

Lecture Notes in Computer Science 5272
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Juliana Freire David Koop Luc Moreau (Eds.)

Provenance
and Annotation of Data
and Processes

Second International Provenance and Annotation Workshop
IPAW 2008
Salt Lake City, UT, USA, June 17-18, 2008
Revised Selected Papers

13

Volume Editors

Juliana Freire
David Koop
University of Utah, School of Computing
Salt Lake City, UT 84112, USA
E-mail: {juliana, dakoop@cs.utah.edu}

Luc Moreau
University of Southampton
School of Electronics and Computer Science
Southhampton SO17 1BJ, UK
E-mail: L.Moreau@ecs.soton.ac.uk

Library of Congress Control Number: 2008940592

CR Subject Classification (1998): H.3, H.4, D.4, E.2, H.5, K.6, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

ISSN 0302-9743
ISBN-10 3-540-89964-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89964-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12569199 06/3180 5 4 3 2 1 0

Preface

Computing has been an enormous accelerator to science and industry alike and it
has led to an information explosion in many different fields. The unprecedented
volume of data acquired from sensors, derived by simulations and data analysis
processes, accumulated in warehouses, and often shared on the Web, has given
rise to a new field of research: provenance management. Provenance (also referred
to as audit trail, lineage, and pedigree) captures information about the steps
used to generate a given data product. Such information provides important
documentation that is key to preserving data, to determining the data’s quality
and authorship, to understanding, reproducing, as well as validating results.

Provenance management has become an active field of research, as evidenced
by recent specialized workshops, surveys, and tutorials. Provenance solutions are
needed in many different domains and applications, from environmental science
and physics simulations, to business processes and data integration in ware-
houses. Not surprisingly, different techniques and provenance models have been
proposed in many areas such as workflow systems, visualization, databases, dig-
ital libraries, and knowledge representation. An important challenge we face to-
day is how to integrate these techniques and models so that complete provenance
can be derived for complex data products.

The International Provenance and Annotation Workshop (IPAW 2008) was a
follow-up to previous workshops in Chigago (2006, 2002) and Edinburgh (2003).
It was held during June 17–18, in Salt Lake City, at the University of Utah
campus. IPAW 2008 brought together computer scientists from different areas
and provenance users to discuss open problems related to the provenance of
computational and non-computational artifacts. A total of 55 people attended
the workshop.

We received 40 submissions in response to the call for papers. Each sub-
mission was reviewed by at least three reviewers. Overall, 14 submissions were
accepted as full papers, and 15 were accepted as short papers and demos. All ac-
cepted papers, short papers, and demos were invited for oral presentation at the
workshop. Val Tannen (University of Pennsylvania) and Allen Brown (Microsoft
Research) gave keynote addresses.

The workshop was organized as a single track event with paper, poster, and
demo sessions interleaved. Slides and presentation materials can be found at
http://www.sci.utah.edu/ipaw2008/agenda.html.

Immediately following IPAW 2008, a group of 22 researchers got together to
discuss a proposal for an Open Provenance Model (OPM). The aim of OPM is
to allow provenance information to be exchanged between systems, by means
of a compatibility layer based on a shared provenance data model. The dis-
cussions were technical in nature, and touched upon fundamental notions such
as provenance graphs, agents, alternate accounts, and permissible inferences.

VI Preface

A summary can be found at http://twiki.ipaw.info/bin/view/Challenge/
FirstOPMWork shopMinutes. As a result of this workshop, a new version of the
OPM was released, which is intended to be used in the next inter-operability ex-
ercise, the Third Provenance Challenge. Material related to OPM can be found
at http://openprovenance.org/.

IPAW 2008 was a very successful event with much enthusiastic discussion
and many new ideas generated.

We thank Microsoft Research for sponsoring the workshop banquet. We also
thank the Program Committee members for their thorough reviews.

Juliana Freire
Luc Moreau

Organization

IPAW 2008 was organized by the Department of Computer Science, University
of Utah.

Workshop Co-chairs

Juliana Freire University of Utah, USA
Luc Moreau University of Southampton, UK

Program Committee

Roger Barga Microsoft Research, USA
Ken Brodlie University of Leeds, UK
Peter Buneman University of Edinburgh, UK
James Cheney University of Edinburgh, UK
Min Chen Swansea University, UK
Susan Davidson University of Pennsylvania, USA
Paul Groth ISI, USA
Beth Plale Indiana University, USA
Carole Goble University of Manchester, UK
Ian Foster University of Chicago, USA
Juliana Freire University of Utah, USA
Bertram Ludascher UC Davis, USA
H. V. Jagadish University of Michigan, USA
Marta Mattoso UFRJ, Brazil
Simon Miles King’s College, UK
Luc Moreau University of Southampton, UK
Jim Myers NCSA, USA
Allen Renear University of Illinois at Urbana-Champaign, USA
Margo Seltzer Harvard University, USA
Claudio Silva University of Utah, USA
Wang-Chiew Tan UC Santa Cruz, USA
Jan Van den Bussche Universiteit Hasselt, Belgium
Stijn Vansummeren Universiteit Hasselt, Belgium
Daniel J. Weitzner W3C

Web Co-chairs

Erik Jorgensen University of Utah, USA
Tommy Ellkvist Linköping University, Sweden

VIII Organization

Local Organizers

David Koop University of Utah, USA
Emanuele Santos University of Utah, USA

Sponsoring Institutions

Microsoft Corporation, Redmond, WA, USA
Scientific Computing and Imaging Institute, University of Utah, USA
Springer, New York, NY, USA
University of Utah, Salt Lake City, UT, USA

Table of Contents

Keynotes

Provenance for Database Transformations . 1
Val Tannen

Enforcing the Scientific Method . 2
Allen L. Brown, Jr.

Papers

Mapping the NRC Dataflow Model to the Open Provenance Model 3
Natalia Kwasnikowska and Jan Van den Bussche

Data Lineage Model for Taverna Workflows with Lightweight
Annotation Requirements . 17

Paolo Missier, Khalid Belhajjame, Jun Zhao, Marco Roos, and
Carole Goble

A Logic Programming Approach to Scientific Workflow Provenance
Querying . 31

Yong Zhao and Shiyong Lu

Recording the Context of Action for Process Documentation 45
Ian Wootten and Omer Rana

User-Centric Annotation Management for Biological Data 54
Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis

A Model for Sharing of Confidential Provenance Information in a
Query Based System . 62

Meiyappan Nagappan and Mladen A. Vouk

Kepler/pPOD: Scientific Workflow and Provenance Support for
Assembling the Tree of Life . 70

Shawn Bowers, Timothy McPhillips, Sean Riddle,
Manish Kumar Anand, and Bertram Ludäscher

Using Visualization Process Graphs to Improve Visualization
Exploration . 78

T.J. Jankun-Kelly

Implementation and Evaluation of a Protocol for Recording Process
Documentation in the Presence of Failures . 92

Zheng Chen and Luc Moreau

X Table of Contents

Provenance and the Price of Identity . 106
Adriane Chapman and H.V. Jagadish

Towards Provenance-Enabling ParaView . 120
Steven P. Callahan, Juliana Freire, Carlos E. Scheidegger,
Cláudio T. Silva, and Huy T. Vo

Application of Provenance for Automated and Research Driven
Workflows . 128

Tara Gibson, Karen Schuchardt, and Eric Stephan

Using Provenance to Improve Workflow Design . 136
Frederico T. de Oliveira, Leonardo Murta, Claudia Werner, and
Marta Mattoso

Job Provenance – Insight into Very Large Provenance Datasets:
Software Demonstration . 144

Aleš Křenek, Luděk Matyska, Jǐŕı Sitera, Miroslav Ruda,
Frantǐsek Dvořák, Jǐŕı Filipovič, Zdeněk Šustr, and Zdeněk Salvet

A Provenance-Based Fault Tolerance Mechanism for Scientific
Workflows . 152

Daniel Crawl and Ilkay Altintas

A First Study on Clustering Collections of Workflow Graphs 160
Emanuele Santos, Lauro Lins, James P. Ahrens,
Juliana Freire, and Cláudio T. Silva

Exploiting Provenance to Make Sense of Automated Decisions in
Scientific Workflows . 174

Paolo Missier, Suzanne Embury, and Richard Stapenhurst

Using Explicit Control Processes in Distributed Workflows to Gather
Provenance . 186

Sérgio Manuel Serra da Cruz, Fernando Seabra Chirigati,
Rafael Dahis, Maria Luiza M. Campos, and Marta Mattoso

ES3: A Demonstration of Transparent Provenance for Scientific
Computation . 200

James Frew and Peter Slaughter

Neuroimaging Data Provenance Using the LONI Pipeline Workflow
Environment . 208

Allan J. MacKenzie-Graham, Arash Payan, Ivo D. Dinov,
John D. Van Horn, and Arthur W. Toga

Provenance Tracking in an Earth Science Data Processing System 221
Curt Tilmes and Albert J. Fleig

Table of Contents XI

A Python Library for Provenance Recording and Querying 229
Carsten Bochner, Roland Gude, and Andreas Schreiber

Requirements for a Provenance Visualization Component 241
Markus Kunde, Henning Bergmeyer, and Andreas Schreiber

Advances and Challenges for Scalable Provenance in Stream Processing
Systems . 253

Archan Misra, Marion Blount, Anastasios Kementsietsidis,
Daby Sow, and Min Wang

Using Provenance to Support Real-Time Collaborative Design of
Workflows . 266

Tommy Ellkvist, David Koop, Erik W. Anderson,
Juliana Freire, and Cláudio Silva

Provenance in Sensornet Republishing . 280
Unkyu Park and John Heidemann

Semantically-Enhanced Model-Experiment-Evaluation Processes
(SeMEEPs) within the Atmospheric Chemistry Community 293

Chris Martin, Mohammed H. Haji, Peter Dew, Mike Pilling, and
Peter Jimack

Oceanographic Data Provenance Tracking with the Shore Side Data
System . 308

Michael McCann and Kevin Gomes

Invited Contribution

The Open Provenance Model: An Overview . 323
Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath,
Jim Myers, and Patrick Paulson

Author Index . 327

Provenance for Database Transformations

Val Tannen

University of Pennsylvania, USA

Database transformations (queries, views, mappings) and the languages in which
they are expressed are of obvious interest in information management. They take
apart, filter and recombine source data in order to populate warehouses, views,
and analysis tool inputs. As they do so, we need to track the relationship between
parts and pieces of the sources and parts and pieces of the transformations’
output. This relationship is what we call database provenance.

This talk will present an approach to database provenance that relies on
three observations. First, provenance definitions follow the constructs of the
language in which queries/views/mappings are expressed. Second, provenance is
a kind of annotation, and there exist approaches to annotated data that we can
relate to. In fact, it can be argued that provenance is the most general kind of
annotation, when properly viewed. Third, the propagation of annotation through
most language constructs seems to rely on just two annotation operations: one
when annotations are jointly used and one when they are used alternatively. We
will see that this leads to annotations forming a specific algebraic structure, a
commutative semiring.

The semiring approach works for annotations on standard relations, but also
on nested relations (complex values), and unordered XML. It works for the posi-
tive fragment of relational algebra, nested relational calculus, unordered XQuery,
and even for languages with recursion (Datalog). It turns out that specific semir-
ings correspond to the approaches to provenance presented in previous work.
Other semirings yield applications to incomplete/probabilistic data, and to ac-
cess control in databases.

This is joint work with J. N. Foster, T. J. Green, and G. Karvounarakis.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Enforcing the Scientific Method

Allen L. Brown, Jr.

Health Solutions Group, Microsoft Corporation

Within Microsoft’s Health Solutions Group we are engaged in the development
of a platform to assist life sciences researchers—a class of extreme knowledge
worker. We refer to this platform by the rubric, Pharos. Pharos has many ob-
jectives. One of the most important of those objectives is to supply an audit
trail for research. This audit trail serves primarily to provide researchers and
Pharos with a shared understanding of both the conduct of a scientific inves-
tigation and the results of a scientific investigation. But there are also other
stakeholders in the audit trail, including regulatory agencies, funding agencies,
tenure granting institutions and for-profit research managements. Put another
way, Pharos is also concerned with the rigorous enforcement of the scientific
method. In this presentation I will examine the roles and interplay of audited
inference and audited workflow in constructing an audit trail.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mapping the NRC Dataflow Model to the
Open Provenance Model

Natalia Kwasnikowska and Jan Van den Bussche

Hasselt University and Transnational University of Limburg, Belgium

Abstract. The Open Provenance Model (OPM) has recently been pro-
posed as an exchange framework for workflow provenance information.
In this paper we show how the NRC data model for workflow reposito-
ries can be mapped to the OPM. Our mapping includes such features as
complex data flow in an execution of a workflow; different workflows in
the repository that call each other; and the tracking of subvalues of com-
plex data structures in the provenance information. Because the NRC
dataflow model has been formally specified, also our mapping can be
formally specified; in particular, it can be automated. To facilitate this
specification, we present an adapted set-theoretic formalization of the
basic OPM.

1 Introduction

The Open Provenance Model (OPM) has recently been proposed as an exchange
framework for workflow provenance information [1]. In order to validate this new
framework, it is important to investigate how existing models and systems for
provenance can be mapped to the OPM. In this paper, we do this exercise for
a data model for workflow repositories which we recently introduced, called the
NRC dataflow model [2].

The NRC dataflow model is a formally specified data model for workflows
which emphasize data manipulation and data management. Hence we usually
refer to such workflows as dataflows. The NRC dataflow model incorporates im-
portant aspects such as complex-data flow governed by expressions of the Nested
Relational Calculus (NRC [3]); use of external services; formal representation of
past executions; tracking of subvalues of a complex data structure in a past
execution; and different dataflows in a repository that call each other. We will
propose a representation in the OPM of all these features of our model. For ex-
ample, to model the execution of one dataflow, called as a subdataflow in another
dataflow, we use the interesting “accounts” feature provided by the OPM.

In this paper we assume familiarity with the OPM [1]. We will, however, give
a set-theoretical formal definition of the OPM, adapted from the original set-
theoretical formalization. We will use this definition to specify our NRC-to-OPM
mapping formally.

This paper is organized as follows. In Section 2, we recall the basics of the
NRC dataflow model. In Section 3, we give our formal definition of the OPM. In

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 3–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 N. Kwasnikowska and J. Van den Bussche

Section 4, we describe the mapping from the NRC model to the OPM. We also
show how an OPM description of an NRC dataflow execution can be augmented
with information to track the provenance of a subvalue occurring in the final
result of this execution.

2 The NRC Dataflow Model

In this section we present aspects of the NRC dataflow model that are relevant
to workflow provenance information. For a more detailed description of the NRC
dataflow model and repository we refer to the paper [2].

2.1 Specification of Dataflows in NRC

Consider the following computation, based on a real proteomics protocol [4]:
“Given a set of raw data produced by a mass spectrometer in a proteomics
experiment, and all its associated parameters, generate a list of proteins possibly
identified in this experiment”. We can express this computation in the following
NRC dataflows:

dataflow identify(data : TMSdata, p : Parameters) : ProteinCandidateList is
let list := for x in data return

〈id : x .id , spectra : extract(x .file)〉
in validation(search1(list , p), search2(list , p), search3(list , p))

dataflow search(data : TMSextracted, p : Parameters) : AAlist is
for x in data return

〈id : x .id , aalist : for y in x .spectra return dbSearch(y, p)〉

Each dataflow states its signature, i.e., the types for its input parameters
and for its result. Dataflow identify expects one parameter of type Parameters
and one of type TMSdata. Type Parameters is a base type. Values of base
types, called base values, are considered to be “atomic” to the operations in the
dataflow. In our example, a value of type Parameters is an XML document con-
forming to a specific DTD. Type TMSdata is a complex type. Complex values are
constructed using record and set constructions from base values, conforming to
their type. For example, type TMSdata equals {〈id : Number,file : RawFile〉},
that is, a set of records with first component labeled id , and second component
labeled file. We use value tmsInput of this type, illustrated in Fig. 1, as first
input parameter to dataflow identify .

Both dataflows are composed of NRC expressions and service calls. NRC is a
simple functional programming language [3], built around the basic operations
on sets and records, with for-loops, if-then-else and let-statements as the only
programming constructs. Service calls model all other actions in the dataflows.
These can be calls to external services, such as NCBI BLAST or MASCOT
search, but also calls to library functions provided by the underlying system,

Mapping the NRC Dataflow Model to the Open Provenance Model 5

tmsInput =

id file

1 rawVial10

2 rawVial11
...

...
55 rawVial64

tmsOutput =

protID prob evidence

Protein1 99

peptide score spectrum

pep1 9 spectrumvial10,5
pep2 7 spectrumvial23,2

...
...

...

Protein2 96

peptide score spectrum

pep8 9 spectrumvial57,3
pep1 8 spectrumvial10,5

...
...

...
...

...
...

Fig. 1. Complex values of types, respectively, TMSdata and ProteinCandidateList

such as addition for numbers or concatenation for strings. Moreover, one dataflow
can appear as a service call in another dataflow, thus becoming its subdataflow.
Each service must be supplied with a signature describing the types of its input
parameters and its result. In our example, dataflow identify uses the services

extract(raw : RawFile) : {TMSfile}
validation(p1 : AAlist, p2 : AAlist, p3 : AAlist) : ProteinCandidateList

and also the services search1, search2, and search3, all three with the same
signature (list : TMSextracted, p : Parameters) : AAlist.

Before we can execute a dataflow, we not only need to provide values for its
parameters, but we also need to provide meaning to called services by assigning
them to actual services. In our example, in dataflow identify , we bind extract
and validation to external applications extract and validate, and we bind
services search1, search2, and search3 to dataflow search. The latter becomes
thus a subdataflow of identify . As search also contains a service call, namely,
dbSearch, we now need to provide binding for that service for each call to search
in identify : to external service mascot in the first, to external service sequest in
the second, and to external service xtandem in the third. (These three external
services stand for three database search engines frequently used in identification
of mass spectra in proteomics research.) We sum up all these service call bindings
in a data structure which we call a binding tree, shown in Fig. 2.

Suppose now that we have executed dataflow identify with value tmsInput for
parameter data and file PXML for parameter p. Suppose that value tmsOutput
has been returned (see Fig. 1).

6 N. Kwasnikowska and J. Van den Bussche

identify

validation �→ validate

extract �→ extract

search1 �→ search

search2 �→ search

search3 �→ search

dbSearch �→ mascot

dbSearch �→ sequest

dbSearch �→ xtandem

Fig. 2. Binding tree for dataflow identify

2.2 Past Executions of Dataflows

In order to keep a record of an execution of dataflow identify , it is not sufficient
to store the input values, the result, and the binding tree for services. Indeed, the
transient nature of the proteomics databases used by the search engines implies
that also intermediate results must be stored. Since all NRC expressions are
deterministic, only information about intermediate values of external services
must be effectively stored. We naturally represent this information as a number
of triples of the form (s, σ, v), where s is an occurrence of a service call in the
dataflow, σ its value assignment, i.e., assignment of input values to parameters,
and v the value produced by the service call.

For example, for the execution of dataflow identify from Sect. 2.1, we would
store the service-call triples shown in Fig. 3.

There, tmsExtracted, tmsRes1, tmsRes2 and tmsRes3 represent complex val-
ues produced in the corresponding step of the computation. As a matter of fact,
a complete record of the entire past execution can be automatically derived from
such triples, as we have shown elsewhere [2].

Caveat. The complete record of a past execution of some workflow (applied
to certain input), leading to a final result, is commonly called the workflow
provenance of that result. In this paper, we refer to such a record as a run.

In our model, a run is basically a set of triples like those for the service calls,
except that now we have a triple for each occurrence of each subexpression in
the dataflow. Note that, in particular, the final result value is also contained in
the run, namely, in the triple for the entire top-level expression of the dataflow.
Figure 4 shows a few examples of such additional triples that would be part of
our example run of dataflow identify .

Of course, when a service call has been executed that was bound to a sub-
dataflow, we necessarily also have a run of that subdataflow for the given values of
its parameters. In our example, the three service-call triples for search1, search2
and search3, will need to be linked to corresponding runs of the dataflow search.

Mapping the NRC Dataflow Model to the Open Provenance Model 7

service assignment value

extract

data = tmsInput
p = PXML

x = 〈id : 1,file : rawVial10〉
raw = rawVial10

spectrumvial10,1
...

spectrumvial10,5

extract

data = tmsInput
p = PXML

x = 〈id : 2,file : rawVial11〉
raw = rawVial11

spectrumvial11,1
spectrumvial11,2
spectrumvial11,3

...
...

...

extract

data = tmsInput
p = PXML

x = 〈id : 55,file : rawVial64〉
raw = rawVial64

spectrumvial64,1
...

spectrumvial64,13

search1

data = tmsInput
p = PXML

list = tmsExtracted
tmsRes1

search2

data = tmsInput
p = PXML

list = tmsExtracted
tmsRes2

search3

data = tmsInput
p = PXML

list = tmsExtracted
tmsRes3

validation

data = tmsInput
p = PXML

list = tmsExtracted
p1 = tmsRes1

p2 = tmsRes2

p3 = tmsRes3

tmsOutput

Fig. 3. Service-call triples from our example run

2.3 NRC Dataflow Repository Model

To summarize, if we want to have a complete record of an execution of a dataflow,
we need to store the value assignment for its parameters, the binding tree for
its services, all service-call triples of the run, and links to the runs of its sub-
dataflows.

All this information, for different dataflows and executions, can be stored
in a global dataflow repository. A conceptual schema illustrating the different
entities that play a role in such a repository, and their relationships, is given
in Fig. 5. There, mapping internalcall links runs of dataflows to the runs of its
subdataflows. Given the identifier of a run of a dataflow, and a service-call triple
from that run with the service bound to a subdataflow, the mapping will indicate
the run identifier of the corresponding subdataflow run.

A very important integrity constraint is that the repository is closed by
internalcall , i.e., if the repository contains a run of some dataflow, then it also

8 N. Kwasnikowska and J. Van den Bussche

subexpression assignment value

let
data = tmsInput

p = PXML
tmsOutput

for
data = tmsInput

p = PXML
tmsExtracted

〈id , spectra 〉
data = tmsInput

p = PXML

x = 〈id : 2, file : rawVial11〉

id spectra

spectrumvial11,1
2 spectrumvial11,2
spectrumvial11,3

Fig. 4. Some run triples from our example run

run

Run IDs

service sigs

internalcall

m
any−

to−
exactly−

one:

m
any−

to−
at−

m
ost−

one:

Runs

Service−call Triples

input types

Input Type Assignments Signature Assignmets

dataflow

Value Assignments
Binding Trees

input values
binding

Dataflow IDs

expr

NRC Expressions

Fig. 5. E/R diagram of the NRC dataflow repository model

contains, for all its service-call triples, the corresponding runs of its subdataflows.
Again, for a more detailed description of the repository and its constraints we
refer to the paper [2].

3 Formal Definition of OPM Graphs

In this section we present a set-theoretic definition of the Open Provenance
Model, adapted from the original timeless causality graph data model [1]. The
main difference is in the treatment of account memberships, which we consider
to be labels of nodes and edges, and as such we define the account-membership
function accountOf to be part of an OPM graph. In our opion this is a cleaner
formalisation; the original formalisation of accounts in OPM [1] seems flawed.

Mapping the NRC Dataflow Model to the Open Provenance Model 9

We also define an alternate as a set of accounts, rather then merely a pair of
accounts. We believe this added generality can be useful in practice.

As we need only artifact nodes and process nodes to represent an NRC run
in the OPM, we leave out agent nodes and their associated edges from the
definitions.

All primitive sets are assumed to be pairwise disjoint. The set OPMGraph , as
defined below, is the set of all possible OPM graphs.

ProcessId : primitive set containing all process nodes
ArtifactId : primitive set containing all artifact nodes

Role : primitive set containing all roles
Account : primitive set containing all accounts

Used def= ProcessId × Role × ArtifactId
WasGeneratedBy def= ArtifactId × Role × ProcessId
WasTriggeredBy def= ProcessId × ProcessId
WasDerivedFrom def= ArtifactId × ArtifactId

Alternate def= P(Account)

OPMGraph def= {〈A, P, U, G, T, D, AL, accountOf 〉 | A ⊆ ArtifactId ,

P ⊆ ProcessId , U ⊆ P × Role × A, G ⊆ A × Role × P,

T ⊆ P × P, D ⊆ A × A, AL ⊆ Alternate,

accountOf : (A ∪ P ∪ U ∪ G ∪ T ∪ D) → P(Account)}

Before we reformulate relevant aspects of the OPM according to the adapted
definition, we introduce the following convenient notations for any given OPM
graph g = 〈A, P, U, G, T, D, AL, accountOf 〉:

Ag def= A U g def= U

Pg def= P Gg def= G

Nodesg def= A ∪ P T g def= T

ALg def= AL Dg def= D

accountOf g def= accountOf Edgesg def= U ∪ G ∪ T ∪ D

Elementsg def= Nodesg ∪ Edgesg

Apart from Nodesg , Edgesg and Elementsg , the above notations may seem su-
perfluous, but they will prove convenient when referring to several OPM graphs
at the same time. Observe also that a g ∈ OPMGraph is completely determined
by Elementsg , ALg , and accountOf g . We will make use of this observation when
defining new OPM graphs.

Edges and Equality of Edges. Note that any edge e ∈ Edgesg , for an OPM graph
g, either belongs to

Used ∪WasGeneratedBy

and is then of the form e = 〈x1, r, x2〉 with r some role, or belongs to

WasTriggeredBy ∪ WasDerivedFrom

10 N. Kwasnikowska and J. Van den Bussche

and is then of the form e = 〈x1, x2〉. In both cases we introduce the notation
Src(e) to denote the source node of e, i.e., x1, and Dest(e) to denote the des-
tination node of e, i.e., x2. We also say that x1 and x2 are incident to e, and
denote this by isIncident(xi, e) for i = 1, 2. Note that two causality edges are
considered to be equal simply if they are equal in the mathematical sense, i.e.,
they are the same tuple.

Effective Account Membership. For a given OPM graph g, we define the function

effectiveAccountOf g : Elementsg → P(Account)

as follows:

– If x ∈ Nodesg , then

effectiveAccountOf g(x) = accountOf g(x) ∪
⋃

{accountOf g(e) | e ∈ Edgesg and isIncident(x, e)} .

– If e ∈ Edgesg , then we simply put effectiveAccountOf g(e) = accountOf g(e).
(This latter definition may seem superfluous but will prove convenient in the
definition of account views.)

The Union of Two OPM Graphs. Let g1 and g2 be two OPM graphs. We define
the union of g1 and g2, denoted by g1 � g2, as follows:

Elementsg1�g2 def= Elementsg1 ∪ Elementsg2 ,

ALg1�g2 def= ALg1 ∪ALg2 ,

and accountOf g1�g2 is the point-wise union of accountOf g1 and accountOf g2 .

Account Views. For a given OPM graph g and an account α, we now formally
define the account view of g according to α, denoted by view (g, α), as follows:

– Elementsview(g,α) def= {x ∈ Elementsg | α ∈ effectiveAccountOf g(x)};
– accountOf view(g,α) is the restriction of accountOf g to Elementsview(g,α);
– ALview(g,α) def= {alt ∩ ActAcc | alt ∈ ALg} , where ActAcc stands for the set

of accounts that actually appear in the image (range) of accountOf view(g,α).

Note that view (g, α) is again an OPM graph.

Legal Account Views. Before we formally define legal account views of an OPM
graph, we point out that we can associate to any given OPM graph g a clas-
sical directed graph DG(g) = (V (g), E(g)) with set of vertices V (g) equal to
Nodesg and set of directed edges E(g) equal to {(Src(e),Dest(e)) | e ∈ Edgesg}.
Accordingly, we call g acyclic precisely when DG(g) is.

Now for an OPM graph g and an account α ∈ Account, the account view
view (g, α) is considered to be legal when it is acyclic, and there do not exist two
different edges in Gview(g,α) with the same source node, i.e.

∀ e1, e2 ∈ Gview(g,α) : Src(e1) = Src(e2) ⇒ e1 = e2 .

Mapping the NRC Dataflow Model to the Open Provenance Model 11

Legal OPM Graph. An OPM graph is legal when all its account views are legal.

Alternate. For an OPM graph g and alt ∈ ALg , we call alt an alternate in g,
and we call each α ∈ alt an alternative in alt .

Legal Alternate. For an OPM graph g and an alternate alt ∈ ALg , we call alt
legal for g if ⋂

α∈alt

Nodesview(g,α) �= ∅ .

4 Mapping NRC Dataflow Runs to OPM Graphs

Recall that a run of an NRC dataflow is modeled as a table

R(subexpression , assignment , value)

holding triples of the form (e, σ, v), where e is an occurrence of a subexpression
of the dataflow, σ the value assignment, and v the produced complex value. An
important property of a run is that the pair (subexpression , assignment) is a key
for the table R.

We now define an OPM graph g representing the information stored in R. To
do so we first specify all nodes of g, then all the edges, and finally, the account
membership function accountOf and set Alternate. The graph g will be a legal
OPM graph. We introduce extra labels for the nodes of the graph g, such that
the information contained in g will be sufficient to reconstruct R on the basis of
its structure, and node and edge labels alone.

Process Nodes. First we specify the set Pg of all process nodes of g. As each
triple in R actually describes one step of the computation, we need at least one
process node for each triple. For most triples it is indeed sufficient to construct
one process node. We can construct a unique ID for each node simply by using
its corresponding triple as an ID:

Pg def= {[t] | t ∈ R} .

We label each process node [t], for t = (e, σ, v), by e’s top-level NRC operator
(or service call).

The only exception are for-loops. In order to model the different parallel
executions of the body of a for-loop (namely, one execution for each element of
the set over which the for-loop operates), we split each process node [t] as above,
when e is a for-loop, into two process nodes [dispatch , t] and [collect , t].

So formally we redefine Pg as follows:

Pg def= {[t] | t = (e, σ, v) ∈ R and e is not a for-loop}

∪
⋃

{{[dispatch , t], [collect , t]} | t = (e, σ, v) ∈ R and e is a for-loop} .

12 N. Kwasnikowska and J. Van den Bussche

Artifact Nodes. Next we construct the set Ag of all artifact nodes of g. As each
triple in R contains the complex value produced by the corresponding step, we
need one artifact node for each triple. We can again construct a unique ID for
each node by using its corresponding triple as a part of its ID: for each triple
t = (e, σ, v) we have an artifact node with ID [val , t]; we label this node with the
value v.

Moreover, each triple contains the value assignment, under which the corre-
sponding step is performed. This value assignment is another artifact in our run.
Thus, for each value assignment we create an artifact node, and we can use the
value assignment itself as its ID.

We conclude that:

Ag def= {[val , t] | t ∈ R} ∪ {[σ] | ∃ e, v : (e, σ, v) ∈ R} .

Edges. We now define the “was generated by” and “used” edges that play a role
for a given process node [t] with t = (e, σ, v). Since for-loops and let-statements
have a body that involves a local variable, these operators involve the extension
of their value assignment with a new value for the local variable, and we must
treat them separately.

So first assume e is not a for-loop or a let-statement. The general idea is
that v is produced from the value, or values, that resulted from the constituent
subexpressions of e. For example, if e is a record construction 〈a : e1, b : e2〉, then
v equals 〈a : v1, b : v2〉 where v1 (resp. v2) is the result of ... e1 (resp. e2) under
the same value assignment σ. We thus generate the edges shown in Fig. 6. Note
the role val for the edge from v to e, and the role env (short for environment) for
the edge from e to σ. (Indeed, σ provides the “environment” for the evaluation
of e.) Note also the roles a and b that connect e to v1 and v2, which are in turn
connected to e1 and e2 by edges with the role val. Clearly, e1 and e2 may have
constituent subexpressions of their own, so the generation of edges continues

〈 a, b 〉
a b

val val

val

[val , (e1, σ, v1)]

[(e1, σ, v1)] [(e2, σ, v2)]

[val , (e1, σ, v2)]

[t]

[val , t]

env
[σ]

env

env

σ

v1 v2

e2e1

〈 a : v1, b : v2 〉

Fig. 6. OPM subgraph for a record construction operation

Mapping the NRC Dataflow Model to the Open Provenance Model 13

{v1, v2, . . . , vn}

e1

env

val

dispatch(x)σ

σnσ1

e2 e2

collect

w1 wn

val

val val

env env

[val , (e1, σ, {v1, . . . , vn})]

[σ]

[σ1] [σ2]

[(e2, σn, wn)]

[val , (e2, σn, wn)]

[collect , t]

[val , t]

[(e1, σ, {v1, . . . , vn})]

[dispatch , t]
extend

[(e2, σ1, w1)]

[val , (e2, σ1, w1)]

v

extend

env

Fig. 7. OPM subgraph for a for-loop

from there. The generation of edges for other operators, except for-loops and
let-statements, is analogous.

Now assume e is a for-loop of the form for x in e1 return e2. We recall from the
semantics of NRC [2] the semantic rule for such an expression:

σ |= e1 ⇒ {v1, . . . , vn} ∀i ∈ {1, . . . , n} : σi = extend(σ, x = vi) |= e2 ⇒ wi

σ |= for x in e1 return e2 ⇒ v = {w1, . . . , wn}

We then have the edges as shown in Fig. 7. Note the role extend for the edges
from dispatch(x) to the artifact nodes σ1 through σn (the different value assign-
ments for e2). Again, e1 and e2 may have constituent subexpressions of their
own, so the generation of edges continues from there. The construction of edges
for a let-statement is analogous.

Since an NRC dataflow is basically a functional computation, each artifact
is either used or generated by a step of the computation. Hence the set Dg of
all “was derived from” edges is empty. Likewise, processes are only connected
through artifacts that they either use or generate, so the set T g of all “was
triggered by” edges is also empty.

Accounts and Alternate. Finally we need to define account membership for all
nodes and edges of the graph g. We believe that it is sufficient to assign a unique

14 N. Kwasnikowska and J. Van den Bussche

account for all elements of g, namely the ID of the run R in the NRC dataflow
repository. Indeed, if g is a representation of run R with ID r, then the whole
graph g can be considered to be “an account of the execution according to r”:

∀x ∈ Elementsg : accountOf g(x) = {r} .

As there is only one account membership for all elements of g, the set AL is
empty.

4.1 Amendment for Multiple NRC Runs

So far we have constructed a legal OPM graph g for one run R stored with ID r.
As an NRC dataflow repository will contain many runs, we would like to be able
to generate distinct OPM graphs for all of them. Therefore, we need to amend
the identifiers of the nodes of g by adding the ID of the run to each of them:
each node [n] becomes node [r, n].

4.2 Incorporating Runs of Subdataflows

In an NRC dataflow repository, if a dataflow contains subdataflows, then for
each run of that dataflow in the repository, there are links to the runs of its
subdataflows. These links are provided by the mapping internalcall (Sect. 2.3).
In Fig. 8 we show how we can merge the OPM graphs of these runs. On the left
we see the OPM subgraph of some run R, representing a service call f , with two
actual parameter values v1 and v2 (produced by subexpressions e1 and e2), and
the result value v of the call.

If f is bound to a subdataflow, the repository will contain the corresponding
run R′ of that subdataflow. In the OPM graph for R′, we have a value assignment
σ′ containing the values v1 and v2 of the formal parameters x1 and x2. We also
find back in this graph the artifact node representing the final result value of
the subdataflow; this value obviously equals v. The nodes on the left (from the
OPM graph for R) have account r, i.e., the ID of run R. The nodes on the right

v

env 1

f(e1, e2)

val 2

v2

=

=

=

R′

v1

x2

x1v1

v2

σ′
σ

v

Fig. 8. Merging the OPM graph of a run R with the OPM graph of its linked run R′

Mapping the NRC Dataflow Model to the Open Provenance Model 15

(from the OPM graph for R′) have account r′, i.e., the ID of run R′. It is clear
that account r′ serves as a refinement of account r.

In order to obtain one combined OPM graph, we identify the left-hand nodes
v1, v2 and v with the corresponding right-hand nodes v1, v2 and v. These iden-
tifications are shown by the thick dashed lines in the figure. Then we take the
union of the two OPM graphs for R and R′ (with nodes just identified taken
only once). The identified nodes have both accounts r and r′.

Finally, we add the composite account (r, r′) to all elements of the combined
graph, and we add the set {r, (r, r′)} to AL. The account view of the graph
according to (r, r′) provides more details than the view according to r.

Now if the dataflow corresponding to R′ contains a subdataflow of it’s own,
we can combine the OPM graph for R and R′ with the OPM graph for the
run linked by internalcall to that subdataflow, say a run R′′ with ID r′′. Then
alternate {r, (r, r′)} can be extended to {r, (r, r′), (r, r′, r′′)}. The process can be
repeated further, for each subdataflow found in the binding tree for R. The set
AL of the final OPM graph will thus contain one alternate resulting from this
process, its size bound by the depth of the binding tree for R.

4.3 Adding Subvalue Provenance to an OPM Graph

A major feature of the NRC dataflow model is that it can model the manipulation
of complex data structures built as nested record and set constructions.

In the OPM mapping presented so far, the complex nesting structure of values
is not yet represented. We can add this information by adding to the OPM graph
a new account containing the structure information. Doing so also enables us to
add “was derived from” edges in the OPM graph that track the provenance (or
origin) of subvalues of complex data values.

Formal inference rules exist for the automatic generation of these provenance
edges [2]. Since these inference rules are specific to the NRC dataflow model,

∪

3 4 2 131

{{1, 2} , {1, 3} , {3, 4}} {1, 2, 3, 4}

struct struct

struct struct struct

4 1

{}-cons{}-cons

2 3

prov

{3, 4} {1, 3} {1, 2}

{}-cons {}-cons{}-cons

prov

Fig. 9. Structure of complex values and provenance edges

16 N. Kwasnikowska and J. Van den Bussche

and rely on the specific semantics of NRC operators on complex objects, they
are not mere refinements of the OPM inference rules [1] for “was derived from”
edges.

This is illustrated in Figure 9. The main account on top shows the OPM sub-
graph for a big union operation applied to the nested set {{1, 2}, {1, 3}, {3, 4}}.
The nested value structure account is shown in dotted lines. The thick lines show
two subvalue provenance edges that can be be inferred by our provenance rules.
The lines show that the value 1 produced by the big union operator comes from
two different sets belonging to the nested set operated upon by the big union.

5 Conclusion

We believe the NRC dataflow model is important, because it provides fully for-
mal definitions of the complex interactions that occur in a repository consisting
of many different executions of many different, interrelated dataflows involving
complex data structures.

In order to validate the NRC dataflow model, we found it important to map
it to the Open Provenance Model, as that model has been especially designed
as an exchange framework for workflow provenance information. Our mapping
also serves as a validation of the OPM.

It is interesting to explore further how the OPM mapping we have presented
here can also serve as a basis for visualization of NRC dataflow runs. Of course
we also have to design an implementation.

References

1. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open
provenance model. Technical Report 14979, University of Southampton, School of
Electronics and Computer Science (2007)

2. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: A
formal model of dataflow repositories. In: Cohen-Boulakia, S., Tannen, V. (eds.)
DILS 2007. LNCS (LNBI), vol. 4544, pp. 105–121. Springer, Heidelberg (2007)

3. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with com-
plex objects and collection types. Theoretical Computer Science 149, 3–48 (1995)

4. Dumont, D., Noben, J., Raus, J., Stinissen, P., Robben, J.: Proteomic analysis
of cerebrospinal fluid from multiple sclerosis patients. Proteomics 4(7), 2117–2124
(2004)

Data Lineage Model for Taverna Workflows with
Lightweight Annotation Requirements

Paolo Missier1, Khalid Belhajjame1, Jun Zhao2,
Marco Roos3, and Carole Goble1

1 School of Computer Science, University of Manchester, UK
{pmissier,khalidb,carole}@cs.man.ac.uk

2 Department of Zoology, University of Oxford, UK
jun.zhao@zoo.ox.ac.uk

3 Faculty of Science, University of Amsterdam, NL
roos@science.uva.nl

Abstract. The provenance, or lineage, of a workflow data product can
be reconstructed by keeping a complete trace of workflow execution. This
lineage information, however, is likely to be both imprecise, because of
the black-box nature of the services that compose the workflow, and
noisy, because of the many trivial data transformations that obscure the
intended purpose of the workflow. In this paper we argue that these
shortcomings can be alleviated by introducing a small set of optional
lightweight annotations to the workflow, in a principled way. We begin
by presenting a baseline, annotation-free lineage model for the Taverna
workflow system, and then show how the proposed annotations improve
the results of fundamental lineage queries.

1 Introduction

Workflow technology is being increasingly adopted in e-science as a way to model
and automate the enactment of scientific experiments, and more generally, to
specify complex sequences of distributed data manipulation operations (retrieval,
transformation and analysis) in a flexible and declarative way. The workflow
shown in Fig. 1, for example, is designed to look for a list of diseases in response
to a single input query consisting of clinical terms, for instance “Alzheimers dis-
ease +protein”.1 The output list is obtained by (i) retrieving relevant abstracts
based on the query (Lucene-query), (ii) extracting protein names from the ab-
stracts by means of a dedicated a named entity recognizer (NERecognize), and
(iii) linking the proteins to disease names through the OMIM2 disease database
(extract diseases-from-OMIM).

The final workflow output is certainly the most important product of this
modelling and execution effort. If we intend to use it as a piece of scientific
1 The example is due to one of the authors (Marco Roos). Full details are available

through the myExperiment workflow repository and sharing facility: http://www.
myexperiment.org.

2 OMIM: http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 17–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 P. Missier et al.

Fig. 1. Example Taverna dataflow, folded view (right) and unfolded selected sub-
workflow (left)

evidence upon which more results will be built, however, we need to provide
some proof of its soundness, i.e., by showing that such a sophisticated chain
of data transformations and manipulations does indeed produce the intended
result. This is not just a matter of debugging, but rather, of supporting the
claim to reliability of the results. For instance, it is crucial for the experimenter
to understand how proteins names were identified in the NErecognize step, if
these automatically produced results are to be trusted. This suggests the need to
use intermediate workflow data products as a way to explain the final result and
to support any claim of reliability on it, for the benefit of both the experimenters
and their community at large.

We use this example to motivate the need for collecting and analysing data
provenance, broadly defined as “information that helps determine the derivation
history of a data product, starting from its original sources” [16]. In this paper
we focus specifically on data lineage obtained from one or more executions of a
dataflow through multiple processors, i.e., the graph of data dependencies that
account for an output value produced during the course of a dataflow execution.
By dataflow we mean a workflow consisting only of data links, i.e., with no
explicit control links between the nodes.

Issues of data lineage have been studied extensively in the context of data
management in databases, originally with respect to the derivation of data ele-
ments as a result of relational operations [5], and, more recently, with the goal
of helping resolve uncertainties in data, i.e., in the Trio project [3]. Despite this

Data Lineage Model for Taverna Workflows with Lightweight Annotation 19

body of research, two main issues make the problem of capturing and presenting
lineage information in the workflow context a challenging one. Firstly, a common
assumption that underpins the work just mentioned is that the available data
manipulation operations are limited to a well-founded set, i.e., a collection of re-
lational algebra operators or data replication primitives. In contrast, workflows
invariably include the invocation of services described only in terms of their ac-
cess interfaces. It has been observed [4, 19] that the black-box nature of these
services limits the specificity of the lineage information that can be captured by
observing a workflow execution.

Secondly, a workflow is a detailed specification of a process that can be de-
scribed, in abstract, as a set of interdependent data transformations, such as
those listed in our early example. Nevertheless, the model of the data that the
process operates upon is remains latent and is never made explicit as part of the
process specification. If it were to be spelled out, a conceptual model designed
from the top down to represent the data managed by our example workflow would
probably include a handful of entities, such as “clinical term”, “article abstract”,
“disease term”, “protein name”, along with logical associations amongst them.
While one execution of the actual workflow does generate values that can po-
tentially be used to populate the data model, doing so automatically is difficult,
because the interesting values are part of a much larger collection of relatively
irrelevant data products, that exist solely to enable the integration among the
main data transformation steps.

While the adapters that produce these values should ideally disappear, along
with their products, from a user-oriented view of the overall process, doing so
requires an explicit abstraction mechanism. As an example, Figure 1 describes
one possible mechanism for abstraction, available in Taverna [11, 15], Kepler [17],
and other workflow systems, namely the nesting of workflows structures. The
workflow shown in the right part of the figure actually consists of a number of
sub-workflows, each rendered here as an atomic processor, while the left part
shows the unfolding of one of those sub-workflows. At this finer level of detail
we can see that only few of the processors, for instance NERecognize, actually
perform interesting data transformations, while the remaining processors, known
as shims [10], are adapters that must be there in order to perform mundane
tasks. Note however that nesting is entirely optional and is perceived by many
users more as a mechanism for reuse, rather than for abstraction. The lineage
model described in this paper does not rely, and indeed does not benefit from,
structural nesting, although this type of abstraction, central for example to the
Zoom approach [4] mentioned below, is being considered as part of ongoing work.

Based on these observations, we argue that a desirable goal for a data lineage
management system is to provide a variable level of specificity and abstraction,
based on the specification provided by both workflow designers and consumers
of the lineage information. The question is then, what is a reasonable trade-off
between the effort required from users in order to create a complete specification,
and the benefit in terms of precision of lineage information. We could, in an
extreme case, transform all the black-boxes into “white-box” services by adding

20 P. Missier et al.

extensive annotations to describe their semantics. This would probably impose
an unacceptable additional burden to the workflow designers, however. On the
other hand, data lineage that is based exclusively on the workflow structure,
i.e., its graph topology and the interface-level information about the services, is
complete but it may contain too much irrelevant information that obscures the
intended purpose of the workflow.

This paper explores the middle ground between these two extremes, focusing
on a small set of lightweight annotations that add value to basic lineage informa-
tion while requiring with little additional human effort. The analysis presented
here underpins the current data lineage model for the Taverna workflow system,
which will be used as a reference model throughout the paper. Specifically, our
goal is twofold. Firstly, we define a simple, baseline model for annotation-free
data lineage, and show that it is sufficient to answer lineage queries. Secondly, we
introduce a small set of annotation types, in addition to user-defined constraints
on the queries, and show their added value in terms of increased specificity and
focus of the resulting lineage query results. The specific goals of the annotations
are as follows:

– increase specificity, by explicitly declaring dependencies of output variables
from input variables for each processor, including the fine-grained transfor-
mation of list-valued variables;

– increase focus, by letting users specify data lineage queries that select only
relevant aspects of the workflow, for instance the few important processors
alluded to earlier;

– enable space/time trade-offs when storing and querying lineage data. As
pointed out recently [8], the size of provenance may easily outgrow the size
of the data being computed by a workflow. We note that, if we instead knew
that some of the workflow processors are stateless, then we would have the
option to compute their transformation at lineage query time, as needed,
rather than recording it explicitly. This is beneficial when the workflow in-
cludes many simple shims that add little computational cost to the query.

The lineage model described in this paper, including support for the proposed
lightweight annotations, is currently being implemented as part of the Taverna
provenance architecture.

2 Baseline Model for Capturing and Querying Data
Lineage

In this section we lay the foundation for the lineage model, assuming that no
information besides the workflow structure is available to collect and present
data lineage. For this purpose we characterise a Taverna dataflow as a DAG
where the nodes denote processors3. Throughout our discussion we are going to

3 A full account of the formal syntax and structural semantics for the Taverna language
can be found in [20].

Data Lineage Model for Taverna Workflows with Lightweight Annotation 21

xform([A1/a1, A2/a2], B/b, P1/p1)

xform(B/b, C1/c1, P2/p2)

xform(B/b, C2/c2, P4/p4)

xform(C1/c1, D1/d1, P3/p3)

xform(C2/c2, D2/d2, P5/p5)

xform([D1/d1D2/d2], E1/e1, P6/p6)

xform([D1/d1D2/d2], E2/e2, P6/p6)

xform([E2/e2, F/f], G/g, P7/p7)

Fig. 2. Example dataflow with execution annotations, and corresponding lineage graph
specification

use the generic workflow pattern of Figure 2, which, in particular, captures the
topology of the real-life workflow presented earlier.

Each processor may have multiple inputs and outputs, each denoted by a
distinct variable name. We write

〈P, [X1 : τ1 . . .Xn : τn], [Y1 : σ1 . . . Ym : σm]〉 (1)

to denote a node in the graph, representing a processor P with input variables
X1 . . .Xn and output variables Y1 . . . Ym. Variables have a type, denoted here
by τi and σj , which is either a simple type (string, boolean, etc.), or is a list of
values, denoted l(τ). Lists can be nested, i.e., τ is either a simple type or itself
a list. Nodes in the dataflow graph are connected through directed data links
〈P1, Xi, P2, Yj〉 that transfer a value bound to output Xi from an upstream pro-
cessor P1 to the value bound to input Yj of a downstream processor P2. Note that
this simple type system does not prevent the use of bulk or multimedia types,
as strings can be used to hold references, typically URIs, to external objects.

The data lineage information captured during dataflow execution reflects the
available knowledge regarding the dependencies of output variables from input
variables, for each node of the form (1). Unless processors are annotated with
specific dependency information, as discussed later in Section 3, we must assume
that every output depends on every input. We write this as a set of functional
dependencies, as follows:

X1 . . .Xn → Y1, X1 . . . Xn → Y2, . . .

When recording lineage information, we consider an instantiation of the dataflow
graph consisting of:

– a binding of each variable X of type τ to a value x, denoted X : τ/x, and
– a binding of each processor P to a process instance p, denoted P/p.

22 P. Missier et al.

The data lineage graph captured during dataflow execution consists of three
relations. The first, xform , describes data transformations through a processor:

xform([X1 : τ1/x1 . . .Xn : τn/xn], Yj : σj/yj, P/p) (2)

A second relation xfer captures the transfer of value x of output X to input Y
through a data link:

xfer(X : τ/x, Y : τ/x)] (3)

Note that X can be a list-typed variable; in this case, X/x denotes the binding of
the entire list x to X . Since we have no specific information that links individual
elements of a list to one another, those elements are indistinguisheable. We do,
however, provision for the explicit reference to list elements as part of our model,
using a third relation:

member(xi, x, i) (4)

to indicate that value xi appears at position i within list x. This can be used
whenever there are good reasons to refer to individual members of a list, as
described later (Section 2.1). In addition, we will use relation isInput(X/x) and
isOutput(X/x) to denote the fact that X/x is an input (resp., output) to the
entire workflow.

With this notation, the right side of Figure 2 shows the lineage graph for one
sample execution of the dataflow on the left. Note that, without loss of generality,
we have left the xfer relation implicit, assuming for simplicity that the variable
names on corresponding outputs and inputs on a data link are the same (e.g.
the output B of P1 and the corresponding input into P2). With this assumption,
all xfer tuples are of the trivial form xfer(X/x, X/x).

2.1 Explicit and Implicit Collections

As mentioned, each of the values in the example above may be a list. In fact,
Taverna processors that manage lists can be described by the following patterns,
where some of the variables have an explicit list type l(τ):

〈P, [X : τ], [Y : l(σ)]〉 (5)
〈P, [X : l(τ)], [Y : σ]〉 (6)

〈P, [X : l(τ)], [Y : l(σ)]〉 (7)

These patterns reflect paradigmatic transformations: (5) is representative of a
search service, where X is a search string and Y the result collection; (6) cap-
tures, among other things, aggregation functions, while (7) is appropriate for a
filter (i.e., a selection of elements) or a sort operation on a list.

Characteristically, however, Taverna also allows for variables with simple type
to be bound to a list. For instance, X : string can be assigned a list of strings,
x = [x1 . . . xk]. Taverna manages this type cardinality mismatch by adding an
implicit iterator on x, so that P is executed separately on each value xi. Corre-
spondingly, the output values yi are collected into a list, which is then assigned

Data Lineage Model for Taverna Workflows with Lightweight Annotation 23

// compute a derivation tree

dt(V, DT) :- isInput(V), !,

DT = derive(V, [], in).

dt(V, DT) :- xform(Vset, V, P),

dt1(Vset, DTlist),

DT = derive(V, DTlist, P).

dt1([], []).

dt1([V1 | Vrest], [DT | DTrest]) :-

dt(V1, DT1),

dt1(Vrest, DTrest).

Fig. 3. A basic derivation tree computation in Prolog, and its output on a specific goal

to an output Y (also originally of type string). This case, where each element yi

depends only on the corresponding input xi, is captured by the following tuples:

xform(X/xi, Y/yi, P/pi), member(xi, x, i), member(yi, y, i), i : 1 . . . k

Thus, in Taverna this is equivalent to having n instances p1 . . . pn of a processor
P , each responsible for one element xi of x. This is a case where we can provide
a more granular lineage data than would otherwise be possible in general.

2.2 Data Lineage Queries

The lineage graph collected during one execution supports a variety of queries,
including some of those proposed as part of the First Provenance Challenge4.
While a complete account of the query formulation is beyond the scope of this
paper, it should be clear that useful queries involve traversing the lineage graph,
a task that can be accomplished in a variety of ways. Consider for example
the basic lineage query: “find all derivation paths for an output value (or any
intermediate value), back to the input values that contribute to it during a
specific execution”. Its answer consists of the tree of paths, rooted at G/g, shown
in Figure 3 (right). The graph-traversal algorithm that computes the tree is
presented as a Prolog program on the left in the same figure5. Informally, the
program computes a derivation tree for an input bound variable, say Y/y. The
root of the tree is labelled Y/y. If Y/y is derived through a transformation of
the form (2), i.e.:

xform([X1/x1 . . .Xn/xn], Y/y, P)

4 http://twiki.gridprovenance.org/bin/view/Challenge/FirstProvenanceChallenge.
5 Here we use Prolog for conciseness; however, this does not reflect the actual imple-

mentation for this and additional lineage queries supported by the lineage graph.

24 P. Missier et al.

then node Y/y has n sub-trees, each rooted at Xi/xi, expressing the fact that
Y/y is derived from all of the Xi/xi. Each such sub-tree is computed recursively
using other xform tuples in the lineage graph, until we reach the input variables
(i.e., the X/x such that tuple isInput(X/x) exists). In practice, a derivation tree
is an unfolding of a particular traversal strategy on a lineage graph, in this case a
bottom-up visit (remember that the lineage graph is a DAG, just as the original
workflow graph). The derivation tree DT for our example workflow corresponds
to the Prolog goal: dt(G/g,DT).

In a similar fashion we can support a number of additional queries; for in-
stance, by traversing the graph in a forward fashion we can compute the set of
all values that depend on a given set of inputs. Perhaps more interestingly, in the
next section we consider adding constraints to these basic queries, namely to (i)
focus on selected paths in the graph, and (ii) focus on selected transformations
within a path.

3 Lightweight Annotations for Improving Lineage Data

The derivation graph described at the end of the last section exhibits some of
the problems that we had stated informally at the beginning, namely:

– when services are black boxes, then we have to assume that all outputs
depend on all inputs, for instance B/b depends on both A1/a1 and A2/a2;
furthermore, each element in each output data collection depends on each
element in all of the input collections;

– lineage derivation trees include shim services, i.e., P2 and P5, that add little
to the understanding of the actual, latent data model that is implicit in
the dataflow. In addition, the lineage data for all the shim transformations
must be stored explicitly and dealt with in the same way as more critical
workflow steps, although these processors usually perform mundane tasks.
This additional space consumption does not translate into useful information
to users.

To address these problems in a principled way, we propose a simple classifica-
tion of annotation types that serve different purposes, namely precision, focus,
and optimisation and are provided at different stages during experimentation,
i.e., workflow design, workflow execution, and lineage query.

Precision: These annotations aim at improving the granularity and under-
standability of lineage derivation trees. We consider workflow design time
annotations that:
1. Make a distinction among input variables according to their role during

processing, i.e., between data that is used as part of the processor’s
computation, for instance a search string, and configuration parameters,
e.g. the number of results returned by the search.

2. Refine the functional dependencies between inputs and outputs for indi-
vidual processors. With reference to (2) on page 21, if the designer knew

Data Lineage Model for Taverna Workflows with Lightweight Annotation 25

that, say, Y1 only depended on X1 . . . Xk, with k < n, then the first
dependency would become X1 . . . Xk → Y1, resulting in more specific
xform tuples, i.e., xform([X1/x1 . . . Xk/xk], Y1/y1, P/p).

3. Assert a 1-1 mapping between elements of an input list and correspond-
ing elements of an output list. When this additional information is avail-
able, as in the case of cardinality mismatch described earlier, lineage can
be tracked at the level of individuals within a collection.

4. Explain the nature of aggregation functions. This amounts to stating,
for example, that E1/e1 is the result of applying a function dupCount
to the input lists D1/d1 and D2/d2. Note that this is a special case of a
more general semantic annotation for processors, an interesting topic of
current research.

We also consider additional information that may become available during
workflow execution, and that is contributed either by the workflow enactor,
or by the services themselves. This includes, for example:
– the information that implicit iterators have been applied to input collec-

tions to resolve some cardinality mismatch, and
– an explicit permutation map provided by a processor that performs a sort

operation. Such a map allows the lineage service to refine the derivation
graph by applying the inverse mapping to individual elements in the
input/output lists.

Focus: These annotations provide users with a means to select relevant lineage
information at lineage query time, namely by (i) suppressing some of the
paths in the graph, for example those involving D1 but not D2, and (ii)
specifying a subset of the processors of interest. In the example, it would be
natural to focus on the query processors P3 and P4, while ignoring P2 and
P5, for instance6.

Optimisation: These annotations, specified at workflow design time, indicate
that some of the processors are stateless, i.e., they are guaranteed to produce
the same result when executed multiple times on the same input (unlike, for
example, a query to a database that may change in time). When this is
the case, the lineage service has a choice between materialising the lineage
tuples corresponding to those processors’ transformations, or re-executing
the services themselves when the lineage tree is computed (under the realistic
assumption that its implementation is available to the lineage service at
query time). This is potentially beneficial for a number of small shim services
that are computationally inexpensive.

Table 1 presents a summary of these annotation types (the specific annotation
syntax is not relevant for the purposes of this paper). Although the framework
in the table is fairly general and applicable to a variety of annotation options
and workflow systems, we focus here on a few cases that are of direct interest to
Taverna workflows. The last column of the table provides examples of the effect
of each of these annotations.
6 Taverna does include a basic feature that can be used as starting point, namely for

tagging processors as “boring” so that they are excluded from the visual rendering.

26 P. Missier et al.

Table 1. Summary of dataflow annotations types and their effect on lineage

Annotation type Phase Effect
Precision:
refinement of functional
dependencies between in-
puts and outputs

design xform([X1/x1 . . . Xk/xn], Y/y, P) replaced by:
xform([X1/x1 . . . Xk/xk], Y/y, P), k < n

parameter vs. data input
distinction

design xform([A1/a1A2/a2], B/b, P1) replaced by:
xform(A2/a2, B/b, P1)
A1/a1 reported as separate context information instead

1-1 mapping on lists design xform(B/b, C2/c2, P2) replaced by:
xform(B/bi, C2/c2i, P2) for each i

type of aggregation func-
tions

design xform([D1/d1D2/d2], E1/e1, P6)
reported along with dupCount during query answering

implicit iteration over
non-collection variables

execution equivalent to 1-1 mapping, only implicit

explicit permutation
maps for list sorting
processors

execution a permutation map containing: Π(E/e2i) = G/gj

justifies the derivation: derive(G/gj,[E/e2i],)

Focusing:
path suppression lineage

query
disregard some of the lineage paths, e.g.
P6 → P5 → P4 → P1 not considered

processor selection lineage
query

only report on derivation through, say, P3 and P4.

Optimisation:
stateful vs. stateless pro-
cessors

design If P1,P2,P5,P6,P7 are stateless, then the only required mate-
rialisation of lineage is now:
xform(B/b, C2/c2, P4)
xform(C1/c1, D1/d1, P3)

Fig. 4. Derivation tree obtained using additional annotations and user selection

Data Lineage Model for Taverna Workflows with Lightweight Annotation 27

Let us now consider their effect on our example workflow graph, specifically:

(1) A1, F are configuration parameters
(2) P5 provides a 1-1 mapping between input and output lists
(3) Any path containing P3 should be excluded from the derivation tree
(4) Processor P6 should be excluded from the derivation tree.

Figure 4 (left) shows a new version of the workflow graph, where the nodes that
will be ignored according to (3) and (4) are shown in dotted lines. The derivation
tree from G/g back to the input A2/a2 is shown on the right. Note that F/f and
A1/a1 are now mentioned only as part of the processor configuration, and that
G/g now appears to be derived from D2 through a two-nodes path involving P7
as well as P6. Also, since we know that P5 maps each element c2i of its input
list C2 to the corresponding element d2i in D2, we can make the derivation from
c2i to d2i explicit in the tree, resulting in the three branches shown in the figure
(this fine granularity does not extend to B/b nor to G/g).

4 Discussion and Conclusions

The work presented in this paper stems from the hypothesis that a model for
describing the lineage of workflow data products can improve in precision by
adding a few, selected annotations to the workflow, both at design time and
at execution time. Furthermore, a simple selection of relevant processors by the
users when formulating lineage queries can be effective in presenting lineage data
at a suitable level of abstraction. We have proposed a simple classification of
lightweight annotation types and have demonstrated their impact by comparing
a derivation tree obtained as the results of a typical lineage query, with the
equivalent derivation tree obtained using a baseline, annotation-free data model
for lineage in Taverna.

A number of well-known workflow management systems for scientific appli-
cations have been proposed which collect and exploit provenance information
for different purposes. These include enabling partial, “smart” re-runs of pre-
viously executed workflows (Vistrails [7] and Kepler [1]), debugging workflows
(Kepler [1]), and comparing experiment results (Karma [18])). Hidders et al. [9]
describe a formal functional model of dataflow repositories using the Nested Re-
lational Calculus [6] (NRC). The authors show how, for dataflows described using
NRC, the lineage of any occurrence of a value that appears during the course of a
workflow execution can be specified using the same formalism, in terms of a path
across the dataflow model. This interesting reference model could, potentially,
be adopted as a starting point for our own model of data lineage. This would
entail showing that Taverna workflows can be expressed using the NRC-based
dataflow model, so that the provenance inference rules defined therein can be ap-
plied. Indeed it would be interesting, but beyond the scope of our current work, to
investigate how the model can be used to describe the types of annotations that
we propose in this paper, and their effect on the computation of lineage paths.

28 P. Missier et al.

It is important to emphasize that, in this paper, we are not claiming any
specific element of novelty with respect to the provenance models and manage-
ment systems just mentioned: tracking “raw” data lineage on a dataflow graph
is, after all, a well-defined problem with known solutions, as the cited research
shows. Here we focus instead on the problem of specifying and exploiting ad-
ditional properties that may be known about the graph components, to bring
added value to provenance users. In this respect, the Zoom system [4] is perhaps
the closest in spirit to our efforts. Zoom lets users define personalised “compos-
ite modules” that are abstractions of the concrete workflow, by way of grouping
some of its components and then selecting the relevant groups. The system then
provides answers to provenance queries that are consistent with the abstraction
level chosen by the user. The type of abstraction envisioned by the authors is
similar to that described in Figure 1, i.e., by modular composition.

In a similar vein, Miles et al. [12] propose a mechanism for narrowing the cope
of provenance queries. In this proposal, p-assertions are used when provenance
is collected as a way to document the relationships among items of provenance
metadata. In particular, one can use p-assertions to specify causual, functional,
or other kinds of relationships. Provenance queries are then scoped based on
these p-assertions types.

In contrast to both these approaches, we envision a distinction among proces-
sors that is independent of any grouping/nesting feature, and is instead based
on the contribution of individual processors to the “latent data model”, as we
have described it earlier.

The only work to our knowledge that considers the use of semantic annota-
tions for analysing workflow provenance is by Miles et al. [13], where a method
for validating scientific experiments is proposed. The validation entails reason-
ing over collected data provenance and the semantic descriptions of the services
that compose the workflows. Its goal is to ensure that the experiments are en-
acted correctly, and that the results they deliver are of value. Using this method,
for example, a user is able to check that the intermediate data delivered by a
given service operation belongs the appropriate domain, e.g. ”protein”. It is
worthwhile noting that this proposal assumes that semantic annotations of web
services are always available. However, practice shows that semantics annota-
tions are a scarce commodity in general [2]. With this in mind, the solution we
propose is incremental in that semantics annotations are not mandatory inputs
for analysing the lineage of workflow results. Rather, they are used for improving
the analysis and facilitating the interpretation of the lineage results.

Finally, although the systems mentioned above define a variety of different
data lineage models, a consensus has recently begun to emerge among different
groups towards a common model for workflow provenance. The result is an initial
version of the Open Provenance Model (OPM) [14], a conceptual model that
describes provenance using a pre-defined set of entities and relationships. This
is an interesting reference schema onto which we hope to map our lineage model
(a detailed comparison between the lineage model proposed in this paper and
the OPM is beyond the scope of this paper).

Data Lineage Model for Taverna Workflows with Lightweight Annotation 29

The work presented in the paper is still in progress and forms the core of the
provenance architecture for Taverna, with support for a range of queries, both
on a single workflow execution and across executions. A mapping of the Taverna
lineage model to the Open Provenance Model is also in the plans.

References

1. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
Kepler scientific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

2. Belhajjame, K., Embury, S.M., Paton, N.W., Stevens, R., Goble, C.A.: Automatic
annotation of web services based on workflow definitions. ACM Transactions on
the Web 2(2) (2008)

3. Benjelloun, O., Das Sarma, A., Halevy, A.Y., Theobald, M., Widom, J.: Databases
with uncertainty and lineage. VLDB J. 17(2), 243–264 (2008)

4. Biton, O., Cohen-Boulakia, S., Davidson, S., Hara, C.: Querying and managing
provenance through user views in scientific workflows. In: Procs. Internation. Con-
ference on Data Engineering (ICDE) (April 2008)

5. Buneman, P., Khanna, S., Chiew Tan, W.: Why and where: A characterization
of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

6. Buneman, P., Naqvi, S.A., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theor. Comput. Sci. 149(1), 3–48 (1995)

7. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.:
VisTrails: visualization meets data management. In: SIGMOD Conference, pp.
745–747 (2006)

8. Chapman, A., Jagadish, H.V.: Issues in building practical provenance systems.
IEEE Data Eng. Bull. 30(4), 38–43 (2007)

9. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.: A
formal model of dataflow repositories. In: Cohen-Boulakia, S., Tannen, V. (eds.)
DILS 2007. LNCS (LNBI), vol. 4544, pp. 105–121. Springer, Heidelberg (2007)

10. Hull, D.: Description and classification of shims in mygrid. Technical report, Uni-
versity of Manchester (2006)

11. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn,
T.: Taverna: a tool for building and running workflows of services. Nucleic Acids
Research 34, W729–W732 (2006)

12. Miles, S.: Electronically querying for the provenance of entities. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 184–192. Springer, Heidelberg
(2006)

13. Miles, S., Wong, S.C., Fang, W., Groth, P.T., Zauner, K.-P., Moreau, L.:
Provenance-based validation of e-science experiments. J. Web Sem. 5(1), 28–38
(2007)

14. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The Open
Provenance Model (December 2007)

15. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 3045–3054 (November
2004)

30 P. Missier et al.

16. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Rec. 34(3), 31–36 (2005)

17. Simmhan, Y.L., Plale, B., Gannon, D.: A framework for collecting provenance in
data-centric scientific workflows. In: ICWS, pp. 427–436 (2006)

18. Simmhan, Y.L., Plale, B., Gannon, D.: Towards a quality model for effective data
selection in collaboratories. In: Proceedings of 22nd International Conference on
Data Engineering Workshops, pp. 72–72 (2006)

19. Chiew Tan, W.: Provenance in databases: Past, current, and future. IEEE Data
Eng. Bull. 30(4), 3–12 (2007)

20. Turi, D., Missier, P., De Roure, D., Goble, C., Oinn, T.: Taverna Workflows: Syntax
and Semantics. In: Proceedings of the 3rd e-Science conference, Bangalore, India
(December 2007)

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 31–44, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Logic Programming Approach to Scientific Workflow
Provenance Querying

Yong Zhao1 and Shiyong Lu2

1 Microsoft Corporation, Redmond WA
2 Department of Computer Science, Wayne State University, Detroit, MI

yozha@microsoft.com, shiyong@wayne.edu

Abstract. Scientific workflows have become increasingly important for ena-
bling and accelerating many scientific discoveries. More and more scientists
and researchers rely on workflow systems to integrate and structure various
local and remote heterogeneous data and services to perform in silico experi-
ments. In order to support understanding, validation, and reproduction of scien-
tific results, provenance querying and management has become a critical
component in scientific workflows. In this paper, we propose a logic program-
ming approach to scientific workflow provenance querying and management
with the following contributions: i) We identify a set of characteristics that are
desirable for a scientific workflow provenance query language; ii) Based on
these requirements, we propose FLOQ, a Frame Logic based query language for
scientific workflow provenance, iii) We demonstrate that our previous rela-
tional database based provenance model, virtual data schema, can be easily
mapped to the FLOQ model; and iv) We show by examples that FLOQ is ex-
pressive enough to formulate common provenance queries, including all the
provenance challenge queries proposed in the provenance challenge series.

1 Introduction

Today, scientists use scientific workflows to integrate and structure various local and
remote data and service resources to perform various in silico experiments to produce
scientific discoveries. As a result, scientific workflows have become the de facto
cyberinfrastructure upper-ware for e-Science and an efficient environment for compu-
tational thinking. A scientific workflow is a formal specification of a scientific proc-
ess, which represents, streamlines, and automates the steps from dataset selection and
integration, computation and analysis, to final data product presentation and visualiza-
tion. A Scientific Workflow Management System (SWFMS) supports the specifica-
tion, execution, re-run, and monitoring of scientific processes.

Provenance management is essential for scientific workflows to support scientific
discovery, reproducibility, result interpretation, and problem diagnosis, while such a
facility is usually not necessary for business workflows. Provenance metadata captures
the derivation history of a data product, including the original data sources, intermediate
data products, and the steps that were applied to produce the data product. Although

32 Y. Zhao and S. Lu

several provenance storage and query models have been developed [17], they are based
on query languages designed for other data types such as relational data, XML data,
and Semantic Web data that are not specifically tailored for scientific workflow
provenance. While it is still not clear which provenance model is most suitable for
workflow provenance query representation and processing, we argue that a prove-
nance query language should have the following characteristics: 1) The language
should be based on a well-defined semantics to represent computations and their rela-
tionships, since only with such formalism in place can we define the model and syn-
tax for representing and querying workflow provenance; 2) The language should be
able to define, query, and manipulate data structures, as they are essential components
of workflows, on which various operations are performed; 3) The language should
have declarative syntax for both computation and data declarations and flexible query
specification; 4) The language should allow the composition of simple queries into
more complex queries; and 5) The language ideally should support inference capabil-
ity for provenance reasoning.

Based on these requirements, we propose FLOQ, a Logic Programming (LP) ap-
proach to workflow provenance representation and querying. We use Frame Logic (F-
Logic) [16] as the theoretic foundation and base our implementation on the FLORA-2
system [24]. Moreover, we demonstrate that our previous relational database based
provenance model, virtual data schema, can be easily mapped to the FLOQ model,
and show by various examples that FLOQ is expressive enough to formulate common
provenance queries, including all the provenance challenge queries proposed in the
provenance challenge series. Although the logical programming approach is not inno-
vative by itself, we hope the introduction of such an approach into the provenance
community can stimulate and motivate further research in this direction.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
Frame Logic and the FLORA-2 system. In Section 3, we show the mapping of the
virtual data schema into Frame Logic, and the logic programming representation of
the sample fMRI workflow used in the provenance challenges. In Section 4, we dem-
onstrate the expressiveness of FLOQ. In Section 5, we discuss implementation issues
and related work. Finally in Section 6, we draw our conclusions.

2 Frame Logic and FLORA-2

Frame Logic [16] provides a logical foundation for frame-based and object-oriented
languages. It has a model-theoretic semantics and a sound and complete resolution-
based proof theory. F-Logic combines clean and declarative semantics; expressive-
ness and powerful reasoning provided by deductive database languages; and rich data
modeling supported by its object-oriented data model.

FLORA-2 [24] is both a LP language and an application development environ-
ment. The language is a dialect of F-Logic with meta-programming extensions
(HiLog) [5] and logical updates (Transaction Logic). The implementation is built on
top of the powerful and efficient XSB inference engine [20]. In the following, we
introduce some of the key features of F-Logic using the FLORA-2 language syntax:

 A Logic Programming Approach to Scientific Workflow Provenance Querying 33

Objects and properties
 Zhao[name -> “Yong Zhao”, affiliation -> UChicago]
 Lu[name-> “Shiyong Lu”, affiliation->WSU, teaches(2008)->{CS300,
CS501}]
 UChicago[name-> “University of Chicago”, location-> Chicago]
 WSU[name-> “Wayne State University”, location-> Detroit]

The above examples define two people and their associated universities, where ->
denotes the value of an attribute or method.

Class or Schema information
A set of similar objects can be categorized into a class. An F-Logic program can also
represent the structural information of a class and its type signature (types for method
arguments and results):
 Employee[name *=> string, affiliation *=> University]
 Faculty[teaches(integer) => Course]
 University[name => string, location => City]

The above examples define a few classes and their type signature, where => de-
notes the type of the method of the class, and * indicates that the signature can be
inherited by a subclass. The original F-Logic distinguishes between functional (=>)
and set-valued (=>>) methods. In FLORA-2 it has been simplified to use only set-
valued methods. However, cardinality constraints can be specified, and {0:1}=>
corresponds to functional methods.

Class hierarchy and Class membership
 Faculty::Employee
 Zhao:Employee
 Lu:Faculty
 UChicago:University
 WSU:University

In the example, S::C denotes that S is a subclass of C, where O:C denotes that O is
a member (instance) of C. Since the signature of Employee is defined as inheritable,
Faculty gets the signature from it.

Predicates
In F-Logic, predicate symbols can be used in the same way as in predicate logic (e.g.
Datalog). Information expressed by predicates can usually also be represented by
frames. For instance, the location method of UChicago can be alternatively repre-
sented as:

 Location(UChicago, Chicago)

Rules
Rules define the deduction process. Based upon a given set of facts, rules provide the
mechanism to derive new information. Rules encode generic information of the form

 rule head :- rule body

The rule body specifies the precondition that must be met, and the rule head indi-
cates the conclusion.

34 Y. Zhao and S. Lu

To give an example:

 ?U[offers(?Y)->?C] :- ?F[teaches(?Y)->?C],?F[affiliation->?U]

The above rule specifies that if a faculty member F teaches a course C in year Y,
and the person is affiliated with university U, then we conclude that the university U
offers the course C in year Y.

Other features
FLORA-2 programs also allow the combined and nested specification of the above
definitions, for instance

 Lu[affiliation->WSU[name-> “Wayne State University”]]:Faculty

It also supports path expression where

 Lu.affiliation

would result in WSU - the value of the method affiliation of object Lu.
It also provides aggregation functions such as average, count, max, etc. For instance:

 ?N = count{?C[?Y]|Lu[teaches(?Y)->?C]}

The above query counts the number of courses taught by Lu in each year. Due to
space limitation, we do not give the details of these features; interested readers can
look at the online tutorials for FLORA-2.

3 Mapping Virtual Data Schema to F-Logic

To illustrate how existing provenance systems can be mapped to and thus benefit from
our logical programming approach, consider the following example. The virtual data
schema [26] models the various relationships that exist among datasets, procedures,
calls (to procedures), workflows (a set of dependent calls) and invocations (the actual
executions of a specific call on physical resources), as well as annotations that associate
metadata to these entities. Originally, the virtual data schema was interpreted as a rela-
tional model and implemented as a relational database in the virtual data system (VDS)
[11]. Recently, we have evolved the schema and adapted it to the XML Dataset Typing
and Mapping (XDTM) model [18], and integrated it into the Swift system [25].

XDTM is a data integration model that allows logical dataset structures to be speci-
fied separately from their physical representations so that workflows can be defined to
operate on cleanly typed datasets. It also provides a mapping mechanism to map these
logical structures to physical data access when a workflow is scheduled to execute.
Swift is a fast, scalable and reliable Grid workflow system that builds on the XDTM
data model, it combines a simple scripting language called SwiftScript for concise,
higher level specification of complex parallel computations, and an efficient work-
flow engine to schedule the execution of large number of parallel tasks onto distrib-
uted and parallel computing resources. In Swift, all datasets are typed, and procedures
take typed inputs and produce typed outputs, workflows are represented as a set of
procedure calls, and their execution sequence is determined by data dependencies.

In this section, we show that the virtual data schema can also be modeled from an
object oriented (OO) perspective, and it can be represented naturally in F-Logic. We

 A Logic Programming Approach to Scientific Workflow Provenance Querying 35

softmean

RI RH

align_warp

reslice

AI1AH1

align_warp

reslice

AI2AH2

align_warp

reslice

AI3AH3

align_warp

reslice

AI4AH4

slicerX

ConvertX

slicerY

ConvertY

slicerZ

ConvertZ

AX AY AZ

Fig. 1. Sample fMRI workflow

also demonstrate via the sample fMRI workflow that our SwiftScript declarations of
the workflow can be easily mapped into F-Logic programs. The details about the
sample fMRI workflow can be found at the first provenance challenge site [10]. We
only give a brief description of the workflow here for clarity purpose. The workflow
graph is shown in Fig. 1. The inputs to the workflow are a set of brain images (Anat-
omy Image 1 to 4) and a single reference brain image (Reference Image), and each
image has an associated header file with metadata in it. The outputs are a set of atlas
graphics. The stages of the workflow are as follows:

Firstly, each brain image is spatially aligned to the reference image using
align_warp. The output is a warp parameter set defining the spatial transformation to
be performed (Warp 1 to 4). For each warp parameter set, the actual transformation of
the image is done by reslice, which creates a resliced image of the original brain im-
age with the configuration defined in the warp parameter set. All the resliced images
are then averaged using softmean, producing a 3D atlas image. The averaged image is
sliced along a plane in x, y, and z dimensions respectively into a 2D atlas using a
program called slicer, and lastly, each 2D atlas is converted into a graphical atlas
image using (the ImageMagick utility) convert.

In the OO model, datasets all have types, and each dataset is an instance of its type.
Procedures have typed signature, and each call is an instance of a procedure. To dis-
tinguish these different types, we firstly define a few base classes in F-Logic:

 _type
 _procedure
 _anno

And use them to represent dataset types, procedures and annotations. SwiftScript is
a typed workflow language. Datasets are typed (with structural definition), and

36 Y. Zhao and S. Lu

procedures are also typed (with typed inputs and outputs). In below we show the
type declarations of the fMRI workflow in SwiftScript to the left.

This gets translated into the corresponding F-Logic statements to the right. Since

FLORA-2 covers all the primitive types defined in Swift, so the mapping is a straight-
forward translation. Correspondingly, a SwiftScript procedure declaration can be
mapped to its F-logic counterpart in a similar way:

The script defines a procedure called align_warp, which takes two volumes, a
string option, and produces a warp file (which defines the spatial transformation to be
performed to warp an input image to the reference image). The F-Logic program
defines it as a class with its type signature. In order to capture whether a dataset is an
input or output, we define two extra behavior attributes input and output for the pro-
cedure. The other procedures in the sample workflow can be mapped in the same
manner and we omit the details. Now the call to a procedure (shown below in the top)
is translated into F-Logic (shown in the bottom) as follows:

Firstly the dataset declarations are translated into instance specifications of their

corresponding types, and they are then supplied as values to the procedure inputs and

Volume vol1;
Volume std_vol;
Warp w1 = align_warp (vol1, std_vol, ‘y’);

vol1:Volume.
std_vol:Volume.
w1:Warp.
align_warp_uuid[iv->vol1, reference->std_vol,overwrite->‘y’, w->w1].
align_warp_uuid:align_warp.

(Warp w) align_warp (Volume iv, Volume reference, string overwrite)
{
}

align_warp::_procedure.
align_warp[iv=>Volume, reference=>Volume,overwrite=>string, w=>Warp].
align_warp[input->{iv,reference}, output->w].

type Image;
type Header;
type Volume {
 Image img;
 Header hdr;
}
type Warp;

Image::_type.
Header::_type.
Volume::_type.
Volume[img{1:1}=>image,
 hdr{1:1}=>header].
Warp::_type.

 A Logic Programming Approach to Scientific Workflow Provenance Querying 37

outputs. Note that we generate a unique id for the call, and the call is an instance of its
procedure class. For the calls, we want to find out which datasets are the inputs and
outputs, instead of the parameter names. This can be achieved as follows:

 ?I[in->?D] :- ?I[?P->?D],?C[in->?P],?I:?C.
 ?I[out->?D] :- ?I[?P->?D],?C[out->?P],?I:?C.

What the rules specify is that: if an instance I of a class C has a parameter P, and P
is an input (or output) parameter with value D, then D is an input (or output) dataset
to the instance I.

An invocation record captures the execution environment that a call is executed. It
typically has information such as the execution host, start time, duration, exit code,
memory usage, and stats of the input and output files. We model a record as an F-
Logic object, and give an example below:

 align_warp_inv_uuid[call->align_warp_uuid,
 host-> “uchost”,
 arch-> “ia64”,
 start_time-> “2008-02-14T09:55:33”^^_dateTime,
 duration-> “00:29:55”^^_duration ,
 exit_code->0].

For annotations, since we allow the association of metadata to any of the virtual
data entities, including dataset types, datasets, procedures, procedure parameters,
calls, invocations, the mapping is not as straightforward as the other ones. There are
many ways to map an annotation into F-Logic. For instance, each annotation can be
modeled as a predicate. But as annotations to an annotation should also be supported
so that we can track the provenance of the annotation itself, we need to model the
annotation as an object. We define a base class _anno, and each annotation is declared
to be an instance of this base class. An annotation object takes the form as follows:

 annotation_key [on(object, part, …)->annotation_value]:_anno.

For instance, if we want to annotate the procedure align_warp with
model=nonlinear, the annotation is specified like this:

 model[on(align_warp)-> ‘nonlinear’]:_anno.

With these simple mappings, we can already pose some interesting queries to the sys-
tem. For instance, the following query can find all the types defined in the workflow.

 Q: ?X::_type.
 A: ?X = Image
 ?X = Header
 ?X = Volume

 …

 Find all procedures that take Volume as a parameter:

 Q: ?X[?Y=>Volume]::_procedure.
 A: ?X=align_warp
 ?Y=iv

 ?X=align_warp
 ?Y=reference

38 Y. Zhao and S. Lu

Fig. 2. F-Logic Program for the Sample fMRI Workflow

 Find procedure calls that ran on ia64 processors:

 Q: ?[call->?X, arch-> “ia64”].
 A: ?X=align_warp_uuid

In Fig. 2 we show the specification of the sample fMRI workflow mapped to F-Logic
terms, but omitting the detailed structural information about the datasets and procedures
involved.

4 FLOQ Query Examples

In our virtual data query model, three major query dimensions were identified: (1) line-
age information obtained by interrogating the patterns of procedure calls, argument
values, and dependencies in the workflow graphs that describe the indirect nature of the
production of a given data object; (2) prospective and retrospective provenance data, as
provided by records of procedure definition, procedure arguments, and runtime invoca-
tion recording; and (3) metadata annotations that enrich this application-independent
schema with application-specific information. In this section, we show the expressive-
ness of the FLOQ approach using extensive examples drawn from our single- and multi-
dimensional queries and some of the core provenance challenge queries.

Lineage Queries: One of the key capabilities of a provenance system is to query the
derivation history (lineage) of a data product, i.e. from which datasets this product is
derived and by what procedures, and what datasets can be further derived from this

align_warp_1[iv->vol1, reference->std_vol, overwrite->‘y’, w->w1] : align_warp.
align_warp_2[iv->vol2, reference->std_vol, overwrite->‘y’, w->w2] : align_warp.
align_warp_3[iv->vol3, reference->std_vol, overwrite->‘y’, w->w3] : align_warp.
align_warp_4[iv->vol4, reference->std_vol, overwrite->‘y’, w->w4] : align_warp.

reslice_1[w->w1, ov->svol1] : reslice.
reslice_2[w->w2, ov->svol2] : reslice.
reslice_3[w->w3, ov->svol3] : reslice.
reslice_4[w->w4, ov->svol4] : reslice.

softmean_1[iv->{svol1,svol2,svol3,svol4}, ov->atlas] : softmean.

slicer_1[iv->atlas, dimension->‘x’, ppm->‘atlas_x.ppm’] : slicer.
slicer_2[iv->atlas, dimension->‘y’, ppm->‘atlas_y.ppm’] : slicer.
slicer_3[iv->atlas, dimension->‘z’, ppm->‘atlas_z.ppm’] : slicer.

convert_1[from->‘atlas_x.ppm’, to->‘atlas_x.jpg’] : convert.
convert_2[from->‘atlas_y.ppm’, to->‘atlas_y.jpg’] : convert.
convert_3[from->‘atlas_z.ppm’, to->‘atlas_z.jpg’] : convert.

 A Logic Programming Approach to Scientific Workflow Provenance Querying 39

product and by using what kind of procedures. These lineage relationships can be
easily represented in F-Logic using the following predicates:

 DirectlyDerived(?X, ?Y) :- ?Proc[in->?X, out->?Y],?Proc:_procedure.
 Derived(?X,?Y) :- DirectlyDerived(?X,?Y).
 Derived(?X,?Y) :- Derived(?X,?Z), Derived(?Z,?Y).

The first predicate specifies that if a procedure Proc takes X as an input, and pro-
duces Y as an output, then Y is directly derived from X. The second predicate defines
the transitive closure of the derivation relationship, finding all Y that can be directly or
indirectly derived from X. Now if we want to find what datasets can be derived from
the dataset vol1, or what datasets are involved to derive the data product atlas, we can
simply pose the following queries:

 Q: Derived(vol1, ?X).
 A: ?X=w1, svol1, atlas, atlas_x.ppm, atlas_x.jpg, atlas_y.ppm, …

 Q: Deirved(?Y, atlas).
 A: ?Y=svol1, svol2, svol3, svol4, w1, w2, w3, w4, vol1, vol2, …

Similarly, if we want to track what procedures are used to process a dataset and its
derived datasets, we can define:

 ConsumedBy(?X, ?P) :- ?P[in->?X], ?P:_procedure.
 ConsumedBy(?X, ?P) :- DirectlyDerived(?X, ?Y),ConsumedBy(?Y, ?P).

As we can observe, these logic based derivation rules follow very closely to our
natural thinking and are easy to define and understand.

In contrast, a relational database based approach usually requires a more strictly
defined schema such that procedures cannot be specified column-wise (they have
various parameters), causing lineage queries to use expensive self-joins [23]. Since
not all DBMS support recursion, such queries may have to be implemented in stored
procedures that involve complex programming. Our XML based approach in VDS
still required a pre-defined XML schema to write template-based queries, although
the XQuery engine did provide the flexibility to join across multiple schemas and
query recursively. We list the XQuery program to find all derived datasets in below
for comparison purpose, and it is obvious that the query is less intuitive than the F-
Logic counterpart.

 declare namespace v='http://www.griphyn.org/chimera';
 declare function v:lfn_tree($lfn as xs:string) as item()* {
 let $d := //derivation[.//lfn[@file=$lfn][@link='input']]
 return ($lfn,

 for $out in $d//lfn[@link='output']/@file return v:lfn_tree($out))
 };
 let $f := v:lfn_tree(‘vol1’);
 return distinct-values($f)

Virtual Data Relationship Query: Virtual data relationship refers to the bindings
between dataset types, procedures, calls, invocations, and the queries focus on the
attributes of such entities. The query of “find all the procedures that have an input of
type Volume and an output of type Warp” can be formulated as:

40 Y. Zhao and S. Lu

 ?Proc[input->?X, output->?Y]:_procedure,
 ?Proc[?X=>Volume, ?Y=>Warp].

Similarly, the query of “find all calls to procedure align_warp, and their runtimes,
with argument reference=std_vol that ran in less than 30 minutes on non-ia64 proces-
sors” can be formulated as:

 ?Inv[call->?C, duration->?d, not arch->“ia64”],
 ?d<= “00:30:00”^^_duration,
 ?C[reference->std_vol]:align_warp.

Annotation Queries: Annotation queries can be used to find any application specific
information about various virtual data entities, such as procedure description and data
curation, and to discover certain procedures and datasets by their associated metadata.
The query of “show the values of all annotation predicates developerName of proce-
dures that accept or produce an argument of type Volume with predicate Mode = nonlin-
ear” is formulated as:

 developerName[on(?Proc)->?Name],
 ?Proc[?=>Volume]::_procedure,
 Model[on(?Proc)->‘nonlinear’].

Aggregation Queries: Aggregation queries can perform basic statistical mining over
the provenance information, which can be useful for reporting purpose and anomaly
detection. For instance, one of the following queries identifies jobs run unusually
long, and the other one does a monthly tally of the total jobs run in a year. The query
of “find all the align_warp invocations that ran three times longer than the average
run time” is formulated as:

 ?X=avg{?d|?Inv[call->?C, duration->?d], ?C:align_warp},
 ?Inv[call->?C, duration->?d], ?C:algin_warp,
 ?d > 3* ?X.

To list the total number of jobs run in each month of 2007, we use the query:

 ?X=count{?Inv[?M]| ?Inv[start->?T],
 ?T[_month->?M]@_basetype, ?T[_year->2007]@_basetype}.

Provenance Challenge Queries: Several provenance challenge queries are already
discussed in previous sections, including Q1, Q6 (lineage), Q4 (relation), Q5, Q8, and
Q9 (annotation). We discuss the rest of the queries below.

Q2: Find the process that led to Atlas X Graphic, excluding everything prior to the
averaging of images with softmean.

This query is similar to the lineage queries, here, we are tracing back to a dataset’s
source. We can follow similar logic to answer this query:

 ProducedBy(?X, ?P) :- ?P[out->?X], ?P:_procedure.
 ProducedInBetween(?X, ?Y, ?P1, ?P2) :- ProducedBy(?X, ?P1),

Derived(?Y, ?X), ConsumedBy(?Y, ?P2).

Basically the rule specifies that if a dataset X is the output of procedure P1, and X
is somehow (directly or indirectly) derived from another dataset Y, which is the input
of procedure P2, then we stop tracing back. The query can be posed as:

 A Logic Programming Approach to Scientific Workflow Provenance Querying 41

 Q: ProducedInBetween(‘atlas_x.jpg’, ?Y, ?P, softmean).
 A: ?P = convert, slicer, softmean
 ?Y = altas_x.ppm, atlas, svol1, svol2, svol3, svol4

Q3. Find the Stage 3, 4 and 5 details of the process that led to Atlas X Graphic.

We can track the depth of derivation by slightly modifying the definition of Pro-
ducedBy, and add the depth information in the rules:

 ProducedBy(?X, ?P, ?D) :- ?P[out->?X], ?P:_procedure, ?D is 1.
 ProducedBy(?X, ?P, ?D) :- DirectlyDerived(?X, ?Y), ProducedBy(?Y, ?P,

?D0), ?D is ?D0 + 1.

The rules specify that if a dataset X is directly produced by a procedure P, then the
depth of derivation is 1; otherwise if X is directly derived from a dataset Y, and Y is
produced by P at some depth D0, then the depth of derivation for P and X is D0 plus
1. Now the query can be posed as:

 Q: ProducedBy(‘atlas_x.jpg’, ?P, ?S), ?S >=3, ?S=<5.
 A: ?S = 3, ?P = softmean
 ?S = 4, ?P = reslice
 ?S = 5, ?P = align_warp

When there are multiple paths that can be traced back from a data product, we can
define the depth as the longest path to that data product. The rules would be slightly
more complex, but still follow the same idea. The rules also require the workflow to
be acyclic, which is the case in Swift. Otherwise, we may go into an infinite loop.

Q7. A user has run the workflow twice, in the second instance replacing each pro-
cedure (convert) in the final stage with two procedures: ppmtopnm, then pnmtojpeg.
Find the differences between the two workflow runs.

Q7 turned out to be quite challenging for most of the teams. There were only one
or two teams that could tackle this query. Using FLOQ, we can use the predicate for
Q2 to find the answers to this query:

 Q: ProceducedInBetween(‘atlas_x.jpg’, ?Y, ?P, softmean).
 A1: ?P=convert, slicer, softmean
 A2: ?P=pnmtojpeg, ppmtopng, slicer, softmean

The solutions to ?P in the two cases would identify the differences exactly as they
are, and also find the different intermediate datasets that have been produced.

Modification Queries: Modification queries allow the ability to couple queries with
updates to define new procedures, annotations, and work requests, for instance,
changing a procedure argument, replacing a procedure in a workflow, or editing a
subgraph of a workflow. It is worth noting that FLORA-2 also supports updating the
knowledge base, such as inserting and deleting facts and rules on-the-fly, and the
updates can also be conditional, i.e. based on some rules. In our case, we can specify
that for each call to convert, we insert two consecutive calls ppmtopnm and pnmto-
jpeg, and then delete the calls to convert, in this way, the workflow is transformed
into a new one with similar functionality.

42 Y. Zhao and S. Lu

5 Discussions and Related Work

Provenance management has become an important functionality for most scientific
workflow management systems [2,8]. The Kepler system implements a provenance
recorder [1] to record information about a workflow run, including the context, data
derivation history, workflow definition, and workflow evolution. The my-
Grid/Taverna system [22] uses Semantic Web technologies for representing prove-
nance metadata at four levels: process, data, organization, and knowledge. Two levels
of ontologies are used. A domain-independent schema ontology is used to describe
the classes of resources and the properties between them that are needed to represent
the four levels of provenance. A domain ontology is used to classify various types of
resources such as data types, service types, and topic of interest for a particular do-
main. The VisTrails system [12] supports provenance tracking of workflow evolution
in addition to data derivation history. In VisTrails, workflow evolution provenance is
represented as a rooted tree, in which each node corresponds to a version of a work-
flow, and each edge corresponds to an update action that was applied to the parent
workflow to create the child workflow. The above provenance systems are tightly
coupled with their scientific workflow environments. A couple of stand-alone prove-
nance systems have also been developed, including the PReServ system [13] and the
Karma system [21]. PReServ supports the recording of interaction provenance, actor
provenance, and input provenance with the Provenance Recording Protocol (PReP),
which specifies the messages that actors can asynchronously exchange with the
provenance store to support provenance submission.

The recent Open Provenance Model [19] effort tries to identify key relationships in
data provenance systems, such as the transitive relationship of derivation, and in the
mean time maintains openness about the alternative views that different users may have
over the same data production process. Although the actual model and query language
implementations are not yet discussed, we think a logic-based approach is natural to
explore. Existing provenance systems have chosen to use different technologies for
provenance querying, of which relational databases, XML, and RDF are three represen-
tative approaches [17]. For relational database based approach, persistence and indexing
are the obvious advantages, however, it is difficult to define and integrate different
schemas for different entities involved in the provenance space, and the queries for
cross-entity joins and transitive relationships are not easy to write and extend.
XML/XQuery based approaches also allow to define schemas and provide more flexi-
bility in such definitions (can be semi-structured), yet, they lack the extensibility to
define deductive rules, such that different use cases have to be implemented as different
query templates. RDF/RDFS based approaches support interoperability and inference,
but the triple style assertions make knowledge representation flat, requiring a lot more
statements to define class and schema information. RDF/RDFS based approaches also
lack the deductive rule engine, and as a matter of fact, many RDF systems choose to use
an F-Logic system as its inference engine. OWL and some flavors of Description Logic
are also candidates for knowledge representation, however, they focus more on the
Class-level (T-Box) relationships, and do not have the expressiveness in instance level
knowledge representation, and they also lack the reflective inspection capabilities
(query schema, rule definitions themselves) presented in F-Logic. Again, they often
engage an F-Logic system as their inference engine too [15].

 A Logic Programming Approach to Scientific Workflow Provenance Querying 43

Previously, F-Logic has been applied to workflow verification [9] and program
query [14], they share some similarities to our approach, as all need to represent
workflow and program structure to some extent. Our work can be actually extended to
provide type checking (for instance, a procedure call needs to supply the right type of
datasets to the procedure parameters) that is done programmatically in Swift, and if
we choose to put more detailed information about Swift programs into the knowledge
base, we can perform verification and program query, and even workflow scheduling
within the FLORA2 engine using transaction logic.

While XSB has been shown to be highly efficient, scalability is an issue for large-
scale provenance management, as the whole knowledge base may not fit into memory.
We plan to address this issue by 1) developing a partitioning scheme for provenance data
so that different portions of provenance information are loaded into memory dynamically
as needed; 2) investigating database persistence techniques [7] for logic programs where
tables can be stored externally in relational databases and loaded on-demand.

6 Conclusions and Future Work

In summary, we have described FLOQ, our Frame Logic based approach to represent-
ing and querying the virtual data provenance model, and we have demonstrated that
our previously identified provenance problems and challenges can be addressed by
this approach. Our Swift workflow definitions can be mapped to F-Logic programs in
a straightforward manner, and provenance queries can be written and extended with
great expressiveness and flexibility. For future work, we plan to 1) extend the transla-
tions of other SwiftScript program declarations to F-Logic and enable type checking
and workflow structure querying. We can also apply F-Logic to type inference, so that
procedure signatures can be derived instead of explicitly specified, which can further
simplify SwiftScript; and 2) generalize the logical programming descriptions and
apply them to more general workflow provenance problems, not limiting to the virtual
data schema defined in the Swift system.

References

1. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the Kepler Sci-
entific Workflow System. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145,
pp. 118–132. Springer, Heidelberg (2006)

2. Biton, O., Boulakia, S., Davidson, S., Hara, C.: Querying and Managing Provenance
through User Views in Scientific Workflows. In: ICDE 2008 (2008)

3. Bose, R., Foster, I., Moreau, L.: Report on the international provenance and annotation
workshop (IPAW 2006). SIGMOD Records (September 2006)

4. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A Characterization of Data Prove-
nance. In: International Conference on Database Theory (2001)

5. Chen, W., Kifer, M., Warren, D.S.: HiLog: A Foundation for Higher-Order Logic Pro-
gramming. Journal of Logic Programming 15(3), 187–230 (1993)

6. Clifford, B., Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Tracking Provenance in a Virtual
Data Grid. Journal of Concurrency and Computation, Practice and Experience (2007)

7. Costa, P., Rocha, R., Ferreira, M.: Tabling Logic Programs in a Database. In: Proceedings
of the 21st Workshop on (Constraint) Logic Programming, WLP 2007 (2007)

44 Y. Zhao and S. Lu

8. Davidson, S., Boulakia, S., Eyal, A., Ludäscher, B., McPhillips, T., Bowers, S., Anand,
M., Freire, J.: Provenance in Scientific Workflow Systems. IEEE Data Eng. Bull. 30(4),
44–50 (2007)

9. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based modeling
and analysis of workflows. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 01 - 04. PODS 1998, Seat-
tle, Washington, United States (1998)

10. http://twiki.ipaw.info/bin/view/Challenge/
FirstProvenanceChallenge (June 2006)

11. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for Repre-
senting, Querying, and Automating Data Derivation. In: 14th Conference on Scientific and
Statistical Database Management (2002)

12. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

13. Groth, P., Miles, S., Tan, V., Moreau, L.: Architecture for Provenance Systems. Technical
report, University of Southampton (October 2005)

14. Hajiyev, E., Verbaere, M., de Moor, O.: CodeQuest: Scalable Source Code Queries with
Datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27. Springer, Hei-
delberg (2006)

15. Kattenstroth, H., May, W., Schenk, F.: Combining OWL with F-Logic Rules and Defaults.
In: International Workshop on Applications of Logic Programming to the Web, Semantic
Web and Semantic Web Services (ALPSWS 2007) (2007)

16. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-Based
Languages. Journal of the ACM 42, 741–843 (1995)

17. Moreau, L., et al.: The First Provenance Challenge, Concurrency and Computation, Prac-
tice and Experience (2007)

18. Moreau, L., Zhao, Y., Foster, I., Voeckler, J., Wilde, M.: XDTM: XML Dataset Typing
and Mapping for Specifying Datasets. In: European Grid Conference (2005)

19. Open Provenance Model (March 2008), http://twiki.ipaw.info/bin/view/OPM
20. Rao, P., Sagonas, K.F., Swift, T., Warren, D.S., Freire, J.: XSB: A System for Efficiently

Computing Well-Founded Semantics. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS, vol. 1265, pp. 2–17. Springer, Heidelberg (1997)

21. Simmhan, Y., Plale, B., Gannon, D.: A Performance Evaluation of the Karma Provenance
Framework for Scientific Workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 222–236. Springer, Heidelberg (2006)

22. Stevens, R., Zhao, J., Goble, C.: Using provenance to manage knowledge of In Silico ex-
periments. Briefings in Bioinformatics 8(3), 183–194 (2007)

23. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in da-
tabase and logic programming systems, Theory and Practice of Logic Programming. Cam-
bridge University Press, Cambridge (2007), doi:10.1017/S1471068407003158

24. Yang, G., Kifer, M., Zhao, C.: FLORA-2: A Rule-Based Knowledge Representation and Infer-
ence Infrastructure for the Semantic Web. In: Second International Conference on Ontologies,
Databases and Applications of Semantics (ODBASE), Catania, Sicily, Italy (November 2003)

25. Zhao, Y., Hategan, M., Clifford, B., Foster, I., Laszewski, G.V., Raicu, I., Stef-Praun, T.,
Wilde, M.: Swift: Fast, Reliable, Loosely Coupled Parallel Computation. In: IEEE Interna-
tional Workshop on Scientific Workflows (SWF 2007). Collocated with SCC (2007)

26. Zhao, Y., Wilde, M., Foster, I.: Applying the Virtual Data Provenance Model. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 148–161. Springer, Heidelberg (2006)

Recording the Context of Action for Process
Documentation

Ian Wootten and Omer Rana

School of Computer Science, Cardiff University, UK

Abstract. In reviewing evidence about real world processes, being
aware of the context in which activities within such processes are per-
formed enables us to make more informed judgements. It is necessary to
distinguish between the environment in which a process occurs, and the
sequence of activities which form part of the description of that process.
Each of these types of information is complementary to understanding
the other and therefore making associations between them is also impor-
tant. Our work has been exploring the use of context whilst documenting
a process and working toward a solution which incorporates the two. We
present an approach to automatically relating properties of workflow ac-
tors to the documentation of the process within which these actors are
involved.

1 Introduction

Context plays a crucial role in support of evidence for a given argument. State-
ments which are taken ‘out of context’ could face criticism from those who note
such omissions as a distortion of the original intended meaning. There are a num-
ber of definitions of context in distributed systems – Brown [1] defines context
to be the elements of a user’s environment which the computer knows about.
Dey and Abowd [2], refer to context as “any information that can be used to
characterize the situation of entities (i.e., whether a person, place or object)
that are considered relevant to the interaction between a user and an applica-
tion, including the user and the application themselves”. Therefore the amount
of information we have about context affects how we interpret the event we have
observed. Similarly, the way in which we interpret the recording of some data
may be altered based on the context in which it has been generated.

We use Groth et al.’s view on provenance [3] as the process which led to a
piece of data, and that such processes may be described using evidence repre-
sented in the form of process documentation. In service oriented architectures
we believe that the context of an action or sequence of actions may be provided
by each actor involved in execution of a process. Records of context may exist
outside of the notion of a process or the control of a client and this makes later
interpretation based on review of both difficult. Our work has been exploring the
use of context in the documentation and structuring of such evidence. Known
relationships between a process and its context will be different depending on
the application, and it may not always be possible to document both in open,

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 45–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 I. Wootten and O. Rana

loosely coupled architectures. In this paper we present a system which docu-
ments both the sequence of actions which describe a process and the situation in
which those actions took place, enabling both navigation of process documenta-
tion and prediction of future actor properties. The rest of this paper is organised
as follows: in section 2 we review the relevant literature in the area of context
as relating to provenance systems and describe our motivation. In section 3 we
describe our model of the context of actions upon an actor, followed by a de-
scription of the architecture we have adopted in section 4 and a demonstration
of its implementation in section 5. Finally in section 6 we conclude.

2 Background and Motivation

Provenance is important for scientists to be able to record information in order
to, for example, ensure experiments are performed correctly and to be able to
repeat processes which produced interesting results. As many disparate activi-
ties may be involved in such a process, without such recording it is difficult to
determine precisely how results have been reached. Several solutions have been
developed to capture provenance or enable applications to be provenance aware,
e.g. in Bioinformatics[11] or Chemical Sciences[9]. The Oxford English dictio-
nary describes context as: the circumstances that form the setting for an event,
statement or idea. For actors in a service oriented system, documenting a pro-
cess involves describing each of those steps which comprise it. Research to date
has widely addressed documenting messages which are sent between actors[3]
as these typically indicate invocation of some functionality. Other actions com-
monly include the actions of scientists who control such systems, which may be
documented in a more ad-hoc manner. Recording single events does not how-
ever describe properties or conditions which hold true for the actor over a given
period of time. We refer to such properties as a description of the context of the
action, where the action is the function being performed by a particular entity.
A universal agreement on the content of process documentation representing
context submitted by actors has not yet been reached. Attempts to provide a
generic schema for what is to be recorded as context have so far proved to be
fruitless, with the Grid Provenance project1 choosing not to adopt any formal
structure for the state of actors during a process. This is due to the diversity
in the types of use cases that are required to be satisfied for all those domains
which have unique provenance requirements. Such diversity has led to scientists
building a variety of tools able to capture specific contextual data. Recently, the
Open Provenance Model has been developed to enable sharing of provenance
data amongst different systems that adopt it [8]. In this model, data represent-
ing context could be considered artifacts as they are immutable pieces of state.
As yet, no systems are known to have implemented the model and no formal
representation of the model has been specified, but work is ongoing. The model
we present focuses less on what the content of this contextual data may be and

1 http://www.gridprovenance.org

Recording the Context of Action for Process Documentation 47

more on how those elements are represented and recorded over time, to be of
use during queries of process documentation.

3 Modeling the Context of a Process

We record process documentation about past processes to understand what has
occurred following invocation of a workflow [3]. In order to document the context
of these processes, a set of variables associated with each actor is recorded during
workflow execution. The value taken by these variables at any time constitutes
the state of that actor. It is possible for an actor to progress through a number
of different states over a period of time, indicated by a difference in the value
of any one of the states variables. When a state changes for an actor, a state
transition is said to occur from the previous to following state. We assume when
state transitions are documented that an actor is only involved in one process
at a time.

An example of deriving a number of states from a given set of variables (v1,
v2, v3) is given in figure 1(a) with a finite state machine representing the states
mined from the data shown in figure 1(b). Here we see that although some
common values exist for each variable (such as the value of v3) a change in any
variable can lead to a state change.

State Observation Time v1 v2 v3

s1 1164277522 4.71 13084 2.56
s2 1164282522 4.71 15698 2.56
s3 1164287522 4.00 15698 2.56

(a) Deriving unique states from variables (b) FSM of variable data

Fig. 1.

In the scenario of a service based architecture, the most interesting states
are those which occur within the interval when a request message was sent to
a service and the associated reply. In this period, the actor’s observed state
may be documented as a part of any process documentation that is recorded
for a process. State is documented using details of the time intervals over which
that state applies (i.e start and end times). This means it is possible to mine
series which describe the same property as being true over a number of non-
overlapping intervals. In figure 2(a) we demonstrate how thresholds are used to
segment the measurements of a variable[4], to determine when it was in one of
a number of pre-defined ranges. Each of these properties which hold true for a
state is documented within a pattern. The pattern is an array of values which
has the same number of elements as variables that are measured, with each
individual element holding a reference to the range which applies. By looking at
two series segmented from variables, (as in figure 2(b)) we are able to determine
the unique patterns (and hence states) and the times over which they apply. As

48 I. Wootten and O. Rana

an example, consider the first highlighted section of figure 2(b). The first two
rows correspond to segmented variable measurements and the third indicates
over which intervals various combinations of the segmented series applied. Our
resultant (state) series therefore describes the periods over which each variable
is described as high, medium or low. So for the example, the state series tells
us both variables were initially low, whilst a short while later the first variable
changed to be within the medium range. The final row indicates the patterns
for each state (which correspond to the original ranges), with the upper value
indicating the range applying for the series in 2(a).

States observed upon an actor are assumed to be an effect of the request
(cause) event from which the observation interval begins. This is in order to
support prediction of future actor properties - which would be impossible without
causal knowledge.

(a) Interval series mining (b) Coincidence of interval series

Fig. 2. Mining unique context series from numeric time series

Particular focus has previously been paid to documenting the set of events
which comprise a process, without discussion of whether any one of these events
may hold causal relationships with properties and conditions holding true for
longer than a single point in time. By adopting a representation capable of
recording intervals we hope to capture such knowledge.

4 Documenting Context in Service Based Architectures

We use the PreServ software created at the University of Southampton to cap-
ture assertions of provenance to a repository known as a provenance store [3].
This software has been built in response to a large variety of requirements gath-
ered from numerous domains such as bioinformatics, high energy physics and
medicine [5]. PreServ breaks up process documentation into three sub-categories
of assertion known as p-assertions. Interaction p-assertions document message
exchange between services, relationship p-assertions document the causal depen-
dencies between events or data items and actor state p-assertions document the
state an actor is in at a given point in time during a process. Dividing docu-
mentation into these three types means that parts of it may be recorded by each

Recording the Context of Action for Process Documentation 49

of the actors which were involved in a process to a repository common to all.
PreServ is suitable as a capture mechanism for assertions of state as it does not
prescribe their contents, instead leaving it up to specific applications to define
this. This leaves us free to specify our own XML representation of state and
assert this to storage.

Our implementation of a system capable of automatically documenting state
makes use of a State Assertion Registry (StAR) co-located with a service [10].
StAR is implemented as a Java library and acts as a wrapper to the service, en-
abling it to dynamically record assertions of provenance according to a policy file.
StAR represents a benefit to the scientist in capturing assertions automatically.

Data is collected and segmented [4] to one of a set of possible values. This
segmentation uses thresholds based on average values of the variables previously
observed. The segmented value corresponds to an element within the pattern for
a particular state as described in section 3. We use techniques from the Time
Series Knowledge Representation (TSKR) [6] to determine the intervals over
which the segmented series coincide with one another as shown in figure 2(b).
Details of these series are then used as the content of an actor state p-assertion,
along with a complete pattern description indicating all those conditions which
hold over the series. Following recording of documentation, any actor may be
query the provenance store.

A user can determine future states for a process based upon the states pre-
viously documented within a provenance store. For all states which are related
to the same event, a transition table listing the probability of state transition
given that observed event may be calculated. The most likely next state for an
actor is the one with the highest probability value given to the current state.
In cases where the two states (predicted and actual) do not match we use a
similarity measure to find how similar those states are. It is a simple distance
measure of each corresponding pattern value, shown in equation 1, where q and
r are the two patterns being compared and p and t are the number of items in
the patterns and the number of possible values for each of those items. The total
number of possible states is pt, though for any given process run not all states
may be observed.

s = 1 −
∑p

n=0 |qn − rn|
p × (t − 1)

(1)

The distance between two states therefore is the total measured error between
each of the states pattern elements, divided by the maximum total distance pos-
sible for error on each of those elements. Our measure differs slightly from a
distance measure such as the Levenshtein distance as such a measure is unable
to distinguish between the degree of change in any one of our pattern elements,
just that elements differ. As pattern elements correspond to numerically ordered
ranges in our model, taking account of the difference in these elements is impor-
tant. The overall similarity of a process against a comparison process is calculated
from the product of the similarities of each state. This similarity value gives us
a single measure of how similar the conditions under which each of the actors
involved were operating were for two processes.

50 I. Wootten and O. Rana

5 Evaluation

We now demonstrate two uses of documenting actor state for a process; 1) at-
tempting to predict future actor properties for processes based on previously
documented ones and 2) Reducing manual navigation of process documentation
based on comparison of states over the monitored intervals. The workflow we
use to demonstrate this was the subject of both the first and second provenance
challenges [7]. It is used to create population-based brain atlases from high reso-
lution anatomical data from the Functional Magnetic Resonance Imaging (fMRI)
Data Center2. We use StAR to automatically record assertions of interaction and
state to a provenance store for each of the services in the workflow. We focus
on the last two services in the workflow, which convert an averaged brain image
(determined from the average of intensities of MRI scans) gathered from a col-
lection of high resolution anatomical data into graphics files showing slices of the
brain. Actor state assertions identify the interval over which the actor is invoked
(between request and response messages) based upon TSKR mined series from
the segmented values using three variables: bytes in per second, one minute load
average and the amount of buffered memory.

Each of the services in the workflow is hosted separately on a IBM JS20 blade
machine (2 x 2.1GHz, 1.5GB RAM) and the provenance store for each of them is
a Sun x2100 machine (1 x 2.2GHz, 4GB of RAM). When the workflow executes,
a single action is performed by each of the services used and a set of states
are recorded for it. We perform the process 1000 times, delaying subsequent
invocations to allow the systems to recover. We do this as features observed in
the variables may continue for longer than just the duration of a single action.
For our state prediction evaluation, results are based on this experiment being
performed twice.

Prediction of Future Actor Properties. A scientist is able to build a likely
model for future properties using a transition table (as described in section 4)
for each action. A state prediction is made for each actor after a single pro-
cess is executed, based upon the last known state of that actor and the most
common transition observed. Figure 3 shows the percentage of matches for pre-
dicted states to actual ones for our approach along with a history based and
simple monte-carlo prediction. Each point represents the match rate for a single
actor in the process. All machines consistently predicted states at a reasonably
high success rate (50-85%), which was always above that of the monte-carlo
predictions. The average trend indicates that as more transitions are observed,
state becomes more difficult to predict in the future. This is due to the increased
complexity of the model which is built when more transitions are found. It is
likely that a more sophisticated analysis of the transition pattern leading to a
state could further increase this success rate. Using this approach, the scientist
executing the process is able to form a hypothesis detailing the most likely states
to occur for each actor during future invocation of each action.

2 http://www.fmridc.org/

Recording the Context of Action for Process Documentation 51

Fig. 3. Match rate of predicted states to those observed

(a) (b)

Fig. 4. Distribution of process similarity values when compared to model process

Reduction of Manual Process Documentation Navigation. We demon-
strate reduction of navigation performed by a scientist by determining the sim-
ilarity of a single state for each action within the process against that observed
in a “comparison process”, with our results shown in figure 4(a). The total simi-
larity of a process (as defined in section 4) is the product of multiplying each of
these similarities for each action. The scientist may then use these distances as
a filter to locate the most interesting processes from a large collection of process
documentation. Our results in figure 4 show the distribution of process similar-
ity values. For our scenario, we are able to see that the total documentation to
be navigated is reduced dramatically when searching for either those processes
with a high or low similarity (≥ 0.9 or ≤ 0.4). This corresponds to 12% and
8% of all of the documentation recorded. If we look at the lowest similarity

52 I. Wootten and O. Rana

processes (≤0.3), we can reduce this figure even further to 1% of all documenta-
tion. Figure 4(b) shows the same processes being compared, but with an average
similarity value corresponding to the observation of multiple states within each
invocation. We reveal a further number of interesting processes within the 0.1-0.2
range and 0.7-0.8 ranges by doing this, including even smaller subsets of doc-
umentation. Without the documentation of actor states, it is perfectly feasible
that the navigation of records of all 1000 processes (totalling 56MB’s worth of
XML documentation to be queried in our own experiments) would have to be
navigated manually.

6 Conclusion

In modeling actions performed by entities working as part of a process, strict
event-based documentation may not be appropriate for documenting all process
features. Instead, an interval based representation – such as the one presented
in this paper, better represents observation of properties which hold true over a
period of time. We have shown here that by documenting context of a process,
it is possible to query provenance repositories to predict the future properties of
actors or find other process traces which exhibit similarities to a model trace.
Where vast collections of process documentation exist for the same workflow,
being able to filter more interesting information for a scientist can present both
time saving benefits and a reduction in the number of queries of documentation.
In our evaluation we were able to reduce this to 1% of the overall captured
documentation.

References

1. Brown, P.J.: The Stick-e Document: A Framework for Creating Context-aware Ap-
plications. Electronic Publishing - Origination, Dissemination, and Design 8(2/3),
259–272 (1995)

2. Dey, A.K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness. In: Workshop on The What, Who, Where, When, and How of Context-
Awareness. ACM Press, New York (April 2000)

3. Groth, P., Miles, S., Moreau, L.: PReServ: Provenance Recording for Services. In:
Proceedings of the UK OST e-Science second All Hands Meeting 2005, AHM 2005
(2005)

4. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting Time Series: A Survey and
Novel Approach (1993)

5. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of using provenance
in e-Science experiments (January 01, 2006)

6. Moerchen, F.: Algorithms for time series knowledge mining. In: KDD 2006: Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp. 668–673. ACM, New York (2006)

7. Moreau, L., Ludäscher, B. (eds.): The First Provenance Challenge. Concurrency
and Computation: Practice and Experience 20(5), 409–418 (2007)

Recording the Context of Action for Process Documentation 53

8. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The Open
Provenance Model (December 2007), http://eprints.ecs.soton.ac.uk/14979/

9. Myers, J.D., Pancerella, C.M., Lansing, C.S., Schuchardt, K.L., Didier, B.T., Goble,
C.N.A.: Multi-scale Science: Supporting Emerging Practice with Semantically De-
rived Provenance (March 06, 2006)

10. Wootten, I., Rajbhandari, S., Rana, O.: Automatic Assertion of Actor State in
Service Oriented Architectures. In: ICWS 2007, pp. 655–662 (2007)

11. Zhao, J., Goble, C.A., Stevens, R.: An Identity Crisis in the Life Sciences. In:
Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 254–269. Springer,
Heidelberg (2006)

http://eprints.ecs.soton.ac.uk/14979/

User-Centric Annotation Management
for Biological Data

Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis

Advanced Data Management Technologies Laboratory
Department of Computer Science,

University of Pittsburgh,
Pittsburgh, PA 15260, USA

{qinglan,labrinid,panos}@cs.pitt.edu

Abstract. Annotations play an increasingly crucial role in scientific exploration
and discovery, as the amount of data and the level of collaboration among sci-
entists increases. Although all such systems are implemented to take user input
(i.e., the annotations themselves), very few systems are user-centric, taking into
account user preferences on how annotations should propagate and be applied
over data. In this paper, we propose to treat annotations as first-class citizens for
biological data management by presenting a user-centric, view-based annotation
framework, called ViP. Under the ViP framework we consider user preferences
over the time semantics of annotations (by supporting future annotations) and
over the network semantics of annotations (by supporting both implicitly-defined
and explicitly-defined annotation propagation paths). In addition to novel func-
tionality, we describe a novel caching technique which enables ViP to outperform
the state of the art. We also propose to demonstrate our prototype implementa-
tion of the ViP framework. As part of the demo, we propose on the one hand to
highlight the user-interface/functionality of our system and on the other hand to
visualize the server/behind-the-scenes aspect.

1 Introduction

We are witnessing an accelerated pace of discovery and innovation in science research.
This is true across all sciences, from gene sequencing and drug discovery to weather
modeling and the exploration of the Universe. Without a doubt, data management is
playing a pivotal role in scientific exploration nowadays. In addition to efficiently man-
aging the tsunami of experimental data generated, data management also facilitates ef-
fective collaboration among scientists, by recording data provenance and by supporting
annotations [2, 3]. Data provenance essentially keeps track of where the data is coming
from (and what transformations it has been through), whereas annotations enable users
to record additional information about the data stored (and propagate this information
to all “related” data items).

There are a lot of projects that deal with annotation propagation and management, for
example, DBNotes [2], Mondrian [5], ULDB [1], bdbms [4], and MMS [7]. Our interest
in this research area came from our participation in the Center for Modeling Pulmonary

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 54–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

User-Centric Annotation Management for Biological Data 55

Immunity (CMPI)1. Our group is responsible for the design and development of the
data sharing platform (DataXS), where experimental data, analysis, and models will
be shared among project participants. In such a diverse setting, the ability to record
annotations and propagate them to all related data items and interested parties is crucial
to the success of the project.

As part of the design process and during the implementation of our first prototype,
we were able to identify two distinct usage patterns which are not handled by the cur-
rent state of the art. This led to the development of the ViP annotation framework [6],
whose main contribution is to give users the ability to specify when, to what/how, and
for whom a user’s annotations will be visible and/or propagated (in addition to speci-
fying the actual annotations). Towards this, the ViP framework utilizes views both as a
specification mechanism and as a user-interface mechanism.

Support for user-centric time semantics for annotations. For example, assume that
we have a microarray scanner which was mis-calibrated on a certain day. When this
is first discovered, we want to be able to annotate all experimental data in the system
accordingly, but also do this for all data that would fall in this category, but are entered
in the system later. Since users have different understanding/explanations of why/how
certain biological process unfold, it is possible that they want to personalize the time
setting of such annotations (i.e., whether they would applied just now, or also in the
future). Most current systems do not support annotations that are also valid in the future
(Table 1). The only exception is MMS [7], which always supports future time semantics
(i.e., without giving the user the option to choose). We refer to this feature as “user-
centric time semantics”.

Support for propagation of annotations in user-defined ways. For example, pro-
vide the ability to “link” related data items together, so that an annotation on one of
them would be visible to the other one and vice-versa. Most annotation-enabled sys-
tems propagate annotations along data provenance paths. In other words, annotations
are propagated over existing implicit annotation propagation paths between source data
and derived data (i.e., driven by the database schema and data transformations). Al-
though this can happen over multiple derivation levels, it fails to capture relationships
between data items that do not share a common “ancestry” in the database. As we have
witnessed from our involvement in the CMPI project, this can happen often in biolog-
ical databases. To address this, ViP builds explicit paths for annotation propagation. It
also allows users to protect data privacy on these paths, that is, each user can have his or
her own paths to propagate annotations. Since these paths can form a network, we refer
to this feature as “user-centric network semantics”. Although existing systems support
implicit annotation propagation paths, none except for our proposal supports explicit,
user-defined annotation propagation paths (Table 1).

1 The Center is a joint effort between the University of Pittsburgh, Carnegie Mellon University,
and the University of Michigan, bringing together experimentalists and modelers to study pul-
monary immunity in response to three bio-defense pathogens (the influenza A virus, Mycobac-
terium tuberculosis, which causes TB, and Francisella tularensis, the bacterium responsible for
tularemia).

56 Q. Li, A. Labrinidis, and P.K. Chrysanthis

Table 1. Standard Annotation Management Features Comparison

Standard Features DBNotes[2] Mondrian[5] ULDB[1] bdbms[4] MMS[7] ViP[6]
Annotation Yes Yes Confidence Yes Yes Yes
Provenance Yes Yes Lineage Yes Yes Yes
Time Semantics:
· Implicitly-defined No No No No Yes Yes
· Explicitly-defined No No No No No Yes
Network Semantics:
· Implicitly-defined Limited Limited Limited Limited Yes Yes
· Explicitly-defined No No No No No Yes
Propagation Type Eager On-demand On-demand Eager On-demand Hybrid
Annotation Storage Naive Naive x-relations Anno. table q-type A-table
Scalability Small Medium Medium Medium Large Large
Query pSQL Color algebra TriQL A-SQL Predicate ViP-SQL

Table 2. User Centric Annotation Management Features Comparison

User-centric Features DBNotes[2] Mondrian[5] ULDB[1] bdbms[4] MMS[7] ViP[6]
Time Semantics:
· Valid Time No No No No No Yes
Network Semantics:
· Propagation Method Yes No No Limited No Yes
Access Control:
· Annotations No No No Limited No Yes
· Annotation Views No No No No No Yes
· Annotation Paths No No No No No Yes

Contributions: This research project has both theoretical and practical contributions
as follows:

• based on our experience from a real system implementation, we propose new anno-
tation propagation methods, suitable for biological data,

• we propose user-centric features that enable users to personalize annotation propa-
gation, and

• we propose to use views as a user-interface and also as the formal mechanism to
optimize the implementation of the new annotation propagation features.

Roadmap: In the next section we briefly describe the main aspects of the ViP frame-
work. In Section 3 we present the implementation of our prototype. In Section 4 we
provide an overview of the different components of our prototype system along with
the demonstration highlights. We conclude in Section 5 and acknowledge in Section 5.

2 The ViP Framework

To the best of our knowledge, ViP brings user-centric features in many aspects that are
not considered in most related works as shown in Table 2.

User-Centric Annotation Management for Biological Data 57

2.1 User-Centric Time Semantics

User-Centric Time Semantics: During our involvement in the CMPI project, we ob-
served that experimental data was almost always entered in the database in an order
different than the one it was generated. In fact, even data about the same experiment
could be entered at completely different times, since more than one lab were involved
in generating the data (for example, one lab would generate the luminex data whereas
a different lab would produce microarray data for the same tissues). Looking at annota-
tions, this means that if one wanted to annotate data from a particular experiment with
an observation about the tissues, it would not be enough to do this once, as additional
experimental data may be added into the database later (which would not automatically
“inherit” the annotation).

To address this, we proposed the concept of valid time for annotations and for anno-
tation paths (which we describe next). This is specified by the user for each annotation
and works in tandem with using database views to describe the annotation targets. Us-
ing views allows us to declaratively describe the data to be annotated instead of simply
enumerating them. Combined together, we can set, for example, the valid time for an
annotation to be [now,∞) which means that the annotation will be applied to matching
items now and also in the future.

When we consider the time dimension of annotation propagation, we can easily dis-
tinguish four different cases:

1. now only (e.g., mark all the data that have been processed until today),
2. now + future (where an annotation is propagated to data items currently in the

database, and also to those that are added in the database in the future, e.g., the
typical calibration experiment mentioned above),

3. future only (e.g., all the files until today have been fixed, but all files submitted in
the future should be marked accordingly),

4. future interval only (e.g., for one week after the Daylight Saving Time show an
annotation that reminds scientists to make sure they have accounted for Daylight
Saving Time in experiment settings). It also be able to start from now.

The cases above present the four valid time usages in User-centric Time Semantics
of ViP.

2.2 User-Centric Network Semantics

The second usage pattern that we observed during our involvement in the CMPI project
was that there exist many relationships, or paths, between data items that cannot be
inferred by the existing database schema. Such links materialize because, for example,
tissues from multiple, unrelated experiments are processed together, in a single assay
(for example, on a single plate that needs to be filled up to minimize costs).

To address this, ViP enables users to specify explicit annotation paths, linking data
items together. Annotations should be propagated along these paths, reaching “related”

58 Q. Li, A. Labrinidis, and P.K. Chrysanthis

data items, as specified by users. Since these paths are essentially forming a network,
we refer to this feature as “user-centric network semantics”.

ViP enables users to specify the propagation method. In DBNotes [2], users can
specify custom propagation scheme to bind the source and target tuples while there is
a join operation, so that the annotations that are associated to the source tuples will
be propagated to the target tuples. ViP provides a stronger and more complex scheme,
that is, we propose to empower users to specify explicit paths between data items, thus
establishing additional annotation propagation paths. Such explicit paths are defined
using views as follows:

• given a source view, Vs and a destination view, Vd

• an explicit annotation propagation path Vs → Vd is defined, such that any annotation
that is added in a member of Vs must be propagated to all members of Vd.

3 Implementation Highlights

3.1 Implementation Using Views

We propose to use the concept of database views as the building block to implement the
technologies mentioned above. Database views can be used to describe (at a high-level)
the results of a database query. For example, instead of attaching a comment about mis-
calibration to individual files (and miss files that are added in the future), using views
enables the system to record this annotation in a single location (the view) and to also
associate this annotation with files matching the view definition in the future.

Views enable us to build a specialized cache for storing annotations (and may also
storing annotation propagation paths), thus improving performance.

3.2 User-Centric Access Control

We advocate that scientific annotation must have a strong user-centric component. First
of all, much of the data is not public, so appropriate access controls need to be in
place for the raw data, and the annotations on them. Secondly, even for public data, the
annotations are often private, since they reflect additional analysis that is not ready to be
made available to all. Thirdly, in many cases, even the way that raw data are associated
(i.e., by specifying explicit paths for annotation propagation) corresponds to private
information that should not be made public. Given all these reasons, the ViP framework
includes a strong user-centric access control module.

Some systems consider the access control on the data level, or even on the update
authorization part [4]. Instead, we propose to fully support this feature in a broader
domain, both on annotations and on annotation paths. Individual users have different
annotation views and paths. We support arbitrary user hierarchies. This is different than
traditional access control, since access control on annotation views (given user-centric
time semantics) and on annotation paths (given user-centric network semantics) essen-
tially means who can “execute” the annotation propagation mechanism and not on the
data itself.

User-Centric Annotation Management for Biological Data 59

Fig. 1. Annotation Views

4 Prototype Highlights

4.1 User Interface

The ViP framework relies heavily upon the concept of database views to declaratively
describe annotations and annotation paths2. Clearly, users are not expected to provide
view definitions in SQL. In our ViP framework, a user can easily specify filtering con-
ditions to locate certain data items. This functionality enables users to specify views
using a point and click interface (Figure 1); these views can be trivially used to support
user-centric time and network semantics.

In particular, we will showcase the following ways of adding annotations (i.e., defin-
ing annotation views):

• A set of conditions used for filtering results is used in its entirety (exact match); this
is implemented in “Save View” tab functionality as well as annotation definition
functionality in our system.

• If the set of conditions are not enough to adequately describe the set of data to be
annotated, then we will allow the user to provide additional constraining predicates
(typically a date range).

• To also support a simplified interface, we will also enable the user to just specify
the list of data items to annotate (i.e., enumerate).

We will also showcase adding of explicit annotation paths, by providing the above
view definition abilities as a two-step process (for specifying the from and the to “nodes”
of the explicitly-defined annotation path).

Finally, we should be able to annotate specific data items directly (which could trig-
ger annotation propagation across pre-established annotation paths).

4.2 Visualization

We believe it is absolutely crucial to be able to visualize how the ViP framework works
in order to demonstrate it. Towards this, we will produce a server-side visual monitor

2 The MMS system [7] advocated the use of views for metadata management; our system is
targeting annotations (i.e., a special case of metadata), but on the other hand is significantly
extending their proposal with additional semantics.

60 Q. Li, A. Labrinidis, and P.K. Chrysanthis

that will display appropriate statistics for all data items in our system (e.g., number of
queries, annotations, and query time). This would allow us to illustrate what is happen-
ing upon insertion/deletion of an annotation view or an annotation path or a data item.
In addition to illustrating the semantics of the ViP framework, we would also use this
server-side visualization to demonstrate the behavior of our caching technique and also
the performance of the system (by maintaining appropriate timers).

4.3 Demonstration Scenarios

We will demonstrate many different scenarios with different sequence of operations
in the ViP framework in order to highlight their behavior and their performance. Two
characteristic examples are as follows.

Annotation Views
• Define an annotation view V (e.g., all experiments performed on June 15, 2008)

with a specific annotation tag T and visualize it at the server
• Query an item that belongs to V ; it should have tag T
• Insert a new item D that should match V ’s definition and visualize it
• Query item D; it should also have “received” tag T

Annotation Paths
• Establish an annotation path from V1 to V2 (e.g., all experiments performed on June

15, 2008 should be linked to experiments performed on June 16, 2008 because all
tissues were transferred) and visualize it at the server

• Query a data item that belongs in V2; it should have no annotations
• Add annotation (e.g., tag TT) to a data item that belongs to V1
• Query the same data item from V2; it should have “received” tag TT

5 Conclusions

The proposed ViP framework provides a novel view-based annotation propagation
scheme. It also brings user-centricity throughout annotation propagation, applied in
time and network semantics. ViP utilizes views both as a specification mechanism and
as a user-interface mechanism, and employs caching techniques for improved perfor-
mance compared to the state of the art.

Acknowledgements

Research of the project is supported by NIH-NIAID grant NO1-AI50018. We would
like to thank Chad Spensky for his help in designing the user interface.

References

1. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with uncertainty
and lineage. In: Proc. of the VLDB, pp. 953–964 (2006)

2. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system
for relational databases. In: Proc. of the VLDB, pp. 900–911 (2004)

User-Centric Annotation Management for Biological Data 61

3. Buneman, P., Khanna, S., Tajima, K., Tan, W.-C.: Archiving scientific data. ACM Transaction
Database System 29(1), 2–42 (2004)

4. Eltabakh, M.Y., Ouzzani, M., Aref, W.G.: Bdbms – a database management system for bio-
logical data. In: Proc. of the CIDR (2007)

5. Geerts, F., Kementsietsidis, A., Milano, D.: Mondrian: Annotating and querying databases
through colors and blocks. In: Proc. of the ICDE, pp. 82–92 (2006)

6. Li, Q., Labrinidis, A., Chrysanthis, P.K.: ViP: a user-centric view-based annotation framework
for scientific data. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 295–312. Springer, Heidelberg (2008)

7. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata. In: Proc.
of ACM SIGMOD Conference, pp. 401–412 (2007)

A Model for Sharing of Confidential Provenance
Information in a Query Based System

Meiyappan Nagappan and Mladen A.Vouk

North Carolina State University,
Raleigh, NC 27695, USA
{mnagapp,vouk}@ncsu.edu

Abstract. Workflow management systems are increasingly being used
to automate scientific discovery. Provenance meta-data is collected about
scientific workflows, processes, simulations and data to add value. There
is a variety of workflow management tools that cater to this. The prove-
nance information may have as much value as the raw data. Typically,
sensitive information produced by a computational processes or experi-
ments is well guarded. However, this may not necessarily be true when
it comes to provenance information. The issue is how to share confiden-
tial provenance information. We present a model for sharing provenance
information when the confidentiality level is decided by the user dynam-
ically. The key feature of this model is the Query Sharing concept. We
illustrate the model for workflows implemented using provenance enabled
Kepler system.

Keywords: Provenance, Confidentiality, Workflow management tools.

1 Introduction

The provenance collection approach in workflow support systems can be flow
based, annotation based, or a combination of both [4]. Workflow systems execute
scientific simulations and secure the output data in order to maintain confiden-
tiality/privacy and ownership of the sensitive data. Most of them, however, do
not have any mechanisms in place for maintaining the confidentiality of prove-
nance information. Here we use the term confidentiality as defined in ISO/IEC-
17799[11]:ensuring that information is accessible only to those authorized to have
access.Building the provenance collection system with such a mechanism should
be the priority from the very beginning [13]. Security and confidentiality must be
considered in an integrated context. For example, one must implement security
to ensure confidentiality of the information. Security is a process or tactics that
ensures that the desired level of confidentiality can be an outcome [9].

While confidentiality of provenance information is important, so is the shar-
ing of information among collaborators. Most of the scientific projects are highly
collaborative projects. Often the collaborators are in different research labs in
the country, and sometimes even in different countries. They may be working

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 62–69, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Model for Sharing of Confidential Provenance Information 63

together on the same approach, or may be taking different approaches to scien-
tific discovery. Provenance data throws a lot of light onto a particular scientific
problem, process, and the data it produces. It can discover a knowledge nugget
that needs to be shared among all collaborators, and some that need to be
shared sparingly. Hence provenance information of these projects is unlike any
other data-centric application. Provision of mechanisms for confidentiality, like
the ones in other similar system, should not restrict the sharing of provenance
data with trusted collaborators. For example, scientist A is the owner of runs
1,2, and 3 of a scientific simulation. Each of the runs produced a set of prove-
nance data viz. R1, R2 and R3 respectively. User A wants to share subsets of
R1, R2 and R3, with Scientists B and C. Each of these subsets can be different
from the others. An appropriate mechanism should enable easy sharing of data
either on a per run basis, or on a per user group basis, or individually. The goal
of the current work is to develop a model, in the context of the provenance for
scientific simulations, that

– Enables an easy sharing of the provenance data.
– Does not compromise the confidentiality of the provenance data.
– Allows for dynamic changes in the confidentiality levels.

The specific focus is on the systems that use Kepler [1] for scientific workflow
automation and management. Kepler workflows are composed of a set of actors
(processes) forming, in more complex situations, generalized activity networks
[3], [8]. The order of execution of these actors depends on the nature of the
problem (workflow) being solved and the Model of Computation (MoC) used to
execute the workflow [6], [12]. These MoC’s (or process schedulers) are called
directors in Kepler. One version of Kepler implements a provenance collection
mechanism [3], [12]. We describe it in more detail in Section 2.

2 Provenance in Kepler

The workflow support system we have been using is Kepler [1]. There is a version
of Kepler that directly supports provenance recording. The Kepler Provenance
Recorder (PR) is described in [3], [6], [12]. PR implements the Read-Write-State
reset (RWS) trace information (flow-based provenance) first introduced in work-
flow systems in [6]. The recorder captures the flow of data objects between the
ports of actors. The reads(consume), and writes(emit) done by an actor are cap-
tured as provenance. Also, events such as the ’flushing’ of the state of the actors
is captured. It generates a unique token id for every token consumed/emitted
by an actor. Each execution of the workflow is assigned a unique id too. An
implementation model is described in section 4. The PR is designed so that we
need not edit any of the Kepler actors. It is similar to a Kepler director in that
it is configured in the same way, but it is different in the fact that it does not
control the workflow, rather it just listens to it (in that sense it is more akin
to the Kepler debugging facilities that allow detailed workflow tracing). When
the Kepler PR actor is included into a workflow, it automatically collects the
provenance data by listening to the ports of all the actors in the workflow.

64 M. Nagappan and M.A.Vouk

We propose to slightly modify the RWS relational tables in order to achieve
our goal. The relational tables in our model are: usersTable (username, workflow
name, run id, annotation), actorTable (run id, actor id, port id, annotation),
traceTable (port id, token, event, annotation), tokenTable (token, object, anno-
tation), objectTable(object, value, type, annotation). This is very similar to the
provenance relations described in [12]. The difference is that here we have in-
troduced an annotation field in each relation and the usersTable relation for
keeping tack of the owner of a run. This enables capture of the provenance that
was recorded by their RWS PR. However, the annotation field in each of the
above relations will get its value from the user only, and not from Kepler.

3 An Implementation Model

In this section we describe a model that can accommodate the sharing of con-
fidential provenance information in a scenario where the confidentiality level
changes dynamically. Here we try to reach the goal stated above through five
sub goals. The Model is being implemented in a system being built by DOE
Scientific Data Management Center [2], [17]. Fig. 1 illustrates the architecture.
The details of this figure are discussed in the following text.

Fig. 1. Top-level architecture view of our Model

3.1 Sub Goal 1: Data Ownership

We need to ensure that the person who generates the simulation data would be
the owner of the original provenance data. To achieve this we use a three tiered
(Client-Application Logic-Database) approach and build role based access con-
trol in the application logic layer. When collecting provenance the client would
either be the workflow management system or the scripts and simulation appli-
cations running in the super computer, or other affiliated analytics resources.
The recording API is the application logic layer and makes sure that the infor-
mation from the clients are stored in the appropriate tables of the schema. Also

A Model for Sharing of Confidential Provenance Information 65

there is an authentication service that verifies the user. Thus the data in the
provenance schema is indexed by the user and a particular run id.

In order to view this data, we use a Web Application (WA). Here the client
is the Web Interface (WI) and the Query API is the application logic. Here too
we have an authentication service that will authorize the user. Since the data is
indexed by user, the query API is able to fetch a particular user’s data. Each
user has multiple runs under their username [5]. They pick the one they want
to see the provenance data for. The query API will execute some of the default
queries only on the dataset for this particular run and for this particular user.
Then the user who launched this query can refine the dataset as they please.
This is similar to the role based access available in many database applications.

3.2 Sub Goal 2: Editing and Audit Trail

The access privileges to the database are restricted to prevent any unwarranted
use of provenance data. Once the data is created, users cannot delete or update
any of the provenance information. But they can modify annotation fields of the
records in the provenance relations and the queryTable relation. The prevention
of edits to the data is important not just for audit purposes. Another major rea-
son is to maintain consistency. A collaborator should not get a different dataset
when he/she executes shared queries at different times. This can be possible only
if the owner is not allowed to delete any provenance data. Only an administrator
may delete this data. But all superuser actions also must be logged. A trail for
this must be maintained for audit purposes. A system that tracks the changes
that happen to database relations would suffice for this purpose. Even though
users cannot delete the provenance data they can, through the annotation fields,
comment on the accuracy of the provenance data.Thus by using access privileges
in modern database systems we are able to achieve this sub goal.

3.3 Sub Goal 3: Data Annotation

The annotation field in the queryTable relation and the other relations may be
updated from the WA. They can annotate the datasets regarding any inaccu-
racies or interesting findings. They may update only the annotation field in the
provenance relations and the queryTable relation. The users when sharing can
choose not to share the annotations. Annotation in itself is a form of user spec-
ified meta-data. Thus annotations help in differentiating the useful provenance
information without deleting the inaccurate data, as well as add user level meta
data to the results. Thus through the WA we are able to achieve this sub goal.

3.4 Sub Goal 4: Data Sharing

The ability of researchers to share their provenance data with their colleagues in
an easy manner is probably as important as the confidentiality of this data. We
introduce the notion of query sharing for this purpose. A logged-in user will be
able to see data in the WI of the WA. If the scientist finds the provenance data

66 M. Nagappan and M.A.Vouk

that they currently see as interesting and wants to share it, he/she can do so by
saving the query that created that dataset and sharing it with collaborators. This
is analogous with the WYSIWYG concept. Here it is: Ẅhat You See Is What
You Want to Share(WYSIWYWTS)̈. The relation queryTable (Query ID, Saved
by, Saved for, Query, Timestamp, Allow Cascading, Revoke Active) is used to
save the queries, and the relation annotTable (UserID, Query ID, Annotation,
Viewable) is used to store the annotation for the data set that is to be shared.
The WA provides saving of the query that created the dataset. The scientist
who wants to share the data can choose to annotate the dataset. For example
if User U1 wants to save the dataset of run Rx and share it with User U2,
then the entry in the queryTable relation would look like this: (QID, U1, U2,
Select Query similar to the above one, timestamp, A binary 1/0 for whether
cascading of should be allowed or not, A binary 0/1 if the collaborator has access
currently or not). They can also choose to annotate the dataset by making an
entry in the annotTable relation. A typical entry would be (UID, QID, Any
relevant annotation to the dataset, A binary 1/0 if the collaborator should see
the annotation or not)

The collaborator, when logged in to the WA, will be able to see, give the right
access rights, all their data in the hierarchical fashion above. In a separate tab
they will also be able to see the queries (possibly not the actual query itself, but
rather the Query ID, annotation, timestamp, saved by and saved for columns).
This is done by the WA which will pass the user-id of the currently logged-in
user and one of the Query API’s will fetch all the entries in the queryTable where
the user id matches the user id in the saved by or saved for columns and the
corresponding entries in the annotTable if the viewable attribute is set to 1.

A user selects a query to run. Then the user sees the data. If the user wants
to refine the query the user can do so as required. The queries are built for
refining acts only on the dataset that was shared and not on the whole database.
By abstracting the execution of the query to an API that will manage whose
data is to be accessed, we restrict the user from seeing data that is not meant
to be seen. As an extra measure, we could encrypt the query attribute of the
queryTable relation in the database, to protect the data in case the queryTable
in the database gets compromised. The saved query is not shown to the users
and can be use in an execute-only mode.

The cascade attribute in the queryTable is used either allow or deny a col-
laborator from passing the shared information to another person. The revoke
attribute is used to remove access to a particular query from a particular user by
the owner of that query. Also they can save interesting subsets of the provenance
information for themselves too. In this case saved by and saved for attributes
in the queryTable will be the same as the owner. A collaborator in our model
though may not be able to annotate individual pieces in a shared dataset. They
can only annotate the dataset as a whole. For this they would make an entry
into the annotTable. If they want the owner to view their annotations then they
would set the viewable attribute to 1.

A Model for Sharing of Confidential Provenance Information 67

A user can thus give others access to all their data, or to a particular dataset,
or a particular part of a particular dataset. Thus the granularity to which the
user wants to share data depends on the user. Each time the user can decide
to share a different piece of the dataset without editing any rule set for access
control. Also the entire chosen dataset can be shared by saving a single query
instead of sharing each record in the dataset or saving a copy of the whole
dataset. Thus with the help of the Query Sharing concept we are able to achieve
the fourth sub goal too.

As we can see, the query sharing concept is very similar to stored procedures.
Both have the same overhead. But by saving queries in a table we extend their
scope to add more meta-data to the saved query which would not be possible in
stored procedures. Now, let us discuss why the data sharing concept would be
better than any other solution given the following constraints:

– Dynamically decide what to share: Due to this constraint we are not able to
build the logic of the query in the application layer. Since applications are
static, the users would not be able to able to add a new query for a subset
of the dataset that should be shared.

– Size of the set of information to be shared is large: Since the datasets are
large, and so are the subsets of information, we may not be able to share
copies with the collaborators.

– Subset of information rather than individual records: The data users share
are subsets. If we were to use a high level language to control access, then
the users would have to individually pick the cells in the subset that they
want to share. The large size, and the fact that they can be thought of as
atomic piece of information, would make the process of individually picking
cells too time consuming.

Thus given these constraints our query sharing solution scales well(as only one
row is added for each subset to be shared), and also it is very flexible(just a click
away from sharing a subset).

3.5 Sub Goal 5: Data Audit and Verification

The inclusion of auditing in the model is to maintain accuracy of the data. Users
with malicious intent may not tamper with the data if they know that it is going
to be audited and that auditors have sufficient information to find any such use.
Thus authenticated auditors are users who can view the original data, provenance
data, and annotations. They are to be provided with sufficient information for
auditing. The provenance relations have annotations in them for the auditors to
verify the data against. Also the queryTable relation has timestamps in it for
the auditors to find any discrepancy in the sharing of data. Finally since all the
edits to the database had a trail, any missing information can be accounted for
by the auditors. Thus by collecting and having access to all this information the
auditors can catch any malicious use of data.

Hence by meeting these five sub goals we are ale to achieve the main goal of
sharing provenance information at any level of confidentiality.

68 M. Nagappan and M.A.Vouk

4 Limitations and Conclusions

The implementation model we have presented has some limitations. For exam-
ple, it is query-centric. Only provenance systems that store data in databases
and fetch them using queries can use this approach effectively. Another limita-
tion is that the model requires automatic run-time provenance collection. The
user is still allowed to annotate the data and create manual provenance, but
not to modify original records. This provides a considerable level of integrity
for the originally (and automatically) collected data, but perhaps less oversight
for manually added annotations. Also to be noted is that only owners of the
provenance data can freely annotate any part of the dataset. The collaborators
can only annotate the entire shared subset and not any individual part in it.
Even in automatic provenance collection systems we could face the security and
privacy problems discussed in [7].

With more and more emphasis being laid on provenance data collection in
scientific workflow applications [14], [15], the issue of sharing provenance with
varying levels of confidentiality becomes increasingly important. We believe that
the simple model described in this paper is able to ensure considerable level
of confidentiality of provenance data, as well as sharing of it amongst trusted
collaborators. The data sharing technique described in this paper allows for
users to change the level of collaboration dynamically. This model addresses
the integrity, confidentiality and availability, and ownership responsibility issues
raised in [10], and [18]. But this model does not address the issues arising due to
long term storage and scalability of provenance data discussed in [18]. There are
some systems like PASS [16] that are used to provide security using provenance
data. But there is not much research in the field of securing provenance data,
providing confidentiality and enforcing privacy policies.

Acknowledgments

This project is funded in part by the DOE SciDAC grant DE-FC02-01ER25809
and the IBM SUR program. I would like to thank the SPA group of the SDM
Center for their collaboration. I would also like to thank Dr.Yu and Dr.Sherriff,
and graduate students Vinod Arjun, Lucas Layman, Aaron Massey, and Andy
Meneely for discussions and insights into the various aspects of this research.

References

1. Kepler development and download site, http://kepler-project.org/
2. Scientific Data Management Center, http://sdm.lbl.gov/sdmcenter/index.html
3. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support in the

Kepler Scientific Workflow System. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 118–132. Springer, Heidelberg (2006)

4. Barga, R.S., Digiampietri, L.A.: Automatic Generation of Workflow Provenance.
In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 1–9. Springer,
Heidelberg (2006)

http://kepler-project.org/
http://sdm.lbl.gov/sdmcenter/index.html

A Model for Sharing of Confidential Provenance Information 69

5. Barreto, R., Critchlow, T., Khan, A., Klasky, S., Kora, L., Ligon, J., Mouallem,
P., Nagappan, M., Podhorszki, N., Vouk, M.: Managing and Monitoring Scientific
Workflows through Dashboards. In: Poster # 93, at Microsoft eScience Workshop
Friday Center, University of North Carolina, Chapell Hill, NC, October 13 - 15, p.
108 (2007)

6. Bowers, S., McPhillips, T., Ludeascher, B., Cohen, S., Davidson, S.B.: A Model for
User-Oriented Data Provenance in Pipelined Scientific Workflows. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 133–147. Springer, Heidelberg
(2006)

7. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.-K., Seltzer, M.I.:
Issues in Automatic Provenance Collection. In: Moreau, L., Foster, I. (eds.) IPAW
2006. LNCS, vol. 4145, pp. 171–183. Springer, Heidelberg (2006)

8. Elmaghraby, S.E.: Activity Networks: Project Planning and Control by Network
Models. Wiley-Interscience, New York (1977)

9. Griffiths, P.P., Wade, B.W.: An authorization mechanism for a relational database
system. ACM Transactions on Database Systems 1(3), 242–255 (1976)

10. Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. In: Proceedings of the 2007 ACM workshop on Storage security and
survivability, pp. 13–18. ACM, Alexandria (2007)

11. ISO/IEC 17799. Information technology – Security techniques – Code of practice
for information security management (2000) (Rev. 2005), http://www.iso.org/
iso/en/prods-services/popstds/informationsecurity.html

12. Ludaescher, B., Podhorszki, N., Altintas, I., Bowers, S., McPhillips, T.: From Com-
putation Models to Models of Provenance: The RWS Approach. Concurrency and
Computation: Practise and Experience 20(5), 507–518

13. McGraw, G.: Building secure software: better than protecting bad software. Soft-
ware, IEEE 19(6), 57–58

14. Moreau, L., Foster, I.: IPAW 2006. LNCS, vol. 4145. Springer, Heidelberg (2006)
15. Moreau, L., Ludäscher, B.: Concurrency and Computation: Practice & Experience

– Special Issue on the First Provenance Challenge. Wiley, Chichester (2007)
16. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance

Aware Storage Systems. In: Proceedings of the 2006 USENIX Annual Technical
Conference, p. 4 (June 2006)

17. Nagappan, M., Altintas, I., Chin, G., Crawl, D., Critchlow, T., Koop, D., Ligon, J.,
Ludaescher, B., Mouallem, P., Podhorszki, N., Silva, C., Vouk, M.: Provenance in
Kepler-based Scientific Workflow Systems. In: Poster # 41, at Microsoft eScience
Workshop Friday Center, University of North Carolina, Chapell Hill, NC, October
13 - 15, p. 82 (2007)

18. Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., Moreau, L.:
Security Issues in a SOA-Based Provenance System. In: Moreau, L., Foster, I.
(eds.) IPAW 2006. LNCS, vol. 4145, pp. 203–211. Springer, Heidelberg (2006)

http://www.iso.org/iso/en/prods-services/popstds/informationsecurity.html
http://www.iso.org/iso/en/prods-services/popstds/informationsecurity.html

Kepler/pPOD: Scientific Workflow and Provenance
Support for Assembling the Tree of Life�

Shawn Bowers1, Timothy McPhillips1, Sean Riddle1,
Manish Kumar Anand2, and Bertram Ludäscher1,2

1 UC Davis Genome Center, University of California, Davis
2 Department of Computer Science, University of California, Davis

Abstract. The complexity of scientific workflows for analyzing biological data
creates a number of challenges for current workflow and provenance systems.
This complexity is due in part to the nature of scientific data (e.g., heterogeneous,
nested data collections) and the programming constructs required for automation
(e.g., nested workflows, looping, pipeline parallelism). We present an extended
version of the Kepler scientific workflow system to address these challenges, tai-
lored for the systematics community. Our system combines novel approaches
for representing scientific data, modeling and automating complex analyses, and
recording and browsing associated provenance information.

1 Introduction

The National Science Foundation’s Assembling the Tree of Life (AToL) initiative funds
systematists investigating the phylogenetic relationships of groups of organisms, with
the ultimate goal of reconstructing the evolutionary origins of all life. AToL projects
range from the study of particular sets of organisms (e.g., using morphologial features
or sequencing the genetic material of specimens) to the development of new computa-
tional approaches. Success of the AToL program, however, also depends on addressing
significant informatics challenges. For instance, there is no straightforward way to in-
tegrate data collected by different AToL projects, to test hypotheses against all data col-
lected so far, or to begin to reconstruct the entire Tree of Life based on AToL data and
results. Further, the details of how the results of these projects were obtained—from
the observations of specimens through the inference and evaluation of phylogenetic
relationships—are often difficult to determine. Not only is the provenance of speci-
mens, observations, and computed results hidden within the data management infras-
tructure of each AToL project, many of the details required to reconstruct how results
were obtained or to trace them back to primary observations are not recorded reliably.

The pPOD project (http://www.phylodata.org) aims at addressing these infor-
matics challenges by developing (1) a common data model encompassing the data types
used in the various AToL projects; and (2) methods for recording information about
specimens, and relating this data and metadata to the results of phylogenetic analyses.

� This work supported in part through NSF grants IIS-0630033, OCI-0722079, IIS-0612326,
DBI-0533368, and DOE grant DE-FC02-01ER25486.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 70–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.phylodata.org

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL 71

Fig. 1. A workflow in Kepler/pPOD with actors to read and parse FASTA files, compute mul-
tiple sequence alignments using Clustal, eliminate poorly aligned regions with Gblocks, create
character matrices, infer phylogenetic trees using RAxML, draw resulting trees, and save outputs

For the latter, our aim is to provide a mechanism to record and maintain a continu-
ous processing history for all data and computed results across multiple analysis steps.
These steps are often carried out using a wide variety of scripts, standalone applica-
tions, and remote services. This paper reports on our solution to this problem, i.e., of
recording the provenance of results derived using heterogeneous software systems for
phylogenetic data analysis.

Kepler/pPOD1 is an extension of the Kepler scientific workflow system [1] for au-
tomating phylogenetic studies, orchestrating and routing data between invocations of
local applications and remote services, and tracking the dependencies between input,
intermediate, and final data objects associated with workflow runs. Kepler/pPOD uses
the COMAD workflow design paradigm [2], which has built-in support for processing
nested data collections in an assembly-line manner, complex dataflow constructs such
as loops and subworkflows, and an efficient, fine-grained method for capturing and rep-
resenting comprehensive data provenance. Thus, COMAD is well-suited for automating
phylogenetic workflows, often yielding simpler and more reusable workflow designs [3]
when compared with existing approaches [4,5,6,7] (e.g., that often employ “adapters”
or “shims” between actors). In the remainder of this paper, we describe Kepler/pPOD,
focusing on its use of COMAD and its support for recording, representing, and navigat-
ing provenance information.

2 The Kepler/pPOD System

Kepler/pPOD is a customized distribution of the Kepler scientific workflow system de-
signed specifically to support phylogenetic data analysis. The goal of the current version
of the system is to provide an easy-to-use desktop application that allows researchers
to create, run, and share phylogenetic workflows as well as manage and explore the

1 Kepler/pPOD can be downloaded at http://daks.ucdavis.edu/kepler-ppod

http://daks.ucdavis.edu/kepler-ppod

72 S. Bowers et al.

provenance of workflow results.2 The main features of the system include: a library
of reusable workflow components (actors) for aligning biological sequences and infer-
ring phylogenetic trees; a graphical workflow editor (via Kepler) for viewing, configur-
ing, editing, and executing scientific workflows (Fig. 1); a data model for representing
phylogenetic data (sequences, character matrices, and trees) that facilitates conversion
among different data and file formats; an integrated provenance recording system for
tracking data dependencies created during workflow runs; and an interactive prove-
nance browser for viewing and navigating data and actor-invocation dependencies.

Kepler/pPOD includes a number of sample workflows for phylogenetic analyses.
These can easily be modified by changing parameters, selecting different input data,
or substituting different methods for particular analysis steps. These workflows also
demonstrate a variety of actors that provide access to both remote (web) services3 and
local applications. Fig. 1 shows one of the sample workflows in Kepler/pPOD.

2.1 The Computation Model of Kepler/pPOD

Kepler uses a graphical block-diagram metaphor for representing workflow specifica-
tions (i.e., workflow graphs). Blocks represent actors that carry out particular steps in an
analysis, and connections among blocks represent dependencies between actor invoca-
tions. Kepler distinguishes between the workflow graph and the model of computation
(MoC) used to interpret and enact the workflow. Workflow authors explicitly select a
MoC by choosing a director (Fig. 1), which specifies whether a workflow is scheduled
as, e.g., a process network (PN) or a synchronous dataflow network (SDF) [8]. Most
Kepler actors used in PN or SDF workflows are data transformers, which consume
input tokens and produce new output tokens on each invocation.

Kepler/pPOD includes a new director for collection-oriented modeling and design
(COMAD) workflows, where actors and their connections are significantly different
from those in PN or SDF. Instead of assuming that actors transform all input data to out-
put data, COMAD employs an assembly-line processing style: COMAD actors (coac-
tors, or actors for short) can be thought of as workers on a virtual assembly line, each
contributing its part to the construction of the workflow products. In a physical assembly
line, workers only “pick” relevant parts from the conveyer belt, letting irrelevant parts
pass by for downstream processing. Coactors work analogously, recognizing and oper-
ating on data relevant to them as specified by a read scope parameter, adding new data
products to the data stream, and allowing irrelevant data to pass through undisturbed.
Thus, unlike actors in other workflow systems, actors are data preserving in COMAD
where data flows through serially connected coactors rather than being consumed and
produced at each stage.

An advantage of the assembly-line approach of COMAD is that one can put in-
formation into the data stream that could be represented only with great difficulty
in traditional PN or SDF workflows. For example, COMAD embeds special tokens
within the data stream to delimit collections of related data tokens. Because these de-
limiter tokens are paired, much like the opening and closing tags of XML elements (as

2 Note that it is also possible to run the Kepler workflow engine separately from the workflow
editor, allowing Kepler/pPOD to also support additional deployment configurations.

3 E.g. CIPRes RESTful services, http://www.phylo.org/sub sections/portal/

http://www.phylo.org/sub_sections/portal/

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL 73

A2:2A2:1S1

Proj

Trial

TreesSeqs Almts

S10 A1 A2 T1 T2 T3 Trees

T6
A1:1 A4:1

A4:2

A6:1

A6:1

Trial

Seqs

S11 S20

Almts

A3 A4 T7 T8

Trees

Trees

T9

A1:2 A4:3

A4:4

...

T4 T5

...

(c)

(b)

<P
ro

j>

<Trial>

<S
eq

s>

<
/S

eq
s>

<
/A

lm
ts>

<A
lm

ts>

<Trial>
<S

eq
s>

<
/S

eq
s>

<
/Trial>

<
/P

ro
j>

A4: Find MP trees A6: Compute consensus

S1S10A1A2

<Trees>

<
/Trees>

T1T2T3
<Trees>

<
/Trees>

T4T5T6

<
/Trial>

S11S20

<
/A

lm
ts>

<A
lm

ts>

A3A4

<Trees>

<
/Trees>

<Trees>

<
/Trees>

T7T8T9
>><><><><<>><><><><<< >

... ...

Key

Data token

< Collection closing-delimiter token

> Collection opening-delimiter token

Insertion-event metadata token

New data token produced by step

A:x Dependency relation

(a)
A1: Compute

alignment
A2: Refine
alignment

A3: Iterate
over seeds

A4: Find MP
trees

A5: Check
exit conditions

A6: Compute
consensus

A5: Check exit conditions

S
A

T

DNA Sequence

Multiple sequence alignment

Phylogenetic tree

Fig. 2. A snapshot of a workflow run: (a) example workflow; (b) logical organization of data at a
point in time during the run; (c) tokenized version of the collection structure where three actors are
working concurrently on different parts of the data stream. Nested collections organize and relate
data objects from domain-specific types (DNA sequences, alignments, phylogenetic trees). A Proj
collection containing two Trial sub-collections is used to pipeline multiple sets of input sequences
through the workflow. Provenance events (insert-data, insert-collection), insertion dependencies,
and deletions (from the stream) are added directly as metadata tokens to the stream (c).

shown in Fig. 2), collections can be nested to arbitrary depths. This generic collection-
management scheme allows actors to operate on collections of elements as easily as on
single data tokens. Similarly, annotation tokens can be used to represent metadata for
collections or individual data tokens, or for storing within the data stream the prove-
nance of items inserted by coactors (see Fig. 2). The result is that coactors effectively
operate not on isolated sets of input tokens, but on well-defined, information-rich collec-
tions of data organized in a manner similar to the tree-like structure of XML documents.

Another advantage of COMAD, compared to conventional dataflow approaches, is
that COMAD workflows are generally more robust to change and easier to understand.
For instance, inserting a new actor into a workflow or replacing an existing actor with a
new version is straightforward, i.e., structural modifications to other parts of the work-
flow are not required. Similarly, while in traditional approaches maintaining collections
of data and routing data to multiple actors requires the use of low-level control-flow con-
structs and associated actor connections, the same workflow in COMAD is often linear
(as in Fig. 1). Thus, the intended function of a workflow can often be more easily under-
stood, e.g., simply by reading the actor names in “assembly line order.” Kepler/pPOD
includes a library of coactors from which systematists can easily compose new work-
flows with minimal effort. For the same reason, the sample workflows in Kepler/pPOD
can be easily modified to employ alternative methods for particular steps, extended with
additional analysis steps, and concatenated with other workflows.

Fig. 2 illustrates a number of details of the COMAD approach, showing the state
of a COMAD run at a particular point in time, and contrasting the logical organization

74 S. Bowers et al.

of the data flowing through the workflow in Fig. 2(b) with its tokenized realization at
the same point in time in Fig. 2(c). This figure also illustrates the pipeline-concurrency
capabilities of COMAD by including two independent sets of sequences in a single run.

2.2 Recording and Representing Provenance in Kepler/pPOD

The provenance model used in Kepler/pPOD is unique (e.g., compared to [7,9,10,11,6])
in that it takes into account nested data collections, pipeline parallelism (in addition to
the usual task parallelism), and actor scope expressions. The latter capture which parts
of the data stream are visible for an actor and which parts of the output are created from
them. In particular, no actor output can depend on items outside the actor’s read scope.
Our primary goal is to capture the information necessary to reconstruct and effectively
present the derivation history of scientific data products, thereby supporting the main
provenance needs of scientists. Thus, our approach is also different from those that
focus on supporting workflow development and optimization by recording a detailed
log of workflow events (e.g., execution time, invocation time-stamps, resources used);
but similar in this way to efforts focusing on “scientist-oriented” provenance [9,11].

Recording Provenance Events. Provenance is captured during a workflow run by
coactors, each of which places special provenance tokens directly into the token stream
(Fig. 2) as needed to record its actions. Three types of provenance tokens are used to
represent distinct provenance-related events during workflow execution. Actors add in-
sertion tokens to the stream for each new data and collection item they produce. An
insertion token consists of (1) the actor invocation-id used to produce the (data or col-
lection) item; (2) the token-id of the produced item; and (3) a set of token dependencies,
i.e., the collection- and data-token identifiers within the read-scope that contributed to
the insertion of the item and that were input to the actor invocation. Similarly, actors
add deletion tokens for each data and collection item they remove from the stream. A
deletion token consists of (1) the actor invocation-id that removed the data or collection
item; and (2) the token-id of the item that was removed. To maintain the dependencies
between data products, our system simply tags removed items as deleted, preventing
downstream actors from using deleted items, while retaining these items in the stream
for later use by the provenance system.

Kepler/pPOD exploits nested data collections to help minimize the number and size
of provenance tokens added to the token stream. In particular, insertion and deletion
events are recorded at the highest node in the tree where they apply, and implicitly
cascade to collection descendents. Insertion dependencies are applied in a similar way.
For example, in Fig. 2, each alignment in an Almnts collection implicitly depends on
each sequence in the corresponding Seqs collection, as indicated by the dependency
between the two collections. In certain cases, actors also add invocation-dependency
tokens to the stream that specify an ordering relation between two actor invocations.
Specifically, invocation dependencies are added when actor invocations insert data or
collection items that depend on a collection that was modified by a previously invoked
actor. Here, a collection is considered modified when a data or collection node is added
or removed (either a direct child or a descendent).

The result of running a Kepler/pPOD workflow is represented in an execution trace,
an XML representation of the data and collections input to and created by a workflow

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL 75

Fig. 3. The provenance browser of Kepler/pPOD showing the integrated dependency graph for a
run of the workflow specified in Fig. 1

run, the parameter values used for configuring actors, and each of the provenance tokens
added by actor invocations. Each trace is assigned a unique id by the system, and trace
files are organized in the workspace according to their corresponding workflows. Traces
created from previous runs can also be used as input to workflows. In such cases, the
system creates a new trace for the new run, referencing the input trace and thus linking
to the provenance of the previous run. Kepler/pPOD can be used in this way to capture
data dependencies across multiple workflow runs.

Constructing Provenance Graphs. Two types of provenance graphs are computed
for displaying provenance information within Kepler/pPOD. These graphs are con-
structed directly from execution trace files. An actor invocation graph consists of actor-
invocation nodes and directed invocation-dependency edges. An edge B:1→ A:1 in an
invocation graph states that the first invocation of actor A was (logically) invoked prior
to the first invocation of B, implying that A:1 produced an item used by B:1, or more
generally, A:1 modified a collection used by B:1. A data dependency graph consists
of nodes representing data items and directed edges representing insertion dependen-
cies. Each edge is additionally labeled by the corresponding insertion invocation. An
edge labeled A:1 from D3 to {D1,D2} states that data item D3 was produced by the
first invocation of actor A from data items D1 and D2. Thus, D1 and D2 were “input”
to A:1, i.e., they were within the read scope of the invocation. Data dependency graphs
in Kepler/pPOD can distinguish items that depend only on a subset of the data input
to an invocation. This is often the case, e.g., for actors that implement non-strict (i.e.,
“streamable”) functions such as sliding-window algorithms.

The COMAD provenance model can be used to derive additional information, e.g.,
the set of collections input to a workflow run can be determined by selecting the col-
lection and data items that were not inserted by actors and by removing any deletion
tags. Similarly, the structure of a collection can be recreated at different points in the
execution history, e.g., before or after a given set of actor invocations.

76 S. Bowers et al.

Fig. 4. The provenance browser showing collection and invocation history for a run of a workflow
similar to Fig. 2(a): The resulting collections after the first invocation of an Initialize Seed actor
(left); and the collection structure and invocation graph resulting from advancing one step through
the execution history (right).

2.3 Displaying and Browsing Provenance in Kepler/pPOD

Within Kepler/pPOD, users can easily browse and navigate execution traces. The prove-
nance browser, shown in Fig. 3, can be run directly from within Kepler/pPOD (e.g., by
opening a trace file), or alternatively as a standalone application. The left-side of the
browser displays the data, collections, and actor invocations of the workflow run, as
well as a simple HTML navigation pane that displays details about these items. The
browser also displays three different graphical views of the execution trace: (1) the de-
pendency history, which combines the data-dependency and actor-invocation graphs;
(2) the collection history, which shows how the various collections of a run were con-
structed (Fig. 4); and (3) the invocation graph (Fig. 4). Users can select and display the
details of each item in a view (including the underlying data represented by a token,
e.g., the particular sequence alignment or phylogenetic tree), and all of the views are
synchronized. For instance, the selection of a data item in the dependency history also
selects the corresponding item in the collection history. Using the browser, users can
also incrementally step forward and backward through execution history, incrementally
displaying (i.e., revealing or hiding elements, depending on navigation direction) the
collection and data-dependency histories. This feature allows users to start from the in-
put of the workflow and incrementally move forward through actor invocations to the
final output. Similarly, it is possible to start at the output and navigate to the input, as
well as move forward or backward at any point in between. The views in Fig. 4 are
especially useful for analyzing how the structure of collections evolved throughout a
workflow run; whereas the view of Fig. 3 more explicitly shows the steps and depen-
dencies involved in generating data products.

3 Conclusion and Future Work

Kepler/pPOD supports the automation of phylogenetics workflows and the recording
and visualization of data provenance for individual workflow runs. The system

Kepler/pPOD: Scientific Workflow and Provenance Support for AToL 77

combines and implements our previous work on COMAD [2] and provenance [12],
together with the new application presented here for browsing provenance traces and
incrementally navigating execution histories. AToL projects will involve many interre-
lated workflows, where data produced during workflow runs commonly will be used
as input to subsequent runs of different workflows, and workflows will be run multiple
times with different parameterizations and on different input data sets. These projects
also include tasks that cannot be fully automated between workflow runs, and the prove-
nance of data products must be tracked across such manual data management tasks. We
plan to extend Kepler/pPOD with project histories [13] for tracking data dependencies
across multiple workflow runs and accommodating data management activities per-
formed between runs. This will allow AToL researchers to organize their projects and
data as they desire, while maintaining a continuous record of how results were obtained
via a combination of manual operations and automated scientific workflows.

References

1. Ludäscher, B., et al.: Scientific workflow management and the kepler system. Concurrency
and Computation: Practice & Experience 18(10), 1039–1065 (2006)

2. McPhillips, T., Bowers, S., Ludäscher, B.: Collection-oriented scientific workflows for inte-
grating and analyzing biological data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS
2006. LNCS (LNBI), vol. 4075, pp. 248–263. Springer, Heidelberg (2006)

3. McPhillips, T., Bowers, S., Zinn, D., Ludäscher, B.: Scientific workflow design for mere
mortals. In: FGCS (to appear, 2008)

4. Majithia, S., Shields, M.S., Taylor, I.J., Wang, I.: Triana: A graphical web service composi-
tion and execution toolkit. In: ICWS (2004)

5. Oinn, T., et al.: Taverna: Lessons in creating a workflow environment for the life sciences.
Concurrency and Computation: Practice & Experience 18(10), 1067–1100 (2006)

6. Bavoil, L., Callahan, S.P., Scheidegger, C.E., Vo, H.T., Crossno, P., Silva, C.T., Freire, J.:
VisTrails: Enabling interactive multiple-view visualizations. In: IEEE Visualization (2005)

7. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the kepler scien-
tific workflow system. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp.
118–132. Springer, Heidelberg (2006)

8. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A framework for comparing models of computa-
tion. IEEE Trans. on CAD of Integrated Circuits and Systems 17(12) (1998)

9. Moreau, L., Ludäscher, B. (eds.): Computation and Concurrency: Practice and Experience,
vol. 20(5). Wiley, Chichester (2008)

10. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The open provenance
model. Technical Report 14979, University of Southampton (2007)

11. Biton, O., Boulakia, S.C., Davidson, S.B.: Zoom*userviews: Querying relevant provenance
in workflow systems. In: VLDB (2007)

12. Bowers, S., McPhillips, T.M., Ludäscher, B.: Provenance in Collection-Oriented Scientific
Workflows. Concurrency and Computation: Practice and Experience (2007)

13. Bowers, S., McPhillips, T.M., Wu, M., Ludäscher, B.: Project histories: Managing data
provenance across collection-oriented scientific workflow runs. In: Cohen-Boulakia, S., Tan-
nen, V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122–138. Springer, Heidelberg
(2007)

Using Visualization Process Graphs to Improve
Visualization Exploration

T. J. Jankun-Kelly

Department of Computer Science and Engineering
James Worth Bagley College of Engineering
Mississippi State University, MS 39762, USA

tjk@acm.org

Abstract. Visualization exploration is an iterative process of setting pa-
rameters, rendering, and evaluating results. This process can be recorded
and analyzed in order to make visualization exploration more efficient
and more effective. This work describes methods for visualizing the visu-
alization process using new visualization process graphs; several visual-
ization process relations are introduced to construct these graphs. These
methods were used to analyze and improve a network routing visualiza-
tion, and the results of this analysis are presented. Through this analysis,
redundant exploration was quickly identified and eliminated.

1 Introduction

During the visualization process, a user iteratively explores a very large space of
visualization parameters in order to discover results of interest. The search of this
space can be costly—especially for expensive visualization techniques. It is vital
that visualization systems be designed to streamline the exploration process, but
support for this sort of optimization is not common. To understand and improve
visualization exploration, a user’s session must be recorded and analyzed. Unnec-
essary and expensive re-exploration could then be identified, suggesting ways to
improve the visualization interface. Visualization process graphs, depictions of dif-
ferent characteristics of the user’s exploration, can be used to perform this anal-
ysis, leading to improved systems. This form of provenance analytics is chiefly
aimed at system designers, though there are potential uses by users as well.

This work describes new methods for extracting visual representations of
the visualization process. Visualization sessions are themselves visualized us-
ing the process graphs introduced here. The formalism for constructing these
graphs—visualization process relations—can also be used to directly analyze
aspects of the visualization sessions. As a motivating example, a case study
of how visualization graphs were used to improve a network visualization tool
(the OASCBrowser [1]) is discussed. The OASCBrowser looks a changes of au-
tonomous systems (ASes) via colored lines connecting ASes to IP addresses;
clusters of these indicate anomolies. The graphs were used as a “visual pro-
filer” to detect cycles and similar redundancies. This example illustrates how
the process graphs can be used to make visualization more efficient.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 78–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Visualization Process Graphs to Improve Visualization Exploration 79

2 Background

Both scientific and information visualization can be described as an iterative
process of data-filtering, visual mapping, and rendering with user interaction.
Several approaches have been taken to present the history of the iterative explo-
ration to the user. Where present, most visualization history depictions are linear
graphs of next-previous relations (such as the Zoom Graphs in Polaris [2]). A
more sophisticated history mechanism can be found in GRASPARC [3]. GRAS-
PARC presents a tree of branching parameter settings in a problem solving
environment which includes visualization. The tree is used to step back to any
previous simulation setting and branch the exploration. Finally, some novel visu-
alization user interfaces present the visualization result provenance to the user,
either as a depiction of the entire visual parameter space [4], a tabular projec-
tion of that space [5], a parallel coordinates depiction of the space [6], or an
interactive graph of visualization derivations [7]. Additional work has extended
the depiction to include changes in the visualization’s construction [8]. Recent
work has also informally evaluated how to better measure the effectiveness of
the visualization process [9, 10].

The previous works focused mainly on showing the history of the visualization
or problem solving processes. However, for analyzing the visualization process,
history alone is not sufficient. Often, there are relationships between the results
and other elements of the visualization session which are vital to its understand-
ing. The visual database exploration (VDE) work by Lee [11, 12] has identified
these elements for database exploration; Lee’s work encapsulates multi-result
relationships based upon database structural metadata. The VDE Model also
uses graphs to display process information for database exploration; lessons from
the VDE work are applied here. For visualization exploration, the P-Set Model
of visualization exploration [13] was developed. The P-Set Model formalizes the
visualization process and discusses relationships between results and the pa-
rameters which generate them; the details of these relationships are provided
in the next section. The current work extends the P-Set Model by expanding
the two process graphs previously discussed (the history and derivation graphs)
and introducing two new process graphs (difference and containment graphs).
In addition, a set of metrics and heuristics to evaluate these graphs is discussed.
Taken together, the graphs and measures provide a framework for improving
visualization tools such as the OASCBrowser system.

2.1 The P-Set Model for Visualization Exploration

Visualization process graphs depict links between different results in the session.
These links are dependent upon the underlying model describing the visual-
ization process. While the graphs discussed here could be distilled from other
models of visualization exploration, the P-Set Model is used for the purposes of
this work.

80 T.J. Jankun-Kelly

IPAddress

AS

AS

(a) OASC Layout (b) OASCBrowser System (c) Normal Events (d) Anomalous Events

Fig. 1. The initial Origin AS Change (OASC) Event visualization system, the
OASCBrowser [1]. The ASes initiating an event (aligned around the square) are con-
nected to the affected IP addresses within the square. Color indicates change type.
Normal activity appears as a random collection of lines; anomalies in routing are de-
tected by browsing through dates and active events types looking for correlated lines.

The P-Set Model of visualization exploration formalizes the iterative visu-
alization cycle by describing a user’s interaction with a visualization system.
During such interaction, a user manipulates parameter values to form a parame-
ter set (a p-set); a p-set is a collection of parameter values of different types (such
as the date and active event parameters used by the OASCBrowser). Created
p-sets are used to generate new results. A p-set, combined with a visualization
transform (the operation which creates results), uniquely identifies a result; a
result can be recreated given a p-set and transform. By recording how p-sets are
derived from previous p-sets, the P-Set Model captures the salient details of the
exploration process.

For each result generated during visualization exploration, four items are
stored: a timestamp, parameter derivation information, p-set derivation informa-
tion, and result derivation information. This four-tuple is known as a derivation.
The timestamp indicates when the derivation was performed; it is possible for
multiple results to be generated during the same timestamp as a consequence
of a single user interaction. The parameter and p-set derivations describe which
previous parameters and p-sets were used to create the new parameters and
p-sets. Finally, the created results are identified by the p-sets and transforms
used in their creation; the p-sets used must have been created via the parameter
and p-set derivations. In this manner, each explored result is encoded by the
model. Each of the four elements in a derivation will be used to form different
visualization process graphs.

3 Relations and Graphs for Visualization Analysis

Visualization process graphs encode different relationships between results, pa-
rameters, and p-sets explored during a visualization session. These relationships
are based upon different properties of these elements—when they were gener-
ated, what parameters they share, etc. In this section, four visualization process
relations are introduced that are in turn used to define the process graphs.

Using Visualization Process Graphs to Improve Visualization Exploration 81

3: H event type turned on2: Advanced date to 2000-01-051: Toggled H event type off0: Initial visualization

(a) History

2

1

2

1

0
3

1 3

2

0

2

1
1

0 3

2

3

3

0

11

0

1

3

tnemniatnoC)d(ecnereffiD)c(noitavireD)b(

Fig. 2. Visualization process graphs for a OASCBrowser session. There are two pa-
rameters types in the graphs: dates and displayed OASC events. In the example, one
event type was turned off, the next date’s data was loaded, and finally all event types
were toggled on again.

3.1 Visualization Process Relations

Four classes of visualization relations are used in this work: history, derivation,
difference, and containment. Each relation is a boolean function over two ele-
ments in a visualization session; the function is true if the corresponding relation
holds. Most of these operations relate parameters, p-sets, or results. Derivations,
however, are vital to most of these relations, determining if a relation holds
or not.

History Relation. The history relation imposes a linear temporal ordering
upon the derivations in a session. This follows relation holds between two deriva-
tions if the latter derivation immediately follows the former (i.e., their times-
tamps differ by one). Since a derivation encapsulates several sets of parameter,
p-sets, and results, this relation also imposes an ordering on these elements.
The follows relation will be used to compose history information with derivation
information from the derives relation.

Derivation Relations. In an individual P-Set Model derivation, four things
occur. First, parameters are taken from existing p-sets to be modified. These in-
put parameters are manipulated by the user to create output parameters. These
output parameters are then applied to an input p-set from a previous result
to create an output p-set. Finally, this output p-set is applied to a visualization
transform to generate a result image. Each of these stages imposes a relationship
between the two entities—i.e., the input parameters derive the output parame-
ters. Thus, there are five derives relations: P-sets derive input parameters, input
parameters derive output parameters, output parameters derive output p-sets,

82 T.J. Jankun-Kelly

input p-sets derive output p-sets, and output p-sets derive results. It is impor-
tant to note that it is possible for an element that was derived from another
element to derive that self-same element—such cyclic derivations are indicative
of redundant exploration. Thus, cycles in a chain of derivations will be used to
identify ways to improve a visualization system.

Difference Relations. P-sets are the cornerstone element of the P-set Model.
P-sets are formed by direct user interaction and are the genesis of visualization
results. Thus, a measure of the depth of the exploration is the depth of the visu-
alization parameter space spanned by the p-sets. The differs relations measures
the amount of difference between two p-sets, and thus indirectly captures the
breadth of exploration. The differs relation used in this work is differs-by-one;
two p-sets differ by one if they share the same parameter types but differ in only
one value (e.g., only a colormap differs).

Containment Relations. The final set of relations are the contains relations.
This relation is the normal mathematical containment relationship between an
item and a set. In this context, the relation holds between a parameter and
a p-set (if the parameter is contained within the p-set) or a parameter and
a result (if the parameter is contained within the p-set used to generate that
result). Similar to the differs relation, the containment relation measures the
depth of exploration. If a single parameter value is shared among many p-sets,
then further exploration could be facilitated by using a different parameter value
for those same p-sets.

Using Visualization Process Relationships. Each set of relationships high-
lights different aspects of the visualization process. Though parameter derivation
information is not present in the history relation, it gives a clear sense of the
flow of time during the visualization process. The derivation relations provide a
sense of parent-child relationships; this relationship could be combined with the
history relation or used without. Combined, the derives and follows relations
could identify how a result or p-set was first created. Alone, the derives relation
details how that result/p-set was used in subsequent exploration. Finally, the
difference and containment relations give a sense of the depth of exploration
during the process. Shallow spanning trees of graphs using this relation signify
a visualization process that did not deeply search the space of parameter values
while deep or broad spanning trees could suggest lack of focus. In fact, using
these relations to build graphs is a powerful method for performing visualization
session analysis. This idea will be explored in-depth next.

3.2 Visualization Process Graphs

Each visualization process relation has a corresponding visualization process
graph; these graphs visually summarize the relations. The graphs introduced
here are similar in purpose and properties to the graphs of the VDE model.
However, these graphs are tailored to visualization exploration. In addition, the
difference and containment graphs have no analog in the VDE work. To illustrate

Using Visualization Process Graphs to Improve Visualization Exploration 83

the process graphs, Figure 2 will be used as an example; for an explanation of
the OASCBrowser system used in the example, refer to Figure 1 and Section 4.

History Process Graph. The history process graph (Figure 2a) provides a vi-
sual overview of the temporal ordering of results. Each element in the sequence
is a derivation that was generated by the user in a single operation. These ele-
ments are drawn from the domain and range of the follows relation. History can
be displayed graphically using vertices representing the derivation and directed
edges representing time.

The history graph is a line connecting each derivation; in interfaces that expose
session information, this is the type of graph usually displayed. To be more
informative, derivations components within a single time-step can be included
(such as in Figure 2a). The parameters, p-sets, and results within a derivation
are ordered based upon the derives relation: Inputs are sources while results
are sinks in the derivation subgraphs. Thus, each derivation is depicted as a
sequence of parameter, p-set, and result derivations. For example, node 2 in the
figure clearly shows how the date from the previous result’s p-set was changed
from January 4, 2000 to January 5, 2000 to create a new p-set and result for the
following day’s events. Note, though the same p-set or parameter may be used
in different derivations, each derivation’s subgraph possesses a unique node for
its p-set or parameter instance. This prevents edges between nodes belonging to
different derivations (i.e., different time-steps); such relations are the purview of
the derivation graph discussed next.

Like the OASCBrowser system, most visualization systems have derivations
with only one input p-set, one input and output parameter, and one generated
result. This occurs because most of these interfaces cannot manipulate more
than one parameter, cannot utilize more than the immediately preceding p-set,
and cannot generate more than one result at a time. A system which relaxes
these constraints, such as the Image Graph [7], would have correspondingly more
complex derivation information such as multiple input p-sets or created results.

Derivation Process Graph. The history process graph is insufficient for de-
scribing the relationships between results, parameters, and p-sets. Over the
course of an exploration session, different parameters from the same p-set may
be used to create multiple results. In addition, a result may be visited more
than once. These relations are not explicitly present in the history graph. The
derivation process graph captures this information (Figure 2b).

A derivation process graph is constructed from three types of nodes: parame-
ters, p-sets, and results. For each derivation, an edge exists between two nodes if
the former derives the latter according the the derives relation. Unlike the his-
tory graph, there is only one node per parameter, p-set, or result. Thus, nodes
may have multiple incoming or outgoing edges due to derivations involving that
node at different time-steps. To disambiguate these edges, they are labeled with
the corresponding derivation’s timestamp.

The derivation graph succinctly summarizes the ancestor-descendent relations
within the visualization session; paths in the graph correspond to sequences of

84 T.J. Jankun-Kelly

derivations. Landmark parameters and p-sets are easily identified by possessing
a large number of incoming and outgoing edges. In addition, redundant explo-
ration is identified by p-sets nodes with multiple incident edges with distinct
time-stamps. Such edges indicate that the p-set was visited by multiple user
interactions, re-creating its associated result each time. Analysis of Figure 2b
shows that there was no redundant exploration (every p-set was explored only
once) while one parameter was used twice (the parameter signifying that all
OASC event types were displayed, lower left corner of Figure 2b).

Difference and Containment Process Graphs. The p-set difference graph
and the p-set containment graph highlight the depth of exploration whereas
the other graphs highlight the structure of the exploration. A difference process
graph (Figure 2c) connects two p-sets if they vary by a certain number of pa-
rameter values; all difference graphs in this paper connect p-sets that differ by
only one parameter. Each partition in these graphs represents similar results.
The more clusters there are, the larger the explored parameter space. In Fig-
ure 2c, there are two partitions of the graph based upon parameter type—the
top/bottom partition separate p-sets by which event types are displayed, while
the left/right partition separates the dates explored. The number and size of such
partitions are proportional to the size of the parameter space explored. Many,
small partitions indicate a broad exploration of several different parameter types
while few, large partitions correspond to a session with significant depth in one
parameter.

Containment graphs (Figure 2d) depict how the explored p-sets are composed
from the explored parameters: An edge exists between a parameter and a p-set
if the parameter belongs to the p-set. The relative number of parameters of
different types and p-sets are another indicator of the depth of exploration.
Parameter types which dominate the exploration are easily spotted by how they
outnumber the other parameter type nodes. If the number of p-sets dominates
the graph, then the parameter space was highly explored. In Figure 2d, every
valid combination of parameter values generated was explored during the session.

Using Visualization Process Graphs. Visualization process graphs serve
two functions: They provide an overview of the visualization process and allow
that process to be analyzed. The history and derivation graphs are most useful
in the former application; the last three are vital for the latter. The history
graph, augmented with derivation information, could be used as a browser over
the visualization session; the Image Graph can be considered an implementation
of a subset of this graph. Like the Image Graph, the history graph could be
made interactive. This interaction would provide a sophisticated mechanism to
build results from previous results. Such a system is beyond the scope of this
discussion.

Several methods for analyzing visualization process graphs have already been
introduced (i.e., looking at the number of incident edges to a p-set with differ-
ing time-stamps in the derivation graph). These methods can be formalized via
visualization process metrics. Each metric is a function over a graph, node, or

Using Visualization Process Graphs to Improve Visualization Exploration 85

edge and summarizes properties of the graph; the properties relate to charac-
teristics of the exploration. Previously, Lee [12] developed a set of metrics for
the VDE model; we adapt some of them and introduce several new ones. The
metrics introduced here are tailored to visualization exploration, and measure
statistics relevant to such exploration:

– Importance Metric. For a given node in a derivation process graph, the im-
portant metric counts the degree of the node—the total number of incoming
and outgoing edges. Nodes with a higher degree were derived by or derived
multiple results in the exploration session, and thus were integral to that pro-
cess. For the sample session, the p-sets which derived the second and third
results have the most importance; however this difference is not significant
(the next importance value is only one less than the maximum).

– Redundancy and Efficiency Metrics. For a given derivation process graph,
the redundancy metric counts the number of incident edges to any p-set
which have different time-stamps. This metric could be applied directly to
p-sets to count the number of times the p-set was re-explored. Recall that p-
sets, combined with visualization transform, uniquely identify a result; thus,
a measure of the redundancy of one is a measure of the redundancy of the
other.

Given a redundancy value, a measure of efficiency can be derived. The
inefficiency of a session is the ratio of the redundant edges to the total number
of p-set derivation edges in the derivation graph; the efficiency is one minus
this number. For the sample session, the efficiency was 100%—no p-set was
explored more than once.

– Depth Metric. The value of the depth metric is the maximum number of
neighbors of any node in the p-set difference graph. This value is also the size
of the largest cluster in the difference graph. Since each node in this cluster
must differ by only one parameter type, the sub-space of the parameter space
spanned by this type was well explored. For the sample session, the depth
value was 2 parameter settings.

– Breadth and Coverage Metrics. The breadth of a visualization session is
defined as the number of p-sets explored during the session—the more p-
sets generated, the larger the explored visualization parameter space. A more
meaningful measure is coverage; this is the number of p-sets explored over the
possible number of valid p-sets in the session. This value can be calculated
from the containment graph: The total number of valid p-sets for a single
visualization transform is the product of the count of parameter values nodes
for the transform’s associated parameter types (e.g., if there are 3 dates and
2 selections of events, there are 6 possible valid p-sets); the total number
of valid p-sets is the sum of the valid p-sets for each transform. For the
sample session in Figure 2d, the coverage was 100% since there were two
parameters values for each of the two parameter types and four explored
p-sets. While the coverage metric is useful for understanding the extent of
the exploration, is not necessarily a measure of its effectiveness—not all
combinations of parameter values are equally meaningful.

86 T.J. Jankun-Kelly

These metrics provide heuristics to evaluate a visualization system. Assuming
that the re-exploration of results is costly and should be avoided, systems should
strive for a high efficiency (limiting redundancy). If a certain parameter has a
high depth value, it suggests that a means to more quickly explore this sub-space
of the visualization parameter space could be beneficial. While process graphs do
not capture every characteristic of a visualization system (such as its running-
time or memory efficiency), they capture the essential properties of explorations
using that system. The use of the graphs and their associated will be explored
in more depth in the following section.

4 Case Study: Improving the OASCBrowser

The OASCBrowser [1] is a tool for visually detecting anomalies in internet rout-
ing information (Figure 1). The tool displays different types of changes to own-
ership of autonomous systems (ASes)—groups of hosts on the Internet. The
different types of changes (called OASC events) are labeled with different col-
ors. The colored lines connect ASes along the edge of a square to points within
the square corresponding to the IP address affected by the change. The tool al-
lows a user to browse through recorded dates with different types of AS changes
highlighted. Anomalies are found by visually searching the dates for unusual
patterns—normal behavior appears random while abnormal behavior appears
as correlated lines.

The user can manipulate two different parameter settings for the
OASCBrowser: The currently displayed date, and which OASC events to display.
There are eight event types; the display of each can be individually toggled. The
OASCBrowser does not provide a history mechanism—only the last result may
be manipulated by the user. Thus, to compare a previous result, a user must
recreate its parameter settings manually. As will be demonstrated, this leads to
significant inefficiency during exploration.

4.1 Example Session and Analysis

Several visualization sessions were analyzed; all showed similar behavior. In an
exemplar session, a range of OASC events between August 1st and August 22nd,
2000 were visualized. During this exploration, three sets of anomalies were dis-
covered: A pair of correlated anomalies near August 1st, a major anomaly and its
correction between the 14th and 17th, and another pair of correlated events on
the 21st. In the session, 61 parameters and 76 p-sets and results were generated.
Since there was only one visualization transform (the OASC Event visualiza-
tion), there is a one-to-one correspondence between p-sets and results.

Figure 3 depicts the derivation, containment, and difference graphs for this
session. For clarity, the derivation graph has been collapsed into a different (but
equivalent) view of the session that shows only result derivations. Since there is
a one-to-one correspondence between these two graphs (as there is only visual-
ization type), the graphs are isomorphic.

Using Visualization Process Graphs to Improve Visualization Exploration 87

Fig. 3. Visualization process graphs for the original OASCBrowser viewing events dur-
ing August 1–22, 2000. Top-left: Result derivation. Bottom-left: P-Set Containment.
Right: P-set Difference.

(a) August 1 (orange) (b) August 14 (purple) (c) August 21 (cyan) (d) August 17 (green)

Fig. 4. Landmark results in the example exploration session. Each is highlighted in the
graphs in Figure 3 using the given color. The August 1st and 21st results show two
correlated anomalies each; each pair of events is of different types. The August 14th
result shows anomalous events that are later corrected by events on the 17th.

Several observations can be made from the session’s process graphs. First,
there are several cycles in the exploration. The cycles occur in three portions of
the derivation graph: The upper half (the August 1st anomalies), the lower left
(the major anomaly between August 14th and 17th), and the lower right of the
graph (the August 21st anomalies). In fact, the three most important results in
the derivation graphs (according to the importance metric) correspond to these
three anomalies (Figure 4a–c, outlined in orange, purple, and cyan respectively in
Figure 3). For the August 1st and 21st anomalies, it is telling that each important
result displays the two correlated events together; the derivation graph shows
that these results were generated multiple times while the user toggled the two
events on and off in order to isolate them.

The exploration of the August 14th anomaly is more complex. Upon initial in-
spection, the visualization is flooded with H (green) events. However, further anal-
ysis shows that the cause of these corrective events is one AS’s OS (purple) events;
these events correspond to the result highlighted in the figures. The exploration
cycle here is complex for several reasons. First, there are the multiple anomalous
events (the H and OS events) on the August 14th date; this causes the toggling
seen before. However, there is a another set of anomalous H events three days later
from the same AS (Figure 4d, highlighted in green in Figures 3); these are another
set of corrective events. In the exploration session, the user compared the 14th and

88 T.J. Jankun-Kelly

17th events by stepping back and forward in time and changing which events were
displayed. This caused the nested loops in the derivation graph.

As demonstrated, the given exploration session was inefficient: It has 70% ef-
ficiency according to our efficiency metric with 28 redundant derivations—over
a quarter of the exploration was spent recreating previous results. From the
difference graph, it can be confirmed that most of this redundant exploration
was over one parameter type, the displayed events—most of the outer clusters
represents toggling active events while keeping the date fixed. The center cluster
represents p-sets stepping through time. The distribution of parameter values in
the containment graph also supports the inefficient parameter exploration con-
clusion. The parameter corresponding to rendering all event types (bold border
in the upper middle of the figure) covers 30% of the p-set nodes in the graph.
Thus, 70% of the exploration consisted of setting the active event types to find
the events of interest. Considering that only four dates of the 22 viewed had
significant anomalies, this parameter exploring is unneeded. A more effective
interface would reduce the need for excessive parameter searching.

4.2 The Refined OASCBrowser

From the previous analysis, it was concluded that the OASC event browsing in-
terface was inefficient when drilling-down into an anomaly—too much redundant
activity was spent toggling through the parameter values to find the event types
of interest. The occlusion of the events was determined to be the cause of this
toggling; analysts could not perceive specific events when exploring an anomaly.
However, the ability to show all the event types simultaneously in one image was
found useful to quickly spot when anomalies occur. Thus, a new interface was
designed that showed both the overview visualization and visualizations for each
of the event types concurrently (Figure 5, see Teoh [14] for details). By using
multiple views, unneeded parameter generation is avoided.

Figure 5 depicts the process graphs for the exploration of the August 1st–
22nd, 2000 events using new the interface. The new interface does improve the
exploration, though it does not remove all inefficiencies. The difference graph

Fig. 5. The refined OASCBrowser interface (showing the anomalous events of August
14th, 2000) and corresponding process graphs for the exploration of August 1–22, 2000.
The new interface displays the combined OASC event view in addition to a view for
each individual event; events from the surrounding dates are also shown. This reduces
the amount of redundant exploration compared to the original interface. Middle-Top:
Result Derivation. Middle-Bottom: P-Set Containment. Right: P-Set Difference.

Using Visualization Process Graphs to Improve Visualization Exploration 89

shows that the exploration was more dense; the majority of the p-sets only
changed their date parameter. Because the new interface allowed users to drill-
down to individual events directly, more interactions were spent exploring the
dates than the event types. The containment graph corroborates this finding; it
shows that only 30% of the parameter exploration focused on individual anomaly
types. Since the majority of dates did not have anomalies, this exploration is
more in line with the actual data, unlike the original interface.

While the new interface does reduce the need for excessive parameter manipu-
lation, it still suffers from inefficiency. For the given session, the overall efficiency
is 56%, less than that of the original interface. If the results exploring the Au-
gust 14–17 events are excluded, the efficiency rises to 85%, an improvement over
the original browser. This signifies that for correlated anomalies on the same
date (such as the August 1st and 21st anomalies), the new interface is more
efficient—fewer derivations are needed to drill-down to individual events. How-
ever, the new OASCBrowser does not solve the problem of comparing anomalies
from different dates; a user is still required to re-explore the intervening date’s
results. Further interface refinement could address this issue.

5 Discussion

Analyzing a user’s process via the process graphs allowed us to improve the
OASCBrowser. The graphs clearly identified cycles in exploration and reinforced
some issues we had previously identified. It is important to note the the exact
metrics are user dependent—each user will have slightly different patterns—so
aggregate or holistic examination of the different sessions will be required. All
users of the tool in our case study were familiar with it, so the question of how
novice and expert sessions vary is still open.

The P-Set Model explicitly captures changes in parameters, not in other as-
pects of the visualization. For systems such as the OASCBrowser which are not
modular (i.e., not extendable by adding new components or by changing the
visualization pipeline), the P-Set Model is adequate. For modular visualization
environments, the P-Set Model can capture interactions with complete pipelines,
but not explicitly capture changes within the pipeline. Extensions to capture
pipeline changes are possible so long as the model is derivational—modifications
to the more transaction-based approach used in VisTrails [8] is conceivable ini-
tial approach. In this sort of model, the visualization transform of a p-set would
refer to complete transforms which would be built/modified by the transform
model. Annotation of such changes (e.g., why the user performed an operation)
is easily added by capturing it and using an RDF-like model [15] to extend the
XML representation [13].

While the metrics presented are agnostic to the number of parameters used
in the visualization, the graph-based representation may need to be condensed
or collated in some fashion. This is especially true for the difference relation:
More possible parameters will explode the number of possible nodes. An intel-
ligent clustering scheme would elide individual nodes to display only groups of

90 T.J. Jankun-Kelly

interest. For very long sessions, a similar graph summarization approach would
be needed for the containment and derivation relations. Such condensation is es-
pecially important if the graphs are to be used by users directly; only more recent
derivations will be typically of interest, and chains of non-branching derivations
could be summarized.

6 Conclusions

The provenance of the visualization process is complex. To gain an understand-
ing of visualization sessions—and perhaps a better understanding of the data
originally visualized—this information needs to be visualized. Four graphs exam-
ining different parts of the visualization process were presented, and an in-depth
example demonstrated the uses of this kind of analysis.

There are several potential applications for the work presented here. Visu-
alizations of the visualization process give insight into the process and the in-
terfaces used. The analysis of both OASCBrowser interfaces suggested areas of
refinement, and a quantifiable improvement was observed for the refined inter-
face. Similar analysis could be performed on other visualization systems. Other
potential uses include communicating results and exploration sessions to col-
laborators, validation of sessions, and navigation of the visualization parameter
space during exploration.

6.1 Future Work

As mentioned, one area of further study is the development of additional relations
and metrics for visualization process analysis. Of interest is the identification and
quantifying of the common patterns within process graphs. If quantified, a data-
mining system could then be used to automatically identify these patterns and
call attention to them when displaying the process. This automation would assist
in the understanding of the visualization process. Besides improving the visu-
alization interface, this analysis could also be used to perform usability studies
utilizing the metrics presented here.

Another avenue of research is the integration of visual analysis tools with
visualization systems. During the visualization, the user could also be presented
with visualization process graphs summarizing the exploration. This depiction
could help in parameter space navigation and be used as a history tool to return
to different results in a manner similar to the Image Graph.

Acknowledgments

The author would like to thank Kwan-Liu Ma and Soon Tee Teoh for their input
and discussion and for access to the original OASC visualization tool. Melanie
Tory feedback on an initial draft of this work are appreciated. GraphViz from
AT&T Research was used to generate the graph images.

Using Visualization Process Graphs to Improve Visualization Exploration 91

References

1. Teoh, S.T., Ma, K.L., Wu, F., Zhao, X.: Case study: Interactive visualization for
internet security. In: Proc. of 13th IEEE Conference on Visualization (Vis 2002),
pp. 505–508 (2002)

2. Stolte, C., Tang, D., Hanrahan, P.: Multiscale visualization using data cubes. IEEE
Trans. on Visualization and Computer Graphics 9(2), 176–187 (2003)

3. Brodlie, K., Poon, A., Wright, H., Brankin, L., Banecki, G., Gay, A.: GRASPARC–
A problem solving environment integrating computation and visualization. In:
Proc. of the 4th IEEE Conference on Visualization (Vis 1993), pp. 102–109 (1993)

4. Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J.,
Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.:
Design Galleries: A general approach to setting parameters for computer graphics
and animation. In: Proc. of ACM SIGGRAPH 1997, pp. 389–400 (1997)

5. Jankun-Kelly, T.J., Ma, K.L.: Visualization exploration and encapsulation via a
spreadsheet-like interface. IEEE Trans. on Visualization and Computer Graph-
ics 7(3), 275–287 (2001)

6. Tory, M., Potts, S., Möller, T.: A parallel coordinates style interface for exploratory
volume visualization. IEEE Trans. on Visualization and Computer Graphics 11(1),
71–80 (2005)

7. Ma, K.L.: Image Graphs—A novel approach to visual data exploration. In: Proc.
of the 10th IEEE Conference on Visualization (Vis 1999), pp. 81–89, 513 (1999)

8. Bavoil, L., Callahan, S.P., Crossno, P.J., Freire, J., Scheidegger, C.E., Silva, C.T.,
Vo, H.T.: Vistrails: Enabling interactive multiple-view visualizations. In: Proc. of
the 16th IEEE Conference on Visualization (Vis 2005), pp. 135–142 (2005)

9. Perer, A., Shneiderman, B.: Integrating statistics and visualization: case studies of
gaining clarity during exploratory data analysis. In: Proc. of CHI 2008, pp. 265–274
(2008)

10. Shrinivasan, Y.B., van Wijk, J.J.: Supporting the analytical reasoning process in
information visualization. In: Proc. of CHI 2008, pp. 1237–1246 (2008)

11. Lee, J.P., Grinstein, G.G.: An architecture for retaining and analyzing visual ex-
plorations of databases. In: Proc. of the 6th IEEE Conference on Visualization (Vis
1995), pp. 101–108 (1995)

12. Lee, J.P.: A Systems and Process Model for Data Exploration. PhD thesis, U. of
Mass. Lowell (1998)

13. Jankun-Kelly, T.J., Ma, K.L., Gertz, M.: A model and framework for visualization
exploration. IEEE Trans. on Visualization and Computer Graphics 13(2), 357–369
(2007)

14. Teoh, S.T., Jankun-Kelly, T.J., Ma, K.L., Wu, S.F.: Visual data analysis for de-
tecting flaws and intruders in computer network systems. IEEE Comp. Graph. and
Applications 24(5), 27–35 (2004)

15. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syn-
tax Specification. Technical report, World Wide Web Consortium (1999),
http://www.w3.org/TR/REC-rdf-syntax

http://www.w3.org/TR/REC-rdf-syntax

Implementation and Evaluation of a Protocol for
Recording Process Documentation in the

Presence of Failures

Zheng Chen and Luc Moreau

School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, UK

{zc05r,L.Moreau}@ecs.soton.ac.uk

Abstract. The provenance of a particular data item is the process that
led to that piece of data. Previous work has enabled the creation of
detailed representation of past executions for determining provenance,
termed process documentation. However, current solutions to recording
process documentation assume a failure free environment. Failures result
in process documentation not being recorded, thereby causing the loss of
evidence that a process occurred. We have designed F-PReP, a protocol
to guarantee the recording of process documentation in the presence
of failures. This paper discusses its implementation and evaluates its
performance. The result reveals that it introduces acceptable overhead.

1 Introduction

The provenance of a data product refers to the process that led to that data prod-
uct [6]. Previous work [6] has enabled a computer-based representation of a past
process for determining provenance, i.e., process documentation. A dedicated
repository, provenance store, is used to persistently maintain process documen-
tation. For scalability reasons, process documentation may end up distributed in
multiple stores, linked by pointers. Using the pointer chain, distributed process
documentation can be retrieved from one store to another.

A generic recording protocol, PReP [6], has been developed to record process
documentation in Grids. It has been used in many applications, e.g., aerospace
engineering [8], fault tolerance in distributed systems [15], and biodiversity [14].
Grids are large-scale heterogeneous environments, where failures may happen.
Failure rates as high as 30% have been reported [13]. In this context, reliable
recording of process documentation can become very challenging, given that the
documentation produced in a process can be of the order of terabytes [5].

PReP, however, does not specify a well-defined behavior to record process
documentation in the presence of failures. For example, a provenance store may
not be available and network connection may be broken. The consequences are
that documentation fails to be recorded in provenance stores and the pointer
chain is broken, separating distributed documentation into isolated islands in
provenance stores. A scientific application, to be described in this paper, used

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 92–105, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementation and Evaluation of a Protocol 93

PReP to record process documentation in the presence of simulated failures.
By analyzing the contents of provenance stores after the application completes,
we find that the quality of documentation recorded using PReP is poor, as
demonstrated in Fig. 1 and Fig. 2. In Fig. 1, as failure rate increases, a large
proportion of process documentation fails to be recorded. Fig. 2 reveals the
increase in the number of dangling links, i.e., pointers to other provenance stores
that were supposed to record part of process documentation but did not, and in
the number of isolated documentation islands.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50S
uc

ce
ss

fu
lly

 R
ec

or
de

d
D

oc
um

en
ta

tio
n

(%
)

Failure Rate (%)

Using PReP

Fig. 1. Loss of documentation records in
provenance stores

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50

N
um

be
r

of
 E

nt
iti

es

Failure Rate (%)

Dangling Links
Isolated Documentation Islands

Fig. 2. Dangling links and isolated islands
in provenance stores

Process documentation of poor quality cannot be utilized by applications. We
now draw a parallel between the documentation of a process and a particular
type of evidence in a legal setting, testimony. The absence of testimony from
eyewitnesses to a crime scene makes it difficult for juries to make a judgment
about whether to believe the claims provided by a suspect. Similarly, poor quality
process documentation is not acceptable in the applications that rely on process
documentation to verify the provenance of their data products, as key evidence
that a process occurred may have been lost.

To guarantee the recording of high quality, i.e., complete and connected, pro-
cess documentation in Grids where failures may occur, we have extended PReP
and designed a recording protocol, F-PReP. F-PReP provides remedial actions
and a novel component, Update Coordinator. It has been formalized as an ab-
stract state machine and its correctness has been proved in [4].

The contribution of this paper is the extensive evaluation of this novel proto-
col. Our evaluation is conducted at several levels. First, we measure the through-
put of the provenance store and update coordinator. We demonstrate that the
update coordinator is not a performance bottleneck. Second, we benchmark the
recording performance of F-PReP. The results show that its remedial actions
introduce small overhead (below 10%). Third, we investigate the performance
impact on the execution time of a scientific application. We find that PReP and
F-PReP have similar impact on application execution when there is no failure.
In tests with failures, the recording overhead of F-PReP varies depending on
configurations. Lessons are learned on achieving good performance in the case

94 Z. Chen and L. Moreau

of failures. Our results also show that the problems in Fig. 1 and Fig. 2 do not
exist when using F-PReP to record process documentation.

2 Protocol Outline

2.1 Terminology

A process is modeled as a set of interactions between actors [6]. Each interaction
is concerned with one application message exchanged between two actors, i.e.,
the sender and the receiver. An actor documents an interaction by making p-
assertions. A kind of p-assertion, relationship p-assertion, is used to capture the
internal causal connections between interactions within the scope of an actor,
i.e., the interaction where an output message is sent (effect interaction) and the
interaction where an input message is received (cause interaction). There can be
multiple cause interactions related to one relationship p-assertion.

For scalability reason, an actor can use various stores to record p-assertions
about different interactions. A notion of link, i.e., a pointer to a provenance
store, has been introduced to connect distributed documentation [6].

There are two types of links: viewlink and causelink. If the two actors in an
interaction use two different stores, each actor records a viewlink that points to
the provenance store where the opposite party recorded its p-assertions about
that interaction. Therefore, both views of an interaction can be retrieved by
navigating from one store to the other. The causelink is used in relationship
p-assertion. If the p-assertions that represent a cause interaction are recorded
in a different provenance stores, a causelink is embedded in the relationship p-
assertion, indicating which provenance store the p-assertions representing the
cause interaction are stored in. A relationship p-assertion is recorded in the
context of its effect interaction, describing the causes that led to the effect.

2.2 Failure Assumptions

Provenance stores may crash, i.e., they halt and stop any further execution, and
can be restarted from their latest consistent state1; messages to/from provenance
stores can be lost, reordered but not duplicated in communication channels;
an actor has several alternative provenance stores to use. We do not consider
the failures of actors and the exchange of application messages, since they are
application dependant and the application should provide its own fault tolerance
mechanisms to ensure its availability and reliable communication.

2.3 Protocol Outline

F-PReP[4] has been designed to meet the following requirements:

– Guaranteed Recording. After a process finishes execution, the entire documen-
tation of that process must eventually be recorded in provenance store(s).

1 The provenance store has been implemented as a stateless web service with a
database storage system. Hence the latest consistent state refers to the initial state
of the service and the latest checkpointed state of the database.

Implementation and Evaluation of a Protocol 95

– Viewlink Accuracy. Viewlinks recorded for each interaction of a process must
eventually be accurate. Each must point to the store where the other actor
in the same interaction recorded p-assertions documenting that interaction.

– Causelink Accuracy. Causelinks recorded during a process must eventually
be accurate. Each must point to the store where p-assertions about the
corresponding cause interaction were recorded.

– Efficient Recording. Recording p-assertions and taking remedial actions
should be efficient and introduce minimum overhead.

Fig. 3 demonstrates an example of message exchanges in F-PReP. The default
provenance stores that the sender and receiver use are PS1 and PS2, respec-
tively. The sender and receiver create p-assertions documenting the interaction
where an application message app is exchanged (Step 1). Asynchronously, they
submit all their p-assertions about the interaction and a viewlink2 in a single
message, record, to their provenance store. Before delivering a record message,
an actor checks all the relationship p-assertions in the message and updates
incorrect causelinks in order to meet Causelink Accuracy requirement.

���������

������

�����

�������	�

���������

���
�����

	
��

���������

�
�
��

��������

��� ���� ���

�����

���������

������

���
���

���������

Fig. 3. An example of message exchanges in F-PReP

An actor sets a timeout when waiting for an acknowledgement ack immedi-
ately after it sends a record to a provenance store (Steps 2, 8). A provenance store
acknowledges a record by means of an ack message, only after it has successfully
recorded the content of record in its persistent storage. If an ack is not received
before a timeout, an actor can conclude that failures may have occurred; it can
then resend the same record to the actor’s default store or an alternative store
(Step 3). However, the use of an alternative store leads to incorrect causelinks
or viewlinks, hence requiring an update. In the example of Fig. 3, the receiver’s
viewlink to PS1 becomes incorrect.

We introduced an update coordinator to facilitate viewlink updating. An up-
date coordinator is necessary since both sender and receiver may issue a repair

2 We assume the sender and receiver know their viewlink to PS2 and PS1, respec-
tively, by means of built-in knowledge.

96 Z. Chen and L. Moreau

request in an interaction. This cannot be achieved by direct update of the other
actor’s provenance store, because at that moment, one does not know which
store the opposite actor is actually using. In Fig. 3, the sender requests the co-
ordinator (Step 5) to help update the receiver’s viewlink in PS2 (Step 6). After
updating a viewlink, PS2 returns an acknowledgement message uack (Step 7).

We assume the update coordinator does not crash. We can use the traditional
fault-tolerance mechanisms such as replication to ensure its availability. This is
feasible since a coordinator maintains only a small amount of information, as
illustrated later. However, it is not feasible to replicate provenance stores which
usually maintain a large amount of process documentation. Because replication,
although sophisticated, comes with a significant cost due to the preservation of
the one-copy equivalence property [11].

3 Implementation

The implementation of F-PReP involves three parts: Provenance Support Li-
brary (F-PSL), Provenance Store (PS), and Update Coordinator.

F-PSL includes a set of Application Programming Interfaces to create and
record p-assertions into a provenance store. F-PSL extends the PReP-oriented
PSL with the following novel functionalities:

(1) Remedial actions that cope with failures. First, F-PSL resubmits record
messages according to the policies specified by a configuration file, including a
list of alternative stores. Second, it maintains a history of the use of alternative
stores during an actor’s participation in a process. This information is currently
maintained in memory and deleted when an application completes. Third, F-
PSL checks an actor’s causelinks when recording relationship p-assertions and
updates them according to the history information. Fourth, F-PSL requests a
coordinator to update viewlinks.

(2) Multithreading for the creation and recording of p-assertions. F-PSL en-
ables the concurrent creation and recording of p-assertions during application
execution. An application’s requests for creating p-assertions are queued to be
processed by a creation thread. Created p-assertions are also kept in a queue (in
the form of record messages) before being submitted to a store by a recording
thread. Basic flow control is provided in the form of queue management.

(3) A local file store for temporarily maintaining p-assertions. If recording p-
assertions significantly degrades an application’s performance, p-assertions can
be maintained locally and submitted later. We employ Berkeley DB Java Edition
database (BDB) as the local file store for its ease of installation.

PS has been implemented as a Java Servlet and deployed in the Apache Tom-
cat Servlet container[1]. It supports several types of backend data stores. Our
implementation and experiments were based on BDB. We extend the current
implementation of PS in terms of the following aspects:

Implementation and Evaluation of a Protocol 97

(1) Disk cache. A PS persistently caches a received record message to disk
before providing an acknowledgement3, and at a later stage processes the record
message and stores p-assertions. This caching mechanism delays actual message
processing and hence saves on the overhead of processing messages.

(2) Update Plug-In. PS has been designed to facilitate convenient integration
of new features through the use of plug-ins. A new plug-in, Update Plug-In, is im-
plemented to receive update requests from the coordinator and update requested
view links.

Update Coordinator is implemented as a Java Servlet and deployed in the
Tomcat container. It receives a repair request from an actor and maintains the
requested information in a local file store before sending an update message to
a provenance store to update a requested view link.

Only minimum information is maintained for each repair request: the iden-
tity of the destination store that needs to be updated, and the identity of the
store that successfully recorded the requesting actor’s record message for a given
interaction. The maintained information is used to cope with the case where
both actors in an interaction request to update the other’s viewlink in that
interaction. The internal behavior of the coordinator and the management of
maintained request information are detailed in [4].

Similarly to PS, the coordinator persistently caches received repair requests
in its local file store, and at a later stage processes these requests to save on the
overhead of processing messages. An actor continues its execution after receiving
a response indicating its repair request has been cached in the coordinator. BDB
is also employed as the file store.

An application can utilize multiple coordinators in its process. When using
more than one, any two actors exchanging an application message must share the
same one in order to ensure Viewlink Accuracy requirement. The identifier
of a coordinator can be built in actors or exchanged to other actors in the
application message app.

4 Performance Evaluation

Our experiments were run on the Iridis Computing Cluster at the University of
Southampton. Iridis contains several sets of nodes (i.e. computers). Nodes used
in the experiments each have two Single Core AMD Opteron processors running
at 2.2 GHz and 2 GB of RAM. Provenance store and update coordinator were
run on nodes each with 4 Dual Core AMD Opteron processors running at 2.4
Ghz and 2 GB of RAM. In the experiments with failures, one coordinator was
employed, installed on a node of the cluster. All nodes are connected by Gigabit
Ethernet. All applications used in the evaluation were written in Java and were
run using the Java 1.5.0 05 64-bit Server Virtual Machine.

3 The PS in PReP, though caching a record message into BDB before replying an
acknowledgement, does not force the message into disk by flushing operating system’s
buffers, thus having a risk of losing p-assertions if operating system fails.

98 Z. Chen and L. Moreau

Since failures are non-deterministic in nature and typically very hard to pre-
dict, a generator was used on an actor’s side to inject random failure events,
i.e, failure to submit a record message to a provenance store or failure to receive
an acknowledgement from a provenance store before a timeout. The presence
of such an event triggers an actor to take remedial actions. The generator gen-
erates a failure event based on a failure rate, i.e., the number of failure events
that occur during a total number of recordings. Given a timeout, the generator
postpones generating a failure event until the timeout expires. The advantage
of using a failure generator is that it enables us to fully control the number of
failures that may occur so as to investigate the correlation between recording
performance and failure rate.

Our evaluation was conducted at three levels. First, we measured the through-
put of the provenance store and update coordinator. We also investigated how
the contention for the coordinator affects an actor’s recording performance when
the number of recording actors increases. Then, we benchmarked the recording
performance of F-PReP without considering contention. Third, we investigated
F-PReP’s impact on the execution time of a scientific application. In each level,
we performed two experiments: failure-free experiment and experiment with fail-
ures. A comparison with PReP was made in the failure-free experiment. In our
evaluation, when we say recording p-assertions using F-PReP or PReP, we mean
their respective client side library, F-PSL or PSL, was used, and the provenance
store was configured with or without disk cache, respectively.

4.1 Throughput Experiment

Provenance Store. In Section 3, a disk cache mechanism is introduced as the
default setup of a provenance store in F-PReP. This means the store forces every
received record message into disk before providing an acknowledgement in order
to maintain the durability of p-assertions. However, this mechanism may sacrifice
a provenance store’s throughput (i.e. the number of p-assertions accepted in a
period of time).

We performed two failure-free tests with and without disk cache enabled,
respectively. On each node, we created up to 16 threads (i.e., clients) recording
10k p-assertions at the same time. An MPI based test harness was used in
the experiments to guarantee that all clients were run in parallel. Given that
an experiment is allowed to use up to 32 nodes in the Iridis environment, we
can have 512 clients simultaneously recording p-assertions into a provenance
store. P-assertions are recorded with a new record message created for each p-
assertion. All p-assertions were directly created and submitted to a provenance
store without using threading.

Fig. 4 shows the results. In both setups, the provenance store’s throughput
levels off, where about 212,200 and 176,000 10k p-assertions are accepted in a 10
minute period in the setup without disk cache and with disk cache, respectively.
This means a store’s throughput decreases by 20% due to enabling disk cache.

Update Coordinator. We also measured the coordinator’s throughput (i.e.
the number of repair requests accepted in a period of time) with up to 512

Implementation and Evaluation of a Protocol 99

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Number of Clients in Parallel

PS Throughput (10k p-assertions/10min)

without disk cache
with disk cache

Fig. 4. Provenance Store Throughput

 0

 10000

 20000

 30000

 40000

 50000

 0 100 200 300 400 500 600T
hr

ou
gh

pu
t (

10
0

re
pa

ir
re

qu
es

ts
/1

0m
in

)

Number of Clients in Parallel

Coordinator Throughput (100 repair requests/10min)

Fig. 5. Coordinator Throughput

clients simultaneously sending repair messages to an update coordinator. To
save on the cost of network connection, 100 repair requests were sent to a co-
ordinator in a single message. Fig. 5 shows that a coordinator can accept up
to around 30,000*100 repair requests in a 10 minute period. This means there
were 30,000*100 recording failures in 10 minutes, which is unlikely to see in
applications.

4.2 Throughput Experiment with Failures

This experiment investigated: (1) the impact of contention for a coordinator on
a client’s recording performance4; (2) the tradeoff between resending a record
message to the same provenance store and to an alternative store.

We conducted two experiments where a single client and 128 clients kept
recording 10k p-assertions into one provenance store in a 10 minute period. Var-
ious failure rates (5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered. We
did not consider failure rates beyond 50% because it is not realistic [13]. An-
other provenance store was employed as the alternative store. One coordinator
was used in the experiments and 100 repair requests were sent in a single batch.
Since the more failures the more repair requests5, failure events were immedi-
ately generated without considering timeouts to maximize the number of repair
requests that could be sent to the coordinator within 10 minutes.

There exists a tradeoff between using the same provenance store or an al-
ternative one when resubmitting a record message. Retransmitting messages to
the same provenance store can tolerate transient failures, such as message loss.
However, if a provenance store has crashed and is to be recovered after a long
period of time, resending messages to the same store is not a good solution.
On the other hand, the use of an alternative store, though provides guaranteed
recording, ends up with an actor’s causelinks or another actor’s viewlink incor-
rect. This introduces additional cost of updating links. We compared the two
approaches in our experiments.
4 The impact of contention for a provenance store has been studied in [6].
5 Recall that a repair request is produced after a record message is successfully recorded

into an alternative store.

100 Z. Chen and L. Moreau

Fig. 6 shows the result in the experiment with a single client. The result was
averaged from five runs of the experiment. We have two observations. First,
when using the alternative store in each retransmission, up to about 20,000
repair requests are produced (because about 40,000 p-assertions are recorded
when failure rate is 50%). This means the coordinator, in the worst case, receives
200 batches, each containing 100 repair requests, from a single client within 10
minutes. According to coordinator’s throughput experiment in Section 4.1 and
the fact that the 200 repair batches are received by the coordinator from a single
client all across 10 minutes, we can imply that with about 100 clients, each having
its own provenance store and alternative stores, the impact of contention for a
coordinator on a client’s recording performance would be very small.

The second observation is that resending messages to the same provenance
store can record more p-assertions than to an alternative store, assuming that
only transient failures are present. This is because the use of an alternative store
requires extra actions to update links.

 0

 20000

 40000

 60000

 80000

 100000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Failure Rate (%)

Using same PS
Using alternative PS

Fig. 6. Throughput experiment (single
client)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

10
k

p-
as

se
rt

io
ns

/1
0m

in
)

Failure Rate (%)

Sending repair requests
Without sending repair requests

Using same PS

Fig. 7. Throughput experiment (128
clients)

Fig. 7 shows the result when 128 clients record p-assertions into one prove-
nance store in the presence of failures. This experiment considers the contention
for a provenance store as well as potential contention for a coordinator. We
also have two observations. First, communicating with the coordinator does not
affect total throughput. This implies that the contention for a coordinator is
negligible (It can be calculated that up to about 750 repair batches are sent to
the coordinator from 128 clients in 10 minutes.). Second, using an alternative
store, in general, results in more p-assertions recorded than using a same store
to resend p-assertions. This is because the use of an alternative store helps to
balance the load of recording p-assertions (especially when failure rate is 25%),
though introducing additional cost of updating links.

From these experiments, we have two conclusions. First, the coordinator is
scalable and the impact of its contention on a client’s recording performance is
very small or negligible. Since our implementation supports the use of multiple
coordinators, we believe the introduced component, update coordinator, does
not affect an application’s recording performance. Second, to achieve a better

Implementation and Evaluation of a Protocol 101

recording performance, an alternative store should be employed after resending
messages to a same provenance store has failed for certain times.

4.3 Benchmark Experiments

We now investigate the recording performance of a single actor without con-
sidering contentions. All the benchmark experiments were run with one client
recording p-assertions into one provenance store. All p-assertions were directly
created and submitted to a provenance store without using threading.

Failure-free Experiment. The experiment compares F-PReP to PReP in
a failure-free environment. We measured the time to record 10,000 10k
p-assertions. To minimize the impact of network connection overhead, 100 p-
assertions were shipped in a same record message. Measurements were taken
after recording a record message. Fig. 8 summarizes the record time. The graph
displays an average from ten trials. From the figure, we have two observations:

(1) The provenance store without using disk cache, i.e., in the setup using
PReP, periodically flushes 900 p-assertions from its operating system buffers
into disk. This means if the provenance store’s operating system crashes, up to
900 10k p-assertions may be lost.

(2) The average time to record 100 10k p-assertions is 198.8ms and 174.4ms
using F-PReP and PReP, respectively. Therefore, F-PReP has an overhead of
13.8% compared to PReP. We note that in an application, the impact of F-
PReP on the application’s performance is similar to that of PReP, as illustrated
later in the application experiment. This similarity benefits from the use of
multithreading to asynchronously record p-assertions.

Experiment with Failures. In Section 4.2, we measured a client’s recording
performance in the presence of failures in terms of throughput. However, we did
not consider the overhead of updating causelinks. Updating causelinks matters
only when a relationship p-assertion is to be recorded. In this experiment, we

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(m

ill
is

ec
on

ds
)

Number of P-assertions Recorded (Provenance Store Size)

Using F-PReP
Using PReP

Fig. 8. Time to record 100 10k p-assertions

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50

O
ve

rh
ea

d
(%

)

Failure Rate (%)

cause num = 10
cause num = 30
cause num = 50

cause num = 100

Fig. 9. Overhead of taking remedial actions

102 Z. Chen and L. Moreau

approximated the maximum overhead of taking remedial actions by measuring
the record time of relationship p-assertions.

In F-PReP, the more causes a relationship p-assertion has, the longer it takes
to check and update causelinks. Therefore, we increased the number of causes
from 10 to 100.

Given a number of causes, several tests were conducted with various failure
rates (5%, 25% and 50%). For each failure rate, the p-assertions about cause
interactions of a relationship p-assertion were recorded prior to measuring the
recording time for the relationship p-assertion itself. In order to measure the
actual cost of remedial actions by means of record time, failure events were
immediately generated without considering timeouts. We deployed another store
as an alternative store, which was used in the retransmission of a relationship
p-assertion. Repair requests were sent to a coordinator in batch sizes of 100.

Fig. 9 summarizes the results in terms of overhead. The measurements were
taken after recording 100 relationship p-assertions. We can observe a maximum
overhead of 10% for taking remedial actions, when compared to the record time
when no failure occurred. Broadly speaking, the overhead increases linearly with
the increase in failure rate. We note that since it takes much longer time to
record a relationship p-assertion with larger number of causes, the overhead of
taking remedial actions becomes relatively small in the settings with more causes.
Therefore, we observe the smallest overhead in the setting with 100 causes.

4.4 Application Experiment

This experiment aims to investigate F-PReP’s recording performance in a sci-
entific application, the Amino Acid Compressibility Experiment (ACE), which
has been detailed in [6]. ACE attempts to find possible new relationships be-
tween amino acids by investigating the information theoretic properties (e.g.,
information efficiency) of their computational representations.

ACE is chosen because of its general properties representing a range of work-
flow applications. First, it can be used to answer a range of provenance queries.
Second, it is high performance and fine grained, which implies that p-assertion
recording may be difficult. Therefore, the evaluation result obtained from this
difficult application can imply a worst case complexity of that obtained from a
large set of applications with less demanding requirements.

One run of ACE consisted of 20 parallel jobs6. Each job involved 54, 000 in-
teractions between seven actors7 in order to produce 4,500 information efficiency
values. Actors used five provenance stores to record process documentation and
these provenance stores were also employed as the alternative stores known by
each actor. The process documentation created by ACE was extremely detailed;

6 There is no dependency between jobs.
7 A local method is instrumented as a recording actor using F-PReP. Actors exchange

messages by means of method calls without network connections. They record p-
assertions documenting the messages they receive and send to contribute to the
process documentation of an information efficiency value.

Implementation and Evaluation of a Protocol 103

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

R
ec

or
di

ng
 O

ve
rh

ea
d

(%
)

Failure Rate (%)

timeout = 2s
timeout = 1s
timeout = 0s

Fig. 10. Recording overhead of F-PReP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50

F
re

qu
en

cy
 (

%
)

Failure Rate (%)

timeout = 2s
timeout = 1s
timeout = 0s

Fig. 11. The frequency of a queue in full
capacity

the steps used to compute each result were recorded. The recorded process doc-
umentation could effectively answer all the use case questions in [6].

Each job produced 108,000 record messages, each containing about 10Kb p-
assertions on average. To minimize network connection overhead, both record
messages and repair requests were sent in batches of 100 each. Multithreading
for creation and recording p-assertions was used in all tests. Various failure rates
(5%, 10%, 16%, 20%, 25%, 33% and 50%) were considered. When taking remedial
actions, a randomly selected alternative store was used in each resubmission.

We also investigated the impact of timeout on an application’s performance.
We studied three timeouts, 0s, 1s and 2s. The timeout, 0s, provides an extreme
case, where a failure event occurs (or is detected) very quickly.

The application runtime is the average of the runtime of all parallel jobs
from five runs of ACE. The runtime of an application without recording p-
assertions is 22:24 (in the format mm:ss). When no failure occurs, the application
runtime using PReP and F-PReP are 24:58 and 25:07, respectively. Therefore,
the recording overheads of PReP and F-PReP are similar (about 12%). This
benefits from the use of multithreading to asynchronously record p-assertions8.

The asynchronous approach allows an application’s p-assertions to be queued
before being shipped to a provenance store. F-PReP has provided a flow con-
trol mechanism in queues to avoid exhausting memory. P-assertions cannot be
queued until there is space in the queue. This may however affect the applica-
tion’s performance, since the application is postponed occasionally in order to
reduce the speed of creating p-assertions when the queue becomes full frequently.

Our results in Fig. 10 and Fig. 11 demonstrate the correlations among appli-
cation performance, failure rate, timeout and queue utilization. In Fig. 10, the
recording overhead slightly increases as the failure rate increases in all timeout
setups. However, it is sharply increased at certain points. Fig. 11 shows how
often a queue is in a full capacity when a new batch of record messages is to be
enqueued. It clearly reveals that the sharp increase in the recording overhead in
Fig. 10 results from the flow control mechanism.

8 Multithreading was also used in the tests of PReP.

104 Z. Chen and L. Moreau

From this application experiment, we can draw several general conclusions:

(1) Both PReP and F-PReP have similar recording overhead when there is no
failure (around 12% in ACE);
(2) If the recording queue’s size is large enough, F-PReP introduces a small
recording overhead in the presence of failures (below 20% in ACE);
(3) The timeout for receiving an acknowledgement from a provenance store can
affect an application’s performance. An appropriate timeout should be chosen.
(4) By monitoring the utilization of queues, we can detect if an application’s
performance has been severely degraded and then take actions to improve the
performance. For example, the local file store introduced in F-PSL can be au-
tomatically employed for temporarily maintaining p-assertions9, when the fre-
quency of the queue in maximum capacity reaches a certain threshold, e.g., 40%.

Query. After each run of ACE in the presence of failures, we also queried the
provenance stores to further verify the quality of documentation recorded by
F-PReP. The results showed an equal number of documentation records in the
stores and records produced in ACE. In addition, no isolated island or dan-
gling link is found, and distributed documentation of the process that led to an
information efficiency value can always be retrieved in its entirety.

5 Related Work and Conclusion

Several provenance frameworks have emerged in the past a few years, e.g., Karma
[12], PASOA [6]. Some workflow systems also provide provenance collection func-
tionalities, e.g., Kepler [2]. From an analysis of these works, the issue of recording
process documentation in the case of failures has not been discussed. Xu et. al.
[15] have proposed a framework to tolerate failures occurring in service-oriented
systems. Their approach relies on provenance information recorded in the pres-
ence of failures, which would benefit from F-PReP.

There is not much work on performance study related to provenance. Per-
formance evaluations of PReP are presented in [7,6]. A detailed comparison on
recording and querying performance between Karma and PReServ is seen in [12].
Extensive performance evaluations have been made on techniques to reduce the
amount of storage required for process documentation [3]. There has been a
performance study on PASS [10], an automatic provenance collection and main-
tenance storage system at the operating system level. None of these evaluations
considers failures.

In this paper, we have evaluated a protocol, F-PReP, for recording process
documentation in the presence of failures. In a failure-free environment, it has
similar impact on an application’s performance as PReP does. Although it in-
troduces overhead in the presence of failures, we believe the overhead is still
acceptable given that it can record high quality process documentation.

We are currently investigating how to create process documentation when
an application has its own fault tolerance schemes to tolerate application level
9 When using a local file store, the recording overhead was about 42% in our test.

Implementation and Evaluation of a Protocol 105

failures. In future work, we plan to make use of the process documentation
recorded in the presence of failures to diagnose failures.

References

1. Apache tomcat. User guide,
http://tomcat.apache.org/tomcat-5.5-doc/index.html

2. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: Moreau and Foster [9], pp. 118–132

3. Chapman, A., Jagadish, H.V.: Efficient provenance storage. In: SIGMOD Confer-
ence (June 2008)

4. Chen, Z., Moreau, L.: Recording process documentation in the presence of failures.
In: Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Methods,
Models and Tools for Fault Tolerance. LNCS. Springer, Heidelberg (accepted, 2008)

5. Gagliardi, F., Jones, B., Grey, F., Bgin, M.E., Heikkurinen, M.: Building an in-
frastructure for scientific grid computing: Status and goals of the egee project.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 363(1833), 1729–1742 (2005)

6. Groth, P.: The origin of data: Enabling the determination of provenance in multi-
institutional scientific systems through the documentation of processes. Phd thesis,
University of Southampton (2007)

7. Groth, P., Miles, S., Weijian Fang, S. C. Wong, K.-P. Zauner, and L. Moreau.
Recording and using provenance in a protein compressibility experiment. In: Pro-
ceedings of 14th IEEE International Symposium on the High Performance Dis-
tributed Computing (HPDC), pp. 201–208 (2005)

8. Kloss, G.K., Schreiber, A.: Provenance implementation in a scientific simulation
environment. In: Moreau and Foster [9], pp. 37–45

9. Moreau, L., Foster, I. (eds.): IPAW 2006. LNCS, vol. 4145. Springer, Heidelberg
(2006)

10. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-
aware storage systems. In: USENIX Annual Technical Conference, General Track.
USENIX, pp. 43–56 (2006)

11. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall, Englewood Cliffs (1999)

12. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance evaluation of the
karma provenance framework for scientific workflows. In: Moreau and Foster [9],
pp. 222–236.

13. Tierney, B., Schopf, J.: The cedps troubleshooting architecture and deployment on
the open science grid. Journal of Physics: Conference Series 78 (2007)

14. Wootten, I., Rajbhandari, S., Rana, O.F., Pahwa, J.S.: Actor provenance capture
with ganglia. In: CCGRID, pp. 99–106 (2006)

15. Xu, J., Townend, P., Looker, N., Groth, P.: Ft-grid: a system for achieving fault
tolerance in grids. Concurrency and Computation: Practice and Experience 20(3),
297–309 (2008)

http://tomcat.apache.org/tomcat-5.5-doc/index.html

Provenance and the Price of Identity

Adriane Chapman and H.V. Jagadish

University of Michigan, Ann Arbor, MI USA
{apchapma,jag}@umich.edu

Abstract. As developers acknowledge that provenance is essential, more and
more datasets are attempting to keep provenance records describing how they
were created. Some of these datasets are constructed using workflows, others cob-
ble together processes and applications to manipulate the data. While the prove-
nance needs are the same, the inputs and set of processes used must be kept, the
identity needs are very different. We outline several identification strategies that
can be used for data manipulation outside of workflows. We evaluate these strate-
gies in terms of time to create and store identity, and the space needed to keep
this information. Additionally, we discuss the strengths and weaknesses of each
strategy.

1 Introduction

Workflow systems [1,2,4,10,17,19,24,25,26] provide a framework for users to map out
a set of inputs and a series of processes to manipulate that input. In the First Provenance
Challenges [19], the given inputs were a set of brain images, and a set of reference brain
images. A series of processes such as “align warp” and “softmean” were arranged in
a particular order to output a set of graphics. As the workflow runs on a set of data,
provenance information captures the details of what happened to that data. In most of
these systems, particularly the ones which utilize myGRID [11,12,18,26], the notion
of data identity is firmly established and rigorously attended to. For example, in the
Taverna workflow system [26], every computed data product is given a Taverna identity.
This strict notion of identity in provenance is essential for data reuse and distribution of
resources.

However, as the world at large achieves a greater understanding for the need of main-
taining provenance, more and more hand-built systems are attempting to store prove-
nance. These systems and datasets are built outside traditional workflow frameworks.
Many times, these systems and datasets are a series of processes applied in a particular
order to a set of inputs, exactly as a workflow would, but without the rigid, and help-
ful but occasionally overwhelming, workflow framework. In other words, an “implicit”
workflow is followed to create a desired outcome. Some examples of these, hand-made
systems are:

– The creation of MiMI [15]: A set of classic protein interaction sources are trans-
formed, merged and annotated into one cohesive dataset.

– The creation of the Linguist Search Engine [23]: Sentences are culled from the web.
These sentences are then run through a series of parsing, tokenization and part of
speech tagging processes. The end result is a database of sentences that linguists
can query using sentence syntax.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 106–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Provenance and the Price of Identity 107

Transform

Create_q-gram_Index Create_q-gram_Index

Hash-JoinFilter

Modified_BLAST

Affymetrix_Probe_Set FASTA_Sequence_File

Workflow Inputs

Aligned_Sequences

Workflow Outputs

Fig. 1. The MANIPULATIONs used by miBLAST [16] to align probe and DNA sequences

A more in-depth example of a system, and how it strings together many processes
workflow-style, is explored below.

Example 1. miBLAST [16] finds sequence alignments between 25bp Affymetrix Probe
sets and published gene sequences, and is 10x faster than a traditional BLAST search.
Figure 1 shows a simplified breakdown of the processes used. First, probe sequence
data from an Affymetrix probe is transformed into a specific format. Then, a q-gram
index with specified word size is then built on the Query Set of Affymetrix probes. A
q-gram index, with specified word size, is also built for the Database Set of sequences.
These two indexes are then input into a Hash-Join Filter Module that outputs a set of (
Query Set, Database Set) pairs based on word overlap. This set of paired sequences are
then fed into a modified BLAST. Instead of doing a sequence comparison between every
Query Sequence and every Database Sequence, only sequence comparisons between
sequences in a (Query Set, Database Set) pair occur.

We would like to re-iterate that while the drawing in Figure 1 is the same as is used by
many workflow systems, miBLAST is not created using a traditional workflow. Instead
a human user, with a clear goal in mind, runs a set of data through a series of processes.

Many of the systems used to create a dataset are only interested in the final product,
and not on any intermediate data produced. If these systems wish to record provenance
information, what do they need to do? Obviously, there needs to be some storage sys-
tem, and some way, even if it is hand-entry, to capture the provenance information
[13]. A trickier topic that needs to be addressed by each provenance-capturer centers
around identity. How should they identify data products or intermediates, so that the
final provenance store can accurately trace what happened to a data item?

As stated earlier, traditional workflow systems have a rigid, fail-safe method of mak-
ing sure that all intermediate objects can be identified and located. Thus the final ver-
sion can easily trace through a series of manipulations and intermediate data products
if necessary. However, this notion of identity may be overkill for these smaller hand-
made systems that do not care about intermediate data reuse or resource distribution.

108 A. Chapman and H.V. Jagadish

In fact, the protocols performed by many of the traditional workflow systems may add
too much overhead to be ‘worth it’ for a smaller system dedicated to producing one
particular dataset.

At some level, there is no escaping the identification problem. For provenance to be
useful, there must be some way to uniquely identify objects, and trace their changes.
There do not exist universal identifiers for most objects. Even in the few that are
uniquely identified, such as protein sequence by RefSeq [22], there are still problems
with overlap of equivalent objects with different identifiers, or identifiers being depre-
cated. However, just because we must uniquely identify objects used does not mean that
we are limited to the strategies employed by traditional workflow systems, as long as
the provenance attached to a data object clearly and precisely determines the object’s
history. In the miBLAST example shown in Figure 1, since the output of the Trans-
form process is used multiple times, it is a good idea to uniquely identify all data items
produced. On the other hand, it makes less sense for every index entry, the data product
of Create q-gram Index, to be uniquely identified; the index is only used once, and
is easily re-created. Moreover, the provenance attached to each data item in the index
will uniquely identify the original sequence used to create it, thus clearly and precisely
determining the data item’s history.

In this work, we examine the costs and benefits that different identity strategies can
afford. We lay out the few assumptions and definitions we use in the rest of this work in
Section 2. Section 3 documents and explains the methods currently used when dealing
with data and identity. In Section 4, we evaluate these methods. Finally, we discuss
implications, related work and conclusions in Sections 5–7.

2 Foundations

Throughout this work, we call the basic logical data unit a data item. Data items may
be tuples in a relational table, elements in XML, objects of arbitrary granularity in an
OODB, etc. One data item may completely include, overlap with, or be totally disjoint
from another data item. A data item contains a set of features. A data item that is a
tuple contains features that are attributes; a data item that is an XML element contains
features that are child elements or attributes. Each feature is associated with a data
value. Features can be single or multi-valued. A dataset is comprised of a set of data
items.

We restrict our discussion of identity to the provenance found within systems that
perform a series of modifications upon a set of data; we do not look at annotation [3,27]
or lineage [21] system needs. Moreover, we wish to be more general than standard
explicit workflow systems [1,2,4,10,17,19,24,25,26], and also include systems that are
built by “implicit” workflows: workflows that refer to a series of steps executed by a
user with a specific goal in mind, but without using a workflow system. For example,
a series of relational database queries, or a set of batch files run over some data can be
considered an implicit workflow. Indeed, while drawn using a standard workflow rep-
resentation, miBLAST in Figure 1 is actually an implicit workflow, with the series of
processes held together by some hand-written wrapping code. For both explicit and im-
plicit workflow systems, we assume there is an input, a manipulation on that input, and

Provenance and the Price of Identity 109

an output. The output may then be used as input to another manipulation. Additionally,
we look at the effects of identity on fine-grained provenance, i.e. provenance that can
be attached at the dataset, data item or feature level.

A MANIPULATION is a basic unit of processing in a workflow, explicit or implicit.
Each MANIPULATION takes one or more datasets as input and produces a dataset as
output. We write M(DI1 , DI2 , ...) = DO to indicate that MANIPULATION M takes
datasets DI1 , DI2 , etc as input to generate data set DO as output.

In short, a MANIPULATION is a discrete component of a workflow, and uses a set
of specific features from the input dataset. Processes can be mapped into MANIPULA-
TIONs. For example, a MANIPULATION from the Provenance Challenge [19] is:

Manipulation 1. Softmean Takes a set of re-sliced images and headers, and pro-
duces a single image and header using the average of the files contents.

An instance of a MANIPULATION applied to a specific data item we call a manipulation.
We write m(dI1 , dI2 , ...) = dO , where dI1 ∈ DI1 , dO ∈ DO, etc. m is an instance of
M applied to specific data items dIx within dataset DIx . For example, an instance of
Create q-gram Index with a word size of four is applied to the probe probe1 results
in an index entry of {atgc, probe1}.

While a data item is the object in the final result set after all MANIPULATIONs have
been performed, we will utilize the following terms: a intermediate data item is a data
item that is created by a MANIPULATION and utilized by another MANIPULATION(s);
an input data item is the initial input from the base data into any MANIPULATION; the
set of intermediate and input data items is collectively referred to as involved data items.

Regardless of how the information is actually stored, the provenance records we are
dealing with contain the following information (for a data item in our running example):

Affy1

FASTA8

Object5

Object7

Object2

Create
q-gram In.

Create
q-gram In.

Object3
Hash-Join

Filter
Transform

Mod
BLAST

Object9

(1)

This can be stored as a series of RDF triplets, a relational table, etc. The important
point is that there is a record of the MANIPULATIONs that produced a data item, and it
is possible to trace back to the input data item(s).

Finally, we would like to separate the concerns of “storage” and “identity”, although
they are intricately entwined. “Storage” denotes that a data item has been saved and
stored for possible reuse. “Identity”, in this work, means that a data item has been
uniquely characterized and is immutable. If the data item then changes, a new identity
must be assigned. If a data item is stored, it must also have an identity in order to
retrieve it. However, data items not stored may also be identified for ease of provenance
notation.

3 Current Available Strategies

Within this work, we aim to explore a broad range of techniques to identify input and
intermediate data items within a provenance store. We believe there is no one universal

110 A. Chapman and H.V. Jagadish

‘correct’ way to tackle the problem of identifying involved data items. In an attempt to
highlight when and where each strategy should and should not be used, we look at four
very general classes of involved data item identification and any special algorithms they
may need.

3.1 Strong Identification

In a very coarse-grained approach, provenance is only associated at the file-level. Con-
sider a possible identification strategy that will work across many systems:
machine name + path name. Since every file by definition has a unique path name on a
unique machine, this strategy will uniquely provide identity for coarse-grained objects.

In many workflow systems such as [12,26] that are run with myGRID, every in-
volved data item, not just file, is given a unique identifier. For example, in [28] an LSID
of the form URI:urn:lsid:mygrid.ac.uk:data:49841:1 is assigned to every data product,
and describes: a prefix, an authority, the authority-specific data namespace, the object
identifier and the object version. This LSID is assigned by an authority who maintains
responsibility for ensuring that the data item is immutable. For instance, for the work-
flow in Figure 1 a unique id would be generated and stored with the data product for all
data products from transform, Create q-gram Index, etc. This level of data product
identification is necessary within a workflow context, where each MANIPULATION does
not pass data to the next MANIPULATION , but instead writes out data items, which the
next MANIPULATION is directed by the workflow system to take as input. Obviously, it
is possible to create a provenance record that both associates all MANIPULATIONs with
a data item, and can trace back to the source input data items.

3.2 Strong Identification with IDSet

In [28], the use of an IDSet identifier is discussed to facilitate the use of sets and ag-
gregation. In this system, data items are assigned an LSID as usual. Whenever an ag-
gregation step occurs, the output set of that aggregation is tagged with an ID containing
references to all of the ids of the component data items. In our running example, every
data product from every component would be identified and stored as discussed above.
The only difference would be for the data product of the Hash-Join Filter Module which
is an aggregation of entries from the Query Set and the Database Set. The id strategy in
this case would be a unique id for the (Q1, D1) pair, that would also contain the unique
identifiers of Q1 and D1. Again, because all intermediate data items are being IDed and
stored, it is possible to associate all MANIPULATIONs with a data item, and trace back
to the source input data items.

3.3 Intermittent Identification

Some results of MANIPULATIONs are only ever used by a unique subsequent MANIP-
ULATION. For example, the results of the Create q-gram Index component are only
every used by the Hash-Join Filter component. In this case, it may not be necessary to
identify and store every intermediate result. We can effectively store:

Provenance and the Price of Identity 111

Affy1

FASTA8

Object5

Create
q-gram In.

Create
q-gram In.

Object3
Hash-Join

Filter
Transform

Mod
BLAST

Object9

(2)

Of course, this does mean that if an intermediate result, Object2, is not id-ed and stored,
and is later needed by a different MANIPULATION, either the intermediate result must
be re-computed, or the MANIPULATION is out of luck. However, to preserve the ability
to trace back to input data items, we must be aware of certain restrictions.

Intervals between Identification. If there is a long line of MANIPULATIONs that take
in no other input but the output of a single previous MANIPULATION, then it may be
beneficial to store occasional, intermediate results. For every intermediate result stored,
there exists a closer point from which non-stored data items may be recomputed.

Aggregations. In [8], it is shown that in certain cases, some intermediate results must
be identified and stored for Aggregation results, if the provenance of a particular data
item is to be traced back through the aggregation step in ASPJ queries. Moreover, as
discussed later, if only intermittent data items are IDed and stored, if a MANIPULATION

later needs the results of a previous MANIPULATION whose data items have not been
stored, that MANIPULATION (and any MANIPULATIONs prior to it that have not also
been IDed and stored) must be re-run. Because an aggregation MANIPULATION can
take in data items that may have been produced by a series of MANIPULATIONs , such
as HashJoin Filter in Figure 1, the costs of re-running can be explosive. As such, a good
rule of thumb is to identify and store data items before use in an aggregation.

Workflows and Intelligent Users. If a workflow exists, then a simple traversal of the
workflow before running will determine all intermediate data items that must be identi-
fied and stored to be used in a subsequent MANIPULATION. For instance in our exam-
ple, it is readily apparent that the output of the transform component will be used not
only for Create q-gram Index but also the Modified BLAST MANIPULATION. These
data items should be identified and stored. If a workflow does not exist, all is not lost.
An organized user who has a clear goal in mind is almost as good as a workflow, and
is likely to know when a particular intermediate output will be reused. Unfortunately,
many users are disorganized and run scripts in a haphazard manner. Even worse, often
users who wish for intermediate data products are different from those who produced
the data. In these cases, intermittent identification may not be the best strategy.

3.4 Initial Identification

An even more extreme way to reduce the number of identifications made would be to
label just the input data items. All subsequent intermediate data items are never stored
or identified. For example, merely uniquely identifying the input probe and database
sequences. The same problem as in Intermediate Identification occurs, in which any
intermediate data item that is reused must be recomputed, as stated in re-running
below.

112 A. Chapman and H.V. Jagadish

3.5 Recreating Intermediate Data Items

The re-creation of intermediate results discussed below requires that MANIPULATIONs
be deterministic. Both Intermittent and Input Identification strategies may require inter-
mediate re-creation.

Reverse Transformations. Using reverse transformations we can work backwards from
a known, identified and stored data item to a prior non-identified or stored intermediate
result. [8,9] show that certain types of MANIPULATIONs can be traced backwards. In
particular Select-Project-Join queries require no intermediate results, while Aggregate-
Select-Project-Join (ASPJ) queries require selective intermediate results to be stored.
For more complicated MANIPULATIONs outside the realm of standard relational oper-
ators, a reverse transformation must be explicitly included by the user. Unfortunately,
since users rarely take the trouble to define a reverse transformation, we exclude the
possibility of using reverse transformations in our evaluation of strategies.

Re-running. As long as the input data items and MANIPULATIONs used are stored,
the MANIPULATIONs are deterministic and not dependent upon non-repeatable events
(such as occurring exactly at noon PST on Valentine’s Day 1956), then it is possible
to re-run all MANIPULATIONs until the needed intermediate data items are produced.
If there are intermediate data items that have been identified and stored, it is possible
to re-run using these checkpointed data items as a starting point. This option should
be carefully thought through before application, however. Consider a SUM over all
book prices in a database. If the database is updated prior to re-running, the re-created
intermediate results will be incorrect. In other words, re-running is only an option if
the MANIPULATION is deterministic and the data either a) is unchangable, or b) is
checkpointed at a previous, re-runnable step.

4 Evaluation

To illustrate the effects of data product identification and storage, we took a real work-
flow from [14] and, as shown in Figure 2, abstracted each MANIPULATION as: a) an
aggregator (aggregate); b) producing data items used only by 1 other MANIPULATION

(manipulation); c) producing data items used by multiple MANIPULATIONs (reuse). To
facilitate visualizing just how much identity choices matter, we have set up every ma-
nipulation in the workflow to output a constant number of data items. For every identi-
fication strategy, we run the workflow three times, changing the number of data items
used and output between 100, 1,000 and 10,000. Figure 3 contains the set of identity
strategies we explored.

Each manipulation was created as a black box with a fixed constant time. Because
we only wanted to test the identity component inherent in data manipulation, the ma-
nipulations themselves do nothing but sleep for the requisite amount of time and output
a new set of data items. An input set of data items is created and fed through the work-
flow in Figure 2. For Strong ID (S), the data products are sent to an external authority
after each manipulation. For Strong ID + IDSet (SS), the same practice occurs, but after

Provenance and the Price of Identity 113

aggregate1

manipulation1

reuse1

outputSet1

Workflow Outputs

manipulation2

aggregate2

manipulation4 manipulation5 manipulation6manipulation3

manipulation7 manipulation8 manipulation9 manipulation10 reuse2

aggregate3 manipulation11

aggregate4 manipulation12

manipulation13

aggregate5

inputSet1 inputSet2

Workflow Inputs

inputSet3 inputSet4

manipulation14

Fig. 2. The series and type of MANIPULATIONs
used in the experiments. This workflow is a ab-
straction of the one found in [14].

S Strong ID
SS Strong ID with IDSet
IW Intermittent ID Storage with prior

Workflow knowledge
IAI(2) Intermittent ID Storage with

pre-Aggregation ID Storage and
Interval ID Storage every 2 MANIPULATIONs

IAI(3) Intermittent ID Storage with
pre-Aggregation ID Storage and
Interval Storage every 3 MANIPULATIONs

IA Intermittent with Aggregation
I Input Stored Only

Fig. 3. The strategies employed in all ex-
periments, and their reference codes in the
Figures

every aggregation step, we also build a unique id for the aggregated data item contain-
ing all of the input data item ids. Then, we test a series of Intermittent identification
strategies. The first of these, Intermittent ID Storage with a known workflow (IW), acts
as if a complete workflow is known in advance, and thus any data items that are used in
an aggregation, or will be used in multiple MANIPULATIONs are identified and stored.
The next three strategies use Intermittent ID Storage, but without advance workflow
knowledge. IAI(2) and IAI(3) store object identification before every aggregation MA-
NIPULATION and after every two or three MANIPULATIONs respectively. Finally, Input
only ID storage (I) only identifies and stores the input objects.

All experiments were run on a Dell workstation with Pentium 4 CPU at 2GHz with
640MB RAM and 74.4GB disk space with Windows XP. The algorithms were imple-
mented as a Java application. The external object authority was implemented using a
mySQL database.

4.1 Pros and Cons

First, we would like to explore some of the pros and cons of each approach in a little
more detail. Table 1 contains a breakdown of how each strategy can handle specific
situations. With the proper provenance information, all strategies are able to trace back
to the input data items. If the provenance structure contains:

Affy1

FASTA8
Create

q-gram In.

Create
q-gram In.

Hash-Join
Filter

Transform

Mod
BLAST

Object9

(3)

114 A. Chapman and H.V. Jagadish

Table 1. The abilities of each general identity strategy

Strong Strong & IDSet Intermittent Input Only
Can trace back to original source data Yes Yes Yes Yes

Intermediate Data Items can be reused by other applications Yes Yes Maybe No
Processes can be distributed across machines Yes Yes Maybe No

Lightweight Implementation No No Yes Yes

In other words, for every data item, there must be an explicit statement about the input
data items, even if records of intermediate data items are not maintained. This is a
very different approach than the one found in [8,9] in which the input data items are
computed, not stored.

The Strong identification strategies do have a major leg-up over the other techniques:
sharing. Because every intermediate data item is stored, these data items can be reused
by other MANIPULATIONs within an implicit workflow and other applications. More-
over, because every data item is uniquely identified, it is easier to distribute running the
various MANIPULATIONs of an implicit workflow over many different machines.

However, the Intermediate and Input identification strategies do have one significant
strength over the Strong approaches: ease of implementation. Consider how many of the
datasets created via implicit workflows are actually made. A dataset is ingested, and pro-
cess1 is applied to it. The results are written to a file. That file is then read in by process2
and new results are written to a file. etc. This is essentially the Input Only Identification
strategy. While the data items are stored between MANIPULATIONs in this scenario, they
are not identified. Changing this habit and forcing developers to constantly call an ex-
ternal authority for identification is an uphill battle. However, adding an identification
step at a few points, such as ingestion, is an easy and lightweight step to take.

4.2 Time and Space

Figure 4 shows the effects of choice of identification strategy on provenance cap-
ture time and storage space. The difference between Strong techniques (S), (SS) and

S

S
S

IW

IA
I(

2)

IA
I(

3) IA I

0

20,000

40,000

60,000

80,000

100,000

Size (kB)

Strategy

Storage for Identity

(a)

S

S
S

IW

IA
I(

2)

IA
I(

3) IA I

0

500

1000

1500

2000

2500

Time (s)

Strategy

Identity Effect on Time

(b)

100

10,000

1,000

(c)

Fig. 4. The effect of Identity Strategy on space and time while running the workflow found in
Figure 2. (a) The size of the provenance store for each strategy. (b) How long each identification
strategy takes. (c) Legend for the size of the input set. i.e. every MANIPULATION in Figure 2
takes in 100, 1,000, or 10,000 objects.

Provenance and the Price of Identity 115

0

500

1000

1500

2000

2500

3000

3500

4000

S SS IW IAI(2) IAI(3) IA I

Strategy

T
im

e
(s

)

(a)

0

5000

10000

15000

20000

25000

30000

S SS IW IAI(2) IAI(3) IA I

Strategy

T
im

e
(s

)

(b)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

S SS IW IAI(2) IAI(3) IA I

Strategy

T
im

e
(s

)

(c)

Fig. 5. The time for each identity strategy, particularly non-strong strategies, is related to how
long it takes to re-run a manipulation. Manipulation execution times are set to a constant of (a) 1
minute, (b) 10 minutes, and (c) 1 hour.

Intermittent techniques, (IW), (IAI(2)), (IAI(3)), (IA), is expected since more effort is
needed to log every data item produced for the Strong techniques. Unexpected, however,
is the size of the difference. For the workflow in Figure 2, utilizing strong techniques is
almost twice as expensive in time and space as a basic Intermittent approach. Thus for
users and applications that do not require reuse of intermediate data, Intermediate and
Input identification strategies are extremely attractive.

Additionally, we would like to point out that the choice of Intermediate identifica-
tion strategy is important, and is dependent upon the implicit workflow. In Figure 4,
we show two Intermediate identification options that store data item identity after set
intervals, IAI(2) and IAI(3). In theory, IAI(3) should be faster and smaller to use than
IAI(2). However, given the workflow in Figure 2 with which these strategies were uti-
lized, the opposite is the case in both time and space. A quick glance at the workflow
shows an Aggregate MANIPULATION almost every two MANIPULATIONs . Thus, for
this workflow, IAI(2) is almost equivalent to IA. Unfortunately, because IAI(3) blindly
stores results every three MANIPULATIONs , it is out of sync with the automatically
stored pre-aggregation identities, and many more identities are stored.

However, this is not the entire story. The numbers reported in Figure 4 were created
using MANIPULATIONs that were instantaneous. This is rather deceptive, and fairly
unlikely. In Figure 5, we show how each strategy performs with different length MA-
NIPULATIONs. With fast MANIPULATIONs , on the order of 1 minute or less, Interme-
diate and Input Strategies do much better than the Strong Strategies. However, as the
MANIPULATIONs get longer and near 10 minutes, the difference is less striking. When
the MANIPULATIONs take an hour to run, the Strong Strategies are the clear winners
with respect to time. This trend is because of the need to occasionally re-run MANIP-
ULATIONs to get intermediate results for Intermediate and Input Strategies. Whenever
a data item is reused by a different MANIPULATION in the Strong Strategies, it can be
easily retrieved. However, in the Intermediate and Input strategies, the data item cannot
be reused without being recomputed.

5 Discussion

Until now, we have merely explored the types of identification strategies available to
users of implicit workflow systems. However, there are several open issues about using

116 A. Chapman and H.V. Jagadish

these identification strategies. While there are a myriad of possible topics, we discuss
two distinct problems and lay out possible solutions below.

5.1 Identification within an Implicit Workflow System

Consider that the problem of identification arises outside a workflow management sys-
tem. As such, the implicit workflow is typically a cobbled together set of scripts, or
worse, a user hitting “run”, analyzing results, copying data, hitting “run” on another
program, etc. How do you enforce proper data identification in these scenarios?

This is a difficult problem that requires either the automation of identification or a
change in user behaviour. While a user may be willing to change enough to recognize
that keeping proper identification is important, it is naı̈ve to expect users to become
organized, identifying, data custodians overnight. As such, some mechanism must be
put into place that automatically provides data identification for disorganized users.

The logical answer to this problem is to teach the user how to use a workflow man-
agement system. Again, breaking all the bad-computation habits may be asking too
much from the poor user. Is there a middle ground? A possible sketch would be a mod-
ified ‘terminal’ (e.g. xterm, terminal, dos-prompt), that looks the same as the user’s
default execution environment, but quietly keeps track in the background of the scripts
run. Any identification strategy discussed above could be implemented behind such a
system, transparent to the user.

5.2 Identification Across Disparate Workflow Systems

A separate problem occurs when dealing with data across multiple systems that were
not designed to work together. For instance, a user wishes to integrate data produced
through multiple distinct workflow systems. What identification strategy should be em-
ployed? While we see multiple possible methods for dealing with this, we shall discuss
just one.

While using multiple workflow systems, if integration and homogeneous identifica-
tion is the goal, then a possible strategy is utilizing one system as the “master” identifier.
Anything from another system that is semantically or syntactically the same could be
mapped to the same identifier in the “master” system. Anything from another system
that cannot be mapped can be given a ‘new’ identification by the “master” system. Ob-
viously there are pros and cons to this approach. We merely wish to point out an open
problem, and provide the base for a discussion on it.

6 Related Work

Provenance needs, applications and types are incredibly diverse. There has been work
studying lineage [7,8,9,21], annotations [3,27], capturing provenance [5,20] and a range
of forms, events, etc. Moreover, there has been work in creating provenance stores dur-
ing workflow execution [1,2,4,10,17,19,24,25,26]. The Provenance Challenge [19] ex-
plored the requirements these workflow systems needed to adhere to in order to produce
useful provenance stores.

Provenance and the Price of Identity 117

Identity and Provenance needs in a workflow system were explored in [28]. This
work built IDSet on top of the Taverna [26] workflow system. The workflow systems
[1,2,4,10,17,19,24,25,26] are reliant upon the Strong identification strategy. This al-
lows them to reuse intermediates data items and easily go back to intermediate states.
Additionally, it enables them to distribute processes across the grid [11,12,18,26] if ap-
plicable. Moreover, [2] explore identification strategies for entries in a cache that allow:
data sharing, correct computation of the full object, and re-execution of only changed
steps.

Finally, [5,6] discuss enabling users to collect provenance records of their actions.
By requiring users to utilize a particular tool, information is captured about user actions
on provenance-unaware systems. This is similar to the strategy outlined in Section 5.1.

7 Conclusions

In this work, we focus on the provenance generated by “implicit” workflows; workflows
created by a user with a specific goal, but outside a workflow framework. In particular,
we study the needs for identification of data items in these systems. Unlike workflow
systems [1,2,4,10,17,19,24,25,26] that are required to identify and keep all intermediate
data items, many systems, [15,16,23] for example, do not need intermediate data. It is
still imperative that they maintain provenance, and the provenance can be used to trace
back to a data item’s origin, but there is no need to keep intermediate data items.

We explore a set of identification strategies: Strong, Strong with IDSet, Intermittent
and Input Only. Each of these identification strategies have strengths and weaknesses
in terms of intermediate support, provenance capture time and storage space. We show
that Strong identification is preferred not only for workflow style systems, but also for
systems with long-running processes, where the “do over” time is large. On the other
hand, we outline cases in which Intermittent and Input Only identification strategies
would be preferable.

Acknowledgments

Thanks to Luc Moreau for his correspondence, which inspired this work. This work
was supported in part by NSF grant number IIS 0741620 and by NIH grant number
U54 DA021519.

References

1. Barga, R.S., Digiampietri, L.A.: Automatic capture and efficient storage of escience experi-
ment provenance. In: Concurrency and Computation: Practice and Experience (2007)

2. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., Vo, H.: VisTrails:
Enabling interactive multiple-view visualizations. In: IEEE Visualization, pp. 18–26 (2005)

3. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system
for relational databases. In: VLDB, pp. 900–911 (2004)

4. Bowers, S., McPhillips, T., Wu, M., Ludäscher, B.: Project histories: Managing data prove-
nance across collection-oriented scientific workflow runs. In: Cohen-Boulakia, S., Tannen,
V. (eds.) DILS 2007. LNCS (LNBI), vol. 4544, pp. 122–138. Springer, Heidelberg (2007)

118 A. Chapman and H.V. Jagadish

5. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
ACM SIGMOD, pp. 539–550 (June 2006)

6. Buneman, P., Chapman, A., Cheney, J., Vansummeren, S.: A Provenance Model for Manually
Curated Data. Provenance and Annotation of Data edition. LNCS, pp. 162–170. Springer,
Heidelberg (2006)

7. Buneman, P., Khanna, S., Tan, W.-C.: Why and Where: A characterization of data prove-
nance. In: ICDT, pp. 316–330 (2001)

8. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a data warehousing
environment. In: ACM Transaction on Database Systems, TODS (2000)

9. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. In: VLDB,
pp. 41–58 (2001)

10. Digiampietri, L., Medeiros, C., Setubal, J.: A framework based on web service orchestration
for bioinformatics workflow management. Genet. Mol. Res. 4(3), 535–542 (2005)

11. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: The virtual data grid: a new model and architecture
for data-intensive collaboration. In: CIDR (2003)

12. Groth, P., Miles, S., Moreau, L.: PReServ: Provenance recording for services. In: Proceedings
of the UK OST e-Science second All Hands Meeting 2005, AHM 2005 (2005)

13. Groth, P., Miles, S., Moreau, L.: A Model of Process Documentation to Determine Prove-
nance in Mash-ups. In: Transactions on Internet Technology (TOIT) (2008)

14. Howison, J., Wiggins, A., Crowston, K.: eResearch workflows for studying free and open
source software development. In: IFIP 2.13 (2008)

15. Jayapandian, M., Chapman, A., Tarcea, V.G., Yu, C., Elkiss, A., Ianni, A., Liu, B., Nandi,
A., Santos, C., Andrews, P., Athey, B., States, D., Jagadish, H.V.: Michigan Molecular In-
teractions (MiMI): Putting the jigsaw puzzle together. Nucleic Acids Research, D566–D571
(January 2007)

16. Kim, Y.J., Boyd, A., Athey, B.D., Patel, J.M.: miBLAST: Scalable evaluation of a batch of
nucleotide sequence queries with blast. Nucleic Acids Research 33(13), 4335–4344 (2005)

17. McPhillips, T., Bowers, S., Ludäscher, B.: Collection-oriented scientific workflows for inte-
grating and analyzing biological data. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS
2006. LNCS (LNBI), vol. 4075, pp. 248–263. Springer, Heidelberg (2006)

18. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and using prove-
nance in e-science experiments. Journal of Grid Computing 5(1), 1–25 (2007)

19. Moreau, L., Ludäscher, B., et al.: The First Provenance Challenge. Concurrency and Com-
putation: Practice and Experience (2007), http://twiki.ipaw.info/bin/view/
Challenge/SecondProvenanceChallenge

20. Muniswamy-Reddy, K.-K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware stor-
age systems. In: USENIX Annual Technical Conference, pp. 43–56 (2006)

21. Mutsuzaki, M., Theobald, M., et al.: Trio-One: Layering uncertainty and lineage on a con-
ventional DBMS. In: CIDR, pp. 269–274 (2007)

22. Pruitt, K.D., Tatusova, T., Maglott, D.R.: NCBI reference sequence (RefSeq): a curated non-
redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research,
D501–D504 (2005)

23. Resnik, P., Elkiss, A., Lau, E., Taylor, H.: The web in theoretical linguistics research: Two
case studies using the linguist’s search engine. In: 31st Meeting of the Berkeley Linguistics
Society, pp. 265–276 (February 2005)

24. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.: Querying and re-using workflows
with vistrails. In: SIGMOD (2008)

25. Simmhan, Y., Plale, B., Gannon, D.: A framework for collecting provenance in data-centric
scientific workflows. In: ICWS (2006)

http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge
http://twiki.ipaw.info/bin/view/Challenge/SecondProvenanceChallenge

Provenance and the Price of Identity 119

26. Taverna (2008), http://taverna.sourceforge.net/
27. Wang, Y.R., Madnick, S.E.: A polygen model for heterogeneous database systems: The

source tagging perspective. In: VLDB, pp. 519–538 (1990)
28. Zhao, J., Goble, C., Stevens, R.: An Identity Crisis in the Life Sciences. Provenance and

Annotation of Data edition. LNCS, pp. 254–269. Springer, Heidelberg (2006)

http://taverna.sourceforge.net/

Towards Provenance-Enabling ParaView

Steven P. Callahan1,2, Juliana Freire1,2, Carlos E. Scheidegger2,
Cláudio T. Silva1,2, and Huy T. Vo2

1 VisTrails, Inc.
2 Scientific Computing and Imaging Institute, University of Utah

{stevec,cscheid,csilva,hvo}@sci.utah.edu, juliana@cs.utah.edu

Abstract. Currently, there are no general provenance management sys-
tems or tools available for existing applications. Our goal is to develop
provenance technology that is flexible and adaptable to the wide range of
requirements of software applications. By consolidating provenance infor-
mation for a variety of applications, we can provide a uniform environment
for querying, sharing, and re-using provenance in large-scale, collabora-
tive settings. In this paper, we describe our framework for provenance-
enabling existing applications. Our approach is applicable to a variety of
software systems that are process driven. As a concrete example, we de-
scribe a working plug-in for an open source application in scientific visu-
alization.

1 Introduction

Computers are now extensively used throughout science, finance, engineering,
and medicine. Advances in data mining, computational geometric modeling,
imaging, and simulation allow researchers, engineers, and artists to build increas-
ingly complex models and generate unprecedented amounts of data. Hedge funds
use simulations to construct accurate risk and return assessments for portfolios.
Oil & Gas companies heavily depend on simulations for various tasks, including
exploration and pipeline transport. Clinical medicine has become increasingly
dependent on procedures that include simulations from data acquired directly
from the patient through magnetic resonance imaging (MRI), Computed Tomog-
raphy (CT), and other computerized exams. Even areas of the entertainment
industry have been greatly impacted by the use of computers to design complex
computer models and scenes for movies and video games. A major problem that
these disciplines face is the management of this data and the processes that were
used to generate the data.

Currently, ad-hoc approaches for capturing the provenance of exploratory
computational tasks are used in the scientific and engineering community. For ex-
ample, laboratory notebooks are commonly used to track changes in parameters
or processes. However, ad-hoc approaches have serious limitations. In particu-
lar, scientists and engineers need to expend substantial effort managing data and
recording provenance information. The absence of detailed provenance makes it
hard (and sometimes impossible) to reproduce and share results, to solve prob-
lems collaboratively, to validate results with different input data, to understand

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 120–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Provenance-Enabling ParaView 121

the process used to solve a particular problem, and to re-use the knowledge in-
volved in the data analysis and generation processes. In addition, it limits the
longevity of the data products—without precise and sufficient information about
how the data product was generated, its value is greatly diminished. The grow-
ing demands for compliance to varying industry and governmental regulations
and standards also requires detailed audit trails of data sources and workflows
(tasks) executed.

Originally motivated by the needs in the scientific domain, the VisTrails prove-
nance technology [3] and the infrastructure it provides is general and applicable
to a wide range of applications that involve complex computational processes.
Whereas our initial development focused on provenance management for tasks
developed within a workflow system, our goal in this paper is to show that the
same infrastructure can be used to provenance-enable existing applications, with-
out requiring them to be integrated within a workflow system. One of the major
advantages of this approach is that users will be able to leverage provenance
using the same applications and environments that they are used to.

1.1 Related Work

There are important distinctions that set our work apart from previous ap-
proaches to provenance. Notably, our focus is on interactive applications that
provide graphical user interfaces. Although there has been previous works on
provenance-enabling such applications, these have proposed application-specific
solutions (see e.g., [1]). In contrast, the plug-in infrastructure is general and can
be integrated with any application that exposes its undo-redo stack.

There has also been work proposing general provenance solutions that can
be combined with arbitrary systems. The Earth System Science Workbench
(ESSW) uses scripts to wrap legacy systems so that their inputs and outputs can
be transparently gathered [4]. The Provenance-Aware Service-Oriented Architec-
ture (PASOA) was designed to support provenance capture in a service-oriented
environment [5]. It requires that services be instrumented to produce assertions
which detail, for example, how different services interact and which data item
they manipulate and derive. Like PASOA and ESSW, our approach also requires
applications to be instrumented, however the purpose of this instrumentation is
to obtain access to existing applications’ undo-redo capabilities. Furthermore,
the approaches used in PASOA and ESSW were designed for services and batch-
oriented programs. In contrast, our infrastructure can be combined with both
interactive and batch oriented system.

2 A Process-Driven Provenance Model

VisTrails introduced a change-based model to capture provenance and display
it in a history tree called a vistrail [2]. Here we describe a generalized version of
this provenance model that is adaptable to a variety of settings.

122 S.P. Callahan et al.

Fig. 1. The version tree stores the complete history of the actions performed by a user.
Each node corresponds to a state in the application, the edges show how the actions
are ordered to achieve these states.

2.1 Change-Based Provenance

In an application, as the user makes changes to the state of the application
through a user interface, the provenance mechanism records those changes. In-
stead of storing a set of application states, the change-based model stores the
operations, or actions, that are applied to the application (e.g., slicing a volume
or editing a parameter in a scientific visualization system). This representation
is both simple and compact—it uses substantially less space than the alterna-
tive of storing multiple instances or versions of the state. In addition, it enables
the construction of an intuitive interface that allows users to both understand
and interact with the history of the application states through these changes. A
tree-based view allows a user to return to a previous version in an intuitive way,
to undo bad changes, to compare different workflows, and to be reminded of the
actions that led to a particular result. Figure 1 shows an example of a vistrail
created through computational workflows.

The change actions are represented as a rooted tree V T in which each node
corresponds to a version of the application state, and each edge between nodes
dp and dc, where dp is the parent of dc, corresponds to the action applied to dp

which generated dc. This is similar to the versioning mechanism used in Darcs [8].
More formally, let DF be the domain of all possible states of the application,
where ∅ ∈ DF is a special empty state. Also, let x : DF → DF be a function
that transforms one state into another, and D be the set of all such functions.
A vistrail node corresponding to a workflow d is constructed by composing a
sequence of actions, where each xi ∈ D:

Towards Provenance-Enabling ParaView 123

d = (xn ◦ (xn−1 ◦ . . . ◦ (x1 ◦ (∅))...))

This change based representation is general in that the actions can be captured
at different granularities and they can be made to match the semantics of a
specific application. In particular, it can be readily applied to create Provenance
Explorer plug-ins for existing applications.

3 Capturing, Representing, and Re-playing Provenance

Our change-based representation of provenance is easily incorporated into exist-
ing applications that provide a mechanism for controlling the actions that are
being performed by a user via a graphical interface. The model-view-controller
paradigm [6] is an architectural pattern used in software engineering that decou-
ples the user interface (view) from the domain-specific logic and access (model)
using an event processor (controller). This software engineering paradigm is fre-
quently used in large projects to increase the flexibility and reuse of code. As
the user interacts with a view that is generated based on the current model, a
registered handler or callback is triggered in the controller. The controller then
updates the model so that the view can be recreated. Since all the events that
are generated by the application pass through one event handler, capturing and
replaying then is performed either by modifying this controller directly, or by
intercepting and fabricating the events via the callback mechanism.

Our Provenance Explorer is an application that runs along-side the main
application. Provenance is captured during user interactions with the main ap-
plication using a custom solutions for the application. This provenance is passed
to and from the Provenance Explorer via a Communication API. The details of
these steps are provided in more detail in this section.

3.1 Capturing Actions

The implementation of the action-based provenance in the VisTrails system is
specific to the actions that occur while creating and editing workflows in the
VisTrails Builder. These actions include adding and deleting modules and con-
nections, and changing parameter values. For other applications, our Provenance
Explorer needs to be able to handle a more general action type. Conceptually,
the model supports actions at varying granularities or semantic levels, from basic
mouse button presses to complex sets of operations (such as copying and pasting
a set of actions). The level of granularity that an action may take needs to be
application specific.

In general, applications that take advantage of the model-view-controller
paradigm have a mechanism for storing and re-using actions: the undo and redo
operations. In a scientific visualization system, for instance, with undo a user
should be able to walk through the steps they took to create an image, albeit
backwards. Although undo does not capture the complete exploration process
nor does it persist across sessions, it provides valuable context for granularity of
actions. The designers of the software have already determined the granularity

124 S.P. Callahan et al.

of actions by designing the undo stack. The undo stack of an application may
individually capture single mouse events or keyboard strokes if they are needed
to recreate of the state. Furthermore, interactions performed by the user may
cause multiple actions to be performed, which the undo stack will store as one
step. We capture actions at the same granularity in which the undo stack does.
In fact, in practice it is simpler to capture actions as they are being added to
the undo stack instead of where they are handled by the controller. Obviously,
this depends on the completeness and availability of the undo/redo mechanism
in the application.

In some applications, access to the controller is limited, the undo mechanism
captures state instead of actions, or the undo mechanism does not provide the
actions that are required for full reproducibility. In these cases, it is necessary to
compute actions based on the previous and next states, sp and sn, respectively.
Using the application’s model of the state, the difference sp − sn can easily be
computed as the set of changes that take sp to sn. These changes can then be
stored much more efficiently and uniformly as actions in our provenance model.

3.2 Representing Actions

Once the actions have been captured from the application, we use our Communi-
cation API to pass them on to our Provenance Explorer, which is an independent
application running on its own thread. The Communication API uses sockets to
send and retrieve actions from the application’s controller to Provenance Ex-
plorer’s controller. These actions that move across the socket are simply strings
that represent the commands that have been captured or are to be executed by
the main application. When the Provenance Explorer receives a new command,
it creates an action that contains the command along with additional meta-
data that is either automatically and manually created. Automatically created
metadata includes the date and time the command was executed, the user who
created it, a unique identifier for the action, and the identifier for the action
that preceeds it. Other metadata such as annotation notes or a tag to label the
action can be added by the user in the Provenance Explorer interface.

The set of actions stored in the Provenance Explorer, or vistrail, is represented
in XML as is described by the following partial schema given in a terse form:

type Vistrail =
vistrail [@version, @id, @name, Action*, annotation?]

type Action =
action [@date, @user, @id, @parentId, @command, tag?,

annotation?]

This is a more general form of the original VisTrails schema [2] that was used
to capture the limited number of actions that are available within the VisTrails
Builder (i.e., adding/deleting workflow modules, adding/deleting connections,
and changing parameter values). This schema has also been extended to store
vistrails in a variety of available relational database management systems as well.

Towards Provenance-Enabling ParaView 125

Visually, a vistrail is shown in the Provenance Explorer as a history tree of
actions that can be tagged, annotated, and queried using our graphical user
interface.

3.3 Re-playing Actions

When the user interacts with our history tree by selecting a version, the Prove-
nance Explorer uses the Communication API to send actions back to the main
application. The set of actions to reproduce a version in the tree are serialized
by compiling all the commands in each action from the top of the tree to the
current selected node. The main application receives these actions, clears the
current state, and uses the actions either as a series of events that are executed
by the controller or as direct updates to the model state. By returning to a pre-
vious version in the history tree, then making changes in the main application,
it is possible to branch the tree. In this way, the actions performed by a user are
never lost, even though they would be with a normal undo stack.

During interaction with the main application, the user may still want to use
undo/redo as is provided by that application. It is important to allow this in-
teraction so that we minimize disruption to the normal workflow of the user.
The undo and redo operations can be hijacked so that they trigger the current
version in the Provenance Explorer to change by walking up (undo) or down
(redo) the history tree. This allows a complete history tree of the provenance to
be captured even if the user has visual component of the Provenance Explorer
interface disabled.

4 Case Study: ParaView

ParaView [7] is an open-source, multi-platform application designed to visualize
data sets of size varying from small to very large. The project started in 2000
as a collaboration between Kitware and Los Alamos National Laboratories. The
current version, ParaView 3.0, was released in May 2007. ParaView is quite
popular, and is downloaded over 10,000 times a month. The system is used by
researchers and engineers in both industry and academia.

Figure 2 shows ParaView together with the Provenance Explorer, transpar-
ently capturing the complete exploration process. This Provenance Explorer was
implemented by inserting monitoring code in ParaView’s undo/redo mechanism,
which captures changes to the underlying pipeline specification. Essentially, the
action on top of the undo stack is added to the vistrail in the appropriate place,
and undo is reinterpreted to mean “move up the version tree”. The current
version of the Provenance Explorer captures all of the changes to the pipeline.
However, some changes of state are not related to the pipeline and ParaView
does not store these in the undo stack. For example, the position of the camera
is not stored there. In fact, it is quite common for 3D applications to not store
navigation in the undo/redo stack (just like word processors typically do not
store which page the user is looking at in undo stacks). In this sense, it would

126 S.P. Callahan et al.

Fig. 2. A screenshot of ParaView (left) with the provenance captured by VisTrails and
displayed as a version tree in a separate window (right). This preliminary prototype
taps into ParaView undo/redo mechanism to capture the exploration process.

arguably be incorrect to interpret view changes as actions that generate new
versions.

If, however, capturing these interactions is really required, more sophisticated
approaches are necessary. The latest version of ParaView introduced “Look-
marks”, which capture the complete underlying pipeline of a visualization. Unlike
in VisTrails, however, Lookmarks need to be manually set by the user during the
exploration process. Lookmarks can be serialized, allowing a visualization to be
reproduced at a later time. This mechanism for capturing the pipeline and state
of the application exposes a wider class of actions for our Provenance Explorer.
We are currently implementing a version of the infrastructure that combines the
undo/redo stack inspection with Lookmark information, in order to capture this
potentially missing information.

5 Discussion

In the VisTrails system, provenance is used for more than version tracking and
persistence. Specifically, there are some operations on particular version that
can be cast as operations over the set of stored actions. For example, VisTrails
allows users to compare two different workflows by looking at a sequence of
actions that takes one workflow into the other [3]. This sequence of actions is
presented analogously to a workflow, which allows users to look at the result in
the same way they look at regular workflows. It would be interesting to extend
this principle to third-party applications. For example, the difference between

Towards Provenance-Enabling ParaView 127

two visualizations in ParaView should be presented as a single visualization,
superimposing and highlighting the differences between the two versions.

VisTrails also allows users to build workflows by analogy [9]. The technique
involves identifying the differences between two workflows a and b and remapping
this sequence of actions so it can be applied to a different workflow c. It originally
involves computing an approximate graph matching between a and c. In a general
case, the remapping would have to be specifically tailored for each application,
but the general algorithm would still apply.

Finally, our broader goal is to provide a uniform platform for capturing, query-
ing, and reusing provenance from many applications. To this end, we intend to
develop the infrastructure that allows other developers to quickly and easily
incorporate our Provenance Explorer as a plug-in to their own applications.

Acknowledgments. This work was funded by the Department of Energy grant
FG02-08ER85157 and SciDAC (VACET and SDM centers), the National Sci-
ence Foundation (grants IIS-0746500, CNS-0751152, IIS-0713637, OCE-0424602,
IIS-0534628, CNS-0514485, IIS-0513692, CNS-0524096, CCF-0401498, OISE-
0405402, CCF-0528201, CNS-0551724, IIP-0712592), and IBM Faculty Awards
(2005, 2006, 2007, and 2008).

References

1. Becker, R.A., Chambers, J.M.J.M.: Auditing of data analyses. SIAM Journal of
Scientific and Statistical Computing 9(4), 747–760 (1988)

2. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: Managing the
Evolution of Dataflows with VisTrails (Extended Abstract). In: IEEE Workshop on
Workflow and Data Flow for Scientific Applications, SciFlow (2006)

3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Man-
aging rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.) IPAW
2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

4. Frew, J., Bose, R.: Earth system science workbench: A data management infras-
tructure for earth science products. In: Proceedings of SSDBM, pp. 180–189 (2001)

5. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An ar-
chitecture for provenance systems. Technical report, ECS, University of Southamp-
ton (2006)

6. Krasner, G.E., Pope, S.T.: A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. Journal of Object-Oriented Programming 1,
26–49 (1988)

7. Paraview, http://www.paraview.org
8. Roundy, D.: Darcs, http://abridgegame.org/darcs
9. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and creat-

ing visualizations by analogy. IEEE Transactions on Visualization and Computer
Graphics 13(6), 1560–1567 (2007)

http://www.paraview.org
http://abridgegame.org/darcs

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 128–135, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Application of Provenance for Automated and Research
Driven Workflows

Tara Gibson, Karen Schuchardt, and Eric Stephan

Pacific Northwest National Laboratory,
P.O. Box 999, Richland, WA, USA

{Tara.Gibson,Karen.Schuchardt,Eric.Stephan}@pnl.gov

Abstract. Provenance has recently become a popular topic for workflow execu-
tion environments but it is also relevant to other applications, such as long-
running, user-driven "research workflows", problem solving environments, and
data streaming (data analysis) environments. This paper presents a number of
use cases where provenance can play an important role in understanding how
data was derived, how decisions were made, and enable sharing of data from a
variety of sources. We break down the requirements elucidated by our use cases
and discuss our experiences in applying an existing provenance system to these
use cases.

Keywords: provenance, metadata, use cases, workflow.

1 Introduction

Science relies on intermediate results to guide future research; every result needs to be
supported with detailed records of its derivation (provenance). At the same time,
science is becoming more complex, involving both manual and automated pipeline
processing steps, and consequently records are more difficult to maintain. Adding to
this complexity, simulations and experiments often need to be analyzed together. This
creates a challenge for scientists who need integrated views of the different types of
provenance records associated with computation, experimentation, and analysis. The
existing method for capturing data derivation, traditional laboratory notebooks, suf-
fers from the mismatch between media (paper versus electronic). Electronic labora-
tory notebooks fill an important niche but are often not used and usually capture only
a manual record of research within a desktop publishing type environment. Our vision
is to go one step further, automatically providing a very detailed recording of any
complex scientific processes.

Documenting the scientific process requires an architecture designed to record,
store, manage, and access the provenance describing the scientific process [1]. While
the topic of provenance has gained interest in the computer science community it is at
a relatively early stage of investigation and application. For example, Simmhan, et. al
[2], recently surveyed the use of provenance in e-science applications. Based on the
projects surveyed, provenance is typically implemented as an application extension,

 Application of Provenance for Automated and Research Driven Workflows 129

rather than a component that can be applied to many systems. Chapman et al. [3]
provided a useful set of general requirements based on tracking provenance while
combining and manipulating protein interaction data. Based on these requirements as
well as those described by Miles et al. [1] we define a set of requirements which apply
to a provenance architecture. Many of these requirements were drawn from automated
workflow implementations with an emphasis on a Service Oriented Architecture
(SOA) architecture. To complement this research, we explore the requirements gath-
ered from use cases related to both automated and user-driven workflows and data
systems. From these motivating use cases, we introduce new requirements for consid-
eration while confirming many existing requirements. In the remainder of this paper,
we present our use cases (section 2), describe the requirements resulting from our
analysis (section 3), and we compare our findings to other state-of-the-art provenance
architecture requirements.

2 Use Cases

The following use cases are derived both from direct experiences on projects that
have provenance needs and from conducting interviews with scientists across diverse
domains. We present the use cases in two categories: automated workflow, and user-
driven research workflow. Each use case is described in a moderate amount of detail
and is accompanied by a summary of the applicability of provenance for that context.
Requirements are presented as a synthesized list in the next section.

2.1 Automated Workflow

U1. Sensor Analysis Pipelines. Intrusion detection systems currently have production
network sensors deployed at 30 sites around the country. These sensors monitor a
combined network data volume of approximately 30 TB per day for malicious activ-
ity. Attacks must be detected as they occur in order to stop intruders from gaining
entry and damaging sensitive systems. To enable this detection, aggregation and
summarization techniques are applied to compress the data streams into manageable
volumes. A component-based (SOA-based) messaging and integration architecture for
creating analytical pipelines is used to provide anomaly detection and analysis by
following a general pattern of processing stages; ingest, aggregation, signature gen-
eration, anomaly detection, context analysis, and data visualization.

The anomaly detection stage is responsible for using statistical and heuristic meth-
ods for automatically determining whether a given signature should be considered a
significant event. As algorithms are improved, the pipeline may be rerun on the same
data to compare the affects of the changes on the identification of significant events.
In this context, provenance can be used to review incidents, understand why they
were marked as significant, and analyze the impact of changes to the algorithms. This
is a different model of provenance capture for workflow than others we are familiar
with in that it becomes important to save provenance only for notable events. Addi-
tionally, due to the volume of data processed, the provenance capture mechanism
must not incur significant delay in the pipeline performance.

130 T. Gibson, K. Schuchardt, and E. Stephan

U2. Predictive Biology. System’s Biology research relies on the collection and analy-
sis of massive amounts of complex biological response and genetic data with the goal
of identifying signatures that define, or are predictive of, biological systems and their
response to perturbation. Automated workflow is used for gene set enrichment calcu-
lations using KEGG pathways and Gene Ontology (GO) terms. A second workflow is
being developed to automate the quality control and normalization of Microarray
data. This process retrieves data from an external source, and sends it to a machine
capable of performing the statistical calculations using R scripts.

In these contexts, provenance allows users to validate the results of past work-
flows and examine the full derivation of a result. Additionally, since public data
sources such as KEGG and GO are constantly changing as new research is added and
curated by the community, provenance can track the information about the data
source (such as version) to understand differences in results that occur over time.
Provenance can also be used to determine which analysis have been run and on which
data sources/versions.

U3. Protein Interaction Discovery. Proteins have largely been studied as independ-
ent units of function. However, most proteins cooperate with one another in the form
of higher level functions, referred to as protein complexes or pathways. A deeper
understanding of protein interactions help scientists understand how proteins work
together. Protein interaction databases play a vital role in helping identify protein
complexes that may ultimately share the same characteristics in two different organ-
isms. The hope is that by discovering characteristics within one organism, searching
protein interaction in another organism may lead to similar types of behaviors.

Biologists continually go through a painstaking and time consuming process to
manually access distributed data sources, merge the data sets in some way, and per-
form analyses on the data. For example, the question “What proteins correspond to
genes that are up-regulated at 3hr and 4hr in my microarray data, and which proteins
are they known to interact with?” illustrates the need to correlate experimental results
derived from a microarray experiment and compare them to various public protein
interaction databases. Answering this question requires several major steps suitable to
workflow automation techniques. In this case, provenance can again be used to com-
pare workflow executions to understand the impact of data or algorithm changes on
the final result. To do so, it is useful to capture intermediate query results that can
vary based on database version, and have an effect on later steps in the workflow.

2.2 User-Driven Research Workflow

We apply the term research workflow to a group of use cases where the goal is to
document data derivation and provenance of long-running and at times ad-hoc user-
driven research activities.

U4. Subsurface Modeling. Subsurface modeling employs computerized mathematical
models to explore complex physical systems that cannot be easily or cost effectively
investigated through experiment. When applied to environmental remediation, the goal
might be to model processes to understand how contaminants react and move through
the environments. Developing this understanding necessarily involves running numer-
ous (tens or hundreds of) related simulations. The research process typically involves

 Application of Provenance for Automated and Research Driven Workflows 131

running a small number (often one) of simulations, analyzing results and deciding what
to do next. There is usually a derivation relationship among the simulations; that is, a
researcher will explore along one line of investigation, then go back and explore along
another line perhaps branching multiple times within a given line of investigation. A
key aspect of this process is that there are many branches of investigation with com-
plex relationships between simulations and across branches.

In current practice, this type of study is maintained in a directory structure with
simple metadata naming conventions on directories. However the relationships are not
tracked. Weeks later, the detail of the relationships between simulations becomes diffi-
cult to recall, even by the researcher performing the simulations. To collaborators, it is
undecipherable. In this context, provenance can be used to record the complex rela-
tionships between simulations, document branches of investigation, and enable a user
to organize and understand their overall process. It can also be used to decide on next
steps, present customs views that reduce the complexity, repeat a sequence of steps
with different initial conditions, and search for simulations based on detailed context
information typically found only in the data files.

U5. Comparative Analysis. The study of complex computational biology and com-
putational chemistry simulations is pursued with the goal of improving the under-
standing of complex protein interactions. Scientists make extensive use of several
high-performance computational tools to produce and analyze data and ultimately to
design protein-based scaffolds for environmental cleanup. This can, in principle, be
achieved by performing a wide array of simulations of several protein variants under a
variety of physico-chemical conditions (pH, temperature, ionic strength). Data for
published work must typically be retained for five years.

The research workflow for this problem contains few steps, but numerous simula-
tions and iterations. Once a collection of simulations is complete, visualization tools
are used to analyze candidate simulation trajectories exhibiting particular behavior
under a variety of conditions. Based on the chosen candidate trajectories, provenance
can be used to answer important questions such as: what simulations were used in my
comparative analysis, and what simulations and analysis were used in my cited re-
search. Additionally, a researcher will want to quickly access important summary
information about simulations (who ran them, under what conditions) and analyses
(why was a particular line of investigation followed), and gain direct access to the
data files.

U6. Archive Data Mining and Sharing. The Environmental and Molecular Sciences
(EMSL) facility houses a variety of high performance experimental and computational
resources dedicated to environmental molecular sciences research. The facility has an
archive with hundreds of terabytes of data essentially treated as a large file system.
There is growing recognition of the value of documenting the data to improve overall
effectiveness of the facility. Early versions of the archive required and enforced the use
of metadata. However, this requirement was too onerous and effectively discouraged
use of the archive. Collection of metadata must therefore be lightweight, customizable,
and optional. Further, it is often important to track the relationships between experi-
ments or between experiments and computations. For example, Nuclear Magnetic
Resonance (NMR) experiments may be run on samples and computer models used to

132 T. Gibson, K. Schuchardt, and E. Stephan

determine the 3D structure. It is desirable to capture those relationships in searchable,
browse-able, notebook type form.

In this context, provenance and metadata can be used to answer important ques-
tions such as: what experiments have already been run and under what conditions,
what research has been conducted on particular organisms, by whom, with what
equipment, what data is available, and how is it related to other experiments?

Harvesting technology is ideal in such an environment, particularly if it can be
readily customized and if mechanisms for describing relationships are provided.

3 Use Case Findings

From these use cases, we derived a set of requirements, both functional and non-
functional. The full derivation of these requirements, which is beyond the scope and
available space for this paper, is based on our detailed discussions and experiences.
However, we cross reference the connections between them in the list below and
highlight what we view as new requirements and other unique aspects of our findings.

R1. Record (and query) arbitrary information about individual processes, data

that moves between processes, and the relationships between them (U1-U6)
R2. Record enough information to enable references of data regardless of size or

location (U2-U6)
R3. Extract and record customized file metadata for context searching (U4, U6)
R4. Record only the provenance from significant events and the processes and

data that led to the identification of the event (U1)
R5. Identify processes, experiments, or data as a collection of related work and

allow users to record arbitrary annotations and define new relationships.
(U1-U6)

R6. Record provenance of high throughput pipelines with minimal impact on
performance (U1)

R7. Determine who ran a particular process, under what conditions, and which
settings were used (U1-U6)

R8. Determine if an analysis or experiment has previously been run (U2, U6)
R9. Identify data generated from a particular process (U1-U6)
R10. Retrieve information to be presented for application specific views (U2, U3)
R11. Identify contextual information and results from access to dynamically

changing data sources and versions used in an analysis (U2, U3)
R12. Examine full derivation of the result or significant event (U1-U3)
R13. Determine where a process/data was used for data that should be regener-

ated due to an algorithm or data source change (U2)
R14. Query for derivation graph, filtering on level of detail (U1-U6)
R15. Compare multiple runs of the same workflow execution (differentiated by

data source or software module versions) to analyze the effects of the
changes(U1-U3)

R16. Retrieve process documentation to re enact an experiment or workflow using
new inputs or parameters (U3-U5)

 Application of Provenance for Automated and Research Driven Workflows 133

From the list of requirements we identify the following highly abstracted core
capabilities:

• Record data about process, data, relationships
• Group items together for comparison
• Record arbitrary metadata
• Standards-based search capability
• Examine process and data that led to result
• Identify the overall impact on a workflow due to changes in process/data.

Our goal in examining such diverse use cases is to verify the core capabilities ap-
plicable to virtually all use cases and to understand the extension points and design
constraints necessary to support important, but non-universal capabilities. These core
capabilities show great overlap with those the requirements described in Miles et. all.
[1]. We also identified several requirements which we view as new additions to pub-
lished capabilities. While these additions do not affect the core capabilities of a
provenance architecture, they represent design considerations that impact may APIs
or system design. R3 is one such case. Provenance and metadata stored within exist-
ing files (which may include who, what, when information, references to source files,
and application specific contextual information), must be extracted and made accessi-
ble to satisfy query requirements. This is particularly important when provenance is
applied to ad hoc research workflows where the ability to capture process information
is more constrained.

Another new requirement, R4, involves storing only the significant provenance in
a workflow, this applies particularly to data streaming environments. To capture all
data in such an environment would essentially duplicate the original data stream and
overwhelm the system both in scalable storage and query interpretation. These re-
quirements suggest a transaction-oriented capability where a provenance record can
be constructed during execution and committed only when a positive identification of
significant event is made. R6 introduces the non-functional requirement for minimal
overhead associated with a provenance capture mechanism in an automation envi-
ronment. Critical systems processes need to proceed as efficiently as possible and
provenance should not interfere with this in any way. This suggests the need for an
asynchronous recording mechanism. Finally, in R14, we identify the need to reduce
the data derivation graphs (at query time) to the level of detail necessary to its end
purpose. A powerful view filter would support filtering based on arbitrary metadata
about either process or data. The Open Provenance Model (OPM) has also made a
point of providing for multiple graph descriptions or ‘accounts’ [4]. This is described
as offering different levels of explanation for such execution, such sub graphs are also
known as alternate accounts.

4 Experiences

The exploration of the described use cases and requirements presented us with chal-
lenges which we needed to adapt to a generic architecture. To meet these challenges
we altered our previous architecture as described in Schuchardt, et. all [5] with several
modifications, We adopted the use of RDF for its support of graph queries, arbitrary

134 T. Gibson, K. Schuchardt, and E. Stephan

relationships and metadata, and standards. We also developed a transaction oriented
API, as needed by R4, and incorporated several of the key ideas of the OPM into our
existing model. Below are a number of other challenges that we encountered while
studying the use cases.

Data Overload: Even with desired view capabilities, in automated systems it is still
possible to capture too much meaningless provenance, overloading the database
technology. An example of this is the protein interaction discovery workflow, which
was implemented on an automated workflow platform with a plug-in mechanism
designed to capture provenance when any minor event occurs. We found that by in-
gesting every minor call within the workflow engine, that we were quickly flooded
with too much detail. For this reason, workflow systems need design time control to
manage the level of detail captured.

Client Side Filtering: No capabilities for server side view filtering exist at this time.
For efficiency reasons, some applications thus developed client-side graph filtering
capabilities to fulfill the requirement.

User Views: General tools/browsers are useful for capabilities such as simple brows-
ing, but for most use cases, specific interfaces are required. The view desired by each
application can vary greatly in level of detail or interpretation. For use cases such as
subsurface modeling, a more extensive classification may be desired to represent the
nuances between various actions. To resolve this, the provenance model could be
extended to describe various types of actions, such as a compute job versus a data
transfer. Among other things, this classification can be used to filter views where
certain types of actions are more interesting to the end user and to group related re-
search.

Language Bindings: Our initial implementation of a provenance API was in java but
several of our use cases required other languages (python, C++). A general prove-
nance system should support multiple language bindings or a standard protocol (e.g.
REST) that can easily be accessed in any language. In the latter case, a language
wrapper is still necessary to reduce the burden of adding provenance to a system.

Scalability: Server scalability quickly became an issue for both Sensor Analysis (U1)
and Archive Data Mining (U6). To support the full number of datasets that can be en-
countered in either use case, we must have a storage solution that can scale to billions of
triples or support queries and relationships across multiple (federated) stores.

Augmentation: We encountered numerous examples where users would like to go
back and augment the provenance record. For example, when a user publishes a paper
using results generated by a workflow, they will want to later go back and associate
the paper with the provenance record. In simulation environments, some users want to
identify and annotate processes, data or entire sub graphs with notes and analyses or
manually make associations within or between different sub graphs.

 Application of Provenance for Automated and Research Driven Workflows 135

5 Conclusions

Our use case studies have documented compelling examples of the benefits that
provenance can provide for a diverse set of domains. Reviewing these use cases has
given us a sense of similarity between nearly all workflows, and allowed us to vali-
date a number of existing requirements of a provenance system, as well as present
several new ones. To support several of these new requirements, we envision revisit-
ing our provenance model as well as ensuring better interoperability with the OPM,
we also plan to improve the API, using standardized recording protocols and adding
multiple language bindings. By applying these requirements to our architecture we
expect to produce an adaptable, effective system for the support of various domains.

Acknowledgement

The research described in this paper was conducted under the Laboratory Directed
Research and Development Program at the Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S. Department of
Energy under Contract DE-AC05-76RL0 1830. The research in subsurface workflows
is supported by the U.S. Department of Energy’s Office of Science under the Scien-
tific Discovery through Advanced Computing (SciDAC) program.

References

1. Miles, S., Groth, P., Branco, M., Moreau, L.: The Requirements of Using Provenance in e-
Science Experiments. J. Grid Comput. 5(1), 1–25 (2007)

2. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Rec. 34(3), 31–36 (2005)

3. Chapman, A., Jagadish, H.V.: Issues in Building Practical Provenance Systems. IEEE Data
Eng. Bull. 30(4), 38–43 (2007)

4. Moreau, L., Freire, J., Myers, J., Futrelle, J., Paulson, P.R.: The Open Provenance Model.
In: Luc Moreau at Workshop on Principles of Provenance, Edinburgh, Scotland, November
20 (2007)

5. Schuchardt, K.L., Gibson, T.D., Stephan, E.G., Chin, G.: Applying Content Management to
Automated Provenance Capture Concurrency and Computation. Practice & Experi-
ence 20(5), 541–554 (2007)

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 136–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Provenance to Improve Workflow Design

Frederico T. de Oliveira1, Leonardo Murta1,2, Claudia Werner1, and Marta Mattoso1

1 COPPE/ Computer Science Department
Federal University of Rio de Janeiro (UFRJ)

{ftoliveira,werner,marta}@cos.ufrj.br
2 Instituto de Computação

Universidade Federal Fluminense (UFF)
leomurta@ic.uff.br

Abstract. With the popularity of scientific workflow management systems
(WfMS), workflow specifications are becoming available. Provenance support
in WfMS can help reusing third party code. Browsing can be done through que-
ries instead of ad-hoc search on the Web. Finding dependencies among pro-
grams or services through provenance queries, without tool support, is not a
trivial task. Due to the huge number of program versions available and their
configuration parameters, this task may be heavily error prone and counterpro-
ductive. In this work we propose a recommendation service that aims at
suggesting frequent combinations of scientific programs for reuse. Our recom-
mendation service is designed to work over WfMS that provide provenance on
workflow specification and execution logs. We have based our service on soft-
ware components reuse and data mining techniques, and implemented a proto-
type with Vistrails WfMS.

1 Introduction

Workflow management systems are getting more complicated and providing more
functions. Each day, more services are available and their combinations become more
complex. Scientific workflows are based on the automation of scientific processes in
which scientific programs are associated, based on data and control dependencies.
Frequently, these scientific programs are third party code, shared by scientists from a
common domain. Aiming at reusing these programs, the scientist browses public exe-
cution scripts to see how the program should be parameterized to his specific needs.
With the popularity of scientific workflow management systems (WfMS), workflow
specifications are also becoming available.

 Provenance support in WfMS can help reusing third party code. Browsing can be
done through queries instead of ad-hoc search on the Web. Despite that, reusing a sci-
entific program often involves reusing complementary programs. Finding dependen-
cies among programs or services through provenance queries, without tool support, is
not a trivial task. Due to the huge number of program versions available and their
configuration parameters, this task may be heavily error prone and counterproductive.
Automating those tasks can reduce errors and improve reliability. Even if a powerful

 Using Provenance to Improve Workflow Design 137

workflow provenance support is provided, such as the management of workflow
versioning of Vistrails [1], identifying adequate combinations can be time consuming
and may involve designing complex queries. Current e-Science infrastructures pro-
vide the capability to combine services from a diverse set of providers in a variety of
ways. However, they can only be exploited by a minority of specialists who are famil-
iar with workflow composition systems, programming paradigms, distributed infra-
structures and complex problem solving environments [2]. In this work we propose a
recommendation service that aims at suggesting frequent combinations of scientific
programs for reuse. Our recommendation service is designed to work over WfMS that
provide workflow specification databases or workflow execution logs. We have based
our service on software components reuse and data mining techniques, and imple-
mented a prototype that works with Vistrails.

Our prototype consists on a recommendation system based on a collaborative fil-
tering approach [3]. This recommendation system let users discover useful workflows
components and how they can be combined. According to collaborative filtering ap-
proach, collected provenance histories are used to recommend a set of candidate ser-
vices that may be useful to individual scientists.

This work is organized as follows. In section 2, we present the background of our
research, containing an overview of workflow and some related work and related
techniques. We describe our approach in section 3 and the usage of our prototype in
section 4. Finally, we conclude our work presenting some advantages of recommen-
dation in workflow design and some future work in section 5.

2 Background

The scientific workflow design process still occurs in an ad-hoc manner, driving to ir-
reproducible results due to absence of predefined processes or methods. In some cas-
es, the workflow is not explicit because the scientists directly connect programs to
perform the experiment, hindering the comprehension of the whole process. In other
cases, despite the existence of a WfMS that manages the interaction of the programs
and services necessary to perform the experiment, no systematic method is used
throughout its design.

In this section we present an overview on the benefits component-based workflow,
software reuse and component-based software development, and collaborative filter-
ing can provide to workflow design.

2.1 Software Reuse and Component-Based Software Development

Software reuse is the process of creating software systems from existing software [4].
It encompasses two main perspectives, which are development for reuse and devel-
opment with reuse. Software development for reuse aims to produce assets that can
be reused later. On software development with reuse, assets are coupled to the system
under development. Reusable assets represent any product derived from software de-
velopment, for example, source code, components, test cases, etc.

138 F.T. de Oliveira et al.

Component-based software development is a technique for software reuse that fo-
cus on reusing well defined components, produced via an independent process [5].
Component-based software development uses components, interfaces and connectors
as first-class entities to structure software systems. Components, which are reusable
assets [6], make use of interfaces, described in a contractual manner, to interact with
the remaining software elements [7]. Connectors are responsible for performing the
binding among components.

When component-based software development is in place, the software develop-
ment teams can be classified by their roles in the process. Some teams are in charge of
developing components. These teams, named producers, produce reusable compo-
nents that serve to others. Other teams, named consumers, are in charge of developing
systems by reusing existing components. Finally, there are some hybrid teams, which
act as both producers and consumers. They reuse existing components to produce
more other components.

The component-based software development process is currently supported by a
variety of methods. The most well known and adopted are Catalysis [6], UML Com-
ponents [8], and KobrA [9]. However, besides the existence of these methods, com-
ponents must be sufficiently widespread to allow their reuse and composition in
different contexts, as it is expected from workflow tasks and services [10].

There are already some exiting work that apply reuse to the conception of work-
flows. De Roure and Goble [2] address several issues to promote workflow reuse.
One of them is the recommendation of workflow and services, which is a vital part of
enabling sharing through discovery by other scientists and it is also a part of commu-
nicating know-how. For instance, Taverna has made over 3500 bioinformatics
orientated operation available to its users, and it would probably get benefits from
recommendation systems.

2.2 Component-Based Workflow

Zhuge [11] proposes an approach to the development of component-based workflow
system through integrating the characteristics of software component. On this ap-
proach, the user combines workflows components, which are business process units,
to build a complete business process. Workflow components are defined as a work-
flow process that describes a category of complete business process units, Compared
with traditional workflow development, the component-based workflow system has
the following potential advantages [11]:

• Lower complexity: a complex workflow can be transformed to a workflow
component hierarchy, where each workflow component has the lower com-
plexity than the whole workflow;

• Reusability: a workflow component can be safely reused by any other work-
flow component or tasks through its access interface;

• Adaptability: component modifications or new component additions will not
influence the other components;

• Connectivity: different components can be easily connected;

 Using Provenance to Improve Workflow Design 139

• Maintainability: components can be maintained at run time if the maintenance
can be finished before its execution, increasing the adaptability of the workflow;

• Error localization: workflow definition errors and execution errors occur
within components, enabling the checking mechanism to localize them; and

• User’s acceptability: workflow components encapsulate domain business
process units, so it can be more easily checked and used.

These advantages have a business scenario in mind. However, they may be ex-
tended to scientific experiments also. For example, Vistrails components are called
modules and Kepler components are called actors.

Despite the documentation available through provenance, it is not systematically
used in the design of scientific workflows. On section 3, we expose how our approach
can use provenance to help workflow design.

2.3 Recommendation Systems and Collaborative Filtering

Recommendation systems apply data mining techniques to the problem of helping
user find the items they would like to purchase at E-Commerce sites by producing a
predicted likeliness score or a list of the top recommended items for a given user [12].

The Collaborative Filtering is considered a key technology of recommendation
systems, which provide the user with a set of candidate items that may be useful or
preferable to the individual user, from a large amount of items [3]. In other words,
collaborative filters help people make choices based on the opinions of other people.

For example, in the e-commerce scenario, if a customer searches for the book “The
Secret” at an online store, the store recommends other products, like The Secret: 2008
Day-to-Day Calendar, The Secret Soundtrack, etc.

We can also map some concepts adopted in e-commerce domain into concepts
concerned to scientific domain. Table 1 illustrates those mapping.

Table 1. E-commerce concepts mapped into scientific experiments concepts

Domain Concepts
E-commerce Customer Cart Product Preference
Scientific

Experiment
Scientist Workflow Component Context

Similarly, to help scientists design workflows, we propose a tool to recommend
services and task that are more likely to be used by the scientist.

3 Workflow Process Recommendation in Vistrails

In addition to the reuse of components in isolation, we aim to reuse the most common
relations between them, increasing productivity and quality of workflow design. Our
recommendation service is designed to work over WfMS that provides provenance on
histories of workflow specification and execution logs, as Vistrails WfMS does. Based
on the collaborative filtering approach, collected histories are used to recommend the

140 F.T. de Oliveira et al.

Fig. 1. Component recommendation example in the bioinformatics domain. Ports 1 and 2 are
the output ports DestinationDir and StdOut, respectively. Ports 3, 4 and 5 are the input ports
SourceDir, HmmPath and Dir, respectively.

scientist a set of candidate components that may be useful to the workflow under de-
sign. We propose to infer the need of a component and proactively recommend that
component to the scientist.

First, we parse the workflows files to extract the relations between two compo-
nents. Those relations are mapped into a database table, containing the components,
the port that they are connected and the workflow itself. Then, each time a scientist adds
a component to his current workflow, the tool automatically analyses the database and
recommends the most relevant components previously connected to this one, and in-
dicates how they can be connected.

For example, Figure 1 illustrates parts of some existing bioinformatics workflows.
These workflows employ the use of some workflow components, such as
“HmmBuild”, “HmmCalibrate”, and “Cat”. These components are connected in dif-
ferent ways in these workflows. Assuming that scientists need to conceive new work-
flows, if they add the component “HmmBuild” to a new workflow, it is possible to
automatically infer that “HmmCalibrate” and “Cat” may also be needed in this new
workflow. Moreover, it is also possible to detect how “HmmCalibrate” and “Cat”
connect to the existing components in the new workflow, based on how they were
connected in previous workflows.

 Using Provenance to Improve Workflow Design 141

Besides suggesting related workflow components, we can also extract some metrics
that provides support to the scientist on selecting the appropriate workflow components.
For instance, in the example shown in Figure 1, the recommendation confidence metric
regarding connecting the “HmmBuild” StdOut port to HmmPath port from “HmmCali-
brate” is 40%. Moreover, the recommendation confidence metric regarding adding
component “Cat” after adding component “HmmBuild” is 20%. It is possible to notice
that our recommendation confidence metric consists of the conditional probability of se-
lecting a component (“HmmCalibrate” or “Cat”, in our example), assuming that another
component is also selected (“HmmBuild”, in our example).

Finally, in Figure 2 we present the algorithm used to detect the related components
and compute the recommendation confidence metric.

Fig. 2. Algorithm for component recommendation

4 Usage Details

Preliminary ideas on these recommendation techniques have been implemented and
incorporated to the Vistrails WfMS. By parsing the XML files that store versions of
workflows we were able to evaluate and recommend.

Figure 3 illustrates the prototype working inside Vistrails, based on the previously
discussed example shown in Figure 1. When the user adds the module HmmBuild to
his workflow, the tool automatically recommends two other modules that may be
connected to this one: “HmmCalibrate” and “Cat”. The first row means that port
StdOut of HmmBuild has been connected to port HmmPath of HmmCalibrate in 40%
of previously designed workflows. The recommendations are on the bottom right cor-
ner of figure 3.

142 F.T. de Oliveira et al.

Fig. 3. Recommendation Prototype in Vistrails

5 Conclusion

In this paper, we presented a recommendation system for suggesting the reuse of pre-
existing scientific workflow components during the conception of new workflows.
We expect that this approach may help to propagate the benefits of software reuse and
component-based development to the context of scientific workflows.

However, we could detect some limitations of our approach. The current version of
our prototype recommends only a subsequent component based on previously used
connection. Now, we are aiming to improve the approach recommending a compo-
nent investigating the whole path. We also believe that specifying a context to each
workflow will help doing a better recommendation. For instance, if a scientist is de-
signing a bioinformatics workflow, connections that come from others bioinformatics
workflows should have a higher weight and then more relevance in the recommenda-
tion list. At last, we are considering using the number of workflows executions to es-
tablish a higher weight to more used workflows.

As a future work, we intend to analyze other possibilities regarding recommenda-
tion algorithms in the next prototype versions and perform some structured evalua-
tions to quantify the benefits provided by our approach.

Acknowledgments

This work was partially funded by CNPq.

 Using Provenance to Improve Workflow Design 143

References

1. Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva, C.: Tackling
the provenance challenge one layer at a time. Concurrency and Computation: Practice and
Experience (2007)

2. De Roure, D., Goble, C.: MyExperiment - A Web 2.0 Virtual Research Environment. In:
International Workshop on Virtual Research Environments and Collaborative Work Envi-
ronments, Edinburgh, UK (May 2007)

3. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-Based Collaborative Filtering
Recommendation Algorithms. In: Proc. of the 10th International World Wide Web Con-
ference (WWW10), Hong Kong, pp. 285–295 (2001)

4. Krueger, C.W.: Software Reuse. ACM Computing Surveys 24(2), 131–183 (1992)
5. Brown, A.W.: Large Scale Component Based Development. Prentice Hall PTR, Engle-

wood Cliffs (2000)
6. D’Souza, D., Wills, A.: Objects, components, and frameworks with UML: The catalysis

approach. Addison-Wesley, Reading (1998)
7. Szyperski, C.: Component Software: Beyond object-oriented programming. Addison-

Wesley, Reading (2002)
8. Cheesman, J., Daniels, J.: UML Components: A Simple Process for Specifying Compo-

nent-Based Software. Addison-Wesley, Reading (2000)
9. Atkinson, C., et al.: Component-Based Product Line Engineering with UML. Addison-

Wesley, Reading (2001)
10. Ludäscher, B.: Scientific workflow management and the Kepler system. Concurrency and

Computation: Practice & Experience, 2006 18(10), 1039–1065 (2006)
11. Zhuge, H.: Component-based workflow systems development. Decision Support Sys-

tems 35(4), 517–536 (2003)
12. Hill, W.: Recommending and Evaluating Choices in a Virtual Community of Use. In: Con-

ference on Human Factors in Computing Systems (1995)

Job Provenance – Insight into Very Large
Provenance Datasets�

Software Demonstration

Aleš Křenek1,2, Luděk Matyska1,2, Jǐŕı Sitera1, Miroslav Ruda1,2,
Frantǐsek Dvořák1, Jǐŕı Filipovič1, Zdeněk Šustr1, and Zdeněk Salvet1,2

1 CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic
2 Institute of Computer Science, Masaryk University,

Botanická 68a, 602 00 Brno, Czech Republic
First.Last@cesnet.cz

Abstract. Following the job-centric monitoring concept, Job Prove-
nance (JP) service organizes provenance records on the per-job basis.
It is designed to manage very large number of records, as was required
in the EGEE project where it was developed originally.

The quantitative aspect is also a focus of the presented demonstration.
We show JP capability to retrieve data items of interest from a large
dataset of full records of more than 1 million of jobs, to perform non-
trivial transformation on those data, and organize the results in such
a way that repeated interactive queries are possible.

The application area of the demo is derived from that of previous
Provenance Challenges. Though the topic of the demo—a computational
experiment— is arranged rather artificially, the demonstration still de-
livers its main message that JP supports non-trivial transformations and
interactive queries on large data sets.

1 Introduction

Provenances are usually used to provide insight in the history of a particular piece
of data. In the context of computational experiments they also serve as a source
of additional information when results are out of expected bounds, grouped in
new ways or organized in patterns not encountered previously. Systems like Job
Provenance (JP) [1,2], which keep track of a potentially huge number of executed
jobs [3,4,5], are able to either guarantee or to repute that the computational
experiment itself was properly executed and correct data were used.

In the proposed demonstration, we will show how the JP can be used to
manage large amount of provenance data in a parametric study that is able
to easily generate millions of provenance records, thus getting easily out of the
range of conventional analysis methods.
� This work has been supported by Czech research intents MSM6383917201 and

MSM0021622419. Job Provenance was developed in the EU EGEE-II project,
INFSO-RI-031688.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 144–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Job Provenance – Insight into Very Large Provenance Datasets 145

2 Demonstration Scenario

2.1 Evaluated Computational Experiment

The demonstration is based on the conclusions of the study [6], which compares
normal aging vs. Alzheimer’s disease. Image processing workflow of this study
was used for both previous Provenance Challenges1.

A critical step in this study is measurement of volume of seven regions of
interest in the brain. In [6] this step is done manually, by an expert human
operator. Our demonstration assumes development of a software tool to replace
this manual step with an automated procedure. Then the topic of the demo is
a computational experiment of evaluating and calibrating the tool— sweep over
available datasets and the whole space of possible parameter settings.

We extend the original workflow with the acquirement of annotations of the
softmeaned image. It is implemented either as the human action (for reference),
or by invoking the hypothetic automated tool we evaluate.

The parametric study sweeps over 100 sets of available patient images, as well
as the following parameters of the processing:

– The order of the warping model (-m argument of align_warp) has a sig-
nificant impact on the computational complexity, therefore it makes sense
to examine an overall sensitivity to it. Moreover, as each of the four input
images is acquired with different MRI scan settings, the sensitivity can be
different, therefore all four instances of the parameter have to be examined
independently. We sweep those in 4 distinct steps: 3, 6, 9, and 12.

– We assume that the core of the hypothetical automated measurement of the
volume of the regions of interest in the brain is some kind of thresholding on
voxel intensity. Therefore the critical threshold is the principal parameter to
be calibrated. The main goal of the experiment is finding a working range
of this threshold, applicable (i. e. discriminating dementia) to all available
inputs. As the full range of the intensity is 0–4095, we run the parameter in
40 steps of 100.

With the described set of parameters and their steps, the overall number of the
workflow instances per a single input data set is 44 × 40 = 10240, yielding more
than 1 million of computations on all inputs altogether.

2.2 Visual Form — The Demo GUI

The demonstration is done using a simple graphical interface (Fig. 1), crafted
specifically for this purpose. There are three logically distinct parts forming the
interface:

– Controls for job selection allow to specify parameter ranges (Sect. 2.1) to
query. The effect of changing the selection, e. g. restricting the threshold
values, is rendered immediately by the other GUI components.

1 http://twiki.ipaw.info

http://twiki.ipaw.info

146 A. Křenek et al.

Fig. 1. Application GUI

– Occurrence diagram of queried jobs is an approx. 20× 20 array, where the x
axis maps to the age of the subject while y is hippocampus volume2. Each cell
of the array is split up into “green” (non-demented) and “red” (demented)
subject sections; the number of corresponding jobs (which processed data of
subject of this age and dementia classification, and computed this volume) is
visualized using color saturation. An attached color scale bar shows absolute
numbers of jobs, up to several thousands per cell, typically. Array cells are
selectable with a mouse.

– Parameter value histograms show the actual distribution (i. e. number of jobs
again) of values of the five studied parameters corresponding to the selected
cells of the occurrence diagram. Properties of these distributions can give
clues for further changes in parameter selection.

2.3 Analysis Step by Step

In this section we describe the steps of the demonstration, as they are shown one
after another, the phenomena observed in each one, as well as partial conclusions
made.

Working Range of Threshold. We start with a full range of all the parame-
ters, displaying all the jobs of the experiment. The resulting occurrence diagram
is blurred, showing almost regular distribution of green and red color.

According to the conclusions of [6] there should be a clear horizontal sepa-
ration between red and green regions. We select the intermediate region (hip-
pocampus volume 6.3–6.6 cm3) on the diagram, which should be empty if [6]
holds and the automated measurement works reliably, and we start examining
2 The region in brain which volume is related to dementia according to [6].

Job Provenance – Insight into Very Large Provenance Datasets 147

distribution of the parameters there. The histogram of the threshold parame-
ter shows low occurrence of mid-range values (1000–2500) while both lower and
higher values occur rather frequently.

We conclude that the range of 1000–2500 is the working range of the threshold.
The conclusion is confirmed by restricting the job selection to this range—
a visible separation of the green and red regions appears.

Sensitivity to Alignment Parameters. Now the diagram shows also an
anomaly— a strange sharp vertical bar (i. e. a failure to discriminate dementia)
at the subject age of 82. For the time being we exclude it (ignore the region),
and we focus on further improvement of the separation.

Further experiments with the restriction of the threshold parameter do not
help anymore. Therefore we keep its range of 1000–2500, as well as the selection of
hippocampus volume 6.3–6.6 cm3, and we focus on the warping order parameters.
While the values of the third and fourth ones are distributed regularly, there is
a visible domination of low values for the first and second ones. We deduce
that there is a certain number of unaligned input images which require higher-
order warping to get matched. If the warping order is restricted, the resulting
softmeaned image is blurred, yielding the thresholding method to be unusable
in general. Moreover, the sensitivity to the warping order is higher for the first
two images. When the selection of these two values is restricted, the separation
in the occurrence diagram improves visibly.

Defective Input. Now we focus on the visible anomaly of the sharp vertical bar.
Its strict vertical orientation indicates a fixed patient age, therefore suggesting
that it may have occurred for a specific input data only. We select the central
(i. e. failing) part of the vertical bar and query for occurrence of input files in
this area. Domination of one input set indicates that the hypothesis is likely.
Visualization of this specific four files reveals the reason— an image taken by
error from a completely different experiment.

2.4 Batch Job Submission

After finding the defective input we query for all jobs that are affected by it,
and mark them as invalid. The defect disappears from the diagram.

We retrieve the full specification of the affected jobs, and after replacing the
reference to the defective input we submit the fixed specifications. The processing
takes some time but we can observe its progress3.

3 Experiment Setup

3.1 Job Provenance Service

JP [1] was developed to keep tracks of job execution in a Grid environment.
Since references to input and output datasets as well as arbitrary application-
3 The bottleneck is execution of the jobs on our testbed which accepts approx. 100

jobs per minute. Our measurements [5] show the raw JP input throughput is about
10× higher.

148 A. Křenek et al.

specific attributes can be easily recorded with the jobs, the records gathered
by JP form a natural provenance of the datasets. JP provides efficient means
to store but also to search through such a provenance. Capabilities of JP were
already demonstrated to data provenance community by participation on two
previous Provenance challenges [2].

JP consists of two services— JP Primary Storage (JPPS) which keeps all job
records permanently, and JP Index Server (JPIS), which is created, configured,
and populated on demand, according to particular users’ needs. This feature is
highly exploited in the described demonstration.

One of the most important aspects of JP is the capability to be a core of
application specific job management tools. As we shown in three independent
studies ([3,4,5]), JP helps the user to see a grid job as a scientific experiment
and to focus on the application layer. In the mentioned studies JP also acts
as a generic engine to build a custom job management GUI. Such a graphical
application is relatively thin layer on top of JP and can be highly customized
for a particular need of experimental scientist (to support specific workflows and
views). One of these studies was also focused on overall throughput, where the
target load of millions jobs per day was successfully achieved ([5]).

3.2 Job Implementation

Unlike in Provenance Challenges, the internal structure of the image processing
workflow is not important in our demonstration. Therefore we understand the
whole workflow as a single job furthermore.

For the purpose of the demo (1 million of jobs in a reasonable time), the
actual payload of the jobs is faked— the jobs refer to 100 pre-computed images,
and the principal result (hippocampus volume) is generated pseudo-randomly in
a distribution that allows “discovering” the phenomena described in Sect. 2.3.
This artificial approach does not affect the main message of the demo — JP
is able to deal with millions of provenance records, whatever was the way of
obtaining them.

A core of the distribution is the formula

threshold · warp sensitivity + threshold3 · (1 − warp sensitivity)

where warp sensitivity is a number in the range 0–1 expressing how much a spe-
cific data set is affected by a given warping parameter settings. For its lower
values the cubic term prevails, therefore the working range of the threshold,
where the computed hippocampus volume is close to the real one, is fairly wide.
On the contrary, for higher values of warp sensitivity the formula is almost linear,
hence requiring a specific threshold setting to yield the right result.

Job execution is monitored by L&B [7], application-specific tags (patient
id, threshold, warping parameters, computed hippocampus volume etc.) are
recorded in terms of L&B user tags. Full job records, including the application-
specific attributes, are stored into JP shortly after their termination.

Job Provenance – Insight into Very Large Provenance Datasets 149

3.3 Testbed

The computations are run on a 16 CPU cores machine4, hosting multiple virtual
machines and being managed by PBS. L&B server and both JP services were
run on common “off-the-shelf” machines.

Due to the simplified job payload the limiting speed factor turned to be the
processing of jobs in PBS. Besides the need of careful setup of L&B in order
to avoid disk congestion, as well as a known but addressable bottleneck of not
reusing an open ftp connection [5], we did not observe any serious performance
problems.

4 Related JP Extensions

4.1 Direct JPIS Database Access

The described parametric study became a pilot application for a new interface
to JP Index Server— direct SQL database access. Unlike the web-service in-
terface of JPIS that was used in previous demonstrations, this time the GUI
communicates directly with the database engine underlying JPIS. Structure of
the database tables that are meant to be accessed directly is documented and it
will become another JPIS public interface. Compared to the limited (by inten-
tion) querying functionality of the WS interface this approach gives the user the
full capability of SQL and it lets her optimize the queries. In the specific case
we benefit of the GROUP BY clause counting occurrences of age/hippocampus
volume quickly.

On the other hand, certain performance and security issues emerge.
Ill-specified queries can generate unacceptable load on the database. As this
access mode is intended mostly for single user JPIS instances, we don’t consider
the performance issues serious this time. However, the standard, fine-grain access
control layer of JPIS, implemented on the WS interface, is bypassed, allowing
the user to see all JPIS data. The emerging security problems must be addressed,
probably by implementing the finer access control on JPPS too.

We are also considering an OGF-DAIS5 compliant interface that would com-
bine the portability of WS access with the expressiveness of SQL.

4.2 Application-Specific JP Type Plugin

The application also demonstrated the use of the type plugin concept in JP.
JPIS database can store, besides literal values of the attributes, also their shrunk
“database” form. This approach does not imply any general restriction on full
attribute values (they can contain even large binary data) while still allowing
efficient queries on the database form executed directly by the SQL engine, e. g.
to index the columns appropriately. In general there is no 1:1 mapping between

4 http://meta.cesnet.cz/en/resources/hardware.html#manwe4
5 http://forge.gridforum.org/projects/dais-wg

http://meta.cesnet.cz/en/resources/hardware.html#manwe4
http://forge.gridforum.org/projects/dais-wg

150 A. Křenek et al.

full and shrunk values, therefore further filtering on the full values must be
performed once they are retrieved with an SQL query. However, the result set
of the query is not so large typically.

A JP type plugin is a library, linked into JPIS at run-time, performing the “full
to shrunk” attribute value mapping. In addition, declarations of SQL column
type for a specific attribute can be defined, and full-value comparison function
provided.

Specifically the plugin for this experiment data rounds the “age” attribute
to the nearest even value, truncates “hippocampus volume” into buckets of size
0.3, and it transforms real value of “clinical dementia rating” to boolean. Then
a single query

select age,volume,cdr,count(*) ... group by age,volume,cdr

populates directly all the cells in the occurrence diagram (Sect. 2.2) within ap-
prox. 1–2 s.

4.3 Configuration Extensions and Database Schema Changes

The original database schema of JPIS allows multiple values of a single attribute
for a single job. Therefore the attributes are stored in separate tables. However,
on approx. 1 million of our job records, the “group by” query shown in Sect. 4.2
accessing multiple tables ran more than 1 minute, not being acceptable for in-
teractive use.

Therefore we further extended the configurability of JPIS to distinguish be-
tween single- and multiple-value attributes. The latter ones are stored as before,
however, the shrunk database form (Sect. 4.2) of the former ones are aggregated
all in a single table, allowing more efficient queries. Our core “group by” query
speeds up by a factor of almost 100.

5 Highlights and Conclusions

We show a specific usage of Job Provenance, a generic customizable system
focused on work with huge number of provenance records. On the scenario of
a hypothetical parametric study, involving more than a million of computational
jobs, JP capabilities of interactive queries over such number of records are clearly
demonstrated.

The described queries yield execution of fairly simple SQL statements pro-
cessing approx. 1 million of tuples, so that their interactivity is not a surprising
result nowadays. Our main message is demonstrating the capability of JP to
record full information on job execution, to harvest the data required for the
specific application (they represent a tiny fraction of the primary data), and
to reprocess and make them available in a form suitable for interactive work
(reasonable sized SQL database in this specific case). The demonstration also
became a pilot application of the new direct JPIS database access interface.

From the application point of view, the queries represent non-straightforward
transformations of the parametric space, therefore they can reveal unforeseen

Job Provenance – Insight into Very Large Provenance Datasets 151

behaviour, pattern, and other phenomena that might have remained hidden with
a straightforward visualization of the experiment results. Similarly, eventual de-
fects, incorrect inputs etc., which would distort the experiment outcome, are also
detected.

References

1. Dvořák, F., et al.: gLite job provenance. In: Moreau, L., Foster, I. (eds.) IPAW 2006.
LNCS, vol. 4145, pp. 246–253. Springer, Heidelberg (2006)

2. Křenek, A., et al.: gLite job provenance—a job-centric view. Concurrency and Com-
putation: Practice and Experience 20(5) (2007) doi: 10.1002/cpe.1252

3. Křenek, A., et al.: Multiple ligand trajectory docking study —semiautomatic anal-
ysis of molecular dynamics simulations using EGEE gLite services. In: Proc. Eu-
romicro Conference on Parallel Distributed and network-based Processing (2008)

4. Schovancová, J., et al.: VO AUGER large scale Monte Carlo simulations using the
EGEE grid environment. In: 3rd EGEE User Forum, Clermont-Ferrand, France
(2008)

5. Křenek, A., et al.: Experimental evaluation of job provenance in ATLAS environ-
ment. J. Phys.: Conf. Series (accepted, 2007)

6. Head, D., et al.: Frontal-hippocampal double dissociation between normal aging and
Alzheimer’s disease. Celebral Cortex 15(6), 732–739 (2005)

7. Matyska, L., et al.: Job tracking on a grid—the Logging and Bookkeeping and Job
Provenance services. Technical Report 9/2007, CESNET (2007),
http://www.cesnet.cz/doc/techzpravy

http://www.cesnet.cz/doc/techzpravy

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 152–159, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Provenance-Based Fault Tolerance Mechanism for
Scientific Workflows

Daniel Crawl and Ilkay Altintas

San Diego Supercomputer Center, UCSD, 9500 Gilman Drive,
La Jolla, CA 92093 USA

{crawl,altintas}@sdsc.edu

Abstract. Capturing provenance information in scientific workflows is not only
useful for determining data-dependencies, but also for a wide range of queries
including fault tolerance and usage statistics. As collaborative scientific work-
flow environments provide users with reusable shared workflows, collection and
usage of provenance data in a generic way that could serve multiple data and
computational models become vital. This paper presents a method for capturing
data value- and control- dependencies for provenance information collection in
the Kepler scientific workflow system. It also describes how the collected infor-
mation based on these dependencies could be used for a fault tolerance frame-
work in different models of computation.

1 Introduction and Background

Scientific workflows provide many advantages to the scientific community including
provenance support. The lifecycle of scientific workflow provenance starts with
workflow design and execution. The collected information can be used for evaluation
of the results as well as for mining different patterns during workflow design. Differ-
ent workflow users need information about different phases of the workflow. These
concepts are shown in Figure 1.

Collection of Provenance Information. Provenance collection related to a scientific
workflow is three-fold. Firstly, since workflow developers often change a workflow
while experimenting with different computational tools and multiple scientific data-
sets, provenance recording can start during the design phase of the workflow. Captur-
ing these user actions is important since it records what did and did not work, as well
as how the workflow developer came up with the final workflow. The collection of
provenance information continues during the experiment preparation (parameter bind-
ing) and execution of the workflow. The third aspect of collecting scientific workflow
provenance that is often ignored is collection after the workflow results are published.
One can verify the scientific impact of the workflow based on the citations for these
results and statistics on how they are used.

Usages of Provenance Information. The collected provenance data is useful in many
contexts, such as querying input/output associations, verifying results, etc. Different
types of provenance information analysis based on the design and one or more runs of

 A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows 153

the same workflow are listed in Figure 1. The collected information on the workflow
design could be used both to analyze it and to visualize the evolution of the workflow
as demonstrated in the Vistrails system [1]. In addition, provenance information on
data-dependencies could be used for smart reruns and fault tolerance.

Fig. 1. Different usages of provenance data

Users of Provenance Information. Users of provenance data include the workflow
developer and workflow user, scientific dashboards that help execute and monitor a
workflow, and interfaces that use this data. To best serve different users, provenance
recorders should provide for customized data collection through parametric interfaces.

This paper presents a method for capturing data-dependencies for provenance in
the Kepler scientific workflow system, and describes how these dependencies could
be used for a fault tolerance framework. Our fault-tolerance model targets different
users of a workflow system. It provides mechanisms to detect errors that would be
useful for workflow developers, workflow users, and programming interfaces that
execute a given workflow. The level of information that needs to be collected for
error-recovery is different for every workflow. Further, workflow systems could exe-
cute multiple models of computation (MoC), and the fault tolerance mechanism must
work with each. To the best of our knowledge, no scientific workflow system sup-
ports these requirements for failure-detection and recovery.

In the rest of this paper, we explain a provenance collection approach in the Kepler
scientific workflow system [2] and show how the collected information could be used
in a fault-tolerance system that supports the requirements mentioned in the previous
paragraph. We demonstrate this approach in a scientific workflow example using a
part of the GEON LiDAR Workflow (GLW) [3].

2 The Kepler Provenance Framework

The Kepler scientific workflow system [2] is developed by a cross-project collabora-
tion to serve scientists from different disciplines. Kepler provides a workflow
environment in which scientists can design and execute workflows through a user
interface or in batch mode from other applications. A Provenance Recorder that has

154 D. Crawl and I. Altintas

plug-in interfaces for new data models, metadata formats and storage destinations was
designed to serve the multi-disciplinary requirements of the broad user community.
The Kepler Provenance Framework (KPR) was presented in [4]. An extended archi-
tecture that allows for binding different data models to KPR, collection of application-
specific provenance data and using results through a dashboard has been created [5].
The center of this architecture is Provenance Store: a database providing physical
storage and an API to access the database. The API has three components: (1) Kepler,
its actors, and external scripts use a Recording API to collect and save provenance
information; (2) a Query API provides different query capabilities for dashboards, and
query actors in Kepler; and (3) a Management API.

KPR uses separation of concerns principle to work with different MoCs [4, 6]. Ke-
pler workflows are composed of a linked set of Actors executing under MoC. Actors
encapsulate parameterized actions and communicate between themselves by sending
Tokens, which encapsulate data or messages, to other actors through one or more
output ports. Ports that receive tokens are called input ports. MoCs specify what flows
as tokens between actors’ input and output ports, e.g., data or messages, how the
communication between the actors is achieved, when actors fire, and when the work-
flow can stop execution. A Kepler workflow could have different MoCs in sub-
workflows called Composite Actors. KPR is a separate entity in the workflow and
records provenance by communicating with the execution engine.; the information
recorded depends on the MoC semantics. This can only be achieved using a data
model that matches the set of observables about workflow run in a particular MoC.

2.1 Classifying Data-Dependencies

The KPR records workflow assertions and observables, including data-dependencies:
data written by an actor may depend on some combination of previously read data.
We categorize data-dependencies between output and input data as either value-
dependencies or control-dependencies. A value-dependency occurs when an output
data's value depends on the value of previously read data. For example, consider the
two actors show in Figure 2. The Filter actor outputs the previously read token if the
value is above a threshold. Each token written by this actor has a single value-
dependency: the previously read input token. In Figure 2(a), this actor reads two
input tokens T1 and T2. Only the value in T2 is above the threshold and is output in
T3. The value-dependency for T3 is T2.

(a) (b)

Fig. 2. Input and resulting output tokens for (a) Filter and (b) Average actors. The output tokens
contain a list of value-dependencies (VD).

 A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows 155

The Average actor outputs an average of all previously seen inputs. In this case,
each output token is value-dependent on all input tokens. In Figure 2(b) the actor first
reads T1, then outputs T3, which is only value-dependent on T1. Next, the actor reads
T2 and outputs T4, which is value-dependent on both T2 and T1.

A control-dependency occurs when the arrival of input data causes the actor to
execute and subsequently produce output data. As described above, the MoC deter-
mines when actors execute; in several the execution schedule is based on when input
data are present. Many actors therefore use an input “trigger” port to determine when
to execute. Since data read from this port are discarded, i.e., the value is not used by
the actor to produce output data, the distinction between value- and control-
dependencies is important for many use cases of provenance.

2.2 Recording Data-Dependencies

The KPR provides methods for recording data-dependencies, either automatically by
the runtime system or manually by the actor developer.

Our method of automatically tracking dependencies is inspired by taint propaga-
tion, a technique commonly used to detect security vulnerabilities in applications
[7,8]. For example, Perl's “taint mode” prohibits any data outside the application to
affect something else outside the program [9]. Perl marks each variable assigned from
an external input, e.g., files, web services, etc., as tainted and propagates taint to other
variables when they are used in expressions with tainted variables.

To capture value-dependencies during workflow execution, the ids of tokens read
by an actor are propagated “through the actor” to the produced tokens. (All tokens
created during a single workflow execution are assigned a unique identifier). A token
is a container for base classes such as Integer or String, and each is instrumented with
a list of token ids on which its value depends. The list is created when the object is
extracted from a newly read input token and updated when the object is used in an
expression. For example, the assignment operator replaces the destination object’s
dependencies with those in the source, and the addition operator adds the source de-
pendencies to the destination’s list.

We also provide an API to capture dependencies for situations in which automati-
cally propagating dependencies is impossible. This can occur, for example, when an
actor reads from an external data source such as a web service.

In addition to value-dependencies, control-dependencies may exist between an
output token and one or more previously read input tokens. KPR records a control-
dependency between each output produced and each input read by an actor during the
same firing cycle. A value-dependency between an output and input implies a control-
dependency between the same tokens. The converse, however, is not always true. For
example, consider the Ramp actor. It has two inputs: “trigger” and “step”. Data must
be available for both before the actor can execute. The value read in the step input
increases or decreases the actor’s output value. A control-dependency exists for an
output token and the previously read trigger and step inputs. However, only the value
in the step input is used to calculate the output; a data-dependency does not exist
between the output and the trigger input.

156 D. Crawl and I. Altintas

3 Scientific Workflow Doctor: Using Provenance Data for Fault
Tolerance

This section describes a fault tolerance framework using the data-dependencies re-
corded by the KPR. Scientific workflows commonly access a diverse set of resources
such as, databases, and file systems. A scientific workflow system therefore must
provide mechanisms to gracefully handle resource failures. Further, these mechanisms
should be compatible with advanced modeling constructs, such as data-dependent
routing, loops, and parallel processing.

Fault tolerance is provided with a composite actor called Checkpoint. When a sub-
workflow within a Checkpoint produces an error event, all execution within the
Checkpoint is stopped. Checkpoint handles the error itself, or passes it up the work-
flow hierarchy. This is similar to exception handling in text-based programming lan-
guages.
 Workflow errors are detected and signaled with user-defined expressions called
port conditions. A port condition can be specified for any port and is evaluated when
the actor reads from the input port or writes to the output port. If the port condition
evaluates to false, an error event is signaled. Port conditions are analogous to pre- and
post-conditions in procedural languages and provide great flexibility for the workflow
designer since they may be attached to any port in the workflow. A port condition
uses the incoming or outgoing token’s value, along with mathematical and logical
operators. For example, it could check if a numerical token was above a threshold.
 Actors also signal errors during workflow execution. An error API is provided for
developers to generate error events based on actor-specific conditions, such as when a
web service actor’s request times-out.

A Checkpoint composite actor contains a primary sub-workflow and optionally al-
ternate sub-workflow(s). Data read by the Checkpoint's input ports are first passed to
the primary sub-workflow. When an error occurs in the primary sub-workflow,
Checkpoint either re-executes the primary, or runs an alternate sub-workflow. The
maximum number of times to retry the primary or an alternate sub-workflow is con-
figurable. Once the retry limit is exceeded, the error is sent up the workflow hierarchy
to the nearest enclosing Checkpoint.

When Checkpoint re-executes a sub-workflow, it resends all data read by the sub-
workflow up to and including those that led to the error. The data to be resent are
queried from data-dependencies stored in the provenance database. An actor gener-
ates an error based on the values of one or more input data. These data were written
by upstream actors, which in turn created them from a set of input data. Checkpoint
follows the data-dependencies, starting at the error, back to the data read by the
Checkpoint’s input ports. These data tokens are sent again to the sub-workflow along
with any data tokens received after it in their original order.

Figure 3 shows an example workflow containing a Checkpoint actor, based on the
GLW [3], which allows geoscientists to analyze and interpolate Light Distance and
Ranging (LiDAR) datasets. A geoscientist first selects a region to be analyzed from a
web portal. The workflow retrieves the LiDAR point cloud matching the selected
region from a database, which is then interpolated using GRASS [10]. GRASS out-
puts an ASCII grid, which must be converted to binary using Feature Manipulation

 A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows 157

(a)

(b)

Fig. 3. GLW with fault tolerance. (a) During normal operation, the workflow executes Viz1. (b)
If FME or Fledermaus in Viz1 fail, Global Mapper creates a 2D image.

Engine1 (FME) before Fledermaus2 can read it. Fledermaus outputs the data into a
format that the geoscientist can then load in an interactive 3D viewer. FME and Fled-
ermaus are executed in the sub-workflow Viz1.

Since both FME and Fledermaus are web services, they may not always be avail-
able. If one fails, we would still like to provide a visualization of the selected LiDAR
region. An alternative imaging tool is Global Mapper3, shown in Viz2, which converts
the ASCII grid data to a JPEG image.

The Checkpoint actor executes Viz1, unless FME or Fledermaus cannot be reached.
When this occurs an error is signaled and Checkpoint runs Viz2. Any regions to be
processed by FME or Fledermaus are instead processed by Global Mapper. Ra and Rb
in Figure 3(a) represent the locations of these regions in the workflow. Ra has not been
converted to binary by FME so can be sent directly to Global Mapper. However, Rb
has been converted. In this case, Checkpoint uses the data-dependencies stored in the
provenance database to find the ASCII data that led to Rb. The ASCII data can then be
processed by Global Mapper. Since the datasets processed can be very large, refer-
ences are passed between actors and saved in the provenance database instead of the
actual data.

4 Related Work

Provenance in scientific workflow systems has become a major research track. Data-
dependencies are analyzed and mapped into a data model for different systems
[11,12]. Information collected on these is used to answer users’ queries on different
workflow aspects. Data-dependencies have also been used for a smart re-run system

1 A GIS data conversion system (http://www.safe.com/).
2 An interactive 3D visualization system (http://www.ivs3d.com/products/fledermaus/).
3 A GIS visualization system (http://www.globalmapper.com/).

158 D. Crawl and I. Altintas

in Kepler [4]. In the Virtual Data System, provenance is used to reproduce data prod-
ucts, and can be queried with application-specific semantics [12].
 Techniques have been proposed to record provenance about the computations oc-
curring inside actors. The registry system of Wootten et al. records assertions of in-
ternal actor state executing a service-oriented architecture [13]. However, no method
is given for automatically adding state assertions to actors. The RWS approach [14]
annotates actors to signal whenever they reset to an initial state. Unlike our solution,
this requires modifying each actor since the reset event is sent on actor-specific condi-
tions. To our knowledge, no workflow provenance system distinguishes between
value- and control-dependencies.
 Scientific workflow systems commonly provide fault tolerance mechanisms [15],
but most are not used in combination with advanced MoC. While ASKALON [16]
allows constructs such as parallel loops and conditional statements, it does not support
user-definable exceptions or fault-recovery for actor errors. Similar to our approach,
Bowers et al. [17] propose embedding the primary and alternate sub-workflows in a
control-flow template. However, these templates are directed by a finite state ma-
chine, which cannot be used to execute process networks [6]. The Ptolemy backtrack-
ing system [18] provides an incremental checkpoint and rollback mechanism. This is
complementary to our approach, which deals primarily with stateless actors and pro-
vides user-definable fault-detection and recovery. Similar to port conditions, Karajan
[19] performs matching on user-defined regular expressions attached to input ports.
However, there is no mechanism to retry previously executed parts of the workflow.

5 Conclusions and Future Work

This paper discusses methods to identify value- and control- dependencies in the
Kepler Provenance Framework. Additionally, we describe how the collected data-
dependencies can be used to provide failure recovery in a scientific workflow system.

We will extend our fault tolerance system in several ways. Combining it with the
Ptolemy II backtracking system will allow stateful actors to restart. Further, we are
building more expressive port conditions by adding conceptual semantics. This will
allow conditions such as “all Celsius temperatures (read or written by actors) must be
above 5 degrees”. We are also investigating other techniques to capture dependency
information.

Acknowledgements

The work in this paper is supported by DOE SciDac Award No. DE-FC02-
07ER25811 for SDM Center, NSF Award No. DBI 0619060 for REAP, and NSF
Award OCI-0722079 for Kepler CORE.

References

1. Freire, J., Silva, C., Callahan, S., Santos, E., Scheidegger, C., Vo, H.: Managing Rapidly-
Evolving Scientific Workflows. In: Proceedings of International Provenance and Annota-
tion Workshop, pp. 10–18 (2006)

 A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows 159

2. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Special Issue:
Workflow in Grid Systems. Concurrency and Computation: Practice & Experience 18(10),
1039–1065 (2006)

3. Jaeger-Frank, E., Crosby, C., Memon, A., Nandigam, V., Arrowsmith, J., Conner, J.,
Altintas, I., Baru, C.: A Three-Tier Architecture for LiDAR Interpolation and Analysis. In:
Proceedings of International Workshop on Workflow Systems in e-Science, pp. 920–927
(2006)

4. Altintas, I., Barney, O., Jaeger-Frank, E.: Provenance Collection Support in the Kepler
Scientific Workflow System. In: Proceedings of International Provenance and Annotation
Workshop, pp. 118–132 (2006)

5. Altintas, I., et al.: Provenance in Kepler-based Scientific Workflow Systems. In: Microsoft
e-Science Workshop, poster (2007)

6. Goderis, A., Brooks, C., Altintas, I., Lee, E.A., Goble, C.: Composing Different Models of
Computation in Kepler and Ptolemy II. In: Proceedings of the International Conference on
Computational Science (2007)

7. Myers, A.: JFlow: practical mostly-static information flow control. In: Proceedings Sym-
posium on Principles of Programming Languages, pp. 228–241 (1999)

8. Haldar, V., Chandra, D., Franz, M.: Dynamic Taint Propagation for Java. In: Proceedings
of Computer Security Applications Conference, pp. 303–311 (2005)

9. Wall, L., Christiansen, T., Orwant, J.: Programming Perl, 3rd edn. O’Reilly, Sebastopol
10. Mitasova, H., Mitas, L., Harmon, R.: Simultaneous spline interpolation and topographic

analysis for lidar elevation data: methods for open source GIS. IEEE GRSL 2(4), 375–379
(2005)

11. Miles, S., Groth, P., Branco, M., Moreau, L.: The Requirements of Recording and Using
Provenance in e-Science Experiments. Journal of Grid Computing 5(1), 1–25 (2007)

12. Zhao, Y., Wilde, M., Foster, I.: Applying the Virtual Data Provenance Model. In: Proceed-
ings of International Provenance and Annotation Workshop, pp. 148–161 (2006)

13. Wootten, I., Rana, O., Rajbhandari, S.: Recording Actor State in Scientific Workflows. In:
Proceedings of International Provenance and Annotation Workshop, pp. 109–117 (2006)

14. Ludäscher, B., Podhorszki, N., Altintas, I., Bowers, S., McPhillips, T.: From Computation
Models to Models of Provenance: The RWS Approach. Concurrency and Computation:
Practice & Experience 2(5), 507–518 (2007)

15. Plankensteiner, K., Prodan, R., Fahringer, T., Kertesz, A., Kacsuk, P.: Fault-tolerant be-
havior in state-of-the-art Grid Workflow Management Systems. TR-0091, CoreGRID
(2007)

16. Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M.,
Truong, H., Villazon, A., Wieczorek, M.: ASKALON: A Grid Application Development
and Computing Environment. In: Proceedings of International Workshop on Grid Comput-
ing (2005)

17. Bowers, S., Ludäscher, B., Ngu, A., Critchlow, T.: Enabling Scientific Workflow Reuse
through Structured Composition of Dataflow and Control-Flow. In: IEEE Workshop on
Workflow and Data Flow for Scientific Applications (2006)

18. Feng, T.H., Lee, E.A.: Real-Time Distributed Discrete-Event Execution with Fault Toler-
ance. In: Proceedings of IEEE Real-Time and Embedded Technology and Applications
Symposium (2008)

19. Laszewski, G., Hategan, M.: Workflow Concepts of the Java CoG Kit. Journal of Grid
Computing 3(3-4), 239–258 (2005)

A First Study on
Clustering Collections of Workflow Graphs

Emanuele Santos1, Lauro Lins1, James P. Ahrens3, Juliana Freire2,
and Cláudio T. Silva1,2

1 Scientific Computing and Imaging Institute, University of Utah
2 School of Computing, University of Utah

3 Los Alamos National Lab

Abstract. As workflow systems get more widely used, the number of
workflows and the volume of provenance they generate has grown con-
siderably. New tools and infrastructure are needed to allow users to in-
teract with, reason about, and re-use this information. In this paper, we
explore the use of clustering techniques to organize large collections of
workflow and provenance graphs. We propose two different representa-
tions for these graphs and present an experimental evaluation, using a
collection of 1,700 workflow graphs, where we study the trade-offs of these
representations and the effectiveness of alternative clustering techniques.

1 Introduction

As workflow systems get more widely used, the number of workflows and the vol-
ume of provenance they generate has grown considerably. In fact, large collections
of workflows have recently become available through Web sites that enable users
to publish and share workflows [13, 19]. Yahoo! Pipes [19], for example, allows
users to interactively create data mashups (represented as workflows) through
a Web-based interface. Although Yahoo! Pipes has been online for a little over
one year, there are already several thousand “pipes” stored on their servers.

The availability of large collections of workflows, such as the ones being held at
workflow-sharing sites and in provenance repositories, creates new opportunities
for exploring and mining this data. In this paper, we explore different techniques
to cluster workflows. The ability to group similar workflows together has many
important applications. For example, clustering can be used to automatically
create a directory of workflows, similar to DMOZ (http://www.dmoz.org), that
users can easily browse. Clustering can also be used to provide a better or-
ganization for search results. For example, Yahoo! Pipes provides basic search
capabilities through keyword-based interfaces. But because the results are dis-
played as a long list, users have to go through the list and examine the results
sequentially to identify the relevant ones. By clustering the results into distinct
groups, users can have a more global and succinct view of the results and more
quickly identify the information they are looking for.

The problem of clustering workflows, however, remains largely unexplored.
This paper is, to the best of our knowledge, the first study on using clustering

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 160–173, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A First Study on Clustering Collections of Workflow Graphs 161

techniques for workflow graphs. We explore different representations for these
graphs as well as distance measures and clustering algorithms. We perform an
experimental study, using a collection of 1,700 workflow graphs, where we ex-
amine the trade-offs of these configurations and the effectiveness of alternative
clustering approaches.

The remainder of this paper is organized as follows. In Section 2, we review
basic clustering concepts and discuss different choices for designing clustering
strategies for workflows, including alternative representations for workflows and
distance measures. We present our experimental evaluation in Section 3 and
describe preliminary results that indicate that clustering strategies can be de-
signed that are both scalable and effective for workflow graphs. We conclude in
Section 4, where we outline directions for future work.

2 Clustering Workflows

Clustering is the partitioning of objects, observations or data items into groups
(clusters) based on similarity. The goal is to group a collection of objects into
clusters, such that the objects within each cluster are more related to one another
than to those in different clusters.

Clustering techniques are widely applicable and have been used in many dif-
ferent areas (see [10] for a survey). These areas include, but are not limited
to: document retrieval [2, 4], image segmentation [12, 18] and data mining [5].
Clustering has also been applied in the context of business workflows to derive
workflow specifications from sequences of execution log entries [7].

To cluster a set of elements, three key components are needed: a model to
represent the elements; a (dis)similarity measure or a distance metric; and a
clustering algorithm. In this section we describe different alternatives for each
of these components when the object of clustering is a workflow graph.

2.1 Alternative Workflow Representations

Data representation refers to the set of features that will be available to the
clustering algorithm. A workflow can be defined as a network of tasks structured

Fig. 1. On the left: a graph representation of a workflow in the visualization domain
and on the right its generated data products

162 E. Santos et al.

Fig. 2. Vector representation of two different VTK (Visualization Toolkit) workflows.
The workflow on the left does isosurface extraction and the workflow on the right does
volume rendering.

based on their control and data dependencies. Workflows can be represented as
directed graphs, where nodes correspond to modules that perform computations
and edges correspond to data streams, as shown on the left of Figure 1. For clus-
tering purposes, we can select different features from these graphs. For example,
a possible representation of this graph is to capture only the names of modules
and the (unlabeled) edges between modules. More complex representations can
be obtained if we take into consideration the parameter values and the input
and output ports of each module.

For the clustering strategy to be effective, the data representation must in-
clude descriptive features in the input set (feature selection), or that new features
based on the original set be generated (feature extraction). In the representa-
tion above, the selected features are the labeled workflow graphs, which is an
example of a structured feature. Another way of representing a workflow is as a
multidimensional vector [14], which is very popular in the information retrieval
literature [1]. In our case, the dimensions in the vector space are defined by
the union of all the possible module names the workflows in the input set may
contain. Figure 2 illustrates the vector representation of two different workflows
that combine modules from the Visualization Toolkit library (VTK) [11].

At first, this representation may seem not very suitable for workflows because
the structural information is completely lost. However, we will see that repre-
senting workflows as vectors will have its advantages when we discuss similarity
measures and clustering algorithms.

2.2 Measuring Workflow Similarity

The similarity measure is critical to any clustering technique and it must be
chosen carefully. Usually, the similarity measure is a distance measure defined
on the feature space. If we model workflows as graphs, graph-based distance
measures can be used, such as edit distance [15], subgraph isomorphism [16],

A First Study on Clustering Collections of Workflow Graphs 163

and Maximum Common Induced Subgraph (MCIS). Consider for example MCIS.
The distance measure dMCIS derived from the MCIS of two graphs G1 and G2
is defined as [3]:

dMCIS(G1, G2) = 1 − |mcis(G1, G2)|
max{|G1|, |G2|}

Intuitively, the larger a MCIS of two graphs is, the more similar the two graphs
are. Notice that if two graphs are isomorphic, their MCIS distance is 0 and if
they do not have any common subgraph, their MCIS distance is 1. Bunke and
Shearer [3] also demonstrated that the MCIS distance satisfies the properties of
a metric. The problem with this measure is that it is computationally expensive
and for a large collection of workflows, that can be a limitation.

When workflows are represented using the vector space (VS) model, other
distance metrics can be used (e.g., Euclidean and Euclidean squared distances).
A widely-used distance metric for VS is the cosine distance dVS between two
vectors v1 and v2, defined as:

dVS(v1, v2) = 1 − cos θ = 1 − v1 · v2

‖v1‖‖v2‖

Figure 3 shows a concrete example of how dMCIS and dVS are computed for
two structurally different graphs. Note their different behaviors: while MCIS is
able to capture the (structural) difference between the workflows, the cosine dis-
tance is not. This example highlights the importance of selecting an appropriate
representation and distance measure.

The input set can be represented directly in terms of the dissimilarity between
pairs of observations. This can be done by means of a matrix of dissimilarities,
which is a N × N matrix M , where N is the number of observations and each
element mij contains the distance between observations i and j.

Fig. 3. Vector Space (VS) distance and Maximum Common Induced Subgraph (MCIS)
distance for workflows G1 and G2. Notice that the VS distance does not capture struc-
tural differences (i.e., VS distance equals zero) and that although the path A → B → C
is a common subgraph of G1 and G2, it is not an induced subgraph of G1.

164 E. Santos et al.

2.3 Clustering Algorithms

There are many different approaches to clustering data. Roughly speaking, the
cluster algorithms can be classified as hierarchical or partitioning (see [10] for a
more comprehensive taxonomy of clustering techniques). Partitioning algorithms
produce only a single partition of the input set while hierarchical methods pro-
duce a nested series of partitions. One of the most popular partitioning methods
is the K-means algorithm. K-means partitions the input set N into K clusters
in such a way that it minimizes the intracluster dissimilarity or equivalently
maximizes the intercluster dissimilarity [8]. Intracluster dissimilarity Dintra is
defined as:

Dintra =
1
2

K∑

k=1

∑

m∈k

∑

n�=m∈k

d(xm, xn)

and intercluster dissimilarity Dinter is defined as:

Dinter =
1
2

K∑

k=1

∑

m∈k

∑

n∈k′ �=k

d(xm, xn)

Summing both dissimilarities, we obtain the total point scatter T of the input
set, which is independent of cluster assignment:

T = Dinter + Dintra =
1
2

N∑

m=1

N∑

n=1

d(xm, xn)

Because it is not practical to compute this by exhaustive enumeration, K-
means works in a iterative greedy descent fashion, as described below:

1. Specify the initial K cluster centers
2. Assign each observation to the closest center
3. Recompute centers of each cluster as the mean of the observations in the

cluster
4. If assignments have changed, go to 2.

The problem with K-means is that computing centers is possible only with the
vector space based features. In order to work with arbitrary representations, such
as given by a matrix of dissimilarities, the algorithm can be generalized to the
K-medoids algorithm, in which at each iteration the centers are restricted to be
one of the observations assigned to the cluster. The cost of performing K-means
is proportional to KN and the cost of performing K-medoids is proportional to
KN2, which is computationally more expensive.

The advantage of these methods is that they converge rather quickly and are
very easy to implement. The disadvantages of both K-means and K-medoids are
the choice of the parameter K and the fact that they are very sensitive to the
initialization. Because of that we often need to run these algorithms a few times
in order to get the best cluster configuration. Another problem is that they do

A First Study on Clustering Collections of Workflow Graphs 165

not present an order relation inside each cluster, and when this is important,
using a hierarchical clustering technique is a better option.

Hierarchical clustering algorithms, as their name suggests, build hierarchical
representations such that the clusters at each level of the hierarchy are formed by
merging two clusters at the next lower level. So, at the lowest level, each cluster
has a single object and at the highest level, there is only one cluster containing all
the objects. Then, there are N − 1 levels in the hierarchy. Hierarchical methods
require neither an initialization nor a parameter K. However, they do require
the specification of a dissimilarity measure between groups of objects, based on
the pairwise dissimilarities among the objects in the two groups.

Depending on the strategy chosen to build the hierarchy, the algorithms can
be classified as agglomerative (bottom-up) or divisive (top-down) [8]. In the ag-
glomerative approach, the process is started at the bottom, and recursively at
each level two clusters with the smallest intercluster dissimilarity are merged
to form the next level, which will have one less cluster. Divisive approaches, on
the other hand, start at the top and recursively at each level a cluster is divided
into two new clusters such that they present the largest intercluster dissimilarity.
These recursive processes can be represented by a rooted binary tree. Figure 7
illustrates the results of running K-medoids on an input set containing 50 work-
flows, using the two dissimilarities measures described above. The last column
of the spreadsheet on the left shows the agglomerative representation for each
dissimilarity measure.

3 Experimental Evaluation

Our goal in this experimental evaluation is to assess the effectiveness of differ-
ent approaches to clustering workflows. In particular, we study the trade-offs
between a graph-based and a vector-based representation for workflows, and
compare different clustering algorithms. Before discussing our results, below we
describe the dataset we used in the experiments.

3.1 The Dataset

The workflows used in this study were generated by thirty students during a sci-
entific visualization course. Over the semester, the students were asked to design
workflows to solve different visualization problems (e.g., generate an isosurface
visualization of a skull or create a vector field visualization of the salinity of a
river). All these tasks were performed in VisTrails [17], a workflow development
tool that captures provenance of workflow evolution [6], i.e., all refinements and
parameter explorations performed by users during workflow design. For each as-
signment, the students turned in a file containing detailed provenance of their
work, including all different workflow variations they created to solve the prob-
lems in the assignment. They were instructed to tag the actual solution work-
flows with a meaningful label, so that these could be (easily) identified by the
instructor and TAs.

166 E. Santos et al.

(A) Classes

Number of Workflows

403

331

189

145

131

122

121

115

69

42

31

22

9

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

vector_field
plot

isosurface
open

scalar_field
volume_rendering

isospectra
diff_scalar_field

infovis
tetravolume

iso_plot
combined

vr_plot

(B) Nodes per Label

Number of Nodes per Label

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

mean=1.37
stddev=0.59
quantile.50=1.14
quantile.95=2.43

Fig. 4. (A) The initial 13 classes used to partition W and the number of workflows
in each class. (B) Box-plot, histogram and some statistics for the distribution of the
number of nodes per number of labels in W.

To assemble our dataset W we extracted from the files only the workflows
identified with a “solution” tag: a total of 1730 workflows. We also classified
these workflows, so that we could have reference data to evaluate the quality of
the resulting clusters. The classification was done as follows. Based on the assign-
ment problem and the tag provided by the student, we classified each workflow
by the type of problem they were supposedly solving. For example, a workflow
for assignment 1 tagged as Problem 1 was classified as isosurface, since prob-
lem 1 in this assignment asked the students design a workflow for extracting
isosurfaces of a 3-dimensional object. For some problems, a specific technique
was not required, the workflows created for these problems were classified as
open. Figure 4 (A) shows the 13 classes we used and the number of workflows
in each class.

The workflows in W contained all information necessary for running them:
modules, connections, dependencies, parameters, parameter values, etc. For clus-
tering purposes we use a simplified representation for the workflows that pre-
serves only the module names and connection information: we abstract a work-
flow as a directed simple labeled graph. More formally, a workflow W is a triple
W = (N, A, � : N → L), where N is the set of modules or nodes, A is the set of
arcs, which is a subset of all ordered pairs in N ×N and � is a function assigning
one label in the set L to each node in N . Simple graphs have no loops, so pairs
(x, x) are not allowed in A.

Although W contained 1730 workflows some of their graph representations
were exactly the same (i.e., isomorphic graphs). This was expected to happen
since many workflows in W were designed to solve the same problem. So, for our

A First Study on Clustering Collections of Workflow Graphs 167

purposes, instead of using W we used its subset W ′ that consisted of the 1031
different (i.e., non-isomorphic) graphs in W .

3.2 Deriving Clusters

Based on the workflow abstraction described in Section 3.1, we used the repre-
sentations, the dissimilarity measures and the algorithms detailed in Section 2 to
cluster the workflows in W . Throughout this section we will use the term MCIS
to refer to the structural representation and dissimilarity configuration and VS
to refer to the vector-space and cosine distance configuration.

We constructed two distance matrices M ′
mcis and M ′

vs for W ′ based on the
MCIS and VS distance measures. These matrices were used as inputs for the clus-
tering algorithms we experimented with: K-medoids and hierarchical (agglom-
erative) clustering algorithms were used for both VS and MCIS; and K-means
was applied to the VS configuration.

For K-medoids and K-means, to select an appropriate value for K, each con-
figuration was executed 50 times for each specific value of K, with K varying
from 2 to 20. For each execution we computed the Dintra and Dinter cluster dis-
similarities and picked the best values, which for the final results were K = 8 in
the VS configuration and K = 9 in the MCIS configuration. The criterion used
for choosing the values of K is illustrated in Figure 7, which shows its usage
in preliminary results: we examine the values of logDintra as a function of the
number of clusters K and search for a “kink” in the plot to choose the most
interesting values of K for both configurations [8].

3.3 Effectiveness of Clustering

By examining visualizations of the clustering results, including the ones shown
in Figures 5 and 6, we can observe that, for the most part, workflows that belong
to the same class are grouped together for both VS and MCIS configurations.
There are, however, classes that are spread out across (many) different clusters.
As Figure 5 shows, most workflows in the vector field and infovis classes are
grouped in in the first and second clusters (the first two bars, starting from the
bottom). However, workflows classified as being vector field are also found in
other clusters.

While trying to understand the heterogeneity of some of the clusters, we
came across an interesting and unexpected finding: our classification based on
assignment problem and student-specified tag was not accurate for all classes.
We selected some of the workflows classified as vector field but that ended
up in different clusters (A and B)—which we refer to as vector field1 and
vector field2. We also selected two workflows in cluster A which belong to
different classes: vector field1 and isospectra. Then, we compared them,
side-by-side. The visual difference results for the two workflow pairs, displayed
in Figure 6, show that: vector field1 and vector field2 have no modules
in common; and vector field1 and isospectra have a very similar structure,
which differs in a single module. The workflows were actually correctly grouped.

168 E. Santos et al.

VS Clusters

0 50 10
0

15
0

20
0

25
0

30
0

35
0

90% vector_field
8% open

89% infovis
4% scalar_field

73% volume_rendering
19% open

50% plot
34% isospectra

45% diff_scalar_field
36% scalar_field

64% isosurface
10% isospectra

29% vector_field
27% open

63% vector_field
21% combined

MCIS Clusters

0 50 10
0

15
0

20
0

25
0

30
0

35
0

77% vector_field
13% open

75% infovis
8% vector_field

60% volume_rendering
23% open

70% plot
17% isospectra

31% diff_scalar_field
26% isosurface

24% isosurface
23% vector_field

49% isospectra
29% plot

61% volume_rendering
18% isosurface

100% tetravolume

Fig. 5. Clustering W ′ using the VS and MCIS distances. The percentages of the two
“initial” classes (see Figure 4(A)) that had the most number of workflows inside each
cluster are reported. The bars were manually ordered trying to align similar color
patterns. The colormap is also the same as used in Figure 4(A). Notice how the first 4
bars (bottom to top) present a similar pattern. This figure is best understood if viewed
in color.

This indicates that clustering can be an effective means to organize workflow
collections.

Although the results produced by K-medoids give some insight into the dif-
ferent types of workflows in our dataset, they do not provide much information
about the relationship between workflows in each cluster. To understand these
relationships, we used an agglomerative representation to inspect the behavior
of both distance measures in more detail. Figure 7 shows, side by side, the re-
sults from MCIS and VS using K-medoids and agglomerative clustering. The
relationship between the workflows in a cluster are easily seen by looking at the
structure of the agglomerative trees. Interesting observations can be drawn from
these trees. Notice in both trees that there is a cluster with a single observation
(stemming from the root): they correspond to the same workflow. This workflow
is an outlier because it contains a single module that does not appear frequently
in other workflows in our dataset.

This hierarchical representation can also help in the selection of an appropriate
value for K. Depending on the distance metric used, the best values for K can be
different. When running K-medoids on a subset of W containing 50 workflows,
K = 6 was chosen for MCIS and K = 4 for VS. These values are highlighted

A First Study on Clustering Collections of Workflow Graphs 169

Fig. 6. Clustering results for 1031 workflows. On the spreadsheet (left) are the results
of K-Medoids for MCIS (K=9) and for VS (K=8). The visual difference between rep-
resentative workflows are shown on the right. They explain why observations classified
as vector field are in different clusters and why isospectra and vector field ob-
servations were assigned to the same cluster. This figure is best understood if viewed in
color.

in the plots on the right of the figure. Note that the both hierarchies in the
figure have a number of subtrees that is similar to the K we selected for each
configuration.

3.4 Workflow Representations: Graphs vs. Vectors

Figures 5 and 6 show an interesting pattern: the different representations and
associated distance measures lead to similar clusters. Consider for example, the
first four bars (bottom-up) of the two solutions in Figure 5 have a similar color
pattern and size. Given that one representation captures the graph structure
and the other is completely unstructured (i.e., it considers a workflow as a bag
of words), this result was surprising to us.

To compare in more detail the graph-based and vector-based representations
for workflows, we plotted the values of the distance matrices M ′

mcis and M ′
vs.

170 E. Santos et al.

Fig. 7. Clustering results for 50 workflows. The groups formed by K-medoids are indi-
cated in the agglomerative views. The plots below the spreadsheet show log Dintra as
a function of the number of clusters (K) for each measure, where the chosen values of
K are highlighted. The curves were translated to 0 at K=1.

Figure 8 shows a plot of the values in these matrices. Notice that the plot of
the MCIS distances does not start from zero. This happens because the dmcis

is zero only if it is applied to a pair of isomorphic graphs and by construction
there are no such pairs in W ′. The same does not occur to the VS plot: dvs can
be zero even when the graphs are different (see Figure 3 for an example). Note
that this plot shows that the distances capture by these two distinct measures
are similar.

We also compared the clusters produced by the two configurations: we used
the Jaccard similarity coefficient [9], which is a well-known index for comparing
two partitions of the same set. The larger this number is, the more similar
the partitions are. Let CK=8

vs and CK=9
mcis denote the clustering results produced

by the VS and the MCIS configurations, respectively. The Jaccard index for

A First Study on Clustering Collections of Workflow Graphs 171

Fig. 8. For the 1031 workflows of W ′ we computed 530965 (= 1031 × 1030/2) VS and
MCIS distance values. Ordering (independently) all these values for the two distance
measures resulted in the above plot.

partitions CK=8
vs and CK=9

mcis was 0.328. To better understand what this number
means, we checked if a partition of W ′ that matched CK=9

mcis as well as CK=8
vs

could be found by chance. We then computed the Jaccard index between CK=9
mcis

and 1000 randomly generated partitions of W ′, with K = 9. The mean value
of the Jaccard index on this experiment was 0.08 and the maximum value was
0.082, very distant from the number obtained for the MCIS and VS clusters. This
supports our hypothesis that the VS and MCIS configurations are correlated.

These results suggest that labels in W ′, the only information used by VS,
capture a certain amount of the graph structure. To gain insight into this, we
examined the distribution of labels across workflows (see Figure 4 (B)). A label
appears in 1.37 workflows on average, with a standard deviation of 0.59. Thus,
for our dataset, the number of labels is a good estimation to the number of
nodes in a workflow (e.g., in 50% of our workflows the number of nodes was at
most 1.14 times the number of labels). Also, empirically, we have observed that
for the workflows in our dataset, the number of possible connections between
modules is small, and it is constrained by the module labels. Intuitively, there is
a large number of module pairs, but very few are compatible and can be directly
connected.

4 Conclusion

We have presented a first study on clustering workflow graphs. We explored
different representations for these graphs, studied the trade-offs of these rep-
resentations, and assessed the effectiveness of alternative clustering techniques.
Our experimental results show that clustering can be effective to organize large

172 E. Santos et al.

collections of workflows. We have also observed that for our dataset, using a
vector-space based representation produced good results—comparable to results
obtained using the more costly structural representation.

There are several directions we plan to pursue in future work. Although our
preliminary results suggest that, for our dataset, the vector space representation
for workflows can be a cost-effective and scalable strategy to cluster large col-
lections, additional experiments are needed to verify whether a similar behavior
is obtained in other workflow collections. We also plan to investigate more sys-
tematic methods to determine the value of K (for K-medoids and K-means) as
well as experiment with more complex representations of workflows, for instance,
that capture parameter values and information about input and output ports
for the modules.

Acknowledgments

Our research has been funded by the Department of Energy SciDAC (VACET
and SDM centers), the National Science Foundation (grants IIS-0746500, CNS-
0751152, IIS-0713637, OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692,
CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724), and
IBM Faculty Awards (2005, 2006, 2007, and 2008). E. Santos is partially sup-
ported by a CAPES/Fulbright fellowship.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM
Press/Addison-Wesley (1999)

2. Barbosa, L., Freire, J., da Silva, A.S.: Organizing hidden-web databases by clus-
tering visible web documents. In: Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, pp. 326–335. IEEE, Los Alamitos (2007)

3. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

4. Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/gather: a
cluster-based approach to browsing large document collections. In: SIGIR 1992:
Proceedings of the 15th annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 318–329 (1992)

5. Ester, M., Frommelt, A., Kriegel, H.-P., Sander, J.: Spatial data mining: Database
primitives, algorithms and efficient dbms support. Data Mining and Knowledge
Discovery 4(2-3), 193–216 (2000)

6. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

7. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process mod-
els by clustering log traces. IEEE Transactions on Knowledge and Data Engineer-
ing 18(8), 1010–1027 (2006)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer Series in Statistics. Springer, Heidelberg
(2001)

A First Study on Clustering Collections of Workflow Graphs 173

9. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing
Surveys 31(3), 264–323 (1999)

11. Kitware. The Visualization Toolkit (March 15, 2008), http://www.vtk.org
12. Makrogiannis, S., Economou, G., Fotopoulos, S., Bourbakis, N.: Segmentation of

color images using multiscale clustering and graph theoretic region synthesis. IEEE
Transactions on Systems, Man and Cybernetics, Part A 35(2), 224–238 (2005)

13. MyExperiment (March 15, 2008), http://myexperiment.org
14. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.

Communications of ACM 18(11), 613–620 (1975)
15. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for

pattern recognition. IEEE Transactions on Systems, Man and Cybernetics (Part
B) 13(3), 353–363 (1983)

16. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

17. The VisTrails Project (March 15, 2008), http://www.vistrails.org
18. Wu, Z., Leahy, R.: An optimal graph theoretic approach to data clustering: theory

and its application to image segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 15(11), 1101–1113 (1993)

19. Yahoo! Pipes (March 15, 2008), http://pipes.yahoo.com

http://www.vtk.org
http://myexperiment.org
http://www.vistrails.org
http://pipes.yahoo.com

Exploiting Provenance to Make Sense of
Automated Decisions in Scientific Workflows

Paolo Missier, Suzanne Embury, and Richard Stapenhurst

School of Computer Science, University of Manchester
{pmissier,suzanne,stapenr5}@cs.man.ac.uk

Abstract. Scientific workflows may include automated decision steps,
for instance to accept/reject certain data products during the course of
an in silico experiment, based on an assessment of their quality. The
trustworthiness of these workflows can be enhanced by providing the
users with a trace and explanation of the outcome of these decisions. In
this paper we present a provenance model that is designed specifically
to support this task. The model applies to a particular type of sub-
workflow that is compiled automatically from a high-level specification
of user-defined, quality-based data acceptance criteria. The keys to the
effectiveness of the approach are that (i) these sub-workflows follow a
predictable pattern structure, (ii) the purpose of their component ser-
vices is defined using an ontology of Information Quality concepts, and
(iii) the conceptual model for provenance is consistent with the ontology
structure.

1 Introduction

Modern experimental science is increasingly data-intensive: a typical in silico ex-
periment involves the coordinated execution of a number of processes that pro-
duce, consume, transform and analyse data. Automating these processes bears
the promise of increasing the rate at which new scientific results can be produced.
At the same time, however, scientists are also responsible for making sure that
the data produced by these experiments is sound and scientifically of good qual-
ity. Let us mention two of the factors that may contribute to the production of
invalid output from an e-science experiment. The first is the increasing reliance
on public data and service resources that are contributed by multiple parties
within a scientific community; the problem is that these contributors do not
routinely offer guarantees of data quality control (or service accuracy). Because
of this, low quality in the input may be expected. And secondly, errors can be
introduced due to the inherent complexity and variability of the scientific exper-
iments that produce the data. Some of these problems have been surveyed and
classified for the case of transcriptomics and proteomics data, for example [6].
When these errors go undetected, because of a lack of appropriate quality con-
trols either by the experimenter, or by the data provider, user scientists face the
risk of inadvertently using using poor data that may invalidate the conclusions
drawn from their own experiments.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 174–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting Provenance to Make Sense of Automated Decisions 175

In this paper we argue that, when the experimental process is implemented
as a workflow, the analysis of provenance trails collected from workflow execu-
tions can play an important role in supporting the experimenters’ claim of their
results’ soundness. By the term workflow provenance we mean metadata that is
collected during the execution of the workflow, in order to enable various types
of post-mortem analyses on its outcome. In particular, we are going to exploit
provenance metadata to explain and justify the quality-based decisions made by
a completely automated workflow on the user’s behalf, in particular regarding
which data elements are deemed acceptable based on their quality estimates.
This problem is complicated by the potentially arbitrary nature of the proces-
sors that compose the workflow, as well as of the workflow structure. As has been
noted [5], black-box processors that are not further annotated limit the ability
to use the provenance log for explanation purposes, and similarly, an arbitrary
workflow structure imposes a generic presentation model.

We do not propose a general solution to this problem. Instead, our approach
is focused on a specific type of quality-based decision processes, and stems from
three key design principles. Firstly, we take the stance that quality assurance
in the workflow context is described by a process in its own right, which can
be deployed as a part of the workflow itself, or as a sub-workflow. We call such
process a quality workflow. Secondly, quality workflows are automatically gen-
erated from higher-level specifications, in a model-driven fashion, making their
structure and their composing services predictable. And finally, the services that
compose a quality workflow are described as part of an ontology of Information
Quality concepts. As we will see in Section 3, this allows us to create a data
model for provenance that follows the structure of the ontology. This uniformity
of representation has at least two advantages. Firstly, we can query the prove-
nance model using the ontology as a schema; and secondly, we can describe
the relationships among elements in the provenance model in terms of semantic
properties among their corresponding classes. The combination of these three
design principles make it possible to exploit provenance to provide users with a
high-level, “semantic” view of quality-based decisions, in a way that would not
be possible when dealing with arbitrary workflows.

Based on these premises, in the paper we present a detailed provenance model
that is specifically dedicated to analysing quality workflows. We view this as only
one specific case of an otherwise general confluence between model-driven work-
flow design, semantic annotation of services, and provenance modelling. Note
that the examples used in the paper are set in the context of e-science work-
flows; also, the implementation of the provenance model described in the paper
uses the Taverna workflow language [7,10], part of the myGrid suite of middle-
ware tools for e-science1. Neither of these is a limitation, however: the notion
of quality workflows is completely general and applicable to other domains, and
the provenance model does not contain any Taverna-specific element.

Concerning related research, we fine that the idea of semantic provenance
models that are tailored to special-purpose workflows is not yet common in the

1 http://mygrid.org.uk

176 P. Missier, S. Embury, and R. Stapenhurst

literature, although various mature systems provide interesting ways to visualize
provenance, i.e., VisTrail [3]. In fact, the ability to query provenance informa-
tion at different levels of abstraction is listed as one of the many desiderata for
provenance systems by Chapman and Jagadish [4] (it is listed as number IX).

The recent work on the Zoom provenance query prototype by Biton et al. [2]
is relevant, in that it advocates a tailoring of provenance views to the needs of
specific users, rather than just giving access to the enormous bulk of the raw
logs in all their detail. We see their work as complementary to our own. We
allow users to ignore the detail of the quality assessment aspects of the workflow
(which could be packaged up into a “composite module”, to use the terminology
of Biton et al.) until query time. At this point, the provenance browser provides
an abstract view over provenance, that is based not on a user-specified view,
but on the high-level model from which the quality sub-workflow was produced.
Clearly, a number of abstract views of workflows could be supported by adopting
mechanisms similar to those suggested in [2].

2 Quality-Based Decision Processes

The quality assurance problems that motivate our work could, in principle, be
alleviated by convincing data and service providers to deploy their own quality
assurance procedures during data generation, maintenance, and provisioning.
Besides being impractical, however, this proposition assumes that standardised
quality estimation procedures can be developed. This, however, often contrasts
with the very nature of interesting e-science data, which results from cutting-
edge research conducted using new and experimental techniques that tend to
change rapidly, not lending themselves well to standardisation.

Even when the data provider makes appropriate, objective quality metrics
available, the user scientists are still faced with a decision problem, namely
whether to accept or reject certain data based on its quality characteristics. Al-
though the determination of data acceptability is based on objective metrics, the
user’s perception of whether the data is fit for use, given its quality character-
istics, also plays a part: some types of error, or approximation, can be tolerable
for some types of applications, but not for others, and different users may attach
different importance to quality.

2.1 Example

To make these considerations concrete, consider a real-life case study in the
domain of qualitative proteomics [1], i.e., concerning the identification and func-
tional characterization of proteins from a cell sample. The experiment includes
an in vitro portion whereby a mass spectrometer is used to quantify the pep-
tide masses in the sample, followed by an in silico portion where the observed
masses are matched against theoretically computed masses for a large collection
of known proteins. The critical step in the latter portion of the experiment, de-
noted Identify Proteins in the Taverna workflow fragment of Fig. 1, is the

Exploiting Provenance to Make Sense of Automated Decisions 177

Fig. 1. A simple proteomics workflow with a potentially imprecise search processor

invocation of the matching service. We can view this service as a dedicated search
engine that operates on sequences of peptide masses. The results of the search
invariably include partial matches as well as exact matches. Although some of
these matches may turn out to be false positives, the experimenter has no simple
way to make that determination. Ideally, a quality-based data acceptance crite-
ria would be able to accept/reject individual matches based on their likelihood
of being a false positive.

To help determine the reliability of each reported match, implementations of
this service (Imprint is the homegrown service used in our example) typically
do provide additional metadata along with the match, including for example the
Hit Ratio, i.e., the number of peptide masses matched, divided by the number of
peptide masses submitted to the search (additional metadata that is required in
this example is omitted for simplicity). Recent research [11] has shown a strong
correlation between a simple score model for matches based on this and other
readily available indicators, and the likelihood of false positives. By using this
predictive score model to rank the output of the matching service, in combination
with a user-defined threshold, experimenters have an effective way to make their
quality acceptance criteria formal and automatically computable.

2.2 Structure of the Decision Process

The previous example highlights the main elements of a quality-based decision
process that is applied to a dataset, in this case a collection of protein matches:
first a set of objective metadata elements, i.e., the Hit Ratio, is collected in or-
der to compute a predictive quality model (the match score). We will refer to
the metadata elements as quality evidence, and to the quality model as quality
assertion. Then, a threshold is applied in order to partition the ranked protein
matches into the two classes “accept” and “reject” –this is an example of a quality
condition. Note how the process combines purely objective elements, namely the
evidence, with a predictive model, the assertion, and with a subjective element,
namely the threshold. Generalising from the example, in [9] and [8] we have
formally described a broad class of quality processes that take an input dataset

178 P. Missier, S. Embury, and R. Stapenhurst

and compute a partition of the dataset into quality classes, such as “accept” and
“reject”. These processes share the structure just described, namely they:

– collect quality evidence from the data and the surrounding operating en-
vironment. In the example, the required evidence is either supplied by the
search engine, or can be derived independently from its output;

– compute one or more quality assertions, using the collected evidence as input;
– evaluate a quality condition that assigns one quality class to each element

in the input dataset, based on the values of the quality assertions.

In particular, in [9] we have coined the term Quality View to denote a formal
specification of such a quality process. The process is abstract in that it does not
include any indications regarding its implementation. A Quality View specifies
three types of functions, one for each of the steps listed above, namely (i) anno-
tation functions that associate quality evidence metadata to the input dataset;
(ii) quality assertion functions that associate quality assertions to the data based
on the evidence, and (iii) quality actions that compute a quality classification
based on the assertions.

2.3 Compiling Quality Processes to Workflows

Quality Views are defined as part of a workbench for Information Quality man-
agement, called Qurator [9]. Using Qurator, e-scientists may define their own
quality metrics for specific types of data as quality assertion functions, and then
specify Quality Views in order to apply those metrics to the data. Quality Views
are most useful when they are deployed as filters within larger, user-defined
processes. For this reason, Qurator includes a compiler that translates Quality
Views into workflows, specifically targeted at the Taverna workflow system. An
example of such a quality workflow, designed to work with the example protein
identification workflow of Fig. 1, is shown in Fig. 2.

The compiler assumes that all the annotation and assertion functions that
are part of the Quality View have been implemented as Web Services. With this
assumption, those functions translate simply to Taverna processors that perform
service invocations. Specifically, the example workflow includes one annotation
processor, InprintOutputAnnotator, and three quality assertion processors, for
instance PIScoreClassifier. The action step at the end evaluates an expression
on the values of any of the assertions computed by these processors, for instance
“HitRatio > 0.67 and PIScoreClassifier = ’high’ and ...”. Data elements that
do not satisfy the condition are placed in the “reject” output of the processor,
which is typically not connected to any other processor. Thus, this mechanism
can be used in particular to filter out protein identifiers that rank too low, when
a user-defined threshold is used in combination with the score model described
in Section 2.1.

2.4 Role of Provenance

As this example shows, quality workflows may have an impact on the outcome
of a workflow, for instance by removing the likely false positives. It is therefore

Exploiting Provenance to Make Sense of Automated Decisions 179

Fig. 2. A quality workflow deployed as part of the proteomics experiment

important for users to understand the effects of the quality workflow on the out-
put of its original workflow. For this, the Qurator workbench includes a prove-
nance component that is specialised to operate exclusively on quality workflows,
providing users with a high-level trail to explain how a certain decision was
reached. Specifically, the component supports the following tasks, among others:

– visualize the partitioning of the input data set into quality classes, as defined
upon evaluating the action condition;

– for each data element, visualize the entire trail of transformations that con-
tributed to its quality classification. This includes quality assertion values
that were used in evaluating the condition, the names and types of the qual-
ity assertion functions, the values for their input quality evidence, and the
annotation functions used to compute the evidence;

– visualize the different quality classification outcomes obtained over a series of
workflow executions, highlighting the differences among the quality workflow
settings (e.g. the action condition). Is a certain data element consistently
rejected or accepted, for example? or is its acceptance particularly sensitive
to a threshold configuration?

– compute descriptive statistics over the series, for instance by counting the
number of times that each data element was rejected/accepted.

The ability to address these issues is particularly important, when one considers
that the Qurator workbench provides users with ways to rapidly deploy and
test new quality workflows, leading to the inexpensive generation of experiment

180 P. Missier, S. Embury, and R. Stapenhurst

Fig. 3. Screenshot of the Qurator provenance viewer

variants. The screenshot in Fig. 3, taken from the current implementation of the
provenance component (part of the Qurator workbench), shows an example of
user presentation of quality provenance.

3 The Quality Provenance Model

In this section we describe in detail the data and query model for quality prove-
nance that supports the tasks outlined above. Its design exploits the layered
structure of the quality workflows, that corresponds to the abstract process steps
of the Quality View they are compiled from.

3.1 Semantic Definition of Quality Processors

In addition to generating quality workflows with a predictable structure, Qura-
tor offers a second advantage to the provenance component: all the elements
of a Quality View (data, quality metadata, and processors) are assigned a se-
mantic type, i.e., a reference to a class in an ontology of Information Quality
(IQ) concepts. To illustrate, consider Fig. 4, where the main concepts are shown
along with their properties2. The leftmost part of the figure shows some of the
domain-independent ontology classes: an Annotation function computes val-
ues that are instances of Quality Evidence classes, using instances of Data
Entity as input. Similarly, a generic Quality Assertion is based upon Quality

2 This is a vastly simplified fragment of the ontology. For a complete account, please
see [8].

Exploiting Provenance to Make Sense of Automated Decisions 181

QualityAssertion

assertion based
on evidence

QualityEvidence

AnnotationFunction

Data Entity

Hit Ratio

Imprint Annotator

Protein Hit Entry

is−a

is−a
PIScoreClassifier

HR_MC_Score

PIScoreClassifier Service

HR_MC_Score Service

AF−has−ouput

DE−input−of

is−a

is−a

"3.53"

Imprint Annotator Service

"UniprotXYZ"

Service spaceSemantic space

Fig. 4. A fragment of the Information Quality ontology with semantic typing of services

Evidence values. On its right are specializations of each of these generic classes
to domain-specific sub-classes, in this case associated to protein identification
data (Imprint is the name of the specific protein matching tool used in the
main workflow). Together, these classes and properties belong to a “semantic
space” of symbols that can be used to give meaning to objects in the “service
and data space”, on the right in the figure. In this space we find specific imple-
mentations of the functions as Web Services, as well as actual values for data
and metadata elements (the patterned boxes).

When a Quality View is compiled into a quality workflow, entities in the ser-
vice and data space are annotated with references to classes in the semantic
space. As we will see shortly, by creating a data model for the provenance com-
ponent that follows the structure of the ontology we are able to view provenance
metadata as instances of the ontology classes. This uniformity of representation
has at least two advantages. Firstly, we can query the provenance model using
the ontology as a schema; and secondly, we can describe the relationships among
elements in the provenance model in terms of semantic properties among their
corresponding classes, leading to a presentation model for provenance that is
close to the scientist’s intuition of the intended workflow behaviour.

Since the IQ ontology is specified using the OWL Semantic Web language3,
these design decisions lead naturally to RDF4 as the data model of choice for
provenance. This is in accordance with common Semantic Web practice, whereby
we can assign a semantic type to arbitrary RDF resources (by means of the pre-
defined RDF(S) property rdf:type). In particular, some of the instances of the

3 http://www.w3.org/TR/owl-guide/
4 http://www.w3.org/RDF/

182 P. Missier, S. Embury, and R. Stapenhurst

provenance schema have a semantic type that corresponds to the ontology classes
shown in Fig. 4.

The provenance model consists of two parts. The first part, called the static
model, is an RDF graph that describes elements of a quality workflow, as they
are specified at compilation time, while the dynamic model is populated with
actual provenance data during each workflow execution.

3.2 Static Model

A fragment of the static model for our running example is shown in Fig. 5. This
RDF graph contains two resources, namely the two nodes (the ovals) on the
left in the figure. RDF resources are identified using a unique URI, while the
square boxes are literals, i.e., constant values, and directed arcs denote binary
properties between any two nodes, the subject and the obiect of the property.
Nodes can be anonymous (also called b-nodes), i.e., their URI is internal and
system-defined rather than user-defined, and thus it is not shown.

The first of the two nodes on the left represents the only quality action in
the workflow, i.e., filter action, and it carries the definition of the action
expression that is used to identify the “accept” data elements. The second is the
root of a sub-graph that represents one of the quality assertion functions, along
with its input and output variables, having semantic type PIScoreClassifier.
Similarly, each input variable is an RDF resource too, consisting of a name (the
literal) and a semantic type, i.e., a reference to a Quality Evidence class.

3.3 Dynamic Model

The static model is common to all executions of the same workflow. A dynamic
model for quality provenance, also an RDF graph, is populated during each
workflow execution, and contains references to the static model. Its purpose is
to capture the values of the variables involved in the workflow, i.e., those that
appear in the static model, as well as the effect of the quality actions. Each
new execution of the same quality workflow results in the generation of a new
dynamic model (for the same static model).

From a technical standpoint, the mechanism for collecting provenance infor-
mation for the dynamic model exploits Taverna’s ability to accept third party
monitoring components and to send notifications to them for a variety of events
that occur during workflow execution. Using this notification pattern, the qual-
ity provenance component monitors the activity of individual processors in the
quality workflow, as well as the content of the messages they exchange.

With reference to our example, Fig. 6 represents a fragment of the dynamic
model corresponding to the static model of Fig. 5. The b-nodes in the middle
represent a variety of workflow elements. Second from top is the workflow
execution node with a unique identifier (i.e., the resource PP6...) that serves
as a reference for the other nodes, which are related to it through the workflow

property. This common reference defines the scope for all the resources associated

Exploiting Provenance to Make Sense of Automated Decisions 183

Masses

Coverage

Coverage

HitRatio

HitRatio

Mass

Mass

PIScoreClassifier

HitRatio > 0.67 AND

filter_action

action

input_var

input_var

input_var

output_var
PIScoreClassifier

Masses

rdf:type

input_var

rdf:type

action_name

expression

Fig. 5. Compiler-generated static model for quality provenance

20

filter_action

fail

urn:...:P33897lsid:experimentInstance:PP6R6...

PIScoreClassifier

binding

close_to_avg

action_binding

binding

2008−01−01

workflow

rdf:type

rdf:type

rdf:type

rdf:type

value

value

value

time

workflow

workflow

workflow

workflow

var_name

var_name

rdf:type

data_item

action_name

data_item

data_item

HitRatio

HitRatio

var

Fig. 6. Dynamic provenance model populated from workflow execution

with a single execution. It ensures, for example, that we can retrieve the entire
quality provenance graph for one execution independently from that of other
executions (using a query with the constraint that the workflow be the same for
all resources returned), while at the same time allowing for queries over multiple

184 P. Missier, S. Embury, and R. Stapenhurst

SELECT ?action ?outcome ?workflow
WHERE { ?binding data item ”P33897” .

?binding action name ?action .
?binding value ?outcome .
?binding workflow ?workflow .
?binding rdf:type ”actionBinding” .

FILTER (regex(?workflow, ”4IPQF26RXW2”)) . }

(1) all action outcomes for a given workflow

SELECT ?assertion ?value
WHERE { ?v var name ?assertion .

?v value ?value .
?v workflow ?workflow .

FILTER (regex(?workflow, ”4IPQF26RXW2”)) .
regex(?data item, ”P26153”)) . }

(2) all assertion values for a given workflow and data item

Fig. 7. Example SPARQL provenance queries

executions, for example “all protein data in class fail”, simply by ignoring the
workflow identifier.5

Briefly, the other b-nodes are used to represent the quality assertion value
close to avg for a data item (top node), the quality classification fail for the
same item (third node), and the binding of the HitRatio variable to value 20,
still for the same item (bottom node). Note that references to the static model
occur both by name, i.e., the literal PIScoreClassifier can be used to retrieve
the quality assertion’s static information, and by reference, e.g. the var property
for the bottom node which refers to a b-node in the static model, namely for
the descriptor of the variable. A new execution of the same workflow results in
a new set of b-nodes, with references to the same static model nodes.

3.4 Querying the Model

As part of the Qurator workbench we offer a programmatic interface (in Java) for
querying the model, based on the SPARQL query language (the W3C standard
RDF query language6). In addition, however, we have also defined a graphical
user interface, exemplified in Fig. 3 above, which implements the common types
of provenance analysis listed at the end of Section 2.

The two SPARQL queries shown in Fig. 7 (slightly simplified for the sake
of presentation) illustrate the types of provenance data retrieval supported by
the model, which form the basis for the user interface. The first returns all
quality classes, i.e., the outcome of action processors, for a given workflow and
for each data item, while the second returns the values of all assertions, for a
given data item.

4 Conclusions

In our previous work [9] we have proposed the notion of a quality workflow in
the context of the Qurator workbench for managing information quality in e-
science. In this paper we have described a focused, application-oriented process

5 Recent extensions of RDF, namely for named graphs (http://www.w3.org/2004/
03/trix/), can also be used to partition a large RDF graph according to a given
scope.

6 http://www.w3.org/TR/rdf-sparql-query/

Exploiting Provenance to Make Sense of Automated Decisions 185

provenance model, called quality provenance, that can be associated to quality
workflows. The model benefits from the automated generation of quality work-
flows by means of a compiler, and from the use of an ontology of information
quality concepts – both of which are pre-existing Qurator features.

Several broad-scope provenance models have been proposed in the literature.
Oblivious of any workflow semantics, these models capture a generic and low-
level form of provenance. In contrast, in our approach we narrow the scope
of provenance analysis, in return for the ability to present users with a high-
level explanation of the processors that are within the scope. Although we have
developed this idea in the context of quality-based decision processes, we believe
this to be a viable approach that can be generalised to other types of pattern-
based workflow structures.

References

1. Aebersold, R., Mann, M.: Mass spectrometry-based proteomics. Nature 422, 198–
207 (2003)

2. Biton, O., Cohen-Boulakia, S., Davidson, S., Hara, C.: Querying and managing
provenance through user views in scientific workflows. In: Procs. International Con-
ference on Data Engineering (ICDE) (April 2008)

3. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E.: VisTrails: visualization
meets data management. In: SIGMOD Conference, pp. 745–747 (2006)

4. Chapman, A., Jagadish, H.V.: Issues in building practical provenance systems.
IEEE Data Eng. Bull. 30(4), 38–43 (2007)

5. Davidson, S., Cohen-Boulakia, S., Eyal, A., Ludascher, B., McPhillips, T., Bowers,
S., Kumar Anand, M., Freire, J.: Provenance in scientific workflow systems. Data
Engineering Bulletin 30 (December 2007)

6. Hedeler, C., Missier, P.: Database Modeling in Biology: Practices and Challenges.
In: Quality management challenges in the post-genomic era., Artech House (2007)

7. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn,
T.: Taverna: a tool for building and running workflows of services. Nucleic Acids
Research 34, W729–W732 (2006)

8. Missier, P.: Modelling and Computing Information Quality in e-science. Ph.D the-
sis, School of Computer Science (2008)

9. Missier, P., Embury, S.M., Greenwood, M., Preece, A.D., Jin, B.: Quality views:
Capturing and exploiting the user perspective on data quality. In: VLDB, Seoul,
Korea, pp. 977–988 (September 2006)

10. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,
Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: A tool for the composition
and enactment of bioinformatics workflows. Bioinformatics, 3045–3054 (November
2004)

11. Stead, D.A., Preece, A., Brown, A.J.P.: Universal metrics for quality assess-
ment of protein identifications by mass spectrometry. Molecular & Cellular Pro-
teomics 5(7), 1205–1211 (2006)

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 186–199, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Explicit Control Processes in Distributed
Workflows to Gather Provenance

Sérgio Manuel Serra da Cruz1, Fernando Seabra Chirigati 1, Rafael Dahis1,
Maria Luiza M. Campos2, and Marta Mattoso1

1 PESC - COPPE
2 PPGI - IM/NCE

Federal University of Rio de Janeiro (UFRJ)
P.O. Box: 68511, Rio de Janeiro, RJ, 21941-972, Brazil

{serra,fernando_seabra,rafaeldahis,marta}@cos.ufrj.br,
mluiza@ufrj.br

Abstract. Distributing workflow tasks among high performance environments
involves local processing and remote execution on clusters and grids. This dis-
tribution often needs interoperation between heterogeneous workflow definition
languages and their corresponding execution machines. A centralized Workflow
Management System (WfMS) can be locally controlling the execution of a
workflow that needs a grid WfMS to execute a sub-workflow that requires high
performance. Workflow specification languages often provide different control-
flow execution structures. Moving from one environment to another requires
mappings between these languages. Due to heterogeneity, control-flow
structures, available in one system, may not be supported in another. In these
heterogeneous distributed environments, provenance gathering becomes also
heterogeneous. This work presents control-flow modules that aim to be inde-
pendent from WfMS. By inserting these control-flow modules on the workflow
specification, the workflow execution control becomes less dependent of hetero-
geneous workflow execution engines. In addition, they can be used to gather
provenance data both from local and remote execution, thus allowing the same
provenance registration on both environments independent of the heterogeneous
WfMS. The proposed modules extend the ordinary workflow tasks by providing
dynamic behavioral execution control. They were implemented in the VisTrails
graphical workflow enactment engine, which offers a flexible infrastructure for
provenance gathering.

Keywords: workflow, provenance, scientific workflow, distributed computing.

1 Introduction

Scientific experiments are increasingly being conducted using workflow specifi-
cations controlled by workflow management systems (WfMS). Obtaining provenance
data for scientific experiments with the help of these systems is becoming very attrac-
tive. However, provenance capture mechanisms are still an open issue [1]. Innumer-
ous WfMS are available to support scientific workflow execution [1] [2] [3]. Each
system has specific features to address different workflow requirements. It is very

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 187

likely that workflows belonging to the same experiment use different WfMS. Each
WfMS has its own provenance model and capture mechanism. Such heterogeneity
imposes many challenges for provenance data representation and integration. Several
efforts are underway to minimize this heterogeneity, such as the Open Provenance
Model (OPM) [4] and the series of Provenance Challenges.

Scientific workflows are characterized by data intensive analyses. These data
driven workflows also need control structures to specify how the data flow should be
directed [5] [6] [7]. Often, these data analyses are time consuming and need to exe-
cute on remote parallel processing environments, such as cluster machines and grids.
Several grid WfMS [3], such as Pegasus [8], P-GRADE [9] and Triana [10], have
been proposed to offer high performance execution. However, not all tasks of a scien-
tific workflow need to be executed on a high performance environment. Local WfMS
have been designed with rich graphical interfaces to be interactively used. For exam-
ple, they provide visual tools to follow the workflow execution steps. Local and cen-
tralized control based WfMS (e.g. Taverna, [11], VisTrails [12] [13], and Kepler [14])
are characterized by a single workflow execution engine, enacting the whole execu-
tion of a given scientific workflow.

A distributed workflow is characterized by a distributed execution where some of
the workflow tasks are best executed locally, while others remotely. This is a typical
scenario for many applications, such as bioinformatics. Local task execution is well
supported by current centralized WfMS. However, they present limited capabilities to
allow for remote executions. Usually, the WfMS presents some modules that help the
invocation of a remote execution environment for executing one single task. When it
is necessary to run a sub-workflow remotely, WfMS language mappings are required.
Using one single workflow language/engine to run tasks of the same workflow along
these local and distributed environments is currently an open issue.

In summary, a distributed workflow execution involves a lot of heterogeneity, i.e.,
execution under different workflow engines and heterogeneous provenance capture
mechanisms. Provenance gathering based on central control can lose track of these
remote tasks. Provenance gathering is usually tightly coupled to the workflow engine
in charge of execution monitoring. Moving from one workflow system to another
imposes at least two challenges. The first is related to the workflow design - in gen-
eral, scientists are focused on composing and constructing a particular workflow
within one single WfMS; designing parallel executions of processes may involve
heterogeneous workflow models. The second relates to provenance gathering – cur-
rently, most WfMS register provenance in their own schema, often encompassing
specific grid features or application domain attributes. Even if all systems adopt the
same provenance schema, e.g. OPM [4], integrating its instances is not trivial.

One possible solution is to diminish the dependence of the workflow definition on
the WfMS. This could be achieved by uncoupling the provenance gathering system
from the WfMS, and also by having some control-flow of execution independent of
the WfMS workflow specification language. By plugging control-flow and prove-
nance gathering modules along the workflow original tasks, the workflow specifica-
tion can be executed almost independently of the current WfMS and provenance can
be gathered uniformly.

In this paper, it is proposed a small set of generic workflow-level control modules
that can be used to design a scientific workflow to be executed by heterogeneous

188 S.M.S. da Cruz et al.

WfMS. These control modules are close to basic workflows patterns proposed in [15].
They aims to improve remote workflow execution by allowing WfMS to face a dy-
namic execution behavior without losing track of the provenance gathering process in
distributed environments. Such approach is a step towards the above-mentioned chal-
lenges on independent distributed workflow execution and provenance gathering.

This paper is organized as follows. Section 2 discusses scientific workflow controls
and distributed provenance gathering. Section 3 presents the execution control mod-
ules. Section 4 shows an implementation of these modules on VisTrails WfMS. Sec-
tion 5 concludes the paper.

2 Provenance Gathering in Distributed Scientific Workflows

In this section, we discuss the problems of having to move from one WfMS to an-
other. Initially, we stress that control flow does matter in scientific workflows. Then,
we discuss the problems of having different control structures in WfMS specification
languages and address its impact on provenance gathering.

2.1 Control Flow in Scientific Workflows

Even though control is not the main characteristic of a scientific workflow, they do
matter and are essential in many experiments [5] [3] [6] [7]. Workflow control pat-
terns have been proposed by Aalst et al. [16] as a common framework to help on the
heterogeneities of the several workflow specification languages. We used a subset of
these control-flow patterns to design our proposed control modules. Our goal is to
have a meta-workflow specification language that eases migration from one WfMS to
another.

According to the taxonomy of Yu and Buyya [3] for Scientific Workflow Systems
for Grid Computing, a DAG-based workflow structure can be categorized as se-
quence, parallelism, and choice, whereas a scientific non-DAG workflow also in-
cludes iteration structure. Control structures play an important part on this taxonomy
that represents generically scientific workflows

Goderis, Brooks, Altintas, Lee, and Goble [6] stress the importance of combining
different models of computation in one scientific workflow. They show examples of
combining sequential pipelines with iteration and choice control flow process similar
to a finite state machine that evaluates guards on all outgoing transitions. Similarly,
Bowers, Ludaecher, Ngu and Critchlow [5] say that control-flow modeling, such as “if-
then-else and switch-case statements, and iteration with multiple entry and exit points”,
are often necessary for engineering fault-tolerant, robust, and adaptive workflows.
They also say “that modeling control-flow using only dataflow constructs can quickly
lead to overly complex workflows that are hard to understand, reuse, reconfigure,
maintain, and schedule.” They present a similar approach to our proposal. They have
designed a set of templates to represent control structures as actors in the Kepler
WfMS [14]. Our approach differs from [5] and [6] in the sense that they present con-
trol structures for one specific WfMS, while we are focusing on general control-flow
structures to simplify sub-workflow remote execution. In addition to reuse, we aim at
gathering remote process provenance with the help of these control structures.

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 189

Tudruj, Kopanski and Borkowski [7] also state the importance of general dynamic
control flow, but focus on synchronization of parallel execution. Similarly to our
proposal they have presented a set of generic control structures and proposed the use
of a monitoring middleware. However, we do not want to interfere on the execution
of tasks on a remote distributed environment. So, our focus is more on remote-
distributed provenance gathering rather than synchronization control.

2.2 Provenance Gathering in Heterogeneous WfMS

WfMS have been designed as distributed or centralized execution control. While
distributed WfMS, like Pegasus [8], P-GRADE [9] and Triana [10], focus on high
performance and resource scheduling, rather than provenance gathering, centralized
control based WfMS (e.g. Taverna, [11], VisTrails [12] [13], Kepler [14]) are focused
on semantic issues in workflow design and provenance gathering. However, central-
ized WfMS are characterized by having a single workflow execution engine, enacting
the whole execution of a given scientific workflow. For instance, VisTrails provides
visualization facilities and provenance of the whole exploration process, capturing the
evolution of a workflow. Despite these facilities, VisTrails, in its current public ver-
sion, lacks support in connecting to distributed environments and does not allow inner
activities loops. Kepler has some predefined control-flow modules that can be
plugged in the workflow specification. However, if a sub-workflow needs to be exe-
cuted under a different WfMS, these Kepler’s actors will no longer apply.

If you need to change from one environment to another, from local execution to a
grid, you may send tasks of a sub-workflow to be remotely executed one by one. In
this way, you can keep the local WfMS in charge of the execution control, but this
can deteriorate performance severely. Another option is to recode the sub-workflow
with the grid WfMS language, then this sub-workflow will execute under the grid
WfMS and take advantage of the remote grid resources without coming back and
forth to the local WfMS. Alternatively, if you send general control modules along the
sub-workflow, you may send this augmented sub-workflow to run remotely and still
be able to register provenance remotely and bring it back locally. Otherwise, if you
rely on the provenance system of the remote WFMS, you will need to do conversions
from one provenance model to another, and you may miss some provenance gathering
not supported by the remote system and so on.

In this scenario, a typical scientific workflow may want to have its provenance re-
corded by a centralized WfMS, as well as to take advantage of high performance
environments, such as the ones provided by grid WfMS. We aim at showing that
having control independent from the WfMS gives flexibility to help in moving from
one WfMS to another in a distributed environment, e.g. local and grid. These addi-
tional modules can further be used to record provenance remotely using the same
representation model as the local WfMS, or OPM for example.

Having control modules explicitly defined can help on other workflow semantic is-
sues. When control-flow specifications are based on patterns (standards), reusing
parts of a workflow becomes easier. If control modules have a formal basis, several
verifications can be done. For example, does the workflow terminate? Does it con-
form to some correction rules? This can lead to a meta-workflow definition. It can be

190 S.M.S. da Cruz et al.

seen as a step towards a canonical model or a layer to where all workflow languages
and provenance models can be mapped to and from.

3 Scientific Workflow Control Flows

In this section, we present our approach to provide scientific workflows with generic
control-flow modules for the coordination of the traditional data flow operations.
These structures enable the execution of distributed applications with scheduling
dependencies more advanced than the simple data availability criteria, and where the
data passing between activities need to be restricted due to processing errors, or data
volume, or costs associated with transfers. Aalst et al. [15] [16] have identified many
patterns that provide a systematic examination of the various perspectives that need to
be supported by workflow languages. In short, the control-flow perspective captures
aspects related to control-flow dependencies between various activities of a workflow.
The data perspective deals with the information flow and variables scope, among
others. The resource perspective deals with resource to activity allocation and delega-
tion. Finally, the patterns for the exception handling perspective deal with many
causes of exceptions and the consequent actions needed to overcome them.

This work is centered on the control-flow perspective, because control patterns de-
fine which activities of a given workflow should become enabled after the completion
of other activities and in what order they will be executed by the scientific WfMS. It
is also important to highlight that the control patterns are not concerned with how an
enabled activity will be executed and whether it works as it is supposed to do. The
control flow pattern considers each activity as a black box and the only observable
behavior which the pattern is concerned about is when the activity becomes enabled
and when it finishes executing.

WfMS like Taverna [17], Kepler [14] and VisTrails [12] [13] present a heteroge-
neous and limited set of control-flow elements, making it difficult to design a scien-
tific workflow which often requires iterations, decision, conditions and registering of
processes’ data. One of the possible ways to bypass those shortcomings requires repro-
gramming the WfMS. However, modifying existing WfMS may be time consuming and
error prone. Another way is to reuse generic control-flow modules, such as the ones we
propose in this work. Table 1 shows these modules, the number of input/output ports
and the corresponding workflow pattern as defined by Aalst et al. [16].

Table 1. Control flow modules x workflow patterns

Module Number of input/output ports Workflow pattern
Mux 1 (selector) + user defined / 1 Structured Discriminator
Demux 2 / user defined Exclusive Choice
String Control 2 / 2 Deferred Choice
NumberControl 1 / 5 Multiple Instances Without syn-

chronization
NumberCompare
If

2 / 1
4 / 1

Synchronization
Exclusive Choice

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 191

The proposed workflow controls are extensible components that allow the work-
flow to be redefined at run-time, offering it the ability to adapt automatically to
changes without compromising the logic of the scientific experiment and its safety.
These control modules can be embedded in a graphical workflow design interface,
enabling workflow programming with run-time modifiable functionality and dynamic
interactions between activities. Thus, the workflow tasks can move from one work-
flow engine to another without having to recode the workflow specification to match
heterogeneous workflow specification languages. In addition, when control moves,
provenance gathering can move along and be aware of the remote execution flow.
This flexibility comes with some limitations, for example, the workflow execution
scheduler is not aware of control flow and may provide poor optimization. However,
when specific workflow coding prevents provenance gathering, trading performance
might be an option. In the next section, we present the control flow modules and
compare them with workflow patterns.

3.1 Control Flow Modules in VisTrails

In this work, we used the VisTrails WfMS [12] [13] to implement the proposed con-
trol-flow modules by adding dynamic behavior without harnessing the provenance
gathering process of the WfMS. In VisTrails, the workflow tasks are known as mod-
ules and are coded in Python. VisTrails presents some implementation requisites, such
as: (i) each module is defined as a class, which describes a given structure; (ii) mod-
ules are connected through input/output ports; (iii) input values come through input
ports, and results are given in output ports; and (iv) all the connection and relationship
between the modules must be defined and formalized inside the class. Modules in
VisTrails, as in other WfMS, like Kepler [14], require a data type. Developers need to
know the type of the data that are passing through them, despite the programming
language used in their code. Thus, each port must have a defined type (e.g. string,
float, integer, file or boolean). Modules with similar goals can be grouped as packages
in order to simplify deploy and development, making their organization clearer.

3.1.1 Multiplexer and Demultiplexer
The Multiplexer module, or simply Mux, is important for decision making activities.
Its functionality lies on the choice of a data piece, between a series, to continue in the
execution flow. Mux module offers the possibility of choosing an input port; such
feature is not directly available in VisTrails or in other WfMS. The pattern that best
represents the Mux module is the “Structured Discriminator” [15]. This pattern de-
scribes a convergence between two or more input ports, resulting in just one branch.
The activation of the output port depends on an input port, what happens in the Mux
module. However, in the module, there is a condition (the selector) to choose the
input port; while in the pattern, the first incoming branch to be enabled is the one to
activate the outgoing branch; it does not depend on a condition. Besides, in the pat-
tern, there must be a “Parallel Split” pattern before, which not necessarily happens
with the module. In VisTrails, the Mux module implementation has two user-defined
characteristics: the number of input ports and the data type required. Both of them
increase the flexibility of the activity.

192 S.M.S. da Cruz et al.

The Demultiplexer module, or Demux, does the opposite of Mux. It selects the
path that a piece of data will take. In other words, it makes the decision of what sub-
sequent part of the workflow will get a piece of data and process it. It is important to
notice that the same feature presented by the Mux module (the selection of desired
ports) is also created by the Demux module. This module would be an example of the
“Exclusive Choice” pattern [15]. This pattern represents an incoming branch that
diverges into two or more parts. Just one of the outgoing branches is enabled depend-
ing on a condition associated. This condition, in the Demux module, would be the
selector, which chooses the output port.

The Demux module, in VisTrails, has only one input port for the incoming data,
and another for the selector. Its implementation was done in the same way as for the
Mux module; the difference between them is that, instead of choosing the number of
input ports, in Demux the user chooses the quantity of output ports.

There is one problematic situation associated to this pattern which is related to the
structure response when the condition does not match any of the output ports. In Vis-
Trails, the Demux module displays a warning message when a condition is reached,
and all the execution stops. Besides, there is no way more than one outgoing branch to
be enabled, once the selector is an integer, and each integer corresponds to only one
branch.

3.1.2 String and Number Controls
In some cases, the workflow needs to generate control signals produced through com-
parison of strings or numbers. A control signal behaves as a flag for the execution of
other activities. For that reason, such controls are particularly important and may be
considered as control structures. The flags are usually used for decision making; so,
they can be used in scientific workflows for the same purpose. The StringControl
module represents the “Deferred Choice” pattern [15]. In this pattern, an activity in
the workflow is divided in two or more branches, and just one of them can be en-
abled; the other outgoing branches are withdrawn. StringControl module acts like
such pattern, only one of the output ports can be enabled. However, there is just one
difference between the StringControl module and the pattern, in the latter, the faster
outgoing branch to make an activity is the one which will be enabled; in the module,
it depends on the number of input ports connected.

In VisTrails, StringControl has two input ports to receive strings. The StringCon-
trol execution depends on the number of strings connected. If there is just one, the
module will return the length of it by an output port (an integer value). However, if
two strings are connected, the module will do a comparison between them returning
“1” for greater, “2” for smaller and “0” for equal strings.

For number signals, two new modules were created. The first one, NumberControl,
generates flags that indicate whether the number is zero, negative, positive, odd or
even. These signals can be essential if a given workflow activity depends on the num-
ber type. The second one, NumberCompare, on the other hand, compares two num-
bers, signaling which one is greater or smaller, or if both are equal. These signals are
similar to the ones generated by StringControl module.

The NumberControl module is correlated with a variant of the “Multiple Instances
without Synchronization” pattern [15], where all output data are originated simultane-
ously. The NumberCompare module, in the other hand, represents the “Synchronization”

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 193

pattern [15]. In this pattern, two or more incoming branches become just one outgoing
branch, which will be only enabled after the complete activation of all the input data.
In other words, there must be a synchronization between the incoming branches. This
is what happens with the “NumberCompare” module, once the comparison between
the numbers can only be done with both of them enabled in the module.

3.1.3 If
The use of conditionals are particularly important when scientists need to orchestrate
data flows, specifying which will be the next data flow to run based on the control
decision, such as: knowing if an expression is true, choosing data between two input
ports, or for stopping a whole workflow execution. The pattern that represents the If
module is the “Exclusive Choice” pattern [15], the same pattern of the Demux mod-
ule. The two essential differences between the Demux module and the If module are:
in the former, the scientist can connect as many input ports as they need, different
from the latter, which has just two input ports; in the Demux, there is an integer selec-
tor to choose between many input ports, and in the If module the selector is a logical
expression, where the scientists can create any condition they need.

Its implementation in VisTrails has four input ports: two of them are the data that
will be chosen, which can be of any type supported by VisTrails. Another port is used
to write the condition associated to the module: if the condition is true, the first data is
passed through the output port; if false, the second one is chosen. The last input port,
which is optional, is an extra code that the users can write before the condition;
maybe, for the desired condition, they need to import some libraries, make some logi-
cal and arithmetic expressions, read from a file, and so on; for this kind of program-
ming, they can use this input port. The only output port is the chosen data.

There is another use for the If module. The second input port is optional; if the user
chose to put that port, the functionality of the module will be the one stated before.
However, if there is no second input port, the module will put the first input port in
the output port if the condition is true; if false, the module will raise an error, stopping
the workflow execution.

3.1.4 Inner Loops
It is important for a given workflow to have a sequence of commands to be executed
repeatedly. It means that the workflow will execute an activity several times in a cy-
clic execution. This type of sequence is called inner loop, and it is useful for some
loop cases. The loops inside a module could be done using a programming language.
However, the loop encompassing several modules cannot be done so easily for some
WfMS, particularly DAG-based. For instance, VisTrails does not allow recursion in
the workflow. But it offers a mechanism named parameter exploration, which allows
a scientist to make repetitive executions of a given scientific workflow, using differ-
ent parameters for the input ports. The loop originated through the parameter explora-
tion represents the “Multiple Instances with a priori Run-Time Knowledge” pattern
[15]. In this pattern, series of multiple instances of an activity are created, and the
number of instances is known before the process starts. This is precisely what hap-
pens with the loop in VisTrails. The instances run concurrently and they are created
sequentially.

194 S.M.S. da Cruz et al.

In this way, a kind of loop is created, since all activities of the workflow are re-
initialized several times. However, there are two crucial differences between this kind
of loop and the real one. The first one is that the workflow, in the parameter explora-
tion, is finalized before it returns to the beginning, what does not occur in the loop
itself. The second one is related to the call of the loop; in some cases, the loop must
be called inside the workflow, and not outside of it, as it is with the VisTrails feature.

In order to offer simple but effective inner loop specification, it is possible to use a
composition of control flow modules to execute an inner loop in VisTrails. For in-
stance, a scientific workflow may need to process five different files, each one in a
separated execution. One feasible way to make an inner loop with control modules
rely on the use of the Mux module and the Register, a module that writes the data in a
pre-defined file. At first, the scientist has to define the number of input ports of the
Mux and its data types. After that, the files can be easily connected to the Mux ports,
and its output port can be connected to the Register module. The parameter explora-
tion is used, in this case, to generate a series of workflow executions by changing the
Mux selector and for each execution, the file processed in the subsequent part of the
workflow is replaced by other file connected to the Mux through a user-defined linear
interpolation of the selector, for example (Figure 1). So, the workflow will be exe-
cuted for each value inside the interpolation.

Fig. 1. VisTrails screenshot with control flow modules. On the left side, a part of the workflow
is presented (the Integer module represents the selector); On the right side, using VisTrails´
parameter exploration, a linear interpolation with the selector values is shown, and it generates
an inner loop.

4 Execution Control on VisTrails

Due to modularity and flexibility of VisTrails open source WfMS, our execution
control modules were easily added to VisTrails. In Figure 2 we highlight the execu-
tion control modules incorporated in VisTrails through its interface. Preliminary tests
showed the design power of including execution control previously not available in
VisTrails. A bioinformatics workflow that requires execution control modules can
now take advantage of VisTrails process provenance and its visual resources. In order
to combine the control-flow modules, presented in Section 3, with remote parallel
execution control, a parallel bioinformatics workflow was evaluated (Figure 2).

In a previous work [18], we designed a similar, but simpler, bioinformatics work-
flow using Kepler WfMS. This bioinformatics workflow needs execution control such
as If and NumberControl as well as remote parallel execution of Blast. The lack of
remote parallel execution control in most WfMS motivated the development of our
monitoring middleware named MidMon [18].

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 195

Fig. 2. Execution control modules on VisTrails. The highlighted processes in the left side
(squares) are data intensive modules, from the MidMon middleware; the ones in the right side
(ellipses) are control modules, from the “Control Structures” package.

MidMon is a lightweight middleware that presents a small number of structures to
monitor the distributed execution of scientific workflow tasks. It was implemented
with monitoring instrumentation middleware requirements in mind [19], providing a
loosely coupled form of interaction with the WfMS. MidMon was designed as a
multi-layer software, (scientists desktop and distributed environment layers) aiming to
provide ease of use for scientific workflow developers, such as: being easily con-
nected to a WfMS and monitor parallel applications; causing a negligible overhead on
processing nodes and finally, taking advantage of remote machine job scheduling
properties.

At the scientist desktop layer, the Server Monitor component allows scientists to
monitor the status of distributed applications jobs. It receives unidirectional asynchro-
nous monitoring messages submitted by Client Monitors on the distributed environ-
ment layer. The components of the distributed environment layer provide the ability
for an execution thread to be diverged into several concurrent threads on a selective
basis. Decoupling of monitors can allow greater scalability, lower message overheads
and may be used on different network topologies.

In this work we redesigned the bioinformatics workflow using our control modules
and MidMon modules to be executed using the extended VisTrails WfMS. The native
VisTrails modules and our control-flow modules were coded in Python 2.5 and the
MidMon Monitors in Java, so that new modules could be added to the workflow

196 S.M.S. da Cruz et al.

without major concerns. Unfortunately, VisTrails have no facilities to connect to
distributed environments. Thus, in order to take advantage of its provenance gathering
mechanisms it was also necessary to develop a module that enables remote connec-
tions to distributed environments. For the sake of simplicity, remote call modules
were not represented in Figure 2. In our prototype, the BLAST package was repre-
sented as a one-step activity of the workflow and MidMon parallelized it.

Figure 2 shows MidMon modules inserted on the workflow design together with
execution control modules in VisTrails. In short, the workflow runs as following. Ini-
tially, the Server Monitor is locally initiated. It receives asynchronous messages from
the remote Client Monitor. Then, the Client Monitor is activated, to publish informa-
tion’s about remote processes and monitoring them. Considering the connection´s
establishment between them, if the server finds difficulty to be started, the Client
Monitor cannot be activated, and the workflow must be finished. So, an If structure can
be added between both modules; if everything goes well, the workflow continues; if
not, it will be ended. After the Client Monitor, another If structure can be introduced,
because if a connection error was found, and the Client Monitor could not be activated,
for example, the service cannot keep on.

The same approach can be done between the WGet and DataFrag. The WGet mod-
ule connects through the Internet to download the required database file. If the module
successfully downloads it, the service can go on; nevertheless, if an error condition is
reached (e.g. the downloaded file is corrupted), the workflow must be finished. Data-
Frag module divides the file in little fragments that will run in parallel on the distrib-
uted environment. In this part of the workflow, a NumberCompare module was added
in order to compare the number of fragments created with the user-defined number of
fragments. After this, an If structure was introduced; it will check if both quantities of
fragments were the same. The DataFrag module also produces log information that can
be visualized inside VisTrails, through the Spreadsheet window. In order to store this
information and make it accessible and usable later, we added a Register module (used
in the section 3.1.4) after the DataFrag. In this workflow, the flexibility of the control
structures can be confirmed, once it was not necessary to change the structure of the
DataFrag module to control the fragments.

The JobParser module generates, for each fragment, a parallel job that will be
submitted to the distributed environment by the JobSub module. Between the Job-
Parser and the JobSub modules, another NumberCompare and If modules can be
added; the former compares the number of fragments created by DataFrag with the
number of jobs produced; the If enables the WfMS to monitor remote errors, more
specifically, one job, for some reason, was not produced; so, it can finish the execu-
tion if some jobs were not created.

5 Conclusion

Workflow technology and distributed environments provide the keystone to leverage
the continuing evolution of e-Science. In order to fully explore opportunities provided
by these paradigms, it is important to track and monitor experiments to gain new
insight about the scientific experiment. In this paper, it was presented a set of generic
control-flow modules that can extend workflow design power by providing dynamic

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 197

behavioral features. Control-flow modules allow scientists to use some of the work-
flow patterns described by Aalst [15] [16] by adding these modules on the scientific
workflow specification to be executed by heterogeneous WfMS running on distrib-
uted environments.

The proposed control-flow modules can be plugged into the workflow during de-
sign-time, helping scientists to face challenges of distributed workflow development.
First, it acts as documentation of the execution control workflow behavior, recording
in a concise and explicit fashion the operational characteristics of the workflow. Sec-
ond, by adding control-flow facilities to a distributed monitoring middleware it is
possible not only to evaluate and monitor the activities of the workflow but also
gather provenance from heterogeneous and independent environments with low pro-
gramming efforts.

Our work shares the same generic motivation of Groth, Munroe, Miles and Moreau
[20] that is supporting provenance in any type of execution environment. Groth et al.
developed the “p-structure” in a way that provenance is created by actors within the
workflow, independent from the workflow definition language and from the workflow
execution engine. In a similar way, our proposed control-flow structures can be seen as
control-flow actors within the workflow. These actors are independent from workflow
engines. This is helpful when a local workflow needs to run a sub-workflow in a high
performance environment, i.e., control specification does not need to change. Our work
may be seen as complementary to the “p-structure” in a sense that these control struc-
tures can embed “p-structures” to record workflow decisions and iterations, in addition
to its capturing of the actual causal connections according to execution.

Developing MidMon on top of VisTrails presented some additional advantages: it
enabled scientists to monitor the submitted jobs status on their desktops and as by-
products it preserves workflows’ original features. It also allowed scientists to use a
local centralized WfMS to connect and enact distributed activities, preserving the
built-in facilities of provenance gathering. In addition, MidMon also complemented
VisTrails tracking facilities, once VisTrails was not able to capture information about
temporary and remote files created during distributed workflow execution.

By plugging these modules along the workflow specification we address the two
challenges discussed at the motivation of this work. Using the control modules, de-
sign becomes less dependent of the WfMS specification language. Remote monitoring
modules provide for parallel execution control in heterogeneous environments. Fi-
nally, these modules are the means of provenance gathering within a representation
model that can be independent of the environment and the WfMS. The limitation of
this approach is a verbose workflow specification due to several control processes that
are not part of the scientific application domain. However, workflow view techniques
[21] can hide these modules from the scientist. We are working on software compo-
nent reuse techniques to help the automatic incorporation of these modules. Particu-
larly in VisTrails, a “by example” tool for workflow design generation is under de-
velopment. We intend to adapt it to recommend control modules that can help on
workflow design, control and provenance gathering. Currently, other bioinformatics
workflows are being analyzed to take advantage of MidMon combined to the pro-
posed control-flow modules within VisTrails.

198 S.M.S. da Cruz et al.

Acknowledgments

This work was partially funded by CNPq. Chirigati and Dahis are supported by CNPq
and the UFRJ/PIBIC program.

References

1. Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A Sur-
vey. In: Computing in Science and Engineering, pp. 20–30 (May/June 2008)

2. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,
M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows. IEEE Com-
puter 40(12), 26–34 (2007)

3. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing. ACM
SIGMOD 34, 44–49 (2005)

4. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., Paulson, P.: The Open Prove-
nance Model, Technical Report 14979, ECS EPrints repository (2007)

5. Bowers, S., Ludascher, B., Ngu, A.H.H., Critchlow, T.: Enabling Scientific Workflow Re-
use through Structured Composition of Dataflow and Control-Flow. In: ICDE Workshops,
pp. 70–80 (2006)

6. Goderis, A., Brooks, C., Altintas, I., Lee, E.A., Goble, C.: Composing Different Models of
Computation in Kepler and Ptolemy II. In: Proc. of the 2nd Int. Workshop on Workflow
Systems in e-Science (WSES 2007) in conjunction with the Int. Conference on Computa-
tional Science (ICCS) 2007, Beijing, China, pp. 27–30 (2007)

7. Tudruj, M., Kopanski, D., Borkowski, J.: Dynamic Workflow Control with Global States
Monitoring. In: ISPDC 2007, Hagenberg, Austria, July 5-8 (2007)

8. Deelman, E., et al.: Pegasus: Mapping Scientific Workflows onto the Grid. In: AGC 2004,
Cyprus (2004)

9. Kacksuc, P., Farkas, Z., Sipos, G., et al.: Workflow-level parameters study management in
multi-Grid environments by P-GRADE Grid portal. In: GC 2006 Workshop at SC (2006)

10. Churches, D., et al.: Programming Scientific and Distributed Workflow with Triana Ser-
vices. Concurrency: Practice and Experience 18(10), 1021–1037 (2006)

11. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., et al.: Taverna: a tool for building and
running workflows of services. Nucleic Acids Research 34 (Web Server issue), 729–732
(2006)

12. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., Vo, H.: VisTrails: visualiza-
tion meets data management. In: ACM SIGMOD, pp. 745–747 (2006)

13. Scheidegeer, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J., Silva, C.: Tackling
the Provenance Challenge One Layer at a Time. Concurrency and Computation: Practice
and Experience 20(5), 473–483 (2007)

14. Ludäscher, B., et al.: Scientific workflow management and the Kepler system. Concur-
rency and Computation: Practice and Experience 18(10), 1039–1065 (2006)

15. Russell, N., Hofstede, A., ter, A.W.M.P., van der Mulyar, N.: Workflow Control-Flow Pat-
terns: A Revised View. Technical Report BPM-06-22, BPM Center (2006)

16. Aalst, W.M.P., van der Hosftede, A.H.M., ter Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

17. Goble, C., Wroe, C., Stevens, R.: The myGrid project: services, architecture and demon-
strator. In: UK e-Science All Hands Meeting (2003)

 Using Explicit Control Processes in Distributed Workflows to Gather Provenance 199

18. Cruz, S.M.S., Silva, F.N., Gadelha Jr., L., Cavalcanti, M., Campos, M., Mattoso, M.: A
Lightweight Middleware Monitor for Distributed Scientific Workflows. In: 3rd
WSES/CCGrid (2008)

19. Truong, H., Fahringer, T., Dustdar, S.: Dynamic Instrumentation, Performance Monitoring
and Analysis of Grid Scientific Workflows. Journal of Grid Computing 3, 1–18 (2005)

20. Groth, P., Munroe, S., Miles, S., Moreau, L.: HPC and Grids in Action. In: Grandinetti, L.
(ed.) Applying the Provenance Data Model to a Bioinformatics Case. IOS Press, Amster-
dam (2008)

21. Davidson, S., Cohen-Boulakia, S., Eyal, A., Ludaescher, B., McPhillips, T., Bowers, S.,
Anand, M., Freire, J.: Provenance in Scientific Workflow Systems. IEEE Data Eng.
Bull. 30(4), 44–50 (2007)

ES3: A Demonstration of
Transparent Provenance for

Scientific Computation�

James Frew and Peter Slaughter

Donald Bren School of Environmental Science and Management
University of California, Santa Barbara, CA 93106-5131, USA

{frew,peter}@bren.ucsb.edu
http://eil.bren.ucsb.edu

Abstract. The Earth System Science Server (ES3) is a software en-
vironment for data-intensive Earth science, with unique capabilities for
automatically and transparently capturing and managing the provenance
of arbitrary computations. Transparent acquisition avoids the scientist
having to express their computations in specific languages or schemas for
provenance to be available. ES3 models provenance as relationships be-
tween processes and their input and output files. These relationships are
captured by monitoring read and write accesses at various levels in the
science software and asynchronously converting them to time-ordered
streams of provenance events which are stored in an XML database.
An ES3 provenance query returns an XML serialization of a provenance
graph, forward or backwards from a specified process or file. We demon-
strate ES3 provenance by generating complex data products from Earth
satellite imagery.

Keywords: ES3; provenance; instrumentation; passive; transparency.

1 Introduction

The Earth System Science Server (ES3) is a software environment for data-
intensive Earth science. ES3 has unique capabilities for automatically and trans-
parently capturing, managing, and reconstructing the provenance of arbitrary,
unmodified computational sequences [1]. Automatic acquisition is critical to
avoid the inaccuracies and incompleteness of human-specified provenance (i.e.,
annotation.) Transparent acquisition avoids the computational scientist having
to learn, and be constrained by, a specific language or schema in which their
problem must be expressed or structured for provenance to be available.

Unlike most other provenance management systems, ES3 captures provenance
from running processes, as opposed to extracting it from static specifications such
as scripts or workflows. ES3 provenance management can thus be added to any
existing scientific computations, without modifying or re-specifying them.
� This work was supported by National Aeronautics and Space Administration coop-

erative agreements NNG04GC52A and NNG04GE66G.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 200–207, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://eil.bren.ucsb.edu

ES3: A Demonstration of Transparent Provenance 201

2 Model and Methodology

ES3 models provenance in terms of processes and their input and output files.
We use “process” in the classic sense of a specific execution of a program. In
other words, each execution of a program or workflow, or access to a file, yields
a new set of provenance events.

Relationships between files and processes are deduced by monitoring read and
write accesses. This monitoring can take place at the levels of system calls (using
strace), library calls (using instrumented versions of application libraries), and
arbitrary checkpoints within source code (using automatically invoked source-to-
source preprocessors for specific environments such as IDL [2].) Any combination
of monitoring levels may be active simultaneously, and all are transparent to the
scientist-programmer using the system.

ES3 provenance is the directed graph of files and processes resulting from a
specific invocation event (e.g., a “job”.) Nested processes (processes that spawn
other processes) are correctly represented. In addition to retrieving the entire
provenance of a job, ES3 supports arbitrary forward (descendant) and/or reverse
(ancestor) provenance retrieval, starting at any specified file or process.

3 Implementation

ES3 is implemented as a provenance-gathering client and a provenance-managing
server (Figure 1.) The client runs in the same environment as the processes whose
provenance is being tracked.

Fig. 1. ES3 architecture

202 J. Frew and P. Slaughter

The client is a set of logger processes that intercept raw messages from the
various monitoring modes (plugins) and write them to log files. A separate an-
notator client optionally examines the files and directories being accessed by the
instrumented processes and retrieves certain kinds of non-provenance metadata
(e.g., README files and source code comments.) A common transmitter client
asynchronously scans the log files, assembles the provenance events into a time-
ordered stream, assigns UUIDs to each file and process being tracked, and sub-
mits a raw provenance report to the ES3 core (server.)

The ES3 core is an XML database with a web service middleware layer that
supports insertion of file and provenance metadata, and retrieval of provenance
graphs. File metadata allows ES3 to track the one-to-many correspondence
between external file identifiers (e.g., pathnames) and internal (UUID) refer-
ences to those files in provenance reports. Provenance queries cause the ES3
core to assemble a provenance graph (by linking UUIDs) starting at a speci-
fied process or file and proceeding in either the ancestor or descendant direc-
tion. The graphs are returned serialized in various XML formats (ES3 native,
GraphML [3], etc.), and can be rendered visually by tools such as Graphviz [4]
and yEd [5].

4 Applications

ES3 is particularly useful for elucidating “hidden” provenance—dependencies
between files and processes that aren’t explicitly stated in the workflows or
scripts that invoke the processes—and for managing highly nested provenance
graphs. We give examples of each of these capabilities in this section.

4.1 Hidden Provenance

The final step in the First Provenance Challenge [6] workflow invokes a procedure
convert that converts images from one format to another (Figure 2.) In the
script implementing this workflow, the convert operations appear to be atomic
commands:

convert atlas-x.pgm atlas-x.gif
convert atlas-y.pgm atlas-y.gif
convert atlas-z.pgm atlas-z.gif

The ES3 provenance for this portion of the challenge workflow reveals convert
a more complex picture (Figure 3.) Each invocation of convert is actually a
shell process which reads the convert script as input. These processes, correctly
depicted as nested workflows, invoke the otherwise hidden command convertb
with an otherwise hidden input file delegates.mgk (a configuration file for the
ImageMagick [7] software package.) Workflow-based a priori provenance would
be unlikely to capture this level of detail.

ES3: A Demonstration of Transparent Provenance 203

Fig. 2. convert operation in challenge workflow

Fig. 3. ES3 provenance for convert operation

4.2 Nested Provenance

We use ES3 to track the provenance of a snow-covered-area data product,
derived from satellite imagery of portions of the Sierra Nevada (California)
mountain range (Figure 4.) The snow product involves processing steps im-
plemented in IDL, C, and UNIX shell scripts, and the algorithms are under
active development.

204 J. Frew and P. Slaughter

Fig. 4. MODIS satellite image of Sierra Nevada

modscag

snow

surface reflectance

modsort

snow
grain size

vegetation rock shade other rms

Fig. 5. Snow product top level workflow

Figure 5 shows an idealized top-level workflow for the product. A satellite
image of surface reflectance (albedo) is processed by modscag into multiple esti-
mates of the surface composition of each pixel. modsort select the best of these
estimates for each pixel and creates a suite of output grids whose cell values are
the percentage of snow (Figure 6) and other components present at the corre-
sponding surface location, as well as estimates of snow grain size, classification
error, and whether the input pixel was too deeply shaded by surrounding terrain
to be usable.

ES3: A Demonstration of Transparent Provenance 205

Fig. 6. Fractional snow-covered area, Sierra Nevada

modscag modscagmodscagmodscagmodscagmodscagmodscagmodscagmodscagmodscagmodscag modscag modscag modscag modscag modscag modscag modscagmodscagmodscagmodscagmodscagmodscag modscag modscagmodscagmodscagmodscag modscagmodscag

snm2007214.grnsz.picsnm2007214.rms.pic snm2007214.shade.pic

MOD09GA.A2007214.snm_cal-aea.005.Refl.bip

snm2007214.rock.pic snm2007214.other.pic

snm2007214.snow.pic
snm2007214.veg.pic

snm2007214.mask.pic

modsort

Fig. 7. Snow product provenance (modscag nesting expanded)

Requesting forward provenance for an actual satellite image (Figure 7) reveals
that the modscag workflow step actually comprises 30 separate invocations of
the modscag program (each of which uses different starting assumptions about
surface composition), which modsort merges into a single set output files.

The ES3 request that yielded Figure 7 included a restriction to avoid expanding
nested workflows. Relaxing this restriction for an entire modscag workflow would
yield a provenance graph too complex for a printed page. Instead, Figure 8 shows
the combined forward and reverse provenance for a single one of the 30 modscag
program invocations. (Imagine variations on Figure 8 replacing all 30 processes in
Figure 7 to get an idea of the complexity of a complete modscag “run.”)

Note that since Figure 8 is a portion of a much larger provenance graph, it
provides sufficient information for some provenance assertions but not others.

206 J. Frew and P. Slaughter

MODIS.LIB.EMTYPE

MOD09GA.A2007214.snm_cal-aea.005.Refl.bip

MODIS.2em.loose.control

MODIS.bands

MODIS.z30.LIB.sli

MODIS.LIBRARY.GRLUT

modscag

const.2em.loose

MODIS.2em.models

snm2007214.snow.pic

2emlooserock.pic

snm2007214.grnsz.pic

modsort

snm2007214.other.picsnm2007214.mask.pic

2emlooseveg.pic
2emloosemask.pic

2emlooselist2emlooseshade.pic

snm2007214.rock.pic

snm2007214.rms.pic

2emloosegrnsz.pic

snm2007214.veg.pic

2emloosesnow.pic

2emlooserms.pic

2emlooseother.pic

snm2007214.shade.pic

Fig. 8. Snow product provenance (single modscag invocation detail)

For example, it correctly shows that the file snm2007214.snow.pic is derived
from the image MOD09GA.A2007214.snm cal-aea.005.Refl.bip, but does not
show any of snm2007214.snow.pic’s possible antecedents from any of the other
29 modscag invocations.

5 Demonstration

The ES3 client currently includes plugins for the bash shell and the IDL inter-
preted programming language. The ES3 server comprises Java servlets running
in Tomcat. The ES3 demo runs on a standalone Linux host (optionally access-
ing a remote ES3 server) and includes sample shell scripts and IDL programs
taken from production science applications. Demo users can run and modify
the scripts (including adding and deleting applications), issue arbitrary prove-
nance requests, and graphically explore the resulting provenance graphs and their
attached metadata.

Acknowledgments. We thank Michael Colee for assembling and maintaining
our computing environment, Greg Janée for advice and encouragement, Do-
minic Metzger for his work on the probulator, Thomas Painter for supplying the
modscag test case, and Kathy Scheidemen for administrative support.

ES3: A Demonstration of Transparent Provenance 207

References

1. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of
computational provenance. Concurrency and Computation: Practice and Experi-
ence 20(5), 485–496 (2008)

2. The IDL Computing Environment for Data Visualization & Analysis from ITT,
http://www.ittvis.com/idl

3. Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., Marshall, M.S.: GraphML
Progress Report–Structural Layer Proposal. In: Mutzel, P., Jünger, M., Leipert, S.
(eds.) GD 2001. LNCS, vol. 2265, p. 501. Springer, Heidelberg (2002)

4. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11), 1203–1233
(2000)

5. yEd - Java Graph Editor, http://www.yworks.com/products/yed
6. Moreau, L., Ludäscher, B., Altintas, I., Barga, R.S., Bowers, S., Callahan, S., Chin,

G., Clifford, B., Cohen, S., Cohen-Boulakia, S., Davidson, S., Deelman, E., Di-
giampietri, L., Foster, I., Freire, J., Frew, J., Futrelle, J., Gibson, T., Gil, Y., Goble,
C., Golbeck, J., Groth, P., Holland, D.A., Jiang, S., Kim, J., Koop, D., Krenek, A.,
McPhillips, T., Mehta, G., Miles, S., Metzger, D., Munroe, S., Myers, J., Plale, B.,
Podhorszki, N., Ratnakar, V., Santos, E., Scheidegger, C., Schuchardt, K., Seltzer,
M., Simmhan, Y.L., Silva, C., Slaughter, P., Stephan, E., Stevens, R., Turi, D., Vo,
H., Wilde, M., Zhao, J., Zhao, Y.: Special Issue: The First Provenance Challenge.
Concurrency and Computation: Practice and Experience 20(5), 409–418 (2008)

7. ImageMagick: Convert, Edit, and Compose Images, http://www.imagemagick.org

http://www.ittvis.com/idl
http://www.yworks.com/products/yed
http://www.imagemagick.org

Neuroimaging Data Provenance Using the
LONI Pipeline Workflow Environment

Allan J. MacKenzie-Graham, Arash Payan, Ivo D. Dinov,
John D. Van Horn, and Arthur W. Toga�

Laboratory of Neuro Imaging (LONI), Department of Neurology,
University of California Los Angeles School of Medicine,

635 Charles E. Young Drive South, Suite 225, Los Angeles, CA 90095-7334
{amg,apayan,ivo.dinov,jvanhorn,toga}@loni.ucla.edu

Abstract. Provenance, the description of the history of a set of data,
has become important in the neurosciences with the proliferation of re-
search consortia-related neuroimaging efforts. Knowledge about the ori-
gin, preprocessing, analysis and post hoc processing of neuroimaging
volumes is essential for establishing data and results quality, the repro-
ducibility of findings, and their scientific interpretation. Neuroimaging
provenance also includes the specifics of the software routines, algorith-
mic parameters, and operating system settings that were employed in
the analysis protocol. The LONI Pipeline (http://pipeline.loni.ucla.edu)
is a Java-based workflow environment for the construction and execution
of data processing streams. We have developed a provenance framework
for describing the current and retrospective data state integrated with
the LONI Pipeline workflow environment. Collection of provenance in-
formation under this framework alleviates much of the burden of doc-
umentation from the user while still providing a rich description of an
images characteristics, as well as the description of the programs that
interacted with that data. This combination of ease of use and highly
descriptive meta-data will greatly facilitate the collection of provenance
information from brain imaging workflows, encourage subsequent data
and meta-data sharing, enhance peer-reviewed publication, and support
multi-center collaboration.

Keywords: Provenance, Workflow, Neuroimaging, Grid, Pipeline.

1 Introduction

One of the fundamental challenges in neuroimaging, and in fact all biological sci-
ences, involves devising ways to manage the enormous amounts of data currently
being gathered. This challenge is compounded not only by the proliferation of
collaborative efforts and the necessity of sharing data across multiple sites, but
also of making that data openly available and useful to the scientific community

� Corresponding Author.

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 208–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 209

at large. The scientific community has recognized the need for solutions that fa-
cilitate the process of tool and data exchange and numerous efforts are underway
to achieve this goal [1]. Yet to be truly meaningful, the data obtained and the
analytic tools employed must be adequately described and documented. The
meta-data detailing the origin and subsequent processing of biological images is
referred to as ”provenance” [2].

Recently, leading computer scientists have recognized the unique issues asso-
ciated with neuroimaging datasets that often exceed several tens of gigabytes in
a full set of raw data. Simon Miles, Luc Moreau, Mike Wilde, Ian Foster, and
others proposed a provenance challenge to determine the state of available prove-
nance systems [3]. The challenge consisted of collecting provenance information
from a simple neuroimaging workflow [4] and documenting each systems abil-
ity to respond to a set of predefined queries. Some of these existing provenance
systems have previously been proposed as mechanisms for capturing provenance
in neuroimaging, though they have not been widely adopted [5]. The main dif-
ficulty appears to be the need of a system to capture provenance information
accurately, completely, but with minimal user intervention. Minimizing an indi-
viduals burden for providing the details on provenance, as well as facilitating a
comprehensive data and process tracking system, will dramatically improve com-
pliance, thereby freeing the user to focus on performing neuroimaging research
rather than exhaustively documenting provenance.

In the biological sciences, a description of how data was obtained is crucial for
assessing its quality and usefulness, as well as enabling analysis in an appropri-
ate context. It is therefore imperative that the provenance of biological images
be easily captured and readily accessible. In multiple sclerosis research, for ex-
ample, increasingly complex analysis workflows are being developed to extract
information from large cross-sectional or longitudinal studies [6]. This is also true
of Alzheimers disease [7-9], autism [10], depression [11], schizophrenia [12], and
even studies of normal populations [13]. The implementation of the increasingly
complex processing workflows associated with these investigations requires the
institution of quality-control practices to ensure the precision, reproducibility,
and reusability of the results. In effect, provenance.

In a broad sense, provenance can be divided into two subtypes: data prove-
nance and processing provenance. Data provenance is the metadata that de-
scribes the subject being imaged, how an image of that subject was collected,
who acquired the image, what instrument was used, what settings or parame-
ters were used, and how the sample was prepared. However, most scientific image
data is not obtained directly from such measurements, but rather derived from
other data by the application of computational processes. Processing provenance
is the metadata that defines what processing an image has undergone; for ex-
ample, how the image was skull-stripped, what form of image inhomogeneity
correction was employed, how the volume was spatially aligned to a standard
atlas space, etc. Even data that is presented as raw often has been subjected
to reconstruction software or converted from the scanners native image format

210 A.J. MacKenzie-Graham et al.

(k-space) to a more commonly used and easily shared file format [14]. A complete
data provenance model would capture all this information, making the history
of a complete set of data transparent, thus enabling seamless sharing across the
neuroimaging community.

Certain neuroimaging data provenance may be gathered at the site where
the data is collected, in the headers of image files or in databases that record
image acquisition [15, 16]. A highly abbreviated form of this kind of provenance
is often reported in method descriptions or even in the image files themselves
[17]. However, this data is seldom propagated along with the images themselves,
since it is commonly removed or ignored in the course of file conversion not
being critical for further data processing.

Processing provenance can be obtained concerning any resource in the data
processing system and may include multiple levels of detail. Two major mod-
els for collecting processing provenance have been described: a process-oriented
model [18] and a data-oriented model [2]. The process-oriented model collects
lineage information from the deriving processes and provenance is inferred from
that processing and through an inspection of the input and output data. This
mechanism is well suited for situations where individual data products are
tracked within comprehensive frameworks and where the deriving processes can
easily be reapplied to the original data to reproduce the data product. In the
data-oriented model, lineage information is explicitly gathered about the set of
data. This method may be better suited for situations where data sharing oc-
curs across heterogeneous environments and intermediate data products may not
be available for reproduction. This would be the case, for example, when neu-
roimaging data sets are shared between two or more collaborating laboratories.

The analysis of raw data in neuroimaging has become a computationally rich
process with many intricate steps run on increasingly larger datasets [6]. Many
commonly available software packages exist that provide either complete analyses
or specific steps in neuroimaging data analysis. These packages often have diverse
input and output requirements, utilize different file formats, run under particular
computer environments, and may have limited abilities for certain types of data.
The combination of these packages to achieve more sensitive and accurate results
has become a widespread strategy in brain mapping studies, though requires
much work to ensure valid interoperability between programs.

Simplicity of use cannot be overstated when developing software tools for the
scientific community at large. Many outstanding software tools are not adopted
due to difficult learning curves or because their use places too great a burden on
the end user. One of the main requirements of a successful provenance system
would be the simplicity and unobtrusiveness.

The LONI Pipeline was developed to facilitate ease of workflow construction,
validation, and execution [19] freeing the user to focus on image analysis. In this
article we describe a simple yet comprehensive provenance system that has been
incorporated into the LONI Pipeline Processing Environment, placing little or
no burden on the end user for documentation of processing provenance.

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 211

2 The LONI Pipeline Workflow Environment

The LONI Pipeline (http://pipeline.loni.ucla.edu) is a simple, efficient, and dis-
tributed computing environment, enabling software inclusion from different lab-
oratories in different environments. It provides a visual programming interface
for the design, execution, and dissemination of neuroimaging analyses. Individ-
ual executables are represented as modules that can be included, deleted, and
substituted for other modules within a user-friendly graphical user interface.
Connections between the modules that establish an analysis methodology are
represented as workflows. The environment handles bookkeeping, controls the
details of the computation, and information transfer between modules and within
the workflow. It permits files, intermediate results, and other information to be
accurately passed between individually connected modules. The DRMAA API
(www.drmaa.net), backed by the Sun Grid Engine (http://gridengine.sunsource.
net), acts as an interface to grid environments. Modules and workflows can be
saved to disk at any stage of development and recalled at a later time for modi-
fication, use, or distribution.

2.1 Goals of the LONI Pipeline Environment

The overarching goals of the LONI Pipeline are to:

1. Graphical User Interface. Create a robust environment for scientific software
tool interoperability, Grid integration and low-cost interactive user interface. For
maximum portability, scalability and efficiency, this environment is built in Java
and utilizes XML for storing and communication of meta-data, and descriptors
for tools and services.

2. New Tool Discovery. Enable expert researchers to quickly design, test and
validate novel experimental designs and to rapidly examine new data analysis
protocols. This is achieved via dynamic, responsive and extensible graphical user
interface.

3. Compatibility. Provide the necessary means for integration of LONI Pipeline
XML workflow descriptions with other established graphical environments for
scientific Grid computing. This functionality facilitates the translation of existent
analysis paradigms from other environments to the LONI Pipeline and vice-
versa.

The LONI Pipeline differs from many similar workflow environments. For
instance, the LONI Pipeline does not require the use of an application pro-
gramming interface (API) it considers all resources as well-described external
applications that may be invoked with standard remote execution protocols.
The LONI Pipeline XML description protocol allows any command-line driven
process, web-service or data-server to be encapsulated into the environment by
reference. There is no need to reprogram, revise or recompile external resources
to make them usable within the LONI Pipeline. This is a deliberate design we

212 A.J. MacKenzie-Graham et al.

have imposed to reduce the integration/utilization costs of including new re-
sources within the LONI Pipeline environment. This approach provides the ben-
efit of quick and easy management of large and disparately located resources and
data. In addition, this choice significantly minimizes the hardware requirements
for user-client machine (e.g., memory, storage, CPU). Finally, while the LONI
Pipeline is primarily used in the context of neuroimaging, we wish to stress the
important point that the Pipeline is agnostic to any particular scientific domain
and can be used to manage workflows under any other scientific domain.

3 LONI Pipeline Provenance Architecture

To begin the discussion of how the LONI Pipeline manages provenance, we have
defined some terms in order to prevent any ambiguity when software is discussed.
To facilitate the current discussion we define the following terms; a binary is a
pre-compiled program that is ready to run under a given operating system, a
script is a simple program written in a utility language that is interpreted at
runtime, and an executable is either a binary or script.

3.1 Data Provenance

As mentioned above, an important aspect of provenance is the description of the
subject. Subject provenance includes birth and death dates (for post-mortem
studies), in addition to the age of the subject at the time of the data collection
(or death). Sex and species are captured, further qualified by strain and genetic
manipulation in the case of non-human subjects. Treatments, such as disease in-
duction in experimental models, drug treatment, and combinations of treatments
can be documented in the schema. Subject name has explicitly been excluded in
order to protect patient privacy (http://www.hhs.gov/ocr), SubjectID standing
in as a unique identifier for a given subject. These elements are extensible, allow-
ing for multiple treatments or clinical evaluations. Subject provenance has been
described in a simple, yet flexible format in order to make it easily accessible
to the community with a minimum of work to adapt it for specialized use. The
description of how a set of data was acquired is of critical importance for data
provenance. Different information is required from the user based on the kind
of data acquired. For example, when collecting acquisition provenance about
an MRI image, information about the acquisition type (2D vs. 3D), weighting
(proton density, T1, T2, etc.), pulse sequence, flip angle, echo time (TE), repeti-
tion time (TR), inversion time (TI), matrix dimensions, step sizes, magnet field
strength, coil used, equipment manufacturer and model are explicitly captured
in the XSD. These elements are far from exhaustive, but are easily expanded
and/or extended to accommodate other imaging modalities from diffusion ten-
sor imaging (DTI) to positron emission tomography (PET). An XML schema
document (XSD) describing the neuroimaging data provenance presented here is
available to the public for use and discussion (http://provenance.loni.ucla.edu).

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 213

Table 1. Workflow Provenance. Outline describing the major elements of workflow
provenance contained in a LONI Pipeline workflow file.

Example of a Computer Program

Workflow provenance

Pipeline workflow

Executable provenance

Environment

Options

Input files

Output files

Binary provenance

Binary configuration

Configuration options

System configuration

Architecture

Operating system

Compiler

Libraries

Script provenance

Shell

Script

Binary provenance

3.2 Processing Provenance

In our model, binary provenance describes how a piece of software was compiled.
It comprises two parts, a description of the environment and a description of the
binary itself. The environment description includes the operating system, envi-
ronment variables, compiler used, and libraries installed. The binary description
includes configuration flags and/or modifications made to configuration files or
makefiles. Our goal is to provide the user with the ability to reproduce the binary
exactly (Table 1).

A fundamental difference between executables is the hardware platform on
which they were compiled. Differences in floating-point implementation across
different architectures can have a profound impact on outcome of a calculation
and have been widely publicized in the popular media [20]. The LONI Pipeline
executable provenance description captures not only architecture, but also the
specific processor and the flags that are enabled on it.

Capturing important details about the operating system is complicated, par-
ticularly for Linux and open-source Unix distributions, since each distribution
contains many individually updated components. Essential information must
be captured such as the operating system name, version, distribution, kernel
name, and kernel version. For example, an application running on Ubuntu Dap-
per Drake (http://www.ubuntu.com) must have the following operating system

214 A.J. MacKenzie-Graham et al.

metadata: Linux, 6.06, Ubuntu Desktop, #1 PREEMPT, 2.6.15-27-386; whereas
an application built on the current Mac OS X Leopard platform must have the
following operating system metadata: Mac OS, 10.5.2, n/a, Darwin, 9.2.0.

The compiler used and libraries linked during compilation are a crucial aspect
of the environment. In addition to compiler name and version, a list of which up-
dates have been applied is also captured. This section of the provenance metadata
also records which flags were used when the compiler was invoked, architecture
and optimization flags being of special interest. Libraries used for compilation
are described similarly to the binary itself and are recursive.

Binaries also can be configured prior to compilation. Some packages are dis-
tributed in a format for use with the GNU build system or Autotools [21]. Mod-
ification of the configure script or the makefile can yield substantially different
results after compilation. The LONI Pipeline executable provenance descrip-
tion captures flags to the configure script, modifications to configure scripts and
makefiles.

Executable provenance need only be collected once, when a binary is compiled
or when a script is written. This data is then included in the LONI Pipeline mod-
ule description of the executable and thus is propagated with both the module
and any workflows created with those modules.

Processing provenance describes the actual invocation of an individual exe-
cutable or the invocation of an executable in the context of a series of steps
or workflow. Recording the command-line that was used to invoke it captures
arguments to the executable. The processing environment is described similarly
to the environment for compilation, but also includes environmental variables
that may modify the behavior of the executable.

Often image processing is complex and non-linear and cannot be represented
in a simple script or directed acyclic graph. Data may converge along several
lines of processing only to diverge again after a common step. These complex
workflows are difficult to document, either for publication or later re-use. Cap-
turing the provenance for these workflows is equally complex, not only requiring
the execution order of the individual steps, but how those steps are related to one
another, especially in the case of multiple lines of data being processed simulta-
neously. In order to address this issue we have used the LONI Pipeline Processing
Environment (http://pipeline.loni.ucla.edu) [19] to capture not only executable
provenance and description, but also the relationships between the executables.

Using the LONI Pipeline as an example of workflow software, we have de-
signed the provenance framework to take advantage of context information that
can only be kept while using workflow software. Specifically, the use of condition-
als between executables, and loops can all be represented in a higher workflow
language and associated with a series of executable events in the provenance.
More generally, we want to be able to track how data is derived with sufficient
precision that one can create or recreate it from this knowledge.

Continuing discussion and development of the LONI Pipeline Provenance Ar-
chitecture can be found at http://provenance.loni.ucla.edu.

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 215

4 Provenance Validation

In order to document the utility of this model of provenance documentation,
we performed a test to demonstrate the capacity to independently recreate a
workflow and its output data using only the provenance documentation.

A workflow was created in the LONI Pipeline from binaries compiled on the
LONI 306-node dual processor Opteron Sun V20z grid by the LONI system
administrator and modules in the pipeline library constructed by the LONI
Pipeline developers. Data and processing provenance was captured and recorded
in a provenance file using only the mechanism described above.

A second workflow was constructed from scratch with modules defined by
the authors for a second set of executables compiled for the LONI grid, also
compiled by the authors. These executables were compiled using only the prove-
nance information captured by the mechanism described above as a guide for
compilation.

The workflows used for the test were simple neuroimaging workflows
(Figure 1) with both sets of executables compiled using the same options. The
workflows were then run on the LONI grid using the same input data. We com-
pared the aligned images resulting from each workflow by subtracting them
from one another and verified that the difference was 0 at every voxel (data not
shown).

Fig. 1. A simple neuroimaging workflow derived from The First Provenance Challenge
[3] in the LONI Pipeline Processing Environment

216 A.J. MacKenzie-Graham et al.

Fig. 2. A complex neuroimaging workflow combining multiple analysis and process-
ing packages. Right inset: An overlay of two magnetic resonance microscopy (MRM)
images, one inhomogeneity corrected (green) and one not (red). Greenish and orange
areas represent field inhomogeneities. Left inset: The same MRM image, inhomogeneity
corrected and aligned to an atlas.

Multiple packages can be combined and provenance information will be prop-
agated with those workflows. Combining package elements allows the user the
greatest flexibility for their analyses. For example, a workflow could correct mo-
tion artifact using tools from Freesurfer [22], perform skull stripping using the
BSE [23], calculate and apply the N3 field inhomogeneity correction [24], and
then align a magnetic resonance image to a standard atlas using FMRIB’s Lin-
ear Image Registration Tool (FLIRT) [25, 26] from the FMRIB Software Library
(FSL) [27] (Figure 2).

5 Discussion

Recent interest has arisen in the field of neuroscience, and particularly in
neuroimaging, in identifying or creating standards to facilitate software tool in-
teroperability. The NIMH Neuroimaging Informatics Technology Initiative
(NIfTI; http://nifti.nimh.nih.gov) was formed to aid in the development and

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 217

enhancement of informatics tools for neuroimaging. Though best known for the
Data Format Working Group (DFWG) that has defined the NIfTI image file
format standard, this effort has recently turned its attentions to how prove-
nance metadata might be standardized. The Biomedical Informatics Research
Network (BIRN; http://nbirn.net) is another high profile effort working to de-
velop standards among its consortia membership, including the development of
study data provenance.

Descriptions of data provenance have been used successfully in other fields
of endeavor. For example, the Dublin Core Metadata Initiative (DCMI) is an
organization dedicated to promoting the widespread adoption of interoperable
metadata standards and developing specialized metadata vocabularies for de-
scribing resources that enable more intelligent information discovery systems
(http://dublincore.org). This also includes meta-data related to workflow prove-
nance.

The Collaboratory for Multi-scale Chemical Science (CMCS) project is an
informatics toolkit for collaboration and data management for multi-scale chem-
istry [28]. CMCS collects pedigree information about individual data objects by
defining input and output data and capturing pedigree chains describing the
processing that the data has undergone (http://cmcs.org). The provenance data
is explicitly defined in associations, placing the burden of documentation upon
the user.

The Virtual Data System (VDS; formerly known as Chimera and incorporat-
ing Pegasus) [5] provides middleware for the GriPhyN project (www.griphyn.
org), expressing, executing, and tracking the results of workflows. Provenance is
used for the regeneration, comparison, and auditing of data derivations. Users
construct workflows using a standard virtual data language (VDL) describing
transformations (executable programs) that are executed by a VDL interpreter
producing a derivation (the execution of a transformation). Data objects are
entities that are consumed or produced by a derivation. In the VDS model,
provenance is inferred from the processing by inverting the processing to as-
sociate the output data with the input data. This approach places very little
burden on the user to document data provenance.

The myGrid project [29] provides middleware in support of computational
experiments in the biological sciences, modeled as workflows in a grid environ-
ment. Users construct workflows written in XScufl language using the Taverna
engine. The LogBook is a plug-in for Taverna engine that allows users to log
their experiments in a mySQL database and browse, rerun, and maintain previ-
ously run workflows (http://www.mygrid.org.uk/wiki/Mygrid/LogBook). This
provenance log contains the executables invoked, the parameters used, data used
and derived, and is automatically produced when the workflow executes. This
process-oriented provenance log is also inverted to infer the provenance for the
intermediate and final set of data.

Within the neuroimaging community, the XCEDE (XML-based Clinical
Experiment Data Exchange) schema [30] also provides for the storage of data
provenance information. Provenance information manually captured includes

218 A.J. MacKenzie-Graham et al.

hardware, compilation and libraries linked, operating system and software ver-
sions, and parameters used to generate and document results. XCEDE is a data-
oriented system where the provenance metadata is associated with the actual
data files.

The VisTrails scientific workflow management system [31] is an excellent ex-
ample of an integrated workflow and provenance collection mechanism. The Vis-
Trails workflow system focuses on capturing provenance in exploratory workflows
and saving changes that occur over time. Processes and workflows are represented
as python objects prior to execution and details of the execution are stored in a
relational database automatically.

Efforts such as these examples have sought to capture data and workflow in-
formation sufficient to reproduce reported study findings and that enable cross-
study comparison. Specific workflow description frameworks also exist in other
fields that help to sequence data processing steps and that can be used to pop-
ulate provenance descriptions. These frameworks are highly sophisticated tools
that require substantial investment to learn and deploy. They do not provide a
simple mechanism for the capture of provenance metadata from multiple pack-
ages, the capacity to represent complex, non-sequential analyses, nor at a suffi-
cient level of detail to allow the reproduction of a derived set of data on a new
platform. Hence the need for the development of a provenance framework that
can easily be applied to complex neuroimaging analyses.

Future directions include the enrollment of LONI Pipeline workflows in a
database, creating a processing and provenance database. Having a readily
searchable database of commonly used (and rarely used) workflows would greatly
aid investigators in recreating the conditions of a particular analysis, reproducing
previous results and rerunning analyses with small modifications.

The concept of provenance can extend to knowledge of the behavior of exe-
cutables, such as describing their function. The Brain Surface Extractor (BSE)
[23], the Brain Extraction Tool (BET) [32], and MRI Watershed [22] are all brain
extraction algorithms, however, their internal functions may not be evident to
a naive user, especially since they are commonly referred to by their abbrevia-
tions. These tools can capture the expertise of algorithm developers, as well as
the experience of experts at local institutions who have spent significant periods
of time learning how best to apply specific tools to the analysis needs of the
laboratory. The tools will inform the users of missing processing stages, suggest
available and verified processing modules, and warn of incompatible data types.

6 Conclusions

We have used a combination of an executable provenance XSD incorporated into
LONI Pipeline modules to capture processing provenance and description. One of
the major strengths of this system is the capacity to easily recreate the processing
applied to a file by viewing its provenance file, extracting the workflow, and then
rerunning it in the LONI Pipeline. The LONI Pipeline can accommodate almost
any form of workflow, the underlying architecture is application agnostic, not

Neuroimaging Data Provenance Using the LONI Pipeline Workflow 219

limiting the kind of science that can be examined within it. LONI Pipeline
workflows can therefore serve to document workflow provenance in almost any
field of endeavor.

In an era where digital information underlies much of the scientific enterprise
and the manipulation of that data has become increasingly complex, the record-
ing of data and methods provenance takes on greater importance. In this article,
we describe an XML-based neuroimaging provenance description that can be
implemented in any workflow environment. We envision the LONI Pipeline as
fulfilling a role for neuroimaging similar to other frameworks in chemistry or
high-energy physics. We believe that data and workflow provenance form a ma-
jor element of the program that promotes data processing methods description,
data sharing, and study replication.

Acknowledgments

This work was generously supported by a research grants from the National
Institutes of Health through the NIH Roadmap for Medical Research (U54
RR021813), the National Center for Research Resources (U24 RR021760 [Mouse
BIRN] and P41 RR013642), and the National Institute of Mental Health (R01
MH071940). The authors wish to acknowledge their deep appreciation to the
members of the Laboratory of Neuro Imaging (LONI).

References

1. Murphy, S.N., et al.: A Web Portal that Enables Collaborative Use of Advanced
Medical Image Processing and Informatics Tools through the Biomedical Informat-
ics Research Network (BIRN). In: AMIA Annu. Symp. Proc., pp. 579–583 (2006)

2. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
Sigmod Record 34(3), 31–36 (2005)

3. Moreau, L., et al.: Special Issue: The First Provenance Challenge. Concurrency
and Computation: Practice & Experience (2007)

4. Zhao, Y., et al.: A notation and system for expressing and executing cleanly typed
workflows on messy scientific data. Sigmod Record 34(3), 37–43 (2005)

5. Zhao, Y., Wilde, M., Foster, I.: Applying the virtual data provenance model. In:
Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 148–161. Springer,
Heidelberg (2006)

6. Liu, L., et al.: Multiple sclerosis medical image analysis and information manage-
ment. J. Neuroimaging 15(4 suppl.), 103S–117S (2005)

7. Fleisher, A.S., et al.: Identification of Alzheimer disease risk by functional magnetic
resonance imaging. Arch. Neurol. 62(12), 1881–1888 (2005)

8. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: The
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 1(1),
55–66 (2005)

9. Rusinek, H., et al.: Regional brain atrophy rate predicts future cognitive decline:
6-year longitudinal MR imaging study of normal aging. Radiology 229(3), 691–696
(2003)

220 A.J. MacKenzie-Graham et al.

10. Langen, M., et al.: Caudate nucleus is enlarged in high-functioning medication-
naive subjects with autism. Biol. Psychiatry 62(3), 262–266 (2007)

11. Drevets, W.C.: Neuroimaging studies of mood disorders. Biol. Psychiatry 48(8),
813–829 (2000)

12. Narr, K.L., et al.: Asymmetries of cortical shape: Effects of handedness, sex and
schizophrenia. Neuroimage 34(3), 939–948 (2007)

13. Mazziotta, J.C., et al.: A probabilistic atlas of the human brain: theory and
rationale for its development. The International Consortium for Brain Mapping
(ICBM). Neuroimage 2(2), 89–101 (1995)

14. Van Horn, J.D., et al.: Sharing neuroimaging studies of human cognition. Nat.
Neurosci. 7(5), 473–481 (2004)

15. Erberich, S.G., et al.: Globus MEDICUS - Federation of DICOM Medical Imaging
Devices into Healthcare Grids. Stud. Health Technol. Inform. 126, 269–278 (2007)

16. Martone, M.E., et al.: The cell-centered database: a database for multiscale struc-
tural and protein localization data from light and electron microscopy. Neuroinfor-
matics 1(4), 379–395 (2003)

17. Bidgood Jr., W.D., et al.: Understanding and using DICOM, the data interchange
standard for biomedical imaging. J. Am. Med. Inform. Assoc. 4(3), 199–212 (1997)

18. Zhao, J., et al.: Semantically linking and browsing provenance logs for e-science.
In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S. (eds.) ICSNW
2004. LNCS, vol. 3226, pp. 158–176. Springer, Heidelberg (2004)

19. Rex, D.E., Ma, J.Q., Toga, A.W.: The LONI Pipeline Processing Environment.
Neuroimage 19(3), 1033–1048 (2003)

20. Halfhill, T.R.: The Truth Behind the Pentium Bug. Byte (1995)
21. Vaughan, G.V.: GNU Autoconf, Automake, and Libtool, 1st edn., p. 390. New

Riders, Indianapolis (2000)
22. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis. I. Segmenta-

tion and surface reconstruction. Neuroimage 9(2), 179–194 (1999)
23. Shattuck, D.W., Leahy, R.M.: BrainSuite: an automated cortical surface identifi-

cation tool. Med. Image Anal. 6(2), 129–142 (2002)
24. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic

correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imag-
ing 17(1), 87–97 (1998)

25. Jenkinson, M., et al.: Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neuroimage 17(2), 825–841
(2002)

26. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registra-
tion of brain images. Med. Image Anal. 5(2), 143–156 (2001)

27. Smith, S.M., et al.: Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 23 (suppl.1), S208–219 (2004)

28. Myers, J.D., et al.: A collaborative informatics infrastructure for multi-scale sci-
ence. Cluster Computing-the Journal of Networks Software Tools and Applica-
tions 8(4), 243–253 (2005)

29. Oinn, T., et al.: Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics 20(17), 3045–3054 (2004)

30. Keator, D.B., et al.: A general XML schema and SPM toolbox for storage of neuro-
imaging results and anatomical labels. Neuroinformatics 4(2), 199–212 (2006)

31. Freire, J., et al.: Provenance for computational tasks: A survey. Computing in
Science & Engineering 10(3), 11–21 (2008)

32. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3),
143–155 (2002)

Provenance Tracking in an
Earth Science Data Processing System

Curt Tilmes1 and Albert J. Fleig2

1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Curt.Tilmes@nasa.gov

2 PITA Analytic Sciences, 8705 Burning Tree Rd., Bethesda, MD 20817, USA
Albert.J.Fleig@nasa.gov

Abstract. NASA and other organizations involved with climate re-
search have captured huge archives of earth observations. The sensors,
spacecraft, and science algorithms for transforming and analyzing the
data and the processing frameworks are evolving over time. Science Data
Processing Systems (SDPSes) should capture, archive, and distribute
provenance information of all externally received data and algorithms,
as well as describing all internal processes used for data transformation.
This will make the data sets produced by the systems easier to un-
derstand, enable independent scientific reproducability, and ultimately,
increase the credibility of the scientific research that makes use of those
data sets.

1 Introduction

Earth science data have been captured from remote sensing satellites for several
decades now, and numerous national data centers hold vast quantities of such
data. In addition to the initial raw data received directly from sensors, the data
include calibration processes and geolocation determination. The data are used
with a variety of scientific retrieval algorithms to produce derived geophysical
products, and they undergo transformations to reformat, regrid, subset, etc. the
data to massage it into forms useful for scientists to perform research. Over
time, the systems that perform this long series of data transformations from
observation through product generation evolve. New technologies are developed,
later generations of spacecraft, sensors, and data processing frameworks have
different characteristics. The science algorithms for transforming and analyzing
the data also improve over time with our growing understanding of earth science
and the overall climate.

Tracking the provenance of earth science data throughout this process is a dif-
ficult problem. Research that makes use of multiple data sets from multiple data
sources housed in multiple archives distributed among multiple organizations or
agencies with different standards and policies simply exacerbates the problem.
Science data is being used in new ways not planned by the originators of a given
data set. We now find value added services (such as SOAR[1]) are building new
archives that have transformed data from other sources, and re-distributed the

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 221–228, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 C. Tilmes and A.J. Fleig

data in a new form. Some of these systems even provide the capability to au-
tomatically retrieve data from a data archive on-demand and perform dynamic
alterations, distributing requested data to an end user without retaining a copy
of the data. Maintaining complete provenance information through a processing
chain that includes ephemeral data from such a “virtual archive” can be even
more complicated.

This paper will discuss some of the general concerns of science data processing,
and provenance in the context of two specific science data processing systems
in operation at NASA’s Goddard Space Flight Center: the MODIS Adaptive
Data Processing System (MODAPS) [3] and the OMI Data Processing System
(OMIDAPS) [2]. MODIS, the Moderate Resolution Imaging Spectroradiometer,
is an instrument on the NASA Terra spacecraft launched in 1999, and on the
Aqua spacecraft launched in 2002. OMI, the Ozone Monitoring Instrument, is a
Dutch instrument launched on the NASA Aura spacecraft in 2004. These systems
will provide examples and serve as case studies.

2 Science Data Processing

2.1 Data Archiving

There are two parts of every data file in the data processing system, the actual
data (“bunch of bits”) and the metadata with information that describes or
relates to the data.

The data files are assigned a unique identifier and stored in an archive system
where they can be retrieved by that identifier. We refer to the smallest “chunk”
of individually identified data as a granule of data. A granule could refer to a
year, a month or a day of data.

For both MODIS and OMI, the level 0, or raw, data are provided to the
processing systems in 2 hour granules. MODIS data is quite voluminous, so the
Level 1/2 data are stored in 5 minute granules. These are canonicalized on even 5
minute boundaries, e.g. 00:00:00 - 00:05:00, 00:05:00 - 00:10:00, etc. MODIS Level
3 data are organized somewhat differently for each of three climate categories,
Land, Oceans and Atmospheres. The MODIS Land Discipline organizes its data
with a integerized sinusoidal projection on a latitude longitude grid. [4] There
are 326 land tiles, identified by their horizontal and vertical tile coordinates. The
Level 3 gridded data are stored on various temporal resolutions as well, typically
including daily, 8 day, 16 day and 32 days of data.

OMI’s purpose is to monitor atmospheric constituents (Ozone of course, but
also several others), which it retrieves from measures of backscattered solar radi-
ation. It also has a lower resolution and lower data rate than MODIS. For these
and historical reasons, the data are organized into contiguous data on an orbit
by orbit basis.

Each different type of data is assigned an “Earth Science Data Type” (ESDT)
that identifies a set of data files. For example, OML1B for OMI Level 1B, or OMTO3
for OMI Total Ozone. The ESDT encodes multiple pieces of metadata, including

Provenance Tracking in an Earth Science Data Processing System 223

the instrument, the level, the spacecraft (in the case of MODIS which has two
instances currently flying), and the type of data.

2.2 Primary and Secondary Metadata

Depending on the data level, and the metadata associated with a particular
granule, a unique identifier is constructed from a minimal set of metadata. For
example, there is one OMI Level 1B granule for each orbit of data. For orbit num-
ber 123, the particular granule could be described with the tuple {OML1B, 123}.
The Level 1B data from MODIS on Terra captured between 10:50 and 10:55 on
Feb. 17, 2008 could be described with the tuple {MODL1B, 2008-02-17, 1050}. A
MODIS level 3 land tile at tile coordinates (12, 17) of type MODVI (vegetation
index) from data captured on Jan. 13, 2008 could be described with the tuple
{MODVI, 2008-01-13, (12,17)}.

This primary metadata is a minimal set of metadata that can be used to find
a particular granule of interest by searching an indexed database, resulting in a
pointer to the data file of interest.

Secondary metadata is a much larger set. It can include any other information
useful to the user of the data. This can include a large variety of information:

– Geographic information that can be used to limit a spatial search,
– Quality information (“Data is bad for some reason,” “Granule is cloud ob-

scured”),
– Instrument configuration information (“Instrument in spectral zoom mode,”

“Spacecraft maneuver in progress”),
– Extra information about the data files themselves: file size, checksum for

data integrity verification
– Provenance information (Where did I get this file? How did it come to exist?).

Secondary metadata can also include data annotations added after process-
ing, or by another organization. For example, after the data are processed, the
science data quality can be assessed by independent QA group and the granules
annotated with that assessment.

2.3 Reprocessing

Both MODAPS and OMIDAPS are operational systems that currently receive
data from active satellites and run the various science algorithms continuously on
newly acquired data. Science keeps marching forward however, and new research
and analysis of the data yield new versions of the algorithms. The change could
resolve a bug that introduces an artifact into the data, or simply improve the
quality of the data. It can be complicated to assess the effect of the change on the
data. Sometimes the algorithm is run in parallel on a significant quantity of data
that are then compared to the older version. If the new version is substituted into
the operational system, a discontinuity in trends can occur, affecting research
that might depend on such a trend. Sometimes it is better to keep producing a
dataset consistent with known problems than to produce an inconsistent data set.

224 C. Tilmes and A.J. Fleig

For example, consider monitoring a long term trend. If a particular measurement
is sufficiently precise, even in the absence of perfect accuracy, the trend may still
be useful. If in the middle of such a dataset the accuracy suddenly improves,
introducing a jump in the trend, the dataset may be less useful for monitoring
the long term trend. The approach that MODAPS and OMIDAPS typically take
is to periodically go back to the beginning of the mission and reprocess all the
data with the best known set of algorithms, thus producing an improved and
consistent data set. We refer to these periodic large scale reprocessing campaigns
as a collection. MODAPS is currently completing production of collection 5.

All the science algorithms are carefully configuration controlled and versioned
throughout the processing system. The metadata for every product always in-
cludes the version number of the algorithm that produced it within the system.

3 Provenance

Provenance refers to the source of information and the historical process that
led to its existence. Provenance information is critical to end users trying to
understand where a particular data file came from. To this end, the system
records all aspects of the data production flow. This includes:

– The source of all externally supplied data files. This could include a reference
to the specific file in another archive responsible for the stewardship [5] of
that data file.

– The source of the algorithms used to transform the data within the system.
“Source” here refers to the origin of the algorithm, but also important in
understanding an algorithm is its source code. Where possible and legal,
we store the source code in a controlled configuration management (CM)
repository that tracks changes across multiple versions of the same algorithm.
When used properly, the CM system can also store comments, bug report
numbers, references to other papers, and other information that can help a
researcher understand the reasons behind changes. possible and legal.

– Algorithm Design Documents. While the source code is the most up to date
form of an algorithm, it is seldom the best way to understand the scientific
functioning of the algorithm. Where possible, we also store or reference any
design information which describe the mathematical basis and physical sci-
ence behind the algorithms in the form of formulas, text, diagrams, tables,
and graphs. These can also reference peer-reviewed science journal articles
or other information about the algorithm. Our goal is to store or reference
anything that can help someone understand the algorithm better.

– A complete description of the processing environment. This includes things
as basic as what particular computer ran the program and what hardware
resources it had. It could easily be the case in the future that the exact
same hardware might be found only in a museum, but listing the particular
hardware could be useful to someone trying to analyze the data. More im-
portant than the hardware is the software in the environment. This includes
the operating system and software library versions.

Provenance Tracking in an Earth Science Data Processing System 225

– A complete description of the processing framework. Just as we CM the
science algorithms, every module that is part of the processing system is
stored in a CM repository.

– A record of each job’s execution. This is a list of all of the outputs of the
production rule execution process, including runtime parameters (things like
“Orbit Number,” “Data Date,” “Debug Mode,” “Algorithm Control Flags”)
and a list of all input files. We also store extra information about the execu-
tion including the clock time it started and finished, CPU and disk resource
utilization, etc. These can help in the analysis of data processing performance
and optimization.

It is expected that other archives and suppliers of all artifacts (data, algorithms,
documents, etc.) will capture, archive, and distribute their own provenance in-
formation in a well-defined manner. Ideally, this should provide a complete dis-
tributed provenance graph even back to information describing the spacecraft and
instrument that captured the original observations. This provenance helps to put
scientific results derived from the data into context and allows future researchers
to understand the entire data flow. Currently, questions like “Was the ozone input
to the weather model derived from back-scattered ultra-violet or microwave radia-
tion measurements?” require a human to read natural language data descriptions,
visit various web sites, and/or call up scientists personally to manually determine
the provenance of the dataset.

3.1 Scientific Reproducibility

While provenance information is nice to have for a researcher trying to under-
stand a data set and algorithm, especially for climate research using remote
sensing data, it is critical for scientific reproducibility. Many systems recognize
this ideal and strive to store sufficient information that a dedicated (sometimes
very dedicated) researcher who is able to expend sufficient effort could theoret-
ically construct a system capable of reproducing the data. Other systems can
reproduce the latest version of the data, but do not support obtaining older data.

Our goal is to make it not just possible, but easy to reproduce any data file
that gets distributed from our system. To that end, we archive all versions of
fully integrated algorithms. As a next step, we plan to distribute a processing
framework that can access the integrated algorithms directly and interact with
our system to download the information needed to replicate the environment and
re-run the algorithms. Additionally, since the integrated algorithms are available
and encapsulated provenance information is available, so that remote users can
use their local execution framework to reproduce any of our files within their
own systems. This provides complete scientific reproducibility and allows an
independent verification and validation of all data provided by our main system.
Providing this capability can increase the credibility of the science results that
use the data.

226 C. Tilmes and A.J. Fleig

3.2 Process on Demand and Virtual Archives

As algorithms improve and are inevitably changed over time, older data sets
become obsolete and the expense of storing all data physically on disk outweighs
their historical value. Typical archives keep previous versions of data around
long enough to analyze its differences with current data, then remove it in favor
of the new data. Those archives also store the metadata (including provenance
information) colocated with the data, and deletion of the data often causes
deletion of metadata and provenance information as well.

Our system also removes old data files, but, as described above, we retain
sufficient provenance information to reproduce deleted data sets if needed. This
functions as an extreme form of compression where the provenance information
suffices to re-create a file. The provenance is a proxy for the physical contents of
the file.

The next logical step, already implemented on MODAPS, is Process on De-
mand. Some MODIS products are very large, and less widely used (Level 1B),
while others are much smaller and more widely used (Level 2 and above). The
Level 1B products are created in normal processing and used as inputs to Level
2. After keeping them around for 30-60 days for the most interested users to re-
trieve, they are removed from the archive. Since the system retains the ability to
re-create them as needed, users can order the older files from the archive where-
upon the files are scheduled for reprocessing. Depending on the level of requests,
the system can use a small amount of processing capability as a stand-in for a
very large amount of disk.

Since archive space has historically been a very limiting factor, science teams
make very considered, deliberate and often limiting choices when deciding which
official data products to produce and archive. Process on Demand allows a “vir-
tual” archive of many more products thereby relaxing some of the self-imposed
limitations. This approach has led to the development of “services” that can
transform data dynamically to very specific forms requested by users [1]. It is
important that such services don’t overlook the intensive verification and vali-
dation functions performed by the science teams, and that complete provenance
information is captured, even for dynamically created, ephemeral data products
served from a virtual archive.

3.3 Provenance Problems

As noted above, systems often store provenance information in the metadata
along with the data files, and when the data are removed, so is the metadata.
Someone later researching a science paper with results citing a specific data set
may find that not only are the data no longer available, but also there is no
information about how that data set was produced.

When data files used in production come from external providers, our prove-
nance information can refer to that source, but it must also refer to the specific
file so that it can be retrieved from that provider. If upstream providers don’t
archive or distribute sufficient provenance information for significant inputs, they
can become a “dead end” in the graph.

Provenance Tracking in an Earth Science Data Processing System 227

The example above described a (very simplified) scenario where science leads
to an algorithm, which is coded into software, which is used to process data.
Sadly, this ideal seldom matches reality. We often find software evolving in new
directions that simply aren’t retroactively captured in design documents and
published papers. Keeping the entire provenance chain up to date requires ded-
ication and discipline.

Sometimes provenance information is captured, but the information is re-
stricted. Hardware and software designs provide a competitive advantage, so
some organizations are reluctant to release proprietary information in the pro-
cessing chain. In particular, due to past problems with distribution of satellite
and rocket technology the U.S. International Traffic in Arms Regulations (ITAR)
is particularly restrictive of certain types of information. Even where the infor-
mation isn’t particularly sensitive, the default ITAR position is to restrict data,
and sometimes it is simply easier to avoid the procedural burden to get permis-
sion to release information.

Most systems attempt to capture provenance information, but we have found
that it is often incomplete, and represented in non-standard forms that can be
difficult to follow. Often it is reduced to a phone call to the scientist asking
“Where did you get this data, and what did you do to it?” Based on personal
discussions, we have found that capturing and distributing good, usable prove-
nance often simply isn’t a priority for scientists. They are more than willing
to talk about provenance and explain their methodologies with colleagues, but
sometimes don’t see the usefulness of incorporating provenance into the produc-
tion system.

Even if provenance is captured, archived, and distributed, some systems can’t
(or won’t) reproduce older datasets. They can rely on an error prone, manual
process to attempt to reproduce data previously released.

4 Conclusion and Future Work

Access to complete provenance information is essential for many aspects of the
use of Earth science data. It is possible to build science data processing systems
that automatically capture the provenance information with little impact on
resources, operations or the participating scientists involved in creating the data.
This will make it possible for users to know how a data set was made, reproduce
the results of the initial processing, and understand differences over time periods
even after the original producers are no longer available for consultation.

With complete provenance a user will know what input data was used for any
product including details of where it came from and what version it was. The
user will be able to know what exact algorithms were used to make a product,
what exact input data was used, what exact system the data was produced with
and what processing system it was made on. This will improve the credibility of
the data set and make it possible to determine whether differences over time of
a remotely sensed data set come from true geophysical changes or are artifacts
of the production system.

228 C. Tilmes and A.J. Fleig

We are working on development of methods to distribute the processing frame-
work used to make a product in such a way that remote scientists can access the
algorithms that were used, interact with our system to download the information
needed to replicate the environment, and run time parameters and reproduce the
results or modify any component and asses the impact of the change.

Complete provenance requires that input data obtained from external sources
also comes with its own provenance. We are working on identifying tools, con-
tent, and standards for this and on encouraging other data sources to provide
this information. We note with concern that there is not a current commit-
ment in the science community to require adequate stewardship to maintain
and support complete provenance even if it is available. We also note that the
requirement for the scientists providing processing algorithms to also provide
complete documentation of the final version of their process does not receive
adequate support.

It is our hope that by showing that all of the needed information can be
easily captured if available and that it can assure data reproducibility we can
encourage further development in these areas.

Acknowledgment

The authors thank the many individuals comprising MODIS and OMI teams
for making development of MODAPS and OMIDAPS successful. Some of the
information presented here was taken from a number of documents and web
sites throughout the two projects.

References

1. Halem, M.: Service Oriented Atmospheric Radiances (SOAR): A Community Re-
search Tool for the Synthesis of Multi-Sensor Satellite Radiance Data for Weather
and Climate Studies. In: Proc. 3rd Intl. Conf. on Web Information Systems and
Technology (2007)

2. Tilmes, C., Linda, M., Fleig, A.: Development of two Science Investigator-led Pro-
cessing Systems (SIPS) for NASA’s Earth Observation System (EOS). In: Proc.
IEEE Geoscience and Remote Sensing Symposium, pp. 2190–2195 (2004)

3. Masuoka, E., Tilmes, C., Ye, G., Devine, N.: Producing Global Science Products for
the Moderate Resolution Imaging Spectroradiometer (MODIS) in the EOSDIS and
MODAPS. In: Proc. IEEE Geoscience and Remote Sensing Society (2000)

4. Wolfe, R., Roy, D., Vermote, E.: The MODIS land data storage, gridding and com-
positing methodology: LEVEL 2 Grid. IEEE Trans. on Geoscience and Remote
Sensing 36, 1324–1338 (1998)

5. Diamond, H., Bates, J., Clark, D., Mairs, R.: Archive management: the missing com-
ponent. In: Proc. 20th IEEE/11th NASA Goddard Conf. on Mass Storage Systems
and Tech., pp. 40–48 (2003)

6. W3C Semantic Web Activity, http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/

A Python Library for Provenance Recording and
Querying

Carsten Bochner, Roland Gude, and Andreas Schreiber

Simulation and Software Technology
German Aerospace Center
51147 Cologne, Germany

{Carsten.Bochner,Roland.Gude,Andreas.Schreiber}@dlr.de
http://www.dlr.de/sc

Abstract. In many application domains the provenance of data plays
an important role. It is often required to get store detailed information of
the underlying processes that led to the data (e.g., results of numerical
simulations) for the purpose of documentation or checking the process for
compliance to applicable regulations. Especially in science and engineer-
ing more and more applications are being developed in Python, which
is used either for development of the whole application or as a glue lan-
guage for coordinating codes written in other programming languages.
To easily integrate provenance recording into applications developed in
Python, a provenance client library with a suitable Python API is useful.
In this paper we present such a Python client library for recording and
querying provenance information. We show an exemplary application,
explain the overall architecture of the library, and give some details on
the technologies used for the implementation.

1 Introduction

The recording and analysis of the provenance for data (i.e., a suitable documen-
tation of the process that led to the data [1,2]) resulting in IT based processes in
science and engineering gets more and more important. Such kind of documen-
tation is required or wanted in a variety of application domains, for example in
aerospace engineering, medical applications, climate research, or other e-science
applications. In some cases, the detailed documentation of processes that led to
certain data is required by official regulations.

Since the recording of provenance gets more important in many application
domains, it is essential that the overhead for adding the ability to record and
query provenance from within application must be as low as possible. This is
important to reduce the effort needing to enable existing application for prove-
nance recording which might convince more developers and even scientists to do
so. Therefore the availability of suitable libraries for commonly used languages
with a high-level API is useful.

As an example, in science and engineering the high-level programming lan-
guage Python [3] is being used in more and more complex applications. These

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 229–240, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dlr.de/sc

230 C. Bochner, R. Gude, and A. Schreiber

applications from industry, research labs, and universities are either implemented
in Python completely or are provided with an Python programming API for
controlling, extending, or embedding them. Especially, scientists in the fields of
mathematics, physics, or engineering are often not interested or even willing to
learn and use modern object-oriented languages such as Java, C++, or C# just
to configure or extend existing applications.

Having a Python API and a correlative client library implementation for
provenance recording and querying has two major fields of application. The first
is, to enable existing applications written in Python with provenance recording
and, as a special case, the customization of provenance recording on end-user
level (e.g., by using an embedded Python interpreter). The second use case is the
rapid development of (simple) tools for analyzing already recorded provenance
information.

The rest of this paper is organized as follows. In Section 2 we will explain the
application context of our work and discuss the advantages of the Python lan-
guage. In Section 3, we present an overview and the architecture of the Python
Provenance client-side library and in Section 4 we give some details on the imple-
mentation. Finally, in Sections 5 and 6 we present future work and conclusions.

2 Motivation

Currently, more and more scientific applications are being developed in Python
or provided with a Python API. Examples are computational codes written in
languages such as C or Fortran with Python APIs for convenient integration in
working environments and steering the computation, simulation environments
which integrates numerical codes, data management systems which manages
input and output data of computation, or Grid environments which are able to
distribute computation on a wide range of computing resources. In many cases,
computational intensive parts of application codes are still written in C, C++, or
Fortran whereas Python is used as a very high level language for configuration
of these code, the setup of the overall computing workflow, or for managing
the involved data. Very often these applications are multidisciplinary coupled
computations, where simple Python scripts are used to implement the coupling
scheme for steering the computation.

An example, where provenance-enabling Python applications is important is
the German national D-Grid community project AeroGrid [4]. In AeroGrid,
a Grid infra-structure for the aerospace research community is being created.
The goal of the AeroGrid project is to provide a productive Service Grid for
researchers from industry, national research labs, and universities who are col-
laborating in design and simulation phase of future products. In AeroGrid, the
basic grid middleware services of the D-Grid infrastructure (The Globus Toolkit
and UNICORE 6) are being used.

One of the project objectives is to enable the user interfaces and the infras-
tructure to record provenance information about the involved data. The inte-
gration of a provenance service means calculations performed in AeroGrid are

A Python Library for Provenance Recording and Querying 231

automatically documented and traceable. Recording provenance information,
i.e. complete information on the individual processing steps applied to data, im-
proves the reliability of results for AeroGrid users. For example, during the design
of turbine engines many variants of design are being simulated by a number of
design engineers using a variety of internal and external computing resources.
To get reliable and traceable results for each data file of the different variants,
user information of involved engineers, detailed information of used computing
resources, changes in parameter settings, as well as information about the used
simulation codes are being recorded in a provenance data base.

The main user interface in AeroGrid is the data management client Data-
Finder [5], a lightweight application software for managing technical and scien-
tific data. It was developed to manage large amounts of data, and allows data
to be stored using a number of different storage interfaces (e.g., WebDAV, FTP,
GridFTP, Amazon S3, SRB, OpenAFS, or TSM). The structure of the data and
descriptive metadata are stored in XML format on the central server and can
be edited using the standardised WebDAV protocol. The DataFinder user inter-
face consists of a platform-independent user client that allows users to navigate
through the existing data, search for data, create and manage metainformation
for all data, and execute scripts stored locally or on the server. The DataFinder
client was developed in Python and the Qt GUI library and can be extended
with Python easily.

Since the DataFinder is implemented in Python, integrating provenance
recording can be done easily using a suitable provenance client library with
a Python API.

The advantages of Python for applications in science and engineering are man-
ifold [6,7], but it is an important prerequisite that Python is a general-purpose
programming language without any restrictions and available on any platform
with an ANSI-C compiler. It supports multiple programming paradigms (func-
tional, object oriented, and imperative programming) and has many libraries
and modules for a variety of tasks. But most important is the clear and highly-
readable syntax which allows one to learn Python in very short time and which
makes Python code very maintainable.

The rest of this paper presents a Python client library for recording and
querying provenance information based on specifications developed in the EU
Grid Provenance project [8].

3 Overview of the Python Library for Provenance

3.1 Fundamentals of the EU Grid Provenance Concept

The recording and querying of data and the interaction between Provenance-
aware applications and a provenance store rests upon the following definitions
[2]. The Provenance architecture uses an service oriented architecture (SOA)
style, where a provenance store acts as Web Service for storing and querying the
process information.

232 C. Bochner, R. Gude, and A. Schreiber

Provenance System

Provenance
Store

Management
Interface

Query
Interface

Recording
Interface

Processing Services

Management UIs Presentation UIs

Application Services
Simulation Codes
Workflows
Grid Services

Provenance Analysis
Process Tracking
Result Validation

Visualisation
Process Evaluation

Fig. 1. Main concept of the EU Grid Provenance project

Every service involved in a data process is defined as an actor. The interaction
between these actors is based on messages which take the form of SOAP messages
for Web services. The interaction between actors characterizes the composition
of the application workflow and is defined as a process.

In order to store and represent the provenance and process, different data
models have been defined in the EU Grid Provenance Project. The elementary
data model is the p-assertion which represent some step of process, while the
Process Documentation data model represents the whole documentation of the
process.

After the provenance of a process is recorded and stored in a provenance store
a querying actor can ask for this provenance by sending a provenance query
request to a provenance query engine, which is typically implemented by the
provenance store [9]. Processing the query request the query engine must decide
which p-assertions correspond to the request. Therefore the query must specify
this factors and the provenance concept allows different search languages to do
so. For executing queries a provenance store categorizes recorded p-assertions in
a larger data structure, called the p-structure. This structure can be understood
as a navigable schema or hierarchy of the provenance store. The p-structure is
exposed to the querying actor through query interfaces of the provenance store.
Figure 1 gives an overview of the main system concepts of the architecture
defined in the EU Grid Provenance project.

A client-side library (CSL) is a collection of functions that allows applications
to communicate with the services of the provenance store [10]. Furthermore a
CSL should allow application developers to apply the rules of the provenance

A Python Library for Provenance Recording and Querying 233

architecture easily. This should be enabled by a CSL that provides a clear and
easy to use API with simple interfaces and data structures.

By developing a reusable library with an easy to use interface many details
of this communication can be hidden from an application developer, thus re-
ducing development cost of provenance-aware applications. Such a client-side
library needs to implement the defined record and query protocols of the target
Provenance store. In this case the client-side library mainly implements:

– Process documentation recording protocol - Definies the SOAP mes-
sage communication between a recording actor and the provenance
store [11]).

– Query protocol - Specifies the SOAP message communication between a
querying actor and the the provenance store [9].

– XPath protocol - Definies the XPath-based profile of the provenance
queries [12].

Furthermore, the client-side library needs to communicate with the prove-
nance store using a defined technology binding (like the SOAP binding defined
in [13]).

Currently two implementations of the provenance store are available. One
store was developed by IBM for the EU Grid Provenance project and requires
an installed Globus Toolkit. As the requirements are very extensive this store is
not used in this project. The IBM store is a prototype implementation.

PReServ is the second provenance store and is developed by the University of
Southampton. Currently prototype version 0.31 with WSDL 25 is available and
used as reference store in this project [14].

3.2 General Architecture Overview

As the PReServ comes with a Java client-side Library [15], this Java CSL was
used as a first reference for the design and implementation of the Python CSL.
Therefore both architectures are mainly based on a similar layered model [15].
This model consists of three layers (see figure 2), with two API-layers offering
interfaces for the server / the client, and one utilities or adaptions layer mapping
this APIs to each other. The reason for this model is the complexity of the server
API, which can not be used reasonable by application developers. Therefore the
server API is mapped to a simpler client API, allowing application developers
an easy access to the features of Provenance.

Client API. The top layer is the client API. This layer is exposed to the users
of the library.

The client API offers interfaces to interact with the Provenance store, hold
content of recordings (i.e. PAssertions) and queries. For querying the Provenance
store currently the XQuery XML query language is supported, as defined in
the PreServ XQuery interface [14]. Future versions of this Python CSL and
the PReServ Provenance store might also support security, documentation style
helper and policy helper.

234 C. Bochner, R. Gude, and A. Schreiber

Application API

(Functions)

Utilities

(Mapping)

Server API

(WDSL)

Python Client-Side
Library

Python Application

Full Python
Applications

Applications with
Python interface

Python-glued
workflows

Python

SOAP

Provenance
Store Server

Fig. 2. Layer model of the Python CSL

The client API is used directly by application developers, which want to make
their Python application provenance-aware. Hence the client API should contain
simple and clear interfaces and data structures. Furthermore these interfaces
need to be very robust and should not be subject to changes. The client API
is defined using pyProtocols (see 4.1). The client API uses the utilities layer for
mapping its services to the Service API.

Utilities. The middle layer is an adaption layer which maps the server API to
the client API. This utilities layer or adaption layer implements the interfaces
(or adapters) of the client API and contains several utility and helper classes for
mapping the relatively simple client API to the complex server API. Furthermore
several test modules have been integrated to ensure the correctness of the Python
CSL implementation. The adaption layer consists out of pyProtocol adapters (see
4.1) which map a specific server APi to the client API.

Server API. The lowest layer is the server API. This layer directly commu-
nicates with a certain provenance store implementation. The interfaces of the
Provenance store web services are defined in several WebServiceDefinition Lan-
guage (WSDL) files. A WSDL uses the XML schema and can be understand as a
contract between the service and the communicating component and mainly de-
fines services, ports, operations and messages. The Python CSL contains Python
stubs automatically generated from the WSDL files with the wsdl2python tool
of the Zolera SOAP Infrastructure (ZSI) Python library. Currently the Server
API module of the Python API consists mainly of four files:

A Python Library for Provenance Recording and Querying 235

– ProvenanceService client
– ProvenanceService server
– ProvenanceService services
– ProvenanceService types

The server API is specific for each supported provenance store implementa-
tion. Current files enable the communication with the PReServ Provenance store
[14] according to the defined WSDL files of version 0.25.

adapters

apiclient

interfaces

serverAPI

utils

«imports»

«imports»
«lazy loads»

«imports»

pyProtocols
«imports»«adapts using»

Fig. 3. Overview of the relation between the Python Provenance-CSL packages

3.3 API Description Overview

This section gives an overview of the API of the Provenance-CSL. See also figure
3 for the relations between packages.

– Provenance - Base package. It is only used as a collection of all the other
parts.

– Provenance.api - This package contains the package users should utilize
for their application. It is a collection of all parts of the Provenance-CSL
which might be useful for a typical user.

236 C. Bochner, R. Gude, and A. Schreiber

– Provenance.interfaces - This package contains the interface-definitions for
all types used in Provenance-CSL. Users will need this solely if they wish to
define new adapters.

– Provenance.adapters - This package contains predefined adapters for sev-
eral data types and interfaces.

– Provenance.serverAPI - This package contains the data types and stubs
which are generated by wsdl2py. Users will usually not work with this pack-
age directly.

– Provenance.utils - Collection of utility functions which help with the gen-
eration of data which can be recorded on a Provenance store. If users do
not create their own adapters for their data types, they should use these
functions to create the correct data types for recording.

– Provenance.client - Contains the implementation of the Provenance store
service client, which is the interface to the Provenance store and allows to
store data on it or query it from there.

4 Implementation Details

This section briefly describes the used technologies, methods and materials which
had a significant impact on the project. Furthermore it shows the main differ-
ences between the Java and the Python client-side library implementation.

4.1 Used Technologies and Methods

Zolera SOAP Infrastructure. The SOAP-bindings of the Provenance proto-
cols have been used to communicate with Provenance stores. SOAP is a protocol
for data exchange based on the eXtended Markup Language (XML).

The Zolera SOAP Infrastructure (ZSI) [16] is an implementation of SOAP
version 1.1. A special feature of ZSI is that it comes with a Web Service Def-
inition Language (WSDL) compiler wsdl2py, which generates Python stubs for
the client-side of a web service. Since the Provenance protocols are defined using
WSDL, this was an important feature. ZSI has been used to generate Python
code from the WSDL definition of the Provenance protocols. It has also been
used for all SOAP communication.

Python EnterpriseApplicationToolkit. The Python Enterprise Application
Toolkit (PEAK) [17] is a collection of Python modules which adds useful features
for component baseddesign toPython. Its subpackages importutils and pyprotocols
have been used to enable lazy loading and automated protocol adaption.

Lazy loading is a technique that allows the importing or loading of a library on
demand. The importutils package of PEAK allows to define modules as lazy mod-
ules. It is completely compatible with the normal Python importing mechanism.

Unlike other object oriented programming languages, Python makes no use
of anything like interfaces. In some object oriented programming languages (i.e.
Java), interfaces are used to describe the methods a class has to provide in

A Python Library for Provenance Recording and Querying 237

order to implement an interface. As an alternative concept, PyProtocols intro-
duces protocols and protocol adaption to Python. Protocols are used to describe
the behaviour of objects by defining which methods have to be supported and
which members (i.e. variables, types) have to be provided in order to support
the object. A really valuable feature of PyProtocols is the automatic adaption
mechanism, which allows automated adaption from one data type d1 which sup-
ports a protocol p1 to support another protocol p2 if an adapter from p1 to p2
has been defined.

An example of this adaption mechanism in the Provenance context is the
following: Provenance records usually have a sink and a source. Both are complex
types which usually contain a URL. By defining an adapter from strings which
match the URL pattern to the complex type behind sink and source, it is now
possible to use strings whenever the complex type is expected. In that case
PyProtocols will automatically convert the strings to the expected complex type.
This technique eases the usage of the generated code and the library.

For instance if a developer wants to use the Python CSL to store messages
defined by his internal data types on a Provenance store, all he has to do is to
define an adapter from his data type to the corresponding P-Assertion interface
of the CSL. If he wants to record something on the store now, he can send
the designated information to the store by simply supplying the Python CSLs
recording API with instances of his data type. By defining adapters for the return
types to his own data types, he would also be able to receive his own internal
data types from a Provenance store using Provenance-CSL. Section 4.2 shows
example code of how to define custom adapters.

4.2 Examples

The following source code shows examples for illustrating some basic provenance
concepts.
Lazy-loading of all necessary modules and initializing a client-side access to a
provenance store:

from provenance.api import *
cl = client.Client(http://localhost:8080, tracefile=sys.stdout)

Example of recording some complex provenance information (error handling code
omitted)

viewKind = "isSender"
subj = utils.createSubjectId(1, dataAccessor, "parametername")
objlist = [utils.createObjectId(

utils.createInteractionKey("http://sink", http://source"),
pAssID, ’anything’, ’dataAccessor’, ’parameter’, ’isSender’)]

keys,response = self.cl.record([
[utils.createActorState(a_content_0, doc_style),
utils.createRelationship(subj, rel_type, objlist),
utils.createInteraction(m_content_0, doc_style),
utils.createInteraction(xml_content_0)],

238 C. Bochner, R. Gude, and A. Schreiber

[utils.createActorState(a_content_1),
utils.createActorState(a_content_2),
utils.createInteraction(m_content_1, doc_style)],
[utils.createRelationship(subj, rel_type, objlist)]

], viewKind, sink, source)
res = interfaces.IRecordAck(response)

Example of data querying using an XQuery expression

queryString = "for $n in $ps:pstruct return $n"
response = self.cl.query(queryString)
result = interfaces.IQueryAck(response)

Afterwards variable ”‘result”’ contains an XML structure containing all
pstructs available in the store.

The following code represents an example of extending data types using
adapters. Here the adapter allows using type string when type address is ex-
pected.

Example of extending data types

class IAddress(IZSITypeCode):
""" interface for string typecodes """
def getAsString(self):
""" returns a String with the Value of the Stringlike. """
IString = protocols.protocolForType(basestring,[])

class AddressAdapter(object):
protocols.advise(instancesProvide=[IAddress],

asAdapterForProtocols=[IString])
def __init__(self, string):

self._delegate = serverAPI.Address(string.__str__())
def getAsString(self):

return self._delegate.__str__()
def toTypeCode(self):

return self._delegate

5 Current and Future Work

5.1 Current State

The Python client-side library currently supports recording of P-Assertions on
a PReServ Provenance store using the Provenance protocols of version 0.25.
Querying the store using the XML XQuery language is possible. The concept of
P-Headers has not been implemented yet. The current implementation features
a complete set of utility functions for easy creation of P-Assertions and records
and everything that is necessary for that. All interfaces which are necessary for

A Python Library for Provenance Recording and Querying 239

recording have been defined as well as interfaces for the result types. Several
interfaces have been defined to be context sensitive (i.e. is an Endpoint used as
a sink or as source).

Adapters for all wsdl2py-generated types to the appropriate recording inter-
faces have been defined as well as adapters for a wide range of simple Python data
types (like strings, lists and dictionaries) to support several recording interfaces.
Adapters for the results of recording operations to the appropriate interfaces
have been defined as well.

5.2 Future Work

Future works will focus on two main goals. First, current Python CSL will be
adjusted to support upcoming new releases of the PReServ Provenance store
and its changed WSDL definitions and functionalities. Therefore especially the
package Server.API needs to be overworked, as this is always designed for a cer-
tain provenance store implementation. Further changes might become necessary,
if the intent to change the current concept of an integrated XML database will
be realised in the new PReServ release. In this case, the use of XQuery might
become obsolete and a different query protocol must be integrated. Furthermore
this process of adapting to a new PReServ version will be used for a redesign of
the Python CSL and further quality assurance.

As the current version of the Python CSL is a proof of concept, not all pro-
tocols and functions of the provenance architecture [2] are supported. Therefore
the second goal of our future work is the support of further functionality, includ-
ing aspects as p-headers, security and different query protocols. This work will
be subsequent to the fulfilment of our first goal and thus already support the
new PReServ store version.

6 Conclusions

This paper presented a Python implementation of a provenance client-side li-
brary, which is currently able to record provenance information and to query
provenance stores. The Python API as well as details on the implementation
have been described.

Having this library eases the task to add provenance-awareness to existing or
new Python applications. Especially, this includes applications written in other
programming languages which have a Python API for extending or embedding.
In particular, if the application has an embedded Python scripting functionality,
end users could add provenance recording on their own or, at least, customize or
extended existing provenance recording capabilities. Using the queryingAPI,users
can also use the Python CSL to rapidly develop specific analysis tools in Python.

Acknowledgment

This work has been supported by the German Federal Ministry for Research and
Technology (BMBF) under Grant 01IG07006A.

240 C. Bochner, R. Gude, and A. Schreiber

References

1. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O., Schreiber, A., Tan, V., Varga, L.: The provenance of elec-
tronic data. Commun. ACM 51(4), 52–58 (2008)

2. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
Architecture for Provenance Systems. Technical report, University of Southampton
(2006)

3. The Python Website, http://www.python.org
4. The AeroGrid Project Website, http://www.aero-grid.de
5. Schlauch, T., Schreiber, A.: Datafinder - a scientific data management solution. In:

Ensuring the Long-Term Preservation and Value Adding to Scientific and Technical
Data, PV 2007, Oberpfaffenhofen, Germany (2007)

6. Dubois, P.F.: Ten good practices in scientific programming. Computing in Science
and Engg. 1(1), 7–11 (1999)

7. Jackson, K.R.: PyGlobus: a Python interface to the Globus Toolkit. Concurrency
and Computation: Practice and Experience 14(13-15), 1075–1083 (2002)

8. The EU Grid Provenance Website, http://www.gridprovenance.org
9. Miles, S., Moreau, L., Groth, P., Tan, V., Munroe, S., Jiang, S.: Provenance Query

Protocol. Technical report, University of Southampton (2006)
10. Jiang, S.: Client side library. Architecture tutorial. Technical report, University of

Southampton (2005)
11. Groth, P., Tan, V., Munroe, S., Jiang, S., Miles, S., Moreau, L.: Process Documen-

tation Recording Protocol. Technical report, University of Southampton (2006)
12. Miles, S., Moreau, L., Groth, P., Tan, V., Munroe, S., Jiang, S.: XPath Profile

for the Provenance Query Protocol. Technical report, University of Southampton
(2006)

13. Munroe, S., Tan, V., Groth, P., Jiang, S., Miles, S., Moreau, L.: A SOAP Binding
For Process Documentation. Technical report, University of Southampton (2006)

14. The PReServ Website,
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/SoftWare

15. Jiang, S., Moreau, L., Groth, P., Miles, S., Munroe, S., Tan, V.: Client Side Library
Design and Implementation. Technical report, University of Southampton (2006)

16. The Python Webservices Project Website (including ZSI),
http://pywebsvcs.sourceforge.net

17. The Python Enterprise Application Kit (PEAK) Website,
http://peak.telecommunity.com

http://www.python.org
http://www.aero-grid.de
http://www.gridprovenance.org
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/SoftWare
http://pywebsvcs.sourceforge.net
http://peak.telecommunity.com

Requirements for a Provenance Visualization
Component

Markus Kunde, Henning Bergmeyer, and Andreas Schreiber

Simulation and Software Technology
German Aerospace Center
51147 Cologne, Germany

{Markus.Kunde,Henning.Bergmeyer,Andreas.Schreiber}@dlr.de
http://www.dlr.de/sc

Abstract. The need for interpretation of provenance data increases with
the introduction of further provenance related IT-systems. The interpre-
tation of data only becomes intuitively with providing good and efficient
visualization possibilities. During the development of general provenance
visualization techniques, provenance users are classified into groups re-
garding their view to provenance information. The end-user requirements
are evaluated on an abstract level to have a basis for research. Different in-
tentions of end-users regarding provenance are identified and put into rela-
tionship with standard visualization types. Examples for standard
visualization types are given and a brief forecast to future achievements is
made.

1 Introduction

The importance of recorded provenance data will become clear during the evalu-
ation of possible fields of application (see [1,2,3]). It is imaginable that in the next
years the usage of tools including provenance technology will become mandatory
in domains where the trust of information is highly crucial. Besides the recording
of provenance data the interpretation of it plays a central role regarding any as-
sertions about the past, present or future. The work represented by this paper is
made up of development and evaluation of general, abstract concepts for visual-
ization of provenance data. This analysis depends on a general approach, which
can be used as a basis concept for provenance visualization in applications. The
target of these visualization concepts is to provide an overview about possible
general visualization alternatives.

The paper is organized as follows. Section 2 presents the motivation behind
this work. In Section 3, a general user classification is made, regarding the scope
of view to provenance data. Section 4 describes the transformation of user re-
quirements into abstract types and their allocation to general visualization types.
A functional classification of abstract user questions is presented. Visualization
examples represent current standard visualization possibilities. In Section 5, brief
examples of other projects are presented to give a first insight of possible appli-
cation areas. Section 6 describes the current state of work and gives a forecast

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 241–252, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dlr.de/sc

242 M. Kunde, H. Bergmeyer, and A. Schreiber

to future achievements. Finally, in Section 7, a conclusion is presented including
a brief evaluation of current and expected future outcomes.

2 Motivation

At the moment, the introduction of provenance on the market of IT-systems is
still continuing. As the number and quality of concepts including provenance
increases, further investments in the evolution of it will be made. The idea of
storing provenance data grows as the concepts become more concrete and spe-
cific. This evolution comes upon its boundaries where application domain experts
want to use these concepts. Storage of provenance data is one part of the whole
topic, whereas the interpretation of data to get useful information is the other
one.

With respect to the interpretation of provenance data the development of
a provenance visualization concept becomes difficult in the manner of having a
general approach for the visualization technique on the one hand and not to loose
the connection to specific requirements of a concrete application domain on the
other hand. The main intention of this work is to build-up general visualization
concepts and their evaluation regarding concrete requirements. The advantage
for the provenance community is based on the fundamental discover and de-
velopment of different visualization techniques and their evaluation regarding
possible application domains.

3 User Classification

The idea of analyzing provenance information depends on several circumstances
like the application area of the concrete implementation and the individual task
of a user of this application. The evaluation approach of these different intentions
is to identify general user roles in the manner of different views to data and
information and to group them together into generic user classes. Regarding the
evaluation of a possible division the identified user groups are derived from the
user requirements document of the EU Grid Provenance project [3].

In the context of user groups and provenance information a division between
user and system provenance data is made. The term user provenance is used for
workflow related provenance information. In this case the interaction-sequence
with the involved user(s), the intermediate and end results and other direct work-
flow related information is important. The term system provenance is related to
IT-system internal components and their relationship together. The exact rela-
tionship between IT-system specific components and their message exchange is
mentioned with this term. The following list represents the identified abstract
user roles and gives a brief explanation of each classification:

– General User. The general user should only see the user provenance infor-
mation that is connected to workflows. The general user is involved in the
configuration of the workflow. Only provenance information directly related

Requirements for a Provenance Visualization Component 243

to the own work-surrounding field is needed. The main intention is to rely
on the outcome of a workflow and to check the authentically of these results.

– Designer. The designer role has main access to all user related provenance
data, independent of the origin, which appears in the context of the moni-
tored system. The designer is interested in the behavior of the workflow as
well as the interaction between services or the connection with the outside
world.

– Manager. A manager can see the owned user and system provenance data.
The manager monitors the provenance usage on a whole to ensure the cor-
rectness of the individual services. This role is intended to support the in-
terpretation steps and to ensure the quality of the provenance system.

– Administrator/Developer. The role of the administrator or developer is
designed to capture the whole provenance data, which is available in the
connected provenance stores. The purpose of this role is to build-up the
provenance architecture and to ensure the correctness of the provenance
system.

4 Generalized User Requirements

For the development of visualization concepts, a clear understanding of users
need and users view regarding provenance information is mandatory. For evalu-
ation of a general visualization concept, a derivation of user requirements for a
special application must be made in order to have a universal assertion as a basis
for these concepts. This is done by derivation of abstract types of identified user
requirements. These types present the general intent of a user regarding prove-
nance visualization. Besides the types of user requirements there is a need for
a definition of an abstract layer of all provenance questions in relation to their
point of interest.

4.1 Types

The derivation of types of user requirements into a more abstract view in order
to display a general division of non-concrete user requirements is formed in the
context of what element is the basis for visualization. Visualization is based on
one element, the point of interest with additional information, with respect to the
provenance data. The fundamental user requirements are extracted from [6]. The
general approach for the derivation of the types was a two-way strategy. At first
a bottom-up approach was used for a pre-selection of types. The pre-selection
then was transformed into type-categories. Finally, a top-down approach was
used to divide the user requirements into each type-category. In a further step,
these types can be assigned to general visualization types, which were used as
an essential for developing concrete visualization-concepts (see also 4.3).

Table 1 displays the abstract types of user requirements in which a user re-
quirement can be arranged with a very brief denotation of each type.

244 M. Kunde, H. Bergmeyer, and A. Schreiber

Table 1. Types of user requirements

Type Denotation

Process In the center of the users view the process plays the central role. The
approach of a workflow has to be evaluated. Involved actors as well as
their connection are important. The sequence of the process steps is in
the center of inspection.

Results The intermediate or end results of interactions are in the center of users
view. The outcome as well as the input has to be evaluated.

Relationship In this case the relationship of interactions or actors is important and
has to be evaluated. It is mandatory to reconstruct the evolution process
of a result for reliance, in order to evaluate the results properly.

Timeline If the time is important to observe, finding bottlenecks or trying of
improvement of the workflow is one of the targets. Reconstructing the
evolution of results or the behavior of actors to each other can be eval-
uated.

Participation The evaluation of the correctness of the participants is important in
the context of trust of the data. This type is very similar to the type
Relationship, but there is another intention. The reconstructing of evo-
lution processes is less important than the trust of all participated
actors, which is mentioned with this type.

Compare The comparison of two subjects deals with the differences between
them. In the case of a comparison between one subject and a refer-
ence subject, the correctness of the subject can be proven.

Interpretation This type represents a collection of individual questions, which cannot
be classified into one of the other types. This type is represented with
an individual visualization view depending on the special question of
the end-user. Typical examples for these types are user requirements
tend to develop new cognitions onto existing information.

4.2 Classification

As the division into types of user requirements is made to have an abstract
division for assigning to basic visualization possibilities, a classification of the
user requirements in the context of the user questions (listed in table 2) can
be made. A classification of user requirements represents a functional division
of user requirements. This division can be used to evaluate the fundamental
provenance data, which is needed in order to give an answer to the user questions.
Table 2 lists each classification and gives the abstract question behind it. Each
user requirement related to the interpretation of the provenance should belong
to this classification.

At first glance, there is interference between the classification and the division
into types of the user requirements. The division into these two fields is made
because of the different view of each field. The division into types is made in
context of a possible visualization-panel in opposition to the classification, which
context is the intention of user’s question.

Requirements for a Provenance Visualization Component 245

Table 2. Classification of user requirements

Classification Abstract Formulation

Question of origin What data was used in the generation of a data item?
Question of inheritance What data items and information were generated using

a given data item?
Question for participants Which actors (users, applications, versions of tools, etc.)

were employed in the generation of a data item?
Question for dependencies Which resources from other projects/processes have been

used in the generation of a data item?
Question for progress In what stage of a processing chain is a given data item

(for data items of the same type)? Has the process the
data item is part of been finalized?

Question for quality Did the process the data item is part of reach a satisfac-
tory conclusion by some given regulations or criteria?

4.3 Visualization

At this point a rough assertion of visualization concepts is displayed (regarding
process in [5]). This listing is made with the intention to have contrasting visu-
alization domains, which are asserted to standard visualization concepts. These
were fundamental for the ongoing project.

The general approach regarding the development of visualization concepts is
represented by four steps. At first the user requirements are categorized into
types. Secondly, existing standard visualization types are evaluated. The next
step contains a matching between the user requirement types and the evalua-
tion of standard visualizations. Regarding the results of the previous steps the
concrete visualization concepts are developed.

Table 3 lists generic visualization types, allocates them with user requirements
types and requirement classifications and briefly describes them. The type ’In-
terpretation’ is missing in table 3. It is arguable if interpretation is carried out in
every visualization type but primarily interpretation is completed by the user.

4.4 Visualization Examples

In this section few visualization examples are displayed (in addition to [7]). They
depend on the division of visualization assertions and represent a first assertion
of provenance information and their representation in standard visualization
types, which will be evaluated to final visualization concepts. Each visualization
example, representing only a first abstract sketch, evaluates the visualization
technique in the context of one point of interest. After development of the fi-
nal concepts, a complete evaluation of each visualization proposal will be made.
The manipulation of information (e.g. zoom function of detail depth, filtering or
sorting) is not considered in the sketches, but will be considered in the final visu-
alization concepts. Regarding the detail level and scope of each individual visu-
alization technique a visualization map (describes the behavior and relationship

246 M. Kunde, H. Bergmeyer, and A. Schreiber

Table 3. Visualization assertions

Visualization
Type

Description Related
Type

Related
Classification

Process
diagram

The process diagram highlights
the workflow with its actors, inter-
actions and results into the center
of users view.

Process
Results
Participation

Participants
Dependencies
Progress

Difference
diagram

The difference diagram displays
the difference between the com-
pared objects (process, actor, in-
teraction).

Compare Quality

Dependency
diagram

The dependency diagram displays
the connection of the chosen el-
ements (e.g. actors, interactions).
It presents the behavior and the
relation between income and out-
come to each other.

Results
Relationship
Participation

Origin
Inheritance
Participants
Dependencies

Timeline
diagram

The timeline diagram displays all
interactions between actors in the
context of their relationship in a
timeline. This diagram is similar
to the process diagram, but in this
diagram qualified connections are
displayed.

Process
Results
Relationship
Timeline
Participation

Origin
Inheritance
Progress

Spreadsheet
representation

The spreadsheet representation
gives the most space for doing in-
terpretation of the data. In order
to have full freedom for sorting
and filtering elements, this is the
most flexible but also the most un-
clear representation strategy.

Process
Results
Relationship
Timeline
Participation
Compare

Quality

of visualization concepts to each other) will be developed with respect to the
scalability of the visualizations.

All visualization examples describe the three-way handshaking (or a part of
it) used in information technology or related fields.

Flow Chart (Related to Process Diagram). The flow chart diagram represents
the visualization of the complete workflow in the context of having actors in-
teracting to each other and related data. This diagram type is intended for
representation of interactions. The key points of interest are: process sequence,
combination of actors and interactions, who interact with whom?, input and
outcome of an actor, data transformation. The complete three-way handshaking
is displayed in the example with focus on actors and data.

Data Flow Diagram (Related to Process Diagram). The data flow diagram
represents the visualization of the complete workflow in the context of having
actors interacting to each other and related interaction sequences. This diagram

Requirements for a Provenance Visualization Component 247

Start Client SYN
seq=x Server EndInteraction A

SYN
ACK=x+1

seq=y
Interaction B

ACK=y+1
seq=x+1Interaction C

Some
Specific

Data
Interaction D

Final

Fig. 1. Sketch of flow chart visualization type

type is intended for representation of actors and their interactions. The key
points of interest are: information flow sequence, interaction-call sequence, who
interact with whom?, factual process sequence. The complete three-way hand-
shaking is displayed in the example with focus on actors.

Difference Diagram (Related to Difference Diagram). The difference diagram
compares a workflow or data with comparable data. Differences are highlighted.
The key points of interest are: comparison of two objects (processes, data, actor
states, interactions). The complete three-way handshaking is compared with a
reference workflow. The difference is highlighted in the example.

System Context Diagram (Related to Dependency Diagram). The system
context diagram displays a central point (e.g. a workflow, interaction, actor
or data) and the relation to any other part. This diagram type is intended for
representation of relationships and states. The key points of interest are: effecting

Client Server

Interaction
[1; 3; 4]

Interaction
[2]

Fig. 2. Sketch of data flow diagram visualization type

Client Server

Interaction
[1; 3; 4]

Interaction
[2]

Client Server

Interaction
[1; 3; 4]

Interaction
[2; 5]

Fig. 3. Sketch of difference diagram visualization type

248 M. Kunde, H. Bergmeyer, and A. Schreiber

relationships achieved, effecting relationships published, input and outcome of
an actor. The complete three-way handshaking is displayed in the example with
focus on one actor and its relationships to other involved elements regarding the
direction of their impact.

Server

Interaction A

Interaction C

Object
(Input Data)

Interaction BInteraction D

Object
(Output Data)

Fig. 4. Sketch of system context diagram visualization type

Brainstorm Diagram (Related to Dependency Diagram). The brainstorm di-
agram represents any related content regarding a central point. It displays all
elements which have an effect to the central point or where the point has an
effect to. This diagram type is intended for representation of relationships. The
key points of interest are: relationship of input and outcome (data, interactions,
actors). The complete three-way handshaking is displayed in the example with
focus on one interaction and its relationships to other involved elements.

Interaction A Actor

Client
(Source)

Server
(Sink)

Relationship None

Data[SYN seq=x]

Fig. 5. Sketch of brainstorm diagram visualization type

Fishbone Diagram (Related to Dependency Diagram). The fishbone diagram,
also known as cause-and-effect diagram, displays any related causes to a point.
This diagram type is intended for representation of relationships. The key points
of interest are: relationship of input and outcome (data, interactions, actors). The
complete three-way handshaking is displayed in the example with focus on the
impact of elements.

State Chart Diagram (Related to Dependency and Timeline Diagram). The
state chart diagram displays all states of an actor during the life-cycle of a

Requirements for a Provenance Visualization Component 249

End

Client

Server

Interaction A

Interaction B

Interaction C
Interaction D

SYN ACK=x+1 seq=y

SYN seq=x
ACK=y+1 seq=x+1

Some Specific Data

Fig. 6. Sketch of fishbone diagram visualization type

workflow. The key points of interest are: actor states, transforming interactions,
transformed data, time-context. The complete three-way handshaking is dis-
played in the example with focus on state changes and their ’appearance-chain’.

Variable
X = 10

Variable
X = 12

Variable
Y = 5

Variable
X = 11

Variable
Y = 4

Variable
X = 13

Variable
Y = 5

Some
data

Fig. 7. Sketch of state chart diagram visualization type

Sequence Diagram (Related to Timeline Diagram). The sequence diagram
represents the sequence of interactions of related actors in the context of a time-
line. This timeline can be qualified or unqualified. This diagram type is intended
for representation of interactions and states in a time-context. The key points
of interest are: time-context of process, involved actors, executed interactions,
input and outcome data. The complete three-way handshaking is displayed in
the example with focus on actors and interactions.

Client Server

Interaction A

Interaction B

Time

Qualified
or
Unqualified

Interaction C

Interaction D

Fig. 8. Sketch of sequence diagram visualization type

250 M. Kunde, H. Bergmeyer, and A. Schreiber

ProcessStep Type Interaction-Name MessageSource MessageSink Content
1 Interaction Interaction A Client Server SYN seq=x
2 Interaction Interaction B Server Client SYN ACK=x+1 seq=y
3 Interaction Interaction C Client Server ACK=y+1 seq=x+1
4 Interaction Interaction D Client Server some specific data
5 Relationship Interaction B Interaction A causedBy
6 Relationship Interaction C Interaction B causedBy
7 Relationship Interaction D Interaction B causedBy
8 Actorstate Interaction A Client X=10
9 Actorstate Interaction B Server X=11; Y=4

10 Actorstate Interaction C Client X=12; Y=5
11 Actorstate Interaction D Client X=13; Y=5; [some specific data]

Fig. 9. Sketch of spreadsheet visualization type

Spreadsheet (Related to Spreadsheet Representation). The spreadsheet repre-
sentation displays a scheduler collection of provenance datasets with the possi-
bility of filtering or sorting of the results. This representation type is intended
for detailed information research. The key points of interest are: Displaying all
relevant information (interactions, relationships, actor states, time-context). The
complete three-way handshaking is displayed in the example.

5 Examples from Projects

This section covers a selection of possible applications regarding provenance
visualization. These examples already use the provenance system or are a proper
candidate for employment. As it is obvious all applications use the provenance
technology in a different way. In some cases provenance is used to understand
the behavior of the IT-system (e.g. TENT) while other systems’ usage is (partly)
based on provenance (e.g. ENCHR, VisTrails).

C3-Grid. The main goal of the C3-Grid project is to do research about the
earth system for understanding the behavior and dynamic of the whole and each
subsystem [4]. The verification of the model and the data of this simulation is
one possible application point for a visualization concept based on the result of
this project.

TENT. TENT [8] is a software integration and workflow management system
that simplifies work by building up simulation process chains in distributed en-
vironments. The visualization concepts provide a graphical way for evaluation
of the workflows regarding increased quality and trust of the outcome [9].

ENCHR. The ’Electronic Healthcare Record System’ (ENCHR) is a solution for
an unbound healthcare situation [3]. The traceability and trust of each result is
mandatory. With adequate concepts for a visual interpretation of this evolution
a fast and correct consequence can be covered.

OTM. One further example for a possible application is the ’Organ Transplant
Management’ (OTM), already mentioned as a prime example in the provenance
project [3]. A sophisticated visualization concept supports the tasks regarding
the diversified group of possible provenance users.

Requirements for a Provenance Visualization Component 251

VisTrails. The software ’VisTrails’ is a good example to explain the need of good
visualization concepts for interpretation of provenance data [10]. One intention of
the software is to support an expert in data exploration, the systematic tracking
of workflow evolution and to comprehend the steps made. The software shows
the advantages of a good visualization concept supporting data interpretation.

6 Current and Future Work

Currently, the analysis of user requirements is done and its division into abstract
types and its classification. Possible end-users are identified and grouped into dif-
ferent user roles. First assertions about standard visualization types, matching to
the abstract intends of the users, are made and evaluated [5]. During next project
phases the existing standard visualization types are being evaluated in more de-
tail to enhance them into concrete visualization concepts [5]. New Visualization
approaches are being developed regarding modern visualization techniques, such
as tree maps, magic lens, network visualization and others. These visualization
concepts will be evaluated regarding users’ requirements.

7 Conclusions

The need for interpretation and visualization of provenance data increases step-
by-step by the ongoing development of provenance technology and its intro-
duction in real IT-systems [11]. The increasing number of application areas
surrounds the usage and analysis of provenance data from application domain
experts. Regarding this evolution the analysis of provenance data should be-
come more easy and intuitive; considering the background of each application
domain and the intention of the operating end-user. In this paper a first insight
into the visualization of provenance data is given. A classification of user and
requirements is made and a first assertion about possible visualization types is
presented. With respect to other research projects [2,3], which evaluates the need
and a concrete application for querying and exploring of provenance data, this
paper describes an approach for visualization of these steps, taking a further
step in the direction to end-users.

Acknowledgments. This work has been supported by the German Federal
Ministry for Research and Technology (BMBF) under Grant 01IG07006A.

References

1. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.:
An architecture for provenance systems. Technical report, Provenance Consortium
(2006)

2. The Pasoa Website, http://www.pasoa.org
3. The EU Grid Provenance Project Website, http://www.gridprovenance.org

http://www.pasoa.org
http://www.gridprovenance.org

252 M. Kunde, H. Bergmeyer, and A. Schreiber

4. The C3-Grid Website, http://www.c3grid.de
5. Fry, B.: Visualizing Data, 1st edn. O’Reilly, Sebastopol (2007)
6. WorkPackage2: Grid provenance user requirements document. Technical report,

Provenance Consortium (2005)
7. Deora, V., Contes, A., Rana, O.: Tool for Navigating Provenance Information. In:

Provenance Challenge Workshop, Cardiff University (2006)
8. Schreiber, A.: The integrated simulation environment TENT. Concurrency and

Computation: Practice and Experience (13-15), 1553–1568 (2002)
9. Kloss, G.K., Schreiber, A.: Provenance implementation in a scientific simulation

environment. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp.
37–45. Springer, Heidelberg (2006)

10. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T. (eds.):
Managing rapidly-evolving scientific workflows, University of Utah (2006)

11. Miles, S. (ed.): Electronically Querying for the Provenance of Entites, School of
Electronics and Computer Science, University of Southampton (2006)

http://www.c3grid.de

Advances and Challenges for Scalable Provenance in
Stream Processing Systems�

Archan Misra, Marion Blount, Anastasios Kementsietsidis, Daby Sow, and Min Wang

IBM T.J. Watson Research Center
Hawthorne, NY, USA

{archan,mlblount,akement,sowdaby,min}@us.ibm.com

Abstract. While data provenance is a well-studied topic in both database and
workflow systems, its support within stream processing systems presents a new
set of challenges. Part of the challenge is the high stream event rate and the low
processing latency requirements imposed by many streaming applications. For
example, emerging streaming applications in healthcare or finance call for data
provenance, as illustrated in the Century stream processing infrastructure that we
are building for supporting online healthcare analytics. At anytime, given an out-
put data element (e.g., a medical alert) generated by Century, the system must be
able to retrieve the input and intermediate data elements that led to its generation.
In this paper, we describe the requirements behind our initial implementation of
Century’s provenance subsystem. We then analyze its strengths and limitations
and propose a new provenance architecture to address some of these limitations.
The paper also includes a discussion on the open challenges in this area.

1 Introduction

To enable an emerging class of cyber-physical computing applications, several stream
computing platforms and middleware have been developed (e.g., Aurora [1], SPC [2])
to provide scalable, high throughput processing of sensor-generated data streams. In
such systems, the arriving data are essentially ephemeral; to support low-latency pro-
cessing of the data streams, stream operators perform only one pass over the arriving
data, which are then typically discarded. In turn, this typically limits the forms of prove-
nance in these systems to process provenance, i.e., determining which stream operators
contributed to the generation of a particular data item.

Remote health monitoring represents an extremely important application domain for
stream computing. To enable automated near-real time analysis of high volumes of med-
ical sensor streams, we have been building, over the past year, an infrastructure, called
Century [3], that permits the scalable deployment of online medical analytics. Stream
analysis in the medical domain requires the Century infrastructure to support both pro-
cess and data provenance, to support capabilities such as “offline dependency analysis”
or “historical data replay”. From a technical standpoint, data provenance imposes a

� This work was supported by the IT R&D program of MIC/IITA under the project/grant/funding
number 2006-S-602-01 (Development of Stream-based Distributed Interoperable Health care
Infrastructure Supporting Provenance and QoE).

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 253–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

254 A. Misra et al.

Fig. 1. Illustrating Data Provenance in a Stream Analysis Infrastructure. An application is repre-
sented as a directed acyclic graph (DAG) of nodes, with each node representing an operator or
a Processing Element (PE). Provenance reconstruction involves determining the set of causative
data elements belonging to streams that lie upstream of a particular data element.

novel challenge in data streaming systems, that of stream persistence [10,12]. At any
point in time, given an output (e.g., a medical alert) generated by a stream processing
graph, the Century Provenance system must not only recreate the processing graph that
created the output, but also provide all the elements of the intermediate data streams
that generated it. A data provenance solution for streams faces a couple of challenges:

– It must preserve the high processing throughput of the infrastructure, implying that
the provenance solution cannot introduce significant additional processing over-
head for every individual stream data element.

– It must not impose a prohibitive storage load, both in terms of the volume of data,
as well as the insertion rate of data items requiring storage.

To support data provenance for such high throughput environments, we have previ-
ously introduced a model-based provenance solution, called Time-Value-Centric (TVC)
provenance [17], which uses an explicit specification of the dependency relationship be-
tween input and output streams at every node (hereafter called a Processing Element or
PE) in the processing graph. The notion of data provenance, involving the identifica-
tion of multiple stream elements at upstream PEs belonging to a processing graph, is
graphically illustrated in Figure 1.

This paper first describes some challenges with data provenance, based on our initial
experiences with a TVC-based provenance solution for Century. The TVC approach
does result in lower processing overhead, compared to the conventional annotation ap-
proach (which would require every element of every data stream to carry along a much
longer set of stream elements as metadata). However, our experience reveals two new
challenges for a pure model-based approach:

Advances and Challenges for Scalable Provenance in Stream Processing Systems 255

– Fundamentally, it has to contend with the increased storage insert rate that results
from the need to persist the individual elements of every data stream occurring
within a stream processing graph.

– The provenance model must reconcile and track potential discrepancies between
the granularity at which stream data are produced and consumed by PEs within a
processing graph. This discrepancy surfaces in extensible stream computing sys-
tems, where the data is not strongly typed, where the set of operators (PEs) is not
closed and where different PEs choose to consume data at different granularities.

While both of these features need to be addressed, the issue of much larger stream
storage rates is fundamentally more challenging and requires a change in the basic
provenance model. The need to store both external and intermediate streams will im-
pose an infeasibly high workload on commercial database systems. Accordingly, we
shall propose a new hybrid provenance architecture, called Composite Modeling with
Intermediate Replay (CMIR) that solves the problem of stream persistence by defining
TVC-style dependency relationships only over a set of PEs (rather than at each individ-
ual PE) and by using data replay to recreate the data elements of streams internal to the
PE set. We shall also discuss a set of open challenges and issues, with a goal of soliciting
new approaches from the provenance community for tackling these challenges.

The rest of this paper is organized as follows. Section 2 provides an overview of the
basic TVC primitives and their use in a representative analytic application, and then
introduces two observed challenges. Section 3 introduces the suggested CMIR model
for data provenance in stream computing platforms, and then describes the related tech-
nical challenges. Section 4 describes our current solution for resolving the granularity
mismatch between output and input data elements. Section 5 then surveys prior relevant
work and the paper concludes in Section 6 with a summary of the main points.

2 The TVC Model for Century and Resulting Limitations

The TVC model [17] specifies a set of primitives that are used to define a causative
relationship between the data elements generated at the output port of a PE and the
data elements arriving at its input ports. The TVC model differs from conventional
annotation-based approaches for data provenance, which would need to embed a poten-
tially large set of input data identifiers as metadata in every output data element (owing
to the statefulness of stream operators, which implies that each output may be influ-
enced by a large number of input data samples). TVC exploits the observation that the
input-output dependencies for most PEs can be specified in terms of some invariants–
while each output data element may have a variable set of causative input elements, this
set may be indirectly determined through the application of these invariant primitives.

The TVC model supports the following primitives for dependency specification:

– Time: This primitive captures dependencies where an output data element is gen-
erated based on a past time window of past input data elements. For example, the
notation Om1(t) ← In1(t − 10, t − 2) indicates that an output element generated
at a time t = 80 on output port m1 depends only on those input elements that were
timestamped with values in the interval (70, 78), on input port n1.

256 A. Misra et al.

– Value: The ‘value’ primitive defines a dependency in terms of predicates over the
attributes of the input data elements. For example, a value primitive like Om2(t) :
{alertLevel = 1} ← In2(t) : {(systolic > 130)&&(diastolic > 100)} in-
dicates that an output element with ‘alertLevel=1’ depends only on all past input
samples that satisfy the corresponding predicates over the (systolic, diastolic) at-
tributes.

– Sequence: The ‘sequence’ primitive expresses dependencies in terms of the se-
quence number of arriving elements. For example, a sequence primitive Om3(t) ←
In3(i − 30, i) indicates that an output element depends on the most recent 30 sam-
ples of input data.

A TVC dependency relationship may be composed by arbitrary conjunctions and
disjunctions of these basic primitives. Moreover, for significantly enhanced expressive-
ness, the specifications allow each TVC term to specify a combination of (time, se-
quence, value) triples. Each element of such a triple has a unique ‘order’ term, which
defines an evaluation order for these primitives, with the output sub-stream of a lower
order primitive acting as the input stream for a higher order primitive. As an example,
the dependency relation O45(t)←I97{(t−1d, t, order = 2), (systolic > 130, order=
1)} implies that the causative set for an output element of port 45 may be reconstructed
by first obtaining the sub-stream of input elements on port 97 that have ‘systolic >
130’ and then picking all the elements of this sub-stream that have been received in
the last day. Figure 2 shows the specification of TVC primitives in a sample processing
graph in Century.

Fig. 2. Graph of a Representative Arrythmia Monitoring Application in Century. (The TVC-based
dependency relationship for two PEs is explicitly highlighted.)

Advances and Challenges for Scalable Provenance in Stream Processing Systems 257

RetrieveCausativeData(Event e) {
ts= e.Timestamp; oport= e.phyOutputPort
{PE, logOutPort}= lookupDynamic(oport); // find the logical (PE,port) pair
tvcTerms = lookupTV C(PE, logOutPort); // find statically specified TVC terms
for (i ∈ InputPorts) {

dataElements= retrieveElements(i); // retrieve incoming data elements
/*use TVC to identify the causative subset */
causativeInput= filter(tvcTerms, dataElements);
causList.add(causativeInput);

} return causList;
}

Fig. 3. Data Provenance Reconstruction Algorithm

Assuming that all elements of all data streams are persisted, deriving the set of input
causative data sample is a fairly straightforward process captured by the simple high
level pseudo-code in Figure 3. Recursive application of this pseudo-code enables the
reconstruction of data dependencies at progressively upstream points in the processing
graph.

2.1 Challenges in the Practical Application of Model-Based Provenance

Applying the generic TVC description above to an actual stream computing environ-
ment, however, gives rise to two practical challenges:

– Intermediate Stream Persistence and the Resulting Storage Load: Streaming sys-
tems supporting data provenance require the data elements of each stream to be per-
sisted. The TVC framework is no exception. Let Om, In denote the stream flowing
between output port m and input port n. To reconstruct the entire data provenance
along the entire path for ECG in Figure 2, the system must store both the incoming
ECG samples (O1, I2) and all the intermediate streams (O13, I8, O13, I10, O25, I45,
O24, I41). The persistence of high volume data streams is already known to be a
potential performance bottleneck for state of the art database systems. In [12], the
authors show both analytically and experimentally that the persistence of Electro-
cardiogram data streams with a state of the art database system could only scale up
to a few hundreds of patients; capturing data provenance further acerbates the prob-
lem by causing a multiplicative increase in the stream insert rate on the backend
storage system. Conceptually, we require an enhanced solution that can eliminate
this requirement for storing every intermediate data stream.

– Granularity Mismatch of Output and Input units for a Data Stream: Consider a
pair PE1 and PE2 of PEs where the output of PE1 results in a stream that is one
of the input streams of PE2. In loosely-typed or extensible systems, it is entirely
possible that the granularity at which PE2 consumes streaming elements differs
from the granularity at which PE1 generates streaming elements. This difference
may occur for two distinct reasons:
• The ‘data type’ of the elements produced by PE1 and those consumed by

PE2 need not be identical. In many systems that permit type extensions and

258 A. Misra et al.

Fig. 4. Role of TEs vs. SEs in a generic stream-based analytic infrastructure. (The TE → SE
mapping can be either one-one, one-many or many-one.)

inheritance (e.g., Tribeca [14]), and where stream bindings are based upon
type-based subscriptions (e.g., SPC [2]), downstream PEs may bind to any out-
put PE that produces the specific data type or its super-type (i.e., the consumed
data is only part of the produced data element.) In most cases, the child PE
merely consumes a sub-set of the data elements produced by a parent PE. As
an example, PE1 may be producing a person’s ‘vitalsigns’ data type (which
contains the elemental types: blood pressure (BP), heart rate and SpO2), while
PE2 may be using only the BP values; data reconstruction for a provenance
query should then expose only the BP data.

• PE1 may package multiple elements of a given data type into a single, larger
transport element (TE), as this promotes more efficient transport of data within
the processing runtime, by amortizing the transport-layer overhead over multi-
ple data elements1, especially when an individual data element may correspond
to a sample of only a few bits. Figure 4 illustrates this for ECG signals that are
collected in variable-sized TEs. This results in a potential incompatibility be-
tween the units of data produced by PE1 and the unit of data consumed by
PE2. As an example of this, PE1 may be an ECG PE that produces TEs con-
taining a variable number of ECG ‘samples’, while PE2 is a QRS detector
PE that produces a QRS value based on the ECG samples in the last 60 sec-
onds. Let’s assume that PE2 assumes an input rate of 1 TE (comprising 5 ECG
samples) every 5 seconds, and therefore 12 TEs are used. Then, the TVC rule
O(t) ← I(i − 12, i) captures the provenance of QRS outputs in PE2. What
if we replace PE1 with a PE′

1 that uses a different rate, generating, say, one
TE (comprising 1 sample) every 1 sec? How does this innocent change af-
fect provenance? It is not hard to see that our TVC rule would now need to

1 This issue does not arise in more restrictive systems, such as Aurora [1], where data units are
both defined and transported as fixed tuples.

Advances and Challenges for Scalable Provenance in Stream Processing Systems 259

change to O(t) ← I(i−60, i)! Ideally, the provenance design should allow the
TVC relationship specification to remain invariant of the specific granularity at
which the data elements arrive at its input ports (as different ‘parent’ PEs can
provide varying transport encapsulations of the data elements).

The above examples demonstrate that, in terms of data provenance, it does not
suffice to focus our attention solely on models that describe the output/input de-
pendencies within a single PE. Additional techniques are needed to capture the
discrepancies that might arise between the units in which the data is produced by
the parent PE and in which the data is consumed by the receiving PE.

3 Looking towards the Future: The CMIR Data Provenance
Framework

We now propose a novel approach to provenance for stream-based environments that
preserves the explicit model-based dependency specification of the TVC approach, yet
does not require the persistence of all intermediate streams (but perhaps, only a smaller
set of streams). The new approach, called Composite Modeling With Intermediate Re-
play (CMIR), aggregates a cluster of PEs into a virtual PE, such that only streams that
act as either input to or are output by the virtual PE are persisted. Moreover, the TVC
relationships are then defined in terms of the output and input streams of the virtual PE,
thus enabling the set of causative elements of input streams (of the virtual PE) to be
determined for any given output stream element. The individual ‘real’ PEs, and their
associated bindings, within such a virtual PE, are opaque to this model-based prove-
nance framework, which treats the virtual PE as a ‘black box’. The greater the size
of the cluster, the smaller the number of streams that become ‘external’ to the virtual
PE, thereby reducing the storage burden. Figure 5 illustrates the concept of CMIR-
based provenance–in this case, the provenance relationships are captured over the out-
put and input streams of PEV 1, a virtual PE defined by aggregating the ‘real’ PEs,
{PE1, PE2}.

The process of virtualizing a group of PEs must also be supplemented by a mecha-
nism that recreates, on-demand, the streams internal to the virtual PE, since data prove-
nance inherently demands the reconstruction of data elements along the entire path of
a specific processing graph. Our approach for this involves the use of a replay mech-
anism. To achieve this, one firstly requires the knowledge of the internal structure of
the virtual PE, including the various real PE instances and the associated stream bind-
ings. The dynamic provenance information must be extended to capture the association
between the virtual PEs and the ’real’ PEs.

The bigger challenge arises from the potential statefulness of the real PEs; such state-
fulness implies that the set of output stream objects produced by a PE will depend not
only on its fixed processing logic, but also its current internal or external state. For
CMIR, each individual PE must be provenance-aware–i.e., it must be responsible for
checkpointing its internal state to the provenance store, and, conversely, for recreating
its internal state based on such retrieved historical data. In the TVC model, the state of
each individual PE is captured in provenance metadata externalized to the provenance
infrastructure (typically, by annotating the state within the output stream elements).

260 A. Misra et al.

Fig. 5. The CMIR Framework and the Use of Virtual PEs

However, in the CMIR model, PEs internal to a virtual PE are not externalizing that
metadata, so relevant state must be externalized in this way. In addition to such check-
pointing, a CMIR based provenance system must also have a Replay component that
dynamically instantiates, within the runtime, the set of PEs (along with their corre-
sponding state evolution) corresponding to a virtual PE.

3.1 Challenges in CMIR-Based Provenance System Design

While the application of a CMIR-based solution for Century is still in its initial design
phase, we are already aware of a few challenges that we must address. In particular, two
very interesting open challenges are:

– Models for Persisting State: To support accurate replay of a PE’s internal logic,
the CMIR framework requires the persistence of the PE’s internal state. Our ini-
tial thoughts are to have the provenance system treat this ‘state information’ as an
opaque byte-stream, implying that each PE has the freedom to generate its own cus-
tom representation of its own state. It is, however, likely that the state information
of the vast majority of PEs is likely to contain some common objects (examples of
such likely state objects include command line arguments, the PE’s load, the IDs of
the individuals whose streams are being monitored, etc.); in such a situation, it may
be worthwhile to define a more structured format for the object state. Moreover,
it may also be desirable that this state representation lend itself easily to partial
changes (as state change is often incremental), thereby allowing a PE to express its
evolving state to the Provenance storage infrastructure in a more efficient fashion.
The issue of appropriate representation formats for such state information, which
balance efficient storage and easy reconstruction, appears to be an open research
question.

Advances and Challenges for Scalable Provenance in Stream Processing Systems 261

– Techniques for Composing Provenance Dependencies: The use of virtual PEs
within the CMIR framework implies the need for the system to be aware of the
output-input dependency relationships at the virtual PE-level. Virtual PEs are, how-
ever, merely a runtime artifact of the provenance system; the basic TVC-style re-
lationships will continue to be expressed for each individual PE (as individual PE
developers shall specify the dependency logic of only their authored PEs). The
provenance system must thus programmatically cascade the TVC relationships of
individual PEs to derive the ‘macro’ dependency relationships of the virtual PE.

An interesting question that arises here relates to what types of dependencies
are composable and what aren’t. As a simple example, a time interval-based de-
pendency primitive is composable in a fairly-straightforward fashion. If PE1 has a
time based relationship O11(t) ← I11(t − 10, t) and PE2 has also a timed based
relationship O21(t) ← I21(t − 5, t), then as shown in Figure 5 the composed rule
for the virtual PE PEv1 is O21(t) ← I11(t − 15, t). However, other primitives of
the basic TVC model do not lend themselves to such relationship cascading. For
example, if PE2 has a value-dependent relationship, such that O21(t) depends on
the last 10 values generated by PE1 with ‘attr1 > 10’, while PE1 has the same
time based relationship as before, then the input-output relationship of the virtual
PE can no longer be expressed using the primitives of the basic TVC model.

This example illustrates the central role that the choice of primitives in the de-
pendency model have on the feasibility of deriving dependency relationships for
the virtual PEs. Accordingly, we need to develop an enhanced composable prove-
nance dependency model, such that its primitives, while being adequate expressive,
are ‘closed’ (in set-theoretic terms) under the operation of cascading. The issue of
cascading is further complicated by the fact that, in many applications and scenar-
ios, provenance is not used simply for backward reconstruction of data elements in
a processing graph, but for forward reconstruction as well. As an example based on
our own experiences with Century, a medical stakeholder who detects a faulty ’ar-
rhythmia’ analysis for a given patient may need to look ‘downstream’ and cleanse
the system of faulty alerts generated as a result of this incorrect intermediate value.
To support such ‘forward provenance’ semantics, the primitives of the provenance
specification language must also be reversible (even if they are not very precise).
Overall, we believe that the development of a set of expressive provenance primi-
tives, with the necessary composable and reversible properties, constitutes an im-
portant open problem for stream-based provenance.

4 Resolving Granularity Differences between Stream Data
Producers and Consumers

In Section 2, we illustrated how discrepancies in the granularity of stream elements
produced by PEs, and the elements consumed by other PEs, directly influence our abil-
ity to accurately apply model-based provenance across PEs. One alternative to address
this problem has already being hinted in Section 2. Instead of associating a single TVC
rule for a particular PE, one can associate a set of rules, one for each output stream
granularity (of the parent PE) that is known a priori. Unfortunately, this is a bad design

262 A. Misra et al.

choice for extensible stream systems, where new PEs, data types or stream encapsu-
lations (containing the data type desired by a consuming PE) may become part of the
stream computing infrastructure at any point; in such systems, the behavior of potential
suppliers of specific data types cannot be predicted at PE design time. There are two
other alternative, and better, design choices available:

– We may require the data types (and super-type) definitions to be externalized in a
global type repository, with stream consumption by PEs being rigidly enforced to
observe such type definitions. In such a system, a PE must indicate the exact data
type, say DTc, that it consumes on any input port, and the runtime must then en-
sure that this particular PE is able to receive only that exact data (i.e., for a parent
PE that generates data elements belonging to data type DTs that is a super-type of
DTc, the runtime must eliminate all extraneous data attributes and fields in DTs,
before making only DTc available to the consuming PE). Such a strongly-typed
system may become cumbersome for an open and extensible streaming infrastruc-
ture, where different organizations may define their own PEs, each of which may
utilize multiple elements/fields within, or straddling different, data ‘types’.

– Alternately, we can require the specification of a separate set of ‘mapping functions’
that perform the conversion between data elements of an output port and the data
elements consumed by an input port. For flexibility, such mapping functions must
be user-definable, thus supporting arbitrary mappings. Each stream binding (i.e.,
output, input) port combination is associated with one such function. Conceptually,
such a mapping can itself be viewed as a TVC-style dependency rule, applied to
an ‘invisible PE’ that simply transforms the data output by the stream’s source to
the data elements consumed by the stream’s sink. This mapping function captures
the discrepancy arising out of either inexact matches between the data ‘types’ or
different TE encapsulations at the transport layer.

Either approach allows us to separate the TVC provenance logic (which uniquely
captures the internal data dependencies of an individual PE) from the data element
conversion logic (which is a function of the data formats and encapsulation, rather than
a PE’s processing logic). However, an implementation of either approach must choose
between proactive vs. reactive conversion: the mapping from output to input element
granularity may be performed either proactively (when elements are transported within
the runtime) or reactively (in response to data provenance queries). Both approaches
involve tradeoffs between the processing load and the resulting complexity of the data
storage system, and thus require further investigation.

4.1 Granularity Resolution in Current Century Implementation

Century’s current implementation is based on the second solution, namely the use of
‘mapping functions’ that convert output elements transported by the SPC runtime to
input elements consumed by downstream PEs. In SPC, data is transported within the
runtime in units known as Stream Data Objects (SDOs)–each SDO thus corresponds
to a single TE. The provenance (TVC) specifications are themselves defined in terms
of the elements (which we call Stream Elements (SEs)) consumed by a PE. Note that
an individual SDO can contain both multiple elements of the same type (e.g., a batch

Advances and Challenges for Scalable Provenance in Stream Processing Systems 263

Fig. 6. Century’s current TVC-based Provenance Architecture. Currently, provenance is tracked
for a specified subset of PEs, and TEs are proactively converted to SEs prior to storage.

of ECG samples) or elements belonging to different data types (e.g., carry both ‘QRS’,
‘ECG’ and ‘BP’ data in the same SDO). Figure 6 shows the resulting component level
architecture of Century’s current provenance architecture design. To provide the needed
SDO→SE conversion, Century currently requires the use of developer-specified ‘con-
version classes’, stored in the class store.

5 Related Work

Provenance support for workflow-based systems has been investigated relatively re-
cently, primarily in the context of scientific workflows. The Karma provenance frame-
work [11] uses a publish-subscribe architecture for capturing and propagating process
and data provenance for data-centric workflows in computational grids. Similarly, the
PreServ provenance solution [9] provides a service for explicitly documenting and stor-
ing the process provenance in scientific experiments. More recently, the CoMaD prove-
nance framework [4] for scientific applications presented an annotation-based approach
reduces the volume of provenance information recorded for a workflow, by allowing
provenance annotations on collections to cascade to child elements. All of these ap-
proaches involve explicit provenance annotations and are thus geared towards transac-
tional systems, where events between workflow components have a much lower rate.

Data provenance has been explored more actively in the context of databases.
The overview paper [15] classifies existing works into two categories, namely, the

264 A. Misra et al.

annotation [8,13] vs. the non-annotation [6] approaches, based on whether, or not, ad-
ditional meta-data are required to compute the provenance of data. The data provenance
problem without the use of annotations has also been studied by Cui et al. [7], Bune-
man et al. [5], and Widom [18]. However, none of the works mentioned here considers
streaming environments or the associated scalability issues.

The relatively limited work on scalable provenance for stream-oriented computing
systems includes an efficient process provenance solution in [16], which focuses on
identifying and storing dependencies among streams (by encoding, as a tree, the IDs of
ancestor streams of a derived stream), rather than the data dependencies for individual
stream elements. Our earlier work in [17] was one of the first to explore a model-based
solution for data provenance in stream computing platforms.

6 Conclusions

We have described the initial implementation of a model-based data provenance solu-
tion (using TVC primitives) within Century, an extensible, high-performance stream
processing system we are building to support online health analytics over medical sen-
sor streams. While a TVC based approach incurs much lower overhead than annotation-
based approaches, its scalability is limited by the resulting need to store elements of all
data streams in persistent storage. To overcome this practical limitation, we proposed
a new provenance architecture, called CMIR, which implements model-based prove-
nance over PE clusters, and uses data replay to recreate stream elements within the
cluster. To support CMIR, the Provenance system has to implement new functions such
as state persistence and recovery, cascaded replay of data streams and automated com-
position of provenance specifications for virtual PEs. This architecture also requires
technical innovations for a) creating useful provenance primitives that are cascadable
and reversible, and b) for mediating differences in the granularity of production and
consumption of data stream elements. We are addressing these challenges in ongoing
work.

References

1. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M.,
Tatbul, N., Zdonik, S.: Aurora: A New Model and Architecture for Data Stream Management.
VLDB Journal 2(2), 120–139 (2003)

2. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y., Venkatramani,
C.: SPC: A Distributed, Scalable Platform for Data Mining. In: SIGKDD 2006 Workshop on
Data Mining Standards, Services, and Platforms, pp. 27–37 (August 2006)

3. Blount, M., Davis II, J.S., Ebling, M., Kim, J.H., Kim, K.H., Lee, K., Misra, A., Park, S.,
Sow, D.M., Tak, Y.J., Wang, M., Witting, K.: Century:Automated Aspects of Patient Care.
In: 13th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2007) (August 2007)

4. Bowers, S., McPhillips, T., Ludascher, B.: Provenance in Collection-Oriented Scientific
Workflows. Concurrency and Computation: Practice & Experience, special issue on the First
Provenance Challenge (in press, 2007)

Advances and Challenges for Scalable Provenance in Stream Processing Systems 265

5. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations through
views. In: Proceedings of the ACM PODS Conference (2002)

6. Chiticariu, L., Tan, W.C.: Debugging Schema Mappings with Routes. In: Proceedings of the
VLDB Conference (2006)

7. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-
ment. ACM Trans. Database Syst. 25(2) (2000)

8. Geerts, F., Kementsietsidis, A., Milano, D.: MONDRIAN: Annotating and Querying
Databases through Colors and Blocks. In: Proceedings of the International Conference on
Data Engineering (ICDE) (2006)

9. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-oriented
grids. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 124–139. Springer, Hei-
delberg (2005)

10. Hildrum, K., Douglis, F., Wolf, J.L., Yu, P.S., Fleischer, L., Katta, A.: Storage optimization
for large-scale distributed stream-processing systems. ACM TOS 3(4), 1–28 (2008)

11. Simmhan, Y.L., Plale, B., Gannon, D., Marru, S.: Performance Evaluation of the Karma
Provenance Framework for Scientific Workflows. In: International Provenance and Annota-
tion Workshop (IPAW) (May 2006)

12. Sow, D., Lim, L., Wang, M., Kim, K.H.: Persisting and querying biometric event streams
with hybrid relational-XML DBMS. In: Proceedings of the International Conference on Dis-
tributed Event-Based Systems (DEBS), pp. 189–197 (June 2007)

13. Srivastava, D., Velegrakis, Y.: Intensional associations between data and metadata. In: Pro-
ceedings of the ACM SIGMOD Conference, pp. 401–412 (June 2007)

14. Sullivan, M., Heybey, A.: Tribeca: A System for Managing Large Databases of Network
Traffic. In: Proceedings of the 1998 USENIX Annual Technical Conference (June 1998)

15. Tan, W.C.: Provenance in Databases: Past, Current, and Future. IEEE Data Eng. Bull. 30(4),
3–12 (2007)

16. Vijayakumar, N., Plale, B.: Towards Low Overhead Provenance Tracking in Near Real-Time
Stream Filtering. In: International Provenance and Annotation Workshop, IPAW (May 2006)

17. Wang, M., Blount, M., Davis, J., Misra, A., Sow, D.: A Time-and-Value Centric Provenance
Model and Architecture for Medical Event Streams. In: ACM HealthNet Workshop, pp. 95–
100 (June 2007)

18. Widom, J.: Trio: A system for integrated management of data, accuracy, and lineage. In:
Proceedings of CIDR (2005)

Using Provenance to Support Real-Time
Collaborative Design of Workflows

Tommy Ellkvist1, David Koop2, Erik W. Anderson2,
Juliana Freire1,2, and Cláudio Silva2

1 Linköpings universitet, Linköping, Sweden
2 University of Utah, Salt Lake City, UT, USA

Abstract. Because designing workflows is a notoriously difficult task,
it often requires multiple users to collaborate. In such scenarios, sharing
workflow evolution provenance in a timely manner is critical. We present
an environment where collaborating users can see each other’s changes
in real-time. The synchronization of workflow evolution provenance is
automatic, immediate, and unobtrusive, allowing users to see collabora-
tors’ changes as they are made. This enables a richer and fuller method
of collaboration. We present the interface and algorithm for the synchro-
nization and discuss common scenarios where this mechanism has been
utilized.

1 Introduction

Scientific workflows are often used as a means to create computational processes
that solve complex scientific problems in diverse areas. The design of workflows in
multi-disciplinary research areas such as bioinformatics and environmental mod-
eling often requires cooperation between multiple experts in different geographic
locations. Currently, there are few tools available to support the collaborative
design of workflows. Users are often limited to exchanging workflow specifica-
tions over e-mail. This process can be slow and tedious. In some cases, it may
be possible to divide the work in such a way that collaborators can work inde-
pendently and then combine their work for a final result. However, this assumes
that a modular design is possible; in reality, workflows are often created by trial
and error with many inter-dependencies.

To support the collaborative design of workflows, we propose a mechanism
that allows collaborators to simultaneously work on a task and see each others’s
changes in real-time. With a group of users who are working on the same task,
the changes made by each user are automatically propogated to the rest of the
group. Note that we do not automatically merge changes like version control
systems. Rather, we display each change as a new branch of exploration and al-
low the user to switch between branches regardless of who created them. Using
workflow evolution provenance, for example the change-based representation for
a collection of workflows [3], we can visually display a tree containing all con-
tributions. This lets collaborators share and receive updates in real-time, while

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 266–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Provenance to Support Real-Time Collaborative Design of Workflows 267

at the same time giving them the option to selectively ignore updates they do
not care about. In this paper, we describe an architecture that supports this
functionality. We present a new algorithm for synchronization and discuss how
it can be used in practice.

2 Architecture

In order to support real-time collaborative design workflows, we need a prove-
nance architecture that supports a collection of versioned workflows and a cen-
tralized provenance repository that all collaborators can access. We require a
versioning system because each user needs to know how their collaborators’ work
relates to their own. More importantly, we need to protect the users’ work; we
should not blindly erase or update their own changes. A centralized repository
is needed to manage all the workflows and to provide the means for notifying
collaborators when changes occur. The combination of these two methods not
only allows users to efficiently share collections of workflows, but also enables
them to see the entire history of the workflow specifications as they develop in
real-time, regardless of how many users collaborate on the project.

Workflow Evolution Provenance. Because we expect to encounter a large
number of changes to a workflow specification, especially in a collaborative envi-
ronment, it can be inefficient to store specifications for all different versions of the
workflows. The change-based provenance model [3] provides a concise represen-
tation for workflow evolution history. This model captures the changes applied
to a series of workflows, akin to a database transaction log. As a user modifies
a workflow (e.g., by adding a module, changing a parameter or deleting a con-
nection), the provenance mechanism transparently records each change action.
We can then reconstruct any workflow specification by replaying the sequence
of captured changes from an empty specification to the desired version.

The change-based model not only captures changes as a workflow evolves,
but it also presents external changes to collaborators in a meaningful way. An
important feature of this representation is that it can be visualized as a version
tree, where each node corresponds to a workflow specification and each edge cor-
responds to the sequence of changes that transforms the parent specification into
the child. Because the version tree captures all changes, users have great flexibil-
ity for exploring different alternatives without worrying about losing the ability
to go back to a specific version. They can perform arbitrary undos and redos—
any workflow version is easily recalled by selecting the corresponding node in
the version tree. Additionally, users can easily see how their collaborators have
taken different approaches to solving related problems and how their techniques
relate to their own ideas. As discussed below, we leverage this layout to inform
users of changes without forcing them to immediately consider or integrate those
changes.

Centralized Repository. In order to efficiently capture and broadcast work-
flow changes, we use a relational database management system (RDBMS) for

268 T. Ellkvist et al.

our centralized repository. We chose to use a RDBMS because these systems
provide secure access protocols, support concurrent transactions from multiple
users, and include trigger mechanisms for alerting users when the database is
updated. These features are essential to ensure data consistency and to support
real-times updates in our collaborative infrastructure. Other kinds of database
systems that support these features could also be used in our infrastructure.

To use an RDBMS for our repository, we need to map the necessary prove-
nance information to a relational schema. Because we use the change-based
representation, a collection of related workflows is stored as a tree. This tree
contains metadata and an ordered set of actions that correspond to user mod-
ifications to workflows. Each action, in turn, consists of a sequence of atomic
operations. For example, a paste action that adds a set of modules and connec-
tions to an existing workflow contains a sequence of operations : add module, add
connection, etc.. An operation, besides its data payload (e.g., module specifi-
cation, connection specification, parameter value), includes metadata (e.g., the
user who performed the action and annotations). Each of these entities (ac-
tions, operations, payloads) is stored in its own table, permitting a normalized
(redundancy-free) representation. In addition to storing the changed-based rep-
resentation of workflow evolution, the schema also supports explicit workflow
specifications and workflow execution information. Execution information can
be important when users are unfamiliar with the collection of workflows and
wish to know which workflows are routinely used and which workflows were
successfully executed.

3 Synchronized Design

One of the contributions of this paper is a new method for automatically cap-
turing workflow changes performed by multiple users and alerting them about
these changes immediately and unobtrusively. This allows users, in different geo-
graphically distributed locations, to collaboratively design and refine workflows,
like in the scenario illustrated in Figure 1. We accomplish this by committing
the local changes (performed by each individual user) to a centralized repository,
sending the changes out from the repository to each collaborator, and adding
the changes to each collaborator’s local version tree. Note that we are not merg-
ing workflow specifications but synchronizing workflow evolution provenance.
Each collaborator can continue their work and they need not even view the new
changes. Before describing the implementation of our prototype, we describe the
algorithm for synchronizing the version tree.

3.1 Algorithm

There are two key requirements for our algorithm. First, we need a way to save
data from a local version tree to the centralized repository. Second, we need a way
to load data from that repository to update the collaborators’ local version trees.
Below, we describe the mechanisms we developed to satisfy these requirements.

Using Provenance to Support Real-Time Collaborative Design of Workflows 269

Bind Multiple Attributes Plume with Camera and Opacity

Show Salinity

Salt Flux with Plumeinteractive seed point

saltflux vector reading

Fast Salt Flux

Generalize Bind Calculation

Warp By Bathymetry

User 2

User 3

User 1

User 1

User 2

User 3

Fig. 1. A version tree containing a series of workflows that derive visualizations of the
Columbia River Estuary. The visualizations have been created by collaborating users.
Versions created by different users are represented using different colors.

Recall that the version tree is induced by a set of actions A. Each action a ∈ A
has a unique identifier derived by the function id : A → N, where id assigns the
smallest unassigned integer to a new action. This function is trivially monotonic:
given a1, a2 ∈ A,

id(a1) < id(a2) ⇐⇒ a1 was added before a2

We will leverage this property to easily determine what has changed in a given
version tree. Specifically, let

N(A) = max
ai∈V

id(ai)

be the largest action id in a set of actions A. Then, for two sets of actions,
A1 ⊆ A2, the set of new actions, ∆A, is

∆A = {a ∈ A2 | N(A1) < id(a) ≤ N(A2)}

This means that we can efficiently determine which actions a user requires to
update his version tree. If a user has copied all of the actions in the database
up to id ND, then we only need to copy actions ai with id(ai) > ND from the
database. Conversely, if a user has already saved all actions up to NL to the
database, only actions ai with id(ai) > NL need to be sent to the database.
Figure 2 shows a simple example of the steps of the algorithm.

Relabeling. Determining the set of new actions is easy when one of the two
sets being compared is a superset of the other. However, when multiple users are

270 T. Ellkvist et al.

Client A Repository Client B

1

2 3

1

2 3

1

2 3

(3) Update

1

2 3

1

2 3

1

2

(2) Notify

1

2 3

1

2

1

2

(1) Save

Fig. 2. The synchronization algorithm. Client A creates a new change (labeled as
version 3). This new version is automatically saved to the repository (Step 1). Whenever
the repository is updated, it notifies all clients of the new change (Step 2). All clients
(including Client B) then incremenetally update themselves (Step 3).

1

2 3

4 6 5

7 8

Client A Client BRepository

1

2 3

5 6 4

7

Local:
Repository:

1
1

2
2

3
3

5
4

4
5

6
6

7
7

1

2 3

4 6 5

7

Local:
Repository:

1
1

2
2

3
3

4
4

5
5

6
6

7
8

Fig. 3. Relabeling. Because two users may make updates at the same time or may
temporarily lose their connections with the repository, the ids of their nodes may not
correspond with the repository’s ids. To solve this problem, each client stores the tree
according to its own local ids and maintains a map to the repository’s global ids.

collaborating, we might not be in this situation. Consider the scenario shown in
Figure 3, where user A and user B made changes at the same time. Both clients
will try to simultaneously save their actions to the database before being notified

Using Provenance to Support Real-Time Collaborative Design of Workflows 271

of the other’s changes. In each of their local version trees, they both have actions
with id 7, but these actions are not the same. Assuming A’s request gets to the
repository first, her action will be given id 7 while B’s action will become id 8.
Thus, after pushing out the other’s updates, A and B will have the same tree
except that the ids of the nodes may differ.

Since an update of the ids in the local version tree might interfere with a
user’s current work, we choose to maintain a set of local ids that can be mapped
to the global repository ids. Specifically, we maintain a bijective map

M : idglobal ↔ idlocal

Let Mlocal denote the reverse mapping from global to local and Mglobal denote the
forward mapping from local to global. All user operations will be accomplished
using the local ids, but whenever we need to save to the centralized repository,
we translate everything to the global set of ids. Figure 3 shows an example of
this relabeling.

Beyond Actions. As described earlier, an action contains metadata and a
set of atomic operations. The metadata and the atomic operations, in turn,
contain their own ids and may also include references to other entities. Thus, the
relabeling of an action needs to update these references as well. For example, each
action stores both its own id (action.id) and its parent id (action.prev id). If we
update the id of the action referenced by action.prev id, we also need to update
the prev id field. The same is true for child objects. Suppose the connection in
an add connection operation references the two modules it connects by id. If
we remap the id of one or both of those modules in an add module operation, we
need to update the ids in the add connection operation as well. This requires an
ordering that respects the properties being updated; we impose an explicit order
on modules and connections so that all modules are relabeled before connections
to ensure all references are updated.

Algorithm Specifics. We combine the method for determining new actions
with our relabeling strategy to obtain robust algorithms for incrementally

Algorithm 1: Incremental Load Algorithm
Input: The local version tree V , idV (the id function for V), the
global-to-local id map M , and the centralized repository D.
Output: None. It updates both V and M in place.
Load(V , idV , M , D)
(1) max id ← Query V for the maximum id
(2) A ← Query D for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a local copy of a
(5) a′.id ← idV (a)
(6) a′.prev id ← Mlocal(a.prev id)
(7) Add pair (a.id, a′.id) to M
(8) Add a′ to V

272 T. Ellkvist et al.

Algorithm 2: Incremental Save Algorithm
Input: The local version tree V , idD (the id function for D), the
global-to-local id map M , and the centralized repository D.
Output: None. It updates both V and M in place.
Store(V , idD, M , D)
(1) max id ← Query D for the maximum id
(2) A ← Query V for all actions with id > max id
(3) foreach a in A:
(4) Create a′, a global copy of a
(5) a′.id ← idD(a)
(6) a′.prev id ← Mglobal(a.prev id)
(7) Add pair (a′.id, a.id) to M
(8) Add a′ to D

loading from and saving to a database. Algorithm 1 describes the loading al-
gorithm and Algorithm 2 summarizes the saving algorithm. In each algorithm,
we use either the database or local version tree to update the other depending on
the direction, ensuring that new ids are assigned, existing ids are remapped, and
the global-to-local mapping M is updated. Note that all entities are updated in
place, copying only the (new) required information from one side to the other.

3.2 Implementation

We have implemented the synchronization mechanism on top of the VisTrails sys-
tem (http://www.vistrails.org). The implementation consists of a client/server
architecture shown in Figure 2. The server-side is a MySQL database that stores
version trees. Users can create synchronization sessions through the user inter-
face (see below). The standard VisTrails database schema has been extended
to store information about synchronized sessions. This information includes the
ids of synchronized version trees, user ids, IP addresses, and port numbers. A
database trigger uses this information to notify clients when relevant updates
are available. The notification is done by an external MySQL function that uses
a socket to connect to the client. The message to the client includes the version
tree id number so that the client can request the updates for that version tree.
Note that messages about changes to a given version tree are sent to all users
using that version tree, except to the user whose changes activated the trigger.

The client-side application is a modified version of VisTrails; the modifications
include code for performing incremental updates and saves against the database
and for receiving notification messages from the database. Because the system
contains a controller object for each version tree, we use it to monitor these
notifications and start update procedures. Because the controller is linked to the
GUI, we also need to redraw the version tree whenever synchronization modifies
the tree.

To setup synchronization, users need to select (or create a database) to serve
as a centralized repository. This database must have the schema as outlined

Using Provenance to Support Real-Time Collaborative Design of Workflows 273

above and the synchronization triggers that send the update notifications. Once
the database is in place, users connect to the database and select the version
trees they want to share. After that, the synchronization (sync) mode can be
enabled with the push of a button. From that point on, the version tree will be
kept in sync with the central repository and the other users. To help distinguish
between versions, those created by other users are shown in blue while a user’s
own versions are highlighted in orange.

3.3 Issues

Mutable Objects. The monotonicity of the version tree is required for the
synchronization process. Change actions and operations are immutable: they
are never modified after they are stored in the repository. Thus, the system only
needs to check for new objects in order to perform synchronization. There are,
however, mutable objects associated with actions for which this optimization can-
not be applied. For example, VisTrails has version tags and version annotations
associated with workflows that can be modified, and these modifications are not
saved as actions. Version tags assign text labels to workflow versions while version
annotations store general notes about the version. Because changes to these ob-
jects are non-monotonic (and destructive), all objects must be saved and loaded
during each incremental load/save. Locally, we can keep a flag that indicates
whether or not the entity changed so that we only need to save it when it does,
but the same cannot be done for the global repository. Nonetheless, since the vol-
ume of mutable data is small, we copy all instances during an incremental load.

Integrating Changes. One nice feature of our synchronization framework is
that it does not require the user to integrate another user’s changes. However,
consider the situation where two users (A and B) are working on a similar
problem, and they have attacked different pieces of it from a common starting
point. Each has seen that the other has made changes, but they wanted to finish
their own piece. Later, when they decide to integrate these changes, user A can
switch to B’s version and make the changes applied in her own version. A more
efficient alternative would be for user A to use the analogies mechanism [10]
implemented in VisTrails to automatically apply the changes from one branch
to another.

Local Parameters. Workflows may not always have the same meaning to all
users, and they may disagree about certain parameter settings or methods used.
For example, an input filename parameter may differ between two users because
the users store the file in different disk locations. Currently, the only way to deal
with such local parameter settings is to create a different version for each set of
parameters. This means that a change in one user workflow will not propagate
to the other version, which is not desirable. A solution to this problem could be
to separate the shared workflow from the local settings creating a division of the
workflow in some way.

274 T. Ellkvist et al.

Data Sharing. The ability to share data is an important part of collabora-
tion. For workflows, you may want to share output data as well as input and
intermediate results. This can be done with a data pool which maintains
up-to-date data items created by the users. This would make it possible for
users not only to see each other’s results, but also use the data as inputs to
other workflows. The COVISA project[12] implements this kind of data sharing.
Users can exchange data and directly use them in their pipelines. Another sys-
tem that implements the idea of a data pool is the Data Playground [4]. The Data
Playground provides a workflow editor that is highly data centric, letting users
view and import data while they compose workflows that in turn create new
data items. This gives the users control over their data while they experiment
with different data manipulation operations. The prototype only works for one
user but it shows how a data centric view can be used in collaborative workflow
design.

Module Packages. A requirement for users to be able to share workflow spec-
ifications is that they both use the same repository of module packages. Module
packages contain sets of modules that perform similar functions, much like web
services. If one collaborator is missing a module, a workflow containing that mod-
ule can not be executed. For collaborations that require many different packages
and libraries, an effective mechanism is needed for sharing. For example, through
the use of public repositories or automatic methods for users to import module
packages from other users as they are required. The packages are often platform
specific and versioned, so finding the right package is not trivial. This requires
packages to use a good version scheme, with possibly backward-compatible pack-
ages. There also needs to exist different versions for different platforms so that
the users platform can be identified and the correct package used. Another way
to handle module sharing is to use shared computing infrastructure, such as the
TeraGrid (http://www.teragrid.org), which can provide a comprehensive set of
packages.

3.4 Discussion

While there are many systems that provide mechanisms to deal with the diffi-
culties associated with the collaborative modification of files, they are not built
to handle structured information like workflows. For this reason, many workflow
systems lack comprehensive version control for their workflow specifications.

Many systems have been developed with the singular purpose of providing
version control. Software such as SVN [8], CVS [1], and Visual Source Safe [7]
are optimized to robustly handle the version control requirements associated
with source code. Unfortunately, when dealing with workflow descriptions, the
standard merge operations common to text files are inadequate and require spe-
cialized processing. A second issue is that these systems require users to manually
perform check-ins and check-outs in order to synchronize versions. Finally, users
are often required to merge their changes with older changes, making it more
difficult to explore new directions.

Using Provenance to Support Real-Time Collaborative Design of Workflows 275

We address the shortfalls of standard version control with our method based
on synchronizing workflow evolution provenance. Using this approach, work-
flow descriptions can be analyzed and modified to provide a truly multi-user,
collaborative environment, in real time. These modifications provide the basis
for version control of rapidly evolving, collaboratively created workflows. The in-
tuitive system allows closer collaboration between users by immediately alerting
all users of each other’s changes.

4 Use Cases

Collaboration between two or more parties plays an important role in scientific
discovery and in education. By carefully examining the working process of ex-
isting collaborative research projects, we have been able to design a system that
not only respects individual working habits, but also strengthens and enhances
the interaction among multiple users engaged in collaborative efforts. Here, we
explore the benefits of real-time, synchronous collaborative workflow design.

Collaborative Design as a Teaching Aid. Many institutions of higher edu-
cation offer a wide range of courses that utilize workflow systems. For example,
in Scientific Visualization courses, the Visualization Toolkit [6] (VTK) is widely
used to teach different visualization techniques to the students. Instructors use
VTK to introduce various topics to the students by example, while the students
use the library to explore the advantages and caveats associated with the various
techniques they learn.

A first experience in using VisTrails to encapsulate VTK pipelines used in a
Scientific Visualization course was very successful and showed that the repro-
ducibility and sharing enabled by provenance is very beneficial in a teaching
environment. However, even when using a provenance-aware system, a large
amount of work was necessary to assist students with the various assignments.
In these cases, the Teaching Assistant (TA) had to meet individually with each
student to help solve the problems they had.

Fig. 4. An example of a TA session. The TA can highlight interesting versions in the
students version tree as well as create new versions that explain some part of the
workflow design.

276 T. Ellkvist et al.

First Method

Other side after Bugfix

Other SideFixed BugImproved Method

Second Method

Changed Parameters

User 1

User 2

Fig. 5. An example of collaborative design. Here, two persons have built on each others
workflow specifications, leading to incrementally better results.

By providing TA’s with a system capable of synchronous, collaborative de-
sign of workflows, the time necessary to assist students can be greatly reduced.
Instead of the students relying on restrictive office hours to get face-to-face help,
they are able to get assistance from the TA as they work from their worksta-
tion (see Figure 4). This decreases the amount of time the students need to
spend waiting for help and allows the TA to interactively explain the reason
the student’s workflow was incorrect. Coupled with an instant messaging (IM)
program, this collaborative session greatly increases the number of people the
TA is capable of helping in a given amount of time.

Collaborative Design in Multi-disciplinary Research. In today’s scientific
community, it is rarely the case that novel scientific discoveries can be made by
a single person. Unfortunately, in many instances of close collaboration, the
various domain experts are unable to work in the same location. These types
of relationships benefit greatly from the ability to concurrently modify a given
workflow description.

An example of the advantages gained from collaboratively designed work-
flows can be seen in collaborations between the authors at the University of
Utah and researchers at the Center for Coastal Margin Observation and Pre-
diction (CMOP).1 CMOP scientists, located in Oregon and Washington, often
spend a significant amount of time describing the various processing and analysis
methods they employ to understand their data. While in many cases e-mail is
satisfactory for sharing knowledge with collaborators, in some situations, a more
immersive collaborative workspace is required.

When a task relating to a specific researcher’s area of expertise is being con-
sidered, it is often necessary to synchronize processing workflows to arrive at a
desired result. By allowing scientists at the CMOP centers in Oregon to work
synchronously with researchers at the University of Utah, the critical task of com-
munication is enriched. Instead of relying on e-mail and telephone conversations
to ask important, and often time-consuming, questions, scientists can explore and
fix each others processing and parameterization errors in real-time. This degree

1 http://www.stccmop.org

Using Provenance to Support Real-Time Collaborative Design of Workflows 277

of collaborative design reduces the number and severity of communication-based
misunderstandings as well as increases the level of productivity of everyone in-
volved in the project.

5 Related Work

This paper presents, to the best of our knowledge, the first proposal for an
infrastructure that supports real-time collaborative workflow design.

There are existing mechanisms that can be used for collaborative design of
workflows. One of the most general and common methods of real-time collabo-
ration is through remote desktops like VNC [9]. By using this in the design of
a workflow, users can see each others operations like dragging modules around
and creating connections. But for more efficient modes of interaction, both users
need to be in control simultaneously, and be able to choose whether to take
notice of other users activities. In addition, provenance information would be
lost, since it would not be possible to distinguish changes performed by different
users.

A related area is that of collaborative visualization such as the COVISA
project[12] and NoCoV [11]. COVISA enables several modes of collaboration
like sharing data, sharing control of parameters and instructor driven collab-
oration where one user is in control of another user’s pipeline. NoCoV enables
users to collaboratively edit a pipeline consisting of instances of Notification Web
Services. Both of these systems enables collaboration in the creation of the visu-
alization pipeline but they do not support the exchange or existence of different
versions of the pipeline.

The use of real-time collaboration has been explored in other areas. Co-
browsing [2] enables multiple people to browse the by sharing a Web browser
view and following links together. Similar to VNC, co-browsing is useful when a
user wants to guide another through a browsing session. However, unlike VNC
where the whole desktop is shared, in co-browsing users only share a browser
view. Co-browsing can thus be more efficient, since only clicks withing a browser
view need to be propagated to the users.

A more indirect way of sharing workflows is through public repositories, like
myExperiment [5] and Yahoo! Pipes [13], that have become available recently.
These repositories foster the re-use of knowledge. They provide search interfaces
that allow the users to locate workflows that solve a particular task, and then
integrate these workflows into their own. The synchronization infrastructure we
propose could potentially be a useful feature offered by these sites.

6 Conclusion

In this paper, we described an infrastructure that supports real-time collabora-
tive design of workflows. This infrastructure can be integrated with any workflow
system that captures workflow evolution provenance. Our implementation of the
synchronization mechanism on top of the VisTrails system shows that workflow

278 T. Ellkvist et al.

systems can be a powerful tool for real-time collaboration. Users can collabo-
rate efficiently and effectively, exploring different branches and taking advantage
of each other’s progress. Together with techniques for data sharing and remote
execution, this enables efficient creation of complex workflows.

By leveraging the concise representation of workflows provided by the change-
based provenance model, synchronization is efficient: only incremental changes
need to be propagated to collaborating users. However, further experiments are
needed to assess the scalability of the current implementation.

We believe that our provenance-based synchronization mechanism can be ap-
plied to applications other than workflows. Combined with techniques to visu-
alize provenance information, this mechanism can serve as a powerful platform
for collaborative design in general. Users can share their work effectively while
inspecting each other’s contributions. The application of our synchronization
infrastructure in other areas of computational design is a direction we plan to
pursue in future work.

Acknowledgements

Our research has been funded by the Department of Energy SciDAC (VACET
and SDM centers), the National Science Foundation (grants IIS-0746500, CNS-
0751152, IIS-0713637, OCE-0424602, IIS-0534628, CNS-0514485, IIS-0513692,
CNS-0524096, CCF-0401498, OISE-0405402, CCF-0528201, CNS-0551724), and
IBM Faculty Awards (2005, 2006, 2007, and 2008).

References

1. Cederqvist, P., et al.: Version Management with CVS, for CVS 1.11.6 (1993)
2. Esenther, A.: Instant co-browsing: Lightweight real-time collaborative web brows-

ing (2002)
3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:

Managing rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

4. Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C.: The data play-
ground: An intuitive workflow specification environment. In: E-SCIENCE 2007:
Proceedings of the Third IEEE International Conference on e-Science and Grid
Computing, Washington, DC, USA, pp. 59–68. IEEE Computer Society, Los Alami-
tos (2007)

5. Goble, C.A., Roure, D.C.D.: Myexperiment: social networking for workflow-using
e-scientists. In: WORKS 2007: Proceedings of the 2nd workshop on Workflows in
support of large-scale science, pp. 1–2. ACM, New York (2007)

6. Kitware. The visualization toolkit (VTK), http://www.kitware.com
7. Microsoft Corporation. Managing projects with Visual SourceSafe. Redmond,

Washington (1997)
8. Pilato, M.C., Collins-Sussman, B., Fitzpatrick, B.W.: Version Control with Sub-

version. O’Reilly Media, Inc., Sebastopol (2004)
9. Richardson, T., Stafford-Fraser, Q., Wood, K.R., Hopper, A.: Virtual network com-

puting. IEEE Internet Computing 2(1), 33–38 (1998)

http://www.kitware.com

Using Provenance to Support Real-Time Collaborative Design of Workflows 279

10. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and creat-
ing visualizations by analogy. IEEE Transactions on Visualization and Computer
Graphics 13(6), 1560–1567 (2007)

11. Wang, H., Brodlie, K., Handley, J., Wood, J.: Service-oriented approach to collab-
orative visualization. In: Proceedings of UK e-Science All Hands Meeting 2006, pp.
241–248. National e-Science Centre (2006)

12. Wood, J., Wright, H., Brodlie, K.: Collaborative visualization. In: VIS 1997: Pro-
ceedings of the 8th conference on Visualization 1997, p. 253. IEEE Computer So-
ciety Press, Los Alamitos (1997)

13. Yahoo! Pipes (March 10, 2008), http://pipes.yahoo.com

http://pipes.yahoo.com

Provenance in Sensornet Republishing

Unkyu Park and John Heidemann

Information Sciences Institute
University of Southern California
{ukpark,johnh}@isi.edu

Abstract. Sensornets are being deployed and increasingly brought on-line to
share data as it is collected. Sensornet republishing is the process of transforming
on-line sensor data and sharing the filtered, aggregated, or improved data with
others. We explore the need for data provenance in this system to allow users to
understand how processed results are derived and detect and correct anomalies.
We describe our sensornet provenance system, exploring design alternatives and
quantifying storage trade-offs in the context of a city-sized temperature monitor-
ing application. In that application, our link approach outperforms other alter-
natives on saving storage requirement and our incremental compression scheme
save the storage further up to 83%.

1 Introduction

Sensor networks have been proposed and deployed for study of scientific phenomena
with levels of detail that was previously impossible [10, 12, 23, 25]. Research groups
are using sensornets to study microclimates, animal habitats, or geology. To date, these
deployments are undertaken by different research groups each to accomplish a specific
objective. While many make their data available, reuse of data remains rare, and collab-
oration across multiple sensornets rarer still.

As sensornets become easier and more widely deployed, sharing data across sensors
becomes increasingly important [20]. Several groups have recently begun exploring the
role of the Internet in sharing sensor data [17, 20, 21], both to interconnect isolated
sensornet patches, and to lower the barrier to sharing sensor data. In the limit, we see
a world of slogging (sensor logging), where thousands of individual sensors each con-
nect to the Internet to share data, analogous to how blogs share discourse. For example,
WeatherUnderground.com allows “citizen scientists” to publish local weather condi-
tions [13], while Sensorbase [7] and SensorWeb [21] provide frameworks for sharing
sensor data, and for visualizing sensors and aggregates.

While individual sensors are sometimes of interest, the data becomes much more
compelling when it is aggregated and processed. More than just visualizing individual
sensors, we see a rich world where sensor values can be checked against each other,
filtered, corrected, combined and divided, and indexed, not just by the sensor owners
but potentially by anyone with access to the data.

Republishing is this process of transforming sensor data, and it can involve multi-
ple steps and different users. As sensor sharing grows and republishing becomes more
complex, tracking data back to its source is increasingly important. Understanding data

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 280–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Provenance in Sensornet Republishing 281

flow is important to track the evolution of data, to discover duplicate or supplementary
data sources, to give credit and confidence to data sources for indexing, to interpret data
properly and reproduce results, to uncover the causes of anomalies, and to troubleshoot
and improve the transformation process.

Tracking data transformation is well established in scientific workflow and
databases; in this paper, we propose data provenance for sensornet republishing which
allows users to locate where the sensor data come from and to further identify how
they are processed. We propose a novel, tuple-level linking scheme that tracks sensor-
net data as it is processed and republished (Section 3). To support fine-grain, tuple-level
tracking, we compare several compression schemes in Section 4, showing that our in-
cremental compression scheme saves the storage up to 83%. We also describe how
our approach can support user-centric access control. We have implemented our ap-
proach and are evaluating it in the context of weather monitoring in West Los Angeles
(Section 5).

2 Related Work

Sensornet/Internet Interaction: Several research efforts are exploring how sensornets
and the Internet can interact [3, 11, 18, 20, 26]. We previously proposed an architecture
to support sensornet sharing over the Internet [20]; this prior work is distinguished by
the concept of slogging, the loose collaboration of many individually managed sensors;
and by republishing, the idea that data will be processed and reprocessed in the Inter-
net by different parties. In this paper we extend this prior work to explore how data
provenance functions in the context of republishing.

Scientific Workflow: Data provenance is important in the field of scientific workflow.
Close to our work is Kepler [1], supporting access and analysis of distributed, het-
erogeneous scientific data [14]. Many techniques have been proposed to support data
provenance in scientific workflow, although details vary depending on the scientific do-
mains [22].

Data provenance in sensornets differs from scientific workflow in several ways. First,
data is often static in scientific workflow, or treated as static snapshots. Sensornets and
our republishing instead focus on live data feeds and streaming processing; so our sys-
tem for provenance must explicitly record the status of the changing stream. Second,
ownership and access are often handled out-of-band in scientific workflow. We instead
assume many users and so must integrate easy-to-use disclosure management with our
provenance system. Similarly, scientific workflow can often make assumptions about
storage of data in a local or shared file system; we instead assume data is located
anywhere on the Internet with a web services-like protocol. Lastly, computations in
scientific workflow are often quite heavyweight, often involving large supercomputers
and taking hours or even weeks per job. We see sensornet republishing as usually very
lightweight, so the cost of providing data provenance must scale accordingly.

Databases: Several researchers have considered provenance in the context of rela-
tional databases [5, 6, 9]. While we draw inspiration from their prior work, sensornets

282 U. Park and J. Heidemann

place several additional requirements on provenance. First, research efforts in databases
mainly focus on capturing SQL-based transformations [24]; we instead wish to support
transformations in republishing that include arbitrary, external programs not strictly
described by SQL. We therefore capture the version of source code (or executable
program) used in the transformation as part of our provenance scheme (Section 3.3).
Second, database work in the area typically concentrates on provenance for a single
database with centralized administrative control, while we assume a distributed en-
vironment with many data providers. In addition, the need to support distributed re-
publishing motivates our plans for data disclosure management (Section 3.4). Lastly,
databases support addition, deletion and update of information, but data provenance
can be computed only for the current state of tables. Sensornets, on the other hand,
rarely delete or update collected data, but constantly add new sensor data from live sen-
sors and corresponding republishers. Assuming that data are inserted only, our prove-
nance system can reconstruct old snapshots of the data by maintaining an explicit times-
tamp on provenance information. Therefore, we can trace the provenance of old results
(Section 3.2).

Provenance Model: Recently community of data provenance researchers has begun to
standardize provenance models. The Open Provenance Model (OPM) is proposed for
provenance information to be interoperable via a compatibility layer [16]. It represents a
provenance information with three entities and five types of dependencies among them.
Our provenance approach records two basic provenance relationships; the derivation
between republished data to source data and transformation of republished data (Sec-
tion 3.2). These are a subset of OPM relationships, so our model can easily be converted
to OPM if desired.

Our work goes beyond OPM, though, by considering the access control and dis-
closure of data and provenance information. We support user authorization for data
sources and transformations through provenance tracking (Section 3.4). Separate steps
of provenance chain can therefore have different privacy and permissions controls, and
the global view of a provenance chain may vary according to the user’s permissions in
different data repositories.

Currently we provide basic provenance queries to locate sources of data and transfor-
mations applied to the data. These are relatively primitive compared to ones used in the
Provenance Challenges [15]. We are planning to provide more sophisticated provenance
queries through a sensornet search engine.

3 Data Provenance in Sensornet Republishing

We describe the definition and goals of data provenance in sensornets and how we can
achieve those goals.

Our work builds on our model of sensornet sharing [20]. We assume many users
independently maintain sensors, each attached to the Internet (perhaps indirectly over a
wireless edge network). Analogous to blog hosting sites, these sensors slog, publishing
data to one of many centralized sensor stores.

Users can also schedule computation to run on other Internet-attached computers;
these republishers read data from a sensor store, compute some result (such as

Provenance in Sensornet Republishing 283

aggregation, statistics, interpretation, etc.), and then publish the data back to some other
sensor store. As a special case of republishers, sensor search engines index data. We
show the publishing and republishing examples in Section 5.1.

3.1 Definition and Goals of Sensornet Provenance

Data provenance is well established in many scientific domains; however the definition
of provenance varies depending on the scientific domain [22]. In sensornet republishing,
we define data provenance as information of the source and the transformation applied
to the source. We explore our approaches to data provenance below (Section 3.2). The
core of our sensornet provenance is a linkage between republished data and its source.
In this paper we use this link to locate the sensor data stored in our sensor stores, but in
principle it can also track any resource provided as a web service (Section 4.1).

The ultimate goal of sensornet republishing is to allow users to process and share
transformed data. Data provenance should allow any end-user to follow back to the orig-
inal source data, observing each step of processing. As in scientific workflow, prove-
nance is useful for validation, both to assist in debugging a republisher and to confirm
faulty source data.

Sensornet republishing and slogging also need to be able to assign “credit” for data
generation and processing [8]; we expect provenance to help with this process. Collab-
orative processing systems from SETI@home [4] to Wikipedia and blogging all benefit
because data generators can observe who uses their data; we are seeking to recreate this
ecosystem for sensor data [20].

More than just encouragement, we seek to reproduce a link structure in sensornet
data that mirrors the link structure in the web, with the intent that we can harvest this
link structure to identify high quality sensor data, much as PageRank exploits links in
the web [19].

Finally, data provenance provides attribution information that is useful in slogging
to inform data disclosure. We expand on access control in Section 3.4.

3.2 Approaches to Provenance for Sensornet Republishing

We describe our approaches for sensornet provenance: what and how to record for
provenance (annotation vs. inversion; content vs. link), provenance granularity (tuple-
vs. table-level), and timestamping to handle changing streams of data.

Representation. There are two approaches to represent data provenance: annotation
and inversion [22]. Annotation keeps the provenance information explicitly as metadata;
on the other hand, inversion keeps the property of inverted transformation to find the
source of derived data. The inversion is attractive if processing can be inverted to find
the source of republished data, because it needs to keep only a single inversion function
for the provenance. However our processing for sensor-data is arbitrary and cannot, in
general, be inverted. We therefore choose annotation for sensornet provenance.

Given annotations, the annotation can either consist of a copy of source data, or a
link to it and the transformation function. For small data items, copying source data
to the republisher may be efficient. However, in some cases source data may be large,

284 U. Park and J. Heidemann

particularly for images, video, or audio. Thus a link to the source data is a good choice,
because it is independent to the size of source data. In addition, over several steps,
copying will accumulate many layers of data while linking is fixed in cost.

An additional advantages of linking is that a user following the provenance can dis-
cover not only the source data, but subsequent data generated later by the same source.
It is also easy to trace back through multiple levels of republishings. This advantage is
of particularly importance in streaming sensornet data where there is often new data,
and where we wish to encourage repeated republishing.

Granularity. How much detail of data provenance should be provided for sensor re-
publishing? Coarse-grained provenance keeps one record per transformation or repub-
lishing. It is useful to figure out the overview of the processing, but is not enough for
tracking data tuples. Instead we provide fine-grained provenance – each tuple has its
provenance – which can pin down the source data used for each republished data. How-
ever, a problem of fine-grained provenance is storage. The storage of fine-grained prove-
nance increases according to the number of data while that of coarse-grained provenance
does not. We provide fine-grained provenance while its provenance storage is managed
to be small with our compression scheme. The details of compression scheme is de-
scribed in Section 4.2.

Consistency. Sensornet data is often streaming, with new data arriving periodically.
To truly reproduce a data transformation, data provenance must not only connect to a
particular sensor, but also to a particular period of source data at that sensor.

Transformations are often expressed via user computations that are relative (for ex-
ample, return the most recent five sensor readings). Provenance using this exact in-
formation would track a changing result as “most recent” changes when the sensor
generates new data.

To manage changing data streams with potentially relative user queries, we embed-
ded a timestamp with each data provenance record. This timestamp ties a query to
a specific set of data at the source sensor store, regardless of when the link is later
followed. Moreover, this timestamp approach supports data deletion. We soft-delete tu-
ples by recording time of detection, allowing resolution of post-deletion references. The
more details about the link are described in Section 4.1.

3.3 Tracking the Transformation

As we described in previous section, sensornet provenance allows users of the repub-
lished data to locate the source data for a transformation. Input data alone, however,
does not fully define provenance. Data in our system is modified arbitrarily by some
republisher—an arbitrary program running on some computer in the Internet.

To capture the republisher, we store transformation resource which includes a general
description of republishing, source codes, and executable programs. We define transfor-
mation identifier to locate these transformation resources on the Internet (Section 4.1).

Our approach to tracking transformations has following benefits. First, it provides
details transformations on every republished data. We store a simple identifier on every
republished data as we do with the source data location; the specific transformation re-
source can be located by looking the identifier. Second, it is easy to distinguish data that

Provenance in Sensornet Republishing 285

are processed by different transformations. Because each transformation uses a unique
identifier, the republished data can be grouped or selected according to transformations
without looking the actual transformation resources.

3.4 Data Disclosure for Provenance

Our security model for sensor data allows the data generator to control data access.
Data may be made publicly available, or access may be granted to individuals on a
case-by-case basis [7]. This security model interacts with link-based data provenance
because links may refer to data that a link-follower may not be able to access. To ease
data disclosure, we integrate support for adjusting data disclosure into our data prove-
nance system. When a user resolving a provenance encounters an access limitation,
we generate a “letter of reference” about that user to pass to the data owner. This let-
ter includes context about that user’s activities, collaboration with other projects, other
sharing activities, and how the user encountered the provider’s data. He or she may then
annotate or edit this information before sending it to the data owner who is responsible
for controlling direct access to the source data. Our hope is that this information pro-
vides context to inform the owner of the data source, while the mechanism allows the
requester to control what information they disclose.

4 Implementation

We have a prototype implementation of data provenance for sensornets. We use sen-
sorbase.org [7] as our sensor store, and extend it to provide predecessor links. When
a user creates a new table, we automatically create an additional column to store data
provenance. We also have extended the sensorbase user interface to display data prove-
nance; clicking on a predecessor link takes the user to the source data. APIs exist to
extract this information and the transformation program. We use the existing sensor-
base privacy model, and are in the process of automating support for data disclosure
(Section 3.4).

We provide a PHP-based library that encapsulates this functionality and makes it
easy for users to write republishers. We expect to provide bindings in other languages
as well.

4.1 Predecessor Link

Our approach to data provenance in sensorbase provides exactly the information needed
to track from derived data to its source data, potentially in another sensor store. As
described in Section 3.1, we need the location of the source repository and table at that
repository, the search used to retrieve the data from that table, and a timestamp to fix
any temporarily relative portions of the query.

We encode this information into a URI-compatible link, the predecessor link, and use
Web Services to access sensorbase [2]. The template of predecessor link is shown in Ta-
ble 1. In a link, we directly encode the SQL-based search query, and any search param-
eters as arguments. We add a UTC-based timestamp corresponding to the query time,

286 U. Park and J. Heidemann

Table 1. Predecessor Link Template

sb://<location of wsdl>?s=<service name>&a1=<arg 1>...an=<arg n>&t=<timestamp>&x=<xid>

<location of wsdl>
This is the url of wsdl file which has the web service description.
(message format, available service and etc)
The actual url of wsdl is “http://<location of wsdl>”

<service name> This indicates the service name to get the data. Currently we have a
“getData” service to retrieve the data.

<arg 1>...<arg n>
These are arguments for the service. the “getData”
service takes five arguments which are “attributes”, “tables”,“condition”,
“from” and “delta”.

<timestamp> The timestamp of the link is created.(‘YYYY-MM-DD HH:MM:SS’ UTC)

<xid>
The identifier of program doing transformation (a url)
on-site identifier format : http://〈sensorbase〉/transformation
view.php?project=<no>&program=<name>&version=<version>

allowing us to replay a relative query later while producing the same result (Section 3.2).
We add the user’s ID and password at link resolution time, allowing the data provider to
control access by requiring each user to authenticate separately (Section 3.4). Finally,
in addition to the information locating the source data, we identify the transformation
program (Section 3.3).

A sample predecessor link is:sb://sensorbase.org/soap/sensorbase2.wsdl?
s=getData&a1="datetime,temperature"&a2=p 97 temperature&a3=‘sensor

id="sum-in"’&a4=0&a5=1&t="2008-02-24 12:00:00"&x="http://www.isi.e

du/ilense/siss/tempread.html"which locates temperature data used in a repub-
lishing. In this link, the user retrieves the datetime and temperature fields from the
“sum-in” sensor. To deference this link, a user’s system will retrieve the WSDL file
(http://sensorbase.org/soap/sensorbase2.wsdl), and invoke the getData ser-
vice with the five arguments (a1 through a5). The link also indicates when it was created
and which program used the source data.

It is worth to note that transformation identifier is a URL which can represent the
location of program, source code, or webpage describing the transformation. It is com-
pletely possible that identifier points off-site resource located shown in above sample
link. However, we provide a on-site resource management for accessing the transforma-
tion resources on the sensorbase more efficiently. For example, an on-site identifier such
as http://sum.isi.edu/sb/transformation view.php?project=97&transfo
rmation=tempread&version=0.4 indicates a program called tempread and its ver-
sion is 0.4 which is used in project no 97. The web interface shows not only the specific
program used in the transformation but also other versions of that.

4.2 Incremental Compression

While self contained and easy to manage with existing tools, the links we described
above are quite verbose and redundant. If used directly, link size would quickly over-
whelm small sensor data and dominate storage consumption. We therefore employ pe-
riodic incremental link compression to provide simple link definition with reasonable
storage cost. We quantify storage costs in Section 5.3 and consider compression ap-
proaches here.

http://<sensorbase>/transformation
id="sum-in"'&a4=0&a5=1&t="2008-02-24
du/ilense/siss/tempread.html"
http://sensorbase.org/soap/sensorbase2.wsdl
http://sum.isi.edu/sb/transformation_view.php?project=97&transfo
rmation=tempread&version=0.4

Provenance in Sensornet Republishing 287

Our goal in link compression is to take advantage of redundancy in repeated links.
Often only a few parameters will vary, perhaps just query time. We considered at sev-
eral alternatives: per-link compression, complete compression and periodic incremen-
tal compression. We chose periodic incremental compression to balance read and write
cost.

A naive approach would be the per-link compression, where each link is passed
through a conventional compression algorithm independently. While very simple to
manage, this approach does not take advantage of the redundancy across links since
that requires a compression dictionary that spans multiple links.

The complete compression, to exploit the redundancy across links, we maintain the
compression dictionary over many links. An easy way of maintaining the pattern history
is keeping it as an external file, although current dictionaries are optimized for run-time
and not storage efficiency, so overall this approach consumes considerable fixed storage.
Alternatively, we can rebuild the dictionary on-the-fly when it is needed. This approach
requires additional run-time each link update, but it requires neither an additional stor-
age nor maintenance of explicit history. The disadvantage with complete compression
are the dictionary run-time cost is proportional to the number of saved data items, and
loss of any item will invalidate the dictionary, requiring recomputation to rebuild all
subsequent compressed links.

The system we adopt is periodic incremental compression—we avoid complete his-
tory by periodically checkpointing and restarting compression. This approach is robust
to tuple loss and limits the computational cost of updates. We implemented periodic in-
cremental compression with the widely-used LZW compression algorithm. Although
subsequent compression algorithms (such as those in gzip and bzip2) improve per-
formance somewhat, LZW provided good tradeoff between compression and ease of
implementation. We evaluate our periodic incremental compression compared to other
alternatives in Section 5.3.

5 Evaluation

We next consider several ways to evaluate our provenance system. Ultimately, we would
like to show that sensornet provenance is useful to users. Such demonstration requires
an extended period of use; at this point we can only summarize our use of it in one
application with three stages of republishing (Section 5.1). We then focus on two de-
sign questions: first we compare the storage costs of different provenance approaches
(Section 5.2), then we look at tradeoffs in our compression algorithms (Section 5.3).

5.1 Provenance Benefit

We explore sensornet provenance in the context of one application: collecting tempera-
ture data from a city-wide region. This application has several steps (Figure 1): first, we
collect temperature from low-cost, off-the-shelf wireless sensors via computer-attached
web cameras and publish both the image and the interpreted digits of temperature to
a sensor store. Two different republishers can then examine this data and recover from
common image interpretation errors, passing along either just the temperature digits

288 U. Park and J. Heidemann

Fig. 1. West Los Angles Temperature Monitoring

(digit repair), or the digits and image (repair with image). Finally, we collect temper-
atures from a city neighborhood and interpolate a uniform grid of temperature with
TempMap. We have been running this application with different numbers of sensors
since March 2007, and currently have ten operational sensors.

Full evaluation of the benefits of provenance will require long-term experience with
this application. However our initial experience is promising; we have found prove-
nance important for helping evaluate and debug problems with both forms of digit re-
pair. We also have occasional problems with sensors going off-line; drilling down to the
raw data is essential to debug these problems. Finally, we expect it to be useful when
peering through the TempMap data. If an abnormality is found on the map, provenance
helps follow through to the sensor that is mis-reporting.

5.2 Provenance Design for Sensornet Republishing

In Section 3.2 we discussed alternative implementations of provenance, choosing an-
notation with incrementally compressed links. Here we compare our choice against two
alternatives: copying the source data and using uncompressed links, and without preserv-
ing provenance. Our goal is to understand how these alternatives affect storage overhead.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

no provenance

copy source

uncomressed link

compressed link

S
to

ra
ge

 C
os

t (
kb

yt
e)

source data
republished data

link overhead

(a) Digit Repair

 0

 10

 20

 30

 40

 50

 60

 70

 80

no provenance

copy source

uncompressed link

compressed link

no provenance

copy source

uncompressed link

compressed link

S
to

ra
ge

 C
os

t (
kb

yt
e)

(b) Repair with image (left) and TempMap
(right)

Fig. 2. Comparison of required storage in the republishing examples

Provenance in Sensornet Republishing 289

Figures 2(a) and 2(b) show the amount of storage consumed in the three republishing
examples. We break the storage down in three categories: source data, republished data,
and provenance overhead. We show the data on two separate graphs because the storage
cost of digit repair is much less than that with images or TempMap.

These graphs show differences in the three stages of the application. Simple digit
repair has small source and republished data, just the temperature value. Repair with
image has much larger source data because it includes a digital picture of the sensor in
addition to the interpreted value. Finally, TempMap generates a large, uniform array of
interpolated temperatures from a sparser source set.

First, we observe that copying the source works well when source data is small (digit
repair and TempMap), but it becomes quite expensive when the source is large (re-
pair with image). Uncompressed links, on the other hand, do quite well when sensor
data is large (repair with image and TempMap), but the provenance overhead is quite
large compared to small source and republished data (digit repair)—making storage
four times more than the basic data. Finally, we observe that compressed links do quite
well when the data is large. When the data is small, the storage of compression link
becomes smaller that that of copying the source even for small source data. The com-
pressed link takes the smallest storage in all three examples.

As a final point, we selected tuple-level, fine-grained provenance. While we did not
implement table-level, coarse-grain provenance, the overhead of a per-table link would
be nothing with large tables of data. Approximating that cost with the “no provenance”
bar, we can see that the cost of tuple-level provenance is dwarfed by the cost of data
in the large-data cases, but roughly doubles the cost of storage with small data (digit
repair). In that case, incremental compression (explored next) is essential.

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140

A
m

or
tiz

ed
 s

iz
e

of
 a

 li
nk

 (
by

te
)

Sensor-data link

uncompressed
per-link compression

incremental compression (checkpoint 10)
incremental compression (checkpoint 25)
incremental compression (checkpoint 50)

incremental compression (checkpoint 100)

Fig. 3. Provenance storage with incremental compression

290 U. Park and J. Heidemann

5.3 Redundancy across Predecessor Links

As we have just shown, links storage can dominate storage costs when sensordata is small.
We therefore compare several compression alternatives, including independent, per-link
compression and incremental compression with different levels of checkpointing.

Figure 3 shows per-link storage for a series of 0 to 150 predecessor links with these
cases and without compression. First, we observe that per-link compression halves stor-
age because each link must build its own dictionary table. In this case we do not take
advantage of redundancy across links.

With incremental compression, we exploit compression dictionary across multiple
links. For reasons described in Section 4.2, our incremental compression algorithm
(LZW) is less efficient than per-link compression (gzip), so the first incremental link is
less efficient. But the benefits of a shared dictionary quickly take over, making average
links is the best with longer checkpoint periods. All incremental algorithms converge
on different asymptotic efficiencies from only 90B/link with 100 links/checkpoint to
170B/link with 10 links/checkpoint. With less frequent checkpointing, read and write
cost grows, therefore we need to balance efficiency with update speed. We selected
50 links/checkpoint as a reasonable trade-off, showing 80% savings in space which is
slightly less than 100 links/checkpoint (83%).

6 Conclusion and Future Work

As data from sensornets are increasingly shared over the Internet, we expect that sen-
sornet republishing will become an important means to share these abundant sensor
data. In this paper, we showed how the principles of data provenance from scientific
workflow and databases also apply to sensornets. We described our prototype system
for data provenance in sensornet republishing and showed how it can assist debugging
and serve as a source for sensornet search engines. Then, we evaluated our provenance
system with republishing examples, showing that our link scheme with incremental
compression save the storage up to 83%.

There are several areas of immediate future work, including implementation of
provenance-aware data disclosure, improving user interface for provenance data and
republishing APIs. Sensornet republishing APIs will make easy for users to write repub-
lishers with automated provenance management. We also plan to explore link structures
among republished sensor-data to build a sensor search engine.

Data provenance already plays an important role in many scientific domains and
data-oriented applications. We expect that our provenance system will also contribute
to sharing and reuse in future sensor-network sharing.

Acknowledgment

This work is supported by National Science Foundation (NSF) grants CNS-0626702,
Sensor-Internet Sharing and Search. Thanks to Sung Jin Kim and Junghoo Cho for
helpful comments on our preliminary version.

Provenance in Sensornet Republishing 291

References

1. Kepler project, http://kepler-project.org/
2. Sensorbase web service, http://sensorbase.org/help/web services.php
3. Aberer, K., Hauswirth, M., Salehi, A.: A middleware for fast and flexible sensor network

deployment. In: VLDB, pp. 1199–1202 (2006)
4. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: an experi-

ment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)
5. Bhagwat, D., Chiticariu, L., Tan, W.-C., Vijayvargiya, G.: An annotation management system

for relational databases. In: vldb 2004: Proceedings of the Thirtieth international conference
on very large data bases, pp. 900–911. VLDB Endowment (2004)

6. Buneman, P., Chapman, A., Cheney, J.: Provenance management in curated databases. In:
SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD international conference on Man-
agement of data, pp. 539–550. ACM, New York (2006)

7. Chang, K., Yau, N., Hansen, M., Estrin, D.: Sensorbase.org - a centralized repository to slog
sensor network data (May 2006)

8. Cuff, D., Hansen, M., Kang, J.: Urban sensing: out of the woods. Commun. ACM 51(3),
24–33 (2008)

9. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB
Journal, 471–480 (2001)

10. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A., Ahn, G.-S., Campbell, A.T.: The
bikenet mobile sensing system for cyclist experience mapping. In: SenSys 2007: Proceedings
of the 5th international conference on Embedded networked sensor systems, pp. 87–101.
ACM Press, New York (2007)

11. Gibbons, P.B., Karp, B., Ke, Y., Nath, S., Seshan, S.: Irisnet: An architecture for a worldwide
sensor web. IEEE Pervasive Computing 02(4), 22–33 (2003)

12. Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A.K., Shih, E., Balakr-
ishnan, H., Madden, S.: CarTel: A Distributed Mobile Sensor Computing System. In: 4th
ACM SenSys, Boulder, CO (November 2006)

13. The Weather Underground Inc. Weather Underground (2006), http://wunderground.com
14. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J.,

Zhao, Y.: Scientific workflow management and the kepler system: Research articles. Concurr.
Comput.: Pract. Exper. 18(10), 1039–1065 (2006)

15. Moreau, L., et al.: Special issue: The first provenance challenge. Concurr. Comput.: Pract.
Exper. 20(5), 409–418 (2008)

16. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The open prove-
nance model (2007)

17. Nath, S., Deshpande, A., Ke, Y., Gibbons, P.B., Karp, B., Seshan, S.: Irisnet: An architecture
for internet-scale sensing services

18. Nath, S., Liu, J., Zhao, F.: Challenges in building a portal for sensors world-wide. In: First
Workshop on World-Sensor-Web, Boulder, CO. ACM, New York (2006)

19. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing
order to the web (unpublished manuscript, January 1998)

20. Reddy, S., Chen, G., Fulkerson, B., Kim, S.J., Park, U., Yau, N., Cho, J., Hansen, J.H.M.:
Sensor-internet share and search—enabling collaboration of citizen scientists. In: Proceed-
ings of the ACM Workshop on Data Sharing and Interoperability on the World-wide Sensor
Web, Cambridge, Mass, USA, April 2007, pp. 11–16. ACM, New York (2007)

21. Santanche, A., Nath, S., Liu, J., Priyantha, B., Zhao, F.: Senseweb: Browsing the physical
world in real time (2006),
http://research.microsoft.com/nec/senseweb

http://kepler-project.org/
http://sensorbase.org/help/web_services.php
http://wunderground.com
http://research.microsoft.com/nec/senseweb

292 U. Park and J. Heidemann

22. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Rec. 34(3), 31–36 (2005)

23. Szewczyk, R., Mainwaring, A., Polastre, J., Anderson, J., Culler, D.: An analysis of a large
scale habitat monitoring application. In: SenSys 2004: Proceedings of the 2nd international
conference on Embedded networked sensor systems, pp. 214–226. ACM, New York (2004)

24. Tan, W.C.: Provenance in databases: Past, current, and future. IEEE Data Eng. Bull. 30(4),
3–12 (2007)

25. Werner-Allen, G., Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., Lees, J.: De-
ploying a wireless sensor network on an active volcano. IEEE Internet Computing 10(2),
18–25 (2006)

26. Woo, A.: Demo abstract: A new embedded web services approach to wireless sensor net-
works. In: Proceedings of the Fourth ACM SenSys Conference, Boulder, Colorado, USA, p.
347. ACM, New York (2006)

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 293–308, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Semantically-Enhanced Model-Experiment-Evaluation
Processes (SeMEEPs) within the Atmospheric Chemistry

Community

Chris Martin1, Mohammed H. Haji2, Peter Dew2, Mike Pilling1, and Peter Jimack2

1 School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
{chmcjma,m.j.pilling}@leeds.ac.uk

2 School of Computing, University of Leeds, Leeds LS2 9JT, UK
{mhh,dew,pkj}@comp.leeds.ac.uk

Abstract. The scientific model development process is often documented in an
ad-hoc unstructured manner leading to difficulty in attributing provenance to
data products. This can cause issues when the data owner or other interested
stakeholder seeks to interpret the data at a later date. In this paper we discuss
the design, development and evaluation of a Semantically-enhanced Electronic
Lab-Notebook to facilitate the capture of provenance for the model develop-
ment process, within the atmospheric chemistry community. We then proceed
to consider the value of semantically enhanced provenance within the wider
community processes, Semantically-enhanced Model-Experiment Evaluation
Processes (SeMEEPs), that leverage data generated by experiments and compu-
tational models to conduct evaluations.

Keywords: Semantic Metadata, Provenance, Atmospheric Chemistry, Model
Development.

1 Introduction

Progress in a wide range of scientific domains depends on complementary experimental
and theoretical developments. Such scientific progress can be considered as the output
of the Model-Experiment Evaluation Processes (MEEPs): The generic processes, within
scientific communities, that leverage experimental and model output data to derive sci-
entific insight. Example processes include: evaluating model data against experimental
data and/or against alternative model data; and surveying models and data, across a
community, to develop a benchmark model or model component. The efficiency and
effectiveness of the MEEPs relies not only on the availability of data, experimental and
computational model output, but also the availability and quality of data provenance.
The demands of current applications (such as climate modeling, global warming, and
energy demand) force the pace and drive the need for much closer integration between
experimentalists and modellers. This integration over a global scale can only be facili-
tated in an economically feasible manner by the use of e-Science technologies.

This paper proposes new Semantically-enhanced Model-Experiment-Evaluation
Processes (SeMEEPs) where semantic data and process provenance is captured or

294 C. Martin et al.

leveraged by the MEEPs. In this paper we focus on one Semantically-enhanced
Model-Experiment-Evaluation Process, the individual scientist who wants to evaluate a
computational model against experimental results from the literature, and capture the
provenance for this process. We propose that by capturing this provenance with a Elec-
tronic Laboratory Notebook (ELN), as opposed to a traditional lab-book, the provenance
captured will be more complete and of a higher quality. A semantic data-driven work-
flow [1] is used by the ELN to capture provenance, with data and models treated as first
class objects throughout the scientific process. We propose that by capturing provenance
in this form of Semantic Metadata (SMD) existing processes can leverage provenance
more easily and new processes will be enabled. In this paper we explore model develop-
ment provenance capture with an ELN within the atmospheric chemistry community.

Our ELN captures provenance using a combination of automatic process capture
and user annotation. We have adopted two guiding principles for the ELN’s capture
of provenance; Firstly minimise the changes in working practice required for scien-
tists to adopt an ELN. Secondly ensure that complete provenance is captured, where
complete is taken to mean; sufficient to enable a given piece of data to be reproduced.

Section 2 of this paper gives an overview of the atmospheric chemistry community
focusing on the use of a community database, the Master Chemical Mechanism (MCM)
[2], in the model development process. Section 3 describes the generic modeling proc-
ess used to structure the semantic provenance captured by the ELN. Section 4 considers
the implementation of a prototype ELN using semantic web technology (OWL and
RDF). Section 5 discusses preliminary user-evaluation of the prototype ELN with
members of the atmospheric chemistry modeling research group at Leeds University.
Section 6 presents a review of relevant background literature and projects. Finally
section 7 outlines our future work considering other community based SeMEEPs,
which leverage the provenance captured by the ELN.

2 The Atmospheric Chemistry Community

The atmospheric chemistry community relies on the complementary efforts of ex-
perimentalists and modelers seeking to develop a better understanding of the chemical
processes taking place in the atmosphere. This understanding is used to construct
chemical mechanisms that quantitatively describe atmospheric chemistry. These
chemical mechanisms are then used as components in climate and air quality models.
The key community activities within the atmospheric chemistry communities include:

• determining fundamental parameters, rate constants and product yields, of reac-
tions of atmospheric interest by calculation or experiment;

• gathering, evaluating and archiving these fundamental parameters;
• developing chemical mechanisms, using the fundamental parameters discussed

above, that describe complex chemical processes taking place in the atmosphere;
• testing mechanisms by including them in atmospheric models and evaluating the

model against in-situ atmospheric measurements or atmospheric simulation ex-
periments, see figure 1 which presents a comparison of model output (model) and
measured experimental values (measured) for the concentration of a chemical spe-
cies (Methyl Glyoxal) of interest against time. It is this process that the ELN dis-
cussed in this paper seeks to capture the provenance for.

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 295

0

20

40

60

80

100

120

140

0 100 200 300 400 500

time/ minutes

[M
et

h
yl

 G
ly

o
xa

l]/
 p

p
b

v

measured
model

Fig. 1. Model-measurement comparison for Methyl Glyoxal

Currently informal processes are used that enable feedback and collaboration be-
tween each of these distinct activities. The activities of the atmospheric chemistry
community are discussed in more detail in section 5.

The MCM is one example of an atmospheric chemistry mechanism, it is developed
and maintained by the community and is widely used in laboratories around the
world. The MCM is a structured list of fundamental chemical reactions and rate con-
stants which is used to build specific chemical mechanisms for the lower atmosphere.
Our work considers a modeller using the MCM within an atmospheric chemistry
model to understand a set of in-situ atmospheric measurements, this is taken as an
exemplar of a more generic modelling process describe within this paper in Section 3.
Typically, within the atmospheric chemistry community, the provenance for this
modelling process is recorded in an ad-hoc, unstructured fashion using a combination
the traditional lab-book, word processor documents and spreadsheets. This approach
to provenance capture leads to many issues such as archived data being rendered
meaningless due to incomplete provenance and difficulty interpreting the work of
other scientists as provenance remains a local and personal artefact.

3 The Modelling Process

We have taken the development of a model, to compare with experimental data, as the
first of the Model-Experiment Evaluation Process to semantically enhance. This
section describes a generic scientific model development process (see Figure 2) that
we use to structure the SMD captured by the ELN. Our approach extends the work of
Coles et al. for the capture of SMD for in-vitro chemistry experiments [3].

Our 3-layer mapping presents a hierarchical decomposition of the modelling proc-
ess, each layer is considered from the abstract to the concrete below:

296 C. Martin et al.

Experimental Layer: At the highest level model development is viewed as an in-silico
experiment. In the top layer of the 3-layer mapping, see Figure 2, the experiment can
be seen to take a high level modelling plan as an input and produce a conclusion as an
output.

Modelling Iteration Layer: At a less abstract level model development is viewed as a
network of modelling iterations. An iteration of the modelling process can be consid-
ered to take a plan, such as test the effect of setting model parameter x = 100 (the
value proposed by the latest paper on x); produce a conclusion, such as changing x
had no significant effect on model output; and produce a plan, such as proceed to test
the impact of updating parameter y to the latest literature value. So it can be seen that
the output of an iteration, the conclusion/plan, is able to form the input to another it-
eration, as the plan. Figure 2 shows a linear series of three such modelling iterations
linked by shared conclusions/plans.

Fig. 2. 3-layer mapping of the modeling process

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 297

Modelling Layer: At a concrete level model development can be viewed as a network
of modeling processes (Model Development, Model Execution, Analysis). In figure 2
the simplest case is presented; the model parameters are changed (Model Develop-
ment), the model is run (Model Execution) and the model output is analysed to deter-
mine the impact of the parameter change and the fit with experimental data (Analy-
sis). The Model Development processes takes an iteration plan (as discussed above)
and some set of model parameters as an input, and produces a revised set of model
parameters as an output. The Model Execution process takes the revised set of model
parameters and the model source code as inputs and produces a set of model outputs.
It has been assumed that versioning of model source code is managed separately by
software version control software. The analysis process takes model output and other
data sources (i.e. data from previous model runs or other external data repositories) as
an input and produces an iteration conclusion/plan, as discussed above, as an output.
There is clearly scope for more complicate networks of modelling processes, for ex-
ample multiple analysis processes following a model execution.

A typical atmospheric chemistry model will depend on many parameters, including
the chemical mechanism, input data sets and the environmental conditions including
temperature, pressure etc. For the purpose of prototype development we have consid-
ered mechanism development to be the mode of model development. A scientist will
iteratively develop a mechanism, by adding reactions, deleting reactions or editing the
reactions themselves in an attempt to obtain a good model-measurement comparison.

4 Prototype Development

4.1 Methodology

Capturing the modelling process used by atmospheric chemistry modellers was the
first phase of developing the ELN prototype. The process capture was facilitated by
considering a modelling case study based on the development of a model for a field
campaign that took place in Tasmania, SOAPEX [4]. The model in the case study was
relatively simple, but also retained all the key characteristics of the more complicated
models. The process for developing the SOAPEX model was then mapped, at the fin-
est granularity of task description possible, to produce a process description for the
case study. The importance of capturing process, at the finest granularity of task de-
scription possible, is that only with this level of detail is it possible to repeat an ex-
periment (either modelling or laboratory based).

4.2 Provenance Specification

The case study process description was then examined to develop a provenance speci-
fication. This provenance specification was developed from an end user perspective,
in the form of a set of provenance reports for the case study modelling process. The
subsequent design and implementation of the prototype was guided by this prove-
nance specification.

298 C. Martin et al.

Fig. 3. ELN System Architecture

4.3 Architecture

Figure 3 shows the system architecture we have implemented in our prototype ELN.
In this section the purpose of each architectural component is considered in turn: The
scientific layer consists of the modeler’s standard toolkit, this provides the ELN user
with a familiar modelling process and allows them to view the ELN as a tool that is
complementary to their existing working practices. The semantic metadata generation
layer, interfaces with the scientific and user interface layers to automatically capture
provenance for the modeling process and associated user annotations. This prove-
nance is then expressed in a semantic form. The data storage layer provides archiving
for SMD, model inputs and outputs, and analysis documents. The user interface en-
ables the user to associate annotations with elements of their modelling process, access
model input and output datasets, view provenance records in the form of standardised
reports and query the SMD. The ontology is discussed in the following section.

4.4 Knowledge Engineering

Ontology was developed to describe atmosphere chemistry modeling experiments, the
ontology provides a vocabulary for structuring the SMD captured by the ELN. The con-
cepts represented in the ontology are sufficient to describe the experiments examined in
the research. The ontology was developed in OWL using the Protégé ontology editor,
building on the CombeChem ELN ontology [5] for in-vitro chemistry experiments.

As with the CombeChem ontology at the highest level concepts fall into two cate-
gories: Processes, for example at an abstract level a modeling iteration, as discussed
above, and at a more concrete level changing a given model parameter; and Materials,
in the CombeChem case physical chemicals etc., in our case more conceptual materi-
als such as model output files etc. The domain specific elements of the ontology were
identified with reference to the provenance specification, described above, and

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 299

developed in conjunction with the domain scientists. Much of the ontology develop-
ment effort centred on the domain specific ontology elements and understanding the
set of processes conducting by atmospheric chemistry modellers.

4.5 Implementation

We now consider the implementation of each architectural component: The Scientific
layer consists of the modeler’s standard set of tools, for our prototype a FORTRAN
atmospheric chemistry model and a diverse set of analysis tools. The Semantic Meta-
data Generation Layer captures provenance using file-based interactions and a number
of python scripts, SMD is then generated as RDF, that adheres to the ontology described
above. These RDF files store the provenance for entire experimental process. The se-
mantic metadata generation layer has been developed using Java version 6.1 and the
Jena library [6] enabling the system to be platform independent. The data storage layer
is implemented as a MySQL database, future work will look at the additional use of a
triplestore, for storeage of the SMD. Currently the user interface layer provides func-
tionality for the user to annotate their scientific process and generate provenance re-
ports; the provenance query interface remains subject of requirements capture.

We now consider the interaction of the system components during a typical model-
ling iteration:

• Mechanism Development: When starting a new model development project a

unique global URI is automatically assigned to the experiment. The scientists can
then proceed to develop the chemical mechanism including processes such as edit-
ing existing reactions or inserting a new reaction or set of reactions. The semantic
metadata layer identifies any such changes to the chemical mechanism and drives
the annotation interface to prompt the user for scientific justification for the
changes. Once user annotation has been completed SMD is generated.

• Model Execution: The user then initiates the model execution; a number of model
configuration and compilation processes and the model itself are executed. Input
and output files for each model run are stored in a repository through JDBC-ODBC
(Java Database Connectivity - Open Database Connectivity) enabling the experi-
ment results to be quickly accessed or reproduced for future analysis. As each input
or output file is added to the database it is allocated a resolvable URI that is refer-
enced from the SMD.

• Analysis: The user performs their analysis of the model output; this can include
comparison of data sources using graphing packages, or more complex processing
and visualisation. The annotation interface, shown in figure 4, presents the user
with the opportunity to record the data sources they have used, the type of analysis
conducted and their conclusion and plans for the next modelling iteration. Full in-
tegration of semantic metadata generation layer into the analysis process, to auto-
mate capture of provenance, remains the subject of requirements capture.

• Reviewing provenance records: The user can generate provenance reports, for a
given modelling process, from the SMD using the provenance viewer interface.
These user-orientated provenance reports, conforming to the provenance specifica-
tion outlined above, are generated by querying the SMD records using SPARQL
[7] and formatted as plain text.

300 C. Martin et al.

Fig. 4. Screen shot of provenance capture interface, for the analysis of model output data

5 Prototype Evaluation

5.1 Evaluation Methodology

To evaluate the ELN prototype system we adopted an approach that draws on the
Scenario Based Development paradigm [8]. The mode of evaluation is very much
formative [9], seeking to elicit user responses on topics including: the efficacy of the
ELN prototype, the benefits and drawbacks of using an ELN and ways provenance
could be used once captured by an ELN. The scenarios were developed by the informat-
ics team, based on observation and personal experiences, without engaging the model-
lers who formed the evaluation panel in order to avoid prejudicing the evaluation.

The evaluation explored the scenarios and the prototype using elements of semi-
structured interview, discussion, prototype demonstration and user exploration of the
prototype. This approach attempted to strike a balance between the interviewer’s abil-
ity to respond to user feedback as it occurs and providing a structure that ensures im-
portant topics are addressed.

5.2 The Scenarios

Prior to the evaluation we developed problem scenarios, depicting the current proc-
esses of a modeller using a lab-book, and activity design scenarios depicting envis-
aged processes of a modeller using an ELN. These scenarios were developed for two
cases:

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 301

• the capture of provenance at model development time (Case 1), for the individual
scientist who wants to evaluate a model against experimental results from the lit-
erature;

• the use of provenance to help write a PhD thesis (Case 2).

Each scenario is a story that provides a description of: the actor involved (in our case
a fictional PhD student called Helen developing atmospheric chemistry models using
the MCM); contextual information on the setting (the modelling process being con-
ducted etc.); the actions and interactions of the actor and the technological artefacts;
and the actor’s thoughts and feelings.

Although the prototype developed only supports scenario 1, we included scenario 2
in the evaluation in order to conduct a more thorough evaluation of the prototype.
Asking the evaluators if the provenance, as captured by the ELN, would deliver bene-
fits in a scenario they could easily envisage and relate to.

5.3 Evaluator Background

The first evaluator is responsible for the maintenance and development of the MCM.
This type of work involves: extensive experimentation with mechanisms to model
chamber experiments, reviewing the literature to update model parameters and identi-
fying areas of deficiency in the MCM which new experiments would explore. The
second evaluator is involved in modelling field campaigns using the MCM. This type
of work involves; configuring the chemistry in a model, configuring model environ-
mental conditions, managing the input of experimental data to the model including
version control.

5.4 Barrier to Adoption of the ELN

From the very start of the first evaluation, when discussing the provenance capture
scenario, it was clear a critical barrier to the adoption of an ELN was the effort in-
volved in capturing provenance at modelling time:

“[in] your lab book you can write down what ever you want [but with an ELN] it is
going to take time to go through the different protocol steps”.

This concern was addressed by the prototype demonstration and user prototype test-
ing, where the user was able to see the actual amount of user input required by the
ELN. When asked if they would use an ELN requiring a similar amount of user input
to the prototype the response was positive:

“Yeah, I think it would be a good thing. I don’t think it is too much extra … work.”
Rather than viewing the prompts for user annotation as interruption to their normal
work the user recognised the value of being prompted, stating it:

“is a good way to do it because otherwise you won’t [record the provenance].”
A second barrier to adoption emerged due to the restricted focus of the prototype,
on mechanism development provenance. In this case the ELN failed to meet the
provenance requirements of a user for a particular modelling sub-process that is very
important to their work causing reservations about the ELN’s ability to meet
their provenance needs. The prototype has yet to be developed to enable the user to

302 C. Martin et al.

“annotate model input files”, and this became a theme that ran throughout the evalua-
tion, being brought up as an issue repeatedly by the evaluator.

5.5 Perceived Benefits of Using an ELN for Provenance Capture

Both users intuitively grasped the benefits of recording provenance with an ELN and
that the benefits would be realised after the time of modelling by a number of stake-
holders:

“if someone else wants to look at … [your provenance], that’s great because the
person can see exactly what you have done, where you have been and where to go
next. And for yourself, if you are writing up a PhD ... [you can] … see exactly what
you’ve done whereas currently you have to rifle through lab-books to see exactly
what you have done.”

5.6 Using Provenance When Writing a PhD Thesis

A key focus of the evaluation of the scenarios for using provenance when writing a
PhD thesis was to understand how a user may want to query an ELN archive. Many of
the queries suggested were in the form:

“Show me the iteration/s where I …[did some modelling process].”
Other queries, such as:
“Show me the history of reaction X”
“Show me the aerosol [or other reaction type] reactions I added to the original
mechanism”

Had a different focus and require the ontology to be developed further to include the
modelling of the various potential query return types. The queries suggested were large
in number and diverse in nature, in future work the queries suggested will be analysed
and prioritised to set the requirements for the an ELN query interface prototype.

6 Related Work

CombeChem and ELNs
One of the goals of e-Science is to enable the end-to-end scientific process from data
generation to publication and long term archival. The CombeChem project [10] has
demonstrated the advantages of using Semantic Web technology and in particular
semantic provenance to describe and link diverse and complex chemical information
across the end-to-end scientific process. The project successfully adopted a strategy of
capturing semantic provenance (e.g. annotations) “at source”, establishing schema
and ontologies based closely on current operational practice in order to facilitate im-
plementation and adoption. Provenance is expressed in RDF and held in a triplestore.

CombeChem uses an innovative, flexible, human-centric system based around an
ELN and has been successfully used in a synthetic organic chemistry laboratory.
Working closely with end users they discovered that a light touch and a high degree
of flexibility were required for capture, representation and storage of provenance.

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 303

Similarly this applies to the modeling process discussed in this paper. Both Combe-
Chem and our project address the challenge of designing a system that has to compete
with paper on the basis of least perceived cost and minimal changes working practice
of the scientist [11]. Experimental chemists must, by law, write a plan of the experi-
mental process for safety purposes (in the UK this is the COSHH form). The Combe-
Chem ELN use this experimental plan as the starting point for capturing provenance,
leveraging the effort of user puts into a mandatory task without changing working
practices. In a similar way, through the automatic capture of the modeling process, we
have been able to minimize changes to working practices.

Summary of SOA Provenance Approaches
In recent years there has been considerable progress in the design of e-Science system
based on service orientated architectures (SOAs), workflow and semantic annotations.
The following provides a brief overview of the service-based provenance. For exam-
ple Miles, Deelman et al. [12] argue that to have full provenance of data you not only
record parameters, inputs, intermediary data, but also the abstract experiment refined
into concrete execution by a “workflow complier”. To do this they modify the Pega-
sus system which is a framework for mapping complex scientific workflows onto
distributed systems [13]. A useful survey of data provenance in e-Science is given by
Simmhan et al. [14]. They compared six systems of which the most relevant are
CMCS (Collaboratorory for Multi-Scale Chemical Science) and MyGrid.

CMCS [15] is of relevance because it addresses multi-scaled chemical processes,
in our work we consider chemical processes at two scales, the individual reaction and
the atmospheric chemical mechanism. CMCS aims to support multi-disciplinary sci-
ences but currently it is mainly focused on the combustion community. CMCS uses a
SOA to manage heterogeneous data flows supplemented by provenance metadata for
establishing the pedigree of data. In contrast to our work CMCS does not handle se-
mantic metadata.

myGrid [16] provides semantically-enabled middleware for in-silico (computa-
tional laboratory) experiments, much of the work has focused on the bioinformatics
research community. Within myGrid experiments are represented and manipulated as
workflows composed of services (web services, local services etc.). myGrid leverages
semantic web technologies to allow semantic description and discovery of workflows,
central to this is the widely used ontology-based Taverna workflow system [17]. my-
Grid services include resource discovery, workflow enactment, and metadata and
provenance management, which enable integration and present a semantically en-
hanced information model for bio-informatics and more recently in the neuroscience
CARMEN project [18]. As workflow systems become established there is a growing
need for scientists to be able to verify the correctness of their own experiments, or to
review the correctness of their peers’ work. Validation ensures results generated from
experiments are meaningful. For example using the PASOA provenance system [19]
and recently the idea of quality model has emerged [20]. The integration of atmos-
pheric chemistry modeling tools and our ELN with a workflow system, such as Tav-
erna, remains a subject for discussion with our users, who will determine if a work-
flow system meets their requirements for a model development system.

304 C. Martin et al.

Socialisation and Provenance Using SOA
myExperiment is a Virtual Research Environment that seeks to enable collaboration
between researchers and sharing of workflows and other digital objects [21]. It
achieves this by adopting a social web approach which is tailored to the particular
needs of the scientist. It aims to provide a ‘workflow bazaar’ for any workflow man-
agement system. myExperiment is distinctive in that it facilitates the sharing of work-
flows and these may come from multiple systems. myExperiment provides a potential
means of sharing the modeling provenance records captured by the prototype ELN
discussed in this paper.

SWAN [22] is a project that incorporates the full biomedical research knowledge
lifecycle in its ontological model, including support for personal data organization, hy-
pothesis generation, experimentation, lab data organization, and digital pre-publication
collaboration. Its principal goal is to apply Semantic Web technology to enhance ex-
isting practices in a way that can (a) enhance the productivity of the community as
a whole, (b) benefit each human constituency to ensure uptake and socialisation,
(c) enable websites, individual scientists, and scientific laboratories to participate in
virtual collaborations. Whilst SWAN can be seen to share similar high level goals to
our work, enhancing working practices across a scientific community using semantic
web technologies, a significant difference lies in the maturity of the two communities
with respect to internet enabled collaboration. The SWAN community has a well es-
tablish online community, where as the atmospheric chemistry community is in the
process of establishing itself within the web environment.

7 Conclusions and Future Work

The feedback from both the users involved in the evaluation was generally positive,
whilst reinforcing our concern that adding work at the time of modelling to capture
provenance is likely to deter users from adopting an ELN. The evaluation suggests
that our prototype ELN does not place excessive burden on the user, due to the auto-
mation of much the provenance capture. The evaluators could see sufficient value in
the provenance captured by the ELN, to envisage cases where it would be of benefit
to themselves and other community members. Considering the PhD thesis scenario
has enabled a starting point to be established to explore requirements for a provenance
query interface.

The evaluation output presented above is in its preliminary stages, to complete the
evaluation we intend to perform further evaluations, with individuals with different
job roles such as experimentalists who perform some modelling to complement their
experiments. We are also going to conduct in depth analysis of the evaluation tran-
scripts to provide a more rigorous analysis of the evaluation results. We then plan to
extend the prototype ELN to support a use of provenance scenario, such as a modeller
reviewing their personal ELN archive when writing up their PhD, hopefully aided by
the evaluation outcome.

Looking further ahead we will develop architecture for supporting a wider range of
SeMEEPs across the atmospheric chemistry community, many of these SeMEEPs will
draw on the provenance captured by the ELN. We will seek to understand and support

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 305

the community evaluation processes, which typically involve experts with related in-
terests forming working groups to evaluate data from a variety of sources. The goal of
such evaluations is to develop and agree upon benchmark data, which the community
can make use of or validate their results against. In the atmospheric chemistry commu-
nity the data to be evaluated will have been produced by a combination of scientists
involved in: undertaking experiments or theoretical calculations to determine the fun-
damental parameters of chemical reactions; those who build the chemical mechanisms
using the fundamental parameters; scientists that perform experiments or develop
models that are used to evaluate the mechanisms; and repository managers.

In current practice this evaluation process typically involves time consuming litera-
ture reviews, face-to-face meetings and is centred about a few key individuals. The
information available to evaluators is often incomplete, only what is presented in aca-
demic publications so it is difficult to drill down to the under-pinning provenance.

Figure 4 presents envisaged SeMEEPs for the atmospheric chemistry community,
from a modeller-centric perspective. The capture of model development provenance
using an ELN, as discussed in this paper, is central to the wider community Se-
MEEPs. A modeller can gather input to the modelling process from a variety of data
sources, including a community semantic database of benchmark data, adding seman-
tic annotations as required. As the modelling process progresses a modeller can store
their model provenance and output in their personal ELN archive. Once a piece of
modelling research has been completed and determined to be of sufficient quality it
can then be stored in a laboratory (or research group) archive and made available to
collaborating laboratories.

Once in a laboratory repository a provenance and model output can be used to sup-
port community evaluation processes. So the evaluation working group have the ability
to semantically search and reason with the provenance of the modelling community
they seek to develop benchmark data for. The evaluation work group also has access to
experimental data and its provenance, although provision of this data and provenance
is beyond the current scope of our work. The output of the evaluation work group is
benchmark data based on an understanding of the experimental and model data, under-
pinned by complete and sound provenance. The benchmark data can then be incorpo-
rated in a community semantic database, which is in turn used in further model devel-
opment projects. It is in this context of community evaluation, that the value of re-
cording provenance with Semantic Web technologies will be truly tested.

In this paper we have discussed SeMEEPs in the Atmospheric Chemistry commu-
nity, but as our work progresses we will seek to evaluate the suitability of SeMEEPs
for application in other scientific communities. Our next target community is the
geomagnetism community. This is an active international community that researches
the origins and evolution of the Earth’s magnetic field. As with the atmospheric
chemistry community the research of the geomagnetism community relies on a mix-
ture of field measurement (experiment) and computational simulation (modelling).
The field measurements provide data about the record of the Earth’s magnetic field
preserved in various magnetic minerals through time (paleomagnetism). The compu-
tational simulation is based upon the numerical solution of Maxwell’s equations cou-
pled to the Navier-Stokes equations for the flow of conducting fluid in the Earth’s
outer core (known as magnetohydrodynamics, or MHD for short). There is a need to
preserve the large amounts of disparate field data and reach agreement over what this

306 C. Martin et al.

Fig. 5. Envisaged SeMEEPs for the Atmospheric Chemistry Community

raw data tells us about the historical evolution of the magnetic field. There are also a
large number of different research groups who produce MHD codes to simulate the
dynamo action that is believed to sustain the Earth’s magnetic field. One key chal-
lenge for the SeMEEPs architecture will be to support the qualitative comparison of
these MHD codes and facilitate the interpretation of the field data.

Acknowledgements. Many thanks to Jeremy Frey, Nick Gibbons and the
CombeChem project at the University of Southampton for their support and input.
Thank you to Andrew Rickard and Jenny Young at the University of Leeds for
providing experimental data and assistance with use of the MCM. Also thanks to
Roberto Sommariva for his help with the construction of SOAPEX model case study.
This work has been conducted as part of an NERC e-Science PhD studentship.

References

1. Simmhan, Y., Plale, B., Gannon, D.: A Framework for Collecting Provenance in Data-
Centric Scientific Workflows. In: Proceedings of the IEEE International Conference on
Web Services. IEEE Computer Society, Los Alamitos (2006)

2. Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development
of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-
aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)

 Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) 307

3. Frey, J., Hughes, G., Mills, H.: schraefel, m.c., Smith, G., De Roure, D.: Less is More:
Lightweight Ontologies and User Interfaces for Smart Labs. The UK e-Science All Hands
Meeting 2004. EPSRC, Nottingham, UK (2004)

4. Sommariva, R., Haggerstone, A.L., Carpenter, L.J., Carslaw, N., Creasey, D.J., Heard,
D.E., Lee, J.D., Lewis, A.C., Pilling, M.J., ZÃ!dor, J.: OH and HO2 chemistry in clean
marine air during SOAPEX-2. Atmos. Chem. Phys. 4, 839–856 (2004)

5. Hughes, G., Mills, H., Roure, D.D., Frey, J.G., Moreau, L., Schraefel, m., Smith, G.,
Zaluska, E.: The Semantic Smart Laboratory: A system for supporting the chemical eSci-
entist. Org. Biomol. Chem. 2, 1–10 (2004)

6. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
implementing the semantic web recommendations. In: Proceedings of the 13th interna-
tional World Wide Web conference on Alternate track papers \& posters. ACM, New
York (2004)

7. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, vol. 2008 (2005)
8. Rosson, M.B., Carroll, J.M.: Usability Engineering: Scenario-Based Development of Hu-

man-Computer Interaction. Morgan Kaufmann, San Francisco (2002)
9. Scriven, M.: Types of Evaluation and Types of Evaluator. American Journal of Evalua-

tion 17, 151–161 (1996)
10. Taylor, K.R., Essex, J.W., Frey, J.G., Mills, H.R., Hughes, G., Zaluska, E.J.: The Semantic

Grid and chemistry: Experiences with CombeChem. Web Semantics: Science, Services
and Agents on the World Wide Web 4, 84–101 (2006)

11. Schraefel, m.c., Hughes, G., Mills, H., Smith, G., Frey, J.: Making tea: iterative design
through analogy. In: Proceedings of the 5th conference on Designing interactive systems:
processes, practices, methods, and techniques. ACM, Cambridge (2004)

12. Miles, S., Deelman, E., Groth, P., Vahi, K., Mehta, G., Moreau, L.: Connecting Scientific
Data to Scientific Experiments with Provenance. In: Proceedings of the Third IEEE Inter-
national Conference on e-Science and Grid Computing. IEEE Computer Society, Los
Alamitos (2007)

13. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Scientific Program-
ming 13, 219–237 (2005)

14. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science. ACM
SIGMOD Record 34, 31–36 (2005)

15. Myers, J., Allison, T., Bittner, S., Didier, B., Frenklach, M., Green, W., Ho, Y.-L.,
Hewson, J., Koegler, W., Lansing, C., Leahy, D., Lee, M., McCoy, R., Minkoff, M., Ni-
jsure, S., Laszewski, G., Montoya, D., Oluwole, L., Pancerella, C., Pinzon, R., Pitz, W.,
Rahn, L., Ruscic, B., Schuchardt, K., Stephan, E., Wagner, A., Windus, T., Yang, C.: A
Collaborative Informatics Infrastructure for Multi-Scale Science. Cluster Computing 8,
243–253 (2005)

16. Radenkovic, M., Wietrzyk, B.: Life Science Grid Middleware in a More Dynamic Envi-
ronment. In: On the Move to Meaningful Internet Systems 2005: OTM Workshops, pp.
264–273 (2005)

17. Missier, P., Turi, D., Goble, C., Oinn, T., De Roure, D.: Taverna Workflows: Syntax and
Semantics. In: eScience 2007. IEEE Press, Bangalore (2007)

18. Watson, P., Watson, P.: e-Science in the Cloud with CARMEN e-Science in the Cloud
with CARMEN. Parallel and Distributed Computing, Applications and Technologies. In:
Eighth International Conference on Parallel and Distributed Computing, Applications and
Technologies, 2007. PDCAT 2007, p. 5 (2007)

308 C. Martin et al.

19. Miles, S., Groth, P., Branco, M., Moreau, L.: The Requirements of Using Provenance in e-
Science Experiments. Journal of Grid Computing 5, 1–25 (2007)

20. Missier, P., Preece, A., Embury, S., Jin, B., Greenwood, M., Stead, D., Brown, A.: Manag-
ing Information Quality in e-Science: A Case Study in Proteomics. Perspectives in Con-
ceptual Modeling, 423–432 (2005)

21. De Roure, D., De Roure, D., Goble, C., Stevens, R.: Designing the myExperiment Virtual
Research Environment for the Social Sharing of Workflows Designing the myExperiment
Virtual Research Environment for the Social Sharing of Workflows. In: Goble, C. (ed.)
IEEE International Conference on e-Science and Grid Computing, pp. 603–610 (2007)

22. Gao, Y., Kinoshita, J., Wu, E., Miller, E., Lee, R., Seaborne, A., Cayzer, S., Clark, T.:
SWAN: A distributed knowledge infrastructure for Alzheimer disease research. Web Se-
mantics: Science, Services and Agents on the World Wide Web 4, 222–228 (2006)

Oceanographic Data Provenance Tracking with
the Shore Side Data System

Michael McCann and Kevin Gomes

Monterey Bay Aquarium Research Institute,
7700 Sandholdt Rd, Moss Landing, CA, USA

{mccann,kgomes}@mbari.org
http://www.mbari.org/ssds

Abstract. The importance of tracking the provenance of electronic data
becomes apparent when data set providers need to also provide meta-
data describing where the data came from. This need has driven the
development of a practical oceanographic data provenance system at the
Monterey Bay Aquarium Research Institute. MBARI’s Shore Side Data
System is designed to manage data collected, processed, and archived
from oceanographic observatories. We describe the provenance tracking
aspects of this system and the lessons learned from its implementation
in an operational environment.

Keywords: Ocean Observatory, Data Processing, Data Provenance.

1 Introduction

Ocean scientists collect measurements of environmental parameters with a vari-
ety of instruments and platforms. Data produced by deployments of these assets
are archived and later processed for scientific analysis. The collection, analy-
sis, and archive of data is traditionally unique for each particular kind of asset.
These stovepipe data systems make interoperability difficult and impede the
goal of gaining a more complete and timely understanding of oceanographic
processes. Operating these observational assets within the context of a managed
observatory is one approach the oceanographic community is using to address
this problem [1]. Having the data professionally managed within regional scale
observatories provides opportunities for transformative uses as described in [2].
As part of the growing effort to establish oceanographic observatories the need
for improving this situation is being recognized and systems have been developed
employing various methods of provenance management.

Much of the research and development in provenance systems centers on the
provenance of workflow systems in Service Oriented Architecture (SOA) and grid
computing environments. Friere et al. describe the VisTrails system [3] where
provenance tracking is integral to a data workflow/exploration/visualization sys-
tem. It has been used to explore simulations of coastal oceanographic processes
for the Columbia River system. Observational data are used as input for the sim-
ulations and provenance is tracked from there forward. The utility of VisTrails

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 309–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.mbari.org/ssds

310 M. McCann and K. Gomes

is that workflow paths may be queried for and executed again on different input
data and that it may be used in many domains. Chapman and Jagadish [4] pro-
pose eleven desiderata for provenance systems and relate how several real-world
systems do in terms of meeting these desiderata. Comparison of these systems
with the one described in this paper is provided in a discussion section below.

The Monterey Bay Aquarium Research Institute operates several oceano-
graphic observation platforms for purposes of advancing knowledge in the deep
waters of the worlds oceans. Data collected from these systems and the experi-
ence gained from their management led to the design and development of the
Shore Side Data System (SSDS). One of the requirements stated for SSDS is
to capture and archive processed data products and associated metadata, main-
taining known relationships between data sets. This capability was designed and
implemented for SSDS without awareness of the wealth of other work in the
field of provenance. Putting this system to work for real world problems pro-
vides an experience case for device-to-dataset oceanographic observatory data
provenance. In conjunction with MBARI’s mooring system, the capability of
SSDS to capture the provenance metadata from device to data set makes it
unique among these other systems.

In this paper we describe the Monterey Ocean Observing System (MOOS) of
which SSDS is a component, the SSDS data model, its application framework,
and the operational procedures required for collecting good provenance informa-
tion. We finish with comparisons and contrasts to other provenance systems.

1.1 Monterey Ocean Observing System

In 1999, MBARI began developing the components of MOOS [5], an advanced,
integrated ocean observatory. Development focused on several themes:

– set common standards for power and data management,
– allow seamless reuse of instrumentation packages across a variety of plat-

forms,
– permit very flexible geographic instrument location, and
– do all this at an affordable cost for both system acquisition and maintenance.

MOOS development now incorporates several major components, including
observatory-scale science experiments, autonomous underwater vehicles (AUVs),
standalone moorings with connected benthic components, an operational at sea
software infrastructure (SIAM) [6], and a data management system (SSDS).

Fig. 1 is an artist’s rendering of an actual observational campaign that took
place in Monterey Bay in the summer of 2000 [7]. A variety of sensors were
deployed on a diverse set of platforms including aircraft, ships, remotely operated
vehicles, towed vehicles, moored and drifting buoys, and autonomous powered
and gliding vehicles.

Immediately following this campaign most of the original data produced from
the platform deployments were collated into a directory structure and descrip-
tions were written using the Federal Geographic Data Committee (FGDC) Con-
tent Standards for Digital Geospatial Metadata [8]. The data and metadata

Oceanographic Data Provenance Tracking with the Shore Side Data System 311

Fig. 1. Artist’s rendering of intensive observational campaign to observe the waters of
Monterey Bay with a variety of platforms. Data from these platforms are transferred
to shore for processing and in some cases products are transferred back to shipboard
teams.

descriptions are available on the MOOS Upper-water-column Science Experi-
ment (MUSE)web site [7]. For most of us who have dealt with the management
of oceanographic data this exercise was our first exposure to FGDC. The experi-
ence was useful as it helped guide the design and development of the data system
that would satisfy the MOOS data handling requirements. For MUSE we had
the personnel resources immediately following the field program to manually as-
semble all the deployment and processing information into FGDC descriptions
for each data set. For future MOOS operations we wished to accomplish this
task more efficiently and to do this we needed a central catalog for tracking
deployment and data processing information.

1.2 Shore Side Data System

Following the definition of the MOOS goals, a workshop was held to help define
the requirements for its Shore Side Data System [9] [10]. The high-level functional
requirements of SSDS are to:

– Capture and store data from MOOS data sources
(Includes files and streams)

– Capture information (i.e. metadata) about the stored data
(Location, instrument, platform, data format, etc.)

– Capture and store data products
(Derived products, quality controlled data, plots, etc.)

312 M. McCann and K. Gomes

– Provide access to the original raw data
– Convert data to common formats for user application tools

(Excel , Matlab, Ferret, ArcGIS, etc.)
– Present simple plots of any well-described data
– Capture and archive processed data products and associated metadata,

maintaining known relationships between data sets
– Provide access to data and metadata through an application program inter-

face (API) and a web interface

The SSDS development team consisted on average of two domain experts
skilled in software development and two software engineers experienced in de-
veloping complex systems. We followed a modified Agile software development
process [11] using Java, Enterprise Java Beans, Hibernate, and JBoss for the
core components of the system. The system consists of two relational databases:
one to store the original instrument data and another to store all the informa-
tion about the data (the metadata). It is a mixed data system with much of the
processed data existing outside the database in NetCDF [12] files stored on disk
but accessible through the OPeNDAP [13] web interface. References to these
data products and other resources are stored in the metadata database. Fig. 2
shows the overall architecture of SSDS. Data and XML descriptions of the data
flow in from the Wet Side into a high-availability Ingest component. Data and
metadata are accessible via web based services.

After about two years of development the SSDS had its first deployment with
some components of the MOOS SIAM software with the Center for Integrated
Marine Technologies [14] mooring in Monterey Bay. SSDS has continued to op-
erate since then and we have adapted data streams from two other operational
moorings and data file processing from our AUVs. [15]

1.3 Operational Details

The beginning of any observational data path is the definition of the instrument
that produces the data. With SSDS this information is stored the Device table
of SSDS’s Metadata database. We use XML for the exchange of the device
attributes. Fig. 3 shows one of the configuration panels from one our our tools
for defining the device metadata.

For Programmable Underwater Connector with Knowledge [16] equipped in-
strumentation this XML can be embedded in the instrument. Upon first deploy-
ment on the system data and XML descriptions of the instrument’s data flow
into SSDS and are made available for shore side processing. Data and metadata
are accessible via web based services. Our experience of writing the FGDC meta-
data for the MUSE campaign taught us that the human effort of writing fully
described metadata would be huge for an observatory composed of hundreds of
instruments producing data. Our goal with SSDS is to provide mechanisms to
automatically capture data processing metadata such that all of our data sets
are described with appropriate metadata.

Oceanographic Data Provenance Tracking with the Shore Side Data System 313

Fig. 2. The main components of the Shore Side Data System. Applications consuming
data and producing derived data products read and write provenance metadata through
the Aggregate HTTP-based Services and the Metadata Access Services.

Fig. 3. Device metadata authoring tool. Details of the instrument and of its deployment
are captured in advance of the deployment. Processing programs are then able to use
this information to generate well described data sets.

314 M. McCann and K. Gomes

2 Data Model

An early step in the design of SSDS was the creation of a data model that defines
the entities and relationships within an operational oceanographic observatory.
The diagram in Fig. 4 is SSDS’s class diagram which closely parallels the table
structure in SSDS’s Metadata database. The main classes that are of interest
for data provenance are the DataProducer and DataContainer classes.

For DataProducers that are Deployments parent-child relationships can be
defined such that a sensor can be deployed on an instrument, and that instrument
(along with other instruments) can be deployed on a platform. Defining these
relationships is best done pre-deployment before any data are produced by the
deployed system. This simple model has proven very durable. It is a general
model for which any of the metadata about the data produced from the platforms
shown in Fig. 1 may be stored.

Deployment and DataContainer records for the instrument deployments track
important details that are needed by data processing and visualization software.
Attributes of these classes are show in Fig. 5. Other important details (not
shown here) are in the RecordDescription and RecordVariable classes. These
classes contain parsing information, variable names, standard variable names,

Fig. 4. Object model for the core objects in the Shore Side Data System. A DataPro-
ducer can be either a Software ProcessRun or a Device Deployment. Device Deploy-
ments may have parent-child relationships. DataProducers may output DataContainers.
ProcessRuns have DataContainer(s) as input(s) and DataContainer(s) as output(s). A
DataContainer is related to a single DataProducer and is described with a RecordDe-
scription and a collection of RecordVariables. Each object has many attributes that de-
fine relevant who, what, where, when, and how information.

Oceanographic Data Provenance Tracking with the Shore Side Data System 315

Fig. 5. Attribute details for the DataProducer and DataContainer classes

and units. Automated processing software has been abstracted such that one
code base may be used to process output from any instrument. Our pre-SSDS
data processing software was embedded with specific deployment and instrument
deployment metadata making it cumbersome to maintain. Our current SSDS-
enhanced data processing code base is much more flexible and easier to maintain
as it retrieves all the information it needs from SSDS’s Metadata database.

DataProducers that are ProcessRuns may have input DataContainers and
their output DataContainers may be consumed by other ProcessRuns. Data
from an observatory may go through several steps of processing before being
provided to a scientist for analysis. SSDS can track all of these steps. There is
no limit to the number of links in the chain of DataProducer-DataContainer.

3 Application Framework

To be successful as a data system SSDS had to meet the functional require-
ment of providing access to data and metadata through an application program
interface (API) and a web interface. There are at least three different APIs to

316 M. McCann and K. Gomes

SSDS Metadata: the Java Data Access Objects (optionally wrapped with En-
terprise Java Beans for remote access), SOAP Web Services, and a simplified
Representational State Transfer (REST)-style web interface.

3.1 Java Objects

In the Business Logic API surrounding the Metadata database a programmer can
write Java code to use the Data Access Objects for interacting with the database
directly through Hibernate. This approach is more attractive than writing SQL
to interact with the database directly as business logic is incorporated in the
DAOs making it easier to deal with the constraints and relationships within
the database. It also abstracts out the underlying database technology so the
database provider can be changed (MSSQL to MySQL, for example). This API
is used for common core functions operating within the J2EE environment on
the SSDS server.

3.2 Perl Module

Much of the routine data processing done in oceanographic research environ-
ments is done with powerful script languages such as Matlab, Python, Perl and
Ruby. Of these Perl and Matlab are the most frequently used by people at
MBARI. One of the products of SSDS is a Perl module (SSDS.pm) that is au-
tomatically generated during an SSDS build from reflection on the Java classes.
(This technique may be used to generate native libraries for other languages as
well.) This simplifies access to SSDS Metadata from Perl scripts. For instance,
printing the names of the devices deployed on the ’M2 - May 2005’ mooring
deployment is done with this code:

#!/usr/bin/perl -w
#
Print the child Deployments of mooring deployment name M2 - May 2005
#
use SSDS;
$ssds = new SSDS();
$ssds->ssdsServer(’http://ssds:8080/’);
my $dpAccess = new SSDS::DataProducerAccess();
my $dps = $dpAccess->findByName(’M2 - May 2005’, ’true’, ’name’, ’false’);
my $children = $dpAccess->findChildDataProducers(${$dps}[0], ’name’, ’false’);
foreach my $child (@{$children}) {

print "child deployment device name = " . $child->getDevice()->name(). "\n";
}

This little program produces output like this:

child deployment device name = OASIS3 Controller
child deployment device name = Garmin GPS
child deployment device name = Workhorse Long Ranger ADCP
child deployment device name = MicroCAT Serial CTD
child deployment device name = MicroCAT Serial CTD
child deployment device name = Biospherical PRR Spectroradiometer

Oceanographic Data Provenance Tracking with the Shore Side Data System 317

child deployment device name = pCO2 Analyzer
child deployment device name = MBARI ISUS
child deployment device name = MBARI Metsys
child deployment device name = WETStar Fluorometer
child deployment device name = E-meter
child deployment device name = HydroScat-2
child deployment device name = Surface Inductive Modem
child deployment device name = HOBI HS2

Though we are showing just the name of the device deployment in the above
example. all of the attributes from all of the objects are available to the script.

An example of how our operational software traverses the metadata structure
to produce a fully described mooring data set follows.

Starting at a parent mooring deployment as in the one above do the following:

– Loop through all the child device deployments and find output data container
references.

– Build structures of variable names and units from the RecordDescription for
the DataContainer.

– Parse the records from the DataContainer and create a Climate Forecast [17]
compliant NetCDF data set.

– Populate discovery level metadata by walking the deployment tree as nec-
essary. For example, the nominal position of the mooring is an attribute
of the mooring platform deployment and not of the individual instrument
deployments. If the Deployment that produced the data does not have the
information (e.g. nominal depth, latitude, longitude) then the code walks up
the parent deployment heirarchy until it finds the needed attributes.

When the Perl script has completed generation of a new DataContainer it
calls the SSDS DataProducerAccess functions to add (or update) a ProcessRun.
The script has access to all the information that is needed to populate the at-
tributes that help provide fully tracked provenance information. A key piece of
information is the specific version of the code that generates the output Data-
Container. This is done in coordination with our version control system and the
$Id:$ expansion within the source code. The specific version is parsed from the
source code and the Version attribute for the Software object associated with the
ProcesRun is set to the value from the expanded $Id:$ line. Discipline is required
in making sure to commit changes before running the software; otherwise the
version number parsed from the file will not accurately reflect the actual version
used for the processing.

3.3 Web Application

Having visibility into the relationships and attributes of all the objects in the
SSDS Metadata database is essential for being able to maintain the integrity of
the data. One such tool is SSDS Explorer, a Java web application that allows

318 M. McCann and K. Gomes

a user to navigate down device deployment trees and down chains of data pro-
cessing. Along the way attributes and references to resources are made available
for examination. An example view of an expanded tree is in Fig. 6. The high-
lighted output DataContainer, a netCDF file named tenMinuteM2 20050520.nc
was produced from a run of the combineAll.pl script on 28 August 2007. There
are two other scripts (DStoNetCDF.pl and combineTS.pl) that operated on the
data after it was produced by a MicroCAT Serial CTD instrument deployment
on mooring M2.

4 Operational Procedures

SSDS requires the definition of instruments and the data they produce before
the instruments are deployed to collect data. Having tools (Fig. 3) and clearly
documented procedures that complement rather than replace existing procedures
facilitates the capture of instrument metadata. This is the first step for tracking
data lineage and is required for its processing within SSDS. As SSDS provides
value with self-described data files and automated time series plots there is
additional motivation for people to provide the information the system needs.
The life cycle of data within SSDS is as follows:

– Instrument is defined by creating Device record.
– Instrument is configured for deployment by writing Deployment, DataCon-

tainer, RecordDescription, RecordVariable XML.
– Instrument is deployed. XML metadata is ingested by SSDS, data packets

flow into the Instrument Packets database.
– Automated DataStream processing software consumes the data packets pro-

ducing a NetCDF file for each instrument’s data. A DataProducer record is
created linking the input DataStream to the output DataFile.

– Follow-on data processing runs consume instrument NetCDF DataContain-
ers producing combined data sets and graphical products. Metadata from
SSDS is extracted as needed to fully describe data in all the NetCDF data
sets.

– User uses the data with all the needed information to assess its suitability
for a particular use.

5 Discussion of Provenance Systems

As oceanographic observatories become established we can expect a variety of
solutions to provenance management issues. The spectrum of problems and their
solutions is wide. SSDS provides a solution to the management of provenance
early in the life cycle of observatory data — between instruments and their con-
figuration to the data sets produced by their deployments. Many of the prove-
nance systems described in the literature operate ”downstream” of where SSDS
operates. They operate in workflow, SOA, and high-performance grid computing
environments. SSDS operates in a less sophisticated environment where highly

Oceanographic Data Provenance Tracking with the Shore Side Data System 319

Fig. 6. Web application display of OASIS Buoy deployment’s CTD Device output
and the chain of ProcessRuns and Outputs that finally combine data from the other
instruments into a gridded tenMinute NetCDF data set the. Ancillary output from the
combineAll.pl ProcessRun are recorded as Resources.

320 M. McCann and K. Gomes

diverse, but small volume data streams are transformed with relatively simple
processing programs that are not computationally demanding.

In this environment we employ a pay-as-you-go provenance [2] system: as each
process is executed a p-assertion [18] is constructed by provenance-aware soft-
ware and is sent to the provenance store. As data sets are produced following this
discipline, application software access the provenance store to generate metadata
that assists in evaluating the usefulness of downstream data sets. This is a pow-
erful capability, but it is not all that can be accomplished with a provenance
management system.

Of the several provenance management systems reviewed [19], Chimera [20]
and the Earth System Science Workbench (ESSW) [21] have the most similarity
to provenance management within SSDS. Key to SSDS provenance are the Soft-
ware, DataProducer, and DataContainer objects. Chimera has exactly the same
concepts, but calls them transformation, derivation, and data object. Chimera,
like SSDS, stores relationships between these objects in a relational databse. It
specifies a Virtual Data Language (VDL) where details of all processing (deriva-
tions), including command line arguments, may be specified such that output
data objects may be created by executing the derivation again. VDL also allows
the specification of queries to search for derivations or the producers of specific
data objects. Stored derivations may be re-executed on different input data,
may be used to dynamically regenerate missing output files, and may be sched-
uled to run massive computations in distributed grid computing environments.
ESSW, like SSDS, puts the onus on the script writer to construct and submit
the p-assertion.

Chimera has been used to conduct analyses of data from millions of input files,
producing another million output data files, from the Sloan Digital Sky Survey.
Chimera handles all the file bookkeeping easing the headache that can be in-
volved with data management in domains such as astronomy and high energy
physics. A system such as Chimera or ESSW may be helpful in oceanography.
Data from ocean observatories are fed into numerical simulations of ocean pro-
cesses. These simulations are quite computationally demanding and do make
use of Service Oriented Architectures and grid computing environments [22].
Driving Ocean Observing System Simulation Experiments from a robust data
provenance management system is an attractive proposition.

6 Conclusion

The Shore Side Data System has been in operation for about four years and is
meeting its functional requirements. A key feature of the system is its ability to
track the specific processing steps of data processing pipelines. This capability
provides detailed provenance information for all the data sets produced with
SSDS enhanced software. This helps us create better described data sets with
more efficient and simpler to maintain data processing software. The system is
currently undergoing some refinements to improve its ability to maintain the
metadata store and we are also simplifying the configuration steps so that it is

Oceanographic Data Provenance Tracking with the Shore Side Data System 321

easier for others to install and use. We are not done capitalizing on the data
provenance tracking capabilities within SSDS. Future projects may fund the
incorporation of workflow tools and better client processing integration. We want
the barrier to be low for people and software to use the provenance aspects of
the system.

One of the lessons learned from our efforts is that discipline is required at
key steps of the data generation and processing processes. Accurate recording
of instrument attributes is required in advance of the deployment of the instru-
ment and once it is deployed the deployment information (time, location, and
parent deployment device) is required at the beginning of the data processing
path. Original data is processed by software whose source code is maintained in
a version control system. As the data are processed the specific version number
of the software components are logged. With this system we have reproducibil-
ity of derived data from the original data and exposure of specific processing
techniques used at every step of the data path. A logical next step to consider
is the integration of SSDS with an industry-standard provenance management
system such that more benefits of provenance management may be realized.

Acknowledgements

This research was supported by the Monterey Bay Aquarium Research Institute
through funding from the David and Lucile Packard Foundation.

References

1. Glenn, S., Schofield, O.: Observing the Oceans from the COOL Room: Our History,
Experience, and Opinions. Oceanography 16(4), 37–52 (2003)

2. Baptista, A., Howe, B., Freire, J., Maier, D., Silva, C.T.: Scientific Exploration
in the Era of Ocean Observatories. Computing in Science and Engineering 10(3),
53–58 (2008)

3. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.:
Managing Rapidly-Evolving Scientific Workflows. In: Moreau, L., Foster, I. (eds.)
IPAW 2006. LNCS, vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

4. Chapman, A., Jagadish, H.V.: Issues in Building Practical Provenance Systems.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineer-
ing 30(4), 38–43 (2007)

5. MOOS: Monterey Ocean Observing System,
http://www.mbari.org/moos/

6. SIAM: Software infrastructure and application for MOOS,
http://www.mbari.org/moos/siam/siam.htm

7. MUSE: MOOS Upper-Water-Column Science Experiment,
http://www.mbari.org/muse/

8. FGDC: Federal Geographic Data Committee, http://www.fgdc.gov/
9. Graybeal, J., Gomes, K., McCann, M., Schlining, B., Schramm, R., Wilkin, D.:

MBARI’s Operational, extensible data management for ocean observatories. In:
The Third International Workshop on Scientific Use of Submarine Cables and
Related Technologies, Tokyo, pp. 288–292 (2003)

http://www.mbari.org/moos/
http://www.mbari.org/moos/siam/siam.htm
http://www.mbari.org/muse/
http://www.fgdc.gov/

322 M. McCann and K. Gomes

10. The Shore Side Data System, http://www.mbari.org/ssds/
11. Agile software development,

http://en.wikipedia.org/wiki/Agile software development

12. NetCDF: Network Common Data Form,
http://www.unidata.ucar.edu/software/netcdf/

13. OPeNDAP: Open-source Project for a Network Data Access Protocol,
http://www.opendap.org/

14. CIMT: Center for Integrated Marine Technologies, http://cimt.ucsc.edu/
15. Gomes, K., OReilly, T., Graybeal, J.: Issues in data management in observing

systems and lessons learned. In: Proceedings of the Marine Technology Soci-
ety/Institute of Electrical and Electronics Engineers Oceans Conference, Boston,
Massachusetts (2006)

16. PUCK: Programmable Underwater Connector with Knowledge,
http://www.mbari.org/pw/puck.htm

17. NetCDF Climate and Forecast (CF) Metadata Convention,
http://cf-pcmdi.llnl.gov/

18. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S.,
Munroe, S., Rana, O., Schreiber, A., Tan, V., Varga, L.: The Provenance of Elec-
tronic Data. Communications of the ACM 51(4), 52–58 (2008)

19. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of Data Provenance in e-science.
SIGMOD 34(3), 31–36 (2005)

20. Foster, I., Vockler, J., Wilde, M., Yong, Z.: Chimera: a virtual data system for
representing, querying, and automating data derivation. In: Proceedings of 14th
International Conference on Scientific and Statistical Database Management, 2002,
pp. 37–46 (2002)

21. Frew, J., Bose, R.: Earth System Science Workbench: A Data Management In-
frastructure for Earth Science Products. In: Proceedings of the 13th International
Conference on Scientific and Statistical Database Management, Fairfax, VA, pp.
180–189 (2001)

22. Abbott, M., Sears, C.: The Always-Connected World and Its Impacts on Ocean
research. Oceanography 19(1), 14–21 (2006)

http://www.mbari.org/ssds/
http://en.wikipedia.org/wiki/Agile_software_development
http://www.unidata.ucar.edu/software/netcdf/
http://www.opendap.org/
http://cimt.ucsc.edu/
http://www.mbari.org/pw/puck.htm
http://cf-pcmdi.llnl.gov/

The Open Provenance Model: An Overview

Luc Moreau1, Juliana Freire2, Joe Futrelle3, Robert E. McGrath3,
Jim Myers3, and Patrick Paulson4

1 University of Southampton
2 University of Utah

3 NCSA
4 PNNL

1 Background

Provenance is well understood in the context of art or digital libaries, where
it respectively refers to the documented history of an art object, or the docu-
mentation of processes in a digital object’s life cycle. Interest for provenance in
the “e-science community” [12] is also growing, since provenance is perceived as
a crucial component of workflow systems that can help scientists ensure repro-
ducibility of their scientific analyses and processes [2,4].

Against this background, the International Provenance and Annotation Work-
shop (IPAW’06), held on May 3-5, 2006 in Chicago, involved some 50 participants
interested in the issues of data provenance, process documentation, data deriva-
tion, and data annotation [7]. During a session on provenance standardization, a
consensus began to emerge, whereby the provenance research community needed
to understand better the capabilities of the different systems, the representations
they used for provenance, their similarities, their differences, and the rationale
that motivated their designs.

Hence, the first Provenance Challenge [1] was born, and from the outset, the
challenge was set up to be informative rather than competitive. The first Prove-
nance Challenge was set up in order to provide a forum for the community to un-
derstand the capabilities of different provenance systems and the expressiveness
of their provenance representations. Participants simulated or ran a Functional
Magnetic Resonance Imaging workflow, from which they implemented and exe-
cuted a pre-identified set of “provenance queries”. Sixteen teams responded to
the challenge, and reported their experience in a journal special issue [9].

The first Provenance Challenge was followed by the second Provenance Chal-
lenge [1], aiming at establishing inter-operability of systems, by exchanging
provenance information. During discussions, the thirteen teams that responded
to the second challenge found out that there was substantial agreement on a
core representation of provenance. As a result, following a workshop in August
2007, in Salt Lake City, a data model was crafted by the authors and released
as the Open Provenance Model (OPM v1.00) [8].

On June 19th 2008, some twenty participants attended the first OPM work-
shop, held after IPAW’08 [3], to discuss the OPM specification. Minutes of the
workshop and recommendations [5] were published, and led to the current ver-
sion (v1.01) of the Open Provenance Model [10].

J. Freire, D. Koop, and L. Moreau (Eds.): IPAW 2008, LNCS 5272, pp. 323–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 L. Moreau et al.

2 Scope

The Open Provenance Model (OPM) is a model for provenance that is designed
to meet the following requirements:

– To allow provenance information to be exchanged between systems, by means
of a compatibility layer based on a shared provenance model.

– To allow developers to build and share tools that operate on such provenance
model.

– To define the model in a precise, technology-agnostic manner.
– To support a digital representation of provenance for any “thing”, whether

produced by computer systems or not.
– To define a core set of rules that identify the valid inferences that can be

made on provenance graphs.

While specifying this model, we also have some non-requirements:

– It is not the purpose of OPM to specify the internal representations that sys-
tems have to adopt to store and manipulate provenance internally; systems
remain free to adopt internal representations that are fit for their purpose.

– It is not the purpose of [8,10] to define a computer-parsable syntax for this
model; model implementations in XML, RDF or others are being specified
in separate documents.

– OPM does not specify protocols to store provenance information in prove-
nance repositories.

– OPM does not specify protocols to query provenance repositories.

3 Technical Overview

The foundations of the Open Provenance Model can be traced back to the Sec-
ond Provenance Challenge ‘community agreement’, summarized by Miles [6].
It is assumed that the provenance of objects (whether digital or not) can be
represented by an annotated causality graph, which is a directed acyclic graph,
enriched with annotations capturing further information pertaining to execution.

In OPM, provenance graphs consist of three types of nodes. Artifacts repre-
sent an immutable piece of state, which may have a physical embodiment in a
physical object, or a digital representation in a computer system. Processes rep-
resent actions performed on or caused by artifacts, and resulting in new artifacts.
Agents represent contextual entities acting as a catalyst of a process, enabling,
facilitating, controlling, or affecting its execution.

Importantly, in OPM, a provenance graph is defined as a record of a past
execution (or current execution); it is not a description of something that may
happen in the future, nor a general recipe (workflow) that could be used to derive
future data. OPM is a model of artifacts in the past , explaining how they were
derived. Processes may be in the past, or can still be currently running. In no
case is OPM intended to describe the state of future artifacts and the activities
of future processes.

The Open Provenance Model: An Overview 325

A provenance graph aims to capture the causal dependencies between the
abovementioned entities. Therefore, nodes, whether artifacts, processes or
agents, can be connected by directed edges that belong to one of the categories
defined in the model. An edge represents a causal dependency, between its source,
denoting the effect, and its destination, denoting the cause. Edges can express
the following dependencies: an artifact was generated by a process; a process
used an artifact; a process was controlled by an agent; an artifact was derived
from another artifact; a process was triggered by another process.

A set theoretic model is proposed, and a set of inference rules are defined,
allowing reasoning over causal dependencies. While the core model is timeless,
it is permitted to annotate a provenance graph with time annotations, which
themselves must satisfy constraints regarding causality.

4 Conclusion

The Open Provenance Model is work in progress, as indicated by the issues raised
in the OPM Workshop [5]. We hope to capitalize on the community momentum,
to keep on evolving the OPM specification into a well-founded data exchange
format. It is proposed that OPM be used as a model for an inter-operability
exercise, in a third Provenance Challenge. Serialisations are now being proposed
for OPM, and libraries to manipulate provenance graphs are being implemented.
All material related to OPM can be found from [11].

References

1. The Provenance Challenge Wiki (June 2006),
http://twiki.ipaw.info/bin/view/Challenge

2. Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and op-
portunities. In: SIGMOD Conference, pp. 1345–1350 (2008)

3. Freire, J., Koop, D., Moreau, L. (eds.): IPAW 2008. LNCS, vol. 5272. Springer,
Heidelberg (2008)

4. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows.
IEEE Computer 40(12), 26–34 (2007)

5. Groth, P.: First OPM Workshop Minutes. In: Information Science Institute, USC
(July 2008),
http://twiki.ipaw.info/bin/view/Challenge/FirstOPMWorkshopMinutes

6. Miles, S.: Technical summary of the second provenance challenge workshop, King’s
College (July 2007),
http://twiki.ipaw.info/bin/view/Challenge/SecondWorkshopMinutes

7. Moreau, L., Foster, I. (eds.): IPAW 2006. LNCS, vol. 4145. Springer, Heidelberg
(2006)

8. Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The open
provenance model (v1.00). Technical report, University of Southampton (December
2007), http://eprints.ecs.soton.ac.uk/14979

http://twiki.ipaw.info/bin/view/Challenge
http://twiki.ipaw.info/bin/view/Challenge/FirstOPMWorkshopMinutes
http://twiki.ipaw.info/bin/view/Challenge/SecondWorkshopMinutes
http://eprints.ecs.soton.ac.uk/14979

326 L. Moreau et al.

9. Moreau, L., Ludaescher, B. (eds.): Special Issue on the First Provenance Challenge,
vol. 20. Wiley, Chichester (2007)

10. Moreau, L. (ed.), Plale, B., Miles, S., Goble, C., Missier, P., Barga, R., Simmhan,
Y., Futrelle, J., McGrath, R., Myers, J., Paulson, P., Bowers, S., Ludaescher, B.,
Kwasnikowska, N., Van den Bussche, J., Ellkvist, T., Freire, J., Groth, P.: The
open provenance model (v1.01). Technical report, University of Southampton (July
2008), http://eprints.ecs.soton.ac.uk/16148

11. The Open Provenance Web Site (August 2008), http://openprovenance.org
12. Simmhan, Y., Plale, B., Gannon, D.: A survey of data provenance in e-science.

SIGMOD Record 34(3), 31–36 (2005)

http://eprints.ecs.soton.ac.uk/16148
http://openprovenance.org

Author Index

Ahrens, James P. 160
Altintas, Ilkay 152
Anand, Manish Kumar 70
Anderson, Erik W. 266

Belhajjame, Khalid 17
Bergmeyer, Henning 241
Blount, Marion 253
Bochner, Carsten 229
Bowers, Shawn 70
Brown Jr., Allen L. 2

Callahan, Steven P. 120
Campos, Maria Luiza M. 186
Chapman, Adriane 106
Chen, Zheng 92
Chirigati, Fernando Seabra 186
Chrysanthis, Panos K. 54
Crawl, Daniel 152
Cruz, Sérgio Manuel Serra da 186

Dahis, Rafael 186
Dew, Peter 293
Dinov, Ivo D. 208
Dvořák, Frantǐsek 144

Ellkvist, Tommy 266
Embury, Suzanne 174

Filipovič, Jǐŕı 144
Fleig, Albert J. 221
Freire, Juliana 120, 160, 266, 323
Frew, James 200
Futrelle, Joe 323

Gibson, Tara 128
Goble, Carole 17
Gomes, Kevin 308
Gude, Roland 229

Haji, Mohammed H. 293
Heidemann, John 280

Jagadish, H.V. 106
Jankun-Kelly, T.J. 78
Jimack, Peter 293

Kementsietsidis, Anastasios 253
Koop, David 266
Křenek, Aleš 144
Kunde, Markus 241
Kwasnikowska, Natalia 3

Labrinidis, Alexandros 54
Li, Qinglan 54
Lins, Lauro 160
Lu, Shiyong 31
Ludäscher, Bertram 70

MacKenzie-Graham, Allan J. 208
Martin, Chris 293
Mattoso, Marta 136, 186
Matyska, Luděk 144
McCann, Michael 308
McGrath, Robert E. 323
McPhillips, Timothy 70
Misra, Archan 253
Missier, Paolo 17, 174
Moreau, Luc 92, 323
Murta, Leonardo 136
Myers, Jim 323

Nagappan, Meiyappan 62

Oliveira, Frederico T. de 136

Park, Unkyu 280
Paulson, Patrick 323
Payan, Arash 208
Pilling, Mike 293

Rana, Omer 45
Riddle, Sean 70
Roos, Marco 17
Ruda, Miroslav 144

Salvet, Zdeněk 144
Santos, Emanuele 160
Scheidegger, Carlos E. 120
Schreiber, Andreas 229, 241
Schuchardt, Karen 128
Silva, Cláudio T. 120, 160, 266

328 Author Index

Sitera, Jǐŕı 144
Slaughter, Peter 200
Sow, Daby 253
Stapenhurst, Richard 174
Stephan, Eric 128
Šustr, Zdeněk 144

Tannen, Val 1
Tilmes, Curt 221
Toga, Arthur W. 208

Van den Bussche, Jan 3
Van Horn, John D. 208
Vo, Huy T. 120
Vouk, Mladen A. 62

Wang, Min 253
Werner, Claudia 136
Wootten, Ian 45

Zhao, Jun 17
Zhao, Yong 31

	Title Page
	Preface
	Organization
	Table of Contents
	Keynotes
	Provenance for Database Transformations
	Enforcing the Scientific Method

	Papers
	Mapping the NRC Dataflow Model to the Open Provenance Model
	Introduction
	The NRC Dataflow Model
	Specification of Dataflows in NRC
	Past Executions of Dataflows
	NRC Dataflow Repository Model

	Formal Definition of OPM Graphs
	Mapping NRC Dataflow Runs to OPM Graphs
	Amendment for Multiple NRC Runs
	Incorporating Runs of Subdataflows
	Adding Subvalue Provenance to an OPM Graph

	Conclusion
	References

	Data Lineage Model for Taverna Workflows with Lightweight Annotation Requirements
	Introduction
	Baseline Model for Capturing and Querying Data Lineage
	Explicit and Implicit Collections
	Data Lineage Queries

	Lightweight Annotations for Improving Lineage Data
	Discussion and Conclusions
	References

	A Logic Programming Approach to Scientific Workflow Provenance Querying
	Introduction
	Frame Logic and FLORA-2
	Mapping Virtual Data Schema to F-Logic
	FLOQ Query Examples
	Discussions and Related Work
	Conclusions and Future Work
	References

	Recording the Context of Action for Process Documentation
	Introduction
	Background and Motivation
	Modeling the Context of a Process
	Documenting Context in Service Based Architectures
	Evaluation
	Conclusion
	References

	User-Centric Annotation Management for Biological Data
	Introduction
	The ViP Framework
	User-Centric Time Semantics
	User-Centric Network Semantics

	Implementation Highlights
	Implementation Using Views
	User-Centric Access Control

	Prototype Highlights
	User Interface
	Visualization
	Demonstration Scenarios

	Conclusions
	References

	A Model for Sharing of Confidential Provenance Information in a Query Based System
	Introduction
	Provenance in Kepler
	An Implementation Model
	Sub Goal 1: Data Ownership
	Sub Goal 2: Editing and Audit Trail
	Sub Goal 3: Data Annotation
	Sub Goal 4: Data Sharing
	Sub Goal 5: Data Audit and Verification

	Limitations and Conclusions
	References

	Kepler/pPOD: Scientific Workflow and Provenance Support for Assembling the Tree of Life
	Introduction
	The Kepler/pPOD System
	The Computation Model of Kepler/pPOD
	Recording and Representing Provenance in Kepler/pPOD
	Displaying and Browsing Provenance in Kepler/pPOD

	Conclusion and Future Work
	References

	Using Visualization Process Graphs to Improve Visualization Exploration
	Introduction
	Background
	The P-Set Model for Visualization Exploration

	Relations and Graphs for Visualization Analysis
	Visualization Process Relations
	Visualization Process Graphs

	Case Study: Improving the OASCBrowser
	Example Session and Analysis
	The Refined OASCBrowser

	Discussion
	Conclusions
	Future Work

	References

	Implementation and Evaluation of a Protocol for Recording Process Documentation in the Presence of Failures
	Introduction
	Protocol Outline
	Terminology
	Failure Assumptions
	Protocol Outline

	Implementation
	Performance Evaluation
	Throughput Experiment
	Throughput Experiment with Failures
	Benchmark Experiments
	Application Experiment

	Related Work and Conclusion
	References

	Provenance and the Price of Identity
	Introduction
	Foundations
	Current Available Strategies
	Strong Identification
	Strong Identification with IDSet
	Intermittent Identification
	Initial Identification
	Recreating Intermediate Data Items

	Evaluation
	Pros and Cons
	Time and Space

	Discussion
	Identification within an Implicit Workflow System
	Identification Across DisparateWorkflow Systems

	Related Work
	Conclusions
	References

	Towards Provenance-Enabling ParaView
	Introduction
	Related Work

	A Process-Driven Provenance Model
	Change-Based Provenance

	Capturing, Representing, and Re-playing Provenance
	Capturing Actions
	Representing Actions
	Re-playing Actions

	Case Study: ParaView
	Discussion
	References

	Application of Provenance for Automated and Research Driven Workflows
	Introduction
	Use Cases
	Automated Workflow
	User-Driven Research Workflow

	Use Case Findings
	Experiences
	Conclusions
	References

	Using Provenance to Improve Workflow Design
	Introduction
	Background
	Software Reuse and Component-Based Software Development
	Component-Based Workflow
	Recommendation Systems and Collaborative Filtering

	Workflow Process Recommendation in Vistrails
	Usage Details
	Conclusion
	References

	Job Provenance – Insight into Very Large Provenance Datasets
	Introduction
	Demonstration Scenario
	Evaluated Computational Experiment
	Visual Form—The Demo GUI
	Analysis Step by Step
	Batch Job Submission

	Experiment Setup
	Job Provenance Service
	Job Implementation
	Testbed

	Related JP Extensions
	Direct JPIS Database Access
	Application-Specific JP Type Plugin
	Configuration Extensions and Database Schema Changes

	Highlights and Conclusions
	References

	A Provenance-Based Fault Tolerance Mechanism for Scientific Workflows
	Introduction and Background
	The Kepler Provenance Framework
	Classifying Data-Dependencies
	Recording Data-Dependencies

	Scientific Workflow Doctor: Using Provenance Data for Fault Tolerance
	Related Work
	Conclusions and Future Work
	References

	A First Study on Clustering Collections of Workflow Graphs
	Introduction
	Clustering Workflows
	Alternative Workflow Representations
	Measuring Workflow Similarity
	Clustering Algorithms

	Experimental Evaluation
	The Dataset
	Deriving Clusters
	Effectiveness of Clustering
	Workflow Representations: Graphs vs. Vectors

	Conclusion
	References

	Exploiting Provenance to Make Sense of Automated Decisions in Scientific Workflows
	Introduction
	Quality-Based Decision Processes
	Example
	Structure of the Decision Process
	Compiling Quality Processes to Workflows
	Role of Provenance

	The Quality Provenance Model
	Semantic Definition of Quality Processors
	Static Model
	Dynamic Model
	Querying the Model

	Conclusions
	References

	Using Explicit Control Processes in Distributed Workflows to Gather Provenance
	Introduction
	Provenance Gathering in Distributed Scientific Workflows
	Control Flow in Scientific Workflows
	Provenance Gathering in Heterogeneous WfMS

	Scientific Workflow Control Flows
	Control Flow Modules in VisTrails

	Execution Control on VisTrails
	Conclusion
	References

	ES3: A Demonstration of Transparent Provenance for Scientific Computation
	Introduction
	Model and Methodology
	Implementation
	Applications
	Hidden Provenance
	Nested Provenance

	Demonstration
	References

	Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment
	Introduction
	The LONI Pipeline Workflow Environment
	Goals of the LONI Pipeline Environment

	LONI Pipeline Provenance Architecture
	Data Provenance
	Processing Provenance

	Provenance Validation
	Discussion
	Conclusions
	References

	Provenance Tracking in an Earth Science Data Processing System
	Introduction
	Science Data Processing
	Data Archiving
	Primary and Secondary Metadata
	Reprocessing

	Provenance
	Scientific Reproducibility
	Process on Demand and Virtual Archives
	Provenance Problems

	Conclusion and Future Work
	References

	A Python Library for Provenance Recording and Querying
	Introduction
	Motivation
	Overview of the Python Library for Provenance
	Fundamentals of the EU Grid Provenance Concept
	General Architecture Overview
	API Description Overview

	Implementation Details
	Used Technologies and Methods
	Examples

	Current and Future Work
	Current State
	Future Work

	Conclusions
	References

	Requirements for a Provenance Visualization Component
	Introduction
	Motivation
	User Classification
	Generalized User Requirements
	Types
	Classification
	Visualization
	Visualization Examples

	Examples from Projects
	Current and Future Work
	Conclusions
	References

	Advances and Challenges for Scalable Provenance in Stream Processing Systems
	Introduction
	The TVC Model for Century and Resulting Limitations
	Challenges in the Practical Application of Model-Based Provenance

	Looking towards the Future: The CMIR Data Provenance Framework
	Challenges in CMIR-Based Provenance System Design

	Resolving Granularity Differences between Stream Data Producers and Consumers
	Granularity Resolution in Current Century Implementation

	Related Work
	Conclusions
	References

	Using Provenance to Support Real-Time Collaborative Design of Workflows
	Introduction
	Architecture
	SynchronizedDesign
	Algorithm
	Implementation
	Issues
	Discussion

	Use Cases
	Related Work
	Conclusion
	References

	Provenance in Sensornet Republishing
	Introduction
	Related Work
	Data Provenance in Sensornet Republishing
	Definition and Goals of Sensornet Provenance
	Approaches to Provenance for Sensornet Republishing
	Tracking the Transformation
	Data Disclosure for Provenance

	Implementation
	Predecessor Link
	Incremental Compression

	Evaluation
	Provenance Benefit
	Provenance Design for Sensornet Republishing
	Redundancy across Predecessor Links

	Conclusion and Future Work
	References

	Semantically-Enhanced Model-Experiment-Evaluation Processes (SeMEEPs) within the Atmospheric Chemistry Community
	Introduction
	The Atmospheric Chemistry Community
	The Modelling Process
	Prototype Development
	Methodology
	Provenance Specification
	Architecture
	Knowledge Engineering
	Implementation

	Prototype Evaluation
	Evaluation Methodology
	The Scenarios
	Evaluator Background
	Barrier to Adoption of the ELN
	Perceived Benefits of Using an ELN for Provenance Capture
	Using Provenance When Writing a PhD Thesis

	Related Work
	Conclusions and Future Work
	References

	Oceanographic Data Provenance Tracking with the Shore Side Data System
	Introduction
	Monterey Ocean Observing System
	Shore Side Data System
	Operational Details

	DataModel
	Application Framework
	Java Objects
	Perl Module
	Web Application

	Operational Procedures
	Discussion of Provenance Systems
	Conclusion
	References

	Invited Contribution
	The Open Provenance Model: An Overview
	Background
	Scope
	Technical Overview
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

