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The γeff Approach and Approximate Relations
for the Determination of Aerothermodynamic

Parameters

In this book, we employ approximate relations for the determination of aero-
thermodynamic data. These are used in order to give quantitative information
and to illustrate phenomena. In order to be sufficiently self-consistent, we pro-
vide these relations as well as others here. Derived are first elements of the
RHPM+ flyer and the γeff approach together with the bow shock total pres-
sure loss. Some γeff results in the large Mach number limit are given. Then the
used or referred-to relations for the estimation of transport properties are pro-
vided, and finally formulas for stagnation point heating and flat surface bound-
ary layer parameters. References are provided in all instances. For more general
and detailed information the reader is referred to [1].

10.1 Elements of the RHPM+ Flyer: γeff Approach and
Bow Shock Total Pressure Loss

10.1.1 Introduction and Delineation

In [1], the RHPM1 flyer was introduced, which can be used to illustrate, quanti-
tatively with care and to a certain degree, characteristic aerothermodynamic
properties of the different vehicle classes. It is essentially a two-dimensional
approximation of the sufficiently flat windward side of the vehicle2 by a flat
surface (neglecting the nose bluntness) or a succession of flat surfaces, if aero-
dynamic trim and/or control surfaces, or inlet ramps are considered. To this
geometrical approximation, the shock/expansion theory is applied, therefore
the name RHPM flyer. The RHPM flyer can be a fair or a rather crude ap-
proximation of real flight vehicles, depending on the geometry under consider-
ation. The more slender a configuration is and the smaller the angle of attack,
the better is the approximation, for example, the wall pressure coefficient cpw .
Flow properties influenced by the fact that a blunt nose is present in reality
and therefore a total pressure loss is incurred, for example flow velocity and

1 RHPM stands for Rankine–Hugoniot–Prandtl–Meyer.
2 This means, that the angle of attack of the RHPM flyer is not necessarily the

nominal angle of attack α of the approximated vehicle, but the inclination angle
α, eq. (4.4), or a suitable mean angle.
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Mach number at the body surface, may show larger errors. This holds also if
high temperature real gas effects are present in reality. All should be checked
beforehand for the case considered.

If more exact data are needed, simplified configurations can be employed,
which approximate the lower symmetry line of, for instance, a RV-W. Exam-
ples are the asymptotic half-angle hyperboloid approximating the windward
centerline of the Space Shuttle Orbiter [2], and the hyperboloid-flare approx-
imation of the windward centerline with bodyflap deflection of the HERMES
vehicle [3]. Of course, simple estimates are no more possible for these axisym-
metric configurations, since solutions of the Euler or Navier–Stokes equations
must be performed.

In Chapter 3, we use a sphere-cone (blunt cone) approximation for the
windward symmetry line of the Space Shuttle Orbiter. We must accept the cur-
vature jump at the sphere/cone junction, but obtain better asymptotic data
for the flat part of the vehicle than with the asymptotic half-angle hyperboloid
approximation. The nose radius is a function of the angle of attack [2, 4].

We give now elements of an extension of the original RHPM flyer to the
RHPM+ flyer, taking into account a) a γeff for the flow past the vehicle in-
cluding the bow shock,3 different from γ∞, Sub-Sections 10.1.2 to 10.1.4, and
b) the influence of the total pressure loss due to the vehicle’s bow shock, ap-
proximated via the flow-normal portion of the bow shock, Sub-Section 10.1.5.
While using the RHPM+ flyer approximation we must be aware of the limita-
tions discussed above. Especially we must note that the error due to the basic
RHPM approximation can be larger than that we get without taking into ac-
count high temperature real gas effects. Nevertheless, in suitable cases we are
able to quantify approximately the latter, at least parametrically.

10.1.2 The γeff Approach: General Considerations

The use of an effective ratio of the specific heats γeff permits high temperature
real gas effects to be accounted for approximately. For example, for the Space
Shuttle Orbiter at M∞ = 24 and α = 40◦, ratios of specific heats computed
numerically are γ ≈ 1.3 just behind the bow shock in the nose region, γ ≈ 1.12
close to the body in the nose region and γ ≈ 1.14 along the lower body surface
[5]. Although aerothermodynamic parameters found with approximate meth-
ods (shock–expansion theory, Newton-derived methods) employing the γeff

approach must be considered with care, such methods can be used to quantify,
parameterize, and illustrate real-gas effects in a simple way.

Approximate methods need first of all the relations for flow parameter
changes across a shock wave. The shock relations usually found in the litera-
ture are derived for a constant ratio of specific heats (γ = const.) in the whole
flow domain considered (nominal case). If we wish to consider high tempera-
ture real gas effects in approximate flow field relations for a flight vehicle, we
3 γeff of course must be either be known beforehand from other sources, or is

applied parametrically.
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have ahead of the vehicle the original atmosphere with γ = γ∞ (= 1.4 for air).
If we chose an effective ratio of specific heats γeff < γ∞, which then is con-
stant behind the shock wave and on the body surface, we have two different
ratios of specific heats in the whole flow domain.

In the situation posed above, the shock relations are different from those for
the nominal case found in the literature, e.g., [6]. Of course, the conservation of
mass, momentum and enthalpy across a shock wave must be fulfilled also here.
We show first the detailed derivation of the relations for the normal shock wave
and give then the relations for the oblique shock wave. Unfortunately for the
γeff approach compact-form relations as those given in [6] are no more achiev-
able. We use the classical approach with ‘1’ designating the parameters ahead
of the shock wave, and ‘2’ those behind it (in applications ‘1’ would denote
the parameters ahead of the shock with γ∞, and ‘2’ the parameters behind the
shock with γeff ). The familiar pressure coefficient cp2 reads

cp2 =
p2 − p1

q1
=

2
γ1M2

1

(
p2

p1
|γ2 − 1

)
=

2
γ∞M2∞

(
p2

p∞
|γeff

− 1
)
. (10.1)

10.1.3 Normal Shock Wave

For a normal shock wave, the equations for the conservation of the three entities
read, with ht being the total enthalpy:

ρ1v1 = ρ2v2, (10.2)

ρ1v
2
1 + p1 = ρ2v

2
2 + p2, (10.3)

(ht1 =) h1 +
1
2
v2
1 = h2 +

1
2
v2
2 (= ht2). (10.4)

In the γeff approach, the latter relation is changed. Noting that cp1 and cp2

denote here the specific heats at constant pressure:

h1 = cp1T1 =
γ1

γ1 − 1
R1T1 =

γ1

γ1 − 1
p1

ρ1
, (10.5)

and
h2 = cp2T2 =

γ2

γ2 − 1
R2T2 =

γ2

γ2 − 1
p2

ρ2
. (10.6)

We obtain instead of eq. (10.4)

(ht1 =)
γ1

γ1 − 1
p1

ρ1
+

1
2
v2
1 =

γ2

γ2 − 1
p2

ρ2
+

1
2
v2
2 (= ht2). (10.7)

Note that p1 = ρ1T1R1 and p2 = ρ2T2R2. Because we connect the thermo-
dynamic entities ahead ‘1’ and behind ‘2’ the shock analytically, we must also
connect the specific gas constants R1 and R2 with each other [7]. This is made
with the so called compressibility factor Z = Z(ρ, T )
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R2 = Z(ρ2, T2)R1. (10.8)

The compressibility factor in the frame of our considerations is, in the few cases
where needed, a problematic issue. Details are given in Sub-Section 10.1.6.

In the classical way, it follows then from eqs. (10.2) and (10.3)

v2
1 =

(
ρ2

ρ1

)
p2 − p1

ρ2 − ρ1
, (10.9)

and

v2
2 =

(
ρ1

ρ2

)
p2 − p1

ρ2 − ρ1
, (10.10)

and finally

v2
2 =

(
ρ1

ρ2

)2

v2
1 . (10.11)

Putting eqs. (10.9) and (10.10) into eq. (10.7), we obtain the so-called Hugoniot
relation which combines the thermodynamic parameters ahead and behind the
shock wave

h2 − h1 =
γ2

γ2 − 1
p2

ρ2
− γ1

γ1 − 1
p1

ρ1
=

1
2

(
1
ρ1

+
1
ρ2

)
(p2 − p1). (10.12)

From this the pressure ratio across the shock wave is obtained

p2

p1
=

(
γ2 − 1
γ1 − 1

) ρ2
ρ1

(γ1 + 1) − (γ1 − 1)

(γ2 + 1) − ρ2
ρ1

(γ2 − 1)
. (10.13)

The Mach number M1 and speed of sound a1 are defined by

M1 =
v1
a1
, (10.14)

a1 =
√
γ1R1T1 =

√
γ1
p1

ρ1
. (10.15)

Combining eq. (10.14) with eq. (10.9) yields the connection of the pressure and
the density ratio across the shock with the Mach number M1 ahead of it

1
γ1

(
ρ2

ρ1

)
p2/p1 − 1
ρ2/ρ1 − 1

= M2
1 . (10.16)

We substitute here p2/p1 with eq. (10.13) and obtain the relation for the den-
sity ratio

(
ρ2

ρ1

)2 [
γ1M

2
1 (γ2 − 1) + 2γ1

γ2 − 1
γ1 − 1

]
+

+
(
ρ2

ρ1

)[−2γ1M
2
1γ2 − 2γ2

]
+ [γ1M

2
1 (γ2 + 1)] = 0.

(10.17)
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If we denote the terms in the three square brackets with A, B, and C, respec-
tively, we get a solution with

ρ2

ρ1

∣∣∣∣
1,2

=
−B ±√

B2 − 4AC
2A

(
=
v1
v2

∣∣∣∣
1,2

)
. (10.18)

A compact-form solution as for a constant γ in the whole flow domain [1, 6] is
not possible. The positive sign of the square root is valid. The result is then used
to determine numerically the other ratios across the shock wave (see below).
Choosing γ2 ≡ γ1 = γ yields the familiar compact-form solutions for this and
all other parameter ratios. If γ1 �= γ2, the caseM1 = 1 is not included, because
we assume isenthalpic flow.

For M1 → ∞ we get further

ρ2

ρ1

∣∣∣∣
M1→∞

=
γ2 + 1
γ2 − 1

, (10.19)

and also the other limiting cases, given for instance in [1].
The temperature ratio T2/T1 is determined from:

T2

T1
=
p2

p1

ρ1

ρ2

R1

R2
. (10.20)

The speed of sound behind the shock a2 is defined by:

a2 =
√
γ2T2R2 =

√
γ2p2/ρ2. (10.21)

The Mach numberM2 = v2/a2 is found with the help of eqs. (10.11) and (10.21)
after some manipulation in the following way:

M2
2 =

v2
2

a2
2

=
(
ρ1

ρ2

)2

v2
1

ρ2

γ2p2
=
γ1

γ2
M2

1

ρ1

ρ2

p1

p2
. (10.22)

It remains to determine the total pressure pt2 , total density ρt2 and total tem-
perature4 Tt2 behind the shock wave. The total pressure pt2 is found from

pt2

pt1

=
pt2

p2

p2

p1

p1

pt1

, (10.23)

with p2/p1 from eq. (10.13) after solution of eq (10.17), and

pt2

p2
=

(
1 +

γ2 − 1
2

M2
2

)γ2/(γ2−1)

,
pt1

p1
=

(
1 +

γ1 − 1
2

M2
1

)γ1/(γ1−1)

.

(10.24)

4 The total enthalpy is constant, but the total temperature is not because of eq.
(10.7).
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Table 10.1. Flow parameters ratios across a normal shockwave with γeff , and the
equations and the input for their numerical determination.

Parameter Ratio Symbol Eq. Input

Density ρ2/ρ1 (10.17) γ1, γ2,M
2
1

Pressure p2/p1 (10.13) γ1, γ2, ρ2/ρ1

Temperature T2/T1 (10.20) p2/p1, ρ2/ρ1, R2

Velocity v2/v1 (10.2) ρ2/ρ1

Mach number M2/M1 (10.22) γ1, γ2, ρ2/ρ1, p2/p1

Total pressure pt2/pt1 (10.23) pt2/p1, p2/p1, pt1/p1

Total density ρt2/ρt1 (10.25) ρt2/ρ1, ρ2/ρ1, ρt1/ρ1

Total temperature Tt2/Tt1 (10.27) pt2/pt1 , ρt2/ρt1 , R2

Similarly we find for the total density ρt2 :

ρt2

ρt1

=
ρt2

ρ2

ρ2

ρ1

ρ1

ρt1

, (10.25)

with

ρt2

ρ2
=

(
1 +

γ2 − 1
2

M2
2

)1/(γ2−1)

,
ρt1

ρ1
=

(
1 +

γ1 − 1
2

M1
1

)1/(γ1−1)

. (10.26)

The total temperature Tt2 is to be determined with

Tt2

Tt1

=
pt2

pt1

ρt1

ρt2

R1

R2
, (10.27)

or directly with the help of eq. (10.4), respectively eq. (10.7):

Tt2 =
γ2 − 1
γ2

1
R2

(
γ2

γ2 − 1
p2

ρ2
+

1
2
v2
2

)
. (10.28)

Looking back, we observe, that the gas constant behind the shock wave R2

is needed only if we want to determine the temperatures T2 and/or Tt2 . This
is a restriction which we cannot overcome with an adequately simple approx-
imation of the compressibility factor Z(ρ, T ) = Z(γeff ), Sub-Section 10.1.6.
Because we do not get a compact-form solution for ρ2/ρ1, we also do not have
such solutions for the other parameter ratios. We note in Table 10.1 the input
into the respective equations for the numerical determination of these ratios,
for the temperatures with the caveat in view of the compressibility factor.
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Fig. 10.1. Schematic of an oblique shock wave and notation [1].

10.1.4 Oblique Shock Wave

For the oblique shock wave, Fig. 10.1, the equations for the conservation of the
three entities mass, momentum (now two components: normal and tangential
to the oblique shock wave), and enthalpy read

– mass
ρ1ũ1 = ρ2ũ2, (10.29)

– normal momentum component

ρ1ũ
2
1 + p1 = ρ2ũ

2
2 + p2, (10.30)

– tangential momentum component

ρ1ũ1ṽ1 = ρ2ũ2ṽ2, (10.31)

– enthalpy

(ht1 =) h1 +
1
2
(ũ2

1 + ṽ2
1) = h2 +

1
2
(ũ2

2 + ṽ2
2) (= ht2). (10.32)

We note especially that the resultant velocity behind the shock wave V2 is re-
lated to that ahead of it V1 by

V 2
2 = V 2

1

[(
ρ1

ρ2

)2

sin2 θ + cos2 θ

]
. (10.33)

We proceed as before and find the Hugoniot relation in the same form

h2 − h1 =
γ2

γ2 − 1
p2

ρ2
− γ1

γ1 − 1
p1

ρ1
=

1
2

(
1
ρ1

+
1
ρ2

)
(p2 − p1). (10.34)

Now, however, the relevant Mach number is that of the flow component normal
to the shock wave

M̃1 = sin θM1 =
ũ1

a1
. (10.35)



432 10 The γeff Approach and Approximate Relations

Proceeding further as for the normal shock wave, we obtain:

1
γ1

(
ρ2

ρ1

)
(p2/p1) − 1
(ρ2/ρ1) − 1

= M̃2
1 = sin2 θM2

1 . (10.36)

The temperature T2 again is

T2

T1
=
p2

p1

ρ1

ρ2

R1

R2
. (10.37)

and the speed of sound behind the shock wave

a2 =
√
γ2T2R2 =

√
γ2p2/ρ2. (10.38)

The Mach number M2 = v2/a2 now is found with the help of eqs. (10.33) and
(10.38) to be

M2
2 =

V 2
2

a2
2

=
(
ρ1

ρ2

)2

V 2
1

ρ2

γ2p2
=
γ1

γ2
M2

1

[(
ρ1

ρ2

)2

sin2 θ + cos2 θ

]
ρ2

ρ1

p1

p2
.

(10.39)
The shock angle θ is an unknown. From Fig. 10.1 we find, with

tan θ =
ũ1

ṽ1
, tan(θ − δ) =

ũ2

ṽ2
, (10.40)

and eq. (10.29) the relation

tan θ
tan(θ − δ)

=
ũ1

ṽ1

ṽ2
ũ2

=
ũ1

ũ2
=
ρ2

ρ1
. (10.41)

After some manipulation with eqs. (10.34), (10.36) and (10.41) as for the nor-
mal shock wave, we obtain two coupled equations for the two unknowns ρ2/ρ1

and tan θ as functions of the free-stream Mach numberM1, the deflection angle
δ, and the two ratios of specific heats γ1 and γ2:

(
ρ2

ρ1

)2 [
γ1 sin2 θM2

1 (γ2 − 1) + 2γ1
γ2 − 1
γ1 − 1

]
+

+
(
ρ2

ρ1

)[−2γ1 sin2 θM2
1γ2 − 2γ2

]
+ [γ1 sin2 θM2

1 (γ2 + 1)] = 0,
(10.42)

and

tan2 θ [tan δ] + tan θ
[
1 − ρ2

ρ1

]
+

[
ρ2

ρ1
tan δ

]
= 0. (10.43)

The latter equation written in the form

tan δ =
(ρ2/ρ1) − 1

(ρ2/ρ1) + tan2 θ
tan θ (10.44)
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leads for γ2 ≡ γ1 = γ to the familiar compact-form relation for tan δ. The case
γ1 �= γ2 for δ = 0◦ is not included, again because we assume isenthalpic flow.

We proceed further and find the pressure p2 like for the normal shock with
the help of:

p2

p1
=

(
γ2 − 1
γ1 − 1

)
(ρ2/ρ1)(γ1 + 1) − (γ1 − 1)
(γ2 + 1) − (ρ2/ρ1)(γ2 − 1)

. (10.45)

The velocity components normal to and behind the shock wave read:

ũ2 =
ρ1

ρ2
V1 sin θ, (10.46)

and, because of eq. (10.31),

ṽ1 = ṽ2 = V1 cos θ. (10.47)

The resultant velocity behind the shock wave, Fig. 10.1, is:

V2 =
√
ũ2

2 + ṽ2
2 . (10.48)

Total pressure pt2 , total density ρt2 and total temperature Tt2 can be found
like for the normal shock wave. Again we need the specific gas constant R2, if
we wish to determine T2 and/or Tt2 .

For the numerical determination of all parameters a scheme similar to that
given in Table 10.1 can be devised, which however has to include eq. (10.43)
for θ.

10.1.5 Bow Shock Total Pressure Loss: Restitution of Parameters
of a One-Dimensional Surface Flow

With extended algebraic effort it can be shown that the governing equations
for inviscid fluid flow around a body can be reduced exactly from their three-
dimensional or two-dimensional form off the body surface, of course, including
the surface, to the two-dimensional or one-dimensional form only on the sur-
face. We take this for granted and consider now, how for a two-dimensional
body from a given pressure distribution along the surface other flow parame-
ters can be determined, while taking into account the total pressure loss due
to the flow-normal portion of the bow shock. This is of interest, if for instance
with Newton’s method the pressure on the surface of a body was found, if a con-
sideration like in Sub-Section 6.1.1 is made, or if experimental pressure data
are given, and further investigations are intended.

We have to make one assumption, viz., that the streamline hitting the for-
ward stagnation point crossed the locally normal bow shock surface [1]. Usually
at large angles of attack this is not the case, but in general it is an acceptable
assumption. With this assumption, we can obtain,5 with γeff = γ2 = const.,
5 We give, despite the problems with the compressibility factor, the derivation in

terms of γeff .
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the total pressure pt2 and the total density ρt2 at the forward stagnation point
on the body surface from eqs. (10.23) and (10.25). Both are constant along
the body surface as long as we can assume that no embedded shock waves are
present there.

Starting at the stagnation point, we denote the coordinate along the surface
with x. If total pressure, total density, and the pressure p (x) are given, we find
with the help of Bernoulli’s equation the velocity v2 (x):

v2(x) =

√√√√ 2γ2

γ2 − 1
pt2

ρt2

[
1 −

(
p2(x)
pt2

)(γ2−1)/γ2
]
. (10.49)

Taking into account constant total enthalpy ht2 = ht1 , the temperature T (x)
is determined from

h2(x) = ht1 −
1
2
v2
2(x), (10.50)

and

T2(x) =
h2(x)
cp2

=
γ2 − 1
γ2

1
R2

h2(x). (10.51)

From this follows the Mach number M2(x)

M2(x) =
v2(x)√

γ2R2 T2(x)
, (10.52)

and finally the density ρ2(x) with

ρ2(x) =
p2(x)

R2 T2(x)
, (10.53)

and, for checking purposes

ρ2(x) = ρt2

[
1 +

γ2 − 1
2

M2
2 (x)

]−1/(γ2−1)

. (10.54)

The specific gas constant R2 = Z R1, appears quite often in these relations.
This means that the compressibility factor plays a larger role here, than in
the shock relations. In general it can not be recommended to use the γeff ap-
proach for the restitution of flow parameters, as described here, unless an exact
numerical reference solution for a given problem permits to develop a simple
approximation of Z valid for this problem, see the next sub-section.

10.1.6 The Compressibility Factor Z

Consider a mixture of n thermally perfect gases. The equation of state, with
the universal gas constant R0 is [1]:



10.1 Restitution of Parameters of a One-Dimensional Surface Flow 435

p =
n∑

i=1

pi =
n∑

i=1

ρi
R0

Mi
T = ρT

n∑
i=1

ci
R0

Mi
= ρTR, (10.55)

with pi being the partial pressure, ρi the partial density, Mi the mass of the
species i, R the gas constant of the mixture. The mass fraction6 ci (0 � ci � 1)
of the species i is

ci =
ρi

ρ
, (10.56)

and the mean molecular weight M is given by

1
M

=
n∑

i=1

ci
Mi

. (10.57)

If we consider a single diatomic gas, for instance N2, it is obvious that the spe-
cific gas constantR is twice as large for the fully dissociated gas (cN2 = 0) than
for the undissociated gas (cN2 = 1). If we express the specific gas constant in
the dissociated state with R2, it is related to that of the undissociated gas R1

by
R2 = Z(ρ, T )R1 (10.58)

where Z is the compressibility factor [7]. It is found with eqs. (10.55) and
(10.57):

Z =
R2

R1
=

∑n
i=1 ciR0/Mi|2∑n
i=1 ciR0/Mi|1

=
M1

M2
. (10.59)

For air in equilibrium in the temperature range 1,500 K � T � 15,000 K and
the density range 1 � log10(ρ/ρ0) � −10, with ρ0 = 1.293·10−3 g/cm3 a graph
is given in [7] which shows a highly nonlinear behavior ofZ(ρ, T ), with 1 � Z �
4. For log10(ρ/ρ0) = −5, for instance, the compressibility factor is Z ≈ 1.3, 2
and 3.2 for T = 4,000, 6,000 and 10,000 K respectively. We expressly state that
all this is no problem in discrete numerical solutions of the governing equations
of aerothermodynamics, where we do not need these data beforehand in the
computation process, but can construct for instance Z or γeff a posteriori.

If we employ γeff in analytical methods of the kinds presented here, how-
ever, we need for the determination of some thermodynamic and flow enti-
ties the compressibility factor Z, which means—note that this is the critical
point—its connection with γeff : Z = Z(γeff ). An expression of Z = Z(γeff )
is not known. It is advisable, therefore, to use the γeff approach only for the
determination of data where Z does not play a role. Across shock waves, these
are almost all flow parameters with the exception of the temperatures T and Tt.

For the restitution of parameters of one-dimensional or other flows, one can
try approximations of the kind Z = a+ b γeff . This is permissible, if it can be
shown with an exact numerical reference solution that this approximation is
meaningful. Clearly then this approximation can only be employed in the class
of problems to which the selected problem belongs.
6 We use ci as symbol instead of ωi [1].
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10.1.7 Results across Shocks in the Large M1 Limit Using γeff

For the normal shock we have found, eq. (10.19), that ρ2/ρ1 in the limit,M1 ⇒
∞ depends on γ2 only. This means that in that limit the state of the gas behind
the shock wave does no more depend on the ratio of specific heats γ1 ahead of
the shock. We study this in more detail in Fig. 10.2.

The asymptotic behavior is seen well for ρ2/ρ1 andM2. The limit is always
reached later for smaller γ1. From the ordinaryRankine–Hugoniot relations [1],
we know that no large Mach number limits exist for p2/p1 and T2/T1. Hence
we cannot assume that these properties become independent of γ1 in the limit.
This is also seen in the figure.

For the total pressure coefficient behind the shock wave cpt2 , we see finally,
Fig. 10.3, that it becomes independent of γ1 for rather small M1.

These results show on the one hand, that the γeff approach, which anyway
must be handled with care, demands the use of the exact relations as we have
derived them above. On the other hand, in certain cases, here for cpt2 in the
rangeM1 � 10, it is permitted to plug into the Rankine–Hugoniot conditions,
also for the oblique shock, just the value of γeff (≡ γ2).
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Fig. 10.2. Normal shock wave: dependence of density ratio (upper left), pressure ra-
tio (upper right), temperature ratio (lower left) and Mach number behind the shock
(lower right) on pairs of γ1 and γ2 as function of M1.
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Fig. 10.3. Normal shock wave: dependence of the total pressure coefficient behind
the shock wave cpt2 on pairs of γ1 and γ2 as function of M1.

This means that a gas with a given γeff can be handled like a perfect gas by
employing a constant γ ahead and behind the shock. This would be the justifi-
cation to work in a ground simulation facility with gases other than air in order
to study the influence of a chosen γ on the aerodynamic properties of a flight
vehicle. An example is the investigation of the pitching moment anomaly of the
Space Shuttle Orbiter, Section 3.5, in the LaRC 20” CF4 (carbon tetrafluoride)
tunnel [8].

10.2 Transport Properties

We list here only some power-lawapproximations for the viscosity and the ther-
mal conductivity, valid for temperatures up to approximately 1,500–2,000 K.
For details, see [1].

Air

– Viscosity (dimensions: µ [Pa s], T [K])

Sutherland’s equation:

µ = 1.458 · 10−6 T 1.5

T + 110.4
. (10.60)
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Simple power-law approximation:

µ = c Tω, (10.61)

where for T � 200 K: c = 0.702 · 10−7, ω = 1; and for T � 200 K: c =
0.04644 · 10−5, ω = 0.65.

– Thermal conductivity (dimensions: k [W/(m K)], T [K], R0 [J/(kg K)],
cp [J/(kg K)], M [kg])

The thermal conductivity of a molecular gas can be determined with the help
of the Eucken formula, where cp is the specific heat at constant pressure:

k =
(
cp +

5
4
R0

M

)
µ. (10.62)

The monatomic case is included, if for the specific heat cp = 2.5R0/M is
taken.

From the above the following relation the Prandtl number can be derived
as function of the ratio of specific heats γ:

Pr =
µcp
k

=
cp

cp + 1.25R0/M
=

4γ
9γ − 5

. (10.63)

An explicit relations for air is the Hansen equation:

k = 1.993 · 10−3 T 1.5

T + 112.0
. (10.64)

Simple power-law approximation:

k = c Tω, (10.65)

where for T � 200 K: c = 9.572 · 10−5, ω = 1; and for T � 200 K: c =
34.957 · 10−5, ω = 0.75.

Molecular Nitrogen

– Viscosity (dimensions like above)

Sutherland’s equation for molecular nitrogen

µ = 1.39 · 10−6 T 1.5

T + 102.0
. (10.66)

– Thermal conductivity (dimensions like above)

The thermal conductivity of a molecular nitrogen can be determined, like
for air, with the help of the Eucken formula, eq. (10.62).
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10.3 Formulas for Stagnation Point Heating

At the early stages of aerothermodynamics there was nearly no possibility to
measure or to theoretically determine the temperature gradient ∂T/∂y normal
to the surface.7 This temperature gradient determines by the Fourier law the
convective heat-flux to an isothermal wall in a non-reacting flow, i.e., the heat
flux in the gas at the wall [1]

qgw = −k∂T
∂y

, (10.67)

where k is the thermal conductivity.8

Therefore, the so-called film formulation reads

qgw = hc(Tr − Tw), (10.68)

with Tr the recovery and Tw the wall temperature, and hc the film coefficient.
The latter is not a constant but depends on numerous variables, where the most
important ones are the density and the velocity at the boundary layer edge as
well as the transport properties. The film coefficient combines the effects of
conduction and convection in the gas.

We list some of the most often used formulas for determining the stagnation
point (sphere) heat-flux, which all are based on the film formulation concept,
eq. (10.68). It is not the intention here to go in great detail, since applications
of these formulas are numerously available in the literature. But we provide the
reader with the possibility to have a first glance at the dependencies of forward
stagnation point heat-fluxes for RV-W’s and RV-NW’s during atmospheric re-
entry, but also CAV/ARV’s. The SI basic and derived units, Section C.2, are
employed.

a) Formula of Van Driest [9]

qgw = kstPr
−0.6(ρeµe)0.5(hr − hw)st

(
due

dx

)0.5

st

, (10.69)

with kst = 0.76 for a sphere, Pr the Prandtl number, hr the recovery enthalpy,
hw the fluid enthalpy at the wall, due/dx|st the tangential velocity gradient at
the stagnation point, the subscript e denotes the boundary layer edge and st
the stagnation point. Perfect gas is assumed. The velocity gradient due/dx|st

7 With modern numerical simulation methods approximating the full Navier–
Stokes equations including thermochemical non-equilibrium, this situation has
changed and most of the gradients in the boundary layer can be resolved prop-
erly.

8 Note that usually for the wall heat flux the minus sign is omitted: qgw = k ∂T/∂y.
If the y-coordinate is positive away from the surface, a heat flux towards the
wall therefore has a positive value. This holds analogously also for the wall shear
stress.
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can be determined by Newton’s pressure assumption at the stagnation point
[1] or from Euler equations at the edge of the boundary layer using the relation:

(
due

dx

)
st

=
1
RN

(
2(pe − p∞)

ρe

)0.5

, (10.70)

with RN being the nose radius.

b) Formula of Lees [10]

qgw = 0.50Pr−0.67(ρstµst)0.5hw,st

√
2
(
due

dx

)0.5

st

. (10.71)

Perfect gas is assumed. This formula was used during the APOLLO project
work for convective heat-flux prediction. For the heat-flux prediction away
from the stagnation point on the APOLLO surface in the pitch plane the
following relations were used exploiting the wall pressure distribution (e.g.,
known from wind tunnel experiment)

qgw = 0.50Pr−0.67(ρstµst)0.5hw,stF (s), (10.72)

F (s) =

pe

pst

µeTst

µstTe
uer

k
o

(
2
∫ s1

o

pe

pst

µeTst

µstTe
uer

2k
o ds

)0.5 , (10.73)

with k = 1 for axisymmetric flow and k = 0 for plane flow, s denotes the
contour length measured from the stagnation point, r0 the radius of the nose
section of the body of revolution [11].

c) Formula of Fay and Riddell [12]

qgw = 0.76Pr−0.6(ρwµw)0.1(ρeµe)0.4 ·

·
[
1 + (Leφ − 1)

hD

he

]
(he − hw)st

(
due

dx

)0.5

st

, (10.74)

with hD being the enthalpy of dissociation of the gas mixture, Le = Pr/Sc
the Lewis number defining the ratio of heat transfer by mass diffusion to heat
transfer by conduction [1]. For example, for dissociating air, the Prandtl num-
ber is Pr = 0.71 and the Schmidt number is Sc = 0.5, giving the Lewis number
Le = 1.42; Le= 0 for frozen flow with non-catalytic wall, φ = 0.52 for equilib-
rium flow and φ = 0.63 for frozen flow with fully catalytic wall. This formula
is likely the most often used and referenced relation for stagnation point heat-
flux determination.
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d) Formula of Cohen [13]

qgw = 0.767Pr−0.6(ρwµw)0.07(ρeµe)0.43(he − hw)st

(
due

dx

)0.5

st

. (10.75)

This equation is very similar to eq. (10.74) of Fay and Riddell forLe = 0 (frozen
flow with non-catalytic wall) and is used in [14] as a basic relation in an engi-
neering method for predicting the heat transfer at blunted cones.

e) Simple Formula [15, 16]

qgw =
5.1564 · 10−5

√
RN

ρ0.5
∞ v3.15

∞ . (10.76)

The input dimensions, as also for the other relations, are kg/m3 for the den-
sity ρ∞ and m/s for the flight speed v∞. The resulting qgw has the dimension
W/m2.

This relation is a correlation of data from several sources, based on eq. (2.5).
This is a rapid and fair approximation of the heat flux in the gas at the wall
at the stagnation point of a sphere. It serves typically in trajectory determina-
tion and optimization with the forward stagnation point as reference location,
Chapter 2.

10.4 Flat Surface Boundary Layer Parameters Based on
the Reference-Temperature/Enthalpy Concept

The reference-temperature/enthalpy concept permits the temperature and
compressibility effects to be accounted for approximately and in a simple way
to enable the determination of boundary layer parameters [17]. When used as
the reference-enthalpy concept, it enables high enthalpy flows to be treated
[18]. The reference-temperature/enthalpy concept is discussed in some detail
in [1]. It is not an exact but a well-proven approximate concept. Basically it
works with boundary layer relations established for incompressible flow. These
are applied with the inviscid flow data at the body surface, which are inter-
preted as being those at the boundary layer edge. Density and viscosity are
interpreted as function of an appropriate reference temperature or enthalpy.
In [19], for instance, the viability of the approach is demonstrated. General-
ized formulations, which are valid for attached laminar and turbulent flow can
be found in [20].

10.4.1 Reference-Temperature/Enthalpy Concept

The characteristic Reynolds number for a high-speed boundary-layer like flow
is postulated to read

Re∗x =
ρ∗vex

µ∗ . (10.77)
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Density ρ∗ and viscosity µ∗ are reference data, characteristic of the boundary
layer. They are determined with the local pressure p and the reference enthalpy
h∗ or with the reference temperature T ∗, with ve the external inviscid flow ve-
locity. The reference temperature T ∗ is empirically composed of the boundary
layer edge temperature Te (without hypersonic viscous interaction identical to
T∞), the wall temperature Tw, and the recovery temperature Tr [17]

T ∗ = 0.28Te + 0.5Tw + 0.22Tr. (10.78)

The general reference enthalpy h∗ is defined similarly [18]

h∗ = 0.28he + 0.5hw + 0.22hr. (10.79)

The recovery data are found with

Tr = Te + r∗
v2

e

2cp
, (10.80)

or

hr = he + r∗h
v2

e

2
. (10.81)

Here r∗ or r∗h is the recovery factor, which is a function of the Prandtl number
Pr. The Prandtl number depends rather weakly on the temperature, or the
enthalpy, up to T ≈ 5, 000 K. Usually it is sufficient to assume r∗ = r = const.
For laminar flow the recovery factor is r =

√
Pr, and for turbulent flow r =

3
√
Pr. With the Prandtl number at low temperatures, Pr ≈ 0.74 [1], we get

rlam ≈ 0.86 and rturb ≈ 0.90.
Introducing the boundary layer edge data as reference flow data into eq.

(10.77) yields

Re∗x =
ρevex

µe

ρ∗

ρe

µe

µ∗ = Ree,x
ρ∗

ρe

µe

µ∗ , (10.82)

withRee,x = ρevex/µe. This relation can be simplified. If we apply it to bound-
ary layer like flows, we can write, because p = pe = pw

ρ∗

ρe
=
Te

T ∗ . (10.83)

If, for simplicity, we further assume a power-law expression for the viscosity,
we obtain

µ∗

µe
=

(T ∗)ω∗

(Te)ωe
. (10.84)

Only if T ∗ and Te are both in the same temperature interval, ω∗ and ωe are
equal [1] and we get:

µ∗

µe
=

(
T ∗

Te

)ω

. (10.85)

Introducing eqs. (10.83) and (10.85) into eq. (10.82) reduces the latter to

Re∗x = Ree,x

(
Te

T ∗

)1+ω

. (10.86)
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10.4.2 Boundary Layer Thicknesses Over Flat Surfaces

In this and the following sub-sections we give the flat-plate relations in gener-
alized form [20]; see also [1]. The exponent in the following relations is n = 0.5
for laminar and n = 0.2 for turbulent flow. If T ∗ and Te are both in the same
temperature interval (see above), the exponents ω∗ and ωe are equal, and the
given relations can be further reduced. The boundary layer thickness δ reads

δ = C
x

(Re∗e,x)n
, (10.87)

with C = 5 for laminar and C = 0.37 for turbulent flow.
Specializing for the reference temperature, we obtain with Reu = ρe ve/µe

δ = C
x1−n

(Reu
e )n

(
ρe

ρ∗
µ∗

µe

)n

. (10.88)

An alternative formulation for the thickness of laminar compressible boundary
layers is [21]

δlam = x0.5

√
C∗

Reu
e

(
5 + 2.21

γ − 1
2

M2
∞ + 1.93

Tw − Tr

Te

)
, (10.89)

with
C∗ =

µ∗Te

µeT ∗ . (10.90)

The relations for the displacement thickness δ1 are similar. For the laminar
case we have

δ1,lam =δ1,lam,ic

(
−0.122 + 1.122

Tw

T∞
+

+ 0.333
γ∞ − 1

2
M2

∞

)(
T ∗

T∞

)0.5(ω−1)

,

(10.91)

with that for laminar incompressible flow being

δ1,lam,ic = 1.7208
x

(Re∞,x)0.5
. (10.92)

For turbulent flow the relation reads

δ1,turb,c =δ1,turb,ic

(
0.129 + 0.871

Tw

T∞
+

+0.648
γ∞ − 1

2
M2

∞

)(
T ∗

T∞

)0.2(ω−4)

,

(10.93)

with that for turbulent incompressible flow
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δ1,turb,ic = 0.0504
x

(Re∞,x)0.2
. (10.94)

The relation for the momentum thickness δ2 is

δ2 = C2
x1−n

1 − n

(
ρ∗µ∗

ρeµe

)n (
ρ∗

ρe

)1−2n (
1
Reu

e

)n

, (10.95)

with C2 = 0.332 for laminar flow and C2 = 0.0296 for turbulent flow.
For the thickness of the viscous sub-layer we have

δvs = 29.06
x0.1

(Reu
e )0.9

(
ρe

ρ∗
µ∗

µe

)0.9

, (10.96)

whereas the turbulent scaling thickness reads

δvs = 33.78
x0.2

(Reu
e )0.8

(
ρe

ρ∗
µ∗

µe

)0.8

. (10.97)

10.4.3 Wall Shear Stress and Thermal State at Flat Surfaces

For the wall shear stress over a flat plate we get in generalized form, with C =
0.332 for laminar flow and C = 0.0296 for turbulent flow

τw = Cµevex
−n

(
Te

T ∗

)1−n (
µ∗

µe

)n

(Reu
e )1−n. (10.98)

This can also be written as

τw
0.5ρev2

e

= cf = 2Cx−n

(
Te

T ∗

)1−n (
µ∗

µe

)n

(Reu
e )−n. (10.99)

The heat flux in the gas at the wall reads, again with C = 0.332 for laminar
flow and C = 0.0296 for turbulent flow

qgw = Cx−nkePr
1/3(Tr − Tw)

(
Te

T ∗

)1−n (
µ∗

µe

)n

(Reu
e )1−n . (10.100)

The (implicit) relation for the radiation-adiabatic wall temperature is

Tra =

[
Cx−n ke

σε
Pr1/3(Tr − Tra)

(
Te

T ∗

)1−n (
µ∗

µe

)n

(Reu
e )1−n

]0.25

.

(10.101)
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Fig. 10.4. Illustration of the virtual origin of a boundary layer at a junction demon-
strated by means of a flat plate/ramp configuration.

10.4.4 Virtual Origin of Boundary Layers at Junctions

If the simple relations provided above are to be applied on consecutive surfaces
with a change of characteristic properties, a virtual origin at the junction(s)
must be constructed.9 We show this with the help of the flat-plate/ramp con-
figuration given in Fig. 10.4. With a flat-plate flow Mach number M1 > 1, we
get at the junction of the two planar surfaces a jump of the flow parameters,
and especially of the unit Reynolds number, Fig. 6.18, depending on the ramp
angle η and on the flat-plate flow Mach numberM1. Of course, in the frame of
the simple approach we cannot describe local strong interaction phenomena,
only the asymptotic properties on the ramp, Section 6.3.

If Reu changes at the junction, the boundary layer on the ramp surface
(2), Fig. 10.4, has other properties than that on the flat plate (1). It cannot be
assumed, that simply a continuation takes place. In [22] therefore a matching
procedure is proposed, which essentially leads to a ramp boundary layer with
a virtual origin different from that of the flat plate.

Proposed in [22] is the matching of the momentum deficit of the two bound-
ary layers on both sides of the junction x1,j = x2,j

(ρu2δ2)|2 = (ρu2δ2)|1, (10.102)

with δ2 being the momentum-loss thickness, see above.
The procedure is the following:

– determine δ2|1, eq. (10.95), at the junction x1 = x1,j with the flow parame-
ters of the flat plate (1),

9 This holds, for instance, also for the correlation of experimental data.
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– determine δ2|2 from eq. (10.102) with the ramp flow parameters (2),
– find the virtual junction coordinate x2,j of the ramp boundary layer with

the inverted eq. (10.95). The effective ramp coordinate is then in terms of
x1 and the ramp angle η: x2 = x2,j + (x1 − x1,j)/ cosη. The virtual origin
x2,v o of the ramp boundary layer lies at x2 = −x2,j.

This approach, in analogous ways, can be applied to cone/cylinder, blunt-
nose/cylinder and other configurations [22, 23, 20], including laminar-
turbulent transition, for instance on a flat surface, where the prescribed tran-
sition point would be the junction point. When employing discrete numerical
methods for the solution of the boundary layer or the Navier–Stokes equations
for the flow past such configurations, of course such an approach is not neces-
sary.
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