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Summary. The feature selection problem has been usually addressed through heuris-
tic approaches given its significant computational complexity. In this context, evo-
lutionary techniques have drawn the researchers’ attention owing to their appealing
optimization capabilities. In this chapter, promising results achieved by the authors in
solving the feature selection problem through a joint effort between rough set theory
and evolutionary computation techniques are reviewed. In particular, two new heuris-
tic search algorithms are introduced, i.e. Dynamic Mesh Optimization and another
approach which splits the search process carried out by swarm intelligence methods.
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1 Introduction

The solution of a great deal of problems can be formulated as an optimization
problem. The quest for the problem’s solution is often stated as finding the
optimum of an objective function f : D → �; i.e., finding a point x0 ∈ D such
that f(x0) ≤ f(x) ∀ x ∈ D, for the minimization case. The Feature Selection
Problem (FSP) can well illustrate this point.

The relevance of the feature selection methods has been widely acknowledged
[15, 28]. These methods search throughout the space of feature subsets aiming
to find the best subset out of the 2N − 1 possible feature subsets (N stands for
the number of attributes characterizing the problem). The search is guided by
an evaluation measure. Every state denotes a subset of features in the search
space.

All feature selection techniques share two crucial components: an evaluation
function (used for numerically assessing the quality of a candidate feature subset)
and a search engine (an algorithm responsible for the generation of the feature
subsets).

The evaluation function attempts to estimate the capability of an attribute or
a subset of attributes to discriminate between the collection of existing classes. A
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subset is said to be optimal with regards to a given evaluation function. Several
categories of evaluation functions stand nowadays, like distance measures, in-
formation measures (e.g., entropy), dependency measures, consistency measures
and classification error measures [8]. More recently, the “quality of the classifi-
cation” measure borrowed from rough set theory (RST) has been employed as
a numerical estimator of the quality of reducts [11, 1, 2, 24, 25]. A reduct is a
minimal subset of attributes which preserves the partition over a universe, as
stated in [14] wherein also the role played by reducts in feature selection and
reduction is explained.

The second component of a feature selection algorithm is the search engine,
which acts as a procedure for the generation of the feature subsets. The search
strategies are important because this type of problem can be extremely time-
consuming and an exhaustive search of a rather “optimal” subset can be proved
infeasible, even for moderate values of N . Algorithms to feature selection are
usually designed by using heuristics or random search strategies in order to
reduce complexity. Heuristic search is very fast because it is not necessary to
wait until the search ends but it doesn’t guarantee to find the best solution
although a better one is known when it is found in the process. An illustrative
example of search strategies is given by the evolutionary methodologies.

Evolutionary algorithms perform on the basis of a subset of prospective solu-
tions to the problem, called “population”, and they locate the optimal solution
through cooperative and competitive activities among the potential solutions.
Genetic Algorithms (GA) [10], Ant Colony Optimization (ACO) [9] and Particle
Swarm Optimization (PSO) [12] are genuine exemplars of this sort of powerful
approaches. They have also been termed as “bioinspired computational models”
owing to the natural processes and behaviors they have been built upon.

Diverse studies have been carried out concerning the performance of the above
meta-heuristics in the feature selection problem. Some of them have exhibited
good results, mainly attained by using ACO- or PSO-based approaches, such as
[11, 1, 2, 24, 25, 26]. In [3] and [4], a new approach to feature selection based on
the ACO and PSO methodologies is presented. The chief thought is the split of
the search process accomplished by the agents (ants or particles) into two stages,
such that an agent is commanded in the first stage to find a partial solution to the
problem, which in turn is afterwards used as an initial state during the upcoming
phase. The application of the two-step approach to the feature selection problem
provokes that, after finishing the first stage, agents hold feature subsets which
are prospective reducts of the system. They are taken as initial states for the
agents during the remaining phase.

The new meta-heuristic named Dynamic Mesh Optimization (DMO) also falls
under the umbrella of the evolutionary computation techniques. A set of nodes
characterizing potential solutions of an optimization problem make up a mesh
which dynamically expands itself and moves across the search space. To achieve
this, intermediate nodes are generated at each cycle (iteration) between the mesh
nodes and those nodes regarded as local optima, as well as between the mesh
nodes and the global optimum. Moreover, new nodes are also generated out
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of the most external mesh nodes, thus allowing for a broader covering of the
search space. The fittest nodes of the ensuing mesh are promoted to make up
the mesh at the next cycle. The performance achieved by the DMO procedure
in the context of feature selection is studied.

In this chapter, we study the integration between rough set theory and the
aforementioned evolutionary algorithms for working out the feature selection
problem. No attempt has been made to cover all approaches currently existing
in literature but our intention has been to highlight the role played by rough set
theory across several evolutionary algorithms in the quest for really meaningful
attributes.

The study is structured as follows: after enunciating the fundamentals of rough
set theory in section 2, the application of a greedy algorithm to feature selection
is presented. Next we elaborate on the way this challenge is tackled by Ge-
netic Algorithms and Swarm Intelligence meta-heuristic approaches, like ACO
and PSO. Section 6 discusses the novel DMO evolutionary optimization method
whereas section 7 is devoted to unfold a comparative study between the different
algorithmic models under consideration. Finally, some conclusions are derived.

2 Rough Set Theory: Basic Concepts

Rough set theory (RST) was proposed by Z. Pawlak [19]. The rough set philos-
ophy is anchored on the assumption that some information is associated with
every object of the universe of discourse [21]. Rough set data analysis is one of
the main techniques arising from RST; it provides a manner for gaining insight
into the underlying data properties [29]. The rough set model has several appeal-
ing advantages for data analysis. It is based on the original data only and does
not rely on any external information, i.e. no assumptions about data are made.
It is suitable for analyzing both quantitative and qualitative features leading to
highly interpretable results [23].

In RST a training set can be represented by a table where each row repre-
sents an object and each column represents an attribute. This table is called
an “information system”; more formally, it is a pair S = (U, A), where U is a
non-empty finite set of objects called the universe and A is a non-empty finite
set of attributes. A decision system is a pair DS = (U, A ∪ {d}), where d ∈ A is
the decision feature or class attribute. The basic concepts of RST are the lower
and upper approximations of a subset X ⊆ U . These were originally introduced
with reference to an indiscernibility relation IND(B), where objects x and y
belong to IND(B) if and only if x and y are indiscernible from each other by
features in B.

Let B ⊆ A and X ⊆ U . It can be proved that B induces an equivalence
relation. The set X can be approximated using only the information contained
in B by constructing the B-lower and B-upper approximations of X, denoted by
BX and BX respectively, where BX = {x ∈ U : [x]B ∈ X} and BX = {x ∈
U : [x]B ∩ X 
= ∅} and [x]B denotes the equivalence class of x according to the
B-indiscernible relation. The objects in BX are guaranteed to be members of X
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while those in BX are possible members of X . The boundary region BNX =
BX − BX determines the roughness of a concept X , namely X is said to be
rough if its boundary region is not empty, otherwise it is said to be a crisp
(precise) concept.

RST offers several measures for gauging the quality of a decision system.
Among them one can find the “quality of classification”, displayed in expression
(1). It quantifies the percentage of objects which are correctly classified into the
given decision classes Y = {Y1, . . . , Yn} employing only the knowledge induced
by the set of features in B.

γB(Y ) =

n∑

i=1

|BYi|

|U | (1)

An important issue concerning RST is attribute reduction based on the reduct
concept. A reduct is a minimal set of features that preserves the partitioning of
the universe and hence the ability to perform classifications. The subset B is a
reduct if IND(A) = IND(B); that is, γA(Y ) = γB(Y ). The notion of reduct is
one of the most important concepts within rough set theory.

However, their practical use is limited because of the heavy workload involved
in computing the reducts. The problem of finding a globally minimal reduct for
a given information system is NP-hard. For that reason, methods for calculating
reducts have been developed on the basis of heuristic-driven approaches [22].

3 A Greedy Algorithm to Feature Selection

The incorporation of rough sets to a greedy approach for finding reducts has
been studied in [7]. The method begins with an empty set of attributes and
constructs good reducts in an acceptable time. The heuristic search performed
by the algorithm adds the fittest attributes to the solution according to some
predefined criterion.

The criterion for assessing the quality of an attribute is borrowed from the ID3
classifier with respect to the normalized entropy and the gain of the attributes as
well as the degree of dependency between attributes, this latter indicator coming
from RST. In this algorithm we use the terms R(A) and H(A) proposed in [20].
R(A) lies within [0,1] and stands for the relative importance of attribute A while
H(A) represents heuristic information about a subset of candidate features.

R(A) can be computed by the following expression:

R(A) =
k∑

i=1

|Si|
|S| · e1−Ci (2)

where k is the number of different values of attribute A whereas Ci represents
the number of different classes present in the objects having the i-th value for
the feature A. Moreover, |Si| indicates the amount of objects with the value i in
the feature A and |S| the total number of objects.
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On the other hand, the term H(A) is obtained by the procedure below:

1. Calculate R(A) for each attribute in the problem and make up a vector with
the best n attributes (n selected by the user) according to the R(A) indicator.
As a result of it, the vector BR = (R(Ai), R(Aj), . . .) with n = |BR| is
obtained.

2. Create another vector holding the combinations of n in p (this value also
inputted by the user) of the attributes in BR. The combination vector looks
like Comb = ({Ai, Aj , Ak}, . . . , {Ai, At, Ap})

3. Compute the degree of dependency of the decision classes with respect to
every combination lying in Comb. Let us denote by DEP(d) the vector
containing the degree of dependency of decision class d with respect to ev-
ery subset of attributes in Comb, that is DEP(d) = (k(Comb1, d), . . . , k
(Comb|Comb|,d))

4. Compute H(A) =
∑

∀i:A∈Combi

k(Combi, d)

where k =
|POSB(d)|

|U | and POSB(d) =
⋃

X∈U/B

BX

If k = 1 then d totally depends on B else it partially depends on it.
Another alternative measure that has been used successfully is the gain ratio

[17] which is defined in terms of the following measure:

SplitInformation(S, A) = −
c∑

i=1

|Si|
|S| · log2

|Si|
|S| (3)

where c is the cardinality of the domain of values of attribute A. This measure
is the entropy of S with respect to A.

The gain ratio G(A) quantifies how much information gain attribute A pro-
duces or how important it is to the data set. The formal expression is shown
below:

G(A) =
G(S, A)

SplitInformation(S, A)
(4)

G(S, A) = Entropy(S) −
∑

v∈VA

|Sv|
|S| · Entropy(Sv) (5)

where VA is the set of values of attribute A and Sv is the subset of S for which
attribute A has the value v, namely Sv = {s ∈ S | A(s) = v}

Entropy(S) =
c∑

i=1

− Pi · log2Pi (6)

where Pi is the ratio of objects in S belonging to the i-th decision class.
The cost of an attribute can be defined using expressions (7) or (8):

C(A) =
G2(S, A)
Cost(A)

(7)



240 R. Bello et al.

where Cost(A) is the cost of attribute A (say, for instance, the cost of running
a medical exam). This value ranges between 0 and 1 and must be specified by
the user.

C(A) =
2G(S,A) − 1

(Cost(A) + 1)w
(8)

where Cost(A) is just like in (7) and w is a constant value also in [0,1] that
determines the relative importance of the cost versus information gain.

Bearing the measures R(A), H(A), G(A) and C(A) in mind, the RSReduct
algorithm was devised and implemented as shown in Algorithm 1.

Algorithm 1. RSReduct
procedure RSReduct( )

STEP 1 Form the distinction table with a binary matrix B (m2 − m)/2 ×
(N + 1). Each row corresponds to a pair of different objects. Each column of this
matrix corresponds to an attribute; the last column corresponds to the decision value
(treated as an attribute).

For each attribute, let b((k, n), i) ∈ B corresponding to the pair (Ok, On) and
attribute i be defined as

b((k, n), i) =
{

1, if ai(Ok)¬R ai(On) ∀i = {1, . . . , N}
0, otherwise

b((k, n), N + 1) =
{

0, if di(Ok) �= di(On)
1, otherwise

where R is a similarity relation depending on the type of attribute ai

STEP 2 For each attribute A calculate the value of RG(A) for any of the fol-
lowing three heuristics and then form an ordered list of attributes starting from the
most relevant attribute (that which maximizes RG(A)):
• Heuristic 1: RG(A) = R(A) + H(A)
• Heuristic 2: RG(A) = H(A) + G(A)
• Heuristic 3: RG(A) = H(A) + C(A)

STEP 3 With i = 1, R = ∅ and (A1, A2, . . . , An) an ordered list of attributes
according to step 2, consider if i ≤ n then R = R ∪ Ai, i = i + 1.

STEP 4 If R satisfies condition I (see below) then Reduct=minimal subset R′ ⊆
R does meet condition I, so stop otherwise go to step 3.

Condition I uses the following relation between objects x and q for attribute a:
qaRxa ⇔ sim(xa, qa) ≥ ε where 0 ≤ ε ≤ 1
end procedure

The RSReduct approach has been tested with several data sets from the UCI
machine learning repository [6] that are available at the ftp site of the Uni-
versity of California. Some of the databases belong to real-world data such as
Vote, Iris, Breast Cancer, Heart and Credit while the other ones represent re-
sults obtained in labs such as Balloons-a, Hayes-Roth, LED, M-of-N, Lung Can-
cer and Mushroom. The results portrayed in Table 1 were obtained after using
RSReduct with the three heuristic functions defined in step 2 of Algorithm 1.
Furthermore, the execution time of the algorithm has been recorded in each case.
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Table 1. Average length of reducts and computational time required by the RSReduct
approach

Data set name Heuristic 1 Heuristic 2 Heuristic 3

(cases#, attr#) Time(s) Avg. len Time(s) Avg. len Time(s) Avg. len

Ballons-a (20,4) 5.31 2 3.12 2 16.34 2

Iris (150,4) 40.15 3 30.79 3 34.73 3

Hayes-Roth(133,4) 36.00 3 32.30 3 39.00 3

Bupa(345,6) 74.20 6 89.00 6 89.00 6

E-Coli(336,7) 57.00 5 41.15 5 46.60 5

Heart(270,13) 30.89 9 16.75 9 54.78 10

Pima(768,8) 110.00 8 110.00 8 110.00 8

Breast-Cancer(683,9) 39.62 4 31.15 4 32.56 5

Yeast(1484,8) 82.00 6 78.00 6 85.70 6

Dermatology(358,34) 148.70 8 125.9 8 190.00 9

Lung-Cancer(27,56) 25.46 7 18.59 7 31.5 8

LED(226,25) 78.10 9 185.00 8 185.00 9

M-of-N(1000,14) 230.26 6 162.50 6 79.4 6

Exactly(780,13) 230.00 11 215.00 11 230.00 11

Mushroom(3954,22) 86.20 8 64.10 8 67.2 8

Credit(876,20) 91.20 14 86.01 14 90.2 15

Vote(435,16) 37.93 12 21.25 11 26.9 12

In the experiments displayed in Table 1, C(A) has been computed as in (8),
Cost(A) takes random values and w = 0.1.

4 Feature Selection by Using a Genetic Approach

Arising as a true exemplar of evolutionary computation techniques, Genetic
Algorithms (GAs) have been widely utilized for attribute reduction. GAs are
stochastic search methods based on populations. First, a population of random
individuals is generated and the best individuals (in accord with some predefined
criterion) are selected. Then, the new individuals making up the population will
be generated using the mutation, crossover and (possibly) inversion operators.
In [27], three methods for finding short reducts are presented. They use genetic
algorithms together with a greedy approach and have defined the adaptability
functions f1, f2 and f3.

An adaptation of the GA plan is the Estimation of Distribution Algorithms
(EDA) [18] but most of them don’t use crossover or mutation because the new
population is generated from the distribution of the probability estimated from
the selected set. The principal problem of the EDA is the estimation of ps(x, t)
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Table 2. Results obtained with the proposed Estimation Distribution Algorithms
(EDA)

Data set name Algorithms with Wróblewski’s functions

(cases#, attr#) f1 f2 f3

AT ARL ANR AT ARL ANR AT ARL ANR

Ballons-a(20,4) 0.167 2 1 1.860 2 1 0.260 2 1

Iris(150,4) 82.390 3 4 3.540 3 4 17.250 3 4

Hayes-Roth(133,4) 40.830 4 1 30.100 4 1 22.450 4 1

Bupa(345,6) 436 3 6.85 995.300 3 8 466 3 8

E-Coli(336,7) 64.150 3 6.85 1514 3 7 169.200 3 7

Heart(270,13) 337 3 8 2782 3 18 1109 3 17

Pima(768,8) 2686 3 17 6460 3 18.4 4387 3 18.6

Breast-Cancer(683,9) 1568 4 6.55 8250 4 7.83 2586 4 8

Yeast(1484,8) 1772 4 2 12964 4 2 2709 4 2

Dermatology(358,34) 1017 6.05 10.15 15553 6 14.90 30658 6 47

Lung-Cancer(27,56) 7.780 4.2 9.55 0.0956 4 15.95 264.200 4 38.6

and the generation of new points according to this distribution in a way that yields
reasonable computational efforts. For this reason, different manners to determine
ps(x, t) have been crafted.

One of the members of this family is the Univariate Marginal Distribution
Algorithm (UMDA) for discrete domains [18], which takes into account uni-
variate probabilities alone. This algorithm is capable of optimizing non-linear
functions as long as the additive (linear) variance of the problem has an accept-
able weight in the total variance. The UMDA version for continuous domains [16]
was introduced in 2000. In every generation and for each variable, UMDA carries
out statistic tests to find the density function that best fits to the variable. The
continuous variant of UMDA is an algorithm of structure identification in the
sense that the density components are identified through hypotheses tests.

We have defined a method [7] for calculating reducts starting from the in-
tegration of the adaptability functions (f1, f2, f3) of the methods reported by
Wróblewski in [27] and the UMDA approach, thus leading to encouraging results
which are shown in Table 2. The values of the parameters used were: N = 100;
g = 3000; e = 50; T = 0.5 where N is the number of individuals, g is the
maximum number of evaluations that will be executed, e is the number of elite
(best fitting) individuals which pass directly to the next generation and T is the
percentage of the best individuals that were selected to do all the calculations.

In Table 2, AT means the average time required to calculate the reducts
(measured in seconds), ARL stands for the average length of the reducts found
and ANR their average number.

The use of the three functions reported in [27] in the Estimation of Distribu-
tion Algorithms turned out successful. EDA performed the calculation of small
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reducts in little time when the set of examples was not very large (say, less than
600 cases) even though the number of attributes characterizing the data set was
huge. The best combination was accomplished with f1 when it comes to the ex-
ecution time; however f3 found a larger number of reducts in a reasonable time
frame.

5 Swarm Intelligence in Feature Selection

This section will unfold the potential of major swarm intelligence approaches to
be applied in the feature selection (attribute reduction) problem.

5.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a heuristic method which uses a popula-
tion of particles and is strongly inspired by the natural behavior of bird flocks
and fish schools. Each particle symbolizes a potential solution to the optimiza-
tion problem. The system begins with an initial population (most of the times,
random individuals) and searches for optima according to some fitness func-
tion by updating particles over generations; that is, particles “fly” through the
N -dimensional problem search space by following the current best-performing
particles.

Each particle records its own best position Xpbest (that is, its fittest function
value ever achieved) as well as the global best position Xgbest ever reached by
the swarm. As shown in expression (9), the particles are drawn to some degree
by Xpbest and Xgbest. At each iteration the velocity vector V associated with
every particle is updated according to (9). Acceleration constants c1 and c2 are
empirically determined and used to set up a tradeoff between the exploration
and convergence capabilities of the algorithm. The particle’s new position is
calculated by means of (10).

V′
i = w · Vi + c1 · r1 · (Xpbest − Xi) + c2 · r2 · (Xgbest − Xi) (9)

X′
i = Xi + Vi (10)

where Vi, Xi, Xpbest and Xgbest are N -dimensional vectors and w is the inertia
weight. A suitable selection of w provides a balance between global and local
exploration. Random numbers r1 and r2 usually follow a normal distribution
within [0,1] and outfit the algorithm with the stochastic component.

In feature selection we have a N -dimensional search space, where N is the
number of features characterizing the problem. The optimal position along the
search space is the shortest subset of features with the highest quality of classi-
fication. Being this so, the configuration of the PSO meta-heuristic is as follows:
each particle encodes a N -dimensional binary vector with the i-th bit set to one
if the corresponding feature is part of the subset and zero otherwise.
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The algorithm seeks for minimal reducts R, that is, minimal subsets of features
whose quality of the classification γR(Y ) is equal to that yielded by the whole set
of features γA(Y ) (Y being the set of decision classes). In this case, the fitness
function is the same used in [26], see expression (11), which takes into account
the quality of classification and length of the reducts for deeming the worth of
a prospective solution. The ensuing optimization activities attempt to maximize
the fitness function value.

fitness = α · γR(Y ) + β · N − |R|
N

(11)

In light of the particle encoding scheme used in this proposal, it is necessary
to redefine expression (10). The movement of the particle is realized by the flip
of the bit value and the velocity is no longer a change ratio of its position but
a change probability of it. We propose expression (12) in [4] to calculate the j-
dimension of the i-th particle. This is based on the position and velocity update
equations of the particle as shown in [13] and [30].

X ′
ij =

{
1, if rand() ≤ 1

1 + e1.5·N ·Vij

0, otherwise
(12)

The value of the inertia weight w is defined by a positive linear function
changing according to the current iteration, as shown below:

w = wmax − wmax − wmin

NC
× k (13)

where wmax is the initial value of the inertia weight, wmin its final value, NC
the maximal number of cycles (iterations) allowed and k denotes the current
iteration number.

The PSO-driven approach is outlined in Algorithm 2.

Algorithm 2. PSO-RST-FS
1: procedure PSO-RST-FS( )
2: Generate initial population by setting the Xi and Vi vectors
3: repeat
4: Compute Xpbest for each particle
5: Compute Xgbest for the swarm
6: Reducts = Reducts ∪ {R} such that γR(Y ) = γA(Y )
7: Update velocity and position of every particle by (9) and (12)
8: until k = NC
9: Output the set Reducts

10: end procedure

A new approach concerning PSO is introduced in [4] . The Two-Step Particle
Swarm Optimization (TS-PSO) algorithm is rooted on the idea of splitting the
search process carried out by the particles into two stages so that, in the first
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stage, preliminary results are reached which could be subsequently used to make
up the initial swarm for the second stage. In the case of FSP, this means that
subsets of features which are potential reducts of the information system are
generated along the first stage. These subsets are used to modify the swarm
resulting from the last cycle in the first stage; the modified swarm is used as the
initial population of the second stage.

Determining the state by which the search process should commence has long
been an interesting problem in heuristic search. It is well known that setting up
the initial state has an important bearing over the global search process. The
purpose is to be able to approach the initial state to the goal state. Of course, it
is necessary to consider an adequate balance between the computational cost of
obtaining that initial state and the total cost; in other words, the sum of the cost
of approaching the initial state towards the goal state plus the cost of finding
the solution from that “improved” location should not be greater than the cost
of looking for the solution from a random initial position.

More formally, the aim is the following. Let Ei be the initial state which has been
either randomly generated or produced after the execution of any other method
without a significant computational cost, E∗

i the initial state generated by some
method M that approaches it to the goal state. By CM(Ei, E

∗
i ) we denote the cost

of getting E∗
i from state Ei by means of M and CCHSA(x) is the computational

cost involved in finding a solution from state x using a Heuristic Search Algorithm
(HSA). Then, the goal is that CM(Ei, E

∗
i ) + CCHSA(E∗

i ) < CCHSA(Ei).
In the two-step approach proposed here, the procedures to generate E∗

i and
the HSA are both the PSO algorithm, so the objective is CPSO(Ei, E

∗
i ) +

CCPSO(E∗
i ) < CCPSO(Ei). Since PSO is used in both phases, some parame-

ters of the model are meant to distinguish between them. A ratio r is introduced
in order to establish the relative setting of the values of the algorithm parame-
ters in both stages; the ratio indicates the proportion of the overall search that
will be carried out during the first stage. For example, if r = 0.3 for the NC
parameter, it means that the first part of the search process will involve 30% of
the total number of iterations whereas the subsequent step will be responsible
for realizing the remaining 70%.

The parameters that establish the differences between stages are the following:
ratioQ and ratioC . The first one is related to the definition of a quality threshold
according to expression (14) and is involved in the selection of the candidate
feature subsets. In the first stage, each candidate reduct R whose quality of
classification exceeds the quality threshold is selected as a potential reduct. The
ratioC parameter is used to compute the number of cycles in each stage according
to (15) and (16).

φ = ratioQ · γA(Y ) (14)

nc1 = round(ratioC · NC) (15)

nc2 = NC − nc1 (16)

where round(x) denotes the closest integer to x.
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Algorithm 3. TS-PSO-RST-FS
procedure TS-PSO-RST-FS( )

*****STAGE 1*****
Generate initial population by setting the Xi and Vi vectors
repeat

Compute Xpbest for each particle
Compute Xgbest for the swarm
PR = PR ∪ {R} such that γR(Y ) ≥ φ
Update velocity and position of every particle by (9) and (12)

until k = nc1

*****POST PROCESSING STAGE*****
Compute UsedFeatures and NotUsedFeatures using PR
currentSwarm ← last swarm of stage 1
for each particle Xi in currentSwarm do

if rand() ≤ 0.5 then
Xi ← UsedFeatures

else
Modify Xi by resetting all features in NotUsedFeatures

end if
end for
*****STAGE 2*****
repeat

Compute Xpbest for each particle
Compute Xgbest for the swarm
Reducts = Reducts ∪ {R} such that γR(Y ) = γA(Y )
Update velocity and position of every particle by (9) and (12)

until k = nc2

Output the set Reducts
end procedure

The TS-PSO-RST-FS algorithm introduces a step between the first and sec-
ond phases (called “postprocessing step”) in which the set of potential reducts
PR is used to build the UsedFeatures and NotUsedFeatures N-dimensional
binary vectors; the features highlighted in these vectors have value 1 in their
corresponding vector component. The UsedFeatures vector sets to one its i-th
component provided that the i-th feature in the data set belongs to a number
of candidate reducts greater than a given percentage threshold, called PerUsed,
of the total number of potential reducts found; for instance, if PerUsed=75%,
this means that only features which belong to at least the 75% of the potential
reducts will receive a signaling in their associated bit within UsedFeatures. On
the other hand, the NotUsedFeatures vector highlights all features belonging
to at most PerNotUsed of potential reducts; for instance, if PerNotUsed=30%
this means that only features which are included in at most the 30% of the
potential reducts become signalized in NotUsedFeatures.

By means of the UsedFeatures and NotUsedFeatures vectors, the opti-
mal swarm of the first stage is modified to give rise to the startup swarm of
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Table 3. Results obtained with the proposed PSO-based approaches. Columns 4 and
6 display the average length of the reducts while columns 5 and 7 show the number of
times the algorithm found minimal reducts.

Data set name Features Instances PSO PSO TS-PSO TS-PSO

(1) (2) (3) (4) (5) (6) (7)

Breast cancer 9 699 4.95 6 4.6 6

Heart 13 294 7.97 4 6.8 6

Exactly 13 1000 6 6 6 6

Credit 20 1000 12.4 4 10.3 5

Dermatology 34 358 15.3 3 12.6 5

Lung 56 32 15.6 3 12.8 5

the second stage in the following way. Each particle Xi in the optimal swarm
is replaced by the vector UsedFeatures or is modified by using the vector
NotUsedFeatures in a random way: if rand() ≤ 0.5 then replace else modify.
Modify means that all features included in NotUsedFeatures are reset in the
particle encoding.

Greater values of the inertia weight during both the first and processing steps
help to find good seeds to build the initial swarm for the second stage. The entire
description of the two-step approach can be found in Algorithm 3.

The algorithms PSO-RST-FS and TS-PSO-RST-FS were executed by using
the following parameters: NC= 120, c1 = c2 = 2, population size = 21 and α =
0.54. In the case of the TS-PSO-RST-FS algorithm, ratioQ = 0.75, ratioC = 0.3,
PerUsed=66% and PerNotUsed=30%.

In the two-step approach, the values of the ratios have important bearing
over the desired outcome. A low value of ratioQ yields many low-quality po-
tential reducts, consequently the UsedFeatures and NotUsedFeatures vec-
tors include useless information about the features; therefore, the effect of using
UsedFeatures and NotUsedFeatures to modify the swarm is poor. On the
other side, a value near to one produces subsets close to the definition of reducts
in the first stage. As to ratioC , a low value allows to perform a greater quantity
of cycles in the second stage from the modified swarm.

The two algorithms were tested and compared using six data sets from UCI
Repository. Each algorithm was executed six times on every data set and the
average results are offered in Table 3. The performances obtained were compared
in terms of the average length of the resulting reduct set (columns 4 and 6) and
the number of times in which the algorithm found the minimal reducts (columns
5 and 7). The length of a reduct is defined by the number of features in it.

These results are very interesting because they shed light on the fact that
the two-step PSO approach ends up with shorter reducts than the PSO-RST-FS
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algorithm. So, the certainty of finding minimal length reducts increases by using
the TS-PSO-RST-FS method.

5.2 Ant Colony Optimization

Another very popular swarm intelligence technique is Ant Colony Optimiza-
tion (ACO). ACO is a generic strategy (meta-heuristic) [9] used to guide other
heuristics in order to obtain superior solutions than those generated by local
optimization methods. In the early ACO model, a colony of artificial ants co-
operates to look for good solutions to discrete optimization problems. Artificial
ants are simple agents that incrementally build a solution by adding components
to a partial solution under construction.

Ant System (AS) [9] is considered as the first ACO algorithm and was intro-
duced using the Travel Salesman Problem (TSP). In TSP, we have a set of N
fully connected cities c1, . . . , cn by edges (i, j). Edges have associated pheromone
trails τij which denote the desirability of visiting city j directly from city i. Also,
the function ηij = 1/dij indicates the heuristic desirability of going from i to
j, where dij is the distance between cities i and j. Initially, ants are randomly
associated to cities. In the successive steps, ant k applies a random proportional
rule to decide which city to visit next according to (17):

pk
ij =

(τij)α · (ηij)β

∑

l∈Nk
i

(τil)α · (ηil)β
if j ∈ Nk

i (17)

where Nk
i is the neighborhood of the k-th ant while α and β are two parameters

that point out the relative importance of the pheromone trail and the heuristic
information, respectively. After all ants have built their tours, the values τij are
updated in two different ways. First, τij values decrease because of the evap-
oration (τij = (1 − ρ) · τij). The ρ parameter is meant to prevent unlimited
pheromone accumulation along the edges. Second, all ants reinforce the value of
τij on the edges they have passed on in their tours (τij = τij + Incij), where
Incij is the amount of pheromone deposited by all ants which included edge
(i, j) in their tour. Usually, the amount of pheromone deposited by the k-th ant
is equal to 1/Ck, where Ck is the length of the tour of ant k.

Some direct successor algorithms of Ant Systems are: Elitist AS, Rank-based
AS and MAX-MIN AS [9]. A more different ACO approach is Ant Colony System
(ACS) which employs the following pseudo-random proportional rule to select
the next city j from city i:

j =

⎧
⎪⎨

⎪⎩

arg max
l∈Nk

i

{τij · (ηil)β}, if q < q0

random selection as in (17), otherwise

(18)

where q is a random variable uniformly distributed in [0,1] and 0 ≤ q0 ≤ 1,
controls the amount of exploration. In ACS, ants have a local pheromone trail
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update which is defined as (τij = (1−ρ)·τij+ρ·τij(0)) and is applied after crossing
an edge (i,j), where τij(0) represents the initial pheromone value. Furthermore,
a global pheromone trail update (τij = (1 − ρ) · τij + ρ · Incij) is executed only
by the best-so-far ant.

The feature selection problem is an example of a tough discrete optimization
problem which can be represented as a graph problem; this is why the ACO
model is well suited to solve it.

For this study we used the ACS-RST-FS according to results showed in [1]
and [2]. Let A = {a1, a2, . . . , anf} be a set of features. One can think of this
set as an undirected graph in which nodes represent features and all nodes are
connected by bidirectional links. Pheromone values τi are associated to nodes
ai. The amount of pheromone is a function of the dependency of the feature
associated to that node to all other features. The pheromone stands for the
absolute contribution of that feature to a reduct.

The solution consists of reducts which have to be gradually constructed by
the system agents (ants). Initially the ants are distributed over the nodes of the
graph and each one stores an empty subset which has to become a candidate
reduct. The behavior of a single ant can be described as follows. In the first step,
the ant is assigned to one of the nodes, from which it will move to some other
node in the network. By doing so, the ant performs a forward selection in which
it expands its subset step-by-step by adding new features. To select the next
node to visit, the ant looks for all features which are not yet included in the
subset and selects the next one according to the ACS rule. On the one hand, it
is drawn by the pheromone the other ants have already put down in the graph
and, on the other hand, by the heuristic function. We have confined ourselves to
choose the standard quality of classification (see expression 1) as the heuristic
function for our problem. It is used too for determining whether the candidate
subset is a reduct or not. Over time, the quality of the subsets constructed by the
ants will improve, which is supported by the monotonicity property of classical
RST; these converge to nearly optimal reducts.

The initial deployment of the ants during each cycle (iteration) is governed
by the following rules. Recall that m is the population size (number of ants)
whereas nf is the number of features present in the data set.

1. If m < nf then perform a random initial distribution of ants.
2. If m = nf then one ant is assigned to each feature.
3. If m > nf then assign the first m ants according to (2) and the remaining

ones as in (1).

The process of finding the candidate reduct sets B happens in a sequence of
cycles NC = 1, 2, . . . In each cycle, all ants build their own set Bk. The process
stop criterion is met (PSC = true) once the maximal number of cycles has been
exceeded NC > NCmax. Each ant k keeps adding one feature at a time to its
current partial set Bk until γBk

(Y ) = γA(Y ). This is known as the ant stopping
criterion (ASCk=true). The population size is envisioned as a function of the
number of features m = f(nf) where round(x) denotes the closest integer to x.
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Algorithm 4. ACS-RST-FS
1: procedure ACS-RST-FS( )
2: PSC ← false, NC ← 1
3: Calculate τi(0), i = 1, . . . ,nf (random initial values for trail intensity)
4: repeat
5: Each ant k is assigned to an attribute ai, ∀k ∈ {1, . . . , m} and Bk ← {ai}
6: ASCk ← false ∀k ∈ {1, . . . , m}
7: repeat
8: for k ← 1 to m do
9: if ASCk = false then

10: Select new feature a∗
i according to (1)

11: Bk = Bk ∪ {a∗
i }

12: τi ← (1 − ξ) · τi + ξ · τi(0) � i is the index of a∗
i

13: Update ASCk � Did ant k complete a reduct Bk?
14: end if
15: end for
16: until ASCk =true ∀k ∈ {1, . . . , m}
17: B∗

k ← best Bk � Now that all ants have finished, select the best reduct
18: for each ai ∈ B∗

k do
19: τi ← (1 − ρ) · τi + ρ · γk

B(Y ) � update global pheromone trail
20: end for
21: For each feature i do τi = τi

n∑

j=1

τj

22: NC ← NC + 1
23: Update PSC
24: until PSC = true
25: end procedure

R1: If nf < 19 then m = nf
R2: If 20 ≤ nf ≤ 49 then if 2/3 nf ≤ 24 then m=24 else m=round(2/3 nf)
R3: If nf > 50 then if nf/2 ≤ 33 then m = 33 else m = round(nf/2)

The above rules are the direct outcome of a thorough experimental analysis
conducted with the purpose in mind of setting the population size on the basis
of the number of features describing the data set.

Now we are ready to present the ACS-RST-FS approach in a more formal
way. Let us look at Algorithm 4.

A new approach in Ant Colony Optimization for solving the feature selection
problem was introduced in [3] . The two-step ACO algorithm is also based on the
idea of splitting the process of finding reducts into two stages. The algorithm
dynamically constructs candidate feature subsets during the first stage which
shall be afterwards used as starting points for each ant’s own candidate feature
subset in the second stage. The number of cycles, the number of ants and the
desired quality of the subsets are degrees of freedom of the model related to each
stage. We use the same ratio r that affects the three aforementioned parameters.
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Algorithm 5. TS-ACS-RST-FS
procedure TS-ACS-RST-FS( )

Compute the population size (m) on the basis of the number of features (nf)
Compute the quality of classification using (1) and B = A
STAGE 1
Calculate parameter values in the first stage as follows:
NCmax1 = r · NCmax, m1 = r · m, γB1(Y ) = r · γB(Y )
Run the ACS-RST-FS approach
CS ← output of ACS-RST-FS � CS holds the candidate reducts
STAGE 2
Calculate parameter values in the second stage as follows:
NCmax2 = NCmax − NCmax1, m2 = m − m1, γB2(Y ) = γB(Y )
Run the ACS-RST-FS approach but assign in each cycle a random subset
from CS as initial subset for each ant

end procedure

For instance, suppose we are interested in carrying out 100 cycles as the overall
algorithm’s execution and we will use 30 ants for generating Bk subsets with the
maximum possible quality of classification (NCmax = 100, m = 30, γB(Y ) = 1).
Setting r = 0.3 means that the first stage will last only 30 iterations, involving 9
ants and will settle for reducts whose quality would be 0.3 or above. Being this so,
the values of these parameters during the second phase will be NCmax = 70, m =
21 and the algorithm will look for subsets with the maximum possible quality
of classification. The workflow of activities of the TS-ACS-RST-FS proposed
approach is depicted in Algorithm 5.

Of course, any other alternative ACO-based implementation can be used
rather than the ACS-RST-FS algorithm. An important issue in this approach is
to study which is the most suitable value for ratio r. High values of r (near to 1)
cause the two-step algorithm to obtain candidate subsets close to the definition
of reducts in the first stage, therefore ants in the second step swiftly find reducts
but using very limited iterations and a scarce number of search agents (ants). On
the contrary, if the ratio value is low, the quality of the candidate feature subsets
computed during the first stage is poor yet there are more ants to work for a
larger number of cycles in the second stage. We have developed an experimental
study which is concerned with this tradeoff.

The following values for the ratio parameter have been proposed r ∈ {0.2, 0.3,
0.36, 0.5, 0.6, 0.8} and the impact of each of these values over the number of
reducts obtained, their length as well as the computational time needed to pro-
duce the output has been observed. Table 4 reports the average results achieved
after 20 iterations. A synthetic repository comprised of 20 objects which are
described by 16 features provides the data for conducting the experiments. The
maximum number of cycles is 21.

We can see that r = 0.3 bears the best results. This setting implies a number of
reducts similar to ACS-RST-FS but only in the 23% of the time. Similar results
can be witnessed across other data sets. For instance, in Table 5 we display
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Table 4. Results obtained with the proposed ACO-based approaches. The last two
columns portray the average number of reducts, the average length of the reducts and
the computational time (in seconds), these three indicators separated by backslash.

Algorithm NCmax1 NCmax2 m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS – – – – 46.7/3.95/228 123/4.19/274

TS-ACS r = 0.2 4 17 3 13 32.7/4.2/82 76.3/4.2/89.9

TS-ACS r = 0.3 6 15 5 11 43.3/4.1/53 71.3/4.2/64

TS-ACS r = 0.36 8 13 6 10 38.7/3.9/39 67.3/4.1/47

TS-ACS r = 0.5 10 11 8 8 29.7/3.8/32 43.3/4.1/44

TS-ACS r = 0.6 13 8 10 6 20.33/3.8/41 37/4.2/49

TS-ACS r = 0.8 17 4 13 3 9/3.8/82 10.67/4.2/97

Table 5. A comparison between ACS and several configurations of the two-step ACO
approach using r = 0.3, NCmax1 = 6 and NCmax2 = 15

Algorithm m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS (m = 16) – – 46.7/228 123/274

TS-ACS (m = 16) 5 11 92%/23% 58%/23%

TS-ACS (m′ = 1.33m = 21) 6 15 96%/31% 81%/37%

TS-ACS (m′ = 1.5m = 24) 7 17 109%/38% 83%/42%

TS-ACS (m′ = 1.8m = 29) 9 20 120%/52% 89%/55%

TS-ACS (m′ = 2.1m = 34) 10 24 126%/66% 99%/69%

the results using the Breast Cancer database from UCI Repository. The result
here is not surprising, since the value r = 0.3 provides a good balance between
both stages; a higher number of ants and cycles in the second stage allows the
algorithms to perform a larger exploration of the search space departing from
initial subsets with an acceptable quality.

Another point worthwhile stressing is that the time complexity of TS-ACS-
RST-FS is very low. In light of this, we propose a second idea: to increase the
number of ants in order to bring about a greater exploration of the search space.
In Table 6 the same data set than in Table 4 was used but now the population
size is increased by the factors 1.33, 1.5, 1.8 and 2.1, respectively. In columns
4 and 5 the relationship between each alternative and the ACS-RST-FS bench-
mark algorithm is reported in terms of the amount of reducts achieved and the
computational time needed. For instance, when the number of ants is 1.8m, the
TS-ACS-RST-FS approach gets 120% of reducts with respect to the number of
reducts computed via ACS-RST-FS only in 52% of the time required by the
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Table 6. A comparison between ACS and several configurations of the two-step ACO
approach using NCmax1 = 6 and NCmax2 = 15

Algorithm m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS (m = 9) – – 46.7/228 123/274

TS-ACS (r = 0.2) 2 7 60%/34% 70%/49%

TS-ACS (r = 0.3) 3 6 109%/31% 73%/37%

TS-ACS (r = 0.36) 3 6 105%/25% 77%/31%

TS-ACS (r = 0.5) 4 9 100%/22% 73%/26%

TS-ACS (r = 0.6) 5 4 65%/13% 50%/20%

TS-ACS (r = 0.8) 7 2 33%/27% 31%/26%

TS-ACS (r = 0.3, m′ = 1.8m = 16) 5 11 102%/58% 98%/74%

TS-ACS (r = 0.3, m′ = 2.1m = 19) 6 13 124%/67% 103%/83%

latter one (for β = 5 and q0 = 0.9). Here we have set r = 0.3 because this
value accomplishes the most encouraging results throughout several experimen-
tal studies. In the case of β = 1 and q0 = 3, the TS-ACS-RST-FS method
reached the same number of reducts (99%) but only using 69% of the CPU time
than its counterpart, the ACS-RST-FS model.

Table 6 sketches a similar study using the Breast Cancer database. These
results are very interesting because the two-step ACO approach enables us to
obtain the same or an even greater number of reducts in less time than ACS-RST-
FS, hence the feasibility of splitting the search process is empirically confirmed
once again.

6 Dynamic Mesh Optimization in Feature Selection

We want to elaborate now on a novel optimization technique called “Dynamic
Mesh Optimization” (DMO) [5] which follows some patterns already present in
earlier evolutionary approaches but provides a unique framework for managing
both discrete and continuous optimization problems.

The essentials behind the DMO method is the creation of a mesh of points in
the multi-dimensional space wherein the optimization of the objective function
is being carried out. The mesh endures an expansion process toward the most
promising regions of the search space but, at the same time, becomes finer in
those areas where there exist points that constitute local ends of the function.
The dynamic nature of the mesh is given by the fact that its size (number of
nodes) and configuration both change over time. When it comes to the feature se-
lection problem, nodes can be visualized as binary vectors n = (n1, n2, . . . , nN)
of N components, one per attribute, with the component ni = 1 if the i-th
attribute is being considered as part of the solution or zero otherwise. This
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is the same representation adopted in the previously discussed evolutionary
approaches.

At every cycle, the mesh is created with an initial number of nodes. Subse-
quently, new nodes are generated until an upper boundary in the number of
nodes is reached. The mesh at the next cycle is comprised of the fittest nodes of
the mesh in the current iteration. Along the search process, the node carrying
the best value of the objective (evaluation) function so far is recorded, so ng

denotes the global end attained up to now by the search algorithm.
In the case of the feature selection problem, the evaluation (fitness) function

for the DMO meta-heuristic is expression (11), which attempts to achieve a
tradeoff between the classificatory ability of a reduct and its length.

The dynamic nature of our proposal manifests in the generation of (i) the
initial mesh; (ii) intermediate nodes oriented toward the local optima; (iii) in-
termediate nodes in the direction of the global optimum and (iv) nodes aiming
at expanding the dimensions of the current mesh.

The model gives rise to the following parameters: (i) Ni → size of the initial
mesh, (ii) N → maximum size of the mesh across each cycle (Ni < N) and (iii)
M → number of cycles.

The DMO method is defined in the following manner:

STEP 1. Generate the initial mesh for each cycle: At the beginning of
the algorithm’s execution, the initial mesh will be made up of Ni randomly
generated nodes while in the remaining iterations, the initial mesh is built upon
the selection of the best (in terms of evaluation measure) Ni nodes of the mesh
in the preceding cycle.
STEP 2. Node generation toward local optima: The aim of this step is to
come up with new nodes laid in the direction of the local optima found by the
algorithm.

For each node n, its K-nearest neighbor nodes are computed (the Hamming
distance is a suitable option for the FSP). If none of the neighbors surpasses
n in fitness function value, then n is said to be a local optimum and no nodes
are begotten out of it in this step. Conversely, suppose that node ne is “better”
than n and the rest of its neighbors. In this case, a new node arises somewhere
between n and ne.

The proximity of the newly generated node n∗ to the current node n or to
the local optimum ne is contingent upon a factor r which is calculated based on
the fitness function values at both nodes n and ne. Each component of n∗ takes
either the value of ni or nei according to a rule involving a stochastic component.
The threshold r determining how every component n∗

i must be fixed is calculated
as in (19).

r = 1 − 0.5
Eval(n)
Eval(ne)

(19)

f(n,ne, r) : For each component ni: If random() < r then n∗
i = nei otherwise

n∗
i = ni
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Algorithm 6. The DMO meta-heuristic
1: procedure D(M)O
2: Randomly generate Ni nodes to build the initial mesh
3: Evaluate all the mesh nodes
4: repeat
5: for each node n in the mesh do
6: Find its K-nearest neighbors
7: nbest ← the best of its neighbors
8: if nbest is better than n then
9: Generate a new node by using function f

10: end if
11: end for
12: for each initial node in the current mesh do
13: Generate a new node by using function g
14: end for
15: repeat
16: Select the most outward node of the mesh
17: Generate a new node by using function h
18: until MeshSize = N
19: Select the best Ni nodes of the current mesh and set up the next mesh
20: until CurrentIteration = M
21: end procedure

Notice from (19) that the lower the ratio between Eval(n) and Eval(ne), the
more likely it is that n∗

i takes the value of the i-th component of the local
optimum.
STEP 3. Node generation toward global optimum: Here the idea is the
same as in the previous step but now r is computed differently and a new function
g is introduced. Needless to say that ng represents the global optimum found
thus far by the algorithm.

r = 1 − 0.5
Eval(n)
Eval(ng)

(20)

g(n,ng, r) : For each component ni: If random() < r then n∗
i = ngi otherwise

n∗
i = ni

STEP 4. Mesh expansion: In this step, the mesh is stretched from its outer
nodes using function h, i.e. using nodes located at the boundary of the initial
mesh in each cycle. The weight w depicted in (13) assures that the expansion
declines along the search process (i.e., a bigger expansion is achieved at the early
cycles and it fades out as the algorithm progresses). To determine which nodes
lie in the outskirts of the mesh, we turn to the norm of a vector. Those nodes
exhibiting the lowest and greatest norm values are picked. Remark that, in this
step, as many outer nodes as needed are selected so as to fill out the maximum
mesh size N . The rules regulating this sort of node generation can be found next:
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For each node nl in the lower boundary (those with the lowest norm):
h(nl, w) : For each component ni: If random() < w then n∗

i = 0 otherwise
n∗

i = nli
For each node nu in the upper boundary (those with the greatest norm):

h(nu, w) : For each component ni: If random() < w then n∗
i = 1 otherwise

n∗
i = nui

In the context of feature selection, the norm of a node (vector) is the number of
components set to one. Algorithm 6 outlines the workflow of the DMO approach.
It is also worth remarking that no direct search algorithm guarantees to find the
global optimum no matter how refined the heuristic search might be.

7 A Comparative Study

The conducted experimentation embraces a comparison between DMO and ex-
isting ACO- and PSO-based approaches. The chosen criteria were the number
and length of the reducts found as well as the computational time required by
every method.

Concerning ACO, the Ant Colony System (ACS) model was picked for bench-
marking following the advice in [1] and [2], for it reported the most encouraging
outcomes. As to the parameter setting, we stuck to the guidelines provided in
the aforesaid studies, i.e. β = 5, q0 = 0.9, NCmax = 21 and the population
size (number of ants) depending on the number of features as in the previously
enunciated rules.

Regarding the TS-ACS-RST-FS approach, the value of the ratio r used for
determining the number of ants, number of cycles and threshold of the quality
of the classification in each stage was set to 0.3 whereas the number of ants m
is increased 2.1 times, i.e. m′ = 2.1m

Moving on to the PSO-driven approaches’ configuration, each individual was
shaped as a binary vector whose length matches the number of attributes in
the system. The parameters associated with the PSO-RST-FS were fixed as
c1 = c2 = 2, maxCycles = 120 and swarmSize = 21. The inertia weight w
keeps its dynamic character as reflected in (13). As to the TS-PSO-RST-FS
method, the factor used to calculate the quality of the classification in the first
stage (ratioQ) takes 0.75 while the parameter involved in the computation of
the number of cycles (ratioC) for each phase was set to 0.3.

The configuration of the DMO-RST-FS (DMO + RST to feature selection)
has been defined as follows: a mesh with 30 nodes is used, 9 of them regarded
as initial nodes (which means that it is necessary to generate 21 nodes per
cycle, just the same number of particles than in the PSO-based models) and the
computations lasted for 90 iterations.

Table 7 reports the experimental results obtained after applying the above
methods over the Breast Cancer, Heart and Dermatology data sets coming from
the UCI Repository. Each table entry holds the average number of reducts found,
the average length (number of attributes) of the reducts in addition to the length
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Table 7. Quality of the reducts found by different evolutionary algorithms. First datum
is the average number of reducts found, followed by their average length, the length of
the shortest reduct and, finally, the percentage of times a reduct of the same length
was found throughout the different executions of the algorithm.

Method BreastCancer Heart Dermatology

DMO-RST-FS 18.3/5.1/4,100% 14.8/8.29/6, 83% 179.5/20.9/9,50%

TS-PSO-RST-FS 11/4.6/4,100% 3/6.8/6,100% 39.3/12.6/9, 50%

PSO-RST-FS 14/4.95/4,100% 6/7.97/6,67% 78.2/15.3/9, 50%

TS-ACS-RST-FS 12.7/4.74/4,100% 7/7/6,67% 249/13/9,33%

ACS-RST-FS 11.75/4.94/4,100% 14.3/7.53/6,100% 300/14.17/10,66%

Table 8. Average number of evaluations of the fitness function in each algorithm

Algorithm Avg. number of times

DMO-RST-FS 2530

TS-PSO-RST-FS 2542

PSO-RST-FS 2968

TS-ACS-RST-FS 17222

ACS-RST-FS 13487

of the shortest reduct and the number of times it was found with regards to the
number of runs performed by the algorithm. Every algorithm was executed six
times per data set. From the information in Table 7 we notice, for instance, that
the DMO-RST-FS algorithm discovered 18.3 reducts on average for the Breast
Cancer data set, the reducts having average length of 5.1 and the shortest reduct
found is composed of four attributes, having a reduct of such length always
(100%) been found throughout the different runs of the algorithm.

From the outlook of the computational cost, one may notice that the DMO-
RST-FS, TS-PSO-RST-FS and PSO-RST-FS algorithms have a very similar per-
formance. This is clearly understood if we keep in mind that the greater the
number of times expression (1) is computed, the more time-consuming the algo-
rithm turns into. While PSO-based and DMO approaches compute this indicator
roughly P × Q times (P being the number of cycles and Q the number of agents
engaged in the search process, viz particles in PSO and nodes in DMO), the ACO-
based models evaluate this function a far greater number of times, i.e. roughly
P × Q × k (Q being the number of ants and k the average length of the reducts
found, since every time an ant adds a node to the solution, it must evaluate all
possible alternatives at hand, namely, all attributes still not considered so far).
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Regarding the average amount of times the fitness function was calculated by
all approaches under discussion, Table 8 presents the corresponding magnitudes.

8 Conclusions

An study on the performance of several evolutionary techniques for tackling the
feature selection problem has been outlined. The common denominator has been
the pivotal role played by rough set theory in assessing the quality of a feature
subset as a prospective reduct of the system under consideration. Therefore this
criterion has been successfully incorporated to the fitness function of all the
studied algorithms and the preliminary results allow to confirm the feasibility
and efficiency of this sort of techniques for attribute reduction.

Moreover, the introduction of the two-step search paradigm for the swarm
intelligence methods translated into a substantial reduction of the computational
time needed to find the reducts of the information system.

Under empirical evidence we can also conclude that the Dynamic Mesh Opti-
mization approach explores the search space in a similar way to the algorithms
based on the Ant Colony Optimization model but with a computational cost
very close to that of Particle Swarm Optimization.
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