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Summary. In this chapter we mainly focus on the study of some topological aspects
of rough sets and approximations of classifications. The topological classification of
rough sets deals with their types. We find out types of intersection and union of rough
sets, New concepts of rough equivalence (top, bottom and total) are defined, which
capture approximate equality of sets at a higher level than rough equality (top, bottom
and total) of sets introduced and studied by Novotny and Pawlak [23,24,25] and is
also more realistic. Properties are established when top and bottom rough equalities
are interchanged. Also, parallel properties for rough equivalences are established. We
study approximation of classifications (introduced and studied by Busse [12]) and find
the different types of classifications of an universe completely. We find out properties
of rules generated from information systems and observations on the structure of such
rules. The algebraic properties which hold for crisp sets and deal with equalities loose
their meaning when crisp sets are replaced with rough sets. We analyze the validity of
such properties with respect to rough equivalences.

1 Introduction

The notion of rough sets was introduced by Pawlak [26,27,28] as an extension of
the concept of crisp sets to capture impreciseness. Imprecision in this approach
is expressed by the boundary region of a set. In fact, the idea of rough set is
based upon approximation of a set by a pair of sets, called the lower and upper
approximations of the set.

In real life situations, fruitful and accurate applications of rough sets require
two aspects, called accuracy measure and topological characterization. We shall
mainly concentrate on topological characterization of rough sets in this chapter.
The other related aspect to be dealt with is approximations of classifications,
which are in a sense extensions of the concept of approximation of sets but their
characteristics are not exactly same. We shall study the types of union and inter-
section of rough sets which are also used in dealing with types of classifications.
New notions of approximate equalities, called rough equivalences are introduced
and their properties are studied. Using this notion, some basic algebraic prop-
erties for crisp sets are extended to rough sets. We also touch the topic of rule
generation from information systems.
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Now, we present the detailed structure of the chapter here. In sect. 2, we
establish two theorems on rough approximations which provide necessary and
sufficient conditions for equality to hold in two of the properties, where in general
inclusions hold true. There are several applications of these results as we shall
see in sections 4.3, 5.5 and 9.4.

As mentioned by Pawlak [30], one important difference between the concept
of rough set and the classical notion of set is the equality of sets. In classical
set theory, two sets are equal if they have exactly the same elements. But a
more practically applicable form of equality (approximate equality) called rough
equality was introduced in [23,24,25]. Here, two sets may not be equal in the
classical sense but they have enough of close features (that is they differ slightly
from each other) to be assumed to be approximately equal. These types of equal-
ities of sets refer to the topological structure of compared sets but not to the
elements they consist of. In fact two sets can be exactly equal in one knowledge
base but approximately equal or not equal in another. The practicality of this
notion depends upon the common observation that things are equal or not equal
from the point of view of our knowledge about them. Certain properties of these
equalities were established by Novotny and Pawlak [23,24,25]. But they have
remarked that these properties cease to be true when top and bottom rough
equalities are replaced one by the other. In sect. 3, we see that some of these
properties are true under replacement and others hold true if some additional
conditions are imposed.

A topological characterization of imprecision defined through the lower and
upper approximation of sets is the notion of type of rough sets. There are four
such types [30]. This method of characterization of imprecision complements
the other method of characterization of imprecision through accuracy measures,
which expresses degree of completeness of our knowledge about a set. As observed
by Pawlak ([30], p. 22), in practical applications of rough sets we combine both
kinds of information. As far as the information available, no further study is
found in rough set literature on this topic after its introduction. In sect. 4, we
study the types of rough sets obtained by union and intersection of rough sets.
We shall deal with applications of these results in sects. 5, 7 and 9.

As mentioned above, rough equalities deal with topological structures of the
compared sets. In sect. 5, we introduce and study another type of approximate
equality, called rough equivalence of sets, which captures topological structures
of the compared sets at a higher level than rough equality. By this, we mean that
any two sets comparable with the notions of rough equalities (bottom, top and
total) are also comparable with the corresponding notion of rough equivalence
(bottom, top and total) and the converse is not necessarily true. In fact, there
are many practical situations, where we can talk of approximate equality of the
compared sets with new notion but can not do so with the old one. More impor-
tantly, this new comparison very much matches with our perception of equality
depending upon our knowledge about the universe. We illustrate this with some
examples. Also, properties rough equivalences, which are in parallel with those
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for rough equalities along with the corresponding replacement properties are
analyzed and established.

To deal with knowledge acquisition under uncertainty, Busse [12] considered
the approximations of classifications as a new approach. Some earlier approaches
to the acquisition of knowledge and reasoning under uncertainty by expert sys-
tems research community are in [1,11,19,44]. Uncertainty may be caused by
ambiguous meanings of the terms used, corrupted data or uncertainty in the
knowledge itself [12]. One of the popular ways to acquire the knowledge is based
upon learning from examples [12]. The information system (a data base-like
system) represents what is called an ’instant space’ in learning from examples.
In the approach of Busse, inconsistencies are not corrected. Instead, produced
rules are categorized into certain rules and possible rules. Some other authors
who have dealt without correcting inconsistencies in information systems are
Mamdani et. al.[19] and Quinlan [35]. Four results were established by Busse
on approximation of classifications. In sect. 6, we generalize these results to
necessary and sufficient type ones from which, along with the results of Busse
many other results can be obtained as corollaries. The types of classifications
are thoroughly analyzed and their properties are studied in sect. 7. We find that
the eleven numbers of possible types reduce either directly or transitively to the
five types considered by Busse. In sect. 8, we present some of the properties of
rules generated from information systems and obtain many observations on the
structure of such rules.

There are many fundamental algebraic properties of crisp sets with respect to
the operations of union, intersection and complementation. All these properties
involve equality of two such expressions. When the involved sets are taken to
rough sets the equalities bear very little meaning (particularly, after the intro-
duction of the concepts of rough equalities and rough equivalences). To make
them more and more meaningful, one has to consider rough equality or rough
equivalence in general. In sect. 9, we consider the validity of many of these basic
properties with crisp equality being replaced by rough equivalence. Rough equal-
ities being special cases of rough equivalences, we can derive the corresponding
validities easily. We shall end the chapter with some concluding remarks and
finally provide a bibliography of papers and other related materials, which are
referred during the compilation of the materials of the chapter.

2 Rough Sets and Properties of Approximations

In this sect. we shall first introduce the definitions of rough set and related
concepts in sect. 2.1. In sect. 2.2 we introduce some properties of lower and
upper approximations and establish two theorems related to these properties,
which are to be used in later sections.

2.1 Rough Sets

Let U be a universe of discourse and R be an equivalence relation over U. By
U/R we denote the family of all equivalence classes of R, referred to as categories
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or concepts of R and the equivalence class of an element x ∈ U is denoted
by [x]R. The basic philosophy of rough set is that knowledge is deep-seated
in the classificatory abilities of human beings and other species. Knowledge is
connected with the variety of classification patterns related to specific parts of
real or abstract world, called the universe. Knowledge consists of a family of
various classification patterns of a domain of interest, which provide explicit
facts about reality-together with the reasoning capacity able to deliver implicit
facts derivable from explicit knowledge ([30], p. 2).

There is, however a variety of opinions and approaches in this area, as to how
to understand, represent and manipulate knowledge [3,4,6,7,9,15,20,21].

Usually, we do not deal with a single classification, but with families of clas-
sifications over U. A family of classifications over U is called a knowledge base
over U. This provides us with a variety of classification patterns which consti-
tute the fundamental equipment to define its relation to the environment. More
precisely, by a knowledge base we mean a relational system K=(U,R), where U
is as above and R is a non-empty family of equivalence relations over U.

For any subset P(�= φ) ⊆ R, the intersection of all equivalence relations in
P is denoted by IND(P) and is called the indiscernilibity relation over P. By
IND(K) we denote the family of all equivalence relations defined in K, that is
IND(K) = {IND(P ) : P ⊆ R, P �= φ}.

Given any X ⊆ U and R ∈ IND(K), we associate two subsets, RX =
⋃

{Y ∈
U/R : Y ⊆ X} and R̄X =

⋃
{Y ∈ U/R : Y ∩ X �= φ}, called the R-lower and

R-upper approximations of X respectively. The R-boundary of X is denoted by
BNR(X) and is given by BNR(X) = R̄X − RX . The elements of RX are those
elements of U which can certainly be classified as elements of X and elements
of R̄X are those elements of U which can possibly be classified as elements of
X, employing the knowledge of R. We say that X is rough with respect to R if
and only if RX �= R̄X , equivalently BNR(X) �= φ. X is said to be R-definable
if and only if RX = R̄X , or BNR(X) = φ.

2.2 Properties of Approximations

The lower and upper approximations of rough sets have several properties [30].
We shall be using the following four properties in our discussions:

RX ∪ RY ⊆ R(X ∪ Y ) (1)

R̄(X ∩ Y ) ⊆ R̄X ∩ R̄Y (2)

R̄(X ∪ Y ) = R̄(X) ∪ R̄(Y ) (3)

R(X ∩ Y ) = R(X) ∩ R(Y ) (4)

The inclusions in (1) and (2) can be proper [30] and also can be extended to
a finite number of sets. These results confirm to the obvious observation that,
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in general knowledge included in a distributed knowledge base is less than the
integrated one. That is, in general, dividing the knowledge base into smaller
fragments causes loss of information [30]. This leads to the interesting problem
of determining the exact circumstances under which there will be no loss of in-
formation even if one distributes the knowledge base or equivalently under what
circumstances there will definitely be loss of information. The following two the-
orems [37] establish necessary and sufficient conditions for the inclusions (1) and
(2) to be proper. The corollaries derived from these results provide necessary
and sufficient conditions for equalities to hold in (1) and (2). Thus answers to
the questions raised above have been obtained. We shall find many applications
of these results in this chapter.

Theorem 1. Let {E1, E2, E3, ..., En} be the partition of any universe U with
respect to an equivalence relation R. Then for any finite number of subsets X1,
X2, X3, . . ., Xm, of U ,

m⋃

i=1

R(Xi) ⊂ R(
m⋃

i=1

Xi) (5)

if and only if there exists at least one Ej such that

Xi ∩ Ej ⊂ Ej , for i = 1, 2, ..., m and
m⋃

i=1

Xi ⊇ Ej (6)

Proof. The sufficiency follows from the fact that Ej �⊂ R(Xi), for i = 1, 2, ..., m,
but Ej ⊂ R(

⋃m
i=1 Xi). Conversely, suppose

⋃m
i=1 R(Xi) ⊂ R(

⋃m
i=1 Xi). As

RX for any X is the union of Ej ’s only, there is at least one Ej such that
Ej ⊆ R(

⋃m
i=1 Xi) and Ej �⊂ R(Xi) for any i = 1, 2, ..., m. So, Ej ⊆

⋃m
i=1 Xi, but

Ej �⊂ Xj , for any i = 1, 2, ..., m. Thus Xi ∩ Ej ⊂ Ej and Ej ⊆
⋃m

i=1 Xi.

Corollary 1. A necessary and sufficient condition for

m⋃

i=1

R(Xi) = R(
m⋃

i=1

Xi) (7)

is that there exist no Ej such that

Xi ∩ Ej ⊂ Ej , i = 1, 2, ..., m and

m⋃

i=1

Xi ⊇ Ej . (8)

We shall be using the following example to illustrate the results of this sect.

Example 1. Let us consider an organization having four different sites. For
simplicity in computation we assume that there are 20 employees only in the
organization who are distributed over four sites.

Further, suppose that these employees are working on different projects pi, i =
1, 2, 3, 4; irrespective of their branch. Some of the employees are involved in more
than one project whereas some are not involved in any of the projects. Let the
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sets E1, E2, E3, E4 denote employees working at the four sites and X1, X2, X3,
X4 be the set of employees working for the projects p1, p2, p3 and p4 respectively.
Let

E1 = {e1, e2, e3, e4, e5}
E2 = {e6, e7, e8, e9, e10}
E3 = {e11, e12, e13, e14, e15}
E4 = {e16, e17, e18, e19, e20}

X1 = {e1, e2, e4, e7, e11, e13, e19}
X2 = {e4, e7, e11, e12, e15, e19}
X3 = {e4, e7, e11, e16, e18, e19} and
X4 = {e4, e7, e11, e16, e17, e18, e19, e20}

Let us define a relation R over the set of employees U in the organization as
eiRej if and only if both ei and ej work in the same branch.

The lower approximation of a set Xi, i = 1, 2, 3, 4 here provides the fact
whether all the employees in a particular site work in a given project or not.
Similarly, the upper approximation of these sets provide the fact whether any
employee in a particular site works in a project or not. For example, RX4 = E4,
says that all the employees in site 4 work in project 4. Similarly, R̄X1 = U means
that some employees of every site work in project 1.

Illustration for Corollary 1. Here, (
4⋃

i=1

Xi) �⊇ Ej for j = 1, 2, 3 and for E4,

(
4⋃

i=1

Xi) ⊇ E4, but X4 ∩ E4 = E4.

So, the conditions of Corollary 1 are satisfied. Hence we must have the equality
true.

In fact, we see that

R(
4⋃

i=1

Xi) = E4 and (
4⋃

i=1

RXi) = E4 as RX1 = RX2 = RX3 = φ

and RX4 = E4.

Theorem 2. Let {E1, E2, ..., En} be a partition of any universe U with respect
to an equivalence relation R. Then for a finite number of subsets X1, X2, ..., Xm

of U , the necessary and sufficient condition for

R̄(
m⋂

i=1

Xi) ⊂
m⋂

i=1

R̄(Xi) (9)

is that there exists at least one Ej such that

Xi ∩ Ej �= φ for i = 1, 2, ..., m and (
m⋂

i=1

Xi) ∩ Ej = φ (10)



On Approximation of Classifications, Rough Equalities 91

Proof. The sufficiency follows from the fact that

Ej �⊂ R̄(
m⋂

i=1

Xi) and R̄(Xi) ⊇ Ej for i = 1, 2, ..., m.

Conversely, suppose the conclusion is true. Then for some Ej ,

Ej ⊆
m⋂

i=1

R̄(Xi) but Ej �⊂ R̄(
m⋂

i=1

Xi).

So, Ej ⊆ R̄(Xi) for i = 1, 2, ..., m and Ej

⋂
(
⋂m

i=1 Xi) = φ.

That is Ej ∩ Xi �= φ, i = 1, 2, ..., m and (
⋂m

i=1 Xi)
⋂

Ej = φ.

This completes the proof.

Corollary 2. Let {E1, E2, ..., En} be a partition of U with respect to an equiv-
alence relation R. Then for any finite number of subsets X1, X2, ..., Xm of U ,

R̄(
m⋂

i=1

Xi) =
m⋂

i=1

R̄(Xi) (11)

if and only if there is no Ej such that

Xi ∩ Ej �= φ for i = 1, 2, ..., m and (
m⋂

i=1

Xi) ∩ Ej = φ. (12)

Illustration for Corollary 2

Here

4⋂

i=1

Xi = {e4, e7, e11, e19}. So, Ej ∩
4⋂

i=1

Xi �= φ for j = 1, 2, 3, 4.

Also, Xi ∩ Ej �= φ, for i = 1, 2, 3, 4 and j = 1, 2, 3, 4. Hence conditions of
Corollary 2 are satisfied. Also, we see that

R̄(
4⋂

i=1

Xi) = U =
4⋂

i=1

R̄(Xi).

3 Rough Equality of Sets

Comparison of sets plays a major role in classical set theory. When we move
to the representation of approximate knowledge through rough sets the usual
comparisons loose their meaning and in a sense are of no use. To bring about more
meaning into such comparisons of rough sets which translate into approximate
comparison of knowledge bases, Novotny and Pawlak [23,24,25] introduced three
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notions of rough equalities (bottom, top and total) and established several of
their properties. However, it is mentioned [30] that these properties fail to hold
when notions of bottom and top rough equalities are replaced one by the other.
We show in this sect. that some of these properties hold under such interchanges
and establish suitable conditions under which these interchanges are valid. Some
other papers which have dealt with rough equalities are [2,5,8].

Two sets are said to be equal in crisp set theory if and only if they have the
same elements. The concept has been extended to define rough equalities of sets
by Novotny and Pawlak [23,24,25]. In the next sect. we state these equalities.

3.1 Definitions

Definition 1. Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈ IND(K).
We say that

(i) Two sets X and Y are bottom R-equal (X=BY ) if RX = RY ;
(ii) Two sets X and Y are top R-equal (X=T Y ) if R̄X = R̄Y ;
(iii) Two sets X and Y are R-equal (X=Y ) if (X=BY ) and (X=T Y );

equivalently, RX = RY and R̄X = R̄Y .

We have dropped the suffix R in the notations to make them look simpler and
easy to use. Also the notations used are different from the original ones. This
has been done due to non-availability of the original notations in the symbol
set. It can be easily verified that the relations bottom R-equal, top R-equal and
R-equal are equivalence relations on P(U), the power set of U.

The concept of approximate equality of sets refers to the topological structure
of the compared sets but not the elements they consist of. Thus, sets having
significantly different elements may be rough equal. In fact, if X =B Y then
RX = RY and as X ⊇ RX, Y ⊇ RY , X and Y can differ only in elements of
X−RX and Y −RY . However, taking the example; U = {x1, x2, ..., x8} and R =
{{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}, we see that the two sets X = {x1, x3, x5}
and Y = {x2, x4, x6} are top R-equal, even though X ∩ Y = φ.

As noted by Pawlak [30, p.26], this concept of rough equality of sets is of
relative character, that is things are equal or not equal from our point of view
depending on what we know about them. So, in a sense the definition of rough
equality refers to our knowledge about the universe.

3.2 Properties of Rough Equalities

The following properties of rough equalities are well known [30].

X=BY if and only if X ∩ Y =BX and X ∩ Y =BY. (13)

X=T Y if and only if X ∩ Y =T X and X ∩ Y =T Y. (14)
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If X=T X ′ and Y =T Y ′ then X ∪ Y =T X ′ ∪ Y ′. (15)

If X=BX ′ and Y =BY ′ then X ∩ Y =BX ′ ∩ Y ′. (16)

If X=T Y then X ∪ −Y =T U. (17)

If X=BY then X ∩ −Y =Bφ. (18)

If X ⊆ Y and Y =T φ then X=T φ. (19)

If X ⊆ Y and X=T U then Y =T U. (20)

X=T Y if and only if − X=B − Y. (21)

If X=Bφ or Y =BU then X ∩ Y =Bφ. (22)

If X=T U or Y =T U then X ∪ Y =T U. (23)

It has been pointed out that (see for instance [30]) the above properties fail
to hold if =T is replaced by =B or conversely. However, we have the following
observations in connection with this interchange.

I. The properties (19) to (23) hold true under the interchange.
That is we have

X ⊆ Y and Y =Bφ ⇒ X=Bφ. (19′)

If X ⊆ Y and X=BU ⇒ Y =BU. (20′)

X =BY if and only if − X=T − Y. (21′)

If X=T φ or Y =T φ then X ∩ Y =T φ , and (22′)

If X=BU or Y =BU then X ∪ Y =BU. (23′)

II. The properties (17) and (18) holds true under the interchange in the following
form:

If X=BY then X ∪ −Y =BU if BNR(Y ) = φ. (17′)

If X=T Y then X ∩ −Y =T φ if BNR(Y ) = φ. (18′)
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Proof of (17’). R(X ∪ −Y ) ⊇ R(X) ∪ R(−Y )
= R(Y ) ∪ (−R̄(Y ))
= R(Y ) ∪ (−R(−Y )) ∪ BNR(Y )
= R(Y ) ∪ (−R(Y )) ∩ (−BNR(Y ))
= R(Y ) ∪ (−R(Y )) ∩ (RY ∪ (−BNR(Y )))
= U ∩ (RY ∪ (−BNR(Y )))
= RY ∪ (−BNR(Y )))
= RY ∪ (RY ∪ (−R̄Y ))
= RY ∪ (−R̄Y )
= (−BNR(Y ))
= U .

So, X ∪ (−Y )=BU .

Proof of (18’). R̄(X ∩ −Y ) ⊆ R̄(X) ∩ R̄(−Y )
= R̄(Y ) ∩ R̄(−Y ))
= R̄(Y ) ∩ (−R(Y ))
= R̄(Y ) ∩ ((−R̄(Y )) ∪ (−BNR(Y )))
= (R̄(Y ) ∩ ((−R̄(Y )))) ∪ (R̄Y ∩ BNR(Y ))
= φ ∪ (R̄Y ∩ BNR(Y ))
= BNR(Y )
= φ.

III. (i) The properties (13) and (16) hold under the interchange, if conditions
of Corollary 2 hold with m = 2.
(ii) The properties (14) and (15) hold under the interchange, if conditions of
Corollary 1 hold with m = 2.

So, we get

X=T Y if and only if X ∩ Y =T X and X ∩ Y =T Y, (13′)

X=BY if and only if X ∪ Y =BX and X ∪ Y =BY, (14′)

X=BX ′ and Y =BY ′ ⇒ X ∪ Y =BX ′ ∪ Y ′, (15′)

X=T X ′ and Y =T Y ′ ⇒ X ∩ Y =BX ′ ∩ Y ′. (16′)

Proof of (13’). X=T Y ⇒ R̄X = R̄Y ⇒ R̄(X ∩ Y ) = R̄X ∩ R̄Y = R̄X = R̄Y .
So, X ∩ Y =BX and X ∩ Y =T Y . The converse is trivial.

Proof of (14’). X=BY ⇒ RX = RY ⇒ R(X ∩ Y ) = RX ∪ RY = RX = RY .
So, X ∩ Y =T X and X ∩ Y =T Y . The converse is trivial.

The proofs of (15’) and (16’) are similar.
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4 Types of Rough Sets

We have mentioned in the introduction there are four important and different
topological characterizations of rough sets called their types. In this sect., we
shall start with the introduction of these types. The physical interpretation and
intuitive meanings of these types can be found in [30].

Type 1: If RX �= φ and R̄X �= U , then we say that X is roughly R-definable.
Type 2: If RX = φ and R̄X �= U , then we say that X is internally R-undefinable.
Type 3: If RX �= φ and R̄X = U , then we say that X is externally R-undefinable.
Type 4: If RX = φ and R̄X = U , then we say that X is totally R-undefinable.

The union and intersection of rough sets have importance from the point
of distribution of knowledge base and common knowledge respectively. In this
context the study of types of union and intersection of different types of rough
sets have significance. For example, if two rough sets are roughly R-definable
(Type 1), then there are some objects in the universe which can be positively
classified, based on the available information to belong to each these sets. Now,
one would like to get information about elements in the universe which can be
positively classified to be in both. If the intersection is of Type 1/Type 3, then
one can obviously conclude this. On the contrary if the intersection is of Type
2/Type 4, then no such element exists. From the table in sect. 4.1 we see that
the intersection is Type 1/Type 2. So, it can not be said definitely that the
element is in both. In fact this matches with our normal observation. Similarly,
for such sets there are some other elements which can be negatively classified
without any ambiguity as being outside the sets. Now, what can one say about
the union of two such sets ? That is, are there are still some elements which can
be negatively classified without any ambiguity being outside the union of their
elements ? If the type of the union is Type 1/Type 2, then we are sure of such
elements. On the other hand if it is of Type 3/Type 4 no such elements exist.
From the table in sect. 4.2 we see that the union is of Type 1/Type 3. So, one
can not be sure about some elements being negatively classified as outside the
union. This again matches with our observation. In this sect. we shall produce
general results on the types of union and intersection of rough sets of different
types. We shall also try to reduce the ambiguities in the possible cases under
suitable conditions through establishment of theorems.

So far nothing has been said in the literature regarding the type of a rough
set which is obtained as union or intersection of different types of rough sets. In
the next two sub-sections we obtain the results of union and intersection of any
two types of rough sets. This study was initiated in [37].

4.1 Intersection

In the next sub-section we establish and present in a table, the results of inter-
section of two rough sets of different types. It is interesting to note that out of
sixteen cases, as many as nine are unambiguous. The other ambiguous cases are
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Table 1. Intersection of different types of rough sets

⋂
Type1 Type2 Type3 Type4

Type1 Type1/Type2 Type2 Type1/Type2 Type2

Type2 Type2 Type2 Type2 Type2

Type3 Type1 / Type2 Type2 Type1 to Type4 Type2/Type4

Type4 Type2 Type2 Type2 / Type4 Type2 / Type4

mainly due to the inclusion (2). Applying Theorem 2 above, some of the ambi-
guities of the table can be reduced or removed under suitable conditions which
are provided by the theorem. These conditions being of necessary and sufficient
type, cannot be improved further.

Proofs

We shall denote the entry in ith row and jth column of the table by (i, j). In
the proofs, we shall be using (2) and the property that for any two rough sets
X and Y

R(X ∩ Y ) = RX ∩ RY (24)

We shall provide the proofs for the cases (1,2) and (3,3). The rest of the proofs
can be worked out similarly.

Proof of (1,2)
Here, X is of Type 1 and Y is of Type 2. So RX �= φ, R̄X �= U and RY =
φ, R̄Y �= U . Hence by (24) R(X∩Y ) = φ , and by (2) R̄(X∩Y ) ⊆ R̄X∩R̄Y �= U .
So, X ∩ Y is of Type 2.

Proof of (3,3)
Let both X and Y be of Type 3.

Then RX �= φ, R̄X = U and RY �= φ, R̄Y = U . Now, by (24) R(X ∩ Y ) may
or may not be φ and by (2) R̄(X ∩ Y ) may or may not be U. X ∩ Y can be of
any of the four Types.

Examples

In this sect. we provide examples to show that the ambiguous cases in the table
can actually arise for (3). The other cases can be justified similarly. We continue
with the same example of sect. 3.

Examples for (3,3)
Let X = {e1, e2, ...., e10, e14, e19} and Y = {e4, e9, e11, e12, e13, e14, e15, e17}.
Then X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
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Table 2. Union of different types of rough sets

⋃
Type1 Type2 Type3 Type4

Type1 Type1/Type3 Type1/Type3 Type3 Type3

Type2 Type1/Type3 Type1 to Type4 Type3 Type3/Type4

Type3 Type3 Type3 Type3 Type3

Type4 Type3 Type3/Type4 Type3 Type3/Type4

RY = E3 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e4, e9, e14}. So that
R(X ∩ Y ) = φ, R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3 and hence, X ∩ Y is of Type 2.

Again, considering X = {e1, e2, ...., e10, e14, e19} and Y = {e1, e2, e7, e14, e20},
both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
RY = E1 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e1, e2, , e7, e14}. So that
R(X ∩ Y ) = E1 and R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3. Hence, X ∩ Y is of Type 1.

Also, taking X = {e1, e2, ...., e10, e14, e19} and Y = {e4, e9, e14, e16, e17, e18, e19,
e20}, both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
RY = E4 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e4, e9, e14, e19}. So that
R(X ∩ Y ) = φ and R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3 ∪ E4. Hence, X ∩ Y is of Type 4.

Finally, taking X = {e1, e2, ..., e10, e14, e19} and Y = {e1, e6, ..., e10, e11, e16,
..., e20}, both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪
E3 ∪ E4, RY = E2 ∪ E4 and R̄X = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y =
{e1, e6, e7, e8, e9, e10, e19}. So that R(X ∩ Y ) = E2 and R̄(X ∩ Y ) = E1 ∪ E2 ∪
E3 ∪ E4. Hence, X ∩ Y is of Type 3.

4.2 Union

In this sub-sect. we establish and present in a table, the results of union of two
rough sets of different types. Like the cases of intersection, here also nine cases
are unambiguous. The other ambiguous cases are mostly due to the inclusion (1).
Applying Theorem 1 above, some of the ambiguities in the table can be reduced
or removed under suitable conditions which are provided by the theorem. These
conditions being of necessary and sufficient type, cannot be improved further.

Proofs

We shall denote the entry in ith row and jth column of the table by (i, j) to
represent the different possible cases. In the proof, we shall be using (1) and the
property that for any two rough sets X and Y

R̄(X ∪ Y ) = R̄X ∪ R̄Y (25)

We shall provide the proof for the cases (1,2) and (2,2). The rest of the proofs
can be worked out similarly.
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Proof of (1,2)
Let X be of Type 1 and Y be of Type 2. Then RX �= φ,R̄X �= U and RY = φ,
R̄Y �= U . So, by (1) R(X ∪Y ) is not φ. But, by (25), R̄(X ∪Y ) may or may not
be U. So, X ∪ Y can be of Type 1 or of Type 3.

Proof of (2,2)
Let X and Y be of Type 2. Then RX = φ, R̄X �= U and RY = φ, R̄Y �= U . By
(1) R(X ∪ Y ) may or may not be φ and by (25) R̄(X ∪ Y ) may or may not be
U. So, X ∪ Y can be of any of the four Types.

Examples

Below, we provide examples to show that all the possibilities in the ambiguous
cases can actually arise for (2,2). The other cases can be justified similarly. We
continue with the same Example of sect. 3.

Examples for (2,2)
Let X = {e4, e9, e14} and Y = {e9, e14, e19}. Then both X and Y are of Type 2
as RX = φ, R̄X = E1 ∪E2 ∪E3, RY = φ and R̄Y = E2 ∪E3 ∪E4. But X ∪Y =
{e4, e9, e14, e19}. So that R(X ∪ Y ) = φ, R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3 ∪ E4 = U
and hence, X ∪ Y is of Type 4.

Again considering X = {e4, e9, e14} and Y = {e4, e9}, both X and Y are of
Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄Y = E1 ∪ E2. But
X ∪ Y = {e4, e9, e14}. So that R(X ∪ Y ) = φ and R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3.
Hence, X ∪ Y is of Type 2.

Also, taking X = {e4, e9, e14} and Y = {e6, e7, e8, e10, e14}, both X and Y are
of Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄Y = E2 ∪ E3. But
X ∪ Y = {e4, e6, e7, e8, e9, e10, e14}. So that R(X ∪ Y ) = E2 and R̄(X ∪ Y ) =
E1 ∪ E2 ∪ E3. Hence, X ∪ Y is of Type 1.

Finally, taking X = {e4, e9, e14} and Y = {e4, e6, e7, e8, e10, e19}, both X
and Y are of Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄X =
E1∪E2∪E4. But X∪Y = {e4, e6, e7, e8, e9, e10, e14, e19}. So that R(X∪Y ) = E2
and R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3 ∪ E4. Hence, X ∪ Y is of Type 3.

4.3 Application of Theorems 1 and 2

As we have seen in sect. 3, there are a number of ambiguous entries in the union
and intersection tables. However, if the conditions of corollaries 1 and 2 are
satisfied, equalities hold in (1) and (2) and as a result the number of ambiguities
decreases. This provides a much more convenient and improved situation. The
conditions being of necessary and sufficient types cannot be improved further,
under the circumstances.

Table for Intersection

As observed above, there were seven ambiguous cases in the table for intersection.
Now, if hypotheses of Corollary 2 are satisfied with m = 2, then the number
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Table 3. Intersection of different types of rough sets after applying Corollary 2

⋂
Type 1 Type 2 Type 3 Type 4

Type 1 Type 1/Type 2 Type 2 Type 1/Type 2 Type 2

Type 2 Type 2 Type 2 Type 2 Type 2

Type 3 Type 1/Type 2 Type 2 Type 3/Type 4 Type 4

Type 4 Type 2 Type 2 Type 4 Type 4

reduces to four. In the new table presented below, we find that there is no
ambiguous entry having all four Types.

Table for Union

As in case of intersection, there were seven ambiguous cases in the union table
also. Now, if the hypotheses of Corollary 1 are satisfied with m = 2, then the
number reduces to four. As in case of intersection, there are no ambiguous entries
in the improved table, which we present below.

Table 4. Union of different types of rough sets after applying Corollary 1 with m = 2

⋃
Type 1 Type 2 Type 3 Type 4

Type 1 Type 1/Type 3 Type 1/Type 3 Type 3 Type 3

Type 2 Type 1/Type 3 Type 2/Type 4 Type 3 Type 4

Type 3 Type 3 Type 3 Type 3 Type 3

Type 4 Type 3 Type 4 Type 3 Type 4

5 Rough Equivalence of Sets

A new concept of rough equivalence is to be introduced in this sect. As men-
tioned in the introduction, this concept captures approximate equality of sets at
a higher level than rough equality. In parallel to rough equalities (bottom, top
and total) we shall deal with three corresponding types of rough equivalences.
Obviously, these concepts deal with topological structures of the lower and up-
per approximations of the sets. The rough equalities depend upon the elements
of the approximation sets but on the contrary rough equivalences depend upon
only the structure of the approximation sets. As shall be evident from the defi-
nitions, rough equalities (bottom, top and total) imply the corresponding rough
equivalences (bottom, top and total) but the converse is not true. However, we
shall see through a real life example that the new concepts are very much used
by us to infer imprecise information.
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5.1 Definitions

I. We say that two sets X and Y are bottom R-equivalent if and only if both
RX and RY are φ or not φ together (we write, X is b eqv. to Y ). We put the
restriction here that for bottom R-equivalence of X and Y either both RX and
RY are equal to U or none of them is equal to U .

II. We say that two sets X and Y are top R-equivalent if and only if both
R̄X and R̄Y are U or not U together (we write, X is t eqv. to Y ). We put the
restriction here that for top R-equivalence of X and Y either both R̄X and R̄Y
are equal to φ or none of them is equal to φ.

III. We say that two sets X and Y are R-equivalent if and only if X and
Y are bottom R-equivalent and top R-equivalent (we write, X is eqv. to Y ).
We would like to note here that when two sets X and Y are R-equivalent, the
restrictions in I and II become redundant.

For example, in case I, if one of the RX and RY are equal to U then the
corresponding upper approximation must be U and for rough equivalence it is
necessary that the other upper approximation must also be U . Similarly, the
other case.

5.2 Elementary Properties

I. It is clear from the definition above that in all cases (bottom,top,total)
R-equality implies R-equivalence.

II. Obviously, the converses are not true.
III. Bottom R-equivalence, top R-equivalence and R-equivalence are equiva-

lence relations on P(U).
IV.The concept of approximate equality of sets refers to the topological struc-

ture of compared sets but not to the elements they consist of.
If two sets are roughly equivalent then by using our present knowledge, we

may not be able to say whether two sets are approximately equal as described
above, but, we can say that they are approximately equivalent. That is both the
sets have or not have positive elements with respect to R and both the sets have
or not have negative elements with respect to R.

5.3 Example 2

Let us consider all the cattle in a locality as our universal set U . We define a
relation R over U by xRy if and only if x and y are cattle of the same kind.
Suppose for example, this equivalence relation decomposes the universe into
disjoint equivalence classes as given below.

C = {Cow, Buffalo, Goat, Sheep, Bullock}.
Let P1 and P2 be two persons in the locality having their set of cattle repre-

sented by X and Y .
We cannot talk about the equality of X and Y in the usual sense as the cattle

can not be owned by two different people.
Similarly we can not talk about the rough equality of X and Y except the

trivial case when both the persons do not own any cattle.
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We find that rough equivalence is a better concept which can be used to decide
the equality of the sets X and Y in a very approximate and real sense.

There are four different cases in which we can talk about equivalence of P1
and P2.

Case I. R̄X, R̄Y are not U and RX, RY are φ. That is P1 and P2 both have
some kind of cattle but do not have all cattle of any kind in the locality. So, they
are equivalent.

Case II. R̄X, R̄Y are not U and RX, RY are not φ. That is P1 and P2 both
have some kind of cattle and also have all cattle of some kind in the locality. So,
they are equivalent.

Case III. R̄X, R̄Y are U and RX, RY are φ. That is P1 and P2 both have all
kinds of cattle but do not have all cattle of any kind in the locality. So, they are
equivalent.

Case IV. R̄X, R̄Y are U and RX, RY are not φ. That is P1 and P2 both have
all kinds of cattle and also have all cattle of some kind in the locality. So, they
are equivalent.

There are two different cases under which we can talk about the non - equiv-
alence of P1 and P2.

Case V. One of R̄X and R̄Y is U and the other one is not. Then, out of P1 and
P2 one has cattle of all kinds and other one dose not have so. So, they are not
equivalent. Here the structures of RX and RY are unimportant.

Case VI. Out of RX and RY one is φ and other one is not. Then, one of P1
and P2 does not have all cattle of any kind, whereas the other one has all cattle
of some kind. So, they are not equivalent. Here the structures of R̄X and R̄Y
are unimportant.

It may be noted that we have put the restriction for top rough equivalence
that in the case when R̄X and R̄Y are not equal to U , it should be the case
that both are φ or not φ together. It will remove the cases when one set is φ
and the other has elements from all but one of the equivalence classes but does
not have all the elements of any class completely being rough equivalent. Taking
the example into consideration it removes cases like when a person has no cattle
being rough equivalent to a person, who has some cattle of every kind except
one.

Similarly, for bottom rough equivalence we have put the restriction that when
RX and RY are not equal to φ, it should be the case that both are U or not U
together.

5.4 General Properties

In this sect. we establish some properties of rough equivalences of sets, which
are parallel to those stated in sect. 4.2. Some of these properties hold, some are
partially true and some do not hold at all. For those properties, which do hold
partially or do not hold at all, we shall provide some sufficient conditions for
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the conclusion to be true. Also, we shall verify the necessity of such conditions.
The sufficient conditions depend upon the concepts of different rough inclusions
(Pawlak [30], p.27) and rough comparabilities which we introduce below.

Definition 2. Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈
IND(K). Then

(i)We say that X is bottom R-included in Y (X
BRY ) if and only if RX ⊆
RY .

(ii)We say that X is top R-included in Y (X
TRY ) if and only if R̄X ⊆ R̄Y .
(iii)We say that X is R-included in Y (X 
R Y ) if and only if X
BRY and

X
TRY .
We shall drop the suffixes R from the notations above in their use of make

them simpler.

Definition 3
(i) We say X , Y ⊆ U are bottom rough comparable if and only if X
BY or
Y 
BX holds.
(ii) We say X , Y ⊆ U are top rough comparable if and only if X
T Y or Y 
T X
holds.
(iii) We say X , Y ⊆ U are rough comparable if and only if X and Y are both
top rough comparable and bottom rough comparable.

Property 1
(i)If X ∩ Y is b eqv to X and X ∩ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii) The converse is true if in addition X and Y are bottom rough comparable.
(iv) The condition in (iii) is not necessary.

Proof
(i) Since R(X ∩ Y ) and RX are φ or not φ together and R(X ∩ Y ) and RY are
φ or not φ together, R(X ∩ Y ) being common we get that RX and RY are φ or
not φ together. Hence X is bottom equivalent to Y .
(ii) The cases when RX and RY are both not φ but R(X ∩Y ) = φ the converse
is not true.
(iii) We have R(X ∩ Y ) = RX ∩ RY = RX or RY , as the case may be. Since
X and Y are bottom rough comparable.

So,X ∩ Y is b eqv to X and X ∩ Y is b eq to Y .
(iv)We provide an example to show that this condition is not necessary. Let us
take U = {x1, x2, .., x8} and the partition induced by an equivalence relation R
be {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}.

Now, for X = {x1, x2, x3, x4} and Y = {x3, x4, x5, x6}, we have RX = X �=
φ, RY = Y �= φ, X ∩ Y = {x3, x4} and R(X ∩ Y ) = {x3, x4} �= φ. So, X ∩ Y is
b eqv to both X and Y . But X and Y are not bottom rough comparable.

Property 2
(i) If X ∪ Y is t eqv to X and X ∪ Y is t eqv to Y then X is t eqv to Y .
(ii) The converse of (i) may not be true.
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(iii)A sufficient condition for the converse of (i) to be true is that X and Y are
top rough comparable.
(iv) The condition in (iii) is not necessary.

Proof
(i) Similar to part(i) of property 1.
(ii) The cases when R̄(X) �= U and R̄(Y ) �= U but R̄(X ∪ Y ) = U , the

converse is not true.
(iii) Similar to part(iii) of property 1.
(iv) We take the same example as above to show that this condition is

not necessary. Here, we have R̄X = X �= U, R̄Y = Y �= U, R̄(X ∪ Y ) =
{x1, x2, x3, x4, x5, x6} �= U . So, X is t eqv to Y .Also, X ∪ Y is t eqv to both
X and Y . But X and Y are not top rough comparable.

Property 3
(i) If X is t eqv to X ′ and Y is t eqv to Y ′ then it may or may not be true

that X ∪ Y is t eqv to X ′ ∪ Y ′.
(ii) A sufficient condition for the result in (i) to be true is that X and Y are

top rough comparable and X ′ and Y ′ are top rough comparable.
(iii) The condition in (ii) is not necessary for result in (i) to be true.

Proof
(i) The result fails to be true when all of R̄(X), R̄(X ′), R̄(Y ) and R̄(Y ′) are

not U and exactly one of X ∪ Y and X ′ ∪ Y ′ is U .
(ii) We have R̄(X) �= U , R̄(X ′) �= U , R̄(Y ) �= U and R̄(Y ′) �= U . So, under

the hypothesis,R̄(X ∪ Y ) = R̄X ∪ R̄Y = R̄(X) or R̄(Y ), which is not equal to
U . Similarly, R̄(X ′ ∪ Y ′) �= U . Hence, X ∪ Y is t eqv to X ′ ∪ Y ′.

(iii) Continuing with the same example, taking X = {x1, x2, x3}, X ′ =
{x1, x2, x4}, Y = {x4, x5, x6} and Y ′ = {x3, x5, x6}, we find that R̄X =
{x1, x2, x3, x4} = R̄X ′ �= U and R̄Y = {x3, x4, x5, x6} = R̄Y ′ �= U . So, X
and Y are not top rough comparable. X ′ and Y ′ are not top rough comparable.
But, R̄(X∪Y ) = {x1, x2, x3, x4, x5, x6} = R̄(X ′∪Y ′). So, X∪Y is top equivalent
to X ′ ∪ Y ′.

Property 4
(i) X is b eqv to X ′ and Y is b eqv to Y ′ may or may not imply that X ∩ Y

is b eqv to X ′ ∩ Y ′.
(ii) A sufficient condition for the result in (i) to be true is that X and Y are

bottom rough comparable and X ′ and Y ′ are bottom rough comparable.
(iii) The condition in (ii) is not necessary for result in (i) to be true.

Proof
(i) When all of R(X), R(X ′), R(Y ) and R(Y ′) are not φ and exactly one of

the X ∩ Y and X ′ ∩ Y ′ is φ, the result fails.
(ii) Now, under the hypothesis, we have R(X ∩ Y ) = R(X) ∩ R(Y ) = R(X)

or R(Y ) �= φ, Similarly, R(X ′ ∩ Y ′) �= φ. So, X ∩ Y is b eq to X ′ ∩ Y ′.
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(iii) Continuing with the same example and taking X = {x1, x2, x3}, X ′ =
{x3, x4, x5}, Y = {x3, x7, x8} and Y ′ = {x5, x7, x8}, we find that RX �= φ,
RX ′ �= φ, RY �= φ and RY ′ �= φ. So, X is b eqv to X ′ and Y is b eqv to Y ′.
Also, R(X ∩Y ) = φ and R(X ′∩Y ′) = φ. So, X ∩Y is b eqv to X ′∩Y ′. However,
X and Y are not bottom rough comparable and so are X ′ and Y ′.

Property 5
(i) X is t eqv to Y may or may not imply that X ∪ (−Y ) is t eqv to U .
(ii) A sufficient condition for result in (i) to hold is that X=BY .
(iii) The condition in (ii) is not necessary for the result in (i) to hold.

Proof
(i) The result fails to hold true when R̄(X) �= U , R̄(Y ) �= U and still R̄(X ∪
(−Y )) = U .
(ii) As X=BY , we have RX = RY . So, −RX = −RY . Equivalently, R̄(−X) =
R̄(−Y ). Now, R̄(X ∪−Y ) = R̄(X)∪ R̄(−Y ) = R̄(X)∪ R̄(−X) = R̄(X ∪−X) =
R̄(U) = U . So, X ∪ −Y is t eqv to U .
(iii) Continuing with the same example and taking X = {x1, x2, x3},
Y = {x2, x3, x4} we get −Y = {x1, x5, x6, x7, x8}. So that RX = {x1, x2}
and RY = {x3, x4}. Hence, it is not true that X=BY . But, X ∪ −Y =
{x1, x2, x3, x5, x6,
x7, x8}. So, R̄(X ∪ −Y ) = U . That is, X ∪ −Y t eqv to U .

Property 6
(i) X is b eqv to Y may or may not imply that X ∩ (−Y ) is b eqv to φ.
(ii) A sufficient condition for the result in (i) to hold true is that X=T Y .
(iii) The condition in (ii) is not necessary for the result in (i) to hold true.

Proof
(i) The result fails to hold true when R(X) �= φ, R(Y ) �= φ and R(X) ∩
R(−Y ) = φ.
(ii) As X=T Y , we have R̄X = R̄Y . So, −R̄X = −R̄Y . Equivalently, R(−X) =
R(−Y ). Now, R(X ∩−Y ) = R(X)∩R(−Y ) = R(X)∩R(−X) = R(X ∩−X) =
R(φ) = φ. Hence, X ∩ −Y is b eqv to φ.
(iii) Continuing with the same example by taking X = {x1, x2, x3},
Y = {x1, x2, x5} we have −Y = {x3, x4, x6, x7, x8}. So, X is b eqv to Y . But X
is not top equal to Y . However, X ∩−Y = {x3} and so, R(X ∩−Y ) = φ. Hence,
X ∩ −Y is b eqv to φ.

Property 7. If X ⊆ Y and Y is b eqv to φ then X is b eqv to φ.

Proof. As Y is b eqv to φ, we have R(Y ) = φ. So, if X ⊆ Y , R(X) ⊆ R(Y ) = φ.

Property 8. If X ⊆ Y and X is t eqv to U then Y is t eqv to U .

Proof. The proof is similar to that of Property 7.

Property 9. X is t eqv to Y if and only if −X is b eqv to −Y .
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Proof. The proof follows from the property, R(−X) = −R̄(X).

Property 10. X is b eqv to φ, Y is b eqv to φ ⇒ X ∩ Y is b eqv to φ.

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R(X) = R(Y ) = φ.

Property 11. If X is t eqv to U or Y is t eqv to U then X ∪ Y is t eqv to U .

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R̄(X) = R̄(Y ) = U .

5.5 Replacement Properties

In this sect. we shall consider properties obtained from the properties of sect. 5.4
by interchanging top and bottom rough equivalences. We shall provide proofs
whenever these properties hold true. Otherwise, sufficient conditions are to be
established under which these properties are valid. In addition, we shall test if
such conditions are also necessary for the validity of the properties. Invariably,
it has been found that such conditions are not necessary. We shall show it by
providing suitable examples.

Property 12
(i) If X ∩ Y is t eqv to X and X ∩ Y is t eqv to Y then X is t eqv Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that conditions

of Corollary 2 hold with m = 2.
(iv) The condition in (iii) is not necessary.

Proof
(i) Here R̄X and R̄(X ∩ Y ) are U or not U together and R̄Y and R̄(X ∩ Y )

are U or not U together being common, we get R̄X and R̄(Y ) are U or not U
together. So, X is t eqvY .

(ii) The result fails when R̄X and R̄(X) = UR̄(Y ) and R̄(X ∩ Y ) �= U .
(iii) Under the hypothesis, we have R̄(X ∩ Y ) = R̄(X) ∩ R̄(Y ). If X is t eqv

to Y then both R̄X and R̄Y are equal to U or not equal to U together. So,
accordingly we get R̄(X ∩Y ) equal to U or not equal to U . Hence the conclusion
follows.

(iv) We see that the sufficient condition for the equality to hold when m =
2 in Corollary 2 is that there is no Ej such that X ∩ Ej �= φ, Y ∩ Ej �= φ and
X ∩ Y ∩ Ej = φ.

Let us take U and the relation as above. Now, taking X = {x1, x3, x6},
Y = {x3, x5, x6}. The above sufficiency conditions are not satisfied as {x5, x6}∩
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X �= φ, {x5, x6} ∩ Y �= φ and {x5, x6} ∩ X ∩ Y = φ. However, R̄X =
{x1, x2, x3, x4, x5, x6} �= U .

Property 13
(i) X ∪ Y is b eqv to X and X ∪ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that the

condition of Corollary 1 holds for m = 2.
(iv) The condition in (iii) is not necessary.

Proof
(i) RX and R(X ∪ Y ) are φ or not φ together and RY and R(X ∪ Y ) are

φ or not φ together. Since R(X ∪ Y ) is common, RX and RY are φ or not φ
together. So, X is b eqv to Y .

(ii) Suppose X and Y are such that RX and RY are both φ but R(X∪Y ) �= φ.
Then X is b eqv to Y but X ∪ Y is not b eqv to any one of X and Y.

(iii) Suppose X is b eqv to Y . Then RX and RY are φ or not φ together.
If the conditions are satisfied then R(X ∪ Y ) = RX ∪ RY . So, if both RX and
RY are φ or not φ together then R(X ∪ Y ) is φ or not φ accordingly and the
conclusion holds.

(iv) Let us take U as above. The classification corresponding to the equiva-
lence relation be given by {{x1, x2}, {x3, x4, x5}, {x6}, {x7, x8}}.

Let X = {x1, x3, x6}, Y = {x2, x5, x6}. Then R(X) �= φ, R(Y ) �= φ and
R(X ∪ Y ) �= φ. The condition in (iii) is not satisfied as taking E = {x1, x2} we
see that X ∩ E ⊂ E, Y ∩ E ⊂ E and X ∪ Y ⊇ E.

Property 14
(i) X is b eqv to X ′ and Y is b eqv to Y ′ may not imply X ∪ Y is b eqv to

X ′ ∪ Y ′.
(ii) A sufficient condition for the conclusion of (i) to hold is that the conditions

of corollary 2 are satisfied for both X , Y and X ′, Y ′ separately with m = 2.
(iii) The condition in (ii) is not necessary for the conclusion in (i) to be true

Proof
(i) When RX , RY ,RX ′, RY ′ are all φ and out of X ∪ Y and X ′ ∪ Y ′ one is

φ but the other one is not φ, the result fails to be true.
(ii) Under the additional hypothesis, we have R(X ∪ Y ) = RX ∪ RY and

R(X ′ ∪ Y ′) = RX ′ ∪ RY ′. Here both RX and RX ′ are φ or not φ together and
both RY and RY ′ are φ or not φ together. If all are φ then both R(X ∪ Y ) and
R(X ′ ∪ Y ′) are φ. So, they are b eqv. On the other hand, if at least one pair is
not φ then we get both R(X ∪ Y ) and R(X ′ ∪ Y ′) are not φ and so they are
b eqv.

(iii) The condition is not satisfied means there is Ei with X ∩ Ei ⊂ Ei,
Y ∩ Ei ⊂ Ei and X ∪ Y ⊇ Ei; there exists Ej ( not necessarily different from
Ei) such that X ′ ∩ Ej ⊂ Ej , Y ′ ∩ Ej ⊂ Ej and X ′ ∪ Y ′ ⊇ Ej .

Let us consider the example, U = x1, x2, ..., x8 and the partition induced by
an equivalence relation R be {{x1, x2}, {x3, x4}, {x5, x6}{x7, x8}}. X = {x1, x5},
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Y = {x3, x6}, X ′ = {x1, x4} and Y ′ = {x3, x7}. Then RX = RX ′ = RY =
RY ′ = φ. Also, R(X ∪ Y ) �= φ, R(X ′ ∪ Y ′) �= φ. So, X is b eqv to X ′, Y is
b eqv to Y ′ and X ∪ Y is b eqv to X ′ ∪ Y ′. However, X ′ ∩ {x3, x4} ⊂ {x3, x4},
Y ′ ∩ {x3, x4} ⊂ {x3, x4} and X ′ ∪ Y ′ ⊇ {x3, x4}. So, the condition are not
satisfied.

Property 15
(i) X is t eqv to X ′ and Y is t eqv to Y ′ may not necessarily imply that

X ∩ Y is t eqv to X ′ ∩ Y ′.
(ii) A sufficient condition for the conclusion in (i) to hold is the conditions of

corollary 1 are satisfied for both X, Y and X’, Y’ separately with m = 2.
(iii) The condition in (ii) is not necessary for the conclusion in (i) to hold.

Proof
(i)When R̄X = R̄X ′ = R̄Y = R̄Y ′ = U and out of R̄(X ∩ Y ), R̄(X ′ ∩ Y ′)

one is U whereas the other one is not U the result fails to be true.
(ii)If the conditions of corollary 1 are satisfied for X, Y and X’, Y’ separately

then the case when R̄X = R̄X ′ = R̄Y = R̄Y ′ = U , we have R̄(X ′ ∩ Y ′) =
R̄X ′ ∩ R̄Y ′ = U and R̄(X ∩Y ) = R̄X ∩ R̄Y = U . In other cases, if R̄X and R̄X ′

not U or R̄Y and R̄Y ′ not U then as R̄(X ′ ∩ Y ′) �= U and R̄(X ∩ Y ) �= U . So,
in any case X ∩ Y and X ′ ∩ Y ′ are t eqv to each other.

(iii) We continue with the same example. The conditions are not satisfied
means there is no Ej such that X ∩ Ej �= φ, Y ∩ Ej �= φ and X ∩ Y ∩ Ej = φ
or X ′ ∩ Ej �= φ, Y ′ ∩ Ej �= φ and X ′ ∩ Y ′ ∩ Ej = φ. Taking X = {x1, x5},
Y = {x3, x5}, X ′ = {x1, x4} and Y ′ = {x2, x4} we have X ∩ {x5, x6} �= φ,
Y ′ ∩ {x5, x6} �= φ and X ∩ Y ∩ {x5, x6} = φ. X ′ ∩ {x3, x4}, Y ′ ∩ {x3, x4} �= φ
and X ′ ∩Y ′ ∩{x3, x4}. So, the conditions are violated. But R̄X �= U , R̄X ′ �= U ,
R̄Y �= U , R̄Y ′ �= U . So, X is t eqv and Y is t eqv Y’. Also, R̄(X ∩ Y ) �= U and
R̄(X ′ ∩ Y ′) �= U . Hence, X ∩ Y is t eqv to X ′ ∩ Y ′.

Remark
We would like to make the following comments in connection with the properties
16 to 19, 21 and 22:

(i) We know that RU = U . So, bottom R-equivalent to U can be considered
under the case that RU �= φ.

(ii) We know that R̄φ = φ. So, top R-equivalent to φ can be considered under
the case that R̄φ �= U .

The proofs of the properties 16, 17, 18 and 19 are trivial and we omit them.

Property 16. X is b eqv to Y may or may not imply that X ∪ −Y is b eqv
to U .

Property 17. X is t eqv to Y may or may not imply that X ∩ −Y is t eqv
to φ.

Property 18. If X ⊆ Y and Y is t eqv to φ then X is t eqv to φ.
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Property 19. If X ⊆ Y and X is b eqv to U then Y is b eqv to U .

Property 20. X is b eqv to Y if and only if −X is t eqv to −Y .

Proof. Follows from the identity R̄(−X) = −R̄(X).
The proofs of the following two properties are also trivial.

Property 21. X is t eqv to φ and Y is t eqv to φ ⇒ X ∩ Y is t eqv to φ.

Property 22. X is b eqv to U and Y is b eqv to U ⇒ X ∪ Y is b eqv to U .

6 Approximation of Classifications

Approximation of classifications is a simple extension of the definition of approx-
imation of sets. Let F = {X1, X2, ..., Xn} be a family of non empty sets, which
is a classification of U in the sense that Xi ∩ Xj = φ for i �= j and

n⋃

i=1

Xi = U.

Then RF = {RX1, RX2, ..., RXn} and R̄F = {R̄X1, R̄X2, ..., R̄Xn} are called
the R-lower and R-upper approximations of the family F , respectively.

Grzymala-Busse [12] has established some properties of approximation of clas-
sifications. But, these results are irreversible in nature. Pawlak [30, p.24] has
remarked that these results of Busse establish that the two concepts, approxi-
mation of sets and approximation of families of sets (or classifications) are two
different issues and the equivalence classes of approximate classifications cannot
be arbitrary sets. He has further stated that if we have positive example of each
category in the approximate classification then we must have also negative exam-
ples of each category. In this sect., we further analyze these aspects of theorems
of Busse and provide physical interpretation of each one of them by taking a
standard example.

One primary objective is to extend the results of Busse by obtaining necessary
and sufficient type theorems and show how the results of Busse can be derived
from them. The results of Busse we discuss here are in their slightly modified
form as presented by Pawlak [30]. Some more work in dealing with incomplete
data are due to Busse [13,14].

6.1 Theorems on Approximation of Classifications

In this sect., we shall establish two theorems which have many corollaries gener-
alizing the four theorems established by Busse [12] in their modified forms [30].
We shall also provide interpretations for most of these results including those of
Busse and illustrate them through a simple example of toys [30].

Example 3. Suppose we have a set of toys of different colours red, blue, yellow
and different shapes square, circular, triangular. We define the first description
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as a classification of the set of toys and represent the second description as an
equivalence relation R. We say for two toys x and y, xRy if x and y are of the
same shape.

We shall use the following notations for representational convenience :
Nn = {1, 2, ..., n} and for any I ⊂ Nn, by Ic we mean the complement of I

in Nn.

Theorem 3. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for any I ⊂ Nn,

R̄(
⋃

i∈I

(Xi)) = U if and only if R(
⋃

j∈Ic

(Xj)) = φ.

Proof. We have

R(
⋃

j∈Ic

(Xj)) = φ ⇔ R(U −
⋃

i∈Ic

(Xi)) = φ ⇔ −R̄
⋃

i∈I

(Xi) = φ ⇔ R̄(
⋃

i∈I

(Xi)) = U.

This completes the proof.

Corollary 3. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for I ⊂ Nn,

if R̄(
⋃

i∈I

(Xi)) = U then RXj = φ for each j ∈ Ic.

Proof. By the above theorem, using the hypothesis we get

R(
⋃

j∈Ic

(Xj)) = φ.

As
RXj ⊆ R(

⋃

i∈Ic

(Xj))

for each j ∈ Ic, the conclusion follows.

Interpretation
Suppose, in a classification of a universe, there is no negative element for the
union of some elements of the classification taken together with respect to an
equivalence relation. Then for all other elements of the classification there is no
positive element with respect to the equivalence relation. Referring to the exam-
ple, if we have circular or triangular toys of all different colours then all the toys
of no particular colour are rectangular in shape.

Corollary 4. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on it. Then for each i ∈ Nn, R̄Xi = U if and only if

R(
⋃

j �=i

(Xj) = φ.
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Proof. Taking I = {i}, in Theorem 3 we get this.

Corollary 5. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for each i ∈ Nn, RXi = φ if and only if

R̄(
⋃

j �=i

Xj) = U.

Proof. Taking I = {i}c, in Theorem 3 we get this.

Corollary 6. [30, Proposition 2.6 ] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on U . If there exists i ∈ Nn such that
R̄Xi = U then for each j other than i in Nn, then RXj = φ.

Proof. From Corollary 4., R̄Xi = U

⇒ R(
⋃

j �=i

Xj) = φ.

⇒ RXj = φ for each j �= i.

Interpretation
Suppose in a classification of a universe, there are positive elements of one mem-
ber of the classification with respect to a equivalence relation. Then there are
negative elements of all other members of the classification with respect to the
equivalence relation.

Taking the above example into consideration if all red toys are of triangular
shape (say) then for toys of circular and rectangular shape at least one colour is
absent.

Corollary 7. [30, proposition 2.8] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on it. If for all i ∈ Nn, R̄Xi = U holds
then RXi = φ for all i ∈ Nn.

Proof. If for some i, 1 ≤ i ≤ n, RXi �= φ, then by Corollary 6 R̄Xj �= U for
some j(�= i) in Nn ; which is a contradiction.

This completes the proof.

Interpretation
Suppose in a classification of a universe, there is no negative element of one
member of the classification with respect to an equivalence relation. Then for all
other members of the classifications there is no positive element with respect to
the equivalence relation.

Referring to the example, if there are triangular toys of all different colours
then for any other shape (circular or rectangular) all the toys of no particular
colour are of that shape.
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Theorem 4. Let F = {X1, X2, ..., Xn} be a partition of U and R be an equiva-
lence relation on U . Then for any I ⊂ Nn,

R(
⋃

i∈I

Xi) �= φ if and only if
⋃

j∈IC

R̄(Xj) �= U.

Proof. (Sufficiency) By property of lower approximation,

R̄(
⋃

j∈Ic

Xj) = (
⋃

j∈Ic

R̄Xj) �= U.

So, there exists [x]R for some x ∈ U such that

[x]R ∩ (
⋃

j∈Ic

Xj) = φ.

Hence,
R(

⋃

i∈I

Xi) �= φ.

(Necessity) Suppose,
R(

⋃

i∈I

Xi) �= φ.

Then there exists x ∈ U such that

[x]R ⊆ (
⋃

i∈I

Xi).

Thus, [x]R ∩ Xj = φ for j /∈ I. So, x /∈ R̄Xj , for j /∈ I. Hence

(
⋃

j∈Ic

R̄Xj) �= U.

Corollary 8. Let F = {X1, X2, ..., Xn be a classification of U and let R be an
equivalence relation on U . Then for I ⊂ Nn,

if R(
⋃

i∈I

Xi) �= φ then R̄Xj �= U for each j ∈ Ic.

Proof. By Theorem 4,
R(

⋃

i∈I

Xi) �= φ

⇒ (
⋃

j∈Ic

R̄Xj) �= U

⇒ R̄Xj �= U for each j ∈ Ic.
This completes the proof.
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Interpretation
Suppose in a classification of a universe, there are positive elements for the union
of some elements of the classification taken together with respect to an equiva-
lence relation. Then for all other elements of the classification there are negative
elements with respect to the equivalence relation. Referring to the same example,
if all toys of red colour are rectangular or triangular in shape then circular toys
of at least one colour is absent.

Corollary 9. Let F = {X1, X2, ..., Xn} be a partition of U and R be an equiv-
alence relation on U . Then for each i ∈ Nn,

RXi �= φ if and only if (
⋃

j �=i

R̄Xj) �= U.

Proof. Taking I = {i} in Theorem 4 we get this.

Corollary 10. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on U . Then for all i, 1 ≤ i ≤ n, R̄Xi �= U if and only if

R(
⋃

j �=i

Xj) �= φ.

Proof. Taking I = {i}C in Theorem 4. we get this. Also, this result can be
obtained as a contrapositive of Corollary 9.

Corollary 11. [30, proposition 2.5] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on U . If there exist i ∈ Nn such that
RXi �= φ then for each j(�= i) ∈ Nn, RXj �= U .

Proof. By Corollary 9,

RXi �= φ ⇒ (
⋃

j �=i

R̄Xj) �= U ⇒ R̄Xj �= U,

for each j �= i, 1 ≤ i ≤ n.

Interpretation
Suppose in a classification of a universe, there are positive elements of one mem-
ber of classification with respect to an equivalence relation. Then there are nega-
tive elements of all other numbers of the classification with respect to equivalence
relation. Taking the example into consideration if all red toys are of triangular
shape (say) then for toys for circular or rectangular shape at least one colour is
absent.

Corollary 12. [30, proposition 2.7] Let F = {X1, X2, ..., Xn}, n > 1 be a clas-
sification of U and let R be an equivalence relation on U . If for all i ∈ Nn,
RXi �= φ holds then R̄Xi �= U for all i ∈ Nn.



On Approximation of Classifications, Rough Equalities 113

Proof. As RXi �= φ for all i ∈ Nn, we have

R(
⋃

j �=i

Xj) �= φ for all i ∈ Nn. So, by Corollary 10 R̄Xi �= U for all i ∈ Nn.

Interpretation
Suppose in a classification, there is a positive element in each member of the
classification with respect to an equivalence relation. Then there is a negative
element in each member of the classification with respect to the equivalence
relation.

Referring to the example, if all toys of red colour are triangular, all the toys of
green colour are circular and all the toys of blue colour are rectangular in shape
then there is no green colour toy of triangular shape and so on.

7 Some Properties of Classifications

In this sect. we shall establish some properties of measures of uncertainty [12]
and discuss in detail on properties of classifications with two elements and three
elements.

7.1 Measures of Uncertainty

The following definitions are taken from Grzymala-Busse [12].

Definition 4. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on U . Then the accuracy of approximation of F by R, de-
noted by βR(F ) and is defined as

βR(F ) = (
n∑

i=1

| RXi |)/(
n∑

i=1

| R̄Xi |). (26)

Definition 5. Let F and R be as above. Then the quality of approximation of
F by R is denoted by γR(F ) and is defined as

γR(F ) = (
n∑

i=1

| RXi |)/ | U | . (27)

The accuracy of classification expresses the percentage of possible correct deci-
sion when classifying objects employing the knowledge R. The quality of classi-
fication expresses the percentage of objects which can be correctly classified to
classes of F employing knowledge R.

Let R1 and R2 be any two equivalence relations on U . F1 and F2 be the clas-
sification of U generated by R1 and R2 respectively.

Definition 6
(i) We say that R2 depends in degree k on R1 in U and denote it by

R1 −→k R2 if and only if γR1(F2) = k. (28)
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(ii)We say that R2 totally depends on R1 in U if and only if k = 1.
(iii) We say that R2 roughly depends on R1 in U if and only if 0 < k < 1.
(iv) We say that R2 totally independent on R1 in U if and only if k = 0.
(v) We say F2 depends in degree k on F1 in U , written as

F1 −→k F2 if and only if R1 −→k R2.

Property 23. For any R-definable classification F in U , βR(F ) = γR(F ) = 1
So, if a classification F is R-definable then it is totally independent on R.

Proof. For all R-definable classifications F ,RF = R̄F . So, by definition βR(F ) =
1. Again, by property of upper approximation and as F is a classification of U ,
we have

n∑

i=1

| R̄Xi |≥
n∑

i=1

| Xi |=|
n⋃

i=1

Xi |=| U | .

Also,
n∑

i=1

| RXi |≤
n∑

i=1

| Xi |=|
n⋃

i=1

Xi |=| U | .

But, for R-definable classifications

n∑

i=1

| RXi |=
n∑

i=1

| R̄Xi | .

Hence,
n∑

i=1

| RXi |=| U | .

So, we get γR(F ) = 1.

Property 24. For any classification F in U and an equivalence relation R on
U , βR(F ) ≤ γR(F ) ≤ 1.

Proof. Since | RXi | ≤| Xi |, we have

n∑

i=1

| RXi |≤
n∑

i=1

| Xi |=| U | .

So, γR(F ) ≤ 1. Again, as shown above,

n∑

i=1

| R̄Xi |≥| U | .

Hence,

βR(F ) = (
n∑

i=1

| RXi |)/(
n∑

i=1

| R̄Xi |) ≤ (
n∑

i=1

| RXi |)/ | U |= γR(F ).
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7.2 Classification Types

In this sect. we present Types of classifications and their rough definability as
stated by Busse [12]. As mentioned, classifications are of great interest in the
process of learning from examples, rules are derived from classifications gener-
ated by single decisions.

Definition 7. Let R be an equivalence relation on U . A classification F =
{X1, X2, ..., Xn} of U will be called roughly R-definable, weak in U if and only
if there exists a number i ∈ Nn such that RXi �= φ.

It can be noted from Corollary 9 that for a R-definable weak classification F of
U , there exists j(�= i) ∈ Nn such that R̄Xj �= U .

Definition 8. Let R and F be as above. Then F will be called roughly R-
definable strong in U (Type 1) if RXi �= φ and only if i ∈ Nn for each. By
Corollary, in roughly R-definable strong classification in U , R̄Xi �= U for each
i ∈ Nn.

Definition 9. Let R and F be as above. Then F will be called internally R-
undefinable weak in U if and only if RXi = φ for each i ∈ Nn and there exists
j ∈ Nn such that R̄Xj �= U .

Definition 10. Let R and F be as above. Then F will be called internally R-
undefinable strong in U (Type 2) if and only if RXi = φ and R̄Xi �= U for each
i ∈ Nn.

It has been observed by Busse [12] that due to Corollary 10 no externally P-
undefinable set X exists in U . So, extension of Types of rough sets, classified on
Type 3 is not possible to the case of classifications.

Definition 11. Let R and F be as above. Then F will be called totally R-
undefinable in U (Type 4) if and only if RXi = φ and R̄Xi = U for each i ∈ Nn.

7.3 Classifications with Two or Three Elements

As remarked by Pawlak [30], approximation of sets and approximation of families
of sets are two different issues and equivalence classes of approximate classifica-
tion cannot be arbitrary sets, although they are strongly related. The concepts of
compliments in case of sets and in case of classifications are different, which may
lead to new concepts of negation in the case of binary and multivalued logics.

In this sect. we shall analyze the structure and properties of classifications
having 2 elements and classifications having 3 elements. This may shed some
light on the above statement of Pawlak. We shall use T − i to represent Type− i,
i=1,2,3,4 from this sect. onwards.



116 B.K. Tripathy

Classifications with Two Elements

Let χ = {X1, X2}. Then X2 = XC
1 . Since complements of T-1/T-4 rough sets

are T-1/T-4 respectively and T-2/T-3 rough sets have complements of T-3/T-2
respectively, ([30], proposition 2.4), out of 16 possibilities for χ with respect to
Typing only four alternates are possible. Namely, {T-1,T-1}, {T-2, T-3}, {T-3,
T-2} and {T-4, T-4}. Again, the second and third possibilities are similar. So,
there are only three distinct alternates. Hence, we have.

Property 25. A classification with two elements is roughly R-definable weak or
of T-1 or of T-4 only.

Classifications with Three Elements

In a classification with 3 elements, say {X1, X2, X3} there are supposed to be
64 possibilities. But we shall show that only 8 of these possibilities can actually
occur and other possibilities are not there.

Property 26. In a classification F = {X1, X2, X3} of U there are 8 possibilities
for F with respect to Types of X1, X2, X3. These are {T-1,T-1, T-1}, {T-1,T-1,T-
2}, {T-1,T-2,T-2}, {T-2,T-2,T-2}, {T-2,T-2,T-4}, {T-2,T-4,T-4}, {T-3,T-2,T-2}
and { T-4,T-4,T-4}.

Proof. We shall consider four cases depending upon the Type of X1.
Case 1. X1 is of T-1. Then X2 ∪ X3 being compliment of X1, must be of T-1.
So, from the table of sect. 5.2, three cases arise for X2 and X3, that is {T-1,T-1},
{T-1,T-2}, and {T-2,T-2}.

Case 2. X1 is of T-2. Complement of T-2 being Type -3, X2 ∪ X3 is of T-3.
Now, from the table of sect. 5.2, there are nine cases for X2 and X3. Out of these
{T-1,T-1} and {T-1,T-2} have been covered in Case 1. {T-1,T-3} cannot occur
as {T-2 ∪ T-3} = T-3 and (T-1)C = T-1. Similarly, {T-1,T-4} cannot occur
as {T-2 ∪ T-4} = T-3 and (T-4)C = T-4. So, four cases remains {T-2,T-2},
{T-2,T-4} and {T-4,T-4}.

Case 3. X1 is of T-3, X2 ∪ X3 must be of T-2. Referring to the table of sect.
5.2. There is only one possibility for X2, X3 that is {T-2,T-2} which has been
covered in Case 2.

Case 4. X1 is of T-4. Then X2 ∪ X3 must be of T-4. Referring to the table
of sect. 5.2, there are three possibilities for X2 and X3. Out of these cases {T-
2,T-2} and {T-2,T-4} have been considered in Case 2. So, only one case remains
{T-4,T-4}.

This completes the proof of the property.

7.4 Further Types of Classifications

First we present two theorems which shows that the hypothesis in the theorems
of Busse, as presented in Corollary 7 and Corollary 12 can be further relaxed
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to get the conclusions. However, even these hypothesis are to be shown as not
necessary for the conclusions to be true.

Theorem 5. Let F = {X1, X2, ..., Xn}, where n > 1 be a classification of U and
let R be an equivalence relation on U . If there exists p and q, 1 ≤ p, q ≤ n and
p �= q such that RXp �= φ, RXq �= φ then for each i ∈ Nn, R̄Xi �= U .

Proof. Since RXp �= φ, by Corollary 11, R̄Xi �= U for i �= p and since RXq �= φ,
by the same Corollary, R̄Xi �= U for i �= q. So, from these two we get R̄Xi �= U
for all i as p �= q.

Note 1. The above condition is not necessary. Let us consider U = {x1, x2, ..., x8}
and R be an equivalence relation on U with equivalence classes X1 = {x1, x3, x5},
X2 = {x2, x4} and X3 = {x6, x7, x8}. Then taking the classification {Z1, Z2, Z3}
defined by Z1 = {x2, x4}, Z2 = {x1, x3, x6} and Z3 = {x5, x7, x8}, we find that
R̄Z1 �= U , R̄Z2 �= U , R̄Z3 �= U . But R̄Z1 �= φ, R̄Z2 �= φ, R̄Z3 �= φ.

Theorem 6. F = {X1, X2, ..., Xn}, where n > 1 be a classification of U and let
R be an equivalence relation on U . If there exists p and q 1 ≤ p, q ≤ n and p �= q
such that R̄Xp = R̄Xq = U then for each i ∈ Nn, RXi = φ.

Proof. Since R̄Xp = U , by Corollary 6, RXi = φ for i �= p and since RXq = U ,
by the same Corollary, RXi = φ for i �= q. So, from these two we get RXi = φ
for all i as p �= q.

Note 2. The above condition is not necessary. Let us consider U , R and X1,
X2 and X3 as in the above note. We take the classification defined by Z1, Z2, Z3
defined by Z1 = {x2, x6}, Z2 = {x1, x3, x4} and Z3 = {x5, x7, x8}. We find that
RZ1 = φ, RZ2 = φ and RZ3 = φ whereas R̄Z1 �= U , R̄Z2 �= U and R̄Z3 �= U .

Observation 1. In Corollary 11, we have R̄Xj �= U for all j �= i if ∃Xi such
that RXi �= φ. It is easy to observe that R̄Xi may or may not be U under the
circumstances.

Observation 2. In Corollary 6, we have RXj = φ for all j �= i if ∃Xi such
that R̄Xi = U . It is easy to observe that RXi may or may not be φ under the
circumstances.

For any classification F = {X1, X2, ..., Xn} of U we have the following possibil-
ities with respect to lower and upper approximations.

Basing upon the above table, possible combinations for classifications are
(i, j); i = 1, 2, 3, 4 and j = 5, 6, 7, 8.

Out of these, several cases have been considered by Busse [12]. We shall exam-
ine all the possibilities closely. In fact we have the following table of combinations.
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We shall be using the following abbreviations in Table 6:

Roughly R-definable weak 2 = RRdW2
Internally R-undefinable weak 2 = IRudW2
Internally R-undefinable weak 3 = IRudW3
Roughly R-definable weak 1 = RRdW1
Internally R-definable weak 1 = IRdW1
Totally R-undefinable weak 3 = TRudW3
Externally R-undefinable = ERud
Totally R-undefinable weak 1 = TRudW1

Table 5. Possibilities w.r.t. lower and upper approximations

F Lower �= φ Lower = φ Upper �= U Upper = U

∀ 1 2 5 6

∃ 3 4 7 8

Table 6. Possible combinations

5 6 7 8

1 T-1 Not Possible T-1 Not Possible

2 T-2 T-4 IRudW3 TRudW3

3 RRdW2 Not Possible RRdW1 ERud

4 IRudW2 T-4 IRdW1 TRudW1

The cases (1,6) and (1,8) are not possible by Corollary 12. The case (3,6)
is not possible by Corollary 7. The case (1,7) reduces to (1,5) by Corollary 12.
The case (1,5) has been termed as roughly R-definable strong classification by
Busse and we call it T-1 as all the elements of the classifications are of T-1. So
far as row-1 of the table is concerned, the only possible classification is roughly
R-definable strong or T-1.

The case (2,5) has been termed by Busse as internally R-undefinable strong.
We call it T-2 as all the elements of the classifications are of T-2. The case (2,6)
has been termed as totally R-undefinable by Busse and we call it T-4 as all
the elements of the classification are of T-4. The case (2,7) has been termed as
internally R-undefinable weak by Busse.

The Characterisation. We have the following conventions in connection with
types of classifications:

(I) Internal definability: Lower approximation �= φ
(II) Internal undefinibility: Lower approximation = φ
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(III)External definibility: Upper approximation �= U
(IV) External undefinability: Upper approximation = U

Also, from the set of elements in a classification, if we have ∃ some element
satisfying a typing property, it leads to a weak type. On the other hand, if a
typing property is true ∀ element, it leads to a strong type.

So, we have the following general types of classifications.

(I) Roughly R-definable ⇔ Internally R-definable and Externally R-definable
(II) Internally R-undefinable ⇔ Internally R-undefinable and Externally

R-definable
(III) Externally R-undefinable ⇔ Internally R-definable and Externally R-

undefinable
(IV) Totally R-undefinable ⇔ Internally R-undefinable and Externally R-

undefinable

In case (I) we have one strong type, we call it T-1. This is the case when ∀i,
RXi �= φ and ∀j, RXj �= U .

Also there are two weak types. We set them as:

(i) Roughly R-definable (weak -1) if and only if ∃i, RXi �= φ and ∃j, RXj �= U
and

(ii) Roughly R-definable (weak -2) if and only if and ∃i, RXi �= φ and ∀j,
RXj �= U .

In case (II) we have one strong type, we call it T-2. This is the case when ∀i,
RXi �= φ and ∀j, R̄Xj �= U .

Also there are three weak types. We set them as:

(i) Internally R-definable (weak -1) if and only if ∃i, RXi = φ and ∃j,
R̄Xj �= U .

(ii) Internally R-definable (weak -2) if and only if ∃i, RXi = φ and ∀j,
R̄Xj �= U .

(iii) Internally R-definable (weak -3) if and only if ∀i, RXi = φ and ∃j,
R̄Xj �= U .

In case (III) we have one strong type, we call it Externally R-undefinable only
as there is no weak type possible in this case. This is the case when ∃i, RXi �= φ
and ∃j, R̄Xj = U .

In case (IV) we have one strong type, we call it T-4. This is the case when ∀i,
RXi = φ and ∃j, R̄Xj = U .

Also there are two weak types. We set them as

(i) Totally r-undefinable (weak -1) if and only if ∃i, RXi = φ and ∃j,
R̄Xj = U .

(ii) Totally R-undefinable (weak -2) if and only if ∀i, RXi = φ and ∃j,
R̄Xj = U .
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Fig. 1. A schematic representation of Busse’s cases

Out of these eleven possibilities only five have been considered by Busse [12].
In Fig. 1, we represent the cases considered by Busse inside rectangles and those
not considered by him inside ellipses. The arrows show the reduction of the
six cases not considered by Busse to those considered by him either directly or
transitively.

7.5 Application

A new approach to knowledge acquisition under uncertainty based on rough set
theory was presented by Busse [12]. The real world phenomena are represented

Table 7. An example of inconsistent information system

Q c1 c2 d1 d2 d3 d4 d5 d6

x1 v1 w1 0 0 0 0 0 0

x2 v1 w2 1 0 0 0 0 0

x3 v1 w1 0 0 0 1 2 1

x4 v1 w2 1 0 0 1 2 1

x5 v2 w2 0 0 0 0 0 0

x6 v2 w2 0 1 1 1 1 1

x7 v3 w1 1 1 0 0 1 0

x8 v3 w1 1 1 1 1 2 1

x9 v3 w1 1 1 1 1 2 2



On Approximation of Classifications, Rough Equalities 121

by information system, where inconsistencies are included. For this he considered
the example of opinion of six doctors d1, d2, d3, d4, d5 and d6 on nine patients x1,
x2,..., x9 based upon the result of two tests c1 and c2. On the basis of values of
tests, experts classify patients as being on some level of disease. The information
system is represented in a tabular form, which is clearly inconsistent.

The classification, generated by the set C of conditions is equal to {{x1, x3},
{x2, x4}, {x5, x6}, {x7, x8, x9}}.

If we denote the classification Xi generated by the opinion of doctor di,
i = 1, 2, 3, 4, 5, 6 then

X1 = {{x1, x3, x5, x6}, {x2, x4, x7, x8, x9}},
X2 = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9}},
X3 = {{x1, x2, x3, x4, x5, x7}, {x6, x8, x9}},
X4 = {{x1, x2, x5, x7}, {x3, x4, x6, x8, x9}},
X5 = {{x1, x2, x5}, {x3, x4, x8, x9}, {x6, x7}}
and
X6 = {{x1, x2, x5, x7}, {x3, x4, x6, x8 {x9}}

It is easy to see that the above classifications are of type C-definable, roughly
C-definable strong, roughly C-definable weak, totally C-undefinable, internally
C-undefinable and internally C-undefinable weak respectively.

8 Rule Generation

By rules on information systems we mean conditional statements that specify
actions under conditions. The following notations are used :

Constants: 0,1
Atomic expression: a := υ ≡ {ρ(x, a) = υ : x ∈ U}
Boolean Operations: ¬, ∨, ∧
0 ≡ Empty set.
1 ≡ U.

8.1 Definitions

(i) Rules computed from lower approximations are certain rules.
(ii) Rules computed from upper approximations are possible rules.

The following properties hold for rule generation.

I. Necessary and sufficient condition for a classification χ to induce certain rules
is Cχ �= φ.
II. The number of certain rules is equal to the number of non-empty lower
approximations in the classification.
III. The number of possible rules is equal to the number of non-empty boundaries
in the classification.
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8.2 Observations

I. For C-definable classifications, all the rules are certain rules.
II. For roughly C-definable strong and roughly C-definable weak classifications
both certain and possible rules exist.
III. For totally C-undefinable, internally C-undefinable strong and internally
C-undefinable weak classifications there are no certain rules.
IV. For roughly C-definable strong sets the number of certain rules is equal to
the number of elements in the classification.
V. All types of classifications other than C-definable classifications have the
property that there is at least one possible rule.
VI. For roughly C-definable weak classifications there is at least one certain rule.
VII. For totally C-undefinable classifications, there is no certain rule. The num-
ber of possible rules is equal to the number of elements in the classification.
VIII. For intrenally C-undefinable strong classifications, there is no certain rule.
The number of possible rules is at most equal to the number of elements in the
classification.
IX. For internally C-undefinable weak classifications, there is no certain rule.
There is no guarantee about the existence of possible rules.

8.3 Examples

Let us see how some certain and possible rules can be generated from the
example 7.5.

(I)X1 is C-definable and hence all the rules corresponding to it are certain rules.
In fact, the rules are
(i)((c1 = υ1) ∧ (c2 = w1)) ∨ ((c1 = υ2) ∧ (c2 = w2)) ⇒ (d1 = 0) and
(ii) ((c1 = υ1) ∧ (c2 = w2)) ∨ ((c1 = υ3) ∧ (c2 = w1)) ⇒ (d1 = 1)

(II)X2 is roughly C-definable strong. So, it has both type of rules,
(i)((c1 = υ1) ⇒ (d2 = 0) (Certain rule) and
(ii) ((c1 = υ2) ∧ (c2 = w2)) ⇒ (d2 = 0) (Possible rule).

(III)X5 is internally C-undefinable strong. So, it has no certain rules. As it has
three elements, by Observation VIII it can have at most three possible rules. In
fact the rules are
(i)(c1 = υ1) ∨ (c1 = υ2) ∨ (c2 = w2) ⇒ (d5 = 0)
(ii) ((c1 = υ2) ∨ (c1 = υ3) ⇒ (d5 = 1) and
(iii) (c1 = υ1) ∨ (c1 = υ3) ∨ (c2 = w1) ⇒ (d5 = 2).

9 Rough Equivalence of Algebraic Rules

We have several algebraic properties with respect to the set theoretic operations
of union, intersection and complementation. Ordinary equality when the sets
involved are taken to be rough sets bears little meaning and does not comply
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with common sense reasoning. So, rough equality or rough equivalence seems to
be a possible solution. In this sect. we continue with rough equivalence and verify
the validity of rough equivalence of left and right hand sides of these properties.
This study was initiated in [39].

9.1 Associative Rule

The two Associative laws for crisp sets are:
For any three sets A, B and C,

A ∪ (B ∪ C) = (A ∪ B) ∪ C (29)

and
A ∩ (B ∩ C) = (A ∩ B) ∩ C (30)

Now, it is interesting to verify whether the left and right hand side of (29) and
(30) match with their Types. For this, we consider four different cases depending
upon Types of A with B and C being of any of the four Types. We take it as case
i, when A is of T-i, i = 1, 2, 3, 4. It is observed that in all these cases the left hand
side and right hand side of the above equalities match with each other as is evident
from the corresponding tables. First we consider the four cases for union and than
for intersection. Tables 1 and 2 are used to derive the tables below.

Union

Table 8. Union: case 1

⋃
T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-1/T-3 T-3 T-3

T-2 T-1/T-3 T-1/T-3 T-3 T-3

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3 T-3 T-3

Table 9. Union: case 2

⋃
T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-1/T-3 T-3 T-3

T-2 T-1/T-3 T-1/T-2/T-3/T-4 T-3 T-3/T-4

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-4 T-3 T-3/T-4
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Table 10. Union: case 3

⋃
T-1 T-2 T-3 T-4

T-1 T-3 T-3 T-3 T-3

T-2 T-3 T-3 T-3 T-3

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3 T-3 T-3

Table 11. Union: case 4

⋃
T-1 T-2 T-3 T-4

T-1 T-3 T-3 T-3 T-3

T-2 T-3 T-3/T-4 T-3 T-3/T-4

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3/T-4 T-3 T-3/T-4

Table 12. Intersection: case 1

⋂
T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-2 T-1/T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-1/T-2 T-2 T-1/T-2 T-2

T-4 T-2 T-2 T-2 T-2

Table 13. Intersection: case 2

⋂
T-1 T-2 T-3 T-4

T-1 T-2 T-2 T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-2 T-2 T-2 T-2

T-4 T-2 T-2 T-2 T-2
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Table 14. Intersection: case 3

⋂
T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-2 T-1/T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-1/T-2 T-2 T-1/T-2/T-3/T-4 T-2/T-4

Type 4 T-2 T-2 T-2/T-4 T-2/T-4

Table 15. Intersection: case 4

⋂
T-1 T-2 T-3 T-4

T-1 T-2 T-2 T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-2 T-2 T-2/T-4 T-2/T-4

T-4 T-2 T-2 T-2/T-4 T-2/T-4

Table 16. Double negations for different types of rough sets

A T-1 T-2 T-3 T-4

(A)C T-1 T-3 T-2 T-4

((A)C)C T-1 T-2 T-3 T-4

Intersection

9.2 Complement and Double Negation

The Types of complement of rough sets of different Types have been obtained
by (Pawlak [30], Theorem 2.4). Using this, it is easy to compute the double
negations of different Types of rough sets as provided in the following table and
see that the complementation law holds for rough equivalence.

9.3 De Morgan’s Theorems

De Morgan’s Theorems for crisp sets state that for any two sets X and Y ,

(X ∪ Y )C = (X)C ∩ (Y )C (31)

and
(X ∩ Y )C = (X)C ∪ (Y )C (32)
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Also, when both X and Y are rough sets of different types we observe that
both sides of (31) and (32) are rough equivalent as is evident from the following
tables.

Table for both the sides of (31) is:

Table 17

Table 17. De Morgan’s union for different types of rough sets

T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-1/T-2 T-2 T-2

T-2 T-1/T-2 T-1/T-2/T-3/T-4 T-2 T-2/T-4

T-3 T-2 T-2 T-2 T-2

T-4 T-2 T-2/T-4 T-2 T-2/T-4

Table for both the sides of (32) is:

Table 18. De Morgan’s intersection for different types of rough sets

T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-3 T-1/T-3 T-3

T-2 T-3 T-3 T-3 T-3

T-3 T-2 T-2 T-2 T-2

T-4 T-3 T-3 T-3/T-4 T-3/T-4

9.4 Distributive Property

The two distributive properties for crisp sets state that, for any three sets A, B
and C,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (33)

and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (34)

We have the following observations with respect to the rough equivalence of
Left hand side and Right hand side of (33) and (34):

When A is T-2, the left hand side and right hand side of (33) are rough
equivalent and the case is similar for (34) when A is of T-3.
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In other cases, we have following observations:

(i) When A is of T-1, left hand side of (33) is of T-1 or T-3, whereas right hand
side can be any of the four types. The result remains same even by using our
Corollaries 1 and 2.

So left hand side and right hand side are not rough equivalent of any kind.
When A is of T-1, left hand side of (34) is of T-1 or T-2, whereas right hand

side can be any of the four types.
The result remains unchanged even by using our Corollaries. So left hand side

and right hand side are not rough equivalent of any kind.
(ii) When A is of T-2, both left hand sides and right hand sides of (33) can be
any of the four types.

So, they are not rough equivalent.
When A is of T-2, left hand side of (34) is of T-2, whereas right hand side can

be any of the four types.
So, left hand sides and right hand sides of (34) are not rough equivalent.
However, left hand side is Bottom Rough equivalent to its right hand side

when condition of Corollaries 1 and 2 are satisfied.
(iii) When A is of T-3, left hand side of (33) is of T-3, whereas right hand side
can be any of the four types.

So, left hand sides and right hand sides are not rough equivalent.
However, left hand side is Top Rough equivalent to its right hand side when

condition of Corollaries 1 and 2 are satisfied.
When A is of T-3, left hand side and right hand side of (34) can be of any of

the four types.
So, left hand sides and right hand sides are not rough equivalent.

(iv) When A is of T-4, left hand side of (33) is of T-3 or T-4, whereas right hand
side can be any of the four types.

So, again left hand sides and right hand sides of (34) are not rough equivalent.
However, left hand side is Top Rough equivalent to its right hand side when

Corollaries 1 and 2 are used.
When A is of T-4, left hand side of (34) is of T-2 or T-4, whereas right hand

side can be any of the four types.
However, left hand side is Top Rough equivalent to its right hand side when

Corollaries 1 and 2 are used. So, in general the left hand side and right hand
side of distributive properties are not rough equivalent.

9.5 Idempotent and Absorption Property

Idempotent Property

The two idempotent properties for crisp sets state that for any set A,

A ∩ A = A (35)

and
A ∪ A = A (36)
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When A is a Rough set, it is clear from the diagonal entries of the union and
intersection table in Sect. 3 that (35) holds good with Type matching only when
A is of T-2. For rest of types, the left hand side is not Rough equivalent to its
right hand side. However we observe that in (35), for A of T-1, the left hand side
is Top Rough equivalent to its right hand side. For A of T-3, the left hand side
is Top Rough equivalent to its right hand side when conditions of Corollary 2
are satisfied. For A of T-4, the left hand side is Bottom Rough equivalent to its
right hand side.

When A is a Rough set, the left hand side and right hand side of (36) are
rough equivalent only when A is of T-3 and for rest of the types, the left hand
side is not Rough equivalent to its right hand side. However we observe that in
(36), for A of T-1, the left hand side is Bottom Rough equivalent to its Right
Hand Side. For A of T-2, the left hand side is Bottom Rough equivalent to its
right hand side, when conditions of Corollary 1 are satisfied. For A of T-4, the
left hand side is Top Rough equivalent to its right hand side.

Absorption Property

The two absorption properties for crisp sets state that for any two sets A and B

A ∪ (A ∩ B) = A (37)

and
A ∩ (A ∪ B) = A (38)

Taking A and B as Rough sets, we find that when A is of T-3, both the sides of
(37) are of T-3 and when A is of T-2, both the sides of (38) are of T-2. Hence, the
left hand side and rough hand side are rough equivalent. In the rest of the cases
left hand side and right hand sides of (37) and (38) are not rough equivalent. In
fact the following properties hold good:

(i) When A is of T-1, left hand side of (37) is of T-1 or T-3.
So, left hand side is Bottom Rough equivalent to its right hand side.
(ii) When A is of T-2, left hand side of (37) is any of the four types. However,

left hand side is Bottom Rough equivalent to its right hand side when condition
of Corollaries 1 and 2 are satisfied.

(iii) When A is of T-4, left hand side of (37) is of T-3 or T-4.
So, left hand side is Top Rough equivalent to its right hand side.
(iv) When A is of T-1, left hand side of (38) is of T-1 or T-2.
So, left hand side is Top Rough equivalent to its right hand side.
(v) When A is of T-3, left hand side of (38) is any of the four types.
So, left hand side is Top Rough equivalent to its right hand side when condi-

tions of Corollaries 1 and 2 are satisfied.
(vi) When A is of T-4, left hand side of (38) is of T-2 or T-4.

However, left hand side is Bottom Rough equivalent to its right hand side.
So, Left hand side and Right hand sides of absorption rules are not rough

equivalent in general.
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9.6 Kleene’s Property

The Kleene’s property states that for any two sets A and B ,

(A ∪ AC) ∪ (B ∩ BC) = A ∪ AC (39)

and
(A ∪ AC) ∩ (B ∩ BC) = B ∩ BC (40)

We show below that for Rough sets A and B, both sides of (39) and (40)
match with each other with respect to types. Due to symmetry of the operations
of union and intersection, it is enough to consider the ten cases; case ( i, j ) being
A of Type i and B of Type j; i, j =1,2,3,4 and j ≥ i.

Proof of (39)

In cases (1,1), (1,2), (1,3) and (1,4) both the left hand side and right hand side
of (39) are of Type 1 or Type 3.

In cases (2,2), (2,3), (2,4), (3,3) and (3,4) both the left hand side and right
hand side of (39) are of Type 3.

Finally, in case of (4, 4) both the left hand side and right hand side of (39)
are of Type 3 or Type 4.

Proof of (40)

In case of (1,1) both the left hand side and right hand side of (40) are of Type
1 or Type 2.

In cases (1,2), (1,3), (2,2), (2,3) and (3,3) both the left hand side and right
hand side of (40) are of Type 2.

In cases (1,4), (2,4), (3,4) and (4,4) both the left hand side and right hand
side of (40) are of Type 2 or Type 4.

Hence, from the above observations, it is clear that the left hand side and
right hand sides of Kleene’s property are rough equivalent.

9.7 Maximum and Minimum Elements’ Properties

It is obvious that both φ and U are crisp sets with respect to any equivalence
relation defined over the universe.

Maximum Element

The Maximum element property for crisp sets state that for any set A

A ∪ U = U (41)

and
A ∩ U = A (42)

For any Rough set A, as A is a subset of U both (41) and (42) hold true. So,
the rough equivalence of both side are obvious.
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Minimum Element

The Minimum element property for crisp sets state that for any set A,

A ∪ φ = A (43)

and
A ∩ φ = φ (44)

For any Rough set A, as φ is a subset of A both (43) and (44) hold true. So,
the rough equivalence of both side is automatically satisfied.

9.8 Complementary Laws

The complementary laws for crisp sets state that for any set A,

A ∪ AC = U (45)

and
A ∩ AC = φ (46)

For any Rough set A, A is a subset of U and also AC is a subset of U . So,
both (45) and (46) hold true. Hence, the rough equivalence of both sides is
automatically satisfied.

10 Conclusions

Study of topological classification of sets under consideration provides some in-
sight into how the boundary regions are structured. This has a major role in
practical application of rough sets. In this chapter we studied some properties of
topological classification of sets starting with types of rough sets, then we moved
to find properties of types of union and intersection of rough sets. The concept
of rough equivalences of sets introduced by Tripathy and Mitra [38], which cap-
tures approximate equality of rough sets at a higher level than rough equalities
of Novotny and Pawlak [23,24,25] was discussed in detail. Some real life exam-
ples were considered in support of the above claim. Properties of rough equalities
which were noted to be not true when bottom and top rough equalities are inter-
changed, were dealt with and established along with parallel properties for rough
equivalences. Approximation of classifications of universes was introduced and
studied by Busse [12]. The types of classifications were studied completely by us
in this chapter. Also, theorems of Busse establishing properties of approximation
of classifications wee completely generalized to their necessary and sufficient type
form. From these results new results could be obtained as corollaries. All these
results were interpreted with the help of simple examples. Complete characteri-
zations of classifications having 2 or 3 elements are done. A characterization of
a general classification having n elements is still awaited. Such a solution would
shed light on negation in case of multivalued logic. Continuing with the study of
rough equivalences, the algebraic properties involving rough sets were analyzed
and established.
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