 39 30 12
39 31 58 39 32 37 39 33 14 39 34 18 39 35 48 39 36 54 39 37 28 39 38 24 39 39 0 39 40 55 39 41 49 39 42 38
39 43 73 39 44 29 39 45 21 39 46 36 39 47 38 39 48 52 39 49 17 39 50 22 39 51 38 40 1 56 40 2 62 40 3 75
40 4 25 40 5 42 40 6 44 40 7 58 40 8 62 40 9 54 40 10 48 40 11 51 40 12 37 40 13 19 40 14 37 40 15 33
40 16 59 40 17 28 40 18 30 40 19 11 40 20 74 40 21 67 40 22 63 40 23 52 40 24 46 40 25 32 40 26 66 40 27 49
40 28 72 40 29 68 40 30 57 40 31 71 40 32 52 40 33 41 40 34 62 40 35 81 40 36 86 40 37 31 40 38 49 40 39 55
40 40 0 40 41 12 40 42 16 40 43 58 40 44 27 40 45 34 40 46 43 40 47 33 40 48 53 40 49 48 40 50 60 40 51 42
41 1 44 41 2 50 41 3 63 41 4 13 41 5 33 41 6 32 41 7 47 41 8 50 41 9 45 41 10 41 41 11 40 41 12 26
41 13 9 41 14 25 41 15 26 41 16 48 41 17 18 41 18 17 41 19 5 41 20 62 41 21 58 41 22 51 41 23 40 41 24 35
41 25 21 41 26 54 41 27 37 41 28 60 41 29 57 41 30 49 41 31 59 41 32 40 41 33 37 41 34 53 41 35 69 41 36 74
41 37 23 41 38 39 41 39 49 41 40 12 41 41 0 41 42 13 41 43 47 41 44 20 41 45 30 41 46 31 41 47 21 41 48 41
41 49 40 41 50 50 41 51 30 42 1 45 42 2 48 42 3 62 42 4 16 42 5 28 42 6 37 42 7 53 42 8 53 42 9 39
42 10 32 42 11 37 42 12 24 42 13 22 42 14 33 42 15 16 42 16 44 42 17 14 42 18 23 42 19 9 42 20 60 42 21 52
42 22 51 42 23 47 42 24 44 42 25 31 42 26 58 42 27 39 42 28 61 42 29 53 42 30 41 42 31 61 42 32 40 42 33 25
42 34 46 42 35 67 42 36 72 42 37 16 42 38 35 42 39 38 42 40 16 42 41 13 42 42 0 42 43 56 42 44 10 42 45 18
42 46 31 42 47 22 42 48 45 42 49 32 42 50 44 42 51 31 43 1 34 43 2 46 43 3 47 43 4 41 43 5 49 43 6 23
43 7 12 43 8 26 43 9 56 43 10 63 43 11 44 43 12 41 43 13 39 43 14 23 43 15 57 43 16 52 43 17 47 43 18 33
43 19 52 43 20 52 43 21 61 43 22 38 43 23 13 43 24 12 43 25 26 43 26 22 43 27 30 43 28 38 43 29 55 43 30 65
43 31 32 43 32 38 43 33 68 43 34 64 43 35 57 43 36 58 43 37 50 43 38 49 43 39 73 43 40 58 43 41 47 43 42 56
43 43 0 43 44 55 43 45 64 43 46 37 43 47 38 43 48 22 43 49 56 43 50 58 43 51 35 44 1 38 44 2 39 44 3 54
44 4 15 44 5 18 44 6 33 44 7 50 44 8 47 44 9 28 44 10 22 44 11 29 44 12 17 44 13 27 44 14 32 44 15 6
44 16 34 44 17 9 44 18 22 44 19 17 44 20 51 44 21 42 44 22 44 44 23 44 44 24 43 44 25 33 44 26 53 44 27 33
44 28 54 44 29 43 44 30 30 44 31 54 44 32 32 44 33 17 44 34 36 44 35 58 44 36 63 44 37 7 44 38 25 44 39 29
44 40 27 44 41 20 44 42 10 44 43 55 44 44 0 44 45 10 44 46 24 44 47 18 44 48 40 44 49 22 44 50 34 44 51 25
45 1 42 45 2 40 45 3 56 45 4 25 45 5 20 45 6 41 45 7 57 45 8 53 45 9 26 45 10 16 45 11 31 45 12 23
45 13 37 45 14 42 45 15 7 45 16 34 45 17 18 45 18 32 45 19 26 45 20 51 45 21 39 45 22 47 45 23 52 45 24 52
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45 25 43 45 26 59 45 27 39 45 28 57 45 29 42 45 30 25 45 31 59 45 32 36 45 33 7 45 34 32 45 35 58 45 36 64
45 37 14 45 38 26 45 39 21 45 40 34 45 41 30 45 42 18 45 43 64 45 44 10 45 45 0 45 46 30 45 47 26 45 48 47
45 49 20 45 50 32 45 51 31 46 1 14 46 2 20 46 3 32 46 4 18 46 5 12 46 6 14 46 7 28 46 8 23 46 9 21
46 10 26 46 11 10 46 12 7 46 13 30 46 14 20 46 15 23 46 16 20 46 17 17 46 18 16 46 19 32 46 20 31 46 21 30
46 22 21 46 23 24 46 24 27 46 25 25 46 26 29 46 27 9 46 28 30 46 29 28 46 30 29 46 31 30 46 32 9 46 33 32
46 34 30 46 35 38 46 36 43 46 37 17 46 38 14 46 39 36 46 40 43 46 41 31 46 42 31 46 43 37 46 44 24 46 45 30
46 46 0 46 47 10 46 48 17 46 49 19 46 50 24 46 51 2 47 1 23 47 2 29 47 3 42 47 4 8 47 5 15 47 6 16
47 7 32 47 8 31 47 9 27 47 10 28 47 11 19 47 12 6 47 13 21 47 14 16 47 15 19 47 16 28 47 17 9 47 18 8
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