
Categorical Innovations for Rough Sets

P. Eklund1, M.A. Galán2,�, and J. Karlsson3

1 Department of Computing Science, Ume̊a University, Sweden
peklund@cs.umu.se

2 Department of Applied Mathematics, University of Málaga, Spain
magalan@ctima.uma.es

3 Department of Computer Architecture, University of Málaga, Spain
johan@ac.uma.es

Summary. Categories arise in mathematics and appear frequently in computer science
where algebraic and logical notions have powerful representations using categorical
constructions. In this chapter we lean towards the functorial view involving natural
transformations and monads. Functors extendable to monads, further incorporating
order structure related to the underlying functor, turn out to be very useful when
presenting rough sets beyond relational structures in the usual sense. Relations can
be generalized with rough set operators largely maintaining power and properties. In
this chapter we set forward our required categorical tools and we show how rough sets
and indeed a theory of rough monads can be developed. These rough monads reveal
some canonic structures, and are further shown to be useful in real applications as
well. Information within pharmacological treatment can be structured by rough set
approaches. In particular, situations involving management of drug interactions and
medical diagnosis can be described and formalized using rough monads.

1 Introduction

Monads are useful e.g. for generalized substitutions as we have extended the
classical concept of a term to a many-valued set of terms [21]. This builds es-
sentially upon composing various set functors, as extendable to monads, with
the term functor and its corresponding monad. The most trivial set functor is
the powerset functor for which a substitution morphism in the corresponding
Kleisli category is precisely a relation. Thus relations are seen as connected to a
powerset functor that can be extended to a monad. Further, whenever general
powerset monads can be extended to partially ordered monads, this structure
is sufficient for the provision of rough set operations in a category theory set-
ting. This categorical presentation of rough sets will establish connections to
other categorical structures with the objective to enrich the theory. Key in these
constructions is the first observation that relations are morphisms in the Kleisli
category of the monad extended from the powerset functor.

Fuzzy sets, closely related to rough sets, are founded on the notion of many-
valued membership, and is considered as a gradual property for fuzzy sets. Fuzzy
� Partially supported by Spanish projects P06-FQM-02049 andTIN2006-15455-C03-01.

A. Abraham, R. Falcón, and R. Bello (Eds.): Rough Set Theory, SCI 174, pp. 45–69.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

46 P. Eklund, M.A. Galán, and J. Karlsson

set theory offers a more expressive mathematical language and has many appli-
cations in a very wide variety of fields. Fuzzy sets, originally introduced by
Zadeh [39] in 1965, increase the expressiveness of classical mathematics to deal
with information systems that are incomplete, uncertain and imprecise. In 1967,
Goguen, [22], extended the idea of fuzzy sets to L-fuzzy sets, considering more
general order structures L beyond the unit interval. The extended notion of L-
fuzzy sets also represent the extension of the crisp powerset monad. Thus the
powerset monads is the categorical way to represent fuzzy sets. Beyond fuzzy
sets, and introducing partial order into monads, using so called partially ordered
monads, we can then also represent rough sets.

The outline of the chapter is as follows. Section 2 gives a historical back-
ground to the categorical apparatus used in the chapter. In sect. 3 we provide
the categorical preliminaries and notations making the chapter easier to read
and comprehend. Section 4 includes important examples of monads, one of the
underlying categorical tools used in this chapter. Section 5 then describes par-
tially ordered monads upon which rough monads are built in Sect. 7. In sect. 6,
rough sets are conceptually embedded into the categorical machinery. Section 8
outlines applications related to management of drug interactions and cognitive
disorder diagnosis, respectively. Section 9 concludes the chapter.

2 Historical Remarks and Related Work

Monads were initiated by Godement around 1958. Huber shows in 1961 that
adjoint pairs give rise to monads. Kleisli [28] and also Eilenberg and Moore
[4] proves the converse in 1965. Kleisli categories were explicitely constructed in
those contributions. Partially ordered monads are monads [32], where the under-
lying endofunctor is equipped with an order structure, which makes them useful
for various generalized topologies and convergence structures [18, 20]. They are
indeed derived from studies on convergence, initiated by [30]. Partially ordered
monads were initially studied in [18, 19]. Topology and convergence were forerun-
ners in the development of partially ordered monads, but these monads contain
structure also for modelling rough sets [33] in a generalized setting with set
functors. Partially ordered monads contribute to providing a generalised notion
of powerset Kleene algebras [5]. This generalisation builds upon a more general
powerset functor setting far beyond just strings [27] and relational algebra [37].
These structures are typical representatives of Kleene algebras, which are widely
used e.g. in formal languages [36] and analysis of algorithms [1]. Rough sets and
their purely algebraic properties are studied e.g. within shadowed sets [3]. There
is further an interesting interaction between monads and algebras, which is well-
known. The tutorial example is the isomorphism between the Kleisli category
of the powerset monad and the category of ‘sets and relations’. The Eilenberg-
Moore category of the powerset monad is isomorphic to the category of complete
lattices and join-preserving mappings. The Kleisli category of the term monad
coincides with its Eilenberg-Moore category and is isomorphic to the category of
Ω-algebras. A rather intrepid example, although still folklore, is the isomorphism

Categorical Innovations for Rough Sets 47

between the Eilenberg-Moore category of the ultrafilter monad and the category
of compact Hausdorff spaces. Here is where “algebra and topology meet”.

3 Categorical Preliminaries

A major advantage of category theory is its ‘power of abstraction’ in the sense
that many mathematical structures can be characterized in terms of relatively
few categorical ones. This fact enables to pursue a more general study towards
generalizations of the structures. Category theory has been successfully applied
in different areas such as topology, algebra, geometry or functional analysis. In
recent years, category theory has also contributed to the development of com-
puter science: the abstraction of this theory has brought the recognition of some
of the constructions as categories. This growing interest towards categorical as-
pects can be found in, for instance, term rewriting systems, game semantics and
concurrency. In a gross manner one can say a category is given by a class of ob-
ject and a class of morphisms between the objects under certain mathematical
conditions. Examples of categories come not only from mathematics (the cat-
egory of groups and group homomorphisms, the category of topological spaces
and continuous functions, etc.) but also from computer science. Deductive sys-
tems is a category where the objects are formulas and morphisms are proofs.
Partially ordered sets form a category where objects are partially ordered sets
and morphisms are monotone mappings. A particular partially ordered set also
forms a category where objects are its elements and there is exactly one mor-
phism from an element x to an element y if and only if x ≤ y. We can go beyond
categories and wonder if there is a category of categories. The answer is yes (pro-
vided the underlying selected set theory is properly respected). In this category
of categories the objects are categories and the morphisms are certain structure-
preserving mappings between categories, called functors. Examples of functors
are for instance the list functor, the powerset functor and the term functor.
The concept of naturality is important in many of the applications of category
theory. Natural transformations are certain structure-preserving mappings from
one functor to another. It might seem abstract to consider morphisms between
morphisms of categories, but natural transformations appear in a natural way
very frequently both in mathematics as well as in computer science. Natural
transformations are cornerstones in the concept of monads.

3.1 Categories

A category C consists of objects, and for each pair (A, B) of objects we have
morphisms f from A to B, denoted by f : A �� B or A f �� B. Further there
is an (A-)identity morphism A idA �� A and a composition ◦ among morphisms
that composes A

f �� B and B
g �� C to A

g◦f �� C in order to always
guarantee h ◦ (g ◦ f) = (h ◦ g) ◦ f , and also idB ◦ f = f ◦ idA = f for any
A f �� B. The set of C-morphisms from A to B is written as HomC(A, B) or
Hom(A, B).

48 P. Eklund, M.A. Galán, and J. Karlsson

Example 1. The category of sets, Set, consists of sets as objects and functions
as morphisms together with the ordinary composition and identity.

Example 2. The category of partially ordered sets, Poset, consists of partially
ordered sets as objects and order-preserving functions as morphisms. The cate-
gory of boolean algebras, Boo, consists of boolean algebras as objects and boolean
homomorphisms as morphisms. The category of groups, Grp, consists of groups
as objects and group homomorphisms as morphisms.

Example 3. A poset (partially ordered set) forms also a category where objects
are its elements and there is exactly one morphism from an element x to an
element y if and only if x ≤ y. Composition is forced by transitivity. Identity is
forced by reflexivity.

Example 4. The category of Ω-algebras, Alg(Ω), consists of Ω-algebras as objects
and Ω-homomorphisms as morphisms between them. Recall that a Ω-algebra is a
pair (X, (ωi)i∈I) where X is a set and ωi : Xni ��X are the ni-ary operations on
X . An Ω-homomorphism f : (X, (ωi)i∈I) �� (X̂, (ω̂i)i∈I) consists of a function
f : X �� X̂ such that the diagram

X X̂
f

��

Xni

X

ωi

��

Xni X̂ni
fni

�� X̂ni

X̂

ω̂i

��

commutes, i.e. f(ωi(x1, . . . , xni)) = ω̂i(f(x1), . . . , f(xni)).

Further examples are the category of groups and group homomorphisms, the cat-
egory of vector spaces and linear transformations, and the category of topological
spaces with continuous functions as morphisms. A useful category in computer
science is the following.

3.2 Functors

To relate category theory with typed functional programming, we identify the
objects of the category with types and the morphisms between the objects with
functions. In a given category, the set of morphisms Mor(C) is useful to establish
connections between the different objects in the category. But also it is needed
to define the notion of a transformation of a category into another one. This
kind of transformation is called a functor. In the previous context, functors are
not only transformations between types, but also between morphisms, so, at the
end, they will be mappings between categories. Let us see an example. Given a
type, for instance, Int, we can consider the linear finite list type of elements of
this type, integer lists. Let us denote by List(S) to indicate the lists of elements
with type S. Let us see how List actuates not only over types, but also over

Categorical Innovations for Rough Sets 49

functions between types. Given a function f : S �� T we want to define a
function List(f),

List(f) : List(S) �� List(T).

Note that here we are using the same name for two operations, one over objects
and the other one over functions. This is the standard when using functors. To
understand how to define List over functions, let us consider the function sq : Int

�� Int defined as sq(x) = x2. The type of List(sq) is List(sq) : List(Int)
�� List(Int). What should be the value of List(sq)[−2, 1, 3]? The obvious

answer is the list [(−2)2, 12, 32] = [4, 1, 9]. In the general case, the part that
actuates over the morphisms of List is the maplist function, that distributes
a function over the elements of a list. In this case we have defined how List
actuates over objects and morphisms. Next step is to ask ourselves how does
List respect the categorical structure, that is, what is the behavior over the
composition of morphisms and over the identity morphism? It is expected that

List(g ◦ f) = List(g) ◦ List(f),
List(ida) = idList(a).

It is not difficult to check this for maplist. Now we are ready for the functor
definition. Let C and D be categories. A (covariant) functor ϕ from C to D, denoted
ϕ : C �� D, is a mapping that assigns each C-object A to a D-object ϕ(A) and
each C-morphism A

f �� B to a D-morphism ϕ(A) ϕ(f) �� ϕ(B), such that
ϕ(f ◦ g) = ϕ(f) ◦ ϕ(g) and ϕ(idA) = idϕ(A). We often write ϕA and ϕf instead
of ϕ(A) and ϕ(f). For functors ϕ : C �� D and ψ : D �� E, we can easily see
that the composite functor ψ ◦ ϕ : C �� E given by

(ψ ◦ ϕ)(A f �� A′) = ψ(ϕA) ψ(ϕf)�� ψ(ϕA′)

indeed is a functor.

Example 5. Any category C defines an identity functor idC : C �� C given by

idC(A
f �� B) = A

f �� B.

Example 6. The (covariant) powerset functor P : Set �� Set is defined by PA
being the powerset of A, i.e. the set of subsets of A, and Pf(X), for X ⊆ A,
being the image of X under f , i.e. Pf(X) = {f(x) | x ∈ X}. The contravariant
powerset functor Q : Setop �� Set is defined by QA again being the powerset
of A, and further

Q(A f �� B) = QA Qf �� QB

where Qf(X), X ⊆ A, is the inverse image of X under the function f : B ��A.

Example 7. The list functor List : Set �� Set is defined by List(A) being the
set of finite lists with elements in A, i.e. List(A) =

⋃
n∈N An, and further for

f : A �� B we have

Listf(L) = [f(a1), . . . , f(an)]

for finite lists L = [a1, . . . , an] with a1, . . . , an ∈ A.

50 P. Eklund, M.A. Galán, and J. Karlsson

A functor ϕ : C ��D is a (functor) isomorphism if there is a functor ψ : D ��C
such that ψ ◦ ϕ = idC and ϕ ◦ ψ = idD.

Example 8. The category Boo is isomorphic to the category of boolean rings (ring
with unit, and each element being idempotent with respect to multiplication, i.e.
a · a = a) and ring homomorphisms.

Example 9 (T -algebras). Let T : X �� X be a functor. A T -algebra is a pair
(X, h), where X is an X-object and h : TX �� X is an X-morphism. A T -
homomorphism f : (X, h) �� (X ′, h′) between T -algebras is an X-morphism
f : X �� X ′ such that the diagram

TX ′ X ′
h′

��

TX

TX ′

Tf

��

TX X
h �� X

X ′

f

��

commutes. We denote by Alg(T) the category consisting of T -algebras as Alg(T)-
objects and T -homomorphisms as Alg(T)-morphisms. It can be shown that
Alg(Ω) (Example 4) is isomorphic to Alg(T) for some suitable functors T .

Example 10. If G and H are groups considered as categories with a single object,
then a functor from G to H is exactly a group homomorphism.

Example 11. If P and Q are posets, a functor from P to Q is exactly a nonde-
creasing map.

Example 12. The list functor List : Set �� Set (Set denotes the category of
sets) is defined by List(A) being the set of finite lists with elements in A, i.e.
List(A) =

⋃
n∈N An, and further for f : A �� B we have

List f(L) = [f(a1), . . . , f(an)]

for finite lists L = [a1, . . . , an] with a1, . . . , an ∈ A.

3.3 Natural Transformations

In the same way as functors are defined as morphisms between categories, we
could think of defining morphisms between functors. The concept of naturality is
central in many of the applications of category theory. Natural transformations
are certain structure-preserving mappings from one functor to another. Maybe,
in a first approach to this, it seems abstract to consider morphisms between mor-
phisms of categories. We will show here, how natural transformations appear in a
natural way not only in mathematics, but also in programming. Continuing with
lists, let us consider that the function that inverts lists, has type rev : List(S)

�� List(S) where S is a type. Obviously, it is expected that rev inverts any
kind of lists, i.e., it is expected that the definition rev is uniform with respect

Categorical Innovations for Rough Sets 51

to the type of the elements on the list. One definition of rev can be given in the
functional program Hope as follows:

• rev(nil) <= nil
• rev(a :: l) <= rev(l) :: a

Instead of considering rev as a list whose type is polymorphic, we can consider
it as a collection of functions indexed by the element’s type of the list, so we
could write revS : List(S) �� List(S) or even, rev : List �� List. In the last
case, we apply the argument S, that is the type of the elements on the list, to
rev and to the functor List. Note that when we apply rev to an argument, we
get a function, in this way we can consider rev as a morphism from the functor
List to the functor List. In this context we must make sure that, for types S
and T , the functions revS and revT are well related to each other. The relation
between these two mappings can be expressed through the commutativity of the
following diagram

S

T

f

��
List(T) List(T)

revT

��

List(S)

List(T)

List(f)

��

List(S) List(S)
revS�� List(S)

List(T)

List(f)

��

In this case, the action of List over functions is the function maplist. It is easy
to check that the diagram commutes, and for any f : S �� T , it expresses a
fundamental property of the function rev. Now, we can give the definition of
natural transformation. Let ϕ, ψ : C �� D be functors.

Definition 1. A natural transformation τ from ϕ to ψ, written τ : ϕ �� ψ or
ϕ τ �� ψ, assigns to each C-object A a D-morphism τA : ϕA �� ψA such that
the diagram

A

A′

f

��
ϕA′ ψA′

τA′
��

ϕA

ϕA′

ϕf

��

ϕA ψA
τA �� ψA

ψA′

ψf

��

commutes.

Let ϕ be a functor. The identity natural transformation ϕ
idϕ �� ϕ is defined

by (idϕ)A = idϕA. For functors ϕ and natural transformations τ we often write
ϕτ and τϕ, respectively, to mean (ϕτ)A = ϕτA and (τϕ)A = τϕA. It is easy to
see that η : idSet �� P given by ηX(x) = {x}, and μ : P ◦ P �� P given by
μX(B) =

⋃
B(=

⋃
B∈B B) are natural transformations. Natural transformations

can be composed vertically as well as horizontally. Let ϕ, ψ, ϑ : C �� D be
functors and let further ϕ τ �� ψ and ψ σ �� ϑ be natural transformations.
The (vertical) composition ϕ σ◦τ �� ϑ, defined by (σ ◦ τ)A = σA ◦ τA, is a natural

52 P. Eklund, M.A. Galán, and J. Karlsson

transformation. In order to define the corresponding horizontal composition, let
ϕ′, ψ′ : C ��D be functors and let ϕ′ τ ′ �� ψ′ be a natural transformation. The
star product (horizontal composition) ϕ′ ◦ ϕ τ ′�τ �� ψ′ ◦ ψ is defined by

τ ′
 τ = τ ′ψ ◦ ϕ′τ = ψ′τ ◦ τ ′ϕ. (1)

For the identity transformation idϕ : ϕ �� ϕ, also written as 1ϕ or 1, we have

1ϕ
 1ψ = 1ϕ◦ψ. (2)

For a natural transformation τ : ϕ ��ψ, and a functor ϑ, ϑτ = 1ϑ
τ and τϑ =
τ
 1ϑ. For natural transformations ϕ τ �� ψ σ �� ϑ and ϕ′ τ ′ �� ψ′ σ′ �� ϑ′

we have the Interchange Law (σ′ ◦ τ ′)
 (σ ◦ τ) = (σ′
 σ) ◦ (τ ′
 τ).

3.4 Monads and Kleisli Categories

In the following we include some formal definitions of concepts required.

Definition 2. Let C be a category. A monad (or triple, or algebraic theory) over
C is written as Φ = (ϕ, η, μ), where ϕ : C → C is a (covariant) functor, and
η : id → ϕ and μ : ϕ◦ϕ → ϕ are natural transformations for which μ◦ϕμ = μ◦μϕ
and μ ◦ ϕη = μ ◦ ηϕ = idϕ hold.

Definition 3. A Kleisli category CΦ for a monad Φ over a category C is given
with objects in CΦ being the same as in C, and morphisms being defined as
homCΦ(X, Y) = homC(X, ϕY). Morphisms f : X ⇁ Y in CΦ are thus morphisms
f : X → ϕY in C, with ηϕ

X : X → ϕX being the identity morphism. Composition
of morphisms in CΦ is defined as

(X
f
⇁ Y) � (Y

g
⇁ Z) = X

μϕ
Z◦ϕg◦f
−→ ϕZ. (3)

Composition in the case of the term monad comes down to substitution, and this
brings us immediately to substitution theories in general for monads. Monads
can be composed and especially the composition of the powerset monad with
the term monad provides groundwork for a substitution theory as a basis for
many-valued logic [21]. In the following we will elaborate on powerset monads.
The concept of subfunctors and submonads can be used to provide a technique
for constructing new monads from given ones.

Definition 4. Let ϕ be a set functor. A set functor ϕ′ is a subfunctor of ϕ,
written ϕ′ ≤ ϕ, if there exists a natural transformation e : ϕ′ �� ϕ, called the
inclusion transformation, such that eX : ϕ′X �� ϕX are inclusion mappings,
i.e., ϕ′X ⊆ ϕX. The conditions on the subfunctor imply that ϕf |ϕ′X= ϕ′f for
all mappings f : X �� Y . Further, ≤ is a partial ordering.

Proposition 1 ([13]). Let Φ = (ϕ, η, μ) be a monad over Set, and consider
a subfunctor ϕ′ of ϕ, with the corresponding inclusion transformation e : ϕ′

Categorical Innovations for Rough Sets 53

��ϕ, together with natural transformations η′ : id ��ϕ′ and μ′ : ϕ′ϕ′ ��ϕ′

satisfying the conditions

e ◦ η′ = η, (4)
e ◦ μ′ = μ ◦ ϕe ◦ eϕ′. (5)

Then Φ′ = (ϕ′, η′, μ′) is a monad, called the submonad of Φ, written Φ′ � Φ.

4 Examples of Monads

Monads have been used in many different areas such as topology or functional
programming. The applications and use of monads in computer science is well-
known and provides an abstract tool to handle properties of structures. Ex-
amples developed in this section have an important role in many applications.
Powerset monads and their many-valued extensions are in close connection to
fuzzification and are good candidates to represent situations with incomplete or
imprecise information. With respect to topological application, the fuzzy filter
monad is a key construction when studying convergence structures from a more
general point of view. Unless otherwise stated, we assume L to be a completely
distributive lattice. For L = {0, 1} we write L = 2.

Remark 1. Extending functors to monads is not trivial, and unexpected situa-
tions may arise. Let the id2 functor be extended to a monad with

ηX(x) = (x, x) and μX((x1, x2), (x3, x4)) = (x1, x4).

Further, the proper powerset functor P0, where P0X = PX \ {∅}, as well as
id2 ◦ P0 can, respectively, be extended to monads, even uniquely. However, as
shown in [15], P0 ◦ id2 cannot be extended to a monad.

4.1 The Term Monad

Notations in this part follow [17], which were adopted also in [15, 11]. Let Ω =⋃∞
n=0 Ωn be an operator domain, where Ωn contains n-ary operators. The term

functor TΩ : SET → SET is given as TΩ(X) =
⋃∞

k=0 T k
Ω(X), where

T 0
Ω(X) = X,

T k+1
Ω (X) = {(n, ω, (mi)i≤n) | ω ∈ Ωn, n ∈ N, mi ∈ T k

Ω(X)}.

In our context, due to constructions related to generalised terms [14, 13, 11],
it is more convenient to write terms as (n, ω, (xi)i≤n) instead of the more
common ω(x1, . . . , xn). It is clear that (TΩX, (σω)ω∈Ω) is an Ω-algebra, if

σω((mi)i≤n) = (n, ω, (mi)i≤n) for ω ∈ Ωn and mi ∈ TΩX . Morphisms X
f→ Y

in Set are extended in the usual way to the corresponding Ω-homomorphisms
(TΩX, (σω)ω∈Ω)

TΩf−→ (TΩY, (τω)ω∈Ω), where TΩf is given as the Ω-extension of

X
f→ Y ↪→ TΩY associated to (TΩY, (τnω)(n,ω)∈Ω). To obtain the term monad,

define ηTΩ

X (x) = x, and let μTΩ

X = id�
TΩX be the Ω-extension of idTΩX with

respect to (TΩX, (σnω)(n,ω)∈Ω).

54 P. Eklund, M.A. Galán, and J. Karlsson

Proposition 2. [32] TΩ = (TΩ, ηTΩ , μTΩ) is a monad.

4.2 The Powerset Monad

The covariant powerset functor Lid is obtained by LidX = LX , i.e. the set of
mappings (or L-fuzzy sets) A : X → L, and following [22], for a morphism
f : X → Y in Set, the category of sets and functions, by defining

Lidf(A)(y) =
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =

{
1 ifx=x’
0 otherwise

(6)

and μ : Lid ◦ Lid → Lid by

μX(M)(x) =
∨

A∈LidX

A(x) ∧ M(A).

Proposition 3. [32] Lid = (Lid, η, μ) is a monad.

Note that 2id is the usual covariant powerset monad P = (P, η, μ), where PX
is the set of subsets of X , ηX(x) = {x} and μX(B) =

⋃
B.

4.3 Powerset Monads with Fuzzy Level Sets

In [12], a number of set functors extending the powerset functor together with
their extension principles are introduced. By extension principles we mean the
two possible generalizations of a mapping f : X ��Y where X, Y are sets, when
working in the fuzzy case according to an optimistic or pessimistic interpretation
of the fuzziness degree.

1. Maximal extension principle: FfM : FX �� FY ,

FfM (A)(y) =

⎧
⎨

⎩

sup{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

2. Minimal extension principle: Ffm : FX �� FY ,

Ffm(A)(y) =

⎧
⎨

⎩

inf{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

Both extensions FfM and Ffm coincide with the direct image extension in the
case of crisp subsets, that is, given A ∈ PX , then PfM (A) = Pfm(A) = f(A) ∈
PY . These maximal and minimal extension principles can be further generalized
to the L-fuzzy powersets, just changing the calculations of suprema and infima
by the lattice join and meet operators. We will use the set I = {x ∈ X | f(x) =
y and A(x) > 0}:

Categorical Innovations for Rough Sets 55

1. Maximal L-fuzzy extension principle: LfM : LX �� LY is

LfM (A)(y) =

⎧
⎨

⎩

∨
I A(x) if I �= ∅

0 otherwise

2. Minimal L-fuzzy extension principle: Lfm : LX �� LY ,

Lfm(A)(y) =

⎧
⎨

⎩

∧
I A(x) if I �= ∅

0 otherwise

We can now extend the definition of powersets to powersets with fuzzy level sets.
Functors for α-upper L-fuzzy sets and α-lower L-fuzzy sets, denoted Lα and Lα,
respectively, are given as follows:

LαX = {A ∈ LidX | A(x) ≥ α or A(x) = 0, for all x ∈ X}
LαX = {A ∈ LidX | A(x) ≤ α or A(x) = 1, for all x ∈ X}.

For mappings f : X �� Y , we define Lαf : LαX �� LαY as the restriction of
the mapping given by the minimal L-fuzzy extension principle to the L-fuzzy set
LαX . Similarly, Lαf : LαX �� LαY is given as the restriction of the mapping
given by the maximal L-fuzzy extension principle. L-fuzzy set categories are
defined for each of these extended power set functors and the rationality of the
extension principle is proved in the categorical sense, i.e. the associated L-fuzzy
set categories are shown to be equivalent to the category of sets and mappings.
We can easily generalize the fact that (Lid, η, μ) is a monad and obtain:

Proposition 4. [12] (Lα, ηα, μα) is a monad.

For Lα we define:

ηαX(x)(x′) =

⎧
⎨

⎩

1 if x = x′

0 otherwise

μαX(A)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∧

A∈I

A(x) ∧ A(A) if I = {A ∈ LαX | A(x) ∧ A(A) > 0} �= ∅

0 otherwise

Proposition 5. [12] (Lα, ηα, μα) is a monad.

Remark 2. For mappings f : X �� Y , we could obtain Lαf as Lidf|LαX
. Thus,

Lα become subfunctor of Lid and Lα = (Lα, ηLα

, μLα

) is a submonads of Lid.

Remark 3. For L = 2, Lα = Lα = 2id.

56 P. Eklund, M.A. Galán, and J. Karlsson

4.4 The Covariant Double Contravariant Powerset Monad

The contravariant powerset functor Lid is the contravariant hom-functor related
to L, i.e. Lid = hom(−, L) : Set �� Set, which to each set X and mapping
f : X �� Y assigns the set LX of all mappings of X into L, and the mappings
hom(f, L)(g) = g◦f (g ∈ LY), respectively. Note that 2id is the usual contravari-
ant powerset functor, where 2idX = PX , and morphisms X f �� Y in Set are
mapped to 2idf representing the mapping M
→ f−1[M] (M ∈ PY) from PY to
PX . For double powerset functors it is convenient to write LLid

= Lid ◦ Lid and
LLid

= Lid ◦ Lid. Note that LLid

is a covariant functor. It may be interesting
also to note that the filter1 functor is a subfunctor of 22id

, but not a subfunctor
of 22id

. In the case of LLid

, for X f �� Y in Set and M ∈ LLX

, we have
LLid

f(M) = M ◦ Lidf , and hence, LLid

f(M)(g) = M(g ◦ f).

Proposition 6. [15] The covariant set functor LL = Lid ◦ Lid can be extended
to a monad, considering the following definitions of the natural transformations
ηLL and μLL:

ηLL
X (x)(A) = A(x), μLL

X (U) = U ◦ ηLL
LX .

It is well-known that the proper2 filter functor F0 becomes a monad where
ηF0 : id �� F0 is the unique natural transformation and μF0 : F0 ◦ F0 �� F0
is given by

μF0
X (U) =

⋃

R∈U

⋂

M∈R

M

i.e. the contraction mapping suggested in [30].

Remark 4. In relation with the functor 22id

, it can easily be seen that μ22id

X (U) =
μF0

X (U).

5 Partially Ordered Monads

Godement in 1958 used monads named as standard constructions and Huber
in 1961 showed that adjoint pairs give rise to monads. In 1965, Kleisli [28],
Eilenberg and Moore [4] proved the converse. Lawvere [31] introduced univer-
sal algebra and thereby the term monad. These developments provide all cat-
egorical tools for generalized substitutions. In 2000, Gähler develops partially
ordered monads [18], where topology and convergence provided underlying the-
ories. Partially ordered monads contain sufficient structure also for modelling
rough sets [33] in a generalized setting with set functors. This generalization
builds upon a more general powerset functor setting far beyond just strings
[27] and relational algebra [37]. Let acSLAT be the category of almost complete
1 A filter on a set X is a nonempty set F of subsets of X such that: (i) ∅ /∈ F , (ii)

A,B ∈ F ⇒ A∩B ∈ F , (iii) A ∈ F A ⊆B ⇒ B ∈F .
2 F0X = FX \ {∅}

Categorical Innovations for Rough Sets 57

semilattices, i.e. partially ordered sets (X, ≤) such that the suprema sup M of
all non-empty subsets M of X exists. Morphisms f : (X, ≤) → (Y, ≤) satisfy
f(sup M) = sup f [M] for non-empty subsets M of X . A basic triple ([18]) is a
triple Φ = (ϕ, ≤, η), where (ϕ, ≤) : SET → acSLAT, X
→ (ϕX, ≤) is a covariant
functor, with ϕ : SET → SET as the underlying set functor, and η : id → ϕ is a
natural transformation. If (ϕ, ≤, ηϕ) and (ψ, ≤, ηψ) are basic triples, then also
(ϕ ◦ ψ, ≤, ηϕψ ◦ ηψ) is a basic triple.

Definition 5. A partially ordered monad is a quadruple Φ = (ϕ, ≤, η, μ), such
that

(i) (ϕ, ≤, η) is a basic triple.
(ii)μ : ϕϕ → ϕ is a natural transformation such that (ϕ, η, μ) is a monad.
(iii)For all mappings f, g : Y → ϕX, f ≤ g implies μX ◦ ϕf ≤ μX ◦ ϕg,

where ≤ is defined argumentwise with respect to the partial ordering of ϕX.
(iv)For each set X, μX : (ϕϕX), ≤) → (ϕX, ≤) preserves non-empty

suprema.

The usual covariant powerset monad P = (P, η, μ), can be extended to a partially
ordered monad, (P, ⊆, η, μ), considering as the partial ordering the inclusion, ⊆.
Clearly by the properties of the monad, (P, ⊆, η) is a basic triple, μ is a natural
transformation and μX : (PPX), ⊆) → (PX, ⊆) preserves non-empty suprema.
Given f, g : Y �� PX with f ⊆ g e.g. f(y) ⊆ g(y) for all y ∈ Y implies
μX ◦ Pf ⊆ μX ◦ Pg:

(μX ◦ Pf)(B) =
⋃

y∈B⊆Y

f(y) ⊆
⋃

y∈B⊆Y

g(y) = (μX ◦ Pg)(B)

The powerset monad, (Lid, η, μ) can also be extended to a partially ordered
monad, considering the partial order defined as A ≤ A′, with A, A′ ∈ LidX if
A(x) ≤ A′(x) for all x ∈ X . Let us see that μX ◦ Lidf ≤ μX ◦ Lidg: provided
that f ≤ g where f, g : Y �� LidX .

μLid

X (Lidf(B))(x) =
∨

A∈LidX

A(x) ∧ Lidf(B)(A)

=
∨

A∈LidX

A(x) ∧
∨

f(y)=A

B(y)

=
∨

A∈LidX

∨

f(y)=A

A(x) ∧ B(y)

=
∨

y∈Y

f(y)(x) ∧ B(y)

≤
∨

y∈Y

g(y)(x) ∧ B(y)

= μLid

X (Lidg(B))(x).

58 P. Eklund, M.A. Galán, and J. Karlsson

Finally, also the monad (Lα, ηα, μα) can be extended to a partially ordered
monad. This result is a generalization of Lid being extendable to a partially
ordered monad. To provide Lα with the partially ordered monad structure we
need to check that if f, g : Y �� LαX are such that f ≤ g then μX ◦ Lαf ≤
μX ◦ Lαg. In the same way as the case of Lid, the partial order is defined as
A ≤ A′, with A, A′ ∈ LαX meaning A(x) ≤ A′(x) for all x ∈ X .

μLα

X (Lαf(B))(x) =
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧ Lαf(B)(A)

=
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧
∧

y∈Y,f(y)=A,B(y)>0

B(y)

=
∧

A∈LαX,A(x)>0,f(y)=A,B(y)>0

A(x) ∧ B(y)

=
∧

B(y)>0

f(y)(x) ∧ B(y)

≤
∧

B(y)>0

g(y)(x) ∧ B(y)

= μLα

X (Lαg(B))(x).

Note that f ≤ g implies f(y)(x) ∧ B(y) ≤ g(y)(x) ∧ B(y) for all x ∈ X and
therefore μLα

X (Lαf(B))(x) ≤ μLα

X (Lαg(B))(x).

6 Relations, Kleisli Categories and Rough Sets

Rough sets and fuzzy sets are both methods to represent uncertainty. By using
partially ordered monads we can find connections between these two concepts.
Partially ordered monads are appropriate categorical formalizations and gener-
alizations of rough sets. In this section we introduce relations from a categor-
ical point of view and justify how its composition can be seen within Kleisli
categories. Partially ordered monadic reformulation of rough sets based on the
powerset partially ordered monad and the fuzzy powerset monad are presented
and some properties are studied.

6.1 Crisp Situation

Let us consider a binary relation R ⊆ X × Y . We will use the notation xRy to
represent that the element (x, y) ∈ R. Considering P , the crisp powerset functor,
we can represent the relation as a mapping ρ : X �� PY , where

ρ(x) = {y ∈ Y such that xRy}

As regarded as mappings, considering the composition of two relations, ρ : X
�� PY and ρ′ : Y �� PZ we clearly see that the conventional composition of

mappings can not be done since the domain of ρ′ and codomain of ρ are different.

Categorical Innovations for Rough Sets 59

To find the appropriate definition of this composition we have to consider the
Kleisli composition as defined previously by (3), i.e. we need to use that P is a
monad and has a “flattering” operator, μ:

(X
ρ
⇁ Y) � (Y

ρ′

⇁ Z) = X
μP

Z◦Pρ′◦ρ−→ PZ.

The reason for this to work is the following proposition:

Proposition 7. The Kleisli category associated to the crisp powerset monad is
equivalent to the category of sets and relations, SetRel.

Indeed, ρ : X �� PY corresponds to a relation R ⊆ X × Y by the observation
(x, y) ∈ R if and only if y ∈ ρ(x).

Proposition 8. Kleisli composition associated to P is given by:

μP
Z ◦ Pρ′(ρ(x)) =

⋃

y∈ρ(x)

ρ′(y)

Clearly Kleisli composition, in this case, corresponds to the usual composition
of relations R ⊆ X × Y , R′ ⊆ Y × Z, (x, z) ∈ R′ ◦ R if and only if ∃y, y ∈
ρ(x), z ∈ ρ′(y). Based on indistinguishable relations, rough sets are introduced by
defining the upper and lower approximation of sets. These approximations rep-
resent uncertain or imprecise knowledge. Let us consider a relation R on X , i.e.
R ⊆ X × X . We represent the relation as a mapping ρX : X �� PX , where
ρX(x) = {y ∈ X |xRy}. The corresponding inverse relation R−1 is represented as
ρ−1

X (x) = {y ∈ X |xR−1y}. To be more formal, given a subset A of X , the lower
approximation of A correspond to the objects that surely (with respect to an in-
distinguishable relation) are in A. The lower approximation of A is obtained by

A↓ = {x ∈ X |ρX(x) ⊆ A}

and the upper approximation by

A↑ = {x ∈ X |ρX(x) ∩ A �= ∅}.

Let us see now the partially ordered monadic reformulation of rough sets based
on the powerset partially ordered monad. In what follows we will assume that
the underlying almost complete semilattice has finite infima, i.e. is a join com-
plete lattice. Considering P as the functor in its corresponding partially ordered
monad we then immediately have

Proposition 9. [6] The upper and lower approximations of a subset A of X are
given by

A↑ =
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

and
A↓ =

∨

ρX (x)≤A

ηX(x),

respectively.

60 P. Eklund, M.A. Galán, and J. Karlsson

The corresponding R-weakened and R-substantiated sets of a subset A of X are
given by

A⇓ = {x ∈ X |ρ−1
X (x) ⊆ A}

and
A⇑ = {x ∈ X |ρ−1

X (x) ∩ A �= ∅}.

Proposition 10. [6] The R-weakened and R-substantiated sets of a subset A of
X are given by

A⇑ = μX ◦ PρX(A)

and
A⇓ =

∨

ρ−1
X (x)≤A

ηX(x),

respectively.

Proposition 11. If A ⊆ B then A↑ ⊆ B↑, A↓ ⊆ B↓, A⇑ ⊆ B⇑, A⇓ ⊆ B⇓.

The upper and lower approximations, as well as the R-weakened and R-
substantiated sets, can be viewed as ↑X , ↓X , ⇑X , ⇓X : PX �� PX with ↑X

(A) = A↑, ↓X (A) = A↓, ⇑X (A) = A⇑ and ⇓X (A) = A⇓. Considering the
crisp powerset monad we define equivalence relations (reflexive, symmetric and
transitive) by

Definition 6. ρX : X �� PX is reflexive if ηX ⊆ ρX , symmetric if ρX = ρ−1
X

and transitive if y ∈ ρ(x) implies ρ(y) ⊆ ρ(x).

In what follows, equivalence relations are now connected to upper and lower
approximations.

Proposition 12. The following properties hold:

(i) If ρX is reflexive A↓ ⊆ A and A ⊆ A↑.
(ii)If ρX is symmetric A↓↑ ⊆ A and A ⊆ A↑↓.
(iii)If ρX is transitive A↑↑ ⊆ A↑ and A↓ ⊆ A↓↓.

Corollary 1. If ρX is an equivalence relation, A↓↑ = A↓ and A↑↓ = A↑.

Inverse relations in the ordinary case means to mirror pairs around the diagonal.
The following propositions relate inverses to the multiplication of the correspond-
ing monads.

Proposition 13. [6] In the case of P ,
∨

ρX (x)∧A>0

ηX(x) = μX ◦ Pρ−1
X (A)

if and only if
ρ−1

X (x) =
⋃

ηX (x)≤ρX(y)

ηX(y).

Categorical Innovations for Rough Sets 61

6.2 Many-Valued Situation

We will show now how to extend this view of relations to fuzzy relations. In
particular it will be interesting the situation where Kleisli composition is defined
for composing fuzzy relations. This can be connected to situations where we
want to combine different information systems and study rough approximations.
Relations can now be extended to fuzzy relations. Let X and Y be nonempty
sets. A fuzzy relation R is a fuzzy subset of the cartesian product X × Y . If
X = Y we say that R is a binary fuzzy relation on X . R(x, y) is interpreted
as the degree of membership of the pair (x, y) in R. If we consider now the
generalized powerset monad, LidX is the set of all L-fuzzy sets. An L-fuzzy set
A is nothing but a mapping A : X �� L. As a first step, and in the same
way as before we can extend the concept of relation to a fuzzy relation, i.e. a
mapping ρ : X �� LidY , ρ(x) is nothing but an element in LidY , a mapping
ρ(x) : Y ��L. An element y ∈ Y will be assigned a membership degree, ρ(x)(y)
representing, as a value in L, the degree on which the elements x and y are fuzzy
related. Note that this situation extend the classical relations (crisp powerset
situation) in the sense that membership values are 1 if the elements are related
and 0 otherwise. With respect to the Kleisli category associated to the powerset
monad Lid, the objects are sets and homomorphisms are given as mappings X

�� LidY in Set.

Proposition 14. [8] The Kleisli category associated to Lid is equivalent to the
category of set and fuzzy relations, SetFuzzRel.

Proposition 15. [8] Kleisli composition associated to Lid is given by:

μLid
Z (Lidρ

′(ρ(x)))(z) =
∨

y∈Y

ρ′(y)(z) ∧ ρ(x)(y)

The previous proposition tells which membership grade we should assign to the
composition of two fuzzy relations, i.e. the suprema of the membership grades on
the fuzzy relations. This Kleisli composition of fuzzy relations can be connected
to situations where we want to combine different information systems and study
rough approximations. Similarly to the crisp situation we can now introduce
rough set operators for the fuzzy powerset monad. Let ρX : X �� LidX be a
fuzzy relation on X and let a ∈ LidX . The upper and lower approximations are
then

↑X (a) = μX ◦ Lidρ
−1
X (a) ↓X (a) =

∨

ρX (x)≤a

ηX(x)

Corresponding generalizations of ρ-weakenedness and ρ-substantiatedness, are
given by

⇑X (a) = μX ◦ LidρX(a) ⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Concerning inverse relations, in the case of Lid we would accordingly define
ρ−1

X (x)(x′) = ρX(x′)(x).

62 P. Eklund, M.A. Galán, and J. Karlsson

Proposition 16. [6] In the case of Lid,

μX ◦ Lidρ
−1
X (A)(x) =

∨

x′∈X

(ρX(x) ∧ A)(x′).

Consider now the powerset monads with fuzzy level sets, Lα and Lα. For Lα is
similar to Lid situation. Let us see how is the situation for Lα

Proposition 17. [8] In the case of Lα,

μX ◦ Lαρ−1
X (A)(x) =

∧

x′∈X

(ρX(x) ∧ A)(x′).

Note that in the case of L = 2, for the functor 2α we obtain the classical definition
of the upper approximation of a set A. Generalizing from the ordinary power
set monad to a wide range of partially ordered monads requires attention to
relational inverses and complement. The role of the diagonal clearly changes,
and the representation of inverses is an open question. Inverses and complements
must be based on negation operators as given by implication operators within
basic many-valued logic [23].

7 Rough Monads

In the previous section we have shown how rough sets can be given using partially
ordered monads. From a more abstract point of view, we present in this section
a generalized view of rough set constructions based on general partially ordered
monads. We name these generalizations rough monads. Considering the partially
ordered powerset monad, we showed in [6] how rough sets operations can be
provided in order to complement the many-valued situation. This is accomplished
by defining rough monads. Let Φ = (ϕ, ≤, η, μ) be a partially ordered monad.
We say that ρX : X �� ϕX is a Φ-relation on X , and by ρ−1

X : X �� ϕX we
denote its inverse. The inverse must be specified for the given set functor ϕ. For
any f : X �� ϕX , the following condition is required:

ϕf(
∨

i

ai) =
∨

i

ϕf(ai)

This condition is valid both for P as well as for Lid.

Remark 5. Let ρX and ρY be relations on X and Y , respectively. Then the
mapping f : X �� Y is a congruence, i.e. x′ ∈ ρX(x) implies f(x′) ∈ ρY (f(x)),
if and only if Pf ◦ ρX ≤ ρY ◦ f . Thus, congruence is related to kind of weak
naturality.

Let ρX : X �� ϕX be a Φ-relation and let a ∈ ϕX . The upper and lower
approximations are then

↑X (a) = μX ◦ ϕρ−1
X (a) ↓X (a) =

∨

ρX (x)≤a

ηX(x)

Categorical Innovations for Rough Sets 63

with the monadic generalizations of ρ-weakenedness and ρ-substantiatedness, for
a ∈ ϕX , being

⇑X (a) = μX ◦ ϕρX(a) ⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Proposition 18. [6] If a ≤ b, then ⇑X a ≤⇑X b, ↓X a ≤↓X b, ↑X a ≤↑X b,
⇓X a ≤⇓X b.

In the case of ϕ = P , i.e. the conventional powerset partially ordered monad,
these operators coincide with those for classical rough sets. In this case inverse
relations exist accordingly. In the case of fuzzy sets we use the many-valued
powerset partially ordered monad based on the many-valued extension of P to
Lid. Basic properties of relations can now be represented with ‘rough monads
terminology:

Definition 7. ρX : X �� ϕX is reflexive if ηX ≤ ρX , and symmetric if ρ =
ρ−1.

Note that in the case of relations for P and Lid, if the relations are reflexive, so
are their inverses.

Proposition 19. [6]

(i) If ρ is reflexive, a ≤⇑X (a).
(ii) ρ is reflexive iff ↓X (a) ≤ a.
(iii) ρ−1

X is reflexive iff a ≤↑X (a).
(iv) If ρ is symmetric, then ↑X (↓X (a)) ≤ a.

In the particular case a = ηX(x) we have a ≤↓X ◦ ↑X (a). The idea of sub-
monad is similar to the idea of subsets.In this sense, the calculations related
to submonads are a way to reduce data in a given information system. Let
Φ′ = (ϕ′, ≤, η′, μ′) be a partially ordered submonad of Φ = (ϕ, ≤, η, μ). Given
a′ ∈ ϕ′X we have the following proposition:

Proposition 20. [8] For a′ ∈ ϕ′X,

↑X (a′) = μX ◦ ϕρ−1
X (a′) ↓X (a′) =

∨

ρX (x)≤a′

ηX(x)

This proposition shows us that rough approximations are well defined wrt sub-
monads, i.e. their definition in the submonad correspond to the one for the
monad.

8 Applications

Our theoretical developments are an inspiration for application development. As
a first step we have focused on ICT solutions within health care. Information

64 P. Eklund, M.A. Galán, and J. Karlsson

representation based on medical ontologies are usually rather narrow and ori-
ented towards crisp specifications of data information. At the same time, health
care ICT solutions call for representation of vagueness and uncertainties both
for use within medical records and information databases, as well as for decision
support and guideline implementations. We will discuss various fields of health
care and possible use of generalized rough sets, and we will in particular de-
velop concrete examples in the area of decision support and, more specifically,
decisions related to diagnosis and treatment.

8.1 Drug Interactions

Pharmacological treatment is an excellent area for our experimental purposes
where e.g. drug interactions [10] can be favourably described using generalized
rough sets. Pharmacological databases provide rich and complete information
for therapeutic requirements. In particular, the ATC code with its unique iden-
tification of drug compound is the basis e.g. of modelling of generic substi-
tutes and drug interactions. Two drugs are generic substitutes if they have the
same ATC code, the same dosages and the same administration route. This
is straightforward and precise but the notion of drug-drug interaction is more
complicated. In addition, drug-condition interaction adds further complexity as
medical conditions themselves are not easy to formalize. Rough sets described
by partially ordered monads are able to capture interactions with respect to
different granularities in the information hierarchy. The data structure for phar-
macologic information is hierarchical in its subdivision according to anatomic,
therapeutic and chemical information of the drug compound. National cata-
logues of drugs aim at being complete with respect to chemical declarations,
indications/contraindications, warnings, interactions, side-effects, pharmacody-
namics/pharmacokinetics, and pure pharmaceutical information. The Anatomic
Therapeutic Chemical (ATC) classification system is a WHO (World Health Or-
ganization) standard. The ATC structure can be understood from Table 1 on the
classification of verapamil (code C08DA01) for hypertension with stable angina
pectoris. Drugs in ATC are, with a very few exceptions, classified according to
their main indication of use. The ATC coded is for therapeutic use, while the
article code is a unique identifier which is used in the patient’s record. For drugs
showing therapeutically significant interactions we need to distinguish between
types of interactions and to what extent we have evidence for that particular type
of interaction. The types of interaction are recommended combination, neutral
combination (no harmful interactions), risky combination (should be monitored)
and dangerous combination (should be avoided). The degrees of evidence are
strong evidence (internationally), reasonable belief (several studies exist), some
indications (only some studies exist, and results are not conclusive) and no evi-
dence. With these qualifications it is clear that a linear quantification cannot be
given. Further, the drugs are affected in different ways, according to no change
in effect, increases effect, reduces effect and other (e.g. a new type of side effect).
Interaction type, evidence level, and effect need to be considered in the guide-
line for respective treatments. In our subsequent discussion we focus on guideline

Categorical Innovations for Rough Sets 65

Table 1. Classification of verapamil

C cardiac and 1st level

vessel disease medication main anatomical group

C08 calcium channel blockers 2nd level,

therapeutic subgroup

C08D selective cardiac 3rd level,

calcium channel blockers pharmacological subgroup

C08DA phenylalcylamins 4th level,

chemical subgroup

C08DA01 verapamil 5th level

based pharmacologic treatment of hypertension [38]. See also [34] for an imple-
mentation of these guidelines for primary care. Typical drugs for hypertension
treatment are beta-blockers (C07, C07A) like an atenolol (C07AB03) and diuret-
ics (C03) like thiazides (C03A, C03AA). Atenolol is a selective beta-1-blocker
(C07AB). A frequently used thiazide is hydrochlorothiazide (C03AA03). Note
that beta-blockers are both therapeutic as well as pharmacological subgroups.
Similarly, thiazides are both pharmacological as chemical subgroups. As a basic
example concerning interactions consider treatment of hypertension in presence
of diabetes. Beta-blockers may mask and prolong beta-blockers insulin-induced
hypoglycemia. If the patient shows the medical condition of diabetes without
any other medical condition present, then the ACE inhibitor (C09A, C09AA)
enalapril (C09AA02) is the first choice for treatment [38].

Drug interactions as relations can be interpreted as mappings ρL
X : X ��LX ,

based on the many-valued powerset monad (L, η, μ). Let M be a set of medical
conditions and let ρL[M] be the subrelation of ρ which considers interactions
with pharmacological treatments based on these medical conditions in M . We
then observe that the clinical usefulness of these interpretations comes down to
defining ρL[M] so as to correspond to real clinical situations. Operating with
these sets then becomes the first step to identify connections to guidelines for
pharmacological treatment.

In [26], a software framework for pharmacological information representa-
tion is suggested. This framework enables clients to recover information from
databases with pharmacological information. In the current implementation, the
framework uses ATC codes in the drug metadata. Specifically, the framework

66 P. Eklund, M.A. Galán, and J. Karlsson

provides information about interactions as a set of ATC codes for a particular
ATC code (drug). This software framework will be used to recover pharmacologi-
cal information and related drug interactions, and further using this information
in a knowledge-discovery application using the rough set and monad theoreti-
cal framework as described in this chapter. The experiment will extract drug
information relates also to hypertension treatment [34] from the drug database.
Further, to demonstrate that this representation is usable in a realistic situation,
the forming of the sets described earlier will indeed take into account a set of
medical conditions. These conditions will be described codes from the ICD and
corresponding diagnosis encoding system. The hypothesis is that rough monads
provide drug interactions with an adequate representation for pharmacological
hypertension treatment with respect to an individual and typical patient case.

8.2 Dementia Differential Diagnosis

The differential diagnosis process in the case of dementia involves e.g. to dis-
tinguish between dementias of Alzheimer’s and vascular type. In the case of
Alzheimer’s, pharmacological treatment following an early detection can be use-
ful for maintaining acetylcholin in the synapsis between nerve cells. Receptors
then remain stimulated thus maintaining activitity and nerve signals. In the sce-
nario of early detection it is important to observe the situations where cognitive
problems are encountered and by whom these observations are made. Clearly,
the very first observations of cognitive decline are made by relatives (if not
self-detected by the patient) or social workers in home care who would forward
information about the problems encountered, thus seeking advice firstly from
nurses and primary care doctors within their local health care centres. Repre-
sentatives in social care and nursing will not perform any diagnosis. However,
providing some observation and even ‘qualified guesses’ can speed up the process
leading eventually to an accurate diagnosis with possibilities for further phar-
macological treatments. It is then important to identify respective information
types and rule representations for these professional groups providing everything
from ’qualified guesses’ to accurate diagnosis. Note that not even autopsy can
provide higher diagnostic accuracy than around 80%, so early detection is really
hard and challenging. Many-valuedness provides tools for logic transformations
between professional groups. Regardless of where decision and/or observations
are made, we always need to guarantee consistency when information and knowl-
edge is mapped between ontological domains as understood and used by these
professional groups. For further reading on the general logics approach to trans-
formations, see [16]. The intuition of using rough sets and monads is here very
natural and even rather obvious. In differential diagnosis we are viewing the
set of attributes (symptoms and signs) in a relational setting. Indeed attributes
are related not just on powerset level, but also in a ’sets of sets of attributes’
fashion. Heteroanamnesis, for instance, is a set of attributes which are grouped
according to their interrelations. Thus we are dealing with heteroanamnesis as a
set of sets of attributes. Upper and lower approximations are useful as they pro-
vide operators transforming a set (or generalized sets), as a relation, to another

Categorical Innovations for Rough Sets 67

boundary in some canonic way. Full interpretations are yet to be given, and the
pragmatic is still somewhat open, but these developments build upon software
developments and real clinical use of these software tools.

9 Conclusion

Rough sets are naturally categorical once we observe how rough set operators
can be generalized using other set functors, extendable to partially ordered mon-
ads, than just the powerset partially ordered monad representing relations on
ordinary sets. The categorical instrumentation reveals many aspects and possi-
bilities for further developments of rough monads, both from theoretical as well
as from application points of view. Theoretical developments involve extensions
using partially ordered monads and invokes e.g. logical viewpoints that would
not appear unless the categorical generalizations are used. Application develop-
ments make use of entirely new ways to arrange sets and sets of sets in a wide
range of ways. Information pieces and blocks organized as many-valued sets of
terms or even filters and ideals opens up an avenue of possibilities for further
exploration of intuition combined with formalism.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1975)

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1985)
3. Cattaneo, G., Ciucci, D.: Shadowed sets and related algebraic structures. Funda-

menta Iinformaticae 55, 255–284 (2003)
4. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9, 381–398

(1965)
5. Eklund, P., Gähler, W.: Partially ordered monads and powerset Kleene algebras. In:

Proc. 10th Information Processing and Management of Uncertainty in Knowledge
Based Systems Conference (IPMU 2004) (2004)

6. Eklund, P., Galán, M.A.: Monads can be rough. In: Greco, S., Hata, Y., Hirano,
S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., S�lowiński, R. (eds.) RSCTC 2006.
LNCS, vol. 4259, pp. 77–84. Springer, Heidelberg (2006)

7. Eklund, P., Galán, M.A.: On logic with fuzzy and rough powerset monads. In:
Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007.
LNCS, vol. 4585, pp. 391–399. Springer, Heidelberg (2007)

8. Eklund, P., Galán, M.A.: Partially ordered monads and rough sets. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets VIII. LNCS, vol. 5084, pp. 53–74.
Springer, Heidelberg (2008)

9. Eklund, P., Galán, M.A., Gähler, W., Medina, J., Ojeda Aciego, M., Valverde, A.:
A note on partially ordered generalized terms. In: Proc. of Fourth Conference of the
European Society for Fuzzy Logic and Technology and Rencontres Francophones
sur la Logique Floue et ses applications (Joint EUSFLAT-LFA 2005), pp. 793–796
(2005)

10. Eklund, P., Galán, M.A., Karlsson, J.: Rough Monadic Interpretations of Phar-
macologic Information. In: Proceedings of the 15th International Workshops on
Conceptual Structures, ICCS 2007, pp. 108–113. Sheffield, UK (2007)

68 P. Eklund, M.A. Galán, and J. Karlsson

11. Eklund, P., Galán, M.A., Medina, J., Ojeda Aciego, M., Valverde, A.: A cate-
gorical approach to unification of generalised terms. Electronic Notes in Theo-
retical Computer Science 66(5) (2002), http://www.elsevier.nl/locate/entcs/
volume66.html

12. Eklund, P., Galán, M.A., Medina, J., Ojeda Aciego, M., Valverde, A.: Set functors,
L-fuzzy set categories and generalized terms. Computers and Mathematics with
Applications 43, 693–705 (2002)

13. Eklund, P., Galán, M.A., Medina, J., Ojeda-Aciego, M., Valverde, A.: Composing
submonads. In: Proc. 31st IEEE Int. Symposium on Multiple-Valued Logic (ISMVL
2001), Warsaw, Poland, May 22-24, pp. 367–372 (2001)

14. Eklund, P., Galán, M.A., Ojeda-Aciego, M., Valverde, A.: Set functors and gener-
alised terms. In: Proc. 8th Information Processing and Management of Uncertainty
in Knowledge-Based Systems Conference (IPMU 2000), pp. 1595–1599 (2000)

15. Eklund, P., Gähler, W.: Fuzzy Filter Functors and Convergence. In: Rodabaugh,
S.E., Klement, E.P., Höhle, U. (eds.) Applications of category theory to fuzzy
subsets. Theory and Decision Library B, pp. 109–136. Kluwer, Dordrecht (1992)

16. Eklund, P., Helgesson, R., Lindgren, H.: Towards refinement of clinical evidence
using general logics. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2008. LNCS, vol. 5097, pp. 1029–1040. Springer, Heidelberg
(2008)

17. Gähler, W.: Monads and convergence. In: Proc. Conference Generalized Functions,
Convergences Structures, and Their Applications, Dubrovnik (Yugoslavia) 1987,
pp. 29–46. Plenum Press (1988)

18. Gähler, W.: General Topology – The monadic case, examples, applications. Acta
Math. Hungar. 88, 279–290 (2000)

19. Gähler, W.: Extension structures and completions in topology and algebra, Semi-
narberichte aus dem Fachbereich Mathematik, Band 70, FernUniversität in Hagen
(2001)

20. Gähler, W., Eklund, P.: Extension structures and compactifications, In: Categorical
Methods in Algebra and Topology (CatMAT 2000), pp. 181–205 (2000)

21. Galán, M.A.: Categorical Unification, Dissertation, Ume̊a University (2004)
22. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)
23. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dor-

drecht (1998)
24. Järvinen, J.: On the structure of rough approximations. Fundamenta Informati-

cae 53, 135–153 (2002)
25. Järvinen, J.: Lattice theory for rough sets. In: Peters, J.F., Skowron, A., Düntsch,

I., Grzyma�la-Busse, J.W., Or�lowska, E., Polkowski, L. (eds.) Transactions on
Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg (2007)

26. Karlsson, J.: Interface for accessing pharmacological information. In: Proc. 21st
IEEE International Symposium on Computer-Based Medical Systems, Jyväskylä
(Finland), June 17-19. IEEE CS Press, Los Alamitos (to appear, 2008)

27. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

28. Kleisli, H.: Every standard construction is induced by a pair of adjoint functors.
Proc. Amer. Math. Soc. 16, 544–546 (1965)

29. Kortelainen, J.: A Topological Approach to Fuzzy Sets, Ph.D. Dissertation,
Lappeenranta University of Technology, Acta Universitatis Lappeenrantaensis 90
(1999)

http://www.elsevier.nl/locate/entcs/volume66.html
http://www.elsevier.nl/locate/entcs/volume66.html

Categorical Innovations for Rough Sets 69

30. Kowalsky, H.-J.: Limesräume und Komplettierung. Math. Nachr. 12, 301–340
(1954)

31. Lawvere, F.W.: Functorial semantics of algebraic theories, Dissertation, Columbia
University (1963)

32. Manes, E.G.: Algebraic Theories. Springer, Heidelberg (1976)
33. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sciences 5, 341–356

(1982)
34. Persson, M., Bohlin, J., Eklund, P.: Development and maintenance of guideline-

based decision support for pharmacological treatment of hypertension. Comp.
Meth. Progr. Biomed. 61, 209–219 (2000)

35. Rydeheard, D., Burstall, R.: A categorical unification algorithm. In: Poigné, A.,
Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Category Theory and Computer
Programming. LNCS, vol. 240, pp. 493–505. Springer, Heidelberg (1986)

36. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J.
ACM 13, 158–169 (1966)

37. Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 65–106 (1941)
38. The sixth report of the joint national committee on prevention detection, evalu-

ation, and treatment of high blood pressure, Technical Report 98-4080, National
Institutes of Health (1997)

39. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

	Categorical Innovations for Rough Sets
	Introduction
	Historical Remarks and Related Work
	Categorical Preliminaries
	Categories
	Functors
	Natural Transformations
	Monads and Kleisli Categories

	Examples of Monads
	The Term Monad
	The Powerset Monad
	Powerset Monads with Fuzzy Level Sets
	The Covariant Double Contravariant Powerset Monad

	Partially Ordered Monads
	Relations, Kleisli Categories and Rough Sets
	Crisp Situation
	Many-Valued Situation

	Rough Monads
	Applications
	Drug Interactions
	Dementia Differential Diagnosis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

