
Chapter 2

MISO Takagi-Sugeno Fuzzy System
with Linear Membership Functions

Although we will be especially interested in Takagi-Sugeno models [180] called
TS models for short which use linear or polynomial membership functions,
we begin our considerations with the single-input and single-output system
(SISO TS) which uses nonlinear membership functions. The problem involves
determining the fuzzy rules which exactly model a nonlinear function belong-
ing to some class of functions.

2.1 Perfect Approximation of Nonlinear Functions
Using the Simplest Takagi-Sugeno Model

Below we will consider the problem of perfect approximation of nonlinear
functions using the simplest Takagi-Sugeno model in the context of inter-
pretability of fuzzy sets.

Suppose the input variable of a TS system is z ∈ [−α, β] and its output is
S as shown in Fig. 2.1.

Fig. 2.1 Single-input-
single-output TS system
defined by the rules (2.1)

SISO
TS system

�z ∈ [−α, β] � S

We assume that α + β �= 0. By N and P we denote two fuzzy sets which
will be identified both with their linguistic labels and membership functions:
N (z) and P (z), respectively. Thus, N, P : [−α, β] → [0, 1]. The TS system
is defined by two fuzzy rules

R1 : If z is N , then S = q1,

R2 : If z is P , then S = q2.

}
(2.1)
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The natural requirements concerning the fuzzy sets are as follows

1. N (z) is a continuous, nonincreasing function of z,
2. N (−α) = 1 and N (β) = 0,
3. P (z) = 1 − N (z).

Observe that P is a continuous, increasing function of z which satisfies bound-
ary conditions: P (β) = 1 and P (−α) = 0. Continuity, monotonicity and
preservation of boundary conditions ensure a clear linguistic interpretation
of both membership functions.

Suppose some continuous and monotonic function f (z) : [−α, β] → R is
given. The problem is “How to obtain membership functions for the fuzzy
rule-based TS system, such that its output is exactly the same, i.e. S (z) =
f (z) for any z ∈ [−α, β]?” First of all the following conditions

q1 = f (−α) , q2 = f (β) , (2.2)

N (z) =
f (z) − f (β)

f (−α) − f (β)
, (2.3)

must be satisfied, since the output of the TS system is computed as follows
[180]

S (z) =
q1N (z) + q2P (z)

N (z) + P (z)
= f (z) , for z ∈ [−α, β] . (2.4)

Example 2.1. The model (2.1) exactly approximates the following mono-
tonic and continuous function (see Fig. 2.2)

f (z) = − cos z

z + π/4
, for z ∈

[
−π

6
,
π

2

]
. (2.5)

Fig. 2.2 Plot of the
monotonic function (2.5)
which can be exactly
expressed by a TS system
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Fig. 2.3 Plot of the
membership function
N(z) defined by (2.6) and
its complement P (z) =
1 − N(z)

N(z)

P (z)
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This is true if, and only if the membership function N (z) from the class of
functions defined above is given by the function shown in Fig. 2.3

N (z) = −π
√

3
18

f (z) , for z ∈
[
−π

6
,
π

2

]
. (2.6)

Monotonicity of the membership functions of fuzzy sets is an important
requirement. The question arises whether this requirement can be substi-
tuted by a local or global sector nonlinearity condition as suggested in
[184] (p. 10)?

Example 2.2. Let us consider the function depicted in Fig. 2.4

f (z) = z (sin z + 2) , for z ∈ [−1, 5] . (2.7)

This function is a sector bounded nonlinearity. It is clear that for z ∈ [−1, 5]
the equation

N (z) =
z (sin z + 2) − 5 sin 5 − 10

sin 1 − 5 sin 5 − 12
(2.8)

Fig. 2.4 Plot of a sector
bounded function (2.7)
which cannot be exactly
expressed by a single TS
system
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Fig. 2.5 Plot of the
function (2.8)
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must be satisfied, but the condition N (z) ∈ [0, 1] is not true for all z ∈ [−1, 5].
Therefore N (z) cannot be viewed as a membership function of some fuzzy
set defined on the universe of discourse [−1, 5], (see Fig. 2.5). Of course, the
function (2.7) can be exactly expressed in the form of three rule-based TS
systems, where every system is designed in the monotonicity region of the
original function f (z) (see Fig.2.4).

Monotonicity of the membership functions of fuzzy sets is very important
requirement from the interpretability point of view.

Example 2.3. For the continuous, smooth and highly nonlinear function

f (z) = eπ − (eπ − πe) sin2 (5πz/2) exp
(− sin2 (9πz)

)
, z ∈ [0, 1] , (2.9)

one can find the fuzzy rules in the form of (2.1) and the fuzzy sets, such that
S (z) = f (z) for z ∈ [0, 1]. The consequents of the fuzzy rules are constants
q1 = eπ, q2 = πe and the membership functions of fuzzy sets N and P satisfy
the boundary conditions (P (0) = 0, P (1) = 1, N (0) = 1 and N (1) = 0).
The membership functions are as follows (see Fig. 2.6)

N (z) = 1 − P (z) , P (z) = sin2 (5πz/2) exp
(− sin2 (9πz)

)
, z ∈ [0, 1] .

(2.10)
Even though the output S of the TS system is exactly the same as the
function (2.9) for all points from the universe of discourse and the membership
functions satisfy the boundary conditions, the fuzzy sets are not easy for
interpretation.

In the fuzzy modeling we should rather avoid nonmonotonic membership
functions. Similar investigation to the one in the above section can be made
for exact modeling of nonlinear systems with many input variables. Some
ideas on this subject are included in [184], where however, there is no sys-
tematic procedure for converting a general nonlinear system to the TS form,
even for nonlinear systems with nonlinearities that are polynomials of input
variables [31].
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Fig. 2.6 Plot of the
membership function
N(z) defined by (2.10) N(z)
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2.2 Assumptions and Linguistic Interpretation of
Linear Membership Functions

We will mainly use linear membership functions for input variables. They
are conceptually the simplest, have a clear interpretation and play a crucial
role in many applications in the fuzzy modeling and control. We will show
further on mathematically and by examples that they are sufficient for mod-
eling complex highly nonlinear static or dynamic, continuous or discrete-time
systems.

Let us consider a multiple-input and single-output rule-based system
(MISO system for short) with input variables z1, z2, . . . , zn. For every
input zk ∈ [−αk, βk] we require that there is no interval degenerated to
a single point, i.e. we assume αk + βk �= 0 for k = 1, 2, . . . , n, through-
out the book. For any zk, we define two fuzzy sets with linear membership
functions Nk (zk), and Pk (zk), where Pk is an algebraic complement to Nk

(see Fig. 2.7)

Nk (zk) =
βk − zk

αk + βk
, (2.11)

Pk (zk) = 1 − Nk (zk) , k = 1, 2, . . . , n. (2.12)

Fig. 2.7 Linear mem-
bership functions of two
fuzzy sets
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Fig. 2.8 Examples of linguistic interpretation of the fuzzy sets N = N(z) and
P = P (z) for z ∈ [−α, β]

It should be noted that using some linear transformation, the intervals
[−αk, βk] could be replaced by different “standardized intervals”. The unity
interval [0, 1] or symmetric around zero interval [−1, 1] and many others be-
long to them. Such substitution would greatly simplify all mathematical de-
scriptions and proofs. However, we will mainly use intervals [−αk, βk] further
on, because for them it is possible to distinguish five cases, in which the terms
Nk and Pk have different linguistic interpretations (see Fig. 2.8):

1. If −αk < βk < 0, then Nk can be interpreted as negative big, and Pk - not
negative big,
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2. If −αk < βk = 0, then Nk can be interpreted as not negative small, and
Pk - negative small,

3. If αk ≈ βk > 0, then Nk can be interpreted as negative, and Pk - positive,
4. If 0 = −αk < βk, then Nk can be interpreted as positive small, and Pk -

as not positive small,
5. If 0 < −αk < βk, then Nk can be interpreted as positive big, and Pk - as

not positive big.

Obviously, depending on the context or specific application, the linguistic
terms can be substituted by more suitable, adequate for the considered prob-
lem. For example the term positive can be replaced by positive small or posi-
tive big. We will use symbolic intervals [−αk, βk], where −αk < βk. Thanks to
this our analytical results will be more general than those obtained in other
works, e.g. [168], [207].

Observe that for the functions (2.11)-(2.12) the inequalities

dNk

dzk
< 0 and

dPk

dzk
> 0,

are satisfied, since αk + βk > 0 for k = 1, . . . , n. Therefore the symbol Nk

refers to the membership function with negative slope and analogously Pk

refers to the function with positive slope.

2.3 Compact Description of the MISO TS System

In order to allow the numbering of fuzzy rules by natural numbers, and to
give more compact descriptions, we introduce a convenient indexing. Let us
consider a MISO TS system with the inputs z1, . . . , zn and the output S (see
Fig. 2.9). This system is defined by 2n rules in the form of implications

Fig. 2.9 The inputs and
the output of MISO TS
system

MISO
TS system

�z1 ∈ [−α1, β1]

�z2 ∈ [−α2, β2]

�

�

�

�zn ∈ [−αn, βn]

� S

If P(i1,...,in), then S = q(i1,...,in), (2.13)

where (i1, . . . , in) ∈ {0, 1}n and each antecedent P(i1,...,in) of an implication
is the statement of the form

P(i1,...,in) = “z1 is Ai1 and ... and zn is Ain”, (2.14)
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and

Aik
=

{
Nk, for ik = 0
Pk, for ik = 1 , k = 1, . . . , n. (2.15)

If it is not stated differently, we assume that the consequents q(i1,...,in) of the
rules in (2.13) do not depend on the input variables, i.e. we will consider
a zero-order Takagi-Sugeno model [180]. In more general TS systems, the
consequents are polynomials of the first or higher order or more complicated
functions of input variables.

The rule-based system (2.13)-(2.15) we will call P1-TS system to empha-
size that membership functions of fuzzy sets for input variables are polyno-
mials of the first order.

Now we introduce indexing which allows the ordering of the fuzzy rules.
For any n-tuple of indices (i1, . . . , in) ∈ {0, 1}n we define the corresponding
index v, which is formally a function of the sequence of indices (i1, . . ., in):

v = 1 +
n∑

k=1

ik2n−k, ik ∈ {0, 1} , k = 1, . . . , n. (2.16)

Any v from the set {1, 2, . . . , 2n} corresponds to only one antecedent of the
fuzzy “If–then” rule. When the bijection (2.16) holds we will simply write
v ↔ (i1, . . . , in), e.g. 182 ↔ (1, 0, 1, 1, 0, 1, 0, 1).

The rules (2.13) can be rewritten as

If Pv, then S = qv, (2.17)

where v ↔ (i1, . . . , in). For the inputs z1, . . . , zn, the output is S and it is
defined by the formula [180]

S (z1, . . . , zn) =
∑2n

v=1 qvhv (z1, . . . , zn)∑2n

v=1 hv (z1, . . . , zn)
, (2.18)

where
hv (z1, . . . , zn) = � (Ai1 (z1) , . . . , Ain (zn))v , (2.19)

the operator � denotes an algebraic t-norm: � (x, y) = xy [202], the indices
v and (i1, . . . , in) are in the one-to-one correspondence (2.16), and Aik

(z) are
membership functions of the fuzzy sets, i.e. Aik

∈ {Nk, Pk} for ik ∈ {0, 1} and
k = 1, . . . , n. The value hv can be interpreted as a degree of fulfilment (or degree
of firing level) of the vth rule by the given inputs z1, . . ., zn. One can check that

2n∑
v=1

hv (z1, . . . , zn) =
n∏

i=1

(Ni (zi) + Pi (zi)) , (2.20)

and therefore, if the complementary property (2.12) is satisfied, then (2.18)
reduces to

S =
2n∑

v=1

qvhv (z1, . . . , zn) . (2.21)
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The function hv (z1, . . . , zn) can be viewed as a normalized membership
function of many variables or as a fuzzy relation.

The set
Dn = [−α1, β1] × . . . × [−αn, βn] , (2.22)

where × denotes the Cartesian product, we will call a hypercuboid. Its vertices
are the vectors

γv = [γ1, . . . , γn]T ∈ {−α1, β1} × . . . × {−αn, βn} , (2.23)

where v ↔ (i1, . . . , in) ∈ {0, 1}n, and they can be ordered according to (2.16)
as shown in Fig. 2.10. The length Lk of the interval [−αk, βk] and the volume
Vk of the hypercuboid Dk are defined by

Lk = αk + βk , k = 1, 2, ..., n, (2.24)

Vk =
∏k

i=1
Li , k = 1, 2, ..., n. (2.25)

They will be helpful in the future for the interpretation of some results.

�
���

�

�

z1

z2

z3

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�

γ1

�

γ5

�

γ3

�

γ7

�

γ2

�

γ6

�

γ4

�

γ8

Fig. 2.10 Vertices of the hypercuboid Dn for n = 3

2.4 Crisp Output of the Zero-Order MISO P1-TS
System

In this section we prove the main theorem concerning modeling of systems
using the Takagi-Sugeno rule scheme, which uses two complementary linear
membership functions for each input variable.

Theorem 2.4. Define for the vector variable z = [z1, . . . , zn]T , the following
multilinear function f0 : Dn → R,

f0 (z) =
∑

(p1,p2,...,pn)∈{0,1}n

θp1,p2,...,pnzp1
1 zp2

2 · · · zpn
n , (2.26)
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where 2n coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1, are real numbers. For
every function of the type (2.26) there exists a zero-order MISO P1-TS system
such that S (z) = f0 (z) for all z ∈ Dn and

(i) the inputs of the system are components of z ∈ Dn and the output is S
(see Fig. 2.9),

(ii) two linear membership functions defined by (2.11)-(2.12) are assigned to
each component of the vector z,

(iii) the system is defined by 2n fuzzy rules in the form of (2.13)-(2.15).

One can find all consequents q1, q2, ..., q2n of the fuzzy rules by solving 2n

linear equations. For a nonzero volume of the hypercuboid Dn, the unique
solution always exists.

Proof. First we identify the class of functions performed by the TS system.
The t-norm in (2.18) is an algebraic product and any function hv in (2.19) is
a product of the first order polynomials. Thus,

S =
2∑

in=1

. . .

2∑
i1=1

n∏
k=1

(aik
zk + bik

) q(i1,...,in) ,

where aik
, bik

, and q(i1,...,in) are real numbers. This means that S (z) is a
multilinear function which can be written in the form of (2.26).

Now assume that some function f0 in the form of (2.26) is given. Our goal
is to express all consequents of the rules for the fixed in advance collection
of coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1. The function f0 is the scalar
product f0 (z) = θT g (z), where

θ = [θ00...0, θ10...0, θ01...0, ..., θp1...pn , ..., θ11...1]
T ∈ R

2n

, (2.27)

g (z) = [1, . . . , (zp1
1 · · · zpn

n ) , . . . , (z1 · · · zn)]T , (2.28)

with pk ∈ {0, 1} for k = 1, . . . , n. For a given z, the vector g (z) we will call
a generator. It is continuous nonlinear mapping, which transforms the points
z ∈ Dn into 2n-dimensional space, whereas the function f0 is a linear function
with respect to parameters θ00...0, θ10...0, θ01...0, . . . , θp1,p2,...,pn , . . . , θ11...1.
The generator g = g (z1, z2, . . . , zn) contains 2n components of the form
“zi1zi2 . . . zik

” being elements of the polynomial “(1 + z1) × · · · × (1 + zn)”
written in the expanded additive form, when substituting in the monomials
of this polynomial all coefficients by “1”.

The equation f0 (z1, . . . , zn) = θT g (z1, . . . , zn) must be satisfied for all
points in the hypercuboid Dn, especially in its vertices. Thus, the following
2n linear equations

θT g (γv) = qv, v = 1, 2, . . . , 2n, (2.29)

must be satisfied, or equivalently
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q = ΩT θ, Ω =
[
g (γ1) , . . . , g (γ2n)

]
2n×2n , (2.30)

where the consequents of the rules constitute the vector q = [q1, . . . , q2n ]T.
Thus,

q =

⎡
⎢⎣

θT g (γ1)
...

θT g (γ2n)

⎤
⎥⎦ =

⎡
⎢⎣

f0 (γ1)
...

f0 (γ2n)

⎤
⎥⎦ . (2.31)

The equations (2.30)-(2.31) formulate necessary conditions, under which the
system of fuzzy rules is equivalent to (2.26). Now we prove that they are suf-
ficient as well. Sufficiency requires that the 2n × 2n matrix Ω containing the
columns g (−α1,−α2, . . . ,−αn), . . ., g (β1, β2, . . . , βn) is a nonsingular one.
Observe that the output S of the TS system with n inputs z1, z2, . . . , zn can
be defined by the following rule base, which is equivalent to (2.13)-(2.15):

R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn, then S = q1,

R2 : If z1 is P1 and z2 is N2 and . . . and zn is Nn, then S = q2,

R3 : If z1 is N1 and z2 is P2 and . . . and zn is Nn, then S = q3,

R4 : If z1 is P1 and z2 is P2 and . . . and zn is Nn, then S = q4,

...
R2n : If z1 is P1 and z2 is P2 and . . . and zn is Pn, then S = q2n .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.32)

The matrix Ω we will call the fundamental matrix throughout the book. It
contains as elements the values of the generator g in such vertices of the hy-
percuboid Dn that exactly correspond to the labels used in the antecedents of
the rules. This means that “−αk” in g corresponds to Nk, and “βk” in g cor-
responds to Pk, where Nk and/or Pk are used in the antecedent of the rule.
The vector q = [q1, q2, . . . , q2n ]T contains successive consequents of the rules.
Thus, both the order of vertices γv used for computing Ω, and the order
of elements of q are strictly defined. Now we prove inductively that Ω is
nonsingular if, and only if αk + βk �= 0 for k = 1, 2, . . . , n. In the case of
n input variables, the generator g and the matrix Ω will have a subscript,
i.e. g = gn and Ω = Ωn. Formally, we define an artificial generator g0 = 1
and the corresponding artificial matrix Ω0 = 1. First, consider the case with
n = 1. The rule base structure is as follows

R1 : If z1 is N1, then S = q1,

R2 : If z1 is P1, then S = q2,

}
(2.33)

and the corresponding generator g1 = g1 (z1) is given by

g1 =

[
g0

z1g0

]
=

[
1
z1

]
. (2.34)
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The fundamental matrix Ω1 is a concatenation of 2 columns g1. It is
generated as follows

Ω1 = [g1 (−α1) ,g1 (β1)] =

[
1 1

−α1 β1

]
. (2.35)

For n = 2 the rule-base structure is the following

R1 : If z1 is N1 and z2 is N2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3,

R4 : If z1 is P1 and z2 is P2, then S = q4,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.36)

and the corresponding generator g2 = g2 (z1, z2) is given by

g2 =
[

g1

z2g1

]
=

⎡
⎢⎢⎣

1
z1

z2

z1z2

⎤
⎥⎥⎦ . (2.37)

The fundamental matrix Ω2 is a concatenation of 4 columns

Ω2 = [g2 (−α1,−α2) ,g2 (β1,−α2) ,g2 (−α1, β2) ,g2 (β1, β2)]

=

⎡
⎢⎢⎢⎢⎣

1 1 1 1
−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

⎤
⎥⎥⎥⎥⎦ . (2.38)

For n = 3 the rule base structure is

R1 : If z1 is N1 and z2 is N2 and z3 is N3, then S = q1,

R2 : If z1 is P1 and z2 is N2 and z3 is N3, then S = q2,

R3 : If z1 is N1 and z2 is P2 and z3 is N3, then S = q3,

R4 : If z1 is P1 and z2 is P2 and z3 is N3, then S = q4,

R5 : If z1 is N1 and z2 is N2 and z3 is P3, then S = q5,

R6 : If z1 is P1 and z2 is N2 and z3 is P3, then S = q6,

R7 : If z1 is N1 and z2 is P2 and z3 is P3, then S = q7,

R8 : If z1 is P1 and z2 is P2 and z3 is P3, then S = q8,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

and the corresponding generator g3 = g3 (z1, z2, z3) is given by
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g3 (z1, z2, z3) =
[

g2

z3g2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1

z2

z1z2

z3

z1z3

z2z3

z1z2z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.40)

The fundamental matrix Ω3 is a concatenation of 23 = 8 columns g3 and is
generated as

Ω3 = [g3 (−α1,−α2,−α3) , g3 (β1,−α2,−α3) , g3 (−α1, β2,−α3) ,

g3 (β1, β2,−α3) , g3 (−α1,−α2, β3) , g3 (β1,−α2, β3) ,

g3 (−α1, β2, β3) , g3 (β1, β2, β3)]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 α1α2 −α3 α1α3 α2α3 −α1α2α3

1 β1 −α2 −α2β1 −α3 −β1α3 α2α3 α2β1α3

1 −α1 β2 −α1β2 −α3 α1α3 −α3β2 α1α3β2

1 β1 β2 β1β2 −α3 −β1α3 −α3β2 −β1α3β2

1 −α1 −α2 α1α2 β3 −α1β3 −α2β3 α1α2β3

1 β1 −α2 −α2β1 β3 β1β3 −α2β3 −α2β1β3

1 −α1 β2 −α1β2 β3 −α1β3 β2β3 −α1β2β3

1 β1 β2 β1β2 β3 β1β3 β2β3 β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (2.41)

and so forth. In general,

g0 = 1, Ω0 = 1,

gk+1 =
[

gk

zk+1gk

]
=

[
1

zk+1

]
⊗ gk ∈ R

2k+1
, k = 0, 1, 2, . . . , n − 1,

(2.42)

where the symbol “⊗” denotes the Kronecker product (see Appendix A or
[43], [83]). One can easily check that

Ωk+1 =

[
Ωk Ωk

−αk+1Ωk βk+1Ωk

]
=

[
1 1

−αk+1 βk+1

]
⊗ Ωk ∈ R

2k+1×2k+1
,

(2.43)
for k = 0, 1, 2, . . . , n − 1. From (A.6a) given in Appendix A we immediately
obtain

detΩk+1 = (βk+1 + αk+1)
2k

(detΩk)2 .

Taking into account Ω0 = 1 already defined, we obtain

detΩn =
n∏

i=1

(βi + αi)
2n−1

= (Vn)2
n−1

.



16 2 MISO Takagi-Sugeno Fuzzy System with Linear Membership Functions

Thus, detΩn �= 0 if, and only if the volume of the heperrectangle Dn in
the space R

n is not zero or, equivalently, for every input variable zk, (k =
1, 2, . . . , n), the interval [−αk, βk] is not degenerated to a single point. Finally,
from (2.30) we obtain the vector of coefficients of the function (2.26)

θ =
(
ΩT

)−1
q. (2.44)

Thus, the crisp output of the P1-TS system is given by

S (z) = gT (z)
(
ΩT

)−1
q = f0 (z) . (2.45)

This ends the proof of Theorem 2.4. 
�
Remark 2.5. The components of the vector θ in (2.26) depend on 2n + 2n
parameters, i.e. on 2n coefficients qv and 2n boundaries of intervals [−αk, βk],
(k = 1, 2, . . . , n).

Remark 2.6. Suppose the hypercuboid Dn ⊂ R
n is established. The

function

f1 (z) =
n∏

k=1

(rkzk + sk) , (2.46)

where rk, sk are real numbers, is a special case of the function (2.26) for
n > 2, since it contains 2n parameters rk and sk, whereas the function (2.26)
contains 2n coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1.

As a conclusion of Theorem 2.4, whose interpretation is important, we obtain

Corollary 2.7. Suppose a function f : Dn → R is known and it belongs to
the class of functions (2.26). In other words f (z) = f0 (z), where z ∈ Dn

for some collection of coefficients of the vector θ as in (2.27). A necessary
and sufficient condition under which the considered TS system is equivalent
to f (z) for any z ∈ Dn, is as follows

qv = f (γv) , for v = 1, 2, . . . , 2n. (2.47)

This means that by formulating the consequents of the fuzzy rules,
the only information needed by an expert are values of the function
f in all vertices of the hypercuboid Dn.

What is more, Theorem 2.4 says that we can always obtain an equivalent TS
system to the given function (2.26).

2.5 Completeness and Noncontradiction in Rule-Based
Systems Defined by Metarules

The rule-base is usually assumed to have the form of (2.32). Such system con-
tains complete and noncontradictory rules [92]. The system of “If-then” fuzzy
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rules will be called complete if every rule contains all possible antecedents in
its “If” part, which results in 2n rules as in (2.13)-(2.15). The system of rules
is a contradictory one if there are at least two rules which have the same an-
tecedent but different consequents. By such definitions, the system (2.32) is
both complete and noncontradictory. The same notions can be defined in the
fuzzy sense, i.e. the rules can be viewed as complete or noncontradictory to
some degree. However, we will consider them as bivalent notions, i.e. the sys-
tems of rules will be treated as complete (contradictory) or not, throughout
the book.

When the number of inputs is large, we can use the metarules, i.e. the
rules which are equivalent to some subset of the rules, where each single
rule is in the form of (2.13)-(2.15). Most frequently we have to do with the
metarule if some “If-then” rule in its “If” part contains the word ANYk (or
ANY without a subscript). By the term ANYk we mean any label from the
bivalent set {Nk, Pk}, (k = 1, . . . , n). Sometimes the set of the rules may be
generated by a metarule for other reasons.

Remark 2.8. The fragments “zk is ANY ” in the antecedents of the rules
will be sometimes omitted. For example, we can simplify the fuzzy rule “If
z1 is N1 and z2 is ANY2, then S = q1” into the shorter one “If z1 is N1, then
S = q1”.

Example 2.9. Let us consider three P1-TS systems with two inputs and one
output, which are equivalently presented in Tables 2.1 a) – c).

a) The system of rules is defined by (2.36) and shown in Table 2.1 a). It is
complete and noncontradictory. This case is simple and does not need a
comment.

b) The system of rules:

R1 : If z1 is N1 and z2 is N2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R4 : If z1 is P1 and z2 is P2, then S = q4,

⎫⎪⎬
⎪⎭

is shown in Table 2.1 b). Observe that there is no consequent for the
antecedent “z1 is N1 and z2 is P2”. This system is noncomplete and non-
contradictory.

Table 2.1 Look-up-tables for the P1-TS system from Example 2.9: a) Complete
and noncontradictory rules, b) Noncomplete and noncontradictory rules, c) Non-
complete and contradictory rules

a)

z1, z2 →
↓ N2 P2

N1 q1 q3

P1 q2 q4

b)

z1, z2 →
↓ N2 P2

N1 q1 −
P1 q2 q4

c)

z1, z2 →
↓ N2 P2

N1 q1 q1, q3

P1 q2 −
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c) The system of rules:

R1 : If z1 is N1, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3,

⎫⎪⎬
⎪⎭

is equivalent to (see Remark 2.8)

R′
1 : If z1 is N1 and z2 is N2, then S = q1,

R′′
1 : If z1 is N1 and z2 is P2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Although there are four single rules, there is no consequent for the an-
tecedent “z1 is P1 and z2 is P2”. For q1 �= q3, the metarule R′′

1 contradicts
(more or less) the rule R3. Thus, this system is both contradictory and
noncomplete.

The above example shows that detection of completeness or noncontradiction
in the rule-base is a very simple task if we use the look-up tables.

2.6 Matrix Description of the MIMO Fuzzy
Rule-Based System

In this section we generalize the concept of MISO fuzzy rule-based systems
into the multiple-input and multiple-output (MIMO) systems. In the systems
with many outputs there are no cross-feedback loops. Therefore the procedure
of computing a single output is the same as for the MISO TS systems.

Our goal in this section is to develop yet another compact and convenient
description of the rule-based system, i.e. the model in the matrix form. Let
us consider a TS system with the inputs z1, . . . , zn and the outputs S1, . . . ,
Sm, as shown in Fig. 2.11. By a MIMO P1-TS system we mean the system
with m ≥ 2 outputs, in which the membership functions of fuzzy sets for all
inputs are linear as defined in (2.11)-(2.12). Such a system is described by
the following 2n fuzzy rules:

Fig. 2.11 The inputs
and the outputs of a
MIMO TS system given
in the matrix form (2.48)-
(2.53)

MIMO
TS system

�z1 ∈ [−α1, β1]

�z2 ∈ [−α2, β2]

�

�

�

�zn ∈ [−αn, βn]

� S1

� S2

�

�

�

� Sm



2.6 Matrix Description of the MIMO Fuzzy Rule-Based System 19

R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn,
then S1 = q1,1, . . ., Sm = q1,m,

...
Rv : If z1 is Ai1 and z2 is Ai2 and . . . and zn is Ain ,

then S1 = qv,1, . . ., Sm = qv,m,
...

R2n : If z1 is P1 and z2 is P2 and . . . and zn is Pn,
then S1 = q2n,1, . . ., Sm = q2n,m,

where Aik
∈ {Nk, Pk}, (k = 1, 2, . . . , n and ik ∈ {0, 1}), as defined in (2.15).

Equivalently, this system can be described by the following single “If-then”
rule in the matrix form

If [z1, . . . , zn] is M, then [S1, . . . , Sm] is Q, (2.48)

where we assume that

• the antecedents matrix M contains the labels of fuzzy sets and has 2n rows
and n columns

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

N1 · · · Nn−1 Nn

...
. . .

...
...

Ai1 · · · Ain−1 Ain

...
. . .

...
...

P1 · · · Pn−1 Pn

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.49)

where
(
Ai1 , . . . , Ain−1 , Ain

) ∈ {N1, P1} × . . . × {Nn−1, Pn−1} × {Nn, Pn},
• the consequents matrix Q contains m columns, and every column qj cor-

responds to the output Sj of the rule-based system

Q = [q1, · · · ,qj , · · · ,qm] =

⎡
⎢⎢⎢⎣

q1,1 · · · q1,j · · · q1,m

q2,1 · · · q2,j · · · q2,m

...
. . .

...
. . .

...
q2n,1 · · · q2n,j · · · q2n,m

⎤
⎥⎥⎥⎦ ∈ R

2n×m.

(2.50)
For such systems we formulate the following

Theorem 2.10. Suppose the MIMO P1-TS system with the inputs constitut-
ing the vector [z1, . . . , zn]T = z ∈ Dn and the outputs S1, . . . , Sm, is defined
by 2n fuzzy “If-then” rules or equivalently – by a single rule in the matrix
form (2.48)-(2.50). The row vector of crisp outputs S (z) = [S1, . . . , Sm] can
be computed by the formula

S (z) = gT (z)
(
ΩT

)−1
Q, (2.51)
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where the consequents matrix

Q = ΩT Θ, (2.52)

and

Θ = [θ1, . . . , θm] ∈ R
2n×m,

θj = [θj,00...0, θj,10...0, θj,01...0, ..., θj,11...1]
T ∈ R

2n

, j = 1, . . . , m. (2.53)

Every column θj is assigned to a single system output Sj, (j = 1, . . . , m). The
successive components of the generator g (z) are in accordance with the rows
of the antecedents matrix M defined by (2.49). The fundamental matrix Ω of
the system is a concatenation of 2n columns which are values of the generator
g for the vertices of the hypercuboid Dn, where every vertex corresponds to
the appropriate antecedent of the rule.

Proof. The proof is straightforward and will be omitted, since the procedure
for computing every output Sj applies in the same manner as in the proof of
Theorem 2.4. The formal proof of Theorem 2.10 comes down to substituting
the vector of consequents of the rules q by the matrix Q in the equations
(2.45) and (2.30). 
�

2.7 Equivalence Problem in the Rule-Based Systems

The problem of equivalence between the systems of fuzzy “If-then” rules is
important especially when one compares the outcomes obtained by various
experts or designers, and the number of inputs is greater than two. In the
systems with n inputs, there are 2n fuzzy rules. Thus, the number of ways of
ordering “If” parts is (2n)! and the number of generators and fundamental
matrices is (2n)! as well. For example, for n = 2 we have

(
22

)
! = 24, but for

n = 3 there are 40 320 possibilities of writing the rules. The systems of rules
can be equivalent or not.

We call two rule-based systems equivalent if, and only if, their crisp outputs
are the same for the same inputs from the universe of discourse Dn. In order
to avoid mistakes in computations, which may occur especially for systems
with n ≥ 3 inputs, the designer must know exactly the relationship between
the fuzzy “If-then” rules containing antecedents and consequents, and their
algebraic counterparts in the form of generators, fundamental matrices, and
consequents of the rules. We will show that the relationship between elements
of generators and the particular consequents of the rules plays a key role; they
must correspond to each other.
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More precisely, our goal is to explain why the results formulated by The-
orems 2.4 and 2.10 are valid independently of the order of fuzzy “If-then”
rules. Without loss of generality we consider two MISO systems, which are
defined by two pairs of matrices describing antecedents and consequents of
the rules:

(
M[1],Q[1]

)
and

(
M[2],Q[2]

)
, respectively. The systems differ from

each other in two rows, namely, the rth row in matrices M[1] and Q[1] is the
same as the sth row of M[2] and Q[2], respectively, and vice-versa:

M[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

...
mr

...
ms

...
m2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

...
qr

...
qs

...
q2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, M[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1

...
ms

...
mr

...
m2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

...
qs

...
qr

...
q2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where m1, . . . , m2n ∈ {N1, P1} × · · · × {Nn, Pn}, and q1, . . . , q2n ∈ R.
From the proof of Theorem 2.4 (equations (2.29)-(2.31)), we immediately

obtain that the outputs of such systems are the same. Of course, the above
systems have different generators

g[1] (z1, . . . , zn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0

...
zr1
1 · · · zrn

n
...

zs1
1 · · · zsn

n
...

g2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g[2] (z1, . . . , zn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0

...
zs1
1 · · · zsn

n
...

zr1
1 · · · zrn

n
...

g2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the powers r1, . . ., rn and s1, . . ., sn are from the set {0, 1}. The power
rk or sk is 0, if kth element of the row mr contains the label Nk, or 1, if kth
element of the row mr contains the label Pk. Consequently, the fundamental
matrices Ω[1] and Ω[2] are different, according to their own generators. In
spite of this, the above systems of rules are equivalent, i.e. they generate the
same output, which can be expressed using formerly proved Theorems 2.4
and 2.10. We omit the formal proof, because it is a simple consequence of
Theorem 2.4. Instead of this let us consider an example.

Example 2.11. Consider two rule bases for the systems with n = 3 inputs
and m = 1 output, using the matrix description of the rules. Let the generator
of the first system g[1] (z1, z2, z3) be the same as in (2.40). Thus,
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M[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3

P1 N2 N3

N1 P2 N3

P1 P2 N3

N1 N2 P3

P1 N2 P3

N1 P2 P3

P1 P2 P3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q[1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

q6

q7

q8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g[1] (z1, z2, z3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1

z2

z1z2

z3

z1z3

z2z3

z1z2z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.54)

and the corresponding fundamental matrix is given by (2.41). The second sys-
tem differs from the first one in the replacement of the 4th row in the matrix
M[1] with the 5th one, i.e. we replace the row (P1, P2, N3) for (N1, N2, P3)
and vice-versa. Thus,

M[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3

P1 N2 N3

N1 P2 N3

N1 N2 P3

P1 P2 N3

P1 N2 P3

N1 P2 P3

P1 P2 P3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q[2] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q5

q4

q6

q7

q8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, g[2] (z1, z2, z3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1

z2

z3

z1z2

z1z3

z2z3

z1z2z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.55)

By generating the fundamental matrix for the second system we take the
following concatenation of the columns

Ω[2] = [g[2] (−α1,−α2,−α3) ,g[2] (β1,−α2,−α3) ,g[2] (−α1, β2,−α3) ,

g[2] (−α1,−α2, β3) ,g[2] (β1, β2,−α3) ,g[2] (β1,−α2, β3) ,

g[2] (−α1, β2, β3) ,g[2] (β1, β2, β3)]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 −α3 α1α2 α1α3 α2α3 −α1α2α3

1 β1 −α2 −α3 −α2β1 −β1α3 α2α3 α2β1α3

1 −α1 β2 −α3 −α1β2 α1α3 −α3β2 α1α3β2

1 −α1 −α2 β3 α1α2 −α1β3 −α2β3 α1α2β3

1 β1 β2 −α3 β1β2 −β1α3 −α3β2 −β1α3β2

1 β1 −α2 β3 −α2β1 β1β3 −α2β3 −α2β1β3

1 −α1 β2 β3 −α1β2 −α1β3 β2β3 −α1β2β3

1 β1 β2 β3 β1β2 β1β3 β2β3 β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (2.56)

As one can see Ω[1] �= Ω[2]. From the logical point of view both systems
describe the same mapping D3 → R, but we want to prove this using formerly
formulated theorems. From (2.51) we have S (z) = QT Ω−1g (z) and therefore

S[1] (z) = QT
[1]Ω

−1
[1] g[1] (z) , S[2] (z) = QT

[2]Ω
−1
[2] g[2] (z) . (2.57)
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After computing Ω−1
[1] and Ω−1

[2] , one can easily check that using equations
(2.54), (2.41), (2.55) and (2.56) for Q[i], Ω[i], and g[i] (z), (i = 1, 2), we
obtain

S[1] (z) = S[2] (z) ,

for all z ∈ D3. Thus, both systems of rules describe exactly the same system,
indeed. 
�
In this way we can apply the results of Theorems 2.4 and 2.10 independently
of the order of “If-then” rules provided that every element “zi1

1 · · · zin−1
n−1 zin

n ”
of the generator corresponds both to the appropriate sequence of labels(

Ai1 , . . . , Ain−1 , Ain

) ∈ {N1, P1} × . . . × {Nn−1, Pn−1} × {Nn, Pn} ,

which occurs in the antecedent of the rule, and to the appropriate element
qv in the consequents vector q.

An extension of the above result for MIMO systems is straightforward and
will be omitted.

2.8 Summary

The simplest TS system with one input and output and two fuzzy sets for
the input variable is capable of expressing exactly any nonlinear, continuous
and monotonic function of one variable. The system of fuzzy rules of such TS
system has clear linguistic interpretation. If the TS system approximates a
nonmonotonic function, the fuzzy sets may be very difficult for interpretation,
even if they satisfy boundary conditions. Therefore in the fuzzy modeling we
should rather avoid nonmonotonic membership functions.

By proving Theorem 2.4 we established an exact relationship between the
P1-TS systems and a class of functions to which they are equivalent. It plays
a crucial role in modeling, synthesis and analysis of many physical systems
by using highly interpretable fuzzy rules. The notion of the generator and
the fundamental matrix of the rule-based system belong to the most impor-
tant ones, both for the theory and applications. We showed that the P1-TS
system is nothing else than a multi-linear (or multi-affine) polynomial as
stated in (2.26). It is worth adding that every Boolean (or switching) func-
tion {0, 1}n → {0, 1} has a unique representation as a multi-linear polyno-
mial. Such representation has been originally introduced by Zhegalkin [219]
and was called canonical polynomial form of a Boolean function and plays
an important role in many applications [6], [46], [48], [118].

The question arises: “What is the class of polynomials of the form (2.26)?”
We can say informally that two multivariate polynomials are structurally the
same if they differ in nonzero coefficients. Thus, the number of structurally
different functions of n variables performed by the considered TS systems
is 22n

. Observe that (2.26) is a part of the well-known Kolmogorov-Gabor
polynomial (KGP for short) [49], [68]. More precisely, a zero-order TS model
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with two linear membership functions is equivalent to the KGP minus all the
components of the type zm

i · · · zl
j · · · zr

k with the powers max {m, l, . . . , r} ≥ 2
for n > 1. This observation seems to be worthy of discussion. The output
of the zero-order TS system with n inputs will be denoted by S and the
Kolmogorov-Gabor polynomial by KGPn. We will say that two polynomials
p1 (z) and p2 (z) are equally powerful and write p1 ≡ p2, if they are the same
with the exception of nonzero coefficients, e.g. 1+2z1+z2

1z2 ≡ 3+5z1−4z2
1z2.

Furthermore, we will say that p1 (z) is more powerful then p2 (z), and write
p1 (z) ⊃ p2 (z), if all monomials from p2 (z) are included in p1 (z) and at
least one monomial (with nonzero coefficient) is included in p1 (z), but not
in p2 (z), e.g. 1 + 2z1 + z1z2 + z2

1 ⊃ 3 + 5z1 + z1z2. One can prove that
KGPn ⊃ S for all n > 1. For example, in the case of the system with n = 4
variables, the KGP has exactly 70 coefficients that uniquely define KGP4,
whereas a zero-order TS system has 16 coefficients only. A different situation
occurs when we allow the rules in which the consequents are polynomials or
the membership functions of fuzzy sets are polynomials of the degree n > 1.

One of the most important interpretations of Theorem 2.4 says that by
formulating the consequents of the fuzzy rules which should express a given
function f , the only information needed by an expert are the values of this
function in all vertices of the hypercuboid Dn.

We introduced a compact matrix description of the MIMO P1-TS model.
Observe that we can always set up a sequence of the antecedents of the rules
e.g. by ordering the vertices of the hypercuboid Dn as shown in Section 2.3.
In such case we can obtain an unambiguous model of the rule-based system
in the matrix form (2.48) by establishing only the matrix of consequents of
the rules. This fact can be used for the preservation of the computer memory
needed to store the expert knowledge about the process modeled by a TS
model.

Finally, we considered an equivalence problem of the rule-bases in the
context of the matarules taking into account that in reality the rule-bases
can be noncomplete and/or contradictory ones. The theorems proved in this
chapter are valid independently of the sequences of the rules of a TS model.
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