Kepler/pPOD: Scientific Workflow and Provenance
Support for Assembling the Tree of Life*

Shawn Bowers!, Timothy McPhillips!, Sean Riddle!,
Manish Kumar Anand?, and Bertram Ludischer!2

' UC Davis Genome Center, University of California, Davis
2 Department of Computer Science, University of California, Davis

Abstract. The complexity of scientific workflows for analyzing biological data
creates a number of challenges for current workflow and provenance systems.
This complexity is due in part to the nature of scientific data (e.g., heterogeneous,
nested data collections) and the programming constructs required for automation
(e.g., nested workflows, looping, pipeline parallelism). We present an extended
version of the Kepler scientific workflow system to address these challenges, tai-
lored for the systematics community. Our system combines novel approaches
for representing scientific data, modeling and automating complex analyses, and
recording and browsing associated provenance information.

1 Introduction

The National Science Foundation’s Assembling the Tree of Life (AToL) initiative funds
systematists investigating the phylogenetic relationships of groups of organisms, with
the ultimate goal of reconstructing the evolutionary origins of all life. AToL projects
range from the study of particular sets of organisms (e.g., using morphologial features
or sequencing the genetic material of specimens) to the development of new computa-
tional approaches. Success of the AToL program, however, also depends on addressing
significant informatics challenges. For instance, there is no straightforward way to in-
tegrate data collected by different AToL projects, to test hypotheses against all data col-
lected so far, or to begin to reconstruct the entire Tree of Life based on AToL data and
results. Further, the details of how the results of these projects were obtained—from
the observations of specimens through the inference and evaluation of phylogenetic
relationships—are often difficult to determine. Not only is the provenance of speci-
mens, observations, and computed results hidden within the data management infras-
tructure of each AToL project, many of the details required to reconstruct how results
were obtained or to trace them back to primary observations are not recorded reliably.
The pPOD project (http://www.phylodata.org) aims at addressing these infor-
matics challenges by developing (1) a common data model encompassing the data types
used in the various AToL projects; and (2) methods for recording information about
specimens, and relating this data and metadata to the results of phylogenetic analyses.

* This work supported in part through NSF grants 1IS-0630033, OCI-0722079, 11S-0612326,
DBI-0533368, and DOE grant DE-FC02-01ER25486.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 70771 2008.
© Springer-Verlag Berlin Heidelberg 2008

http://www.phylodata.org

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL. 71

066 file:/Users/sbowers/cvs/daks/dev/kepl. . .leWorkflows/Clustal_Gblocks_RAXML.moml
File Edit View Tools Help

JeleeD 1@ mnsi> o0 ¢

{ Workspace | Design

ComadDirector pPodTypes edatatype: protein

Workflows einputFastaFile: @PPOD_SAMPLES_HOME /SampleData/pgk_sequences.fasta
> | sampleWorkflows p ile: @HOME /Clustal_Gblocks_RAXML_output.nex
> |1 MyWorkflows

ReadFastaFile

i CipresClustal Gblocks ComposeMatrix CipresRAXML PhylipDrawgram WriteNexusFile SaveTrace

Traces

> | sampleTraces
> | MyTraces

Fig.1. A workflow in Kepler/pPOD with actors to read and parse FASTA files, compute mul-
tiple sequence alignments using Clustal, eliminate poorly aligned regions with Gblocks, create
character matrices, infer phylogenetic trees using RAXML, draw resulting trees, and save outputs

For the latter, our aim is to provide a mechanism to record and maintain a continu-
ous processing history for all data and computed results across multiple analysis steps.
These steps are often carried out using a wide variety of scripts, standalone applica-
tions, and remote services. This paper reports on our solution to this problem, i.e., of
recording the provenance of results derived using heterogeneous software systems for
phylogenetic data analysis.

Kepler/pPOIﬂ is an extension of the Kepler scientific workflow system [1]] for au-
tomating phylogenetic studies, orchestrating and routing data between invocations of
local applications and remote services, and tracking the dependencies between input,
intermediate, and final data objects associated with workflow runs. Kepler/pPOD uses
the COMAD workflow design paradigm [2]], which has built-in support for processing
nested data collections in an assembly-line manner, complex dataflow constructs such
as loops and subworkflows, and an efficient, fine-grained method for capturing and rep-
resenting comprehensive data provenance. Thus, COMAD is well-suited for automating
phylogenetic workflows, often yielding simpler and more reusable workflow designs [3]]
when compared with existing approaches (e.g., that often employ “adapters”
or “shims” between actors). In the remainder of this paper, we describe Kepler/pPOD,
focusing on its use of COMAD and its support for recording, representing, and navigat-
ing provenance information.

2 The Kepler/pPOD System

Kepler/pPOD is a customized distribution of the Kepler scientific workflow system de-
signed specifically to support phylogenetic data analysis. The goal of the current version
of the system is to provide an easy-to-use desktop application that allows researchers
to create, run, and share phylogenetic workflows as well as manage and explore the

! Kepler/pPOD can be downloaded athttp://daks.ucdavis.edu/kepler-ppod

http://daks.ucdavis.edu/kepler-ppod

72 S. Bowers et al.

provenance of workflow results The main features of the system include: a library
of reusable workflow components (actors) for aligning biological sequences and infer-
ring phylogenetic trees; a graphical workflow editor (via Kepler) for viewing, configur-
ing, editing, and executing scientific workflows (Fig.[I)); a data model for representing
phylogenetic data (sequences, character matrices, and trees) that facilitates conversion
among different data and file formats; an integrated provenance recording system for
tracking data dependencies created during workflow runs; and an interactive prove-
nance browser for viewing and navigating data and actor-invocation dependencies.

Kepler/pPOD includes a number of sample workflows for phylogenetic analyses.
These can easily be modified by changing parameters, selecting different input data,
or substituting different methods for particular analysis steps. These workflows also
demonstrate a variety of actors that provide access to both remote (web) services] and
local applications. Fig.[Tlshows one of the sample workflows in Kepler/pPOD.

2.1 The Computation Model of Kepler/pPOD

Kepler uses a graphical block-diagram metaphor for representing workflow specifica-
tions (i.e., workflow graphs). Blocks represent actors that carry out particular steps in an
analysis, and connections among blocks represent dependencies between actor invoca-
tions. Kepler distinguishes between the workflow graph and the model of computation
(MoC) used to interpret and enact the workflow. Workflow authors explicitly select a
MoC by choosing a director (Fig.[I)), which specifies whether a workflow is scheduled
as, e.g., a process network (PN) or a synchronous dataflow network (SDF) [8]. Most
Kepler actors used in PN or SDF workflows are data transformers, which consume
input tokens and produce new output tokens on each invocation.

Kepler/pPOD includes a new director for collection-oriented modeling and design
(COMAD) workflows, where actors and their connections are significantly different
from those in PN or SDF. Instead of assuming that actors transform all input data to out-
put data, COMAD employs an assembly-line processing style: COMAD actors (coac-
tors, or actors for short) can be thought of as workers on a virtual assembly line, each
contributing its part to the construction of the workflow products. In a physical assembly
line, workers only “pick” relevant parts from the conveyer belt, letting irrelevant parts
pass by for downstream processing. Coactors work analogously, recognizing and oper-
ating on data relevant to them as specified by a read scope parameter, adding new data
products to the data stream, and allowing irrelevant data to pass through undisturbed.
Thus, unlike actors in other workflow systems, actors are data preserving in COMAD
where data flows through serially connected coactors rather than being consumed and
produced at each stage.

An advantage of the assembly-line approach of COMAD is that one can put in-
formation into the data stream that could be represented only with great difficulty
in traditional PN or SDF workflows. For example, COMAD embeds special tokens
within the data stream to delimit collections of related data tokens. Because these de-
limiter tokens are paired, much like the opening and closing tags of XML elements (as

2 Note that it is also possible to run the Kepler workflow engine separately from the workflow
editor, allowing Kepler/pPOD to also support additional deployment configurations.
3 E.g. CIPRes RESTful services, http: //www.phylo.org/sub sections/portal/

http://www.phylo.org/sub_sections/portal/

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL. 73

A1:Compute A2: Refine A3: lterate A4: Find MP AS5: Check A6: Compute
(a) alignment alignment over seeds trees exit conditions consensus

(b) Proj) Key
@ Data token

® Collection opening-delimiter token

@ Collection closing-delimiter token

(O New data token produced by step

@ Insertion-event metadata token
A% Dependency refation

S DNA Sequence

A Multiple sequence alignment
T Phylogenetic tree

(c) A4: Find MP trees AS: Check exit conditions A6: Compute consensus

T5 Ty T3T, Ty Ay A

<seail/> ()
<soail/>
<soau> ()
<swuy> @
<sbag>
<jeur>
<loig>

<syuy>

Fig. 2. A snapshot of a workflow run: (a) example workflow; (b) logical organization of data at a
point in time during the run; (c) tokenized version of the collection structure where three actors are
working concurrently on different parts of the data stream. Nested collections organize and relate
data objects from domain-specific types (DNA sequences, alignments, phylogenetic trees). A Proj
collection containing two Trial sub-collections is used to pipeline multiple sets of input sequences
through the workflow. Provenance events (insert-data, insert-collection), insertion dependencies,
and deletions (from the stream) are added directly as metadata tokens to the stream (c).

shown in Fig.[)), collections can be nested to arbitrary depths. This generic collection-
management scheme allows actors to operate on collections of elements as easily as on
single data tokens. Similarly, annotation tokens can be used to represent metadata for
collections or individual data tokens, or for storing within the data stream the prove-
nance of items inserted by coactors (see Fig.2). The result is that coactors effectively
operate not on isolated sets of input tokens, but on well-defined, information-rich collec-
tions of data organized in a manner similar to the tree-like structure of XML documents.

Another advantage of COMAD, compared to conventional dataflow approaches, is
that COMAD workflows are generally more robust to change and easier to understand.
For instance, inserting a new actor into a workflow or replacing an existing actor with a
new version is straightforward, i.e., structural modifications to other parts of the work-
flow are not required. Similarly, while in traditional approaches maintaining collections
of data and routing data to multiple actors requires the use of low-level control-flow con-
structs and associated actor connections, the same workflow in COMAD is often linear
(as in Fig.[T)). Thus, the intended function of a workflow can often be more easily under-
stood, e.g., simply by reading the actor names in “assembly line order.” Kepler/pPOD
includes a library of coactors from which systematists can easily compose new work-
flows with minimal effort. For the same reason, the sample workflows in Kepler/pPOD
can be easily modified to employ alternative methods for particular steps, extended with
additional analysis steps, and concatenated with other workflows.

Fig.[2] illustrates a number of details of the COMAD approach, showing the state
of a COMAD run at a particular point in time, and contrasting the logical organization

74 S. Bowers et al.

of the data flowing through the workflow in Fig.2{b) with its tokenized realization at
the same point in time in Fig.2lc). This figure also illustrates the pipeline-concurrency
capabilities of COMAD by including two independent sets of sequences in a single run.

2.2 Recording and Representing Provenance in Kepler/pPOD

The provenance model used in Kepler/pPOD is unique (e.g., compared to [[7W9410/1 116])
in that it takes into account nested data collections, pipeline parallelism (in addition to
the usual task parallelism), and actor scope expressions. The latter capture which parts
of the data stream are visible for an actor and which parts of the output are created from
them. In particular, no actor output can depend on items outside the actor’s read scope.
Our primary goal is to capture the information necessary to reconstruct and effectively
present the derivation history of scientific data products, thereby supporting the main
provenance needs of scientists. Thus, our approach is also different from those that
focus on supporting workflow development and optimization by recording a detailed
log of workflow events (e.g., execution time, invocation time-stamps, resources used);
but similar in this way to efforts focusing on “scientist-oriented” provenance [9U11]].

Recording Provenance Events. Provenance is captured during a workflow run by
coactors, each of which places special provenance tokens directly into the token stream
(Fig.2) as needed to record its actions. Three types of provenance tokens are used to
represent distinct provenance-related events during workflow execution. Actors add in-
sertion tokens to the stream for each new data and collection item they produce. An
insertion token consists of (1) the actor invocation-id used to produce the (data or col-
lection) item; (2) the foken-id of the produced item; and (3) a set of token dependencies,
i.e., the collection- and data-token identifiers within the read-scope that contributed to
the insertion of the item and that were input to the actor invocation. Similarly, actors
add deletion tokens for each data and collection item they remove from the stream. A
deletion token consists of (1) the actor invocation-id that removed the data or collection
item; and (2) the token-id of the item that was removed. To maintain the dependencies
between data products, our system simply tags removed items as deleted, preventing
downstream actors from using deleted items, while retaining these items in the stream
for later use by the provenance system.

Kepler/pPOD exploits nested data collections to help minimize the number and size
of provenance tokens added to the token stream. In particular, insertion and deletion
events are recorded at the highest node in the tree where they apply, and implicitly
cascade to collection descendents. Insertion dependencies are applied in a similar way.
For example, in Fig.[2] each alignment in an Almnts collection implicitly depends on
each sequence in the corresponding Segs collection, as indicated by the dependency
between the two collections. In certain cases, actors also add invocation-dependency
tokens to the stream that specify an ordering relation between two actor invocations.
Specifically, invocation dependencies are added when actor invocations insert data or
collection items that depend on a collection that was modified by a previously invoked
actor. Here, a collection is considered modified when a data or collection node is added
or removed (either a direct child or a descendent).

The result of running a Kepler/pPOD workflow is represented in an execution trace,
an XML representation of the data and collections input to and created by a workflow

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL. 75

Provenance Browser - Clustal_Gblocks_RAXML_20080212_135434.2.trace

{ Depender ry | Collection History | Trace File

7~ I
-

® show deleted O hide deleted

Data token:
Tree (254)
Label:

Object ID:
67
Inserted by:

CipresRAXML (1
Deleted by:

Inferred depen

“Q

C show data viewer

Fig. 3. The provenance browser of Kepler/pPOD showing the integrated dependency graph for a
run of the workflow specified in Fig.[I]

run, the parameter values used for configuring actors, and each of the provenance tokens
added by actor invocations. Each trace is assigned a unique id by the system, and trace
files are organized in the workspace according to their corresponding workflows. Traces
created from previous runs can also be used as input to workflows. In such cases, the
system creates a new trace for the new run, referencing the input trace and thus linking
to the provenance of the previous run. Kepler/pPOD can be used in this way to capture
data dependencies across multiple workflow runs.

Constructing Provenance Graphs. Two types of provenance graphs are computed
for displaying provenance information within Kepler/pPOD. These graphs are con-
structed directly from execution trace files. An actor invocation graph consists of actor-
invocation nodes and directed invocation-dependency edges. AnedgeB:1 — A:1linan
invocation graph states that the first invocation of actor A was (logically) invoked prior
to the first invocation of B, implying that A: 1 produced an item used by B: 1, or more
generally, A: 1 modified a collection used by B: 1. A data dependency graph consists
of nodes representing data items and directed edges representing insertion dependen-
cies. Each edge is additionally labeled by the corresponding insertion invocation. An
edge labeled A:1 from Dj to {Dy, D} states that data item D3 was produced by the
first invocation of actor A from data items D; and D,. Thus, D and D, were “input”
to A: 1, i.e., they were within the read scope of the invocation. Data dependency graphs
in Kepler/pPOD can distinguish items that depend only on a subset of the data input
to an invocation. This is often the case, e.g., for actors that implement non-strict (i.e.,
“streamable”) functions such as sliding-window algorithms.

The COMAD provenance model can be used to derive additional information, e.g.,
the set of collections input to a workflow run can be determined by selecting the col-
lection and data items that were not inserted by actors and by removing any deletion
tags. Similarly, the structure of a collection can be recreated at different points in the
execution history, e.g., before or after a given set of actor invocations.

76 S. Bowers et al.

[e66 Provenance Browser - Pars_Loop.C 0080212143146 Lrace) [eee
ce il

s ® = . & 66 -8= ® ®
||
. T T T
| | |

Ouput)

Fig. 4. The provenance browser showing collection and invocation history for a run of a workflow
similar to Fig.2(a): The resulting collections after the first invocation of an Initialize Seed actor
(left); and the collection structure and invocation graph resulting from advancing one step through
the execution history (right).

2.3 Displaying and Browsing Provenance in Kepler/pPOD

Within Kepler/pPOD, users can easily browse and navigate execution traces. The prove-
nance browser, shown in Fig.[3 can be run directly from within Kepler/pPOD (e.g., by
opening a trace file), or alternatively as a standalone application. The left-side of the
browser displays the data, collections, and actor invocations of the workflow run, as
well as a simple HTML navigation pane that displays details about these items. The
browser also displays three different graphical views of the execution trace: (1) the de-
pendency history, which combines the data-dependency and actor-invocation graphs;
(2) the collection history, which shows how the various collections of a run were con-
structed (Fig.[d); and (3) the invocation graph (Fig.H)). Users can select and display the
details of each item in a view (including the underlying data represented by a token,
e.g., the particular sequence alignment or phylogenetic tree), and all of the views are
synchronized. For instance, the selection of a data item in the dependency history also
selects the corresponding item in the collection history. Using the browser, users can
also incrementally step forward and backward through execution history, incrementally
displaying (i.e., revealing or hiding elements, depending on navigation direction) the
collection and data-dependency histories. This feature allows users to start from the in-
put of the workflow and incrementally move forward through actor invocations to the
final output. Similarly, it is possible to start at the output and navigate to the input, as
well as move forward or backward at any point in between. The views in Fig.[] are
especially useful for analyzing how the structure of collections evolved throughout a
workflow run; whereas the view of Fig.[3 more explicitly shows the steps and depen-
dencies involved in generating data products.

3 Conclusion and Future Work

Kepler/pPOD supports the automation of phylogenetics workflows and the recording
and visualization of data provenance for individual workflow runs. The system

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL. 77

combines and implements our previous work on COMAD [2]] and provenance [12],
together with the new application presented here for browsing provenance traces and
incrementally navigating execution histories. AToL projects will involve many interre-
lated workflows, where data produced during workflow runs commonly will be used
as input to subsequent runs of different workflows, and workflows will be run multiple
times with different parameterizations and on different input data sets. These projects
also include tasks that cannot be fully automated between workflow runs, and the prove-
nance of data products must be tracked across such manual data management tasks. We
plan to extend Kepler/pPOD with project histories [13]] for tracking data dependencies
across multiple workflow runs and accommodating data management activities per-
formed between runs. This will allow AToL researchers to organize their projects and
data as they desire, while maintaining a continuous record of how results were obtained
via a combination of manual operations and automated scientific workflows.

References

1. Ludischer, B., et al.: Scientific workflow management and the kepler system. Concurrency
and Computation: Practice & Experience 18(10), 1039-1065 (2006)

2. McPhillips, T., Bowers, S., Ludischer, B.: Collection-oriented scientific workflows for inte-
grating and analyzing biological data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS
2006. LNCS (LNBI), vol. 4075, pp. 248-263. Springer, Heidelberg (2006)

3. McPhillips, T., Bowers, S., Zinn, D., Ludischer, B.: Scientific workflow design for mere
mortals. In: FGCS (to appear, 2008)

4. Majithia, S., Shields, M.S., Taylor, 1.J., Wang, L.: Triana: A graphical web service composi-
tion and execution toolkit. In: ICWS (2004)

5. Oinn, T., et al.: Taverna: Lessons in creating a workflow environment for the life sciences.
Concurrency and Computation: Practice & Experience 18(10), 1067-1100 (2006)

6. Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P., Silva, C.T., Freire, J.:
VisTrails: Enabling interactive multiple-view visualizations. In: IEEE Visualization (2005)

7. Altintas, 1., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scien-
tific workflow system. In: Moreau, L., Foster, 1. (eds.) IPAW 2006. LNCS, vol. 4145, pp.
118-132. Springer, Heidelberg (2006)

8. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of computa-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems 17(12) (1998)

9. Moreau, L., Ludidscher, B. (eds.): Computation and Concurrency: Practice and Experience,
vol. 20(5). Wiley, Chichester (2008)

10. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open provenance
model. Technical Report 14979, University of Southampton (2007)

11. Biton, O., Boulakia, S.C., Davidson, S.B.: Zoom*userviews: Querying relevant provenance
in workflow systems. In: VLDB (2007)

12. Bowers, S., McPhillips, T.M., Ludischer, B.: Provenance in Collection-Oriented Scientific
Workflows. Concurrency and Computation: Practice and Experience (2007)

13. Bowers, S., McPhillips, T.M., Wu, M., Ludischer, B.: Project histories: Managing data
provenance across collection-oriented scientific workflow runs. In: Cohen-Boulakia, S., Tan-
nen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122-138. Springer, Heidelberg
(2007)

	Kepler/pPOD: Scientific Workflow and Provenance Support for Assembling the Tree of Life
	Introduction
	The Kepler/pPOD System
	The Computation Model of Kepler/pPOD
	Recording and Representing Provenance in Kepler/pPOD
	Displaying and Browsing Provenance in Kepler/pPOD

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

