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Foreword

The technologies of fuzzy systems and fuzzy controllers, in particular, have
been applied with great success to numerous real world applications. The
number of entries in the INSPEC database with keywords “fuzzy model-
ing” and “fuzzy control” dated 1969–2007 is 1,541 and 9,728, respectively. In
spite of the evident progress reported in terms of concepts, algorithmic de-
velopments and engineering practice, there are still a number of challenging
and highly relevant problems. Unfortunately, the existing publications are
rather silent when it comes to reporting comprehensive solutions to them.
The two challenges become particularly apparent and have been triggered by
the growing complexity of the applications. The first evident challenge we
are faced with is the curse of dimensionality. Rule–based systems and fuzzy
rule–based systems are quite affected by this phenomenon especially when
tackling problems of high dimensionality. The second one concerns a way of
constructing fuzzy models which are accurate yet highly interpretable.

The author of the monograph has focused on these two vital problems and
offered an interesting, original and practically relevant insight into their solu-
tions. When dealing with fuzzy modeling, the book focuses on a broad class of
Takagi–Sugeno–Kang (TS) fuzzy models – a highly legitimate choice given a
wealth of literature on these constructs and a great deal of their applications.
Furthermore the TS fuzzy models have been a subject of numerous analytical
studies which have resulted in a series of interesting findings. This situation
stands in a deep contrast with the most studies carried out in the realm of
fuzzy control where analytical methods are not very common.

The analytical methods are beneficial to the better understanding of the
advantages of the technology of fuzzy systems and its usage to the fullest
extent when dealing with real–world problems. The book authored by Jacek
Kluska is an important endeavor along this timely line of the development
of fuzzy systems. While the author relates to an interesting treatise au-
thored by Hao Ying (Fuzzy control and modeling. Analytical foundations and
applications. IEEE Press, New York 2000), the book brings new and very
much attractive ideas and presents important findings. The author not only
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re–visited and cast some Ying’s results in an original fashion but further
developed the Takagi–Sugeno fuzzy systems endowed with polynomial mem-
bership functions.

There are new notions and interesting results. The author introduced the
notions of the generator and the fundamental matrix of the rule–based system
and offered a convenient matrix description of the multiple–input multiple–
output fuzzy system. Next, provided was a clear mathematical relation be-
tween the system of fuzzy rules and the systems described by “classical”
differential or difference equations. The new and important are recurrence
theorems dealing with rule–based systems with generalized classes of mem-
bership functions. It has been shown that those functions play an essential
role in battling the ubiquitous curse of dimensionality.

Through a series of theorems the author established a one–to–one cor-
respondence between the fuzzy systems and their classical counterparts
and provided a detailed solution to many practical problems of substantial
dimensionality.

Numerous examples covered in the text demonstrate the usefulness of the
analytical methods of the fuzzy modeling in application to physical systems.
The book builds a bridge between the highly interpretable fuzzy rule–based
systems, classical control methods based on Boolean logic, multivalued logic
and the conventional control theory, including its classic constructs of PID
controllers.

Owing to the analytical approach the author developed an algebraic theory
of rule–based systems, worked out an effective identification algorithms for
a certain class of nonlinear dynamical systems, and proposed an interesting
new classification system involving a collection of highly interpretable fuzzy
rules.

A truly outstanding feature of this book is a mathematical rigor with which
the author treats the subject matter and presents the reader with carefully
structured ideas and algorithmic pursuits. All in all, the book can be highly
recommended to researchers and practitioners interested in exploiting an-
alytical methods of fuzzy modeling and control, system identification and
diagnostics. Definitely this well–timed volume is a testimony to the rapid
progress and a significant wealth of concepts and applications of Computa-
tional Intelligence.

Witold Pedrycz
Department of Electrical and Computer Engineering

University of Alberta, Edmonton
and

Systems Research Institute,
Polish Academy of Sciences

Warsaw, Poland



Preface

This book does not contain an elementary mathematics of fuzzy systems such
as fuzzy sets, operations on fuzzy sets, Boolean logic, triangular norms (t-
norms), t-conorms, implications, fuzzy relations, fuzzy reasoning methods,
the fuzzy controller architecture, the Mamdani type fuzzy controller, etc.,
because of the flood of papers and books on these topics. It is assumed that
the reader is familiar with the fundamentals of the fuzzy modeling and with
the foundations of Boolean logic and conventional control methods, including
PID control.

This book is focused on mathematical analysis and rigorous design meth-
ods for fuzzy control systems based on Takagi-Sugeno fuzzy models,
sometimes called Takagi-Sugeno-Kang models. We present a rather general
analytical theory of exact fuzzy modeling and control of continuous and
discrete-time dynamical systems. The main attention is paid to usability of
the results for the control and computer engineering community and there-
fore simple and easy for linguistic interpretation knowledge-bases have been
used. The approach is based on the author’s theorems concerning equivalence
between widely used Takagi-Sugeno systems and some class of multivariate
polynomials. It combines the advantages of fuzzy system theory and clas-
sical control theory. Classical control theory can be applied to modeling of
dynamical plants and the controllers. They are all equivalent to the set of
Takagi-Sugeno type fuzzy rules. The approach combines the best of fuzzy and
conventional control theory. It enables linguistic interpretability (also called
transparency) of both the plant model and the controller. In the case of lin-
ear systems and some class of nonlinear systems, the engineer can in many
cases directly apply well-known classical tools from the control theory both
for analysis, and the design of the closed-loop fuzzy control systems.

The main objective of this book is to establish comprehensive and unified
analytical foundations for fuzzy modeling using Takagi-Sugeno rule scheme
and their applications for fuzzy control, identification of some class of non-
linear dynamical processes and classification problem solver design. After an
excellent book of Ying [207], this is probably the second book which attempts
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to rigorously show that the fuzzy control is not a collection of applications
without a solid theory. We pay special attention to the use of precise language
to introduce the definitions and concepts, and to prove the conclusions.

Intended Readership of the Book

This self-contained textbook is intended for anyone who is interested in ana-
lytical aspects of fuzzy modeling and control applying the widely used Takagi-
Sugeno rule scheme and wants to know precisely their connections with the
classical counterparts. It is a self-study book for engineering professionals in
diverse technical fields and industries, especially those in the fields of con-
trol and computer science. It aims at an audience of graduate and Ph.D.
students as well. We assume that the reader has elementary background cor-
responding to an introductory course in automatic control, linear algebra and
fundamentals of switching theory and logic design.

After reading Chapters 2 and 4, it can be studied in many ways, according
to the particular interests of the reader. The book can be used together with
the books on fundamentals of the control theory, artificial neural networks
and other methods on machine learning. If a practicing engineer wants to
apply the results of this book quickly, then the proofs of the lemmas and
theorems may be skipped.

Originality of the Book

This book is focused on the rigorous mathematical methods of fuzzy model-
ing and control systems design based on the widely used Takagi-Sugeno rule
scheme (TS for short), but it is not intended as a collection of existing results
on fuzzy systems or fuzzy control. We present a new analytical theory of ex-
act fuzzy modeling of continuous and discrete-time dynamical systems and
logic systems which can be applied to solve the control, identification and
classification problems encountered in practice. Therefore rather simple and
highly interpretable knowledge-bases are used, putting a particular emphasis
on the matrix calculus, symbolic calculus and recurrence. The approach is
based on the author’s theorems concerning equivalence between the Takagi-
Sugeno systems and some class of multivariate polynomials, which combines
the advantages of fuzzy system theory and classical control theory. Among
others, it enables linguistic interpretability of the plant models and the con-
trollers. Using the results developed in this book, the engineer can in many
cases directly apply well-known tools from the conventional control theory
(e.g. PID control) or binary logic design theory (e.g. combinational or sequen-
tial circuits), both to the analysis and design of the linear and some class of
nonlinear closed-loop fuzzy control systems.

Several notions and results are new in this book, which are unavailable in
any other book. To them belong the notions of the generator and the fun-
damental matrix of the TS system, the matrix description of the multiple-
input-multiple-output (MIMO) TS system and new results on recurrence for
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the rule-based systems involving the first- and the second-order polynomials
as the membership functions of fuzzy sets defined for the input variables.
The book contains the proofs of the results in order to maintain a rigor-
ous approach. Many examples included in the text illustrate usefulness of
the analytical methods of the fuzzy modeling to many physical systems.
The results obtained in this book are compared with other ones to show
the advantages of the proposed procedures.

The material contained in this book is oriented towards the algorithms
that are practically useful. We use analytical and systematic approach to the
synthesis and analysis of the models. Thanks to this, a comparison of the
methods developed in this book with the methods obtained by other authors
is straightforward. Symbolic quantities are mainly used to ensure the gener-
ality of outcomes. Seldom, if ever, will numerical data be taken, to increase
transparency of the examples. The book contains many examples concerning
exact fuzzy modeling and control of real systems. We show theoretically and
by examples that the fuzzy rule-based systems with the linear membership
functions deserve a special attention not only from the theoretical point of
view, but also they should be attractive for practitioners. The analytical re-
sults reinforce our belief that many successful applications of the fuzzy control
cannot be a matter of chance.

Overview of the Book

The book consists of seven chapters. Chapter 2 provides the notion of the
generator and the fundamental matrix of the rule-based system which are
crucial for the book. One of the theorems establishes an exact relationship
between the collection of fuzzy rules and a class of functions to which they are
equivalent. It plays a crucial role in the modeling of many physical systems
by using highly interpretable fuzzy rules. We show that the considered fuzzy
rule-based system is nothing else but a part of the well-known Kolmogorov-
Gabor polynomial. We prove that by formulating the consequents of the fuzzy
rules which should express a given function, the only information needed by
an expert is the values of this function in all vertices of the hypercuboid. In
this chapter we introduce a compact matrix description of the set of fuzzy
rules. The rule-based systems which use the linear membership functions of
fuzzy sets for input variables are called the P1-TS systems. They are highly
interpretable and therefore they are important from the engineering point
of view. Finally, we consider an equivalence problem of the rule-bases in the
context of the matarules taking into account that in reality the rule-bases
can be noncomplete and/or contradictory ones.

Motivated by the “curse of dimensionality problem” of the fuzzy rule-based
systems, Chapter 3 provides several results to make a calculation of the crisp
system output feasible. We give some features of the fundamental matrix and
its inverse. Thanks to one of theorems, the fundamental matrix inverse can
be found recursively using multiplication operations only, instead of using
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classical inversion procedures. One of the main advantages of this chapter
is providing a recursive procedure to solve the problem of “How to obtain
the function performed by the rule-based system containing a large number
of rules”. To the best of the author’s knowledge this problem has not been
solved in the literature as yet. We show that thanks to the recursion, the
curse of dimensionality problem can be substantially reduced. The compu-
tational architecture of the recursion can be viewed as a feedforward neural
network. As an example of application of the recursion, the rule-based system
with 6 inputs was considered. However, it is not a big problem to consider a
P1-TS system with about 10 inputs. Next we show that the P1-TS systems
can be used for the exact modeling of the nonlinear continuous or discrete-
time dynamical systems, where the inputs of the fuzzy rule-based system are
more abstract quantities and the outputs refer to the system structure. Such
approach coincides in many respects with the one described in [184, where
the system inputs can contain known premise variables that are not func-
tions of the control input, but they may be functions of the state variables,
external disturbances and/or time. For every input variable we assume two
complementary membership functions that cannot be monotonic or linear.
The advantages of our approach are exemplified. For the inverted pendulum
system we obtain a better result than in other works. By using recurrence we
can easily check validity of other models of nonlinear systems in the P1-TS
form, e.g. a translational oscillator with an eccentric rotational proof mass
actuator, a vehicle with triple trailers and many other dynamical systems
discussed in the literature. In this chapter we show that application of the
Taylor series expansion can be very attractive in practice. In one example
we use 4th-degree Taylor polynomials for a good approximation of nonlinear
functions at the equilibrium point of the dynamical system. The result is
much better than the one obtained by the linearization of differential equa-
tions around the equilibrium. By using the Taylor series expansion we obtain
a small number of highly interpretable fuzzy rules. Finally, we give the best
evaluation for the lower and upper bound of the function, to which the rule-
based P1-TS system is equivalent.

In order to obtain a richer class of functions to which the fuzzy rule-based
system is equivalent, in Chapter 4 we use polynomials of the degree higher
than one, as the membership functions of fuzzy sets. A special attention is
paid to the TS systems which use the second degree polynomials. We show
that it is not possible to obtain any second degree polynomial function, to
which a TS rule-based system is equivalent, on the assumption that only
two complementary membership functions as the second degree polynomi-
als are defined for the input variables. However, three quadratic membership
functions suffice to model every second degree polynomial function. For the
zero-order TS system, we define for every input variable the set of three
highly interpretable normalized membership functions as the second degree
polynomials. The TS systems that use such fuzzy sets we call P2-TS sys-
tems. Such systems are thoroughly investigated. One of theorems says that
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the crisp output of the MISO P2-TS system in the vertex of the hypercuboid
is exactly the same as the appropriate conclusion of the fuzzy rule contained
in the rule-base. For the P2-TS systems both the generator and the funda-
mental matrix are defined. The fundamental matrix and its inverse are very
important for the considered systems, since they enable one to establish an
exact relationship between the consequents of the “If-then” rules and the
parameters that define the crisp function, to which the rule-based system
is equivalent. Therefore the procedures of how to compute the fundamental
matrix and its inverse are given. The examples show that P2-TS systems
have highly interpretable rule-bases when we use individual fuzzy rules or
the metarules. The curse of dimensionality problem is much more serious
for the P2-TS systems than the one for the P1-TS systems. Therefore, we
develope the recursive procedures for the computation of both the inverse
of the fundamental matrix and the crisp output of the P2-TS systems. The
theorems say that we do not need to inverse large matrices to obtain the
crisp output of the P2-TS systems. As a result of these theorems, the curse
of dimensionality in P2-TS systems is substantially weakened. The results of
this chapter can be easily generalized for the MIMO case. After this chapter
we are able to thoroughly generalize the results for the TS systems with the
membership functions that are polynomials of the degree d ≥ 3. However, we
should realize that the number of complete and noncontradictory rules will
rapidly grow and the analysis will become more and more complicated. Both
P1- and P2-TS systems are able to model a large class of real nonlinear pro-
cesses. Therefore, if it is not necessary, we should not complicate our models
in the engineering practice.

Chapter 5 mainly focuses on the P1-TS systems as the simplest and the
most transparent among fuzzy rule-based systems with polynomial member-
ship functions. In order to show that there are quite a lot of applications of
P1-TS systems, many examples of exact modeling of conventional systems
are given, especially in relation to nonlinear dynamical processes modeling
and control. The P1-TS systems with two and more inputs are comprehen-
sively investigated in the subsequent sections of Chapter 5, considering in-
terpretability issue. It is exemplified that by using a multi-valued logic for
highly nonlinear dynamical process, one can design an acceptable control
algorithm expressed by the P1-TS system fuzzy rules. We show a connec-
tion between P1-TS systems and classical combinational logic systems. The
fuzzy rule-based systems with inputs and outputs from the unity intervals are
discussed in the context of generalized operators such as triangular norms,
t-conorms, implications, etc. In this way, an unavoidable connection between
fuzzy rule-based systems and Boolean algebra becomes apparent. We exem-
plify that the theory of P1-TS systems can be used to transform some control
algorithms, formerly obtained with the use of Boolean logic, into the fuzzy
domain. The highly interpretable rule-bases are constructed for the systems
with three and more inputs not only for abstract processes, but also for real
dynamical plants, e.g. a NARX model, fuzzy J-K flip-flop, Euler equations for
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a rigid body, Chen’s attractor, the human immunodeficiency virus, magnetic
suspension system, low order atmospheric circulation process and induction
motor. The theory of P1-TS systems is also used for optimal analytical de-
sign of the well-known PID controller, working in the closed-loop control
system for some class of the linear and nonlinear second order plants. Such a
controller in the form of P1-TS system is optimal with respect to typical re-
quirements for automatic control systems. After studying analytical results it
is clear why the fuzzy PID controller as a P1-TS system can be better than
the conventional PID algorithm. Next, we show that using our systematic
approach, the so called “controller with variable gains” introduced by Ying
[205], [206] can be easily obtained. In the last sections of Chapter 5 exact
modeling of single input dynamical systems is investigated. Similarly as in
the preceding sections we assume that nonlinear dynamical system is a col-
lection of linear dynamical subprocesses. However, in contrast to the previous
approach, where the inference was concerned with the structure parameters
represented by matrices describing local linear models, the nonlinear model
of the whole system is now inferred according to the original Takagi-Sugeno
inference method. Based on this inference, we identify the class of dynamical
systems to which the rule-based system is equivalent. Theoretical results are
exemplified by exact fuzzy modeling of the van de Vusse reaction and Rössler
chaotic system. Next we describe the architecture of the P1-TS system as the
fuzzy model of conventional MIMO linear dynamical system. In Section 5.8
we show that the idea of TS systems with two linear membership functions
of fuzzy sets can be easily extended to the systems with triangular fuzzy
partition. The triangular membership functions can be substituted by other
nonlinear membership functions which have the same support and the same
monotonicity intervals. As a practical example of using the systems with tri-
angular fuzzy partition, we present a sensor-based navigation system for a
mobile robot. Chapter 5 ends with supplementary results for P1-TS systems.
The outcomes concern the necessary and sufficient condition of linearity for
such rule-based systems, the first-order P1-TS systems and the zero-order
systems with contradictory rule-base. In the last section we show that the
system without contradictions is a special case of the rule-based system with
contradictions. For such systems we introduce a generalized fundamental ma-
trix of the P1-TS, which can be easily extended to the P2-TS systems.

In Chapter 6 we investigate the identification problem of multilinear dy-
namical systems from observation data. Based on analytical results concern-
ing exact fuzzy modeling of multilinear dynamical systems which provide
necessary and sufficient conditions for transformation of fuzzy rules into crisp
model, we prove the theorem on existence of the solution in the form of the
P1-TS system. To get a solution we propose to use a batch procedure or re-
cursive least squares method. The methodology preserves the interpretability
of the fuzzy models, which is a key property of the considered rule-based sys-
tems and can be applied to continuous or discrete-time multilinear systems.
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The proposed computation method can be viewed as a supervised learning
algorithm for the adaptive linear neural network.

Chapter 7 provides a method for obtaining a set of highly interpretable
“If-then” rules for the P1-TS system as an optimal (in the sense of a good
generalization ability) binary classification problem solver. We use the results
developed in the previous sections, especially related to modeling of the rule-
based system from the input-output data, and the contradictory rules. The
idea of constructing the classifier involves the theory of generators, funda-
mental matrices and support vector machines.

The bibliography at the end of the book lists the publications cited in the
text as well as other relevant items that are not cited. Given a vast amount
of papers and books, it is inevitable that the bibliography is still incomplete.

Of course, it is impossible to cover the entire spectrum of topic areas in
one volume. A connection between the highly interpretable fuzzy “If-then”
rules and some methods of artificial intelligence such as neural networks or
kernel-based methods, was only signalled in this volume. Many of the results
contained in this book establish a good starting point for stability and ro-
bustness analysis of fuzzy control systems and developing new learning and
adaptation tools for intelligent control and diagnostic systems, which could
be included in the future edition.

Jacek Kluska
Department of Computer and Control Engineering

Rzeszow University of Technology
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Chapter 1
Introduction

Systems can be represented by mathematical models of many different forms,
such as algebraic equations, differential or integral equations, finite state ma-
chines, Petri nets, rules, etc. They are used particularly in the natural sciences
and engineering disciplines such as physics, biology, electrical and computer
engineering, in the social sciences such as economics or sociology. Engineers,
computer scientists, physicists and economists use mathematical models most
extensively. A mathematical model should be a representation of the essential
aspects of an existing system (or a system to be constructed). This model
should express the knowledge of that system in usable form [45].

Fuzzy systems theory enables us to utilize qualitative, linguistic informa-
tion about a system to construct a mathematical model for it [132]. For
many real-life systems, which are highly complex and inherently nonlinear,
conventional approaches to modeling are not easy to apply, whereas the fuzzy
approach might be a very helpful alternative. The modeling framework con-
sidered in this book is based on the models which describe relationships
between variables by means of fuzzy “If-then” rules. Such models have one of
two general structures: Mamdani or Takagi-Sugeno (TS). The difference be-
tween them is the construction of the rule consequents. In the former one, the
consequents are linguistic (fuzzy sets), whereas the latter one employs crisp
functions (or simply constants). Our considerations will be restricted to the
Takagi-Sugeno models with the simplest fuzzy sets for the input variables.

Fuzzy models can be seen as rule-based systems suitable for formalizing
the knowledge of experts. At the same time they are flexible mathematical
structures which can represent complex nonlinear mappings. They integrate
the logical processing of information with function approximation. Rule-based
systems are not restricted to areas requiring human expertise and knowledge;
they can be obtained from empirical data, as well. Methods for construct-
ing fuzzy models from input-output data should not be limited to the best
approximation of the data set only, but also and more importantly, to ex-
tract knowledge from training data in the form of the fuzzy rules. The rules
should be easily understood and interpreted (see e.g. [12]). However, the

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 1–2.
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interpretability of fuzzy systems has not received much attention in the field
of fuzzy modeling until now.

Fuzzy control is easy to learn and easy to apply, since it is close to hu-
man intuition. For this reason, it has been successfully applied to a variety
of industrial processes and consumer products such as chemical reactors, ce-
ment kilns, vacuum cleaners, washing machines, autofocusing cameras, air
conditioners, robots, voice-controlled robot helicopters, elevator systems and
so on. However, we still need efficient analytical analysis and design methods
to enable our deep understanding of fuzzy systems in the context of conven-
tional modeling methods and control tools. Furthermore, we need systematic
and unified approaches to design highly interpretable fuzzy models for the
dynamical plants, the fuzzy controllers and other systems which are used
in the engineering practice. Unfortunately, despite much research, such ap-
proaches seem to be only beginning to emerge. The main difficulty in the
mathematical analysis of fuzzy models is that they are inherently nonlinear
and, therefore, classical control theory with its emphasis on linear systems is
difficult to apply or cannot be applied at all.

It should be added that the existing fuzzy models in the form of fuzzy “If-
then” rules are not free from drawbacks. The curse of dimensionality problem
of the rule-based systems is one of them. What is more, the fuzzy systems are
mostly treated as magic black boxes with little analytical understanding and
explanation [206]. Furthermore, there are no analytical results concerning
quality of the closed-loop fuzzy control systems; practically all ’proofs’ from
the field of fuzzy control have been made by simulations, which is not always
accepted by the scientific community. Finally, engineers need sufficiently clear
and well justified methods for modeling and control which can be directly
applied in practice. Such opinion and the above mentioned questions were
the main motivation for writing this book.



Chapter 2
MISO Takagi-Sugeno Fuzzy System
with Linear Membership Functions

Although we will be especially interested in Takagi-Sugeno models [180] called
TS models for short which use linear or polynomial membership functions,
we begin our considerations with the single-input and single-output system
(SISO TS) which uses nonlinear membership functions. The problem involves
determining the fuzzy rules which exactly model a nonlinear function belong-
ing to some class of functions.

2.1 Perfect Approximation of Nonlinear Functions
Using the Simplest Takagi-Sugeno Model

Below we will consider the problem of perfect approximation of nonlinear
functions using the simplest Takagi-Sugeno model in the context of inter-
pretability of fuzzy sets.

Suppose the input variable of a TS system is z ∈ [−α, β] and its output is
S as shown in Fig. 2.1.

Fig. 2.1 Single-input-
single-output TS system
defined by the rules (2.1)

SISO
TS system

�z ∈ [−α, β] � S

We assume that α + β �= 0. By N and P we denote two fuzzy sets which
will be identified both with their linguistic labels and membership functions:
N (z) and P (z), respectively. Thus, N, P : [−α, β] → [0, 1]. The TS system
is defined by two fuzzy rules

R1 : If z is N , then S = q1,

R2 : If z is P , then S = q2.

}
(2.1)

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 3–24.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 2 MISO Takagi-Sugeno Fuzzy System with Linear Membership Functions

The natural requirements concerning the fuzzy sets are as follows

1. N (z) is a continuous, nonincreasing function of z,
2. N (−α) = 1 and N (β) = 0,
3. P (z) = 1 − N (z).

Observe that P is a continuous, increasing function of z which satisfies bound-
ary conditions: P (β) = 1 and P (−α) = 0. Continuity, monotonicity and
preservation of boundary conditions ensure a clear linguistic interpretation
of both membership functions.

Suppose some continuous and monotonic function f (z) : [−α, β] → R is
given. The problem is “How to obtain membership functions for the fuzzy
rule-based TS system, such that its output is exactly the same, i.e. S (z) =
f (z) for any z ∈ [−α, β]?” First of all the following conditions

q1 = f (−α) , q2 = f (β) , (2.2)

N (z) =
f (z) − f (β)

f (−α) − f (β)
, (2.3)

must be satisfied, since the output of the TS system is computed as follows
[180]

S (z) =
q1N (z) + q2P (z)

N (z) + P (z)
= f (z) , for z ∈ [−α, β] . (2.4)

Example 2.1. The model (2.1) exactly approximates the following mono-
tonic and continuous function (see Fig. 2.2)

f (z) = − cos z

z + π/4
, for z ∈

[
−π

6
,
π

2

]
. (2.5)

Fig. 2.2 Plot of the
monotonic function (2.5)
which can be exactly
expressed by a TS system
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Fig. 2.3 Plot of the
membership function
N(z) defined by (2.6) and
its complement P (z) =
1 − N(z)
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This is true if, and only if the membership function N (z) from the class of
functions defined above is given by the function shown in Fig. 2.3

N (z) = −π
√

3
18

f (z) , for z ∈
[
−π

6
,
π

2

]
. (2.6)

Monotonicity of the membership functions of fuzzy sets is an important
requirement. The question arises whether this requirement can be substi-
tuted by a local or global sector nonlinearity condition as suggested in
[184] (p. 10)?

Example 2.2. Let us consider the function depicted in Fig. 2.4

f (z) = z (sin z + 2) , for z ∈ [−1, 5] . (2.7)

This function is a sector bounded nonlinearity. It is clear that for z ∈ [−1, 5]
the equation

N (z) =
z (sin z + 2) − 5 sin 5 − 10

sin 1 − 5 sin 5 − 12
(2.8)

Fig. 2.4 Plot of a sector
bounded function (2.7)
which cannot be exactly
expressed by a single TS
system
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Fig. 2.5 Plot of the
function (2.8)
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must be satisfied, but the condition N (z) ∈ [0, 1] is not true for all z ∈ [−1, 5].
Therefore N (z) cannot be viewed as a membership function of some fuzzy
set defined on the universe of discourse [−1, 5], (see Fig. 2.5). Of course, the
function (2.7) can be exactly expressed in the form of three rule-based TS
systems, where every system is designed in the monotonicity region of the
original function f (z) (see Fig.2.4).

Monotonicity of the membership functions of fuzzy sets is very important
requirement from the interpretability point of view.

Example 2.3. For the continuous, smooth and highly nonlinear function

f (z) = eπ − (eπ − πe) sin2 (5πz/2) exp
(
− sin2 (9πz)

)
, z ∈ [0, 1] , (2.9)

one can find the fuzzy rules in the form of (2.1) and the fuzzy sets, such that
S (z) = f (z) for z ∈ [0, 1]. The consequents of the fuzzy rules are constants
q1 = eπ, q2 = πe and the membership functions of fuzzy sets N and P satisfy
the boundary conditions (P (0) = 0, P (1) = 1, N (0) = 1 and N (1) = 0).
The membership functions are as follows (see Fig. 2.6)

N (z) = 1 − P (z) , P (z) = sin2 (5πz/2) exp
(
− sin2 (9πz)

)
, z ∈ [0, 1] .

(2.10)
Even though the output S of the TS system is exactly the same as the
function (2.9) for all points from the universe of discourse and the membership
functions satisfy the boundary conditions, the fuzzy sets are not easy for
interpretation.

In the fuzzy modeling we should rather avoid nonmonotonic membership
functions. Similar investigation to the one in the above section can be made
for exact modeling of nonlinear systems with many input variables. Some
ideas on this subject are included in [184], where however, there is no sys-
tematic procedure for converting a general nonlinear system to the TS form,
even for nonlinear systems with nonlinearities that are polynomials of input
variables [31].
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Fig. 2.6 Plot of the
membership function
N(z) defined by (2.10) N(z)
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2.2 Assumptions and Linguistic Interpretation of
Linear Membership Functions

We will mainly use linear membership functions for input variables. They
are conceptually the simplest, have a clear interpretation and play a crucial
role in many applications in the fuzzy modeling and control. We will show
further on mathematically and by examples that they are sufficient for mod-
eling complex highly nonlinear static or dynamic, continuous or discrete-time
systems.

Let us consider a multiple-input and single-output rule-based system
(MISO system for short) with input variables z1, z2, . . . , zn. For every
input zk ∈ [−αk, βk] we require that there is no interval degenerated to
a single point, i.e. we assume αk + βk �= 0 for k = 1, 2, . . . , n, through-
out the book. For any zk, we define two fuzzy sets with linear membership
functions Nk (zk), and Pk (zk), where Pk is an algebraic complement to Nk

(see Fig. 2.7)

Nk (zk) =
βk − zk

αk + βk
, (2.11)

Pk (zk) = 1 − Nk (zk) , k = 1, 2, . . . , n. (2.12)

Fig. 2.7 Linear mem-
bership functions of two
fuzzy sets

�

�

�������������������������� z

−α β

1

N(z)
P (z)



8 2 MISO Takagi-Sugeno Fuzzy System with Linear Membership Functions
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Fig. 2.8 Examples of linguistic interpretation of the fuzzy sets N = N(z) and
P = P (z) for z ∈ [−α, β]

It should be noted that using some linear transformation, the intervals
[−αk, βk] could be replaced by different “standardized intervals”. The unity
interval [0, 1] or symmetric around zero interval [−1, 1] and many others be-
long to them. Such substitution would greatly simplify all mathematical de-
scriptions and proofs. However, we will mainly use intervals [−αk, βk] further
on, because for them it is possible to distinguish five cases, in which the terms
Nk and Pk have different linguistic interpretations (see Fig. 2.8):

1. If −αk < βk < 0, then Nk can be interpreted as negative big, and Pk - not
negative big,
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2. If −αk < βk = 0, then Nk can be interpreted as not negative small, and
Pk - negative small,

3. If αk ≈ βk > 0, then Nk can be interpreted as negative, and Pk - positive,
4. If 0 = −αk < βk, then Nk can be interpreted as positive small, and Pk -

as not positive small,
5. If 0 < −αk < βk, then Nk can be interpreted as positive big, and Pk - as

not positive big.

Obviously, depending on the context or specific application, the linguistic
terms can be substituted by more suitable, adequate for the considered prob-
lem. For example the term positive can be replaced by positive small or posi-
tive big. We will use symbolic intervals [−αk, βk], where −αk < βk. Thanks to
this our analytical results will be more general than those obtained in other
works, e.g. [168], [207].

Observe that for the functions (2.11)-(2.12) the inequalities

dNk

dzk
< 0 and

dPk

dzk
> 0,

are satisfied, since αk + βk > 0 for k = 1, . . . , n. Therefore the symbol Nk

refers to the membership function with negative slope and analogously Pk

refers to the function with positive slope.

2.3 Compact Description of the MISO TS System

In order to allow the numbering of fuzzy rules by natural numbers, and to
give more compact descriptions, we introduce a convenient indexing. Let us
consider a MISO TS system with the inputs z1, . . . , zn and the output S (see
Fig. 2.9). This system is defined by 2n rules in the form of implications

Fig. 2.9 The inputs and
the output of MISO TS
system

MISO
TS system

�z1 ∈ [−α1, β1]
�z2 ∈ [−α2, β2]
�

�

�

�zn ∈ [−αn, βn]

� S

If P(i1,...,in), then S = q(i1,...,in), (2.13)

where (i1, . . . , in) ∈ {0, 1}n and each antecedent P(i1,...,in) of an implication
is the statement of the form

P(i1,...,in) = “z1 is Ai1 and ... and zn is Ain”, (2.14)
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and

Aik
=
{

Nk, for ik = 0
Pk, for ik = 1 , k = 1, . . . , n. (2.15)

If it is not stated differently, we assume that the consequents q(i1,...,in) of the
rules in (2.13) do not depend on the input variables, i.e. we will consider
a zero-order Takagi-Sugeno model [180]. In more general TS systems, the
consequents are polynomials of the first or higher order or more complicated
functions of input variables.

The rule-based system (2.13)-(2.15) we will call P1-TS system to empha-
size that membership functions of fuzzy sets for input variables are polyno-
mials of the first order.

Now we introduce indexing which allows the ordering of the fuzzy rules.
For any n-tuple of indices (i1, . . . , in) ∈ {0, 1}n we define the corresponding
index v, which is formally a function of the sequence of indices (i1, . . ., in):

v = 1 +
n∑

k=1

ik2n−k, ik ∈ {0, 1} , k = 1, . . . , n. (2.16)

Any v from the set {1, 2, . . . , 2n} corresponds to only one antecedent of the
fuzzy “If–then” rule. When the bijection (2.16) holds we will simply write
v ↔ (i1, . . . , in), e.g. 182 ↔ (1, 0, 1, 1, 0, 1, 0, 1).

The rules (2.13) can be rewritten as

If Pv, then S = qv, (2.17)

where v ↔ (i1, . . . , in). For the inputs z1, . . . , zn, the output is S and it is
defined by the formula [180]

S (z1, . . . , zn) =
∑2n

v=1 qvhv (z1, . . . , zn)∑2n

v=1 hv (z1, . . . , zn)
, (2.18)

where
hv (z1, . . . , zn) = � (Ai1 (z1) , . . . , Ain (zn))v , (2.19)

the operator � denotes an algebraic t-norm: � (x, y) = xy [202], the indices
v and (i1, . . . , in) are in the one-to-one correspondence (2.16), and Aik

(z) are
membership functions of the fuzzy sets, i.e. Aik

∈ {Nk, Pk} for ik ∈ {0, 1} and
k = 1, . . . , n. The value hv can be interpreted as a degree of fulfilment (or degree
of firing level) of the vth rule by the given inputs z1, . . ., zn. One can check that

2n∑
v=1

hv (z1, . . . , zn) =
n∏

i=1

(Ni (zi) + Pi (zi)) , (2.20)

and therefore, if the complementary property (2.12) is satisfied, then (2.18)
reduces to

S =
2n∑

v=1

qvhv (z1, . . . , zn) . (2.21)
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The function hv (z1, . . . , zn) can be viewed as a normalized membership
function of many variables or as a fuzzy relation.

The set
Dn = [−α1, β1] × . . . × [−αn, βn] , (2.22)

where × denotes the Cartesian product, we will call a hypercuboid. Its vertices
are the vectors

γv = [γ1, . . . , γn]T ∈ {−α1, β1} × . . . × {−αn, βn} , (2.23)

where v ↔ (i1, . . . , in) ∈ {0, 1}n, and they can be ordered according to (2.16)
as shown in Fig. 2.10. The length Lk of the interval [−αk, βk] and the volume
Vk of the hypercuboid Dk are defined by

Lk = αk + βk , k = 1, 2, ..., n, (2.24)

Vk =
∏k

i=1
Li , k = 1, 2, ..., n. (2.25)

They will be helpful in the future for the interpretation of some results.
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Fig. 2.10 Vertices of the hypercuboid Dn for n = 3

2.4 Crisp Output of the Zero-Order MISO P1-TS
System

In this section we prove the main theorem concerning modeling of systems
using the Takagi-Sugeno rule scheme, which uses two complementary linear
membership functions for each input variable.

Theorem 2.4. Define for the vector variable z = [z1, . . . , zn]T , the following
multilinear function f0 : Dn → R,

f0 (z) =
∑

(p1,p2,...,pn)∈{0,1}n

θp1,p2,...,pnzp1
1 zp2

2 · · · zpn
n , (2.26)
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where 2n coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1, are real numbers. For
every function of the type (2.26) there exists a zero-order MISO P1-TS system
such that S (z) = f0 (z) for all z ∈ Dn and

(i) the inputs of the system are components of z ∈ Dn and the output is S
(see Fig. 2.9),

(ii) two linear membership functions defined by (2.11)-(2.12) are assigned to
each component of the vector z,

(iii) the system is defined by 2n fuzzy rules in the form of (2.13)-(2.15).

One can find all consequents q1, q2, ..., q2n of the fuzzy rules by solving 2n

linear equations. For a nonzero volume of the hypercuboid Dn, the unique
solution always exists.

Proof. First we identify the class of functions performed by the TS system.
The t-norm in (2.18) is an algebraic product and any function hv in (2.19) is
a product of the first order polynomials. Thus,

S =
2∑

in=1

. . .

2∑
i1=1

n∏
k=1

(aik
zk + bik

) q(i1,...,in) ,

where aik
, bik

, and q(i1,...,in) are real numbers. This means that S (z) is a
multilinear function which can be written in the form of (2.26).

Now assume that some function f0 in the form of (2.26) is given. Our goal
is to express all consequents of the rules for the fixed in advance collection
of coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1. The function f0 is the scalar
product f0 (z) = θTg (z), where

θ = [θ00...0, θ10...0, θ01...0, ..., θp1...pn , ..., θ11...1]
T ∈ R

2n

, (2.27)

g (z) = [1, . . . , (zp1
1 · · · zpn

n ) , . . . , (z1 · · · zn)]T , (2.28)

with pk ∈ {0, 1} for k = 1, . . . , n. For a given z, the vector g (z) we will call
a generator. It is continuous nonlinear mapping, which transforms the points
z ∈ Dn into 2n-dimensional space, whereas the function f0 is a linear function
with respect to parameters θ00...0, θ10...0, θ01...0, . . . , θp1,p2,...,pn , . . . , θ11...1.
The generator g = g (z1, z2, . . . , zn) contains 2n components of the form
“zi1zi2 . . . zik

” being elements of the polynomial “(1 + z1) × · · · × (1 + zn)”
written in the expanded additive form, when substituting in the monomials
of this polynomial all coefficients by “1”.

The equation f0 (z1, . . . , zn) = θT g (z1, . . . , zn) must be satisfied for all
points in the hypercuboid Dn, especially in its vertices. Thus, the following
2n linear equations

θTg (γv) = qv, v = 1, 2, . . . , 2n, (2.29)

must be satisfied, or equivalently
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q = ΩT θ, Ω =
[
g (γ1) , . . . , g (γ2n)

]
2n×2n , (2.30)

where the consequents of the rules constitute the vector q = [q1, . . . , q2n ]T.
Thus,

q =

⎡⎢⎣ θTg (γ1)
...

θTg (γ2n)

⎤⎥⎦ =

⎡⎢⎣ f0 (γ1)
...

f0 (γ2n)

⎤⎥⎦ . (2.31)

The equations (2.30)-(2.31) formulate necessary conditions, under which the
system of fuzzy rules is equivalent to (2.26). Now we prove that they are suf-
ficient as well. Sufficiency requires that the 2n × 2n matrix Ω containing the
columns g (−α1, −α2, . . . , −αn), . . ., g (β1, β2, . . . , βn) is a nonsingular one.
Observe that the output S of the TS system with n inputs z1, z2, . . . , zn can
be defined by the following rule base, which is equivalent to (2.13)-(2.15):

R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn, then S = q1,

R2 : If z1 is P1 and z2 is N2 and . . . and zn is Nn, then S = q2,

R3 : If z1 is N1 and z2 is P2 and . . . and zn is Nn, then S = q3,

R4 : If z1 is P1 and z2 is P2 and . . . and zn is Nn, then S = q4,

...
R2n : If z1 is P1 and z2 is P2 and . . . and zn is Pn, then S = q2n .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.32)

The matrix Ω we will call the fundamental matrix throughout the book. It
contains as elements the values of the generator g in such vertices of the hy-
percuboid Dn that exactly correspond to the labels used in the antecedents of
the rules. This means that “−αk” in g corresponds to Nk, and “βk” in g cor-
responds to Pk, where Nk and/or Pk are used in the antecedent of the rule.
The vector q = [q1, q2, . . . , q2n ]T contains successive consequents of the rules.
Thus, both the order of vertices γv used for computing Ω, and the order
of elements of q are strictly defined. Now we prove inductively that Ω is
nonsingular if, and only if αk + βk �= 0 for k = 1, 2, . . . , n. In the case of
n input variables, the generator g and the matrix Ω will have a subscript,
i.e. g = gn and Ω = Ωn. Formally, we define an artificial generator g0 = 1
and the corresponding artificial matrix Ω0 = 1. First, consider the case with
n = 1. The rule base structure is as follows

R1 : If z1 is N1, then S = q1,

R2 : If z1 is P1, then S = q2,

}
(2.33)

and the corresponding generator g1 = g1 (z1) is given by

g1 =

[
g0

z1g0

]
=

[
1
z1

]
. (2.34)
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The fundamental matrix Ω1 is a concatenation of 2 columns g1. It is
generated as follows

Ω1 = [g1 (−α1) ,g1 (β1)] =

[
1 1

−α1 β1

]
. (2.35)

For n = 2 the rule-base structure is the following

R1 : If z1 is N1 and z2 is N2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3,

R4 : If z1 is P1 and z2 is P2, then S = q4,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(2.36)

and the corresponding generator g2 = g2 (z1, z2) is given by

g2 =
[

g1
z2g1

]
=

⎡⎢⎢⎣
1
z1
z2

z1z2

⎤⎥⎥⎦ . (2.37)

The fundamental matrix Ω2 is a concatenation of 4 columns

Ω2 = [g2 (−α1, −α2) ,g2 (β1, −α2) ,g2 (−α1, β2) ,g2 (β1, β2)]

=

⎡⎢⎢⎢⎢⎣
1 1 1 1

−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

⎤⎥⎥⎥⎥⎦ . (2.38)

For n = 3 the rule base structure is

R1 : If z1 is N1 and z2 is N2 and z3 is N3, then S = q1,

R2 : If z1 is P1 and z2 is N2 and z3 is N3, then S = q2,

R3 : If z1 is N1 and z2 is P2 and z3 is N3, then S = q3,

R4 : If z1 is P1 and z2 is P2 and z3 is N3, then S = q4,

R5 : If z1 is N1 and z2 is N2 and z3 is P3, then S = q5,

R6 : If z1 is P1 and z2 is N2 and z3 is P3, then S = q6,

R7 : If z1 is N1 and z2 is P2 and z3 is P3, then S = q7,

R8 : If z1 is P1 and z2 is P2 and z3 is P3, then S = q8,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

and the corresponding generator g3 = g3 (z1, z2, z3) is given by
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g3 (z1, z2, z3) =
[

g2
z3g2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1
z2

z1z2
z3

z1z3
z2z3

z1z2z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.40)

The fundamental matrix Ω3 is a concatenation of 23 = 8 columns g3 and is
generated as

Ω3 = [g3 (−α1, −α2, −α3) , g3 (β1, −α2, −α3) , g3 (−α1, β2, −α3) ,

g3 (β1, β2, −α3) , g3 (−α1, −α2, β3) , g3 (β1, −α2, β3) ,

g3 (−α1, β2, β3) , g3 (β1, β2, β3)]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 α1α2 −α3 α1α3 α2α3 −α1α2α3
1 β1 −α2 −α2β1 −α3 −β1α3 α2α3 α2β1α3
1 −α1 β2 −α1β2 −α3 α1α3 −α3β2 α1α3β2
1 β1 β2 β1β2 −α3 −β1α3 −α3β2 −β1α3β2
1 −α1 −α2 α1α2 β3 −α1β3 −α2β3 α1α2β3
1 β1 −α2 −α2β1 β3 β1β3 −α2β3 −α2β1β3
1 −α1 β2 −α1β2 β3 −α1β3 β2β3 −α1β2β3
1 β1 β2 β1β2 β3 β1β3 β2β3 β1β2β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (2.41)

and so forth. In general,

g0 = 1, Ω0 = 1,

gk+1 =
[

gk

zk+1gk

]
=
[

1
zk+1

]
⊗ gk ∈ R

2k+1
, k = 0, 1, 2, . . . , n − 1,

(2.42)

where the symbol “⊗” denotes the Kronecker product (see Appendix A or
[43], [83]). One can easily check that

Ωk+1 =

[
Ωk Ωk

−αk+1Ωk βk+1Ωk

]
=

[
1 1

−αk+1 βk+1

]
⊗ Ωk ∈ R

2k+1×2k+1
,

(2.43)
for k = 0, 1, 2, . . . , n − 1. From (A.6a) given in Appendix A we immediately
obtain

detΩk+1 = (βk+1 + αk+1)
2k

(detΩk)2 .

Taking into account Ω0 = 1 already defined, we obtain

detΩn =
n∏

i=1

(βi + αi)
2n−1

= (Vn)2
n−1

.
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Thus, detΩn �= 0 if, and only if the volume of the heperrectangle Dn in
the space R

n is not zero or, equivalently, for every input variable zk, (k =
1, 2, . . . , n), the interval [−αk, βk] is not degenerated to a single point. Finally,
from (2.30) we obtain the vector of coefficients of the function (2.26)

θ =
(
ΩT
)−1

q. (2.44)

Thus, the crisp output of the P1-TS system is given by

S (z) = gT (z)
(
ΩT
)−1

q = f0 (z) . (2.45)

This ends the proof of Theorem 2.4. 
�

Remark 2.5. The components of the vector θ in (2.26) depend on 2n + 2n
parameters, i.e. on 2n coefficients qv and 2n boundaries of intervals [−αk, βk],
(k = 1, 2, . . . , n).

Remark 2.6. Suppose the hypercuboid Dn ⊂ R
n is established. The

function

f1 (z) =
n∏

k=1

(rkzk + sk) , (2.46)

where rk, sk are real numbers, is a special case of the function (2.26) for
n > 2, since it contains 2n parameters rk and sk, whereas the function (2.26)
contains 2n coefficients θ00...0, θ10...0, θ01...0, ..., θ11...1.

As a conclusion of Theorem 2.4, whose interpretation is important, we obtain

Corollary 2.7. Suppose a function f : Dn → R is known and it belongs to
the class of functions (2.26). In other words f (z) = f0 (z), where z ∈ Dn

for some collection of coefficients of the vector θ as in (2.27). A necessary
and sufficient condition under which the considered TS system is equivalent
to f (z) for any z ∈ Dn, is as follows

qv = f (γv) , for v = 1, 2, . . . , 2n. (2.47)

This means that by formulating the consequents of the fuzzy rules,
the only information needed by an expert are values of the function
f in all vertices of the hypercuboid Dn.

What is more, Theorem 2.4 says that we can always obtain an equivalent TS
system to the given function (2.26).

2.5 Completeness and Noncontradiction in Rule-Based
Systems Defined by Metarules

The rule-base is usually assumed to have the form of (2.32). Such system con-
tains complete and noncontradictory rules [92]. The system of “If-then” fuzzy
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rules will be called complete if every rule contains all possible antecedents in
its “If” part, which results in 2n rules as in (2.13)-(2.15). The system of rules
is a contradictory one if there are at least two rules which have the same an-
tecedent but different consequents. By such definitions, the system (2.32) is
both complete and noncontradictory. The same notions can be defined in the
fuzzy sense, i.e. the rules can be viewed as complete or noncontradictory to
some degree. However, we will consider them as bivalent notions, i.e. the sys-
tems of rules will be treated as complete (contradictory) or not, throughout
the book.

When the number of inputs is large, we can use the metarules, i.e. the
rules which are equivalent to some subset of the rules, where each single
rule is in the form of (2.13)-(2.15). Most frequently we have to do with the
metarule if some “If-then” rule in its “If” part contains the word ANYk (or
ANY without a subscript). By the term ANYk we mean any label from the
bivalent set {Nk, Pk}, (k = 1, . . . , n). Sometimes the set of the rules may be
generated by a metarule for other reasons.

Remark 2.8. The fragments “zk is ANY ” in the antecedents of the rules
will be sometimes omitted. For example, we can simplify the fuzzy rule “If
z1 is N1 and z2 is ANY2, then S = q1” into the shorter one “If z1 is N1, then
S = q1”.

Example 2.9. Let us consider three P1-TS systems with two inputs and one
output, which are equivalently presented in Tables 2.1 a) – c).

a) The system of rules is defined by (2.36) and shown in Table 2.1 a). It is
complete and noncontradictory. This case is simple and does not need a
comment.

b) The system of rules:

R1 : If z1 is N1 and z2 is N2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R4 : If z1 is P1 and z2 is P2, then S = q4,

⎫⎪⎬⎪⎭
is shown in Table 2.1 b). Observe that there is no consequent for the
antecedent “z1 is N1 and z2 is P2”. This system is noncomplete and non-
contradictory.

Table 2.1 Look-up-tables for the P1-TS system from Example 2.9: a) Complete
and noncontradictory rules, b) Noncomplete and noncontradictory rules, c) Non-
complete and contradictory rules

a)
z1, z2 →
↓ N2 P2

N1 q1 q3

P1 q2 q4

b)
z1, z2 →
↓ N2 P2

N1 q1 −
P1 q2 q4

c)
z1, z2 →
↓ N2 P2

N1 q1 q1, q3

P1 q2 −
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c) The system of rules:

R1 : If z1 is N1, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3,

⎫⎪⎬⎪⎭
is equivalent to (see Remark 2.8)

R′
1 : If z1 is N1 and z2 is N2, then S = q1,

R′′
1 : If z1 is N1 and z2 is P2, then S = q1,

R2 : If z1 is P1 and z2 is N2, then S = q2,

R3 : If z1 is N1 and z2 is P2, then S = q3.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Although there are four single rules, there is no consequent for the an-
tecedent “z1 is P1 and z2 is P2”. For q1 �= q3, the metarule R′′

1 contradicts
(more or less) the rule R3. Thus, this system is both contradictory and
noncomplete.

The above example shows that detection of completeness or noncontradiction
in the rule-base is a very simple task if we use the look-up tables.

2.6 Matrix Description of the MIMO Fuzzy
Rule-Based System

In this section we generalize the concept of MISO fuzzy rule-based systems
into the multiple-input and multiple-output (MIMO) systems. In the systems
with many outputs there are no cross-feedback loops. Therefore the procedure
of computing a single output is the same as for the MISO TS systems.

Our goal in this section is to develop yet another compact and convenient
description of the rule-based system, i.e. the model in the matrix form. Let
us consider a TS system with the inputs z1, . . . , zn and the outputs S1, . . . ,
Sm, as shown in Fig. 2.11. By a MIMO P1-TS system we mean the system
with m ≥ 2 outputs, in which the membership functions of fuzzy sets for all
inputs are linear as defined in (2.11)-(2.12). Such a system is described by
the following 2n fuzzy rules:

Fig. 2.11 The inputs
and the outputs of a
MIMO TS system given
in the matrix form (2.48)-
(2.53)

MIMO
TS system

�z1 ∈ [−α1, β1]
�z2 ∈ [−α2, β2]
�

�

�

�zn ∈ [−αn, βn]

� S1

� S2

�

�

�

� Sm
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R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn,
then S1 = q1,1, . . ., Sm = q1,m,

...
Rv : If z1 is Ai1 and z2 is Ai2 and . . . and zn is Ain ,

then S1 = qv,1, . . ., Sm = qv,m,
...

R2n : If z1 is P1 and z2 is P2 and . . . and zn is Pn,
then S1 = q2n,1, . . ., Sm = q2n,m,

where Aik
∈ {Nk, Pk}, (k = 1, 2, . . . , n and ik ∈ {0, 1}), as defined in (2.15).

Equivalently, this system can be described by the following single “If-then”
rule in the matrix form

If [z1, . . . , zn] is M, then [S1, . . . , Sm] is Q, (2.48)

where we assume that

• the antecedents matrix M contains the labels of fuzzy sets and has 2n rows
and n columns

M =

⎡⎢⎢⎢⎢⎢⎢⎣

N1 · · · Nn−1 Nn

...
. . .

...
...

Ai1 · · · Ain−1 Ain

...
. . .

...
...

P1 · · · Pn−1 Pn

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.49)

where
(
Ai1 , . . . , Ain−1 , Ain

)
∈ {N1, P1} × . . . × {Nn−1, Pn−1} × {Nn, Pn},

• the consequents matrix Q contains m columns, and every column qj cor-
responds to the output Sj of the rule-based system

Q = [q1, · · · ,qj , · · · ,qm] =

⎡⎢⎢⎢⎣
q1,1 · · · q1,j · · · q1,m

q2,1 · · · q2,j · · · q2,m

...
. . .

...
. . .

...
q2n,1 · · · q2n,j · · · q2n,m

⎤⎥⎥⎥⎦ ∈ R
2n×m.

(2.50)
For such systems we formulate the following

Theorem 2.10. Suppose the MIMO P1-TS system with the inputs constitut-
ing the vector [z1, . . . , zn]T = z ∈ Dn and the outputs S1, . . . , Sm, is defined
by 2n fuzzy “If-then” rules or equivalently – by a single rule in the matrix
form (2.48)-(2.50). The row vector of crisp outputs S (z) = [S1, . . . , Sm] can
be computed by the formula

S (z) = gT (z)
(
ΩT
)−1

Q, (2.51)
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where the consequents matrix

Q = ΩTΘ, (2.52)

and

Θ = [θ1, . . . , θm] ∈ R
2n×m,

θj = [θj,00...0, θj,10...0, θj,01...0, ..., θj,11...1]
T ∈ R

2n

, j = 1, . . . , m. (2.53)

Every column θj is assigned to a single system output Sj, (j = 1, . . . , m). The
successive components of the generator g (z) are in accordance with the rows
of the antecedents matrix M defined by (2.49). The fundamental matrix Ω of
the system is a concatenation of 2n columns which are values of the generator
g for the vertices of the hypercuboid Dn, where every vertex corresponds to
the appropriate antecedent of the rule.

Proof. The proof is straightforward and will be omitted, since the procedure
for computing every output Sj applies in the same manner as in the proof of
Theorem 2.4. The formal proof of Theorem 2.10 comes down to substituting
the vector of consequents of the rules q by the matrix Q in the equations
(2.45) and (2.30). 
�

2.7 Equivalence Problem in the Rule-Based Systems

The problem of equivalence between the systems of fuzzy “If-then” rules is
important especially when one compares the outcomes obtained by various
experts or designers, and the number of inputs is greater than two. In the
systems with n inputs, there are 2n fuzzy rules. Thus, the number of ways of
ordering “If” parts is (2n)! and the number of generators and fundamental
matrices is (2n)! as well. For example, for n = 2 we have

(
22
)
! = 24, but for

n = 3 there are 40 320 possibilities of writing the rules. The systems of rules
can be equivalent or not.

We call two rule-based systems equivalent if, and only if, their crisp outputs
are the same for the same inputs from the universe of discourse Dn. In order
to avoid mistakes in computations, which may occur especially for systems
with n ≥ 3 inputs, the designer must know exactly the relationship between
the fuzzy “If-then” rules containing antecedents and consequents, and their
algebraic counterparts in the form of generators, fundamental matrices, and
consequents of the rules. We will show that the relationship between elements
of generators and the particular consequents of the rules plays a key role; they
must correspond to each other.
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More precisely, our goal is to explain why the results formulated by The-
orems 2.4 and 2.10 are valid independently of the order of fuzzy “If-then”
rules. Without loss of generality we consider two MISO systems, which are
defined by two pairs of matrices describing antecedents and consequents of
the rules:

(
M[1],Q[1]

)
and

(
M[2],Q[2]

)
, respectively. The systems differ from

each other in two rows, namely, the rth row in matrices M[1] and Q[1] is the
same as the sth row of M[2] and Q[2], respectively, and vice-versa:

M[1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
...

mr

...
ms

...
m2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q[1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
...
qr

...
qs

...
q2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M[2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1
...

ms

...
mr

...
m2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q[2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
...
qs

...
qr

...
q2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where m1, . . . , m2n ∈ {N1, P1} × · · · × {Nn, Pn}, and q1, . . . , q2n ∈ R.
From the proof of Theorem 2.4 (equations (2.29)-(2.31)), we immediately

obtain that the outputs of such systems are the same. Of course, the above
systems have different generators

g[1] (z1, . . . , zn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0
...

zr1
1 · · · zrn

n
...

zs1
1 · · · zsn

n
...

g2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g[2] (z1, . . . , zn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0
...

zs1
1 · · · zsn

n
...

zr1
1 · · · zrn

n
...

g2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the powers r1, . . ., rn and s1, . . ., sn are from the set {0, 1}. The power
rk or sk is 0, if kth element of the row mr contains the label Nk, or 1, if kth
element of the row mr contains the label Pk. Consequently, the fundamental
matrices Ω[1] and Ω[2] are different, according to their own generators. In
spite of this, the above systems of rules are equivalent, i.e. they generate the
same output, which can be expressed using formerly proved Theorems 2.4
and 2.10. We omit the formal proof, because it is a simple consequence of
Theorem 2.4. Instead of this let us consider an example.

Example 2.11. Consider two rule bases for the systems with n = 3 inputs
and m = 1 output, using the matrix description of the rules. Let the generator
of the first system g[1] (z1, z2, z3) be the same as in (2.40). Thus,
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M[1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3
P1 N2 N3
N1 P2 N3
P1 P2 N3
N1 N2 P3
P1 N2 P3
N1 P2 P3
P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q[1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
q3
q4
q5
q6
q7
q8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g[1] (z1, z2, z3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1
z2

z1z2
z3

z1z3
z2z3

z1z2z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.54)

and the corresponding fundamental matrix is given by (2.41). The second sys-
tem differs from the first one in the replacement of the 4th row in the matrix
M[1] with the 5th one, i.e. we replace the row (P1, P2, N3) for (N1, N2, P3)
and vice-versa. Thus,

M[2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3
P1 N2 N3
N1 P2 N3
N1 N2 P3
P1 P2 N3
P1 N2 P3
N1 P2 P3
P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q[2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
q2
q3
q5
q4
q6
q7
q8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g[2] (z1, z2, z3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1
z2
z3

z1z2
z1z3
z2z3

z1z2z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.55)

By generating the fundamental matrix for the second system we take the
following concatenation of the columns

Ω[2] = [g[2] (−α1, −α2, −α3) ,g[2] (β1, −α2, −α3) ,g[2] (−α1, β2, −α3) ,

g[2] (−α1, −α2, β3) ,g[2] (β1, β2, −α3) ,g[2] (β1, −α2, β3) ,

g[2] (−α1, β2, β3) ,g[2] (β1, β2, β3)]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 −α3 α1α2 α1α3 α2α3 −α1α2α3
1 β1 −α2 −α3 −α2β1 −β1α3 α2α3 α2β1α3
1 −α1 β2 −α3 −α1β2 α1α3 −α3β2 α1α3β2
1 −α1 −α2 β3 α1α2 −α1β3 −α2β3 α1α2β3
1 β1 β2 −α3 β1β2 −β1α3 −α3β2 −β1α3β2
1 β1 −α2 β3 −α2β1 β1β3 −α2β3 −α2β1β3
1 −α1 β2 β3 −α1β2 −α1β3 β2β3 −α1β2β3
1 β1 β2 β3 β1β2 β1β3 β2β3 β1β2β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (2.56)

As one can see Ω[1] �= Ω[2]. From the logical point of view both systems
describe the same mapping D3 → R, but we want to prove this using formerly
formulated theorems. From (2.51) we have S (z) = QTΩ−1g (z) and therefore

S[1] (z) = QT
[1]Ω

−1
[1] g[1] (z) , S[2] (z) = QT

[2]Ω
−1
[2] g[2] (z) . (2.57)



2.8 Summary 23

After computing Ω−1
[1] and Ω−1

[2] , one can easily check that using equations
(2.54), (2.41), (2.55) and (2.56) for Q[i], Ω[i], and g[i] (z), (i = 1, 2), we
obtain

S[1] (z) = S[2] (z) ,

for all z ∈ D3. Thus, both systems of rules describe exactly the same system,
indeed. 
�

In this way we can apply the results of Theorems 2.4 and 2.10 independently
of the order of “If-then” rules provided that every element “zi1

1 · · · zin−1
n−1 zin

n ”
of the generator corresponds both to the appropriate sequence of labels(

Ai1 , . . . , Ain−1 , Ain

)
∈ {N1, P1} × . . . × {Nn−1, Pn−1} × {Nn, Pn} ,

which occurs in the antecedent of the rule, and to the appropriate element
qv in the consequents vector q.

An extension of the above result for MIMO systems is straightforward and
will be omitted.

2.8 Summary

The simplest TS system with one input and output and two fuzzy sets for
the input variable is capable of expressing exactly any nonlinear, continuous
and monotonic function of one variable. The system of fuzzy rules of such TS
system has clear linguistic interpretation. If the TS system approximates a
nonmonotonic function, the fuzzy sets may be very difficult for interpretation,
even if they satisfy boundary conditions. Therefore in the fuzzy modeling we
should rather avoid nonmonotonic membership functions.

By proving Theorem 2.4 we established an exact relationship between the
P1-TS systems and a class of functions to which they are equivalent. It plays
a crucial role in modeling, synthesis and analysis of many physical systems
by using highly interpretable fuzzy rules. The notion of the generator and
the fundamental matrix of the rule-based system belong to the most impor-
tant ones, both for the theory and applications. We showed that the P1-TS
system is nothing else than a multi-linear (or multi-affine) polynomial as
stated in (2.26). It is worth adding that every Boolean (or switching) func-
tion {0, 1}n → {0, 1} has a unique representation as a multi-linear polyno-
mial. Such representation has been originally introduced by Zhegalkin [219]
and was called canonical polynomial form of a Boolean function and plays
an important role in many applications [6], [46], [48], [118].

The question arises: “What is the class of polynomials of the form (2.26)?”
We can say informally that two multivariate polynomials are structurally the
same if they differ in nonzero coefficients. Thus, the number of structurally
different functions of n variables performed by the considered TS systems
is 22n

. Observe that (2.26) is a part of the well-known Kolmogorov-Gabor
polynomial (KGP for short) [49], [68]. More precisely, a zero-order TS model



24 2 MISO Takagi-Sugeno Fuzzy System with Linear Membership Functions

with two linear membership functions is equivalent to the KGP minus all the
components of the type zm

i · · · zl
j · · · zr

k with the powers max {m, l, . . . , r} ≥ 2
for n > 1. This observation seems to be worthy of discussion. The output
of the zero-order TS system with n inputs will be denoted by S and the
Kolmogorov-Gabor polynomial by KGPn. We will say that two polynomials
p1 (z) and p2 (z) are equally powerful and write p1 ≡ p2, if they are the same
with the exception of nonzero coefficients, e.g. 1+2z1+z2

1z2 ≡ 3+5z1−4z2
1z2.

Furthermore, we will say that p1 (z) is more powerful then p2 (z), and write
p1 (z) ⊃ p2 (z), if all monomials from p2 (z) are included in p1 (z) and at
least one monomial (with nonzero coefficient) is included in p1 (z), but not
in p2 (z), e.g. 1 + 2z1 + z1z2 + z2

1 ⊃ 3 + 5z1 + z1z2. One can prove that
KGPn ⊃ S for all n > 1. For example, in the case of the system with n = 4
variables, the KGP has exactly 70 coefficients that uniquely define KGP4,
whereas a zero-order TS system has 16 coefficients only. A different situation
occurs when we allow the rules in which the consequents are polynomials or
the membership functions of fuzzy sets are polynomials of the degree n > 1.

One of the most important interpretations of Theorem 2.4 says that by
formulating the consequents of the fuzzy rules which should express a given
function f , the only information needed by an expert are the values of this
function in all vertices of the hypercuboid Dn.

We introduced a compact matrix description of the MIMO P1-TS model.
Observe that we can always set up a sequence of the antecedents of the rules
e.g. by ordering the vertices of the hypercuboid Dn as shown in Section 2.3.
In such case we can obtain an unambiguous model of the rule-based system
in the matrix form (2.48) by establishing only the matrix of consequents of
the rules. This fact can be used for the preservation of the computer memory
needed to store the expert knowledge about the process modeled by a TS
model.

Finally, we considered an equivalence problem of the rule-bases in the
context of the matarules taking into account that in reality the rule-bases
can be noncomplete and/or contradictory ones. The theorems proved in this
chapter are valid independently of the sequences of the rules of a TS model.



Chapter 3
Recursion in TS Systems with Two
Fuzzy Sets for Every Input

The fuzzy rule-based systems exhibit the “curse of dimensionality” [14], be-
cause they grow exponentially with the number of inputs. By adding an extra
dimension to the input space we observe a twofold increase in the number of
fuzzy “If-then” rules in the MISO P1-TS system and a rapid increase in the vol-
ume occupied by the matrices and vectorswhich represent this system. Namely,
in the case of MISO P1-TS systems with n inputs, the dimension of the gen-
erator is 2n, the fundamental matrix contains 4n elements and the number of
parameters of the function to which this system is equivalent, is 2n.

One of the main questions in this chapter is to consider how the prob-
lem of computing the crisp output of the P1-TS system can be reduced to
smaller problems of the same type, and how the solutions to these smaller
problems can be used to construct a solution for the original one. In other
words we want to develop a recursive procedure to solve the problem of “How
to obtain the function performed by the P1-TS system containing a large
number of rules?” To the best of the author’s knowledge this problem has
not been solved in the literature as yet. We will show that thanks to recur-
sion, the problem of the curse of dimensionality in the rule-based systems
can be substantially reduced.

3.1 Some Features of the Fundamental Matrix and Its
Inverse

The fundamental matrix is important for P1-TS systems analysis and syn-
thesis and therefore we show some of its features. In many cases we should
compute its inverse (as in Example 2.11) and therefore we give some results
concerning this problem. As presented before, the subscripts in the matrix or
vector name will be used to indicate the number of system inputs, if necessary.

Theorem 3.1. Let us consider a P1-TS system with inputs z1, z2, . . . , zk,
(1 ≤ k ≤ n). One can compute recursively the inverse of the fundamental
matrix Ωk as follows

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 25–59.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Ω0 = 1,

Ω−1
k+1 =

1
Lk+1

[
βk+1 −1
αk+1 1

]
⊗ Ω−1

k , k = 0, 1, 2, . . . , n − 1, (3.1)

where Lk = αk + βk is the interval length and ⊗ is the Kronecker product.

Proof. According to (2.43) from Section 2.4 and (A.4) from Appendix A we
obtain

Ω−1
k+1 =

([
1 1

−αk+1 βk+1

]
⊗ Ωk

)−1

=
1

αk+1 + βk+1

[
βk+1 −1
αk+1 1

]
⊗ Ω−1

k ,

for k = 0, 1, 2, . . . , n − 1. This ends the proof of Theorem 3.1. 
�

Thanks to the above result, the computation of the inverse of the fundamen-
tal matrix does not need classical matrix inversion procedures. The matrix
inverse can be found recursively using multiplication operations only.

There are many interesting features of the fundamental matrix and its
inverse. To them belongs the matrix orthogonality. A matrix A ∈ R

m×m

containing the nonzero rows aT
1 , . . . , aT

m is thought to be orthogonal, if the
scalar product aT

i aj = 0 for i �= j, (i, j = 1, . . . , m). If, additionally, the scalar
product is aT

i ai = 1 for i = 1, . . . , m, then we call the matrix A orthonormal
one.

Remark 3.2. Let us consider a P1-TS system with inputs z1, z2, . . . , zn,
where zk ∈ [−αk, βk] for k = 1, . . . , n.

1. The following equality

Ωk+1ΩT
k+1 =

[
2 βk+1 − αk+1

βk+1 − αk+1 α2
k+1 + β2

k+1

]
⊗ ΩkΩT

k , (3.2)

is satisfied for k = 0, 1, 2, . . . , n − 1.
2. The fundamental matrix Ω has orthogonal rows if, and only if βk = αk for

k = 1, . . . , n.

Proof is given in Appendix C.1.

Remark 3.3. For a P1-TS system with the inputs z1, z2, . . . , zn, where
zk ∈ [−αk, αk] for k = 1, . . . , n, the inverse of the fundamental matrix is
given by

Ω−1 = 2−nΩT Λ−2
n , (3.3)

where Λ−2
n = Λ−1

n Λ−1
n and the diagonal matrix Λn is given by a simple

recurrence
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Λ0 = 1,

Λk+1 =
[

1 0
0 αk+1

]
⊗ Λk, k = 0, 1, 2, . . . , n − 1. (3.4)

Proof of this Remark is given in Appendix C.2. Thus, the rows of the funda-
mental matrix are orthogonal if, and only if the universe of discourse of the
rule-based system is a special hypercuboid: Dn = [−α1, α1]× . . .× [−αn, αn],
(αk > 0 for k = 1, . . . , n).

Remark 3.4. For P1-TS system with inputs z1, z2, . . . , zn, where zk ∈
[−1, 1] for k = 1, . . . , n, the inverse of the fundamental matrix is given by

Ω−1 = 2−nΩT . (3.5)

Proof of Remark 3.4 is a simple consequence of the equations (3.3)-(3.4),
since Λn is the unity matrix for all n. Thus, the formula (3.5) is valid for
P1-TS systems, in which the universe of discourse is the hypercube Dn =
[−1, 1]n. It is extremely simple and enables one to compute the inverse of the
fundamental matrix by using its transpose, which is divided by the volume
of the hypercube [−1, 1]n.

3.2 Theorem on Recursion for P1-TS Systems

We begin our considerations with a simple example.

Example 3.5. The problem lies in obtaining the simplest function S (z) =
c = const from the fuzzy rules which define a P1-TS system. From the logical
point of view it is clear that one metarule in the form

If z1 is ANY and z2 is ANY and . . . and zn is ANY , then S = c,

is an adequate model. Our goal is to prove that S (z) = c for all z ∈ Dn.

Proof. (by induction). The above metarule is equivalent to the set of 2n

complete and noncontradictory fuzzy “If-then” rules, which contain the con-
sequent “c” in every “then” part. For the MISO P1-TS system with n-inputs
constituting the vector z = [z1, . . . , zn]T , let us denote by Sn (z) its output,
and by gn (z) and Ωn - its generator and fundamental matrix, respectively.
From (2.45) we have

Sn (z) = qT
nΩ−1

n gn (z) , qn = [c, . . . , c]T = c ∈ R
2n

. (3.6)

For n = 1, the input z1 ∈ [−α1, β1], and there are two fuzzy rules: “If z1 is
N1, then S1 = c” and “If z1 is P1, then S = c”, the generator g1 (z1) is given
by (2.34), and the fundamental matrix by (2.35). Thus,
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S1 (z1) = [c, c]
[

1 1
−α1 β1

]−1 [ 1
z1

]
= c.

Assume that (3.6) is true for n, i.e. Sn (z) = c. For the system with the inputs
which constitute the vector [z, zn+1]

T , from (2.42)-(2.43) and Theorem 3.1
we obtain

Sn+1 (z, zn+1) =
[
cT , cT

]
Ω−1

n+1gn+1 (z, zn+1)

=
[
cT , cT

] 1
Ln+1

[
βn+1Ω−1

n −Ω−1
n

αn+1Ω−1
n Ω−1

n

] [
gn (z)

zn+1gn (z)

]

=
1

Ln+1

[
cT βn+1Ω−1

n + cT αn+1Ω−1
n , 0

] [ gn (z)
zn+1gn (z)

]
= cT Ω−1

n gn (z) = Sn (z) = c.

This ends the proof that the crisp system output is S (z) = c for all z ∈ Dn.

�

In the above example one can see that coefficients of the function in (2.26)
constitute the vector θ = [c, 0, . . . , 0]T . The output of the rule-based system
does not depend on inputs and this fact logically follows from the knowledge
expressed by the rules.

3.2.1 Rule-Base Decomposition

The former computing methods to evaluate the crisp output of the P1-TS
systems in a general case seem to be not very convenient. Therefore we aspire
to give a more suitable algorithm to compute the system output.

Without loss of generality we will consider P1-TS system with one out-
put. Suppose a MISO P1-TS system with n inputs constituting the vector
z = [z1, . . . , zn]T ∈ Dn, (n = 2, 3, . . .) is given by 2n complete and noncon-
tradictory fuzzy rules as in (2.32). Observe that one can always decompose
this system into the following two subsystems:

R1 : If P1 and zn is Nn, then S = q1,
...

R2n−1 : If P2n−1 and zn is Nn, then S = q2n−1 ,

⎫⎪⎬⎪⎭
R2n−1+1 : If P1 and zn is Pn, then S = q2n−1+1,
...

R2n : If P2n−1 and zn is Pn, then S = q2n ,

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.7)

where P1, P2, . . . , P2n−1 are “If” parts of the P1-TS system with (n − 1)
inputs [z1, z2, . . . , zn−1]

T ∈ Dn−1, (n = 2, 3, . . .), i.e.
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R′
1 : If z1 is N1 and . . . and zn−1 is Nn−1︸ ︷︷ ︸

P1

, then S = q1,

...
R′

2n−1 : If z1 is P1 and . . . and zn−1 is Pn−1︸ ︷︷ ︸
P2n−1

, then S = q2n−1 .

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.8)

For the sake of simplicity we assume the following notation for the P1-TS
systems:

• S (z | qn) is system output S by the input variables z1, . . . , zn as compo-
nents of the vector z ∈ Dn provided that the consequents of the rules q1,
. . . , q2n are components of the vector qn.

• gn (z) is the generator and Ωn is the fundamental matrix of the system
by the input vector z ∈ Dn.

Thus, we can rewrite (2.45) as follows

S (z | qn) = gT
n (z)

(
ΩT

n

)−1
qn , (3.9)

which will be used further on.

3.2.2 Crisp Output Calculation for P1-TS System
Using Recursion

Now we prove the following

Theorem 3.6. For any natural n ≥ 2 the recursive formula that enables
one to compute the crisp output of any P1-TS system with the inputs z1 ∈
[−α1, β1], . . . , zn ∈ [−αn, βn], is as follows

Sn (z1, . . . , zn | q1, . . . , q2n) = Nn (zn)Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1)
+ Pn (zn)Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) ,

(3.10)

where

• Sn (z1, . . . , zn | q1, . . . , q2n) is the crisp output of the P1-TS system de-
scribed by the fuzzy rules (3.7), with input variables (z1, . . . , zn) ∈ Dn and
the consequents of the rules constituting the vector [q1, · · · , q2n ]T ,

• Nn (zn) and Pn (zn) are membership functions for the input variable zn ∈
[−αn, βn] defined by (2.11)-(2.12),

• Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1) is the crisp output of the P1-TS system
described by the fuzzy rules (3.8), with the inputs (z1, . . . , zn−1) ∈ Dn−1

and the consequents of the rules constituting the vector [q1, · · · , q2n−1 ]T ,
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• Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) is the crisp output of the P1-TS sys-
tem described by the fuzzy rules (3.8), with input variables (z1, . . . , zn−1) ∈
Dn−1, replacing its consequents with [q2n−1+1, . . . , q2n ]T .

Proof. For n = 1 the system is defined by the rules (2.33) and the membership
functions of fuzzy sets for the input z1 are as in (2.11)-(2.12) by k = 1. Thus,
the system output is the following

S1 (z1 | q1, q2) =
β1 − z1

α1 + β1
q1 +

z1 + α1

α1 + β1
q2. (3.11)

For n = 2 the system is defined by the rules (2.36) and the membership
functions for the input z2 are N2 (z2) = (α2 + β2)

−1 (β2 − z2) and P2 (z2) =
1 − N2 (z2). Thus, from (3.10) and (3.11) we obtain

S2 (z1, z2 | q1, q2, q3, q4) = N2 (z2)S1 (z1 | q1, q2) + P2 (z2)S1 (z1 | q3, q4)
= θ0 + θ1z1 + θ2z2 + θ3z1z2 ,

where
θ0 =

α1β2q2 + β1β2q1 + α1α2q4 + α2β1q3

(α2 + β2) (α1 + β1)
,

θ1 =
β2q2 + α2q4 − β2q1 − α2q3

(α2 + β2) (α1 + β1)
,

θ2 =
−α1q2 − β1q1 + α1q4 + β1q3

(α2 + β2) (α1 + β1)
,

θ3 =
q1 − q2 − q3 + q4

(α2 + β2) (α1 + β1)
.

One can check that the same result is obtained using the formula (2.45), i.e.

S2 (z1, z2) =
[
q1 q2 q3 q4

] ⎡⎢⎢⎣
1 1 1 1

−α1 β1 −α1 β1
−α2 −α2 β2 β2
α1α2 −α2β1 −α1β2 β1β2

⎤⎥⎥⎦
−1 ⎡⎢⎢⎣

1
z1
z2

z1z2

⎤⎥⎥⎦ ,

and this completes the proof for n = 2.
Now assume that (3.10) is correct for n. From Theorem 3.1, the equations

(3.9) and (2.42), the system output can be expressed as follows

Sn (z | qn) = qT
nΩ−1

n gn (z)

=
1

Ln

[
aT ,bT

] [ βnΩ−1
n−1 −Ω−1

n−1

αnΩ−1
n−1 Ω−1

n−1

][
gn−1 (z1, . . . , zn−1)

zngn−1 (z1, . . . , zn−1)

]
,

where aT = [q1, · · · , q2n−1 ], and bT = [q2n−1+1, · · · , q2n ]. Next we obtain
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Sn (z | qn) =
1

Ln

[
aT βn + bT αn , bT − aT

]
Ω−1

n−1

[
gn−1 (z1, . . . , zn−1)

zngn−1 (z1, . . . , zn−1)

]

=
(βn − zn)aT Ω−1

n−1gn−1 (z1, . . . , zn−1)
αn + βn

+
(αn + zn)bTΩ−1

n−1gn−1 (z1, . . . , zn−1)
αn + βn

.

But

aT Ω−1
n−1gn−1 (z1, . . . , zn−1) = Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1) ,

and

bTΩ−1
n−1gn−1 (z1, . . . , zn−1) = Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) .

Thus,

Sn (z | qn) =
βn − zn

αn + βn
Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1)

+
αn + zn

αn + βn
Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n)

= Nn (zn)Sn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1)
+ Pn (zn)Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n) . (3.12)

This completes the proof of Theorem 3.6. 
�

The above result is important especially for the rule-based systems with three
or more inputs. We do not need to inverse large matrices to obtain the crisp
system output; the curse of dimensionality in such systems is going to dis-
appear. A generalization of (3.10) for MIMO systems is straightforward and
will be omitted.

3.3 Recursion in More General TS Systems with Two
Fuzzy Sets for Every Input

Theorem 3.6 has been proved using conception of the fundamental matrix
for P1-TS systems, since this matrix is important for many applications.
However, we will show below that the same theorem is valid for more general
class of fuzzy rule-based TS systems, i.e. the systems with two fuzzy sets for
every input, where no more assumptions on membership functions such as
linearity or monotonicity are necessary. Our goal in this section is to prove
the following generalization of Theorem 3.6.

Theorem 3.7. Theorem 3.6 is valid for any TS system described by the
fuzzy rules (3.7), with the inputs z1 ∈ [−α1, β1], . . . , zn ∈ [−αn, βn],
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where for any input zk there are assigned two fuzzy sets with the normal-
ized membership functions, i.e. Nk : [−αk, βk] → [0, 1] and Pk : [−αk, βk] →
[0, 1] and Nk (zk) + Pk (zk) = 1 for k = 1, . . ., n. This means that if
Sn (z1, . . . , zn | q1, . . . , q2n) denotes the crisp output of the TS system with
the consequents of the rules constituting the vector [q1, · · · , q2n ]T , then for
any natural n ≥ 2 the recursive formula that enables one to compute the
crisp system output is the same as (3.10).

Proof. For n = 1 the system is defined by the rules (2.33). Thus, the system
output is the following

S1 (z1 | q1, q2) =
N1 (z1)

N1 (z1) + P1 (z1)
q1 +

P1 (z1)
N1 (z1) + P1 (z1)

q2

= N1 (z1) q1 + P1 (z1) q2. (3.13)

As one can see we used the fact that the membership functions are normal-
ized. For n = 2 we have

S2 (z1, z2 | q1, q2, q3, q4) = N1 (z1)N2 (z2) q1/D2 + P1 (z1)N2 (z2) q2/D2

+ N1 (z1)P2 (z2) q3/D2 + P1 (z1)P2 (z2) q4/D2

= N2 (z2) (N1 (z1) q1 + P1 (z1) q2) /D2

+ P2 (z2) (N1 (z1) q3 + P1 (z1) q4) /D2

= N2 (z2)S1 (z1 | q1, q2) + P2 (z2)S1 (z1 | q3, q4) ,

since D2 =
∏2

k=1 (Nk (zk) + Pk (zk)) = 1. Thus, for n = 2 the theorem is
true. Let us use simplified notation: Nk = Nk (zk), Pk = Pk (zk) and Sk+1
instead of Sk+1 (z1, . . . , zk+1 | q1, . . . , q2k+1). For n = k + 1 ≥ 3 we obtain
(see the rule-base decomposition (3.7))

Sk+1 = (N1N2 . . . NkNk+1q1/Dk+1 + P1N2 . . . NkNk+1q2/Dk+1

+ . . . + P1P2 . . . PkNk+1q2k/Dk+1)
+ (N1N2 . . . NkPk+1q2k+1/Dk+1 + P1N2 . . . NkPk+1q2k+2/Dk+1

+ . . . + P1P2 . . . PkPk+1q2k+1/Dk+1)

= Nk+1 (N1N2 . . . Nkq1 + . . . + P1P2 . . . Pkq2k) /Dk+1

+ Pk+1 (N1N2 . . . Nkq2k+1 + . . . + P1P2 . . . Pkq2k+1) /Dk+1, (3.14)

where the denominator Dk+1 =
∏k+1

i=1 (Ni (zi) + Pi (zi)) = 1. Knowing that
Dk = 1 for k = 1, 2, . . . we have

Sk (z1, . . . , zk | q1, . . . , q2k) = N1N2 . . . Nkq1 + P1N2 . . .Nkq2

+ . . . + P1P2 . . . Pkq2k (3.15)
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and

Sk (z1, . . . , zk | q2k+1, . . . , q2k+1) = N1N2 . . .Nkq2k+1 + P1N2 . . . Nkq2k+2

+ . . . + P1P2 . . . Pkq2k+1 . (3.16)

Using the above equation to (3.14) we finally obtain

Sk+1 (z1, . . . , zk+1 | q1, . . . , q2k+1) = Nk+1Sk (z1, . . . , zk | q1, . . . , q2k)
+ Pk+1Sk (z1, . . . , zk | q2k+1, . . . , q2k+1) .

(3.17)

This finishes the proof of Theorem 3.7. 
�

The above Theorem can be used for large rule-bases, where the membership
functions of fuzzy sets cannot be linear or monotonic. According to (3.17)
it can be graphically interpreted as shown in Fig. 3.1. In the case of the
TS system with n inputs, the architecture can be viewed as n-layer neural
network [58], [87] with linear activation functions f for all neurons, where
f (input) = input. In the layer number k, the network contains exactly the
same neurons Sk and every neuron has two inputs and the same weights,
namely Nk (zk) and Pk (zk) for k = 1, . . . , n.

A generalization of the Theorem 3.7 for MIMO systems is straightforward
and will be omitted. Instead of the formal proof, the MIMO case will be
exemplified further on. A computational architecture of the recursion (3.17)
for MIMO systems can be easily drawn analogously to the one of Fig. 3.1, as
well.

Example 3.8. Let us consider a P1-TS system with 6 inputs and one output.
The generator is given by

g6 (z1, z2, z3, z4, z5, z6) =

⎡⎢⎢⎣
g4

z5g4
z6g4

z5z6g4

⎤⎥⎥⎦ ,

where g4 (z1, z2, z3, z4) is given by (B.15) in Appendix B. After calculations
we obtain

g6 = [1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3, z4, z1z4, z2z4, z1z2z4,
z3z4, z1z3z4, z2z3z4, z1z2z3z4, z5, z1z5, z2z5, z1z2z5, z3z5,

z1z3z5, z2z3z5, z1z2z3z5, z4z5, z1z4z5, z2z4z5, z1z2z4z5,
z3z4z5, z1z3z4z5, z2z3z4z5, z1z2z3z4z5, z6, z1z6, z2z6,

z1z2z6, z3z6, z1z3z6, z2z3z6, z1z2z3z6, z4z6, z1z4z6, z2z4z6,
z1z2z4z6, z3z4z6, z1z3z4z6, z2z3z4z6, z1z2z3z4z6, z5z6,

z1z5z6, z2z5z6, z1z2z5z6, z3z5z6, z1z3z5z6, z2z3z5z6,
z1z2z3z5z6, z4z5z6, z1z4z5z6, z2z4z5z6, z1z2z4z5z6,
z3z4z5z6, z1z3z4z5z6, z2z3z4z5z6, z1z2z3z4z5z6]T .
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Fig. 3.1 Graphic interpretation of Theorems 3.6 and 3.7 for a TS system with
n = 4 inputs and the output S = S4 (z1, z2, z3, z4|q1, . . . , q16)

The look-up-table for this system in a general case is given in Table 3.1. The
rows and columns of this table are described by elements of the sets {N1, P1}×
{N2, P2} × {N3, P3} and {N4, P4} × {N5, P5} × {N6, P6}, respectively (the
subscript k in Nk and Pk was neglected for short). The consequents qv of
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Table 3.1 Look-up-table for the P1-TS system with n = 6 input variables in
general case

z1z2z3 \ z4z5z6 −→
↓ NNN NNP NPP NPN PPN PPP PNP PNN

NNN q1 q33 q49 q17 q25 q57 q41 q9

NNP q5 q37 q53 q21 q29 q61 q45 q13

NPP q7 q39 q55 q23 q31 q63 q47 q15

NPN q3 q35 q51 q19 q27 q59 q43 q11

PPN q4 q36 q52 q20 q28 q60 q44 q12

PPP q8 q40 q56 q24 q32 q64 q48 q16

PNP q6 q38 q54 q22 q30 q62 q46 q14

PNN q2 q34 q50 q18 q26 q58 q42 q10

the rules containing antecedents Ai1Ai2Ai3Ai4Ai5Ai6 ∈ ×6
i=1 {Ni, Pi} have

indices v ↔ (i1, . . . , i6) according to (2.16).
Suppose an expert formulated the following 8 metarules:

M1 : If z1 is N1 and z3 is P3 and z4 is N4, then S = a,
M2 : If z3 is P3 and z4 is P4 and z6 is N6, then S = b,
M3 : If z1 is P1 and z2 is N2 and z4 is N4 and z5 is N5, then S = c,
M4 : If z1 is N1 and z3 is N3, then S = 0,
M5 : If z4 is P4 and z6 is P6, then S = 0,
M6 : If z1 is P1 and z4 is N4 and z5 is P5, then S = 0,
M7 : If z1 is P1 and z3 is N3 and z4 is P4 and z6 is N6, then S = 0,
M8 : If z1 is P1 and z2 is P2 and z4 is N4, then S = 0,

which generate 64 fuzzy “If-then” rules. The rows and columns of Table 3.1
are described by the Gray code [85], [158], [115]. Owing to this we can easily
explain and interpret all metarules. For example, the metarules M1, M2 and
M3 are graphically shown in Tables 3.2, 3.3 and 3.4, respectively. Analogously,
we can justify the remaining metarules - they all have a clear interpretation.

One can check, that the system of rules is complete and a noncontradic-
tory one. According to the generator g6 and the metarules, we obtain the
consecutive elements of the vector q (see (2.30)), as follows:

q1 = 0, q2 = c, q3 = 0, q4 = 0, q5 = a, q6 = c, q7 = a,
q8 = 0, q9 = 0, q10 = 0, q11 = 0, q12 = 0, q13 = b, q14 = b,
q15 = b, q16 = b, q17 = 0, q18 = 0, q19 = 0, q20 = 0, q21 = a,

q22 = 0, q23 = a, q24 = 0, q25 = 0, q26 = 0, q27 = 0, q28 = 0,
q29 = b, q30 = b, q31 = b, q32 = b, q33 = 0, q34 = c, q35 = 0,
q36 = 0, q37 = a, q38 = c, q39 = a, q40 = 0, q41 = 0, q42 = 0,
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q43 = 0, q44 = 0, q45 = 0, q46 = 0, q47 = 0, q48 = 0, q49 = 0,
q50 = 0, q51 = 0, q52 = 0, q53 = a, q54 = 0, q55 = a, q56 = 0,
q57 = 0, q58 = 0, q59 = 0, q60 = 0, q61 = 0, q62 = 0, q63 = 0,
q64 = 0,

Table 3.2 Graphical explanation of the metarule M1 from Example 3.8

z1z2z3 \ z4z5z6 −→
↓ NNN NNP NPP NPN PPN PPP PNP PNN

NNN 0 0 0 0 0 0 0 0
NNP a a a a b 0 0 b

NPP a a a a b 0 0 b

NPN 0 0 0 0 0 0 0 0
PPN 0 0 0 0 0 0 0 0
PPP 0 0 0 0 b 0 0 b

PNP c c 0 0 b 0 0 b

PNN c c 0 0 0 0 0 0

Table 3.3 Graphical explanation of the metarule M2 from Example 3.8

z1z2z3 \ z4z5z6 −→
↓ NNN NNP NPP NPN PPN PPP PNP PNN

NNN 0 0 0 0 0 0 0 0
NNP a a a a b 0 0 b

NPP a a a a b 0 0 b

NPN 0 0 0 0 0 0 0 0
PPN 0 0 0 0 0 0 0 0
PPP 0 0 0 0 b 0 0 b

PNP c c 0 0 b 0 0 b

PNN c c 0 0 0 0 0 0

Table 3.4 Graphical explanation of the metarule M3 from Example 3.8

z1z2z3 \ z4z5z6 −→
↓ NNN NNP NPP NPN PPN PPP PNP PNN

NNN 0 0 0 0 0 0 0 0
NNP a a a a b 0 0 b

NPP a a a a b 0 0 b

NPN 0 0 0 0 0 0 0 0
PPN 0 0 0 0 0 0 0 0
PPP 0 0 0 0 b 0 0 b

PNP c c 0 0 b 0 0 b

PNN c c 0 0 0 0 0 0
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Using Theorem 3.6 together with its nomenclature we have S1 (z1 | q1, q2)
as in (3.11) and next, after recursive computations, we obtain

S2 (z1, z2 | q1, q2, q3, q4) =
β2 − z2

α2 + β2
S1 (z1 | q1, q2) +

α2 + z2

α2 + β2
S1 (z1 | q3, q4) ,

S3 (z1, z2, z3 | q1, . . . , q8) =
β3 − z3

α3 + β3
S2 (z1, z2 | q1, q2, q3, q4)

+
α3 + z3

α3 + β3
S2 (z1, z2 | q5, q6, q7, q8) ,

S4 (z1, . . . , z4 | q1, . . . , q16) =
β4 − z4

α4 + β4
S3 (z1, z2, z3 | q1, . . . , q8)

+
α4 + z4

α4 + β4
S3 (z1, z2, z3 | q9, . . . , q16) ,

S5 (z1, . . . , z5 | q1, . . . , q32) =
β5 − z5

α5 + β5
S4 (z1, . . . , z4 | q1, . . . , q16)

+
α5 + z5

α5 + β5
S4 (z1, . . . , z4 | q17, . . . , q32) ,

S6 (z1, . . . , z6 | q1, . . . , q64) =
β6 − z6

α6 + β6
S5 (z1, . . . , z5 | q1, . . . , q32)

+
α6 + z6

α6 + β6
S5 (z1, . . . , z5 | q33, . . . , q64) .

Now assume that all inputs zk are from the unity interval [0, 1], i.e. αk = 0
and βk = 1 for k = 1, . . . , 6. Thus, the crisp output of the system is given by

S (z1, z2, z3, z4, z5, z6) = a (1 − z1) z3 (1 − z4) + bz3z4 (1 − z6)
+ cz1 (1 − z2) (1 − z4) (1 − z5) . (3.18)

This result is intuitively clear, because the first part of the sum (3.18) cor-
responds to the metarule M1, the second one – to the metarule M2, and the
third one – to the metarule M3. Furthermore, for a = b = c = 1 we have to do
with a system, which processes information expressed in multi-valued logic,
since z ∈ [0, 1]6. The form of S in (3.18) resembles the sum of implicants of
Boolean function [115]. The terms “(1 − z1) z3 (1 − z4)”, “z3z4 (1 − z6)” and
“z1 (1 − z2) (1 − z4) (1 − z5)” may be regarded as the generalized implicants
of the function S : [0, 1]6 → [0, 1].

Example 3.9. Suppose the same system as in Example 3.8 is given, with
the exception that the inputs are from various intervals. Let us take α1 = 5,
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β1 = −3, α2 = 3, β2 = 2, α3 = 2, β3 = 0, α4 = 0, β4 = 4, α5 = 1, β5 = 3,
α6 = −2, and β6 = 6, i.e. the input vector of the P1-TS system is from the
hypercuboid

[z1, z2, z3, z4, z5, z6]
T ∈ [−5, −3] × [−3, 2] × [−2, 0] × [0, 4] × [−1, 3] × [2, 6] .

One can check that the system of metarules from Example 3.8 is equivalent
to the following function of six variables

S (z1, z2, z3, z4, z5, z6) =
a

16
(z1 + 3) (z3 + 2) (z4 − 4) +

b

32
(6 − z6) (z3 + 2) z4

+
c

160
(3 − z5) (4 − z4) (2 − z2) (z1 + 5) .

The power of Theorems 3.6 and 3.7 one can see for the systems with 10
or more inputs; many of the problems similar to those of Example 3.8 or 3.9
can be solved using our theorems on recursion and symbolic computations.

3.4 MIMO TS Systems with Inference Concerning the
Structure Parameters

In this section we will consider a Takagi-Sugeno fuzzy model for nonlinear
continuous or discrete-time dynamical systems, proposed in [180], comprehen-
sively investigated in textbook [184] and elaborated in many contemporary
papers, especially with regard to stability of control systems [91], [125], [149],
[193]. By using such approach, a complex nonlinear system can be repre-
sented by a set of fuzzy rules of which the consequent parts are linear state
equations representing the local models. The complex nonlinear model of the
whole system can then be described (inferred) as a weighted sum of these
linear state equations. It is widely accepted as a powerful modeling tool. Ac-
cording to the classification of fuzzy systems given in [178], the considered
rule-base models belong to the Type III fuzzy systems. Their applications to
various kinds of nonlinear systems can be found e.g. in [90], [181], [182], [196].
Based on the TS fuzzy model of a plant, a parallel distributed compensation
(PDC) technique to design fuzzy logic controller has been proposed in [184].

• The inputs. The inputs of the MIMO TS system which should model
a nonlinear dynamical system, are quantities zk (t) constituting the vec-
tor z (t) = [z1 (t) , . . . , zr (t)]T ∈ Dr, (see Fig. 3.2). The vector z (t) con-
tains known premise variables that are not functions of the control in-
put u (t) = [u1 (t) , . . . , um (t)]T , but they may be functions of the state
variables, external disturbances and/or time. For every variable zk we as-
sign two complementary membership functions Nk (zk) and Pk (zk), i.e.
Nk (zk)+Pk (zk) = 1, that cannot be monotonic or linear for k = 1, . . . , r.
At any time t the vector z (t) belongs to some vth region of a fuzzy
partition.
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H =

[
A B

C D

]
MIMO

TS system

�z1 ∈ [−α1, β1]
�

�

�

�zr ∈ [−αr, βr]

����

Fig. 3.2 TS system with the inputs z1, ..., zr and the inference concerning the
structure parameters

• The outputs. We assume that a local model of the nonlinear system can
be described in a vth region by the state-space equation in the standard
matrix form{

sẋ (t) = A (t)x (t) + B (t)u (t) , x (0) ∈ X ⊂ R
n,

y (t) = C (t)x (t) + D (t)u (t) , t ≥ 0,
(3.19)

where

sx (t) =

{
ẋ (t) - for a continuos case, t ≥ 0,

x (t + 1) - for a discrete case, t = 0, 1, 2, . . . ,

the matrices are A (t) : R+ → R
n×n, B (t) : R+ → R

n×m, (m < n),
C (t) : R+ → R

l×n, D (t) : R+ → R
l×m, (l ≤ m) and R+ = [0, ∞). The

vectors x (t), u (t), and y (t) are contained in some hypercuboids (2.22)
for t ≥ 0. Without loss of generality we will consider a continuous-time
systems and for the sake of simplicity, the time variable t will be sometimes
omitted. The local linear model is unambiguously defined by the block
matrix Hv which contains four submatrices

Hv (t) =

[
Av (t) Bv (t)
Cv (t) Dv (t)

]
, v = 1, . . . , 2r, (3.20)

where 2r is the number of fuzzy rules. Thus, we define the matrix H as the
output q of the MIMO TS rule-based system (see Fig. 3.2). Both the inputs
and outputs of the TS system have more abstract meaning in comparison
with the ones defined in the previous sections.

• The fuzzy rules. The following 2r fuzzy rules are given

R1 : If z1 is N1 and z2 is N2 and . . . and zr is Nr, then q1 = H1

[
x
u

]
,
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R2 : If z1 is P1 and z2 is N2 and . . . and zr is Nr, then q2 = H2

[
x
u

]
,

R3 : If z1 is N1 and z2 is P2 and . . . and zr is Nr, then q3 = H3

[
x
u

]
,

R4 : If z1 is P1 and z2 is P2 and . . . and zr is Nr, then q4 = H4

[
x
u

]
,

...

R2r : If z1 is P1 and z2 is P2 and . . . and zr is Pr, then q2r = H2r

[
x
u

]
.

(3.21)

By the above assumptions the inferred model of the system is as follows

[
ẋ
y

]
=

⎡⎣∑2r

v=1 hv (z1, . . . , zr)Av (t)
∑2r

v=1 hv (z1, . . . , zr)Bv (t)∑2r

v=1 hv (z1, . . . , zr)Cv (t)
∑2r

v=1 hv (z1, . . . , zr)Dv (t)

⎤⎦[x
u

]
,

(3.22)
where

hv (z1, . . . , zr) = Ai1 (z1) × . . . × Air (zr) , v ∈ {1, 2, . . . , 2r} , (3.23)

the index v corresponds to only one antecedent of the fuzzy “If-then” rule,
i.e. v ↔ (i1, . . . , ir) according to the bijection (2.16), when replacing n by r.
The symbol Aik

= Nk for ik = 0 and Aik
= Pk for ik = 1, (k = 1, . . . , r). The

inferred matrix H of the whole system is a convex combination of matrices
given in (3.20)

H =
2r∑

v=1

hv (z1, . . . , zr)Hv =

[
A (z) B (z)
C (z) D (z)

]
,

2r∑
v=1

hv (z1, . . . , zr) = 1.

(3.24)

Remark 3.10. In the simplest case, even if all premise variables are defined
as the state variables (z = x) and all matrices A, B, C and D are constant,
the model (3.22) defines a nonlinear dynamical system.

Remark 3.11. Knowing the assumptions and the way of fuzzy reasoning,
we can write the fuzzy rules in a more readable format:

If z is Pv, then
[
ẋ
y

]
= Hv

[
x
u

]
, (3.25)

where Pv is the premise of the rule. The vector [ẋ,y]T contains at least the
velocity of state vector, i.e. we can be or not interested in modeling of the
output y. If the vector y is not defined, the matrices C and D are empty.
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Now our goal is to apply Theorem 3.7. Let us define the output vector
Sk (H1, . . . ,H2k) of the TS system with the inputs z1, . . . , zk, in which the
consequents of the rules are defined by matrices H1, . . . , H2k . We know that
Sk (H1, . . . ,H2k) denotes the TS system output vector q. On the other hand,
for k = 1 we have

S1 (H1,H2) = N1 (z1)q1 + P1 (z1)q2

= (N1 (z1)H1 + P1 (z1)H2)
[
x
u

]
. (3.26)

From Theorem 3.7 for r ≥ 2 we obtain

Sr (H1, . . . ,H2r ) = Nr (zr)Sr−1 (H1, . . . ,H2r−1)
+ Pr (zr)Sr−1 (H2r−1+1, . . . ,H2r ) . (3.27)

This equation has the same graphic interpretation as formerly shown in
Fig. 3.1 when substituting the consequents of the rules qv by the vectors
Hv

[
xT ,uT

]T .
Below we give some examples of modeling nonlinear systems.

Example 3.12. Consider the nonlinear differential equations of motion for
the cart-pendulum mechanical system, well-known in the literature as the
inverted pendulum of Fig. 3.3 (see e.g. [89], [92], [184]). The pivot of the
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Fig. 3.3 Inverted pendulum on a cart

pendulum is mounted on a cart that can move in a horizontal direction.
The cart is driven by a motor that exerts a horizontal force u (t) on the
cart [N]. The system variables are: x1 (t) - the pendulum angle from vertical
[rad], x2 (t) = ẋ1 (t) - the pendulum angular velocity [rad / s], x3 (t) - the
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cart position [m] and x4 (t) = ẋ3 (t) is the cart velocity [m / s]. The system
constants are: M - the mass of the cart [kg], m - the mass of the pendulum
[kg], l - the distance from the center of gravity to the pivot [m], I - the
moment of inertia of the pendulum [kg m2], c1 - the friction coefficient of
the clasp [kg m2 / s] and c2 is the friction coefficient of the cart [N s / m].
Writing horizontal and vertical Newton’s laws at the center of gravity of the
pendulum, the torque equation and horizontal Newton’s law for the cart,
yields (see Fig. 3.3)

m
d2

dt2
(x3 + l sin x1) = H,

m
d2

dt2
(l cosx1) = V − mg,

I
dx2

dt
= V l sin x1 − Hl cosx1 − c1x2,

M
dx4

dt
= u − H − c2x4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.28)

Let us introduce the following system constants

k1 =
g

l

(
1 +

M

m

)
, k2 =

c1

ml2

(
1 +

M

m

)
, k3 =

1
ml

,

k4 = l

(
1 +

I

ml2

)
, k5 = k3k4 =

1
m

(
1 +

I

ml2

)
, k6 =

k1k4

g
.

Taking into account the differential equations (3.28) and the above system
constants and eliminating V and H , we obtain

ẋ1 = x2,

ẋ2 =
k1 sin x1 − k2x2 − x2

2 sin (x1) cosx1 + c2k3x4 cosx1 − uk3 cosx1

k6 − cos2 x1
,

ẋ3 = x4,

ẋ4 =
(−g sin x1 + c1k3x2) cosx1 + k4

(
x2

2 sin (x1) − c2k3x4 + uk3
)

k6 − cos2 x1
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.29)

To ensure controllability of the system we assume as in [184] that x1 (t) ∈[
−xH

1 , xH
1
]
, where 0 < xH

1 < π/2. The angular velocity is bounded, i.e.
x2 (t) ∈

[
−xH

2 , xH
2
]
. Let us define new variables z1, z2, z3 and z4 as follows

z1 =
sinx1

x1
∈ [−α1, β1] , (3.30)

z2 =
1

k6 − cos2 x1
∈ [−α2, β2] , (3.31)

z3 =
cosx1

k6 − cos2 x1
∈ [−α3, β3] , (3.32)
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z4 = x2 sin x1 ∈ [−α4, β4] , (3.33)

where

−α1 =
sin xH

1

xH
1

> 0, β1 = 1, (3.34)

−α2 =
1

k6 − cos2 xH
1

> 0, β2 =
1

k6 − 1
> 0, (3.35)

−α3 =
cosxH

1

k6 − cos2 xH
1

> 0, β3 =
1

k6 − 1
= β2, (3.36)

−α4 = −xH
2 sin xH

1 < 0, β4 = xH
2 sin xH

1 > 0. (3.37)

One can check that the system (3.29) is equivalent to

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 −k2z2 − z3z4 0 c2k3z3 − k3z3
0 0 0 1 0

−gz1z3 c1k3z3 + k4z2z4 0 − c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

(3.38)

Our goal is to obtain the TS rule-based system of the inverted pendulum in
the following form

If [z1, z2, z3, z4] is
[
Ai1 Ai2 Ai3 Ai4

]
,

then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ is

⎡⎢⎢⎣
0 1 0 0 0

q1,v q2,v 0 q4,v q5,v

0 0 0 1 0
r1,v r2,v 0 r4,v r5,v

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

where (Ai1 , Ai2 , Ai3 , Ai4 ) ∈ {N1, P1} × . . . × {N4, P4}. Thus, the inputs of
the P1-TS system are z1, z2, z3 and z4 as the points of the hypercuboid
D4, whereas the outputs of this system are the velocities of the state vec-
tor, i.e. ẋ1, ẋ2, ẋ3 and ẋ4. The membership functions of fuzzy sets are
Nk (zk) = (αk + βk)−1 (βk − zk) and Pk (zk) = 1 − Nk (zk), where αk and
βk are given by (3.34)-(3.37) for k = 1, 2, 3, 4. We can evaluate the vertices of
the hypercuboid D4 for I = ml2/3 and M > m. Independently of the values
of the system constants, the inequalities z1 (x1) > z2 (x1) ≥ z3 (x1) hold for
x1 (t) ∈

[
−xH

1 , xH
1
]
, (0 < xH

1 < π/2) as shown in Fig. 3.4 and the following
relations

0 < −α3 ≤ −α2 < β3 = β2 < −α1 < β1 = 1, α4 = β4 > 0,
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Fig. 3.4 Plot of the functions z1, z2 and z3 defined in (3.30)-(3.32) by I = ml2/3
and M/m = 5/4

are satisfied. Thus, we can interpret the fuzzy sets as follows: Nk means that
zk is not large and Pk that zk is large (in its range) for k = 1, 2, 3, whereas
N4 means negative value of z4, and P4 - positive one.

Of course, it is possible to find all elements of the matrix containing the
consequents of the rules, but we can simplify the problem, i.e. we will find
qi,v and ri,v. According to the above format of the rule, in order to find qi,v

and ri,v we should take into account the second and the fourth row of the
matrix (3.38), correspondingly. For the generator g for n = 4 (see (B.15) in
Appendix B), we define the following matrices that define the functions of
the inputs z1, z2, z3 and z4 of the TS system, respectively:

Θq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 −k2 0 0 0
k1 0 0 0 0
0 0 0 k3c2 − k3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 − c2k5 k5
0 0 0 0 0
0 c1k3 0 0 0

− g 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 k4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the columns of the matrix Θq correspond to the conclusions q1,v, . . . ,
q5,v, and the columns of Θr correspond to the conclusions r1,v, . . . , r5,v. For
the fundamental matrix (B.16)-(B.20) given in Appendix B we obtain
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Qq = ΩT Θq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2k1 α2k2 − α3α4 0 −α3c2k3 α3k3

−α2β1k1 α2k2 − α3α4 0 −α3c2k3 α3k3

−α1β2k1 −α3α4 − β2k2 0 −α3c2k3 α3k3

β1β2k1 −α3α4 − β2k2 0 −α3c2k3 α3k3

α1α2k1 α4β3 + α2k2 0 β3c2k3 −β3k3

−α2β1k1 α4β3 + α2k2 0 β3c2k3 −β3k3

−α1β2k1 α4β3 − β2k2 0 β3c2k3 −β3k3

β1β2k1 α4β3 − β2k2 0 β3c2k3 −β3k3

α1α2k1 α3β4 + α2k2 0 −α3c2k3 α3k3

−α2β1k1 α3β4 + α2k2 0 −α3c2k3 α3k3

−α1β2k1 α3β4 − β2k2 0 −α3c2k3 α3k3

β1β2k1 α3β4 − β2k2 0 −α3c2k3 α3k3

α1α2k1 α2k2 − β3β4 0 β3c2k3 −β3k3

−α2β1k1 α2k2 − β3β4 0 β3c2k3 −β3k3

−α1β2k1 −β3β4 − β2k2 0 β3c2k3 −β3k3

β1β2k1 −β3β4 − β2k2 0 β3c2k3 −β3k3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

Qr = ΩT Θr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−gα1α3 α2α4k4 − α3c1k3 0 α2c2k5 −α2k5
gβ1α3 α2α4k4 − α3c1k3 0 α2c2k5 −α2k5

−gα1α3 −β2α4k4 − α3c1k3 0 −β2c2k5 β2k5

gβ1α3 −β2α4k4 − α3c1k3 0 −β2c2k5 β2k5

gα1β3 α2α4k4 + β3c1k3 0 α2c2k5 −α2k5

−gβ1β3 α2α4k4 + β3c1k3 0 α2c2k5 −α2k5

gα1β3 β3c1k3 − β2α4k4 0 −β2c2k5 β2k5

−gβ1β3 β3c1k3 − β2α4k4 0 −β2c2k5 β2k5

−gα1α3 −α2β4k4 − α3c1k3 0 α2c2k5 −α2k5

gβ1α3 −α2β4k4 − α3c1k3 0 α2c2k5 −α2k5

−gα1α3 β2β4k4 − α3c1k3 0 −β2c2k5 β2k5

gβ1α3 β2β4k4 − α3c1k3 0 −β2c2k5 β2k5

gα1β3 β3c1k3 − α2β4k4 0 α2c2k5 −α2k5

−gβ1β3 β3c1k3 − α2β4k4 0 α2c2k5 −α2k5

gα1β3 β2β4k4 + β3c1k3 0 −β2c2k5 β2k5

−gβ1β3 β2β4k4 + β3c1k3 0 −β2c2k5 β2k5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let
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H1 =

⎡⎢⎢⎣
0 1 0 0 0

α1α2k1 α2k2 − α3α4 0 − α3c2k3 α3k3
0 0 0 1 0

−gα1α3 α2α4k4 − α3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H2 =

⎡⎢⎢⎣
0 1 0 0 0

− α2β1k1 α2k2 − α3α4 0 − α3c2k3 α3k3
0 0 0 1 0

gβ1α3 α2α4k4 − α3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H3 =

⎡⎢⎢⎣
0 1 0 0 0

− α1β2k1 −α3α4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

−gα1α3 − β2α4k4 − α3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H4 =

⎡⎢⎢⎣
0 1 0 0 0

β1β2k1 −α3α4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

gβ1α3 − β2α4k4 − α3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H5 =

⎡⎢⎢⎣
0 1 0 0 0

α1α2k1 α4β3 + α2k2 0 β3c2k3 −β3k3
0 0 0 1 0

gα1β3 α2α4k4 + β3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H6 =

⎡⎢⎢⎣
0 1 0 0 0

− α2β1k1 α4β3 + α2k2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ1β3 α2α4k4 + β3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H7 =

⎡⎢⎢⎣
0 1 0 0 0

− α1β2k1 α4β3 − β2k2 0 β3c2k3 − β3k3
0 0 0 1 0

gα1β3 β3c1k3 − β2α4k4 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H8 =

⎡⎢⎢⎣
0 1 0 0 0

β1β2k1 α4β3 − β2k2 0 β3c2k3 − β3k3
0 0 0 1 0

−gβ1β3 β3c1k3 − β2α4k4 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H9 =

⎡⎢⎢⎣
0 1 0 0 0

α1α2k1 α3β4 + α2k2 0 − α3c2k3 α3k3
0 0 0 1 0

−gα1α3 − α2β4k4 − α3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H10 =

⎡⎢⎢⎣
0 1 0 0 0

− α2β1k1 α3β4 + α2k2 0 − α3c2k3 α3k3
0 0 0 1 0

gβ1α3 − α2β4k4 − α3c1k3 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,
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H11 =

⎡⎢⎢⎣
0 1 0 0 0

− α1β2k1 α3β4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

−gα1α3 β2β4k4 − α3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H12 =

⎡⎢⎢⎣
0 1 0 0 0

β1β2k1 α3β4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

gβ1α3 β2β4k4 − α3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H13 =

⎡⎢⎢⎣
0 1 0 0 0

α1α2k1 α2k2 − β3β4 0 β3c2k3 −β3k3
0 0 0 1 0

gα1β3 β3c1k3 − α2β4k4 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H14 =

⎡⎢⎢⎣
0 1 0 0 0

− α2β1k1 α2k2 − β3β4 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ1β3 β3c1k3 − α2β4k4 0 α2c2k5 − α2k5

⎤⎥⎥⎦ ,

H15 =

⎡⎢⎢⎣
0 1 0 0 0

− α1β2k1 −β3β4 − β2k2 0 β3c2k3 − β3k3
0 0 0 1 0

gα1β3 β2β4k4 + β3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

H16 =

⎡⎢⎢⎣
0 1 0 0 0

β1β2k1 −β3β4 − β2k2 0 β3c2k3 − β3k3
0 0 0 1 0

−gβ1β3 β2β4k4 + β3c1k3 0 − β2c2k5 β2k5

⎤⎥⎥⎦ ,

and let us denote x = [x1, x2, x3, x4]
T . Thus, the system of fuzzy rules which

is equivalent to the model (3.29) is as follows

R1: If [z1, z2, z3, z4] is
[
N1 N2 N3 N4

]
, then ẋ = H1

[
x
u

]
,

R2: If [z1, z2, z3, z4] is
[
P1 N2 N3 N4

]
, then ẋ = H2

[
x
u

]
,

R3: If [z1, z2, z3, z4] is
[
N1 P2 N3 N4

]
, then ẋ = H3

[
x
u

]
,

R4: If [z1, z2, z3, z4] is
[
P1 P2 N3 N4

]
, then ẋ = H4

[
x
u

]
,

R5: If [z1, z2, z3, z4] is
[
N1 N2 P3 N4

]
, then ẋ = H5

[
x
u

]
,

R6: If [z1, z2, z3, z4] is
[
P1 N2 P3 N4

]
, then ẋ = H6

[
x
u

]
,

R7: If [z1, z2, z3, z4] is
[
N1 P2 P3 N4

]
, then ẋ = H7

[
x
u

]
,
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R8: If [z1, z2, z3, z4] is
[
P1 P2 P3 N4

]
, then ẋ = H8

[
x
u

]
,

R9: If [z1, z2, z3, z4] is
[
N1 N2 N3 P4

]
, then ẋ = H9

[
x
u

]
,

R10: If [z1, z2, z3, z4] is
[
P1 N2 N3 P4

]
, then ẋ = H10

[
x
u

]
,

R11: If [z1, z2, z3, z4] is
[
N1 P2 N3 P4

]
, then ẋ = H11

[
x
u

]
,

R12: If [z1, z2, z3, z4] is
[
P1 P2 N3 P4

]
, then ẋ = H12

[
x
u

]
,

R13: If [z1, z2, z3, z4] is
[
N1 N2 P3 P4

]
, then ẋ = H13

[
x
u

]
,

R14: If [z1, z2, z3, z4] is
[
P1 N2 P3 P4

]
, then ẋ = H14

[
x
u

]
,

R15: If [z1, z2, z3, z4] is
[
N1 P2 P3 P4

]
, then ẋ = H15

[
x
u

]
,

R16: If [z1, z2, z3, z4] is
[
P1 P2 P3 P4

]
, then ẋ = H16

[
x
u

]
.

Now we will apply Theorem 3.7 on recurrence according to the equation
(3.27). For the formerly defined membership functions Nk (zk) and Pk (zk),
(k = 1, 2, 3, 4), first we compute

S1 (H1,H2) = N1 (z1)H1 + P1 (z1)H2

=

⎡⎢⎢⎣
0 1 0 0 0

−α2k1z1 α2k2 − α3α4 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 α2α4k4 − α3c1k3 0 α2c2k5 −α2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H3,H4) = N1 (z1)H3 + P1 (z1)H4

=

⎡⎢⎢⎣
0 1 0 0 0

β2k1z1 −α3α4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 −β2α4k4 − α3c1k3 0 −β2c2k5 β2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H5,H6) = N1 (z1)H5 + P1 (z1)H6

=

⎡⎢⎢⎣
0 1 0 0 0

−α2k1z1 α4β3 + α2k2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 α2α4k4 + β3c1k3 0 α2c2k5 −α2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,



3.4 MIMO TS Systems 49

S1 (H7,H8) = N1 (z1)H7 + P1 (z1)H8

=

⎡⎢⎢⎣
0 1 0 0 0

β2k1z1 α4β3 − β2k2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 β3c1k3 − β2α4k4 0 −β2c2k5 β2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H9,H10) = N1 (z1)H9 + P1 (z1)H10

=

⎡⎢⎢⎣
0 1 0 0 0

−α2k1z1 α3β4 + α2k2 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 −α2β4k4 − α3c1k3 0 α2c2k5 −α2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H11,H12) = N1 (z1)H11 + P1 (z1)H12

=

⎡⎢⎢⎣
0 1 0 0 0

β2k1z1 α3β4 − β2k2 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 β2β4k4 − α3c1k3 0 −β2c2k5 β2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H13,H14) = N1 (z1)H13 + P1 (z1)H14

=

⎡⎢⎢⎣
0 1 0 0 0

−α2k1z1 α2k2 − β3β4 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 β3c1k3 − α2β4k4 0 α2c2k5 −α2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S1 (H15,H16) = N1 (z1)H15 + P1 (z1)H16

=

⎡⎢⎢⎣
0 1 0 0 0

β2k1z1 −β3β4 − β2k2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 β2β4k4 + β3c1k3 0 −β2c2k5 β2k5

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ .

Next

S2 (H1, . . .,H4) = N2 (z2)S1 (H1,H2) + P2 (z2)S1 (H3,H4)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 −α3α4 − k2z2 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 −α3c1k3 − α4k4z2 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,
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S2 (H5, . . .,H8) = N2 (z2)S1 (H5,H6) + P2 (z2)S1 (H7,H8)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 α4β3 − k2z2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 β3c1k3 − α4k4z2 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S2 (H9, . . .,H12) = N2 (z2)S1 (H9,H10) + P2 (z2)S1 (H11,H12)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 α3β4 − k2z2 0 −α3c2k3 α3k3
0 0 0 1 0

gα3z1 β4k4z2 − α3c1k3 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S2 (H13, . . . ,H16) = N2 (z2)S1 (H13,H14) + P2 (z2)S1 (H15,H16)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 −β3β4 − k2z2 0 β3c2k3 −β3k3
0 0 0 1 0

−gβ3z1 β3c1k3 + β4k4z2 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

and

S3 (H1, . . .,H8) = N3 (z3)S2 (H1, . . .,H4) + P3 (z3)S2 (H5, . . .,H8)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 α4z3 − k2z2 0 c2k3z3 −k3z3
0 0 0 1 0

−gz1z3 c1k3z3 − α4k4z2 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

S3 (H9, . . .,H16) = N3 (z3)S2 (H9, . . .,H12) + P3 (z3)S2 (H13, . . .,H16)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 −β4z3 − k2z2 0 c2k3z3 −k3z3
0 0 0 1 0

−gz1z3 β4k4z2 + c1k3z3 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ .

Finally we obtain

S4 (H1, . . .,H16) = N4 (z4)S3 (H1, . . .,H8) + P4 (z4)S3 (H9, . . .,H16)

=

⎡⎢⎢⎣
0 1 0 0 0

k1z1z2 −k2z2 − z3z4 0 c2k3z3 −k3z3
0 0 0 1 0

−gz1z3 c1k3z3 + k4z2z4 0 −c2k5z2 k5z2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ .
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The result is the same as formerly obtained, i.e. the fuzzy rules for the P1-TS
system describe the inverted pendulum (3.29). The above model consists of
16 fuzzy rules.

Example 3.13. Consider the inverted pendulum from Example 3.12. On the
basis of the above approach we can consider a two-dimensional system by ne-
glecting the motion of the cart and the linear translation friction coefficient c2.
To ensure controllability of the system we assume x1 (t) ∈

[
−xH

1 , xH
1
]
, where

0 < xH
1 < π/2. The angular velocity is bounded i.e. x2 (t) ∈

[
−xH

2 , xH
2
]
. Let

us define new input variables for the P1-TS system: w1, w2 and w3 as follows

w1 = z1z2 =
1

k6 − cos2 x1

sin x1

x1
∈ [−a1, b1] =

[
1

k6 − cos2 xH
1

sin xH
1

xH
1

,
1

k6 − 1

]
,

(3.39)

w2 = k2z2 + z3z4 =
k2 +

x2

2
sin 2x1

k6 − cos2 x1
∈ [−a2, b2] , (3.40)

w3 = k3z3 =
k3 cosx1

k6 − cos2 x1
∈ [−a3, b3] =

[
k3 cosxH

1

k6 − cos2 xH
1

,
k3

k6 − 1

]
. (3.41)

The rough values of a2 and b2 can be easily evaluated, but in order to obtain
the smallest interval for w2, we should compute them numerically taking into
account the maximal angular velocity xH

2 and the system constants (c1, m,
M and l). In general a2 �= b2 as shown in Fig. 3.5. The membership functions

x1

−0.7865 = −a2

b2 = 1.2547

w2
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Fig. 3.5 Plot of the function w2 for x2 = xH
2 = 5, c1 = 0.05, m = 0.8, M = 1 and

l = 0.5, i.e. w2 = (0.5625 + 2.5 sin 2x1) /
(
3 − cos2 x1

)

of fuzzy sets are Nk (wk) and Pk (wk) = 1 − Nk (wk) by wk ∈ [−ak, bk] for
k = 1, 2, 3. From the first two differential equations by c2 = 0 we obtain

[
ẋ1
ẋ2

]
=
[

0 1 0
k1w1 −w2 −w3

]⎡⎣x1
x2
u

⎤⎦ . (3.42)
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Our goal is to obtain a TS model of the inverted pendulum in the form of
fuzzy rules

If [w1, w2, w3] is
[
Ai1 Ai2 Ai3

]
, then

[
ẋ1
ẋ2

]
=
[

0 1 0
q1,v q2,v q3,v

]⎡⎣x1
x2
u

⎤⎦ ,

where (Ai1 , Ai2 , Ai3) ∈ {N1, P1} × {N2, P2} × {N3, P3}. In accordance with
the equations (3.42) and the generator g = g (w1, w2, w3) for n = 3 we define
the following matrix of coefficients

Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
k1 0 0
0 −1 0
0 0 0
0 0 −1
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus, from (2.52) and (2.41) the consequents matrix is computed as

Q = ΩTΘ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1k1 a2 a3
b1k1 a2 a3

−a1k1 −b2 a3
b1k1 −b2 a3

−a1k1 a2 −b3
b1k1 a2 −b3

−a1k1 −b2 −b3
b1k1 −b2 −b3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The exact model of the 2-dimensional inverted pendulum by c2 = 0 we can
write in the compact form

If [w1, w2, w3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3
P1 N2 N3
N1 P2 N3
P1 P2 N3
N1 N2 P3
P1 N2 P3
N1 P2 P3
P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then

[
ẋ1
ẋ2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1k1 a2 a3
b1k1 a2 a3

−a1k1 −b2 a3
b1k1 −b2 a3

−a1k1 a2 −b3
b1k1 a2 −b3

−a1k1 −b2 −b3
b1k1 −b2 −b3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣x1
x2
u

⎤⎦ .

Let us observe that there are many ways in which we can choose the
artificial variables as the inputs for the TS system. For example the first two
equations in (3.29) by c2 = 0 can be written as
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[
ẋ1
ẋ2

]
=
[

0 1 0
z1 z2 z3

]⎡⎣x1
x2
u

⎤⎦
where

z1 =
k1

sin x1

x1
− 1

4
x2

2
sin (2x1)

x1

k6 − cos2 x1
,

z2 = −
k2 +

x2 sin (2x1)
4

k6 − cos2 x1
,

z3 = − k3 cosx1

k6 − cos2 x1
.

The next steps for computing the conclusions of the fuzzy rules are the same
as before.

As one can see, only 8 fuzzy rules for the P1-TS system are sufficient to obtain
an exact model of the angular motion of the pendulum in the two-dimensional
case.

Example 3.14. From the practical point of view an approximation model
may be quite sufficient. The pendulum nonlinearities are simple because the
nonlinear functions depend on one variable x1. Below we propose to consider
a truncated Taylor series expansion of the second and fourth equation in
(3.29) with respect to the state variable x1, about the point x1 = 0, up
to some number of terms, say 4. The 4th-degree Taylor polynomials should
guarantee a sufficiently high accuracy; otherwise we should take the Taylor
polynomials of the higher degree. Thus,

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ = H

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ , (3.43)

where the matrix H is given by

H =

⎡⎢⎢⎣
0 1 0 0 0

h21 (w1) h22 (w1, w2) 0 h24 (w1) h25 (w1)
0 0 0 1 0

h41 (w1) h42 (w1, w2) 0 h44 (w1) h45 (w1)

⎤⎥⎥⎦ . (3.44)

We use two new artificial variables w1 = x2
1 and w2 = x1x2. The elements of

the matrix H are as follows

h21 (w1) = a1w1 + b1 + O
(
x4

1
)
,
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h22 (w1, w2) = h0 + h1w1 + h2w2 + h3w1w2 + O
(
x4

1
)
,

h24 (w1) = a2w1 + b2 + O
(
x4

1
)
,

h25 (w1) = a3w1 + b3 + O
(
x4

1
)
,

h41 (w1) = a4w1 + b4 + O
(
x4

1
)
,

h42 (w1, w2) = r0 + r1w1 + r2w2 + r3w1w2 + O
(
x4

1
)
,

h44 (w1) = a5w1 + b5 + O
(
x4

1
)
,

h45 (w1) = a6w1 + b6 + O
(
x4

1
)
,

and the constants are

a1 = −ak1 (a + 1/6) , b1 = ak1, a2 = −ac2k3 (2a + 1) /2, b2 = ac2k3,

a3 = ak3 (2a + 1) /2, b3 = −ak3, a4 = ag (a + 2/3) , b4 = −ag,

a5 = a2c2k3k4, b5 = −ac2k3k4, a6 = −a2k3k4, b6 = ak3k4,

and a = 1/ (k6 − 1). Observe that all elements of the matrix H are functions
of variables w1 and w2 of the form (2.26) and therefore the system (3.43) can
be exactly modeled by a P1-TS rule-based system. Our goal is to obtain the
TS rule-based system of the inverted pendulum in the following form

If [w1, w2] is
[
Ai1 Ai2

]
, then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 1 0 0 0

q1,v q2,v 0 q4,v q5,v

0 0 0 1 0
r1,v r2,v 0 r4,v r5,v

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

where (Ai1 , Ai2 ) ∈ {N1, P1} × {N2, P2}. The inputs of the P1-TS system
are w1 and w2 as the points of the rectangle D2, whereas the outputs of
this system are the velocities of the state vector, i.e. ẋ1, ẋ2, ẋ3 and ẋ4. The
membership functions of fuzzy sets are Nk (wk) = (αk + βk)−1 (βk − wk)
and Pk (wk) = 1 − Nk (wk), where αk and βk, (k = 1, 2), can be easily
obtained

w1 ∈ [−α1, β1] =
[
0,
(
xH

1
)2]

, w2 ∈ [−α2, β2] =
[
−xH

1 xH
2 , xH

1 xH
2
]
.

The values xH
1 and xH

2 are the maximal angle and its maximal speed, re-
spectively. Thus, we obtain highly interpretable membership functions of the
fuzzy sets

N1 (w1) = 1 − w1

β1
= 1 −

(
x1

xH
1

)2

,
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N2 (w2) =
1
2

(
1 − w2

α2

)
=

1
2

(
1 − x1x2

xH
1 xH

2

)
.

According to the format of the rules, in order to find qi,v and ri,v we should
take into account the second and the fourth row of the matrix (3.44), cor-
respondingly. For the generator g given by (2.37) we define the follow-
ing matrices that define the functions of the inputs w1 and w2 of the TS
system

Θq =

⎡⎢⎢⎣
b1 h0 0 b2 b3
a1 h1 0 a2 a3
0 h2 0 0 0
0 h3 0 0 0

⎤⎥⎥⎦ , Θr =

⎡⎢⎢⎣
b4 r0 0 b5 b6
a4 r1 0 a4 a6
0 r2 0 0 0
0 r3 0 0 0

⎤⎥⎥⎦ .

From (2.38) we have Qq = ΩTΘq and Qr = ΩTΘr. Thus,

Qq =

⎡⎢⎢⎣
b1 − α1a1 h0 − α1h1 − α2h2 + α1α2h3 0 b2 − α1a2 b3 − α1a3
b1 + β1a1 h0 + β1h1 − α2h2 − α2β1h3 0 b2 + β1a2 b3 + β1a3
b1 − α1a1 h0 − α1h1 + β2h2 − α1β2h3 0 b2 − α1a2 b3 − α1a3
b1 + β1a1 h0 + β1h1 + β2h2 + β1β2h3 0 b2 + β1a2 b3 + β1a3

⎤⎥⎥⎦ ,

Qr =

⎡⎢⎢⎣
b4 − α1a4 r0 − α1r1 − α2r2 + α1α2r3 0 b5 − α1a4 b6 − α1a6
b4 + β1a4 r0 + β1r1 − α2r2 − α2β1r3 0 b5 + β1a4 b6 + β1a6
b4 − α1a4 r0 − α1r1 + β2r2 − α1β2r3 0 b5 − α1a4 b6 − α1a6
b4 + β1a4 r0 + β1r1 + β2r2 + β1β2r3 0 b5 + β1a4 b6 + β1a6

⎤⎥⎥⎦ .

Finally, the system of rules that models exactly the system (3.43) by the
given matrix H is as follows

R1 : If [w1, w2] is
[
N1 N2

]
, then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ = H1

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

R2 : If [w1, w2] is
[
P1 N2

]
, then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ = H2

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

R3 : If [w1, w2] is
[
N1 P2

]
, then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ = H3

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,
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R4 : If [w1, w2] is
[
P1 P2

]
, then

⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎦ = H4

⎡⎢⎢⎢⎢⎣
x1
x2
x3
x4
u

⎤⎥⎥⎥⎥⎦ ,

where

H1 =

⎡⎢⎢⎣
0 1 0 0 0

b1 − α1a1 h0 − α1h1 − α2h2 + α1α2h3 0 b2 − α1a2 b3 − α1a3
0 0 0 1 0

b4 − α1a4 r0 − α1r1 − α2r2 + α1α2r3 0 b5 − α1a4 b6 − α1a6

⎤⎥⎥⎦ ,

H2 =

⎡⎢⎢⎣
0 1 0 0 0

b1 + β1a1 h0 + β1h1 − α2h2 − α2β1h3 0 b2 + β1a2 b3 + β1a3
0 0 0 1 0

b4 + β1a4 r0 + β1r1 − α2r2 − α2β1r3 0 b5 + β1a4 b6 + β1a6

⎤⎥⎥⎦ ,

H3 =

⎡⎢⎢⎣
0 1 0 0 0

b1 − α1a1 h0 − α1h1 + β2h2 − α1β2h3 0 b2 − α1a2 b3 − α1a3
0 0 0 1 0

b4 − α1a4 r0 − α1r1 + β2r2 − α1β2r3 0 b5 − α1a4 b6 − α1a6

⎤⎥⎥⎦ ,

H4 =

⎡⎢⎢⎣
0 1 0 0 0

b1 + β1a1 h0 + β1h1 + β2h2 + β1β2h3 0 b2 + β1a2 b3 + β1a3
0 0 0 1 0

b4 + β1a4 r0 + β1r1 + β2r2 + β1β2r3 0 b5 + β1a4 b6 + β1a6

⎤⎥⎥⎦ .

Assume as in [184] a large value of xH
1 , say xH

1 = 88π/180 [deg]. In order to
have a good interpretation of real situations which are modeled by the rule-
based system we should observe that the subsets of the arguments (x1, x2) ∈
D2, for which the functions used in the premises of the rules are maximal,
are as follows

• the premise function N1N2 takes its maximal value (16/27) at (x1, x2) ∈{(
xH

1 /3, −xH
2
)
,
(
−xH

1 /3, xH
2
)}

,
• the premise function P1N2 takes its maximal value (1) at (x1, x2) ∈{(

−xH
1 , xH

2
)
,
(
xH

1 , −xH
2
)}

,
• the premise function N1P2 takes its maximal value (16/27) at (x1, x2) ∈{(

xH
1 /3, xH

2
)
,
(
−xH

1 /3, −xH
2
)}

,
• the premise function P1P2 takes its maximal value (1) at (x1, x2) ∈{(

xH
1 , xH

2
)
,
(
−xH

1 , −xH
2
)}

.

Thus, the premises of the rules R1 − R4 can be substituted by the above
description of situations.

In the above example we used 4th-degree Taylor polynomials for approx-
imation of nonlinear functions at the equilibrium point of the dynamical
system. One can check that the above result is much better than the one
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obtained by the linearization of differential equations around the equilib-
rium. Thanks to the Taylor series expansion we obtained a small number of
highly interpretable fuzzy rules.

3.5 Boundedness of P1-TS Systems

In this section we evaluate the lower and upper bound of the function (2.26)
to which the rule-based P1-TS system is equivalent.

Theorem 3.15. The crisp output S of every MISO P1-TS system with in-
puts zk ∈ [−αk, βk] for k = 1, . . . , n, defined by “If-then” rules (2.32) with
consequents of the rules qv, v = 1, 2, . . . , 2n, is bounded. The lower and upper
bounds are independent of boundaries of the intervals −αk or βk, and they
are given by

min {q1, q2, . . . , q2n} ≤ S ≤ max {q1, q2, . . . , q2n} . (3.45)

The above assessment cannot be improved.

Proof. According to Theorem 3.6, for n = 1, by any arbitrarily chosen z1
from the interval [−α1, β1], the system output is the convex combination of
q1 and q2, as expressed by (3.11). Thus,

min {q1, q2} ≤ S (z1 | q1, q2) = λ1q1 + (1 − λ1) q2 ≤ max {q1, q2}

holds, since λ1 = (α1 + β1)
−1 (β1 − z1) ∈ [0, 1] for every z1 ∈ [−α1, β1]. Sup-

pose that the theorem is true for the system with input variables z1, . . . , zn−1
and the output Sn−1. This means that Sn−1 in (3.10) both by parameters
q1, . . . , q2n−1 , and by parameters q2n−1+1, . . . , q2n , as a function of indepen-
dent variables z1, . . . , zn is bounded as follows

min {q1,. . . ,q2n−1}≤Sn−1 (z1,. . . , zn−1 | q1,. . . , q2n−1)≤max {q1, . . . , q2n−1} ,
(3.46)

and

min {q2n−1+1, . . . , q2n} ≤ Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n)
≤ max {q2n−1+1, . . . , q2n} . (3.47)

But

min {min {q1, . . . , q2n−1} , min {q2n−1+1, . . . , q2n}} = min {q1, . . . , q2n} ,

and

max {max {q1, . . . , q2n−1} , max {q2n−1+1, . . . , q2n}} = max {q1, . . . , q2n} .

Thus,



58 3 Recursion in TS Systems with Two Fuzzy Sets for Every Input

min {q1, . . . , q2n} ≤ Sn−1 (z1, . . . , zn−1) ≤ max {q1, . . . , q2n} .

According to (3.10) by any arbitrarily chosen input vector [z1, . . . , zn]T ∈ Dn,
the system output S = S (z1, . . . , zn | q1, . . . , q2n) is the convex combination
of Sn−1 (z1,. . . , zn−1 | q1,. . . , q2n−1) and Sn−1 (z1,. . . , zn−1 | q2n−1+1,. . . , q2n),
which both are bounded by min {q1, . . . , q2n} and max {q1, . . . , q2n}:

min {q1, . . . , q2n} ≤ S = λnSn−1 (z1, . . . , zn−1 | q1, . . . , q2n−1)
+ (1 − λn)Sn−1 (z1, . . . , zn−1 | q2n−1+1, . . . , q2n)
≤ max {q1, . . . , q2n} ,

since λn = (αn + βn)−1 (βn − zn) ∈ [0, 1] for zn ∈ [−αn, βn]. Finally, observe
that for every consequent qv of the rule, there exists a vertex in the hyper-
cuboid Dn such, that the output S = qv (see the Proof of Theorem 2.4).
Thus, both the lower, and upper bounds in (3.45) cannot be improved. This
ends the proof of Theorem 3.15. 
�

3.6 Summary

Thanks to Theorem 3.1 the computation of the inverse of the fundamental
matrix does not need classical matrix inversion procedures; the matrix inverse
can be found recursively using multiplication operations only. Some features
of the fundamental matrix and its inverse were given as well.

The decomposition of the rule-base of the P1-TS system that uses two
complementary fuzzy sets for every input, was helpful in developing the re-
cursive procedure. Thanks to Theorem 3.6 and its generalization the curse
of dimensionality problem in the rule-based systems can be substantially re-
duced. Recursive procedure can be used for rather large rule-bases, even if the
membership functions of fuzzy sets are not linear or monotonic. The mem-
bership functions were assumed to be complementary, but this requirement
is not very restrictive, since in practice the membership functions can always
be normalized. In the case of the P1-TS system with n-iputs, the computa-
tional architecture of the recursion seems to be simple and can be viewed as
a feedforward n-layer neural network. As an example of application of the
recursion, the rule-based system with 6 inputs was considered. It is not a big
problem to consider a P1-TS system with about 10 inputs; such examples
require only more space to write equations.

It was shown that P1-TS systems can be used for the exact modeling
of the nonlinear continuous or discrete-time dynamical systems, where the
inputs of the fuzzy rule-based system are more abstract quantities and the
outputs refer to the system structure. The system inputs can contain known
premise variables that are not functions of the control input, but they may be
functions of the state variables, external disturbances and/or time. For every
input variable we assumed two complementary membership functions that
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cannot be monotonic or linear. For inverted pendulum system we obtained
better results than in other works; e.g. only 8 fuzzy rules (instead of 16) for
the P1-TS system turned out to be sufficient to model exactly the angular
motion of the pendulum in the two-dimensional case. However, with the above
approach there are many ways in which the artificial variables as the TS
system inputs can be defined. Another disadvantage of the above approach
which coincides in many respects with the one described in [184] is that the
fuzzy rules are not simple for interpretation. By using recurrence we can easily
check validity of other models of nonlinear systems in the P1-TS form, e.g.
a translational oscillator with an eccentric rotational proof mass actuator,
a vehicle with triple trailers described in [184] and many other dynamical
systems.

We showed that application of the Taylor series expansion can be very
attractive in practice. In one example we used 4th-degree Taylor polynomials
for a good approximation of nonlinear functions at the equilibrium point of
the dynamical system. The result is much better than the one obtained by the
linearization of differential equations around the equilibrium. By using the
Taylor series expansion we obtained a small number of highly interpretable
fuzzy rules.

Finally we found the best evaluation for the lower and upper bound of the
function, to which the rule-based P1-TS system is equivalent.



Chapter 4
Fuzzy Rule-Based Systems with
Polynomial Membership Functions

In order to obtain a richer class of functions to which the fuzzy rule-based sys-
tem is equivalent, one can use nonlinear membership functions of fuzzy sets,
to which polynomials of the second or higher degree belong. Such polynomi-
als are defined by three or more parameters. It would appear that by using
nonlinear membership functions, one can get a sufficiently large class of func-
tions, to which the rule-based system is equivalent. However, if we increase
the complexity of membership functions of fuzzy sets only, while preserving
the number of fuzzy sets assigned for the input variables, our intuition about
richness of the class of functions performed by the rule-based system can fail
us. The number of fuzzy sets is important, since it determines the number of
consequents of the rules; thus, it constrains the class of functions performed
by the zero-order TS rule-based systems. This fact will be shown further on.

The consequents of “If-then” rules can be defined as functions depend-
ing on input variables, e.g. they can be polynomials. However, if it is not
stated differently, we will consider the zero-order rule-based systems. A spe-
cial attention will be paid to the TS systems which use the second degree
polynomials as the membership functions of fuzzy sets. First we will show
that it is not possible to obtain any second degree polynomial function, to
which a TS rule-based system is equivalent, on the assumption that only two
complementary membership functions as the second degree polynomials are
defined for the input variables for this system. We prove however, that three
quadratic membership functions suffice to model every second degree polyno-
mial function. For such membership functions the natural requirements that
guarantee a clear interpretability of fuzzy sets will be defined as well. The
TS systems that use as a basis three normalized second degree polynomial
membership functions, called P2-TS systems, will be thoroughly investigated.
Similarly to the fuzzy rule-based systems with linear membership functions,
we will define both a generator and a fundamental matrix for the P2-TS
systems. The features of the fundamental matrix for such systems and its
inverse will be given.

The curse of dimensionality problem is more serious for the P2-TS systems
than the one for the P1-TS systems. Therefore we will develop the recursive
procedures for the computation of the inverse of the fundamental matrix and
for the crisp output of the P2-TS systems.

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 61–99.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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4.1 TS Systems with Two Polynomial Membership
Functions for Every Input

Below we prove the following

Remark 4.1. Suppose the inputs of a zero-order TS system are zk ∈
[−αk, βk], (k = 1, 2, . . . , n), and every input has assigned two complemen-
tary membership functions, say Nk (zk) and Pk (zk) = 1 − Nk (zk). If all
membership functions are polynomials of the degree d, then

(1) the crisp output f (z1, . . . , zn) of this system is the following multivariate
polynomial

f (z1, . . . , zn) =
∑

p1,...,pn∈{0,1,2,...,d}n

θp1,...,pnzp1
1 zp2

2 · · · zpn
n , (4.1)

where θp1,...,pn ∈ R,
(2) every multilinear function of type (4.1), can be exactly expressed by the

fuzzy “If-then” rules if, and only if the degree of polynomials is d = 1,
(3) not every nonlinear function of type (4.1) can be unambiguously ex-

pressed by the fuzzy “If-then” rules, when the degree d > 1.

Proof.

(1) First observe that the system output S is a linear combination of 2n

polynomials in the form “
n∏

k=1

(
ad,kzd

k + . . . + a1,kzk + a0,k

)
”. Thus, the

output S is in the form (4.1), indeed.
(2) For two fuzzy sets for every input (Nk and Pk), there are 2n consequents

of the rules, which are free design parameters. The polynomial of degree d
is described by (d + 1) parameters. Thus, the number of functions (4.1),
which are structurally different one from another, is (d + 1)n, and it is
equal to the number of different consequents of the rules if, and only if
(d + 1)n = 2n. In this case we apply Theorem 2.4.

(3) For d ≥ 2 we have (d + 1)n > 2n. Thus, not every nonlinear function (4.1)
can be exactly expressed by TS system; this finishes the proof of
Remark 4.1. 
�

Let us consider an example which is of twofold goal. Firstly, we will give an
additional proof of Remark 4.1 for the second degree polynomial (d = 2).
Secondly, we will show that by using some nonlinear bijection for the crisp
input x of the TS system with two linear membership functions, we can
obtain its nonlinear output S (x), (see Fig. 4.1). Of course, the use of such
bijection is not necessary to prove Remark 4.1.

Example 4.2. Let us consider the zero-order TS system with the input x and
the output S, as shown in Fig. 4.1. We define a nonlinear mapping between
the original input x ∈ [−α, β] and an ancillary variable z ∈ [−α, β], in the
form of the second order polynomial



4.1 TS Systems with Two Polynomial Membership Functions 63

Bijection
(4.2)

�
x ∈ [−α, β]

�
z ∈ [−α, β] TS

system
�

S = S(x)

Fig. 4.1 SISO TS system from Example 4.2

z (x) = x + m
(x + α) (x − β)

α + β
, (4.2)

where m is a parameter - see Fig. 4.2.We assume that 0 �= |m| < 1, since
(4.2) is a bijection z : [−α, β] → [−α, β] if, and only if |m| < 1, and we omit
the trivial case z = x. If the membership functions are linear:

N (z) = (α + β)−1 (β − z) , P (z) = 1 − N (z) ,

then from two fuzzy rules:

R1 : If z is N , then S = q1,

R2 : If z is P , then S = q2,

}
we obtain the system output

S =
q1N (z) + q2P (z)

N (z) + P (z)

=
(q2 − q1)x + αq2 + βq1

α + β
+ m

(q2 − q1) (x + α) (x − β)
(α + β)2

. (4.3)

Fig. 4.2 The bijection
(4.2) with parameter
m = mi: m1 = −1,
m2 = −0.5, m3 = 0.5
and m4 = 1
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It can be equivalently written as

S (x) = Ax2 + Bx + C,

where
A = m

q2 − q1

(α + β)2
,

B =
(α + β + m (α − β)) (q2 − q1)

(α + β)2
,

C =
q1β (α + β + mα) + q2

(
αβ − mαβ + α2

)
(α + β)2

.

Thus, independently of the consequents of the rules (q1 and q2), the sys-
tem output is restricted to the following class of functions as second degree
polynomials

S (x) = Ax2 +
(

α + β

m
+ α − β

)
Ax + C, x ∈ [−α, β] , (4.4)

where A, C ∈ R, by 1 > |m| �= 0. This means that there are “many”, but
not all second degree polynomials, which can be exactly represented by the
rule-based system. For example, by the fixed interval [−α, β], we are not
able to formulate such two fuzzy rules, that the rule-based system would be
equivalent to the following polynomial

f (x) = Ax2 + A (α − β)x + C, x ∈ [−α, β] , (4.5)

where A, C ∈ R. This is because there is no m such that 0 �= |m| < 1 and(
α + β

m
+ α − β

)
A = (α − β) A for any real α, β and A. In other words,

the function (4.5) is not from the class of functions defined by (4.4). This
example shows by contradiction that the second part of Remark 4.1 is true.

The zero-order rule-based TS systems in which the membership functions of
input variables are polynomials of the degree d will be called Pd-TS systems.
A special attention will be paid to P2-TS systems further on.

4.2 The Normalized Membership Functions for P2-TS
Systems

From the preceding section we know that it is not possible to obtain any
second degree polynomial by using the TS systems, in which only two com-
plementary membership functions as second degree polynomials are defined.
However, we will prove further on that three membership functions as the
second degree polynomials suffice to model any second degree polynomial
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function. Such membership functions defining the fuzzy sets for input vari-
ables will be defined below.

In the interval [−α, β] we define three membership functions of fuzzy sets,
say N (z), Z (z) and P (z), which are the second degree polynomials and
satisfy the following additional conditions:

1. N : [−α, β] → [0, 1] is a monotonic function with negative slope, i.e.
dN (z) /dz < 0 for z ∈ [−α, β], which satisfies two boundary conditions:

a) N (−α) = 1,
b) N (β) = 0.

2. P : [−α, β] → [0, 1] is the monotonic function with positive slope, i.e.
dP (z) /dz > 0 for z ∈ [−α, β], symmetric to the function N with respect
to the interval centre σ ∈ [−α, β]:

σ =
−α + β

2
. (4.6)

3. Z : [−α, β] → [0, 1] is the function which reaches zero slope in σ, i.e.
dZ (σ) /dz = 0.

4. The functions N , Z and P satisfy the normalization condition

N (z) + Z (z) + P (z) = 1, ∀ z ∈ [−α, β] . (4.7)

One can prove that the functions N , Z and P meeting the above needs can
be expressed as follows

N (z) =
(α + β − λ (z + α)) (β − z)

(α + β)2
, (4.8)

Z (z) = 2λ
(β − z) (z + α)

(α + β)2
, (4.9)

P (z) =
(α + β + λ (z − β)) (z + α)

(α + β)2
, (4.10)

where the parameter λ satisfies the condition

0 < λ ≤ 1. (4.11)

We do not allow λ = 0, since in such case Z (z) = 0 for all z, and there would be
two nonzero membership functions only: N (z) and P (z). In other words, by
λ = 0, the class of rule-based systems reduces to the formerly considered P1-TS
systems. Figures 4.3 and 4.4 show plots of functions (4.8)-(4.10) for different
values of parameter λ. Observe that N and P are normal fuzzy sets but Z is
not normal. The cores of the fuzzy sets N , Z and P are three characteristic
points of the universe of discourse: “−α”, “σ” and “β”, respectively.
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Fig. 4.3 The basis of
normalized second degree
polynomial membership
functions by the maximal
value of parameter λ,
(λ = 1)
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Fig. 4.4 The basis of
normalized second degree
polynomial membership
functions by parameter
λ = 0.5
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The membership functions N , Z and P have a clear linguistic interpreta-
tion in any case of boundaries “−α” and “β” as real numbers:

1. If −α < β < 0, then N can be interpreted as negative big, Z - negative
medium and P - negative small,

2. If −α < β = 0, then N can be interpreted as negative, Z - negative small
and P - negative zero,

3. If −α < 0 < β, then N can be interpreted as negative, Z - zero and P -
positive,

4. If 0 = −α < β, then N can be interpreted as positive zero, Z - positive
small and P - positive,

5. If 0 < −α < β, then N can be interpreted as positive small, Z - positive
medium and P - positive big.

As discussed in Section 2.2, the linguistic terms can be substituted by others
depending on the context or specific application.

The rule-based TS systems with the above membership functions we will
call P2-TS systems for short.

4.3 SISO P2-TS System

Now we will consider P2-TS system with single input z ∈ [−α, β] and single
output S. The rule-base structure is as follows
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R1 : If z is N , then S = q0,

R2 : If z is Z, then S = q1,

R3 : If z is P , then S = q2.

⎫⎪⎬⎪⎭ (4.12)

The system output as a function of the input variable z is given by

S (z) = N (z) q0 + Z (z) q1 + P (z) q2 = [N (z) , Z (z) , P (z)]q, (4.13)

where q = [q0, q1, q2]
T , and N , Z and P are defined in (4.8)-(4.10). By s we

denote the vector containing values of system output in the cores of the fuzzy
sets N , Z and P , respectively

s = [S (−α) , S (σ) , S (β)]T .

It can be expressed equivalently by

s = Rq, (4.14)

where the matrix R contains the membership degrees in the cores of the fuzzy
sets

R =

⎡⎢⎣N (−α) Z (−α) P (−α)
N (σ) Z (σ) P (σ)
N (β) Z (β) P (β)

⎤⎥⎦ =

⎡⎢⎣ 1 0 0
(2 − λ) /4 λ/2 (2 − λ) /4

0 0 1

⎤⎥⎦ .

(4.15)
Observe that S (−α) = q0 and S (β) = q2. However, the consequent of the
fuzzy rule R2 in (4.12) is q1, but

S (σ) = q′1 =
2 − λ

4
q0 +

λ

2
q1 +

2 − λ

4
q2 �= q1,

and there is no such λ ∈ (0, 1] for which q′1 would be equal to q1. The maximal
influence of the rule consequent q1 for the crisp output q′1 one obtains for
maximal value of the parameter λ. Therefore we prefer to use λ = 1.

Corollary 4.3. The crisp output of the SISO P2-TS system is exactly the
same as the consequent of the rule, if the input is either “−α” or “β”. The
interpretation of the fuzzy rules R1 and R3 given by (4.12) for the P2-TS
system is straightforward and analogous to the P1-TS systems.

Similar considerations concerning P2-TS systems with many inputs will be
given further on (see Theorem 4.11 and Example 4.13).

Now we introduce a generator for the SISO P2-TS system

g (z) =

⎡⎣ 1
z

z2

⎤⎦ . (4.16)
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According to Remark 4.1, the function f (z) to which the rule-based system
(4.12) is equivalent, has the form

f (z) = gT (z)θ, (4.17)

where θ = [θ0, θ1, θ2]
T . The equality S (z) = f (z) must be satisfied for

z ∈ [−α, β], particularly for all three characteristic points from the set
{−α, σ, β} ⊂ [−α, β]. Thus,

s =

⎡⎢⎣ f (−α)
f (σ)
f (β)

⎤⎥⎦ =

⎡⎢⎣gT (−α)
gT (σ)
gT (β)

⎤⎥⎦
⎡⎢⎣ θ0

θ1

θ2

⎤⎥⎦ = Γ T θ

must be satisfied, where the matrix Γ is the concatenation of the values of
the generator (4.16) in the points “−α”, “σ”, and “β”, respectively, i.e.

Γ = [g (−α) ,g (σ) ,g (β)] .

Thus, we obtain the exact relationship between consequents q of the rules
(4.12) and parameters θ of the function (4.17) as follows

Rq = Γ T θ.

Thus,
q = R−1Γ T θ = ΩT θ, (4.18)

where the fundamental matrix for the SISO P2-TS system is defined by

Ω = Γ
(
RT
)−1

=

⎡⎢⎣ 1 1 1
−α σ β

α2
(
α2 + β2

)
/2 − (α + β)2 / (2λ) β2

⎤⎥⎦ , (4.19)

where 0 < λ ≤ 1. The inverse of Ω always exists and is given by

Ω−1 = RT Γ−1

=
1

(α + β)2

⎡⎢⎣β2 + αβ (1 − λ) − α (1 − λ) − β (1 + λ) λ

2λαβ 4λσ −2λ

α2 + αβ (1 − λ) α (1 + λ) + β (1 − λ) λ

⎤⎥⎦ .

(4.20)

All equations are valid for any parameter value λ from the interval (0, 1].
Assuming λ = 1 and adding the index “1” for matrices in the case of SISO
P2-TS system (n = 1), we obtain

• the matrix (4.15) of membership degrees in the points from the set
{−α, σ, β}
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R1 =

⎡⎢⎣ 1 0 0
1/4 1/2 1/4
0 0 1

⎤⎥⎦ . (4.21)

• the fundamental matrix of the SISO P2-TS system

Ω1 =

⎡⎢⎣ 1 1 1
−α1 σ1 β1

α2
1 −α1β1 β2

1

⎤⎥⎦ , (4.22)

• and the inverse of the fundamental matrix

Ω−1
1 =

1
(α1 + β1)

2

⎡⎢⎣ β2
1 −2β1 1

2β1α1 4σ1 −2
α2

1 2α1 1

⎤⎥⎦ . (4.23)

The above formulas will be useful further on.

4.4 P2-TS System with Two and More Inputs

In this section we will investigate P2-TS systems with the inputs z1, . . . , zn.
For such systems, in order to define three membership functions Nk, Zk and
Pk as the functions of variables zk, (k = 1, 2, . . . , n), we can choose individual
parameter values λ1, λ2, . . . , λn for the particular inputs. The membership
functions take the following general form

Nk (zk) =
(αk + βk − λk (zk + αk)) (βk − zk)

(αk + βk)2
, (4.24)

Zk (zk) = 2λk
(βk − zk) (zk + αk)

(αk + βk)2
, (4.25)

Pk (zk) =
(αk + βk + λk (zk − βk)) (zk + αk)

(αk + βk)2
, (4.26)

where λk ∈ (0, 1], (k = 1, . . . , n). If there are no contraindications, we prefer
to assume in practice the same value λk = 1 for all variables (see Section 4.3)
– this corresponds to membership functions shown in Fig. 4.3.

Let Mn be a crisp set of 3n characteristic points for the P2-TS system as
n-dimensional vectors

Mn = {−α1, σ1, β1} × {−α2, σ2, β2} × . . . × {−αn, σn, βn} ⊂ Dn. (4.27)
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Fig. 4.5 The ordered
set Mn for n = 3 with
two depicted elements.
The first one (v = 1)
corresponds to the vector
(−α1,−α2,−α3) and the
last one (v = 27) - to the
vector (β1, β2, β3).
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The set of characteristic points for P2-TS system includes all vertices of
the hypercuboid Dn. We order Mn as follows. For every n-dimensional vec-
tor (γ1, . . . , γn) as an element of the set Mn (see Fig. 4.5) we define the
corresponding index v according to the following bijection

v = 1 +
n∑

i=1

3i−1pi, (4.28)

where

pi =

⎧⎨⎩
0 ⇔ γi = −αi

1 ⇔ γi = σi

2 ⇔ γi = βi

, i = 1, . . . , n. (4.29)

Thus, every element of the set Mn unambiguously corresponds to some index.
For (γ′

1, . . . , γ
′
n) ∈ Mn and (γ′′

1 , . . . , γ′′
n) ∈ Mn we define an ordering relation

“≺” as follows

(γ′
1, . . . , γ

′
n) ≺ (γ′′

1 , . . . , γ′′
n) ⇔ vγ′

1,...,γ′
n

< vγ′′
1 ,...,γ′′

n
. (4.30)

• For n = 1 we have v−α = 1 < vσ = 2 < vβ = 3 and therefore −α ≺ σ ≺ β.
• For n = 2 the inequalities between indices are

v−α1,−α2 = 1 < vσ1,−α2 = 2 < vβ1,−α2 = 3 < v−α1,σ2 = 4 < vσ1,σ2 = 5 <
vβ1,σ2 = 6 < v−α1,β2 = 7 < vσ1,β2 = 8 < vβ1,β2 = 9.
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Thus, the members of M2 are ordered as follows
(−α1, −α2) ≺ (σ1, −α2) ≺ (β1, −α2) ≺ (−α1, σ2) ≺ (σ1, σ2) ≺ (β1, σ2) ≺
(−α1, β2) ≺ (σ1, β2) ≺ (β1, β2).

• For the ordered set M3 we have
(−α1, −α2, −α3) ≺ (σ1, −α2, −α3) ≺ (β1, −α2, −α3) ≺ (−α1, σ2, −α3) ≺
(σ1, σ2, −α3) ≺ (β1, σ2, −α3) ≺ (−α1, β2, −α3) ≺ (σ1, β2, −α3) ≺
(β1, β2, −α3) ≺ (−α1, −α2, σ3) ≺ (σ1, −α2, σ3) ≺ (β1, −α2, σ3) ≺
(−α1, σ2, σ3) ≺ (σ1, σ2, σ3) ≺ (β1, σ2, σ3) ≺ (−α1, β2, σ3) ≺
(σ1, β2, σ3) ≺ (β1, β2, σ3) ≺ (−α1, −α2, β3) ≺ (σ1, −α2, β3) ≺
(β1, −α2, β3) ≺ (−α1, σ2, β3) ≺ (σ1, σ2, β3) ≺ (β1, σ2, β3) ≺
(−α1, β2, β3) ≺ (σ1, β2, β3) ≺ (β1, β2, β3).

The process of ordering the set Mn is simple and unambiguous for any number
of system inputs.

Finally, for the MISO P2-TS system with the inputs z1, . . ., zk let us
introduce a generator

g0 = 1,

gk+1 (z1, . . . , zk+1) =

⎡⎣ gk (z1, . . . , zk)
zk+1gk (z1, . . . , zk)
z2

k+1gk (z1, . . . , zk)

⎤⎦ ∈ R
3k+1

, k = 0, 1, 2, . . . , n − 1,

(4.31)

which is of great importance for such systems.

4.4.1 Rule-Base Structure for
Two-Inputs-One-Output P2-TS System

For n = 2 the rule-base structure is as follows

R1 : If z1 is N1 and z2 is N2, then S = q00,

R2 : If z1 is Z1 and z2 is N2, then S = q10,

R3 : If z1 is P1 and z2 is N2, then S = q20,

R4 : If z1 is N1 and z2 is Z2, then S = q01,

R5 : If z1 is Z1 and z2 is Z2, then S = q11,

R6 : If z1 is P1 and z2 is Z2, then S = q21,

R7 : If z1 is N1 and z2 is P2, then S = q02,

R8 : If z1 is Z1 and z2 is P2, then S = q12,

R9 : If z1 is P1 and z2 is P2, then S = q22,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.32)

and, in accordance with (4.31), the generator is given by
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g2 (z1, z2) =

⎡⎣ g1 (z1)
z2g1 (z1)
z2
2g1 (z1)

⎤⎦ =
[
1, z1, z

2
1 , z2, z1z2, z

2
1z2, z

2
2 , z1z

2
2 , z2

1z
2
2
]T

. (4.33)

The crisp output of the system can be expressed as a scalar product of two
vectors

S (z1, z2) = [N1N2, Z1N2, P1N2, N1Z2, Z1Z2, P1Z2, N1P2, Z1P2, P1P2]q,
(4.34)

where Nk = Nk (zk), Zk = Zk (zk) and Pk = Pk (zk) for k = 1, 2 are the
membership functions defined by (4.24)-(4.26), and the vector q consists of
the conclusions of the rules (4.32)

q = [q00, q10, q20, q01, q11, q21, q02, q12, q22]
T

. (4.35)

On the other hand, according to Remark 4.1 we have

S (z) = gT
2 (z) θ, z ∈ D2,

where θ = [θ00, θ10, θ20, θ01, θ11, θ21, θ02, θ12, θ22]
T and g2 (z) is given by

(4.33).

4.4.2 Rule-Base Structure for
Three-Inputs-One-Output P2-TS System

For n = 3 the rule base consists of 27 rules. Its abbreviated structure is as
follows

R1 : If z1 is N1 and z2 is N2 and z3 is N3, then S = q000,

R2 : If z1 is Z1 and z2 is N2 and z3 is N3, then S = q100,

R3 : If z1 is P1 and z2 is N2 and z3 is N3, then S = q200,

R4 : If z1 is N1 and z2 is Z2 and z3 is N3, then S = q010,

R5 : If z1 is Z1 and z2 is Z2 and z3 is N3, then S = q110,

R6 : If z1 is P1 and z2 is Z2 and z3 is N3, then S = q210,

R7 : If z1 is N1 and z2 is P2 and z3 is N3, then S = q020,

R8 : If z1 is Z1 and z2 is P2 and z3 is N3, then S = q120,

R9 : If z1 is P1 and z2 is P2 and z3 is N3, then S = q220,

R10 : If z1 is N1 and z2 is N2 and z3 is Z3, then S = q001,

...

R27 : If z1 is P1 and z2 is P2 and z3 is P3, then S = q222,

and the generator
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g3 (z1, z2, z3) =

⎡⎣ g2 (z1, z2)
z3g2 (z1, z2)
z2
3g2 (z1, z2)

⎤⎦
= [1, z1, z

2
1 , z2, z1z2, z

2
1z2, z

2
2 , z1z

2
2 , z

2
1z

2
2 ,

z3, z1z3, z
2
1z3, z2z3, z1z2z3, z

2
1z2z3,

z2
2z3, z1z

2
2z3, z

2
1z2

2z3, z
2
3 , z1z

2
3 , z2

1z
2
3 , z2z

2
3 ,

z1z2z
2
3 , z2

1z2z
2
3 , z2

2z
2
3 , z1z

2
2z2

3 , z
2
1z2

2z
2
3 ]T . (4.36)

The output of a three-input P2-TS system can be expressed and computed
in the same way as for a two-input system - this is rather a simple task, but
the equations are large for the number of inputs n ≥ 3. For MISO P2-TS
systems with n ≥ 3 inputs we prefer to use the methods based on recurrence,
which will be presented in the next sections.

4.5 The Fundamental Matrix for MISO P2-TS System

Similarly to SISO P2-TS systems, for the MISO P2-TS systems, the same
equations as in (4.18) hold, namely

q = R−1Γ T θ = ΩT θ, (4.37)

where

• the vector q contains the consequents of the “If-then” rules,
• θ is the vector of parameters of the crisp function (4.1) to which the MISO

P2-TS system is equivalent,
• the meaning of matrices R and Γ is the same as in Section 4.3, after some

generalization for MISO systems,
• the matrix

Ω = Γ
(
R−1)T (4.38)

we will call the fundamental matrix for P2-TS system.

Both Ω and its inverse are important, since they enable one to establish an
exact relationship between the consequents q of the “If-then” rules and the
parameters θ of the crisp function (4.1), to which the rule-based system is
equivalent. Therefore our goal in this section is to give a procedure of how to
compute the fundamental matrix and its inverse in the general case.

First we prove the following

Lemma 4.4. For the MISO P2-TS system with the inputs [z1, . . . , zk]T ∈
Dk, we define the matrix

Γ k = [gk (−α1, . . . , −αk) , · · · , gk (β1, β2, . . . , βk)] , (4.39)
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for k = 1, 2, . . . , n, where the values of the generator gk defined in (4.31) are
computed for the subsequent elements of the totally ordered set Mk defined by
(4.27). The matrix Γ k can be computed recursively as follows

Γ 0 = 1,

Γ k+1 =

⎡⎢⎣ 1 1 1
−αk+1 σk+1 βk+1

α2
k+1 σ2

k+1 β2
k+1

⎤⎥⎦⊗ Γ k, (4.40)

for k = 0, 1, 2, . . . , n − 1.

Proof. From (4.39) by g1 (z1) = g (z) defined in (4.16) we obtain

Γ 1 = [g1 (−α1) ,g1 (σ1) ,g1 (β1)] =

⎡⎢⎣ 1 1 1
−α1 σ1 β1

α2
1 σ2

1 β2
1

⎤⎥⎦ .

On the other hand from (4.40) for k = 0 we have

Γ 1 =

⎡⎢⎣ 1 1 1
−α1 · 1 σ1 · 1 β1 · 1

(−α1)
2 · 1 σ2

1 · 1 β2
1 · 1

⎤⎥⎦ .

Thus, for k = 0 the recurrence (4.40) is true.
For k ≥ 1 let us rewrite the equation (4.39), taking into account (4.31)

Γ k+1 =
[
gk+1 (−α1, . . . , −αk, −αk+1) , · · · , gk+1 (β1, . . . , βk, βk+1)

]

=

⎡⎢⎣
⎡⎢⎣ gk (−α1, . . . , −αk)

−αk+1gk (−α1, . . . , −αk)

(−αk+1)
2 gk (−α1, . . . , −αk)

⎤⎥⎦ , · · · ,

⎡⎢⎣ gk (β1, . . . , βk)
βk+1gk (β1, . . . , βk)
β2

k+1gk (β1, . . . , βk)

⎤⎥⎦
⎤⎥⎦ .

(4.41)

For example

Γ 2 = [a1,a2, a3,b1,b2,b3, c1, c2, c3] ,

where the column vectors ai, bi and ci are

a1 =

⎡⎢⎣ g1 (−α1)
(−α2)g1 (−α1)

α2
2g1 (−α1)

⎤⎥⎦ , a2 =

⎡⎢⎣ g1 (σ1)
(−α2)g1 (σ1)

α2
2g1 (σ1)

⎤⎥⎦ , a3 =

⎡⎢⎣ g1 (β1)
(−α2)g1 (β1)

α2
2g1 (β1)

⎤⎥⎦ ,
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b1 =

⎡⎢⎣ g1 (−α1)
σ2g1 (−α1)
σ2

2g1 (−α1)

⎤⎥⎦ , b2 =

⎡⎢⎣ g1 (σ1)
σ2g1 (σ1)
σ2

2g1 (σ1)

⎤⎥⎦ , b3 =

⎡⎢⎣ g1 (β1)
σ2g1 (β1)
σ2

2g1 (β1)

⎤⎥⎦ ,

c1 =

⎡⎢⎣ g1 (−α1)
β2g1 (−α1)
β2

2g1 (−α1)

⎤⎥⎦ , c2 =

⎡⎢⎣ g1 (σ1)
β2g1 (σ1)
β2

2g1 (σ1)

⎤⎥⎦ , c3 =

⎡⎢⎣ g1 (β1)
β2g1 (β1)
β2

2g1 (β1)

⎤⎥⎦ ,

what results in

Γ 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−α1 σ1 β1 −α1 σ1 β1 −α1 σ1 β1

α2
1 σ2

1 β2
1 α2

1 σ2
1 β2

1 α2
1 σ2

1 β2
1

−α2 −α2 −α2 σ2 σ2 σ2 β2 β2 β2

α1α2 −σ1α2 −α2β1 −α1σ2 σ1σ2 β1σ2 −α1β2 σ1β2 β1β2

−α2
1α2 −σ2

1α2 −α2β
2
1 α2

1σ2 σ2
1σ2 β2

1σ2 α2
1β2 σ2

1β2 β2
1β2

α2
2 α2

2 α2
2 σ2

2 σ2
2 σ2

2 β2
2 β2

2 β2
2

−α1α
2
2 σ1α

2
2 α2

2β1 −α1σ
2
2 σ1σ

2
2 β1σ

2
2 −α1β

2
2 σ1β

2
2 β1β

2
2

α2
1α

2
2 σ2

1α
2
2 α2

2β
2
1 α2

1σ
2
2 σ2

1σ
2
2 β2

1σ2
2 α2

1β
2
2 σ2

1β2
2 β2

1β2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

or equivalently

Γ 2 =

⎡⎢⎣ 1 1 1
−α2 σ2 β2

(−α2)
2

σ2
2 β2

2

⎤⎥⎦⊗ Γ 1.

One can observe that in the general case, because of the generator structure
(4.31) and the sequence of the characteristic points from the set Mk, the
structure of the matrix Γ k+1 is as follows

(a) The first 3k columns of Γ k+1 constitute the submatrix

⎡⎢⎣ Γ k

−αk+1Γ k

(−αk+1)
2
Γ k

⎤⎥⎦.

(b) The next 3k columns of Γ k+1 constitute the submatrix

⎡⎢⎣ Γ k

σk+1Γ k

σ2
k+1Γ k

⎤⎥⎦.

(c) The last 3k columns of Γ k+1 constitute the submatrix

⎡⎢⎣ Γ k

βk+1Γ k

β2
k+1Γ k

⎤⎥⎦.

This finishes the proof of Lemma 4.4. 
�
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Lemma 4.5. For the MISO P2-TS system with the inputs z1, . . . , zk, let us
denote by sk the vector of its outputs in the consecutive points of the ordered
set Mk defined by (4.27), and the vector qk containing the consequents of the
rules

sk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S (−α1, −α2, −α3, . . . , −αk)
S (σ1, −α2, −α3, . . . , −αk)
S (β1, −α2, −α3, . . . , −αk)
S (−α1, σ2, −α3, . . . , −αk)
S (σ1, σ2, −α3, . . . , −αk)
S (β1, σ2, −α3, . . . , −αk)

S (−α1, β2, −α3, . . . , −αk)
S (σ1, β2, −α3, . . . , −αk)
S (β1, β2, −α3, . . . , −αk)

...
S (β1, β2, β3, . . . , βk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, qk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q000...0
q100...0
q200...0
q010...0
q110...0
q210...0
q020...0
q120...0
q220...0

...
q222...2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.42)

There exists a matrix Rk ∈ R
3k×3k

such that

sk = Rkqk, (4.43)

and Rk can be recursively computed as follows

R0 = 1,

Rk+1 =

⎡⎢⎣ 1 0 0
(2 − λk+1) /4 λk+1/2 (2 − λk+1) /4

0 0 1

⎤⎥⎦⊗ Rk, (4.44)

for k = 0, 1, 2, . . . , n − 1, where λk ∈ (0, 1] is the parameter of membership
functions (4.24)-(4.26).

Proof. Let us consider the system with one input z1 ∈ [−α1, β1]. From the
results in Section 4.3 we have⎡⎣S (−α1)

S (σ1)
S (β1)

⎤⎦ = R1q1 =

⎡⎣N1 (−α1) Z1 (−α1) P1 (−α1)
N1 (σ1) Z1 (σ1) P1 (σ1)
N1 (β1) Z1 (β1) P1 (β1)

⎤⎦⎡⎣ q0
q1
q2

⎤⎦ .

Thus,

R1 =

⎡⎣ 1 0 0
(2 − λ1) /4 λ1/2 (2 − λ1) /4

0 0 1

⎤⎦⊗ 1,

i.e. the result is the same as in (4.44).
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For the system with two inputs the equality s2 = R2q2 holds, where

s2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S (−α1, −α2)
S (σ1, −α2)
S (β1, −α2)
S (−α1, σ2)
S (σ1, σ2)
S (β1, σ2)

S (−α1, β2)
S (σ1, β2)
S (β1, β2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, R2 =

⎡⎣R2,11 R2,12 R2,13
R2,21 R2,22 R2,23
R2,31 R2,32 R2,33

⎤⎦ , q2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q00
q10
q20
q01
q11
q21
q02
q12
q22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

R2,11 =

⎡⎣N1 (−α1)N2 (−α2) Z1 (−α1)N2 (−α2) P1 (−α1)N2 (−α2)
N1 (σ1)N2 (−α2) Z1 (σ1)N2 (−α2) P1 (σ1)N2 (−α2)
N1 (β1)N2 (−α2) Z1 (β1)N2 (−α2) P1 (β1)N2 (−α2)

⎤⎦
= R1 · N2 (−α2) ,

R2,12 =

⎡⎣N1 (−α1)Z2 (−α2) Z1 (−α1)Z2 (−α2) P1 (−α1)Z2 (−α2)
N1 (σ1)Z2 (−α2) Z1 (σ1)Z2 (−α2) P1 (σ1)Z2 (−α2)
N1 (β1)Z2 (−α2) Z1 (β1)Z2 (−α2) P1 (β1)Z2 (−α2)

⎤⎦
= R1 · Z2 (−α2) ,

R2,13 =

⎡⎣N1 (−α1)P2 (−α2) Z1 (−α1)P2 (−α2) P1 (−α1)P2 (−α2)
N1 (σ1)P2 (−α2) Z1 (σ1)P2 (−α2) P1 (σ1) P2 (−α2)
N1 (β1)P2 (−α2) Z1 (β1)P2 (−α2) P1 (β1)P2 (−α2)

⎤⎦
= R1 · P2 (−α2) ,

R2,21 =

⎡⎣N1 (−α1)N2 (σ2) Z1 (−α1)N2 (σ2) P1 (−α1)N2 (σ2)
N1 (σ1) N2 (σ2) Z1 (σ1)N2 (σ2) P1 (σ1)N2 (σ2)
N1 (β1)N2 (σ2) Z1 (β1)N2 (σ2) P1 (β1)N2 (σ2)

⎤⎦
= R1 · N2 (σ2) ,

R2,22 =

⎡⎣N1 (−α1)Z2 (σ2) Z1 (−α1)Z2 (σ2) P1 (−α1)Z2 (σ2)
N1 (σ1)Z2 (σ2) Z1 (σ1)Z2 (σ2) P1 (σ1)Z2 (σ2)
N1 (β1)Z2 (σ2) Z1 (β1)Z2 (σ2) P1 (β1)Z2 (σ2)

⎤⎦
= R1 · Z2 (σ2) ,
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R2,23 =

⎡⎣N1 (−α1)P2 (σ2) Z1 (−α1)P2 (σ2) P1 (−α1) P2 (σ2)
N1 (σ1)P2 (σ2) Z1 (σ1)P2 (σ2) P1 (σ1)P2 (σ2)
N1 (β1)P2 (σ2) Z1 (β1) P2 (σ2) P1 (β1)P2 (σ2)

⎤⎦
= R1 · P2 (σ2) ,

R2,31 =

⎡⎣N1 (−α1)N2 (β2) Z1 (−α1) N2 (β2) P1 (−α1)N2 (β2)
N1 (σ1)N2 (β2) Z1 (σ1)N2 (β2) P1 (σ1)N2 (β2)
N1 (β1)N2 (β2) Z1 (β1)N2 (β2) P1 (β1)N2 (β2)

⎤⎦
= R1 · N2 (β2) ,

R2,32 =

⎡⎣N1 (−α1) Z2 (β2) Z1 (−α1) Z2 (β2) P1 (−α1)Z2 (β2)
N1 (σ1)Z2 (β2) Z1 (σ1)Z2 (β2) P1 (σ1)Z2 (β2)
N1 (β1)Z2 (β2) Z1 (β1)Z2 (β2) P1 (β1)Z2 (β2)

⎤⎦
= R1 · Z2 (β2) ,

and

R2,33 =

⎡⎣N1 (−α1) P2 (β2) Z1 (−α1)P2 (β2) P1 (−α1)P2 (β2)
N1 (σ1)P2 (β2) Z1 (σ1)P2 (β2) P1 (σ1)P2 (β2)
N1 (β1)P2 (β2) Z1 (β1)P2 (β2) P1 (β1)P2 (β2)

⎤⎦
= R1 · P2 (β2) .

In a more compact form we can write

R2 =

⎡⎣N2 (−α2) Z2 (−α2) P2 (−α2)
N2 (σ2) Z2 (σ2) P2 (σ2)
N2 (β2) Z2 (β2) P2 (β2)

⎤⎦⊗ R1.

The same procedure must be applied for the construction of the matrix Rk

in (4.43), remembering the order of the set Mk. Finally, we conclude that the
following recurrence

Rk+1 =

⎡⎢⎣Nk+1 (−αk+1) Zk+1 (−αk+1) Pk+1 (−αk+1)
Nk+1 (σk+1) Zk+1 (σk+1) Pk+1 (σk+1)
Nk+1 (βk+1) Zk+1 (βk+1) Pk+1 (βk+1)

⎤⎥⎦⊗ Rk

holds for every natural k. After computing the membership degrees according
to (4.24)-(4.26) we obtain the recursive formula (4.44). This ends the proof
of Lemma 4.5. 
�
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Observe that for λ1 = λ2 = . . . = λn = 1 we have

Rk+1 =

⎡⎣ 1 0 0
1/4 1/2 1/4
0 0 1

⎤⎦⊗ Rk, k = 0, 1, 2, . . . , n − 1.

For example

R2 =

⎡⎣ 1 0 0
1/4 1/2 1/4
0 0 1

⎤⎦⊗ R1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
1/4 1/2 1/4 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

1/4 0 0 1/2 0 0 1/4 0 0
1/16 1/8 1/16 1/8 1/4 1/8 1/16 1/8 1/16

0 0 1/4 0 0 1/2 0 0 1/4
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1/4 1/2 1/4
0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix R3 contains 33 × 33 = 729 elements and because of its large size
it will not be presented here.

Now we prove the following

Theorem 4.6. The fundamental matrix of the MISO P2-TS system with the
inputs [z1, . . . , zk]T ∈ Dk and the membership functions of fuzzy sets for the
inputs defined by (4.24)-(4.26), can be computed recursively as follows

Ω0 = 1,

Ωk =

⎡⎢⎢⎢⎣
1 1 1

−αk σk βk

α2
k

1
2

(
α2

k + β2
k − (αk + βk)2

λk

)
β2

k

⎤⎥⎥⎥⎦⊗ Ωk−1, (4.45)

for k = 1, . . . , n, where λk ∈ (0, 1] is the parameter of membership functions.

Proof. From (4.38) for MISO P2-TS system with the inputs [z1, . . . , zk]T ∈
Dk we have

Ωk = Γ k

(
R−1

k

)T
. (4.46)
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Next we apply Lemma 4.4 and Lemma 4.5

Ωk = (Ak ⊗ Γ k−1)
(
(Bk ⊗ Rk−1)

−1
)T

,

where according to (4.40) and (4.44) the matrices Ak and Bk are

Ak =

⎡⎣ 1 1 1
−αk σk βk

α2
k σ2

k β2
k

⎤⎦ , Bk =

⎡⎣ 1 0 0
(2 − λk) /4 λk/2 (2 − λk) /4

0 0 1

⎤⎦ .

From (A.4) and (A.5) given in Appendix A we obtain(
(Bk ⊗ Rk−1)

−1
)T

=
(
B−1

k ⊗ R−1
k−1

)T
=
(
B−1

k

)T ⊗
(
R−1

k−1

)T
.

Thus,

Ωk = (Ak ⊗ Γ k−1)
(
B−1

k

)T ⊗
(
R−1

k−1

)T
=
(
Ak

(
B−1

k

)T)⊗
(
Γ k−1

(
R−1

k−1

)T)
.

One can check that

Ak

(
B−1

k

)T
=

⎡⎢⎢⎢⎣
1 1 1

−αk σk βk

α2
k

1
2

(
α2

k + β2
k − (αk + βk)2

λk

)
β2

k

⎤⎥⎥⎥⎦ .

Now we apply the Kronecker product property (A.3) from Appendix A:

Ωk =

⎡⎢⎢⎢⎣
1 1 1

−αk σk βk

α2
k

1
2

(
α2

k + β2
k − (αk + βk)2

λk

)
β2

k

⎤⎥⎥⎥⎦⊗
(
Γ k−1

(
R−1

k−1

)T)
.

(4.47)
According to (4.46) the equality Γ k−1

(
R−1

k−1

)T
= Ωk−1 holds. Thus, the

equation (4.47) is the same as (4.45) and this finishes the proof of
Theorem 4.6. 
�
For λ1 = λ2 = . . . = λn = 1 we obtain a much simpler recurrence

Ω0 = 1,

Ωk =

⎡⎢⎣ 1 1 1
−αk σk βk

α2
k −βkαk β2

k

⎤⎥⎦⊗ Ωk−1, k = 1, . . . , n, (4.48)

which we prefer to use in practice.
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Fig. 4.6 Contour lines of the function (4.49)

Example 4.7. Our goal is to obtain the fuzzy rules for P2-TS system which
exactly model the following nonlinear function

f (z1, z2) = 2z2
1z

2
2 + 2z2

1z2 − z1z
2
2 + z2

1 − 5z1z2 + 3z2
2 − 4z1 + 6z2 (4.49)

for (z1, z2) ∈ D2 = [−12.8040, 16.2860] × [−6.8844, 5.2029]. Three contour
lines of the above function as the set of points

⋃
c∈{−3.3, 5, 100}

{
(z1, z2) ∈ D2 : f (z1, z2) = c

}

are shown in Fig. 4.6. We assume that the first input z1 of the TS sys-
tem has assigned the fuzzy sets N1, Z1 and P1, whereas the second one -
the fuzzy sets N2, Z2 and P2. The membership functions are defined by
(4.24)-(4.26), with the parameters λ1 = λ2 = 1, and boundaries of the
intervals α1 = 12.8040, β1 = 16.2860, α2 = 6.8844, and β2 = 5.2029.
The cores of fuzzy sets Z1 and Z2 are σ1 = 1.7410 and σ2 = −0.8407,
respectively. Observe that the function (4.49) can be written equivalently
as

f (z1, z2) = θTg2 (z1, z2) = [0, −4, 1, 6, −5, 2, 3, −1, 2]g2 (z1, z2) ,
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where the generator g2 (z1, z2) is given by (4.33). Taking from (4.22) the
fundamental matrix Ω1 for one-input P2-TS system, we compute the funda-
mental matrix Ω2 for two-inputs P2-TS system, according to Theorem 4.6
(for λ1 = λ2 = 1). After computations we obtain

ΩT
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 α2
1 −α2 α1α2 −α2

1α2 α2
2 −α1α

2
2 α2

1α
2
2

1 σ1 −α1β1 −α2 −σ1α2 α1α2β1 α2
2 σ1α

2
2 −α1α

2
2β1

1 β1 β2
1 −α2 −α2β1 −α2β

2
1 α2

2 α2
2β1 α2

2β
2
1

1 −α1 α2
1 σ2 −α1σ2 α2

1σ2 −α2β2 α1α2β2 −α2
1α2β2

1 σ1 −α1β1 σ2 σ1σ2 −α1β1σ2 −α2β2 −σ1α2β2 α1α2β1β2

1 β1 β2
1 σ2 β1σ2 β2

1σ2 −α2β2 −α2β1β2 −α2β
2
1β2

1 −α1 α2
1 β2 −α1β2 α2

1β2 β2
2 −α1β

2
2 α2

1β
2
2

1 σ1 −α1β1 β2 σ1β2 −α1β1β2 β2
2 σ1β

2
2 −α1β1β

2
2

1 β1 β2
1 β2 β1β2 β2

1β2 β2
2 β1β

2
2 β2

1β2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.50)

and numerically

ΩT
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −12.80 163.94 −6.884 88.15 −1128.6 47.39 −606.85 7770.0
1 1.74 −208.53 −6.884 −11.99 1435.6 47.39 82.515 −9883.1
1 16.29 265.23 −6.884 −112.1 −1826.0 47.39 771.87 12571.
1 −12.80 163.94 −0.841 10.76 −137.83 −35.82 458.62 −5872.2
1 1.74 −208.53 −0.841 −1.464 175.31 −35.82 −62.361 7469.2
1 16.29 265.23 −0.841 −13.69 −222.98 −35.82 −583.35 −9500.4
1 −12.80 163.94 5.203 −66.62 852.98 27.07 −346.61 4437.9
1 1.74 −208.53 5.203 9.058 −1084.9 27.07 47.129 −5644.8
1 16.29 265.23 5.203 84.73 1380.0 27.07 440.86 7179.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For the P2-TS systems we have

S2 = gT
2 (z1, z2)

(
ΩT

2
)−1

q2 = f (z1, z2) = θT g2 (z1, z2) .

Thus, the vector of conclusions of the fuzzy rules is given by

q2 = ΩT
2 θ

= [13764.9420, − 17032.2043, 21579.2316, − 12429.8971, 15030.6206,

− 18707.3075, 11589.1320, − 13655.0266, 16567.7977]T .

Finally, the system of fuzzy rules for the 2-iputs-1-output P2-TS system is
as follows
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R1 : If z1 is N1 and z2 is N2, then S = 13764.9420,

R2 : If z1 is Z1 and z2 is N2, then S = −17032.2043,

R3 : If z1 is P1 and z2 is N2, then S = 21579.2316,

R4 : If z1 is N1 and z2 is Z2, then S = −12429.8971,

R5 : If z1 is Z1 and z2 is Z2, then S = 15030.6206,

R6 : If z1 is P1 and z2 is Z2, then S = −18707.3075,

R7 : If z1 is N1 and z2 is P2, then S = 11589.1320,

R8 : If z1 is Z1 and z2 is P2, then S = −13655.0266,

R9 : If z1 is P1 and z2 is P2, then S = 16567.7977.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.51)

One can check that the above rule-based system exactly models the function
(4.49), since the expression gT

2 (z)
(
ΩT

2
)−1

q2 results in the same polynomial
as in (4.49) for all points z from the rectangle D2.

Example 4.8. Let us consider the system of fuzzy rules (4.51) for 2-inputs-
one-output P2-TS system from Example 4.7. Assume the same data α1 =
12.8040, β1 = 16.2860, α2 = 6.8844, β2 = 5.2029, λ1 = λ2 = 1 and the
consequents of the rules (4.51): q00 = 13764.9420, q10 = −17032.2043, q20 =
21579.2316, q01 = −12429.8971, q11 = 15030.6206, q21 = −18707.3075, q02 =
11589.1320, q12 = −13655.0266 and q22 = 16567.7977. From (4.24)-(4.26)
and (4.34)-(4.35) we obtain the system output S = S2 (z1, z2 | q00, . . . , q22)
which can be expressed by

S = N2 (z2) (N1 (z1) q00 + Z1 (z1) q10 + P1 (z1) q20)
+ Z2 (z2) (N1 (z1) q01 + Z1 (z1) q11 + P1 (z1) q21)
+ P2 (z2) (N1 (z1) q02 + Z1 (z1) q12 + P1 (z1) q22) .

The above expression gives the same function as in (4.49) exact to numerical
errors.

4.6 Recursion in MISO P2-TS Systems

In order to obtain the crisp output of a MISO P2-TS system, we need to ob-
tain an inverse of the fundamental matrix. Our first goal is to give a procedure
for computing this inverse. We prove the following

Theorem 4.9. Let Ω0 = 1 and Ωn be the fundamental matrix of the P2-TS
system with n inputs, (n ≥ 1). The inverse of the fundamental matrix can be
computed as follows
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Ω−1
n =

1
L2

n

⎡⎢⎣βn (Ln − αnλn) −Ln + (αn − βn)λn λn

2αnβnλn 4σnλn −2λn

αn (Ln − βnλn) Ln + (αn − βn)λn λn

⎤⎥⎦⊗ Ω−1
n−1,

(4.52)
where Ln = αn + βn.

Proof. Taking into account Theorem 4.6, the Kronecker product property
(A.4) from Appendix A, the equalities σn = (−αn + βn) /2 and Ln = αn+βn,
we have

Ω−1
n =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

1 1 1
−αn σn βn

(−αn)2
1
2

(
α2

n + β2
n − (αn + βn)2

λn

)
β2

n

⎤⎥⎥⎥⎥⎦⊗ Ωn−1

⎞⎟⎟⎟⎟⎠
−1

.

Thus,

Ω−1
n =

1
L2

n

⎡⎢⎣βn (Ln − αnλn) −Ln + (αn − βn)λn λn

2αnβnλn 2λn (βn − αn) −2λn

αn (Ln − βnλn) Ln + (αn − βn)λn λn

⎤⎥⎦⊗ Ω−1
n−1.

The last matrix is the same as in (4.52), because 2λn (βn − αn) = 4σnλn.
This finishes the proof of Theorem 4.9. 
�

For λ1 = λ2 = . . . = λn = 1 we obtain a much simpler recurrence

Ω0 = 1,

Ω−1
n =

1
L2

n

⎡⎣ β2
n − 2βn 1

2αnβn 4σn −2
α2

n 2αn 1

⎤⎦⊗ Ω−1
n−1, n = 1, 2, . . . , (4.53)

which can be used in practice.

4.6.1 Rule-Base Decomposition

Without loss of generality we will consider a zero-order TS system with one
output. The inputs are components of the vector z = [z1, . . . , zn]T ∈ Dn, (n =
2, 3, . . .). We assume that three polynomial membership functions Nk (zk),
Zk (zk) and Pk (zk) defined by (4.24)-(4.26), are assigned for every input zk,
(k = 1, . . . , n).
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The complete and noncontradictory rule-base is defined by the following
3n “If-then” fuzzy rules:

R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn, then S = q0,0,...,0,0,

R2 : If z1 is Z1 and z2 is N2 and . . . and zn is Nn, then S = q1,0,...,0,0,

R3 : If z1 is P1 and z2 is N2 and . . . and zn is Nn, then S = q2,0,...,0,0,

R4 : If z1 is N1 and z2 is Z2 and . . . and zn is Nn, then S = q0,1,...,0,0,

...
R3n : If z1 is P1 and z2 is P2 and . . . and zn is Pn, then S = q2,2,...,2,2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.54)

One can decompose this system into the following three subsystems:

R1 : If P1 and zn is Nn, then S = q0,...,0,0,
...
R3n−1 : If P3n−1 and zn is Nn, then S = q2,...,2,0,

⎫⎪⎬⎪⎭
R3n−1+1 : If P1 and zn is Zn, then S = q0,...,0,1,
...
R2·3n−1 : If P3n−1 and zn is Zn, then S = q2,...,2,1,

⎫⎪⎬⎪⎭
R2·3n−1+1 : If P1 and zn is Pn, then S = q0,...,0,2,
...
R3n : If P3n−1 and zn is Pn, then S = q2,...,2,2,

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.55)

where P1, P2, . . . , P3n−1 are “If” parts in the system with (n − 1) inputs
[z1, . . . , zn−1]

T ∈ Dn−1, (n = 2, 3, . . .):

R′
1 : If z1 is N1 and . . . and zn−1 is Nn−1︸ ︷︷ ︸

P1

, then S = q0,0,...,0,

...
R′

3n−1 : If z1 is P1 and . . . and zn−1 is Pn−1︸ ︷︷ ︸
P3n−1

, then S = q2,2,...,2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.56)

The decomposition (4.55) of the original P2-TS system (4.54) will be used
for proving the most important recurrence for such systems.



86 4 Fuzzy Rule-Based Systems with Polynomial Membership Functions

4.6.2 Crisp Output Calculation for P2-TS System
Using Recursion

Now we prove the following

Theorem 4.10. (on recursion in systems with membership functions
as second degree polynomials) The recursive formula that enables one to
compute the crisp output for any P2-TS system with inputs z1 ∈ [−α1, β1],
. . . , zn ∈ [−αn, βn], for n = 2, 3, . . ., is as follows

Sn (z | q0,...,0,0, . . . , q2,...,2,2) = Nn (zn)Sn−1 (zn−1 | q0,...,0,0, . . . , q2,...,2,0)
+ Zn (zn)Sn−1 (zn−1 | q0,...,0,1, . . . , q2,...,2,1)
+ Pn (zn)Sn−1 (zn−1 | q0,...,0,2, . . . , q2,...,2,2) ,

(4.57)

where

• zn−1 = [z1, . . . , zn−1]
T ∈ Dn−1 and z =

[
zn−1
zn

]
∈ Dn are the input

vectors,
• Sn (z | q0,...,0,0, . . . , q2,...,2,2) is the crisp output of the system (4.54) with

input vector z ∈ Dn and the consequents of the rules constituting the vector
[q0,...,0,0, . . . , q2,...,2,2]

T ,
• Nn (zn), Zn (zn) and Pn (zn) are membership functions for the input zn ∈

[−αn, βn] defined by (4.24)-(4.26),
• Sn−1 (zn−1 | q0,...,0,0, . . . , q2,...,2,0) is the crisp output of the first subsystem

in (4.55) with input vector zn−1 ∈ Dn−1 and the consequents of the rules
constituting the vector [q0,...,0,0, . . . , q2,...,2,0]

T ,
• Sn−1 (zn−1 | q0,...,0,1, . . . , q2,...,2,1) is the crisp output of the second subsys-

tem in (4.55) with input vector zn−1 ∈ Dn−1 and the consequents of the
rules constituting the vector [q0,...,0,1, . . . , q2,...,2,1]

T ,
• Sn−1 (zn−1 | q0,...,0,2, . . . , q2,...,2,2) is the crisp output of the third subsystem

in (4.55) with input vector zn−1 ∈ Dn−1 and the consequents of the rules
constituting the vector [q0,...,0,2, . . . , q2,...,2,2]

T .

Proof. We will use notation of Theorem 4.10. The rules for SISO P2-TS
system are given by (4.12). According to (4.13) the system output is as follows

S1 (z1 | a, b, c) = N1 (z1) a + Z1 (z1) b + P1 (z1) c

= [N1 (z1) , Z1 (z1) , P1 (z1)] [a, b, c]T

First we prove theorem for n = 2. The rules for P2-TS system are given
by (4.32), where the consequents of the fuzzy rules constitute the vector
q = [q00, q10, q20, q01, q11, q21, q02, q12, q22]

T . According to (4.57) and (4.35)
the system output is as follows
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S2 (z1, z2 | q00, . . . , q22) = N2 (z2)S1 (z1 | q00, q10, q20)
+ Z2 (z2)S1 (z1 | q01, q11, q21)
+ P2 (z2)S1 (z1 | q02, q12, q22)

= N2 (z2) [N1 (z1) , Z1 (z1) , P1 (z1)] [q00, q10, q20]
T

+ Z2 (z2) [N1 (z1) , Z1 (z1) , P1 (z1)] [q01, q11, q21]
T

+ P2 (z2) [N1 (z1) , Z1 (z1) , P1 (z1)] [q02, q12, q22]
T .

The last formula gives the same result as the scalar product (4.34). This
implies that Theorem 4.10 is true for P2-TS systems with n = 2 inputs.

The output of the MISO P2-TS system defined by the rules (4.54), can be
expressed as follows

Sn = Sn (z | q0,...,0,0, . . . , q2,...,2,2) = qT
nΩ−1

n gn (z) , (4.58)

where qT
n = [q0,...,0,0, . . . , q2,...,2,2] is the vector of consequents of the rules

(4.54), Ωn is the fundamental matrix, and gn (z) is the generator of the
system with n-inputs z1, . . ., zn. Taking into account (4.58), the Kronecker
product properties (A.4) and (A.2c) from Appendix A, the equalities σn =
(−αn + βn) /2 and Ln = αn + βn, we obtain

Sn = qT
n

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

1 1 1
−αn σn βn

(−αn)2
1
2

(
α2

n + β2
n − (αn + βn)2

λn

)
β2

n

⎤⎥⎥⎥⎦⊗ Ωn−1

⎞⎟⎟⎟⎠
−1

gn (z)

= qT
n

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

1 1 1
−αn σn βn

(−αn)2
1
2

(
α2

n + β2
n − (αn + βn)2

λn

)
β2

n

⎤⎥⎥⎥⎦
−1

⊗ Ω−1
n−1

⎞⎟⎟⎟⎠gn (z)

=
qT

n

L2
n

⎛⎜⎝
⎡⎢⎣βn (Ln − αnλn) (αn − βn)λn − Ln λn

2αnβnλn 2λn (βn − αn) −2λn

αn (Ln − βnλn) (αn − βn)λn + Ln λn

⎤⎥⎦⊗ Ω−1
n−1

⎞⎟⎠gn (z).

According to the definition (4.31) of the generator for P2-TS system, we have

Sn =
qT

n

L2
n

⎡⎢⎣βn (Ln − αnλn)Ω−1
n−1 ((αn − βn)λn − Ln)Ω−1

n−1 λnΩ−1
n−1

2αnβnλnΩ−1
n−1 2λn (βn − αn)Ω−1

n−1 −2λnΩ−1
n−1

αn (Ln − βnλn)Ω−1
n−1 ((αn − βn)λn + Ln)Ω−1

n−1 λnΩ−1
n−1

⎤⎥⎦

×

⎡⎢⎣ gn−1 (z1, . . . , zn−1)
zngn−1 (z1, . . . , zn−1)
z2

ngn−1 (z1, . . . , zn−1)

⎤⎥⎦ .
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Let us denote
qT

n =
[
aT ,bT , cT

]
,

where a, b, and c correspond to the three consecutive parts of the conclusions
in the decomposed system (4.55), i.e.

a =

⎡⎢⎣ q0,...,0,0
...

q2,...,2,0

⎤⎥⎦ , b =

⎡⎢⎣ q0,...,0,1
...

q2,...,2,1

⎤⎥⎦ , c =

⎡⎢⎣ q0,...,0,2
...

q2,...,2,2

⎤⎥⎦ .

According to (4.58) for the MISO P2-TS system with the inputs zn−1 ∈
Dn−1, the crisp outputs Sn−1 can be expressed as follows

Sn−1 (zn−1 | q0,...,0,0, . . . , q2,...,2,0) = [q0,...,0,0, . . . , q2,...,2,0]Ω−1
n−1gn−1 (zn−1)

= aT Ω−1
n−1gn−1 (zn−1) , (4.59)

Sn−1 (zn−1 | q0,...,0,1, . . . , q2,...,2,1) = [q0,...,0,1, . . . , q2,...,2,1]Ω−1
n−1gn−1 (zn−1)

= bT Ω−1
n−1gn−1 (zn−1) , (4.60)

Sn−1 (zn−1 | q0,...,0,2, . . . , q2,...,2,2) = [q0,...,0,2, . . . , q2,...,2,2]Ω−1
n−1gn−1 (zn−1)

= cT Ω−1
n−1gn−1 (zn−1) . (4.61)

Thus,

Sn (z | qn) =
βn (Ln − αnλn) + (−Ln + (αn − βn)λn) zn + λnz2

n

L2
n

× aT Ω−1
n−1gn−1 (zn−1)

+
2αnβnλn + 2λn (βn − αn) zn − 2λnz2

n

L2
n

bTΩ−1
n−1gn−1 (zn−1)

+
αn (Ln − βnλn) + (Ln + (αn − βn)λn) zn + λnz2

n

L2
n

× cT Ω−1
n−1gn−1 (zn−1) .

Taking into consideration (4.24)-(4.26) we obtain

Sn (z | qn) = Nn (zn)aT Ω−1
n−1gn−1 (zn−1)

+ Zn (zn)bTΩ−1
n−1gn−1 (zn−1)

+ Pn (zn) cT Ω−1
n−1gn−1 (zn−1) .

Finally, according to equations (4.59)-(4.61) we obtain (4.57) and this ends
the proof of Theorem 4.10. 
�
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The above theorem is important, because it says that we do not need to
inverse large matrices to obtain the crisp output of the P2-TS systems. As
a result of this theorem the curse of dimensionality in P2-TS systems is
going to disappear. A generalization of Theorem 4.10 for MIMO systems is
straightforward and will be omitted.

Now we generalize Corollary 4.3 for MISO P2-TS systems.

Theorem 4.11. The crisp output of the MISO P2-TS system in the vertex
of the hypercuboid Dn is exactly the same as the appropriate conclusion of
the fuzzy rule contained in the rule-base.

Proof. The crisp output of the MISO P2-TS system with the input vector
z = [z1, . . . , zn]T , for which consequents of the rules constitute the vector
q = [q0,...,0, . . . , qp1,...,pn , . . . , q2,...,2]

T , can be expressed as follows

S (z | q) =
∑

(p1,...,pn)∈{0,1,2}n

qp1,...,pn

n∏
k=1

Apk
(zk) , (4.62)

where qp1,...,pn is a consequent of the fuzzy rule and Apk
(zk) is the mem-

bership degree to which input zk belongs to Apk
. The name of the mem-

bership function Apk
in (4.62) depends on the index pk ∈ {0, 1, 2} as

follows

Apk
=

⎧⎨⎩
Nk for pk = 0
Zk for pk = 1
Pk for pk = 2

, k = 1, . . . , n. (4.63)

If the input vector is a fixed vertex γv of the hypercuboid Dn, i.e.

z = γv = [γ1, . . . , γn]T ∈ {−α1, β1} × . . . × {−αn, βn} ,

then the equation (4.62) reduces to

S (γ1, . . . , γn | q) =
∑

(p1,...,pn)∈{0,2}n

qp1,...,pn

n∏
k=1

Apk
(γk) , (4.64)

since
n∏

k=1

Apk
(γk) = 0 by γk ∈ {−αk, βk} if among indices at least one index

pk = 1, (k = 1, . . . , n). This follows from (4.63) and (4.25). In the summation
(4.64) if γk = −αk, then pk = 0, and if γk = βk, then pk = 2, (k = 1, . . . , n),

but in both cases
n∏

k=1

Apk
(γk) = 1 according to (4.24) and (4.26). Finally,

taking into account the bijection (4.28) we obtain the complete proof of
Theorem 4.11. 
�
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It should be noticed that we are able to choose the consequents of the rules
so that, the crisp output of a given P2-TS system will be exactly the same
as the appropriate conclusions of its fuzzy rules, not only in 2n vertices of
the hypercuboid Dn, but also in all 3n characteristic points of the set Mn

defined in (4.27). However, the class of crisp functions to which such P2-TS
system is equivalent becomes much simpler than expected for systems with
membership functions as the second degree polynomials.

Example 4.12. Let us consider the P2-TS system with 2 inputs z1 ∈
[−α1, β1] and z2 ∈ [−α2, β2] with quadratic membership functions of fuzzy
sets as in (4.24)-(4.26) by λk ∈ (0, 1], (k = 1, 2). If this system is defined by
the following fuzzy rules:

R1 : If z1 is N1 and z2 is N2, then S = q00,
R2 : If z1 is Z1 and z2 is N2, then S = q10 = (q00 + q20) /2,
R3 : If z1 is P1 and z2 is N2, then S = q20,
R4 : If z1 is N1 and z2 is Z2, then S = q01 = (q00 + q02) /2,
R5 : If z1 is Z1 and z2 is Z2, then S = q11 = (q00 + q02 + q20 + q22) /4,
R6 : If z1 is P1 and z2 is Z2, then S = q21 = (q20 + q22) /2,
R7 : If z1 is N1 and z2 is P2, then S = q02,
R8 : If z1 is Z1 and z2 is P2, then S = q12 = (q02 + q22) /2,
R9 : If z1 is P1 and z2 is P2, then S = q22,

then

(i) The crisp output of this system as a function of the inputs S (z1, z2)
takes the same values in all points of the set M2 = {−α1, σ1, β1} ×
{−α2, σ2, β2}, as appear in the appropriate conclusions of the fuzzy
rules, i.e.

S (−α1, −α2) = q00, S (σ1, −α2) = q10, S (β1, −α2) = q20,

S (−α1, σ2) = q01, S (σ1, σ2) = q11, S (β1, σ2) = q21,

S (−α1, β2) = q02, S (σ1, β2) = q12, S (β1, β2) = q22,

where σk = (−αk + βk) /2, k = 1, 2.
(ii) The crisp output of this system is equivalent to a simple bilinear function

S (z1, z2) = θ0 + θ1z1 + θ2z2 + θ12z1z2,

where

θ0 = (α1 + β1)
−1 (α2 + β2)

−1 (q00β1β2 + q02α2β1 + q20α1β2 + q22α1α2) ,

θ1 = (α1 + β1)
−1 (α2 + β2)

−1 (q20β2 − q02α2 − q00β2 + q22α2) ,

θ2 = (α1 + β1)
−1 (α2 + β2)

−1 (q02β1 − q20α1 − q00β1 + q22α1) ,
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θ12 = (α1 + β1)
−1 (α2 + β2)

−1 (q00 − q02 − q20 + q22) .

Taking into account e.g. the equation (4.34) the proof of the above facts
is simple and will be omitted.

Example 4.13. Let us consider a P2-TS system with four inputs which con-
stitute the vector z = [z1, z2, z3, z4]

T ∈ D4, where D4 is the hypercube
[−1, 1]4. The output of the system is S. For every input zk we assume three
membership functions of fuzzy sets: Nk, Zk and Pk, defined by (4.24)-(4.26)
with the parameter λk = 1 for k = 1, 2, 3, 4. The system is defined by the
following metarules and ordinary rules:

M1 : If z2 is N2 and z3 is N3 and z4 is N4, then S = 1,
M2 : If z2 is Z2 and z3 is N3 and z4 is N4, then S = 2,
M3 : If z2 is P2 and z3 is N3 and z4 is N4, then S = 3,
M4 : If z1 is N1 and z2 is N2 and z3 is Z3 and z4 is N4, then S = 4,
M5 : If z1 is Z1 and z2 is N2 and z3 is Z3 and z4 is N4, then S = 5,
M6 : If z1 is P1 and z2 is N2 and z3 is Z3 and z4 is N4, then S = 6,
M7 : If z2 is Z2 and z3 is Z3 and z4 is N4, then S = 7,
M8 : If z2 is P2 and z3 is Z3 and z4 is N4, then S = 8,
M9 : If z3 is P3 and z4 is N4, then S = 9,
M10 : If z2 is N2 and z3 is N3 and z4 is Z4, then S = −1,
M11 : If z2 is Z2 and z3 is N3 and z4 is Z4, then S = −2,
M12 : If z2 is P2 and z3 is N3 and z4 is Z4, then S = −3,
M13 : If z1 is N1 and z2 is N2 and z3 is Z3 and z4 is Z4, then S = −4,
M14 : If z1 is Z1 and z2 is N2 and z3 is Z3 and z4 is Z4, then S = −5,
M15 : If z1 is P1 and z2 is N2 and z3 is Z3 and z4 is Z4, then S = −6,
M16 : If z2 is Z2 and z3 is Z3 and z4 is Z4, then S = −7,
M17 : If z2 is P2 and z3 is Z3 and z4 is Z4, then S = −8,
M18 : If z3 is P3 and z4 is Z4, then S = −9,
M19 : If z3 is N3 and z4 is P4, then S = 1,
M20 : If z3 is (Z3 or P3) and z4 is P4, then S = 0,

We assume that the fragment “ z3 is (Z3 or P3)” in the “If” part of the
metarule M20 is equivalent to “z3 is not N3” and generates two metarules.

The above 20 metarules are equivalent to 81 complete and noncontra-
dictory fuzzy rules with consequents given symbolically in Table 4.1 and
numerically in Table 4.2.

Formally the system output S = S4 (z1, z2, z3, z4 | q0000, . . . , q2222). Ac-
cording to Theorem 4.10 a general form of the crisp system output is given
by (4.57) for n = 4, i.e.
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Table 4.1 Look-up-table for the P2-TS system with n = 4 input variables in the
general case

z1z2 \ z3z4 →
↓ N 3N 4 Z 3N 4 P3N 4 N 3Z 4 Z 3Z 4 P3Z 4 N 3P4 Z 3P4 P3P4

N 1N 2 q0000 q0010 q0020 q0001 q0011 q0021 q0002 q0012 q0022

Z 1N 2 q1000 q1010 q1020 q1001 q1011 q1021 q1002 q1012 q1022

P1N 2 q2000 q2010 q2020 q2001 q2011 q2021 q2002 q2012 q2022

N 1Z 2 q0100 q0110 q0120 q0101 q0111 q0121 q0102 q0112 q0122

Z 1Z 2 q1100 q1110 q1120 q1101 q1111 q1121 q1102 q1112 q1122

P1Z 2 q2100 q2110 q2120 q2101 q2111 q2121 q2102 q2112 q2122

N 1P2 q0200 q0210 q0220 q0201 q0211 q0221 q0202 q0212 q0222

Z 1P2 q1200 q1210 q1220 q1201 q1211 q1221 q1202 q1212 q1222

P1P2 q2200 q2210 q2220 q2201 q2211 q2221 q2202 q2212 q2222

Table 4.2 Look-up-table for the P2-TS system from Example 4.13

z1z2 \ z3z4 →
↓ N 3N 4 Z 3N 4 P3N 4 N 3Z 4 Z 3Z 4 P3Z 4 N 3P4 Z 3P4 P3P4

N 1N 2 1 4 9 −1 −4 −9 1 0 0

Z 1N 2 1 5 9 −1 −5 −9 1 0 0

P1N 2 1 6 9 −1 −6 −9 1 0 0

N 1Z 2 2 7 9 −2 −7 −9 1 0 0

Z 1Z 2 2 7 9 −2 −7 −9 1 0 0

P1Z 2 2 7 9 −2 −7 −9 1 0 0

N 1P2 3 8 9 −3 −8 −9 1 0 0

Z 1P2 3 8 9 −3 −8 −9 1 0 0

P1P2 3 8 9 −3 −8 −9 1 0 0

S = N4 (z4)S3 (z1, z2, z3 | q0000, q1000, q2000, . . . , q0220, q1220, q2220)
+ Z4 (z4) S3 (z1, z2, z3 | q0001, q1001, q2001, . . . , q0221, q1221, q2221)
+ P4 (z4)S3 (z1, z2, z3 | q0002, q1002, q2002, . . . , q0222, q1222, q2222) , (4.65)

where for S3 = S3 (z1, z2, z3 | q000, . . . , q222) we have
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S3 = N3 (z3)S2 (z1, z2 | q000, q100, q200, q010, q110, q210, q020, q120, q220)
+ Z3 (z3)S2 (z1, z2 | q001, q101, q201, q011, q111, q211, q021, q121, q221)
+ P3 (z3)S2 (z1, z2 | q002, q102, q202, q012, q112, q212, q022, q122, q222) ,

(4.66)

S2 (z1, z2 | q00, q10, q20, q01, q11, q21, q02, q12, q22)=N2 (z2)S1 (z1 | q00, q10, q20)
+Z2 (z2)S1 (z1 | q01, q11, q21)
+P2 (z2)S1 (z1 | q02, q12, q22) ,

(4.67)

S1 (z1 | q0, q1, q2) = N1 (z1) q0 + Z1 (z1) q1 + P1 (z1) q2. (4.68)

Assume that the membership functions of the fuzzy sets are

Nk (zk) =
(1 − zk)2

4
, Zk (zk) =

1 − z2
k

2
, Pk (zk) =

(1 + zk)2

4
,

for αk = βk = 1 and λk = 1, (k = 1, 2, 3, 4). After computations we obtain

S =
1
32

z1z
2
3 − 1

4
z2 − z3 − 47

16
z4 − 1

32
z1z

2
2 − 1

32
z1 +

3
32

z1z
2
4 +

1
8
z2z

2
3

+
3
4
z2z

2
4 +

1
16

z2
2z4 +

5
2
z3z

2
4 +

7
16

z2
3z4 +

1
32

z2
2 +

7
32

z2
3

+
149
32

z2
4 − 1

32
z2
2z2

3 − 3
32

z2
2z

2
4 − 13

32
z2
3z2

4 +
1
16

z1z2 − 1
16

z1z4

+
1
8
z2z3 − 1

2
z2z4 − 2z3z4 +

3
32

z2
2z

2
3z2

4 − 1
16

z1z2z
2
3 − 3

16
z1z2z

2
4

− 1
16

z1z
2
2z4 +

1
16

z1z
2
3z4 − 3

8
z2z3z

2
4 +

1
4
z2z

2
3z4 +

1
32

z1z
2
2z2

3

+
3
32

z1z
2
2z

2
4 − 3

32
z1z

2
3z

2
4 − 3

8
z2z

2
3z

2
4 − 1

16
z2
2z2

3z4 +
1
8
z1z2z4 +

1
4
z2z3z4

+
3
16

z1z2z
2
3z2

4 +
1
16

z1z
2
2z

2
3z4 − 3

32
z1z

2
2z

2
3z2

4 − 1
8
z1z2z

2
3z4 − 47

32
.

If we consider the output S as a function of four independent variables, i.e.
S = S (z1, z2, z3, z4), we have

S (−1, −1, −1, −1) = 1, S (1, −1, −1, −1) = 1, S (−1, 1, −1, −1) = 3,

S (1, 1, −1, −1) = 3, S (−1, −1, 1, −1) = 9, S (1, −1, 1, −1) = 9,

S (−1, 1, 1, −1) = 9, S (1, 1, 1, −1) = 9, S (−1, −1, −1, 1) = 1,

S (1, −1, −1, 1) = 1, S (−1, 1, −1, 1) = 1, S (1, 1, −1, 1) = 1,

S (−1, −1, 1, 1) = 0, S (1, −1, 1, 1) = 0, S (−1, 1, 1, 1) = 0, S (1, 1, 1, 1) = 0.

This means that in all 2n points from the set ×n
k=1 {−αk, βk}, (n = 4),

the values of the output of the P2-TS system are exactly the same as the



94 4 Fuzzy Rule-Based Systems with Polynomial Membership Functions

Table 4.3 The metarules M1, M2, M3 and all fuzzy rules (M1&M2&M3&R1) for
the first system in Example 4.14 in the form of look-up-tables

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 0 0 0

Z 1N 2 ∗ ∗ ∗
P1N 2 0 0 0

N 1Z 2 0 0 0

Z 1Z 2 ∗ ∗ ∗
P1Z 2 0 0 0

N 1P2 0 0 0

Z 1P2 ∗ ∗ ∗
P1P2 0 0 0

M1

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 0 0 0

Z 1N 2 0 0 0

P1N 2 0 0 0

N 1Z 2 ∗ ∗ ∗
Z 1Z 2 ∗ ∗ ∗
P1Z 2 ∗ ∗ ∗
N 1P2 0 0 0

Z 1P2 0 0 0

P1P2 0 0 0

M2

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 0 ∗ 0

Z 1N 2 0 ∗ 0

P1N 2 0 ∗ 0

N 1Z 2 0 ∗ 0

Z 1Z 2 0 ∗ 0

P1Z 2 0 ∗ 0

N 1P2 0 ∗ 0

Z 1P2 0 ∗ 0

P1P2 0 ∗ 0

M3

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 0 0 0

Z 1N 2 0 0 0

P1N 2 0 0 0

N 1Z 2 0 0 0

Z 1Z 2 0 a 0

P1Z 2 0 0 0

N 1P2 0 0 0

Z 1P2 0 0 0

P1P2 0 0 0

all rules

appropriate conclusions of the fuzzy rules (see Table 4.2). However, the value
S (z1, z2, z3, z4) in the other points (z1, z2, z3, z4) from the set Mn defined
by (4.27) for n = 4, does not satisfy this condition, e.g. S (−1, −1, 0, −1) =
4.5 �= 4. The result confirms the correctness of Theorem 4.11.

Example 4.14. Let us consider two simple P2-TS systems with 3 inputs
zk ∈ [−αk, βk] and quadratic membership functions (4.24)-(4.26), for k =
1, 2, 3. The first system is given by three metarules M1-M3 and one rule R1:

M1 : If z1 is not Z1, then S = 0,
M2 : If z2 is not Z2, then S = 0,
M3 : If z3 is not Z3, then S = 0,
R1 : If z1 is Z1 and z2 is Z2 and z3 is Z3, then S = a,

and the second one by three metarules M ′
1-M ′

3 and one rule R′
1:

M ′
1 : If z1 is not N1, then S′ = 0,

M ′
2 : If z2 is not N2, then S′ = 0,

M ′
3 : If z3 is not N3, then S′ = 0,

R′
1 : If z1 is N1 and z2 is N2 and z3 is N3, then S′ = b.

The meaning of all logical operators “and”, “or”, “not” used in the “If” parts
of the metarules is natural and explained by the look-up-tables (see Tables 4.3
and 4.4). They describe the metarules and all the fuzzy rules. Zero in a table
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Table 4.4 The metarules M ′
1, M ′

2, M ′
3 and all fuzzy rules (M ′

1&M ′
2&M ′

3&R′
1) for

the first system in Example 4.14 in the form of look-up-tables

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 ∗ ∗ ∗
Z 1N 2 0 0 0

P1N 2 0 0 0

N 1Z 2 ∗ ∗ ∗
Z 1Z 2 0 0 0

P1Z 2 0 0 0

N 1P2 ∗ ∗ ∗
Z 1P2 0 0 0

P1P2 0 0 0

M ′
1

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 ∗ ∗ ∗
Z 1N 2 ∗ ∗ ∗
P1N 2 ∗ ∗ ∗
N 1Z 2 0 0 0

Z 1Z 2 0 0 0

P1Z 2 0 0 0

N 1P2 0 0 0

Z 1P2 0 0 0

P1P2 0 0 0

M ′
2

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 ∗ 0 0

Z 1N 2 ∗ 0 0

P1N 2 ∗ 0 0

N 1Z 2 ∗ 0 0

Z 1Z 2 ∗ 0 0

P1Z 2 ∗ 0 0

N 1P2 ∗ 0 0

Z 1P2 ∗ 0 0

P1P2 ∗ 0 0

M ′
3

z1z2 \ z3 →
↓ N 3 Z 3 P3

N 1N 2 b 0 0

Z 1N 2 0 0 0

P1N 2 0 0 0

N 1Z 2 0 0 0

Z 1Z 2 0 0 0

P1Z 2 0 0 0

N 1P2 0 0 0

Z 1P2 0 0 0

P1P2 0 0 0

all rules

denotes the consequent “0” expressed by some metarule and a star denotes
any number (including 0). Observe that the metarules define a complete and
noncontradictory system of rules.

One can check that the crisp output of the first system is given by

S (z1, z2, z3) = 8a
3∏

k=1

λk

(αk + βk)2

3∏
k=1

(βk − zk) (zk + αk) .

The sign of S is the same as the sign of the consequent of the rule R1.
Furthermore, S = 0 if there is some k ∈ {1, 2, 3} for which zk = −αk or
zk = βk.

The crisp output of the second system is given by

S′ (z1, z2, z3) = b
3∏

k=1

λk

(αk + βk)2

3∏
k=1

(βk − zk)
(

βk + αk (1 − λk)
λk

− zk

)
.

The sign of the crisp output S′ in the second system is the same as the sign of

b, since
1
λk

(βk + αk (1 − λk)) − zk ≥ 0 and (βk − zk) ≥ 0 for zk ∈ [−αk, βk],

k = 1, 2, 3. Furthermore, S′ = 0 for all points where z1 = β1 or z2 = β2 or
z3 = β3.

As one can see, the interpretation of the fuzzy rules in both P2-TS sys-
tems is natural and simple. The crisp functions S (z1, z2, z3) and S′ (z1, z2, z3)
intuitively correspond to the systems of rules in any case.
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4.7 Recursion in More General TS Systems with Three
Fuzzy Sets for Every Input

Theorem 4.10 has been proved using the idea of the fundamental matrix
for P2-TS systems, since this matrix is important for many applications.
However, we will show below that the same theorem is valid for a more general
class of the fuzzy rule-based TS systems, i.e. the systems with three fuzzy
sets for every input, where the assumptions 1, 2 and 3 for the membership
functions from Section 4.2 are not necessary. We will prove the following
generalization of Theorem 4.10.

Theorem 4.15. Theorem 4.10 is valid for any TS system described by the
fuzzy rules (4.54), with the inputs z1 ∈ [−α1, β1], . . . , zn ∈ [−αn, βn], where
for any input zk there are assigned three fuzzy sets with the normalized mem-
bership functions, i.e. Nk : [−αk, βk] → [0, 1], Zk : [−αk, βk] → [0, 1], and
Pk : [−αk, βk] → [0, 1] and Nk (zk) + Zk (zk) + Pk (zk) = 1 for k = 1, . . .,
n. This means that if Sn (z | q0,...,0,0, . . . , q2,...,2,2) denotes the crisp output of
the system (4.54) with input vector z ∈ Dn and the consequents of the rules
constituting the vector [q0,...,0,0, . . . , q2,...,2,2]

T , then for any natural n ≥ 2 the
recursive formula that enables one to compute the crisp system output is the
same as (4.57).

Proof. For n = 1 the system is defined by the rules (4.12). Thus, the system
output is as follows

S1 (z1 | q0, q1, q2) =
N1 (z1) q0

N1 (z1) + Z1 (z1) + P1 (z1)
+

Z1 (z1) q1

N1 (z1) + Z1 (z1) + P1 (z1)

+
P1 (z1) q2

N1 (z1) + Z1 (z1) + P1 (z1)
. (4.69)

It is the same as in (4.68) since the normalization condition (4.7) is satisfied.
Let us use a simplified notation: Nk (zk) = Nk, Zk (zk) = Zk and Pk (zk) =
Pk. For n = 2, due to the rule-base (4.32) we have

S2 (z1, z2 | q00, . . . , q22) = N1N2q00/D2 + Z1N2q10/D2 + P1N2q20/D2

+ N1Z2q01/D2 + Z1Z2q11/D2 + P1Z2q21/D2

+ N1P2q02/D2 + Z1P2q12/D2 + P1P2q22/D2.

But D2 =
∏2

k=1 (Nk (zk) + Zk (zk) + Pk (zk)) = 1. Thus,

S2 (z1, z2 | q00, . . . , q22) = N2 (N1q00 + Z1q10 + P1q20)
+ Z2 (N1q01 + Z1q11 + P1q21)
+ P2 (N1q02 + Z1q12 + P1q22)

and S2 is the same as in (4.67), i.e. for n = 2 the Theorem 4.15 is true.
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According to the rule-base decomposition (4.55) for n = k + 1 ≥ 3 we
obtain

Sk+1 = Nk+1 (N1N2 . . . Nkq0,0,...,0,0 + . . . + P1P2 . . . Pkq2,2,...,2,0) /Dk+1

+ Zk+1 (N1N2 . . . Nkq0,0,...,0,1 + . . . + P1P2 . . . Pkq2,2,...,2,1) /Dk+1

+ Pk+1 (N1N2 . . .Nkq0,0,...,0,2 + . . . + P1P2 . . . Pkq2,2,...,2,2) /Dk+1,

where the denominator Dk+1 =
∏k+1

i=1 (Ni (zi) + Zi (zi) + Pi (zi)) = 1.
Knowing that Dk = 1 for k = 1, 2, . . . we have

Sk+1 (zk+1 | q0,...,0,0, . . . , q2,...,2,2) = Nk+1Sk (zk | q0,...,0,0, . . . , q2,...,2,0)
+ Zk+1Sk (zk | q0,...,0,1, . . . , q2,...,2,1)
+ Pk+1Sk (zk | q0,...,0,2, . . . , q2,...,2,2) ,

where
Sk (zk | q0,0,...,0,0, . . . , q2,2,...,2,2) = N1N2 . . . Nkq0,0,...,0,0

+ Z1N2 . . .Nkq1,0,...,0,0

+ P1N2 . . . Nkq2,0,...,0,0

+ . . . + P1P2 . . . Pkq2,2,...,2,2 ,

Sk (zk | q0,0,...,0,1, . . . , q2,2,...,2,1) = N1N2 . . . Nkq0,0,...,0,1

+ Z1N2 . . .Nkq1,0,...,0,1

+ P1N2 . . . Nkq2,0,...,0,1

+ . . . + P1P2 . . . Pkq2,2,...,2,1 ,

Sk (zk | q0,0,...,0,2, . . . , q2,2,...,2,2) = N1N2 . . . Nkq0,0,...,0,2

+ Z1N2 . . .Nkq1,0,...,0,2

+ P1N2 . . . Nkq2,0,...,0,2

+ . . . + P1P2 . . . Pkq2,2,...,2,2 .

Thus,
Sk+1 (zk+1 | q0,...,0,0, . . . , q2,...,2,2) = Nk+1Sk (zk | q0,...,0,0, . . . , q2,...,2,0)

+ Zk+1Sk (zk | q0,...,0,1, . . . , q2,...,2,1)
+ Pk+1Sk (zk | q0,...,0,2, . . . , q2,...,2,2) .

This finishes the proof of Theorem 4.15. 
�

The above Theorem can be used for rather large rule-bases. For n = 3 inputs,
taking into account (4.66), it can be graphically interpreted as shown in
Fig. 4.7. In the case of the TS system with n inputs, the architecture can
be viewed as n-layer neural network with linear activation functions f for all
neurons, where f (input) = input. In the layer number k, (k = 1, . . . , n), the
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P1(z1)

P1(z1)

P1(z1)

N1(z1)
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N1(z1)

Z1(z1)

Z1(z1)

Z1(z1)

P1(z1)

P1(z1)

P1(z1)

N1(z1)

N1(z1)

N1(z1)

Z1(z1)

Z1(z1)

Z1(z1)

P2(z2)

Z2(z2)

N2(z2)

P2(z2)

Z2(z2)

N2(z2)

P3(z3)

Z3(z3)

N3(z3)

S1

S1

S1

S1

S1

S1

S2

S2

S2

S3

Fig. 4.7 Graphic interpretation of Theorem 4.15 for a TS system with n = 3
inputs and the output S = S3 (z1, z2, z3|q000, . . . , q222)

network contains exactly the same neurons Sk and every neuron has three
inputs and the same weights, namely Nk (zk), Zk (zk) and Pk (zk).
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A generalization of the Theorem 4.15 for MIMO systems is straightforward
and will be omitted. A computational architecture of the recursion for MIMO
P2-TS systems as a generalization of (4.57) can be easily drawn, similarly to
the one of Fig. 4.7, as well.

4.8 Summary

We considered the TS systems which use the second degree polynomials as the
membership functions of fuzzy sets for the inputs. It was shown that it is not
possible to obtain any second degree polynomial function, to which a TS rule-
based system is equivalent, on the assumption that only two complementary
membership functions as the second degree polynomials are defined for the
input variables. However, three quadratic membership functions suffice to
model every second degree polynomial function.

For the considered zero-order TS system, we defined for every input variable
the set of three highly interpretable normalized membership functions as the
second degree polynomials (N , Z and P ). They contain one free design param-
eter. The TS systems that use such fuzzy sets were called P2-TS systems and
they were thoroughly investigated. One of theorems says that the crisp output
of the MISO P2-TS system in the vertex of the hypercuboid Dn is exactly the
same as the appropriate conclusion of the fuzzy rule contained in the rule-base.

For the P2-TS systems both the generator and the fundamental matrix
were defined. The fundamental matrix and its inverse are important, since
they enable one to establish an exact relationship between the consequents
of the “If-then” rules and the parameters that define the crisp function, to
which the rule-based system is equivalent. Therefore, the procedure of how
to compute the fundamental matrix and its inverse was given.

Examples 4.12-4.14 show that P2-TS systems have highly interpretable
rule-bases when we use individual fuzzy rules or the metarules.

The P2-TS system with n-inputs, which normally contains a complete and
noncontradictory set of fuzzy rules, consists of 3n individual fuzzy rules. Thus,
the curse of dimensionality problem is much more serious for the P2-TS systems
than the one for the P1-TS systems. Therefore, we developed the recursive pro-
cedures for the computation of both the inverse of the fundamental matrix and
the crisp output of the P2-TS systems. Theorem 4.10 and its generalization
say that we do not need to inverse large matrices to obtain the crisp output of
the P2-TS systems. As a result of these theorems, the curse of dimensionality in
P2-TS systems was substantially weakened. Although we considered the MISO
systems, all the results can be easily generalized for the MIMO case.

After this chapter we are able to thoroughly generalize the results for
the TS systems with the membership functions that are polynomials of the
degree d ≥ 3. However, we should realize that the number of complete and
noncontradictory rules will rapidly grow and the analysis will become more
and more complicated. Both P1- and P2-TS systems are able to model a large
class of real nonlinear processes. Therefore, if it is not necessary, we should
not complicate our models in the engineering practice.



Chapter 5
Comprehensive Study
and Applications of P1-TS Systems

This chapter focuses mainly on the P1-TS systems introduced in
Chapter 2, as the simplest and most transparent among fuzzy rule-based sys-
tems with polynomial membership functions. They are highly interpretable
and therefore they seem to be particularly important from the engineering
point of view. In order to show that there are quite a lot of applications of
P1-TS systems, many examples of exact modeling of conventional systems
will be given, especially in relation to nonlinear dynamical processes model-
ing and control. We prefer to use the analytical and systematic approach to
the synthesis and analysis of the models. Thanks to such approach the com-
parison of the methods developed in this book with others will be facilitated.
Symbolic quantities will be mainly used to ensure the generality of outcomes.
Seldom, if ever, will numerical data be taken, to increase transparency of the
examples.

The P1-TS systems with two and more inputs will be comprehensively
investigated in subsequent sections, considering interpretability issue. It will
be exemplified that by using a multi-valued logic for highly nonlinear dy-
namical process, one can design an acceptable control algorithm expressed
by the P1-TS system fuzzy rules. In this way a connection between P1-TS
systems and classical combinational logic systems will be established. Next,
the fuzzy rule-based systems with inputs and outputs from the unity intervals
will be discussed in the context of generalized operators such as triangular
norms (t-norms), t-conorms, implications, etc. The connection between fuzzy
rule-based systems and Boolean algebra will become apparent. The highly
interpretable rule-bases will be constructed for systems with three and more
inputs not only for abstract processes, but also for real dynamical plants, e.g.
a NARX model, fuzzy J-K flip-flop, Euler equations for a rigid body, Chen’s
attractor, the human immunodeficiency virus, magnetic suspension system,
low order atmospheric circulation process and induction motor. We will ex-
emplify that the theory of P1-TS systems can be used to transform some
complicated control algorithms, formerly obtained with the use of Boolean
logic, into the fuzzy domain.

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 101–182.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The theory of P1-TS systems will also be used for analytical design of an
optimal PID controller, working in the closed-loop control system containing
a (linear and nonlinear) second order plant. Such the controller in the form
of P1-TS system will be optimal with respect to typical requirements for
automatic control systems. Next, we will show that using our systematic
approach, the so called “controller with variable gains” introduced by Ying
[205], [206] can be easily obtained.

In the last sections, exact modeling of single input dynamical systems will
be investigated. Similarly as in Section 3.4 it will be assumed that nonlinear
dynamical system is a collection of linear dynamical subprocesses. However,
in Section 3.4 the inference was concerned with the structure parameters
represented by matrices describing local linear models. In contrast to that
approach, the nonlinear model of the whole system will be inferred according
to the original Takagi-Sugeno inference method. Based on this inference, the
class of dynamical systems to which the rule-based system is equivalent will
be identified. Finally, conclusions about modeling of nonlinear dynamical
systems with the use of P1-TS ones, and theorem concerning equivalence
between MIMO linear dynamical systems described by state space equations
and P1-TS systems will be formulated.

Because we will mainly investigate P1-TS systems, references will often be
made to the outcomes of Chapter 2.

5.1 P1-TS Systems with Two Inputs

5.1.1 General Case

Consider the P1-TS fuzzy system with two inputs z1 ∈ [−α1, β1] and
z2 ∈ [−α2, β2], and the output S (see Chapter 2). The fuzzy rules (2.36)
have the consequents constituting the vector q = [q1, q2, q3, q4]

T and can be
equivalently written in Table 2.1. The generator and the fundamental matrix
are given by (2.37) and (2.38), respectively. According to Theorem 2.4 and
the equation (2.45) we have

S (z1, z2) = gT (z1, z2)
(
ΩT
)−1

q︸ ︷︷ ︸
θ

= θ00 + θ10z1 + θ01z2 + θ11z1z2, (5.1)

where in general, the components of the vector θ are explicitly given by

θ00 =
(q1β1 + q2α1)β2 + (q3β1 + q4α1)α2

V2
, (5.2)

θ10 =
(q2 − q1)β2 + (q4 − q3) α2

V2
, (5.3)
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Table 5.1 Look-up-
table for the P1-TS fuzzy
system from Example 5.1

z1 z2 →
↓ N2 P2

N1 q1 q1

P1 q2 q2

θ01 =
(q3 − q1)β1 + (q4 − q2) α1

V2
, (5.4)

θ11 =
q1 − q2 − q3 + q4

V2
, (5.5)

where V2 = (α1 + β1) (α2 + β2) is the area of the rectangle D2. The same
result we obtain using Theorem 3.6 on recursion.

Example 5.1. Assume that the rules are given in Table 5.1. They say that
system output is independent of the second input. This fact can be expressed
by two metarules:

R1 : If z1 is N1, then S = q1,

R2 : If z1 is P1, then S = q2.

}

From (5.1) we obtain

S (z1, z2) =
q1β1 + q2α1

α1 + β1
+

q2 − q1

α1 + β1
z1,

i.e. S = S (z1), indeed. The above result confirms the facts expressed by the
rules.

5.1.2 A Simple Controller Design for a Milk of Lime
Blending Tank

As an introduction to the next section let us consider a milk of lime blending
tank (MLBT), whose objective is to produce a uniform flow of milk of lime
(calcium hydroxide) [135]. The system can be described as a stirred tank (see
Fig. 5.1), where a suspension of lime is mixed with water to decrease the
dissolution density. The aim of the control system is to keep the density at
the output at prescribed values despite the disturbances. The level of liquid
in the tank is maintained within a specified range to avoid flow obstruction
due to the high density of the dissolution. The mathematical model of the
MLBT comprises two nonlinear state space equations corresponding to mass
balances [190]:⎧⎪⎪⎨⎪⎪⎩

ẋ1 = η1
(1 − αx1) (p1 − x1)

(1 − αp1) ax2
u1 − η2

(1 − αx1)x1

ax2
u2 ,

ẋ2 =
1
a

(
η1u1 + η2u2 − η3

√
x2 − bp2

1 − αx1
u3

)
,

(5.6)
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Fig. 5.1 Milk of lime
blending tank
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where u1, u2, u3 are input signals to manipulate the valves, x1 is the concentra-
tion of the mixture at the output [1/kg], x2 - the level of liquid in the tank [m],
p1 - the concentration of input lime suspension, p2 - the back pressure and b is a
constant (b = 1). The parameters η1 = 5, η2 = 3.6 and η3 = 9.285 are the valve
constants, a = 10 [m2] - the tank area and α = 0.573 relates the concentration
of the lime solution to the density of dry lime. Finally, the output variables are
the specific gravity of the mixture at the output, y1 = 1/ (1 − αx1) and the
level of liquid, y2 = x2. Because of one-to-one mapping between xi and yi we
assume that xi are measurable state variables.

We assume that the control signal constraints are ui ∈
[
uL

i , uH
i

]
=

[0.25, 0.95], and the nominal positions of the valves in the steady state are
ui = u0

i = 0.5 for i = 1, 2, 3. Furthermore, the output valve signal is assumed
to be constant u3 (t) = u0

3. The steady state is given by the controls u0
1, u0

2
and u0

3 as follows

x0
1 =

p1

1 +
η2u

0
2

η1u0
1

(1 − αp1)
∈ [−α1, β1] = [0.01, 0.275281] , (5.7)

x0
2 = p2 +

(
η1u

0
1 + η2u

0
2
)3

η2
3η2u0

2u
0
3

(
1 +

η1u
0
1

η2u0
2 (1 − αp1)

) ∈ [−α2, β2] = [0.1, 0.682669] .

(5.8)
Our goal is to obtain two control signals u1 (t) and u2 (t) that stabilize the
equilibrium point

(
x0

1, x
0
2
)

= (0.180538, 0.474573).
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Table 5.2 Control actions for the the milk of lime blending tank

Concentration Mixture level Valve position Valve position
x1 x2 u1 u2

N1 N2 uH
1 uH

2

P1 N2 uL
1 uH

2

N1 P2 uH
1 uL

2

P1 P2 uL
1 uL

2

Observe that for the above process, a very simple system of the control
rules may be obtained using Boolean logic, as described in Table 5.2. It says
that the valve delivering milk is opened, if the concentration x1 is low, and
it is closed if x1 is high. Analogously, the valve delivering water is opened,
if the mixture level x2 is low, and it is closed if x2 is high. Switching (or
binary) control signal uj (t) ∈

{
uL

j , uH
j

}
can be easily obtained according to

the Table 5.2 as follows (see Fig. 5.2):

ui (t) =
{

uH
i iff xi (t) ≤ x0

i

uL
i iff xi (t) > x0

i , i = 1, 2.
(5.9)

By simulations one can check that the closed-loop system by the switch-
ing control signal (5.9) is stable. However, such strategy which is based
on Boolean logic has an essential drawback, since there is a huge num-
ber of on/off switchings. To avoid this phenomenon, first of all we assume
that the “on/off” valves controlling the plant will be replaced by the ana-
log servo-valves. Next, we define the control signals according to the same
rules as in Table 5.2, but implementing a smooth (linear) control as shown
in Fig. 5.2:

u1 (x1, x2) = u1 (x1) = u0
1 + k1

(
x1 − x0

1
)
, (5.10)

(a)

(b)

�

xL
i x0

i xH
i

xi

uL
i

u0
i = 0.5

uH
i

..........................................

.............................................................

.......................................................................

...................................................................................................................................................................................................................................................................................................

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Fig. 5.2 (a) - ui(xi) as a switching control function, (b) - ui(xi) as a linear state
feedback
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u2 (x1, x2) = u2 (x2) = u0
2 + k2

(
x2 − x0

2
)
. (5.11)

From the interpretation of the rules in Table 5.2 it follows that the gains k1
and k2 are negative. For simplicity we assume that

(
uH

i − u0
i

)
/
(
x0

i − xL
i

)
=(

u0
i − uL

i

)
/
(
xH

i − x0
i

)
and we choose ki = −

(
uH

i − u0
i

)
/
(
x0

i − xL
i

)
, for i =

1, 2. Thus, k1 = −2.59259 and k2 = −1.16667.
The fuzzy metarules for the P1-TS system performing a controller function

that stabilizes the plant described by (5.6) in the equilibrium point
(
x0

1, x
0
2
)
,

can be simply formulated as follows

R1 : If x1 is N1, then u1 = uH
1 ,

R2 : If x1 is P1, then u1 = uL
1 ,

R3 : If x2 is N2, then u2 = uH
2 ,

R4 : If x2 is P2, then u2 = uL
2 .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where N1 and P1 denote “low” and “high” concentration of the mixture,
whereas N2 and P2 - “low” and “high” level of liquid in the tank, respec-
tively. The membership functions of fuzzy sets Ni (xi) and Pi (xi) are given
by (2.11)-(2.12), assuming the intervals for xi as in (5.7)-(5.8) for i = 1, 2.

The above example shows that for a highly nonlinear dynamical process,
in some cases one can obtain an acceptable control algorithm expressed by
the fuzzy rules for the P1-TS system, by using a multi-valued (fuzzy) logic.
The method of the controller design that works according to multi-valued
logic is simple and clear, especially if we analyze the fuzzy rules for the
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Fig. 5.3 Phase plane of the milk of lime blending tank described by (5.6), when
the control signals are linear state feedback (5.10)-(5.11)
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P1-TS system. The design method is almost the same as the heuristic design
procedure for the combinational logic system that functions as a controller
in the closed-loop. Such methods are widely known and used in practice for
switching control algorithms synthesis, that are implemented in embedded
hardware devices or software components e.g. for programmable logic con-
trollers (PLCs) as the real-time direct digital control systems.

5.1.3 P1-TS Systems with Inputs and Outputs from
the Unity Interval

The intervals for the input and output variables of the rule-based system can
be always transformed (normalized) into the unity interval [0, 1], which can
make the interpretation of variables very clear in many cases. For example,
every control action ui ∈

[
uL

i , uH
i

]
can be written in the form ui = uL

i +
λ
(
uH

i − uL
i

)
, where λ ∈ [0, 1]. For the controller designed in Section 5.1.2

this means that the ith valve is opened in the 100λ per cent.
The rule-based P1-TS systems in which both the inputs and outputs take

the values from the interval [0, 1] are special class of systems. We will call
them “logical systems”, since

• the labels of fuzzy sets Nk are interpreted as almost false or near zero, and
• the labels of fuzzy sets Pk are interpreted as almost true or near one.

Such systems process information expressed in continuous, multi-valued logic
and they are interesting from the practical point of view. Observe that logical
interpretation coincides with the formerly obtained algebraic results. Accord-
ing to Theorem 3.15, if the conclusions qv of “If-then” rules take the values
from the unity interval [0, 1], then the output of the MISO P1-TS system
belongs to the same interval:

0 ≤ S (z) ≤ 1, ∀ z ∈ [0, 1]n , (5.12)

since min {q1, q2, . . . , q2n} = 0 and max {q1, q2, . . . , q2n} = 1.
The look-up-tables, which are equivalent to “If-then” rules or metarules

can be viewed as generalized Karnaugh maps. Such maps were developed for
minimization of Boolean functions f : {0, 1}n → {0, 1} [85], [9], [19], [115].
Karnaugh maps enable one simple and natural logical interpretation of the
function f to which a given P1-TS system is equivalent - in all vertices of
the unity hypercube [0, 1]n. A rough interpretation of f is also possible and
proves useful in the points situated near these vertices, i.e. in such points of
the unity hypercube which have a small entropy [110].

By convention we will assign “0” to the labels Nk and “1” to Pk. In order to
convert the look-up-tables into “classical” Karnaugh maps, we should order
the labels describing antecedents of rules so that they will be described by
the Gray code (see e.g. Example 3.8) [158].
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Assume the inputs z1 and z2 of the P1-TS system to be from the unity
square and the consequents of the rules are allowed to be either 0, or 1. For all
(z1, z2) ∈ [0, 1]2 let us denote the operations in multi-valued logic as follows:

• three basic operations:

– strong negation (or complement)

n (z1) = 1 − z1 , (5.13)

– t-norm (generalized AND): t (z1, z2),
– t-conorm (generalized OR): s (z1, z2),

• and additionally:

– implication function: i (z1, z2),
– equivalence function: e (z1, z2).

Let us denote by Sq1q2q3q4 the output of the P1-TS system in which the
consequents of the fuzzy rules are binary vectors

q = [q1, q2, q3, q4]
T ∈ {0, 1}4 . (5.14)

From (5.1) we obtain

Sq1q2q3q4 = gT (z1, z2)
(
ΩT
)−1

q

= q1 (1 − z1 − z2 + z1z2) + q2 (z1 − z1z2) + q3 (z2 − z1z2) + q4z1z2.
(5.15)

According to (5.14) there are exactly 16 functions of two variables, which can
be viewed as the multi-valued logic functions:

1. S0000 (z1, z2) = 0 constant zero
2. S0001 (z1, z2) = z1z2 = t (z1, z2) t-norm
3. S0010 (z1, z2) = z2 − z1z2 = n (i (z2, z1)) negation of implication
4. S0011 (z1, z2) = z2 variable z2
5. S0100 (z1, z2) = z1 − z1z2 = n (i (z1, z2)) negation of implication
6. S0101 (z1, z2) = z1 variable z1
7. S0110 (z1, z2) = z1 + z2 − 2z1z2 = n (e (z1, z2)) negation of equivalence
8. S0111 (z1, z2) = z1 + z2 − z1z2 = s (z1, z2) t-conorm
9. S1000 (z1, z2) = 1 − z1 − z2 + z1z2 = n (s (z1, z2)) negation of t-conorm

10. S1001 (z1, z2) = 1 − z1 − z2 + 2z1z2 = e (z1, z2) equivalence
11. S1010 (z1, z2) = 1 − z1 = n (z1) negation of variable z1
12. S1011 (z1, z2) = 1 − z1 + z1z2 = i (z1, z2) implication
13. S1100 (z1, z2) = 1 − z2 = n (z2) negation of z2
14. S1101 (z1, z2) = 1 − z2 + z1z2 = i (z2, z1) implication
15. S1110 (z1, z2) = 1 − z1z2 = n (t (z1, z2)) negation of t-norm
16. S1111 (z1, z2) = 1 constant one
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Observe that the function

t (z1, z2) = z1z2 (5.16)

is a special case of the t-norm, called probabilistic t-norm,

s (z1, z2) = z1 + z2 − z1z2 (5.17)

is a special case of the t-conorm, called probabilistic t-conorm, and

i (z1, z2) = 1 − z2 + z1z2 (5.18)

is a special case of the implication function, known as Reichenbach’s impli-
cation [38].

Based on strong negation, t-norm and t-conorm one can easily define a
fuzzy algebra. However, we omit this problem and make some remarks instead.
It is well known that e.g. de Morgan’s laws are satisfied in the fuzzy algebra.
One can check that for the above basic operations (5.13), (5.16) and (5.17),
the following equations

n (t (n (z1) , n (z2))) = z1 + z2 − z1z2 = s (z1, z2) ,

n (s (n (z1) , n (z2))) = z1z2 = t (z1, z2) ,

are satisfied for every point (z1, z2) from the square [0, 1]2. This means that
(t, s) is n-dual pair of operators [38]. Not all features hold, that are known
from Boolean algebra. For example

t (z, n (z)) = z (1 − z) > 0 for z ∈ (0, 1) , (5.19)
s (z, n (z)) = 1 − z (1 − z) < 1 for z ∈ (0, 1) . (5.20)

This means that the Aristotelean noncontradiction law and excluded middle
law do not hold. Therefore, for example the equivalence function in Boolean
logic satisfies

e (z1, z2) = t (i (z1, z2) , i (z2, z1)) , for z ∈ {0, 1} ,

but in the case of our operators

e (z1, z2) = t (i (z1, z2) , i (z2, z1)) − t (t (z1, n (z1)) , t (z2, n (z2))) ,

for z1, z2 ∈ [0, 1]. The additional term t (t (z1, n (z1)) , t (z2, n (z2))) ∈ [0, 1/16];
it is zero in the vertices of the square [0, 1]2 only, and takes the value 1/16
for z1 = z2 = 1/2. Similarly, the absorption law in Boolean logic

s (z1, t (z1, z2)) = z1, ∀z1, z2 ∈ {0, 1} ,

holds, but in our system
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s (z1, t (z1, z2)) = z1 + t (t (z1, n (z1)) , z2) , ∀z1, z2 ∈ [0, 1] .

Obviously, all above operations are exactly the same as well-known classical
binary ones, in the vertices of the square [0, 1]2.

We discussed the P1-TS logical systems with only two variables in order to
have a connection with Boolean algebra. The same systems with more than
two inputs will be applied for modeling real systems further on.

5.2 P1-TS Fuzzy Systems with Three Inputs

5.2.1 General Case

Consider the P1-TS fuzzy system with three inputs zk ∈ [−αk, βk] for k =
1, 2, 3 and the output S (see Chapter 2). The fuzzy rules are given in
Table 5.3. The generator and the fundamental matrix are given by (2.40) and
(2.41), respectively. According to Theorem 2.4 and equation (2.45) we have

S (z1, z2, z3) = gT (z1, z2, z3)
(
ΩT
)−1

[q1, q2, q3, q4, q5, q6, q7, q8]
T︸ ︷︷ ︸

θ

=
∑

(i,j,k)∈{0,1}3

θijkzi
1z

j
2z

k
3 , (5.21)

where the coefficients θijk of the vector θ that correspond to the generator
g (z1, z2, z3) are given explicitly as follows

θ000 =
(q1β1 + q2α1)β2 + (q3β1 + q4α1)α2

V3
β3

+
(q5β1 + q6α1)β2 + (q7β1 + q8α1)α2

V3
α3 , (5.22)

θ100 =
q2β2 − q1β2 − q3α2 + q4α2

V3
β3 +

q6β2 − q5β2 − q7α2 + q8α2

V3
α3 ,

(5.23)

θ010 =
q3β1 − q2α1 − q1β1 + q4α1

V3
β3 +

q7β1 − q6α1 − q5β1 + q8α1

V3
α3 ,

(5.24)

Table 5.3 Look-up-
table for the P1-TS fuzzy
system with n = 3 inputs
- a general case

z1, z2 \ z3 →
↓ N3 P3

N1N2 q1 q5

N1P2 q3 q7

P1P2 q4 q8

P1N2 q2 q6
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θ110 =
q1 − q2 − q3 + q4

V3
β3 +

q5 − q6 − q7 + q8

V3
α3 , (5.25)

θ001 =
(q5 − q1)β1 + (q6 − q2)α1

V3
β2 +

(q7 − q3)β1 + (q8 − q4)α1

V3
α2 , (5.26)

θ101 =
(q1 − q2 − q5 + q6)β2 + (q3 − q4 − q7 + q8) α2

V3
, (5.27)

θ011 =
(q1 − q3 − q5 + q7)β1 + (q2 − q4 − q6 + q8) α1

V3
, (5.28)

θ111 =
−q1 + q2 + q3 − q4 + q5 − q6 − q7 + q8

V3
, (5.29)

and V3 = (α1 + β1) (α2 + β2) (α3 + β3) is the volume of the cuboid D3.

5.2.2 Examples of Highly Interpretable P1-TS
Systems with Three Inputs

Several examples will be given further on, but we begin with a simple theo-
retical one. As usual, the symbols will be used to preserve the generality of
the results.

Example 5.2. Consider the following complete and noncontradictory system
of fuzzy metarules:

M1 : If z1 is N1, then S = p,

M2 : If z1 is P1 and z3 is N3, then S = q,

M3 : If z1 is P1 and z3 is P3, then S = r.

⎫⎪⎪⎬⎪⎪⎭ (5.30)

Equivalently, it corresponds to eight fuzzy rules given in Table 5.4. According
to the rules, the system output S does not depend on the second input
variable. This is especially clear, if we view the look-up-table as (generalized)

Table 5.4 a) Look-up-table of the TS fuzzy system from Example 5.2, b) Descrip-
tion of the same table using binary Gray code

a)
z1, z2 \ z3 →

↓ N3 P3

N1N2 p p

N1P2 p p

P1P2 q r

P1N2 q r

b)
z1, z2 \ z3 →

↓ 0 1
00 p p

01 p p

11 q r

10 q r
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Karnaugh map as shown in Table 5.4 b. Conclusions of the rules are: q1 = p,
q2 = q, q3 = p, q4 = q, q5 = p, q6 = r, q7 = p and q8 = r.

Our goal is to check whether the logical interpretation of the rules coincides
with the crisp system output. From (5.22)-(5.29) we obtain

S (z1, z2, z3) = θ000 + θ100z1 + θ001z3 + θ101z1z3,

where
θ000 = (α1 + β1)

−1 (α3 + β3)
−1 (pβ1α3 + pβ1β3 + qα1β3 + rα1α3) ,

θ100 = (α1 + β1)
−1 (α3 + β3)

−1 (qβ3 − pβ3 − pα3 + rα3) ,

θ010 = 0,

θ110 = 0,

θ001 = (α1 + β1)
−1 (α3 + β3)

−1 (r − q)α1,

θ101 = (α3 + β3)
−1 (α1 + β1)

−1 (r − q) ,

θ011 = 0,

θ111 = 0.

This means that independently of all constants: p, q, r, α1, α2, α3, β1, β2,
and β3, the output of the considered P1-TS system does not depend on the
input z2, indeed. The result agrees with our expectation.

Example 5.3. Suppose we need to obtain the rules for the P1-TS system
with the inputs [z1, z2, z3]

T ∈ D3, which is equivalent to the following multi-
variate polynomial

f0 (z1, z2, z3) = z1z2 (1 − z3) , zk ∈ [−αk, βk] , k = 1, 2, 3. (5.31)

The function (5.31) is a special case of (2.26) with θ = [0, 0, 0, 1, 0, 0, 0, −1]T .
Taking into account Ω given by (2.41) and the equation (2.44), for the given
θ we obtain ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

q6

q7

q8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΩT θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2α1 (α3 + 1)
−β1α2 (α3 + 1)
−β2α1 (α3 + 1)

β2β1 (α3 + 1)
α2α1 (1 − β3)
β1α2 (β3 − 1)
β2α1 (β3 − 1)
β2β1 (1 − β3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.32)

The system of 8 fuzzy rules is the same as in (2.39) or Table 5.3 with the
consequents of the rules (5.32). For example if [z1, z2, z3]

T ∈ [1, 2] × [3, 4] ×
[0, 1], then knowing the function (5.31) we can immediately write the system,
which consists of four individual rules and one metarule:
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R1 : If z1 is about 1 and z2 is about 3 and z3 is about 0, then S = 3,

R2 : If z1 is about 2 and z2 is about 3 and z3 is about 0, then S = 6,

R3 : If z1 is about 1 and z2 is about 4 and z3 is about 0, then S = 4,

R4 : If z1 is about 2 and z2 is about 4 and z3 is about 0, then S = 8
M : If z3 is about 1, then S = 0.

The above rules result from (5.32) by α1 = −1, β1 = 2, α2 = −3, β2 = 4,
α3 = 0 and β3 = 1. Observe that they all have a clear interpretation for any
location of the cuboid D3 in the space R

3.

Example 5.4. Consider the discrete-time NARX model (Nonlinear AutoRe-
gressive with the eXtra input) considered in [208]

y (k + 1) = c0 + c1y (k) + c2y (k − 1) + c3u (k) + c4y (k) y (k − 1)
+ c5y (k)u (k) + c6y (k − 1)u (k) + c7y (k) y (k − 1)u (k) , (5.33)

in which y (k), y (k − 1) ∈ [−L1, L1] and u (k) ∈ [−L2, L2]. Our goal is to
show that this system can be easily modeled using P1-TS system.

The inputs and the output of the P1-TS system which should exactly
model the difference equation (5.33) are shown in Fig. 5.4. In order to make
a simple comparison with the result of [208] we define the vector θ = c =
[c0, c1, c2, c4, c3, c5, c6, c7]

T . The fuzzy rules are given by Table 5.5. The result
in [208] is as follows⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
c1
c2
c3
c4
c5
c6
c7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

λ1 λ1 λ1 λ1 −λ1 −λ1 −λ1 −λ1
λ1 λ1 −λ1 −λ1 λ1 λ1 −λ1 −λ1
λ2 −λ2 λ2 −λ2 λ2 −λ2 λ2 −λ2
λ3 λ3 −λ3 −λ3 −λ3 −λ3 λ3 λ3
λ4 −λ4 λ4 −λ4 −λ4 λ4 −λ4 λ4
λ4 −λ4 −λ4 λ4 λ4 −λ4 −λ4 λ4
λ5 −λ5 −λ5 λ5 −λ5 λ5 λ5 −λ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V ′
1

V ′
2

V ′
3

V ′
4

V ′
5

V ′
6

V ′
7

V ′
8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

P1-TS system

�

�

�

�

z1 = y(k)

z2 = y(k − 1)

z3 = u(k)

S = y(k + 1)

Fig. 5.4 NARX model from [208] (p. 112-114) considered in Example 5.4
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Table 5.5 Look-up-
table for the TS fuzzy
system from Example
5.4.

z1, z2 \ z3 →
↓ N3 P3

N1N2 V ′
8 V ′

7

N1P2 V ′
6 V ′

5

P1P2 V ′
2 V ′

1

P1N2 V ′
4 V ′

3

On the other hand, according to Tables 5.3 and 5.5 the vector of conclusions
of the rules is q = [V ′

8 , V ′
4 , V ′

6 , V ′
2 , V ′

7 , V ′
3 , V ′

5 , V ′
1 ]T . For the system generator

(2.40) and according to (5.33) we have

S = cTg (z) = [c0, c1, c2, c4, c3, c5, c6, c7] [1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3]
T
.

From (2.41) by αk = βk = L1 for k = 1, 2 and α3 = β3 = L2 we obtain the
following fundamental matrix

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

−L1 L1 −L1 L1 −L1 L1 −L1 L1

−L1 −L1 L1 L1 −L1 −L1 L1 L1

L2
1 −L2

1 −L2
1 L2

1 L2
1 −L2

1 −L2
1 L2

1

−L2 −L2 −L2 −L2 L2 L2 L2 L2

L1L2 −L1L2 L1L2 −L1L2 −L1L2 L1L2 −L1L2 L1L2

L1L2 L1L2 −L1L2 −L1L2 −L1L2 −L1L2 L1L2 L1L2

−L2
1L2 L2

1L2 L2
1L2 −L2

1L2 L2
1L2 −L2

1L2 −L2
1L2 L2

1L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.34)

Let us take the notations

λ1 =
1

8L1
, λ2 =

1
8L2

, λ3 =
1

8L2
1
, λ4 =

1
8L1L2

, λ5 =
1

8L2
1L2

.

(5.35)

Now we obtain the coefficients of the vector θ for the consequents of the rules
given in Table 5.5. According to (2.44) the vector of coefficients of the system
output is S = θTg (z), where

θT =qT Ω−1 = [θ0, θ1, θ2, θ4, θ3, θ5, θ6, θ7]= [V ′
8 , V ′

4 , V ′
6 , V ′

2 , V ′
7 , V ′

3 , V ′
5 , V ′

1 ]Ω−1,

where Ω is given by (5.34). Equivalently by using notation (5.35) we obtain
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ0

θ1

θ2

θ4

θ3

θ5

θ6

θ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

−λ1 λ1 −λ1 λ1 −λ1 λ1 −λ1 λ1

−λ1 −λ1 λ1 λ1 −λ1 −λ1 λ1 λ1

λ3 −λ3 −λ3 λ3 λ3 −λ3 −λ3 λ3

−λ2 −λ2 −λ2 −λ2 λ2 λ2 λ2 λ2

λ4 −λ4 λ4 −λ4 −λ4 λ4 −λ4 λ4

λ4 λ4 −λ4 −λ4 −λ4 −λ4 λ4 λ4

−λ5 λ5 λ5 −λ5 λ5 −λ5 −λ5 λ5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V ′
8

V ′
4

V ′
6

V ′
2

V ′
7

V ′
3

V ′
5

V ′
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This means that the results obtained using the theory of P1-TS systems and in
[208] are the same. Next observe that the NARX model becomes a linear ARX
one without offset if, and only if, the conclusions of the rules are as follows

q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V ′
8

V ′
4

V ′
6

V ′
2

V ′
7

V ′
3

V ′
5

V ′
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ΩT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

c1

c2

0

c3

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L1c1 − L1c2 − L2c3

L1c1 − L1c2 − L2c3

−L1c1 + L1c2 − L2c3

L1c1 + L1c2 − L2c3

−L1c1 − L1c2 + L2c3

L1c1 − L1c2 + L2c3

−L1c1 + L1c2 + L2c3

L1c1 + L1c2 + L2c3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the above result agrees with the one obtained in [208], as well. The only
difference follows from the notation and sequence of the rules, but this is of
no importance, as was shown in Section 2.7. It should be stressed that our
approach that uses matrices is a very simple and systematic one.

Recently, a great deal of research and development has been directed toward
designing and implementation of the “fuzzy computer” components [7], [26],
[84], [120]. There are various types of fuzzy logic circuits. The most simple are
combinational logic systems based on fuzzy gates. More complicated are fuzzy
sequential circuits, to which belong various types of fuzzy flip-flops, that are
useful in many applications, e.g. in hardware implementation of fuzzy Petri
nets [60], [55], [56], [102], [104], [105], [106].

Example 5.5. Let us consider a fuzzy J-K flip-flop which was originally de-
veloped in [60]. It is known that for its synthesis one can use various t-norms
and s-norms. All proposed fuzzy flip-flops are the generalized form of the or-
dinary (binary) J-K flip-flop [9], with the symbol shown in Fig. 5.5 a. Their
fuzzy truth-tables are different but they include the binary truth-table of the
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� K

CK�

� J

�Q

�Q

P1-TS
system

�Q(t)

�K(t)

�J(t)

� Q(t + 1)

a) b)

Fig. 5.5 a) Symbol of a J-K flip-flop. b) P1-TS system as a fuzzy J-K flip-flop
which works according to the discrete-time state equation (5.37).

Table 5.6 Truth table of the conventional JK flip-flop

J (t) K (t) Q (t) Q (t + 1)

0 0 0 0
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 1
0 1 1 0
1 1 1 0

conventional J-K flip-flop. A conventional J-K flip-flop is a system operating
in the domain of two-valued logic. It is used to memorize a single bit of infor-
mation and can be unambiguously described as shown in Table 5.6. Assume
that both the flip-flop inputs, and its present state constitute three inputs
for the P1-TS system, whereas the next flip-flop state Q (t + 1) is the P1-TS
system output

z1 = J (t) , z2 = K (t) , z3 = Q (t) , S = Q (t + 1) .

We allow the signals to take not only values from the bivalent set {0, 1},
but from the whole interval [0, 1]. Thus, [−αi, βi] = [0, 1] for i = 1, 2, 3 and
therefore Q (t + 1) ∈ [0, 1]. According to Table 5.6 we formulate the following
system of fuzzy rules in the matrix form

If [z1, z2, z3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3
P1 N2 N3
N1 P2 N3
P1 P2 N3
N1 N2 P3
P1 N2 P3
N1 P2 P3
P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then S is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.36)
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The vector containing the consequents of the rules is the same as the last
column in Table 5.6. According to Theorem 2.10 and taking a generator
g (z1, z2, z3) from (2.40), we have

Q (t + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z1
z2

z1z2
z3

z1z3
z2z3

z1z2z3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Thus,

Q (t + 1) = z1 + z3 − z1z3 − z2z3

= J (t) (1 − Q (t)) + (1 − K (t))Q (t)

= J (t)Q (t) + K (t)Q (t) , t = 0, 1, 2, . . . (5.37)

In [60] the same result was obtained in an entirely different way, where (5.37)
was called the fundamental equation of an algebraic fuzzy flip-flop. In the
cited work, based on this equation, both discrete-mode and continuous-mode
circuits have been presented.

Example 5.6. Consider the rule-based system with the inputs ω1 (t), ω2 (t)
and ω3 (t) which are components of the angular velocity vector ω along the
principal axes and ω is a point of the cube D3 = [−ωmax, ωmax]

3, where
ωmax is a maximal angular velocity. Every input ωk has assigned two linear
membership functions of fuzzy sets Nk (ωk) and Pk (ωk) = 1 − Nk (ωk) for
k = 1, 2, 3. Thus, Nk is interpreted as negative and Pk as positive angular
velocity ωk about kth axis. The outputs of the TS system are torques that
measure the tendency of a force to rotate the object about particular axes
S1 = J1ω̇1 (t), S2 = J2ω̇2 (t) and S3 = J3ω̇3 (t), where J1, J2 and J3 are
the principal moments of inertia. Suppose that the system consists of the
following 8 fuzzy rules

If [ω1, ω2, ω3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3

P1 N2 N3

N1 P2 N3

P1 P2 N3

N1 N2 P3

P1 N2 P3

N1 P2 P3

P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, then [S1, S2, S3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1 C1

A1 B2 C2

A2 B1 C2

A2 B2 C1

A2 B2 C1

A2 B1 C2

A1 B2 C2

A1 B1 C1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.38)
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where

A1 = ω2
max (J2 − J3) + u1, A2 = −ω2

max (J2 − J3) + u1, (5.39)

B1 = ω2
max (J3 − J1) + u2, B2 = −ω2

max (J3 − J1) + u2, (5.40)

C1 = ω2
max (J1 − J2) + u3, C2 = −ω2

max (J1 − J2) + u3, (5.41)

and uk = uk (t) are the relative torque inputs applied about the principal
axes, which are assumed to be crisp signals. Therefore they are considered
to be parameters but not the system inputs. The rules are clear and can be
written in the form of metarules. For example, two of them say that the torque
S1 = A1 if the remaining angular speeds ω2 and ω3 are at the same time either
negative or positive. The torque S1 = A2 if the remaining angular speeds ω2
and ω3 are in opposition to each other, i.e. the pair (ω2, ω3) is either N2P3 or
P2N3. The conclusions A1 and A2 do not depend on the angular velocity ω1.
We can analyze all the rules in a similar way. The remaining facts concerning
the torques Sk can be explained according to the fuzzy rules.

The problem is “What does an exact conventional model of this system
look like?” In order to give an answer to this question we compute the vector
of system outputs

S = gT (ω1 (t) , ω2 (t) , ω3 (t))
(
ΩT
)−1

Q

for n = 3, by the matrix Q of the consequents of the rules given in (5.38). The
generator g for the input variables ω1, ω2 and ω3 can be obtained from (2.40)
and the inverse of the fundamental matrix for αk = βk = ωmax, (k = 1, 2, 3), is
given by (B.11) in Appendix B. We immediately obtain the following equation⎡⎢⎢⎣

S1

S2

S3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
(J2 − J3)ω2ω3 + u1

(J3 − J1)ω1ω3 + u2

(J1 − J2)ω1ω2 + u3

⎤⎥⎥⎦ .

This means that the considered rule-based P1-TS system is equivalent to⎡⎢⎢⎣
J1 0 0

0 J2 0

0 0 J3

⎤⎥⎥⎦
⎡⎢⎢⎣

ω̇1

ω̇2

ω̇3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

J1 0 0

0 J2 0

0 0 J3

⎤⎥⎥⎦
⎡⎢⎢⎣

ω1

ω2

ω3

⎤⎥⎥⎦+

⎡⎢⎢⎣
u1

u2

u3

⎤⎥⎥⎦ . (5.42)

In other words the fuzzy rules of the P1-TS system in (5.38) are equivalent
to the Euler equations for a rigid body, e.g. a rotating rigid spacecraft [89],
[111], [153].

Example 5.7. Consider the chaotic system investigated in [121], [220], de-
veloped by Chen [23]. In the original form the system is described by the
following three nonlinear differential equations
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Chen’s attractor
as MIMO

P1-TS system
�

�

�

�

�

�z1 = x(t)

z2 = y(t)

z3 = z(t)

S1 =
dx

dt

S2 =
dy

dt

S3 =
dz

dt

Fig. 5.6 The inputs and the outputs of the MIMO P1-TS system modeling the
Chen’s attractor from Example 5.7

⎧⎪⎪⎨⎪⎪⎩
ẋ = a (y − x) ,

ẏ = (c − a)x − xz + cy,

ż = xy − bz,

(5.43)

where the constants area = 35, b = 3, and c = 28.Wewill show that this system
can be exactly described by the zero-order P1-TS system in which the inputs
are z1 = x (t) ∈ [−α1, β1], z2 = y (t) ∈ [−α2, β2], and z3 = z (t) ∈ [−α3, β3],
and the outputs are S1 = ẋ (t), S2 = ẏ (t) and S3 = ż (t), as shown in Fig. 5.6.

For system generator (2.40) the equations (5.43) can be equivalently writ-
ten as

[
ẋ, ẏ, ż

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x

y

xy

z

xz

yz

xyz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−a c − a 0
a c 0
0 0 1
0 0 −b

0 −1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= gT (x, y, z)Θ. (5.44)

According to the formula (2.52) for the MIMO P1-TS systems, the funda-
mental matrix (2.41) and (5.44) we obtain

Q = ΩTΘ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a (α1 − α2) α1 (a − c − α3) − cα2 bα3 + α1α2

−a (α2 + β1) β1 (c − a + α3) − cα2 bα3 − α2β1

a (α1 + β2) α1 (a − c − α3) + cβ2 bα3 − α1β2

a (β2 − β1) β1 (c − a + α3) + cβ2 bα3 + β1β2

a (α1 − α2) α1 (a − c + β3) − cα2 α1α2 − bβ3

−a (α2 + β1) β1 (c − a − β3) − cα2 − (bβ3 + α2β1)
a (α1 + β2) α1 (a − c + β3) + cβ2 − (bβ3 + α1β2)
a (β2 − β1) β1 (c − a − β3) + cβ2 β1β2 − bβ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.45)
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The column vectors of this matrix are the conclusions of the fuzzy rules, as-
signed to the outputs S1, S2 and S3, respectively. Thus, for all points (x, y, z) of
the cuboid D3 the considered chaotic system (5.43) is equivalent to the P1-TS
system defined by 8 fuzzy rules, or equivalently - by one rule in the matrix form

If [x, y, z] is M, then [ẋ, ẏ, ż] is Q, (5.46)

where the antecedents matrix is the same as in (5.38) and the consequents ma-
trix is given by (5.45). All consequents of the fuzzy rules are real numbers de-
pending on the constants a, b, c and constraints for the variables x, y and z.

Example 5.8. Several models of virus dynamics can be found in literature
[198], [29]. Let us consider the human immunodeficiency virus (HIV) infection
and the elementary modeling of the immune system when it is subject to
HIV infection. First we show the derivation of one of the simplest traditional
models concerning the viral infection dynamics, next we obtain the same
model in the form of P1-TS system.

A) Conventional model in the form of differential equations [198], [29].
The immune system is mainly based on the so-called CD4 cells and the CD8
cells. The CD4 cells act as markers, they mark and identify the undesirable
agents as viruses, bacteria, etc. The CD8 cells act as killers. However the
CD8 cells kill only agents that have been marked beforehand by some CD4
cell. A virus attacks the basis of the immune system by infecting CD4 cells.
Infected CD4 cells act as host cells and they produce new virions. An el-
ementary model may be derived as follows. Let us denote by T (t), I (t)
and V (t) the population of healthy cells (hepatocytes susceptible to infec-
tion), infected cells, and free viruses, respectively. Assume that new CD4
cells T (t) are produced at a constant rate λ, die at per capita rate d, and
become infected at a rate proportional (with constant k) to both the virus
concentration V (t) and cell concentration T (t):

Ṫ (t) = λ − dT (t) − kV (t)T (t) . (5.47)

Infected liver cells (hepatocytes) are assumed to die at constant rate δ
per cell and are produced at the above mentioned rate kV (t)T (t):

İ (t) = −δI (t) + kV (t)T (t) . (5.48)

Upon infection, hepatocytes produce the virus at rate p per infected cell,
and the virus is cleared at rate c per virion:

V̇ (t) = −pI (t) − cV (t) . (5.49)

B) The model in the form of P1-TS system.
Assume that the P1-TS system has three inputs z1 = T (t), z2 = I (t) and
z3 = V (t) and three outputs S1 = Ṫ (t), S2 = İ (t) and S3 = V̇ (t). The
input vector is a point of the cuboid D3 = [0, β1] × [0, β2] × [0, β3]. Every
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input has assigned two membership functions of fuzzy sets; Pk (zk) =
zk/βk and Nk (zk) = 1−zk/βk for k = 1, 2, 3. Thus, Nk denotes small (or
near zero) and Pk - big (or almost maximal). For the output vector S =(
Ṫ (t) , İ (t) , V̇ (t)

)
, according to the equations (5.47)-(5.49) we formulate

the following system of fuzzy rules in the matrix form:

If [T, I, V ] is M, then S is Q,

where the antecedents matrix M is the same as in (5.38) and the conse-
quents matrix

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0
λ − dβ1 0 0

λ −δβ2 −pβ2

λ − dβ1 −δβ2 −pβ2

λ 0 −cβ3

λ − β1 (d + kβ3) kβ1β3 −cβ3

λ −δβ2 − (cβ3 + pβ2)
λ − β1 (d + kβ3) kβ1β3 − δβ2 − (cβ3 + pβ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Observe that both fuzzy sets and all fuzzy rules can be easily interpreted.
For example the first two fuzzy rules say that, if the number of infected cells
(I) and free viruses (V ) is small, then independently of the healthy cells pop-
ulation size (T ), both I and V are constant (their derivatives are zero).

5.3 Examples of P1-TS Systems with Four and More
Inputs

General formulas for the P1-TS systems with four and more inputs are not
difficult to obtain by using symbolic computations using the appropriate soft-
ware, e.g. Maple, Mathematica, MuPAD, etc. [30]. However, all matrices be-
come huge and take up a lot of space. Therefore, instead of the general case
we will consider several examples. Let us begin with a simple one.

Example 5.9. The P1-TS system with four inputs zk ∈ [−αk, βk] = [0, b],
(b > 0), for k = 1, 2, 3, 4 and one output S, is given by the following metarules:

M1 : If z1 is P1 and z2 is N2 and z4 is N4, then S = k,
M2 : If z1 is N1 and z2 is P2 and z4 is P4, then S = k,
M3 : If z3 is P3, then S = k,
M4 : otherwise S = 0.

Our goal is to compute the crisp system output and explain the results.
The above metarules we rewrite in Table 5.7, where q1, . . . , q16 denote the
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Table 5.7 Look-up-table for the P1-TS fuzzy system considered in Example 5.9

z1, z2 \ z3, z4 →
↓ N3N4 N3P4 P3P4 P3N4

N1N2 q1 = 0 q9 = 0 q13 = k q5 = k

N1P2 q3 = 0 q11 = k q15 = k q7 = k

P1P2 q4 = 0 q12 = 0 q16 = k q8 = k

P1N2 q2 = k q10 = 0 q14 = k q6 = k

subsequent consequent of the rules. Next, for n = 4 we compute the funda-
mental matrix, according to (B.16)-(B.20) given in Appendix B

Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 b 0 b 0 b 0 b 0 b 0 b 0 b 0 b
0 0 b b 0 0 b b 0 0 b b 0 0 b b
0 0 0 b2 0 0 0 b2 0 0 0 b2 0 0 0 b2

0 0 0 0 b b b b 0 0 0 0 b b b b
0 0 0 0 0 b2 0 b2 0 0 0 0 0 b2 0 b2

0 0 0 0 0 0 b2 b2 0 0 0 0 0 0 b2 b2

0 0 0 0 0 0 0 b3 0 0 0 0 0 0 0 b3

0 0 0 0 0 0 0 0 b b b b b b b b
0 0 0 0 0 0 0 0 0 b2 0 b2 0 b2 0 b2

0 0 0 0 0 0 0 0 0 0 b2 b2 0 0 b2 b2

0 0 0 0 0 0 0 0 0 0 0 b3 0 0 0 b3

0 0 0 0 0 0 0 0 0 0 0 0 b2 b2 b2 b2

0 0 0 0 0 0 0 0 0 0 0 0 0 b3 0 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 b3 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From Table 5.7, we read the successive conclusions of the rules

q = [0, k, 0, 0, k, k, k, k, 0, 0, k, 0, k, k, k, k]T .

According to equation (2.44) we obtain

θ = b−3 [0, b2k, 0, −bk, b2k, −bk, 0, k, 0, −bk, bk, 0, 0, k, −k, 0
]T

,

and for the generator (B.15) given in Appendix B, the system output is

S (z1, z2, z3, z4) = θTg (z1, z2, z3, z4)

=
k

b3

(
z1 (z3 − b) (z4 − b) + b2z3 + z2 (z1 − z4) (z3 − b)

)
.

(5.50)

For b = k = 1 we have to do with the P1-TS fuzzy system, which models a
function defined in the multi-valued logic
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Table 5.8 Look-up-table for the P1-TS fuzzy system as Karnaugh map

z1, z2 \ z3, z4 →
↓ 00 01 11 10

00 0 0 1 1

01 0 1 1 1

11 0 0 1 1

10 1 0 1 1

S (z1, z2, z3, z4) = z3 + z1 (z3 − 1) (z4 − 1) + z2 (z3 − 1) (z1 − z4) (5.51)

and Table 5.7 can be viewed as the generalized Karnaugh map (see Table 5.8).
One can check that the function (5.51) takes the following values in the

vertices of the hypercube [0, 1]4:

S (0, 0, 0, 0) = 0, S (0, 0, 0, 1) = 0, S (0, 0, 1, 0) = 1, S (0, 0, 1, 1) = 1,

S (0, 1, 0, 0) = 0, S (0, 1, 0, 1) = 1, S (0, 1, 1, 0) = 1, S (0, 1, 1, 1) = 1,

S (1, 0, 0, 0) = 1, S (1, 0, 0, 1) = 0, S (1, 0, 1, 0) = 1, S (1, 0, 1, 1) = 1,

S (1, 1, 0, 0) = 0, S (1, 1, 0, 1) = 0, S (1, 1, 1, 0) = 1, S (1, 1, 1, 1) = 1.

Thus, the above values correspond with the ones given in Table 5.8. Now the
interpretation of the metarules, individual rules, and the function to which
the P1-TS system is equivalent are extremely simple.

In some cases of the nonlinear systems, it is desirable to transform the original
system variables into other ones. To exemplify this idea let us consider a
magnetic suspension system.

Example 5.10. Magnetic suspension systems (see Fig. 5.7) are a familiar
setup that is receiving increasing attention in applications where it is essen-
tial to reduce friction force caused by mechanical contact. Such systems are
commonly encountered in high-speed trains and magnetic bearings, as well
as in gyroscopes and accelerometers. The conventional model in the form of
differential equations derived e.g. in [89], [134] is as follows

ẋ1 = x2 ,

ẋ2 = g − k

m
x2 − λµx2

3

2m (1 + µx1)
2 ,

ẋ3 =
1 + µx1

λ

(
−Rx3 +

λµx2x3

(1 + µx1)
2 + v

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(5.52)

The state variables are x1 ≥ 0 - the vertical (downward) position of the
ball optically measured [200] from a reference point [m], x2 = ẋ1 [m / s] is
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�
�

x1
m

��
��

u(t)−
+

�x3
R

Fig. 5.7 Magnetic suspension system

the ball speed and x3 is the electric current of the electromagnet [A]. The
system constants are g - the acceleration due to gravity

[
m / s2

]
, m - the

mass of the ball [kg], k - the viscous friction coefficient [N / (m / s)] and R -
the series resistance of the circuit [Ω]. The quantities µ [1/ m] and λ [H] are
positive constants such that the inductance of the electromagnet depends on
the position x1 of the ball as follows

L (x1) =
λ

1 + µx1
. (5.53)

The control signal u (t) is the voltage. We assume real restrictions on the
original system variables. The vertical position of the ball 0 ≤ xL

1 ≤ x1 (t) ≤
xH

1 , where x1 (t) = 0 if the ball is next to the coil, the ball speed −xH
2 ≤

x2 (t) ≤ xH
2 and the current in the electric circuit −xH

3 ≤ x3 (t) ≤ xH
3 . In

order to obtain a P1-TS system let us define new state variables⎡⎢⎢⎣
w1 (t)

w2 (t)

w3 (t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x1 (t)

x2 (t)

x3 (t) / (1 + µx1 (t))

⎤⎥⎥⎦ , ∀ t ≥ 0. (5.54)

Thus, w3 (t) is the electric current related to the ball position. Observe that
the transformation (5.54) is one-to-one. Thus, knowing the signals w1 (t),
w2 (t) and w3 (t), we immediately obtain the solution x1 (t), x2 (t) and x3 (t)
of the original system (5.52) and vice-versa. Suppose we change the variables
according to (5.54). Thus,

ẇ1 = ẋ1 = x2 = w2,

and

ẇ2 = ẋ2 = g − k

m
x2 − λµ

2m

(
x3

1 + µx1

)2

= g − k

m
w2 − λµ

2m
w2

3 .
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Taking into account the third variable from (5.54) we have

ẇ3 =
ẋ3 (1 + µx1) − x3µẋ1

(1 + µx1)
2 .

According to the third equation of (5.52) we obtain

ẇ3 =
1

(1 + µx1)
(1 + µx1)

λ

(
−Rx3 +

λµx2x3

(1 + µx1)
2 + u

)
− x3µx2

(1 + µx1)
2

=
1
λ

(−Rx3 + u) .

From the equality x3 = (1 + µx1)w3 we finally obtain the system of the
differential equations⎡⎢⎢⎢⎢⎣

ẇ1

ẇ2

ẇ3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
w2

g − k

m
w2 − λµ

2m
w2

3

−R

λ
w3 − R

λ
µw1w3 +

u

λ

⎤⎥⎥⎥⎦ , (5.55)

which is equivalent to the original one (5.52).
One can express the system (5.55) by 27 highly interpretable fuzzy rules

for the P2-TS system with the inputs w1, w2 and w3. In order to reduce the
number of rules, we will show that the same system can be exactly described
by the zero-order P1-TS system with four inputs and three outputs. The
inputs and the outputs of the P1-TS system we define as shown in Fig. 5.8:

• z1 = w1 (t) ∈ [−α1, β1], where α1 ≤ 0 and β1 = xH
1 ,

• z2 = w2 (t) ∈ [−α2, β2], where α2 = β2 = xH
2 > 0,

• z3 =w3 (t) ∈ [−α3, β3], by −α3 =−xH
3 /
(
1 + µxL

1
)

and β3 =xH
3 /
(
1 + µxL

1
)
,

• z4 = w2
3 (t) ∈ [−α4, β4], where α4 = 0 and β4 = xH

3 /
(
1 + µxL

1
)2,

• S1 = ẇ1 (t), S2 = ẇ2 (t) and S3 = ẇ3 (t).

P1-TS system

�

�

�

� �

�

�z1 = w1(t)

z2 = w2(t)

z3 = w3(t)

z4 = w2
3(t)

S1 =
dw1

dt

S2 =
dw2

dt

S3 =
dw3

dt

Fig. 5.8 Inputs and outputs of the P1-TS as a model of the magnetic suspension
system
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We assume that the control action u is viewed as a crisp function and no
fuzzy sets are assigned to u. The system generator g (z1, z2, z3, z4) is given
by (B.15) in Appendix B. Thus,

gT
(
w1, w2, w3, w

2
3
)

= [1, w1, w2, w1w2, w3, w1w3, w2w3, w1w2w3, w
2
3 ,

w1w
2
3 , w2w

2
3 , w1w2w

2
3 , w

3
3 , w1w

3
3 , w2w

3
3 , w1w2w

3
3 ].

For such generator the equations (5.55) can be equivalently written as⎡⎣ ẇ1
ẇ2
ẇ3

⎤⎦ = ΘTg
(
w1, w2, w3, w

2
3
)
, (5.56)

where

ΘT =

⎡⎢⎢⎢⎣
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

g 0 − k

m
0 0 0 0 0 − λµ

2m
0 0 0 0 0 0 0

u

λ
0 0 0 − R

λ
− Rµ

λ
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦ .

(5.57)

For n = 4 the fundamental matrix Ω is given by (B.16)-(B.20) in Appendix
B. According to the formula (2.52) and the matrix of function coefficients
(5.57), we immediately obtain the matrix Q of the consequents of the fuzzy
rules, containing three column vectors as the conclusions of the fuzzy rules,
assigned to the outputs S1-S3. By α1 = α4 = 0 we obtain the following
system of fuzzy rules

If [z1, z2, z3, z4] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3 N4
P1 N2 N3 N4
N1 P2 N3 N4
P1 P2 N3 N4
N1 N2 P3 N4
P1 N2 P3 N4
N1 P2 P3 N4
P1 P2 P3 N4
N1 N2 N3 P4
P1 N2 N3 P4
N1 P2 N3 P4
P1 P2 N3 P4
N1 N2 P3 P4
P1 N2 P3 P4
N1 P2 P3 P4
P1 P2 P3 P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, then [ẇ1, ẇ2, ẇ3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α2 B1 C1
−α2 B1 C2

β2 B2 C1
β2 B2 C2

−α2 B1 C3
−α2 B1 C4

β2 B2 C3
β2 B2 C4

−α2 B3 C1
−α2 B3 C2

β2 B4 C1
β2 B4 C2

−α2 B3 C3
−α2 B3 C4

β2 B4 C3
β2 B4 C4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.58)
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where
B1 =

kα2 + gm

m
, B2 =

−kβ2 + gm

m
, (5.59)

B3 =
2kα2 + 2gm − λµβ4

2m
, B4 =

−2kβ2 + 2gm − λµβ4

2m
, (5.60)

C1 =
u + Rα3

λ
, C2 =

u + Rα3 + Rµβ1α3

λ
, (5.61)

C3 =
u − Rβ3

λ
, C4 =

u − Rβ3 − Rµβ1β3

λ
. (5.62)

Thus, the consequents of the fuzzy rules depend on the system constants g,
m, k, R, the crisp control action u = u (t) and the location of the hypercuboid
D4 in the space R

4.
As one can see, the magnetic suspension system described by the differen-

tial equations (5.52) with original variables (x1, x2, x3) is equivalent to (5.55)
by new variables (w1, w2, w3) associated with the original ones by (5.54). This
highly nonlinear system is exactly modeled by the P1-TS system defined by
16 fuzzy rules.

Example 5.11. Taking into account Example 5.10 we will show that we can
simplify the modeling process by combining various models. First of all, it
is not necessary to model the first equation of (5.55) at all, since it is too
simple. The second equation of (5.55) can be modeled by P2-TS system with
two inputs w2 and w3, since it has a very simple interpretation. The third
equation of (5.55) can be modeled by P1-TS system with two inputs w1 and
w3, because it has a very simple interpretation and a low number of fuzzy
rules (see Fig. 5.9).

For the input variables w2 and w3 the membership functions of fuzzy sets are
Nk (wk), Zk (wk) and Pk (wk), given by (4.24)-(4.26), with σk = (−αk + βk) /2
for k = 2, 3, assuming some parameters λk for the quadratic membership func-
tions, say λ2 = λ3 = 1. According to (4.33) we have the generator

g2 (w2, w3) =
[
1, w2, w

2
2 , w3, w2w3, w

2
2w3, w

2
3 , w2w

2
3 , w

2
2w

2
3
]T

, (5.63)

P1-TS system

P2-TS system

Identity

��
�

��	
��

�
��	











� �

�

�w1

w2

w3

S1 =
dw1

dt

S2 =
dw2

dt

S3 =
dw3

dt

Fig. 5.9 The architecture of the rule-based system from Example 5.11
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and on the basis of (4.50) after changing the names of the boundaries of
intervals from (α1, α2, β1, β2) into (α2, α3, β2, β3), we obtain the fundamental
matrix for the P2-TS system

ΩT
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α2 α2
2 −α3 α2α3 −α2

2α3 α2
3 −α2α

2
3 α2

2α
2
3

1 σ2 −α2β2 −α3 −σ2α3 α2α3β2 α2
3 σ2α

2
3 −α2α

2
3β2

1 β2 β2
2 −α3 −α3β2 −α3β

2
2 α2

3 α2
3β2 α2

3β
2
2

1 −α2 α2
2 σ3 −α2σ3 α2

2σ3 −α3β3 α2α3β3 −α2
2α3β3

1 σ2 −α2β2 σ3 σ2σ3 −α2β2σ3 −α3β3 − σ2α3β3 α2α3β2β3

1 β2 β2
2 σ3 β2σ3 β2

2σ3 −α3β3 −α3β2β3 −α3β
2
2β3

1 −α2 α2
2 β3 −α2β3 α2

2β3 β2
3 −α2β

2
3 α2

2β
2
3

1 σ2 −α2β2 β3 σ2β3 −α2β2β3 β2
3 σ2β

2
3 −α2β2β

2
3

1 β2 β2
2 β3 β2β3 β2

2β3 β2
3 β2β

2
3 β2

2β2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.64)
For the output variable ẇ2, the vector of the function coefficients is given by

θ =
[
g, − k

m
, 0, 0, 0, 0, − λµ

2m
, 0, 0

]T
.

For the given Ω2 and θ, according to (4.37) we obtain the conclusions of the
fuzzy rules; q = ΩT

2 θ. Finally, we obtain the following system of rules for the
P2-TS subsystem

If [w2, w3] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2

Z1 N2

P1 N2

N1 Z2

Z1 Z2

P1 Z2

N1 P2

Z1 P2

P1 P2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, then [ẇ2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g + kα2/m − λµα2
3/ (2m)

g − kσ2/m − λµα2
3/ (2m)

g − kβ2/m − λµα2
3/ (2m)

g + kα2/m + λµα3β3/ (2m)

g − kσ2/m + λµα3β3/ (2m)

g − kβ2/m + λµα3β3/ (2m)

g + kα2/m − λµβ2
3/ (2m)

g − kσ2/m − λµβ2
3/ (2m)

g − kβ2/m − λµβ2
3/ (2m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

that exactly models the second equation of (5.55). The values αk and βk for k =
2, 3 are the same as in Example 5.10. A model building for the third equation
in (5.55) in the form of the P1-TS system is simple and will be skipped.

In the next sections we will consider examples of modeling more complicated
dynamical systems.
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5.3.1 Low Order Atmospheric Circulation Model

Consider a low order atmospheric circulation model described in [122], [174]
in the form of the following three nonlinear differential equations⎧⎨⎩

ẋ = −ax − y2 − z2 + aF,

ẏ = −y + xy − bxz + G,

ż = −z + bxy + xz,
(5.65)

where x represents the strength of the globally averaged westerly current, and
y, z are the strength of the cosine and sine phases of a chain of superposed
waves. The unit of the variable t is equal to the damping time of the waves,
estimated to be five days. The terms in F and G represent thermal forcing
terms, and the parameter b stands for the strength of the advection of the
waves by the westerly current. Here, F , G are treated as control parameters,
with a = 1/4 and b = 4 [174].

We will show that this system can be exactly described by the zero-
order 5-input and 3-output P1-TS system, in which the inputs are z1 =
x (t) ∈ [−α1, β1], z2 = y (t) ∈ [−α2, β2], z3 = y2 (t) ∈ [−α3, β3], by
−α3 = min

{
α2

2, β
2
2
}
, β3 = max

{
α2

2, β
2
2
}
, z4 = z ∈ [−α4, β4], and z5 =

z2 ∈ [−α5, β5], where −α5 = min
{
α2

4, β
2
4
}
, β5 = max

{
α2

4, β
2
4
}
. Additionally

we add two controls u1 = aF and u2 = G. There are three outputs of the
system: S1 = ẋ (t), S2 = ẏ (t) and S3 = ż (t) as shown in Fig. 5.10.

The generator for the P1-TS system with n = 5 inputs is as follows

g (z1, z2, z3, z4, z5) = [1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3, z4, z1z4, z2z4,
z1z2z4, z3z4, z1z3z4, z2z3z4, z1z2z3z4, z5, z1z5,
z2z5, z1z2z5, z3z5, z1z3z5, z2z3z5, z1z2z3z5, z4z5,
z1z4z5, z2z4z5, z1z2z4z5, z3z4z5, z1z3z4z5,
z2z3z4z5, z1z2z3z4z5].

(5.66)
Thus, the equations (5.65) can be equivalently written as⎡⎣ ẋ

ẏ
ż

⎤⎦ = ΘT g
(
x, y, y2, z, z2) , (5.67)

Athmospheric
circulation model

as MIMO
P1-TS system

�
�
�
�
� �

�

�z1 = x(t)

z2 = y(t)

z3 = y2(t)

z4 = z(t)

z5 = z2(t)

S1 =
dx

dt

S2 =
dy

dt

S3 =
dz

dt

Fig. 5.10 The inputs and the outputs of the MIMO P1-TS system modeling the
athmospheric circulation
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where

ΘT =

⎡⎣u1 −a 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 · · · 0
u2 0 −1 1 0 0 0 0 0 −b 0 0 0 0 0 0 0 0 0 · · · 0
0 0 0 b 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 · · · 0

⎤⎦ . (5.68)

The fundamental matrix contains 1024 elements and can be obtained using
recursion (2.43):

Ω5 =

[
Ω4 Ω4

−α5Ω4 β5Ω4

]
∈ R

32×32, (5.69)

where Ω4 is given by (B.16)-(B.20) in Appendix B. According to the formula
for MIMO P1-TS systems (2.52), the fundamental matrix for n = 5 and
(5.68) we obtain the matrix

Q = ΩTΘ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qa

Qb

Qc

Qd

Qe

Qf

Qg

Qh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.70)

where

Qa =

⎡⎢⎣u1 + α3 + α5 + aα1, u2 + α2 + α1α2 − bα1α4, α4 + α1α4 + bα1α2
u1 + α3 + α5 − aβ1, u2 + α2 − α2β1 + bβ1α4, α4 − β1α4 − bα2β1
u1 + α3 + α5 + aα1, u2 − β2 − α1β2 − bα1α4, α4 + α1α4 − bα1β2
u1 + α3 + α5 − aβ1, u2 − β2 + β1β2 + bβ1α4, α4 − β1α4 + bβ1β2

⎤⎥⎦ ,

(5.71)

Qb =

⎡⎢⎣u1 − β3 + α5 + aα1, u2 + α2 + α1α2 − bα1α4, α4 + α1α4 + bα1α2
u1 − β3 + α5 − aβ1, u2 + α2 − α2β1 + bβ1α4, α4 − β1α4 − bα2β1
u1 − β3 + α5 + aα1, u2 − β2 − α1β2 − bα1α4, α4 + α1α4 − bα1β2
u1 − β3 + α5 − aβ1, u2 − β2 + β1β2 + bβ1α4, α4 − β1α4 + bβ1β2

⎤⎥⎦ ,

(5.72)

Qc =

⎡⎢⎣u1 + α3 + α5 + aα1, u2 + α2 + α1α2 + bα1β4, −β4 − α1β4 + bα1α2
u1 + α3 + α5 − aβ1, u2 + α2 − α2β1 − bβ1β4, −β4 + β1β4 − bα2β1
u1 + α3 + α5 + aα1, u2 − β2 − α1β2 + bα1β4, −β4 − α1β4 − bα1β2
u1 + α3 + α5 − aβ1, u2 − β2 + β1β2 − bβ1β4, −β4 + β1β4 + bβ1β2

⎤⎥⎦ ,

(5.73)

Qd =

⎡⎢⎣u1 − β3 + α5 + aα1, u2 + α2 + α1α2 + bα1β4, −β4 − α1β4 + bα1α2
u1 − β3 + α5 − aβ1, u2 + α2 − α2β1 − bβ1β4, −β4 + β1β4 − bα2β1
u1 − β3 + α5 + aα1, u2 − β2 − α1β2 + bα1β4, −β4 − α1β4 − bα1β2
u1 − β3 + α5 − aβ1, u2 − β2 + β1β2 − bβ1β4, −β4 + β1β4 + bβ1β2

⎤⎥⎦
(5.74)
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Qe =

⎡⎢⎢⎣
u1 + α3 − β5 + aα1, u2 + α2 + α1α2 − bα1α4, α4 + α1α4 + bα1α2
u1 + α3 − β5 − aβ1, u2 + α2 − α2β1 + bβ1α4, α4 − β1α4 − bα2β1
u1 + α3 − β5 + aα1, u2 − β2 − α1β2 − bα1α4, α4 + α1α4 − bα1β2
u1 + α3 − β5 − aβ1, u2 − β2 + β1β2 + bβ1α4, α4 − β1α4 + bβ1β2

⎤⎥⎥⎦ ,

(5.75)

Qf =

⎡⎢⎢⎣
u1 − β3 − β5 + aα1, u2 + α2 + α1α2 − bα1α4, α4 + α1α4 + bα1α2
u1 − β3 − β5 − aβ1, u2 + α2 − α2β1 + bβ1α4, α4 − β1α4 − bα2β1
u1 − β3 − β5 + aα1, u2 − β2 − α1β2 − bα1α4, α4 + α1α4 − bα1β2
u1 − β3 − β5 − aβ1, u2 − β2 + β1β2 + bβ1α4, α4 − β1α4 + bβ1β2

⎤⎥⎥⎦ ,

(5.76)

Qg =

⎡⎢⎢⎣
u1 + α3 − β5 + aα1, u2 + α2 + α1α2 + bα1β4, −β4 − α1β4 + bα1α2
u1 + α3 − β5 − aβ1, u2 + α2 − α2β1 − bβ1β4, −β4 + β1β4 − bα2β1
u1 + α3 − β5 + aα1, u2 − β2 − α1β2 + bα1β4, −β4 − α1β4 − bα1β2
u1 + α3 − β5 − aβ1, u2 − β2 + β1β2 − bβ1β4, −β4 + β1β4 + bβ1β2

⎤⎥⎥⎦ ,

(5.77)

Qh =

⎡⎢⎣u1 − β3 − β5 + aα1, u2 + α2 + α1α2 + bα1β4, −β4 − α1β4 + bα1α2
u1 − β3 − β5 − aβ1, u2 + α2 − α2β1 − bβ1β4, −β4 + β1β4 − bα2β1
u1 − β3 − β5 + aα1, u2 − β2 − α1β2 + bα1β4, −β4 − α1β4 − bα1β2
u1 − β3 − β5 − aβ1, u2 − β2 + β1β2 − bβ1β4, −β4 + β1β4 + bβ1β2

⎤⎥⎦ .

(5.78)

The above submatrices contain three column vectors as the conclusions
of the fuzzy rules, assigned to the outputs S1, S2 and S3, respectively. Thus,
the considered system (5.65) is equivalent to the P1-TS one defined by 32
fuzzy rules in the matrix form

If
[
x, y, y2, z, z2] is M, then [ẋ, ẏ, ż] is Q, (5.79)

where the antecedents matrix M containing the labels of the fuzzy sets has
the following structure

M =

⎡⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3 N4 N5
P1 N2 N3 N4 N5
N1 P2 N3 N4 N5
P1 P2 N3 N4 N5
...

...
...

...
...

P1 P2 P3 P4 P5

⎤⎥⎥⎥⎥⎥⎥⎦
32×5

, (5.80)

and the consequents matrix is given by (5.70)-(5.78). All consequents of
the fuzzy rules are real numbers depending on the given constants a, b,
the control parameters F and G, and “−αk” and “βk”, (k = 1, . . . , 5), as
stated above.
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5.3.2 Induction Motor Model

Using the theory of P1-TS systems we can exactly model some class of highly
nonlinear fifth-order dynamical systems. Consider the following continuous-
time model of an induction motor developed in [133], which includes both
electrical and mechanical dynamics under the assumption of linear magnetic
circuits

disa

dt
=

MRr

σLsL2
r

ψra +
npM

σLsLr
ωψrb −

(
M2Rr + L2

rRs

σLsL2
r

)
isa +

1
σLs

usa ,

disb

dt
= − npM

σLsLr
ωψra +

MRr

σLsL2
r

ψrb −
(

M2Rr + L2
rRs

σLsL2
r

)
isb +

1
σLs

usb ,

dψra

dt
= −Rr

Lr
ψra − npωψrb +

Rr

Lr
Misa ,

dψrb

dt
= npωψra − Rr

Lr
ψrb +

Rr

Lr
Misb ,

dω

dt
=

npM

JLr
(ψraisb − ψrbisa) − TL

J
,

where the subscripts s and r stand for stator and rotor, (a,b) denote the
components of a vector with respect to a fixed stator reference frame. The
meanings of the symbols are as follows:

is - stator current [A],
ψs - stator flux linkage [Wb],
ir - rotor current [A],
us - stator voltage input to the machine [V],
ψr - rotor flux linkage, (e.g. 1.3 [Wb]) rated,
Rs - stator resistance, (e.g. 0.18 [Ω]),
Rr - rotor resistance, (e.g. 0.15 [Ω]),
M - mutual inductance, (e.g. 0.068 [H]),
Ls - stator inductance, (e.g. 0.0699 [H]),
Lr - rotor inductance, (e.g. 0.0699 [H]),
np - number of pole pairs of the induction machine, (e.g. np = 1),
ω - the angular speed of the rotor, (e.g. 220 [rad / s]) rated,
TL - load torque, (e.g. 70 [Nm]) rated,
J - rotor inertia, (e.g. 0.0586

[
kg m2

]
).

After substituting the constants

Rr

Lr
=

1
Tr

, σ = 1 − M2

LsL2
r

, K =
M

σLsLr
, γ =

Rs

σLs
+

RrM
2

σLsL2
r

, np = p,
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we can write the continuous-time state equations

dz1

dt
= −γz1 (t) +

K

Tr
z3 (t) + pKz4 (t) z5 (t) +

1
σLs

usa (t)

dz2

dt
= −γz2 (t) − pKz5 (t) z3 (t) +

K

Tr
z4 (t) +

1
σLs

usb (t)

dz3

dt
=

M

Tr
z1 (t) − 1

Tr
z3 (t) − pz5 (t) z4 (t)

dz4

dt
=

M

Tr
z2 (t) − 1

Tr
z4 (t) + pz5 (t) z3 (t)

dz5

dt
=

pM

JLr
(z3 (t) z2 (t) − z4 (t) z1 (t)) − TL

J
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.81)

or using Euler discretization of step size h, the discrete-time state equations,
as in [17], [109]

z1 (k + 1) = z1 (k)+h

(
−γz1 (k) +

K

Tr
z3 (k) + pKz4 (k) z5 (k) +

usa (k)
σLs

)
,

z2 (k + 1) = z2 (k)+h

(
−γz2 (k) − pKz5 (k) z3 (k) +

K

Tr
z4 (k) +

usb (k)
σLs

)
,

z3 (k + 1) = z3 (k) + h

(
M

Tr
z1 (k) − 1

Tr
z3 (k) − pz5 (k) z4 (k)

)
,

z4 (k + 1) = z4 (k) + h

(
M

Tr
z2 (k) + pz5 (k) z3 (k) − 1

Tr
z4 (k)

)
,

z5 (k + 1) = z5 (k) + h

(
pM

JLr
(z3 (k) z2 (k) − z4 (k) z1 (k)) − TL

J

)
.

The state equations of the induction motor in the continuous or discrete-time
form, can be exactly modeled by the MIMO P1-TS rule-based system with
the outputs S1, . . . , S5. For the continuous model they are the derivatives of
state variables (see Fig. 5.11)

S1 =
disa

dt
, S2 =

disb

dt
, S3 =

dψra

dt
, S4 =

dψrb

dt
, S5 =

dω

dt
.

The inputs of the P1-TS system include both all five state variables

isa (t) = z1 (t) ∈ [−α1, β1] , isb (t) = z2 (t) ∈ [−α2, β2] ,

ψra (t) = z3 (t) ∈ [−α3, β3] , ψrb (t) = z4 (t) ∈ [−α4, β4] ,



134 5 Comprehensive Study and Applications of P1-TS Systems

MIMO
P1-TS system

(induction motor)

�
�
�
�
�
�
�

�

�

�

�

�

z1 = isa

z2 = isb

z3 = ψra

z4 = ψrb

z5 = ω

(u1)

(u2)

S1 =
disa

dt

S2 =
disb

dt

S3 =
dψra

dt

S4 =
dψrb

dt

S5 =
dω

dt

Fig. 5.11 MIMO zero-order P1-TS system as an exact continuous-time model of
an induction motor

ω (t) = z5 (t) ∈ [−α5, β5] ,

and, additionally, two control signals

u1 (t) = (σLs)
−1 usa (t) , u2 (t) = (σLs)

−1 usb (t) .

In such case the number of rules would be 128. We can substantially reduce
the number of rules by reducing the inputs into the state variables, because
the state derivatives of the current (velocities of isa and isb, respectively)
depend linearly on the control signals u1 and u2. Thus, formally u1 and u2
are not considered as variables of the “If” parts of the fuzzy rules, but as the
parameters - in contrast to the variables z1, . . . , z5, (Fig. 5.11).

As a result we will consider 25 = 32 fuzzy rules. In order to avoid mistakes
we can write down the successive vertices of the hypercuboid D5:

γ00000 = γ1 = (−α1, −α2, −α3, −α4, −α5) ,

γ10000 = γ2 = (β1, −α2, −α3, −α4, −α5) ,

γ01000 = γ3 = (−α1, β2, −α3, −α4, −α5) ,

γ11000 = γ4 = (β1, β2, −α3, −α4, −α5) ,

γ00100 = γ5 = (−α1, −α2, β3, −α4, −α5) ,

γ10100 = γ6 = (β1, −α2, β3, −α4, −α5) ,

γ01100 = γ7 = (−α1, β2, β3, −α4, −α5) ,

γ11100 = γ8 = (β1, β2, β3, −α4, −α5) ,

γ00010 = γ9 = (−α1, −α2, −α3, β4, −α5) ,

γ10010 = γ10 = (β1, −α2, −α3, β4, −α5) ,

γ01010 = γ11 = (−α1, β2, −α3, β4, −α5) ,

γ11010 = γ12 = (β1, β2, −α3, β4, −α5) ,

γ00110 = γ13 = (−α1, −α2, β3, β4, −α5) ,

γ10110 = γ14 = (β1, −α2, β3, β4, −α5) ,
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γ01110 = γ15 = (−α1, β2, β3, β4, −α5) ,

γ11110 = γ16 = (β1, β2, β3, β4, −α5) ,

γ00001 = γ17 = (−α1, −α2, −α3, −α4, β5) ,

γ10001 = γ18 = (β1, −α2, −α3, −α4, β5) ,

γ01001 = γ19 = (−α1, β2, −α3, −α4, β5) ,

γ11001 = γ20 = (β1, β2, −α3, −α4, β5) ,

γ00101 = γ21 = (−α1, −α2, β3, −α4, β5) ,

γ10101 = γ22 = (β1, −α2, β3, −α4, β5) ,

γ01101 = γ23 = (−α1, β2, β3, −α4, β5) ,

γ11101 = γ24 = (β1, β2, β3, −α4, β5) ,

γ00011 = γ25 = (−α1, −α2, −α3, β4, β5) ,

γ10011 = γ26 = (β1, −α2, −α3, β4, β5) ,

γ01011 = γ27 = (−α1, β2, −α3, β4, β5) ,

γ11011 = γ28 = (β1, β2, −α3, β4, β5) ,

γ00111 = γ29 = (−α1, −α2, β3, β4, β5) ,

γ10111 = γ30 = (β1, −α2, β3, β4, β5) ,

γ01111 = γ31 = (−α1, β2, β3, β4, β5) ,

γ11111 = γ32 = (β1, β2, β3, β4, β5) .

According to (2.48)-(2.50) the system of rules has the following form

If [z1, z2, z3, z4, z5] is M, then [S1, S2, S3, S4, S5] is Q, (5.82)

where the antecedents matrix is the same as in (5.80) and the consequents
matrix Q contains 5 columns, where every column qj corresponds to the
output Sj of the rule-based system

Q = [q1,q2,q3,q4,q5] =

⎡⎢⎢⎢⎢⎢⎢⎣

q1,1 q1,2 q1,3 q1,4 q1,5
q2,1 q2,2 q2,3 q2,4 q2,5
q3,1 q3,2 q3,3 q3,4 q3,5
q4,1 q4,2 q4,3 q4,4 q4,5
...

...
...

...
...

q32,1 q32,2 q32,3 q32,4 q32,5

⎤⎥⎥⎥⎥⎥⎥⎦ .

According to Theorem 2.10 the matrix of crisp outputs S (z) = [S1, . . . , S5]
can be computed by the formula S (z) = gT (z)

(
ΩT
)−1

Q, where the system
generator g (z) is given by (5.66) and Q by (2.52). The fundamental matrix
Ω for n = 5 can be computed recursively according to (5.69). The matrix
Θ contains 5 columns. Each column is associated with the appropriate crisp
system output Sj as follows
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Θ = [θ1, θ2, θ3, θ4, θ5] ∈ R
32×5,

θj = [θj,00000, θj,10000, θj,01000, . . . , θj,11111]
T ∈ R

32, j = 1, . . . , 5, (5.83)

where

θT
1 = [

1
σLs

uas (t) , −γ,
1

σLs
, 0,

K

Tr
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, pK, 0, 0, 0, 0, 0, 0, 0] ,

θT
2 = [

1
σLs

ubs (t) , 0, −γ, 0, 0, 0, 0, 0,
K

Tr
, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, −pK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

θT
3 = [0,

M

Tr
, 0, 0, − 1

Tr
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, −p, 0, 0, 0, 0, 0, 0, 0] ,

θT
4 = [0, 0,

M

Tr
, 0, 0, 0, 0, 0, − 1

Tr
, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,

θT
5 = [−TL

J
, 0, 0, 0, 0, 0,

pM

JLr
, 0, 0, − pM

JLr
, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

Finally, we give a simple procedure of how to compute the consequents of the
fuzzy “If-then” rules as elements qi,j of the matrix Q:

qi,j = gT (γi)θT
j , i = 1, . . . , 32, j = 1, . . . , 5.

According to the antecedents matrix (5.80) we have the first three rules as
follows:

R1 : If z1 is N1 and z2 is N2 and z3 is N3 and z4 is N4 and z5 is N5, then
disa

dt
= θT

1 g (γ00000),
disb

dt
= θT

2 g (γ00000),
dψra

dt
= θT

3 g (γ00000),

dψrb

dt
= θT

4 g (γ00000),
dω

dt
= θT

5 g (γ00000),

R2 : If z1 is P1 and z2 is N2 and z3 is N3 and z4 is N4 and z5 is N5, then
disa

dt
= θT

1 g (γ10000),
disb

dt
= θT

2 g (γ10000),
dψra

dt
= θT

3 g (γ10000),

dψrb

dt
= θT

4 g (γ10000),
dω

dt
= θT

5 g (γ10000),
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R3 : If z1 is N1 and z2 is P2 and z3 is N3 and z4 is N4 and z5 is N5, then
disa

dt
= θT

1 g (γ01000),
disb

dt
= θT

2 g (γ01000),
dψra

dt
= θT

3 g (γ01000),

dψrb

dt
= θT

4 g (γ01000),
dω

dt
= θT

5 g (γ01000),

...
and the last rule:

R32 : If z1 is P1 and z2 is P2 and z3 is P3 and z4 is P4 and z5 is P5, then
disa

dt
= θT

1 g (γ11111),
disb

dt
= θT

2 g (γ11111),
dψra

dt
= θT

3 g (γ11111),

dψrb

dt
= θT

4 g (γ11111),
dω

dt
= θT

5 g (γ11111).

The method of modeling the motor as a discrete-time system is the same.

5.3.3 Acclimatization Chamber Model

In the paper [77] a condition-sequence control circuit was described. It is
based on Boolean algebra algorithms to solve the complex logical prob-
lem existing in temperature-humidity environmental control procedures. The
control algorithm for a grafted seedling acclimatization chamber was imple-
mented on programmable logic controller (PLC), where the values of both
input and output process variables were from the binary set {0, 1}. The in-
puts are time-dependent state-variables produced by the sensors that deliver
the binary state concerning indoor and outdoor temperature and humidity
and the plant light. The control signals are binary as well, designed for the ac-
tuator subsystems, i.e. air conditioner (Y1), free cooling (Y2), humidifier (Y3)
and heater (Y4). Based on Boolean logic methods and using a psychrometric
chart of cooling, dehumidifying, heating and humidifying control processes in
a grafted seedlings acclimatization chamber, the following control strategies
were derived in [77]:

Y1 = x1 · x2 · (x3 + x4) · (x5 + x6) · (x7 + x8) (5.84)

Y2 = x1 · x2 · x3 · x4 · x5 · x6 · x7 · x8 (5.85)

Y3 = (x1 + x2) · x3 · x4 · (x5 + x6) · (x7 + x8) (5.86)

Y4 = x1 · (x7 + x8) · (A + B + C) , (5.87)

where

A = x4 · x6 · (x2 + x3 · x9) , B = x2 · x3 · (x5 + x6) , C = x3 · x4 · x5 · x6.
(5.88)
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The operations “(·)”, “·” and “+” mean Boolean “not”, “and” and “or”,
respectively.

Unlike the approach used in [77], where the appropriate conditions for the
state variables have to be either true or false, (xk ∈ {0, 1}), we can say that
the same conditions can be satisfied to some degree, which is the number from
the interval [0, 1] (see [55], [56]). The decisions Yk can be true to a certain
degree, as well. Thus, we want to extend the control algorithm (5.84)-(5.88)
into the fuzzy domain. To do this, according to the results from Section 5.1.3
we assume that

• the inputs xk ∈ {0, 1} are replaced by zk ∈ [0, 1] as the inputs for the
P1-TS system, (k = 1, . . . , 9),

• the outputs of the P1-TS system are Y1, Y2, Y3 and Y4,
• the Boolean operations “(.)”, “·” and “+” we replace by “n” - the strong

negation (5.13), “t” - the probabilistic t-norm (5.16) and “s” - the proba-
bilistic t-conorm (5.17), respectively.

Finally we express Boolean functions (5.84)-(5.88) by the following ones

Y1 = t (z1, n (z2) , s (n (z3) , n (z4)) , s (n (z5) , n (z6)) , s (n (z7) , n (z8)))
= z1 (1 − z2) (1 − z3z4) (1 − z5z6) (1 − z7z8) , (5.89)

Y2 = t (n (z1) , n (z2) , n (z3) , n (z4) , n (z5) , n (z6) , n (z7) , n (z8))
= (1 − z1) (1 − z2) (1 − z3) (1 − z4) (1 − z5) (1 − z6) (1 − z7) (1 − z8) ,

(5.90)
Y3 = t (s (n (z1) , n (z2)) , n (z3) , z4, s (n (z5) , n (z6)) , s (n (z7) , n (z8)))

= (1 − z1z2) (1 − z3) z4 (1 − z5z6) (1 − z7z8) , (5.91)

Y4 = t (n (z1) , s (n (z7) , n (z8)) , s (A, B, C))
= (1 − z1) (1 − z7z8) (A + B + C − AB − AC − BC + ABC) , (5.92)

where

A = t (n (z4) , n (z6) , s (z2, t (z3, n (z9))))
= (1 − z2) (z2 − z3 (1 − z9)) (1 − z4) (1 − z6) , (5.93)

B = t (z2, n (z3) , s (n (z5) , n (z6))) = z2 (1 − z3) (1 − z5z6) , (5.94)

C = t (z3, n (z4) , n (z5) , z6) = z3 (1 − z4) (1 − z5) z6. (5.95)

If we apply binary sensors, the inputs are zk ∈ {0, 1} and the P1-TS system
works exactly as a binary controller which produces the outputs Y1, . . . , Y4 ∈
{0, 1}. By replacing the sensors into the input interfaces containing analog or
k-bits digital sensors, (k ≥ 2) delivering the signals zk ∈ [0, 1], the controller
works smoothly as a multidimensional “fuzzy switching system”. Since for the
P1-TS system the conclusions of the rules are from the set {0, 1}, according
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to the assessment (5.12), the outputs Yj are from the interval [0, 1] for j =
1, 2, 3, 4. Therefore in the case of the fuzzy switching system, the plant should
be equipped with actuators handling analog signals.

The fuzzy metarules can be easily obtained. For example the equations
(5.89)-(5.91) generate the following metarules

M1 : If z1 is P1 and z2 is N2 and (z3 is N3 or z4 is N4)
and (z5 is N5 or z6 is N6) and (z7 is N7 or z8 is N8), then Y1 is 1,
otherwise Y1 is 0.

M2 : If z1 is N1 and z2 is N2 and z3 is N3 and z4 is N4 and z5 is N5
and z6 is N6 and z7 is N7 and z8 is N8, then Y2 is 1,
otherwise Y2 is 0.

M3 : If (z1 is N1 or z2 is N2) and z3 is N3 and z4 is P4 and z5 is N5
and (z5 is N5 or z6 is N6) and (z7 is N7 or z8 is N8), then Y3 is 1,
otherwise Y3 is 0.

The membership functions of fuzzy sets Nk (zk) and Pk (zk) have a clear
interpretation. For example, if formerly assumed x9 = 1 (or x9 = 0) modeled
the situation “the light is on” (or “the light is off”), then for the P1-TS system
“z9 is P9” (or “z9 is N9”) models the situation “the plant light is powerful”
(or “the plant light is not powerful”).

5.4 Optimal Fuzzy Control System Design for Second
Order Plant

In this section we will consider a PID control system that behaves optimally
in some sense. First, we obtain a highly interpretable P1-TS system, exactly
modeling conventional PID controller. Next, we will show how to obtain a
fuzzy PID controller as the rule-based system satisfying typical engineering
requirements formulated for the closed-loop control system.

5.4.1 Highly Interpretable Fuzzy Rules for PID
Controller

It is well known that a conventional PID controller is a special kind of the so
called PID fuzzy controller (PID-FC for short [95]). Assume that the control
action at the instant t is u (t). By ε (t) we denote the control error, as the
difference between the reference signal w (t) and the plant output y (t), as
shown in Fig. 5.12:

ε (t) = w (t) − y (t) . (5.96)

The rule-based P1-TS system has three inputs: z1 = ε̇ (t), z2 = ε (t) and
z3 = ε̈ (t), where ε̇ (t) is the speed of the error and ε̈ (t) - its acceleration [92].
The P1-TS system output S is the derivative of the control action u̇ (t). It is
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Fig. 5.12 Closed-loop PID control system

apparent that both the error and its derivatives are from intervals containing
zero. Therefore we make the next assumption

zk ∈ [−αk, βk] , k = 1, 2, 3,

where

α1 = β1 = sup
t≥0

|ε̇ (t)| , α2 = β2 = sup
t≥0

|ε (t)| , α3 = β3 = sup
t≥0

|ε̈ (t)| .

(5.97)
For the stable closed-lop control system, the cuboid D3 includes all trajecto-
ries (ε̇ (t) , ε (t) , ε̈ (t)) for t ≥ 0. The fuzzy sets for the input variables zk that
are used in the antecedents of the fuzzy rules are Nk and Pk for k = 1, 2, 3.
The label Nk denotes a negative value of kth input variable and Pk - a positive
one (see Fig. 2.8 in Section 2.2).

Suppose that at every moment t ≥ 0, the P1-TS system output is the
following linear combination of the inputs

S = kpz1 + T−1
i z2 + Tdz3.

It follows that

u (t) = kpε (t) +
1
Ti

∫ t

0
ε (τ) dτ + Td

dε

dt
+ u (0) . (5.98)

This means that the P1-TS system together with the integral block produces
the same signal as a conventional, continuous-time proportional-integral-
derivative (PID) controller. In order to obtain the fuzzy rules for the P1-TS
system, we define the following vector of coefficients

θ = [0, kp, 1/Ti, 0, Td, 0, 0, 0]T . (5.99)

From (2.30), (2.41) and (5.99) we immediately obtain the consequents of the
fuzzy rules
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q1
q2
q3
q4
q5
q6
q7
q8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 α1α2 −α3 α1α3 α2α3 −α1α2α3
1 β1 −α2 −α2β1 −α3 −β1α3 α2α3 α2β1α3
1 −α1 β2 −α1β2 −α3 α1α3 −α3β2 α1α3β2
1 β1 β2 β1β2 −α3 −β1α3 −α3β2 −β1α3β2
1 −α1 −α2 α1α2 β3 −α1β3 −α2β3 α1α2β3
1 β1 −α2 −α2β1 β3 β1β3 −α2β3 −α2β1β3
1 −α1 β2 −α1β2 β3 −α1β3 β2β3 −α1β2β3
1 β1 β2 β1β2 β3 β1β3 β2β3 β1β2β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
kp

1/Ti

0
Td

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 −α2 −α3
β1 −α2 −α3

−α1 β2 −α3
β1 β2 −α3

−α1 −α2 β3
β1 −α2 β3

−α1 β2 β3
β1 β2 β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ kp

1/Ti

Td

⎤⎥⎦ . (5.100)

Thus, every consequent of the vth fuzzy rule (v = 1, . . . , 8) is a scalar product
of the vector containing adjustable parameters (kp, 1/Ti, Td) and vth vertex
γv of the cuboid D3. In other words we obtain the system of fuzzy rules for
the P1-TS system, that defines a differentiated output of the conventional
PID controller, which consists of 8 fuzzy rules given in Table 5.9, where αk

and βk are given by (5.97). As one can see, the fuzzy rules are extremely
simple for interpretation.

5.4.2 Optimal PID Fuzzy Controller for Linear
Second Order Plant

Let us consider the control system shown in Fig. 5.12, containing the dyna-
mical oscillatory plant

d2y (t)
dt2

+ 2ξω0
dy (t)

dt
+ ω2

0y (t) = k0u (t) , y (0) = y0, ẏ (0) = ẏ0, (5.101)

Table 5.9 Look-up-table for the P1-TS fuzzy system which produces the derivative
of conventional PID controller output

ε̇ (t) , ε (t) \ ε̈ (t) →
↓ N3 P3

N1N2 −kpα1 − T −1
i α2 − Tdα3 −kpα1 − T −1

i α2 + Tdβ3

N1P2 −kpα1 + T −1
i β2 − Tdα3 −kpα1 + T −1

i β2 + Tdβ3

P1P2 kpβ1 + T −1
i β2 − Tdα3 kpβ1 + T −1

i β2 + Tdβ3

P1N2 kpβ1 − T −1
i α2 − Tdα3 kpβ1 − T −1

i α2 + Tdβ3
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where k0, ξ and ω0 are known parameters, with k0 > 0, 0 < ξ < 1 and ω0 > 0.
The reference signal is Heaviside step function

w (t) =
{

w0 for t > 0
0 for t ≤ 0 . (5.102)

Our goal is to design such a rule-based PID controller that guarantees a
nonoscillatory step response

y (t) = w0 + (y0 − w0) e−tλ, (5.103)

of the closed-loop system with zero initial conditions, where λ > 0 is the
preset parameter. Thus, in the feedback system, the plant output should be
governed by the differential equation

dy (t)
dt

+ λy (t) = λw (t) , y (0) = y0.

The control error is defined as ε (t) = w (t) − y (t). The step response (5.103)
has three important features:

• there are no oscillations in the closed-loop system,
• there is no steady state error (ε (∞) = 0), and
• the plant output y reaches the set-point w0 as quickly as required (by

choosing a sufficiently large parameter λ).

In such sense the controller that guarantees the step response (5.103) is con-
sidered to be optimal.

We require that at any instant t in the closed-loop system, the following
relation between the system output y and the control error ε

y (t) = λ

t∫
0

ε (τ) dτ + y0, (5.104)

must be satisfied. One can check that by zero initial conditions, the equation
(5.104) holds, if

λ
dε (t)

dt
+2ξω0λε (t)+ω2

0λ

t∫
0

ε (τ) dτ = k0kpε (t)+
k0

Ti

t∫
0

ε (τ) dτ +k0Td
dε (t)

dt

is satisfied. From the last equation we obtain optimal - in the sense expressed
above, the gain parameters for the PID controller⎡⎢⎣ k∗

p

1/T ∗
i

T ∗
d

⎤⎥⎦ =

⎡⎢⎣ 2λξω0/k0

λω2
0/k0

λ/k0

⎤⎥⎦ . (5.105)
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According to Table 5.9, the system of highly interpretable fuzzy rules for the
P1-TS system that defines the optimal PID controller (5.98), consists of the
following fuzzy rules:

R1 : If ε̇ is negative and ε is negative and ε̈ is negative,
then u̇ = −2α1λξω0/k0 − α2λω2

0/k0 − α3λ/k0,

R2 : If ε̇ is positive and ε is negative and ε̈ is negative,
then u̇ = 2β1λξω0/k0 − α2λω2

0/k0 − α3λ/k0,

R3 : If ε̇ is negative and ε is positive and ε̈ is negative,
then u̇ = −2α1λξω0/k0 + β2λω2

0/k0 − α3λ/k0,

R4 : If ε̇ is positive and ε is positive and ε̈ is negative,
then u̇ = 2β1λξω0/k0 + β2λω2

0/k0 − α3λ/k0,

R5 : If ε̇ is negative and ε is negative and ε̈ is positive,
then u̇ = −2α1λξω0/k0 − α2λω2

0/k0 + β3λ/k0,

R6 : If ε̇ is positive and ε is negative and ε̈ is positive,
then u̇ = 2β1λξω0/k0 − α2λω2

0/k0 + β3λ/k0,

R7 : If ε̇ is negative and ε is positive and ε̈ is positive,
then u̇ = −2α1λξω0/k0 + β2λω2

0/k0 + β3λ/k0,

R8 : If ε̇ is positive and ε is positive and ε̈ is positive,
then u̇ = 2β1λξω0/k0 + β2λω2

0/k0 + β3λ/k0,

Thus, the conclusions of the optimal fuzzy rules depend on maximal values of
the control error, its speed and the acceleration, the values αk and βk given
by (5.97), the plant parameters k0, ξ and ω0, and one design parameter λ.

The above result demonstrates the ability to design an optimal fuzzy logic
controller, which satisfies typical engineering requirements when controlling
a linear second order plant. The resulting closed-loop system is free of oscilla-
tions, has no steady state error and its step response is as quick as required.

5.4.3 PD-Like Optimal Controller for Nonlinear
Second Order Plant

Let us consider the closed-loop system shown in Fig. 5.13 that contains the
following nonlinear dynamical plant

ÿ (t) + aẏ (t) y (t) + bẏ (t) + cy (t) = k0u (t) , y (0) = y0, ẏ (0) = ẏ0,
(5.106)

where a > 0, b > 0, c ≥ 0 and k0 > 0 are known constants.
We assume that the P1-TS system functions as a controller and produces

the output
u (t) = k1ε (t) + k2ε̇ (t) + k3ε (t) ε̇ (t) , (5.107)
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Fig. 5.13 Closed-loop nonlinear PD-like fuzzy control system

where k1, k2 and k3 are the controller gains, ε (t) = w (t)−y (t) is the control
error, ε̇ (t) is its derivative, and w (t) is at least twice differentiable step-like
reference signal, which will be defined further on. Our goal is to design such
a rule-based controller for which

• the closed-loop system is free of oscillations,
• the response of the feedback system for the step-like reference signal is

sufficiently quick, and
• the steady state error is sufficiently small.

If the above conditions are satisfied, we will call the controller an optimal
one. We show how to design such a controller in the form of a P1-TS system.

According to (5.106) the control error in the closed-loop system satisfies
the following nonlinear, nonstationary differential equation

ε̈ (t) + (k0k3 − a) ε̇ (t) ε (t) + 2p (t) ε̇ (t) + r (t) ε (t) = f (t) , (5.108)

where
f (t) = ẅ (t) + aẇ (t)w (t) + bẇ (t) + cw (t) , (5.109)

2p (t) = b + k0k2 + aw (t) , (5.110)

r (t) = c + k0k1 + aẇ (t) . (5.111)

Let us choose the controller gains

k3 =
a

k0
, (5.112)

k2 = k2 (t) =
−aw (t) − b + 2p0

k0
, (5.113)

k1 = k1 (t) =
−aẇ (t) − c + p2

0

k0
, (5.114)
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where k3 is a constant, k2 and k1 vary in time and p0 > 0 is a new design
parameter. In such case the error ε (t) satisfies the following linear stationary
differential equation

ε̈ (t) + 2p0ε̇ (t) + p2
0ε (t) = f (t) , ε (0) = ε0, ε̇ (0) = ε̇0. (5.115)

Thus, the P1-TS system ensures linearization of the nonlinear plant and the
control error is of the form

ε (t) = (1 + p0t) e−p0tε0 + te−p0tε̇0 +

t∫
0

g0 (t − τ) f (τ) dτ, (5.116)

where f (t) is an external signal (5.109) and g0 (t) = te−p0t. For the step-like
functions w (t), the steady-state error ε (∞) depends on the parameter p0
and can be made arbitrarily small. To show this, let us take an example of
the reference signal

w (t) = w0 − w0

(
1 + mt +

m2t2

2

)
e−mt, m > 0. (5.117)

where m > 0. With a sufficiently large m, the reference signal w (t) approxi-
mates the step function (5.102), as needed. According to (5.117) and (5.109)
we have

f (t) = cw0 − 1
4
w2

0t
2m3a

(
m2t2 + 2mt + 2

)
e−2mt

+ w0

(
1
2
m2 (bm − c + amw0 − m2) t2 + m

(
m2 − c

)
t − c

)
e−mt.

For w (t) given by (5.117), the solution (5.116) is of the form

ε (t) =
cw0

p2
0

+ (h1 + h2t) e−p0t +
(
h3 + h4t + h5t

2) e−mt

+
(
h6 + h7t + h8t

2 + h9t
3 + h10t

4) e−2mt, (5.118)

where the coefficients h1, . . . ,h10 depend on initial conditions ε0 and ε̇0 and
the constants a, b, c, m, w0 and p0. Thus, the error ε (t) vanishes without
oscillations to the steady-state value

ε (∞) =
cw0

p2
0

, (5.119)

and its decay rate depends only on the given parameter m and a free design
parameter p0. Thus, we can choose the appropriate controller gains ki that
guarantee the formerly formulated requirements for the feedback system.

If the value of the steady-state error is the most important requirement
and the quotient
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η =
ε (∞)
w0

is given, we propose first to choose the parameter

p0 =
√

c

η
, (5.120)

and next, the controller gains k1, k2 and k3, according to (5.112)-(5.114).
Now we show how to build the P1-TS system as a controller that satisfies

the above formulated requirements. The input signals of the P1-TS system
are z1 (t) = ε (t) ∈ [−α1, β1] and z2 (t) = ε̇ (t) ∈ [−α2, β2], where

α1 = β1 = sup
t≥0

|ε (t)| , α2 = β2 = sup
t≥0

|ε̇ (t)| , (5.121)

by ε (t) as in (5.118). Thus, the linear membership functions of fuzzy sets are
Nk (zk) and Pk (zk), (k = 1, 2), where:

• N1 and P1 denote negative and positive control error,
• N2 and P2 - negative and positive speed of the control error, respectively.

According to (5.107), the output of the rule-based system is u (t)= θT g (z1, z2),
where θ = [0, k1, k2, k3]

T and system generator g is given by (2.37). The con-
sequents of the fuzzy rules constitute the vector [q1, q2, q3, q4]

T . For the funda-
mental matrix of the system (2.38), from (2.30) we obtain the consequents of
the fuzzy rules ⎡⎢⎢⎣

q1
q2
q3
q4

⎤⎥⎥⎦ = ΩT θ =

⎡⎢⎢⎣
−k1α1 − k2α2 + k3α1α2

k1β1 − k2α2 − k3α2β1
−k1α1 + k2β2 − k3α1β2

k1β1 + k2β2 + k3β1β2

⎤⎥⎥⎦ .

According to (5.113)-(5.114) and (5.120) we obtain

k1 (t) =
1
k0

(
−aẇ (t) − c +

c

η

)
, (5.122)

k2 (t) =
1
k0

(
−aw (t) − b + 2

√
c

η

)
. (5.123)

Finally, the system of highly interpretable fuzzy rules for the optimal P1-TS
system as a controller for the nonlinear plant (5.106) by the reference input
w (t) is as follows

R1 : If the control error is negative and its speed is negative,
then the control action u (t) = −k1 (t)α1 − k2 (t)α2 + k3α1α2,
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R2 : If the control error is positive and its speed is negative,
then the control action u (t) = k1 (t)β1 − k2 (t)α2 − k3α2β1,

R3 : If the control error is negative and its speed is positive,
then the control action u (t) = −k1 (t)α1 + k2 (t)β2 − k3α1β2,

R4 : If the control error is positive and its speed is positive,
then the control action u (t) = k1 (t)β1 + k2 (t)β2 + k3β1β2.

Below we exemplify numerically the design procedure, taking into account
the above and simplified consequents of the rules.

Example 5.12. Suppose the control design requirement for the steady-
state error in the closed-loop system is η = 0.04. The nonlinear plant is
described by

ÿ (t) + 2ẏ (t) y (t) + 3ẏ (t) + y (t) = u (t)

and the reference signal w (t) = 1−
(
1 + 10t + 50t2

)
e−10t. Thus, a = 2, b = 3,

c = 1, k0 = 1, w0 = 1 and m = 10. We assume that all trajectories of the
system are contained in the rectangle

(ε (t) , ε̇ (t)) ∈ D2 = [−5, 5] × [−15, 15] .

Our task is to obtain the fuzzy control rules for an optimal P1-TS system.
From (5.112) we obtain k3 = 2. According to (5.122)-(5.123), the nonsta-

tionary gains are
k1 (t) = 24 − 1000t2e−10t,

k2 (t) = 5 + 2e−10t
(
10t + 50t2 + 1

)
.

Thus, the optimal fuzzy rules for the P1-TS system are as follows (see
Fig. 5.14 and 5.15):

R1 : If the control error is negative and its speed is negative, then
u (t) = u1 (t) = 5000t2e−10t − 30e−10t

(
10t + 50t2 + 1

)
− 45,

R2 : If the control error is positive and its speed is negative, then
u (t) = u2 (t) = −5000t2e−10t − 30e−10t

(
10t + 50t2 + 1

)
− 105,

R3 : If the control error is negative and its speed is positive, then
u (t) = u3 (t) = 5000t2e−10t + 30e−10t

(
10t + 50t2 + 1

)
− 195,

R4 : If the control error is positive and its speed is positive, then
u (t) = u4 (t) = 30e−10t

(
10t + 50t2 + 1

)
− 5000t2e−10t + 345.

Observe that the control signal u (t) is positive for t ≥ 0, if both the control
error, and its speed are positive; otherwise u (t) < 0. Although the main
design goal was achieved, we can try to take much simpler, i.e. constant
conclusions of the rules, since the reference input w in the steady-state is
constant. In other words we substitute the conclusion uv of the rule Rv for
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Fig. 5.14 Consequents of the rules R1-R3 from Example 5.12
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Fig. 5.15 Consequent of the rule R4 from Example 5.12

limt→∞ uv (t) for v = 1, 2, 3, 4. The resulting quasi-optimal fuzzy rules are as
follows:

R′
1 : If the control error is negative and its speed is negative,

then u = −45,
R′

2 : If the control error is positive and its speed is negative,
then u = −105,

R′
3 : If the control error is negative and its speed is positive,

then u = −195,
R′

4 : If the control error is positive and its speed is positive,
then u = 345.

Fig. 5.16 shows the error plots for initial conditions (ε0, ε̇0) = (4, 5) ∈ D2 for two
systems of fuzzy rules: R1 - R4 and R′

1 - R′
4. As one can see, in order to obtain

the required closed-loop system behavior, we can simply choose the constant
coefficients. The fuzzy rules obtained in this way are quasi-optimal but simple.

5.5 P1-TS System as Controller with Variable Gains

In this section we prove the next useful fact.

Corollary 5.13. Consider two functions: f1 : Dn → R and the polynomial
f0 given by (2.26) with known coefficients θp1,...,pn, (p1, . . . , pn) ∈ {0, 1}n.
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Fig. 5.16 Plots of the control error for the nonstationary and constant consequents
of the fuzzy rules considered in Example 5.12

Suppose the output of a P1-TS system is S, its inputs are z1, . . ., zn and this
system is defined by 2n rules (2.13)-(2.15), in which the consequents of the
rules are qv = kvf1 (z) for kv ∈ R, v ∈ {1, 2, . . . , 2n} as in (2.16). Then

• The P1-TS system is equivalent to the function f0 (z) · f1 (z) for all
z ∈ Dn. For the given function f1 (z) and coefficients kv, one can
find all consequents of the fuzzy rules, according to (2.47), i.e. q =
[f0 (γ1) , . . . , f0 (γ2n)]T.

• For the given vector q of the consequents of the fuzzy rules, the function
to which the P1-TS system is equivalent, is given by

S (z) = gT (z)
(
ΩT
)−1

kf1 (z) , (5.124)

where g (z) is the generator (2.28), Ω is the fundamental matrix (2.30),
and the coefficients kv constitute the vector k = [k1, k2, . . . , k2n ]T .

Proof. According to (2.21), the output of the P1-TS system is S (z) =∑2n

v=1 hvqv, where qv = kvf1 (z). Thus, there exists a collection of real coef-
ficients aik

and bik
for ik ∈ {1, 2} and k = 1, . . . , n such, that

S =
2∑

in=1

. . .
2∑

i1=1

n∏
k=1

(aik
zk + bik

) k(i1,...,in)f1 (z) = f0 (z) · f1 (z) ,

where f0 (z) is the same function as in (2.26). We omit the rest of the
proof, since from this point it is practically the same as the proof of
Theorem 2.4. 
�
Example 5.14. Consider the P1-TS system being a special case of the one
of Corollary 5.13, in which f1 (z) = aT z with a ∈ R

n by n = 3. Such a system
was considered in [205] and [206]. The set of 8 fuzzy rules is as follows
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R1 : If z1 is N1 and z2 is N2 and z3 is N3, then S = k8c,

R2 : If z1 is N1 and z2 is N2 and z3 is P3, then S = k7c,

R3 : If z1 is N1 and z2 is P2 and z3 is N3, then S = k6c,

R4 : If z1 is N1 and z2 is P2 and z3 is P3, then S = k5c,

R5 : If z1 is P1 and z2 is N2 and z3 is N3, then S = k4c,

R6 : If z1 is P1 and z2 is N2 and z3 is P3, then S = k3c,

R7 : If z1 is P1 and z2 is P2 and z3 is N3, then S = k2c,

R8 : If z1 is P1 and z2 is P2 and z3 is P3, then S = c = k1aT z,

where the inputs of the P1-TS system are zk ∈ [−αk, βk], k = 1, 2, 3, the
output is S and the coefficients ki are constant for i = 1, . . . , 8. The fuzzy
system performs a function of the controller in the closed-loop. This can be
easily achieved by the appropriate interpretation of the inputs zk: they are
state variables at instant t, and the output S is the control action (or its
derivative, as in Section 5.4.1). Such a system was developed by Ying [206]
in another way and was called the controller with variable gains. According
to (5.124) we obtain

S (z) = gT (z)
(
ΩT
)−1

hk1︸ ︷︷ ︸
w(z)

aT z = w (z)aT z,

where the constant vectors are h = [k8, k7, k6, k5, k4, k3, k2, 1]T and aT =
[a1, a2, a3]. The scalar function w (z) = gT (z)

(
ΩT
)−1

hk1 determines vari-
able gains of the controller. Its role is clear, since S (z) = w (z) aT z. The
generator g (z) is known, and therefore we are interested in computing the
constant vector b = [b1, b2, . . . , b8]

T =
(
ΩT
)−1

hk1 so that w (z) = gT (z)b
holds. After computations we obtain a general form of all components of the
vector b as follows

b1 =
1 + k2λ3 + k3λ2 + k4λ2λ3 + k5λ1 + k6λ1λ3 + k7λ1λ2 + k8λ1λ2λ3

(1 + λ1) (1 + λ2) (1 + λ3)
k1,

b2 =
1 + k2λ3 + k3λ2 + k4λ2λ3 − k5 − k6λ3 − k7λ2 − k8λ2λ3

α1 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

b3 =
1 + k2λ3 − k3 + k5λ1 − k4λ3 − k7λ1 + k6λ1λ3 − k8λ1λ3

α2 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

b4 =
1 − k2 + k3λ2 − k4λ2 + k5λ1 − k6λ1 + k7λ1λ2 − k8λ1λ2

α3 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

b5 =
1 + k2λ3 − k3 − k4λ3 − k5 − k6λ3 + k7 + k8λ3

α1α2 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

b6 =
1 − k2 + k3λ2 − k4λ2 − k5 + k6 − k7λ2 + k8λ2

α1α3 (1 + λ1) (1 + λ2) (1 + λ3)
k1,
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b7 =
1 − k2 − k3 + k4 + k5λ1 − k6λ1 − k7λ1 + k8λ1

α2α3 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

b8 =
1 − k2 − k3 + k4 − k5 + k6 + k7 − k8

α1α2α3 (1 + λ1) (1 + λ2) (1 + λ3)
k1,

where λk = βk/αk for k = 1, 2, 3. One can check that in the special case,
when the constants are k1 = 1, αk = βk = L for k = 1, 2, 3, we obtain
λ1 = λ2 = λ3 = 1, i.e. the same outcome as in [206].

5.6 Exact Modeling of Single-Input Dynamical Systems

Our goal in this section is to model a single-input nonlinear dynamical system
ẋ (t) = f (x (t) , u (t)), where x is the state vector, u is the scalar control
input, (x ∈ R

n, u ∈ R) and f is the vector function containing multivariate
polynomials of the state vector components xi = xi (t) and u = u (t). We
want to express equivalently the differential equations in the form of the
P1-TS system shown in Fig. 5.17. Assume that the rules are

Rj : If x1 is X1 and . . . and xn is Xn, then ẋ = A(j)x + b(j)u, (5.125)

where Xi ∈ {Ni, Pi}, (i = 1, . . . , n, j = 1, . . . , 2n), A(j) is a local state
matrix and b(j) is a local control vector from the jth region. Observe that
the input u (t) is not contained in the premises of the rules. Thus, we consider
a collection of 2n linear dynamical local models with the matrices

A(j) =

⎡⎢⎣ aT
1,(j)
...

aT
n,(j)

⎤⎥⎦ =

⎡⎢⎣ a11,(j) · · · a1n,(j)
...

. . .
...

an1,(j) · · · ann,(j)

⎤⎥⎦ , b(j) =

⎡⎢⎣ b1,(j)
...

bn,(j)

⎤⎥⎦ , j = 1, . . . , 2n.

(5.126)
The rules (5.125) are a special case of those investigated in Section 3.4, where
the inference was concerned with the structure parameters represented by
matrices describing the local models. Therefore the nonlinear model of the
whole system was inferred as a weighted sum of linear state equations. In

Single-input
dynamical system
as P1-TS system

�

��
�

�
�
�

�

� �

�z1 = x1(t)

zn = xn(t)

(u(t))

S1 = ẋ1 (t)

Sn = ẋn (t)

Fig. 5.17 The inputs and the outputs of the P1-TS system defined by the fuzzy
rules (5.125)



152 5 Comprehensive Study and Applications of P1-TS Systems

contrast to that approach, in this section we return to the original Takagi-
Sugeno inference method.

In every jth region we have a separate fuzzy rule with the following
consequent

ẋi = aT
i,(j)x + bi,(j)u = Mi

[
x
u

]
, j = 1, . . . , 2n.

For all regions and the i-th system output S = ẋi we define the following
vector of the consequents of the rules

qi =

⎡⎢⎢⎢⎣
q1,i

q2,i

...
q2n,i

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
aT

i,(1) bi,(1)

aT
i,(2) bi,(2)
...

...
aT

i,(2n) bi,(2n)

⎤⎥⎥⎥⎦
[
x
u

]
= Mi

[
x
u

]
, i = 1, . . . , n.

This means that every consequent of the rule refers to the same system output
ẋi. From the theory of P1-TS systems it follows that the crisp system output in-
ferred from the rule-base is S = θTg (x1, . . . , xn), where θ is a 2n-dimensional
vector of coefficients and g (x1, . . . , xn) is the system generator. Using the orig-
inal Takagi-Sugeno inference method, the inferred model for ẋi is given by

ẋi = qT
i Ω−1g (x) =

[
xT , u

]
MT

i Ω−1g (x) , (5.127)

where

MT
i =

[
ai,(1) ai,(2) · · · ai,(2n)
bi,(1) bi,(2) · · · bi,(2n)

]
, (5.128)

for i = 1, . . . , n. Thus, for all state variables we can write

ẋ =

⎛⎜⎝[xT , u
]
⊗
[
1, · · · , 1

]︸ ︷︷ ︸
n

⎞⎟⎠
⎡⎢⎣MT

1
...

MT
n

⎤⎥⎦Ω−1g (x) , (5.129)

where ⊗ is the Kronecker symbol.

Theorem 5.15. Suppose we model a dynamical system ẋ = f (x, u), where
x ∈ R

n, u ∈ R and the components of f belong to a subclass of Kolmogorov-
Gabor polynomials, by using P1-TS system with linear membership functions
(2.11)-(2.12) for the state variables xi, (i = 1, . . . , n) and 2n fuzzy rules in
the form (5.125).

1. Such P1-TS system is equivalent to the nonlinear dynamical system

ẋ = Wgu (x) , (5.130)

where W ∈ R
n×dim gu(x) and gu (x) is a modified generator defined by
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gu (x) = F

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣
g(1) (x)

[
x
u

]
...

g(2n) (x)
[
x
u

]
⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠ , (5.131)

where g(v) (x) is vth component of the generator g (x), (v = 1, . . . , 2n), and
F (h) is the operator which removes the repeated elements of the vector h,
e.g. F ([h1, h2, h1, h3]) = [h1, h2, h3]. The elements of the matrix W depend
on boundaries “−αi”, “βi”, (i = 1, . . . , n), the elements of A(j) and b(j),
(j = 1, . . . , 2n).

2. The length of the generator gu (x) is equal to

dimgu (x) = 2n−1 (n + 4) − 1. (5.132)

Proof. Observe that the components of the generator gu (x) are summands
contained in the polynomial(

n∑
k=1

xk + u

)
n∏

k=1

(1 + xk) , (5.133)

written in the expanded additive form, when substituting in the monomials
of the polynomial (5.133) all coefficients by “1”. The rest of the first part of
the thesis of the theorem follows immediately from the rules (5.125).

Now we prove the formula (5.132). The length of gu (x), denoted by
dimgu (x), is for n = 1 equal to dimgu (x)|dimx=1 = 4. One can check
that the following recurrence

dimgu (x)|dimx=k+1 = 2k + 1 + 2 dimgu (x)|dimx=k

holds. Thus, for dimx = n we obtain dimgu (x) = 2n−1 (n + 4) − 1. 
�

Example 5.16. The generator (5.131) with n = 2 state variables is given by

gu (x1, x2) =
[
x1, x2, u, x2

1, x1x2, ux1, x2
2, ux2, x2

1x2, x1x
2
2, ux1x2

]T
,

(5.134)
and for n = 3 state variables

gu (x1, x2, x3) = [ x1, x2, x3, u, x2
1, x1x2, x1x3, ux1, x

2
2, x2x3, ux2,

x2
1x2, x1x

2
2, x1x2x3, ux1x2, x

2
3, ux3, x

2
1x3, x1x

2
3,

ux1x3, x
2
2x3, x2x

2
3, ux2x3, x

2
1x2x3, x1x

2
2x3,

x1x2x
2
3, ux1x2x3 ]T . (5.135)

The length of gu (x) grows faster than dimg (x) as shown in Table 5.10.
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Table 5.10 Lengths of the generators g (x) and gu (x) for the dynamical P1-TS
fuzzy system with n state variables

n = dim (x) dimg (x) dimgu (x)

1 2 4
2 4 11

3 8 27

4 16 63
5 32 143

6 64 319

7 128 703

8 256 1535
9 512 3327

10 1024 7167

Example 5.17. Let us consider a two-dimensional nonlinear dynamical sys-
tem modeled by 4 fuzzy rules:

R1 : If x1 is N1 and x2 is N2,

then
[

ẋ1
ẋ2

]
=
[

a11,(1) a12,(1)
a21,(1) a22,(1)

] [
x1
x2

]
+
[

b1,(1)
b2,(1)

]
u,

R2 : If x1 is P1 and x2 is N2,

then
[

ẋ1
ẋ2

]
=
[

a11,(2) a12,(2)
a21,(2) a22,(2)

] [
x1
x2

]
+
[

b1,(2)
b2,(2)

]
u,

R3 : If x1 is N1 and x2 is P2,

then
[

ẋ1
ẋ2

]
=
[

a11,(3) a12,(3)
a21,(3) a22,(3)

] [
x1
x2

]
+
[

b1,(3)
b2,(3)

]
u,

R4 : If x1 is P1 and x2 is P2,

then
[

ẋ1
ẋ2

]
=
[

a11,(4) a12,(4)
a21,(4) a22,(4)

] [
x1
x2

]
+
[

b1,(4)
b2,(4)

]
u.

From the equations (5.127)-(5.128) we obtain

ẋ1 =
[
x1 x2 u

]⎡⎢⎣a11,(1) a11,(2) a11,(3) a11,(4)

a12,(1) a12,(2) a12,(3) a12,(4)

b1,(1) b1,(2) b1,(3) b1,(4)

⎤⎥⎦Ω−1

⎡⎢⎢⎣
1
x1
x2

x1x2

⎤⎥⎥⎦ , (5.136)
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ẋ2 =
[
x1 x2 u

]⎡⎢⎣a21,(1) a21,(2) a21,(3) a21,(4)

a22,(1) a22,(2) a22,(3) a22,(4)

b2,(1) b2,(2) b2,(3) b2,(4)

⎤⎥⎦Ω−1

⎡⎢⎢⎣
1
x1
x2

x1x2

⎤⎥⎥⎦ , (5.137)

where the fundamental matrix Ω is the same as in (2.38). For gu (x1, x2)
given by (5.134) we obtain the following inferred model[

ẋ1

ẋ2

]
=

[
h11 h21 h31 h12 h13 + h22 h32 h23 h33 h14 h24 h34

k11 k21 k31 k12 k13 + k22 k32 k23 k33 k14 k24 k34

]
gu (x1, x2)

(5.138)
where kij and hij can be computed from⎡⎢⎣h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

⎤⎥⎦= 1
V2

⎡⎢⎣a11,(1) a11,(2) a11,(3) a11,(4)

a12,(1) a12,(2) a12,(3) a12,(4)

b1,(1) b1,(2) b1,(3) b1,(4)

⎤⎥⎦
⎡⎢⎢⎣

β1β2 −β2 −β1 1
α1β2 β2 −α1 −1
α2β1 −α2 β1 −1
α1α2 α2 α1 1

⎤⎥⎥⎦,

(5.139)⎡⎢⎣k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

⎤⎥⎦= 1
V2

⎡⎢⎣ a21,(1) a21,(2) a21,(3) a21,(4)

a22,(1) a22,(2) a22,(3) a22,(4)

b2,(1) b2,(2) b2,(3) b2,(4)

⎤⎥⎦
⎡⎢⎢⎣

β1β2 −β2 −β1 1
α1β2 β2 −α1 −1
α2β1 −α2 β1 −1
α1α2 α2 α1 1

⎤⎥⎥⎦ ,

(5.140)
by V2 = (α1 + β1) (α2 + β2).

Theorem 5.18. The P1-TS system given by the rules (5.125) defines a linear
dynamical system if, and only if all local matrices are the same.

Proof. (Sufficiency) Let us consider a variable xi for an arbitrarily given
index i. From assumption we have A(1) = ... = A(2n) = A and b(1) = b(2) =
... = b(2n) = b. Thus,

ẋi =
[
xT u

]
MT

i Ω−1g (x) , MT
i =

[
ai ai · · · ai

bi bi · · · bi

]
∈ R

(n+1)×2n

,

and we obtain

MT
i Ω−1 =

[
ai 0 · · · 0
bi 0 · · · 0

]
∈ R

(n+1)×2n

.

The columns of W with numbers j = n + 1, n + 2, . . . , 2n−1 (n + 4) − 1 are
zero. We conclude that ẋi inferred from the fuzzy rules (5.125) is as follows

ẋi =
[
xT ai + biu, 0, · · · , 0

]
⎡⎢⎢⎢⎣

1
x1
...

x1x2 . . . xn

⎤⎥⎥⎥⎦ = aT
i x + biu.
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The result is valid for any i ∈ {1, . . . , n}. This ends the proof of sufficiency.
(Necessity) The necessary condition one can easily prove constructing a coun-
terexample for say n = 2. 
�

Example 5.19. Consider the set of differential equations describing the van
de Vusse reaction with the following kinetic reaction scheme:

A
k1→ B

k2→ C,

A
k3→ D,

which is carried out in an isothermal, continuously mixed reactor (CSTR)
[25], [35]

dCA

dt
= −k1CA − k3C

2
A +

F

V
(CAf − CA) ,

dCB

dt
= k1CA − k2CB − F

V
CB ,

⎫⎪⎪⎬⎪⎪⎭ (5.141)

where CA and CB are concentrations of the components A and B, respec-
tively, F (t) = u (t) is the process input and CB (t) = y (t) is the process
output. Our goal is to obtain the fuzzy rules for P1-TS system which ex-
actly models the reactor. For the sake of simplicity we can take the nu-
merical parameters: k1 = 50

[
h−1], k2 = 100

[
h−1], k3 = 10 [1/ (molh)],

CAf = 10 [mol / l] and V = 1 [l]. The nominal operation conditions are
CA = 3.0 [mol / l], CB = 1.12 [mol / l] and F = 34.3 [l / h]. The inputs
of the P1-TS system are concentrations x1 = CA ∈ [−α1, β1] = [0, 6] and
x2 = CB = [−α2, β2] = [0, 2.2].

The differential equations (5.141) may be rewritten as follows

ẋ1 = −k1x1 − k3x
2
1 + c1u − c2ux1 ,

ẋ2 = k1x1 − k2x2 − c2x2u ,

}
(5.142)

where c1 = CAf/V = 10
[
mol / l2

]
and c2 = 1/V = 1 [1/ l]. According to

(5.138)-(5.140) we can write the above differential equations in the following
form [

ẋ1
ẋ2

]
= W

[
x1, x2, u, x2

1, x1x2, ux1, x
2
2, ux2, x

2
1x2, x1x

2
2, ux1x2

]T
,

where

W =
[

− k1 0 c1 − k3 0 − c2 0 0 0 0 0
k1 − k2 0 0 0 0 0 − c2 0 0 0

]
.

From (5.139)-(5.140) we get the matrices containing coefficients of local linear
models
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⎡⎣a11,(1) a11,(2) a11,(3) a11,(4)
a12,(1) a12,(2) a12,(3) a12,(4)
b1,(1) b1,(2) b1,(3) b1,(4)

⎤⎦ =

⎡⎢⎢⎣
α1k3 − k1 0 c1 + α1c2

−k1 − β1k3 0 c1 − β1c2
α1k3 − k1 0 c1 + α1c2

−k1 − β1k3 0 c1 − β1c2

⎤⎥⎥⎦
T

, (5.143)

⎡⎣ a21,(1) a21,(2) a21,(3) a21,(4)
a22,(1) a22,(2) a22,(3) a22,(4)
b2,(1) b2,(2) b2,(3) b2,(4)

⎤⎦ =

⎡⎣ k1 k1 k1 k1
−k2 −k2 −k2 −k2
c2α2 c2α2 − c2β2 −c2β2

⎤⎦ . (5.144)

Finally we obtain the following system of fuzzy rules for the P1-TS system
which exactly models the van de Vusse reactor (5.141):

R1 : If x1 is N1 and x2 is N2, then[
ẋ1
ẋ2

]
=
[

−k1 + k3α1 0
k1 −k2

] [
x1
x2

]
+
[

c1 + c2α1
c2α2

]
u,

R2 : If x1 is P1 and x2 is N2, then[
ẋ1
ẋ2

]
=
[

−k1 − k3β1 0
k1 −k2

] [
x1
x2

]
+
[

c1 − c2β1
c2α2

]
u,

R3 : If x1 is N1 and x2 is P2, then[
ẋ1
ẋ2

]
=
[

−k1 + k3α1 0
k1 −k2

] [
x1
x2

]
+
[

c1 + c2α1
−c2β2

]
u,

R4 : If x1 is P1 and x2 is P2, then[
ẋ1
ẋ2

]
=
[

−k1 − k3β1 0
k1 −k2

] [
x1
x2

]
+
[

c1 − c2β1
−c2β2

]
u.

Example 5.19 is simple, but for a bigger dimension of the state space, the
course of dimensionality problem becomes more vexatious for the P1-TS sys-
tems that use the modified generator gu, than for those which use the gen-
erator g. This is evident from Table 5.10. Fortunately, we can use recursion
for computation.

Remark 5.20. Theorems 3.6 and 3.7 (on recursion) are valid when we use
the original Takagi-Sugeno method of reasoning for the P1-TS systems with
the fuzzy rules in the form of (5.125).

Proof. The proof can be constructed analogously to that of Theorem 3.7
and will be omitted. 
�

Example 5.21. The Rössler system was considered in [74] in the form of
differential equations
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ẋ1 = −x2 + x3 ,

ẋ2 = x1 + ax2 ,

ẋ3 = bx1 − cx3 + x1x3 + u.

⎫⎪⎬⎪⎭ (5.145)

The system was modeled by 2 fuzzy metarules as follows

M1 : If x1 is N1, then

⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦ =

⎡⎣ 0 −1 −1
1 a 0
b 0 −d

⎤⎦⎡⎣x1
x2
x3

⎤⎦+

⎡⎣ 0
0
1

⎤⎦u,

M2 : If x1 is P1, then

⎡⎣ ẋ1
ẋ2
ẋ3

⎤⎦ =

⎡⎣ 0 −1 −1
1 a 0
b 0 d

⎤⎦⎡⎣x1
x2
x3

⎤⎦+

⎡⎣ 0
0
1

⎤⎦u.

Our goal is to show in two ways that the above system of rules defines the
model (5.145).

1. Assuming the inputs of the dynamical P1-TS system to be x1 ∈ [−α1, β1] =
[c − d, c + d], x2 ∈ [−α2, β2] and x3 ∈ [−α3, β3] and the outputs Sk = ẋk

for k = 1, 2, 3, from (5.129) we have⎡⎢⎣ ẋ1

ẋ2

ẋ3

⎤⎥⎦ =
([

x1 x2 x3 u
]
⊗
[
1 1 1

]) ⎡⎢⎣MT
1

MT
2

MT
3

⎤⎥⎦Ω−1g (x1, x2, x3) , (5.146)

where

MT
1 =

⎡⎢⎢⎣
0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1

0 0 0 0 0 0 0 0

⎤⎥⎥⎦ , (5.147)

MT
2 =

⎡⎢⎢⎣
1 1 1 1 1 1 1 1
a a a a a a a a
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎦ , (5.148)

MT
3 =

⎡⎢⎢⎣
b b b b b b b b
0 0 0 0 0 0 0 0

−d d −d d −d d −d d
1 1 1 1 1 1 1 1

⎤⎥⎥⎦ , (5.149)

the generator g and the fundamental matrix Ω are given in (2.40) and
(2.41), respectively. According to (5.146) and (5.147)-(5.149) we obtain
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⎡⎢⎣ ẋ1

ẋ2

ẋ3

⎤⎥⎦ =

⎡⎢⎢⎢⎣
−x2 − x3

x1 + ax2

bx1 +
α1 − β1

α1 + β1
dx3 +

2d

α1 + β1
x1x3 + u

⎤⎥⎥⎥⎦ . (5.150)

After substitutions −α1 = c − d and β1 = c + d we conclude that the
metarules M1 and M2 define exactly the Rössler system (5.145), indeed.
It is worth noting that the result (5.150) does not depend on α2, β2, α3
or β3. This fact agrees with the metarules.

2. Now we will use the recursion in accordance with Remark 5.20. For the
linear membership functions of fuzzy sets it can be expressed as follows

Sn (x | q1, . . . ,q2n) = Nn (xn)Sn−1 (x1, . . . , xn−1 | q1, . . . ,q2n−1)
+ Pn (xn)Sn−1 (x1, . . . , xn−1 | q2n−1+1, . . . ,q2n) ,

where x = (x1, . . . , xn) is the state vector and the membership functions
are Nn (xn) = (βn − xn) / (αn + βn), and Pn (xn) = (αn + xn) / (αn + βn).
For the given metarules M1 and M2 we establish the following vectors con-
stituting conclusions for each individual fuzzy rule

q1 = q3 = q5 = q7 =

⎡⎣ 0 −1 −1 0
1 a 0 0
b 0 −d 1

⎤⎦
⎡⎢⎢⎣

x1
x2
x3
u

⎤⎥⎥⎦ ,

q2 = q4 = q6 = q8 =

⎡⎣ 0 −1 −1 0
1 a 0 0
b 0 d 1

⎤⎦
⎡⎢⎢⎣

x1
x2
x3
u

⎤⎥⎥⎦ .

Using the original Takagi-Sugeno reasoning method, from Theorem 3.6 for
q1 = q3, q2 = q4 and knowing that N2 (x2) +P2 (x2) = 1 we immediately
obtain

S2 (x1, x2 | q1,q2,q3,q4) = S1 (x1 | q1,q2) .

For q1 = q5, q2 = q6, q3 = q7 and q4 = q8 by N3 (x3)+ P3 (x3) = 1 we get

S3 (x1, x2, x3 | q1, . . . ,q8) = S2 (x1, x2 | q1,q2,q3,q4) = S1 (x1 | q1,q2) .

This means that the inferred model can be written as⎡⎣ ẋ1
ẋ2
ẋk

⎤⎦ =
β1 − x1

α1 + β1

⎡⎣ 0 −1 −1 0
1 a 0 0
b 0 −d 1

⎤⎦
⎡⎢⎢⎣

x1
x2
x3
u

⎤⎥⎥⎦+
x1 + α1

α1 + β1

⎡⎣ 0 −1 −1 0
1 a 0 0
b 0 d 1

⎤⎦
⎡⎢⎢⎣

x1
x2
x3
u

⎤⎥⎥⎦ .

(5.151)
The above equations are the same as (5.150).
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As one can see, recurrence simplifies the derivation of the conventional
model of a process for a given system of fuzzy rules.

5.7 Exact Modeling of MIMO Linear Dynamical
Systems

Let us consider a MIMO P1-TS system that models a MIMO linear dynamical
system. The inputs and the outputs of the MIMO P1-TS system are shown
in Fig. 5.18, where x1, . . . , xn are the state variables, u1, . . . , um are control
actions and y1, . . . , yl are the outputs of a modeled linear dynamical system.

According to the theory of P1-TS systems we can formulate the following

Remark 5.22. Suppose the fuzzy sets for all inputs of a MIMO P1-TS sys-
tem shown in Fig. 5.18 are linear as was defined in (2.11)-(2.12) in Section
2.2, and both state variables and control actions are contained in the premises
of the rules. Such a rule-based system is an exact model of

sx (t) =
∑

(p1,p2,...,pn)∈{0,1}n+m

zk∈{xk,uk}, k∈{1,...,n+m}

θp1,p2,...,pn+mzp1
1 zp2

2 · · · zpn+m

n+m ,

y (t) =
∑

(p1,p2,...,pn)∈{0,1}n+m

zk∈{xk,uk}, k∈{1,...,n+m}

ξp1,p2,...,pn+mzp1
1 zp2

2 · · · zpn+m

n+m ,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.152)

where

sx (t) =

{
ẋ (t) - for a continuos case, t ≥ 0,

x (t + 1) - for a discrete case, t = 0, 1, 2, . . . ,

and the coefficients θ(·) and ξ(·) are real numbers.

Without loss of generality we will investigate the continuous models. A special
case of (5.152) is the linear dynamical system written in the standard form

P1-TS system

�x1 ∈ [−α1, β1] ���
�xn ∈ [−αn, βn]
�u1 ∈ [−αn+1, βn+1] ���
�um ∈ [−αn+m, βn+m]

� ẋ1���
� ẋn

� y1���
� yl

Fig. 5.18 The inputs and the outputs of MIMO P1-TS system which exactly
models the dynamical system (5.153)
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ẋ (t) = A (t)x (t) + B (t)u (t) , x (0) ∈ Dn,

y (t) = C (t)x (t) + D (t)u (t) , t ≥ 0,

}
(5.153)

where A (t) : R+ → R
n×n is the state matrix, B (t) : R+ → R

n×m is the input
matrix, (m < n), C (t) : R+ → R

l×n is the output matrix and D (t) : R+ →
R

l×m is the feedthrough (or feedforward) matrix, (l ≤ n, R+ = [0, ∞)). The
vectors x, u, and y are from the hypercuboids: x (t) ∈ Dn, u (t) ∈ Dm and
y (t) ∈ Dl for t ≥ 0.

Our goal is to show a simple and effective method of how to obtain an
exact model of the linear dynamical system (5.153) in the form of MIMO
P1-TS system.

Theorem 5.23. Let us define the MIMO P1-TS system shown in Fig. 5.18,
for which the following conditions are satisfied:

1. The inputs are xk ∈ [−αk, βk], (k = 1, . . . , n) and uk ∈ [−αn+k, βn+k],
(k = 1, . . . , m) and two linear fuzzy sets for every input are defined by
(2.11)-(2.12).

2. The outputs are ẋk (t), (k = 1, . . . , n) and yk (t), (k = 1, . . . , l).
3. The TS system is defined by 2n+m fuzzy rules and each single rule is of

the form:

Rv: If x1 is A1 and . . . and xn is An and u1 is An+1
and . . . and um is An+m,
then ẋ1 = qv,1, . . ., ẋn = qv,n, y1 = qv,n+1, . . ., yl = qv,n+l,

where Ai are the labels of the fuzzy sets, (Ai ∈ {Ni, Pi}, i = 1, . . . , n + m).
Such a rule-based system is an exact model of the linear dynamical system
(5.153), if and only if the consequents of the fuzzy rules are computed accord-
ing to the following equations

ẋi = qv,i = γT
v ri, for i = 1, . . . , n,

yi = qv,n+i = γT
v rn+i, for i = 1, . . . , l,

γv ∈ Γ n+m, (5.154)

where Γ n+m is the set of vertices of the hypercuboid Dn+m and r1, . . . , rn+l

are the row vectors given by⎡⎢⎣ r1
...

rn+l

⎤⎥⎦ =

[
A (t) B (t)

C (t) D (t)

]
. (5.155)

Equivalently, the same consequents can be expressed in the matrix form

[
ẋT ,yT

]
v

= LT

[
A (t) B (t)

C (t) D (t)

]
, v = 1, . . . , 2n+m, (5.156)



162 5 Comprehensive Study and Applications of P1-TS Systems

P1-TS system
considered in
Example 5.24

�

�

� �

�

�

x1

x2

u

ẋ1

ẋ2

y

Fig. 5.19 A zero-order TS system as an exact model of a linear second-order
dynamical system

where
[
ẋT ,yT

]
v

= [ẋ1, . . . , ẋn, y1, . . . , yl]v is the output vector of the P1-TS
system in the case of the vth fuzzy rule. The matrix L = [γ1, . . . , γ2n+m ] is
a part of the fundamental matrix Ω of the system. It is constructed based on
the generator g (x1, . . . , xn, u1, . . . , um).

Proof. The inputs of the MIMO P1-TS system are components of the vector
z = [x1, . . . , xn, u1, . . . , um]T ∈ Dn+m. By applying the generator g (z) to the
MIMO P1-TS system, the rest of the proof is straightforward. 
�

Example 5.24. Consider the following MIMO P1-TS system with the inputs
(see Fig. 5.19)

• xk ∈ [−αk, βk] and the fuzzy sets for xk are Nk (xk) and Pk (xk), (k = 1, 2),
• u ∈ [−α3, β3], and the fuzzy sets for u are N3 (u) and P3 (u).

The outputs are ẋ1 (t), ẋ2 (t) and y (t). According to Theorem 5.23 for the
generator

g (x1, x2, u) = [1, x1, x2, x1x2, u, ux1, ux2, ux1x2]
T

we immediately obtain the following system of 8 fuzzy rules:

R1 : If x1 is N1 and x2 is N2 and u is N3, then
ẋ1 = [−α1, −α2, −α3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [−α1, −α2, −α3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [−α1, −α2, −α3] [c1 (t) , c2 (t) , d (t)]T ,

R2 : If x1 is P1 and x2 is N2 and u is N3, then
ẋ1 = [β1, −α2, −α3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [β1, −α2, −α3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [β1, −α2, −α3] [c1 (t) , c2 (t) , d (t)]T ,
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R3 : If x1 is N1 and x2 is P2 and u is N3, then
ẋ1 = [−α1, β2, −α3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [−α1, β2, −α3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [−α1, β2, −α3] [c1 (t) , c2 (t) , d (t)]T ,

R4 : If x1 is P1 and x2 is P2 and u is N3, then
ẋ1 = [β1, β2, −α3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [β1, β2, −α3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [β1, β2, −α3] [c1 (t) , c2 (t) , d (t)]T ,

R5 : If x1 is N1 and x2 is N2 and u is P3, then
ẋ1 = [−α1, −α2, β3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [−α1, −α2, β3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [−α1, −α2, β3] [c1 (t) , c2 (t) , d (t)]T ,

R6 : If x1 is P1 and x2 is N2 and u is P3, then
ẋ1 = [β1, −α2, β3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [β1, −α2, β3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [β1, −α2, β3] [c1 (t) , c2 (t) , d (t)]T ,

R7 : If x1 is N1 and x2 is P2 and u is P3, then
ẋ1 = [−α1, β2, β3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [−α1, β2, β3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [−α1, β2, β3] [c1 (t) , c2 (t) , d (t)]T ,

R8 : If x1 is P1 and x2 is P2 and u is P3, then
ẋ1 = [β1, β2, β3] [a11 (t) , a21 (t) , b1 (t)]T ,

ẋ2 = [β1, β2, β3] [a12 (t) , a22 (t) , b2 (t)]T ,

y = [β1, β2, β3] [c1 (t) , c2 (t) , d (t)]T .

Equivalently the same rules can be written in the matrix form

If [x1, x2, u] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 N2 N3
P1 N2 N3
N1 P2 N3
P1 P2 N3
N1 N2 P3
P1 N2 P3
N1 P2 P3
P1 P2 P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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then [ẋ1, ẋ2, y] is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α1 −α2 −α3
β1 −α2 −α3

−α1 β2 −α3
β1 β2 −α3

−α1 −α2 β3
β1 −α2 β3

−α1 β2 β3
β1 β2 β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣a11 (t) a12 (t) c1 (t)
a21 (t) a22 (t) c2 (t)
b1 (t) b2 (t) d (t)

⎤⎦ .

The above rules exactly model the second-order dynamical system[
ẋ1 (t)
ẋ2 (t)

]
=
[

a11 (t) a12 (t)
a21 (t) a22 (t)

] [
x1 (t)
x2 (t)

]
+
[

b1 (t)
b2 (t)

]
u (t) ,

y (t) =
[
c1 (t) c2 (t)

] [x1 (t)
x2 (t)

]
+ d (t)u (t) .

with an initial condition [x1 (0) , x2 (0)]T ∈ D2.

The method of obtaining the fuzzy rules for the given MIMO linear dynami-
cal system described by the differential equations is systematic and extremely
simple. The resulting rule-based system can be viewed as an alternative de-
scription substituting the differential equations. The same can be said about
nonlinear dynamical systems described by (5.152).

5.8 Strong Triangular Fuzzy Partition

A very popular method used for fuzzy modeling is the so called strong trian-
gular fuzzy partition for input variables. Assume that there are Jk fuzzy sets
for the input variable zk which make a strong fuzzy partition of the interval
[mk,1, mk,Jk

] into (Jk − 1) subintervals

[mk,1, mk,Jk
] = [mk,1, mk,2] ∪ [mk,2, mk,3] ∪ . . . ∪ [mk,Jk−1, mk,Jk

]

as shown in Fig. 5.20. For every zk from the universe of discourse [mk,1, mk,Jk
],

there are either exactly two fuzzy sets with nonzero memberships, or exactly
one fuzzy set with full membership. Thus, the whole rule-based system is
equivalent to

∏n
k=1 (Jk − 1) distinct P1-TS subsystems TSj1,...,jn , (jk = 1,

. . . , (Jk − 1), k = 1, . . . , n). Using the P1-TS system notation, the bound-
aries of the subsequent subintervals for the input zk are

mk,j = −αk,j , mk,j+1 = βk,j = −αk,j+1, j = 1, 2, . . . , (Jk − 1) .

Since the membership grades are maximal at the points mk,j , the antecedents
of the fuzzy rules do refer approximately to these points. Observe that the
systems with strong triangular partition do not require a special theory, since
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Mk,1 Mk,2 Mk,3 Mk,Jk−1 Mk,Jk1

︸ ︷︷ ︸
1

︸ ︷︷ ︸
2

︸ ︷︷ ︸
Jk−2

︸ ︷︷ ︸
Jk−1

Fig. 5.20 Strong triangular partition

their contribution lies only in a smaller number of the fuzzy rules, in com-
parison with the P1-TS systems considered till now.

Let us assume that a strong fuzzy partition is applied to a zero-order TS
system with n inputs containing the complete and noncontradictory fuzzy
rules. By nMIN we denote the minimal number of fuzzy rules, and by nREQ

- the number of required fuzzy rules that have to be considered using the
theory of P1-TS system. The relationship between the numbers nMIN and
nREQ is as follows

nMIN =
n∏

k=1

Jk ≤ nREQ = 2n
n∏

k=1

(Jk − 1) , (5.157)

where n > 1 and min {J1, . . . , Jn} ≥ 2. Assuming additionally that the num-
ber of fuzzy sets is the same for every input, i.e. Jk = J for k = 1, . . . , n, the
pairs of numbers nMIN/nREQ are illustrated in Table 5.11.

Below we will exemplify that for systems with a strong triangular fuzzy
partition it would be advisable to use the results obtained for P1-TS

Table 5.11 Minimal number of individual fuzzy rules against required
nMIN/nREQ for the TS systems with a strong triangular fuzzy partition

J = 2 J = 3 J = 4 J = 5
n = 2 4/4 9/16 16/36 25/64
n = 3 8/8 27/64 64/216 125/512
n = 4 16/16 81/256 256/1 296 625/4 096
n = 5 32/32 243/1 024 1 024/7 776 3125/32 768
n = 6 64/64 729/4 096 4 096/46 656 15 625/262 144



166 5 Comprehensive Study and Applications of P1-TS Systems

�
�

��
�
�
�

�
��












�

�
��

�

�

�
�

�
�������������

������������
�

�
��

TS1,1

TS2,1

TS1,2

TS2,2

a1

a2

a3A3

A2

A1

b1 b2 b3

B1 B2 B3

z2

z1

Fig. 5.21 Triangular fuzzy partition for the TS system from Example 5.25

systems. The first example will be abstract, but the second one will refer
to the practical design of a simple navigation system for a mobile robot.

Example 5.25. Consider a TS system with the inputs z1 and z2, where for
each zk three triangular fuzzy sets are assigned. For the sake of simplicity the
membership functions and boundaries of intervals are denoted by (see Fig.
5.21)

M1,j (z1) = Aj (z1) , M2,j (z2) = Bj (z2) , m1,j = aj , m2,j = bj , j = 1, 2, 3.

The output of the whole TS system is as follows (Fig. 5.21):

S (z1, z2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S1,1 (z1, z2) for (z1, z2) ∈ [a1, a2] × [b1, b2]
S1,2 (z1, z2) for (z1, z2) ∈ [a1, a2] × [b2, b3]
S2,1 (z1, z2) for (z1, z2) ∈ [a2, a3] × [b1, b2]
S2,2 (z1, z2) for (z1, z2) ∈ [a2, a3] × [b2, b3]

,

where Si,k (z1, z2) is the output of the subsystem TSi,k, (i, k = 1, 2). The
system of fuzzy rules is given in Table 5.12.

Formally, the crisp output of the (i, k)th P1-TS subsystem is given by

Si,k (z) = θT
i,kg (z) = qT

i,kΩ
−1
i,kg (z) , i, k = 1, 2,

where g is the generator, θi,k is the vector of coefficients, qi,k is the vector
of the consequents of the rules, and Ωi,k is the fundamental matrix of the
(i, k)th subsystem. For the sake of simplicity we ignore indices (i, k). Thus,
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Table 5.12 Look-up-table for the TS fuzzy system from Example 5.25

B1 (z2) B2 (z2) B3 (z2)
A1 (z1) q1 q4 q7

A2 (z1) q2 q5 q8

A3 (z1) q3 q6 q9

Table 5.13 Subintervals and consequents of the rules of the P1-TS subsystems
from Example 5.25

P1-TS subsystem

Parameters TS1,1 TS1,2 TS2,1 TS2,2

[α1, β1] [−a1, a2] [−a1, a2] [−a2, a3] [−a2, a3]

[α2, β2] [−b1, b2] [−b2, b3] [−b1, b2] [−b2, b3]

qi,k q1,1=

⎡⎢⎢⎢⎣
q1

q4

q2

q5

⎤⎥⎥⎥⎦ q1,2=

⎡⎢⎢⎢⎣
q4

q7

q5

q8

⎤⎥⎥⎥⎦ q2,1=

⎡⎢⎢⎢⎣
q2

q5

q3

q6

⎤⎥⎥⎥⎦ q2,2=

⎡⎢⎢⎢⎣
q5

q8

q6

q9

⎤⎥⎥⎥⎦

θ =

⎡⎢⎢⎣
θ00
θ10
θ01
θ11

⎤⎥⎥⎦ , g (z) =

⎡⎢⎢⎣
1
z1
z2

z1z2

⎤⎥⎥⎦ , Ω =

⎡⎢⎢⎣
1 1 1 1

−α1 −α1 β1 β1
−α2 β2 −α2 β2
α1α2 − α1β2 − α2β1 β1β2

⎤⎥⎥⎦ .

Taking the parameters from Table 5.13 we immediately obtain the output of
the first subsystem

S1,1 = θ00 + θ10z1 + θ01z2 + θ11z1z2,

where

θ00 =
−a1b2q2 + a2b2q1 + a1b1q5 − a2b1q4

(a2 − a1) (b2 − b1)
,

θ10 =
b1 (q4 − q5) + b2 (q2 − q1)

(a2 − a1) (b2 − b1)
,

θ01 =
a1 (q2 − q5) + a2 (q4 − q1)

(a2 − a1) (b2 − b1)
,

θ11 =
q1 − q2 − q4 + q5

(a2 − a1) (b2 − b1)
.

For the sake of simplicity let us take

(a1, a2, a3) = (−a, 0, a) , (b1, b2, b3) = (−b, 0, b) . (5.158)
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The outcome is as follows

S1,1 (z1, z2) = q5 +
q5 − q4

a
z1 +

q5 − q2

b
z2 +

q1 − q2 − q4 + q5

ab
z1z2, (5.159)

S1,2 (z1, z2) = q5 +
q5 − q4

a
z1 +

q8 − q5

b
z2 +

q4 − q5 − q7 + q8

ab
z1z2, (5.160)

S2,1 (z1, z2) = q5 +
q6 − q5

a
z1 +

q5 − q2

b
z2 +

q2 − q3 − q5 + q6

ab
z1z2, (5.161)

S2,2 (z1, z2) = q5 +
q6 − q5

a
z1 +

q8 − q5

b
z2 +

q5 − q6 − q8 + q9

ab
z1z2. (5.162)

The result is the same as in [51], when substituting symbols for numbers.
One can check that for every point (z1, z2) ∈ [−a, a] × [−b, b] the functions
(5.159)-(5.162) are the same, and the whole rule-based system is equivalent
to the polynomial

S (z1, z2) = A +
B − A

a
z1 +

C − A

b
z2 +

A − B − C + D

ab
z1z2,

if the consequents of the rules from Table 5.12 are q1 = 4A − 2B − 2C + D,
q2 = 2A − C, q3 = 2B − D, q4 = 2A − B, q5 = A, q6 = B, q7 = 2C − D,
q8 = C and q9 = D, for any constants A, B, C, D, and nonzero a and b.

Thus, by taking into account all P1-TS subsystems as in Example 5.25 with
the use of the methods described in the previous sections, we can easily
analyze the whole rule-based system.

A practical application of the TS systems with the strong triangular par-
tition will be exemplified below.

Example 5.26. A navigation system for a mobile robot usually combines
obstacle avoidance and goal-seeking behaviors [11]. It can be designed using
various approaches like artificial neural networks, genetic algorithms, poten-
tial field methods, fuzzy logic or fuzzy-neural systems [11], [16], [47], [170],
[197], [199].

Let us consider a simple mobile robot, like Khepera manufactured by K-
Team [142], working in an unknown environment. The robot is equipped
with two wheels moved by two independent motors coupled with gears and
infra-red (IR) proximity sensors, placed as shown in Fig. 5.22. Our goal is
to show how to design a simple but efficient sensor-based navigation system
for this robot. Based on expert experience and fuzzy logic we will design
two independent P1-TS systems as the most important components of the
navigation system. In contrast to existing approaches based on fuzzy logic
for mobile robot control system design, our method will result in delivering
explicit formulas for a fuzzy navigation system.

We assume that the wheels do not skid or float. The robot’s kinematics is
described by the following differential equations
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Fig. 5.22 Schematic diagram of a two-wheeled robot for the motion control (� -
IR sensor)

θ̇ =
1

2R
(ur − ul) , (5.163)

ẋ =
1
2

(ur + ul) cos θ, (5.164)

ẏ =
1
2

(ur + ul) sin θ, (5.165)

where x and y are the position of the mobile robot on the ground, θ is the
attitude of the robot, R is the displacement from the center of the robot
to the center of the wheel, ul and ur are control actions for the left- and
right-wheeled motor, respectively. In the above equations (ur + ul) /2 is the
translational (tangential) velocity of the robot and (ur − ul) / (2R) is its an-
gular velocity.

Obstacle avoidance is one of the most important tasks that the mobile
robot should perform independently of the other tasks such as goal-seeking,
transporting objects, etc. The control algorithm has to prevent damage to the
robot when it moves in an unknown environment. When a robot navigates
in an uncertain environment towards the goal position, the two behaviors
usually are in conflict with each to other. The navigator should combine
obstacle avoidance and goal-seeking behaviors. To do this, we propose to
design the behaviors independently and combine them by a soft switching
function according to the situation around the robot. The architecture of
the navigation system is shown in Fig. 5.23. Every wheel is moved by a DC
motor coupled with a gear. We assume that DC motors are controlled by PID
controllers working at the lowest control level. The inputs of the controllers
are signals u(·) as the number of pulses per second for two wheels; ul ∈ [−C, C]
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Fig. 5.23 Navigation system for the mobile robot from Fig. 5.22

for the left wheel and ur ∈ [−C, C] for the right wheel, where C is the
maximal value of pulses per second. Thus, the value of u(·) = C corresponds
to the maximal forward wheel speed, whereas u(·) = −C corresponds to the
maximal backward wheel speed.

Now we will investigate the obstacle avoidance mode. The sensors x1,
. . ., x6 are placed around the robot and positioned as shown in Fig. 5.22.
Every sensor embeds an infra-red emitter and receiver and is coupled with
an A/D converter contained in the interface A. It delivers information xi ∈
{0, 1, 2, . . . , a}, (i = 1, . . . , 6), about the distance between the robot and an
obstacle, where a = 2k − 1, if k-bit A/D converter is used. The signal xi

is a decreasing function of the distance between an obstacle and the robot.
The maximal value xi = a indicates the most dangerous situation, whereas
xi = 0 says that there is no “visible” obstacle in the selected direction. In
order to reduce the number of rules we define the following three variables
for the P1-TSA system (see Figs. 5.22 and 5.23):

z1 = max (x1, x2) , (5.166)

z2 = max (x5, x6) , (5.167)

z3 = max (x3, x4) , (5.168)

The fuzzy sets for the input variables z1, z2 and z3 for the P1-TSA system
have the following meanings (see Fig. 2.8 in the case [−α, β] = [0, a]):

N1 - there is no obstacle on the right -hand side,
P1 - there is an obstacle on the right -hand side,
N2 - there is no obstacle on the left -hand side,
P2 - there is an obstacle on the left -hand side,
N3 - there is no obstacle on the front,
P3 - there is an obstacle on the front.
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Table 5.14 Look-up-table for the P1-TSA fuzzy system for the robot working in
the obstacle avoidance mode (A)

Rule z1 (right) z2 (left) z3 (front) Decision
(
uA

l , uA
r

)
R1 N1 N2 N3 go ahead (C, C)

R2 P1 N2 N3 turn left (−C, C)

R3 N1 P2 N3 turn right (C,−C)

R4 P1 P2 N3 go ahead (C, C)
R5 N1 N2 P3 turn left (−C, C)

R6 P1 N2 P3 turn left (−C, C)

R7 N1 P2 P3 turn right (C,−C)

R8 P1 P2 P3 turn left (−C, C)

By formulating the fuzzy rules for the obstacle avoidance mode, which
should be performed by the P1-TSA system, the following decisions can be
taken: “go ahead” or “turn left” or “turn right”. Since every wheel is moved
by a low-level controller, every decision corresponds to the control action as
a vector containing two components

(
uA

l , uA
r

)
∈ {−C, C}2 as the number

of pulses per second for the left and right wheel, respectively. The P1-TSA

system has three inputs z1 ∈ [0, a] (right), z2 ∈ [0, a] (left) and z3 ∈ [0, a]
(front) and two outputs uA

l ∈ [−C, C] and uA
r ∈ [−C, C].

The fuzzy rules are given in Table 5.14. They are defined intuitively and
seem to be rather obvious. For example the rule R2 says that “If there is an
obstacle on the right-hand side and no obstacle on the left-hand side and no
obstacle on the front, then turn left”. By [−αk, βk] = [0, a] for k = 1, 2, 3,
according to (5.21)-(5.29) we immediately obtain the following control actions:

uA
l =

C

a3

(
a3 − 2a2z1 − 2a2z3 + 2az1z2 + 2az1z3 + 2az2z3 − 4z1z2z3

)
,

(5.169)

uA
r =

C

a2

(
a2 − 2az2 + 2z1z2

)
, (5.170)

with z1, z2 and z3 given by (5.166)-(5.168).
Now let us consider the goal seeking mode. For the P1-TSG rule-based

system responsible for correct robot behavior in the goal seeking mode, we
define two inputs z4 and z5. The variable z4 ∈ [−π, π] is the angle between
the line perpendicular to the robot axle and a distance line between the robot
and the goal point, whereas z5 ∈ [0, D] is the distance between the robot and
the goal point (xG, yG). The fuzzy sets for the inputs z4 and z5 have the
following meanings (see Fig. 5.24):

A1 - the angle z4 is negative,
A2 - the angle z4 is near zero,
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Fig. 5.24 Triangular partition for the P1-TSG system responsible for the goal-
seeking mode

A3 - the angle z4 is positive,
B1 - the distance z5 is small,
B2 - the distance z5 is big.

The fuzzy rules for the P1-TSG system are given in Table 5.15. They are as
transparent as the ones of the obstacle avoidance mode. The rule R2 says
that “If the angle z4 is near zero and the distance z5 is small, then the
robot should go ahead slowly”. This can be achieved by a sufficiently small
coefficient η ∈ (0, 1), say η = 0.05. After the partition of the input domain
[−π, π] × [0, D] as in Fig. 5.24 we obtain two P1-TS subsystems. Without
going into details, according to (5.1)-(5.5) by taking the appropriate values
for αk, βk, (k = 1, 2) and qv, (v = 1, 2, 3, 4), we obtain the following control
actions for every point (z4, z5) ∈ [−π, π] × [0, D]

Table 5.15 Look-up-table for the P1-TSG fuzzy system for the robot working in
the goal seeking mode (G)

Rule z4 (angle) z5 (distance) Decision
(
uG

l , uG
r

)
R1 A1 B1 turn left (−C, C)

R2 A2 B1 go ahead slowly (ηC, ηC)
R3 A3 B1 turn right (C,−C)

R4 A1 B2 turn left (−C, C)

R5 A2 B2 go ahead (C, C)

R6 A3 B2 turn right (C,−C)
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uG
l = C

(
η +

z4 − η |z4|
π

+
1 − η

D
z5 − 1 − η

πD
|z4| z5

)
, (5.171)

uG
r = C

(
η − z4 + η |z4|

π
+

1 − η

D
z5 − 1 − η

πD
|z4| z5

)
, (5.172)

for the navigation system working in the goal seeking mode. By substituting

z4 = θ − arctan
(

yG − y

xG − x

)
, z5 =

√
(xG − x)2 + (yG − y)2, (5.173)

one obtains explicitly the control signals uG
l and uG

r as nonlinear feedback
depending on the robot position.

Finally, the two behaviors will be combined. When the mobile robot navi-
gates in an unknown environment, one of these behaviors must be selected at
each action step in order to accomplish its goal. Once the rule bases for the
P1-TS systems are gathered, the two behaviors can be combined as follows

ul = ρuA
l + (1 − ρ)uG

l , ur = ρuA
r + (1 − ρ) uG

r , (5.174)

where the coefficient ρ ∈ [0, 1] is a constant or ρ = max (x1, . . . , x6) /a.
A series of simulations and experiments was successfully performed using

a small Khepera robot [142] to check the effectiveness of the proposed naviga-
tion system, under various obstacle configuration, start and goal positions of
the robot, initial heading angles, and by choosing various design parameters
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Fig. 5.25 Trajectory of the mobile robot from Example 5.26
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ρ and η. Fig. 5.25 shows an example of the mobile robot trajectory for some
configuration of the obstacles for R = 26 [mm], C = 10 [1 / sec], η = 0.05,
D = 500 [mm], ρ = 0.5, the initial robot position (θ (0) , x (0) , y (0)) =
(−0.6π, 0, 0) and the goal position (xG, yG) = (450, 450). As one can see,
the mobile robot located at start position “Start” arrives at the goal position
“Goal” without colliding with obstacles.

With the proposed navigation strategy, the robot arrives at the given goal
position without colliding with obstacles. Observe that explicitly obtained
control actions are simple for simulations. What is more, they enable an easy
implementation of the navigation strategies in small inexpensive embedded
digital systems. The proposed method can be viewed as an initial step in
developing further improvements of the navigation system by learning and
adaptation.

In the next two sections we will present simple but useful results concerning
linearity of the P1-TS systems and the relationship between the first-order
and the zero-order P1-TS systems.

5.9 Linearity Condition for P1-TS Systems

Below we give the necessary and sufficient linearity condition for the P1-TS
systems.

Corollary 5.27. Let f be a linear function

f (z) = rT z, r = [r1, . . . , rn]T ∈ R
n, z = [z1, . . . , zn]T ∈ Dn. (5.175)

There exists a P1-TS system with the input vector z and the output S, such
that S (z) = f (z) for all z ∈ Dn, if and only if the consequents of the fuzzy
rules constitute the following vector q = [q1, . . . , q2n ]T :

q = LT r, L = [γ1, . . . , γ2n ] , γv ∈ Γ n, v = 1, . . . , 2n, (5.176)

where Γ n is the set of vertices of the hypercuboid Dn. Equivalently

qv = q(i1,...,in) =
n∑

k=1

(ik (αk + βk) − αk) rk, (5.177)

by v ↔ (i1, . . . , in) ∈ {0, 1}n according to the bijection (2.16).

Proof is given in Appendix C.3.
An advantage of the above condition is that linearity of a P1-TS system

can be immediately recognized by a designer without using a generator or a
fundamental matrix.
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5.10 The First-Order P1-TS Systems

The first-order TS system is able to perform more complex functions than
the zero-order one, since the consequents of the fuzzy rules depend on in-
put variables. We will show that based on results obtained for the zero-
order P1-TS system, one can easily obtain new results for the first-order
system.

Corollary 5.28. Consider the first order P1-TS system with the input vector
z ∈ Dn, in which the consequents qv of the fuzzy rules depend linearly on the
inputs:

qv = qv,0 + [qv,1, qv,2, · · · , qv,n] z , for v = 1, 2, . . . , 2n. (5.178)

1. Every such a rule-based system is equivalent to the following multivariate
polynomial

fI (z) = gT (z)
(
ΩT
)−1

Q
[

1
z

]
, (5.179)

where the matrix Q contains the coefficients qv,j, (v = 1, 2, . . . , 2n, j =
0, 1, 2, . . . , n) as in (5.178)

Q =

⎡⎢⎢⎢⎣
q1,0 q1,1 q1,2 · · · q1,n

q2,0 q2,1 q2,2 · · · q2,n

...
...

...
. . .

...
q2n,0 q2n,1 q2n,2 · · · q2n,n

⎤⎥⎥⎥⎦ , (5.180)

and Ω is the fundamental matrix corresponding to the generator g.
2. For the given multivariate polynomial function given by (5.179) there exist

infinitely many first-order P1-TS systems performing this function.

Proof. The subsequent equations (5.178) can be rewritten in the matrix
form

q (z) = Q
[

1
z

]
.

According to the proof of Theorem 2.4, the crisp system output is S (z) =
gT (z)

(
ΩT
)−1

q = fI (z). This ends the proof of the first part of Corollary
5.28. The second part we prove by a counterexample. Consider a first-order
P1-TS system with two inputs zk ∈ [−αk, βk] for k = 1, 2, for which Ω is
given by (2.38). Let

fI (z) = r0 + r1z1 + r2z2 + r3z1z2 + r4z
2
1 + r5z

2
2 + r6z

2
1z2 + r7z1z

2
2 . (5.181)

If the consequents of the rules for this system are



176 5 Comprehensive Study and Applications of P1-TS Systems

q (z) = ΩT

⎡⎢⎢⎣
r0 a b

r1 − a r4 c
r2 − b d r5

r3 − c − d r6 r7

⎤⎥⎥⎦
⎡⎣ 1

z1
z2

⎤⎦ ,

then such rule-based system is equivalent to the function fI (z) in (5.181) for
any values a, b, c and d. This ends the proof of the second part of Corollary
5.28. 
�

Example 5.29. The system of rules from Example 5.14 which define the
controller with variable gains, can be viewed as a special case of the first-
order P1-TS system. We will consider it again in the context of Corollary
5.28. One can choose the system generator in many ways. Let us define the
following one

g (z) = [1, z1, z2, z3, z1z2, z1z3, z2z3, z1z2z3]
T

, (5.182)

which corresponds to the sequence of rules R1, R5, R3, R2, R7, R6, R4, R8
formulated in Example 5.14. Thus, the vector of consequents of the rules is
as follows

q (z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1k1k8 a2k1k8 a3k1k8
0 a1k1k4 a2k1k4 a3k1k4
0 a1k1k6 a2k1k6 a3k1k6
0 a1k1k7 a2k1k7 a3k1k7
0 a1k1k2 a2k1k2 a3k1k2
0 a1k1k3 a2k1k3 a3k1k3
0 a1k1k5 a2k1k5 a3k1k5
0 a1k1 a2k1 a3k1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
1
z1
z2
z3

⎤⎥⎥⎦ .

For the generator (5.182), assuming βk = λkαk for k = 1, 2, 3 as in Exam-
ple 5.14, we compute the fundamental matrix Ω. According to (5.180) after
computations we obtain the function (5.179) as follows

S (z) = gT (z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a1b1 a2b1 a3b1
0 a1b2 a2b2 a3b2
0 a1b3 a2b3 a3b3
0 a1b4 a2b4 a3b4
0 a1b5 a2b5 a3b5
0 a1b6 a2b6 a3b6
0 a1b7 a2b7 a3b7
0 a1b8 a2b8 a3b8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
1
z1
z2
z3

⎤⎥⎥⎦ . (5.183)

One can check that all coefficients b1, b2, . . . , b8 contained in the matrix Q
given in (5.183) are exactly the same as formerly obtained in Example 5.14.

Corollary 5.28 can be helpful for the design and analysis of the first-order
P1-TS systems. From the designer point of view it seems to be interesting to
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realize that for a given crisp function from the class of allowable functions
(5.179), the process of the fuzzy rules derivation for the first-order P1-TS
system can lead to infinitely many solutions.

5.11 Zero-Order TS System with Contradictory
Rule-Base

There are several reasons why a fuzzy expert system is not “certain”. It may
contain contradictory rules in the rule-base. According to Section 2.5 two
rules are contradictory to each other if their consequents are different for the
same antecedent. In such a system the rules are of the form

If Pv, then S = q̃v = qv + εv,

If Pv, then S = q̃v+1 = qv+1 + εv+1,

...
If Pv, then S = q̃v+k = qv+k + εv+k,

q̃i �= q̃j , for i �= j, (5.184)

for v ∈ {1, . . . , 2n} and εv is viewed as an “error”. The problem is how
to obtain the components θ0, θi, θi,j , ..., θ1,2,...,n of the vector θ for the TS
system (2.26). Because no additional information on the preferences of values
q̃v is given, we assume that the consequents of the rules are contaminated
by noise with zero mean and some variance σ2. Now, instead of (2.29) and
(2.30), we obtain m boundary conditions

S (γ1) = θTg (γ1) = q̃1 = q1 + ε1,

...

S (γm) = θTg (γm) = q̃m = qm + εm, 2n < m.

Using a vector notation q̃ = [q̃1, . . . , q̃m]T and ε = [ε1, . . . , εm]T we have the
same equations but in the matrix form

ε = ΩT
e θ − q̃ ,

ΩT
e =

[
g (γ1) . . . g (γm)

]
2n×m

. (5.185)

The matrix Ωe defined by (5.185) will be called a generalized fundamental
matrix of the P1-TS system. Next, we can easily find such a vector θ̃ that
minimizes the sum of squared errors εT ε

θ̃ = argmin
{
εT ε
}

θ∈R2n

=
(
ΩT

e Ωe

)−1
ΩT

e q̃. (5.186)
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The unique solution always exists independently of the number of contradic-
tory rules, since

rankΩe = dim θ.

The system without contradictions is a special case of the rule-based system
with contradictions, because of the linguistic interpretation of the fuzzy rules
and the problem solution. Observe that we obtain θ̃ = θ, if there are no
contradictions in the rules. This fact seems to be intuitively obvious. However,
the vice-versa is not true. To prove this, suppose there are two contradictory
rules

R1 : If Pv, then S = qv + ε,

R2 : If Pv, then S = qv − ε,

and we compute θ̃ according to (5.186). Next, consider the noncontradictory
system of rules, in which the corresponding rule is

R : If Pv, then S = qv ,

and θ is computed according to (2.30). One can prove that θ̃ = θ holds in
this case, i.e. both rule-base systems generate the same output.

It should be added that the proposed approach is not unique. Since the
consequents in (5.184) may be viewed as intervals, we can obtain another
solution, where the vector θ̃ will contain intervals as its components. However,
this interesting problem will not be considered in this book.

Example 5.30. Let us consider a two-input-one-output P1-TS system given
by the fuzzy rules

R1 : If z1 is N1 and z2 is N2, then S = q̃1,

R2 : If z1 is N1 and z2 is N2, then S = q̃2,

R3 : If z1 is N1 and z2 is P2, then S = q̃3,

R4 : If z1 is N1 and z2 is P2, then S = q̃4,

R5 : If z1 is P1 and z2 is N2, then S = q̃5,

R6 : If z1 is P1 and z2 is P2, then S = q̃6,

where the rules R1 and R2, as well as R3 and R4 are contradictory ones by
q̃1 �= q̃2 and q̃3 �= q̃4. One can check that

ΩT
e =

⎡⎢⎢⎢⎢⎢⎢⎣
1 − α1 − α2 α1α2
1 − α1 − α2 α1α2
1 − α1 β2 − α1β2
1 − α1 β2 − α1β2
1 β1 − α2 − α2β1
1 β1 β2 β1β2

⎤⎥⎥⎥⎥⎥⎥⎦ .

For the given q̃T = [q̃1, q̃2, . . . , q̃6], the estimated vector θ̃ is
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θ̃
T

=
1

2 (α1 + β1) (α2 + β2)
q̃T

⎡⎢⎢⎢⎢⎢⎢⎣
β1β2 − β2 − β1 1
β1β2 − β2 − β1 1
α2β1 − α2 β1 − 1
α2β1 − α2 β1 − 1

2α1β2 2β2 − 2α1 − 2
2α1α2 2α2 2α1 2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Observe that for noncontradictory rules, when

q̃1 = q̃2 = q1, q̃3 = q̃4 = q2, q̃5 = q3, q̃6 = q4,

the result (5.186) reduces to (2.30) and θ̃ = θ.

5.12 Summary

The controller synthesis for a milk of lime blending tank considered in Section
5.1.2 suggests that in some cases of highly nonlinear dynamical processes
(stable and with one equilibrium point) one can derive a simple and attractive
control algorithm expressed by the fuzzy rules for the P1-TS system. By using
continuous multi-valued logic we obtained “soft switching” control signals,
as opposed to “hard switching” ones that are typical when Boolean logic
is applied. There is an observable connection between the heuristic design
methods that use conventional (Boolean) logic and the methods that use
fuzzy logic. The method of fuzzy rules synthesis for the P1-TS system as a
controller is simple and clear. It resembles a heuristic design procedure for a
combinational logic system synthesis. The last one is widely used in practice
for switching control algorithms designs, intended for the embedded hardware
devices or software components for real-time direct digital control systems,
e.g. programmable logic controllers (PLCs).

In Section 5.1.3 we considered a special class of P1-TS systems, in which
input vectors are points from the unity hypercube [0, 1]n. They were called
“logical” systems, since according to Theorem 3.15, the output vectors take
values from the unity hypercube, as well. Logical systems process information
expressed in continuous multi-valued logic. Their look-up-tables describing
“If-then” rules or metarules can be viewed as generalized Karnaugh maps. In
the vertices of the unity hypercube the Karnaugh maps enable us to interpret
the function to which a given P1-TS system is equivalent. This interpretation
coincides with formerly obtained algebraic results. We derived all functions of
two variables on the assumption that the consequents of the rules take binary
values. Among others the probabilistic t-norm and t-conorm, Reichenbach’s
implication and the other functions expressed in the continuous multi-valued
logic were obtained.
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In Section 5.2.2 we considered highly interpretable rule-bases for systems
with three and more inputs for both abstract processes and real dynamical
plants. It was shown that by using a systematic approach and matrix com-
putations, the fuzzy rules for discrete-time NARX model considered in [208]
and fuzzy J-K flip-flop developed in [60] can be easily obtained. In Exam-
ple 5.5 we proved equivalence between fuzzy rules and Euler equations for a
rigid body. Next, the fuzzy rules for nonlinear dynamical processes such as
Chen’s attractor, human immunodeficiency virus, magnetic suspension sys-
tem, low order atmospheric circulation process and induction motor, were
derived using symbolic computations. The number of similar models could
be substantially increased. General formulas for the P1-TS systems with four
and more inputs are not difficult to obtain by using the appropriate software
specializing in symbolic computations, e.g. Maple, Mathematica, MuPAD,
etc. It was exemplified that thanks to recursive procedures described in the
previous sections, the curse of dimensionality problem in the rule-based sys-
tems can be substantially reduced. In all cases we should try to obtain a
small number of rules. To do this, both P1-TS and P2-TS systems can be
used in some cases. Sometimes it is desirable to transform original variables
into other ones by using a nonlinear mapping, as was shown in Example 5.10.

In Section 5.3.1 a low order atmospheric circulation model described in
literature was considered as P1-TS system with five inputs. Next, we showed
that P1-TS system can exactly model the induction motor as a highly non-
linear dynamical fifth-order system. Example in Section 5.3.3 shows that
some complicated functions describing e.g. the control algorithms, earlier ob-
tained by using Boolean logic methods, can be immediately transformed into
the fuzzy domain by applying generalized operators (t-norms, t-conorms and
strong negation). The fuzzy rules obtained in this way, have a clear logical
interpretation.

In Section 5.4 theory of P1-TS systems was used for the analytical design
of the PID controller working in the closed-loop control system for some class
of (linear and nonlinear) second order plant. The controller as P1-TS system
works “optimally” with respect to typical requirements formulated for auto-
matic control systems (the closed-loop system is free of oscillations, has no
steady state error and its step response is as quick as required). In Section
5.4.3 a PD-like rule-based controller was derived for a nonlinear second or-
der plant. The fuzzy controller behaves optimally for a given reference input.
The consequents of the fuzzy rules are time-dependent functions. In this way
we showed that the “optimal” fuzzy controller in the closed-loop containing
a second order dynamical plant can be analytically obtained. Good perfor-
mance of the fuzzy control system is independent of the particular values of
the parameters of the plant.

In Section 5.5 we showed that the “controller with variable gains” in-
troduced by Ying [205], [206], can be immediately obtained using the facts
concerning P1-TS systems.
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In Section 5.6 we established an exact relationship between the P1-TS sys-
tems and some class of multiaffine dynamical systems, in which the derivatives
of state variable are from a subclass of Kolmogorov-Gabor polynomials. The
antecedents of the fuzzy rules are concerned with the state variables and the
consequents are state derivatives depending linearly on the state variables
and the control signal. In contrast to Section 3.4, original Takagi-Sugeno
inference method for the P1-TS system was used. Theoretical results were
exemplified by exact fuzzy modeling of the van de Vusse reaction and Rössler
chaotic system. In Remark 5.22 the class of single-input dynamical systems,
which can be perfectly modeled by P1-TS systems was formally defined. The
proposed method can be easily extended to MIMO systems.

Section 5.7 describes the architecture of the P1-TS system as the fuzzy
model of conventional MIMO linear dynamical system.

In Section 5.8 we showed that the idea of TS systems with two linear mem-
bership functions of fuzzy sets can be easily extended to the systems with
triangular fuzzy partition. It should be added that the triangular member-
ship functions can be substituted by other nonlinear membership functions
which are similar to the triangular ones, i.e. they have the same support and
the same monotonicity intervals. For such more general systems one can use
formerly obtained results on recursion. As a practical example of using the
systems with triangular fuzzy partition, a sensor-based navigation system for
a mobile robot was presented. The proposed navigator consists of obstacle
avoidance and goal seeking behaviors. These are independently designed to
accommodate complex environments and combined by the behavior selector
in the form of soft switching function. Although the design process of the nav-
igator was based on expert knowledge, the proposed method can be viewed as
an initial step in developing further improvements of the navigation system
by learning and adaptation.

This chapter ends with supplementary results for P1-TS systems. The
outcomes concern with the necessary and sufficient condition of linearity for
such rule-based systems (Section 5.9), the first-order P1-TS systems (Section
5.10) and the zero-order systems with contradictory rule-base (Section 5.11).
The advantage of the linearity condition is that linearity of the rule-base
can be immediately recognized by a designer without using a generator or a
fundamental matrix. Corollary 5.28 can be helpful for the design and analysis
of the first-order P1-TS systems. From the designer point of view it seems
to be interesting to realize that for a given crisp function from the class of
allowable functions, the process of the fuzzy rules derivation for the first-order
P1-TS system can lead to infinitely many solutions.

In the last section we showed that the system without contradictions is
a special case of the rule-based system with contradictions, because of the
linguistic interpretation of the fuzzy rules and the problem solution. We intro-
duced a generalized fundamental matrix of the P1-TS system which reduces
to the formerly considered fundamental matrix, if the system of the rules is
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a noncontradictory one. The generalized fundamental matrix can be easily
extended to the P2-TS systems, as well.

The above chapter contains many examples concerning exact fuzzy model-
ing and control of real systems. In this way it was shown that P1-TS systems
deserve a special attention not only from the theoretical point of view, but
also they should be attractive for practitioners. The results are analytical and
therefore cannot be questioned; they reinforce our belief that many success-
ful applications of the fuzzy rule-based systems (especially fuzzy controllers)
cannot be a matter of chance.



Chapter 6
Modeling of Multilinear Dynamical
Systems from Experimental Data

Since the introduction of fuzzy sets by Zadeh in 1965 [210], many re-
searchers have shown interest in applying this theory to system identification,
which is an essential part of any control system design. Rapid develop-
ment of intelligent control methodologies such as artificial neural networks,
fuzzy logic theory, and rule-based expert systems, have provided alterna-
tive tools to tackle the problem of system identification [203]. A large num-
ber of fuzzy identification techniques have been developed using neural
networks, genetic algorithms, clustering techniques, Kalman filtering and
other methods, including ad hoc ones [112]. Consequently, fuzzy identifi-
cation has become a very important area in fuzzy system theory [180].
The main approaches to fuzzy identification are based on linguistic fuzzy
modeling, fuzzy relational equation modeling and Takagi-Sugeno modeling
[13]. In this chapter we present a new effective method of modeling contin-
uous multilinear dynamical systems using the Takagi-Sugeno fuzzy expert
system.

Most of the current fuzzy identification is carried out in discrete-time do-
main in contrast to continuous-time domain. Continuous-time models are
often desired for the control system design, since the designers prefer if
the parameters identified in the model have a direct relationship with the
physical and chemical parameters of the plant. Thus, the need for a fuzzy
model expressed in the continuous time domain arises [203]. In this chap-
ter we will start with a continuous-time model of a dynamical system.
However, for the numerical computing we will convert this model into the
discrete-time form.

6.1 Problem Statement

Let us consider a multilinear dynamical system described by the following
differential equations of variables z1 (t), . . . , zn (t), (t ≥ 0), with n2n real
coefficients

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 183–197.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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dz1

dt
= a0 +

∑n
i=1 aizi +

∑n
i,j=1
i<j

ai,jzizj + · · · + a1,2,...,nz1z2 · · · zn ,

dz2

dt
= b0 +

∑n
i=1 bizi +

∑n
i,j=1
i<j

bi,jzizj + · · · + b1,2,...,nz1z2 · · · zn ,

...
dzn

dt
= h0 +

∑n
i=1 hizi +

∑n
i,j=1
i<j

hi,jzizj + · · · + h1,2,...,nz1z2 · · · zn .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.1)

Assume that the trajectory of this system is known at the time instants t1,
t2, . . . , tK+1. The available data can be gathered as shown in Table 6.1.

Table 6.1 Learning data for the multilinear dynamical system (6.1)

Time instant z1 z2 · · · zn

t1 z1 (t1) z2 (t1) · · · zn (t1)

t2 z1 (t2) z2 (t2) · · · zn (t2)
...

...
...

. . .
...

tK+1 z1 (tK+1) z2 (tK+1) · · · zn (tK+1)

Our goal is to develop an identification algorithm such that for the given
data set of samples, one obtains a MIMO P1-TS system which optimally
models the dynamical system (6.1). As an optimization criterion we assume a
standard quality index in the form of sum of squared errors for every variable
zj that comes from the approximation of the derivatives and a measurement
noise. To reduce the influence of these disturbances, the number of samples
must be sufficiently large.

6.2 Problem Solution

The set of equations (6.1) is equivalent to

dzj

dt
= gT (z1, . . . , zn)θj , θj ∈ R

2n

, j = 1, 2, . . . , n, (6.2)

where g (z1, . . . , zn) is the generator of some P1-TS system with the input
vector [z1, . . . , zn]T ∈ Dn and the output vector [dz1/dt, . . . , dzn/dt]T . Using
the data from Table 6.1 we will show that (6.1) can be well approximated by
the fuzzy rules.

Theorem 6.1. After using a batch procedure one obtains the P1-TS system,
that models equations (6.1) optimally in the sense of minimal sum of squared
errors for every input variable zj, (j = 1, . . . , n) that is equivalent to the
following set of differential equations
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dzj

dt
= gT (z1, . . . , zn) θ̂

∗
j , j = 1, 2, . . . , n. (6.3)

The batch procedure is given by

θ̂
∗
j = G−1 [gt1 , · · · ,gtK ]dj , j = 1, 2, . . . , n, (6.4)

where G is a matrix assumed to be nonsingular

G =
K∑

k=1

gtk
gT

tk
∈ R

2n×2n

, (6.5)

and

• the vectors gtk
are values of the rule-based system generator in the points

z (tk) of the trajectory, i.e.

gtk
= g (z1 (tk) , . . . , zn (tk)) , k = 1, 2, . . . , K, (6.6)

• the components of the vector dj are approximations of the derivatives for
the variable zj, which are computed in the subsequent time-intervals [t1, t2],
[t2, t3], . . . , and [tK , tK+1]

dj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dj (t1,t2)

dj (t2,t3)

...

dj (tK,tK+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zj (t2) − zj (t1)
t2 − t1

zj (t3) − zj (t2)
t3 − t2

...
zj (tK+1) − zj (tK)

tK+1 − tK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

K , j = 1, 2, . . . , n.

(6.7)

Proof. Consider the P1-TS system which models the nonlinear dynamical
system (6.1) with inputs z1 ∈ [−α1, β1], . . . , zn ∈ [−αn, βn], and outputs
S1 = dz1/dt, . . . , Sn = dzn/dt. The fundamental matrix Ω can be obtained
approximately from the data, since

αk = − min
t∈{t1,...,tK}

zk (t) , βk = max
t∈{t1,...,tK}

zk (t) , k = 1, . . . , n.

(6.8)
Thus, in reality Ω is not exactly known, since the data come from observation
(measurements). If the matrix Θ contains coefficients of the crisp model, i.e.
Θ = [θ1, . . . , θn], then according to Theorem 2.10, equation Θ =

(
ΩT
)−1

Q
holds. In the ideal case of fuzzy modeling described in the previous sections
(when Ω and Q are given precisely), we have
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d

dt

⎡⎢⎣ z1 (t)
...

zn (t)

⎤⎥⎦ = gT (z1 (t) , . . . , zn (t)) ·
(
ΩT
)−1

Q︸ ︷︷ ︸
Θ

. (6.9)

where the matrix Q contains the consequents of the rules. Equivalently (6.9)
can be written as

dzj (t)
dt

= wT (t)qj , j = 1, . . . , n, ∀ t ≥ 0, (6.10)

where qj is jth column of Q, and

wT (t) = gT (z1 (t) , . . . , zn (t))
(
ΩT
)−1

, ∀ t ≥ 0. (6.11)

The derivative of the continuous signal zj (t) can be approximated as

dzj (tk)
dt

=
zj (tk+1) − zj (tk)

tk+1 − tk
+ εj (tk, tk+1) , (6.12)

where εj (tk, tk+1) is an error. The left-hand side of (6.12) can be modeled
exactly by the P1-TS system, whereas the Euler approximation of the deriv-
ative can be obtained from observation data. In the case of an “ideal” data
set, if there is no measurement noise or disturbances, no quantization errors,
etc., εj vanishes by the vanishing sampling period

lim
tk+1→tk

εj (tk, tk+1) = 0, j = 1, . . . , n. (6.13)

For real experimental data, even though the sampling period is very small,
the above condition is satisfied only in the sense of mean value, since the
numbers zj (tk) come from measurements. On the other hand from (6.10)
and (6.12) for t = tk we have

εj (tk, tk+1) = wT (tk)qj − dj (tk, tk+1) , (6.14)

where dj (tk, tk+1) is defined in (6.7).
We should minimize the sum of squared errors with respect to every j-th

input of the P1-TS system

Ej =
K∑

k=1

ε2j (tk, tk+1) = ‖εj‖2 =
∥∥Wqj − dj

∥∥2 , (6.15)

where

W =

⎡⎢⎣ wT (t1)
...

wT (tK)

⎤⎥⎦ =

⎡⎢⎣ gT
t1
...

gT
tK

⎤⎥⎦(ΩT
)−1

, W ∈ R
K×2n

, (6.16)
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and K-dimensional vector dj is given by (6.7). Thus, we should find such a
vector of the rules consequents qj = q∗

j for which the sum of squared errors
(6.15) is minimal

q∗
j = arg min

qj∈RK
Ej .

One can find a necessary condition for Ej to be minimal by setting the
gradient of Ej , with respect to qj , to zero vector

∇qj ‖εj‖2 = −2WTdj + 2WTWqj = 0 .

In the least-squares sense, the optimal vector of consequents of the fuzzy rules
results from the normal equation WTWqj = WTdj , i.e.

q∗
j = W+dj , (6.17)

where in general W+ =
(
WTW

)−1
WT is the Moore-Penrose generalized

inverse (pseudoinverse) [15], which always exists. It is assumed that the ma-
trix WTW is a nonsingular one. Let us continue the transformation of the
equation (6.17), by taking into account the form of the matrix W defined in
(6.16):

q∗
j =

⎛⎜⎜⎝
⎛⎜⎝
⎡⎢⎣ gT

t1
...

gT
tK

⎤⎥⎦(ΩT
)−1

⎞⎟⎠
T ⎡⎢⎣ gT

t1
...

gT
tK

⎤⎥⎦(ΩT
)−1

⎞⎟⎟⎠
−1⎛⎜⎝

⎡⎢⎣ gT
t1
...

gT
tK

⎤⎥⎦(ΩT
)−1

⎞⎟⎠
T

dj ,

where gtk
= g (z1 (tk) , . . . , zn (tk)) and (K + 1) is the number of samples.

After elementary matrix calculations we obtain

q∗
j = ΩT

(
K∑

k=1

gtk
gT

tk

)−1

[gt1 , · · · ,gtK ]dj , j = 1, . . . , n,

Observe that gtk
gT

tk
= gtk

⊗ gT
tk

for any k is (2n × 2n) matrix as the outer
product of the vector gtk

with itself. The inverse of G =
∑K

k=1 gtk
gT

tk
exists,

since the matrix WT W is nonsingular.
The j-th output of the rule-based system is Sj = dzj/dt and the equation

Sj = gT (z1, . . . , zn) ·
(
ΩT
)−1

qj follows from the fuzzy rules. On the other
hand, Sj = gT (z1, . . . , zn) · θ̂j from the fact that this system is equivalent
to a multilinear function of variables z1, . . . , zn. Substituting qj by q∗

j we
obtain a P1-TS system which is equivalent to

dzj

dt
= gT (z1, . . . , zn)

(
ΩT
)−1

q∗
j = gT (z1, . . . , zn) θ̂

∗
j .
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In the case when the P1-TS system would ideally approximate the dynamical
system described by (6.1), the vector θj =

(
ΩT
)−1

qj . This means that the
best approximation vector θ̂j is given by

θ̂
∗
j =
(
ΩT
)−1

q∗
j =

(
K∑

k=1

gtk
gT

tk

)−1

[gt1 , · · · ,gtK ]dj .

This ends the proof of Theorem 6.1. 
�

From the given data set which is usually obtained from observation (mea-
surements) of an unknown multilinear dynamical system, one can find the
best model in the form of fuzzy rules. The data are almost always corrupted
with noise, quantization and the approximation method of the derivatives
calculus. The unique minimal sum of error squares can be easily determined
by q∗

j from (6.17)

Ej

(
q∗

j

)
=
(
dj − Wq∗

j

)T (
dj − Wq∗

j

)
= dT

j

(
dj − Wq∗

j

)
. (6.18)

From (6.18) without noise we obtain

Ej

(
q∗

j

)
= dT

j

(
I − W

(
WT W

)−1
WT
)

dj = 0.

The procedure given by Theorem 6.1 uses all the data at once and there-
fore can be called a batch (off-line, explicit, one-shot) method. With respect
to computing time, the critical part of this procedure is the inversion of the
symmetric matrix G in (6.5), since it is of the same dimensions as the fun-
damental matrix.

6.3 Analytical Solution for Dynamical Systems with
Two Variables

In this section we will show an analytical solution to the identification prob-
lem for the following dynamical system

ẋ (t) = θ0 + θ1x (t) + θ2y (t) + θ3x (t) y (t) ,
ẏ (t) = ϑ0 + ϑ1x (t) + ϑ2y (t) + ϑ3x (t) y (t) , t ≥ t1 ≥ 0.

}
(6.19)

The system trajectory (x (tk) , y (tk)) = (xk, yk) for k = 1, 2, . . .K + 1 is
assumed to be known as a result of observations. For the sake of simplicity
we take a constant sampling period; tk+1 − tk = T , (k = 1, 2, . . .K + 1). The
result will be given in the form of Theorem.

Theorem 6.2. The inputs and outputs of the P1-TS system are [x (t) , y (t)]T

∈ D2 and [ẋ (t) , ẏ (t)]T , respectively. For any collection of coefficients θi and
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ϑi, (i = 0, 1, 2, 3), the above system is optimally modeled (in the sense of
minimal squared sum of errors) by the following fuzzy rules

If [x (t) , y (t)] is

⎡⎢⎢⎣
N1 N2
P1 N2
N1 P2
P1 P2

⎤⎥⎥⎦ , then [ẋ (t) , ẏ (t)] is Q̂∗ (6.20)

where the matrix of consequents

Q̂∗ =

⎡⎢⎢⎣
1 − α1 − α2 α1α2
1 β1 − α2 − α2β1
1 − α1 β2 − α1β2
1 β1 β2 β1β2

⎤⎥⎥⎦ Θ̂∗, (6.21)

with the boundaries of the rectangle D2 given by (6.8) for z1 (tk) = xk and
z2 (tk) = yk, (k = 1, 2). The matrix containing approximate coefficients of
the right-hand sides of (6.19)

Θ̂∗ = G−1E , (6.22)

by

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K
∑K

k=1 xk

∑K
k=1 yk

∑K
k=1 xkyk∑K

k=1 xk

∑K
k=1 x2

k

∑K
k=1 xkyk

∑K
k=1 x2

kyk∑K
k=1 yk

∑K
k=1 xkyk

∑K
k=1 y2

k

∑K
k=1 xky2

k∑K
k=1 xkyk

∑K
k=1 x2

kyk

∑K
k=1 xky2

k

∑K
k=1 x2

ky2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6.23)

and

E =
1
T

⎡⎢⎢⎢⎢⎢⎢⎣

xK+1 − x1 yK+1 − y1∑K
k=1 (xk+1 − xk)xk

∑K
k=1 (yk+1 − yk)xk∑K

k=1 (xk+1 − xk) yk

∑K
k=1 (yk+1 − yk) yk∑K

k=1 (xk+1 − xk)xkyk

∑K
k=1 (yk+1 − yk)xkyk

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.24)

The number of samples must be K ≥ 2n = 4.

Proof. According to Theorem 2.10 for the fundamental matrix Ω for n = 2
the equation (6.21) holds, since Q̂∗ = ΩT Θ̂∗. According to equations
(6.5)-(6.6) from Theorem 6.1 and the generator g (x, y) = [1, x, y, xy]T one
obtains
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G =
K∑

k=1

⎡⎢⎢⎣
1
xk

yk

xkyk

⎤⎥⎥⎦ [1, xk, yk, xkyk] ,

i.e. G is the same as in (6.23). From (6.4) and (6.7) we have

E =

⎡⎢⎢⎣
1 1 · · · 1
x1 x2 · · · xK

y1 y2 · · · yK

x1y1 x2y2 · · · xKyK

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

(x2 − x1) /T (y2 − y1) /T
(x3 − x2) /T (y3 − y2) /T

...
...

(xK+1 − xK) /T (yK+1 − yK) /T

⎤⎥⎥⎥⎦ ,

and it is the same as in (6.24). Checking that detG = 0 for K ≤ 3 is left to
the reader. This ends the proof of Theorem 6.2. 
�

Now we consider numerical examples.

Example 6.3. The dynamical system (6.19) is described by

ẋ (t) = y (t) ,
ẏ (t) = −6x (t) − 2y (t) − 4x (t) y (t) .

}
(6.25)

For initial conditions (x (0) , y (0)) = (−1, −2) and time interval [0, 5], the
data come from the solution of (6.25) shown in Fig. 6.1. The differential
equations were integrated by the ode45 solver from Matlab, which uses the
(explicit) fourth order Runge-Kutta-Fehlberg method with 10−13 relative er-
ror tolerance (RelTol) and the same absolute error tolerance (AbsTol). Since
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Fig. 6.1 Solution of the differential equations (6.25)
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the integration step size (tk+1 − tk) in Matlab solver is not constant, we take
into account general formulas from Theorem 6.1. In this example the errors
result from simple Euler approximation of the derivatives, numerical solu-
tion of the differential equations and rounding off the numerical outcomes.
If [x (t) , y (t)]T and [ẋ (t) , ẏ (t)]T are inputs and outputs of the zero-order
P1-TS system, respectively, then equations (6.25) are modeled by the fuzzy
rules

If [x, y] is

⎡⎢⎢⎣
N1 N2
P1 N2
N1 P2
P1 P2

⎤⎥⎥⎦ , then [ẋ (t) , ẏ (t)] is Q.

From the data describing the system trajectory we obtain (see Fig. 6.1):

α1 = − min
t∈{t1,...,tK}

x (t) = 1.6219, β1 = max
t∈{t1,...,tK}

x (t) = 0.92133,

α2 = − min
t∈{t1,...,tK}

y (t) = 2.0000, β2 = max
t∈{t1,...,tK}

y (t) = 5.5372.

For the data obtained numerically by K = 5928, according to (6.5) the
outcomes are as follows

G =

⎡⎢⎢⎣
5928.0 −636.15 3600.90 −1281.52

−636.15 4097.58 −1281.52 1308.30
3600.90 −1281.52 24896.30 −9583.47

−1281.52 1308.30 −9583.47 13048.38

⎤⎥⎥⎦ ,

and the matrix Θ̂∗, that is very close to the true matrix Θ, since

Θ̂∗ =

⎡⎢⎢⎣
0.0001 0.0019

−0.0015 −6.0005
0.9995 −2.0033

−0.0010 −3.9993

⎤⎥⎥⎦ , Θ =

⎡⎢⎢⎣
0 0
0 −6
1 −2
0 −4

⎤⎥⎥⎦ .

Finally, we obtain the matrix of consequents of the rules Q̂, that is very close
to the true matrix Q:

Q̂∗ = ΩT Θ̂∗ =

⎡⎢⎢⎣
−1.9997 0.7678
−1.9984 5.8494

5.5459 34.5583
5.5280 −37.0220

⎤⎥⎥⎦ , Q = ΩTΘ =

⎡⎢⎢⎣
−2.0000 0.7562
−2.0000 5.8427

5.5372 34.5801
5.5372 −37.0087

⎤⎥⎥⎦ ,

as well. The relative approximation error

δΘ =
n∑

j=1

∥∥∥θ̂∗
j − θj

∥∥∥
‖θj‖

. (6.26)
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is very small; δΘ = 0.0023952 since large data set was used and only numerical
errors were taken into account.

The relative approximation error tends to zero by increasing the cardinality
of data sets and decreasing the lengths of intervals [t1, t2], [t2, t3], . . . , and
[tK , tK+1]. A small approximation error can be obtained for more complicated
dynamical systems. As the next numerical example we will consider again the
Chen’s attractor discussed in Section 5.2.2.

Example 6.4. Let us consider the Chen’s attractor from Example 5.7 de-
scribed by three multilinear differential equations (5.43) subjected to distur-
bances: ⎧⎪⎨⎪⎩

ẋ = a (y − x) + ξ1,

ẏ = (c − a)x − xz + cy + ξ2,

ż = xy − bz + ξ3,

(6.27)

where a = 35, b = 3, c = 28 and

ξ1 (t) = 0.2 sin(2t sin (4 sin (5t))), (6.28)

ξ2 (t) = 0.1 cos(5t cos (3 cos (2t))), (6.29)

ξ3 (t) = 2 sin(6t cos (2 sin (3t))). (6.30)

The above system without disturbances has been already described by the
zero-order P1-TS system (5.46) with the inputs [x (t) , y (t) , z (t)]T ∈ D3

and the outputs [ẋ (t) , ẏ (t) , ż (t)]T . The data describing system trajectory
come from the solution of (6.27) by nonzero signals ξk (t) as in (6.28)-(6.30).
The first disturbance is shown in Fig. 6.2 To integrate the equations, the
ode45 solver from Matlab was used with relative error tolerance 10−10 and
the absolute error tolerance 10−13. The integration step size varied from
5.7 ·10−9 to 10−3 with the mean value 4.1 ·10−4. The plots of the solution by
the initial conditions (x (0) , y (0) , z (0)) = (0, −10, 1) and the time interval
[0, 4] are shown in Figs. 6.3, 6.4 and 6.5. The number of samples used for
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Fig. 6.2 Disturbance ξ1 described by (6.28)
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computations was K = 9753. The location of the cuboid D3 following from
the data set is determined by (see Figs. 6.3, 6.4 and 6.5):

−α1 = min
t∈{t1,...,tK}

x (t) = −33.3629, β1 = max
t∈{t1,...,tK}

x (t) = 24.7308,

−α2 = min
t∈{t1,...,tK}

y (t) = −40.8660, β2 = max
t∈{t1,...,tK}

y (t) = 36.8520,

−α3 = min
t∈{t1,...,tK}

z (t) = 0.9987, β3 = max
t∈{t1,...,tK}

z (t) = 68.6232.
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Fig. 6.3 Solution x(t) of differential equations (6.27): A - without disturbances, B
- including disturbances ξk(t) given by (6.28)-(6.30)
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Fig. 6.4 Solution y(t) of differential equations (6.27): A - without disturbances, B
- including disturbances ξk(t) given by (6.28)-(6.30)
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Fig. 6.5 Solution z(t) of differential equations (6.27): A - without disturbances, B
- including disturbances ξk(t) given by (6.28)-(6.30)

The resulting matrices are as follows

Θ̂∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1069 −0.1185 −0.3446
−34.9591 −7.0005 0.0142

34.9984 28.0296 −0.0167
−0.0004 0.0025 1.0061
−0.0025 0.0017 −3.0017
−0.0021 −0.9996 −0.0001
−0.0006 −0.0031 0.0006

0.0000 0.0000 −0.0001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Θ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−35 −7 0

35 28 0
0 0 1
0 0 −3
0 −1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Q̂∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−264.25 −875.18 1368.4
−2294.3 −1345.8 −1019.0

2456.7 1296.5 −1241.3
424.85 837.18 913.26

−258.02 1388.8 1154.8
−2296.4 −3008.8 −1217.0

2459.8 3544.2 −1434.2
419.68 −842.17 705.44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−262.61 −877.39 1360.4
−2295.9 −1342.1 −1013.6

2457.5 1298.7 −1232.5
424.24 834.04 908.38

−262.61 1378.8 1157.5
−2295.9 −3014.5 −1216.5

2457.5 3554.9 −1435.4
424.24 −838.36 705.51

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus, both the matrix Θ̂∗ is close to Θ, and Q̂∗ is close to Q. The global
relative error (6.26) in the presence of disturbances is δΘ = 0.11576 and it is
about two times bigger than the one obtained without disturbances.
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6.4 Estimation of P1-TS Model by Recursive Least
Squares

For applications, if there is a need to process measurements as soon as they
become available, one can use a recursive (on-line, implicit, iterative, sequen-
tial) procedures. The so called recursive least squares (RLS) procedure is very
attractive in practice and well-known in the literature. Below we will adopt
it to our problem.

We assume that the available data for every variable zj contain K mea-
sured data pairs

Wj = {(w1, dj,1) , . . . , (wK , dj,K)} ⊂ R
2n

× R, j = 1, . . . , n, (6.31)

where the vectors wk = w (tk) are computed according to (6.16) and dj,k =
dj (tk, tk+1) as defined in (6.7). Instead of the sum of squared errors defined
in (6.15) we assume a slightly modified (more general) criterion

Ej (λ) =
K∑

k=1

λK−kε2j (tk, tk+1) , j = 1, 2, . . . , n, (6.32)

where λ is called the forgetting factor, (0 < λ ≤ 1) and the error εj for the
variable zj is given by (6.14). As one can see, the forgetting factor operates
as a weight which diminishes for the more observed data.

By the new criterion (6.32), the pseudocode of the RLS algorithm which
minimizes Ej (λ) is as follows.

First we should establish the forgetting factor λ; a good rule of thumb is
λ ∈ [0.92, 0.99], [87].

For all variables j = 1, 2, . . . , n perform the following steps:
Initialize the vector qj and the matrix P

qj,0 = 0, P0 = p0I2n×2n ,

where p0 is a very large number, say p0 ∈
{
108, 109, . . . , 1015

}
.

For all samples k = 1, 2, . . . , K perform the following steps:
For the data wk, dj,k and the given vector qj,k−1
calculate the error

εj,k = wT
k qj,k−1 − dj,k . (6.33)

Find the Kalman gain vector

hk =
Pk−1wk

λ + wT
k Pk−1wk

. (6.34)

Calculate the updated vector
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qj,k = qj,k−1 − εj,khk , (6.35)

and the inverse correlation matrix

Pk =
1
λ

(
Pk−1 − hkwT

k Pk−1
)
, (6.36)

end of calculating qj for the variable zj.
end.

The proof of the algorithm is given in Appendix C.4. In the above proce-
dure both the Kalman gain vector, and the inverse correlation matrices have
a local meaning, since they are computed for separate variables zj .

According to the RLS algorithm, starting from an initial matrix P0, the
matrix Pk can be calculated in a recursive manner avoiding any matrix inver-
sion. As the forgetting factor λ approaches 1, the memory of the procedure
tends to be a perfect one equaling all past measurements with more recent
ones. If there are no significant changes in the process parameters (the process
is known to be stationary), working with λ = 1 will result in good estimates
[87], [188]. In a nonstationary environment, with changing system dynamics,
the influence of past observations will be reduced and λ will be smaller than
1. In this way, the present measurements have a stronger influence on the
consequents estimates than the past one.

6.5 Summary

Based on analytical results concerning exact fuzzy modeling of multilinear dy-
namical systems which provide necessary and sufficient conditions for trans-
formation of fuzzy rules into crisp model, the identification problem from
observation data was stated and solved. The theorem on existence of the so-
lution in the form of the P1-TS system was proved. For such system, both
the batch procedure and a recursive one, were described in detail. The com-
putations can be performed on-line using RLS method described in Section
6.4, where there is no need to have the whole data set before beginning the
estimation process. Examples of identification for two- and three-dimensional
nonlinear dynamical systems were given.

The advantages of the proposed approach can be summarized as follows.

• The methodology preserves the interpretability of the fuzzy models, which
is a key property of the Pd-TS systems.

• The algorithm applies to P2-TS systems described in Chapter 4, since
P2-TS systems are based on the same theory, involving generators and
fundamental matrices.

• The continuous dynamical models have been converted into the discrete-
time form. Thus, the method automatically applies to discrete-time mul-
tilinear systems, as well.
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The proposed method can be viewed as a supervised learning algorithm
for the adaptive linear neural network (see e.g. [58]), in which the conse-
quents of the rules are interpreted as the weights of neurons. For the learning
process of such network, we should take the training data set defined in
(6.31). This means that many of the well-known learning procedures devel-
oped for the neural networks can be applied to solve the identification problem
stated in this section, including both feedforward and recurrent (e.g. Hopfield)
networks.



Chapter 7
Binary Classification Using P1-TS
Rule Scheme

Most supervised learning algorithms are either regression or classification
procedures, depending on whether the desired system output is real-valued
or binary-valued. Such algorithms belong to important techniques in machine
learning, computational intelligence and data mining [137], [201]. Classifica-
tion systems (classifiers for short) are used for solving the problems which
arise in many fields including pattern recognition, vision analysis and other
decision making purposes.

Classifiers must often be created from data, because there is not enough
expert knowledge to determine their parameters completely. They take as
inputs a set of cases (n-dimensional vectors), each belonging to one of a small
number of classes. System output must accurately predict the class to which
a new case belongs. The smallest reasonable number of classes is two. In such
systems, called binary classifiers, one class contains “negative” elements and
the other - “positive” elements. Binary classification task is a basic one. It
can be extended to the problem that involves more than two classes. In an
m-class problem this can be done by repeatedly using one of the classes as a
positive class, and the rest as the negative classes. In other words an m-class
problem can be converted into m two-class problems in which one class is
separated from the remaining classes. Such a method is known as the one-
against-all method. It is worth adding that this simple scheme among many
sophisticated methods used for multiclass classification problems is hard to
beat [162], [163].

Classification problems have been widely studied in the literature, includ-
ing theoretical and practical aspects of machine learning and data mining,
such as empirical risk minimization, regularization, generalization ability, ro-
bustness (stability), problem solving by large data sets, etc. [1], [34], [57], [76],
[126], [137], [148], [154], [156], [157], [167], [189], [201]. Many approaches have
been proposed to the automatic generation of the rules from numerical data
for classification problems. They involve heuristic procedures, artificial neu-
ral networks, evolutionary algorithms, nearest neighbor method, support vector
machines, clustering methods, classification trees, Fisher discriminants, and

J. Kluska: Analytical Methods in Fuzzy Modeling and Control, STUDFUZZ 241, pp. 199–216.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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other approaches which more or less involve fuzzy logic, such as fuzzy support
vector machines, neuro-fuzzy techniques, flexible neuro-fuzzy systems, fuzzy
nearest neighbor method, and so forth [2], [3], [24], [32], [44], [61], [62], [63],
[65], [66], [67], [69], [88], [113], [116], [119], [127], [138], [141], [144], [145],
[146], [159], [165], [166], [171], [172], [173], [204], [218]. The generation of the
rules from numerical data for classification problems can also be done by
soft-computing methods involving fuzzy logic, such as fuzzy support vector
machines, neuro-fuzzy techniques, fuzzy nearest neighbor method and other
methods. Usually, the classifiers obtained by the soft-computing techniques
are represented by the fuzzy “If-then” prediction rules. Such classifiers are
especially suitable, because they do not have some of the drawbacks of crisp
rule based classifiers.

The rules discovered by the classifiers can be evaluated according to sev-
eral criteria, such as the degree of confidence in the prediction, classification
accuracy rate on unknown-class instances and interpretability. The last two
criteria are of major importance in fuzzy classification systems. The rules
should be highly interpretable, since the user of the classifier should be able
to understand the rules, especially in such areas as medical or technical di-
agnostics [73], [145].

Our goal in this chapter is to show that the theory of Pd-TS systems de-
veloped in this book can be helpful to obtain very simple classifiers in the
form of highly interpretable fuzzy rule-based systems. Namely, we propose a
conception of obtaining a set of the rules of the P1-TS system as a binary
classification problem solver. We do not attempt to modify the membership
functions of the Pd-TS system, as this might degrade the interpretability of
the fuzzy rules. Furthermore, we do not aspire to prove the novel classifier
to be a good large-scale-problem-solver or the best classifier among a huge
number of solutions proposed in the literature. The answer to the question
of “how good is P1-TS (or P2-TS) system as a classifier, in comparison to
other classifiers” requires a separate comprehensive study and it is not in-
tended in this book. Thus, the result of this chapter should be taken with
a grain of salt. We will use the results developed in previous sections, es-
pecially those from Chapter 6 related to modeling of the rule-based system
from the input-output data, and the results from Section 5.11 referring to
contradictory rules.

7.1 Problem Description

Assume that the available original learning data consist of the following input-
output pairs (training patterns)

{(z1, c1) , (z2, c2) , . . . , (zQ, cQ)} = Z × {−1, 1} ⊂ R
n × {−1, 1} , (7.1)
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where
zi = [zi,1, . . . , zi,n]T , i = 1, . . . , Q, (Q ≥ 2n) . (7.2)

In reality we expect the cardinality of the data set to be much greater than
2n, where n is the dimension of the original space containing the data points.
Every vector zi ∈ Z is identified with either the first class, denoted by “−1”,
or with the second class denoted by “1”.

The smallest nonempty hypercuboid Dn ⊃ Z is determined by

−αk = min
i=1,...,Q

{zi,k} , βk = max
i=1,...,Q

{zi,k} , k = 1, . . . , n. (7.3)

Next we define the fuzzy sets Nk and Pk, (k = 1, 2, . . . , n) as in (2.11)-(2.12).
The fuzzy set Nk we interpret as near “ −αk” and Pk - as near “βk”. For the
given data set we want to find the system of fuzzy rules for a P1-TS system,
which behaves like a classifier. To do this we start with considering the MISO
P1-TS system with n inputs z1, z2, . . . , zn and the output S, described by
the following Q fuzzy rules

R1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn,
then z belongs to the class c1,

...
Rv : If z1 is Ai1 and z2 is Ai2 and . . . and zn is Ain ,

then z belongs to the class cv,
...

RQ : If z1 is P1 and z2 is P2 and . . . and zn is Pn,
then z belongs to the class cQ,

where Aik
∈ {Nk, Pk}, (k = 1, 2, . . . , n and ik ∈ {0, 1} as defined in (2.15))

and cv is the label denoting one of two classes; cv ∈ {−1, 1}. The consequents
of the rules are clear, since every vth rule refers to individual vth point from
the data set (7.1). The antecedents of the rules have a simple interpretation
as well, since we can easily evaluate the degree to which the particular an-
tecedent matches the point zv from the data set Z. However, the fuzzy rules
R1, . . . , RQ do not seem to be suitable for modeling a classifier, especially
when the data set (7.1) contains a large number of elements, in relation to
the number of vertices of the hypercuboid Dn (see Corollary 2.7 in Section
2.4). Namely, for large data sets we are not sure that every fuzzy rule reflects
correctly the individual membership of every point z ∈ Z to the appropriate
class, since many points z can be far from vertices of the hypercuboid Dn,
i.e. they have a large entropy [110].

In order to guarantee interpretability of the rules, our main goal is to
find “the best” fuzzy rule-based system as a classifier, by preserving the
antecedents of the rules which are characteristic for P1-TS systems.
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7.2 The Fuzzy Rules with Proximity Degrees

The rules of the classifier should approximate the input-output data pairs. In
general the rules do not concern an explicitly given system described by con-
ventional mathematical equations. From the fuzzy rules point of view, every
input vector z belongs to the class cv = −1 or cv = 1 in some degree. To define
this formally, let us consider the distance ρ between a point z = (z1, . . . , zn) ∈
R

n and some (temporarily fixed) point z0 = (z0,1, . . . , z0,n) ∈ R
n. The main

attention we will pay to the Minkowski distance of order p (p-norm distance)

ρ (z, z0) =

(
n∑

i=1

|zi − z0,i|p
)1/p

, 1 ≤ p ≤ ∞. (7.4)

The p-norm distances by p = 1 (1-norm or Manhattan distance) or p =
2 (2-norm or Euclidean distance), or infinity norm (Chebyshev distance;
ρ (z, z0) = maxi=1,...,n |zi − z0,i| for p = ∞) are commonly used in many
fields. The triangle inequality for the distance measure ρ does not hold for
p < 1 [143].

We can use the other distance measures [40], e.g. Mahalanobis distance

ρ (z, z0) =
√

(z − z0)
T K−1 (z − z0), (7.5)

where K is the covariance matrix. If K is diagonal, then the resulting function
is the normalized Euclidean distance, which is the same as (7.4) by rescaling
the components. i.e. by substituting zi and z0,i by kizi and kiz0,i, (ki > 0),
respectively. For K = I the distance (7.5) reduces to (7.4) by p = 2.

In order to measure the proximity degree µ of the point z to z0 we will use
a radial function, i.e. such continuous function that decreases monotonically
with the distance ρ. We propose to consider radial functions of the form

µ (z, z0) = a−w, w =
(ρ (z, z0))

r

σ
, a > 1, r > 0, σ > 0. (7.6)

By the power r = 1 and the constant a = exp (1), the above radial
function is

µ (z, z0) = exp (−ρ (z, z0) /σ) , σ > 0. (7.7)

The other radial functions can be taken into account, as well, e.g.

µ (z, z0) = (1 + ρ (z, z0))
−b

, b > 0. (7.8)

The proximity degree µ as a function of two variables µ : Dn × Dn → (0, 1]
can be viewed as a membership function of the fuzzy set interpreted as “the
point z is approximately the same as z0”. Observe that µ (z, z0) > 0 for any
z and z0.
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The TS system should approximate the classification system. Thus, the
conclusions of the rules can be only close, but not exactly equal to the desired
values from the binary set {−1, 1}. According to Corollary 2.7 and the proof
of Theorem 2.4 we can fuzzify the consequents of the rules R1, . . . , RQ by
introducing the “similarity degrees” (certainty degrees or confidence factors)
for every rule. Suppose z0 = zk is a fixed vector from the set Z defined in
(7.1). In every rule Rv we replace its consequent by “the output S is cv with
similarity degree µ (z, zv)”, since µ (z, zv) = 1 if, and only if z = zv. Thus,
we formulate the following artificial system of Q ≥ 2n fuzzy rules for the
subsequent input vectors z1, . . . , zQ from the data set, which are followed
by the confidence degrees

R′
1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn,

then S is c1 with similarity degree µ (z, z1),
...

R′
v : If z1 is Ai1 and z2 is Ai2 and . . . and zn is Ain ,

then S is cv with similarity degree µ (z, zv),
...

R′
Q : If z1 is P1 and z2 is P2 and . . . and zn is Pn,

then S is cQ with similarity degree µ (z, zQ),

where (c1, . . . , cQ) ∈ {−1, 1}Q. In general, the system R′
1, . . . , R′

Q is not
certain, since it includes contradictory rules in the sense of definition in
Sections 2.5 and 5.11. The sources of uncertainty of the rules come from the
modeling method and measurements. Furthermore, the system R′

1, . . . , R′
Q

can be viewed as the well-known Mamdani type fuzzy expert system [123],
since the consequents of the rules can be considered as fuzzy sets. However,
in order to avoid the defuzzification procedure used for Mamdani type rule-
bases, we consistently remain at the Takagi-Sugeno type systems with the
similarity degrees.

7.3 Binary Classifier Equation

For the considered MISO P1-TS system we can write the following equations

S (z1) = θTg (z1) = c1 · µ (z1, z1) + ε1,

...

S (zQ) = θTg (zQ) = cQ · µ (zQ, zQ) + εQ,

where εk is an error, g (zk) is the value of the P1-TS system generator in
the point zk, θ is the vector of coefficients of the same system and Q ≥ 2n.
In order to involve the similarity degrees of the fuzzy rules we extend the
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above equations. Since every consequent of the rule depends on z, the vector
θ depends on z, as well. Let z be any fixed vector z from Dn. Thus,

θT (z) g (z1) = c1 · µ (z, z1) + ε1 (z) ,

...

θT (z)g (zQ) = cQ · µ (z, zQ) + εQ (z) .

By the vector notation

q (z) = [c1µ (z, z1) , . . . , cQµ (z, zQ)]T , ε (z) = [ε1 (z) , . . . , εQ (z)]T , (7.9)

we have the same equations in the matrix form

ε (z) = WT θ (z) − q (z) ,

WT =
[
g (z1) . . . g (zQ)

]
2n×Q

. (7.10)

As one can see, the matrix W resembles the generalized fundamental matrix
Ωe of P1-TS system, formerly defined by (5.185) in Section 5.11. Now for the
given vector z ∈ Dn we can find such a vector θ̂ (z) that minimizes the sum
of squared errors ‖ε (z)‖2

θ̂ (z) = argmin
{
εT ε
}

θ∈R2n

=
(
WTW

)−1
WTq (z) . (7.11)

In general W+ =
(
WTW

)−1
WT is the pseudoinverse of the matrix W. For

the sake of simplicity we assume that the matrix WTW is nonsingular. In the
simplest case, when Q = 2n and the data set is such that W is nonsingular,
the solution is

θ̂ (z) = W−1q (z) . (7.12)

The output of the P1-TS system approximated by the data is given by

S (z) = gT (z) · θ̂ (z) . (7.13)

In this way we obtained the output of the rule-based system, which is a
regressive model for the given data set (7.1). Let

sign (x) =
{

−1 ⇔ x ≤ 0
1 ⇔ x > 0 .

(7.14)

For the vector θ̂ (z) given by (7.11), the generator g (z) of the P1-TS system
and the vector of consequents of the rules q (z) defined by (7.9), we define
the classifier as follows

class (z) = sign
(
gT (z) · θ̂ (z)

)
, ∀ z ∈ Dn. (7.15)
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Note that the classifier is not defined for the points outside the hypercuboid
Dn. Below we justify the outcome.

Suppose there exist the parameters p = p0 of the norm (7.4), a = a0, r = r0
and σ = σ0 of the radial function (7.6) (or b = b0 of the radial function (7.8)),
such that the equation

gT (z) · θ̂ (z) = 0, (7.16)

has a solution, where θ̂ (z) is given by (7.11) and g (z) is the P1-TS system
generator. Then the manifold (7.16) divides all points from the data set Z
into two disjoint subsets

Z1 = {z ∈ Z : class (z) = −1} , (7.17)

and
Z2 = {z ∈ Z : class (z) = 1} , (7.18)

where class (z) is given by (7.15), such that

Z1 ∪ Z2 = Z. (7.19)

According to Theorem 3.15, the output of the P1-TS system is a function
S : Dn → [−1, 1], since min {−1, 1} = −1 and max {−1, 1} = 1. The output
S is a continuous function of z at any point from the hypercuboid Dn and
reaches both extrema −1 and 1. The point 0 belongs to [−1, 1], so that in
practice it is possible to find (rather numerically) such parameters p = p0,
a = a0, r = r0 and σ = σ0 (or b = b0), that the equation (7.16) holds, i.e.
the manifold (hypersurface) (7.16) is a nonempty subset in Dn. This decision
surface partitions Dn into two sets, one for each class. It classifies all the
points on one side of the decision boundary as belonging to the class “−1”
(when gT (z) · θ̂ (z) ≤ 0) and all those on the other side as belonging to the
class “1”, (when gT (z) · θ̂ (z) > 0).

Observe that if we substitute the similarity degrees by 1 for every fuzzy
rule, then it may happen that the problem has a solution for some data sets.
In this case the P1-TS system output is S (z) = gT (z)·θ̂, i.e. S is a multilinear
function of z1, . . . , zn. Thus, we can say that the problem is “multilinearly
separable by a regression model”. Of course, this does not mean that the data
are multilinearly separable at all, since we did not use a general approach to
find the multilinear function as a decision boundary, namely we did use the
P1-TS model.

Example 7.1. Assume that the available original data set consists of Q
input-output pairs on the plane{([

x1
y1

]
, c1

)
, . . . ,

([
xQ

yQ

]
, cQ

)}
= Z × {−1, 1} ⊂ R

2 × {−1, 1} , (7.20)

From (7.10) and (7.11) we immediately obtain
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θ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q
∑Q

k=1 xk

∑Q
k=1 yk

∑Q
k=1 xkyk∑Q

k=1 xk

∑Q
k=1 x2

k

∑Q
k=1 xkyk

∑Q
k=1 x2

kyk∑Q
k=1 yk

∑Q
k=1 xkyk

∑Q
k=1 y2

k

∑Q
k=1 xky2

k∑Q
k=1 xkyk

∑Q
k=1 x2

kyk

∑Q
k=1 xky2

k

∑Q
k=1 x2

ky2
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑Q
k=1 qk∑Q

k=1 xkqk∑Q
k=1 ykqk∑Q

k=1 xkykqk

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(7.21)
where Q ≥ 4, qk = qk (z) are components of the vector q (z) in (7.9) and of
course θ̂ = θ̂ (z).

Example 7.2. Let us consider numerical data and use the outcome of Ex-
ample 7.1. The population consists of Q = 20 people; 10 women (labeled by
“−1”) and 10 men (labeled by “1”). For kth person we assign two attributes
which constitute 20 vectors zk = [xk, yk]T ∈ D2, where xk is the height [m]
and yk is the weight [kg], (k = 1, . . . , 20):

x1 = 1.75, y1 = 85, c1 = −1, x2 = 1.82, y2 = 83, c2 = 1,

x3 = 1.61, y3 = 64, c3 = −1, x4 = 1.87, y4 = 89, c4 = 1,

x5 = 1.70, y5 = 62, c5 = −1, x6 = 1.94, y6 = 95, c6 = 1,

x7 = 1.60, y7 = 55, c7 = −1, x8 = 1.72, y8 = 73, c8 = 1,

x9 = 1.69, y9 = 69, c9 = −1, x10 = 1.88, y10 = 99, c10 = 1,

x11 = 1.71, y11 = 63, c11 = −1, x12 = 1.92, y12 = 90, c12 = 1,

x13 = 1.75, y13 = 60, c13 = −1, x14 = 2.00, y14 = 95, c14 = 1,

x15 = 1.74, y15 = 70, c15 = −1, x16 = 1.68, y16 = 75, c16 = 1,

x17 = 1.68, y17 = 55, c17 = −1, x18 = 1.71, y18 = 71, c18 = 1,

x19 = 1.62, y19 = 51, c19 = −1, x20 = 1.85, y20 = 75, c20 = 1.

One can check that the data are not linearly separable, i.e. there are no
constants w0, w1, w2 for which the straight line w0 +w1x+w2y = 0 separates
the data (see Fig. 7.1). According to (7.3) the rectangle D2 is given by

D2 = [1.60, 2.00] × [51, 99] . (7.22)

Assume temporarily that the consequents of the rules do not depend on the
location of the points from D2, i.e. ck ∈ {−1, 1} for k = 1, . . . , Q. In this case
the set of points satisfying equation (7.16) which “attempts” (unsuccessfully)
to separate the two classes is nonempty

C =
{
(x, y) ∈ D2 : θ̂

T
g (x, y) = 0

}
, (7.23)
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Fig. 7.1 The curve
(7.23): 7.9919x +
0.17777y − 0.078455xy −
16.896 = 0 for the data
set from Example 7.2
obtained for consequents
of the rules ck from the
binary set {−1, 1}
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where θ̂ is computed according to (7.21). This set is a curve shown in Fig. 7.1.
Observe that C does not separate the given data set into two classes. This
is a typical situation, since in practice the data are not “easily separable”
in the original n-dimensional space. Thus, the consequents of the rules must
depend on the input vector z, since otherwise the antecedents of the rules
of the P1-TS system together with the binary consequents of the rules, may
be incapable of solving the data separation problem in the original space
containing the data set.

Let us choose the parameter p = 1 for the Minkowski distance measure
(7.4) and σ = 20 for the radial function (7.7). Fig. 7.2 (a) shows two regions
Z1 and Z2 defined by (7.17) and (7.18), respectively.

Fig. 7.2 (b) shows the classifier surface. In the same way we can take
another radial function, say (7.8). In this case one can numerically check
that by choosing the appropriate parameters of the distance measure ρ and
similarity degree µ, the results are comparable.

As an introduction to the next section we will consider an “ex-or” type
problem of linearly nonseparable data, which cannot be solved by a single
perceptron.

Example 7.3. The data set consists of four points{([
a1
b1

]
, −1
)

,

([
a2
b1

]
, 1
)

,

([
a1
b2

]
, 1
)

,

([
a2
b2

]
, −1
)}

,

where a1 < a2 and b1 < b2 as shown in Fig. 7.3.
According to (7.3) the rectangle D2 = [a1, a2] × [b1, b2], since −α1 = a1,

β1 = a2, −α2 = b1 and β2 = b2. Let us take the Minkowski distance of order
p and the radial function (7.7) by some parameter σ. In this simple case we
can immediately write the fuzzy rules that model the binary classifier
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Fig. 7.2 (a) - The data set from Example 7.2 and its partition: ’•’ - women and ’�’
- men. The subsets Z1 and Z2 obtained by the parameters p = 1 for the Minkowski
distance measure (7.4) and σ = 20 for the radial function (7.7), (b) - decision
surface of the classifier by the same parameters.
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Fig. 7.3 (a) - The data set from Example 7.3, (b) - decision surfice for a1 = 3,
a2 = 9, b1 = 2, b2 = 6, the Minkowski distance parameter p = 2 and σ = 0.6 of the
function (7.7).

R1 : If x is near a1 and y is near b1, then S = c1µ1 (x, y),

R2 : If x is near a2 and y is near b1, then S = c2µ2 (x, y),

R3 : If x is near a1 and y is near b2, then S = c3µ3 (x, y),

R4 : If x is near a2 and y is near b2, then S = c4µ4 (x, y),

where
c1 = −1, c2 = 1, c3 = 1, c4 = −1 (7.24)
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and
µ1 (x, y) = exp

(
− (|x − a1|p + |y − b1|p)1/p

/σ
)

,

µ2 (x, y) = exp
(
− (|x − a2|p + |y − b1|p)1/p

/σ
)

,

µ3 (x, y) = exp
(
− (|x − a1|p + |y − b2|p)1/p

/σ
)

,

µ4 (x, y) = exp
(
− (|x − a2|p + |y − b2|p)1/p

/σ
)

.

As Q = n, we have

W = ΩT =

⎡⎢⎢⎣
1 a1 b1 a1b1
1 a2 b1 a2b1
1 a1 b2 a1b2
1 a2 b2 a2b2

⎤⎥⎥⎦ ,

and according to (7.12)

θ̂ = W−1

⎡⎢⎢⎣
c1µ1 (x, y)
c2µ2 (x, y)
c3µ3 (x, y)
c4µ4 (x, y)

⎤⎥⎥⎦ .

After algebraic calculations for ck given in (7.24) we obtain

S (x, y) =
1
V

⎡⎢⎢⎣
−µ1a2b2 − µ2a1b2 − µ3a2b1 − µ4a1b1

µ1b2 + µ2b2 + µ3b1 + µ4b1
µ1a2 + µ2a1 + µ3a2 + µ4a1

−µ1 − µ2 − µ3 − µ4

⎤⎥⎥⎦
T ⎡⎢⎢⎣

1
x
y
xy

⎤⎥⎥⎦ ,

where V = (b1 − b2) (a1 − a2). Below we prove that the set of separating
points for which the equation (7.23) holds, is given by

C =
{
(x, y) ∈ D2 : x = a0 or y = b0

}
, (7.25)

where
a0 = (a1 + a2) /2, b0 = (b1 + b2) /2.

One can check that

S (a0, y) =
yµ1 − yµ2 + yµ3 − yµ4 − µ1b2 + µ2b2 − µ3b1 + µ4b1

2 (b2 − b1)
,

S (x, b0) =
xµ1 + xµ2 − xµ3 − xµ4 − µ1a2 − µ2a1 + µ3a2 + µ4a1

2 (a2 − a1)
.

Next we obtain

µ1 (x, y) = µ2 (x, y) ⇔ x = a0, and µ3 (x, y) = µ4 (x, y) ⇔ x = a0.
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Thus,
S (a0, y) = 0, ∀ y.

Analogously for y = b0 we obtain S (x, b0) = 0 for every x. For the Minkowski
distance and radial function (7.8) we obtain the same result.

The existence of the separating manifold (two perpendicular straight lines
as shown in Fig. 7.3 (a)) has been proved for any p and σ, (1 ≤ p ≤ ∞ and
0 < σ < ∞). Finally, the classifier equation class (x, y) = signS (x, y) can be
written as

class (x, y) =
{

−1 ⇔ x ≤ a0 & y ≤ b0 or x > a0 & y > b0
1 ⇔ x > a0 & y ≤ b0 or x ≤ a0 & y > b0

.

We obtained highly interpretable fuzzy rules of the classifier for the smallest
allowable cardinality of the input-output data set.

7.4 P1-TS System with Similarity Degrees as Optimal
Binary Classifier

So far we have not considered the problem of how to obtain the best classifier
parameters. Our goal in this section is to get the system of fuzzy rules for
the binary classifier which preserves high interpretability of the fuzzy rules
characteristic for P1-TS system and simultaneously has the best generaliza-
tion ability in the class of the considered systems. In other words, we want
to obtain an “optimal” binary classifier containing 2n fuzzy rules, where n is
the dimension of the input data vectors.

In order to improve generalization ability of the classifier, it would be de-
sirable to normalize the data set (7.1) before beginning the whole procedure,
especially when so called “outliers” are included in the data set. There are
many normalization methods, which has been well described in the literature
and therefore this simple technical problem will not be discussed in this book.

For the construction of the classifier we take into account some class (a
crisp set) of parametrized functions that measure the similarity degree of vec-
tors. Without loss of generality assume that we take the parameter p of the
p-norm (7.4) and parameters a, r and σ of the radial function (7.6). By P0
we denote the set of parameters for which the manifold (7.16) is a nonempty
subset in Dn. By P ∗ we denote a nonempty subset of P0 which contains op-
timal parameters of the classifier by some optimization criterion. Usually we
require from the classifier to guarantee the best generalization ability. In such
case one obtains numerically the set P ∗ by using the well-known crossvalida-
tion method. Without going into details concerning crossvalidation, suppose
from (7.11) we obtained the vector

θ̂0 (z) =
(
WTW

)−1
WT q∗ (z) , (7.26)
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where q∗ (z) is the vector of consequents of the fuzzy rules obtained for the
optimal parameters from the set P ∗. This means that the classifier (7.15) is
optimal in the sense of the best generalization ability.

Now we are able to construct a rule-based system containing only 2n fuzzy
rules instead of Q rules. According to Theorem 2.4, if θ is the vector of
crisp function coefficients (2.26) and Ω is the fundamental matrix of the P1-
TS system with 2n fuzzy rules, then the vector of the rules consequents is
q = ΩT θ. It is known that the vector θ by the confidence factors µ (z, zk) = 1
for every fuzzy rule defines the P1-TS system as some multilinear function of
z. Thus, by θ = θ̂0 (z) obtained in (7.26) we get the following vector of the
rules consequents

q̂∗ (z) = ΩT
(
WTW

)−1
WTq∗ (z) , (7.27)

which models the best classifier containing 2n fuzzy rules. Finally, the system
of fuzzy rules for the P1-TS system as an optimal classifier is as follows

R∗
1 : If z1 is N1 and z2 is N2 and . . . and zn is Nn, then S = q̂∗1 (z),

...
R∗

v : If z1 is Ai1 and z2 is Ai2 and . . . and zn is Ain , then S = q̂∗v (z),
...

R∗
2n : If z1 is P1 and z2 is P2 and . . . and zn is Pn, then S = q̂∗2n (z),

where Aik
∈ {Nk, Pk}, (k = 1, 2, . . . , n, ik ∈ {0, 1}), as defined in (2.15).

For the above rules, the values of “−αk” and “βk” are given by (7.3). The
consequents of the rules are not constant. They are weighted sums of the
radial functions

q∗j (z) =
Q∑

v=1

ξj,vµ∗ (z, zv) , j = 1, . . . , 2n, v = 1, . . . , Q, (7.28)

where µ∗ (z, zv) is the radial function defined for the optimal parameters from
the set P ∗ and ξj,1, ξj,2, . . . , ξj,Q are real coefficients for jth consequent of
the rule. The new rule-based system in which the consequents of the rules are
weighted sums of radial functions we will call P1-TS system with similarity
degrees. It performs the function of the optimal binary classifier.

Example 7.4. Let us consider the data from Example 7.2 again. Suppose
the Minkowski distance measure (7.4) and the radial function (7.6) were
chosen and the optimal parameters of these functions were (numerically)
obtained as

p = p∗, a = a∗, r = r∗, σ = σ∗. (7.29)

At this moment the details concerning the method of obtaining the param-
eters (7.29) are not interesting for us. We assume only that for the above
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parameters the crossvalidation error as an optimization index is the smallest
one. For the data xk, yk and ck from Example 7.2, the consequents of the
rules (7.26) are explicitly given by

q∗k (x, y) = ckµ∗ (x, y, xk, yk) , (7.30)

where

µ∗ (x, y, xk, yk) = (a∗)−w∗
, w∗ =

(ρ∗ (x, y, xk, yk))r∗

σ∗ , (7.31)

and

ρ∗ (x, y, xk, yk) =
(
|x − xk|p

∗
+ |y − yk|p

∗)1/p∗

, (7.32)

for k = 1, . . . , 20. According to (7.27) and (7.22) the optimal fuzzy rules are
as follows

R∗
1 : If x is about 1.60 and y is about 51, then S = q̂∗1 (x, y),

R∗
2 : If x is about 2.00 and y is about 51, then S = q̂∗2 (x, y),

R∗
3 : If x is about 1.60 and y is about 99, then S = q̂∗3 (x, y),

R∗
4 : If x is about 2.00 and y is about 99, then S = q̂∗4 (x, y).

The optimal consequents of the fuzzy rules are given by⎡⎢⎢⎢⎢⎢⎢⎣
q̂∗1 (x, y)

q̂∗2 (x, y)

q̂∗3 (x, y)

q̂∗4 (x, y)

⎤⎥⎥⎥⎥⎥⎥⎦ = ΩT
(
WT W

)−1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑Q
k=1 q∗k (x, y)∑Q

k=1 xkq∗k (x, y)∑Q
k=1 ykq∗k (x, y)∑Q

k=1 xkykq∗k (x, y)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7.33)

where

ΩT
(
WTW

)−1
=

⎡⎢⎢⎣
12.843 −7.2001 −0.15511 0.08598

−45.515 28.531 0.40853 −0.26553
−6.7087 2.1571 0.20709 −0.09460

10.865 −6.2357 −0.15643 0.08823

⎤⎥⎥⎦ ,

and the components of the optimal consequents vector are q∗k = q∗k (x, y) as
defined in (7.30)-(7.32). Since there are 2nQ = 80 coefficients ξj,v in equation
(7.28), we will write ξj,v only for j ∈ {1, 2, 20}, for every consequent of the
rule v = 1, 2, 3, 4:

ξ1,1 = −0.152, ξ1,2 = −0.14717, ... ξ1,20 = −0.18071,

ξ2,1 = −0.35829, ξ2,2 = 0.20845, ... ξ2,20 = 1.0648,

ξ3,1 = 0.59713, ξ3,2 = 0.11542, ... ξ3,20 = −0.31207,
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ξ4,1 = −0.21981, ξ4,2 = −0.13964, ... ξ4,20 = −0.16138.

Thus, the optimal rules are as follows

R∗
1 : If x is about 1.60 and y is about 51,

then S = −0.152a−w1 − 0.14717a−w2 + . . . − 0.18071a−w20

R∗
2 : If x is about 2.00 and y is about 51,

then S = −0.35829a−w1 + 0.20845a−w2 + . . . + 1.0648a−w20

R∗
3 : If x is about 1.60 and y is about 99,

then S = 0.59713a−w1 + 0.11542a−w2 + . . . − 0.31207a−w20

R∗
4 : If x is about 2.00 and y is about 99,

then S = −0.21981a−w1 − 0.13964a−w2 + . . . − 0.16138a−w20

where
wk = (|x − xk|p + |y − yk|p)r/p

/σ, k = 1, . . . , 20.

This completes the description of the P1-TS system with similarity degrees,
which performs the function of the best binary classifier, provided that all
the parameters a = a∗, p = p∗, r = r∗ and σ = σ∗ are chosen so that they
guarantee the smallest crossvalidation error.

7.5 The Regularization Algorithm and Support Vector
Machines

A disadvantage of the proposed method is a large number of terms involved in
the consequents of the rules. Therefore, before beginning the whole procedure,
we can reduce the cardinality of the data set by using the method based on
the support vector classification [189], mentioned in the introduction to this
chapter. We very briefly characterize this method, since it is well described
in the literature.

Most developments concerning classification start from a geometric view-
point emphasizing separating hyperplanes and margin. However, there exist
other interesting developments that use the idea of regularization [44], [157],
[162], [167]. From this point of view the solution of the classification problem
is as follows.

First, for the given data set {(zk, ck) : k = 1, . . . , Q} = Z × {−1, 1} ⊂
R

n × {−1, 1} as in (7.1), we choose a symmetric, positive definite function
K (x,y), continuous on Z × Z, called a kernel function. A kernel K (x,y) is
positive definite if

∑n
i,j=1 hihjK (xi,xj) ≥ 0 for any natural n and a choice

of x1, . . . , xn ∈ Z and h1, . . . , hn ∈ R
n. An example of such kernel is the

Gaussian function

K (x,y) = exp
(
− ‖x − y‖2 /σ

)
, σ > 0, (x,y) ∈ Z × Z, (7.34)

where ‖x‖2 = x2
1 + . . . + x2

n.
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Next we set a weighted sum of the kernel functions

f (z) =
Q∑

k=1

akK (z, zk) , (7.35)

where the coefficients ak must be found by solving a quadratic programming
problem which will be stated later. The classifier function is

class (z) = sign (f (z)) . (7.36)

The above algorithm was compactly derived in [157] from regularization the-
ory point of view, as the problem of finding

min
f∈H

{
1
Q

Q∑
k=1

V (ck, f (zk)) + λ ‖f‖2
K

}
, (7.37)

where V (ck, f (zk)) is a loss function

V (ck, f (zk)) = max (0, 1 − ckf (zk)) (7.38)

indicating the penalty we pay for guessing f (zk) when the true value is
ck. The norm ‖f‖K in (7.37) is the norm in a Reproducing Kernel Hilbert
Space H , defined by a kernel function K, and λ is a regularization parameter
quantifying our willingness to trade off accuracy of classification for a function
with a small norm in the space H . The function V in (7.38) is often referred to
as the hinge loss function. If ckf (zk) is at least 1, we pay no penalty for point
k. If ckf (zk) < 1, we pay a penalty linear in the amount by which we fail to
satisfy the constraint. The quantity ckf (zk) is also known as the margin. The
classical SVM algorithm as developed by Vapnik at al. [33], [189] uses the
hinge loss. Without going into details, one can convert the problem (7.37)-
(7.38) into the so called “primal” and “dual” convex quadratic programming
(QP) problems, which both have optimal solutions. The SVM dual problem
is substantially easier to solve than the primal (see e.g. [162]), namely

max
τ∈RQ

{
−1

2
τTHτ + (τ1 + . . . + τQ)

}
, τT = [τ1, . . . , τQ] , (7.39)

subject to the constraints

c1τ1 + . . . + cQτQ = 0, (7.40)

0 ≤ τk ≤ C, k = 1, . . . , Q, (7.41)

where C is some positive constant, and the matrix H is defined by its elements
located in ith row and jth column
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H = {cicjK (zi, zj)} ∈ R
Q×Q, c1, . . . , cQ ∈ {−1, 1} , z1, . . . , zQ ∈ Z.

(7.42)
Finally, the coefficients of the classification function (7.35) are ak = ckτk,
(k = 1, . . . , Q), where every τk is an optimal solution of the quadratic problem
(7.39)-(7.41). The input data vectors zk for which τk is different from zero
are called support vectors (SVs). If we denote

SV = {k : τk > 0, zk ∈ Z} , (7.43)

then the solution (7.35) is given by

f (z) =
∑

k∈SV

ckτkK (z, zk) . (7.44)

As one can see, the support vectors are critical for the solution of the clas-
sification problem. In practice, very often the number of support vectors is
much smaller than Q. Thus, there is a big chance to reduce the cardinality
of the training data set.

Two things are notable:

1. The Gaussian kernel function (7.34) is the same as the similarity degree
µ (x,y) in (7.7), with ρ being Euclidean distance by the parameter r = 2.
Although our approach in Section 7.2 resembles rather regression than
classification, it is worth noticing that the regularization method described
briefly above for the classification, leads to the same solution as for the
regression. For the solution of the regression problem (where ck are real
numbers), only the loss function V in (7.38) is changed for V (ck, f (zk)) =
(ck − f (zk))2, (see [157] for the details).

2. The final solution of the classification problem for the Gaussian function
(7.34) must be obtained for the smallest generalization error. This error
depends on two parameters: σ in the Gaussian function (7.34) and C in
the constraints (7.41). Thus, the method of reducing the data set by the
solution of quadratic programming problem (7.39) with the constraints
(7.40)-(7.41) must be repeated many times to get the best solution for the
parameters σ = σ∗ and C = C∗.

7.6 Summary

In this chapter we proposed the method of construction of a highly inter-
pretable rule-based system as an optimal binary classifier. The advantages of
the presented approach can be summarized as follows:

• The P1-TS fuzzy expert system as an optimal classifier contains highly
interpretable fuzzy rules, with the simplest polynomial fuzzy sets for the
inputs.
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• Even though we used P1-TS systems, the whole procedure of constructing
the classifier can be easily extended to P2-TS systems, since they are based
on theory of generators and fundamental matrices.

A disadvantage of the method is a large number of terms involved in the
consequents of the rules. Therefore for a large cardinality of the data set, we
can reduce the number of data by finding the support vectors. However, if the
number of support vectors is still large, we can try to substitute the conse-
quents of the rules by some simpler functions of the input vector components.
This can be done by using some approximation method which guarantees a
sufficiently good generalization ability of the classifier. The result will depend
on the data set. If the problem is multilinearly separable by the regressive
model, then we obtain a simple solution, since the consequents vector is con-
stant.



Appendix A
Kronecker Product of Matrices

This appendix is a brief description of the Kronecker product of matrices and
its properties. For a detailed treatment the reader is referred to [43], [54], [83].

Definition A.1. Let A = {aij} and B = {bkl} be matrices, A ∈ R
n×n and

B ∈ R
m×m. Then the Kronecker product of A and B, denoted by A ⊗ B, is

the block matrix

A ⊗ B =

⎡⎢⎣ a11B · · · a1nB
...

. . .
...

an1B · · · annB

⎤⎥⎦ ∈ R
nm×nm. (A.1)

The Kronecker product is also known as the direct product or the tensor
product.

1. The Kronecker product “⊗” is a bilinear operator. If k is a scalar, and A,
B and C are square matrices, such that B and C are of the same order,
then

A ⊗ (B + C) = A ⊗ B + A ⊗ C, (A.2a)
(B + C) ⊗ A = B ⊗ A + C ⊗ A, (A.2b)

k (A ⊗ B) = (kA) ⊗ B = A ⊗ (kB) . (A.2c)

2. If A, B, C, D are square matrices such that the products AC and BD
exist, then (A ⊗ B) (C ⊗ D) exists and

(A ⊗ B) (C ⊗ D) = AC ⊗ BD. (A.3)

3. If A and B are invertible matrices, then

(A ⊗ B)−1 = A−1 ⊗ B−1. (A.4)

4. If A and B are square matrices, then for the transpose (AT ) we have
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(A ⊗ B)T = AT ⊗ BT . (A.5)

5. Let A and B be square matrices of orders n and m, respectively. If
{λi | i = 1, . . . , n} are eigenvalues of A and {µj | j = 1, . . . , m} are eigen-
values of B, then {λiµj | i = 1, . . . , n, j = 1, . . . , m} are eigenvalues of
A ⊗ B. Also,

det (A ⊗ B) = (detA)m(detB)n, (A.6a)
rank (A ⊗ B) = rankA rankB, (A.6b)
trace (A ⊗ B) = traceA traceB. (A.6c)



Appendix B
Generators and Fundamental Matrices
for P1-TS Systems

This appendix contains the relationship between the ordered set containing
vertices of the hypercuboid Dn = [−α1, β1] × . . . × [−αn, βn], the generators
and fundamental matrices for the P1-TS systems with n = 1, 2, 3, 4 inputs
z1, . . . , z4. They are helpful for the fuzzy rules transformation into the crisp
function and vice-versa.

B.1 Formulas for n = 1

B.1.1 Vertices of the Interval D1 = [−α1, β1]

γ1 = −α1, γ2 = β1.

B.1.2 Generator

g1 (z1) =
[

1
z1

]
. (B.1)

B.1.3 Fundamental Matrix and Its Inverse

• General case

Ω1 =

[
1 1

−α1 β1

]
, Ω−1

1 =
1
V1

[
β1 −1
α1 1

]
, (B.2)

for V1 = α1 + β1 > 0.
• Unity interval D1 = [0, 1]

Ω1 =

[
1 1
0 1

]
, Ω−1

1 =

[
1 −1
0 1

]
. (B.3)
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• Interval symmetrical around zero D1 = [−α1, α1]

Ω1 =

[
1 1

−α1 α1

]
, Ω−1

1 =
1

2α1

[
α1 −1
α1 1

]
. (B.4)

B.2 Formulas for n = 2

B.2.1 Vertices of the Rectangle
D2 = [−α1, β1] × [−α2, β2],

γ1 = (−α1, −α2), γ2 = (β1, −α2), γ3 = (−α1, β2), γ4 = (β1, β2).

B.2.2 Generator

g2 (z1, z2) = [1, z1, z2, z1z2]
T

. (B.5)

B.2.3 Fundamental Matrix and Its Inverse

• General case

Ω2 =

⎡⎢⎢⎢⎢⎣
1 1 1 1

−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

⎤⎥⎥⎥⎥⎦ , Ω−1
2 =

1
V2

⎡⎢⎢⎢⎢⎣
β1β2 −β2 −β1 1
α1β2 β2 −α1 −1
α2β1 −α2 β1 −1
α1α2 α2 α1 1

⎤⎥⎥⎥⎥⎦ ,

(B.6)
where V2 = (α1 + β1) (α2 + β2) > 0.

• Unity square D2 = [0, 1]2

Ω2 =

⎡⎢⎢⎢⎢⎣
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎦ , Ω−1
2 =

⎡⎢⎢⎢⎢⎣
1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤⎥⎥⎥⎥⎦ . (B.7)

• Rectangle symmetrical around zero D2 = [−α1, α1] × [−α2, α2]

Ω2 =

⎡⎢⎢⎢⎢⎣
1 1 1 1

−α1 α1 −α1 α1

−α2 −α2 α2 α2

α1α2 −α1α2 −α1α2 α1α2

⎤⎥⎥⎥⎥⎦, Ω−1
2 =

1
4α1α2

⎡⎢⎢⎢⎢⎣
α1α2 −α2 −α1 1
α1α2 α2 −α1 −1
α1α2 −α2 α1 −1
α1α2 α2 α1 1

⎤⎥⎥⎥⎥⎦ .

(B.8)
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B.3 Formulas for n = 3

B.3.1 Vertices of the Cuboid
D3 = [−α1, β1] × [−α2, β2] × [−α3, β3]

γ1 = (−α1, −α2, −α3), γ2 = (β1, −α2, −α3), γ3 = (−α1, β2, −α3),
γ4 = (β1, β2, −α3), γ5 = (−α1, −α2, β3), γ6 = (β1, −α2, β3),
γ7 = (−α1, β2, β3), γ8 = (β1, β2, β3).

B.3.2 Generator

g3 (z1, z2, z3) = [1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3]
T

. (B.9)

B.3.3 Fundamental Matrix and Its Inverse

• General case

Ω3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 α1α2 −α3 α1α3 α2α3 −α1α2α3

1 β1 −α2 −α2β1 −α3 −β1α3 α2α3 α2β1α3

1 −α1 β2 −α1β2 −α3 α1α3 −α3β2 α1α3β2

1 β1 β2 β1β2 −α3 −β1α3 −α3β2 −β1α3β2

1 −α1 −α2 α1α2 β3 −α1β3 −α2β3 α1α2β3

1 β1 −α2 −α2β1 β3 β1β3 −α2β3 −α2β1β3

1 −α1 β2 −α1β2 β3 −α1β3 β2β3 −α1β2β3

1 β1 β2 β1β2 β3 β1β3 β2β3 β1β2β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (B.10)

Ω−1
3 =

1
V3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1β2β3 −β2β3 −β1β3 β3 −β1β2 β2 β1 −1
α1β2β3 β2β3 −α1β3 −β3 −α1β2 −β2 α1 1
α2β1β3 −α2β3 β1β3 −β3 −α2β1 α2 −β1 1
α1α2β3 α2β3 α1β3 β3 −α1α2 −α2 −α1 −1
β1α3β2 −α3β2 −β1α3 α3 β1β2 −β2 −β1 1
α1α3β2 α3β2 −α1α3 −α3 α1β2 β2 −α1 −1
α2β1α3 −α2α3 β1α3 −α3 α2β1 −α2 β1 −1
α1α2α3 α2α3 α1α3 α3 α1α2 α2 α1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.11)

where V3 = (α1 + β1) (α2 + β2) (α3 + β3) > 0.
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• Unity cube D3 = [0, 1]3

Ω3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ω−1

3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 −1 1 1 −1
0 1 0 −1 0 −1 0 1
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(B.12)

• Cuboid symmetrical around zero D3 = [−α1, α1] × [−α2, α2] × [−α3, α3]

Ω3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −α1 −α2 α1α2 −α3 α1α3 α2α3 −α1α2α3

1 α1 −α2 −α1α2 −α3 −α1α3 α2α3 α1α2α3

1 −α1 α2 −α1α2 −α3 α1α3 −α2α3 α1α2α3

1 α1 α2 α1α2 −α3 −α1α3 −α2α3 −α1α2α3

1 −α1 −α2 α1α2 α3 −α1α3 −α2α3 α1α2α3

1 α1 −α2 −α1α2 α3 α1α3 −α2α3 −α1α2α3

1 −α1 α2 −α1α2 α3 −α1α3 α2α3 −α1α2α3

1 α1 α2 α1α2 α3 α1α3 α2α3 α1α2α3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (B.13)

Ω−1
3 =

1
v3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3 −α2α3 −α1α3 α3 −α1α2 α2 α1 −1
α1α2α3 α2α3 −α1α3 −α3 −α1α2 −α2 α1 1
α1α2α3 −α2α3 α1α3 −α3 −α1α2 α2 −α1 1
α1α2α3 α2α3 α1α3 α3 −α1α2 −α2 −α1 −1
α1α2α3 −α2α3 −α1α3 α3 α1α2 −α2 −α1 1
α1α2α3 α2α3 −α1α3 −α3 α1α2 α2 −α1 −1
α1α2α3 −α2α3 α1α3 −α3 α1α2 −α2 α1 −1
α1α2α3 α2α3 α1α3 α3 α1α2 α2 α1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.14)

where v3 = 8α1α2α3.

B.4 Formulas for n = 4

B.4.1 Vertices of the Hypercuboid
D4 = [−α1, β1] × . . . × [−α4, β4]

γ1 = (−α1, −α2, −α3, −α4), γ2 = (β1, −α2, −α3, −α4),
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γ3 = (−α1, β2, −α3, −α4), γ4 = (β1, β2, −α3, −α4),
γ5 = (−α1, −α2, β3, −α4), γ6 = (β1, −α2, β3, −α4),
γ7 = (−α1, β2, β3, −α4), γ8 = (β1, β2, β3, −α4),
γ9 = (−α1, −α2, −α3, β4), γ10 = (β1, −α2, −α3, β4),
γ11 = (−α1, β2, −α3, β4), γ12 = (β1, β2, −α3, β4),
γ13 = (−α1, −α2, β3, β4), γ14 = (β1, −α2, β3, β4),
γ15 = (−α1, β2, β3, β4), γ16 = (β1, β2, β3, β4).

B.4.2 Generator

g4 (z1, z2, z3, z4) = [1, z1, z2, z1z2, z3, z1z3, z2z3, z1z2z3, z4, z1z4,
z2z4, z1z2z4, z3z4, z1z3z4, z2z3z4, z1z2z3z4].

(B.15)

B.4.3 Fundamental Matrix and Its Inverse

• General case
Ω4 = [A,B,C,D] , (B.16)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

−α3 −α3 −α3 −α3

α1α3 −β1α3 α1α3 −β1α3

α2α3 α2α3 −α3β2 −α3β2

−α1α2α3 α2β1α3 α1α3β2 −β1α3β2

−α4 −α4 −α4 −α4

α1α4 −β1α4 α1α4 −β1α4

α2α4 α2α4 −β2α4 −β2α4

−α1α2α4 α2β1α4 α1β2α4 −β1β2α4

α3α4 α3α4 α3α4 α3α4

−α1α3α4 β1α3α4 −α1α3α4 β1α3α4

−α2α3α4 −α2α3α4 α3β2α4 α3β2α4

α1α2α3α4 −α2β1α3α4 −α1α3β2α4 β1α3β2α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.17)
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

β3 β3 β3 β3

−α1β3 β1β3 −α1β3 β1β3

−α2β3 −α2β3 β2β3 β2β3

α1α2β3 −α2β1β3 −α1β2β3 β1β2β3

−α4 −α4 −α4 −α4

α1α4 −β1α4 α1α4 −β1α4

α2α4 α2α4 −β2α4 −β2α4

−α1α2α4 α2β1α4 α1β2α4 −β1β2α4

−α4β3 −α4β3 −α4β3 −α4β3

α1α4β3 −β1α4β3 α1α4β3 −β1α4β3

α2α4β3 α2α4β3 −β2α4β3 −β2α4β3

−α1α2α4β3 α2β1α4β3 α1β2α4β3 −β1β2α4β3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.18)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

−α3 −α3 −α3 −α3

α1α3 −β1α3 α1α3 −β1α3

α2α3 α2α3 −α3β2 −α3β2

−α1α2α3 α2β1α3 α1α3β2 −β1α3β2

β4 β4 β4 β4

−α1β4 β1β4 −α1β4 β1β4

−α2β4 −α2β4 β2β4 β2β4

α1α2β4 −α2β1β4 −α1β2β4 β1β2β4

−α3β4 −α3β4 −α3β4 −α3β4

α1α3β4 −β1α3β4 α1α3β4 −β1α3β4

α2α3β4 α2α3β4 −α3β2β4 −α3β2β4

−α1α2α3β4 α2β1α3β4 α1α3β2β4 −β1α3β2β4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.19)
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D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 β1 −α1 β1

−α2 −α2 β2 β2

α1α2 −α2β1 −α1β2 β1β2

β3 β3 β3 β3

−α1β3 β1β3 −α1β3 β1β3

−α2β3 −α2β3 β2β3 β2β3

α1α2β3 −α2β1β3 −α1β2β3 β1β2β3

β4 β4 β4 β4

−α1β4 β1β4 −α1β4 β1β4

−α2β4 −α2β4 β2β4 β2β4

α1α2β4 −α2β1β4 −α1β2β4 β1β2β4

β3β4 β3β4 β3β4 β3β4

−α1β3β4 β1β3β4 −α1β3β4 β1β3β4

−α2β3β4 −α2β3β4 β2β3β4 β2β3β4

α1α2β3β4 −α2β1β3β4 −α1β2β3β4 β1β2β3β4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.20)

Ω−1
4 =

1
V4

[P,Q] , (B.21)

where V4 = (α1 + β1) (α2 + β2) (α3 + β3) (α4 + β4) > 0 and

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1β2β3β4 −β2β3β4 −β1β3β4 β3β4 −β1β2β4 β2β4 β1β4 −β4

α1β2β3β4 β2β3β4 −α1β3β4 −β3β4 −α1β2β4 −β2β4 α1β4 β4

α2β1β3β4 −α2β3β4 β1β3β4 −β3β4 −α2β1β4 α2β4 −β1β4 β4

α1α2β3β4 α2β3β4 α1β3β4 β3β4 −α1α2β4 −α2β4 −α1β4 −β4

β1α3β2β4 −α3β2β4 −β1α3β4 α3β4 β1β2β4 −β2β4 −β1β4 β4

α1α3β2β4 α3β2β4 −α1α3β4 −α3β4 α1β2β4 β2β4 −α1β4 −β4

α2β1α3β4 −α2α3β4 β1α3β4 −α3β4 α2β1β4 −α2β4 β1β4 −β4

α1α2α3β4 α2α3β4 α1α3β4 α3β4 α1α2β4 α2β4 α1β4 β4

β1β2α4β3 −β2α4β3 −β1α4β3 α4β3 −β1β2α4 β2α4 β1α4 −α4

α1β2α4β3 β2α4β3 −α1α4β3 −α4β3 −α1β2α4 −β2α4 α1α4 α4

α2β1α4β3 −α2α4β3 β1α4β3 −α4β3 −α2β1α4 α2α4 −β1α4 α4

α1α2α4β3 α2α4β3 α1α4β3 α4β3 −α1α2α4 −α2α4 −α1α4 −α4

β1α3β2α4 −α3β2α4 −β1α3α4 α3α4 β1β2α4 −β2α4 −β1α4 α4

α1α3β2α4 α3β2α4 −α1α3α4 −α3α4 α1β2α4 β2α4 −α1α4 −α4

α2β1α3α4 −α2α3α4 β1α3α4 −α3α4 α2β1α4 −α2α4 β1α4 −α4

α1α2α3α4 α2α3α4 α1α3α4 α3α4 α1α2α4 α2α4 α1α4 α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B.22)
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Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β1β2β4 β2β4 β1β4 −β4 −β1β2β3 β2β3 β1β3 −β3

−α1β2β4 −β2β4 α1β4 β4 −α1β2β3 −β2β3 α1β3 β3

−α2β1β4 α2β4 −β1β4 β4 −α2β1β3 α2β3 −β1β3 β3

−α1α2β4 −α2β4 −α1β4 −β4 −α1α2β3 −α2β3 −α1β3 −β3

β1β2β4 −β2β4 −β1β4 β4 −β1α3β2 α3β2 β1α3 −α3

α1β2β4 β2β4 −α1β4 −β4 −α1α3β2 −α3β2 α1α3 α3

α2β1β4 −α2β4 β1β4 −β4 −α2β1α3 α2α3 −β1α3 α3

α1α2β4 α2β4 α1β4 β4 −α1α2α3 −α2α3 −α1α3 −α3

−β1β2α4 β2α4 β1α4 −α4 β1β2β3 −β2β3 −β1β3 β3

−α1β2α4 −β2α4 α1α4 α4 α1β2β3 β2β3 −α1β3 −β3

−α2β1α4 α2α4 −β1α4 α4 α2β1β3 −α2β3 β1β3 −β3

−α1α2α4 −α2α4 −α1α4 −α4 α1α2β3 α2β3 α1β3 β3

β1β2α4 −β2α4 −β1α4 α4 β1α3β2 −α3β2 −β1α3 α3

α1β2α4 β2α4 −α1α4 −α4 α1α3β2 α3β2 −α1α3 −α3

α2β1α4 −α2α4 β1α4 −α4 α2β1α3 −α2α3 β1α3 −α3

α1α2α4 α2α4 α1α4 α4 α1α2α3 α2α3 α1α3 α3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.23)

• Unity hypercube D4 = [0, 1]4

Ω4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.24)
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Ω−1
4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
0 1 0 −1 0 −1 0 1 0 −1 0 1 0 1 0 −1
0 0 1 −1 0 0 −1 1 0 0 −1 1 0 0 1 −1
0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 1
0 0 0 0 1 −1 −1 1 0 0 0 0 −1 1 1 −1
0 0 0 0 0 1 0 −1 0 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 −1 1 −1 1 1 −1
0 0 0 0 0 0 0 0 0 1 0 −1 0 −1 0 1
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.25)

• Hypercube symmetrical around zero D4 = [−α1, α1] × . . . × [−α4, α4]

Ω4 = [A,B,C,D] , (B.26)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 α1 −α1 α1

−α2 −α2 α2 α2

α1α2 −α1α2 −α1α2 α1α2

−α3 −α3 −α3 −α3

α1α3 −α1α3 α1α3 −α1α3

α2α3 α2α3 −α2α3 −α2α3

−α1α2α3 α1α2α3 α1α2α3 −α1α2α3

−α4 −α4 −α4 −α4

α1α4 −α1α4 α1α4 −α1α4

α2α4 α2α4 −α2α4 −α2α4

−α1α2α4 α1α2α4 α1α2α4 −α1α2α4

α3α4 α3α4 α3α4 α3α4

−α1α3α4 α1α3α4 −α1α3α4 α1α3α4

−α2α3α4 −α2α3α4 α2α3α4 α2α3α4

α1α2α3α4 −α1α2α3α4 −α1α2α3α4 α1α2α3α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.27)
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 α1 −α1 α1

−α2 −α2 α2 α2

α1α2 −α1α2 −α1α2 α1α2

α3 α3 α3 α3

−α1α3 α1α3 −α1α3 α1α3

−α2α3 −α2α3 α2α3 α2α3

α1α2α3 −α1α2α3 −α1α2α3 α1α2α3

−α4 −α4 −α4 −α4

α1α4 −α1α4 α1α4 −α1α4

α2α4 α2α4 −α2α4 −α2α4

−α1α2α4 α1α2α4 α1α2α4 −α1α2α4

−α3α4 −α3α4 −α3α4 −α3α4

α1α3α4 −α1α3α4 α1α3α4 −α1α3α4

α2α3α4 α2α3α4 −α2α3α4 −α2α3α4

−α1α2α3α4 α1α2α3α4 α1α2α3α4 −α1α2α3α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.28)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 α1 −α1 α1

−α2 −α2 α2 α2

α1α2 −α1α2 −α1α2 α1α2

−α3 −α3 −α3 −α3

α1α3 −α1α3 α1α3 −α1α3

α2α3 α2α3 −α2α3 −α2α3

−α1α2α3 α1α2α3 α1α2α3 −α1α2α3

α4 α4 α4 α4

−α1α4 α1α4 −α1α4 α1α4

−α2α4 −α2α4 α2α4 α2α4

α1α2α4 −α1α2α4 −α1α2α4 α1α2α4

−α3α4 −α3α4 −α3α4 −α3α4

α1α3α4 −α1α3α4 α1α3α4 −α1α3α4

α2α3α4 α2α3α4 −α2α3α4 −α2α3α4

−α1α2α3α4 α1α2α3α4 α1α2α3α4 −α1α2α3α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.29)
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D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
−α1 α1 −α1 α1

−α2 −α2 α2 α2

α1α2 −α1α2 −α1α2 α1α2

α3 α3 α3 α3

−α1α3 α1α3 −α1α3 α1α3

−α2α3 −α2α3 α2α3 α2α3

α1α2α3 −α1α2α3 −α1α2α3 α1α2α3

α4 α4 α4 α4

−α1α4 α1α4 −α1α4 α1α4

−α2α4 −α2α4 α2α4 α2α4

α1α2α4 −α1α2α4 −α1α2α4 α1α2α4

α3α4 α3α4 α3α4 α3α4

−α1α3α4 α1α3α4 −α1α3α4 α1α3α4

−α2α3α4 −α2α3α4 α2α3α4 α2α3α4

α1α2α3α4 −α1α2α3α4 −α1α2α3α4 α1α2α3α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.30)

Ω−1
4 =

1
16α1α2α3α4

[P,Q] , (B.31)

where

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3α4 −α2α3α4 −α1α3α4 α3α4 −α1α2α4 α2α4 α1α4
α1α2α3α4 α2α3α4 −α1α3α4 −α3α4 −α1α2α4 −α2α4 α1α4

α1α2α3α4 −α2α3α4 α1α3α4 −α3α4 −α1α2α4 α2α4 −α1α4

α1α2α3α4 α2α3α4 α1α3α4 α3α4 −α1α2α4 −α2α4 −α1α4

α1α2α3α4 −α2α3α4 −α1α3α4 α3α4 α1α2α4 −α2α4 −α1α4

α1α2α3α4 α2α3α4 −α1α3α4 −α3α4 α1α2α4 α2α4 −α1α4

α1α2α3α4 −α2α3α4 α1α3α4 −α3α4 α1α2α4 −α2α4 α1α4

α1α2α3α4 α2α3α4 α1α3α4 α3α4 α1α2α4 α2α4 α1α4

α1α2α3α4 −α2α3α4 −α1α3α4 α3α4 −α1α2α4 α2α4 α1α4

α1α2α3α4 α2α3α4 −α1α3α4 −α3α4 −α1α2α4 −α2α4 α1α4

α1α2α3α4 −α2α3α4 α1α3α4 −α3α4 −α1α2α4 α2α4 −α1α4

α1α2α3α4 α2α3α4 α1α3α4 α3α4 −α1α2α4 −α2α4 −α1α4

α1α2α3α4 −α2α3α4 −α1α3α4 α3α4 α1α2α4 −α2α4 −α1α4

α1α2α3α4 α2α3α4 −α1α3α4 −α3α4 α1α2α4 α2α4 −α1α4

α1α2α3α4 −α2α3α4 α1α3α4 −α3α4 α1α2α4 −α2α4 α1α4

α1α2α3α4 α2α3α4 α1α3α4 α3α4 α1α2α4 α2α4 α1α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B.32)
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Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α4 −α1α2α3 α2α3 α1α3 −α3 α1α2 −α2 −α1 1
α4 −α1α2α3 −α2α3 α1α3 α3 α1α2 α2 −α1 −1
α4 −α1α2α3 α2α3 −α1α3 α3 α1α2 −α2 α1 −1

−α4 −α1α2α3 −α2α3 −α1α3 −α3 α1α2 α2 α1 1
α4 −α1α2α3 α2α3 α1α3 −α3 −α1α2 α2 α1 −1

−α4 −α1α2α3 −α2α3 α1α3 α3 −α1α2 −α2 α1 1
−α4 −α1α2α3 α2α3 −α1α3 α3 −α1α2 α2 −α1 1

α4 −α1α2α3 −α2α3 −α1α3 −α3 −α1α2 −α2 −α1 −1
−α4 α1α2α3 −α2α3 −α1α3 α3 −α1α2 α2 α1 −1

α4 α1α2α3 α2α3 −α1α3 −α3 −α1α2 −α2 α1 1
α4 α1α2α3 −α2α3 α1α3 −α3 −α1α2 α2 −α1 1

−α4 α1α2α3 α2α3 α1α3 α3 −α1α2 −α2 −α1 −1
α4 α1α2α3 −α2α3 −α1α3 α3 α1α2 −α2 −α1 1

−α4 α1α2α3 α2α3 −α1α3 −α3 α1α2 α2 −α1 −1
−α4 α1α2α3 −α2α3 α1α3 −α3 α1α2 −α2 α1 −1

α4 α1α2α3 α2α3 α1α3 α3 α1α2 α2 α1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.33)

For n ≥ 5 it is preferred to generate formulas recurrently using symbolic
computations on a computer.



Appendix C
Proofs of Theorems, Remarks and
Algorithms

C.1 Proof of Remark 3.2

Proof. First we prove (3.2).

(1) From (2.43), (A.5) and (A.3) we have

Ωk+1ΩT
k+1 =

([
1 1

−αk+1 βk+1

]
⊗ Ωk

)([
1 1

−αk+1 βk+1

]
⊗ Ωk

)T

=

([
1 1

−αk+1 βk+1

]
⊗ Ωk

)⎛⎝[ 1 1
−αk+1 βk+1

]T

⊗ ΩT
k

⎞⎠
=

[
2 βk+1 − αk+1

βk+1 − αk+1 α2
k+1 + β2

k+1

]
⊗ ΩkΩT

k , (C.1)

for k = 0, 1, 2, . . . , n − 1. This ends the proof of the first part of
Remark 3.2.

(2) Now we prove the orthogonality condition: βk = αk for k = 1, . . . , n.
According to the equation (C.1) we see that

∏n
k=1 (βk − αk) is the el-

ement in the first row and the last column of the matrix Ωk+1ΩT
k+1,

(k = 0, 1, 2, . . . , n − 1). By using recurrence we conclude that the neces-
sary condition under which the rows of the matrix Ω = Ωn are orthogonal
is

k∏
i=1

(βi − αi) = 0

for k = 1, 2, . . . , n, where n is the number of system inputs.
Now we prove the sufficient condition. In this case βk = αk holds for

k = 1, . . . , n. According to (C.1)
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Ωk+1ΩT
k+1 = 2

[
1 0
0 α2

k+1

]
⊗ ΩkΩT

k , k = 0, 1, 2, . . . , n − 1.

holds. Using the above recurrency we obtain that βk = αk is a sufficient
condition for orthogonality of Ω. This ends the proof of the second part of
Remark 3.2. 
�

C.2 Proof of Remark 3.3

Proof. Let us take the following notation

Λ1 =

[
1 0
0 α1

]
⊗ 1 =

[
1 0
0 α1

]
,

Λ2 =

[
1 0
0 α2

]
⊗ Λ1 =

⎡⎢⎢⎣
1 0 0 0
0 α1 0 0
0 0 α2 0
0 0 0 α1α2

⎤⎥⎥⎦ ,

Λ3 =

[
1 0
0 α3

]
⊗ Λ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 α1 0 0 0 0 0 0
0 0 α2 0 0 0 0 0
0 0 0 α1α2 0 0 0 0
0 0 0 0 α3 0 0 0
0 0 0 0 0 α1α3 0 0
0 0 0 0 0 0 α2α3 0
0 0 0 0 0 0 0 α1α2α3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and so forth. This means that the recurrence (3.4) holds. By induction we
obtain

Ω1ΩT
1 = 21Λ2

1,

Ω2ΩT
2 = 22Λ2

2,

...

ΩkΩT
k = 2kΛ2

k for k = 1, . . . , n.

Thus, we can neglect the subscripts, i.e. Ωn = Ω and Λn = Λ and simply
write

ΩΩT = 2nΛ2.

Taking into account popular features of matrix calculus such, as (AB)T =
BTAT , (AB)−1 = B−1A−1 and cA = Ac for A,B ∈ R

m×m and c ∈ R,
after simple transformations we obtain
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Λ−1ΩΩT
(
Λ−1)T = 2nI.

Taking into account symmetry of Λ we obtain(
2−

n
2 Λ−1Ω

)(
2−

n
2 Λ−1Ω

)T

= I.

This means that (
2−

n
2 Λ−1Ω

)−1
=
(
2−

n
2 Λ−1Ω

)T

,

or equivalently
Ω−1Λ2

n
2 = ΩT Λ−12−

n
2 ,

and finally
Ω−1 = 2−nΩT Λ−2.

This ends the proof of Remark 3.3. 
�

C.3 Proof of Corollary 5.27

Proof. First we prove (5.176). Let us define the generator by

g =

[
1, z1, z2, . . . , zn−1, zn, z1z2, z1z3, . . . ,

n∏
i=1

zi

]T

,

and the corresponding fundamental matrix by Ω =
[
g (γ1) . . . g (γ2n)

]
. The

linear mapping f in (5.175) is a special case of the function f0 given by (2.26),
where the vector θ is of the form: θ = [0, r1, r2, . . . , rn, 0, . . . , 0]T . After filling
the matrix Ω for the above generator with the vectors γv ∈ Γ n, from (2.30)
we obtain

q =

⎡⎢⎢⎢⎣
1 −α1 · · · −αn ∗ · · · ∗
1 −α1 · · · βn ∗ · · · ∗
...

...
. . .

...
...

. . .
...

1 β1 . . . βn ∗ · · · ∗

⎤⎥⎥⎥⎦θ,

where θ = [0, r1, r2, . . . , rn, 0, . . . , 0]T and the symbols “∗” are nonzero ele-
ments depending on αi and βj . Thus,

q =

⎡⎢⎢⎢⎢⎢⎣
0 γT

1 0 · · · 0
0 γT

2 0 · · · 0
...

...
...

. . .
...

0 γT
2n 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0
r
0
...
0

⎤⎥⎥⎥⎥⎥⎦ = LT r.
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This ends the proof of (5.176).
On the other hand, according to (2.47) we have S = f if and only if the

consequents of the rules are qv = f (γv) = rT γv for every v = 1, . . . , 2n.
Thus,

qv = q(i1,i2,...,in) = rT γv ,

where v ↔ (i1, . . . , in) as in (2.16). Now, if we take into account (2.23), the
result in (5.177) is clear. Both (5.177) and (5.176) for the consequents of the
rules are the necessary and sufficient conditions which guarantee linearity of
the P1-TS system. This ends the proof of Corollary 5.27. 
�

C.4 Proof of RLS Algorithm from Section 6.4

Proof. Without loss of generality we assume a new simplified notation in
which the index j will be neglected, since all computations should be per-
formed for all inputs. For simplicity we will take a notation as shown in
Table C.1

Table C.1 Simplified notation for the proof of the algorithm from Section 6.4

Old notation Number of equation Simplified notation

w (tk) (6.11) wk

dj (tk, tk+1) (6.7) dk

εj (tk, tk+1) (6.14) εk

The gradient of (6.32) with respect to q must be zero vector

�qEj (λ) = 2
K∑

k=1

λK−k
(
wT

k q − dk

)
wk = 0. (C.2)

The vector of the consequents q that satisfies the equation (C.2), we will
denote by qK , since it is computed for the given K data pairs from the
available set (6.31). The normal equations are as follows

K∑
k=1

λK−kdkwk︸ ︷︷ ︸
rK

=
K∑

k=1

λK−k
(
wkwT

k

)
︸ ︷︷ ︸

RK

· qK , (C.3)

or equivalently
qK = R−1

K rK , (C.4)
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where

rK = λ

K−1∑
k=1

λK−1−kdkwk + dkwk = λrK−1 + dKwK , (C.5)

RK = λ

K−1∑
k=1

λK−1−kwkwT
k + wkwT

k = λRK−1 + wKwT
K . (C.6)

Now we consider the Sherman-Morrison-Woodbury matrix identity [161](
A + X1BXT

2

)−1
= A−1 − A−1X1

(
B−1 + XT

2 A−1X1
)−1

XT
2 A−1, (C.7)

which holds for matrices A, B, X1 and X2, where the first two are non-
singular. From (C.6)-(C.7) by A = λRK−1, X1 = X2 = wK , B = 1 we
obtain

R−1
K =

1
λ
R−1

K−1 − 1
λ
R−1

K−1wK

(
1 + wT

K

1
λ
R−1

K−1wK

)−1

︸ ︷︷ ︸
hK

wT
K

1
λ
R−1

K−1 .

By assuming R−1
K = PK (the inverse correlation matrix), the last equation

can be written as

PK =
1
λ

(
PK−1 − hKwT

KPK−1
)
, (C.8)

where
hK =

PK−1wK

λ + wT
KPK−1wK

, (C.9)

and hK is called the Kalman gain vector. From (C.4) and (C.5) we have

qK = PKrK = λPKrK−1 + dKPKwK . (C.10)

From (C.9) we obtain

PK−1wK = λhK + hKwT
KPK−1wK .

After multiplying (C.8) by wK we get

PKwK =
1
λ

(
PK−1wK − hKwT

KPK−1wK

)
.

Thus,

PKwK =
1
λ

(
λhK + hKwT

KPK−1wK − hKwT
KPK−1wK

)
= hK . (C.11)
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From (C.8) we have λPK = PK−1 − hKwT
KPK−1. Let us multiply this

equation by rK−1 and add dKPKwK = dKhK . We obtain

λPKrK−1 + dKhK = PK−1rK−1 − hKwT
KPK−1rK−1 + dKhK . (C.12)

Taking into account (C.10), (C.12) and (C.11), we obtain the consequents
vector

qK = λPKrK−1 + dKPKwK = PK−1rK−1 − hKwT
KPK−1rK−1 + dKhK .

(C.13)
According to (C.4) the equation PK−1rK−1 = qK−1 holds. Finally, from
(C.13) we get

qK = qK−1 − hKwT
KqK−1 + dKhK . (C.14)

In the RLS algorithm we take k instead of K because of the data inflow.
Taking into account the notation from Table C.1 we conclude that:

• the vector (C.9) is the same as the Kalman gain vector in (6.34),
• the equation (C.14) is equivalent to two equations: (6.33) and (6.35).

This completes the proof of RLS algorithm from Section 6.4. 
�
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