
Software Defect Classification: A Comparative
Study of Rough-Neuro-fuzzy Hybrid
Approaches with Linear and Non-linear SVMs

Rajen Bhatt1, Sheela Ramanna2, and James F. Peters3

1 Samsung India Software Center,
Noida-201305, Uttar Pradesh, India
rajen.bhatt@gmail.com

2 Department of Applied Computer Science
University of Winnipeg,
Winnipeg, Manitoba R3B 2E9 Canada
s.ramanna@uwinnipeg.ca

3 Computational Intelligence Laboratory
Electrical and Computer Engineering Department
University of Manitoba,
Winnipeg, Manitoba R3T 5V6 Canada
jfpeters@ee.umanitoba.ca

Summary. This chapter is an extension of our earlier work in combining and compar-
ing rough hybrid approaches with neuro-fuzzy and partial decision trees in
classifying software defect data. The extension includes a comparison of our earlier
results with linear and non-linear support vector machines (SVMs) in classifying de-
fects. We compare SVM classification results with partial decision trees, neuro-fuzzy
decision trees(NFDT), LEM2 algorithm based on rough sets, rough-neuro-fuzzy deci-
sion trees(R-NFDT), and fuzzy-rough classification trees(FRCT). The analyses of the
results include statistical tests for classification accuracy. The experiments were aimed
at not only comparing classification accuracy, but also collecting other useful software
quality indicators such as number of rules, number of attributes (metrics) and the type
of metrics (design vs. code level). The contribution of this chapter is a comprehensive
comparative study of several computational intelligence methods in classifying soft-
ware defect data. The different methods also point to the type of metrics data that
ought to be collected and whether the rules generated by these methods can be easily
interpreted.

Keywords: Classification, fuzzy-rough classification trees, neuro-fuzzy decision trees,
rough sets, software defects, support vector machines.

1 Introduction

In the context of software defect classification, the term data mining refers to
knowledge-discovery methods used to find relationships among defect data and
the extraction of rules useful in making decisions about defective modules either
during development or during post-deployment of a software system. A software

A. Abraham, R. Falcón, and R. Bello (Eds.): Rough Set Theory, SCI 174, pp. 213–231.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

214 R. Bhatt, S. Ramanna, and J.F. Peters

defect is a product anomaly (e.g, omission of a required feature or imperfection
in the software product) [19]. As a result, defects have a direct bearing on the
quality of the software product and the allocation of project resources to program
modules. Software metrics make it possible for software engineers to measure and
predict quality of both the product and the process.

There have been several studies in applying computational intelligence tech-
niques such as rough sets [18], fuzzy clustering [8, 29], neural networks [13] to
software quality data. Statistical predictive models correlate quality metrics to
number of changes to the software. The predicted value is a numeric value that
gives the number of changes (or defects) to each module. However, in practice,
it is more useful to have information about modules that are highly defective
rather than knowing the exact number of defects for each module.

This chapter is an extension of our earlier work [20, 21] in comparing rough
hybrid approaches in classifying software defect data. Significant enhancements
include i) the comparison with linear and non-linear support vector machines
(SVMs) ii) Using rough set based LEM2 algorithm [27] iii) preprocessing of data
and experimenting with several iterations.

We compare SVM classification results with partial decision trees [25], neuro-
fuzzy decision trees [1], rough-neuro-fuzzy decision trees, and fuzzy-rough clas-
sification trees [3, 4]. The analyses of the results include statistical tests for
classification accuracy. In [20], the hybrid approach was limited to employing
the strength of rough sets to attribute reduction as the first step in classification
with neuro-fuzzy decision trees. In [21], Fuzzy-Rough Classification Trees that
employ fuzzy-rough dependency degree [9, 2] for the induction of FRCT. Other
data mining methods reported in this chapter are from rough set theory [17] and
fuzzy decision trees [28].

In this work, the defect data consists of product metrics drawn from the
PROMISE1 Software Engineering Repository data set. The results are very
promising in terms of how different methods point to the type of metrics data
that ought to be collected and whether the rules generated by these methods can
be easily interpreted.. In addition, we observed that the rule set with LEM2 was
significantly smaller than our earlier reported result [20, 21]. The contribution
of this chapter is a comprehensive comparative study of several computational
intelligence methods in classifying software defect data.

This chapter is organized as follows. In Sect. 2, we give a brief overview of
the various methods that were used in our experiments. The details of the defect
data and classification methods are presented in Sect. 3. This is followed by an
analysis of the classification results in Sect. 4.

2 Approaches

2.1 Neuro-Fuzzy Decision Trees

Fuzzy decision trees are powerful, top-down, hierarchical search methodology
to extract easily interpretable classification rules [2]. However, they are often
1 http://promise.site.uottawa.ca/SERepository

Software Defect Classification 215

criticized for poor learning accuracy [26]. In [1] a Neuro-Fuzzy Decision Trees
(NFDT) algorithm was proposed to improve the learning accuracy of fuzzy de-
cision trees. In the forward cycle, NFDT constructs a fuzzy decision tree using
the standard FDT induction algorithm fuzzy ID3 [28]. In the feedback cycle,
parameters of fuzzy decision trees (FDT) have been adapted using stochastic
gradient descent algorithm by traversing back from each leaf to root nodes.
Forward cycle means construction of fuzzy decision tree by doing forward pass
through data. Feedback cycle means tuning of FDT parameters using N-FDT
algorithm. With the computation of mean-square-error, feedback regarding the
classification performance of FDT is continuously available, which is being used
to tune the FDT parameters. During the parameter adaptation stage, NFDT
retains the hierarchical structure of fuzzy decision trees. A detailed discussion
of NFDT algorithm with computational experiments using real-world datasets
and analysis of results are available in [1].

We will now give a brief discussion about standard crisp decision trees and
fuzzy decision trees. This will provide the useful reference for the study of neuro-
fuzzy decision trees. The most important feature of decision trees is their capa-
bility to break down complex decision making method into a collection of locally
optimal simple decisions through top-down greedy search technique. State-of-
the-art survey of various crisp decision tree generation algorithms, including
the most important and popular Quinlan’s ID3 family and C4.5 [25], is given
in [23, 24],and by Safavian and Landgrebe [22]. Although the decision trees gen-
erated by these methods are useful in building knowledge-based expert systems,
they are often not capable of handling cognitive uncertainties consistent with
human information processing, such as vagueness and ambiguity. In general,
vagueness is related to the difficulty in making sharp classification boundaries.
Ambiguity is associated with one-to-man mapping. To overcome these defi-
ciencies, various researchers have developed fuzzy decision tree induction algo-
rithms [28]. All fuzzy decision tree generation techniques evaluate classification
abilities of fuzzified attributes using some suitable measure of uncertainty. In-
corporating this measure in crisp decision tree generation algorithm like ID3,
fuzzy decision trees can be constructed.

Figure 1 shows fuzzy decision tree using fuzzy ID3 algorithm for a toy dataset
of two class classification problem. As shown in Fig. 1, fuzzy decision trees are
composed of a set of internal nodes representing variables used in the solution of a
classification problem, a set of branches representing fuzzy sets of corresponding
node variables, and a set of leaf nodes representing the degree of certainty with
which each class has been approximated. Patterns are classified by starting from
the root node and then reaching to one or more leaf nodes by following the
path of degree of memberships greater than zero. Each path-m is defined on
the premise space composed of input features available in traversing from root
node to mthleaf node. In Fig. 1, path-1, path-2, and path-3 are composed on
the premise space x1 = x2 = x3 = [x6, x2], where as path-4 and path-5 are
composed on the premise space x4 = x5 = [x6]. Number of variables appearing
on the path defines the length of that path. For example, in Fig. 1, length of

216 R. Bhatt, S. Ramanna, and J.F. Peters

Fig. 1. Exemplary neuro-fuzzy decision tree

path-1, path-2, path-3 = 2. Fuzzy decision tree being a hierarchical structure,
share the membership functions along the paths leading to each leaf node from
root node. In Fig. 1, membership function F63 has been shared by path-1, path-
2, and path-3. With this preliminary discussion on fuzzy decision trees and its
advantages over crisp decision trees, what follows is the formal notation and
details of the neuro-fuzzy decision trees:

Figure 1 shows an exemplary NFDT with two summing nodes to carry out
the inference process. There are five paths starting from root node to five leaf
nodes. Root node is indicated by x6. Leaf nodes are shown by dots and indexed
as m = 1, 2, , 5. Training patterns are labeled as {xi, yi} where i = 1, ..., n and
yi ∈ {0, 1} where where xi represents the ith object(pattern) and yi represents
the prediction certainty of the decision class for the ith object. The input to
NFDT is a decision table. Let βml be the certainty factor corresponding to mth

leaf node and decision class-l. From all the leaf nodes, certainty corresponding
to decision class-l are summed up to calculate output yl. Traversing path from
root node x6 to second leaf node is represented by:

path2 = x6 is F63 ∧ x2 is F22
leaf2 : y1 = Class1(β21), y2 = Class2(β22)

(1)

The firing strength (FS) of path-m with respect to decision class-l for the ith

object is defined by (2)
FSm = μi

pathm
× βml, (2)

where μi
pathm

is the membership degree of ith object for path-m and can be
calculated as shown in (3)

Software Defect Classification 217

μi
pathm

=
∏

j

μF m
j

(
xi

j

)
. (3)

where μF m
j

(
xi

j

)
is the degree of membership of the ith pattern of the jth input

xj into Fm
j . Fm

j is fuzzy membership function for jth attribute on path-m. This
way, μi

pathm
is zero if for any of the input variable on mth path the degree of

membership of ith pattern to the fuzzy membership function Fm
j is zero.

Firing strengths of all the paths for a particular decision class-l are summed
up to calculate the prediction certainty yi

l of ith object(pattern) to lth class
through fuzzy decision tree as shown in (4)

yi
l =

M∑

m=1

FSm, (4)

where 0 ≤ yi
l ≤ 1 and q is total number of classes. When classification to a

unique class is desired, the class with the highest membership degree needs to
be selected, i.e., classify given object(pattern) to class l0, where

l0 = arg max
l=1,...,q

{
yi

l

}
. (5)

To fuzzify input attributes, we have selected Gaussian membership functions out
of many alternatives due to its differentiability property (i.e., existence of the
differentiation). For ith object(pattern), membership degree of path-m can be
calculated as shown in (6)

μi
pathm

=
∏

j

μF m
j

(
xi

j

)
=

∏

j

exp

((
xi

j − cjm

)2

2σ2
jm

)
, (6)

where cjm and σjm are center and standard deviation (width) of Gaussian mem-
bership function of jth attribute of input object(pattern) xi on path-m, i.e., of
Fm

j . We now briefly outline the strategy of NFDT by performing an adaptation
of all types of parameters (centers, widths, and certainty factors) simultaneously
on the structure shown in Fig. 1. We define as the error function of the fuzzy
decision tree, the mean-square-error defined by (7)

MSE =
1
2n

q∑

l=1

n∑

i=1

(
di

l − yi
l

)2
, (7)

where n is the total number of training patterns and di
l and yi

l are the desired
prediction certainty and the actual prediction certainty of class-l for ith ob-
ject(pattern), respectively. At each epoch (iteration), the complete parameter
P = {cjm, σjm, βml | m = 1, ..., M ; l = 1, ..., q} is moved by a small distance η in
the direction in which MSE decreases most rapidly, i.e., in the direction of the
negative gradient − ∂E

∂θ where θ is the parameter vector constituted from the
set P. This leads to the parameter update rule shown in (8)

218 R. Bhatt, S. Ramanna, and J.F. Peters

θτ+1 = θτ − η
∂E

∂θ
, (8)

where τ is the iteration index and η is the learning rate. The update equations for
centers, widths, and certainty factors can be found in [1]. Parameter adaptation
continues until error goes below certain small positive error goal ε or the specified
number of training epochs has been completed. Neuro-fuzzy decision trees take as
input the fuzzy decision tree structure and try to minimize the mean-square-error
by tuning the centers and standard deviations of Gaussian membership functions
along with certainty factors associated with each node. For example, if there
is high degree of overlap (or very less overlap) between adjacent membership
functions in the initial fuzzy decision tree structure if cluster centers are too
close (or too far). Neuro-fuzzy decision tree algorithm tries to minimize the
mean-square-error and in the process adjust the cluster centers and standard
deviations.

What follows are details about the computational set-up for the experiments
reported in this chapter with NFDT. All the attributes have been fuzzified using
fuzzy c-means algorithm [5] into three fuzzy clusters. From the clustered row
data, Gaussian membership functions have been approximated by introducing
the width control parameter λ. The center of each gaussian membership function
has been initialized by fuzzy cluster centers generated by the fuzzy c-means
algorithm. To initialize standard deviations, we have used a value proportional
to the minimum distance between centers of fuzzy clusters. For each numerical
attribute xj and for each gaussian membership function, the Euclidean distance
between the center of Fjk and the center of any other membership function Fjh

is given by dc (cjk, cjh), where h �= k. For each kth membership function, after
calculating dcmin (cjk, cjh), the standard deviation σjk has been obtained by (9)

σjk = λ × dcmin (cjk, cjh) ; 0 < λ ≤ 1, (9)

where λ is the width control parameter. For the computational experiments
reported here, we have selected various values of λ ∈ (0, 1] to introduce variations
in the standard deviations of initial fuzzy partitions.

2.2 Fuzzy-Rough Classification Trees

Fuzzy-Rough Classification Trees (FRCT) integrate rule generation technique of
fuzzy decision trees and rough sets. The measure used for the induction of FRCT
is fuzzy-rough dependency degree proposed in [3, 4]. The dependency degree
measure in the context of rough set theory has been proposed by Pawlak [17].
Fuzzy-rough dependency degree measure is an extension of Pawlak’s measure to
accommodate fuzzy data. Pawlak’s measure is only applicable to crisp partitions
of feature space. In [3, 4], we have shown that our measure of fuzzy-rough de-
pendency degree is more general one and covers Pawlak’s measure as a limiting
case when partitions are crisp rather than fuzzy. In this sect., we briefly outline
the steps of computing the fuzzy-rough dependency degree.

Software Defect Classification 219

Formally, a data (information) table IS is represented by a pair (X, A), where
X is a non-empty, finite set of objects and A is a non-empty, finite set of at-
tributes, where aj : X → V aj for every aj ∈ A where aj is the jth input of
attribute a and V aj is the value set of aj . A decision table is represented by a
pair (X, C, D), where C, D ⊆ A. In other words, the attribute set A is partitioned
into: condition attributes C and decision attribute D. Let |C| = p i.e., the total
number of input of variables are p. Let |D| = q, i.e., the total number of classes
are q. In other words, each input pattern is classied into one of the q classes. Let
Fjk be the kth fuzzy set of attribute aj . The fuzzy set represents overlapping
and non-empty partitions of real-valued attributes aj ∈ C where (1 ≤ j ≤ p) on
the set of training set T ⊆ X . For notational convenience, we will use j instead
of aj for attributes.

The membership function of the lower approximation of an arbitrary class-l
of Fjk for the ith object(pattern) denoted by xi

j ∈ T with decision di is given
by:

μl (Fjk) = inf
∀i∈U

max
{
1 − μFjk

(
xi

j

)
, μl

(
di

)}

The dependency degree γxj (d) for the ith object (pattern) and jth attribute can
be calculated as follows:

• Calculate the lower approximation member function μl (Fjk) using the above
definition

• Calculate fuzzy positive region μPOS (Fjk) = sup
l=1,..,q

{
μl (Fjk)

}

• Calculate the degree of membership of the ith pattern to the fuzzy positive
region
μPOS

(
xi

j

)
= sup

l=1,..,q
min

{
μFjk

(
xi

j

)
, μPOS (Fjk)

}

• Calculate the dependency degree γxj (d) =

n∑
i=1

μPOS(xi
j)

n

Fuzzy-rough dependency degree of attribute xj , denoted here as γxj lies be-
tween 0 and 1, i.e., 0 ≤ γxj (d) ≤ 1. d = 1 indicates that decision attribute d
completely depends on input attribute xj , in other words, xj alone is sufficient to
approximate all the decisions given in decision attribute d. d = 0 indicates that
decision attribute d is not completely dependent on on input attribute xj . Any
value of γxj (d) that is in (0,1) indicates partial dependency. Partial dependency
means addition of other input attributes is required to completely approximate
all the decisions given in decision attribute d. This property of fuzzy-rough de-
pendency degree makes it a good choice as an attribute selection criterion for
the induction of fuzzy decision trees. We call fuzzy decision trees wherein fuzzy-
rough dependency degree is used as an attribute selection criterion, a fuzzy-rough
classification trees.

Given fuzzy partitions of feature space, leaf selection threshold βth, and fuzzy-
rough dependency degree γ as expanded attribute (attribute to represent each
node in fuzzy decision tree) selection criterion, the general procedure for gener-
ating fuzzy decision trees using FRCT algorithm is outlined in Alg. 1.

220 R. Bhatt, S. Ramanna, and J.F. Peters

Algorithm 1. Algorithm for generating fuzzy decision trees using FRCT
Require: fuzzy partitions of feature space, βth, γ
Ensure: fuzzy decision trees
1: while ∃ candidate nodes do
2: Select node with highest γ; � dependency degree
3: Generate its child nodes; � root node will contain attribute with highest γ
4: if βchild−node ≥= βth then
5: child-node = leaf-node
6: else
7: Search continues with child-node as new root node
8: end if
9: end while

Before training the initial data, the α cut is usually used for the initial data [4].
Usually, α is in the interval (0, 0.5]. A detailed description of fuzzy-rough depen-
dency degree is available in [3]. The cut of a fuzzy set F is defined as:

μFα (a) =
{

μF (a) ; μF (a) ≥ α
0; μF (a) < α

.

In the case of FRCT experiments, fuzzy partitioning of the feature space has
been generated by the following method. Fuzzy c-means [5] algorithm has been
utilized to fuzzify continuous attributes into three fuzzy clusters. The triangular
approximation of the clustered raw data is done in two steps. First, the convex
hull of the original clustered data is determined through MATLAB R© function
“convhull”, and then the convex hull is approximated by a triangular member-
ship function. We mention here that three fuzzy clusters have been chosen only
to report experimental results. Choosing different number of clusters may affect
the result. In general, one should iterate from a few minimum to maximum num-
ber of clusters, construct fuzzy-rough classification trees, and choose one which
gives best classification accuracy with acceptable number of rules.

2.3 Support Vector Machines

In this sect., we give a brief discussion of linear and nonlinear Support Vector
Machines (SVMs) used in our computational experiments [6]. Linear and nonlin-
ear SVMs trained on non separable (and separable) data results in a quadratic
programming problem.

Linear SVM

Let training patterns are labeled as {xi, yi}, where i = 1, ..., n, yi ∈ {−1, +1} , xi

∈
. Let there exist some separating hyper plane which separates the positive
from the negative patterns. The points x, which lie on the hyper plane satisfy

xi · w + b = 0 (10)

Software Defect Classification 221

where w is normal to the hyper plane |b|
|w| is the perpendicular distance from the

hyper plane to the origin, and ‖w‖ is the Euclidean norm of w. For the linearly
separable case, the SVM algorithm simply looks for the separating hyper plane
with largest margin i.e., w and b which can maximize the margin. Once optimal
b and w are obtained, we simply have to determine on which side of the decision
boundary a given test pattern x lies and assign the corresponding class label,
i.e., we take the class of x to be sgn(w · x + b) given as

xi · w + b ≥ 1, for yi = 1, xi · w + b ≤ −1, for yi = −1. (11)

Equation 11 can be combined into one set of inequalities:

y (xi · w + b) − 1 ≥ 1, for i (12)

However, in practice, it is difficult to find problems with perfectly linearly separa-
ble case. The actual SVM formulation described above for the linearly separable
case is modified by introducing positive slack variables ζi where i=1,...,n in the
constraints. Equation 11 can be be rewritten as:

xi · w + b ≥ 1 − ζi, for yi = 1, (13)
xi · w + b ≤ −1 − ζi, for yi = −1 where ζi ≥ 0 for i (14)

NonLinear SVM

To handle cases where the decision function is not a linear function of the data,
a nonlinear version of the SVM is normally used. In this case, we first map the
data to some other (possibly infinite dimensional) Euclidean space H using a
mapping φ where φ :
 → H . SVM training algorithm would only depend on
the data through dot products in H i.e., on functions of the form φ (xi) · φ (xj).

Now if there is a ’Kernel function’ K such that, K (xi) ·K (xj) = φ (xi) ·φ (xj).
we would only need to use K in the training algorithm, and would never need
to explicitly know the value(s) for φ. One such example is Gaussian kernel, used
in the computational experiments reported here. A detailed discussion of lin-
ear and nonlinear SVMs for separable and non-separable cases, with interesting
mathematical results can be found in [6].

3 Software Defect Data

The PROMISE data set includes a set of static software metrics about the
product as a predictor of defects in the software. The data includes measurements
for 145 modules (objects). There are a total of 94 attributes and one decision
attribute (indicator of defect level). The defect level attribute value is TRUE
if the class contains one or more defects and FALSE otherwise. The metrics at
the method level are primarily drawn from Halstead’s Software Science met-
rics [10] and McCabe’s Complexity metrics [15]. The metrics at the class level,
include such standard measurements as Weighted Methods per Class (WMC),

222 R. Bhatt, S. Ramanna, and J.F. Peters

Fig. 2. Exemplary data set

Depth of Inheritance Tree (DIT), Number of Children (NOC), Response For a
Class (RFC), Coupling Between Object Classes (CBO), and Lack of Cohesion
of Methods (LCOM) [7]. A sample data set of 30 modules with 22 attributes
are shown in Fig. 2.

In this chapter, for the purposes of illustration we have given a brief descrip-
tion of the first 22 attributes. Since the defect prediction is done at a class-level,
all method level features were transformed to the class level. Transformation was
achieved by obtaining min, max, sum, and avg values over all the methods in a
class. Thus this data set includes four features for each method-level features.

• a1: PERCENT-PUB-DATA . The percentage of data that is public and pro-
tected data in a class.

• a2: ACCESS-TO-PUB-DATA. The amount of times that a class’s public and
protected data is accessed.

• a3: COUPLING-BETWEEN-OBJECTS. The number of distinct non-
inheritance-related classes on which a class depends.

Software Defect Classification 223

• a4: DEPTH. The level for a class. For instance, if a parent has one child the
depth for the child is two.

• a5: LACK-OF-COHESION-OF-METHODS. For each data field in a class,
the percentage of the methods in the class using that data field. This metric
indicates low or high percentage of cohesion.

• a6: NUM-OF-CHILDREN. The number of classes derived from a specified
class.

• a7: DEP-ON-CHILD. Whether a class is dependent on a descendant.
• a8: FAN-IN. This is a count of calls by higher modules.
• a9: RESPONSE-FOR-CLASS. A count of methods implemented within a

class plus the number of methods accessible to an object class due to
inheritance.

• a10: WEIGHTED-METHODS-PER-CLASS. A count of methods imple-
mented within a class rather than all methods accessible within the class
hierarchy.

• a11: minLOC-BLANK. Lines with only white space or no text content.
• a12: minBRANCH-COUNT. This metric is the number of branches for each

module.
• a13: minLOC-CODE-AND-COMMENT. Lines that contain both code and

comment.
• a14: minLOC-COMMENTS. Minimum lines with comments.
• a15: minDESIGN-COMPLEXITY. Design complexity is a measure of a mod-

ule’s decision structure as it relates to calls to other modules.
• a17: minESSENTIAL-COMPLEXITY. Essential complexity is a measure of

the degree to which a module contains unstructured constructs.
• a18: minLOC-EXECUTABLE. Minimum Source lines of code that contain

only code and white space.
• a19: minHALSTEAD-CONTENT. Complexity of a given algorithm indepen-

dent of the language used to express the algorithm.
• a20: minHALSTEAD-DIFFICULTY. Minimum Level of difficulty in the

program.
• a21: minHALSTEAD-EFFORT. Minimum estimated mental effort required

to develop the program.
• a22: minHALSTEAD-ERROR-EST. Estimated number of errors in the

program.

Data Preprocessing

Since all the data is real-valued with a wide variation in the values for attributes
from 0.1 to 105, it was necessary to normalize the attribute values for experiments
that were not based on fuzzy sets. What follows are some data preprocessing
tasks that were performed on the defect data:

• All attributes were normalized using the WEKA2unsupervised instance based
filter method.

2 http://www.cs.waikato.ac.nz/ml/weka

224 R. Bhatt, S. Ramanna, and J.F. Peters

• For 10-Fold CV, pairs of testing-training data sets were generated indepen-
dently and used in all our experiments with different methodologies.

• All attribute values were discretized in experiments with LEM2 and J48.
The version of LEM2 included in RSES3 works only with discretized data.
Discretization alogrithm implemented in WEKA was used with J48. Dis-
cretization is by simple binning in the unsupervised mode.

Experimental Setup - Discretization in RSES

Whenever the domain of a real-valued condition attribute is exceptionally large,
then the number of decision rules that are generated can be unmanageably
large. In such cases, discretization of attribute value sets provides a mecha-
nism for reducing the domain space without significantly altering the quality
of the rules that are derived. That is, we need to obtain approximate knowl-
edge of a continuum by considering parts of the continum for an attribute.
Discretization of a continuum entails the partition of the interval of a real-
valued attribute into subintervals of reals. Let DT = (U, A ∪ d) be a decision
table where U = {x1, . . . , xn}. In addition, assume that the value set Va for
each attribute of DT is a subset of the reals. For example, consider the inter-
val of reals Va = [la, ra] for values of an attribute a ∈ A in a decision system
DT = (U, A∪ d) where la ≤ a(x) ≤ ra. Discretization of Va entails searching for
a partition Pa of Va for any a a ∈ A (i.e., discovering a partition of the value
sets of conditional attributes into intervals). A partition of Va is defined by a
sequence of what are known as cuts la = v1 < v2 < v3 < . . . << vn−1 < vn = ra

so that Va = [la, v2)[v2, v3) . . . [vn−1, ra). The search for partitions of attributes
into subintervals of the reals is carried out on consistent decision tables. In rough
set theory, discretization leads to partitions of value sets so that if the name of
the interval containing an arbitrary object is substituted for any object instead
of its original value in DT, a consistent decision system is also obtained. The
discretization concept defined by cuts has been generalized by using oblique hy-
perplanes. The boundary between each pair of decision classes is a linear plane
called a hyperplane. The quality of a hyperplane has been treated by a num-
ber of measures. Measure values are viewed as energy levels of a hyperplane.
During discretization of a set of numeric attributes, the search of hyperplanes is
carried out using simulated annealing. A detailed description of this approach
to discretization is outside the scope of this article. A complete presentation
containing the details about discretization in the context of rough sets is given
in [16].

Experimental Setup - Rough Set-based LEM2 and J48

LEM2 based on rough set theory learns the concept with the smallest set of
rules [27]. In the results reported in [20, 21], rule-set used by the rough set classi-
fier in RSES was quite large (average number of rules was 280). We also compared
our results with a classical partial decision tree-based method (J48) method in
WEKA using a variant of the well-known C4.5 revision 8 algorithm [25].
3 http://logic.mimuw.edu.pl/∼rses

Software Defect Classification 225

Experimental Setup - Hybrid Methods

In all our hybrid methods involving fuzzy sets, the attribute values were not nor-
malized. The Rough-NFDT method included i) generating reducts from rough
set methods ii) using the data from the reduced set of attributes to run the
NFDT algorithm. For the NFDT algorithm, after attribute fuzzification, the
fuzzy ID3 algorithm with cut α = 0 and leaf selection threshold βth = 0.75 was
used. The fuzzy decision trees have been tuned using the NFDT algorithm for
500 epochs with the target MSE value 0.001.

For the computational experiments reported with the FRCT, all parameters
were set as described in Sect. 2.2.

Experimental Setup - SVM

The data set was classified using nonlinear SVM(SVM-NL) as well as linear
SVM (SVM-L). The tuning parameters involved with nonlinear SVM are penalty
parameter C and Gaussian Kernel parameter μ. These two parameters were
tuned based on grid search [12]. The range for C used is 2−12 to 212. The range
for μ used is 2−35 to 24. The best values of C and μ are 2−1 and 2−29. All
algorithms were implemented in MATLAB 7.3.0 (R2006b) [14] environment on a
PC with Intel Core2Duo processor (2.13GHz), 1GB RAM running Ms-Windows
XP operating system. The dual quadratic programming problems arising in SVM
were solved using Mosek optimization toolbox 4 for MATLAB which implements
fast interior point based algorithms.

4 Analysis of Classification Results

A comparison of pairs of differences in classification accuracy during one-fold of
a 10Fold CV and a paired t-test is also discussed in this sect. Table 1 gives a
summary of computational experiments using seven methods and Table 2 gives
the average size of the rule set (and support vectors). Percentage classification
accuracy has been calculated by nc

n × 100%, where n is the total number of test
patterns, and nc is the number of test patterns classified correctly.

Figure 3 gives a sample LEM2 rule set for a single run of the 10fold CV. It
can be observed that the most frequestly used attributes (metrics) are:

a4(DEPTH), a5(LACK-OF-COHESION-OF-METHODS),
a23(minHALSTEAD-LENGTH), a35(maxLOC-COMMENTS),
a53(avgLOC-BLANK), a56(avgLOC-COMMENTS) and a63(avgHALSTEAD-
LENGTH).

4.1 T-Test

In this sect., we discuss whether there is any difference between the various
methods in terms of classification accuracy (and the number of rules) statistically
4 http://www.mosek.com

226 R. Bhatt, S. Ramanna, and J.F. Peters

Table 1. Defect data classification I

%Accuracy

Run NFDT R-NFDT LEM2 FRCT J48 SVM-NL SVM-L

1 93 71 85 86 86 76 71

2 83 93 82 86 79 76 86

3 64 71 55 71 57 57 57

4 71 71 80 93 86 86 71

5 64 57 44 71 28 64 64

6 79 79 57 79 57 93 71

7 86 71 67 86 50 64 50

8 71 79 67 71 79 64 79

9 93 100 86 93 93 93 100

10 89 89 85 89 84 89 89

Avg.Acc 80 78 71 83 73 77 74

Table 2. Defect data classification II

Average Number of Rules and Support Vectors

NFDT R-NFDT LEM2 FRCT J48 SVM-NL SVM-L

7.2 5.6 26 17.3 12 123 49

Fig. 3. Exemplary rule set

Software Defect Classification 227

Table 3. T-test results

Accuracy

Pairs Avg. Diff. Std. Deviation t-stat

R-NFDT/NFDT −1.43 9.99 −0.45

R-NFDT/LEM2 7.43 11.07 2.12

R-NFDT/J48 8.33 14.85 1.77

NFDT/LEM2 8.86 9.21 3.04

NFDT/J48 9.76 16.83 1.83

LEM2/J48 0.90 9.31 0.31

FRCT/R-NFDT 4.29 10.76 1.26

FRCT/NFDT 2.86 7.68 1.18

FRCT/LEM2 11.71 9.01 4.11

FRCT/J48 12.61 16.41 2.43

FRCT/SVM-NL 5.71 9.48 1.91

SVM-NL/NFDT −2.86 11.33 −0.80

SVM-NL/R-NFDT −1.43 11.65 −0.39

SVM-NL/LEM2 6.00 12.93 1.47

SVM-NL/J48 6.90 17.03 1.28

SVM-L/NFDT −5.86 13.45 −1.38

SVM-L/R-NFDT −4.43 8.32 −1.68

SVM-L/LEM2 3.00 12.68 0.75

SVM-L/J48 3.90 14.58 0.85

using the well-known t-test. This is done by formulating the hypothesis that the
mean difference in accuracy between any two classification learning algorithms
is zero. Table 3 gives the t-test results.

Let μd denote the mean difference in accuracy during a 10-fold classification
of software defect data. Let H0 denote the hypothesis to be tested (i.e., H0 :
μd = 0). This is our null hypothesis. The paired difference t-test is used to test
this hypothesis and its alternative hypothesis (HA : μd �= 0). Let d , S2

d denote
the mean difference and variance in the error rates of a random sample of size n
from a normal distribution N(μd, σ2), where μd and σ2 are both unknown. The
t statistic used to test the null hypothesis is as follows:

t =
d̄ − μd

Sd/
√

n
=

d̄ − 0
Sd/

√
n

=
d̄
√

n

Sd

228 R. Bhatt, S. Ramanna, and J.F. Peters

Table 4. Null-hypothesis results for accuracy

Accept H0 (ud = 0) if |t value| < 2.262

Pairs t-stat(Acc.) Acc/Rej H0

R-NFDT/NFDT −0.45 Accept

R-NFDT/LEM2 2.12 Accept

R-NFDT/J48 1.77 Accept

NFDT/LEM2 3.04 Reject

NFDT/J48 1.83 Accept

LEM2/J48 0.31 Accept

FRCT/R-NFDT 1.26 Accept

FRCT/NFDT 1.18 Accept

FRCT/LEM2 4.11 Reject

FRCT/J48 2.43 Reject

FRCT/SVM-NL 1.91 Accept

SVM-NL/NFDT −0.80 Accept

SVM-NL/R-NFDT −0.39 Accept

SVM-NL/LEM2 1.47 Accept

SVM-NL/J48 1.28 Accept

SVM-L/NFDT −1.38 Accept

SVM-L/R-NFDT −1.68 Accept

SVM-L/LEM2 0.75 Accept

SVM-L/J48 0.85 Accept

where t has a student’s t-distribution with n-1 degrees of freedom [11]. In our
case, n − 1 = 9 relative to 10 sample error rates. The significance level α of the
test of the null hypothesis H0 is the probability of rejecting H0 when H0 is true
(called a Type I error). Let tn−1, α/2 denote a t-value to right of which lies α/2
of the area under the curve of the t-distribution that has n-1 degrees of freedom.
Next, formulate the following decision rule with α/2 = 0.025:

Decision Rule: Reject H0 : μd = 0 at significance level α if, and only if
|t − value| > 2.262
Pr-values for tn−1, α/2 can be obtained from a standard t-distribution table. It
should be noted that we repeated the experiments 30 times and averages have

Software Defect Classification 229

remained consistent. However, for the purposes of analysis, we have restricted
the reporting to 10 experiments.

4.2 Analysis

In terms of the t-test for accuracy, in general the three hybrid methods (FRCT,
R-NFDT and NFDT) and SVM methods are comparable in that there is no
significant difference in any of the methods based on the null hypothesis. In con-
trast, there is a difference in accuracy between three pairs of methods outlined
above(FRCT and LEM2, FRCT and J48 and NFDT and LEM2). This result
corroborates our earlier result reported in [21]. Also of note is that SVM based
methods have not had any effect in terms of classification accuracy. In terms of
rules, in this chapter, we have only reported average number of rules over 10
runs (see Table 2). It is clear that the hybrid R-NFDT classifier has the smallest
rule set.

The other important observation is the role that reducts play in defect data
classification. On an average, only 6 attributes out of 95 were used by LEM2 in its
rules with no significant reduction in classification accuracy. The R-NFDT and
NFDT method uses an average of 4 out of 95 attributes resulting in a minimal
number of rules with comparable accuracy.

The metrics at the method level that are most significant for R-NFDT and
NFDT classifiers include: i) Halstead’s metric of essential complexity which is
a measure of the degree to which a module contains unstructured constructs,
ii) Halstead’s metric of level which is the level at which the program can be
understood, iii) Halstead’s metric of number of unique operands which includes
variables and identifiers, constants (numeric literal or string) function names
when used during calls iv) total lines of code v) number of unique operators is
the number of branches for each module. These metrics were the most frequently
occurring attributes in the rule set that contribute to the highest classification
accuracy.

The metrics at the class-level that are most significant for R-NFDT, NFDT
and LEM2 classifiers include: Depth of Inheritance Tree (DIT), Coupling Be-
tween Object Classes (CBO) and Lack of Cohesion of Methods (LCOM).

5 Conclusion

This chapter has presented a combination of hybrid and native methods based on
rough sets, fuzzy sets, neural networks and support vector machines to classifica-
tion of software defect data. The t-test shows that there is no significant difference
between any of the hybrid methods in terms of accuracy at the 95% confidence
level. However, in terms of rules, there is a difference between these methods. The
experiments were aimed at not only comparing classification accuracy, but also
collecting other useful software quality indicators such as number of rules, num-
ber of attributes (metrics) and the type of metrics (design vs. code level). In con-
clusion, the R-NFDT classifier seems to be the most desired classifier in terms of

230 R. Bhatt, S. Ramanna, and J.F. Peters

comparable accuracy, average number of attributes used and smallest rule set. The
Rough-NFDT method consists of generating reducts (reduced set of attributes)
from rough set theory and then using the data from the reduced set of attributes
to run the NFDT algorithm. The desired metrics (attributes) are: COUPLING-
BETWEEN-OBJECTS, DEPTH, LACK-OF-COHESION-OF-METHODS max
NUM-OPERATORS, max. NUM-UNIQUE-OPERANDS, max. HALSTEAD-
LEVEL and min. LOC-TOTAL.

Acknowledgments

The research of Sheela Ramanna and James F. Peters is supported by NSERC
Canada grant 194376 and 185986.

References

1. Bhatt, R.B., Gopal, M.: Neuro-fuzzy decision trees. International Journal of Neural
Systems 16(1), 63–78 (2006)

2. Bhatt, R.B.: Fuzzy-Rough Approach to Pattern Classification- Hybrid Algorithms
and Optimization, Ph.D. Dissertation, Electrical Engineering Department, Indian
Institute of Technology Delhi, India (2006)

3. Bhatt, R.B., Gopal, M.: On the Extension of Functional Dependency Degree from
Crisp to Fuzzy Partitions. Pattern Recognition Letters 27(5), 487–491 (2006)

4. Bhatt, R.B., Gopal, M.: Induction of Weighted and Interpretable Fuzzy Classifica-
tion Rules for Medical Informatics. International Journal of Systemics, Cybernet-
ics, and Informatics 3(1), 20–26 (2006)

5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

6. Burges, C.J.: A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery 2(2), 955–974 (1998)

7. Chidamber, S.R., Kemerer, F.C.: A metrics suite for object-oriented design. IEEE
Trans. Soft. Eng. 20(6), 476–493 (1994)

8. Dick, S., Meeks, A., Last, M., Bunke, H., Kandel, A.: Data mining in software
metrics databases. Fuzzy Sets and Systems 145, 81–110 (2004)

9. Dubois, D., Prade, H.: Rough Fuzzy Sets and Fuzzy Rough Sets. Internation Jour-
nal of General Systems 17(2-3), 191–209 (1990)

10. Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
11. Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference. Macmillan Publish-

ing Co., Inc., New York (1977)
12. Hsu, C.W., Lin, C.J.: A Comparison on methods for multi-class support vector

methods, Technical report, Department of Computer Science and Information En-
gineering, National Taiwan University, Taipei, Taiwan (2001)

13. Khoshgoftaar, T.M., Allen, E.B.: Neural networks for software quality prediction.
In: Pedrycz, W., Peters, J.F. (eds.) Computational Intelligence in Software Engi-
neering, pp. 33–63. World Scientific, River Edge (1998)

14. MATLAB User’s Guide. The Mathworks, Inc., Natick, MA 01760 (1994-2007)
15. McCabe, T.: A complexity measure. IEEE Trans. on Software Engineering SE 2(4),

308–320 (1976)

Software Defect Classification 231

16. Nguyen, H.S., Nguyen, S.H.: Discretization methods in data mining. In: Polkowski,
L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 451–482.
Physica-Verlag, Berlin (1998a)

17. Pawlak, Z.: Rough sets. International J. Comp. Information Science 11(3), 341–356
(1982)

18. Peters, J.F., Ramanna, S.: Towards a software change classification system: A
rough set approach. Software Quality Journal 11, 121–147 (2003)

19. Peters, J.F., Pedrycz, W.: Software Engineering: An Engineering Approach. John
Wiley and Sons, New York (2000)

20. Ramanna, S., Bhatt, R., Biernot, P.: A rough-hybrid approach to software defect
classification. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W.,
Wang, G. (eds.) RSFDGrC 2007. LNCS, vol. 4482, pp. 79–86. Springer, Heidelberg
(2007)

21. Ramanna, S., Bhatt, R.: Software defect classification: A comparative study with
rough hybrid approaches. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron,
A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 630–638. Springer, Heidelberg (2007)

22. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man and Cybernetics 21(3), 660–674 (1991)

23. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)
24. Quinlan, J.R.: Decision trees and decision making. IEEE Transactions on Systems,

Man and Cybernetics 20(2), 339–346 (1990)
25. Quinlan, J.R.: C.4.5 Programs for machine learning. Morgan Kauffmann, San Ma-

teo (1993)
26. Tsang, E.C.C., Yeung, D.S., Lee, J.W.T., Huang, D.M., Wang, X.Z.: Refinement

of generated fuzzy production rules by using a fuzzy neural network. IEEE Trans.
on Transactions on Systems, Man and Cybernetics 34(1), 409–418 (2004)

27. Gryzmala-Busse, J.W.: A New Version of the Rule Induction System LERS. Fun-
damenta Informaticae 31(1), 27–39 (1997)

28. Wang, X.Z., Yeung, D.S., Tsang, E.C.C.: A comparative study on heuristic algo-
rithms for generating fuzzy decision trees. IEEE Trans. on Transactions on Sys-
tems, Man and Cybernetics 31, 215–226 (2001)

29. Yuan, X., Khoshgoftaar, T.M., Allen, E.B., Ganesan, K.: An application of fuzzy
clustering to software quality prediction. In: Proc. 3rd IEEE Symp. on Application-
Specific Software Engineering Technology, pp. 85–90 (2000)

30. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets and Systems 69,
125–139 (1995)

	Software Defect Classification: A Comparative Study of Rough-Neuro-fuzzy Hybrid Approaches with Linear and Non-linear SVMs
	Introduction
	Approaches
	Neuro-Fuzzy Decision Trees
	Fuzzy-Rough Classification Trees
	Support Vector Machines

	Software Defect Data
	Analysis of Classification Results
	T-Test
	Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

