Mapping the NRC Dataflow Model to the
Open Provenance Model

Natalia Kwasnikowska and Jan Van den Bussche

Hasselt University and Transnational University of Limburg, Belgium

Abstract. The Open Provenance Model (OPM) has recently been pro-
posed as an exchange framework for workflow provenance information.
In this paper we show how the NRC data model for workflow reposito-
ries can be mapped to the OPM. Our mapping includes such features as
complex data flow in an execution of a workflow; different workflows in
the repository that call each other; and the tracking of subvalues of com-
plex data structures in the provenance information. Because the NRC
dataflow model has been formally specified, also our mapping can be
formally specified; in particular, it can be automated. To facilitate this
specification, we present an adapted set-theoretic formalization of the
basic OPM.

1 Introduction

The Open Provenance Model (OPM) has recently been proposed as an exchange
framework for workflow provenance information [I]. In order to validate this new
framework, it is important to investigate how existing models and systems for
provenance can be mapped to the OPM. In this paper, we do this exercise for
a data model for workflow repositories which we recently introduced, called the
NRC dataflow model [2].

The NRC dataflow model is a formally specified data model for workflows
which emphasize data manipulation and data management. Hence we usually
refer to such workflows as dataflows. The NRC dataflow model incorporates im-
portant aspects such as complex-data flow governed by expressions of the Nested
Relational Calculus (NRC [3]); use of external services; formal representation of
past executions; tracking of subvalues of a complex data structure in a past
execution; and different dataflows in a repository that call each other. We will
propose a representation in the OPM of all these features of our model. For ex-
ample, to model the execution of one dataflow, called as a subdataflow in another
dataflow, we use the interesting “accounts” feature provided by the OPM.

In this paper we assume familiarity with the OPM [1]. We will, however, give
a set-theoretical formal definition of the OPM, adapted from the original set-
theoretical formalization. We will use this definition to specify our NRC-to-OPM
mapping formally.

This paper is organized as follows. In Section 2l we recall the basics of the
NRC dataflow model. In Section Bl we give our formal definition of the OPM. In

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 3-I6] 2008.
© Springer-Verlag Berlin Heidelberg 2008

4 N. Kwasnikowska and J. Van den Bussche

Section [4, we describe the mapping from the NRC model to the OPM. We also
show how an OPM description of an NRC dataflow execution can be augmented
with information to track the provenance of a subvalue occurring in the final
result of this execution.

2 The NRC Dataflow Model

In this section we present aspects of the NRC dataflow model that are relevant
to workflow provenance information. For a more detailed description of the NRC
dataflow model and repository we refer to the paper [2].

2.1 Specification of Dataflows in NRC

Consider the following computation, based on a real proteomics protocol [4]:
“Given a set of raw data produced by a mass spectrometer in a proteomics
experiment, and all its associated parameters, generate a list of proteins possibly
identified in this experiment”. We can express this computation in the following
NRC dataflows:

dataflow identify(data: TMSdata, p: Parameters): ProteinCandidateList is
let list := for z in data return
(id : z.id, spectra: extract(z.file))
in validation (searchy (list, p), searchs(list,p), searchs(list, p))

dataflow search(data: TMSextracted, p: Parameters): AAlist is
for z in data return
(id : z.id, aalist: for y in x.spectra return dbSearch(y, p))

Each dataflow states its signature, i.e., the types for its input parameters
and for its result. Dataflow identify expects one parameter of type Parameters
and one of type TMSdata. Type Parameters is a base type. Values of base
types, called base values, are considered to be “atomic” to the operations in the
dataflow. In our example, a value of type Parameters is an XML document con-
forming to a specific DTD. Type TMSdata is a complex type. Complex values are
constructed using record and set constructions from base values, conforming to
their type. For example, type TMSdata equals {(id : Number, file: RawFile)},
that is, a set of records with first component labeled id, and second component
labeled file. We use value tmsInput of this type, illustrated in Fig. [as first
input parameter to dataflow identify.

Both dataflows are composed of NRC expressions and service calls. NRC is a
simple functional programming language [3], built around the basic operations
on sets and records, with for-loops, if-then-else and let-statements as the only
programming constructs. Service calls model all other actions in the dataflows.
These can be calls to external services, such as NCBI BLAST or MASCOT
search, but also calls to library functions provided by the underlying system,

Mapping the NRC Dataflow Model to the Open Provenance Model 5

id file
1 rawViallO
2 rawVialll

tmsInput =
55 rawVial64
protID prob evidence

peptide score spectrum
Pep: 9 spectrumyiaiios
Protein; 99 pep2 7 spectrumyiaiss,

tmsOQutput = peptide score spectrum
pPeps 9 spectrumyiaisr,s

Protein, 96 pep: 8 spectrumyiaiios

Fig. 1. Complex values of types, respectively, TMSdata and ProteinCandidatelList

such as addition for numbers or concatenation for strings. Moreover, one dataflow
can appear as a service call in another dataflow, thus becoming its subdataflow.
Each service must be supplied with a signature describing the types of its input
parameters and its result. In our example, dataflow identify uses the services

extract(raw : RawFile) : { TMSfile}
validation(py : AAlist, po : AAlist, ps : AAlist) : ProteinCandidateList

and also the services searchi, searchs, and searchs, all three with the same
signature (list : TMSextracted, p : Parameters) : AAlist.

Before we can execute a dataflow, we not only need to provide values for its
parameters, but we also need to provide meaning to called services by assigning
them to actual services. In our example, in dataflow identify, we bind extract
and wvalidation to external applications extract and validate, and we bind
services searchy, searcho, and searchs to dataflow search. The latter becomes
thus a subdataflow of identify. As search also contains a service call, namely,
dbSearch, we now need to provide binding for that service for each call to search
in identify: to external service mascot in the first, to external service sequest in
the second, and to external service xtandem in the third. (These three external
services stand for three database search engines frequently used in identification
of mass spectra in proteomics research.) We sum up all these service call bindings
in a data structure which we call a binding tree, shown in Fig.

Suppose now that we have executed dataflow identify with value tmsInput for
parameter data and file PXML for parameter p. Suppose that value tmsQutput
has been returned (see Fig.[I]).

6 N. Kwasnikowska and J. Van den Bussche

identify

——walidation — validate
——extract — extract

——search, — search

L— dbSearch — mascot
——searcho — search

L— dbSearch — sequest
——searchs — search

L— dbSearch — xtandem

Fig. 2. Binding tree for dataflow identify

2.2 Past Executions of Dataflows

In order to keep a record of an execution of dataflow identify, it is not sufficient
to store the input values, the result, and the binding tree for services. Indeed, the
transient nature of the proteomics databases used by the search engines implies
that also intermediate results must be stored. Since all NRC expressions are
deterministic, only information about intermediate values of external services
must be effectively stored. We naturally represent this information as a number
of triples of the form (s,o,v), where s is an occurrence of a service call in the
dataflow, o its value assignment, i.e., assignment of input values to parameters,
and v the value produced by the service call.

For example, for the execution of dataflow identify from Sect. 2.1, we would
store the service-call triples shown in Fig. Bl

There, tmsEztracted, tmsResy, tmsReso and tmsRess represent complex val-
ues produced in the corresponding step of the computation. As a matter of fact,
a complete record of the entire past execution can be automatically derived from
such triples, as we have shown elsewhere [2].

Caveat. The complete record of a past execution of some workflow (applied
to certain input), leading to a final result, is commonly called the workflow
provenance of that result. In this paper, we refer to such a record as a run.

In our model, a run is basically a set of triples like those for the service calls,
except that now we have a triple for each occurrence of each subexpression in
the dataflow. Note that, in particular, the final result value is also contained in
the run, namely, in the triple for the entire top-level expression of the dataflow.
Figure [shows a few examples of such additional triples that would be part of
our example run of dataflow identify.

Of course, when a service call has been executed that was bound to a sub-
dataflow, we necessarily also have a run of that subdataflow for the given values of
its parameters. In our example, the three service-call triples for searchi, searchs
and searchs, will need to be linked to corresponding runs of the dataflow search.

Mapping the NRC Dataflow Model to the Open Provenance Model 7

service assignment value
data = tmsInput spectrumyiaiio,i
p = PXML
eatract xz = (id: 1, file: rawViall0) :
raw = rawViallo Spectrumviaiios
data = tmsInput

spectrumyiaiii,1

extract p = PXML spectrumyiaiii,2
x = (id: 2, file: rawVialll) M
raw = rawVialll SPectIlUllvialit,3
data = tmsInput Spectrumyiaes s
p = PXML
extract x = (id: 55, file: rawVial64)
raw = rawVial64 spectrumyiales,13
data = tmsInput
searchq p = PXML tmsRes1

list = tmsFExtracted
data = tmsInput
searcho p = PXML tmsReso
list = tmsExtracted
data = tmsInput
searchs p = PXML tmsRess
list = tmsExtracted
data = tmsInput
p = PXML
validation list = tmsErtracted tmsQutput
p1 = tmsRes1
p2 = tmsRes2
p3 = tmsRess

Fig. 3. Service-call triples from our example run

2.3 NRC Dataflow Repository Model

To summarize, if we want to have a complete record of an execution of a dataflow,
we need to store the value assignment for its parameters, the binding tree for
its services, all service-call triples of the run, and links to the runs of its sub-
dataflows.

All this information, for different dataflows and executions, can be stored
in a global dataflow repository. A conceptual schema illustrating the different
entities that play a role in such a repository, and their relationships, is given
in Fig. Bl There, mapping internalcall links runs of dataflows to the runs of its
subdataflows. Given the identifier of a run of a dataflow, and a service-call triple
from that run with the service bound to a subdataflow, the mapping will indicate
the run identifier of the corresponding subdataflow run.

A very important integrity constraint is that the repository is closed by
internalcall, i.e., if the repository contains a run of some dataflow, then it also

8 N. Kwasnikowska and J. Van den Bussche

subexpression assignment value
let data = tmsInput tmsOutput
p = PXML P
data = tmslnput
for » — PXIL tmsExtracted
id spectra

data = tmsInput
(id, spectra) p = PXML
x = (id: 2, file: rawVialll)

spectrulyiaiii,1
2 spectrumyiaiii,»
spectrumyiaiii,s

Fig. 4. Some run triples from our example run

- NRC Expressions - -

‘ Input Type Assignments ‘ Signature Assignmets =] =]
g 5

T

&

6 &

z T

g8 3B

52

° 1

o

-

[%}

<inding
Binding Trees

Fig.5. E/R diagram of the NRC dataflow repository model

Service—call Triples

Value Assignments

contains, for all its service-call triples, the corresponding runs of its subdataflows.
Again, for a more detailed description of the repository and its constraints we
refer to the paper [2].

3 Formal Definition of OPM Graphs

In this section we present a set-theoretic definition of the Open Provenance
Model, adapted from the original timeless causality graph data model [I]. The
main difference is in the treatment of account memberships, which we consider
to be labels of nodes and edges, and as such we define the account-membership
function accountOf to be part of an OPM graph. In our opion this is a cleaner
formalisation; the original formalisation of accounts in OPM [I] seems flawed.

Mapping the NRC Dataflow Model to the Open Provenance Model 9

We also define an alternate as a set of accounts, rather then merely a pair of
accounts. We believe this added generality can be useful in practice.

As we need only artifact nodes and process nodes to represent an NRC run
in the OPM, we leave out agent nodes and their associated edges from the
definitions.

All primitive sets are assumed to be pairwise disjoint. The set OPMGraph, as
defined below, is the set of all possible OPM graphs.

Processld : primitive set containing all process nodes
Artifactld : primitive set containing all artifact nodes
Role : primitive set containing all roles
Account : primitive set containing all accounts

Used 2 Processld x Role x Artifactld
WasGeneratedBy L Artifactld x Role x Processld
WasTriggeredBy Y Processld x Processld
WasDerwedFrom < Artifactld x Artifactld
Alternate < P(Account)

OPMGraph “ (A,P,U,G,T,D, AL, accountOf) | A C Artifactld,
P C Processld, U C P x Role x A, G C A x Role x P,
TCPxP, DCAxA, AL C Alternate,
accountOf : (AUPUUUGUTUD) — P(Account)}
Before we reformulate relevant aspects of the OPM according to the adapted

definition, we introduce the following convenient notations for any given OPM
graph g = (A, P,U,G,T, D, AL, accountOf):

A9 H A ULy

peep ¢ “a

Nodes? 2 AU P 79 LT

ALY 2 AL D' p
accountOf? =4 accountOf Edges? YUyuGUTUD

Elements® = Nodes? U Edges?

Apart from Nodes?, Edges? and Elements?, the above notations may seem su-
perfluous, but they will prove convenient when referring to several OPM graphs
at the same time. Observe also that a ¢ € OPMGraph is completely determined
by Elements?, ALY, and accountOf?. We will make use of this observation when
defining new OPM graphs.

Edges and Equality of Edges. Note that any edge ¢ € Edges?, for an OPM graph
g, either belongs to
Used U WasGenerated By

and is then of the form e = (x1, 7, x2) with r some role, or belongs to

WasTriggeredBy U WasDerivedFrom

10 N. Kwasnikowska and J. Van den Bussche

and is then of the form e = (z1,x2). In both cases we introduce the notation
Sre(e) to denote the source node of e, i.e., x1, and Dest(e) to denote the des-
tination node of e, i.e., x2. We also say that z; and z2 are incident to e, and
denote this by isIncident(x;,e) for ¢ = 1,2. Note that two causality edges are
considered to be equal simply if they are equal in the mathematical sense, i.e.,
they are the same tuple.

Effective Account Membership. For a given OPM graph ¢, we define the function
effectiveAccountOf? . Elements? — P(Account)

as follows:
— If z € Nodes?, then

effectiveAccountOf?(x) = accountOf? (x) U
U {accountOf9(e) | e € Edges? and isIncident(x,e)} .

— If e € Edges?, then we simply put effectiveAccountOf?(e) = accountOf?(e).
(This latter definition may seem superfluous but will prove convenient in the
definition of account views.)

The Union of Two OPM Graphs. Let g1 and g be two OPM graphs. We define
the union of g; and go, denoted by g1 U go, as follows:

Elements?"92 “ Elements? U Elements?* ,
ALYz & A191 ALY? ,

and accountOf9'"'%* is the point-wise union of accountOf? and accountOf?>.

Account Views. For a given OPM graph ¢ and an account «, we now formally
define the account view of ¢ according to «, denoted by view(g, «), as follows:

- Elements”ie_w(g’a) = {z € Elements’ | a € effectiveAccountOf 9 (x)};
- acco_untOfme“’(g’a) is the restriction of accountOf? to Elements”**"(9:%);
— ALYev9) YLl N ActAce | alt € AL?} , where ActAce stands for the set

of accounts that actually appear in the image (range) of accountOf %9

Note that view(g,) is again an OPM graph.

Legal Account Views. Before we formally define legal account views of an OPM
graph, we point out that we can associate to any given OPM graph ¢ a clas-
sical directed graph DG(g) = (V(g),E(g)) with set of vertices V(g) equal to
Nodes? and set of directed edges E(g) equal to {(Src(e), Dest(e)) | e € Edges?}.
Accordingly, we call g acyclic precisely when DG(g) is.

Now for an OPM graph g and an account o« € Account, the account view
view(g, o) is considered to be legal when it is acyclic, and there do not exist two
different edges in GV*¢*(9:%) with the same source node, i.e.

Ve, e € GUiew(g.a) . Sre(er) = Sre(eg) = e1 = eg.

Mapping the NRC Dataflow Model to the Open Provenance Model 11

Legal OPM Graph. An OPM graph is legal when all its account views are legal.

Alternate. For an OPM graph ¢ and alt € ALY, we call alt an alternate in g,
and we call each « € alt an alternative in alt.

Legal Alternate. For an OPM graph g and an alternate alt € ALY, we call alt
legal for g if
ﬂ Nodes"*"(9:%) £ (.

acalt

4 Mapping NRC Dataflow Runs to OPM Graphs

Recall that a run of an NRC dataflow is modeled as a table
R(subexpression, assignment, value)

holding triples of the form (e, o,v), where e is an occurrence of a subexpression
of the dataflow, o the value assignment, and v the produced complex value. An
important property of a run is that the pair (subezpression, assignment) is a key
for the table R.

We now define an OPM graph ¢ representing the information stored in R. To
do so we first specify all nodes of g, then all the edges, and finally, the account
membership function accountOf and set Alternate. The graph g will be a legal
OPM graph. We introduce extra labels for the nodes of the graph g, such that
the information contained in g will be sufficient to reconstruct R on the basis of
its structure, and node and edge labels alone.

Process Nodes. First we specify the set P9 of all process nodes of g. As each
triple in R actually describes one step of the computation, we need at least one
process node for each triple. For most triples it is indeed sufficient to construct
one process node. We can construct a unique ID for each node simply by using
its corresponding triple as an ID:

PIE{[t]|teR}.

We label each process node [t], for t = (e, 0,v), by €’s top-level NRC operator
(or service call).

The only exception are for-loops. In order to model the different parallel
executions of the body of a for-loop (namely, one execution for each element of
the set over which the for-loop operates), we split each process node [t] as above,
when e is a for-loop, into two process nodes [dispatch,t] and [collect, t].

So formally we redefine P9 as follows:

P9 = {[t]| t = (e,0,v) € R and e is not a for-loop}
U U {{[dispatch,t],[collect,t]} | t = (e,0,v) € R and e is a for-loop} .

12 N. Kwasnikowska and J. Van den Bussche

Artifact Nodes. Next we construct the set A9 of all artifact nodes of g. As each
triple in R contains the complex value produced by the corresponding step, we
need one artifact node for each triple. We can again construct a unique ID for
each node by using its corresponding triple as a part of its ID: for each triple
t = (e, 0,v) we have an artifact node with ID [val, t]; we label this node with the
value v.

Moreover, each triple contains the value assignment, under which the corre-
sponding step is performed. This value assignment is another artifact in our run.
Thus, for each value assignment we create an artifact node, and we can use the
value assignment itself as its ID.

We conclude that:

A9 = {(wal,t] |t € R} U {[o] | 3e,v: (e,0,0) € R} .

Edges. We now define the “was generated by” and “used” edges that play a role
for a given process node [t] with ¢t = (e, o, v). Since for-loops and let-statements
have a body that involves a local variable, these operators involve the extension
of their value assignment with a new value for the local variable, and we must
treat them separately.

So first assume e is not a for-loop or a let-statement. The general idea is
that v is produced from the value, or values, that resulted from the constituent
subexpressions of e. For example, if e is a record construction (a: ey, b: e2), then
v equals (a: vy, b: vy) where vy (resp. v2) is the result of ... e; (resp. e3) under
the same value assignment 0. We thus generate the edges shown in Fig. [6l Note
the role val for the edge from v to e, and the role env (short for environment) for
the edge from e to o. (Indeed, o provides the “environment” for the evaluation
of e.) Note also the roles a and b that connect e to v; and ve, which are in turn
connected to e; and e; by edges with the role val. Clearly, e; and es may have
constituent subexpressions of their own, so the generation of edges continues

[(627 a, 1)2)]
val

env

[val, (e1,0,v1)]

[val, (e1,0,v2)]

G

Fig. 6. OPM subgraph for a record construction operation

Mapping the NRC Dataflow Model to the Open Provenance Model 13

[(e1,0,{v1, ... vn})]

extend

1]

env env
ﬁ ffffffffffff “
[(e2, 01, w1)]L=2 ki

[(627 On, wn)]

val &al
[val, (e2,01,w1) Ny [val, (e2,0n,wy)]

Fig. 7. OPM subgraph for a for-loop

from there. The generation of edges for other operators, except for-loops and
let-statements, is analogous.

Now assume e is a for-loop of the form for x in e; return e5. We recall from the
semantics of NRC [2] the semantic rule for such an expression:

ockEer={v,...,u} Vie{l,...,n}: 0, = extend(o,z = v;) |F e2a = w;

o= forxziney returnes = v = {wi, ..., wy}

We then have the edges as shown in Fig. [l Note the role extend for the edges
from dispatch(x) to the artifact nodes o through o, (the different value assign-
ments for es). Again, e; and es may have constituent subexpressions of their
own, so the generation of edges continues from there. The construction of edges
for a let-statement is analogous.

Since an NRC dataflow is basically a functional computation, each artifact
is either used or generated by a step of the computation. Hence the set DY of
all “was derived from” edges is empty. Likewise, processes are only connected
through artifacts that they either use or generate, so the set T'9 of all “was
triggered by” edges is also empty.

Accounts and Alternate. Finally we need to define account membership for all
nodes and edges of the graph g. We believe that it is sufficient to assign a unique

14 N. Kwasnikowska and J. Van den Bussche

account for all elements of g, namely the ID of the run R in the NRC dataflow
repository. Indeed, if g is a representation of run R with ID r, then the whole
graph ¢ can be considered to be “an account of the execution according to r”:

Vx € Elements? : accountOf?(x) = {r} .

As there is only one account membership for all elements of g, the set AL is
empty.

4.1 Amendment for Multiple NRC Runs

So far we have constructed a legal OPM graph ¢ for one run R stored with ID r.
As an NRC dataflow repository will contain many runs, we would like to be able
to generate distinct OPM graphs for all of them. Therefore, we need to amend
the identifiers of the nodes of g by adding the ID of the run to each of them:
each node [n] becomes node [r, n].

4.2 Incorporating Runs of Subdataflows

In an NRC dataflow repository, if a dataflow contains subdataflows, then for
each run of that dataflow in the repository, there are links to the runs of its
subdataflows. These links are provided by the mapping internalcall (Sect. 223).
In Fig. Bl we show how we can merge the OPM graphs of these runs. On the left
we see the OPM subgraph of some run R, representing a service call f, with two
actual parameter values v; and vy (produced by subexpressions e; and es), and
the result value v of the call.

If f is bound to a subdataflow, the repository will contain the corresponding
run R’ of that subdataflow. In the OPM graph for R’, we have a value assignment
o’ containing the values v; and vy of the formal parameters z; and zo. We also
find back in this graph the artifact node representing the final result value of
the subdataflow; this value obviously equals v. The nodes on the left (from the
OPM graph for R) have account r, i.e., the ID of run R. The nodes on the right

Fig. 8. Merging the OPM graph of a run R with the OPM graph of its linked run R’

Mapping the NRC Dataflow Model to the Open Provenance Model 15

(from the OPM graph for R’) have account 7/, i.e., the ID of run R’. It is clear
that account 7’ serves as a refinement of account r.

In order to obtain one combined OPM graph, we identify the left-hand nodes
v1, v2 and v with the corresponding right-hand nodes v1, v2 and v. These iden-
tifications are shown by the thick dashed lines in the figure. Then we take the
union of the two OPM graphs for R and R’ (with nodes just identified taken
only once). The identified nodes have both accounts r and r'.

Finally, we add the composite account (r,r’) to all elements of the combined
graph, and we add the set {r, (r,7')} to AL. The account view of the graph
according to (r, ') provides more details than the view according to r.

Now if the dataflow corresponding to R’ contains a subdataflow of it’s own,
we can combine the OPM graph for R and R’ with the OPM graph for the
run linked by internalcall to that subdataflow, say a run R” with ID r”. Then
alternate {r, (r,7’) } can be extended to {r, (r,r’), (r,r’',r"")}. The process can be
repeated further, for each subdataflow found in the binding tree for R. The set
AL of the final OPM graph will thus contain one alternate resulting from this
process, its size bound by the depth of the binding tree for R.

4.3 Adding Subvalue Provenance to an OPM Graph

A major feature of the NRC dataflow model is that it can model the manipulation
of complex data structures built as nested record and set constructions.

In the OPM mapping presented so far, the complex nesting structure of values
is not yet represented. We can add this information by adding to the OPM graph
a new account containing the structure information. Doing so also enables us to
add “was derived from” edges in the OPM graph that track the provenance (or
origin) of subvalues of complex data values.

Formal inference rules exist for the automatic generation of these provenance
edges [2]. Since these inference rules are specific to the NRC dataflow model,

({112} {13} {341} {1,2,3,4)

struct struct

K“Q\

3y L2y
struct struct
{}-cons {}-cons

Fig. 9. Structure of complex values and provenance edges

16 N. Kwasnikowska and J. Van den Bussche

and rely on the specific semantics of NRC operators on complex objects, they
are not mere refinements of the OPM inference rules [I] for “was derived from”
edges.

This is illustrated in Figure[@ The main account on top shows the OPM sub-
graph for a big union operation applied to the nested set {{1,2},{1,3},{3,4}}.
The nested value structure account is shown in dotted lines. The thick lines show
two subvalue provenance edges that can be be inferred by our provenance rules.
The lines show that the value 1 produced by the big union operator comes from
two different sets belonging to the nested set operated upon by the big union.

5 Conclusion

We believe the NRC dataflow model is important, because it provides fully for-
mal definitions of the complex interactions that occur in a repository consisting
of many different executions of many different, interrelated dataflows involving
complex data structures.

In order to validate the NRC dataflow model, we found it important to map
it to the Open Provenance Model, as that model has been especially designed
as an exchange framework for workflow provenance information. Our mapping
also serves as a validation of the OPM.

It is interesting to explore further how the OPM mapping we have presented
here can also serve as a basis for visualization of NRC dataflow runs. Of course
we also have to design an implementation.

References

1. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open
provenance model. Technical Report 14979, University of Southampton, School of
Electronics and Computer Science (2007)

2. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: A
formal model of dataflow repositories. In: Cohen-Boulakia, S., Tannen, V. (eds.)
DILS 2007. LNCS (LNBI), vol. 4544, pp. 105-121. Springer, Heidelberg (2007)

3. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with com-
plex objects and collection types. Theoretical Computer Science 149, 3-48 (1995)

4. Dumont, D., Noben, J., Raus, J., Stinissen, P., Robben, J.: Proteomic analysis
of cerebrospinal fluid from multiple sclerosis patients. Proteomics 4(7), 2117-2124
(2004)

	Mapping the NRC Dataflow Model to the Open Provenance Model
	Introduction
	The NRC Dataflow Model
	Specification of Dataflows in NRC
	Past Executions of Dataflows
	NRC Dataflow Repository Model

	Formal Definition of OPM Graphs
	Mapping NRC Dataflow Runs to OPM Graphs
	Amendment for Multiple NRC Runs
	Incorporating Runs of Subdataflows
	Adding Subvalue Provenance to an OPM Graph

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

