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Summary. Finding reducts is one of the key problems in the increasing applications of
rough set theory, which is also one of the bottlenecks of the rough set methodology. The
population-based reduction approaches are attractive to find multiple reducts in the
decision systems. In this chapter, we introduce two nature inspired population-based
computational optimization techniques, Particle Swarm Optimization (PSO) and Ge-
netic Algorithm (GA) for rough set reduction. Particle Swarm Optimization (PSO) is
particularly attractive for the challenging problem as a new heuristic algorithm. The
approach discover the best feature combinations in an efficient way to observe the
change of positive region as the particles proceed throughout the search space. We
evaluated the performance of the two algorithms using some benchmark datasets and
the corresponding computational experiments are discussed. Empirical results indicate
that both methods are ideal for all the considered problems and particle swarm op-
timization technique outperformed the genetic algorithm approach by obtaining more
number of reducts for the datasets. We also illustrate a real world application in fMRI
data analysis, which is helpful for cognition research.

1 Introduction

Rough set theory [1, 2, 3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4, 5, 6, 7, 8, 9, 10].

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a computa-
tional point of view. Finding reducts in a large information system is still an
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NP-hard problem [11]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal
solutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [12, 13]. The heuristic algorithm is
a better choice. Hu et al. [14] proposed a heuristic algorithm using discernibility
matrix. The approach provided a weighting mechanism to rank attributes. Zhong
and Dong [15] presented a wrapper approach using rough sets theory with greedy
heuristics for feature subset selection. The aim of feature subset selection is to
find out a minimum set of relevant attributes that describe the dataset as well
as the original all attributes do. So finding reduct is similar to feature selection.
Zhong’s algorithm employed the number of consistent instances as heuristics.
Banerjee et al. [16] presented various attempts of using Genetic Algorithms in
order to obtain reducts. Although several variants of reduct algorithms are re-
ported in the literature, at the moment, there is no accredited best heuristic
reduct algorithm. So far, it is still an open research area in rough sets theory.

Conventional approaches for knowledge discovery always try to find a good
reduct or to select a set of features [17]. In the knowledge discovery applications,
only the good reduct can be applied to represent knowledge, which is called a
single body of knowledge. In fact, many information systems in the real world
have multiple reducts, and each reduct can be applied to generate a single body
of knowledge. Therefore, multi-knowledge based on multiple reducts has the po-
tential to improve knowledge representation and decision accuracy [18]. However,
it would be exceedingly time-consuming to find multiple reducts in an instance
information system with larger numbers of attributes and instances. In most of
strategies, different reducts are obtained by changing the order of condition at-
tributes and calculating the significance of different condition attribute combina-
tions against decision attribute(s). It is a complex multi-restart processing about
condition attribute increasing or decreasing in quantity. Population-based search
approaches are of great benefits in the multiple reduction problems, because dif-
ferent individual trends to be encoded to different reduct. So it is attractive to
find multiple reducts in the decision systems.

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarming
behaviors observed in flocks of birds, schools of fish, or swarms of bees, and
even human social behavior, from which the Swarm Intelligence (SI) paradigm
has emerged [19]. The swarm intelligent model helps to find optimal regions
of complex search spaces through interaction of individuals in a population of
particles [20, 21, 22]. As an algorithm, its main strength is its fast convergence,
which compares favorably with many other global optimization algorithms [23,
24]. It has exhibited good performance across a wide range of applications [25,
26, 27, 28, 29]. The particle swarm algorithm is particularly attractive for feature
selection as there seems to be no heuristic that can guide search to the optimal
minimal feature subset. Additionally, it can be the case that particles discover
the best feature combinations as they proceed throughout the search space.
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The main focus of this chapter is to introduce how particle swarm optimization
algorithm may be applied for the difficult problem of finding multiple reducts.
The rest of the chapter is organized as follows. Some related terms and theorems
on rough set theory are explained briefly in Sect. 2. The proposed approach based
on particle swarm algorithm is presented in Sect. 3. In Sect. 4, experiment results
and discussions are provided in detail. In Sect. 5, we illustrate an application in
fMRI data analysis. Finally conclusions are made in Sect. 6.

2 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and
illustrated with examples in [1, 2, 3, 15, 30, 31, 17]. Here, we illustrate only the
relevant basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃

a∈A

Va

f : U×A → V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C ∪D}, C ∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪ D, P ⊆ C ∪ D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)

The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.
Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

APR−
R(X) =

⋃
{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
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of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

APR−
B(Di) (3)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (4)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard
to classification of elements of the universe. Usually, there are many reducts in
an instance information system. Let 2A represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let RED represent the set of
reducts, i.e.,

RED = {B | POSB(D) = POSC(D), POS(B−{a})(D) < POSB(D)} (5)

Multi-knowledge: Given a decision table T = (U, C, D, V, f). Let RED represent
the set of reducts, Let ϕ is a mapping from the condition space to the decision
space. Then multi-knowledge can be defined as follows:

Ψ = {ϕB | B ∈ RED} (6)

Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u

′

1]C , [u
′

2]C , · · · , [u
′

m]C}, Reduced Positive
Universe U

′
can be written as:

U
′
= {u

′

1, u
′

2, · · · , u
′

m}. (7)

and
POSC(D) = [u

′

i1 ]C ∪ [u
′

i2 ]C ∪ · · · ∪ [u
′

it
]C . (8)

Where ∀u
′

is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′

pos = {u
′

i1 , u
′

i2 , · · · , u
′

it
}. (9)

and ∀B ⊆ C, reduced positive region
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POS
′

B(D) =
⋃

X∈U ′ /B∧X⊆U ′
pos∧|X/D|=1

X (10)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′

B = U
′

pos [31]. It is to be noted that U
′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′

pos, POS
′

B and then
compare POS

′

B with U
′

pos.

3 Nature Inspired Heuristics for Reduction

Combinatorial optimization problems are important in many real life applica-
tions and recently, the area has attracted much research with the advances in
nature inspired heuristics and multi-agent systems.

3.1 Particle Swarm Optimization for Reduction

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consist of m attributes. We set up a search space of m dimension for the reduc-
tion problem. Accordingly, each particle’s position is represented as a binary bit
string of length m. Each dimension of the particle’s position maps one condition
attribute. The domain for each dimension is limited to 0 or 1. The value ‘1’
means the corresponding attribute is selected while ‘0’ not selected. Each po-
sition can be “decoded” to a potential reduction solution, an subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence of
the attribute will not be changed during the iteration. But after updating the
velocity and position of the particles, the particle’s position may appear real val-
ues such as 0.4, etc. It is meaningless for the reduction. Therefore, we introduce
a discrete particle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
POS

′

E = U
′

pos or not (E is the subset of attributes represented by the potential
reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′

E = U
′

pos is used as the criterion of the solution validity.
As a summary, the particle swarm model consists of a swarm of particles,

which are initialized with a population of random candidate solutions. They
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move iteratively through the d-dimension problem space to search the new solu-
tions, where the fitness f can be measured by calculating the number of condition
attributes in the potential reduction solution. Each particle has a position rep-
resented by a position-vector pi (i is the index of the particle), and a velocity
represented by a velocity-vector vi. Each particle remembers its own best po-
sition so far in a vector p#

i , and its j-th dimensional value is p#
ij . The best

position-vector among the swarm so far is then stored in a vector p∗, and its
j-th dimensional value is p∗j . When the particle moves in a state space restricted
to zero and one on each dimension, the change of probability with time steps is
defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j(t − 1)). (11)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12)

At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(13) and (14):

vij(t) = wvij(t−1)+φ1r1(p
#
ij(t−1)−pij(t−1))+φ2r2(p∗j (t−1)−pij(t−1)). (13)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(14)

Algorithm 1. A Rough Set Reduct Algorithm Based on Particle Swarm
Optimization

1: Calculate U
′
, U

′
pos using Eqs.(7) and (9)

2: Initialize the size of the particle swarm n, and other parameters
3: Initialize the positions and the velocities for all the particles randomly
4: while the stop criterion is not met do
5: t ← t + 1
6: Calculate the fitness value of each particle
7: if POS

′
E �= U

′
pos then

8: the fitness is punished as the total number of the condition attributes
9: else

10: the fitness is the number of ‘1’ in the position
11: end if
12: p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)))
13: for i= 1 to n do
14: p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t))
15: for j = 1 to d do
16: Update the j-th dimension value of pi and vi

17: according to Eqs.(13) and (14)
18: end for
19: end for
20: end while
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Where φ1 is a positive constant, called as coefficient of the self-recognition com-
ponent, φ2 is a positive constant, called as coefficient of the social component. r1
and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,
1]. From Eq.(13), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. The pseudo-code for the
particle swarm search method is illustrated in Algorithm 1.

3.2 Genetic Algorithms for Reduction

In nature, evolution is mostly determined by natural selection, where individuals
that are better are more likely to survive and propagate their genetic material.
The encoding of genetic information (genome) is done in a way that admits
asexual reproduction, which results in offspring’s that are genetically identi-
cal to the parent. Sexual reproduction allows some exchange and re-ordering
of chromosomes, producing offspring that contain a combination of information
from each parent. This is the recombination operation, which is often referred
to as crossover because of the way strands of chromosomes crossover during the
exchange. Diversity in the population is achieved by mutation. A typical evolu-
tionary (genetic) algorithm procedure takes the following steps: A population of
candidate solutions (for the optimization task to be solved) is initialized. New so-
lutions are created by applying genetic operators (mutation and/or crossover).

Algorithm 2. A Rough Set Reduct Algorithm Based on Genetic Algorithm

1: Calculate U
′
, U

′
pos using Eqs.(7) and (9)

2: Initialize the population randomly, and other parameters
3: while the stop criterion is not met do
4: Evaluate the fitness of each individual in the population
5: if POS

′
E �= U

′
pos then

6: the fitness is punished as the total number of the condition attributes
7: else
8: the fitness is the number of ‘1’ in the position
9: end if

10: Select best-ranking individuals to reproduce
11: Breed new generation through crossover operator and give birth to offspring
12: Breed new generation through mutation operator and give birth to offspring
13: Evaluate the individual fitnesses of the offspring
14: if POS

′
E �= U

′
pos then

15: the fitness is punished as the total number of the condition attributes
16: else
17: the fitness is the number of ‘1’ in the position
18: end if
19: Replace worst ranked part of population with offspring
20: end while
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The fitness (how good the solutions are) of the resulting solutions are evalu-
ated and suitable selection strategy is then applied to determine which solutions
will be maintained into the next generation. The procedure is then iterated
[38]. The pseudo-code for the genetic algorithm search method is illustrated in
Algorithm 2.

4 Experiments Using Some Benchmark Problems

For all experiments, Genetic algorithm (GA) was used to compare the perfor-
mance with PSO. The two algorithms share many similarities [33, 34]. Both
methods are valid and efficient methods in numeric programming and have been
employed in various fields due to their strong convergence properties. Specific
parameter settings for the algorithms are described in Table 1, where D is the
dimension of the position, i.e., the number of condition attributes. Besides the
first small scale rough set reduction problem shown in Table 2, the maximum
number of iterations is (int)(0.1 ∗ recnum + 10 ∗ (nfields − 1)) in each trial,
where recnum is the number of records/rows and nfields − 1 is the number of
condition attributes. Each experiment (for each algorithm) was repeated 3 times
with different random seeds. If the standard deviation is larger than 20%, the
times of trials were set to larger, 10 or 20.

To analyze the effectiveness and performance of the considered algorithms,
first we tested a small scale rough set reduction problem shown in Table 2.
In the experiment, the maximum number of iterations was fixed as 10. Each
experiment was repeated 3 times with different random seeds. The results (the

Table 1. Parameter settings for the algorithms

Algorithm ParameterName V alue

GA

size of the population (int)(10 + 2 ∗ sqrt(D))

Probability of crossover 0.8

Probability of mutation 0.08

PSO

Swarm size (int)(10 + 2 ∗ sqrt(D))

Self coefficient φ1 1.49

Social coefficient φ2 1.49

Inertia weight w 0.9 → 0.1

Clamping Coefficient ρ 0.5
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Table 2. A decision table

Instance c1 c2 c3 c4 d

x1 1 1 1 1 0

x2 2 2 2 1 1

x3 1 1 1 1 0

x4 2 3 2 3 0

x5 2 2 2 1 1

x6 3 1 2 1 0

x7 1 2 3 2 2

x8 2 3 1 2 3

x9 3 1 2 1 1

x10 1 2 3 2 2

x11 3 1 2 1 1

x12 2 3 1 2 3

x13 4 3 4 2 1

x14 1 2 3 2 3

x15 4 3 4 2 2

number of reduced attributes) for 3 GA runs were all 2. The results of 3 PSO runs
were also all 2. The optimal result is supposed to be 2. But the reduction result
for 3 GA runs is {2, 3} while the reduction results for 3 PSO runs are {1, 4} and
{2, 3}. Table 3 depicts the reducts for Table 2. Figure 1 shows the performance
of the algorithms for Table 2. For the small scale rough set reduction problem,
GA has faster convergence than PSO. There seems like a conflict between the
instances 13 and 15. It depends on conflict analysis and how to explain the
obtained knowledge, which is beyond the scope of this chapter.

Further we consider the datasets in Table 4 from AFS1, AiLab2 and UCI3.
Figures 2, 3, 4 and 5 illustrate the performance of the algorithms for lung-
cancer, lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer
dataset, the results (the number of reduced attributes) for 3 GA runs were 10:
{1, 3, 9, 12, 33, 41, 44, 47, 54, 56} (The number before the colon is the num-
ber of condition attributes, the numbers in brackets are attribute index, which
represents a reduction solution). The results of 3 PSO runs were 9: { 3, 8, 9,

1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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Table 3. A reduction of the data in Table 2

Reduct Instance c1 c2 c3 c4 d

{1, 4}

x1 1 1 0

x2 2 1 1

x4 2 3 0

x6 3 1 0

x7 1 2 2

x8 2 2 3

x9 3 1 1

x13 4 2 1

x14 1 2 3

x15 4 2 2

{2, 3}

x1 1 1 0

x2 2 2 1

x4 3 2 0

x6 1 2 0

x7 2 3 2

x8 3 1 3

x9 1 2 1

x13 3 4 1

x14 2 3 3

x15 3 4 2

12, 15, 35, 47, 54, 55}, 10: {2, 3, 12, 19, 25, 27, 30, 32, 40, 56}, 8: {11, 14, 24,
30, 42, 44, 45, 50}. For zoo dataset, the results of 3 GA runs all were 5: {3,
4, 6, 9, 13}, the results of 3 PSO runs were 5: {3, 6, 8, 13, 16, }, 5: {4, 6, 8,
12, 13}, 5: {3, 4, 6, 8, 13}. For lymphography dataset, the results of 3 GA runs
all were 7: {2, 6, 10, 13, 14, 17, 18}, the results of 3 PSO runs were 6: {2, 13,
14, 15, 16, 18}, 7: {1, 2, 13, 14, 15, 17, 18}, 7: {2, 10, 12, 13, 14, 15, 18}. For
mofn-3-7-10 dataset, the results of 3 GA runs all were 7: {3, 4, 5, 6, 7, 8, 9} and
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Table 4. Data sets used in the experiments

Dataset Size ConditionAttributes Class GA PSO

lung-cancer 32 56 3 10 8

zoo 101 16 7 5 5

corral 128 6 2 4 4

lymphography 148 18 4 7 6

hayes-roth 160 4 3 3 3

shuttle-landing-control 253 6 2 6 6

monks 432 6 2 3 3

xd6-test 512 9 2 9 9

balance-scale 625 4 3 4 4

breast-cancer-wisconsin 683 9 2 4 4

mofn-3-7-10 1024 10 2 7 7

parity5+5 1024 10 2 5 5

0 2 4 6 8 10
1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

Iteration

R

GA
PSO

Fig. 1. Performance of rough set reduction for the data in Table 2

the results of 3 PSO runs were 7: {3, 4, 5, 6, 7, 8, 9}. Other results are shown in
Table 4, in which only the best objective results are listed. PSO usually obtained
better results than GA, specially for the large scale problems. Although GA and
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Fig. 2. Performance of rough set reduction for lung-cancer dataset
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Fig. 3. Performance of rough set reduction for zoo dataset

PSO achieved the same results, PSO usually requires only very few iterations, as
illustrated in Fig. 4. It indicates that PSO have a better convergence than GA
for the larger scale rough set reduction problem, although PSO is worst for some
small scale rough set reduction problems. It is to be noted that PSO usually can
obtain more candidate solutions for the reduction problems.
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Fig. 4. Performance of rough set reduction for lymphography dataset

0 50 100 150 200 250
7

7.5

8

8.5

9

9.5

10

Iteration

R

GA
PSO

Fig. 5. Performance of rough set reduction for mofn-3-7-10 dataset

5 Application in fMRI Data Analysis

Functional Magnetic Resonance Imaging (fMRI) is one of the most important
tools for Neuroinformatics, which combines neuroscience and informatics science
and computational science to develop approaches needed to understand human
brain [35]. The study of human brain function has received a tremendous boost
in recent years due to the advent of the new brain imaging technique.
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With the development of the new technology, a mass of fMRI data is col-
lected ceaselessly. These datasets implicate very important information, which
need to be extracted and translated to intelligible knowledge. Recently most
of the research are focused on the activation features on the Region of Inter-
est (ROI) through statistical analysis for single experiment or using only a few
data. Neuroscientists or psychologists provide explanation for the experimental
results, which depends strongly on their accumulative experience and subjec-
tive tendency. What is more, it is difficult to deal with slightly large datasets.
So it is exigent to develop some computational intelligence methods to analyze
them effectively and objectively. Rough set theory provides a novel approach
to reduct the fMRI data and extract meaningful knowledge. There are usually
many reducts in the information system, which can be applied to generate multi-
knowledge. The rough set approach consists of several steps leading towards the
final goal of generating rules [36].

The main steps of the rough set approach are: (1)mapping of the informa-
tion from the original database into the decision system format; (2) completion
of data; (3) discretization of data; (4) computation of reducts from data; (5)
derivation of rules from reducts; (6) filtering of rules. One of most important
task is the data reduction process.

Algorithm 3. Feature selection & extraction algorithm for fMRI data
Step 1. Find out the most active voxels in several regions of brain under the t-test
of basic models in SPM99 and save their coordinates
Step 2. Scan fMRI image and search the voxels according to the coordinates saved
Step 3. Respectively average all voxels in the spherical region whose center is cor-
responding saved voxel and whose radius is a predefined constant. These results of
a single image are formed one feature vector
Step 4. If the image isn’t the last one, go to Step 2, otherwise, end

A typical normalized image contains more than 500,000 voxels, so it is impos-
sible that feature vector can contain so immense voxels. We transform datasets
from MNI template to Talairach coordinate system. Then we can use the re-
gion information in Talairach as features to reduce the dimensionality of the
images. We used a SPM99 software package4 and in-house programs for image
processing, including corrections for head motion, normalization and global fMRI
signal shift [37]. A simplified workflow is illustrated in Fig. 6. Feature selection
& extraction algorithm for fMRI data is described in Algorithm 3. The location
for feature selection & extraction is shown in Fig. 7.

We analyzed the fMRI data from three cognition experiments: Tongue move-
ment experiment, Associating Chinese verb experiment, and Looking at or silent
reading Chinese word experiment. They are involved in 9 tasks: 0 - Control task;
1 - Tongue movement; 2 - Associating verb from single noun; 3 - Associating verb
4 http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6. Pre-processing workflow for fMRI data

from single non-noun; 4 - Making verb before single word; 5 - Looking at num-
ber; 6 - Silent reading Number; 7 - Looking at Chinese word; 8 - Silent reading
Chinese word. Some of rules are described as follows:

Rule1: if M1=2, SMA=2, Broca=2 then Task=1;
Rule2: if BAs { 7,19,20,40,44,45 } =3, BSC=2 then Task=2;
Rule3: if BAs { 10,11,13,44,45 } =3, BSC=1 then Task=3;
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Fig. 7. Developed software interface for feature selection and extraction

Rule4: if BAs { 7,19,40 } =3, BSC=3 then Task=4;
Rule5: if SMA=2, Broca=3 then Task=6;
Rule6: if SMA=2, Broca=2, Wernike=3 then Task=8.

6 Conclusions

In this Chapter, we introduced the problem of finding optimal reducts using
particle swarm optimization and genetic algorithm approaches. The considered
approaches discovered the good feature combinations in an efficient way to ob-
serve the change of positive region as the particles proceed throughout the search
space. Population-based search approaches are of great benefits in the multiple
reduction problems, because different individual trends to be encoded to differ-
ent reduct. Empirical results indicate that PSO usually required shorter time
to obtain better results than GA, specially for large scale problems, although
its stability need to be improved in further research. PSO have a better conver-
gence than GA for the larger scale rough set reduction problem, although PSO
is worst for some small scale rough set reduction problems. PSO also can obtain
more candidate solutions for the reduction problems. The population-based al-
gorithms could be ideal approaches for solving the reduction problem. We also
illustrated an application in fMRI data analysis. Although the correctness of the
rules need neuroscientists to analyze and verify further, the approach is helpful
for cognition research.
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