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Abstract. A key aspect of any data integration endeavor is determining the rela-
tionships between the source schemata and the target schema. This schema 
integration task must be tackled regardless of the integration architecture or 
mapping formalism. In this paper, we provide a task model for schema integra-
tion. We use this breakdown to motivate a workbench for schema integration in 
which multiple tools share a common knowledge repository. In particular, the 
workbench facilitates the interoperation of research prototypes for schema 
matching (which automatically identify likely semantic correspondences) with 
commercial schema mapping tools (which help produce instance-level trans-
formations). Currently, each of these tools provides its own ad hoc representa-
tion of schemata and mappings; combining these tools requires aligning these 
representations. The workbench provides a common representation so that these 
tools can more rapidly be combined. 

1   Introduction 

Schema integration is an integral aspect of any data integration endeavor. The goal of 
this paper is to organize the strategies and tools used in schema integration into a 
consistent framework. Based on this framework, we propose an open, extensible, 
integration workbench to facilitate tool interoperation. 

We view the development of a data integration solution to consist of three main 
steps: schema integration, instance integration and deployment. This paper focuses on 
schema integration, which generates a transformation that translates source instances 
into target instances. 

Schema integration first involves identifying, at a high level, the semantic corre-
spondences between (at least) two schemata, data models, or ontologies, a task we 
refer to as schema matching. Second, these correspondences are used to establish 
precise transformations that define a schema mapping from the source(s) to the target. 

Researchers have built many systems to semi-automatically perform schema 
matching [1, 2]. Schema mapping tools generally provide the user with a graphical 
interface in which lines connecting related entities and attributes can be annotated 
with functions or code to perform any necessary transformations. From these map-
pings, they synthesize transformations for entire databases or documents. These tools 
have been developed by commercial vendors (including Altova’s MapForce, BEA’s 
AquaLogic, and Stylus Studio’s XQuery Mapper) and research projects (such as 
Clio [3], COMA++ [4] and the wrapper toolkit in TSIMMIS [5]). 
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Currently, an integration engineer can choose to embrace a specific development 
environment. The engineer benefits from the automated support provided by that 
vendor but cannot leverage new tools as they become available. The alternative is to 
splice together a number of tools, each of which has its own internal representation 
for schemata and mappings. In one case, we needed four different pieces of software 
to transform a mapping from one tool’s representation into another. 

By adopting an open, extensible workbench, integration engineers can more easily 
leverage automated tools as they become available and choose the best tool for the 
problem at hand. 

1.1   Contributions 

First, we discuss the information likely to be available to integration engineers: 
1) contrary to conventional wisdom, many real-world schemata are well documented, 
so linguistic processing of text descriptions is important, 2) in several real-world sce-
narios, schema integration must be performed without the benefit of instance data, 
and 3) domain values are often available and could be better exploited by schema 
matchers. 

Second, we establish a task model for schema integration based on a review of the 
literature and tools and on observations of engineers solving real-world integration 
problems. We have presented our task model to three experienced integration engi-
neers to verify that the model includes all of the subtasks they have encountered. 

The task model is important because it allows us to make comparisons: Among in-
tegration problems, we can ask which of the tasks are unnecessary because of simpli-
fying conditions in the problem instance. Among tools, we can ask what each tool 
contributes to each task and quantify the impact in realistic settings. 

Third, we describe how the task model and pragmatic considerations guide the de-
velopment of a specific integration tool, in our case Harmony, a prototype schema 
matcher, which bundles a variety of match algorithms with a graphical user interface. 

Fourth, we articulate the need for data integration among schema integration 
tools—our community can benefit in insight and utility by practicing what we preach. 
We propose a candidate collection of interfaces that constitute an integration work-
bench, which allows multiple integration tools to interoperate and provides a common 
knowledge repository for schemata and mappings. One outcome of the integration 
workbench is that integration engineers can more easily choose which match algo-
rithms (or suites thereof [6]) to use when solving real integration problems. 

In this expanded version of our previous work [7], we add two new contributions: 
Our fifth contribution is to demonstrate the integration workbench by describing how 
several schema integration tools can be instantiated within the workbench. We intro-
duce a general model for matching tools that accounts not only for the extent to which 
the available evidence suggests the existence of a semantic correspondence (as is 
traditionally done), but also the amount of evidence. Thus, the results generated by 
multiple matching tools can be combined based on the amount of evidence considered 
by each approach. In our experiences, the resulting match scores correspond more 
closely to the intuitions of integration engineers about the “goodness” of a match than 
traditional methods. 
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Our sixth contribution is a discussion of the lessons we have learned from our us-
ers’ experiences with the integration workbench. We describe how the modular archi-
tecture allows these users to utilize Harmony to meet their specific schema integration 
needs including situations in which they have needed to introduce new tools to ac-
complish their tasks. We conclude by describing how the integration workbench sim-
plifies integration of our schema matching tools with a commercial schema mapping 
tool (BEA’s AquaLogic) that generates global-as-view (GAV) [8] mappings. 

1.2   Outline 

This paper is organized as follows: Section 2 contains our observations regarding 
schema integration efforts performed on behalf of the federal government. In Sec-
tion 3 we describe a task model for integration problems. In Section 4 we present 
design desiderata based on the task model and describe how the Harmony schema 
matching tool addresses these desiderata. Section 5 describes the interfaces that con-
stitute the integration workbench. In Section 6 we describe a set of schema matching 
tools that we have plugged into the integration workbench. Section 7 describes the 
lessons we have learned from interviewing our users about their experiences with 
Harmony. Finally, we discuss related work in Section 8 and future work in Section 9. 

2   Integration in Large Enterprises 

Conventional wisdom suggests that schema matching should focus on data instances 
because instances are common and documentation is sparse (or even incorrect). 
Whereas these phenomena may be observed in some settings, particularly web-based 
sources, it is often not the case for schemata developed for or by the US federal gov-
ernment (or, we suspect, other large enterprises).  

From the perspective of an integration engineer, data instances may be extremely 
hard to obtain (the data exist, but are not available to the engineer) for at least two 
reasons. 

• Security/sensitivity: Data instances are often more sensitive than their correspond-
ing schemata—e.g., in defense applications, an integration engineer may have ac-
cess to schemata but may lack sufficient clearances to access instances. Sometimes, 
an agency that owns the data is willing to share them with another agency, but not 
with the contracting integration engineers responsible for developing the initial 
mappings. Wider release of schema information is less problematic. 

• Integrating to a future system: One may begin creating important mappings to 
and from a new system, even before it has any data or running applications. For 
example, the U.S. Federal Aviation Administration developed a mapping of some 
of its systems to a conceptual model for the new European Air Traffic Control Sys-
tem before that system was implemented or had any instance data. As a general 
phenomenon, when one builds a data warehouse, the mappings from data sources 
are the actual means for populating it. 

Thus, we have observed that it is not safe to assume that instance data will be 
available to integration tools. Instead, schema integration tools must use whatever 
information is available. Instance data, thesauri, etc. are sometimes available and 
sometimes not. 



68 P. Mork et al.  

While instance data are often unavailable, we have found that many government 
(and probably many other enterprises’) schemata are well documented. Evidence for 
this claim will now be presented. 

We obtained a collection of 265 conceptual (ER) models from the Department of 
Defense metadata registry (which contains schemata only, no instances!). This reposi-
tory contains 13,049 elements (entities or relationships) and 163,736 attributes. As 
indicated in Table 1, the vast majority of these items contain a definition of roughly 
one sentence. 

Table 1. Frequency and length of documentation in the DoD Metadata Registry 

Item Item Count # With 
Definition 

% With 
Definition 

Word 
Count 

Words/
Item 

Words per 
Definition 

Element 13,049 12,946 ~99% 143,315 ~11.0 ~11.1 
Attribute 163,736 135,686 ~83% 2,228,691 ~13.6 ~16.4 
Domain 282,331 282,128 ~100% 1,036,822 ~3.67 ~3.68 

This registry also explicitly enumerates domain values for which documentation is 
also available. A domain introduces a list of codes, each of which has particular se-
mantics. A domain is a reusable schema construct that can be referenced by multiple 
attributes. For example, a common domain is the list of two-character state codes 
(such as VA or MD). In a shipping order, this domain might be referenced by both the 
shipping entity and the billing entity. Domains and their associated documentation 
facilitate schema integration even in the absence of instance data. Unfortunately, this 
documentation is often lost when a logical schema is converted into SQL. The stan-
dard approach is to store each coding scheme in its own relation, and each code as a 
string or integer value, sans documentation. 

This approach is good for referential integrity, but bad for integration efforts. A 
better solution would be to define semantic domains for each coding scheme so that 
integration tools could more easily identify domain correspondences. In fact, when we 
asked integration engineers to describe how they approach an integration problem, a 
recurring pattern emerged. They first identify obvious top-level entity correspon-
dences. But then, instead of proceeding to sub-elements or attributes, they then manu-
ally inspect the domain values to find correspondences. From this low-level, they then 
work their way up the schema hierarchy to attributes, sub-elements, and finally back 
to top-level entities. Our task breakdown is designed to support this pattern. 

3   Task Model for Data Integration 

To better understand how schema integration tools assist an integration engineer, we 
enumerated the subtasks involved in schema integration. We started with a task model 
that we created and that was acceptable to 147 survey participants familiar with 
schema integration from a research or practical perspective [9]. We extended that 
model to include the subtasks addressed by a variety of systems ([4, 5, 10-16]) and 
then presented it to three experienced integration engineers for validation. Based on 
their feedback, we extended the model to include subtasks not directly supported by 
any system. 
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At a high level, we consider 13 fine grained integration tasks, grouped into five 
phases: schema preparation, schema matching, schema mapping, instance integration 
and finally system implementation. During schema preparation, the source and target 
schemata are identified so that a set of correspondences can be identified during the 
matching phase. These semantic correspondences are formalized in the third phase as 
explicit logical mappings. Once schema integration is complete, instance integration 
reconciles any remaining discrepancies. In the final phase the integration solution is 
deployed. 

In this section, we describe each phase in detail and describe how we evaluated the 
task model’s completeness. Throughout this section we refer to the following terms: a 
schema is a collection of schema elements, each of which is either an entity or an 
attribute. An entity represents a collection of related instances, and an attribute repre-
sents a relationship between an entity and another entity or a datatype. An instance 
belongs to a particular entity and it instantiates values for that entity’s attributes. In 
many cases, the ultimate goal of data integration is to transform source instances into 
valid target instances. 

3.1   Schema Preparation 

The first phase of schema (or data) integration captures knowledge about the source 
and target schemata, to facilitate the subsequent matching and mapping phases. It 
identifies the target schema, and organizes the source schemata. The specific subtasks 
are: 

1) Obtain the source schemata. This step gathers available documentation and 
imports the source schemata into the integration platform. If the source schemata are 
not in a format compatible with the platform, this step also includes any necessary 
syntactic transformations. 

2) Obtain or develop the target schema. If performed, this step is analogous to 
the previous step. In many cases, the target schema is defined by the problem specifi-
cation (e.g., translate data into the following message format). In other cases, the 
target schema must be developed based on the queries to be supported, or to combine 
the data from multiple sources. This step is optional because the target schema may be 
derived from the correspondences identified among the source schemata, as is as-
sumed in [11]. 

In both cases, one may enrich the schemata, e.g., by defining coding schemes as 
domains, or documenting constraints that are not documented in the actual system, 
either because the system does not support the needed constructs, or because nobody 
took the time to do so. Thus, the integration platform may enable richer descriptions 
than the underlying systems. One also needs a means to keep the metadata in synch as 
the actual systems change. 

3.2   Schema Matching 

The second phase establishes high-level correspondences among schema elements. 
There is a semantic correspondence between two schema elements if instances of one 
schema element imply the existence of corresponding instances of the other [17]. We 
avoid a more precise definition of a semantic correspondence because the nature of a 
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correspondence depends on the overall goal of schema integration. For example, in 
the case of a data exchange system, these correspondences imply the existence of a 
logical transformation that can convert instances of the source element into instances 
of the target. However, when the integration goal is to generate a consensus vocabu-
lary for a particular community, a semantic correspondence may indicate that the set 
of source instances overlaps with the set of target instances (i.e., their intersection is 
non-empty). 

If a target schema has been identified, these correspondences establish relation-
ships between each source schema and the target. As noted in [11], in the absence of a 
target schema, correspondences can also be established between pairs of (or across 
sets of ) source schemata. 

For example, to publish data stored in a relational database into an XML message 
format, some correspondences indicate that tuples from the source relation will be 
used to generate XML elements. Additional correspondences indicate which attributes 
will be used to generate data values. For example, multiple relations might correspond 
to a single element because a join is needed to populate the element’s attributes, or a 
single relation may correspond to multiple elements to match nesting present in the 
target. 

3) Generate semantic correspondences. This step determines which schema ele-
ments loosely correspond to the same real world concepts. These correspondences 
establish a weak semantic link in that they indicate that instances of one element can 
be used to generate instances of the other. 

Whereas this phase consists of a single step, we consider matching to be its own 
phase because of its importance and the research attention it has received. The exact 
transformations implied by a correspondence are detailed in the mapping phase. 

3.3   Schema Mapping 

The schema mapping phase establishes, at a logical level, the rules needed to trans-
form instances of the source schemata into instances of the target. The mappings must 
generate results that adhere to the target schema (or the target must be modified to 
reflect accurately the transformed data). 

These mappings are often expressed as queries expressed in a language applicable 
to the source or target schema. For example, in [8] mappings are expressed as Datalog 
queries and in [18] mappings are expressed using XQuery (even though the source 
schema is relational). However, in [19] the mappings are expressed in SQL even 
though the transformed data are expressed as XML. 

The first four subtasks below establish piecemeal transformations, and are not per-
formed in a particular order. Each transformation indicates the precise mechanism by 
which source data is used to generate target data. Note that at times these transforma-
tions cross the schema/instance boundary [20]. Once transformations have been estab-
lished for each schema element, they are aggregated into a logical mapping and verified. 

4) Develop domain transformations. For each pair of corresponding domains, a 
transformation must be developed that relates values from the source domain to val-
ues in the target domain. In the simplest case, there is a direct correspondence (i.e., no 
transformation is needed). However, it is often the case that an algorithmic transfor-
mation must be developed, for example, to convert from feet to meters, or from 
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first- and last-name to full-name. In the most detailed case, the transformation can 
best be expressed using a lookup table (e.g., to convert from one coding scheme to a 
related coding scheme). Context mediation techniques can then be applied [21, 22]. 

5) Develop attribute transformations. The previous step handled the case where 
the same property was encoded using different domains. This step deals with proper-
ties that are different but derivable. Sometimes one provides a transformation from 
source to target values, either scalar (e.g., Age from Birthdate), or by aggregation 
(e.g., AverageSalaryByDepartment from Salary). Other transforms we have seen 
include pushing metadata down to data (e.g., to populate a type attribute or time-
stamp), and populating a comment (in the target) to store source attribute information 
that has no corresponding attribute. Finally, it may be necessary to convert a single 
attribute into a composition of attributes (in the local-as-view (LAV) [8] formalism) 
or vice versa for GAV. 

6) Develop entity transformations. The next step is to determine the structural 
transformations necessary to generate instances of the target schema. In the simplest 
case, a direct 1:1 mapping can be established. Alternatively, multiple entities may 
need to be combined to generate a single target entity. This combination may require 
a join operation if the source schema vertically partitions information across multiple 
entities or a union operation if the source schema horizontally partitions information 
across entities that are subclasses of the target entity. Additionally, a single entity may 
need to be split into multiple entities (e.g., based on the value of some attribute), 
which effectively elevates data in the source to metadata in the target. 

7) Determine object identity. For each entity in the target, the next step is to de-
termine how unique identifiers will be generated. In the simplest case, explicit key 
attributes in the source can be used to generate key values in the target. This may 
include populating implicit keys (such as those inherited from a parent entity), or 
correctly establishing parent/child relationships (such as in a nested meta-model). For 
arbitrarily assigned identifiers (such as internal object identifiers), Skolem functions 
are commonly employed (see, for example, [3]). 

These four subtasks interact with schema matching because establishing transfor-
mations is an iterative process. For example, in the first pass, we might establish a 
transformation from Professor to Employee (since instances of the former are also 
instances of the latter). While working on the Course/Grade sub-schema, we might 
realize that, in some cases, Students are also Employees. This new insight requires us 
to refine the Employee mapping. In other words, the previously identified correspon-
dences may be both imprecise and incomplete. 

The remaining mapping subtasks produce an executable mapping. 
8) Create logical mappings. The next step is to aggregate the piecemeal map-

pings, which all concern individual elements, into an explicit mapping for entire data-
bases or documents. Humans may need to specify additional information (e.g., to 
distinguish join from outerjoin) before automated tools can sew the pieces together. In 
most cases, this requires writing a query (over the source schemata) that generates 
instances of the target schema, although in LAV [8] the source schemata are ex-
pressed as views over the target schema. 

9) Verify mappings against target schema. If the integration task included a spe-
cific target schema, the final step is to verify that the transformations are guaranteed 
to generate valid data instances (i.e., all constraints are satisfied). In some cases, the 
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only solution may be to modify the target schema to remove constraints that we can-
not satisfy. If a target schema is not specified, the final step is to generate the target 
schema based on the logical mappings. 

3.4   Instance Integration 

At this point, the tasks involved in schema integration are complete, and we turn our 
attention to instance integration. 

10) Link instance elements. Two source instances (with different unique identifi-
ers) may represent the same real-world object. This subtask merges these instances 
into a single instance or creates an association between the instances. See [23] for an 
overview of the algorithms involved. 

11) Clean the data. This subtask removes erroneous values from instances. A 
value may be erroneous because it violates a domain constraint or because it contra-
dicts information from a more reliable source. For example, we may know that a 
person should have a single value for the height attribute, but the available sources 
might provide differing values for this attribute value. See [24] for more information 
about this subtask. 

3.5   System Implementation 

Finally we are ready to develop and deploy a system that addresses operational 
constraints—factors external to schema and instance elements. Examples include 
determining the frequency and granularity of updates and the policy that governs 
exceptional conditions. 

12) Implement a solution. In this phase the system developers must first gather 
any operational constraints and then design an integration system that satisfies these 
constraints. The significance of the operational constraints on real-world integration 
systems is stressed by the integration engineers who have reviewed the task model. 
For example, operational constraints such as the volume of data involved, the fresh-
ness of results, and security factors strongly influence whether a federated database or 
data warehouse should be developed. 

13) Deploy the application. This step does not receive much research attention, 
but ease of deployment is an important concern. Many of the commercial data inte-
gration tools place particular emphasis on this subtask. Once deployed, system engi-
neers must maintain the application, but a task model for application maintenance 
exceeds the scope of this paper. 

This task model guided our development of the Harmony schema matching tool. 

4   Harmony 

Harmony is a schema matching tool that combines multiple match algorithms with a 
graphical user interface for viewing and modifying the identified correspondences. 
The architecture for Harmony is shown in Fig. 1. Harmony’s contributions include 
adding linguistic processing of textual documentation to conventional schema match 
techniques, learning from the input of a human in the loop, and GUI support for re-
moving clutter and iterative development, as discussed in following sections. 
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Harmony currently supports XML schemata, entity-relationship schemata from 
ERWin, a popular modeling tool, and will soon support relational schemata. Sche-
mata are normalized into a canonical graph representation. 

The Harmony match engine adopts a conventional schema integration architec-
ture [6, 25-27]. It begins with linguistic preprocessing (e.g., tokenization, stop-word 
removal, and stemming) of element names and any associated documentation. Then, 
several match voters are invoked, each of which identifies correspondences using a 
different strategy. For example, one matcher compares the words appearing in the 
elements’ definitions. Another matcher expands the elements’ names using a thesau-
rus. For each [source element, target element] pair, each match voter establishes a 
confidence score in the range (–1, +1) where –1 indicates that there is definitely no 
correspondence, +1 indicates a definite correspondence and 0 indicates complete 
uncertainty. 
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Fig. 1. Architectural Overview of Harmony 

Given k match voters, the vote merger combines the k values for each pair into a 
single confidence score. The vote merger weights each matcher’s confidence based on 
its magnitude—a score close to 0 indicates that the match voter did not see enough 
evidence to make a strong prediction. 

A version of similarity flooding [28] adjusts the confidence scores based on struc-
tural information. Positive confidence scores propagate up the schema graph (e.g., 
from attributes to entities), and negative confidence scores trickle down the schema 
graph. Intuitively, two attributes are unlikely to match if their parent entities do not 
match. 

Finally, these confidence scores are shown graphically as color-coded lines con-
necting source and target elements. The GUI provides various mechanisms for ma-
nipulating these lines, based on our design desiderata. 

4.1   Design Goals 

The statistics presented in Section 2 suggest that schema matching algorithms should 
not assume the absence of usable documentation. Many of the candidate matchers in 
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the Harmony engine perform natural language processing and comparisons on this 
documentation. In our experience, these matchers have good recall, although their 
precision is less impressive. 

The task model in Section 3 suggests additional design desiderata. First, the integra-
tion engineer needs to be able to focus at different levels of granularity. For example, a 
common first step is to establish correspondences among conceptual sub-schemata. In 
the air traffic flow management domain, these sub-schemata might include facilities 
(airports and runways), weather, and routing. Note that the hierarchical and decomposa-
ble nature of XML Schema makes it easier to identify sub-schemata. 

After establishing these high-level correspondences, the integration engineer 
focuses on one sub-schema at a time and delves into the details of the domains 
appearing in that sub-schema. The engineer wants to be distracted neither by corre-
spondences pertaining to other sub-schemata nor those at intermediate levels of 
granularity. 

A related goal is that the software tools must support iterative refinement. This de-
sideratum is one of our motivations for developing the integration workbench de-
scribed in Section 5. If data cannot flow freely among components, the engineer has 
little control over the order in which tasks will be completed. 

The final desideratum is that all sub-tasks involved in schema integration must be 
supported. The commercially available tools naturally take this requirement more 
seriously than do research tools, such as Harmony. Whereas it is an interesting re-
search problem to identify semantic correspondences, this contribution alone does not 
greatly assist the integration engineer. Because Harmony by itself does not currently 
support schema mapping, we defer further consideration of this desideratum to Sec-
tion 5. We now consider how Harmony addresses the remaining desiderata. 

4.2   Filtering 

The Harmony GUI supports a variety of filters that help the integration engineer focus 
her attention. These filters are loosely categorized as link filters and node filters. A 
link filter is a predicate that is evaluated against each candidate correspondence to 
determine if it should be displayed. A node filter determines if a given schema ele-
ment should be enabled. An enabled element is displayed along with its links; a dis-
abled element is grayed out and its links are not displayed. 

Harmony currently supports three link filters. First, a confidence slider filters links 
based on the confidence assigned to a link by the Harmony engine. Only links that 
exceed the slider-set threshold are displayed. Links that were drawn by the integration 
engineer, or were explicitly marked as correct, have a confidence score of +1. Simi-
larly, links explicitly rejected have a score of –1. 

The second filter determines if a link should be displayed based on whether it is hu-
man-generated or machine-suggested. The final filter displays those links with maximal 
confidence for each schema element (usually a single link, but ties are possible). 

The node filters include a depth filter and a sub-tree filter. The former enables only 
those schema elements that appear at a given depth or above. For example, in an ER 
model, entities appear at level 1, while attributes are at level 2. In XML schemata, 
arbitrary depths are possible. Thus, using this filter, the engineer can focus exclu-
sively on matching entities. 
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The sub-tree filter enables only those elements that appear in the indicated sub-tree. 
For example, this filter can be used to focus one’s attention on the ‘Facility’ sub-
schema. By combining these filters, the engineer can restrict her attention to the enti-
ties in a given sub-schema. 

4.3   Iterative Development 

Harmony supports iterative refinement through two mechanisms. First, the engineer 
can rerun the Harmony engine, which can learn from her feedback. Second, the engi-
neer can mark sub-schemata as complete. We now describe these two mechanisms. 

When the Harmony engine is invoked after some correspondences have been ex-
plicitly accepted or rejected (i.e., set to +1 or –1), this information is passed to the 
engine and used in two ways. First, each candidate matcher can learn from the user’s 
choices and refine any internal parameters. For example, a matcher that weighs each 
word based on inverted frequency increases or decreases word weight based on which 
words were most predictive. Second, the vote merger weights the candidate matchers 
based on their performance so far. Learning new weights must be done carefully, 
though. Each candidate matcher focuses on a particular form of evidence, such as 
elements’ names. If the engineer based her first pass on exactly that form of evidence, 
the corresponding candidate matcher will appear overly successful. 

In addition to accepting and rejecting specific links, the engineer can mark a sub-
tree as complete. This action has several effects. First, it accepts every link pertaining 
to that sub-tree as accepted (if currently visible), or rejected (otherwise). Once a link 
has been accepted or rejected, the engine will not try to modify that link. This ensures 
that links do not mysteriously disappear or appear should the user subsequently in-
voke the Harmony engine. 

Second, it updates a progress bar that tracks how close the engineer is to a com-
plete set of correspondences. This feature was introduced at the request of integration 
engineers working on large schema integration problems that involve several dozen 
iterations. 

Once all schema elements have been marked as complete, the final set of corre-
spondences could be used to guide the generation of a more detailed mapping. 
Harmony provides neither a mechanism for authoring code snippets, nor a code gen-
eration feature; these would duplicate commercial capabilities. Instead, we are devel-
oping the integration workbench to couple our matching tools (and GUI) with 
commercially-available mapping products. 

5   Integration Workbench 

Our attempts to integrate Harmony with other schema integration tools revealed a key 
barrier to interoperability. Whereas schema integration experts trumpet the advan-
tages of a modular, federated architecture that presents a unified view of multiple data 
sources, we (as a community) have not applied that same insight when we develop 
our own systems and tools. 

As a concrete example, we recently received a collection of XML files from a col-
league. Each file described a schema mapping between a source and target schema. 
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However, before we could use these files, we needed to transform them into a struc-
ture compatible with Harmony. To effect this transformation we used one tool to 
reverse engineer the schema assumed by our colleague. We then matched that schema 
to the Harmony schema (using Harmony). We recreated the match in AquaLogic to 
generate a suitable XQuery for transforming a single XML file. Finally, we wrote a 
Perl script to apply the XQuery to each XML file. A modular architecture would fa-
cilitate tool interoperability. 

While some vendors (such as IBM and BEA) may be moving in this direction in-
ternally to support integration of their own tools, they have not published their ap-
proaches or interfaces. There are obvious advantages to user organizations and small 
software companies to developing a standard framework for combining schema inte-
gration tools. We propose the following as a way to initiate discussion that could lead 
toward development of such a standard. 

At the core of our workbench proposal is an integration blackboard, which is a 
shared knowledge repository. Mediating between the blackboard and the various 
schema integration tools is a workbench manager. The manager provides several 
services including transaction management, event services and query evaluation. The 
following sections describe the blackboard and manager. 

5.1   Integration Blackboard 

The integration blackboard (IB) is a shared repository for information relevant to 
schema integration that is intended to be accessed by multiple tools, including sche-
mata, mappings, and their component elements. We propose using RDF [29] for the 
IB, because: 1) it is natural for representing labeled graphs, 2) one can use RDF 
Schema to define useful built-in link types while still offering easy extensibility, 3) it 
is vendor-independent, and 4) it has significant development support. 

The basic contents of the IB are schema graphs and mapping matrices (an approach 
also taken in [25]). However, in RDF, any element can be annotated; we use this 
feature to enrich the graphs and matrices with additional information. We predefine 
certain annotations using a controlled vocabulary (these terms appear in sans serif). 

5.1.1   Schemata 
The IB represents a schema as a directed, labeled graph. The nodes of this graph cor-
respond to schema elements. In the relational model, these elements include relations, 
attributes and keys. In XML, they include elements and attributes. 

The edges of a schema graph correspond to structural relationships among the 
schema elements. These edges are object properties whose subject and object are both 
schema elements. For example, in the relational model contains-table edges are used 
to link a database to the tables it contains. Tables are linked to attributes via con-
tains-attribute edges. In XML, elements are linked to sub-elements via con-
tains-element edges, and to attributes via contains-attribute edges. For many schema 
languages, the edge-types are specified by the modeling language, but with ontologies 
they are extensible. 

Whereas schema elements can be annotated arbitrarily, we identify three edge la-
bels of particular importance to schema importing and matching utilities: name, type 
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Fig. 2. Sample schema graphs 

and documentation. Import tools populate these metadata so that they can be used by 
schema matchers to identify potential correspondences. 

Sample schema graphs appear in Fig. 2. In the next section we present a sample 
mapping from the source schema to the target schema. 

5.1.2   Mappings 
Inter-schema relationships can be represented conceptually as a mapping matrix. This 
matrix consists of headers (describing source and target elements) plus content (a row 
for each source element and a column for each target element). Note that whereas the 
structure can easily be interpreted as a matrix, we store this matrix using RDF. 

confidence=+1

user-defined=true

confidence=–1

user-defined=true

confidence=–1

user-defined=true
subtotal
is-complete=true

variable=$shipto/subtotal

confidence=–1
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is-complete=false
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* 1.05
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is-complete=false
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concat($lName,

concat(", ", $fName))

shippingInfo
is-complete=false

code=

code=
let $shipto := $purchOrd/shipTo

return

<shippingInfo total =

"{ data($shipto/subtotal) * 1.05 }">

{

for $fName in $shipto/firstName,

$lName in $shipto/lastName

return

<name>{

concat($lName, concat(", ", $fName))

}</name>

}

</ShippingInfo>

 
Fig. 3. Sample mapping matrix in which every component has been annotated 
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For example, the mapping matrix for the schemata in Fig. 2 contains four rows and 
three columns, as shown in Fig. 3. Each cell in the mapping matrix describes a poten-
tial correspondence between a source element and a target element. 

Mapping elements are also annotated. First, each cell is annotated with confi-
dence-score, which ranges from –1 (definitely not a match) to +1 (definitely a match), 
and is-user-defined. This latter annotation is true for any correspondence provided by 
the user (for example, by drawing a link between two elements), and the associated 
confidence-score is either +1 or –1 (for rejected links). When a match algorithm is 
executed, is-user-defined is false, and the confidence-score falls in the range (–1,+1). 

Each row is further annotated with a variable-name. Each column is annotated with 
code that references these names. Finally, the matrix as a whole has a code annota-
tion, which represents the mapping from source to target. Additional annotations are 
possible; for example, Harmony annotates rows and columns with is-complete to track 
progress. The relationship between these annotations and the mapping matrix appears 
in Fig. 3. 

5.1.3   Integration Blackboard Enhancements 
We currently assume that the blackboard captures information about the source and 
target schemata, as well as the current state of the mapping that relates the source(s) 
to the target. Future goals include the following. 
• The blackboard should maintain a library of mappings, partly to facilitate mapping 

reuse, but also as a resource for some matching tools. 
• Schemata inevitably change; the blackboard should track schemata across versions. 
• Mappings are also refined over time, especially once they are tested on real data. 

The blackboard should maintain mapping provenance. 
• Based on Section 4.2, the blackboard should allow contextual information, such as 

focus on a particular subschema, to be shared across tools. 
• The blackboard should be shared across multiple workbench instances. 

5.2   Workbench Manager 

All interaction with the IB occurs via the workbench manager, which coordinates 
matchers, mappers, importers, and other tools. The manager provides several services: 
First, it provides transactional updates to the IB. Second, following each update, it 
notifies the other tools using an event. Third, the manager processes ad hoc queries 
posed to the IB. 

A single-user version of the workbench architecture appears in Fig. 4. Ultimately, 
we envision there to be one IB for each community of interest—i.e., a set of stake-
holders “who must exchange information in pursuit of their shared goals, interests, 
missions, or business processes” [30]. Each integration engineer would have her own 
instance of the integration workbench containing a single manager and multiple tools. 

5.2.1   Tools 
We focus on four kinds of tools: loaders, matchers, mappers and code-generators. The 
first two tools support the first two phases of schema integration. Given the complex-
ity of schema mapping, we separate out steps 4)–7), in which the mapping is pro-
duced piecemeal, from steps 8) and 9), in which code is generated. 
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Fig. 4. Workbench Architecture 

Loaders are used during schema preparation to parse a schema from a file, database 
or metadata repository (including ancillary information such as definitions from a data 
dictionary) into the internal representation used by the IB. When the user invokes a 
loader, that tool places the new objects in the IB, which extends the mapping matrix 
accordingly and advises the other tools via an event. 

Schema matching can be performed manually, as is the case for most commercial 
tools, or semi-automatically. (Harmony supports both approaches.) A match tool 
updates the cells of the mapping matrix. When correspondences are generated auto-
matically, all of the interactions with the IB are wrapped in a transaction; no events 
are generated until the mapping matrix has been updated. 

Schema mapping can also be performed manually or automatically [31], although 
we are not aware of any commercial automatic mapping tools. A mapping tool up-
dates the code associated with each column. Both matchers and code generators may 
need to listen for these events to update their internal state. 

Finally, a code-generator assembles the code associated with each column into a 
coherent whole. Thus, the code-generator must understand how to assemble code 
snippets based on the structure of the target schema graph (e.g., Clio [3]). 

This enumeration of tools is by no means complete. Another tool might attempt to 
enforce domain-specific constraints on the mapping matrix. Or, a tool might annotate 
a schema with information culled from external documentation. All that is required is 
that a tool implements the tool interface. 

The tool interface defines two methods. First, a tool must provide an invoke 
method. The implementation of this method might launch a GUI (for mapping), in-
voke a match algorithm, or display a file selection dialog (to load). Second, when the 
workbench starts, each tool has the option of implementing an initialize method. Gen-
erally, this is done when a tool needs to register for events. 
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5.2.2   Events 
Tools generate events whenever they make any change to the contents of the IB. The 
workbench manager propagates these events to allow any tool to respond to the up-
date. A different type of event is generated for each major component of the IB so that 
a tool can register for only those events relevant to that tool. 

A schema loader generates a schema-graph event when it imports a schema into 
the workbench. Any tool with a GUI listens for these events and refreshes the display. 

A mapping-cell event is generated when a user manually establishes a correspon-
dence. Multiple such events are triggered by an automatic matching tool. A mapping 
tool can listen for these events to propose a candidate transformation, such as a type 
conversion. 

Conversely, when a mapping tool establishes a transformation, it generates a map-
ping-vector event. Match tools listen for these events to synchronize the mapping cells 
with the updated row or column. A code generation tool similarly listens for these 
events to synchronize the assembled mapping. The code generation tool, in turn, gen-
erates a mapping-matrix event when the user manually modifies the final mapping. 

Additional interactions are possible, but generally speaking, a tool listens for 
events immediately upstream or downstream in the task model. It is necessary to 
listen in both directions given the iterative behavior described in Section 4.3 and illus-
trated by the schema matching tools we have developed. 

6   Sample Schema Matching Tools 

Our research has focused on the development of two types of schema matching tools. 
The role of a match voter is to consider some source of evidence to generate a match 
score for a particular (source element, target element) pair. The match score is a func-
tion of the amount of evidence observed that suggests the pair of elements match (the 
positive evidence) and the total amount of evidence available. The standard approach 
for generating a match score is to compute the ratio of positive evidence to total 
evidence. 

However, this approach ignores the fact that, as the amount of evidence increases, 
the impact of that evidence is greater. In this section, we first formalize the roles of 
positive and total evidence. We then describe how to apply this theory to various 
match voters. 

Within the integration workbench, multiple match voters might be available. The 
role of a vote merger is to combine the match scores generated by a suite of match 
voters into a single confidence score to be stored in the mapping matrix. To derive a 
confidence score the vote merger assigns a weight to each match voter and combines 
the match scores based on the amount of evidence observed by each match voter. 

In this section we describe each component in greater detail. As a preliminary, we 
briefly describe how we normalize the available documentation. We then describe 
how any match voter can compute a match score based on numeric scores for positive 
and total evidence. Next, we describe a specific match voter in which the evidence is 
based on the extent to which the words appearing in the schema documentation for 
two elements overlap. Finally, we describe how the scores generated by multiple 
match voters can be combined into a single value. 
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6.1   Text Normalization 

For some match voters, several pre-processing strategies are required. First, we token-
ize all text strings in the source and target schemata, splitting those phrases that are 
not divided by spaces into distinct words. Because of the frequency with which upper-
case letters are used to indicate word boundaries (sometimes called CaMeL case), 
whenever an upper-case letter is immediately followed by a lower-case letter, we 
break the text into separate words at that boundary (e.g., ‘firstName’ becomes ‘first 
Name’). Tokenization also removes all punctuation. Following tokenization, the text 
contains only letters, numbers and white-space. 

Second, we replace all capital-letters with lower-case letters. Third, we remove 
plural suffixes and verb conjugations. For example, ‘reading books’ becomes ‘read 
book’. Fourth, we remove any words that appear on a pre-defined list, (such as ‘a’ and 
‘for’). These stop-words are too common to be useful for linguistic processing. We 
refer to the output of these four steps as normalized text. 

During pre-processing, we also count the frequency of each normalized word ap-
pearing anywhere in a source or target schema element. Generally speaking, words 
that are rarely used are more significant that words that appear frequently. The word 
frequency function freq(wd) maps each word wd to the number of times it appears in 
normalized text: 

Nwdfreq →)(  (1) 

The weight associated with each word is inversely proportional to the number of 
times it appears in the source and target schemata. In the ideal case, a word appears 
exactly once in the source and once in the target, or twice total. Based on this obser-
vations, the weight function wt(wd) is: 

)(

2
)(

wdfreq
wdwt =  (2) 

As an ongoing example, we will consider two schema elements drawn from the do-
main of military tracking. In this domain, it is important to know how a particular set of 
coordinates were obtained so that human experts can gauge the reliability of the infor-
mation. Hence, we will consider source element s = “How: provides a hint about how 
the coordinate was obtained,” and target element t = “TargetSource: indicates how the 
latitude and longitude were obtained.” Whereas these elements are not identical, they 
are similar in nature and should be matched (and ultimately mapped) to one another. 

After normalization, these elements are simplified to “how provide hint about how 
coordinate obtain” and “target source indicate how latitude longitude obtain,” respec-
tively. For simplicity, let us assume “how” appears sixteen times in the source and 
target schemata and that the remaining words appear twice each. Thus, the wt(“how”) 
= 0.125 and wt(wd) = 1 otherwise. We will return to this example in section 6.3 when 
we describe our bag-of-words match voter. But first we describe (in abstract terms) 
our match score framework from the perspective of positive and total evidence. 

6.2   Match Scores 

Our match score framework expects that each match voter will assign a single score to 
each pair of source and target elements. This match score is generated by considering 
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some collection of evidence (toe for total observed evidence) of which a subset sug-
gests a correspondence between the pair of elements (poe for positive observed evi-
dence). For example, in the preceding example, the total evidence consists of the words 
used to describe s and t and the positive evidence consists of the words they share. 
Other sources of evidence might include the datatypes assigned to these elements or 
the data values used to instantiate them. In this section we describe how any match 
voter can combine toe and poe to generate a match score that ranges from –1 to +1. 

The intuition behind these match scores is that a score of 0 should indicate that, 
based on the observed evidence, the likelihood of a match is impossible to determine. 
As the ratio of positive evidence to total evidence increases, the match score should 
increase. For a fixed evidence ratio, as the total evidence increases, the match score 
should also increase. 

Based on this intuition, we can establish some theoretic bounds. If there is an infi-
nite amount of positive evidence, the match score should equal +1. However, if there is 
no positive evidence, but an infinite amount of total evidence, the match score should 
equal –1. Finally, if there no evidence (of either type), the match score should be 0. 

Formally, for a given (source element, target element) pair, let poe represent the 
amount of positive observed evidence, and toe represent the total observed evidence. 
However, before observing this evidence, there is some small probability x that two 
elements (chosen at random) match. Thus, we must factor in this prior probability to 
calculate the (combined) positive evidence pe and total evidence te. 

poekxpe ×+=  (3) 

toekte ×+= 1  (4) 

In equations (3) and (4), k is a scaling factor that indicates how much we want to 
weigh the observed evidence. Now, we calculate the evidence ratio er as the ratio of 
positive evidence to total evidence. 

te

pe
er =  (5) 

The weighted evidence ratio wer scales the evidence ratio from the interval [0, 1] 
to the interval [1, e]. When the weighting factor j is one, this is a linear transforma-
tion. Large values of j generate a sub-linear transformation. 

1)1(/1 +−= eerwer j  (6) 

The evidence factor ef measures the amount of evidence considered by mapping 
the positive evidence from the interval [0, ∞) to the interval [e, 1]. 

pepeef /1)1( +=  (7) 

The match score ms is the natural log of the ratio between wer and ef. 
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Table 2. Relationship between evidence (positive and total) and match scores for extreme 
values. The final column provides insight into equations (3)–(8). 
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Finally, the match score is guaranteed to fall in the interval (–1, +1) as demon-
strated by a limit analysis (see Table 2) as the positive and total evidence approach 0 
and positive infinity. All that remains is to determine suitable values for the parame-
ters j, k, and x. We choose x such that in the absence of direct evidence, the match 
score evaluates to 0. Whereas we have not found a closed solution for x in terms of j, 
for certain values of j we have observed the following: 

5.1

ln j

ex
−

≈  when 7≥j  (9) 

The values of the remaining two parameters depend on the match voters under 
consideration. Generally speaking, j controls how much positive evidence is required 
for ms to generate a match score greater than zero, and k amplifies the observed evi-
dence. We recommend suitable values for these parameters for match–voters based on 
algorithms developed for measuring the similarity between two natural language 
documents. 

6.3   Sample Linguistic Match Voters 

The preceding section described a match voter at an abstract level. We now turn our 
attention to specific match voters based on natural-language processing (NLP). In this 
section, we describe how to quantify the observed evidence for NLP-based match 
voters. We then establish reasonable values for the constants described above. 

In the domain of document retrieval, one strategy for determining the similarity of 
two documents is to determine the extent to which the pair of documents has words in 
common. We apply this approach to schema matching by treating each schema ele-
ment as a document. For a given schema element, the corresponding document con-
tains the normalized text appearing in the element’s documentation and name1. This 
document is then reduced to a bag-of-words (i.e., a set of words in which a given 
word can appear multiple times). The evidence represented by bag-of-words Bs is 
computed as follows, where the weight function was defined in equation (2), above. 

∑
∈

=
Bwd

wdwtBev )()(  (10) 

                                                           
1 Because of the importance of an element’s name, we actually add that normalized text to the 

document twice. 
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Table 3. Relationship between evidence (positive and total) and match scores for three different 
values of positive observed evidence. 

Bs∩Bt poe toe pe te er wer ef ms 
{“how”, “obtain”} 1.125 10.125 3.6 32 0.11 2.4 1.5 0.44 

{“how”} 0.125 10.125 0.59 32 0.019 2.2 2.2 –0.019 
{} 0 10.125 0.22 32 0.0068 2.0 2.5 –0.19 

For a given (source-element, target-element) pair, the positive evidence is based on 
the intersection of the corresponding bags, and the total evidence is based on the union. 

)(),( ts BBevtspoe ∩=  (11) 

)(),( ts BBevtstoe ∪=  (12) 

In our ongoing example (“How” vs. “TargetSource”), the positive observed evi-
dence is based on the bag {“how”, “obtain”} and the total observed evidence on the 
bag {“about”, “coordinate”, “hint”, “how”, “how”, “indicate”, “latitude”, “longitude”, 
“obtain”, “provide”, “source”, “target”}. Given the previously assigned word weights, 
poe(s,t) = 1.125 and toe(s,t) = 10.125. 

Harmony also supports the inclusion of evidence external to the source and target 
schemata. A second match voter uses a bag-of-words augmented with a thesaurus. For 
each word in Bs, if that word appears in the thesaurus, its synonyms are added to the 
bag. Once the bags have been augmented with synonyms, the weight function in 
equation (2) must be re-evaluated. Otherwise, the thesaurus-based bag-of-words 
match voter is identical to the normal bag-of-words match voter. 

All that remains is to establish values for j and k. In our experience, j=20 seems to 
work well in practice. Given the trade-off between precision and recall, we prefer to 
err on the side of recall because it is easier for an integration engineer to reject false 
matches, than to identify false non-matches. We found k=3 to work well for the basic 
bag-of-words matcher, and k=1 to work well when using a thesaurus. The intuition 
behind using a smaller k is that we expect to see more total evidence with the thesau-
rus, and therefore do not need to amplify the effect of the observed evidence. 

To illustrate how the total and positive observed evidence is used to calculate a 
match score, we will return to our ongoing example in which the positive observed 
evidence value is 1.125. Let us also consider similar scenarios in which the common 
words are {“how”} and {}. (This example assumes k=3, but j is set to 10 because the 
documentation strings are so short). Table 3 shows how the match scores are derived 
in each of these scenarios. We have deliberately chosen j and k such that the match 
score will be relatively large whenever a pair of elements share even a small number 
of uncommon words. Moreover, very low scores cannot be generated without a huge 
amount of total evidence. In our experience, based on real-world schemata, positive 
evidence is a much stronger indicator than negative evidence. By incorporating this 
intuition into our match scores, multiple sources of evidence can be combined by the 
vote merger. 
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6.4   Vote Merger 

Within Harmony, several match voters are run in parallel, each of which generates a 
match score for each pair of source and target elements. In this section we describe 
how to combine these values into a single score for each pair. We begin by describing 
how to merge match scores assuming each match voter were also to return an evi-
dence score in addition to a match score (for each pair). We then describe how to 
merge match scores without imposing this additional requirement. 

The vote merger is responsible for combining multiple match scores into a single 
confidence value. This combination is based on multiple factors including the weight 
assigned to each match voter, the amount of evidence available to that match voter, 
and the positive evidence observed by that match voter. For each (source element, 
target element) pair, the match voter generates a single confidence value. 

The basic vote merging algorithm is simply a weighted average of the match scores 
generated by each match voter. If we assume that the weight of a given match voter v 
is wt(v), and that the weight associated with the evidence observed by that match 
voter is ewv, then the confidence score is the weighted average of match scores as 
follows, where V is the set of all match voters. 

∑

∑
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When the weights associated with each match voter are equal, the confidence score 
is simply the weighted average of the match scores, based on ewv. Thus, we need to 
determine how to compute evidence weights. 

In general, the evidence weight needs to scale from zero (in the absence of evi-
dence), to one (given infinite evidence). Thus, any function that maps te to the inter-
val [0, 1] fulfills this conditions. For example, the following function is an analogue 
of equation (7). 
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Note that equation (14) requires that we preserve multiple values for each match 
voter. However, the match score calculated in equation (8) is close to zero when there 
is little total evidence, and close to ±1 when the amount of total evidence is large. 
Given this observation, we use the absolute value of the match score as the evidence 
weight. Assuming equal match voter weights, the confidence score simplifies to the 
following. 
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Intuitively, equation (15) uses the match score returned by each match voter as its 
weight. This simplification works because a match score of zero indicates insufficient 
evidence to determine if the source element and target element match2. A score close 

                                                           
2 As a special case, if the denominator is zero, the confidence score generated is also zero. 
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to ±1 indicates strong evidence either in support of a match, or against a match. Thus, 
by scaling each match voter as described in the previous section, we can easily merge 
match scores based on the strength of each match score. 

In our ongoing example, the bag-of-words match voter generated a match score of 
0.44. The bag-of-words with thesaurus match voter generated a match score of 0.55, 
and a match voter based on the edit distance between “how” and “targetsource” gen-
erated a match score –0.21 (the schema element names share only the letter “o”). 
Based on equation (15), the final confidence score is 0.38. The bag-of-words match 
voters are weighted more heavily because their match scores are more decisive. Re-
call that the match voters can generate large positive scores more easily than large 
negative scores. Given the behavior of the match voter, as long as any match voter 
suggests a match, the final confidence score will likely be positive. 

We have incorporated all three match voters and the vote merger into the Harmony 
integration workbench, along with the Harmony GUI. Our customers and colleagues 
have been using this package for roughly one year. In the next section, we report on 
their experiences with the tool suite. 

7   User Experiences 

We released the original version of Harmony (including the GUI, match engine, and 
integration workbench) in November 2006. Since that time, the package has been 
used to support several government projects. We followed up with a half-dozen Har-
mony users to assess the extent to which Harmony has met their needs. In this section, 
we describe the lessons learned from these interviews. We first enumerate the ques-
tions that we have asked. We then provide a summary of these users’ interactions with 
Harmony, both in terms of the GUI and the integration workbench. We conclude the 
section with a description of how the integration workbench has simplified the inte-
gration of Harmony with BEA’s AquaLogic tool. 

7.1   Background 

We contacted several Harmony users, of which a half-dozen provided feedback on the 
tool suite. In each interview we asked the following questions. 

• What can you tell us about the schemata in your application domain? 
• What (if any) were the benefits of using Harmony over manual integration or other 

tools? 
• Of which UI features were you aware, and which did you use? 
• What issues or limitations did you experience? 
• Did you interact with the integration workbench? If so, how difficult was it to use 

this framework? 
In almost all cases, the schemata in question were very large, containing several 

thousand distinct schema elements. In one case, the schemata were OWL ontologies, 
one of which contained nearly 100,000 concepts. 

The application domains ranged widely. For example, one scenario involved map-
ping XML message formats to a smaller “community of interest vocabulary”—i.e., a 
set of terms with text definitions all directly connected to a root node. The goal of this 
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project was not to create an executable mapping, but instead to establish a data dic-
tionary describing the elements common in the domain, including alternate formula-
tions of these elements. A second scenario involved mapping the same set of source 
schemata to a collection of target schemata using just the match engine (i.e., without 
human intervention) to determine which target schema best covered the source sche-
mata. A third scenario involved aligning a small highly-technical ontology with a 
large general-purpose ontology. The goal of this project was to merge the technical 
ontology into the general-purpose ontology to provide better domain coverage. Note 
that none of these projects were trying to generate executable transformations to gen-
erate target instances from source instances, which is the typical motivating applica-
tion for schema integration research. 

7.2   Match Engine and GUI Experiences 

Not surprisingly for a research prototype, the Harmony match engine was unable to 
handle source and target schemata containing thousands of schema elements. Because 
the match engine evaluates a confidence score for every possible [source element, 
target element] pair, the match engine was unable to generate a complete mapping 
matrix in less than 24 hours (and in some cases would run out of memory). This limi-
tation stresses the importance of match algorithms that do not need to consider all 
possible pairs (e.g., [32]). 

As a workaround, in all but one case, the users identified external tools that could 
partition the schemata into smaller, more manageable, pieces. From their experiences, 
we can draw two conclusions. First, new tools should be added to the workbench that 
can partition a schema into smaller sub-schemata. Second, the GUI should make it 
clear that only the nodes currently selected (e.g., using the sub-tree filter) would be 
fed to the match engine. Only one user was aware of this strategy for handling large 
schemata. 

The users with whom we spoke did use most of the GUI filters to explore the 
mapping matrix. In particular, we heard that the sub-tree filter was very helpful in 
focusing one’s attention on a particular context. This feature allowed the integration 
engineer to verify the proposed matches, specifically within that context because the 
 validity of a match depended on the context. 

To identify these contexts, the integration engineer used a combination of the depth 
filter and the confidence filter. The depth filter eliminated the low-level details, leav-
ing only high-level concepts used to establish a context. The confidence filter identi-
fied those contexts for which good matches could quickly be identified. Thus, our 
intuition that schema matching is an iterative process in which the integration engi-
neer alternates between high-level and detailed views of the problem was validated. 

7.3   Integration Workbench Experiences 

In three cases, the users with whom we spoke modified Harmony directly. In the first 
case, a new match voter was created that parallelized the generation of match scores. 
This match voter also discarded any score that fell below a user-defined threshold to 
avoid the overhead of maintaining these scores in the blackboard. Once implemented, 
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it was trivial to add this new match voter to Harmony, largely because the interactions 
between a match voter and the workbench were well-established. 

To support ontology alignment, the GUI was extended to introduce an additional 
mapping cell annotation: relationship indicates the nature of the relationship between 
the source schema element and target schema element. This annotation could be used 
to indicate that the source element was more specific than (a subclass of), equivalent 
to, or compatible with the target element. In effect, this annotation made each map-
ping cell a reified relationship linking the source to the target. It took the integration 
engineer roughly 40 hours to extend the GUI and to link the new tool into the integra-
tion workbench. The integration engineer responsible indicated that he was quite 
pleased to see that the workbench correctly saved and loaded the new annotations 
along with the built-in annotations. 

Finally, to determine which target schema best covered the source schemata, the 
integration engineers needed a new tool to display a mapping matrix in summary 
form. This tool generates a pie chart that indicates the percentage of source elements 
for which a good match (confidence score ≥ 0.75), weak match (≥ 0.25), or no match 
was found. Implementing this tool and linking it into the integration workbench took 
an integration engineer roughly 20 hours. 

Although our experiences are limited, we believe that the integration workbench 
has proven to be an effective mechanism for adding new tools to the suite. This capa-
bility is particularly important because many of our users were not interested in gen-
erating executable code. In fact, several of them reported that they were unable to use 
commercial schema integration tools because the only possible end product generated 
by these tools is executable code. Our users’ needs were more varied than could be 
supported by off-the-shelf tools. 

However, we recognize that in many cases, the goal of schema integration is to 
generate an executable mapping. Towards that end, we have teamed with BEA to 
integrate the Harmony match engine with BEA’s AquaLogic tool via the integration 
workbench. 

7.4   Matching + Mapping 

In [33] we describe our efforts to combine the Harmony match engine with BEA’s 
AquaLogic tool, which we summarize here. Briefly, AquaLogic “employs a declara-
tive foundation to enable a user to design, develop, deploy, and maintain a framework 
that understands both the logical and semantic heterogeneity of data sources.” In the 
context of the integration workbench, AquaLogic provides a graphical interface so 
that an integration engineer can manually indicate semantic correspondences. The tool 
automatically proposes mapping snippets (largely type-conversions) based on the 
semantic correspondences. It then assembles these snippets into an executable trans-
formation, optionally deploying this transformation in a service-oriented architecture. 

Given the potential synergy between Harmony and AquaLogic, we have begun a 
joint effort to combine these tools. In the resulting product, the Harmony match en-
gine will propose candidate matches; AquaLogic is responsible for providing a 
graphical user interface and for generating mappings/transformations. Moreover, 
given a library of source schemata and a target schema, Harmony can suggest source 
schemata that are likely to be relevant. 
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To make Harmony accessible to AquaLogic, we needed to implement two new 
functions. The first takes, as input, a source schema element and a target schema ele-
ment, and computes the mapping matrix for the corresponding schema sub-trees. The 
function returns the top k [target element, confidence] pairs for each source element 
such that the confidence score exceeds some threshold. (The intention is to limit the 
amount of information presented to the user.) Implementing this functionality using 
the integration workbench required only four lines of code: 1) invoke the Harmony 
match engine, 2) determine which confidence scores to compute, 3) filter out any 
results that do not exceed the confidence threshold, and 4) add the top k matches for 
each source element to the result. 

The second new function allows AquaLogic to indicate which correspondences 
have been accepted by the integration engineer. This tells Harmony which mapping 
cells should not be modified by future invocations of the match engine and could 
potentially be used to tune the algorithmic parameters. Implementing this method 
required three lines of code: 1) iterate over the set of manually identified matches, 
2) lookup the corresponding cell of the mapping matrix, and 3) update the confidence 
score for that cell. 

At this time, BEA is extending their graphical interface to display the results gen-
erated by the Harmony match engine. However, the ease with which the necessary 
information could be extracted from the blackboard via the integration workbench 
offers further proof that the workbench is an effective mechanism for integrating 
schema integration tools and that our task model correctly captures activities common 
to data integration. 

8   Related Work 

The data integration task model is an extension [7] of our prior work presented in [9]. 
The improved model includes additional subtasks addressed by real integration sys-
tems and identified as being important by three experienced integration engineers. A 
task model of schema integration also appears in [11], but that work predates the data 
integration industry and does not benefit from the insights of practitioners. 

In [34], Haas describes a task model similar to ours. In her model, Haas includes 
four basic tasks: First, the integration engineer must understand the schemata (sub-
tasks 1–2, above). Second, the integration engineer must standardize the underlying 
sources. This includes establishing a standard schema that specifies the syntax, struc-
ture and semantics of the information (subtasks 3–9). She also emphasizes the impor-
tance of determining how to a) identify information that pertains to the same subject 
(subtask 10) and b) handle missing or inconsistent information (subtask 11). Third, 
the developers must specify the execution engines and produce the executable (sub-
task 12). Finally, the solution must be executed (subtask 13). 

Of the tasks pertaining to schema integration (subtasks 1–9), most of the research, 
including our own, has focused on subtask 3, schema matching (e.g., [4, 6, 25-28]). 
Overviews of the common approaches appear in [1] and [2]. Based on Rahm and 
Bernstein’s hierarchy [1], the match engine (as a whole) is a composite matcher that 
composes the vote merger with a structure-level matcher. The vote merger, in turn, is 
a hybrid matcher that combines the match scores generated by a collection of  
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element-level linguistic matchers (the match voters). However, we are aware of only 
one prior schema matching algorithm that exploits textual definitions [35], which uses 
a simple approach based on a commercial information retrieval tool. Harmony adds 
more sophisticated linguistic pre-processing (e.g., stemming), a thesaurus and scoring 
algorithms that consider the amount of evidence available. In [36] similar linguistic 
pre-processing techniques to ours are used, but are applied only to element names. In 
addition, instead of doing bag-of-word comparisons across elements of different 
schemata, they use natural language techniques to translate each name into a logical 
formula and then compare the logical formulae to perform match. This approach is 
complementary with techniques in use in Harmony. 

Harmony provides the first GUI that supports an iterative development cycle. This 
GUI is the first to allow the integration engineer to filter the match results based on a 
variety of criteria. 

The integration workbench is far from the first schema integration toolkit to adopt 
a modular architecture. A similar approach is used by both schema matching proto-
types such as COMA++ [4] and Protoplasm [25] and commercial schema mapping 
tools such as those offered by IBM and BEA. For example, Protoplasm allows the 
integration engineer to string together match voters and vote mergers in arbitrary 
ways. This modularity allows the research group or commercial entity to adapt or 
extend their software. However, the integration workbench that is proposed in this 
paper is unique in that it is based on a common blackboard using open standards so 
that independently developed tools can interoperate. 

9   Conclusions and Future Work 

Data integration is a widely researched problem. However, we described ways in 
which enterprise data integration differs from the situations usually encountered in the 
research literature (e.g., documentation is widely available, instance data less so). 
Other pragmatic comments discussed how best to represent coding schemes so they 
can be leveraged by integration tools. 

We also enumerated the subtasks involved in data integration, partitioned to reflect 
the behavior of integration engineers and the support provided by existing tools. This 
task analysis is intended to guide tool development and to enable comparisons across 
tools and integration problems. 

Based on our observations and task modeling, we identified important design goals 
for integration tools. Specifically, we articulated the need to support all of the tasks 
involved in schema integration. One approach to meeting this need is to bring multi-
ple tools to bear. 

Unfortunately, assembling several tools to solve a particular integration problem is 
daunting. Our community needs to adopt the principle of assembling systems from 
modular components and integrating existing components. To facilitate tool interop-
eration, we proposed an open, extensible integration workbench. This architecture 
provides a unified view of schemata and mappings so that integration tools can more 
easily communicate. We believe that both tool vendors and database researchers 
benefit from this arrangement. We hope that this proposal will generate discussion 
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that ultimately could lead to standards (e.g., for mapping matrices) for data integration 
tool interoperation. 

Since our overarching goal is to improve the lives of integration engineers, our 
next task is to perform a usability analysis of the Harmony integration suite. We will 
measure the extent to which software tools save time on each of the schema integra-
tion subtasks. 
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