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Abstract. Capturing provenance information in scientific workflows is not only 
useful for determining data-dependencies, but also for a wide range of queries 
including fault tolerance and usage statistics. As collaborative scientific work-
flow environments provide users with reusable shared workflows, collection and 
usage of provenance data in a generic way that could serve multiple data and 
computational models become vital. This paper presents a method for capturing 
data value- and control- dependencies for provenance information collection in 
the Kepler scientific workflow system. It also describes how the collected infor-
mation based on these dependencies could be used for a fault tolerance frame-
work in different models of computation. 

1   Introduction and Background 

Scientific workflows provide many advantages to the scientific community including 
provenance support. The lifecycle of scientific workflow provenance starts with 
workflow design and execution. The collected information can be used for evaluation 
of the results as well as for mining different patterns during workflow design. Differ-
ent workflow users need information about different phases of the workflow. These 
concepts are shown in Figure 1. 

Collection of Provenance Information. Provenance collection related to a scientific 
workflow is three-fold. Firstly, since workflow developers often change a workflow 
while experimenting with different computational tools and multiple scientific data-
sets, provenance recording can start during the design phase of the workflow. Captur-
ing these user actions is important since it records what did and did not work, as well 
as how the workflow developer came up with the final workflow. The collection of 
provenance information continues during the experiment preparation (parameter bind-
ing) and execution of the workflow. The third aspect of collecting scientific workflow 
provenance that is often ignored is collection after the workflow results are published. 
One can verify the scientific impact of the workflow based on the citations for these 
results and statistics on how they are used. 

Usages of Provenance Information. The collected provenance data is useful in many 
contexts, such as querying input/output associations, verifying results, etc. Different 
types of provenance information analysis based on the design and one or more runs of 
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the same workflow are listed in Figure 1. The collected information on the workflow 
design could be used both to analyze it and to visualize the evolution of the workflow 
as demonstrated in the Vistrails system [1]. In addition, provenance information on 
data-dependencies could be used for smart reruns and fault tolerance. 

 

Fig. 1. Different usages of provenance data 

Users of Provenance Information. Users of provenance data include the workflow 
developer and workflow user, scientific dashboards that help execute and monitor a 
workflow, and interfaces that use this data. To best serve different users, provenance 
recorders should provide for customized data collection through parametric interfaces. 

This paper presents a method for capturing data-dependencies for provenance in 
the Kepler scientific workflow system, and describes how these dependencies could 
be used for a fault tolerance framework. Our fault-tolerance model targets different 
users of a workflow system. It provides mechanisms to detect errors that would be 
useful for workflow developers, workflow users, and programming interfaces that 
execute a given workflow. The level of information that needs to be collected for 
error-recovery is different for every workflow. Further, workflow systems could exe-
cute multiple models of computation (MoC), and the fault tolerance mechanism must 
work with each. To the best of our knowledge, no scientific workflow system sup-
ports these requirements for failure-detection and recovery.  

In the rest of this paper, we explain a provenance collection approach in the Kepler 
scientific workflow system [2] and show how the collected information could be used 
in a fault-tolerance system that supports the requirements mentioned in the previous 
paragraph. We demonstrate this approach in a scientific workflow example using a 
part of the GEON LiDAR Workflow (GLW) [3]. 

2   The Kepler Provenance Framework 

The Kepler scientific workflow system [2] is developed by a cross-project collabora-
tion to serve scientists from different disciplines. Kepler provides a workflow 
environment in which scientists can design and execute workflows through a user 
interface or in batch mode from other applications.  A Provenance Recorder that has 
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plug-in interfaces for new data models, metadata formats and storage destinations was 
designed to serve the multi-disciplinary requirements of the broad user community. 
The Kepler Provenance Framework (KPR) was presented in [4]. An extended archi-
tecture that allows for binding different data models to KPR, collection of application-
specific provenance data and using results through a dashboard has been created [5]. 
The center of this architecture is Provenance Store: a database providing physical 
storage and an API to access the database. The API has three components: (1) Kepler, 
its actors, and external scripts use a Recording API to collect and save provenance 
information; (2) a Query API provides different query capabilities for dashboards, and 
query actors in Kepler; and (3) a Management API. 

KPR uses separation of concerns principle to work with different MoCs [4, 6]. Ke-
pler workflows are composed of a linked set of Actors executing under MoC. Actors 
encapsulate parameterized actions and communicate between themselves by sending 
Tokens, which encapsulate data or messages, to other actors through one or more 
output ports. Ports that receive tokens are called input ports. MoCs specify what flows 
as tokens between actors’ input and output ports, e.g., data or messages, how the 
communication between the actors is achieved, when actors fire, and when the work-
flow can stop execution. A Kepler workflow could have different MoCs in sub-
workflows called Composite Actors. KPR is a separate entity in the workflow and 
records provenance by communicating with the execution engine.; the information 
recorded depends on the MoC semantics. This can only be achieved using a data 
model that matches the set of observables about workflow run in a particular MoC. 

2.1   Classifying Data-Dependencies 

The KPR records workflow assertions and observables, including data-dependencies: 
data written by an actor may depend on some combination of previously read data. 
We categorize data-dependencies between output and input data as either value-
dependencies or control-dependencies. A value-dependency occurs when an output 
data's value depends on the value of previously read data. For example, consider the 
two actors show in Figure 2. The Filter actor outputs the previously read token if the 
value is above a threshold. Each token written by this actor has a single value-
dependency: the previously read input token.  In Figure 2(a), this actor reads two 
input tokens T1 and T2. Only the value in T2 is above the threshold and is output in 
T3. The value-dependency for T3 is T2.  

(a)                                                                (b)  

Fig. 2. Input and resulting output tokens for (a) Filter and (b) Average actors. The output tokens 
contain a list of value-dependencies (VD). 



 A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows 155 

The Average actor outputs an average of all previously seen inputs. In this case, 
each output token is value-dependent on all input tokens. In Figure 2(b) the actor first 
reads T1, then outputs T3, which is only value-dependent on T1. Next, the actor reads 
T2 and outputs T4, which is value-dependent on both T2 and T1. 

A control-dependency occurs when the arrival of input data causes the actor to 
execute and subsequently produce output data. As described above, the MoC deter-
mines when actors execute; in several the execution schedule is based on when input 
data are present. Many actors therefore use an input “trigger” port to determine when 
to execute. Since data read from this port are discarded, i.e., the value is not used by 
the actor to produce output data, the distinction between value- and control-
dependencies is important for many use cases of provenance. 

2.2   Recording Data-Dependencies 

The KPR provides methods for recording data-dependencies, either automatically by 
the runtime system or manually by the actor developer. 

Our method of automatically tracking dependencies is inspired by taint propaga-
tion, a technique commonly used to detect security vulnerabilities in applications 
[7,8]. For example, Perl's “taint mode” prohibits any data outside the application to 
affect something else outside the program [9]. Perl marks each variable assigned from 
an external input, e.g., files, web services, etc., as tainted and propagates taint to other 
variables when they are used in expressions with tainted variables. 

To capture value-dependencies during workflow execution, the ids of tokens read 
by an actor are propagated “through the actor” to the produced tokens. (All tokens 
created during a single workflow execution are assigned a unique identifier). A token 
is a container for base classes such as Integer or String, and each is instrumented with 
a list of token ids on which its value depends. The list is created when the object is 
extracted from a newly read input token and updated when the object is used in an 
expression. For example, the assignment operator replaces the destination object’s 
dependencies with those in the source, and the addition operator adds the source de-
pendencies to the destination’s list. 

We also provide an API to capture dependencies for situations in which automati-
cally propagating dependencies is impossible. This can occur, for example, when an 
actor reads from an external data source such as a web service. 

In addition to value-dependencies, control-dependencies may exist between an 
output token and one or more previously read input tokens. KPR records a control-
dependency between each output produced and each input read by an actor during the 
same firing cycle. A value-dependency between an output and input implies a control-
dependency between the same tokens. The converse, however, is not always true. For 
example, consider the Ramp actor. It has two inputs: “trigger” and “step”. Data must 
be available for both before the actor can execute. The value read in the step input 
increases or decreases the actor’s output value. A control-dependency exists for an 
output token and the previously read trigger and step inputs. However, only the value 
in the step input is used to calculate the output; a data-dependency does not exist 
between the output and the trigger input.  
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3   Scientific Workflow Doctor: Using Provenance Data for Fault 
Tolerance 

This section describes a fault tolerance framework using the data-dependencies re-
corded by the KPR. Scientific workflows commonly access a diverse set of resources 
such as, databases, and file systems. A scientific workflow system therefore must 
provide mechanisms to gracefully handle resource failures. Further, these mechanisms 
should be compatible with advanced modeling constructs, such as data-dependent 
routing, loops, and parallel processing. 

Fault tolerance is provided with a composite actor called Checkpoint. When a sub-
workflow within a Checkpoint produces an error event, all execution within the 
Checkpoint is stopped. Checkpoint handles the error itself, or passes it up the work-
flow hierarchy. This is similar to exception handling in text-based programming lan-
guages. 
    Workflow errors are detected and signaled with user-defined expressions called 
port conditions. A port condition can be specified for any port and is evaluated when 
the actor reads from the input port or writes to the output port. If the port condition 
evaluates to false, an error event is signaled. Port conditions are analogous to pre- and 
post-conditions in procedural languages and provide great flexibility for the workflow 
designer since they may be attached to any port in the workflow. A port condition 
uses the incoming or outgoing token’s value, along with mathematical and logical 
operators. For example, it could check if a numerical token was above a threshold. 
    Actors also signal errors during workflow execution. An error API is provided for 
developers to generate error events based on actor-specific conditions, such as when a 
web service actor’s request times-out.  

A Checkpoint composite actor contains a primary sub-workflow and optionally al-
ternate sub-workflow(s). Data read by the Checkpoint's input ports are first passed to 
the primary sub-workflow. When an error occurs in the primary sub-workflow, 
Checkpoint either re-executes the primary, or runs an alternate sub-workflow. The 
maximum number of times to retry the primary or an alternate sub-workflow is con-
figurable. Once the retry limit is exceeded, the error is sent up the workflow hierarchy 
to the nearest enclosing Checkpoint. 

When Checkpoint re-executes a sub-workflow, it resends all data read by the sub-
workflow up to and including those that led to the error. The data to be resent are 
queried from data-dependencies stored in the provenance database. An actor gener-
ates an error based on the values of one or more input data. These data were written 
by upstream actors, which in turn created them from a set of input data. Checkpoint 
follows the data-dependencies, starting at the error, back to the data read by the 
Checkpoint’s input ports. These data tokens are sent again to the sub-workflow along 
with any data tokens received after it in their original order. 

Figure 3 shows an example workflow containing a Checkpoint actor, based on the 
GLW [3], which allows geoscientists to analyze and interpolate Light Distance and 
Ranging (LiDAR) datasets. A geoscientist first selects a region to be analyzed from a 
web portal. The workflow retrieves the LiDAR point cloud matching the selected 
region from a database, which is then interpolated using GRASS [10]. GRASS out-
puts an ASCII grid, which must be converted to binary using Feature Manipulation 
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(a)

(b)  

Fig. 3. GLW with fault tolerance. (a) During normal operation, the workflow executes Viz1. (b) 
If FME or Fledermaus in Viz1 fail, Global Mapper creates a 2D image. 

Engine1 (FME) before Fledermaus2 can read it. Fledermaus outputs the data into a 
format that the geoscientist can then load in an interactive 3D viewer. FME and Fled-
ermaus are executed in the sub-workflow Viz1. 

Since both FME and Fledermaus are web services, they may not always be avail-
able. If one fails, we would still like to provide a visualization of the selected LiDAR 
region. An alternative imaging tool is Global Mapper3, shown in Viz2, which converts 
the ASCII grid data to a JPEG image. 

The Checkpoint actor executes Viz1, unless FME or Fledermaus cannot be reached. 
When this occurs an error is signaled and Checkpoint runs Viz2. Any regions to be 
processed by FME or Fledermaus are instead processed by Global Mapper. Ra and Rb 
in Figure 3(a) represent the locations of these regions in the workflow. Ra has not been 
converted to binary by FME so can be sent directly to Global Mapper. However, Rb 
has been converted. In this case, Checkpoint uses the data-dependencies stored in the 
provenance database to find the ASCII data that led to Rb. The ASCII data can then be 
processed by Global Mapper. Since the datasets processed can be very large, refer-
ences are passed between actors and saved in the provenance database instead of the 
actual data. 

4   Related Work 

Provenance in scientific workflow systems has become a major research track. Data-
dependencies are analyzed and mapped into a data model for different systems 
[11,12]. Information collected on these is used to answer users’ queries on different 
workflow aspects. Data-dependencies have also been used for a smart re-run system 

                                                           
1 A GIS data conversion system (http://www.safe.com/). 
2 An interactive 3D visualization system (http://www.ivs3d.com/products/fledermaus/). 
3 A GIS visualization system (http://www.globalmapper.com/). 
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in Kepler [4]. In the Virtual Data System, provenance is used to reproduce data prod-
ucts, and can be queried with application-specific semantics [12].  
    Techniques have been proposed to record provenance about the computations oc-
curring inside actors. The registry system of Wootten et al. records assertions of in-
ternal actor state executing a service-oriented architecture [13]. However, no method 
is given for automatically adding state assertions to actors. The RWS approach [14] 
annotates actors to signal whenever they reset to an initial state. Unlike our solution, 
this requires modifying each actor since the reset event is sent on actor-specific condi-
tions. To our knowledge, no workflow provenance system distinguishes between 
value- and control-dependencies.  
    Scientific workflow systems commonly provide fault tolerance mechanisms [15], 
but most are not used in combination with advanced MoC. While ASKALON [16] 
allows constructs such as parallel loops and conditional statements, it does not support 
user-definable exceptions or fault-recovery for actor errors. Similar to our approach, 
Bowers et al. [17] propose embedding the primary and alternate sub-workflows in a 
control-flow template. However, these templates are directed by a finite state ma-
chine, which cannot be used to execute process networks [6]. The Ptolemy backtrack-
ing system [18] provides an incremental checkpoint and rollback mechanism. This is 
complementary to our approach, which deals primarily with stateless actors and pro-
vides user-definable fault-detection and recovery. Similar to port conditions, Karajan 
[19] performs matching on user-defined regular expressions attached to input ports. 
However, there is no mechanism to retry previously executed parts of the workflow. 

5   Conclusions and Future Work 

This paper discusses methods to identify value- and control- dependencies in the 
Kepler Provenance Framework. Additionally, we describe how the collected data-
dependencies can be used to provide failure recovery in a scientific workflow system.  

We will extend our fault tolerance system in several ways. Combining it with the 
Ptolemy II backtracking system will allow stateful actors to restart. Further, we are 
building more expressive port conditions by adding conceptual semantics. This will 
allow conditions such as “all Celsius temperatures (read or written by actors) must be 
above 5 degrees”. We are also investigating other techniques to capture dependency 
information. 
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