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Abstract. Scientific workflows may include automated decision steps,
for instance to accept/reject certain data products during the course of
an in silico experiment, based on an assessment of their quality. The
trustworthiness of these workflows can be enhanced by providing the
users with a trace and explanation of the outcome of these decisions. In
this paper we present a provenance model that is designed specifically
to support this task. The model applies to a particular type of sub-
workflow that is compiled automatically from a high-level specification
of user-defined, quality-based data acceptance criteria. The keys to the
effectiveness of the approach are that (i) these sub-workflows follow a
predictable pattern structure, (ii) the purpose of their component ser-
vices is defined using an ontology of Information Quality concepts, and
(iii) the conceptual model for provenance is consistent with the ontology
structure.

1 Introduction

Modern experimental science is increasingly data-intensive: a typical in silico ex-
periment involves the coordinated execution of a number of processes that pro-
duce, consume, transform and analyse data. Automating these processes bears
the promise of increasing the rate at which new scientific results can be produced.
At the same time, however, scientists are also responsible for making sure that
the data produced by these experiments is sound and scientifically of good qual-
ity. Let us mention two of the factors that may contribute to the production of
invalid output from an e-science experiment. The first is the increasing reliance
on public data and service resources that are contributed by multiple parties
within a scientific community; the problem is that these contributors do not
routinely offer guarantees of data quality control (or service accuracy). Because
of this, low quality in the input may be expected. And secondly, errors can be
introduced due to the inherent complexity and variability of the scientific exper-
iments that produce the data. Some of these problems have been surveyed and
classified for the case of transcriptomics and proteomics data, for example [6].
When these errors go undetected, because of a lack of appropriate quality con-
trols either by the experimenter, or by the data provider, user scientists face the
risk of inadvertently using using poor data that may invalidate the conclusions
drawn from their own experiments.
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In this paper we argue that, when the experimental process is implemented
as a workflow, the analysis of provenance trails collected from workflow execu-
tions can play an important role in supporting the experimenters’ claim of their
results’ soundness. By the term workflow provenance we mean metadata that is
collected during the execution of the workflow, in order to enable various types
of post-mortem analyses on its outcome. In particular, we are going to exploit
provenance metadata to explain and justify the quality-based decisions made by
a completely automated workflow on the user’s behalf, in particular regarding
which data elements are deemed acceptable based on their quality estimates.
This problem is complicated by the potentially arbitrary nature of the proces-
sors that compose the workflow, as well as of the workflow structure. As has been
noted [5], black-box processors that are not further annotated limit the ability
to use the provenance log for explanation purposes, and similarly, an arbitrary
workflow structure imposes a generic presentation model.

We do not propose a general solution to this problem. Instead, our approach
is focused on a specific type of quality-based decision processes, and stems from
three key design principles. Firstly, we take the stance that quality assurance
in the workflow context is described by a process in its own right, which can
be deployed as a part of the workflow itself, or as a sub-workflow. We call such
process a quality workflow. Secondly, quality workflows are automatically gen-
erated from higher-level specifications, in a model-driven fashion, making their
structure and their composing services predictable. And finally, the services that
compose a quality workflow are described as part of an ontology of Information
Quality concepts. As we will see in Section 3, this allows us to create a data
model for provenance that follows the structure of the ontology. This uniformity
of representation has at least two advantages. Firstly, we can query the prove-
nance model using the ontology as a schema; and secondly, we can describe
the relationships among elements in the provenance model in terms of semantic
properties among their corresponding classes. The combination of these three
design principles make it possible to exploit provenance to provide users with a
high-level, “semantic” view of quality-based decisions, in a way that would not
be possible when dealing with arbitrary workflows.

Based on these premises, in the paper we present a detailed provenance model
that is specifically dedicated to analysing quality workflows. We view this as only
one specific case of an otherwise general confluence between model-driven work-
flow design, semantic annotation of services, and provenance modelling. Note
that the examples used in the paper are set in the context of e-science work-
flows; also, the implementation of the provenance model described in the paper
uses the Taverna workflow language [7,10], part of the myGrid suite of middle-
ware tools for e-science1. Neither of these is a limitation, however: the notion
of quality workflows is completely general and applicable to other domains, and
the provenance model does not contain any Taverna-specific element.

Concerning related research, we fine that the idea of semantic provenance
models that are tailored to special-purpose workflows is not yet common in the

1 http://mygrid.org.uk
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literature, although various mature systems provide interesting ways to visualize
provenance, i.e., VisTrail [3]. In fact, the ability to query provenance informa-
tion at different levels of abstraction is listed as one of the many desiderata for
provenance systems by Chapman and Jagadish [4] (it is listed as number IX).

The recent work on the Zoom provenance query prototype by Biton et al. [2]
is relevant, in that it advocates a tailoring of provenance views to the needs of
specific users, rather than just giving access to the enormous bulk of the raw
logs in all their detail. We see their work as complementary to our own. We
allow users to ignore the detail of the quality assessment aspects of the workflow
(which could be packaged up into a “composite module”, to use the terminology
of Biton et al.) until query time. At this point, the provenance browser provides
an abstract view over provenance, that is based not on a user-specified view,
but on the high-level model from which the quality sub-workflow was produced.
Clearly, a number of abstract views of workflows could be supported by adopting
mechanisms similar to those suggested in [2].

2 Quality-Based Decision Processes

The quality assurance problems that motivate our work could, in principle, be
alleviated by convincing data and service providers to deploy their own quality
assurance procedures during data generation, maintenance, and provisioning.
Besides being impractical, however, this proposition assumes that standardised
quality estimation procedures can be developed. This, however, often contrasts
with the very nature of interesting e-science data, which results from cutting-
edge research conducted using new and experimental techniques that tend to
change rapidly, not lending themselves well to standardisation.

Even when the data provider makes appropriate, objective quality metrics
available, the user scientists are still faced with a decision problem, namely
whether to accept or reject certain data based on its quality characteristics. Al-
though the determination of data acceptability is based on objective metrics, the
user’s perception of whether the data is fit for use, given its quality character-
istics, also plays a part: some types of error, or approximation, can be tolerable
for some types of applications, but not for others, and different users may attach
different importance to quality.

2.1 Example

To make these considerations concrete, consider a real-life case study in the
domain of qualitative proteomics [1], i.e., concerning the identification and func-
tional characterization of proteins from a cell sample. The experiment includes
an in vitro portion whereby a mass spectrometer is used to quantify the pep-
tide masses in the sample, followed by an in silico portion where the observed
masses are matched against theoretically computed masses for a large collection
of known proteins. The critical step in the latter portion of the experiment, de-
noted Identify Proteins in the Taverna workflow fragment of Fig. 1, is the
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Fig. 1. A simple proteomics workflow with a potentially imprecise search processor

invocation of the matching service. We can view this service as a dedicated search
engine that operates on sequences of peptide masses. The results of the search
invariably include partial matches as well as exact matches. Although some of
these matches may turn out to be false positives, the experimenter has no simple
way to make that determination. Ideally, a quality-based data acceptance crite-
ria would be able to accept/reject individual matches based on their likelihood
of being a false positive.

To help determine the reliability of each reported match, implementations of
this service (Imprint is the homegrown service used in our example) typically
do provide additional metadata along with the match, including for example the
Hit Ratio, i.e., the number of peptide masses matched, divided by the number of
peptide masses submitted to the search (additional metadata that is required in
this example is omitted for simplicity). Recent research [11] has shown a strong
correlation between a simple score model for matches based on this and other
readily available indicators, and the likelihood of false positives. By using this
predictive score model to rank the output of the matching service, in combination
with a user-defined threshold, experimenters have an effective way to make their
quality acceptance criteria formal and automatically computable.

2.2 Structure of the Decision Process

The previous example highlights the main elements of a quality-based decision
process that is applied to a dataset, in this case a collection of protein matches:
first a set of objective metadata elements, i.e., the Hit Ratio, is collected in or-
der to compute a predictive quality model (the match score). We will refer to
the metadata elements as quality evidence, and to the quality model as quality
assertion. Then, a threshold is applied in order to partition the ranked protein
matches into the two classes “accept” and “reject” –this is an example of a quality
condition. Note how the process combines purely objective elements, namely the
evidence, with a predictive model, the assertion, and with a subjective element,
namely the threshold. Generalising from the example, in [9] and [8] we have
formally described a broad class of quality processes that take an input dataset
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and compute a partition of the dataset into quality classes, such as “accept” and
“reject”. These processes share the structure just described, namely they:

– collect quality evidence from the data and the surrounding operating en-
vironment. In the example, the required evidence is either supplied by the
search engine, or can be derived independently from its output;

– compute one or more quality assertions, using the collected evidence as input;
– evaluate a quality condition that assigns one quality class to each element

in the input dataset, based on the values of the quality assertions.

In particular, in [9] we have coined the term Quality View to denote a formal
specification of such a quality process. The process is abstract in that it does not
include any indications regarding its implementation. A Quality View specifies
three types of functions, one for each of the steps listed above, namely (i) anno-
tation functions that associate quality evidence metadata to the input dataset;
(ii) quality assertion functions that associate quality assertions to the data based
on the evidence, and (iii) quality actions that compute a quality classification
based on the assertions.

2.3 Compiling Quality Processes to Workflows

Quality Views are defined as part of a workbench for Information Quality man-
agement, called Qurator [9]. Using Qurator, e-scientists may define their own
quality metrics for specific types of data as quality assertion functions, and then
specify Quality Views in order to apply those metrics to the data. Quality Views
are most useful when they are deployed as filters within larger, user-defined
processes. For this reason, Qurator includes a compiler that translates Quality
Views into workflows, specifically targeted at the Taverna workflow system. An
example of such a quality workflow, designed to work with the example protein
identification workflow of Fig. 1, is shown in Fig. 2.

The compiler assumes that all the annotation and assertion functions that
are part of the Quality View have been implemented as Web Services. With this
assumption, those functions translate simply to Taverna processors that perform
service invocations. Specifically, the example workflow includes one annotation
processor, InprintOutputAnnotator, and three quality assertion processors, for
instance PIScoreClassifier. The action step at the end evaluates an expression
on the values of any of the assertions computed by these processors, for instance
“HitRatio > 0.67 and PIScoreClassifier = ’high’ and ...”. Data elements that
do not satisfy the condition are placed in the “reject” output of the processor,
which is typically not connected to any other processor. Thus, this mechanism
can be used in particular to filter out protein identifiers that rank too low, when
a user-defined threshold is used in combination with the score model described
in Section 2.1.

2.4 Role of Provenance

As this example shows, quality workflows may have an impact on the outcome
of a workflow, for instance by removing the likely false positives. It is therefore
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Fig. 2. A quality workflow deployed as part of the proteomics experiment

important for users to understand the effects of the quality workflow on the out-
put of its original workflow. For this, the Qurator workbench includes a prove-
nance component that is specialised to operate exclusively on quality workflows,
providing users with a high-level trail to explain how a certain decision was
reached. Specifically, the component supports the following tasks, among others:

– visualize the partitioning of the input data set into quality classes, as defined
upon evaluating the action condition;

– for each data element, visualize the entire trail of transformations that con-
tributed to its quality classification. This includes quality assertion values
that were used in evaluating the condition, the names and types of the qual-
ity assertion functions, the values for their input quality evidence, and the
annotation functions used to compute the evidence;

– visualize the different quality classification outcomes obtained over a series of
workflow executions, highlighting the differences among the quality workflow
settings (e.g. the action condition). Is a certain data element consistently
rejected or accepted, for example? or is its acceptance particularly sensitive
to a threshold configuration?

– compute descriptive statistics over the series, for instance by counting the
number of times that each data element was rejected/accepted.

The ability to address these issues is particularly important, when one considers
that the Qurator workbench provides users with ways to rapidly deploy and
test new quality workflows, leading to the inexpensive generation of experiment
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Fig. 3. Screenshot of the Qurator provenance viewer

variants. The screenshot in Fig. 3, taken from the current implementation of the
provenance component (part of the Qurator workbench), shows an example of
user presentation of quality provenance.

3 The Quality Provenance Model

In this section we describe in detail the data and query model for quality prove-
nance that supports the tasks outlined above. Its design exploits the layered
structure of the quality workflows, that corresponds to the abstract process steps
of the Quality View they are compiled from.

3.1 Semantic Definition of Quality Processors

In addition to generating quality workflows with a predictable structure, Qura-
tor offers a second advantage to the provenance component: all the elements
of a Quality View (data, quality metadata, and processors) are assigned a se-
mantic type, i.e., a reference to a class in an ontology of Information Quality
(IQ) concepts. To illustrate, consider Fig. 4, where the main concepts are shown
along with their properties2. The leftmost part of the figure shows some of the
domain-independent ontology classes: an Annotation function computes val-
ues that are instances of Quality Evidence classes, using instances of Data
Entity as input. Similarly, a generic Quality Assertion is based upon Quality

2 This is a vastly simplified fragment of the ontology. For a complete account, please
see [8].
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Fig. 4. A fragment of the Information Quality ontology with semantic typing of services

Evidence values. On its right are specializations of each of these generic classes
to domain-specific sub-classes, in this case associated to protein identification
data (Imprint is the name of the specific protein matching tool used in the
main workflow). Together, these classes and properties belong to a “semantic
space” of symbols that can be used to give meaning to objects in the “service
and data space”, on the right in the figure. In this space we find specific imple-
mentations of the functions as Web Services, as well as actual values for data
and metadata elements (the patterned boxes).

When a Quality View is compiled into a quality workflow, entities in the ser-
vice and data space are annotated with references to classes in the semantic
space. As we will see shortly, by creating a data model for the provenance com-
ponent that follows the structure of the ontology we are able to view provenance
metadata as instances of the ontology classes. This uniformity of representation
has at least two advantages. Firstly, we can query the provenance model using
the ontology as a schema; and secondly, we can describe the relationships among
elements in the provenance model in terms of semantic properties among their
corresponding classes, leading to a presentation model for provenance that is
close to the scientist’s intuition of the intended workflow behaviour.

Since the IQ ontology is specified using the OWL Semantic Web language3,
these design decisions lead naturally to RDF4 as the data model of choice for
provenance. This is in accordance with common Semantic Web practice, whereby
we can assign a semantic type to arbitrary RDF resources (by means of the pre-
defined RDF(S) property rdf:type). In particular, some of the instances of the

3 http://www.w3.org/TR/owl-guide/
4 http://www.w3.org/RDF/
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provenance schema have a semantic type that corresponds to the ontology classes
shown in Fig. 4.

The provenance model consists of two parts. The first part, called the static
model, is an RDF graph that describes elements of a quality workflow, as they
are specified at compilation time, while the dynamic model is populated with
actual provenance data during each workflow execution.

3.2 Static Model

A fragment of the static model for our running example is shown in Fig. 5. This
RDF graph contains two resources, namely the two nodes (the ovals) on the
left in the figure. RDF resources are identified using a unique URI, while the
square boxes are literals, i.e., constant values, and directed arcs denote binary
properties between any two nodes, the subject and the obiect of the property.
Nodes can be anonymous (also called b-nodes), i.e., their URI is internal and
system-defined rather than user-defined, and thus it is not shown.

The first of the two nodes on the left represents the only quality action in
the workflow, i.e., filter action, and it carries the definition of the action
expression that is used to identify the “accept” data elements. The second is the
root of a sub-graph that represents one of the quality assertion functions, along
with its input and output variables, having semantic type PIScoreClassifier.
Similarly, each input variable is an RDF resource too, consisting of a name (the
literal) and a semantic type, i.e., a reference to a Quality Evidence class.

3.3 Dynamic Model

The static model is common to all executions of the same workflow. A dynamic
model for quality provenance, also an RDF graph, is populated during each
workflow execution, and contains references to the static model. Its purpose is
to capture the values of the variables involved in the workflow, i.e., those that
appear in the static model, as well as the effect of the quality actions. Each
new execution of the same quality workflow results in the generation of a new
dynamic model (for the same static model).

From a technical standpoint, the mechanism for collecting provenance infor-
mation for the dynamic model exploits Taverna’s ability to accept third party
monitoring components and to send notifications to them for a variety of events
that occur during workflow execution. Using this notification pattern, the qual-
ity provenance component monitors the activity of individual processors in the
quality workflow, as well as the content of the messages they exchange.

With reference to our example, Fig. 6 represents a fragment of the dynamic
model corresponding to the static model of Fig. 5. The b-nodes in the middle
represent a variety of workflow elements. Second from top is the workflow
execution node with a unique identifier (i.e., the resource PP6...) that serves
as a reference for the other nodes, which are related to it through the workflow

property. This common reference defines the scope for all the resources associated
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Fig. 6. Dynamic provenance model populated from workflow execution

with a single execution. It ensures, for example, that we can retrieve the entire
quality provenance graph for one execution independently from that of other
executions (using a query with the constraint that the workflow be the same for
all resources returned), while at the same time allowing for queries over multiple
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SELECT ?action ?outcome ?workflow
WHERE { ?binding data item ”P33897” .

?binding action name ?action .
?binding value ?outcome .
?binding workflow ?workflow .
?binding rdf:type ”actionBinding” .

FILTER (regex(?workflow, ”4IPQF26RXW2”)) . }

(1) all action outcomes for a given workflow

SELECT ?assertion ?value
WHERE { ?v var name ?assertion .

?v value ?value .
?v workflow ?workflow .

FILTER (regex(?workflow, ”4IPQF26RXW2”)) .
regex(?data item, ”P26153”)) . }

(2) all assertion values for a given workflow and data item

Fig. 7. Example SPARQL provenance queries

executions, for example “all protein data in class fail”, simply by ignoring the
workflow identifier.5

Briefly, the other b-nodes are used to represent the quality assertion value
close to avg for a data item (top node), the quality classification fail for the
same item (third node), and the binding of the HitRatio variable to value 20,
still for the same item (bottom node). Note that references to the static model
occur both by name, i.e., the literal PIScoreClassifier can be used to retrieve
the quality assertion’s static information, and by reference, e.g. the var property
for the bottom node which refers to a b-node in the static model, namely for
the descriptor of the variable. A new execution of the same workflow results in
a new set of b-nodes, with references to the same static model nodes.

3.4 Querying the Model

As part of the Qurator workbench we offer a programmatic interface (in Java) for
querying the model, based on the SPARQL query language (the W3C standard
RDF query language6). In addition, however, we have also defined a graphical
user interface, exemplified in Fig. 3 above, which implements the common types
of provenance analysis listed at the end of Section 2.

The two SPARQL queries shown in Fig. 7 (slightly simplified for the sake
of presentation) illustrate the types of provenance data retrieval supported by
the model, which form the basis for the user interface. The first returns all
quality classes, i.e., the outcome of action processors, for a given workflow and
for each data item, while the second returns the values of all assertions, for a
given data item.

4 Conclusions

In our previous work [9] we have proposed the notion of a quality workflow in
the context of the Qurator workbench for managing information quality in e-
science. In this paper we have described a focused, application-oriented process

5 Recent extensions of RDF, namely for named graphs (http://www.w3.org/2004/
03/trix/), can also be used to partition a large RDF graph according to a given
scope.

6 http://www.w3.org/TR/rdf-sparql-query/
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provenance model, called quality provenance, that can be associated to quality
workflows. The model benefits from the automated generation of quality work-
flows by means of a compiler, and from the use of an ontology of information
quality concepts – both of which are pre-existing Qurator features.

Several broad-scope provenance models have been proposed in the literature.
Oblivious of any workflow semantics, these models capture a generic and low-
level form of provenance. In contrast, in our approach we narrow the scope
of provenance analysis, in return for the ability to present users with a high-
level explanation of the processors that are within the scope. Although we have
developed this idea in the context of quality-based decision processes, we believe
this to be a viable approach that can be generalised to other types of pattern-
based workflow structures.
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