Chapter 4

Fuzzy Rule-Based Systems with
Polynomial Membership Functions

In order to obtain a richer class of functions to which the fuzzy rule-based sys-
tem is equivalent, one can use nonlinear membership functions of fuzzy sets,
to which polynomials of the second or higher degree belong. Such polynomi-
als are defined by three or more parameters. It would appear that by using
nonlinear membership functions, one can get a sufficiently large class of func-
tions, to which the rule-based system is equivalent. However, if we increase
the complexity of membership functions of fuzzy sets only, while preserving
the number of fuzzy sets assigned for the input variables, our intuition about
richness of the class of functions performed by the rule-based system can fail
us. The number of fuzzy sets is important, since it determines the number of
consequents of the rules; thus, it constrains the class of functions performed
by the zero-order TS rule-based systems. This fact will be shown further on.

The consequents of “If-then” rules can be defined as functions depend-
ing on input variables, e.g. they can be polynomials. However, if it is not
stated differently, we will consider the zero-order rule-based systems. A spe-
cial attention will be paid to the TS systems which use the second degree
polynomials as the membership functions of fuzzy sets. First we will show
that it is not possible to obtain any second degree polynomial function, to
which a TS rule-based system is equivalent, on the assumption that only two
complementary membership functions as the second degree polynomials are
defined for the input variables for this system. We prove however, that three
quadratic membership functions suffice to model every second degree polyno-
mial function. For such membership functions the natural requirements that
guarantee a clear interpretability of fuzzy sets will be defined as well. The
TS systems that use as a basis three normalized second degree polynomial
membership functions, called P2-TS systems, will be thoroughly investigated.
Similarly to the fuzzy rule-based systems with linear membership functions,
we will define both a generator and a fundamental matrix for the P2-TS
systems. The features of the fundamental matrix for such systems and its
inverse will be given.

The curse of dimensionality problem is more serious for the P2-TS systems
than the one for the P1-TS systems. Therefore we will develop the recursive
procedures for the computation of the inverse of the fundamental matrix and
for the crisp output of the P2-TS systems.
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62 4 Fuzzy Rule-Based Systems with Polynomial Membership Functions

4.1 TS Systems with Two Polynomial Membership
Functions for Every Input

Below we prove the following

Remark 4.1. Suppose the inputs of a zero-order TS system are zp €
[—ak, Bk], (k = 1,2,...,n), and every input has assigned two complemen-
tary membership functions, say N (zr) and Py (z) = 1 — Ng (z). If all
membership functions are polynomials of the degree d, then

(1) the crisp output f (z1,...,2y,) of this system is the following multivariate
polynomial
f(zlv°"7zn) = Z aplwwpnzflzgz “.Zan? (4]‘)

P1,--Pn€4{0,1,2,...,d}"

where 0, ... p. €R,
(2) every multilinear function of type ([@1]), can be exactly expressed by the
fuzzy “If-then” rules if, and only if the degree of polynomials is d = 1,
(3) not every nonlinear function of type (£ can be unambiguously ex-
pressed by the fuzzy “If-then” rules, when the degree d > 1.

Proof.
(1) First observe that the system output S is a linear combination of 2"
n
polynomials in the form “J] (ad)kz,‘j + ... Far ke + ao,k)”. Thus, the
k=1

output S is in the form (@II), indeed.

(2) For two fuzzy sets for every input (Nj and Py), there are 2" consequents
of the rules, which are free design parameters. The polynomial of degree d
is described by (d + 1) parameters. Thus, the number of functions (@],
which are structurally different one from another, is (d 4+ 1)", and it is
equal to the number of different consequents of the rules if, and only if
(d+1)" = 2. In this case we apply Theorem 2.4

(3) Ford > 2 wehave (d + 1)" > 2™. Thus, not every nonlinear function (Z.1])
can be exactly expressed by TS system; this finishes the proof of
Remark [Tl O

Let us consider an example which is of twofold goal. Firstly, we will give an

additional proof of Remark E.T] for the second degree polynomial (d = 2).

Secondly, we will show that by using some nonlinear bijection for the crisp

input « of the TS system with two linear membership functions, we can

obtain its nonlinear output S (z), (see Fig. EIJ). Of course, the use of such
bijection is not necessary to prove Remark (.11

Example 4.2. Let us consider the zero-order TS system with the input x and
the output S, as shown in Fig. [£.Il We define a nonlinear mapping between
the original input « € [—a, 8] and an ancillary variable z € [—a, 8], in the
form of the second order polynomial
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z € [—a,f] Bijection ? € [, 8] TS S =5(z)
g 2 " system g

Fig. 4.1 SISO TS system from Example [£2]

(z + ) (z = B)

z(z)=x+m ot B

, (4.2)

where m is a parameter - see Fig. 2 We assume that 0 # |m| < 1, since
[2) is a bijection z : [—«, 8] — [—a, 0] if, and only if |m| < 1, and we omit
the trivial case z = x. If the membership functions are linear:

NG =(a+8)""(B-2), Pz)=1-N(z),

then from two fuzzy rules:

Ry :If zis N, then S = qq,
Ry : If 2 is P, then S = o,

we obtain the system output

g_ N () +aP(2)
N (2)+ P(2)
_(@-—q)z+ag+6n +m(Q2_QI)($+a)($_ﬁ).

a+p (a+ B)?

Fig. 4.2 The bijection
(#2) with parameter
m = m;: mp = —1,
mo = —0.5, ms3 = 0.5
and mg4 =1
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It can be equivalently written as
S (z) = A2® + Bx + C,
where
Q@2 —q

(a+8)"
(a+B+m(a—=p))(e2—aq)

(a+5)°
@B (a+ B+ ma)+ g (af —maf +a?)

(a+5)°

Thus, independently of the consequents of the rules (¢; and g2), the sys-
tem output is restricted to the following class of functions as second degree
polynomials

B =

)

C

S(m)zAx2+(a;ﬁ+a—ﬂ>Ax+C’, x € [—a,p], (4.4)

where A,C € R, by 1 > |m| # 0. This means that there are “many”, but
not all second degree polynomials, which can be exactly represented by the
rule-based system. For example, by the fixed interval [—q, 3], we are not
able to formulate such two fuzzy rules, that the rule-based system would be
equivalent to the following polynomial

fl@)=A? + A(a—B)a+C,  zel-a, (4.5)

where A,C € R. This is because there is no m such that 0 # |m| < 1 and

(a +5 +a-— 5) A = (a— ) A for any real o, § and A. In other words,
m

the function ([£3) is not from the class of functions defined by (@4]). This

example shows by contradiction that the second part of Remark [Tl is true.

The zero-order rule-based TS systems in which the membership functions of
input variables are polynomials of the degree d will be called Pd-TS systems.
A special attention will be paid to P2-TS systems further on.

4.2 The Normalized Membership Functions for P2-TS
Systems

From the preceding section we know that it is not possible to obtain any
second degree polynomial by using the TS systems, in which only two com-
plementary membership functions as second degree polynomials are defined.
However, we will prove further on that three membership functions as the
second degree polynomials suffice to model any second degree polynomial
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function. Such membership functions defining the fuzzy sets for input vari-
ables will be defined below.

In the interval [—a, 5] we define three membership functions of fuzzy sets,
say N (z), Z(z) and P (z), which are the second degree polynomials and
satisfy the following additional conditions:

1. N : [-o, 0] — [0,1] is a monotonic function with negative slope, i.e.
dN (z) /dz < 0 for z € [—a, (], which satisfies two boundary conditions:

a) N(—a)=
b) N (8) = 0.

2. P : [-a,0] — [0,1] is the monotonic function with positive slope, i.e.
dP (z) /dz > 0 for z € [—a, 3], symmetric to the function N with respect
to the interval centre o € [—a, 3]:

L

—a+
= . 4.6
, (4.6)
3. Z : [-a,p] — [0,1] is the function which reaches zero slope in o, i.e.
dZ (o) /dz = 0.
4. The functions N, Z and P satisfy the normalization condition
N()+Z(2)+P(2) =1, Vzel-a,0]. (4.7)

One can prove that the functions N, Z and P meeting the above needs can
be expressed as follows

(@+B8-A(z+a))(6-2)

N (z) = , 4.8
(2) (at By (4.8)
(B—2)(z+a)

Z(z) =2\ , 4.9
(2) (a+ﬂ)2 (4.9)
P(Z):(aﬁ-ﬂ#—/\(z—ﬂz))(z%-a)’ (4.10)

(a+0)

where the parameter \ satisfies the condition
0<AL 1. (4.11)

We do not allow A = 0, since in such case Z (z) = 0 for all z, and there would be
two nonzero membership functions only: N (z) and P (z). In other words, by
A = 0, the class of rule-based systems reduces to the formerly considered P1-TS
systems. Figures 3] and 4] show plots of functions ({8)-(@I0) for different
values of parameter A\. Observe that IV and P are normal fuzzy sets but Z is
not normal. The cores of the fuzzy sets N, Z and P are three characteristic
points of the universe of discourse: “—a”, “o” and “G”, respectively.
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Fig. 4.3 The basis of \
normalized second degree :
polynomial membership
functions by the maximal
value of parameter A,

(=1

z
Fig. 4.4 The basis of
normalized second degree
polynomial membership
functions by parameter
A=0.5
N

The membership functions N, Z and P have a clear linguistic interpreta-
tion in any case of boundaries “—a” and “3” as real numbers:

1. If —a < 8 < 0, then N can be interpreted as mnegative big, Z - negative
medium and P - negative small,

2. If —a < =0, then N can be interpreted as negative, Z - negative small
and P - negative zero,

3. If —a < 0 < B, then N can be interpreted as negative, Z - zero and P -
positive,

4. If 0 = —a < B, then N can be interpreted as positive zero, Z - positive
small and P - positive,

5. If 0 < —a < B, then N can be interpreted as positive small, Z - positive
medium and P - positive big.

As discussed in Section 22 the linguistic terms can be substituted by others
depending on the context or specific application.

The rule-based TS systems with the above membership functions we will
call P2-TS systems for short.

4.3 SISO P2-TS System

Now we will consider P2-TS system with single input z € [—a, ] and single
output S. The rule-base structure is as follows
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Ry :If zis N, then S = qq,
Ry :If zis Z, then S = q, (4.12)
R3 : If z is P, then S = ¢o.

The system output as a function of the input variable z is given by
S(E)=N@Ew+ZE)a+P()e=[N(2),Z(),P()]q,  (413)

where q = [qo, q1, qg]T, and N, Z and P are defined in ({8))-[@I0). By s we
denote the vector containing values of system output in the cores of the fuzzy
sets IV, Z and P, respectively

s=[S(~a),S(a),S(B)".
It can be expressed equivalently by
s = Rq, (4.14)

where the matrix R contains the membership degrees in the cores of the fuzzy
sets

N(-a) Z(—a) P(—a) 1 0 0
R=| N(o) Z(o) Po) | =](2=N/4 N2 (2—-X)/4
N@B) Z(B) P®) 0 0 1

(4.15)
Observe that S (—a) = qo and S () = g2. However, the consequent of the
fuzzy rule Ry in [@I2)) is q1, but

2—\ A 2— A\
Qo+ q1+ 7@ # q1,

— 4 =

and there is no such A € (0, 1] for which ¢} would be equal to ¢;. The maximal
influence of the rule consequent ¢; for the crisp output ¢} one obtains for
maximal value of the parameter \. Therefore we prefer to use A = 1.

Corollary 4.3. The crisp output of the SISO P2-TS system is exactly the
same as the consequent of the rule, if the input is either “—a” or “B7. The
interpretation of the fuzzy rules Ry and Rs given by ([{.12) for the P2-TS
system is straightforward and analogous to the P1-TS systems.

Similar considerations concerning P2-TS systems with many inputs will be
given further on (see Theorem LT and Example E.T3).
Now we introduce a generator for the SISO P2-TS system

gx)=1|%]. (4.16)
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According to Remark ] the function f (z) to which the rule-based system
([ET2) is equivalent, has the form

fz)=g"(2)6, (4.17)

where @ = [y, 61,05]". The equality S(z) = f(z) must be satisfied for
z € [—a, ], particularly for all three characteristic points from the set
{-a,0,8} C [-«,[]. Thus,

f(=a) gT (—a) to
s=|f(o) |=|g" (o) 01| =r"e
f(B) g’ (8) 02

must be satisfied, where the matrix I' is the concatenation of the values of
the generator (.18 in the points “—a”, “o”, and “3”, respectively, i.e.

r=(g(-a),g(0),g(3)].

Thus, we obtain the exact relationship between consequents q of the rules
(EI2) and parameters 0 of the function [@IT) as follows

Rq=1I76.
Thus,
q=R7'r'e =0%e, (4.18)
where the fundamental matriz for the SISO P2-TS system is defined by

1 1 1
Q=-r®R"H = |- o B, (419)
o (a?+8%) /2-(a+p)"/(2)) B

where 0 < A < 1. The inverse of € always exists and is given by

Q*lZRTlﬂfl
B4aB(l-X) —a(l=XN-=8(1+) A
_ 1 2203 e DN
2
@+0)" |02 LaB(1-N) a(l+4N+8(1=A) A
(4.20)

All equations are valid for any parameter value A from the interval (0,1].
Assuming A = 1 and adding the index “1” for matrices in the case of SISO
P2-TS system (n = 1), we obtain

e the matrix ({I5) of membership degrees in the points from the set
{—Oé,O', ﬂ}
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1 0 0
R, = |1/4 1/2 1/4]. (4.21)
0 0 1

e the fundamental matrix of the SISO P2-TS system

1 1 1
Q=] o1 B, (4.22)
of  —af B7

e and the inverse of the fundamental matrix

) Br =260 1
201 4or =2 . (4.23)

2
(al + ﬂl) a% 201 1

Q=

The above formulas will be useful further on.

4.4 P2-TS System with Two and More Inputs

In this section we will investigate P2-TS systems with the inputs z1, ..., z,.
For such systems, in order to define three membership functions Ny, Zx and
Py, as the functions of variables zx, (k = 1, 2, ..., n), we can choose individual
parameter values A1, Ao, ..., A, for the particular inputs. The membership
functions take the following general form

(ak + B — M (2 + ) (Br — 2k)

Ni (2x) = , (4.24)
(ak + Be)?
Zi (z1) = 2, P~ #) (o ) (4.25)
(ax + Br)
P (21) = (ag + Br + Ak (21 — Br)) (21 + o) (4.26)
(an + Br)? ’
where A\, € (0,1], (k =1, ..., n). If there are no contraindications, we prefer

to assume in practice the same value A\, = 1 for all variables (see Section [L.3])
— this corresponds to membership functions shown in Fig.

Let M,, be a crisp set of 3" characteristic points for the P2-TS system as
n-dimensional vectors

M, ={—a1,01,01} x {—az,02,02} X ... X {—an,0n,0,} C D". (4.27)
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Fig. 4.5 The ordered 23
set M, for n = 3 with
two depicted elements.
The first one (v = 1)
corresponds to the vector
(—a1, —az2, —as) and the v =27
last one (v = 27) - to the
vector (ﬁ1 5 ﬁg, ﬁd)

Z1

The set of characteristic points for P2-TS system includes all vertices of
the hypercuboid D™. We order M,, as follows. For every n-dimensional vec-
tor (v1,...,7) as an element of the set M, (see Fig. IO we define the
corresponding index v according to the following bijection

v=1+)» 37'p, (4.28)
i=1
where
0 < Yi = —Q;
pi=< 1 & v =o0; , i=1,...,n. (4.29)
2 & Yi = ﬂz

Thus, every element of the set M,, unambiguously corresponds to some index.
For (v4,...,7,) € My, and (v{,...,v") € M,, we define an ordering relation
“<” as follows

(Vi) =< (Vo) & Uyl oyt < Uyt (4.30)

o Forn=1wehavev_, =1<v, =2 < vg =3 and therefore —a < o < .
e For n = 2 the inequalities between indices are
Vear—as = 1 < Vg —a0 =2 <V —as =3 < V—qay,00 =4 < V5,00 =0 <
UBy,02 = 6 < V—ay,B2 = < Voy,B2 = 8 < UBy,B2 = 9.
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Thus, the members of My are ordered as follows
(—a1, —ag) < (01, —az) < (1, —a2) < (—a1,02) < (01,02) < (B1,02) <
(=, B2) < (01, 52) < (Br, F2).
e For the ordered set M3 we have
(—a1, —ag, —az) < (01, —az, —a3) < (b1, —a2, —a3) < (—a1,02, —a3) <
(01,02, —az) < (B1,02, —a3) < (—a1, B2, —a3) < (01, B2, —a3) <
(B1, B2, a3) < (—ai, OZ2,03) < (o1, —az2,03) < (B, —az,03) <
( «1,02,0 3) =< (0’1,0’2,0’3) (ﬂ1,0'270'3) =< (—Oél,ﬂg,()'g) =<
(01, B2,03) < (B, B2,03) < (—a1, —az, B3) < (01, —az, B3) <
(B1, —a2, B3) < (—a1,02,83) < (01,02, 83) < (B1,02,03) <
(= ) <

o1, B2, B3) < (01, B2, B3) < (B, P2, B3).

The process of ordering the set M, is simple and unambiguous for any number
of system inputs.

Finally, for the MISO P2-TS system with the inputs 21, ..., 2z let us
introduce a generator

go =1,
gk (zlv' . °7Zk) et1
gk+1(zl7"'7zk+l): Zk+1gk(zlv"'7zk) GRS ) k:Oa172a"'7n_1a
z,%_Hgk (z1,+ -+, 2K)

which is of great importance for such systems.

4.4.1 Rule-Base Structure for
Two-Inputs-One-Output P2-TS System

For n = 2 the rule-base structure is as follows

Ry : If z1 is N7 and 29 is Ns, then S = qqo,
Ry : If z1 is Z; and 2z is N, then S = ¢,
R3 : If z1 is P; and z3 is Na, then S = ¢g0,
Ry : If z1 is N7 and 29 is Zs, then S = qo1,
Ry : If z1 is Z7 and 25 is Z5, then S = q11, (4.32)
Rg : If z1 is P; and z3 is Zs, then S = g9,
R7 :If z1 is N1 and 25 is P, then S = qqo,
Rg : If z1 is Z7 and zo is P», then S = ¢p9,
Ry : If z1 is P, and z5 is P», then S = 99,

and, in accordance with (£3T]), the generator is given by
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g1 (1) 2 2 2 2 2.21T
g2 (21,22) = | 2281 (21) | = [1,Zl,2172272122,2122,227212272122] - (4.33)
2581 (21)
The crisp output of the system can be expressed as a scalar product of two
vectors

S (z1,22) = [N1Na, Z1No, Py Ny, N1 Zo, Z1 Zo, Py Z2, N1 Po, Z1 P2, P, P5] q,
(4.34)

where Nk = Nk (Zk)7 Zk = Zk (Zk) and Pk = Pk (Zk) for k = 1,2 are the
membership functions defined by ([E24)-(@.20), and the vector q consists of
the conclusions of the rules ({32

q= [%07 410,920, 901, 411, 921, 902, 412, QQz}T . (4'35)

On the other hand, according to Remark 1] we have

S(z) =g; ()0, z€D?

17 and g (z) is given by

where @ = [0o0, 010,020, 001,011,021, 002,012, 022

&33).

4.4.2 Rule-Base Structure for
Three-Inputs-One-Output P2-TS System

For n = 3 the rule base consists of 27 rules. Its abbreviated structure is as

follows
Ry : If z1 is N7 and 25 is N and z3 is N3, then S = ggoo,
Ry : If z1 is Z1 and z5 is Ny and z3 is N3, then S = g1q0,
R3 : If z1 is P; and 25 is Ny and z3 is N3, then S = goqp,
Ry : If z1 is Ny and 25 is Z5 and z3 is N3, then S = qg10,
Rs : If z1 is Z1 and z5 is Z5 and z3 is N3, then S = ¢110,
Rg : If z1 is P; and 29 is Z5 and z3 is N3, then S = go219,
Ry : If z1 is N7 and 29 is P> and z3 is N3, then S = ggoo,
Rg : If 21 is Z; and 23 is P, and z3 is N3, then S = ¢q20,
Rg : If z1 is P; and 25 is P, and z3 is N3, then S = g9,
Rig : If z1 is N7 and z5 is Ny and z3 is Z3, then S = ggo1,

R27 cIf Z1 is P1 and z92 is P2 and z3 is Pg, then S = q222,

and the generator
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g2 (21, 22)
g3 (21,22, 23) = | 2382 (21, 22)
2
2382 (21, 22)
2 2 2 2 2.2
= [1aZlaZ17ZQaleQaZ1Z2aZ272122721Z27
2 2
Z37le372123722233Z1Z2Z3721Z2Z37
2 2 2.2 2 2 2.2 2
Z9R3,R1R9%3,21R9R3,%3,%1%3,R1%3,R2%3,

2 2 2 .22 22 22T
212223, 217025, 2525, F125 25, 21 2825 . (4.36)

The output of a three-input P2-TS system can be expressed and computed
in the same way as for a two-input system - this is rather a simple task, but
the equations are large for the number of inputs n > 3. For MISO P2-TS
systems with n > 3 inputs we prefer to use the methods based on recurrence,
which will be presented in the next sections.

4.5 The Fundamental Matrix for MISO P2-TS System

Similarly to SISO P2-TS systems, for the MISO P2-TS systems, the same
equations as in ([£I]) hold, namely

q=R'r'e =070, (4.37)
where

e the vector q contains the consequents of the “If-then” rules,
e 0 is the vector of parameters of the crisp function (1)) to which the MISO
P2-TS system is equivalent,
e the meaning of matrices R and I is the same as in Section 3] after some
generalization for MISO systems,
e the matrix
Q=r®r")" (4.38)

we will call the fundamental matriz for P2-TS system.

Both € and its inverse are important, since they enable one to establish an
exact relationship between the consequents q of the “If-then” rules and the
parameters 0 of the crisp function ([£1]), to which the rule-based system is
equivalent. Therefore our goal in this section is to give a procedure of how to
compute the fundamental matrix and its inverse in the general case.
First we prove the following

Lemma 4.4. For the MISO P2-TS system with the inputs [z1,.. .,zk}T
D, we define the matriz

S

Fk = [gk (_ala-"a_ak)7"' , 8k (ﬂlaﬂ27"'76k)]7 (439)
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for k=1,2,...,n, where the values of the generator g, defined in ({.31]) are
computed for the subsequent elements of the totally ordered set My, defined by
(Z-27). The matricz I'y, can be computed recursively as follows

Iry= ]-7
1 1 1
Ipi1= | —Qk+1 Okt Br+1 | ® Iy, (4.40)
ai—i—l 0']%+1 ﬁl%—i—l

fork=0,1,2,...,;n—1.

Proof. From (@39) by g1 (21) = g(2) defined in (£I6]) we obtain

1 1 1
ri=[gi(-),gi(o1),g(B)] =@ o A
af of fF
On the other hand from (@40) for £ = 0 we have
1 1 1
Ir, = —aq -1 o1-1 ﬁ1~1

(—a1)®-1 o2-1 p2-1

Thus, for k£ = 0 the recurrence ([@A0) is true.
For k > 1 let us rewrite the equation ([@39)), taking into account ([@3T])

Fk+1 - [gk+1 (_ala"'ﬂ_akv_ak+1)7 oy k41 (ﬂlv"'vﬂkvﬁkﬂ*l)]
gk(_ala"w—ak) gk (ﬂ17"'76k)
— —o18k (—ar, .. —aw) | oo | Berigr (Br, -, Br)
(—oni1)’ gr (o, ..., —a) Bei 18k (B1,-- - Bk)

(4.41)

For example
F2 - [alaaQaa37blab27b3aC17C2ac3 )

where the column vectors a;, b; and c; are
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g1 (—a1)] [ g1(o1)] g1 (51)
by = | 0281 (—a1) | | by = | 0281 (01) | | bs = | 0281 (B1) | ,
| o3g1 (—a1) | 0381 (01) o381 (61)
[ g1 (—a1)] [ g1(01)] g1 (61)
ci= | Pegi(—a1) |, co=|0Begi(o1)|, c3=|Begi(B1)],
_ﬂ%gl (—oa) | _ﬂ%gl (1) | B3g1 (61)
what results in
r1 1 1 1 1 1 1 1 1 7
—a1 01 B —a1 g1 B —a1 g1 B
of o B of o pI of o B
—ay —ay —az 03 o2 02 B2 B2 [
I'y=| aiaz —o1as —efh —102 0102 (102 —a1ffa 0182 12 ||
—atag —0lag —agfll afoy ofos (Pox aiBs 0By [ifs
a5 a3 a3 o3 03 03 3 503
—a103 0105 a3f —ai03 0103 fios —aifs o185 Bi3
ajad ofa3 o3ff ajoi ofod Biol aif3 oif3 Bi63

or equivalently
1 1 1

s = —Q2 gy e R I'.
2
(—az) o5 B3
One can observe that in the general case, because of the generator structure
(#3T) and the sequence of the characteristic points from the set My, the

structure of the matrix I'yy is as follows
Iy
(a) The first 3% columns of I'y;; constitute the submatrix | —®k+1%
(—ak+1)2 I’y

Iy

(b) The next 3% columns of I'yy; constitute the submatrix | ok+11'k

O—I%-HF k

Iy

(c) The last 3* columns of I'yy; constitute the submatrix | Bk+11 'k

ﬁ§+1fk

This finishes the proof of Lemma [£.4] O
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Lemma 4.5. For the MISO P2-TS system with the inputs z1, ..., zx, let us
denote by sy the vector of its outputs in the consecutive points of the ordered
set My, defined by ([4-27), and the vector qi containing the consequents of the
rules

[ S (—a1,—az, —as, ..., —ay) q000...

0
S (o1, —ag, —ag, ..., —oy) q100...0
S (81, —ao, —as, ..., —oy) 4200...0
S(—ay,00,—a3,...,—oy) qo10...0
S (01,02, —as,...,—ay) q110...0
sp=| SBro2,—as,....,—ax) | Qi = | 4210...0 (4.42)
S (—a, P2, —as, ..., —oy) q020...0
S (o1, P2, —asz, ..., —ay) q120...0
S (81, P2, —asz, ..., —ag) 4220...0
S(ﬂhﬂ?aﬂl%'-'aﬂk) _ | 4222...2 |
There exists a matrixc Ry € R3"%3" sych that
S = quk, (443)
and Ry can be recursively computed as follows
Ro=1,
1 0 0
Ripp1= | (2= Mt1) /4 Met1/2 0 (2= Xes1) /4| @ Ry, (4.44)
0 0 1

for k=0,1,2,...,n — 1, where A\, € (0,1] is the parameter of membership

functions (£.24)-{4-20)).

Proof. Let us consider the system with one input z; € [—ay, £1]. From the
results in Section 3] we have

S (—a1) Ni(—a1) Zi(—a1) Pi(—oa) | |ao
S(o1) | =Riai = | Ni(o1) Zy (01) Py (o) q1
S (1) Ni(B1)  Zi(B1) Pi(Bh) 0
Thus,
1 0 0
Ri=|2-M)/4 M/2 2-M)/4|®],
0 0 1

i.e. the result is the same as in ([EZ44).
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For the system with two inputs the equality so = Roqs holds, where

S (—aq, —a2) qoo

S (o1, —a2) q10

S (B, —az) 420

S (—aq,02) Ro 11 Ro 12 Roj13 qo1

So = S (01,02) , Ro=|R221 Rop2 Roo3 |, aqx=|qu|,

S (B1,02) Ro31 Ro 32 Ro33 go1

S (—au, f2) qo2

S (o1, B2) 712

| S(61,62) | | Go2 |
and

Ni(—aq) Na(—2) Zi(—oq) Na(—a2) Pi(—a1) Na(—a2)
Ro11= | Ni(o1)Na(—a2) Zi(01) N2(—a2) Pi(01) N2 (—az)
Ni(B1) N2 (—a2)  Z1(B1) N2 (—a2)  Pi(B1) N2 (—az)
=Ry N2 (—az),
N1 (—Oq) Z2 (—ag) Zl (—Oq) Z2 (—ag) P1 (—Oq) Z2 (—ag)]
Roi2= | Ni(o1)Za(~a2) Zi(01) Z2(~a2) Pi(01) Z2(—a2)
Ni(Br) Z2 (—a2)  Z1 (1) Z2(—a2)  P1(B1) Z2 (—a2)
=R Z3(-a2),
Ni(~a1) Py (—a2) Zy(—a1) Py(—a2) Pi(—a1) P (—oa)}
Roi3=| Ni(o1) 2 (~a2) Zi(01) Pa(—a2) Pi(o1) P2(—a2)
Ny (B1) Pa(—a2)  Z1(B1) Pa(—a2)  Pi(B1) Pa(—a2)
=Ry P (-a2),
Ny (—a1) Ny (02) Z1(—a1) No(02) Pi(—a1) Nz (o2)
Ro21 = | Ni(01)N2(02) Zi(o1)Na(o2)  Pi(01) Na(02)
Ni(B1) N2 (02)  Z1(B1) N2(o2) P (B1) N2 (02)
= R1 . N2 (0’2) ,
N1 (—Ozl)ZQ (0’2) Z1 (—a1)22 (0'2) P1 (—a1)22 (0'2)
Rao2o = | Ni(01)Za(02) Zi(01) Z2(02) Pi(01)Z2(02)
Ni(B1) Z2(02)  Z1(B1) Z2(02)  Pi(B1) Z2(02)

:Rl 'ZQ (0'2),
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N1 (—al) P2 (0’2) Z1 (—al) P2 (0’2) P1 (—Oq) P2 (0’2)
Rao3 = | Ni(o1) P2(02) Zi(o1) Pa(02) Pi(01) P2 (02)
Ni(B1) Py (02)  Z1(B1) P2(02)  Pi(B1) P2 (02)

= R1 . P2 (0'2),
Ni(—aq) Na(B2) Zi(—a1) Na(B2) Pi(—aq)Na(B2)
Rozi = | Ni(o1)N2(B2)  Zi(01) N2(B2)  Pi(01) N2 (B2)
Ni(B1) N2 (B2)  Z1(B1) N2(B2)  Pr(B1) N2 (fB2)

=Ri- N2 (f2),
Ni(=a1) Z2(B2) Z1(—on) Z2(B2) Pr(—aq) Z2(B2)
Rose = | Ni(o1)Z2(B2) Zi(01) Z2(B2)  Pi(01) Z2(B2)
N1 (1) Z2(B2)  Z1(B1) Z2(B2) P (B1) Z2(B2)

=R1- 22 (B2),

and

Ni(=a1) P2 (B2) Z1(—a1) P2 (B2) Pi(—a1) P2 (B2)
Ross = | Ni(o1) 2 (B2) Zi(o1)P2(B2)  Pr(o1) P2 (B2)
Ni(B1) P2 (B2)  Z1(B1) P2 (B2)  Pi(B1) P2 (B2)

=R; P2 (f2).

In a more compact form we can write

Ny (—a2) Zs(—az) P (—a2)
Ny (02)  Zy(02) Pa(o2)
No(B2)  Z2(B2) Pa(fe)

R, = ® Ri.

The same procedure must be applied for the construction of the matrix Ry
in (@43]), remembering the order of the set Mj. Finally, we conclude that the
following recurrence

Nit1 (—akt1) Zigr (—ong1) Prr (—agg1)
Nit1(0k41)  Zi1 (Okt1)  Prg1 (k1)
Nit1 (Bre+1)  Zr+1 (Br+1)  Prt1 (Bk+1)

Ry = ® Ry

holds for every natural k. After computing the membership degrees according
to ([@24)-([#26) we obtain the recursive formula ([@44]). This ends the proof
of Lemma O
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Observe that for Ay = Ay = ... =\, = 1 we have
1 0 0
Rer1=|1/4 1/2 1/4| ® Ry, k=0,1,2,...,n—1.
0 0 1

For example

(1 0 0
R,=|1/4 1/2 1/4| @Ry
0o 0 1
1 0o o0 0 0 0 0 0 0 ]
1/4 1/2 14 0 0 0 0 0 0
o 0 1 0 0 0 0 0 0
/4 0 0 1/2 0 0 1/4 0 0
=|1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8 1/16
o 0 1/4 0 0 1/2 0 0 1/4
o 0o o0 0 0 0 1 0 0
o 0 0 0 0 0 1/4 1/2 1/4
0o o o0 o0 ©0 0 0 0 1 |

The matrix R3 contains 3% x 33 = 729 elements and because of its large size
it will not be presented here.
Now we prove the following

Theorem 4.6. The fundamental matriz of the MISO P2-TS system with the
inputs [z1, . . ., zk]T € D* and the membership functions of fuzzy sets for the
inputs defined by (£.24))-(4-26), can be computed recursively as follows

Qy =1,
1 1 1
Q= o Kl P (4.45)
k= 1 ai + 8 2 k—1, .
N R S
2 Ak
fork=1,...,n, where A\, € (0,1] is the parameter of membership functions.

Proof. From ([@38) for MISO P2-TS system with the inputs [z1,.. ., z;]" €
D* we have

Q=T (R (4.46)
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Next we apply Lemma [£.4] and Lemma

Q= (Ar®IL_1) ((Bk ® Rk—l)_1>T’

where according to ([@40) and ([£44) the matrices Ay and By are

1 1 1 1 0 0
Ay=|—-ar or Bk, Br= |2 \)/4 /2 (2—X)/4
oF  op B} 0 0 1

From (A4) and (A given in Appendix [Al we obtain
T
((Bk ® R,H)*l) —®B;'erY) =B o ®Y)"
Thus,
Q= (Ar e M) (B o (®R2)" = (A (B7)" ) o (Do (RL))

One can check that

1 1 1
T —ay o Br
Ar(ByY) = 2
1 o+ 0
N R L
2 Ak
Now we apply the Kronecker product property (A.3) from Appendix [A}
1 1 1
—Q Ok ﬁk _ T
B e | @ (TR
g 9 Qg + ﬂk: - >\k ﬂk;

(4.47)
According to (£Z6) the equality I'y_q (R,Z_ll)T = Q_1 holds. Thus, the
equation (£47) is the same as ({45) and this finishes the proof of

Theorem 0
For A\ = Ao = ... =\, =1 we obtain a much simpler recurrence
Qy =1,
1 1 1
Q= | ~u ok Br | @ Qp_q, k=1,...,n, (4.48)
ai —Bra, ﬂ;%

which we prefer to use in practice.
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Fig. 4.6 Contour lines of the function (€Z9)

Example 4.7. Our goal is to obtain the fuzzy rules for P2-TS system which
exactly model the following nonlinear function

f (21, 20) = 22923 + 22220 — 2125 + 22 — Bzy29 + 325 — 42y + 620 (4.49)

for (21,22) € D? = [-12.8040,16.2860] x [—6.8844,5.2029]. Three contour
lines of the above function as the set of points

U {(z1,22) € D?: f(z1,22) = c}

ce{-3.3, 5, 100}

are shown in Fig. We assume that the first input z; of the TS sys-
tem has assigned the fuzzy sets N, Z; and P;, whereas the second one -
the fuzzy sets Na, Zs and P». The membership functions are defined by
([#24)-(@20), with the parameters A\; = A2 = 1, and boundaries of the
intervals a; = 12.8040, 5, = 16.2860, as = 6.8844, and ([ = 5.2029.
The cores of fuzzy sets Z; and Zy are o7 = 1.7410 and o5 = —0.8407,
respectively. Observe that the function ([@Z49) can be written equivalently
as

f (Z17 22) = ang (Z17 22) = [Oa _4a 17 6a _5a 27 3a _1a 2] 22 (Zla Z2) 5
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where the generator gs (21, 22) is given by (£33). Taking from (@22) the
fundamental matrix €, for one-input P2-TS system, we compute the funda-
mental matrix g for two-inputs P2-TS system, according to Theorem
(for Ay = Ay = 1). After computations we obtain

(1 —og a? —ay a1y —adam ak  —aja3 a?a3
1 o1 —a1fh —ag —o102 aqefh o3 o103 —aio3f

1 B 0% —az —afh —aafff a3 a3f a3t
l—a1  af o0z —a1op  ajos —apfa aroofh —ofazfs

Q= |1 o1—aipr o2 0102 —a1Bio2 —fe —o10202 cva2fifs | |

1 b B3 o2 Prioa Bioy —aofs —aaf1fz —a2fi B2
l—ar o fo—aify aife (5 —aiff a3

1 o1 —oafi B2 0162 —0uBif2 53 0133 —a113
1 A BT B2 1P B3 B2 65 B153 B3

(4.50)

and numerically

[1-12.80 163.94 —6.884 88.15 —1128.6 47.39 —606.85 7770.0 ]
1 1.74 —208.53 —6.884 —11.99 1435.6 47.39 82.515 —9883.1
1 16.29 265.23 —6.884 —112.1 —1826.0 47.39 771.87 12571.
1-12.80 163.94 —0.841 10.76 —137.83 —35.82 458.62 —5872.2

QF=|1 1.74 —208.53 —0.841 —1.464 175.31 —35.82 —62.361 7469.2
1 16.29 265.23 —0.841 —13.69 —222.98 —35.82 —583.35 —9500.4
1-12.80 163.94 5.203 —66.62 852.98 27.07 —346.61 4437.9
1 1.74 —208.53 5.203 9.058 —1084.9 27.07 47.129 —5644.8

|1 16.29 265.23 5.203 84.73 1380.0 27.07 440.86 7179.9 ]|

For the P2-TS systems we have
-1
So =gl (21,20) () a2 = f (21, 22) = 0" g2 (21, 22) .
Thus, the vector of conclusions of the fuzzy rules is given by
@ =016

= [13764.9420, — 17032.2043, 21579.2316, — 12429.8971, 15030.6206,
— 18707.3075, 11589.1320, — 13655.0266, 16567.7977)T.

Finally, the system of fuzzy rules for the 2-iputs-1-output P2-TS system is
as follows
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Ry : If z1 is N7 and z is N, then S = 13764.9420,
Ry : If 21 is Z1 and z5 is Na, then S = —17032.2043,
R3: If z; is P} and 29 is No, then S = 21579.2316,
Ry : If z1 is N7 and z5 is Z5, then S = —12429.8971,
Rs : If 21 is Z7 and 25 is Z3, then S = 15030.6206, (4.51)
Rg : If z1 is P; and 25 is Z5, then S = —18707.3075,
Ry : If z1 is N1 and zo is P», then S = 11589.1320,
Rg : If z1 is Z1 and z5 is P», then S = —13655.0266,
Rg : If z1 is P; and 23 is P, then S = 16567.7977.

One can check that the above rule-based system exactly models the function

[@A9), since the expression gl (z) (Qgﬂ)fl q2 results in the same polynomial
as in ([@49) for all points z from the rectangle D?.

Example 4.8. Let us consider the system of fuzzy rules (@51 for 2-inputs-
one-output P2-TS system from Example [£771 Assume the same data a; =
12.8040, 51 = 16.2860, g = 6.8844, B2 = 5.2029, Ay = A2 = 1 and the
consequents of the rules [@51): gog = 13764.9420, g10 = —17032.2043, g2 =
21579.2316, qo1 = —12429.8971, g11 = 15030.6206, g21 = —18707.3075, go2 =
11589.1320, q12 = —13655.0266 and goo = 16567.7977. From (4.24))- (28]
and (£34)-[{30) we obtain the system output S = S3 (21,22 | qoo, - - -, q22)
which can be expressed by

S = Nz (22) (N1 (21) qo0 + Z1 (21) 1o + P1 (21) ¢20)
+ Z5 (22) (N1 (21) go1 + Z1 (1) i1 + P1 (21) ¢21)
+ P (22) (N1 (21) qo2 + Z1 (21) 2 + P1 (21) q22) -

The above expression gives the same function as in ([@49) exact to numerical
errors.

4.6 Recursion in MISO P2-TS Systems

In order to obtain the crisp output of a MISO P2-TS system, we need to ob-
tain an inverse of the fundamental matrix. Our first goal is to give a procedure
for computing this inverse. We prove the following

Theorem 4.9. Let Q¢ =1 and 2, be the fundamental matriz of the P2-TS
system with n inputs, (n > 1). The inverse of the fundamental matriz can be
computed as follows
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Bn (Ln — anAn)  —Lp+ (an — Bn) M An
Q! = 1> 205, Bn A 40pAn 2\ | @ Q1
"N an (Ln—Burn) Ln+ (an—Bn) A An
(4.52)
where L, = ay, + Bn.

Proof. Taking into account Theorem F@ the Kronecker product property
(A4) from Appendix[Al the equalities o, = (—a, + Br) /2 and Ly, = o+ Oy,
we have

-1

1 1 1
Q 1 —0p On ﬂn Q
= & n—1
" 2 1 2 2 (an + ﬂn)z 2
( Oén) 2 (an + ﬂn >\n n
Thus,
1 ﬁn (Ln - an/\n) —L, + (an - ﬂn) An An
Q;l = L2 2anﬁn>\n 2 (/B’ﬂ - an) —2An ® Q;.il

The last matrix is the same as in ([@52), because 2\, (6, — ) = 4o, \p.

This finishes the proof of Theorem O
For A\ = Ao = ... =\, =1 we obtain a much simpler recurrence
Qy =1,
1 /672L - 2ﬁn 1
Q! = 12 |200fn don 2| @ Q' n=12,..., (4.53)
n a? 2ap, 1

which can be used in practice.

4.6.1 Rule-Base Decomposition

Without loss of generality we will consider a zero-order TS system with one
output. The inputs are components of the vector z = [zq,. .., zn]T eD" (n=
2,3,...). We assume that three polynomial membership functions Ny (zg),
Zy (z1) and Py (zx) defined by (£24))-(20]), are assigned for every input zj,
(k=1,...,n).
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The complete and noncontradictory rule-base is defined by the following
3" “If-then” fuzzy rules:

Ry :If z; is Ny and 23 is Np and ... and z, is N, then S =qo,0,....0,0,
Ry :If 2y is Z; and 23 is Ny and ... and z, is Ny, then S =qi0,...0,0,
R3 :If 21 is P, and 23 is N> and ... and %z, is Ny, then § = ¢2.0,....0,0,
Ry If 21 is Ny and 22 is Z3 and ... and z, is Ny, then S = qo,1,....0,0

Rgn If Z1 is Pl and z92 is P2 and ... and Zn is Pn, then S = 42,2,...,2,2-
(4.54)

One can decompose this system into the following three subsystems:
Ry : If Py and 2z, is N, then S = qo,... 0,0,

Rgn-1: If Pgn-1 and z, is Ny, then S = q2,. 2.0,

R3n—1+1 If 7)1 and Zn is Zn, then S = qo,...,0,1,
: (4.55)
R2.3n—1 If Pgn—l and Zn is Zn, then S = q2,...,2,1,

R2.3n—1+1 If Pl and Zn is Pn, then S = qo,...,0,2,

Ran : If P3n—1 and z, is P, then S = g2, 2,2,

where P1, Pa, ..., P3a—1 are “If” parts in the system with (n — 1) inputs
[z, zm1]” € D™ (n=2,3,...):

Rll : If Z1 is N1 and ... and Zn—1 is Nn—l, then S = q0,0,...,0,
~ ~ -
P1

: (4.56)
oot Ifz1is Pyand ... and 2,1 is P,_1, then S = qa2 ... ».
S ~ I

Pan—1

The decomposition (L5H) of the original P2-TS system ([@54) will be used
for proving the most important recurrence for such systems.
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4.6.2 Crisp Output Calculation for P2-TS System
Using Recursion

Now we prove the following

Theorem 4.10. (on recursion in systems with membership functions
as second degree polynomials) The recursive formula that enables one to
compute the crisp output for any P2-TS system with inputs z1 € [—aq, 1],
oy Zn € [—am, Bn], for n=2,3,..., is as follows

S (2 | go,...00,---592,...2,2) = Np (2n) Sn=1(Zn-1 | 90,....0,0,- -+ 92,...,2,0)
+ Zn (Zn) Sn—l (Zn—l ‘ qo0,...,0,15 - - - 7‘]2,...,2,1)
+ P, (2n) Sn—1(Zn-1 | qo,....02:---+G2,...2,2) ,

(4.57)
where
_ T n—1 | Zn—1 n .
© 7, 1 = [21,...,2n-1] € D and z = { ] € D™ are the input
n
vectors,

e S,(z] q,.00---,02,.22) is the crisp output of the system ({.57]) with
input vector z € D™ and the consequents of the rules constituting the vector

T
[CIO,...,O,O,-~-,(J2,...,2,2] s
o N, (zpn), Zn (2n) and P, (z,) are membership functions for the input z, €

[—oun, Bn] defined by ([{-24)-(4-20),

o Sn—1(Zn-1]Go,...00,---,G2,..20) is the crisp output of the first subsystem
in [.50) with input vector z,—1 € D" and the consequents of the rules
constituting the vector [qo,....0,0- - - 7QQ’”,)2’O}T,

© Sn—1(Zn-1]4o,.01,---,G2,..21) is the crisp output of the second subsys-
tem in [{.53]) with input vector z,_1 € D" and the consequents of the
rules constituting the vector [qo,... 0.1, -- 7(]27___7271],11,

o Sn—1(Zn-1]Go,...02,---,G2,. 22) 1 the crisp output of the third subsystem
in [.50) with input vector z,—1 € D" and the consequents of the rules
constituting the vector [qOV___70727 .. 7(]27___7272}71

Proof. We will use notation of Theorem The rules for SISO P2-TS
system are given by ([£12)). According to [EI3]) the system output is as follows
S1 (Zl ‘ a,b, C) =N (Zl) a+ 7 (2’1) b+ P, (2’1) C
=[N1(21), Z1 (1), Pi (21)] [0, b, ]
First we prove theorem for n = 2. The rules for P2-TS system are given

by (#32), where the consequents of the fuzzy rules constitute the vector

T )
q = [q00, 910, 920, 901, q11, G21, Go2, G12, G22] . According to @ET) and (@33
the system output is as follows
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Sa (21,22 | Qoos - - - q22) = Na(22) S1 (21 | 900, 9105 920)
+ Z5 (22) S1 (21 | qo1,q11,921)
+ P> (22) S1 (21 | 902, q12, 922)

= N2 (22) [N1(21), 21 (21), P1 (21)] [QO07CI107CI20}T
+ Z5 (22) [N1 (1), Z1 (1), P1 (20)] [q01, 11, g21) "
+ Py (20) [N1(21), Z1 (21) , Pr (21)] [q02 @12 go2] "

The last formula gives the same result as the scalar product ([34)). This
implies that Theorem FLI0 is true for P2-TS systems with n = 2 inputs.

The output of the MISO P2-T'S system defined by the rules (£54)), can be
expressed as follows

Sy =80(2|qo,...005 -+ ,..22) = a2, g (2), (4.58)

where qf = [go0,....0,0,---+q2,...,2,2] is the vector of consequents of the rules
[#5), €, is the fundamental matrix, and g, (z) is the generator of the
system with n-inputs 21, ..., z,. Taking into account ([€58]), the Kronecker
product properties (A4]) and (A2d) from Appendix [Al the equalities o, =
(—an + Bn) /2 and L, = ay, + Br, we obtain

1 1 1
—Qp On ﬂn
S, =ql 2 ® Q1 g (z)
n 1 n n
(-0 (ai+ﬁ%— (ant ) ) g2
[ 1 1 177!
—Qp On ﬂn
T —1
=4q, 1 (an + 3 )2 @R, | &n(2)
(—am)? (ai o= 5z
2 An
T ﬂn (Ln - Oén/\n) (an - ﬂn) /\n - Ln /\n

According to the definition (3] of the generator for P2-TS system, we have

B (Ln = and) by (@ = Bo) A — L) 21 X058
S, = In 200, Bn A2, D (B —om) 01 =20,

= L2 n
gn—1 (Z17 ey Zn—l)
X Zn8n—1 (217...7271,1)
Zzgnfl (2155 2n—1)
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Let us denote
T T .T
qz = [a 7b ,C ] ’
where a, b, and ¢ correspond to the three consecutive parts of the conclusions
in the decomposed system (53], i.e.

qo,...,0,0 qo,...,0,1 qo,...,0,2

q2,...,2,0 q2,...,2,1 q2,...,2,2

According to [58)) for the MISO P2-TS system with the inputs z,_1 €
D™ 1, the crisp outputs S,,_1 can be expressed as follows

Sp—1(Zn-11 40,00, -+ 42,...2,0) = [40,...0,0- - - »G2,...2.0) 2, 2 18n—1 (Zn—1)
=a’'Q g, 1 (20 1), (4.59)
Sp1(Zn-11 40,01, -++42,..2.1) = 40,015+ -->q2,..2.1) 2 18n—1 (Zn—1)
- bTQy_Lilgn—l (Zn—l) ) (460)
Sn—1(Zn—1| 40,02+ G2,...2.2) = [0,...0,2s- -+ G2,...2.2] X 181 (Zn—1)
= CTQ;ilgn_l (Zn—l) . (461)
Thus,

5z qu) = )+ (Lot (20 = ) )

X aTﬂr_Lilgn—l (Zn—1)
_ _ 2
n 20, BnAn + 2, (Bn — @) 20 — 20027 b7
L
Ly

Q;ilgnfl (anl )

+
X CTQ;ilgn_l (Zn—l) .
Taking into consideration (L24)-({.28]) we obtain
Sn (Z ‘ qn) =N, (zn) aTQ;ilgnfl (znfl)
+ Zn (20) DT 1801 (Z01)
+ P (2n) CTQr_Lilgnfl (Zn-1)-

Finally, according to equations (£59)-(£61)) we obtain (A57) and this ends
the proof of Theorem (.10 a
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The above theorem is important, because it says that we do not need to
inverse large matrices to obtain the crisp output of the P2-TS systems. As
a result of this theorem the curse of dimensionality in P2-TS systems is
going to disappear. A generalization of Theorem 10 for MIMO systems is
straightforward and will be omitted.

Now we generalize Corollary 3] for MISO P2-TS systems.

Theorem 4.11. The crisp output of the MISO P2-TS system in the vertex
of the hypercuboid D" is exactly the same as the appropriate conclusion of
the fuzzy rule contained in the rule-base.

Proof. The crisp output of the MISO P2-TS system with the input vector
z = [z,.. .,zn}T, for which consequents of the rules constitute the vector
A=1090,...0r s Tprrpms- s qg,m’g]T7 can be expressed as follows

S(z|q)= Z Ap1,....pn HApk (2) (4.62)

(p1;---,pn)€{0,1,2}" k=1

where gp,... p, is a consequent of the fuzzy rule and A,, (zx) is the mem-
bership degree to which input z; belongs to Ap,. The name of the mem-
bership function A,, in (@62) depends on the index pr € {0,1,2} as
follows

N for pr =0
Ay, =< Zy for pp=1 , k=1,...,n. (4.63)
P, for pp =2

If the input vector is a fixed vertex -, of the hypercuboid D", i.e.

Z ="y = [717”'7771}71 € {_ahﬂl} X ... X {_anaﬂn}a

then the equation ([@62) reduces to

Sy | @) = > e | [ A () (4.64)
k=1

(plw";Pn)e{O)Q}n

n
since HAPk' (k) = 0 by v, € {—au, B} if among indices at least one index

k=1
pr=1,(k=1,...,n). This follows from (£G3) and (£2E). In the summation
DY) if v, = —ag, then pp =0, and if v; = B, then pp, =2, (k=1,...,n),

but in both cases HAPk (vk) = 1 according to [#24) and (26). Finally,
k=1

taking into account the bijection (28)) we obtain the complete proof of

Theorem 1] 0



90 4 Fuzzy Rule-Based Systems with Polynomial Membership Functions

It should be noticed that we are able to choose the consequents of the rules
so that, the crisp output of a given P2-TS system will be exactly the same
as the appropriate conclusions of its fuzzy rules, not only in 2™ vertices of
the hypercuboid D™, but also in all 3" characteristic points of the set M,,
defined in (L2T). However, the class of crisp functions to which such P2-TS
system is equivalent becomes much simpler than expected for systems with
membership functions as the second degree polynomials.

Example 4.12. Let us consider the P2-TS system with 2 inputs 2; €
[—a1,01] and 29 € [—ag, f2] with quadratic membership functions of fuzzy
sets as in ([@24)-(20) by \r € (0,1], (k = 1,2). If this system is defined by
the following fuzzy rules:
Ry : If z1 is Ny and 25 is Na, then S = qqo,
Ry : If 2y is Z; and 2o is Na, then S = q10 = (qoo + q20) /2,
R3 : If z1 is P, and 29 is Ns, then S = ¢o,
Ry : If z1 is Ny and 29 is Zs, then S = qo1 = (QOO + qOQ) /2,
Ry : If z1 is Z1 and 2z is Zs, then S = qi1 = (QOO + Qo2 + q20 + q22) /4,
R : If z1 is Py and 29 is Zo, then S = g21 = (g20 + q22) /2,
R7 :If Z1 is N1 and z9 is PQ, then S = qo2,
Rg :If Z1 is Z1 and zZ9 is PQ, then S = qi12 = (q02 + q22) /27
Rg : If z1 is P; and 25 is P, then S = g9,
then
(i) The crisp output of this system as a function of the inputs S (z1, 22)
takes the same values in all points of the set My = {—ay,01,01} X

{—a2,09,02}, as appear in the appropriate conclusions of the fuzzy
rules, i.e.

S (—a1, —a2) = qoo, S (o1, —a2) = qio, S (81, —a2) = qo0,

S (—a1,02) = qo1, S (o1,02) = qu1, S (f1,02) = go1,
S (—a1, 2) = qoz, S (o1, 32) = q12, S (81, 32) = qo2,

where o, = (—a + Ok) /2, k= 1,2.
(i) The crisp output of this system is equivalent to a simple bilinear function

S (z1,22) = 6o + 6121 + 222 + 01221 29,
where
0o = (a1 + B1) " (a2 + B2) " (0051 B2 + qo202Br + gaocni Bz + qasaiaa)

01 = (a1 + B1) " (2 + B2) " (g2082 — qo2c2 — qoofz + qaaca) ,
f2 = (o1 + 1) " (a2 + B2) "' (qoab1 — gaoa1 — qoofi + gaoen1)
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bro = (a1 + 51) " (2 + B2) " (qoo — Goz2 — G20 + q22) -

Taking into account e.g. the equation (34 the proof of the above facts
is simple and will be omitted.

Example 4.13. Let us consider a P2-TS system with four inputs which con-
stitute the vector z = |21, 22, 23,24)] € D*, where D% is the hypercube
-1, 1}4. The output of the system is S. For every input z; we assume three

membership functions of fuzzy sets: Ni, Zi and Py, defined by ([£24)-([Z26])
with the parameter A\ = 1 for k& = 1,2,3,4. The system is defined by the
following metarules and ordinary rules:

My : If z9 is Ny and 23 is N3 and z4 is Ny, then S =1,

My : If 29 is Z5 and z3 is N3 and z4 is Ny, then S = 2,

Ms : If z9 is P, and z3 is N3 and z4 is Ny, then S = 3,

My . If z1 is N1 and 29 is Ny and 23 is Z3 and z4 is Ny, then S = 4,

My : If z1 is Zy and 29 is Ny and 23 is Z3 and z4 is Ny, then S = 5,

Mg : If z1 is P; and 25 is No and z3 is Z3 and z4 is N4, then S = 6,

M7 . If z9is Z5 and z3 is Z3 and z4 is Ny, then S =7,

Mg : If z9 is P, and z3 is Z3 and z4 is Ny, then S = 8,

My : If 23 is P3 and z4 is Ny, then S =9,

Mg : If z5 is Ny and z3 is N3 and z4 is Z4, then S = —1,

Myq : If z5 is Z5 and z3 is N3 and z4 is Z4, then S = —2,

Mo : If 25 is Py and z3 is N3 and z4 is Z4, then S = —3,

Mz : If z1 is N1 and z5 is Ny and z3 is Z3 and z4 is Z4, then S = —4,

My : If z1 is Z7 and 2z is Ny and z3 is Z3 and z4 is Z4, then S = —5,

Mys : If z1 is Py and 29 is No and z3 is Z3 and z4 is Z4, then S = —6,

Mg : If 29 is Z5 and z3 is Z3 and z4 is Zy4, then S = —7,

M7 : If 25 is Py and z3 is Z3 and z4 is Z4, then S = —8,

Mg : If z3 is P3 and z4 is Z4, then S = —9,

Mg : If 23 is N3 and z4 is Py, then S =1,

Mo : If 25 is (Z3 or Ps) and z4 is Py, then S = 0,

We assume that the fragment “ z3 is (Z3 or Ps)” in the “If” part of the
metarule My is equivalent to “z3 is not N3” and generates two metarules.
The above 20 metarules are equivalent to 81 complete and noncontra-
dictory fuzzy rules with consequents given symbolically in Table 1] and
numerically in Table
Formally the system output S = Sy (21, 22, 23,24 | Q0000; - - -  ¢2222). Ac-
cording to Theorem a general form of the crisp system output is given

by @E1) for n =4, i.e.
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Table 4.1 Look-up-table for the P2-TS system with n = 4 input variables in the
general case

2122 \ 2324 —

l N3Ny Z3Ny P3Ny N3Zy ZzZs P3Zy N3Py Z3Py P3Py
N1iN2 qoooo  Qooio  Qoo20  Qoooi  Qooil  Goo21  Gooo2 o012 Goo22
Z1N2  qio00 gio10 Q1020  qioo1  QGioil  Gi021  Gi002  Gio12  ¢1022
P1N2  g2000 G2010 Q2020  g2001  G2011  §2021  §2002  §2012 (2022
N1Z2 qoioo  Qoito  Qoi20  Qolor  Qoill  Qoi21  Qolo2  Qoil2  go122
Z1Z2 quioo  qiiio Q1120 Giiol  Qii1l Qii21 Qiio2  qii12 Q1122
P1Z2 @100 ge110 Q2120 Q2101 Q2111 @2121 Q2102 Q2112 ¢2122
N1P2> qo200 Qo210 Qo220 Qo201 Qo211 Qo221 Qo202 Qo212 0222
Z1P2  qi200 @210 qi220 @200 qi211 Q1221 Q1202 Q1212 Q1222

P1P2 42200 42210 42220 2201 2211 2221 42202 2212 2222

Table 4.2 Look-up-table for the P2-TS system from Example ET3]

2122 \ 2324 —

l N3Ny Z3Ns P3Ny N3Zy Z3Z4 PsZy N3Py Z3Py P3Py
NiNo 1 4 9 —1 —4 -9 1 0 0
Z1No 1 5 9 —1 -5 -9 1 0 0
PiNo 1 6 9 —1 —6 -9 1 0 0
N1Zo 2 7 9 —2 -7 -9 1 0 0
AV 2 7 9 —2 -7 -9 1 0 0
P75 2 7 9 —2 -7 -9 1 0 0
NP> 3 8 9 -3 -8 -9 1 0 0
Z1 P2 3 8 9 -3 -8 -9 1 0 0
PPy 3 8 9 -3 -8 -9 1 0 0

S = Ny (24) S3 (21, 22, 23 | q0000, 410005 420005 - - - » 402205 41220, §2220)

+ Z4 (24) S3 (21, 22, 23 | qooo1, 410015 420015 - - - » G0221, 1221, §2221)
+ Py (24) S3 (21, 22, 23 | Qo002+ 91002, 42002 - - - » Q0222 q1222, G2222) ;  (4.65)

where for S5 = S5 (21, 22, 23 | G000, - - -  222) We have
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S3 = N3 (23) S2 (21, 22 | G000, 4100, 42005 90105 41105 4210, 90205 §1205 G220)
+ Z3 (23) S2 (21, 22 \ qoo1, 4101, G201, 011, G111, 211, G021, q121, 4221)
+ P53 (23) S2 (21, 22 | qoo2, q102, G202, G012, 112, G212, G022, G122, G222)
(4.66)
S2 (21,22 | Qo0 10, 920, G015 q11, 921, G2, 12, 922) = N2 (22) S1 (21 | qoo 410, G20)
+Z3 (22) S1 (21 | o1, q11,G21)
+ P (22) S1 (21 | q02, (12, G22) ,

(4.67)
Si(z1 | o, q1,02) = N1 (21) qo + Z1 (21) @1 + P21 (21) g (4.68)
Assume that the membership functions of the fuzzy sets are
1—z)? 1— 22 14 2;)2
Ni (21) = ( 4k) v Tk (2k) = 9 M. Pi(z) = ( 4 ¢ ;

for ap = B =1 and Ny =1, (k =1,2,3,4). After computations we obtain

1 1 47 1 1 3 1,

S = 32zlz§ — 42’2 — 23 — 16Z4 — 322'12% — 3221 + 322'122 + 82’223
L3, L9 7 Ll T
477 16Z2Z4 QT g T 307t gy
149 1 3 13 1 1
g9 T 397 T 3B WA T 0B~ mn
1 3
+ 82223 — 22224 — 22324 + 32232522 1621ZQZ§ — 16z1zQz§
— 1 z1z§Z4 —+ 1 212324 — 3222322 —+ 1zQz§Z4 —+ 212523%
16 16 8 4 32
3 3 3 1 1 1
+ 32z1z§z§ — 3221,2%22 — 8222%22 — 16Z§Z§Z4+ 8212224 + 4222324
3 47
+ 1621222323 —+ 16212§Z§Z4 — 322125,2??@% - 821222%24 - 32

If we consider the output S as a function of four independent variables, i.e.
S = S (21, 22, 23, 24), we have

S(-1,-1,-1,-1)=1, S(1,-1,-1,-1)=1, S(-1,1,-1,—1) = 3,
S(1,1,-1,-1)=3, S(-1,-1,1,-1)=9, §(1,-1,1,—-1) =9,
S(-1,1,1,—-1)=9, S(1,1,1 —1) =9, S(-1,-1,—-1,1)=1
S(1,-1,-1,1)=1, S(-1 1)=1, S(1,1,-1,1) =

S(-1,-1,1,1) =0, (1, ~1,1 1)_0, S(-1,1,1,1)=0, S(1,1,1,1) = 0.

This means that in all 2" points from the set x}7_, {—ax, O}, (n = 4),
the values of the output of the P2-TS system are exactly the same as the
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Table 4.3 The metarules M1, M2, M3 and all fuzzy rules (M1&M2& M3& R1) for
the first system in Example .14 in the form of look-up-tables

2122 \ 23 — 2122 \ 23 — 2122 \ 23 — 2122 \ 23 —

Il N3 Z3Ps3 Il N3 Z3P3 l N3 Z3P3 ' N3 Z;3Ps
NiN2 0 0 O NiNo 0 0 O NiNs 0 % O NiN2 0 0 O
Z1N2 *x % ZiN2 0 0 O Z1iN2 0 x 0 ZiN2 0 0 O
PiN2 0 0 O PiN2 0 0 O PiN2 0 % O PiN2 0 0 O
Ni1Z2 0 0 O Ni1Zs x * x Ni1Z2 0 % O NiZ2 0 0 O
Z1Zo x % % Z1Z9 x % % Z1Z2 0 % 0 Z1Z2 0 a O
PiZy 0 0 0 PiZy x % x PiZs 0 % 0 PiZy 0 0 0
NP> 0 0 O NP> 0 0 O NiPs 0 % O NP2 0 0 O
Z1Pas x x % Z1iP2 0 0 O Z1P2 0 x 0 ZiP2 0 0 O
PP, 0 0 O PP, 0 0 O PPy 0 % O PP, 0 0 O

M, M, M all rules

appropriate conclusions of the fuzzy rules (see Table 2)). However, the value
S (21, 22, 23, 24) in the other points (21, 22, 23, 24) from the set M,, defined
by @E21) for n = 4, does not satisfy this condition, e.g. S(—1,—1,0,—1) =
4.5 # 4. The result confirms the correctness of Theorem 1]

Example 4.14. Let us consider two simple P2-TS systems with 3 inputs
zk € |—au, Bk] and quadratic membership functions (L24)-([@.26), for k =
1,2, 3. The first system is given by three metarules M;-Mj3 and one rule R;:

My : If z; is not Z1, then S =0,
Mo : If z5 is not Zs, then S =0,
Ms : If z3 is not Z3, then S =0,
Ry : If z1 is Z1 and 23 is Z5 and z3 is Z3, then S = a,

and the second one by three metarules M{-M} and one rule Rj:

M : If z; is not Ny, then S’ =0,
M . If 25 is not Na, then S’ =0,
My If z3 is not N3, then S' =0,
R} : If 21 is Ny and 29 is Ny and z3 is N3, then S’ = b.

The meaning of all logical operators “and”, “or”, “not” used in the “If” parts
of the metarules is natural and explained by the look-up-tables (see Tables[£3]
and [L4). They describe the metarules and all the fuzzy rules. Zero in a table
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Table 4.4 The metarules My, M3, Mj and all fuzzy rules (M;&M3s& M5&R}) for
the first system in Example .14l in the form of look-up-tables

z122 \ 23 — 2122 \ 23 — 2122 \ 23 — z122 \ 23 —

I N3 Zs3 Ps I N3 Z3P3 l N3 Z3Ps3 Il N3 Zs3 Ps
NiN2 *x % x NiN2 *x x x NiN2 = 0 0 NiNo b 0 0
Zi1N2 0 0 O Z1No x % % ZiN2 x 0 0 ZiN2 0 0 O
PiN2 0 0 O PiNo % *x PiN2 = 0 O PiN2 0 0 O
N1Zo *x % % Ni1Z> 0 0 O NiZs = 0 O N«Z2 0 0 O
Z1Z2 0 0 0 Z1Z2 0 0 O Z1Z2 x 0 0 Z1Z2 0 0 0
PiZ> 0 0 O PiZo 0 0 O Pi1Zs x 0 0 PiZo 0 0 O
NiPy x % NiP2 0 0 O NP2 * 0 O NP2 0 0 O
ZiP2 0 0 O Z1iP2 0 0 O Z1P2 x 0 0 ZiP2 0 0 O
PP, 0 0 O PP, 0 0 O PPy x 0 O PP, 0 0 O

M M} M; all rules

denotes the consequent “0” expressed by some metarule and a star denotes
any number (including 0). Observe that the metarules define a complete and
noncontradictory system of rules.

One can check that the crisp output of the first system is given by

3

3
S (z1,22,23) = SG]CI_[ (an +/6k 1;[1 (Br — 2z1) (21 + ) -

The sign of S is the same as the sign of the consequent of the rule R;.

Furthermore, S = 0 if there is some k € {1,2,3} for which z; = —ay or
k= DBk-
The crisp output of the second system is given by
TN T Bi + o (1= M)
S’ (21,22,23) = b e — 2k) ( — zk) )
H 1 (ax + Br) kl;[l Ak

The sign of the crisp output S’ in the second system is the same as the sign of
1

b, since A\ (ﬂk + o (1 - )\k)) — 2z >0 and (ﬂk — Zk) >0 for 2z € [—ak,ﬂk],
k

k = 1,2,3. Furthermore, S’ = 0 for all points where 21 = 31 or z3 = 32 or
23 = [33.

As one can see, the interpretation of the fuzzy rules in both P2-TS sys-
tems is natural and simple. The crisp functions S (21, 22, z3) and S’ (21, 22, 23)
intuitively correspond to the systems of rules in any case.
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4.7 Recursion in More General TS Systems with Three
Fuzzy Sets for Every Input

Theorem FI0 has been proved using the idea of the fundamental matrix
for P2-TS systems, since this matrix is important for many applications.
However, we will show below that the same theorem is valid for a more general
class of the fuzzy rule-based TS systems, i.e. the systems with three fuzzy
sets for every input, where the assumptions 1, 2 and 3 for the membership
functions from Section are not necessary. We will prove the following
generalization of Theorem

Theorem 4.15. Theorem [{.10 is valid for any TS system described by the
fuzzy rules (4.04), with the inputs z1 € [—a1, 1], ..., 2n € [—an, Br], where
for any input zy there are assigned three fuzzy sets with the normalized mem-
bership functions, i.e. Ny : [—ag, OBk — [0,1], Zk : [—aw, Bk] — [0,1], and
Py : [—Oz;“ﬁk} — [0, 1] and Ny (Zk) + Zy, (Zk) + P (Z;c) =1fork=1, ..,
n. This means that if Sy, (z | qo,...0,0,---,92,... 2,2) denotes the crisp output of
the system ({.54]) with input vector z € D™ and the consequents of the rules
constituting the vector [qo,....0,05- - - qg,m’g)g]T, then for any natural n > 2 the
recursive formula that enables one to compute the crisp system output is the

same as ([£.07).

Proof. For n =1 the system is defined by the rules (12). Thus, the system
output is as follows

Ny (21) qo Zy(z1) ¢
Ni(z1)+Z1(z1)+ Pi(z1) Ni(z1)+Z1(z1) + Pi(#1)
n Py (21) g2

Ny (21) + Z1 (21) + P1 (z1)

S1(21 | qo,q1,92) =
(4.69)

Tt is the same as in ({68) since the normalization condition [T is satisfied.
Let us use a simplified notation: Ny (2;) = Ng, Zk (2x) = Zr and Py (2x) =
Py. For n =2, due to the rule-base ([{32) we have

Sa (21,22 | q00, - - -+ q22) = N1Nagoo/D2 + Z1Nagio/ D2 + P1Nagao /D2
+ N1Z2qo1/ D2 + Z1Z2q11/ D2 + P1Z2g21/ Do
+ N1P2qoz2/ D2 + Z1P2qi2/ Do + Py Pagaz/ Do.

But Dy = [T{_; (Ni (2k) + Zk (21) + Py (2x)) = 1. Thus,

Sa (21,22 | 900, - - -, q22) = Na (N1goo + Z1¢10 + P1g20)
+ Z> (N1go1 + Z1qi1 + Piga1)
+ P> (Nigo2 + Z1qi2 + Pig22)

and S is the same as in [f67), i.e. for n = 2 the Theorem [FTH is true.
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According to the rule-base decomposition (@BH) for n = k+1 > 3 we
obtain
Sk+1 = Neg1 (NiN2 ... Nrgoo,..00+ .-+ PiPa... Prgo,...2.0) /D1
+ Zky1 (N1N2 ... Npqoo,...0n+ ...+ PiPa ... Prgoo,.. . 2.1) /D1
+ Pit1 (NiN2 ... Nigoo,. 02+ ...+ PiPs... Pygoa,  22)/Dyi1,

where the denominator Dy = [[F7 (N (1) + Zi (2i) + Pi (1)) = 1.

i=1
Knowing that Dy =1 for £ =1,2,... we have
Skt1 (Zht1 | 90,...,0,05 - -5 42,....2,2) = Ne415k (2& | 90,...,0,0, - - -, G2,...,2,0)
+ Zk+15k (Zk | 90,....015-+-,G2,...21)
+ Pot1Sk (21 | 90,025 -5 G2,....2.2)

where
Sk (Zk | 90,0,....0,0,---5922,....2,2) = NiNa...Nigoo,...0,0
+ Z1Na...Niqip,...,0,0
+ PiN>...Nig2p,...0,0
+... .+ PP Prgao,.. 22,

Rt

Sk (Zk | q0,0,...,0,15 - - - 7q2’2)”.’2)1) =NiNs... quo,O,...,O,l
+ ZiN2...Npgio,. . 01
+ PiNy...Nkgap,..0,1
+.o PP Pigeo,.. 21,

Sk (Zk | q0,0,...,0,25 - - - 7q2’2)”.’2)2) = NiNa...Niqoo,....0,2
+ ZiNa...Npqip,. .02
+ PiNy...Nrg2o,..02
+...+PP... qu2,2,...,2,2 .

Thus,
Sk+1 (Zk4+1 | 90,...,0,05- -5 G2,...22) = Nk+1Sk (Z& | 90,...,0,05 -+, G2,...2,0)
+ Zk415k (Zk | 90,....015-+-,G2,...21)
+ Pot15k (21 | 9o,....0,2, - -5 G2,....2.2) -
This finishes the proof of Theorem [4.15 a

The above Theorem can be used for rather large rule-bases. For n = 3 inputs,
taking into account (AG0]), it can be graphically interpreted as shown in
Fig. 7 In the case of the TS system with n inputs, the architecture can
be viewed as n-layer neural network with linear activation functions f for all
neurons, where f (input) = input. In the layer number k, (k =1,...,n), the
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qooo [}%

q100 |

Z1 (21)
g200 []4' Na(z2)

1(21
qoto Ni(z1)
Q0 3 ey s, Z2(22)
q210 Pi(z)
qdo20 Nl(zl)

N3(23)

F—
q120 Zi(21)

G220 [

q222 [] P (21)

Fig. 4.7 Graphic interpretation of Theorem H.TI5] for a TS system with n = 3

inputs and the output S = S5 (21, 22, 23|q000, - - - , 222)

network contains exactly the same neurons S; and every neuron has three
inputs and the same weights, namely Ny, (z), Zk (2) and Py (2k).
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A generalization of the Theorem [£.T5] for MIMO systems is straightforward
and will be omitted. A computational architecture of the recursion for MIMO
P2-TS systems as a generalization of (57 can be easily drawn, similarly to
the one of Fig. @1 as well.

4.8 Summary

We considered the TS systems which use the second degree polynomials as the
membership functions of fuzzy sets for the inputs. It was shown that it is not
possible to obtain any second degree polynomial function, to which a TS rule-
based system is equivalent, on the assumption that only two complementary
membership functions as the second degree polynomials are defined for the
input variables. However, three quadratic membership functions suffice to
model every second degree polynomial function.

For the considered zero-order TS system, we defined for every input variable
the set of three highly interpretable normalized membership functions as the
second degree polynomials (N, Z and P). They contain one free design param-
eter. The TS systems that use such fuzzy sets were called P2-TS systems and
they were thoroughly investigated. One of theorems says that the crisp output
of the MISO P2-TS system in the vertex of the hypercuboid D" is exactly the
same as the appropriate conclusion of the fuzzy rule contained in the rule-base.

For the P2-TS systems both the generator and the fundamental matrix
were defined. The fundamental matrix and its inverse are important, since
they enable one to establish an exact relationship between the consequents
of the “If-then” rules and the parameters that define the crisp function, to
which the rule-based system is equivalent. Therefore, the procedure of how
to compute the fundamental matrix and its inverse was given.

Examples show that P2-TS systems have highly interpretable
rule-bases when we use individual fuzzy rules or the metarules.

The P2-TS system with n-inputs, which normally contains a complete and
noncontradictory set of fuzzy rules, consists of 3" individual fuzzy rules. Thus,
the curse of dimensionality problem is much more serious for the P2-TS systems
than the one for the P1-TS systems. Therefore, we developed the recursive pro-
cedures for the computation of both the inverse of the fundamental matrix and
the crisp output of the P2-TS systems. Theorem and its generalization
say that we do not need to inverse large matrices to obtain the crisp output of
the P2-TS systems. As a result of these theorems, the curse of dimensionality in
P2-TS systems was substantially weakened. Although we considered the MISO
systems, all the results can be easily generalized for the MIMO case.

After this chapter we are able to thoroughly generalize the results for
the TS systems with the membership functions that are polynomials of the
degree d > 3. However, we should realize that the number of complete and
noncontradictory rules will rapidly grow and the analysis will become more
and more complicated. Both P1- and P2-TS systems are able to model a large
class of real nonlinear processes. Therefore, if it is not necessary, we should
not complicate our models in the engineering practice.
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