
Twelve Definitions of a Stable Model

Vladimir Lifschitz

Department of Computer Sciences, University of Texas at Austin, USA
vl@cs.utexas.edu

Abstract. This is a review of some of the definitions of the concept of a
stable model that have been proposed in the literature. These definitions
are equivalent to each other, at least when applied to traditional Prolog-
style programs, but there are reasons why each of them is valuable and
interesting. A new characterization of stable models can suggest an alter-
native picture of the intuitive meaning of logic programs; or it can lead to
new algorithms for generating stable models; or it can work better than
others when we turn to generalizations of the traditional syntax that are
important from the perspective of answer set programming; or it can be
more convenient for use in proofs; or it can be interesting simply because
it demonstrates a relationship between seemingly unrelated ideas.

1 Introduction

This is a review of some of the definitions, or characterizations, of the concept
of a stable model that have been proposed in the literature. These definitions
are equivalent to each other when applied to “traditional rules”—with an atom
in the head and a list of atoms, some possibly preceded with the negation as
failure symbol, in the body:

A0 ← A1, . . . , Am,not Am+1,not An. (1)

But there are reasons why each of them is valuable and interesting. A new
characterization of stable models can suggest an alternative picture of the intu-
itive meaning of logic programs; or it can lead to new algorithms for generating
stable models; or it can work better when we turn to generalizations of the
traditional syntax that are important from the perspective of answer set pro-
gramming (ASP); or it can be more convenient for use in proofs, such as proofs
of correctness of ASP programs; or, quite simply, it can intellectually excite us
by demonstrating a relationship between seemingly unrelated ideas.

We concentrate here primarily on programs consisting of finitely many rules
of type (1), although generalizations of this syntactic form are mentioned several
times in the second half of the paper. Some work on the stable model semantics
(for instance, [13], [18], [33], [2]) is not discussed here simply because it is about
extending, rather than modifying, the definitions proposed earlier; this kind of
work does not tell us much new about stable models of traditional programs.

The paper begins with comments on the relevant work that had preceded
the invention of stable models—on the semantics of logic programming (Sec-
tion 2) and on formal nomonotonic reasoning (Section 3). Early contributions

M. Garcia de la Banda and E. Pontelli (Eds.): ICLP 2008, LNCS 5366, pp. 37–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 V. Lifschitz

that can be seen as characterizations of the class of stable models in terms of
nonmonotonic logic are discussed in Section 4. Then we review the definition of
stable models in terms of reducts (Section 5) and turn to its characterizations
in terms of unfounded sets and loop formulas (Section 6). After that, we talk
about three definitions of a stable model that use translations into classical logic
(Sections 7 and 8) and about the relation between stable models and equilibrium
logic (Section 9).

In recent years, two interesting modifications of the definition of the reduct
were introduced (Section 10). And we learned that a simple change in the defini-
tion of circumscription can give a characterization of stable models (Section 11).

2 Minimal Models, Completion, and Stratified Programs

2.1 Minimal Models vs. Completion

According to [41], a logic program without negation represents the least (and
so, the only minimal) Herbrand model of the corresponding set of Horn clauses.
On the other hand, according to [4], a logic program represents a certain set of
first-order formulas, called the program’s completion.

These two ideas are closely related to each other, but not equivalent. Take,
for instance, the program

p(a, b).
p(X, Y)← p(Y, X). (2)

The minimal Herbrand model

{p(a, b), p(b, a)}

of this program satisfies the program’s completion

∀XY (p(X, Y)↔ ((X = a ∧ Y = b) ∨ p(Y, X))) ∧ a �= b.

But there also other Herbrand interpretations satisfying the program’s
completion—for instance, one that makes p identically true.

Another example of this kind, important for applications of logic program-
ming, is given by the recursive definition of transitive closure:

q(X, Y)← p(X, Y).
q(X, Z)← q(X, Y), q(Y, Z). (3)

The completion of the union of this program with a definition of p has, in many
cases, unintended models, in which q is weaker than the transitive closure of p
that we want to define.

Should we say then that Herbrand minimal models provide a better seman-
tics for logic programming than program completion? Yes and no. The concept
of completion has a fundamental advantage: it is applicable to programs with

Twelve Definitions of a Stable Model 39

negation. Such a program, viewed as a set of clauses, usually has several minimal
Herbrand models, and some of them may not satisfy the program’s completion.
Such “bad” models reflect neither the intended meaning of the program nor the
behavior of Prolog. For instance, the program

p(a). p(b). q(a).
r(X)← p(X),not q(X). (4)

has two minimal Herbrand models:

{p(a), p(b), q(a), r(b)} (5)

(“good”) and
{p(a), p(b), q(a), q(b)} (6)

(“bad”). The completion of (4)

∀X(p(X)↔ (X = a ∨X = b)) ∧ ∀X(q(X)↔ X = a)
∧∀X(r(X)↔ (p(X) ∧ ¬q(X))) ∧ a �= b

characterizes the good model.

2.2 The Challenge

In the 1980s, the main challenge in the study of the semantics of logic program-
ming was to invent a semantics that

– in application to a program without negation, such as (2), describes the
minimal Herbrand model,

– in the presence of negation, as in example (4), selects a “good” minimal
model satisfying the program’s completion.

Such a semantics was proposed in two papers presented at the 1986 Workshop
on Foundations of Deductive Databases and Logic Programming [1], [44]. That
approach was not without defects, however. First, it is limited to programs in
which recursion and negation “don’t mix.” Such programs are called stratified.
Unfortunately, some useful Prolog programs do not satisfy this condition. For
instance, we can say that a position in a two-person game is winning if there ex-
ists a move from it to a non-winning position (cf. [40]). This rule is not stratified:
it recursively defines winning in terms of non-winning. A really good semantics
should be applicable to rules like this.

Second, the definition of the semantics of stratified programs is somewhat
complicated. It is based on the concept of the iterated least fixpoint of a program,
and to prove the soundness of this definition one needs to show that this fixpoint
doesn’t depend on the choice of a stratification. A really good semantics should
be a little easier to define.

The stable model semantics, as well as the well-founded semantics [42,43], can
be seen as an attempt to generalize and simplify the iterated fixpoint semantics
of stratified programs.

40 V. Lifschitz

3 Nonmonotonic Reasoning

Many events in the history of research on stablemodels canbe only understood ifwe
think of it as part of a broader research effort—the investigation of nonmonotonic
reasoning. Three theories of nonmonotonic reasoning are particularly relevant.

3.1 Circumscription

Circumscription [28,28,29] is a syntactic transformation that turns a first-order
sentence F into the conjunction of F with another formula, which expresses
a minimality condition (the exact form of that condition depends on the “cir-
cumscription policy”). This additional conjunctive term involves second-order
quantifiers.

Circumscription generalizes the concept of a minimal model from [41]. The
iterated fixpoint semantics of stratified programs can be characterized in terms
of circumscription also [20]. On the other hand, circumscription is similar to
program completion in the sense that both are syntactic transformations that
make a formula stronger. The relationship between circumscription and program
completion was investigated in [37].

3.2 Default Logic

A default theory in the sense of [36] is characterized by a set W of “axioms”—
first-order sentences, and a set D of “defaults”—expressions of the form

F : M G1, . . . , M Gn

H
, (7)

where F, G1, . . . , Gn, H are first-order formulas. The letter M, according to Reiter,
is to be read as “it is consistent to assume.” Intuitively, default (7) is similar to the
inference rule allowing us to derive the conclusion H from the premise F , except
that the applicability of this rule is limited by the justifications G1, . . . , Gn; deriv-
ing H is allowed only if each of the justifications can be “consistently assumed.”

This informal description of the meaning of a default is circular: to decide
which formulas can be derived using one of the defaults from D we need to
know whether the justifications of that default are consistent with the formulas
that can be derived from W using the inference rules of classical logic and the
defaults from D—including the default that we are trying to understand! But
Reiter was able to turn his intuition about M into a precise semantics. His theory
of defaults tells us under what conditions a set E of sentences is an “extension”
for the default theory with axioms W and defaults D.

In Section 4 we will see that one of the earliest incarnations of the stable
model semantics was based on treating rules as defaults in the sense of Reiter.

3.3 Autoepistemic Logic

According to [32], autoepistemic logic “is intended to model the beliefs of an
agent reflecting upon his own beliefs.” The definition of propositional autoepis-
temic logic builds on the ideas of [30] and [31].

Twelve Definitions of a Stable Model 41

Formulas of this logic are constructed from atoms using propositional connec-
tives and the modal operator L (“is believed”). Its semantics specifies, for any
set A of formulas (“axioms”), which sets of formulas are considered “stable ex-
pansions” of A. Intuitively, Moore explains, the stable expansions of A are “the
possible sets of beliefs that a rational agent might hold, given A as his premises.”

In Section 4 we will see that one of the earliest incarnations of the stable model
semantics was based on treating rules as autoepistemic axioms in the sense of
Moore. The term “stable model” is historically related to “stable expansions” of
autoepistemic logic.

3.4 Relations between Nonmonotonic Formalisms

The intuitions underlying circumscription, default logic, and autoepistemic logic
are different from each other, but related. For instance, circumscribing (that is,
minimizing the extent of) a predicate p is somewhat similar to adopting the
default

true : M¬p(X)
¬p(X)

(if it is consistent to assume that X does not have the property p, conclude that
it doesn’t). On the other hand, Moore observes that “a formula is consistent if
its negation is not believed”; accordingly, Reiter’s M is somewhat similar to the
combination ¬L¬ in autoepistemic logic, and default (7), in propositional case,
is somewhat similar to the autoepistemic formula

F ∧ ¬L¬G1 ∧ · · · ∧ ¬L¬Gn → H.

However, the task of finding precise and general relationships between these
three formalisms turned out to be difficult. Discussing technical work on that
topic is beyond the scope of this paper.

4 Definitions A and B, in Terms of Translations into
Nonmonotonic Logic

The idea of [14] is to think of the expression not A in a logic program as syn-
onymous with the autoepistemic formula ¬LA (“A is not believed”). Since au-
toepistemic logic is propositional, the program needs to be grounded before this
transformation is applied. After grounding, each rule (1) is rewritten as a formula:

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0, (8)

and then L inserted after each negation. For instance, to explain the meaning of
program (4), we take the result of its grounding

p(a). p(b). q(a).
r(a)← p(a),not q(a).
r(b)← p(b),not q(b).

(9)

and turn it into a collection of formulas:

42 V. Lifschitz

p(a), p(b), q(a),
p(a) ∧ ¬L q(a)→ r(a),
p(b) ∧ ¬L q(b)→ r(b).

The autoepistemic theory with these axioms has a unique stable expansion,
and the atoms from that stable expansion form the intended model (5) of the
program.

This epistemic interpretation of logic programs—what we will call Defini-
tion A—is more general than the iterated fixpoint semantics, and it is much
simpler. One other feature of Definition A that makes it attractive is the sim-
plicity of the underlying intuition: negation as failure expresses the absence of
belief.

The “default logic semantics” proposed in [3] is translational as well; it inter-
prets logic programs as default theories. The head A0 of a rule (1) turns into the
conclusion of the default, the conjunction A1 ∧· · · ∧Am of the positive members
of the body becomes the premise, and each negative member not Ai turns into
the justification M¬Ai (“it is consistent to assume ¬Ai”). For instance, the last
rule of program (4) corresponds to the default

p(X) : M¬q(X)
r(X)

. (10)

There is no need for grounding, because defaults are allowed to contain variables.
This difference between the two translations is not essential though, because
Reiter’s semantics of defaults treats a default with variables as the set of its
ground instances. Grounding is simply “hidden” in the semantics of default
logic.

This Definition B of the stable model semantics stresses an analogy between
rules in logic programming and inference rules in logic. Like Definition A, it
has an epistemic flavor, because of the relationship between the “consistency
operator” M in defaults and the autoepistemic “belief operator” L (Section 3.4).

The equivalence between these two approaches to semantics of traditional
programs follows from the fact that each of them is equivalent to Definition C
of a stable model reviewed in the next section. This was established in [12] for
the autoepistemic semantics and in [26] for the default logic approach.

5 Definition C, in Terms of the Reduct

Definitions A and B are easy to understand—assuming that one is familiar with
formal nonmonotonic reasoning. Can we make these definitions direct and avoid
explicit references to autoepistemic logic and default logic?

This question has led to the most widely used definition of the stable model
semantics, Definition C [12]. The reduct of a program Π relative to a set M of
atoms is obtained from Π by grounding followed by

Twelve Definitions of a Stable Model 43

(i) dropping each rule (1) containing a term not Ai with Ai ∈M , and
(ii) dropping the negative parts not Am+1, . . . ,not An from the bodies of the

remaining rules.

We say that M is a stable model of Π if the minimal model of (the set of clauses
corresponding to the rules of) the reduct of Π with respect to X equals X . For
instance, the reduct of program (4) relative to (5) is

p(a). p(b). q(a).
r(b)← p(b). (11)

The minimal model of this program is the set (5) that we started with; conse-
quently, that set is a stable model of (4).

Definition C was independently invented in [10].

6 Definitions D and E, in Terms of Unfounded Sets and
Loop Formulas

According to [39], stable models can be characterized in terms of the concept
of an unfounded set, which was introduced in [42] as part of the definition of
the well-founded semantics. Namely, a set M of atoms is a stable model of a
(grounded) program Π iff

(i) M satisfies Π ,1 and
(ii) no nonempty subset of M is unfounded for Π with respect to M .2

According to [17], this Definition D can be refined using the concept of a
loop, introduced many years later by [23]. If we require, in condition (i), that
M satisfy the completion of the program, rather than the program itself, then
it will be possible to relax condition (ii) and require only that no loop contained
in M be unfounded; there will be no need then to refer to arbitrary nonempty
subsets in that condition.

In [23] loops are used in a different way. They associated with every loop X
of Π a certain propositional formula, called the loop formula for X . According
to their Definition E, M is a stable model of Π iff M satisfies the completion
of Π conjoined with the loop formulas for all loops of Π .

The invention of loop formulas has led to the creation of systems for gen-
erating stable models that use SAT solvers for search (“SAT-based answer set
programming”). Several systems of this kind performed well in a recent ASP
system competition [11].

1 That is, M satisfies the propositional formulas (8) corresponding to the rules of Π .
2 To be precise, unfoundedness is defined with respect to a partial interpretation, not

a set of atoms. But we are only interested here in the special case when the partial
interpretation is complete, and assume that complete interpretations are represented
by sets of atoms in the usual way.

44 V. Lifschitz

7 Definition F, in Terms of Circumscription

We saw in Section 4 that a logic program can be viewed as shorthand for an
autoepistemic theory or a default theory. The characterization of stable models
described in [25, Section 3.4.1] relates logic programs to the third nonmono-
tonic formalism reviewed above, circumscription. Like Definitions A and B, it
is based on a translation, but the output of that translation is not simply a
circumscription formula; it involves also some additional conjunctive terms.

The first step of that translation consists in replacing the occurrences of each
predicate symbol p in the negative parts ¬Am+1 ∧ · · · ∧ ¬An of the formulas (8)
corresponding to the rules of the program with a new symbol p′ and forming
the conjunction of the universal closures of the resulting formulas. The sentence
obtained in this way is denoted by C(Π). For instance, if Π is (4) then C(Π) is

p(a) ∧ p(b) ∧ q(a) ∧ ∀X(p(X) ∧ ¬q′(X)→ r(X)).

The translation of Π is a conjunction of two sentences: the circumscription of
the old (non-primed) predicates in C(Π) and the formulas asserting, for each of
the new predicates, that it is equivalent to the corresponding old predicate. For
instance, the translation of (4) is

CIRC[C(Π)] ∧ ∀X(q′(X)↔ q(X)); (12)

the circumscription operator CIRC is understood here as the minimization of
the extents of p, q, r.

The stable models of Π can be characterized as the Herbrand interpretations
satisfying the translation of Π , with the new (primed) predicates removed from
them (“forgotten”).

An interesting feature of this Definition F is that, unlike Definitions A–E,
it does not involve grounding. We can ask what non-Herbrand models of the
translation of a logic program look like. Can it be convenient in some cases to
represent possible states of affairs by such “non-Herbrand stable models” of a
logic program? A non-Herbrand model may include an object that is different
from the values of all ground terms, or there may be several ground terms having
the same value in it; can this be sometimes useful?

We will return to the relationship between stable models and circumscription
in Section 11.

8 Definitions G and H, in Terms of Tightening and the
Situation Calculus

We will talk now about two characterizations of stable models that are based,
like Definition F, on translations into classical logic that use auxiliary predicates.

For a class of logic programs called tight, stable models are identical to Her-
brand models of the program’s completion [6]. (Programs (2) and (3), used above
to illustrate peculiarities of the completion semantics, are not tight.) Definition G

Twelve Definitions of a Stable Model 45

[45] is based on a process of “tightening” that makes an arbitrary traditional pro-
gram tight. This process uses two auxiliary symbols: the object constant 0 and
the unary function constant s (“successor”). Besides, the tightened program uses
auxiliary predicates with an additional numeric argument. Intuitively, p(X, N)
expresses that there exists a sequence of N “applications” of rules of the pro-
gram that “establishes” p(X). The stable models of a program are described
then as Herbrand models of the completion of the result of its tightening, with
the auxiliary symbols “forgotten.”

We will not reproduce here the definition of tightening, but here is an example:
the result of tightening program (4) is

p(a, s(N)). p(b, s(N)). q(a, s(N)).
r(X, s(N))← p(X, N),not q(X).
p(X)← p(X, N).
q(X)← q(X, N).
r(X)← r(X, N).

Rules in line 1 tell us that p(a) can be established in any number of steps that
is greater than 0; similarly for p(b) and q(a). According to line 2, r(X) can
be established in N + 1 steps if p(X) can be established in N steps and q(X)
cannot be established at all (note that an occurrence of a predicate does not get
an additional numeric argument if it is negated). Finally, an atom holds if it can
be established by some number N of rule applications.

Definition H [21] treats a rule in a logic program as an abbreviated description
of the effect of an action—the action of “applying” that rule—in the situation
calculus.3 For instance, if the action corresponding to the last rule of (4) is de-
noted by lastrule(X) then that rule can be viewed as shorthand for the situation
calculus formula

p(X, S) ∧ ¬∃S(q(X, S))→ r(X, do(lastrule(X), S))

(if p(X) holds in situation S and q(X) does not hold in any situation then r(X)
holds after executing action lastrule(X) in situation S).

In this approach to stable models, the situation calculus function do plays the
same role as adding 1 to N in Wallace’s theory. Instead of program completion,
Lin and Reiter use the process of turning effect axioms into successor state
axioms, which is standard in applications of the situation calculus.

9 Definition I, in Terms of Equilibrium Logic

The logic of here-and-there, going back to the early days of modern logic [15], is a
modification of classical propositional logic in which propositional interpretations
in the usual sense—assignments, or sets of atoms—are replaced by pairs (X, Y)

3 See [38] for a detailed description of the situation calculus [27] as developed by the
Toronto school.

46 V. Lifschitz

of sets of atoms such that X ⊆ Y . (We think of X as the set of atoms that are
true “here”, and Y as the set of the atoms that are true “there.”) The semantics
of this logic defines when (X, Y) satisfies a formula F .

In [35], the logic of here-and-there was used as a starting point for defining a
nonmonotonic logic closely related to stable models. According to that paper, a
pair (Y, Y) is an equilibrium model of a propositional formula F if F is satisfied in
the logic of here-and-there by (Y, Y) but is not satisfied by (X, Y) for any proper
subset X of Y . A set M of atoms is a stable model of a program Π iff (M, M) is
an equilibrium model of the set of propositional formulas (8) corresponding to
the grounded rules of Π .

This Definition I is important for two reasons. First, it suggests a way to ex-
tend the concept of a stable model from traditional rules—formulas of form (1)—
to arbitrary propositional formulas: we can say that M is a stable model of a
propositional formula F if (M, M) is an equilibrium model of F . This is valuable
from the perspective of answer set programming, because many “nonstandard”
constructs commonly used in ASP programs, such as choice rules and weight
constraints, can be viewed as abbreviations for propositional formulas [7]. Sec-
ond, Definition I is a key to the theorem about the relationship between the
concept of strong equivalence and the logic of here-and-there [19].

10 Definitions J and K, in Terms of Modified Reducts

In [5] the definition of the reduct reproduced in Section 5 is modified by in-
cluding the positive members of the body, along with negative members, in the
description of step (i), and by removing step (ii) altogeher. In other words, in
the modified process of constructing the reduct relative to M we delete from the
program all rules (1) containing in their bodies a term Ai such that Ai �∈ M
or a term not Ai such that Ai ∈ M ; the other rules of the program remain
unchanged. For instance, the modified reduct of program (4) relative to (5) is

p(a). p(b). q(a).
r(b)← p(b),not q(b).

Unlike the reduct (11), this modified reduct contains negation as failure in the
last rule. Generally, unlike the reduct in the sense of Section 5, the modified
reduct of a program has several minimal models.

According to Definition J, M is a stable model of Π iff M is a minimal model
of the modified reduct of Π relative to M .

In [9] the definition of the reduct is modified in a different way. The reduct of
a program Π in the sense of [9] is obtained from the formulas (8) corresponding
to the grounding rules of Π by replacing every maximal subformula of F that is
not satisfied by M with “false”. For instance, the formulas corresponding to the
grounded rules (9) of (4) are the formulas

p(a), p(b), q(a),
false→ false,
p(b) ∧ ¬ false→ r(b).

Twelve Definitions of a Stable Model 47

Definition K: M is a stable model of Π iff M is a minimal model of the reduct
of Π in the sense of [9] relative to M .

Definitions J and K are valuable because, like definition I, they can be ex-
tended to some nontraditional programs. The former was introduced, in fact,
in connection with the problem of extending the stable model semantics to pro-
grams with aggregates. The latter provides a satisfactory solution to the problem
of aggregates as well. Furthermore, it can be applied in a straightforward way
to arbitrary propositional formulas, and this generalization of the stable model
semantics turned out to be equivalent to the generalization based on equilibrium
logic that was mentioned at the end of Section 9.

11 Definition L, in Terms of Modified Circumscription

In [8] a modification of circumscription is defined that is called the stable model
operator, SM. According to their Definition L, an Herbrand interpretation M is
a stable model of Π iff M satisfies SM[F] for the conjunction F of the universal
closures of the formulas (8) corresponding to the rules of Π .

Syntactically, the difference between SM and circumscription is really minor.
If F contains neither implications nor negations then SM[F] does not differ from
CIRC[F] at all. If F has “one level of implications” and no negations (as, for
instance, when F corresponds to a set of traditional rules without negation, such
as (2) and (3)), SM[F] is equivalent to CIRC[F]. But SM becomes essentially
different from CIRC as soon as we allow negation in the bodies of rules.

The difference between SM[F] and the formulas used in Definition F is that
the former does not involve auxiliary predicates and consequently does not re-
quire additional conjunctive terms relating auxiliary predicates to the predicates
occurring in the program.

Definition L combines the main attractive feature of Definitions F, G, and
H—no need for grounding—with the main attractive feature of Definitions I
and K—applicability to formulas of arbitrarily complex logical form. In [16] this
fact is used to give a semantics for an ASP language with choice rules and
aggregates without any references to grounding.

Among the other definitions of a stable model discussed in this paper, Defini-
tion I, based on equilibrium logic, is the closest relative of Definition L. Indeed,
in [34] the semantics of equilibrium logic is expressed by quantified Boolean
formulas, and we can say that Definition L eliminated the need to ground the
program using the fact that the approach of that paper can be easily extended
from propositional formulas to first-order formulas.

A characterization of stable models that involves grounding but is otherwise
similar to Definition L is given in [24]. It has emerged from research on the
nonmonotonic logic of knowledge and justified assumptions [22].

12 Conclusion

Research on stable models has brought us many pleasant surprises.

48 V. Lifschitz

At the time when the theory of iterated fixpoints of stratified programs was
the best available approach to semantics of logic programming, it was difficult
to expect that an alternative as general and as simple as Definition C would
be found. And prior to the invention of Definition K, who could think that
Definition C can be extended to choice rules, aggregates and more without
paying any price in terms of the simplicity of the process of constructing the
reduct?

A close relationship between stable models and a nonclassical logic that had
been invented decades before the emergence of logic programming was a big
surprise. The possibility of defining stable models by twisting the definition of
circumscription just a little was a surprise too.

There was a time when the completion semantics, the well-founded seman-
tics, and the stable model semantics—and a few others—were seen as rivals;
every person interested in the semantics of negation in logic programming would
tell you then which one was his favorite. Surprisingly, these bitter rivals turned
out to be so closely related to each other on a technical level that they even-
tually became good friends. One cannot study the algorithms used today for
generating stable models without learning first about completion and unfounded
sets.

And maybe the biggest surprise of all was that an attempt to clarify some
semantic issues related to negation in Prolog was destined to be enriched by
computational ideas coming from research on the design of SAT solvers and to
give rise to a new knowledge representation paradigm, answer set programming.

Acknowledgements

Many thanks to Michael Gelfond, Joohyung Lee, Nicola Leone, Yuliya Lierler,
Fangzhen Lin,Victor Marek, and Mirek Truszczyński for comments on a draft of
this note. I am also grateful to Mirek and to Andrea Formisano for the invitation
to contribute a paper to the special session on stable models planned as part of
ICLP’08. This work was partially supported by the National Science Foundation
under Grant IIS-0712113.

References

1. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann, San Mateo (1988)

2. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
Working Notes of the AAAI Spring Symposium on Logical Formalizations of Com-
monsense Reasoning (2003),
http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf

3. Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscription
in stratified logic programming. In: Proc. LICS 1987, pp. 89–97 (1987)

4. Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1978)

http://www.krlab.cs.ttu.edu/papers/download/bg03.pdf

Twelve Definitions of a Stable Model 49

5. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS, vol. 3229. Springer, Heidelberg (2004)

6. Fages, F.: A fixpoint semantics for general logic programs compared with the well–
supported and stable model semantics. New Generation Computing 9, 425–443
(1991)

7. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74 (2005)

8. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.
372–379 (2007)

9. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS, vol. 3662, pp. 119–131. Springer,
Heidelberg (2005)

10. Fine, K.: The justification of negation as failure. In: Proceedings of the Eighth
International Congress of Logic, Methodology and Philosophy of Science, pp. 263–
301. North Holland, Amsterdam (1989)

11. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński,
M.: The first answer set programming system competition. In: Baral, C., Brewka,
G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 3–17. Springer, Heidelberg
(2007)

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

13. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Warren, D.,
Szeredi, P. (eds.) Proceedings of International Conference on Logic Programming
(ICLP), pp. 579–597 (1990)

14. Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National Con-
ference on Artificial Intelligence (AAAI), pp. 207–211 (1987)

15. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften. Physikalisch-mathematische
Klasse, pp. 42–56 (1930)

16. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 472–479 (2008)

17. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 503–508 (2005)

18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 369–389 (1999)

19. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526–541 (2001)

20. Lifschitz, V.: On the declarative semantics of logic programs with negation. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp.
177–192. Morgan Kaufmann, San Mateo (1988)

21. Lin, F., Reiter, R.: Rules as actions: A situation calculus semantics for logic pro-
grams. Journal of Logic Programming 31, 299–330 (1997)

22. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp. 112–117 (2002)

50 V. Lifschitz

23. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence 157, 115–137 (2004),
http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

24. Lin, F., Zhou, Y.: From answer set logic programming to circumscription via logic
of GK. In: Proceedings of International Joint Conference on Artificial Intelligence,
IJCAI (2007)

25. Lin, F.: A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University
(1991)

26. Marek, V., Truszczyński, M.: Stable semantics for logic programs and default the-
ories. In: Proc. North American Conf. on Logic Programming, pp. 243–256 (1989)

27. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

28. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial In-
telligence 13, 27–39, 171–172 (1980)

29. McCarthy, J.: Applications of circumscription to formalizing common sense knowl-
edge. Artificial Intelligence 26(3), 89–116 (1986)

30. McDermott, D., Doyle, J.: Nonmonotonic logic I. Artificial Intelligence 13, 41–72
(1980)

31. McDermott, D.: Nonmonotonic logic II: Nonmonotonic modal theories. Journal of
ACM 29(1), 33–57 (1982)

32. Moore, R.: Semantical considerations on nonmonotonic logic. Artificial Intelli-
gence 25(1), 75–94 (1985)

33. Niemelä, I., Simons, P.: Extending the Smodels system with cardinality and weight
constraints. In: Minker, J. (ed.) Logic-Based Artificial Intelligence, pp. 491–521.
Kluwer, Dordrecht (2000)

34. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic
programs with nested expressions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001.
LNCS, vol. 2258, pp. 306–320. Springer, Heidelberg (2001)

35. Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix,
J., Pereira, L., Przymusinski, T. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp.
57–70. Springer, Heidelberg (1997)

36. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
37. Reiter, R.: Circumscription implies predicate completion (sometimes). In: Pro-

ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.
418–420 (1982)

38. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

39. Saccá, D., Zaniolo, C.: Stable models and non-determinism in logic programs with
negation. In: Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pp. 205–217 (1990)

40. van Emden, M., Clark, K.: The logic of two-person games. In: Micro-PROLOG:
Programming in Logic, pp. 320–340. Prentice-Hall, Englewood Cliffs (1984)

41. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. Journal of ACM 23(4), 733–742 (1976)

42. Van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded sets and well-founded seman-
tics for general logic programs. In: Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, Texas,
March 21-23, 1988, pp. 221–230. ACM Press, New York (1988)

http://www.cs.ust.hk/faculty/flin/papers/assat-aij-revised.pdf

Twelve Definitions of a Stable Model 51

43. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic
programs. Journal of ACM 38(3), 620–650 (1991)

44. Van Gelder, A.: Negation as failure using tight derivations for general logic pro-
grams. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Pro-
gramming, pp. 149–176. Morgan Kaufmann, San Mateo (1988)

45. Wallace, M.: Tight, consistent and computable completions for unrestricted logic
programs. Journal of Logic Programming 15, 243–273 (1993)

	Twelve Definitions of a Stable Model
	Introduction
	Minimal Models, Completion, and Stratified Programs
	Minimal Models vs. Completion
	The Challenge

	Nonmonotonic Reasoning
	Circumscription
	Default Logic
	Autoepistemic Logic
	Relations between Nonmonotonic Formalisms

	Definitions A and B, in Terms of Translations into Nonmonotonic Logic
	Definition C, in Terms of the Reduct
	Definitions D and E, in Terms of Unfounded Sets and Loop Formulas
	Definition F, in Terms of Circumscription
	Definitions G and H, in Terms of Tightening and the Situation Calculus
	Definition I, in Terms of Equilibrium Logic
	Definitions J and K, in Terms of Modified Reducts
	Definition L, in Terms of Modified Circumscription
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

