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Preface

Along the years, rough set theory has earned a well-deserved reputation as a
sound methodology for dealing with imperfect knowledge in a simple though
fully mathematically supported way. The increasing number of international
conferences and prestigious journals addressing the topic are a vivid example
of the rapid advancements in the field and the significant outbreak experienced
during the last few years. We believe there are at least three major reasons that
could possibly shed light on the expanding interest of researchers worldwide
about rough sets:

1. Their formulation is deeply rooted on the very nature of ordinary sets, one
of the cornerstones of today’s mathematical and logical reasoning schemes.
This, in turn, facilitates its understanding to a very broad audience.

2. Their role as a complementary and reinforcing paradigm of many other re-
search areas and applications, which has led to a plethora of hybrid models
encompassing a still growing number of traditional methodologies, most of
them falling under the umbrella of soft computing and computational in-
telligence. Fuzzy sets, evolutionary algorithms, swarm intelligence, neural
networks and decision trees are just a few in a long list of approaches which
have largely profited from the incorporation of rough sets into their main
research avenues, eventually improving the performance and interpretation
of current data analysis tools.

3. The unique capability of rough sets for performing difficult data analysis
tasks such as attribute reduction, rule generation, data set characterization
in terms of attribute values or the computation of attribute significance and
dependency, without leaning upon any preliminary or additional information
about data, plus the relative simplicity of the computational implementa-
tions. Rough-set-driven data analysis stands today as a true landmark among
peer methodologies, enjoying a continued success yet open to future research
directions and areas posing severe restrictions and novel computing environ-
ments, such as ubiquitous computing.
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This edited volume aims at continue stressing the benefits of applying rough
sets in many real-life situations while still keeping an eye on topological aspects
of the theory as well as strengthening its linkage with other reasoning paradigms.

Part I is comprised of four chapters which intend to outline some theoretical
contributions. The original concept of rough set introduced by Z. Pawlak has
been extended in many different directions shortly after its very inception. Some
of these extensions have to do with loosening the requirement of the underlying
indiscernibility relation to be an equivalence relation. Chapter 1 is devoted to
present two different extensions of rough sets which rely upon fuzzy proxim-
ity and intuitionistic fuzzy proximity relations, respectively. The parallelism of
their basic properties with those of the conventional rough set model becomes
evident and several real life applications illustrating the practical use of these
generalizations are considered along the chapter.

Categories arise in mathematics and appear frequently in computer science
where algebraic and logical notions have powerful representations using categor-
ical constructions. Chapter 2 proposes a generalization of the standard rough
set operators, which are based on relations involving ordinary sets, to embrace
partially-ordered monads from which a theory of rough monads can be derived.
This turns rough set theory into a categorical methodology with a broad avenue
of further developments both from the theoretical and application standpoints.
The chapter illustrates the use of rough monads in management of drug inter-
actions and medical diagnosis.

Chapter 3 is concerned with the interpretation of both rough set and knowl-
edge space theories in light of granular computing. In order to arrive at a unified
framework bridging these two methodologies, it becomes necessary to analyze
their granular structures and approximations regardless the different types of
elementary granules and granular structures each of them utilizes for informa-
tion representation and processing. The result is a multilevel granular structure
with a set-theoretic formulation of granular structures as its building blocks.
The framework allows studying rough set analysis and knowledge spaces in a
common setting with results being applied interchangeably.

Finally, a study on some topological aspects of rough sets and approxima-
tion of classifications is the subject of Chapter 4. The author sheds light on the
different types of unions and intersections of rough sets in addition to the for-
mulation of a new concept of rough equivalence which captures the approximate
equality of sets at a higher level than the existing notion of rough equality. The
approximation of classifications is also revisited and some observations about
the properties of rules generated from information systems and their inherent
structure are made.

The second part of the book has to do with some applications of rough sets
in data mining activities. An interesting direction in rough set research is that
of clustering algorithms. Chapter 5 elaborates on how to endow rough cluster-
ing approaches with mechanisms of partial supervision, thus far being solely
conceived for fuzzy clustering. Partial supervision comes in the form of fuzzy
membership grades and allocation of patterns to positive or negative regions



Preface IX

of the sought knowledge structures (clusters). The chapter also provides some
insight on the influence of the type and number of knowledge-based hints being
furnished to the system.

Rough set theory has been regarded since its very inception as a powerful and
feasible methodology for performing data mining and knowledge discovery activ-
ities. Prominent results, also embracing the financial and economic realms, can
be witnessed in many research studies across literature. Although discriminant
analysis continues to be the preferred and most popular approach for making pre-
dictions in these areas, the application of rough-set-based data analysis leads,
most of the times, to high overall prediction accuracy and interpretable rule
bases. Despite this fact, prediction still remains a challenging and difficult goal
to achieve. In light of this, Chapter 6 presents a generic scheme for generating
decision rules for stock market prediction. Numerical attributes are handled via
rough set with Boolean reasoning (RSBR) approach and the rough confusion
matrix is used to evaluate the performance of the predicted reducts and classes.

On the other hand, a framework for modeling uncertainty in Web caching
scenarios has been crafted and formalized in Chapter 7. Web caching and pre-
fetching have been widely acknowledged as effective schemes to relieve the service
bottleneck and minimize the user access latency, both hot problems still en-
countered in today’s web applications. The proposed framework comprises three
modules, which exploit rough set capabilities to reduce the rules of log files and,
at the same time, enhance the prediction performance of the user behavior. The
induction engine module, for example, has an ID3-like learning algorithm based
on the minimum entropy principle.

The last four chapters present some rough hybrid models tailored for classi-
fication and attribute reduction purposes. Hybridization among computational
intelligence techniques has been regarded as both a successful paradigm and a
well-settled tendency in decision-making and machine learning fields, thus giving
rise to stronger, synergetic models, which can better cope with the huge amounts
of information available nowadays and draw precise knowledge in a more inter-
pretable way. Chapter 8 provides an overview of some rough hybrid approaches
and a thorough comparative study on their performance versus prominent, con-
ventional classifiers such as support vector machines and decision trees. Hybrid
models include neuro-fuzzy decision trees, rough-neuro-fuzzy decision trees and
fuzzy-rough classification trees in the context of software defect classification.
Conclusions about the types of metric data that need to be collected and the
readability of the generated rules are derived.

One of the most appealing properties of rough set theory lies in its ability
to spot and remove redundant attributes which are present in the information
systems we usually deal with. Given the exponential computational complexity
of feature selection, the call for heuristic approaches becomes a must. In par-
ticular, evolutionary algorithms offer impressive optimization capabilities due to
the multiple handling of potential problem solutions. Chapters 9 and 10 provide
an overview of such nature-inspired heuristics in their quest for suitable feature
subsets. Settled at the very core of the approaches, some concepts borrowed from
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rough set theory have become an integral part of the guiding principle ruling
the optimization scheme. Chapter 9 moves from greedy to swarm intelligence
approaches, also featuring a novel dynamic evolutionary technique and a search
strategy that substantially reduces the time needed to find appropriate solu-
tions (reducts). Chapter 10 emphasizes on particle swarm optimization and its
application to functional magnetic resonance imaging.

The main workflow of rough set data analysis (RSDA) is applied in Chapter 11
to draw knowledge from a set of events captured by protection, control and
monitoring devices in a substation network. Once again, the reduct computation
phase is largely profited from the presence of evolutionary approaches (this time,
Genetic Algorithms), which also make possible to dynamically add more events
into the system owing to their amazing adaptive capabilities. The ensuing rule
base identifies and isolates the most probable faulty section in the network, hence
improving the outage response time. The case studies span from simple scenarios
to complex distribution substations comprised of various types of relay models
and even include time series data.

We want to thank the authors for submitting their contributions to this vol-
ume and the prominent experts in the field all over the world who were willing
to devote a share of their valuable time in reviewing the articles and providing
insightful remarks.

The kind assistance we got during the publication phase from Thomas
Ditzinger and Heather King of Springer-Verlag is gratefully acknowledged.

Santa Clara, Cuba Ajith Abraham
September 2008 Rafael Falcón

Rafael Bello
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Part I

Theoretical Contributions to Rough Set Theory



Rough Sets on Fuzzy Approximation Spaces and
Intuitionistic Fuzzy Approximation Spaces

B.K. Tripathy

School of Computing Sciences, V.I.T. University, Vellore, T.N. 632 014, India
tripathybk@rediffmail.com

Summary. In the past few years the original concept of rough sets, as introduced by
Pawlak [26] has been extended in many different directions. Some of these extensions
are obtained by relaxing the requirement of the basic relations to be equivalence re-
lations [14,15,31,32,34,35,37,38].That is by dropping the requirement of transitivity or
symmetry. One such approach is to replace the equivalence relations by fuzzy proxim-
ity relations. The notions of rough sets thus generated are called rough sets defined
upon fuzzy approximation spaces [14,15]. A generalization of this is obtained by taking
intuitionistic fuzzy proximity relations instead of equivalence relations, called rough
sets on intuitionistic fuzzy approximation spaces [37,38]. In this chapter we shall be
concentrating on the study of these two notions of rough sets. It is our objective to
define these types of rough sets along with related concepts and establish their prop-
erties which are parallel to those of basic rough sets. Several real life applications shall
be considered in the sequel to illustrate the power and necessity of these generalized
models of rough sets in the representation and study of imperfect knowledge.

1 Introduction

Most of our traditional tools for formal modeling, reasoning and computing are
crisp, deterministic and precise in character. Real situations are very often not
crisp and deterministic and they cannot be described precisely. For a complete
description of a real system often one would require by far more detailed data
than a human being could ever recognize simultaneously, process and under-
stand. This observation leads to the extension of the concept of crisp sets so as
to model imprecise data which can enhance the modeling power and applicabil-
ity of Mathematics in different branches of knowledge. Philosophers, logicians
and mathematicians have tackled the problem of imperfect knowledge for a long
time. Recently, the problem also became a crucial issue for computer scientists,
particularly in the area of Artificial Intelligence. There are many approaches for
understanding and manipulating imperfect knowledge. The first and the most
successful approach so far is, no doubt, Zadeh’s fuzzy set theory [45].

In this chapter we shall be dealing with two generalization of basic rough
sets introduced by Pawlak, namely rough sets on fuzzy approximation spaces
and rough sets on intuitionistic fuzzy approximation spaces. There are several
other generalizations of the basic rough set notion. However, our approach is

A. Abraham, R. Falcón, and R. Bello (Eds.): Rough Set Theory, SCI 174, pp. 3–44.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 B.K. Tripathy

different from the other extensions in the sense that from the base relations
(fuzzy proximity relation in case of rough sets on fuzzy approximation spaces and
intuitionistic fuzzy proximity relation in case of rough sets on intuitionistic fuzzy
approximation spaces) we are deriving equivalence relations and basing upon
these derived equivalence relations we define the notions of upper approximation
and lower approximation of sets. So, must of the concepts on basic rough set
theory can be mapped onto these new situations. The interesting part lies in the
applications, which shall be illustrated through several examples in the chapter.
Most importantly, the proximity and non-proximity parameters for attribute
values on information spaces provide controls, which can be utilized as per the
requirement of the situations.

1.1 Fuzzy Sets

Fuzzy set theory provides a strict mathematical framework in which vague con-
ceptual phenomena can be preciously and rigorously studied. Fuzziness is par-
ticularly frequent, however in all areas in which human judgement, evaluation
and decisions are important. The basic idea behind the introduction of fuzzy set
is to allow graded membership of elements instead of dichotomous membership.
There are two types of fuzziness with respect to their origin ; namely intrinsic
fuzziness and informational fuzziness.

The meaning of a word might even be well defined, but when using the word
as a label for a set, the boundaries within which objects do or do not belong to
the set become fuzzy or vague. For example, in the terms such as “tall man” or
“beautiful women” the meaning of the words “tall” or “beautiful” are fuzzy and
context sensitive. A person who is considered to be tall in Africa may not be so
in Asia and similarly a tall person in Asia may not be considered tall in Europe.
Similarly, the word “beautiful” has varied meaning in different contexts. The
above are examples of intrinsic fuzziness.

On the other hand, in the term “trustworthy customer” the word “trustwor-
thy” can possibly be described completely and crisply if we use a large number
of descriptors. All these descriptor values may not be known or may be known
but difficult to handle simultaneously. So, such terms come under “subjective
category” and become fuzzy. This is an example of informational fuzziness.

Fuzziness has a major role to play in the branch of Computer Science. The
development of branches like fuzzy database systems [9,10], fuzzy pattern recog-
nition [25], fuzzy image processing [4,5], fuzzy logic [47,48], fuzzy Boolean algebra
[43] and soft computing are results of such applications and are only a few in a
long list.

In fact, the notion of fuzzy set is defined through the concept of membership
function, which generalizes the corresponding concept of characteristic function
of crisp sets and is defined as follows [45].

Definition 1. A fuzzy set A over a universal set U is given by its membership
function µA which is defined as

µA : U → [0, 1],
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such that every x ∈ U is associated with its membership value µA(x) which is a
real number lying in [0,1].

As mentioned above, fuzzy sets have better modeling power than crisp sets. The
graded membership value assigned to elements provides additional modeling
power to fuzzy sets. Every element also has a non-membership value assigned to
it, which is the one’s complement of its membership value. Formally, for a fuzzy
set ’A’ with membership function µA, the non-membership function denoted by
νA is defined as

νA : U → [0, 1],

such that νA(x) = 1 − µA(x), for every x ∈ U .
If we move back to crisp sets, then the membership function defines a set and

the non-membership function defines its complement.

1.2 Intuitionistic Fuzzy Sets

It was observed by K.T.Attanasov [1,2] that the membership and non-
membership values of an element with respect to a collection of elements from
a universe may not add up to 1 in all possible cases. Let us consider some real
life examples. In the exit polls in which we find that besides the options “yes”
or “no” invariably there is a third option named “can’t say”. The last option
expresses the hesitation or reluctance among the people participating in the
poll. Using the information available with them, it is impossible for them to go
for any of the first two options. Another example is the voting in parliament.
Some members vote in favour of a resolution, some vote against it, while others
abstain from voting. So, if we consider the collection of people voting for the
resolution then the last group of people can neither be categorized as belonging
to the collection nor not belonging to it. Similarly, let us consider the example
of a “trustworthy customer”. If a customer is trusted in 70 cases out of 100, we
cannot conclude that he/she cannot be trusted in all the remaining 30 cases.
There shall be obvious cases in which one does not have sufficient information
to conclude in either way. The cases where an element can not be character-
ized as either belonging to or not belonging to a collection forms its hesitation
part. Based upon the concept of the hesitation notion of intuitionistic fuzzy sets
was introduced by Attanasov [2] as an extension of the notion of fuzzy sets. We
formally define it as follows:

Definition 2. An intuitionistic fuzzy set A on a universe U is defined by the
two functions; membership function µA and non-membership function νA such
that

µA,νA : U → [0, 1],

where 0 ≤ µA(x) + νA(x) ≤ 1, for all x ∈ U .

The hesitation function ΠA for an intuitionistic fuzzy set is given by

ΠA(x) = 1 − µA(x) − νA(x), for all x ∈ A.
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For a fuzzy set ΠA(x) = 0 for all x ∈ A. In the extreme case when µA(x) = 0
and νA(x) = 1, it is certain that the element x does not belong to A. Also, when
µA(x) = 1 and νA(x) = 0, it is certain that the element x does not belong to
A. Finally, when µA(x) = 0 and νA(x) = 0, we have ΠA(x) = 1 and hence it is
completely undecidable whether the element is in A or not in A.

1.3 Rough Sets

Rough set theory, introduced by Pawlak [26] is a new mathematical approach
to vagueness. The basic philosophy of rough sets is founded on the assumption
that with every object of the universe of discourse, we associate some infor-
mation (data, knowledge). Objects characterized by the same information are
indiscernible in view of the available information about them. The indiscernibil-
ity relation generated in this way is the mathematical basis for rough set theory.
Any set of all indiscernible objects is called an elementary set and forms a basic
granule of knowledge about the universe. Any set of objects, being a union of
some elementary sets, is referred to as crisp (precise);otherwise a set is rough
(imprecise, vague). Consequently, each rough set has boundary line cases that
are objects which can not be classified with certainty as members of a set or its
complement. The idea of rough set consists of approximation of a set by a pair
of sets, called the lower and upper approximation of the set.

In the beginning rough sets have been compared to fuzzy sets. These two
theories were thought to be competitors in the study of imperfect knowledge.
However, such a comparison is found to be incorrect [11]. Indiscernibility and
vagueness are distinct facets of imperfect knowledge. Indiscernibility refers to
the granularity of knowledge that affects the definition of universes of discourse.
Vagueness is due to the fact that categories of natural language are often gradual
notions and refer to sets with smooth boundaries. The basic assumption in rough
set theory is that knowledge is deeply seated in the classificatory abilities of
human beings and other species. Classification on more abstract levels seems
to be a key issue in reasoning, learning and decision making. Thus knowledge
in rough set approach is necessarily connected with the variety of classification
patterns related to specific parts of the real or abstract world, which we call as
universe. Knowledge consists of a family of classification patterns of a domain of
interest, which provide explicit facts about reality. Together with the reasoning
capacity we are able to deliver implicit facts derivable from explicit knowledge.

We know that equivalence relations induce classifications on a universal set
and vice versa. So, for mathematical reasons equivalence relations are used in-
stead of classifications to define a rough set.

Let U(�= φ) be a finite set of objects, called the universe and R be an equiv-
alence relation over U . By U/R we denote the family of all equivalence classes
of R (or classification of U) referred to as categories or concepts of R and [x]R
denotes a category in R containing an element x ∈ U . By a knowledge base, we
understand a relation system K = (U,�), where U is as above and � is a family
of equivalence relations over U . A knowledge base is also called an approximation
space [14,15].
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For any subset P (�= φ) ⊆ � , the intersection of all equivalence relations in
P is denoted by IND(P ) and is called the indiscernibility relation over P . The
equivalence classes of IND(P ) are called P-basic knowledge categories about
U in K. For any Q ∈ �, Q is called a Q-elementary knowledge about U in
K and equivalence classes of Q are called Q-elementary concepts of knowledge
�. The family of P-basic categories for all P (�= φ) ⊆ � is called the family of
basic categories in knowledge base K. By IND(K), we denote the family of all
equivalence relations defined in K. Symbolically, IND(K) = {IND(P ) : P (�=
φ) ⊆ �}.

For any X ⊆ U and an equivalence relation R ∈ IND(K), we associate two
subsets,RX = ∪{Y ∈ U/R : Y ⊆ X} and R̄X = ∪{Y ∈ U/R : Y ∩ X �= φ},
which are called the R-lower and R-upper approximations of X respectively. The
R-boundary of X is denoted by BNR(X) and is given by BNR(X) = R̄X−RX .
The elements of RX are those elements of U which can be certainly classified
as elements of X with the knowledge of R and R̄X is the set of elements of X
which can be possibly classified as elements of X employing knowledge of R. The
borderline region is that area of the universe which is not decidable. We say X
is rough with respect to R if and only if RX �= R̄X ; equivalently BNR(X) �= φ.
X is said to be R-definable if and only if RX = R̄X , or BNR(X) = φ. So, a set
is rough with respect to R if and only if it is not R-definable.

1.4 Motivation

The original rough set theory proposed by Pawlak [26] is based upon equivalence
relations defined over a universe. It is the simplest formalization of indiscerni-
bility. However, it cannot deal with some granularity problems we face in real
information systems. This has lead to many meaningful and interesting exten-
sions of the original concept. One such extension is to take tolerance or similarity
relations [28,31,32,34,35] instead of equivalence relations. The rough sets thus
generated have better generality and applicability than the basic ones. Another
such approach is to take fuzzy similarity relations instead of equivalence rela-
tions as the basics, which can deal with data sets having both vagueness and
fuzziness and the models of rough sets obtained are called fuzzy rough sets
[18,19,20,21,23,44]. A covering of a universe is a generalization of the concept
of partition of the universe. Rough sets based on coverings instead of partitions
have been studied in several papers [6,7,8,22,29,30,36,49,50,51]. A complete com-
pletely distributive (CCD) lattice is selected as the mathematical foundation on
which definitions of lower and upper approximations that form the basics con-
cepts of rough set theory are proposed in [16]. These definitions result from the
basic concepts of cover introduced on a CCD lattice and improve the approxima-
tions of the existing crisp generalizations of rough sets with respect to similarity
relation and covers.

We would like to note that covers are also available in case of similarity re-
lation based rough sets introduced by Slowinski and Vanderpooten [34,35]. So,
similarity relation-based rough sets can be brought into the framework of cover-
ing rough set theory from the theoretical viewpoint. However, there are just some
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applications of covering rough sets which have been developed so far. One such
development is to attribute reduction of consistent and inconsistent covering
decision systems with covering rough sets due to Degang et al. [17].

The unification of the approaches obtained through the development of gener-
alized rough approximation on CCD lattice is obviously an abstraction. Abstrac-
tions in numerous cases restrict the applicability and only a few of the beautiful
properties of the base cases are retained. To cite some examples from mathe-
matics we can take the generalization of real numbers (R) and complex numbers
(R2) to Rn and its further abstractions. Some of the beauty of R, like ordering,
is lost in R2 and this trend continued further. Taking another example, basic
fuzzy subset of a set X is sometimes dubbed as just a subset of X × [0, 1], which
in turn is a subset of X ×R. But the applicability of fuzzy sets is much beyond
the study of X × R and needs no explanation.

In this chapter we have tried to extend the concepts of basic rough approx-
imation by considering fuzzy proximity relations [46] and intuitionistic fuzzy
proximity relations instead of equivalence relations. These type of relations in-
troduce the fuzzy concept into the base relations and side by side relaxes the
requirement of transitivity also. There are many real life applications of these
theories as illustrated in [14,15,37,38,40,41,42]. We present these concepts in a
unified manner and make further inroads by the introduction of new concepts as
extensions from concepts in base case with suitable examples to either illustrate
the concepts or provide applications to real life situations.

It is to be noted that the concept of rough sets on fuzzy approximation spaces
depends upon a parameter α , called the criterion of proximity and the concept
of rough sets on intuitionistic fuzzy approximation spaces depends upon two pa-
rameters α and β, called the criterion of proximity and criterion of non proximity
respectively. These criteria are to be set beforehand in any application.

1.5 Fuzzy Proximity Relation

The concept of crisp relations has been extended in a natural way to define fuzzy
relations as follows:

Definition 3. Let U be a universal set and X ⊆ U . Then a fuzzy relation [13,24]
on X is defined as any fuzzy set defined on X × X .

Definition 4. A fuzzy relation R is said to be fuzzy reflexive on X ⊆ U if it
satisfies

µR(x, x) = 1, for all x ∈ X. (1)

Definition 5. A fuzzy relation R is said to be fuzzy symmetric on X ⊆ U if it
satisfies

µR(x, y) = µR(y, x), for all x, y ∈ X. (2)

Definition 6. A fuzzy relation on X ⊆ U is said to be a fuzzy proximity relation
[15] if it satisfies both (1) and (2).
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Definition 7. Let X, Y ⊆ U . A fuzzy relation from X to Y [11,17] is a fuzzy set
defined on X×Y characterized by the membership function µR : X×Y → [0, 1].

Definition 8. For any α ∈ [0, 1], the α -cut of R, denoted by Rα is a subset of
X × Y , given by Rα = {(x, y) : µR(x, y) ≥ α}.
Let R be a fuzzy proximity relation on U. Then, for any α ∈ [0, 1], the elements
of Rα are said to be α-similar to each other with respect to R and we write
xRαy. It may be noted that we do not distinguish between xRαy and yRαx
because of (2). So, we have xRαy if and only if µR(x, y) ≥ α.

Two elements x and y in U are said to be α-identical with respect to R
(written as x R(α ) y), if either x and y are α -similar to each other with respect
to R or x and y are transitively α -similar ; that is, there exists a sequence of
elements u1, u2, ., un in U such that xRαu1, u1Rαu2, ., unRαy.

It can be easily verified that for each fixed α ∈ [0, 1], the relation R(α) is an
equivalence relation on U. We shall denote the equivalence classes generated by
the equivalence relation R(α) by R∗

α.

1.6 Intuitionistic Fuzzy Proximity Relation

The concept of fuzzy relation has been extended to define intuitionistic fuzzy
relation in a natural way as follows:

Definition 9. An intuitionistic fuzzy relation [3,11,12] on a universal set U is
an intuitionistic fuzzy set defined on U × U .

Definition 10. An intuitionistic fuzzy relation R on a universal set U is said to
be intuitionistic fuzzy reflexive (IF-reflexive) if

µR(x, x) = 1 and νR(x, x) = 0, for all x ∈ X. (3)

Definition 11. An intuitionistic fuzzy relation R on a universal set U is said to
be intuitionistic fuzzy symmetric (IF-symmetric ) if

µR(x, y) = µR(y, x) and νR(x, y) = νR(y, x), for all x, y ∈ X. (4)

Definition 12. An intuitionistic fuzzy relation R on a universal set U is said to
be an intuitionistic fuzzy proximity (IF-proximity) relation[37,38] if it satisfies
both (3) and (4).

It is clear that every fuzzy proximity relation is an IF-proximity relation. Let
us define

J = {(m, n)|m, n ∈ [0, 1] and 0 ≤ m + n ≤ 1}.
Definition 13. Let R be an IF-proximity relation on U. Then for any (α, β) ∈ J ,
the (α, β)-cut of R is denoted by Rα,β and is given by

Rα,β = {(x, y)|µR(x, y) ≥ α and νR(x, y) ≤ β}.
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Definition 14. Let R be an IF-proximity relation on U. If (x, y) ∈ Rα,β then
we say that x and y are (α, β) -similar and write ′xRα,βy′.

Definition 15. Let R be an IF-proximity relation on U. For any (α, β) ∈ J we
say that two elements x and y are (α, β)-identical if xRα,βy or x is transitively
(α, β) -similar to y; that is, there exists elements u1, u2, ..., un ∈ U such that
xRα,βu1, u1Rα,βu2, ..., unRα,βy and write ′xR(α, β)y′.

Note 1. It can be proved that the relation R(α, β) is an equivalence relation on
U for each fixed (α, β) ∈ J . For any (α, β) ∈ J ,

(i) xR(α, β)x for all x, as by definition of R, µR(x, x) = 1 ≥ α and υR(x, x) =
0 ≤ β. So, R(α, β) is reflexive.
(ii) Next, suppose xR(α, β)y. Then two cases arise. In the first case, xRα,βy. So
µR(x, y) ≥ α and υR(x, y) ≤ β.

But µR(x, y) ≥ α ⇒ µR(y, x) ≥ α and υR(x, y) ≤ β ⇒ υR(y, x) ≤ β. So we get
yR(α, β)x. The proof in the other case is similar. Hence, R(α, β) is symmetric.
(iii) Finally, let xR(α, β)y and yR(α, β)z. Then in the most general case, for
some n and m there exists u1, u2, ..., un, v1, v2, ..., vm such that

xRα,βu1, ..., unRα,βy, yRα,βv1, ..., vmRα,βz.

But, this in turn implies that xR(α, β)z. So,R(α, β) is transitive.
For each fixed (α, β) ∈ J , we shall denote the equivalence classes generated

by the equivalence relation R (α, β) by R∗
α,β .

1.7 Chapter Structure

In this sect. we have unwound the general background of imperfect or imprecise
data and the basic models which capture much data. In the sequel the notions of
fuzzy set, intuitionistic fuzzy set and rough sets are introduced. In sect. 1.4 we
put the objective of the chapter in proper perspective with reference to current
trends of research in this direction. The first major topic of discussion in this
chapter is rough sets on fuzzy approximation space, which is based upon the
concept of fuzzy proximity relation defined in sect. 1.5. Similarly the notion of
intuitionistic fuzzy proximity relation is introduced in sect. 1.6 on which the
major topic of study, “Rough sets on intuitionistic fuzzy approximation spaces”
is based upon.

In sect. 2 we present rough sets on fuzzy approximation spaces. The first
two subsections under this sect. deal with preliminaries leading to definition of
the concept and elementary properties associated with it. Subsequently we shall
study the problems of reduction of knowledge, relative reduct and relative core
of knowledge, dependency of knowledge and partial dependency of knowledge in
fuzzy approximation spaces. We conclude this sect. with an application of the
concepts developed in it to the study of performance analysis of students and
determine the important characteristics controlling it at a fixed level of proxim-
ity. This can be termed as an advanced case study as we have not considered
real data. In sect. 3 the concept of intuitionistic fuzzy approximation space has
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been introduced and its general properties are studied. In sect. 4 the problem
of knowledge reduction in IF-approximation spaces is studied. The topological
property of kinds of rough sets has been extended to the context of both fuzzy
approximation space and intuitionistic fuzzy approximation space. In sect. 5 this
extended notion has been presented and properties of kinds of union and inter-
section of such rough sets have been presented. Section 6 deals with relative
reduct and relative core of knowledge, sect. 7 deals with dependency of knowl-
edge and sect. 8 deals with partial dependency of knowledge in IF-approximation
spaces. An illustrative example which deals with the real life problem of selec-
tion of supporting books by a student has been tackled with the help of the
concepts developed on IF-approximation spaces. Also, we have made compari-
son of the concepts with their counterparts on fuzzy approximation spaces. This
follows with a conclusion and finally we end up with an extensive bibliography
of materials referred for the compilation of the chapter.

2 Rough Sets on Fuzzy Approximation Spaces

In this sect., we shall discuss on an extension of basic rough sets, which is de-
fined through less stringent relations than the equivalence relations. In fact, we
consider fuzzy proximity relations defined in sect. 2.4, which are more general
and abundant than equivalence relation as basic relations and define rough sets
on the generated approximation space, which are called rough sets on fuzzy
approximation spaces.

2.1 Preliminaries

Definition 16. For any set of fuzzy proximity relations �, the pair K = (U,�)
is called a fuzzy approximation space [14,15].

For any fixed α ∈ [0, 1], � generates a set of equivalence relations �(α) and
we call the associated space K(α) = (U,�(α)) as the generated approximation
space corresponding to K and α.

Definition 17. Let K = (U,�) be a fuzzy approximation space and X ⊆ U .
Then for any fixed α ∈ [0, 1], the rough set of X in the generated approximation
space K(α) and corresponding to the equivalence relation R(α) ∈ IND(K(α))
is denoted by (RXα, R̄Xα), where

RXα =
⋃

{Y : Y ∈ R∗
αY ⊆ X}. (5)

and
R̄Xα =

⋃
{Y : Y ∈ R∗

αY ∩ X �= φ}. (6)

RXα and R̄Xα are called the α-lower approximation and α-upper approximation
of X respectively.

Definition 18. Let X ⊆ U , α ∈ [0, 1] and R(α) ∈ IND(K(α)). Then X is said
to be (R, α)-discernible (that is (R, α)-definable) if and only if RXα = R̄Xα.
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For simplicity of notation, whenever the relation is clear from the context we
write (Xα, X̄α) for (RXα, R̄Xα).

2.2 Properties

Several properties of rough sets on fuzzy approximation spaces have been estab-
lished by De [14,15]. We first state these properties below, which are parallel to
the corresponding properties in the basic case. The proofs of these properties
are similar to those in the basic case and we omit them. In fact, some of the
proofs in the generalised form shall be provided when we deal with rough sets
on intuitionistic fuzzy approximation spaces. But the applications are notewor-
thy. We shall consider several examples to illustrate the applications. Also, we
shall carry out the extension process further by the introduction of new parallel
concepts and demonstrate their applicability.

Property 1. [14] Let R be a fuzzy relation from X to Y. Then for any two level
values α1 and α2 ∈ [0, 1] if α1 ≥ α2 then

(i) Rα1 ⊆ Rα2

(ii) R(α1) ⊆ R(α2).
(iii) R∗

α1
⊆ R∗

α2
.

Property 2. [14] If R and S are two fuzzy relations on X × Y then for all
α ∈ [0, 1],

(i) (R ∪ S)α = Rα ∪ Sα.
(ii) (R ∩ S)α = Rα ∩ Sα.
(iii) (R ∪ S)(α) ⊆ R(α) ∪ S(α)
(iv) (R ∩ S)(α) ⊇ R(α) ∩ S(α).

Property 3. [14] If R and S are two fuzzy relations on U then for all α ∈ [0, 1].

(i) (R ∪ S)∗α ⊆ R∗
α ∪ S∗

α.
(ii) (R ∩ S)∗α ⊇ R∗

α ∩ S∗
α.

Property 4. [14] For any fixed α ∈ [0, 1] and X ⊆ U , we have

(i) Xα ⊆ X ⊆ X̄α.
(ii) φ

α
= φ = φ̄α and Uα = U = Ūα.

(iii) (X ∪ Y )α = X̄α ∪ Ȳα.
(iv) (X ∪ Y )

α
= Xα ∩ Y α.

(v) X ⊆ Y implies Xα ⊆ Y α.
(vi) X ⊆ Y implies X̄α ⊆ Ȳα.
(vii) (X ∪ Y )

α
⊇ Xα ∪ Y α

(viii) (X ∪ Y )α ⊆ X̄α ∩ Ȳα.

Property 5. [14] If α1 ≥ α2 then

(i) Xα1
⊆ Xα2

(ii) X̄α1 ⊆ X̄α2 .
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Property 6. [14] Let R and S be two fuzzy proximity relations on U and α be
a chosen level threshold. Then

(i) (R ∪ S)
α
X ⊆ RαX ∪ SαX .

(ii) (R ∪ S)αX ⊇ R̄αX ∪ S̄αX .
(iii) (R ∩ S)

α
X ⊇ RαX ∩ SαX .

(iv) (R ∩ S)αX ⊆ R̄αX ∪ S̄αX .

2.3 Reduction of Knowledge in Fuzzy Approximation Spaces

It is always advantageous to know and find out whether the whole knowledge is
necessary for defining some categories available in the knowledge considered or
a portion of it is sufficient for the purpose. This topic is referred as reduction of
knowledge and has importance in partial applications.

In this section we shall introduce the concept of α -dispensability and α -
indispensability of relations alongwithα -dependency andα -independency of fam-
ily or relations.The fundamental concepts ofα -reduct and α -core are to be defined
and their properties are to be studied, which are very important in the context of
the topic of this section. The concept shall be illustrated through an example.

Definition 19. Let � be a family of fuzzy proximity relations on U and α ∈ [0, 1].
For any R ∈ �, we say that R is α-dispensable or α-superfluous in � if and only
if IND(�(α)) = IND(�(α) − R(α)). Otherwise, R is α-indispensable in �.

� is said to be α-independent if each R ∈ � is α -indispensable Otherwise, �
is α-dependent.

Definition 20. For a fixed α ∈ [0, 1], let P (�= φ) ⊆ �. Then Q ⊆ P is a α-reduct
of P if

Q is α − independent. (7)

and
IND(Q(α)) = IND(P (α)). (8)

It is denoted by α-RED(P). That is, α-RED(P) = {Q : Q ⊆ P ,Q is α -independent
and IND(Q(α)) = IND(P (α))}. Hence, P may have many α-reducts, for each
fixed α ∈ [0, 1].

Definition 21. Let P (�= φ) ⊆ �. Then, for a fixed α ∈ [0, 1], the set of all
α -indispensable relations in P is called the α-core of P and it is denoted by
α-CORE (P). That is,

α -CORE (P) = {R : R ∈ P and R is α-indispensable in P }.
Theorem 1. For each fixed α ∈ [0, 1], if Q is α-independent and P ⊆ Q then P
is also α-independent.

Proof. Suppose on the contrary that, P ⊆ Q and P is α-dependent.
Then there exists S ⊂ P, such that IND(S(α)) = IND(P (α)).
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Hence, IND(S(α) ∪ (Q(α) − P (α))) = IND(P (α) ∪ (Q(α) − (P (α))) =
IND(Q(α)), where S ∪ (Q − P ) ⊂ Q. Thus Q is α-independent, which is a
contradiction.

The following result can be obtained from the Theorem 1.

Corollary 1. For a fixed α ∈ [0, 1] , if P ⊂ Q and P is α-dependent, then Q is
α-dependent.

Theorem 2. For each fixed α ∈ [0, 1], α -CORE(P) =
⋂

α -RED(P), where
α-RED(P) is the family of all α -reducts of P.

Proof. If Q is a α -reduct of P , then IND(P (α))) = IND(Q(α)).
Let R ∈ P−Q. Then Q ⊆ P−{R} ⊂ P and hence IND(Q(α)) ⊆ IND(P (α)−

R(α)) ⊆ IND(P (α)).
Thus R is α-superfluous in P, that is R /∈ α -CORE(P).
Hence α-CORE (P ) ⊆ { Q : Q is a α-reduct of P }.
That is α-CORE (P ) ⊆

⋂
{ Q : Q ∈ α -RED(P) }.

Now, suppose R ∈ α -CORE(P). Then R is α-dispensable in P. Hence,
IND(P (α) − {R(α)}) = IND(P (α)).

So, there exists an α-independent subset S ⊆ P− { R } such that IND
(S(α)) = IND(P (α)).

Obviously, S is a α-reduct of P and R /∈ S.
So, { S : S is a α-reduct of P } ⊆ α -CORE(P).
That is,

⋂
{ Q : Q α-RED(P) } ⊆ α -CORE(P).

Note 2. As in the basic cases, from the above result, we conclude that the α-core
can be interpreted as the most characteristic part of the knowledge to degree α,
which can not be eliminated when reducing knowledge in a fuzzy approximation
space. The smallest α-reduct of R is the α-core of R. So α-core can be used
as a basis for computation of all α-reducts; that is, the α-core is included in
every α-reduct. We illustrate the computation of α-core and α-reduct in fuzzy
approximation spaces through the following example:

Example 1. Consider the universal set U = {x1, x2, x3, x4, x5}. Suppose each
object xi is associated with the attributes a, b, c and d. Suppose each of the
attributes defines a fuzzy proximity relation on U.

We define the fuzzy proximity relations P, Q, R and S over U corresponding
to the attributes a, b, c and d respectively in the form of the following tables.

Table 1. Fuzzy proximity relation for attribute P

P x1 x2 x3 x4 x5

x1 1 0.3 0.6 0.8 0.5
x2 0.3 1 0.7 0.4 0.4
x3 0.6 0.7 1 0.2 0.8
x4 0.8 0.4 0.2 1 0.5
x5 0.5 0.4 0.8 0.5 1
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Table 2. Fuzzy proximity relation for attribute Q

Q x1 x2 x3 x4 x5

x1 1 0.3 0.4 0.2 0.5
x2 0.3 1 0.8 0.6 0.6
x3 0.4 0.8 1 0.3 0.9
x4 0.2 0.6 0.3 1 0.7
x5 0.5 0.2 0.9 0.7 1

Table 3. Fuzzy proximity relation for attribute R

R x1 x2 x3 x4 x5

x1 1 0.3 0.2 0.8 0.7
x2 0.3 1 0.5 0.3 0.5
x3 0.2 0.5 1 0.6 0.4
x4 0.8 0.3 0.6 1 0.9
x5 0.7 0.5 0.4 0.9 1

Table 4. Fuzzy proximity relation for attribute S

S x1 x2 x3 x4 x5

x1 1 0.3 0.2 0.2 0.5
x2 0.3 1 0.5 0.3 0.2
x3 0.2 0.5 1 0.2 0.4
x4 0.2 0.3 0.2 1 0.5
x5 0.5 0.4 0.4 0.5 1

Table 5. Fuzzy proximity relation for IND(�(α))

IND(�(α)) x1 x2 x3 x4 x5

x1 1 0.3 0.2 0.2 0.5
x2 0.3 1 0.3 0.3 0.2
x3 0.2 0.3 1 0.2 0.4
x4 0.2 0.3 0.2 1 0.4
x5 0.5 0.2 0.4 0.4 1

Here � = {P, Q, R, S} is a family of fuzzy proximity relations over U.
Suppose α = 0.6. Then we get the following partitions based on fuzzy prox-

imity relations.
U/P (α) = {{x1, x2, x3, x4, x5}} , U/Q(α) = {{x1}, {x2, x3, x4, x5}} , U/R

(α) = {{x1, x3, x4, x5}, {x2}} , U/S(α) = {{x1}, {x2}, {x3}, {x4}, {x5}}.
The fuzzy proximity relation corresponding to IND(�(α)) is given by Table 5.
So, U/IND(�(α)) = {{x1}, {x2}, {x3}, {x4}, {x5}}.
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Now, U/IND((�−P )(α)) = {{x1}, {x2}, {x3}, {x4}, {x5}} = U/IND(�(α)).
U/IND((� − Q)(α)) = {{x1}, {x2}, {x3}, {x4}, {x5}} = U/IND(�(α)).
U/IND((� − R)(α)) = {{x1}, {x2}, {x3}, {x5}, {x4}} = U/IND(�(α)).
U/IND((� − S)(α)) = {{x1}, {x2}, {x3, x4, x5}} �= U/IND(�(α)).
Here the relations P, Q and R are α-dispensable in � whereas S is α-

indispensable in �. So, { P, S }, { Q, S } and { S, R } are the α-reducts of
� and � is α-dependent.

From above, we get α REDUCT (�) = { {P, S }, { Q, S }, { S, R } }.
So, α -CORE (�) = { P, S } ∩ { Q, S } ∩ { S, R } = S.

Similarly, we can get the different α-reducts and α-cores for different values
of α ∈ [0, 1], which helps to find the core as per our level of requirement.

2.4 Relative Reducts and Relative Core of Knowledge in Fuzzy
Approximation Spaces

In rough set philosophy, according to Pawlak [27], the discovery of inference
rules in rough set context can be formulated as : how from a given knowledge
another knowledge can be induced. In this section we generalize the concepts of
α-core and α-reduct discussed in the previous section so that these generalized
concepts are more suitable from applications point of view.

Definition 22. Let P and Q be two fuzzy proximity relations over the universe
U. For every fixed α ∈ [0, 1], the α-positive region of P with respect to Q can be
defined as

α − POSP Q =
⋃

Xα∈U/Q

PXα. (9)

That means, (P, α) -positive region of Q is the set of all objects of the uni-
verse U which can be properly classified to the classes of U/Q(α) employing the
knowledge expressed by the classification U/P(α).

Now, we provide the generalized concepts considered in Section 2.3.

Definition 23. Let P and Q be two families of fuzzy proximity relations on U.
For every fixed α ∈ [0, 1], and R ∈ P, R is (Q, α)-dispensable in P if

α − POSIND(P)IND(Q) = α − POSIND(P−{R})IND(Q). (10)

Otherwise R is (Q, α)-indispensable in P.
If every R ∈ P is (Q, α) -indispensable in P, we say that P is (Q, α)-

independent.

Definition 24. For every fixed α ∈ [0, 1], the family S ⊆ P is a (Q, α)-reduct
of P if and only of

S is (Q, α) − independent. (11)

and
α − POSSQ = α − POSPQ. (12)
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Definition 25. For a fixed α ∈ [0, 1], The set of all (Q, α)-indispensable elemen-
tary relations in P is called (Q, α)-core of P and it is denoted by α−COREPQ.
When Q = P , we see that α − POSP Q = U as PXα = Xα for each Xα ∈ U/P .
So, α − COREP Q reduces to α -CORE defined earlier.

Proposition 1. For any α ∈ [0, 1],
α − COREQP = ∩ α − REDQP, where α − REDQP is the family of all

(Q, α)-reducts of P.

Proof. Suppose a family of fuzzy proximity relations S be a (Q, α)-reduct of P.
Then S is (Q, α)-independent of P and α − POSSQ = α − POSQP.

Let R ∈P-S. Then S ⊆P- {R } ⊆ P. But α − POSSQ = α − POSQP. This
gives α − POSSQ = α − POS(P−{R})Q = α − POSPQ.

Thus R is a (Q, α)-dispensable relation in P, that is R ∈ α − COREQP.
Hence α − COREQP ⊆ S , where S is a (Q, α)-reducts of P.
Now, suppose R ∈ α − COREQP. Then R is (Q, α)-indispensable in P. So,

α − POSPQ = POS(P−{R})Q).
Hence, there exists a subset L ⊆P-{ R }, which is (Q, α )-independent of P,

such that α − POSLQ = α − POSPQ.
Which implies, L ⊆ α − COREQP , where L is a (Q, α )-reduct of P. So, ∩

{ L : L is a (Q, α )-reduct of P } ⊆ α − COREQP.
Hence α − COREQP = ∩α − REDQP.
When the knowledge P has only one (Q, α )-reduct, the knowledge P is deter-

ministic, that is there is only one way to use the elementary α-categories of knowl-
edge P when classifying the objects to elementary α -categories of knowledge Q.

Example 2. Consider the same information table, given in the Example 1.
Now, we add another attribute e which generates a fuzzy proximity relation T
as follows:

Let us find the relative reduct and the relative core, that is (T, α)-reduct and
(T, α)-core of the family of fuzzy proximity relations R = {P, Q, R, S}.

We take α = 0.6. Then
U/T(α) = {{x1, x4, x5}, {x2, x3}}.
We have
U/IND R(α) = {{x1}, {x2}, {x3}, {x4}, {x5}} and
α − POSR(α)T (α) =

⋃
X∈U/T (α)R Xα = {x1, x2, x3, x4, x5} = U .

Now we will check whether R is T(α)-dependent or not.

Table 6. Fuzzy proximity relation for attribute T

T x1 x2 x3 x4 x5

x1 1 0.4 0.5 0.6 0.8
x2 0.4 1 0.9 0.3 0.5
x3 0.5 0.9 1 0.2 0.4
x4 0.6 0.3 0.2 1 0.5
x5 0.8 0.5 0.4 0.5 1
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Here α − POS(R−{P})T = α − POSRT ,
α − POS(R−{Q})T = {x1, x2, x3, x4, x5} = α − POSRT ,
α − POS(R−{R})T = {x1, x2, x4} �= α − POSRT ,
α − POS(R−{S})T = {x1, x2, x3, x4, x5} = α − POSRT .
This gives that P,Q and S are (T, α)-dispensable, and R is (T, α)-dispensable,

that is R is (T, α)-independent. So the (T, α)-reduct of R is {R} and the (T, α)-
core is also {R}.

2.5 Dependency of Knowledge in Fuzzy Approximation Spaces

In this section, we shall discuss how a knowledge in a fuzzy approximation space
can be induced from a given knowledge in the fuzzy approximation space.

In the following definitions, we have α ∈ [0, 1],K(α) = (U,R(α)) is a fuzzy
approximation space and P,Q ⊆ R.

Definition 26. We say knowledge Q is α − derivable from knowledge P if
the elementary α-categories of Q can be defined in terms of some elementary
α-categories of knowledge P.

Definition 27. If Q is α-derivable from P, we say that knowledge Q α-depends
on knowledge P and we denote it by P α

⇒Q. So, P α
⇒Q if and only if INDP(α) ⊆

INDQ(α).

Definition 28. Knowledge P and Q are said to be α − equivalent, denoted by
P α

≡Q if and only if P α
⇒Q and Q α

⇒P.
So, P α

≡Q if and only if INDP(α) = INDQ(α).

Definition 29. Knowledge P and knowledge Q are α− independent if and only
if neither P α

⇒Q nor Q α
⇒P holds.

We state below some properties on α-dependency of knowledges in fuzzy ap-
proximation spaces which can be proved easily like their base cases.

Proposition 2. For fixed α ∈ [0, 1], the following conditions are equivalent.

(i) P α
⇒Q

(ii) IND((P ∪ Q)(α)) = INDP(α).
(iii) α − POSPQ = U .
(iv) PXα = Xα for all X ∈ U/Q(α), where PXα is referred as INDPXα.

Proposition 3. Let α ∈ [0, 1]. If P is a α-reduct of Q, then
P α

⇒Q− P and INDP(α) = INDQ(α).

Proposition 4. Let α ∈ [0, 1].

(i) If P is α-dependent, then there exists a subset Q ⊆ P such that Q is a
α-reduct of P.
(ii) If P ⊆ Q and P is α-independent, then all basic relations in P are pair-wise
α-independent.
(iii) If P ⊆ Q and P is α-independent, the every subset R of P is α-independent.
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Proposition 5. Let α ∈ [0, 1].

(i) If P α
⇒Q and P’ ⊃ P then P’ α

⇒Q.
(ii) If P α

⇒Q and Q’ ⊂ Q then P α
⇒Q’.

(iii) P α
⇒R and Q α

⇒R imply P
⋃

Q α
⇒R.

2.6 Partial Dependency of Knowledge in Fuzzy Approximation
Spaces

It may happen that the α -derivation of one knowledge P from another knowledge
Q can be partial. That is only a part of knowledge P can be α -derivable from P .
We define and derive properties of such partial α -dependencies of knowledge in
this section.

Let α ∈ [0, 1]. Suppose K(α) = (U,R(α)) is a fuzzy approximation space and,
P, Q ⊆ R. Then, we say that knowledge Q α − depends in a degree k(α), 0 ≤
k(α) ≤ 1, from the knowledge P, denoted by P α

=⇒kQ if k(α) = γP(α)(Q(α)) =
|POSP(α)(Q(α))|/|U|.

If k(α) = 1, we will say that Q is totally α−dependent from P. If 0 < k(α) <
1, we say that Q roughly(partially) α − depends from P. If k(α) = 0, we say Q
is totally α − independent from P.

If P α
=⇒1 Q we simply write P α

⇒ Q. In this case, all the elements of the universe
can be classified to elementary categories U/Q(α) by using the knowledge P.

When k(α) �= 1, only those elements of the universe which belong to the
positive region can be classified to the categories of knowledge Q employing
knowledge P. When k(α) = 0, none of the elements of the universe can be
classified using knowledge P to elementary categories of knowledge Q.

Hence the co-efficient γP(α)(Q(α)) can be understood as a degree of α-
dependency of the knowledge Q relative to the knowledge P.
We establish the following propositions:
Proposition 6. For fixed α ∈ [0, 1],

(i) If R α
=⇒k P and Q α

=⇒ l P, then R ∪ Q α
=⇒m P for some m ≥ max{k, l}.

(ii) If R ∪ P α
=⇒k Q, then, R α

=⇒ l Q and P α
=⇒m Q for some l, m ≤ k.

(iii) If R α
=⇒k Q and R α

=⇒ l P then R α
=⇒m Q ∪ P, for some m ≤ min{k, l}.

(iv) If R α
=⇒k Q ∪ P, then R α

=⇒ l P and R α
=⇒m P, for some l, m ≥ k.

(v) If R α
=⇒k P and P α

=⇒ l Q, then R α
=⇒m Q, for some m ≥ l + k − 1.

Here we have represented l(α), m(α) and k(α) by l, m and k respectively.
Proof
(i) It is known that, PXα = INDPXα.

So, P ∪ Q ⊇ P ⇒ IND(P(α) ∪ Q(α)) ⊆ INDP(α), which is meaningless.
So, IND(P(α) ∪ Q(α)) ⊇ INDP(α).
This gives, card

⋃
X∈U/P (α)R ∪ QXα ≥ card

⋃
X∈U/P(α)RXα.

⇒ card
⋃

X∈U/P (α) (R∪Q)Xα

card U ≥ card
⋃

X∈U/P (α) RXα

card U .
⇒ γR(α)∪Q(α)(P (α)) ≥ γR(α)(P (α)) ⇒ m ≥ k.

Similarly we can show that m ≥ l. Hence m ≥ max{k, l}.
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(ii) We know that, ⋃
X ∈ U/Q(α)

R(α)X ⊆
⋃

X ∈ U/Q(α)
R(α) ∪ Q(α)X.

⇒ card [POSR(α)Q(α)]
card U ≤ card [POS(R∪P )(α)Q(α)]

card U .
⇒ l ≤ k.
Similarly we can prove m ≤ k.
In a similar manner we can prove statements (iii) and (iv) of the proposition.

(v) Given P α
=⇒ l

Q and R α
=⇒k

P .
This gives, INDP (α) ⊆l INDQ(α) and INDR(α) ⊆k INDP(α).
Since, INDP (α) ⊆ INDQ(α) and INDR(α) ⊆ INDP (α), we get P ⊆ Q

and R ⊆ P .
Now, POSP(α)Q(α) =

⋃
X∈U/Q(α)PXα and POSR(α)P(α) =

⋃
X∈U/P(α)RXα.

Hence, POSP(α)Q(α) ∪ POSR(α)P(α) =
⋃

X∈U/Q(α)PXα ∪
⋃

X∈U/P(α)RXα

⊆
⋃

x∈U/P(α)PXα ∪ RXα (as P ⊆ Q).

⊆
⋃

X∈U/P(α)RXα (as R ⊆ P)
⊆ POSR(α)Q(α).

So, card POSP(α)Q(α)+card α−POSP(α)Q(α)
card U <

card POSP(α)Q(α)
card U

Hence, γP (α)Q(α) + γR(α)P (α) < γR(α)Q(α). This gives, m > k + l which
implies m ≥ k + l + 1.

Interpretation: The intuitive interpretation of the properties established in
Proposition 6 are as follows:

(i)This means that the degree of partial α -dependency of a knowledge P on two
knowledge Q and R taken together is at least equal to the larger of the degrees
of partial α -dependency of P on Q and R taken individually.
(ii)This means that partial α -dependency of a knowledge P on two knowledge
Q and R taken together implies individual partial α -dependency of P on Q and
R and the later degree of dependency is less than the earlier.
(iii) The partial α -dependency of two knowledge P and Q taken together on
a knowledge R follows from the individual α -dependencies of P and Q on R
and the combined α -dependency is almost the smaller of the individual α -
dependencies.
(iv) The partial α -dependency of two knowledge P and Q taken together on a
knowledge R implies individual α -dependencies of P and Q on R to degree not
less than the degree of combined α -dependency.
(v)A variant of transitive property holds for α-dependencies of knowledge in
the sense that the degree of dependency in the conclusion satisfies a constraint
involving degree of dependencies in the hypothesis part.

Note 3. For α, β ∈ [0, 1], R∗
α ⊃ R∗

β for α > β. That is, R(α) ⇒ R(β) for
α > β, R ∈ R. Hence every equivalence class of R(α) is contained in some
equivalence class of R(β). Also, we find that, if P (α) is a α-reduct of R(α), then
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Table 7. Fuzzy proximity relation R

R x1 x2 x3 x4 x5 x6

x1 1 0.8 0.6 0.3 0.5 0.2
x2 0.8 1 0.7 0.6 0.4 0.3
x3 0.6 0.7 1 0.9 0.6 0.5
x4 0.3 0.6 0.9 1 0.7 0.6
x5 0.5 0.4 0.6 0.7 1 0.9
x6 0.2 0.3 0.5 0.6 0.9 1

Table 8. Fuzzy proximity relation S

S x1 x2 x3 x4 x5 x6

x1 1 0.8 0.2 0.5 0.6 0.7
x2 0.8 1 0.4 0.7 0.5 0.2
x3 0.2 0.4 1 0.5 0.3 0.6
x4 0.5 0.7 0.5 1 0.9 0.7
x5 0.6 0.5 0.3 0.9 1 0.6
x6 0.7 0.2 0.6 0.7 0.6 1

P (β) is also a β-reduct of R(β), for some α < β. We state the next proposition
without proof, which is similar to the base case.

Proposition 7. For fixed α ∈ [0, 1], let R be a family of fuzzy proximity relation
on U .

(i) For any R ∈ R which is α-indispensable in R, R is also β-indispensable in
R for α < β.
(ii) If R is α-indispensable in R, then R is also β-indispensable in R for α > β.
(iii) R(α) ⇒ R(β) for α > β, R ∈ R.
(iv) P (α) ⇒ P (β) for α > β, when P (α) ⊆ R(α) and P (β) ⊆ R(β).
(v) If P is a α-reduct of R, then P is β-reduct of R for α < β.

Example 3. We illustrate the concepts defined in this section through the fol-
lowing example :

Let U = {x1, x2, x3, x4, x5, x6} be a universe. R, S and T be fuzzy proximity
relations on U defined in Tables 7-9:

Here R = {R, S, T } is a set of proximity relations on U . Let us determine the
different equivalence classes of R, S and T for different values of α, α ∈ [0, 1].

(i) α = 0.7
From the relation table of R, Rα

= {(x1, x1), (x1, x2), (x2, x1), (x2, x2), (x2, x3), (x3, x2), (x3, x3), (x3, x4),
(x4, x3), (x4, x4), (x4, x5), (x5, x4), (x5, x5), (x5, x6), (x6, x6)}

Thus R(α) = {x1, x2, x3, x4, x5, x6}
So, R∗

α = U/R(α) = {{x1, x2, x3, x4, x5, x6}}.
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Table 9. Fuzzy proximity relation T

T x1 x2 x3 x4 x5 x6

x1 1 0.9 0.5 0.6 0.7 0.2
x2 0.9 1 0.8 0.2 0.2 0.8
x3 0.5 0.8 1 0.3 0.4 0.2
x4 0.6 0.2 0.3 1 0.8 0.3
x5 0.7 0.2 0.4 0.8 1 0.4
x6 0.2 0.8 0.2 0.3 0.4 1

From the relation table of S, Sα = = {(x1, x1), (x1, x2), (x1, x6), (x2, x1), (x2, x2), (x2, x4),
(x3, x3), (x4, x2), (x4, x4), (x4, x5), (x5, x4), (x5, x5), (x5, x6), (x6, x1), (x6, x4), (x6, x6)}

So, S∗
α = U/S(α) = {{x1, x2, x4, x5, x6}, {x3}}.

From the relation table of T , Tα = {(x1, x1), (x1, x2), (x1, x5), (x2, x1), (x2, x2), (x2, x3), (x2, x6),
(x3, x2), (x3, x3), (x4, x4), (x4, x5), (x5, x1), (x5, x4), (x5, x5), (x6, x2), (x6, x6)}

So, T ∗
α = U/T (α) = {{x1, x2, x3, x4, x5, x6}}.

(ii) α = 0.8
As in case (i), we have

R∗
α = U/R(α) = {{x1, x2}, {x3, x4}, {x5, x6}}.

S∗
α = U/S(α) = {{x1, x2}, {x3}, {x4, x5}, {x6}}.

T ∗
α = U/T (α) = {{x1, x2, x3, x6}, {x4, x5}}.

(iii) α = 0.9
As in case (i), we have

R∗
α = U/R(α) = {{x1}, {x2}, {x3, x4}, {x5, x6}}.

S∗
α = U/S(α) = {{x1}, {x2}, {x3}, {x4, x5}, {x6}}.

T ∗
α = U/T (α) = {{x1, x2}, {x3}, {x4}, {x5}, {x6}}.

2.7 An Application to Performance Analysis

The concepts and results of this section have wider and more realistic appli-
cations than the basic rough set approach. We shall illustrate this through an
example in which the performance of a student is studied in a group of stu-
dents of any institute. In the table below, we enumerate the possible facts which
control the performance of a student in the examinations of a semester; their
possible range of values and the fuzzy proximity relations which characterize
the relationship between attribute values. The students devoting more hours for
study having better regularity in attending the classes, having higher IQ, using
more books for reference being involved in more group discussions and attending
more seminars shall definitely score more marks in the examinations. However,
this being an ideal case, is rare in practice. So, a student need not excel in all the
characteristics noted in order to perform well. However, out of these, some char-
acteristics may have higher influence on the scoring than the others. For different
levels of proximity values α these important characteristics may be different.
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Table 10. Attribute characteristics

Sl No. Facts Attribute Domains Relationship
Function

1 No. of hours
of study A A non−negative

Number in [0,24] 1 − |x−y|
24

2 Regularity in the class
/Percentage of attendance B An integral

value in [0,100] 1 − |x−y|
100

3 IQ C An integral
value in [0,100] 1 − |x−y|

100

4 No. of reference
books used D A non−negative

number
1 − |x−y|

2(x+y)

5 Attending in seminars
/Group discussions E {F, AA, A

BA, NA}
From Similarity
Relation Table

Table 11. Students’ information table

Student A B C D E

x1 8 90 60 0 Full
x2 10 85 75 4 Below Average
x3 10 60 70 6 Full
x4 7 60 90 3 Average
x5 6 55 85 5 Average
x6 2 80 70 0 Average
x7 5 55 40 8 Above Average
x8 8 40 60 12 Above Average

Table 12. Proximity relation for attribute A

R1 x1 x2 x3 x4 x5 x6 x7 x8

x1 1 .92 .92 .96 .92 .75 .87 1
x2 .92 1 1 .87 .83 .67 .79 .92
x3 .92 1 1 .87 .83 .67 .79 .92
x4 .96 .87 .87 1 .96 .79 .92 .87
x5 .92 .83 .83 .96 1 .83 .96 .92
x6 .75 .67 .67 .79 .83 1 .87 .75
x7 .87 .79 .79 .92 .96 .87 1 .87
x8 1 .92 .92 .87 .92 .75 .87 1

Characteristics of Attributes :
For attribute ’E’ we use the following abbreviations:
Full(F)
Above Average(AA)
Average(A)
Below Average(BA)
Not at All(NA)

We consider a small universe of 8 students {x1, x2, x3, x4, x5, x6, x7, x8} and the
information about them is presented in the table below. It may be noted that if
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Table 13. Proximity relation for attribute B

R2 x1 x2 x3 x4 x5 x6 x7 x8

x1 1 .95 .70 .70 .65 .90 .65 .50
x2 .95 1 .75 .75 .70 .95 .70 .55
x3 .70 .75 1 1 .95 .80 .95 .80
x4 .70 .75 1 1 .95 .80 .95 .80
x5 .65 .70 .95 .95 1 .75 1 .85
x6 .90 .95 .80 .80 .75 1 .75 .60
x7 .65 .70 .95 .95 1 .75 1 .85
x8 .50 .55 .80 .80 .85 .60 .85 1

Table 14. Proximity relation for attribute C

R3 x1 x2 x3 x4 x5 x6 x7 x8

x1 1 .85 .90 .70 .75 .90 .80 1
x2 .85 1 .95 .85 .90 .95 .65 .85
x3 .90 .95 1 .80 .85 1 .70 .90
x4 .70 .85 .80 1 .95 .80 .50 .70
x5 .75 .90 .85 .95 1 .85 .55 .75
x6 .90 .95 1 .80 .85 1 .70 .90
x7 .80 .65 .70 .50 .55 .70 1 .80
x8 1 .85 .90 .70 .75 .90 .80 1

Table 15. Proximity relation for attribute D

R4 x1 x2 x3 x4 x5 x6 x7 x8

x1 1 .50 .50 .50 .50 1 .50 .50
x2 .50 1 .90 .93 .93 .50 .83 .75
x3 .50 .90 1 .83 .87 .50 .93 .83
x4 .50 .93 .83 1 .87 .50 .81 .70
x5 .50 .93 .87 .87 1 .50 .88 .79
x6 1 .50 .50 .50 .50 1 .50 .50
x7 .50 .83 .93 .81 .88 .50 1 .87
x8 .50 .75 .93 .70 .79 .50 .87 1

Table 16. Proximity relation for attribute E

SA F AA A BA NA

F 1 .95 .90 .80 .45
AA .95 1 .94 .70 .55
A .90 .94 1 .80 .70

BA .80 .70 .80 1 .78
NA .40 .55 .70 .78 1
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the number of students increases then it only requires additional computations
and the structure of analysis remains same.

Proximity relations corresponding to attributes A–E are given in Tables 12–16.
We take here R = {R1, R2, R3, R4, R5}. We take a reasonably high level of

proximity value for α as 0.88. The equivalence classes of different relations cor-
responding to this value of α are given by,

U/R1(α) = {{x1, x2, x3, x4, x5, x7, x8}, {x6}},
U/R2(α) = {{x1, x2, x6}, {x3, x4, x5, x7}, {x8}},
U/R3(α) = {{x1, x2, x3, x6, x8}, {x4, x5}, {x7}},
U/R4(α) = {{x1, x6}, {x2, x3, x4, x5, x7, x8}},
U/R5(α) = {{x1, x3, x4, x5, x6, x7, x8}, {x2}} and
U/R(α) = {{x1}, {x2}, {x3}, {x4, x5}, , {x6}, {x7}, {x8}}.
Now,
U/(R − {R1(α)}) = {{x1, x6}, {x2}, {x3}, {x4}, {x5}, {x7}, {x8}} �= U/R(α).
U/(R − {R2(α)}) = {{x1}, {x6}, {x2}, {x3, x8}, {x4, x5}, {x7}} �= U/R(α).
U/(R − {R3(α)}) = {{x1}, {x6}, {x2}, {x3, x4, x5, x7}, {x8}} �= U/R(α).
U/(R − {R4(α)}) = {{x1}, {x6}, {x2}, {x3}, {x4, x5}, {x7}, {x8}} = U/R(α).
and
U/(R − {R5(α)}) = {{x1}, {x6}, {x2}, {x3}, {x4, x5}, {x7}, {x8}} = U/R(α).

So, R1, R2 and R3 are α-indispensable relations in R, whereas R4 and R5 are
α-dispensable relations in R.

The α-reducts are {R1, R2, R3, R4}, {R1, R2, R3, R5} and the α-core of R =
{R1, R2, R3}.

Basing upon the above facts, we conclude that attribute ‘A’ (number of hour of
study), attribute ‘B’ (regularity in classes) and attribute ‘C’ (IQ of a student) are
the controlling factors for the performance of a student in his/her examinations
at 0.88 level of proximity.

The conclusion will be different for different levels of proximity values. For
example, if we take α = 1 then all the attributes become indispensable. But
this is a case when we adher to complete matching of attribute values and
the flexibility is lost. Similarly, if we reduce the value of α to smaller val-
ues then the number of controlling factors decreases and obviously at α = 0
there is no controlling factor. So, one has to select the value of α suitably and
carefully.

It is obvious that the number of attributes varies according to different cir-
cumstances and facilities available to students. Here, we have considered some
common attributes which control the performance of a student. However, one
can add attributes like availability of study materials, quality of faculties, labo-
ratory facilities and financial status of a student for performance evaluation. On
the other way, some attributes can be removed.
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3 Rough Sets in Intuitionistic Fuzzy Approximation
Spaces

We continue from section 2.5 with the definitions and notations.

Definition 30. Let R be a set of intuitionistic fuzzy proximity relations on U .
Then the pair K = (U,R) is called an intuitionistic fuzzy approximation space
(IF-approximation space).

For each pair of values of (α, β) ∈ J , an IF-approximation space (U,R) gen-
erates usual approximation space K(α, β) = (U,R(α, β)).

Definition 31. Let K = (U,R) be an intuitionistic fuzzy approximation space
and X ⊆ U . Then for any fixed (α, β) ∈ J , the rough set of X in the general-
ized approximation space K(α, β) and corresponding to the equivalence relation
R(α, β) ∈ IND(K(α, β)) is denoted by (Rα,βX, R̄α,βX) or in short (Xα,β , X̄α,β),
when the relation is clear from the context and is given by

Rα,βX = Xα,β = ∪{Y : Y ∈ R∗
α,β and Y ⊆ X}. (13)

R̄α,βX = X̄α,β = ∪{Y : Y ∈ R∗
α,β and Y ∩ X �= φ}. (14)

where R∗
α,β is the family of equivalence classes of R(α, β).

Definition 32. Let X be a rough set in the generalized approximation space
(U,R(α, β)). Then we define

BNRα,β(X) = X̄α,β − Xα,β . (15)

called the (α, β)-boundary of X .

Definition 33. Let X be a rough set in the generalized approximation space
(U,R(α, β)). Then we say

X is (α, β) − discernible if and only if Xα,β = X̄α,β. (16)

and

X is (α, β) − rough if and only if Xα,β �= X̄α,β. (17)

Next, we shall establish some properties of (α, β) -cuts of IF proximity
relations.

Theorem 3. If α1 ≥ α2 and β1 ≤ β2 then

(i) Rα1,β1 ⊆ Rα2,β2 ,
(ii) R(α1, β1) ⊆ R(α2, β2) and
(iii) R∗

α1,β1
⊆ R∗

α2,β2
,

in the sense that every equivalence class in R∗
α1,β1

is contained in some equiva-
lence class in R∗

α2,β2
.
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Proof. We have by hypothesis,
(x, y) ∈ Rα1,β1 ⇒ µR(x, y) ≥ α1 and νR(x, y) ≤ β1

⇒ µR(x, y) ≥ α2 and νR(x, y) ≤ β2
⇒ (x, y) ∈ Rα2,β2 , which proves (i).

Again (x, y) ∈ R(α1, β1) ⇒ xRα1,β1y or xRα1,β1u1, u1Rα1,β1u2, . . . , unRα1,β1y.
In the first case by (i) xRα2,β2y. So, (x, y) ∈ R(α2, β2). In the second case
xRα2,β2u1, u1Rα2,β2u2, . . ., unRα2,β2y. So, (x, y) ∈ R(α2, β2). This proves (ii).

Next, let [x]α1,β1 ∈ R∗
α1,β1

. Then for any y ∈ [x]α1,β1, yRα1,β1x. So by (i)
yRα2,β2x. Hence y ∈ [x]α2,β2 . Thus we get [x]α1,β1 ⊆ [x]α2,β2 . This proves (iii).

Theorem 4. Let R and S be two IF-proximity relations on U . Then for any
pair (α, β) ∈ J ,
(i) (R ∪ S)(α, β) ⊆ R(α, β) ∪ S(α, β)
and
(ii) (R ∩ S)(α, β) ⊇ R(α, β) ∩ S(α, β).

Proof. Let (x, y) ∈ (R ∪ S)(α, β). Then we have x(R ∪ S)(α, β)y. This implies
x(R ∪ S)α,βy or there exists a sequence of elements u1, u2, . . .,un such that

x(R ∪ S)α,βu1, u1(R ∪ S)α,βu2, ..., un(R ∪ S)α,βy.

The second case being similar, we consider only the first case. We have,
x(R ∪ S)α,βy ⇒ µR∪S(x, y) ≥ α and νR∪S(x, y) ≤ β

⇒ max{µR(x, y), µS(x, y)} ≥ α and max{νR(x, y), νS(x, y)} ≤ β
⇒ µR(x, y) ≥ α or µS(x, y) ≥ α and νR(x, y), νS(x, y) ≤ β

⇒ {µR(x, y) ≥ α and νR(x, y) ≤ β} or {µS(x, y) ≥ α and νS(x, y) ≤ β}
⇒ xR(α, β)y or xS(α, β)y
⇒ xR(α, β) ∪ S(α, β)y
⇒ (x, y) ∈ R(α, β) ∪ S(α, β)

This proves (i).

Theorem 5. If R and S are two IF-proximity relations on U then for any pair
(α, β) ∈ J ,
(i) (R ∪ S)∗α,β ⊆ R∗

α,β ∪ S∗
α,β

and
(ii) (R ∩ S)∗α,β ⊇ R∗

α,β ∩ S∗
α,β .

Proof. Let [x] ∈ (R ∪ S)∗α,β . Then by Theorem 4(i), for any y,
y ∈ [x] ⇒ (x, y) ∈ (R ∪ S)(α, β)

⇒ (x, y) ∈ R(α, β) ∪ S(α, β)

⇒ (x, y) ∈ R(α, β) or (x, y) ∈ S(α, β)

⇒ [x] ∈ R∗
α,β or [x] ∈ S∗

α,β

⇒ [x] ∈ R∗
α,β ∪ S∗

α,β.

This proves (i). Proof of (ii) is similar.
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Table 17. IF-proximity relation R

R x1 x2 x3 x4 x5

x1 (1,0) (.8,.1) (.6,.3) (.5,.3) (.2,.6)
x2 (.8,.1) (1,0) (.7,.2) (.6,.3) (.4,.5)
x3 (.6,.3) (.7,.2) (1,0) (.9,.1) (.6,.3)
x4 (.5,.3) (.6,.3) (.9,.1) (1,0) (.4,.5)
x5 (.2,.6) (.4,.5) (.6,.3) (.4,.5) (1,0)

In the next example, we illustrate the computation of (α, β) -lower and (α, β)-
upper approximations of sets and deduce whether the sets are (α, β) -rough or
(α, β) - discernible.

Example 4. Let U = {x1, x2, x3, x4, x5}. We define an IF-proximity relation R
on U as shown in Table 17.
Taking α = 0.7 and β = 0.2 we find that

R∗
α,β = {{x1, x2}, {x3 x4}, {x5}}.

Again for α = 0.9 and β = 0.1, we see that

R∗
α,β = {{x1}, {x2}, {x3}, {x4}, {x5}}.

Let us consider two subsets X1 = {x1, x2} and X2 = {x1, x4, x5} of U . We see
that for α = 0.7 and β = 0.1

X1,α,β = φ and X̄1,α,β = {x1, x2, x3, x4}.

So that X1 is (α, β)-rough. On the other hand for α = 0.9 and β = 0.1,

X2,α,β = {x2, x4, x5} and X̄2,α,β = {x2, x4, x5}.

So that X2 is (α, β)-discernible.

The following theorem establishes properties of (α, β)-lower approximation and
(α, β)-upper approximations of rough sets. We shall provide proofs only of two
properties. The proofs of the other properties are similar.

Theorem 6. Let X and Y be rough sets in the generalised approximation space
(U, R(α, β)), (α, β) ∈ J . Then
(i) Xα,β ⊆ X ⊆ X̄α,β.
(ii) φ

α,β
= φ̄α,β = φ, Uα,β = Ūα,β = U .

(iii) (X ∪ Y )α,β = X̄α,β ∪ Ȳα,β .
(iv) (X ∩ Y )

α,β
= Xα,β ∩ Y α,β .

(v) X ⊆ Y ⇒ Xα,β ⊆ Y α,β .
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(vi) X ⊆ Y ⇒ X̄α,β ⊆ Ȳα,β .
(vii) (X ∪ Y )

α,β
⊇ Xα,β ∪ Y α,β .

(viii) (X ∩ Y )α,β ⊆ X̄α,β ∩ Ȳα,β .

Proof. We have, x ∈ Xα,β ⇒ x ∈ [y] ∈ R∗
α,β and [y] ⊆ X . So, x ∈ X .

Again, x ∈ X ⇒ xR(α, β)x for any (α, β) ∈ J .
So, ⇒ x ∈ [x] ∈ R∗

α,β , such that [x] ∩ X �= φ.
Hence x ∈ X̄α,β . This proves (i).
Next, suppose x ∈ (X ∪ Y )α,β .
Thus there exists an equivalence class [z] with respect to R(α, β) such that

x ∈ [z] and [z] ∩ (X ∪ Y ) �= φ.
So, x ∈ [z] and [z] ∩ X �= φ or [z] ∩ Y �= φ.

This implies x ∈ X̄α,β or x ∈ Ȳα,β . Hence,

x ∈ X̄α,β ∪ Ȳα,β . (18)

Also, x ∈ X̄α,β ∪ Ȳα,β ⇒ x ∈ X̄α,β or x ∈ Ȳα,β . So, ∃[y] such that x ∈ [y] and
[y] ∩ X �= φ or ∃[z] such that x ∈ [z] and [z] ∩ Y �= φ.

Hence, in any case there exists an equivalence class containing x which has
nonempty intersection with X ∪ Y . That is,

x ∈ X ∪ Y α,β . (19)

We get (iii) from (18) and (19).

Theorem 7. If α1 ≥ α2 and β1 ≤ β2, then
(i) Xα2,β2

⊆ Xα1,β1

(ii) X̄α2,β2 ⊆ X̄α1,β1

Proof. Let x ∈ Xα2,β2
. Then [x]α2,β2 ⊆ X . Now,

y ∈ [x]α1,β1 ⇒ µR(x, y) ≥ α1 and νR(x, y) ≤ β1
⇒ µR(x, y) ≥ α2 and νR(x, y) ≤ β2
⇒ y ∈ [x]α2,β2 .

So, [x]α1,β1 ⊆ X . Hence, x ∈ Xα1,β1
. This proves (i).

Again, x ∈ X̄α1,β1 ⇒ [x]α1,β1 ∩ X �= φ
⇒ [x]α2,β2 ∩ X �= φ, as above.

That is, x ∈ X̄α2,β2 .
This completes the proof.

Theorem 8. Let R and S be two IF-proximity relations on U and α, β be chosen
threshold values with (α, β) ∈ J . Then
(i) (R ∪ S)

α,β
X ⊆ Rα,βX ∪ Sα,βX ,

(ii) (R ∪ S)α,βX ⊇ R̄α,βX ∪ S̄α,βX ,
(iii) (R ∩ S)

α,β
X ⊇ Rα,βX ∩ Sα,βX ,

and
(iv) (R ∩ S)α,βX ⊆ R̄α,βX ∩ S̄α,βX ,
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Proof. We prove only (i). Rest of the proofs are similar.
(R ∪ S)

α,β
X ⊆ Rα,βX ∪ Sα,βX.

(R ∪ S)
α,β

X =
⋃
{Y ∈ (R ∪ S)∗α,β : Y ⊆ X}

⊆
⋃
{Y ∈ (R∗

α,β ∪ S∗
α,β) : Y ⊆ X}

⊆ [
⋃
{Y ∈ R∗

α,β : Y ⊆ X}]
⋃

[
⋃
{Y ∈ S∗

α,β : Y ⊆ X}]
= Rα,βX ∪ Sα,βX .

This completes the proof.

4 Knowledge Reduction in IF-Approximation Spaces

Definition 34. Let R be a family of IF-proximity relations on U and (α, β) ∈ J .
For any R ∈ R, we say that R is (α, β)-dispensable in R if IND R(α, β) =
IND(R(α, β) − R(α, β)), otherwise R is (α, β) − indispensable in R. R is
(α, β)− independent if each R ∈ R is (α, β)-indispensable. Otherwise R(α, β) is
(α, β) − dependent.

Definition 35. For a fixed (α, β) ∈ J , let (P �= φ) ⊆ R. Then Q ⊆ P is a
(α, β) − reduct of P if (denoted as (α, β) -RED(P)) if

Q is (α, β) − independent, (20)

and
IND(Q(α, β)) = IND(P(α, β)). (21)

It may be noted that P may have many (α, β)-reducts, for (α, β) ∈ J .

Definition 36. Let P(�= φ) ⊆ R. For a fixed (α, β) ∈ J , the set of all (α, β)-
indispensable relations in P is called (α, β)-core of P and it is denoted by (α, β)−
CORE(P).

We shall give the following theorems and propositions which can be proved
as their counterparts in section 3.

Theorem 9. For fixed (α, β) ∈ J , if Q is (α, β)-independent and P ⊆ Q, then
P is also (α, β)-independent.

The following result can be obtained from Theorem 9.

Corollary 2. For fixed (α, β) ∈ J , if P ⊆ Q and P is (α, β)-dependent, then Q
is (α, β)-dependent.

Theorem 10. For each fixed (α, β) ∈ J ,

(α, β) − CORE(P) =
⋂

(α, β) − RED(P),

where (α, β)-RED(P) is the family of all (α, β)-reducts of P.

Note 4. As in case of α -core, (α, β)-core can be interpreted as the set of the
most characteristic part of the knowledge, which can not be eliminated when
reducing the knowledge. The smallest (α, β)-reduct of R is the (α, β)-core of R.
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Table 18. Another information system

Object a b c d

x1 a1 b2 c3 d1

x2 a2 b2 c2 d2

x3 a1 b1 c1 d2

x4 a3 b3 c1 d1

x5 a2 b1 c3 d2

Table 19. IF-proximity relation P

P x1 x2 x3 x4 x5

x1 (1,0) (0.3,0.5) (0.6,0.2) (0.8,0.1) (0.5,0.2)
x2 (0.3,0.5) (1,0) (0.7,0.2) (0.4,0.4) (0.4,0.3)
x3 (0.6,0.2) (0.7,0.2) (1,0) (0.2,0.5) (0.8,0.1)
x4 (0.8,0.1) (0.4,0.4) (0.2,0.5) (1,0) (0.5,0.3)
x5 (0.5,0.2) (0.4,0.3) (0.8,0.1) (0.5,0.3) (1,0)

Table 20. IF-proximity relation Q

Q x1 x2 x3 x4 x5

x1 (1,0) (0.3,0.5) (0.4,0.2) (0.2,0.4) (0.5,0.2)
x2 (0.3,0.5) (1,0) (0.8,0.2) (0.6,0.4) (0.2,0.5)
x3 (0.4,0.2) (0.8,0.2) (1,0) (0.3,0.4) (0.9,0.1)
x4 (0.2,0.4) (0.6,0.4) (0.3,0.4) (1,0) (0.7,0.1)
x5 (0.5,0.2) (0.3,0.4) (0.9,0.1) (0.7,0.1) (1,0)

Table 21. IF-proximity relation R

R x1 x2 x3 x4 x5

x1 (1,0) (0.3,0.6) (0.2,0.5) (0.8,0.1) (0.7,0.2)
x2 (0.3,0.6) (1,0) (0.5,0.3) (0.3,0.6) (0.5,0.2)
x3 (0.2,0.5) (0.5,0.3) (1,0) (0.6,0.3) (0.4,0.4)
x4 (0.8,0.1) (0.3,0.6) (0.6,0.3) (1,0) (0.9,0.1)
x5 (0.7,0.2) (0.5,0.2) (0.4,0.4) (0.9,0.1) (1,0)

So, (α, β)-core can be used as a basis for computation of all (α, β)-reducts, that
is, the (α, β)-core is included in every (α, β)-reduct.

Example 5. Consider the universal set U = {x1, x2, x3, x4, x5}. Suppose each
object xi, i = 1, 2, 3, 4, 5 is associated with the attributes a, b, c and d, as repre-
sented in the following table:

We have assumed here that the attributes a , b, c and d have the domains
{a1, a2, a3}, {b1, b2, b3}, {c1, c2, c3} and {d1, d2} respectively.
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Table 22. IF-proximity relation S

S x1 x2 x3 x4 x5

x1 (1,0) (0.3,0.6) (0.2,0.5) (0.2,0.6) (0.5,0.3)
x2 (0.3,0.6) (1,0) (0.5,0.2) (0.3,0.4) (0.2,0.6)
x3 (0.2,0.5) (0.5,0.2) (1,0) (0.2,0.6) (0.4,0.4)
x4 (0.2,0.6) (0.3,0.4) (0.2,0.6) (1,0) (0.5,0.3)
x5 (0.5,0.3) (0.2,0.6) (0.4,0.4) (0.5,0.3) (1,0)

We define the IF-proximity relations P, Q, R and S over U corresponding to
the attributes a, b, c and d respectively according to Tables 19–22.

Taking � = {P, Q, R, S} as a family of IF-proximity relations over U and
α = 0.6, β = 0.2, we get the following partitions based on IF-proximity relations.

U/P (α, β) = {x1, x2, x3, x4, x5}
U/Q(α, β) = {{x1}, {x2, x3, x4, x5}}
U/R(α, β) = {{x1, x4, x5}, {x2}, {x3}}
U/S(α, β) = {{x1}, {x2}, {x3}, {x4}, {x5}}
Now, U/IND �(α, β) = {{x1}, {x2}, {x3}, {x4}, {x5}}
Now
U/IND(�− P )(α, β) = {{x1, x2, x3, x5}, {x4}} �= U/INDR(α, β).
U/IND(�− Q)(α, β) = {{x1, x3}, {x2, x4, x5}} �= U/INDR(α, β).
U/IND(�− R)(α, β) = {{x1}, {x3}, {x2}, {x5}, {x4}} = U/IND�(α, β).
U/IND(�− S)(α, β) = {{x1}, {x3}, {x2}, {x5}, {x4}} = U/IND�(α, β).
Hence, the relations P and Q are (α, β)-indispensable in �, whereas R and S

are (α, β)-dispensable in �.
So, {P, Q, R} and {P, Q, S} are the (α, β)-reducts of R, and
(α, β)-CORE(R) = {P, Q, R} ∩ {P, Q, S} = {P, Q}.
When the values of α and β are changed, the (α, β) -reducts and (α, β) -

cores change. According to one’s requirement the values of α, β can be adjusted
and for this pair of values, the most important knowledge can be obtained. We
emphasize that the parameters α and β reflect the minimum proximity of values
and maximum non proximity of values for the attributes under consideration.

5 Kinds of Rough Sets in IF-Approximation Spaces

Four kinds of rough sets were defined by Pawlak [27] depending upon whether
the lower approximation set is empty or nonempty and whether the upper ap-
proximation set is the universal or not. Also, Pawlak has provided physical in-
terpretations for these kinds of rough sets. Similar kinds of rough sets on fuzzy
approximation spaces are introduced by Tripathy [40] and their physical inter-
pretations have been provided. One interesting observation in Pawlak’s classifi-
cation is to determine the positions of union or intersection of two elements of
the same kind. The answers to these questions are provided by Tripathy and
Mitra [39].However, one observes that the union or intersection in most of the
cases falls beyond the range of a particular kind. He has also extended these



Rough Sets on Fuzzy Approximation Spaces 33

results to the setting of rough sets on fuzzy approximation spaces [40]. The fun-
damental reason behind the extension of rough sets to the general setting is the
abundance of fuzzy proximity relations and their applicability.

Following is the classification of a rough set on intuitionistic fuzzy approxi-
mation spaces [37,38]:

Definition 37
(i) Type 1. If Xα,β �= φ, Xα,β �= U then we say that X is roughly Rα,β -
definable(Kind 1).
(ii) Type 2. If Xα,β = φ, Xα,β �= U then we say that X is internally Rα,β

-undefinable (Kind 2).
(iii) Type 3. If Xα,β �= φ, Xα,β = U then we say that X is externally Rα,β

-undefinable (Kind 3).
(iv) Type 4. If Xα,β = φ, Xα,β = U then we say that X is totally Rα,β -
undefinable (Kind 4).

Physical Interpretation
(i) A set X is roughly Rα,β-definable means that we are able to decide for
some elements of U whether they are (α, β)- similar or transitively (α, β)-similar
to some elements of X or −X with respect to R.
(ii) A set X is internally Rα,β-undefinable means that we are able to decide
whether some elements of U are Rα,β-similar or transitively Rα,β-similar to some
elements of −X but we are unable to indicate this property for any element of
X with respect to R.
(iii) A set X is externally Rα,β-undefinable means that we are able to decide
whether some elements of U are Rα,β-similar or transitively Rα,β-similar to some
elements of X but we are unable to indicate this property for any element of
−X with respect to R.
(iv) A set X is totallyRα,β-undefinable means that we are unable to decide
for any element of U whether it is (α, β)-similar or transitively (α, β)-similar to
some element of X or −X with respect to R.

The following theorem characterizes the position of intersection or union of
two elements of one kind of rough sets.

Theorem 11
(i) If X and Y are internally Rα,β-undefinable then X ∩ Y is internally Rα,β-
undefinable.
(ii) If X and Y are internally Rα,β-undefinable then X ∪ Y can be in any one
of the four classes.
(iii) If X and Y are roughly Rα,β-definable then X ∩ Y can be roughly Rα,β-
definable or internally Rα,β-undefinable.
(iv) If X and Y are roughly Rα,β-definable then X ∪ Y may be roughly Rα,β-
definable or externally Rα,β-undefinable.
(v) If X and Y are externally Rα,β-definable then X ∩ Y can be in any one of
the four classes.
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(vi) If X and Y are externally Rα,β-undefinable, then X ∪Y is externally Rα,β-
undefinable.
(vii) If X and Y are totally Rα,β-undefinable, then X ∩ Y can be internally
Rα,β-undefinable or totally Rα,β-undefinable.
(viii) If X and Y are totally Rα,β-undefinable, then X ∪ Y can be externally
Rα,β-undefinable or totally Rα,β-undefinable.

6 Relative Reduct and Relative Core of Knowledge in
IF-Approximation Spaces

In this section, continuing with the concept in section 2.4, we develop concepts
which are more general and applicable than (α, β) -core and (α, β) -reduct in-
troduced in the previous section. Basically these concepts shall be useful in
discovering inference rules.

Definition 38. Let P and Q be two IF-proximity relations over the universe U .
For a fixed (α, β) ∈ J , the (α, β)-positive region of P with respect to Q is defined
as

(α, β) − POSPQ =
⋃

X(α,β) ∈ U/Q(α, β)
PXα,β. (22)

That is, the (α, β)-positive region of P with respect to Q is the set of all
objects of the universe U which can be properly classified to the classes of
U/Q(α, β) employing the knowledge expressed by the classification U/P(α, β).

Now, we provide the generalized concepts considered in Section 4.

Definition 39. Let P and Q be two families of IF-proximity relations on U .
For a fixed (α, β) ∈ J , suppose R ∈ P , then R is Q(α, β)-dispensable in P if

(α, β) − POSIND(P)IND(Q) = (α, β) − POSIND(P−{R})IND(Q). (23)

Otherwise, R is Q(α, β)-indispensable in P.
If every R ∈ P is Q(α, β)-indispensable, we can say that P is Q(α, β)-

independent or P is (α, β)-independent with respect to Q.

Definition 40. For fixed (α, β) ∈ J , the sub-family S ⊆ P is a Q(α, β)-reduct
of P if and only if

S is Q(α, β) − independent of P. (24)

(α, β) − POSSQ = (α, β) − POSPQ. (25)

Here P means INDP(α, β) and similarly for others.
Obviously, P may have many Q(α, β)-reducts for different values of (α, β) ∈ J.

Definition 41. For a fixed (α, β) ∈ J , the set of all Q(α, β)-indispensable
elementary relations in P is called Q(α, β)-core of P and it is denoted by (α, β)−
COREQP, where P,Q ⊆ R.

If P = Q, it reduces to the general concept of (α, β)-core.
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Table 23. Modified information system, now adding attribute e

object a b c d e

x1 a1 b2 c3 d1 e2

x2 a2 b2 c2 d2 e3

x3 a1 b1 c1 d2 e1

x4 a3 b3 c1 d1 e3

x5 a2 b1 c3 d2 e2

Table 24. IF-proximity relation T

T x1 x2 x3 x4 x5

x1 (1,0) (0.7,0.3) (0.6,0.3) (0.7,0.3) (1,0)
x2 (0.7,0.3) (1,0) (0.4,0.50) (1,0) (0.7,0.3)
x3 (0.6,0.3) (0.4,0.5) (1,0) (0.4,0.5) (0.6,0.3)
x4 (0.7,0.3) (1,0) (0.4,0.5) (1,0) (0.7,0.3)
x5 (1,0) (0.7,0.3) (0.6,0.3) (0.7,0.3) (1,0)

Proposition 8. For each fixed (α, β) ∈ J ,

(α, β) − COREQP = ∩(α, β) − REDQP,

where (α, β) − REDQP is the family of all Q(α, β)-reducts of P.
When the knowledge P has only one Q(α, β)-reduct, the knowledge P is deter-

ministic, that is there is only one way to use the elementary categories of knowledge
P when classifying the object to elementary categories of knowledge Q.

In the following example we illustrate the computation of relative (α, β)-core
and relative (α, β) -reduct in a intuitionistic fuzzy knowledge base.

Example 6. Consider the same information table given in the above Example
5. Now, we add another atribute e to the objects whose domain is {e1, e2, e3},
which generates a IF-proximity relation T on e. The modified information table
is given below.

Here we find the relative reduct and the relative core, T (α, β)-reduct and
T (α, β)-core of the family of IF-proximity relations R = {P, Q, R, S}

Let α = 0.6, β = 0.2. Then U/T (α, β) = {{x1, x5}, {x2, x4}, {x3}} and
U/INDR(α, β) = {{x1, x5}, {x2, x4}, {x3}}.
So,

(α, β) − POSRT =
⋃

X ∈ U/T (α, β)
RXα,β = {x3}.

Now we will check whether R is T (α, β)-dependent or not.
Here (α, β) − POSR−{P}T = {{x1, x2}, {x2, x5}, {x4}} �= (α, β) − POSRT
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(α, β) − POSR−{Q}T = {{x1, x2}, {x2, x5}, {x4}} �= (α, β) − POSRT

(α, β) − POS(R−{R})T = {{x1, x2}, {x2, x5}, {x4}} �= (α, β) − POSRT

(α, β) − POS(R−{S})T = {{x1, x2}, {x2, x5}, {x4}} �= (α, β) − POSRT

This gives that P, Q, R and S are T (α, β)-indispensable. That is R is T (α, β)-
independent. So the T (α, β)-reduct of R is {P, Q, R, S} and the T (α, β)-core is
also {P, Q, R, S}.

But, with different pair of values of (α, β) the situation may be different.

7 Dependency of Knowledge in IF - Approximation Space

In this section we discuss, how another knowledge base can be induced from a
given knowledge base.

Definition 42. Suppose K = (U,R) is an IF-approximation space and let
P,Q ⊆ R. For a fixed (α, β) ∈ J , knowledge Q is (α, β)-derivable from knowl-
edge P if all (α, β) categories of Q can be defined in terms of some elementary
(α, β)-categories of knowledge P.

Definition 43. Let R be a family of IF-proximity relations on the IF-
approximation space K = (U,R) and P,Q ⊂ R. Now Q is (α, β) derivable from
P, we say that knowledge Q(α, β) dependent on knowledge P and we denote it
by P (α,β)

⇒ Q if and only if IND P(α, β) ⊆ IND Q(α, β).

Definition 44. Knowledge P and Q are said to be (α, β)-equivalent, denoted
by P (α,β)

≡ Q if and only if P (α,β)
⇒ Q and Q (α,β)

⇒ P.
Obviously, P (α,β)

≡ Q if and only if INDP (α,β)
= IND Q(α, β)

Knowledge P is (α, β)-independent to knowledge Q if and only if neither
P (α,β)

⇒ Q nor Q (α,β)
⇒ P holds.

Propositions extending Propositions 2, 3, 4 and 5 can be established in this
general setting.

8 Partial Dependency of Knowledge in IF-Approximation
Spaces

Extending the concepts developed in section 2.6, we shall introduce the notion
of partial (α, β) -dependency of one knowledge base upon another.

Definition 45. Let K = (U,R) be a knowledge base. For (α, β) ∈ J , let P, Q ∈
R. Then we say that knowledge Q, (α, β)-depends in a degree k(α, β), 0 ≤
k(α, β) ≤ 1 from the knowledge P denoted by P (α,β)

⇒ k
Q if

k(α, β) = γP(α,β)(Q(α, β)) = |POSP(α,β)(Q(α, β))|/|U |. (26)
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(i) If k(α, β) = 1, we will say that Q is totally (α, β)-dependent on P.
(ii) If 0 < k(α, β) < 1, we say that Q is roughly or partially (α, β)-dependent on
P and if k(α, β) = 0,Q is totally (α, β)-independent from P.

Hence P (α,β)
⇒ 1Q means P (α,β)

⇒ Q, that is when k(α, β) = 1, all the elements
of the universe can be classified into elementary categories U/Q(α, β) by using
the knowledge P. When k(α, β) �= 1, only those elements of the universe which
belong to the positive region can be classified into the categories of knowledge Q
employing knowledge P. When k(α, β) = 0, none of the elements of the universe
can be classified using knowledge P(α, β) to elementary categories of knowledge
Q(α, β).

Hence the coefficient can be understood as the degree of dependency of knowl-
edge Q(α, β)) related to the knowledge P(α, β)).

Note 5
(i)Propositions extending Proposition 6 and Proposition 7 can be established in
this general setting.
(ii) We have (α, β), (α1, β) ∈ J, R∗(α, β) ⊃ R∗(α1, β) for α > α1. That is R
(α, β) ⇒ R (α1, β)for α > α1 , R ∈ R. Hence every equivalence class of R (α, β)
is contained in some equivalence class of R (α1, β). Also, we find that, if P (α, β)
is a (α, β)-reduct of (α, β), (α1, β) is (α1, β)-reduct of R(α1, β) for some α < α1.
So, we have the result.
(iii)A relation (IF-proximity relation) can be indispensable in Pawlak’s sense,
but it may be dispensable in the generalized sense. So that, by reducing the
accuracy we can find a smaller core.

9 An Application

Let us consider a situation of selection of reference books by a student in a
particular subject depending upon different factors of suitability of the books.

Suppose U = {b1, b2, b3, b4, b5} be the set of available books for the given
syllabus of a particular subject. Let X = {b1, b3} be the books prescribed for
the syllabus. The student is interested to purchase some additional books for
the enhancement of his/her knowledge according to his/her requirement based
on the following criteria.

(i) based on matching of chapters
(ii) based on matching of chapters and more examples in matching chapters.
(iii) based on matching of chapters and more exercises in matching chapters.
(iv) based on economy to purchase a book.

Based on different observations and calculations, we formed the following re-
lations on the above four criteria. Formulas used in generating membership and
non-membership values in R1, R2, R3 and R4 are follows.

For R1:
µ(A, B) = |Completely matching chapters of A&B|

|Chapters of chapters of A&B|−|Completely matching chapters of A&B|
ν(A, B) = |Completely unmatching chapters of A&B|

|Chapters of A&B|−|Completely matching chapters of A&B|
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Table 25. R1: Matching of chapters

R1 b1 b2 b3 b4 b5

b1 (1,0) (0.33,0.40) (0.83,0.17) (0.55,0.33) (0.50,0.33)
b2 (0.33,0.40) (1,0) (0.37,0.50) (0.57,0.33) (0.57,0.27)
b3 (0.83,0.17) (0.37,0.50) (1,0) (0.62,0.12) (0.42,0.41)
b4 (0.55,0.33) (0.5,0.33) (0.62,0.12) (1,0) (0.42,0.43)
b5 (0.50,0.33) (0.57,0.27) (0.42,0.43) (0.42,0.43) (1,0)

Table 26. R2: Matching of chapters & more examples in matching chapters

R2 b1 b2 b3 b4 b5

b1 (1,0) (0.35,0.19) (0.57,0.20) (0.15,0.55) (0.75,0.25)
b2 (0.35,0.19) (1,0) (0.61,0.06) (0.53,0.03) (0.46,0.50)
b3 (0.57,0.20) (0.61,0.06) (1,0) (0.10,0.27) (0.08,0.58)
b4 (0.15,0.55) (0.53,0.03) (0.10,0.27) (1,0) (0.28,0.42)
b5 (0.75,0.25) (0.46,0.50) (0.08,0.58) (0.28,0.42) (1,0)

Table 27. R3: Matching of chapters & more examples in matching chapters

R3 b1 b2 b3 b4 b5

b1 (1,0) (0.47,0.29) (0.50,0.25) (0.11,0.67) (0.47,0.27)
b2 (0.47,0.29) (1,0) (0.52,0.39) (0.37,0.45) (0.59,0.41)
b3 (0.50,0.25) (0.52,0.39) (1,0) (0.39,0.46) (0.61,0.39)
b4 (0.11,0.67) (0.37,0.45) (0.39,0.46) (1,0) (0.03,0.42)
b5 (0.47,0.27) (0.59,0.41) (0.61,0.39) (0.03,0.42) (1,0)

For R2:
µ(A, B) = |Matching examples in matching chap. of A&B|

|Examp. in matching chap. of A&B|−|Matching examp. in matching chap. of A&B|

ν(A,B) = |Unmatching examples of matching chap. of A&B|
|Examp. in matching chap. of A&B|−|Matching examp. in matching chap. of A&B|

For R3:
µ(A, B) = |Complete matching Exercises of matching chap. of A&B|

|Exercises of matching chap. of A&B|−|Matching exercises of matching chap. of A&B|

ν(A,B) = |Complete unmatching Exercises of matching chap. of A&B|
|Exercise of matching chap. of A&B|−|Matching exercises of matching chap. of A&B|

For R4:
µ(A, B) = |Completely matching chap. of A&B|×(Price of A+Price of B)

|Completely chap. of A|×Price of B+|Chap. of B|×Price of A

ν(A, B) = |Unmatching chap. of A&B|×(Price of A+Price of B)
|Chap. of A|×Price of B+|Chap. of B|×Price of A

1. Let us find the upper approximation of the books to be acquired by a student
as per his/her necessity.
The IF-approximation space generated from R = {R1, R2, R3, R4} is given in
Table 29.

If a student gives importance to all criteria, that is, having more common
chapters with the text, more examples and exercises and also economic for
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Table 28. R4: Price factor of books

R4 b1 b2 b3 b4 b5

b1 (1,0) (0.44,0.23) (0.10,0.10) (0.72,0.14) (0.67,0.20)
b2 (0.44,0.23) (1,0) (0.37,0.61) (0.61,0.32) (0.73,0.21)
b3 (0.10,0.10) (0.37,0.61) (1,0) (0.81,0.11) (0.50,0.50)
b4 (0.72,0.14) (0.61,0.32) (0.81,0.11) (1,0) (0.50,0.50)
b5 (0.67,0.20) (0.73,0.21) (0.50,0.50) (0.50,0.50) (1,0)

Table 29. IF-approximation space for R

IND(R) b1 b2 b3 b4 b5

b1 (1,0) (0.33,0.40) (0.10,0.25) (0.11,0.67) (0.47,0.33)
b2 (0.10,0.25) (1,0) (0.37,0.61) (0.37,0.45) (0.46,0.50)
b3 (0.10,0.25) (0.37,0.61) (1,0) (0.10,0.46) (0.08,0.58)
b4 (0.11,0.67) (0.37,0.45) (0.10,0.46) (1,0) (0.03,0.50)
b5 (0.47,0.33) (0.08,0.58) (0.08,0.58) (0.03,0.50) (1,0)

purchase up to particular levels of membership and non-membership then he/she
has to consider the common cases by taking the intersection of all the above
relations.

Case 1. Suppose α = 0.45 and β = 0.4. R(α, β) = {{b1, b5}, {b2}, {b3}, {b4}}
and Xα,β = {b1, b3, b5}.
Conclusion: The student is required to purchase the book b5 for his/her use
in addition to the textbooks b1 and b3 if importance is given to all the four
characteristics above but with low positive value of 0.45 and high negative value
of 0.4.

Case 2. Suppose α = 0.8 and β = 0.2. R(α, β) = {{b1}, {b2}, {b3}, {b4}, {b5}}
and Xα,β = {b1, b3}.
Conclusion: The student is not required to purchase any book for his/her use
besides the textbooks b1 and b2 if importance is given to all the four characteristic
above with high positive value of 0.8 and low negative value of 0.2.

On the other hand, if some criteria are not important for the student; like
he/she has no problem for price and does not insist for more number of exercises
then he/she has to consider the intersection of R1 and R2.
2. Next we shall determine the prime factor to select a book(s) by a student
using the reduct and core of the relation R(α, β).
Let α = 0.55 and β = 0.33. Then

U/R1(α, β) = {(b1, b1), (b1, b3), (b2, b2), (b2, b5), (b3, b1), (b3, b3), (b3, b4), (b4, b3), (b4, b4),
(b5, b2), (b5, b5)}.

= {{b1, b3, b4}, {b2, b5}}
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U/R2(α, β) = {(b1, b1), (b1, b3), (b2, b2), (b2, b3), (b2, b4), (b3, b1), (b3, b2), (b3, b3), (b4, b2),
(b4, b4), (b5, b1), (b5, b5)}.

= {{b1, b2, b3, b4, b5}}
U/R3(α, β) = {(b1, b1), (b2, b2), (b3, b3), (b3, b5), (b4, b4), (b5, b3), (b5, b5)}.

= {{b1}, {b2}, {b3, b5}, {b4}}
U/R4(α, β) = {(b1, b1), (b1, b4), (b1, b5), (b2, b2), (b2, b5), (b3, b3), (b3, b4), (b4, b1), (b4, b3),

(b4, b4), (b5, b1), (b5, b2), (b5, b5)}.

= {{b1, b2, b3, b4, b5}}
U/(R1 ∩ R2 ∩ R3 ∩ R4)(α, β) = U/INDR(α, β)

= {{b1}, {b2}, {b3}, {b4}, {b4}, {b5}}.

Now,
U/IND(R− R1)(α, β) = {{b1}, {b2}, {b3, b5}, {b4}} �= U/INDR(α, β)

U/IND(R− R2)(α, β) = {{b1}, {b2}, {b3}, {b4}, {b5}} = U/INDR(α, β)

U/IND(R− R3)(α, β) = {{b1, b3, b4}, {b2, b5}} �= U/INDR(α, β)

U/IND(R− R4)(α, β) = {{b1}, {b2}, {b3}, {b4}, {b5}} = U/INDR(α, β)

Here R1 and R3 are (α, β)-indispensable, whileR2 and R4 are (α, β)-dispensable
in R.

The (α, β)-reducts of R are

{R1, R2, R3} and {R1, R3, R4}.

CORE(R(α, β)) = {R1, R2, R3} ∩ {R1, R3, R4}
= {R1, R3}.

So, the number of matching chapters and number of matching examples in
matching chapters are the primary factors for selecting a book by students.

3. Comparison of result on Fuzzy Approximation Spaces

(a) let us compare the IF-approximation space approach with the Fuzzy approx-
imation Space approach for this particular example.

We drop the non-membership values from the above example, leading to fuzzy
approximation spaces corresponding to the fuzzy proximity relations R1, R2, R3
and R4.

Case 1. Suppose α = 0.45. Then
R(α) = {{b1, b2, b5}, {b3}, {b4}} and Xα = {b1, b2, b3, b5}.

Conclusion: The student is required to purchase two new books b2 and b5 for
his/her use besides the textbooks b1 and b3.
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Comparing this inference with IF-approximation spaces (Case 1. of 1 above)
the student requires purchasing only one additional book b2, we see that in the
fuzzy approximation space we don’t have any control over the non-membership
value, which is automatically set to 0.55. Because of this high non-membership
value one has to go for purchasing the additional book.

Case 2. suppose α = 0.8. Then
R(α) = {{b1}, {b2}, {b3}, {b4}, {b5}} and Xα = {b1, b3}.

Conclusion: So, a student is not required to purchase any book other than b1
and b3. Here the non-membership value is automatically set to 0.2 and so, there
is no change.
(b) Next, we find the α−core and the α−reduct of the relations INDR(α).

Let α = 0.55. Then
U/R1(α) = {{b1, b3, b4}, {b2, b5}}.
U/R2(α) = {{b1, b2, b3, b5}, {b4}}.
U/R3(α) = {{b1}, {b2, b3, b5}, {b4}}.
U/R4(α) = {b1, b2, b3, b4, b5}.
U/INDR(α) = {{b1}, {b2}, {b3}, {b4}, {b5}}.
Now,
U/IND(R− R1)(α) = {{b1}, {b2, b3, b5}, {b4}} �= U/INDR(α)
U/IND(R− R2)(α) = {{b1}, {b2, b5}, {b3}, {b4}} �= U/INDR(α)
U/IND(R− R3)(α) = {{b1, b3}, {b2, b5}, {b4}} �= U/INDR(α)
U/IND(R− R4)(α) = {{b1}, {b2, b5}, {b3}, {b4}} �= U/INDR(α)

Here, all the relations R1, R2,R3 and R4 are α-indispensable. Hence, all the
factors are important to select a book for the study. This analysis fails to distin-
guish the significance of the four relations properly. However in Case 2, we find
that with the control of non-membership value β if we reduce its value then only
two characteristic are indispensable for the selection of reference books. So, by
considering the intuitionistic fuzzy approximation space approach we can control
both proximity and non proximity parameters which are to get better results.
The values of these parameters are to be selected judiciously depending upon
the situations and requirements.

10 Conclusion

The introduction of the concept of Rough set by Z. Pawlak was mainly in-
tended to capture impreciseness. It was primarily dependent on the notion
of equivalence relations. However equivalence relations are rare in nature. So,
many real life situations could not be covered by this basic version of rough
sets. Extensions have been made in many directions. Mainly these extensions
are by the relaxation of the restriction of the basic relations to be equiva-
lence relations [32,33,34,35,37,38,40,41,42]. In this chapter we have discussed
some such new versions of the notion of rough sets; namely rough sets on fuzzy
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approximation spaces [14,15,40,42] and rough sets on intuitionistic fuzzy approx-
imation spaces [37,38,41]. By the introduction of the fuzzy concept more reality
could be brought into the notion of rough sets and also its modelling power and
applicability have been improved. The definition of extended version are depen-
dent upon fuzzy proximity relation and intutionistic fuzzy proximity relation,
which are generalized versions of equivalence relation. These new versions de-
pend upon the initial version for their development but with separate identities
and with better modelling power.
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Summary. Categories arise in mathematics and appear frequently in computer science
where algebraic and logical notions have powerful representations using categorical
constructions. In this chapter we lean towards the functorial view involving natural
transformations and monads. Functors extendable to monads, further incorporating
order structure related to the underlying functor, turn out to be very useful when
presenting rough sets beyond relational structures in the usual sense. Relations can
be generalized with rough set operators largely maintaining power and properties. In
this chapter we set forward our required categorical tools and we show how rough sets
and indeed a theory of rough monads can be developed. These rough monads reveal
some canonic structures, and are further shown to be useful in real applications as
well. Information within pharmacological treatment can be structured by rough set
approaches. In particular, situations involving management of drug interactions and
medical diagnosis can be described and formalized using rough monads.

1 Introduction

Monads are useful e.g. for generalized substitutions as we have extended the
classical concept of a term to a many-valued set of terms [21]. This builds es-
sentially upon composing various set functors, as extendable to monads, with
the term functor and its corresponding monad. The most trivial set functor is
the powerset functor for which a substitution morphism in the corresponding
Kleisli category is precisely a relation. Thus relations are seen as connected to a
powerset functor that can be extended to a monad. Further, whenever general
powerset monads can be extended to partially ordered monads, this structure
is sufficient for the provision of rough set operations in a category theory set-
ting. This categorical presentation of rough sets will establish connections to
other categorical structures with the objective to enrich the theory. Key in these
constructions is the first observation that relations are morphisms in the Kleisli
category of the monad extended from the powerset functor.

Fuzzy sets, closely related to rough sets, are founded on the notion of many-
valued membership, and is considered as a gradual property for fuzzy sets. Fuzzy
� Partially supported by Spanish projects P06-FQM-02049 andTIN2006-15455-C03-01.
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set theory offers a more expressive mathematical language and has many appli-
cations in a very wide variety of fields. Fuzzy sets, originally introduced by
Zadeh [39] in 1965, increase the expressiveness of classical mathematics to deal
with information systems that are incomplete, uncertain and imprecise. In 1967,
Goguen, [22], extended the idea of fuzzy sets to L-fuzzy sets, considering more
general order structures L beyond the unit interval. The extended notion of L-
fuzzy sets also represent the extension of the crisp powerset monad. Thus the
powerset monads is the categorical way to represent fuzzy sets. Beyond fuzzy
sets, and introducing partial order into monads, using so called partially ordered
monads, we can then also represent rough sets.

The outline of the chapter is as follows. Section 2 gives a historical back-
ground to the categorical apparatus used in the chapter. In sect. 3 we provide
the categorical preliminaries and notations making the chapter easier to read
and comprehend. Section 4 includes important examples of monads, one of the
underlying categorical tools used in this chapter. Section 5 then describes par-
tially ordered monads upon which rough monads are built in Sect. 7. In sect. 6,
rough sets are conceptually embedded into the categorical machinery. Section 8
outlines applications related to management of drug interactions and cognitive
disorder diagnosis, respectively. Section 9 concludes the chapter.

2 Historical Remarks and Related Work

Monads were initiated by Godement around 1958. Huber shows in 1961 that
adjoint pairs give rise to monads. Kleisli [28] and also Eilenberg and Moore
[4] proves the converse in 1965. Kleisli categories were explicitely constructed in
those contributions. Partially ordered monads are monads [32], where the under-
lying endofunctor is equipped with an order structure, which makes them useful
for various generalized topologies and convergence structures [18, 20]. They are
indeed derived from studies on convergence, initiated by [30]. Partially ordered
monads were initially studied in [18, 19]. Topology and convergence were forerun-
ners in the development of partially ordered monads, but these monads contain
structure also for modelling rough sets [33] in a generalized setting with set
functors. Partially ordered monads contribute to providing a generalised notion
of powerset Kleene algebras [5]. This generalisation builds upon a more general
powerset functor setting far beyond just strings [27] and relational algebra [37].
These structures are typical representatives of Kleene algebras, which are widely
used e.g. in formal languages [36] and analysis of algorithms [1]. Rough sets and
their purely algebraic properties are studied e.g. within shadowed sets [3]. There
is further an interesting interaction between monads and algebras, which is well-
known. The tutorial example is the isomorphism between the Kleisli category
of the powerset monad and the category of ‘sets and relations’. The Eilenberg-
Moore category of the powerset monad is isomorphic to the category of complete
lattices and join-preserving mappings. The Kleisli category of the term monad
coincides with its Eilenberg-Moore category and is isomorphic to the category of
Ω-algebras. A rather intrepid example, although still folklore, is the isomorphism
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between the Eilenberg-Moore category of the ultrafilter monad and the category
of compact Hausdorff spaces. Here is where “algebra and topology meet”.

3 Categorical Preliminaries

A major advantage of category theory is its ‘power of abstraction’ in the sense
that many mathematical structures can be characterized in terms of relatively
few categorical ones. This fact enables to pursue a more general study towards
generalizations of the structures. Category theory has been successfully applied
in different areas such as topology, algebra, geometry or functional analysis. In
recent years, category theory has also contributed to the development of com-
puter science: the abstraction of this theory has brought the recognition of some
of the constructions as categories. This growing interest towards categorical as-
pects can be found in, for instance, term rewriting systems, game semantics and
concurrency. In a gross manner one can say a category is given by a class of ob-
ject and a class of morphisms between the objects under certain mathematical
conditions. Examples of categories come not only from mathematics (the cat-
egory of groups and group homomorphisms, the category of topological spaces
and continuous functions, etc.) but also from computer science. Deductive sys-
tems is a category where the objects are formulas and morphisms are proofs.
Partially ordered sets form a category where objects are partially ordered sets
and morphisms are monotone mappings. A particular partially ordered set also
forms a category where objects are its elements and there is exactly one mor-
phism from an element x to an element y if and only if x ≤ y. We can go beyond
categories and wonder if there is a category of categories. The answer is yes (pro-
vided the underlying selected set theory is properly respected). In this category
of categories the objects are categories and the morphisms are certain structure-
preserving mappings between categories, called functors. Examples of functors
are for instance the list functor, the powerset functor and the term functor.
The concept of naturality is important in many of the applications of category
theory. Natural transformations are certain structure-preserving mappings from
one functor to another. It might seem abstract to consider morphisms between
morphisms of categories, but natural transformations appear in a natural way
very frequently both in mathematics as well as in computer science. Natural
transformations are cornerstones in the concept of monads.

3.1 Categories

A category C consists of objects, and for each pair (A, B) of objects we have
morphisms f from A to B, denoted by f : A �� B or A f �� B. Further there
is an (A-)identity morphism A idA �� A and a composition ◦ among morphisms
that composes A

f �� B and B
g �� C to A

g◦f �� C in order to always
guarantee h ◦ (g ◦ f) = (h ◦ g) ◦ f , and also idB ◦ f = f ◦ idA = f for any
A f �� B. The set of C-morphisms from A to B is written as HomC(A, B) or
Hom(A, B).
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Example 1. The category of sets, Set, consists of sets as objects and functions
as morphisms together with the ordinary composition and identity.

Example 2. The category of partially ordered sets, Poset, consists of partially
ordered sets as objects and order-preserving functions as morphisms. The cate-
gory of boolean algebras, Boo, consists of boolean algebras as objects and boolean
homomorphisms as morphisms. The category of groups, Grp, consists of groups
as objects and group homomorphisms as morphisms.

Example 3. A poset (partially ordered set) forms also a category where objects
are its elements and there is exactly one morphism from an element x to an
element y if and only if x ≤ y. Composition is forced by transitivity. Identity is
forced by reflexivity.

Example 4. The category of Ω-algebras, Alg(Ω), consists of Ω-algebras as objects
and Ω-homomorphisms as morphisms between them. Recall that a Ω-algebra is a
pair (X, (ωi)i∈I) where X is a set and ωi : Xni ��X are the ni-ary operations on
X . An Ω-homomorphism f : (X, (ωi)i∈I) �� (X̂, (ω̂i)i∈I) consists of a function
f : X �� X̂ such that the diagram

X X̂
f

��

Xni

X

ωi

��

Xni X̂ni
fni

�� X̂ni

X̂

ω̂i

��

commutes, i.e. f(ωi(x1, . . . , xni)) = ω̂i(f(x1), . . . , f(xni)).

Further examples are the category of groups and group homomorphisms, the cat-
egory of vector spaces and linear transformations, and the category of topological
spaces with continuous functions as morphisms. A useful category in computer
science is the following.

3.2 Functors

To relate category theory with typed functional programming, we identify the
objects of the category with types and the morphisms between the objects with
functions. In a given category, the set of morphisms Mor(C) is useful to establish
connections between the different objects in the category. But also it is needed
to define the notion of a transformation of a category into another one. This
kind of transformation is called a functor. In the previous context, functors are
not only transformations between types, but also between morphisms, so, at the
end, they will be mappings between categories. Let us see an example. Given a
type, for instance, Int, we can consider the linear finite list type of elements of
this type, integer lists. Let us denote by List(S) to indicate the lists of elements
with type S. Let us see how List actuates not only over types, but also over
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functions between types. Given a function f : S �� T we want to define a
function List(f),

List(f) : List(S) �� List(T ).

Note that here we are using the same name for two operations, one over objects
and the other one over functions. This is the standard when using functors. To
understand how to define List over functions, let us consider the function sq : Int

�� Int defined as sq(x) = x2. The type of List(sq) is List(sq) : List(Int)
�� List(Int). What should be the value of List(sq)[−2, 1, 3]? The obvious

answer is the list [(−2)2, 12, 32] = [4, 1, 9]. In the general case, the part that
actuates over the morphisms of List is the maplist function, that distributes
a function over the elements of a list. In this case we have defined how List
actuates over objects and morphisms. Next step is to ask ourselves how does
List respect the categorical structure, that is, what is the behavior over the
composition of morphisms and over the identity morphism? It is expected that

List(g ◦ f) = List(g) ◦ List(f),
List(ida) = idList(a).

It is not difficult to check this for maplist. Now we are ready for the functor
definition. Let C and D be categories. A (covariant) functor ϕ from C to D, denoted
ϕ : C �� D, is a mapping that assigns each C-object A to a D-object ϕ(A) and
each C-morphism A

f �� B to a D-morphism ϕ(A) ϕ(f) �� ϕ(B), such that
ϕ(f ◦ g) = ϕ(f) ◦ ϕ(g) and ϕ(idA) = idϕ(A). We often write ϕA and ϕf instead
of ϕ(A) and ϕ(f). For functors ϕ : C �� D and ψ : D �� E, we can easily see
that the composite functor ψ ◦ ϕ : C �� E given by

(ψ ◦ ϕ)(A f �� A′) = ψ(ϕA) ψ(ϕf)�� ψ(ϕA′)

indeed is a functor.

Example 5. Any category C defines an identity functor idC : C �� C given by

idC(A
f �� B) = A

f �� B.

Example 6. The (covariant) powerset functor P : Set �� Set is defined by PA
being the powerset of A, i.e. the set of subsets of A, and Pf(X), for X ⊆ A,
being the image of X under f , i.e. Pf(X) = {f(x) | x ∈ X}. The contravariant
powerset functor Q : Setop �� Set is defined by QA again being the powerset
of A, and further

Q(A f �� B) = QA Qf �� QB

where Qf(X), X ⊆ A, is the inverse image of X under the function f : B ��A.

Example 7. The list functor List : Set �� Set is defined by List(A) being the
set of finite lists with elements in A, i.e. List(A) =

⋃
n∈N An, and further for

f : A �� B we have

Listf(L) = [f(a1), . . . , f(an)]

for finite lists L = [a1, . . . , an] with a1, . . . , an ∈ A.
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A functor ϕ : C ��D is a (functor) isomorphism if there is a functor ψ : D ��C
such that ψ ◦ ϕ = idC and ϕ ◦ ψ = idD.

Example 8. The category Boo is isomorphic to the category of boolean rings (ring
with unit, and each element being idempotent with respect to multiplication, i.e.
a · a = a) and ring homomorphisms.

Example 9 (T -algebras). Let T : X �� X be a functor. A T -algebra is a pair
(X, h), where X is an X-object and h : TX �� X is an X-morphism. A T -
homomorphism f : (X, h) �� (X ′, h′) between T -algebras is an X-morphism
f : X �� X ′ such that the diagram

TX ′ X ′
h′

��

TX

TX ′

Tf

��

TX X
h �� X

X ′

f

��

commutes. We denote by Alg(T ) the category consisting of T -algebras as Alg(T )-
objects and T -homomorphisms as Alg(T )-morphisms. It can be shown that
Alg(Ω) (Example 4) is isomorphic to Alg(T ) for some suitable functors T .

Example 10. If G and H are groups considered as categories with a single object,
then a functor from G to H is exactly a group homomorphism.

Example 11. If P and Q are posets, a functor from P to Q is exactly a nonde-
creasing map.

Example 12. The list functor List : Set �� Set (Set denotes the category of
sets) is defined by List(A) being the set of finite lists with elements in A, i.e.
List(A) =

⋃
n∈N An, and further for f : A �� B we have

List f(L) = [f(a1), . . . , f(an)]

for finite lists L = [a1, . . . , an] with a1, . . . , an ∈ A.

3.3 Natural Transformations

In the same way as functors are defined as morphisms between categories, we
could think of defining morphisms between functors. The concept of naturality is
central in many of the applications of category theory. Natural transformations
are certain structure-preserving mappings from one functor to another. Maybe,
in a first approach to this, it seems abstract to consider morphisms between mor-
phisms of categories. We will show here, how natural transformations appear in a
natural way not only in mathematics, but also in programming. Continuing with
lists, let us consider that the function that inverts lists, has type rev : List(S)

�� List(S) where S is a type. Obviously, it is expected that rev inverts any
kind of lists, i.e., it is expected that the definition rev is uniform with respect
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to the type of the elements on the list. One definition of rev can be given in the
functional program Hope as follows:

• rev(nil) <= nil
• rev(a :: l) <= rev(l) :: a

Instead of considering rev as a list whose type is polymorphic, we can consider
it as a collection of functions indexed by the element’s type of the list, so we
could write revS : List(S) �� List(S) or even, rev : List �� List. In the last
case, we apply the argument S, that is the type of the elements on the list, to
rev and to the functor List. Note that when we apply rev to an argument, we
get a function, in this way we can consider rev as a morphism from the functor
List to the functor List. In this context we must make sure that, for types S
and T , the functions revS and revT are well related to each other. The relation
between these two mappings can be expressed through the commutativity of the
following diagram

S

T

f

��
List(T ) List(T )

revT

��

List(S)

List(T )

List(f)

��

List(S) List(S)
revS�� List(S)

List(T )

List(f)

��

In this case, the action of List over functions is the function maplist. It is easy
to check that the diagram commutes, and for any f : S �� T , it expresses a
fundamental property of the function rev. Now, we can give the definition of
natural transformation. Let ϕ, ψ : C �� D be functors.

Definition 1. A natural transformation τ from ϕ to ψ, written τ : ϕ �� ψ or
ϕ τ �� ψ, assigns to each C-object A a D-morphism τA : ϕA �� ψA such that
the diagram

A

A′

f

��
ϕA′ ψA′

τA′
��

ϕA

ϕA′

ϕf

��

ϕA ψA
τA �� ψA

ψA′

ψf

��

commutes.

Let ϕ be a functor. The identity natural transformation ϕ
idϕ �� ϕ is defined

by (idϕ)A = idϕA. For functors ϕ and natural transformations τ we often write
ϕτ and τϕ, respectively, to mean (ϕτ)A = ϕτA and (τϕ)A = τϕA. It is easy to
see that η : idSet �� P given by ηX(x) = {x}, and µ : P ◦ P �� P given by
µX(B) =

⋃
B(=

⋃
B∈B B) are natural transformations. Natural transformations

can be composed vertically as well as horizontally. Let ϕ, ψ, ϑ : C �� D be
functors and let further ϕ τ �� ψ and ψ σ �� ϑ be natural transformations.
The (vertical) composition ϕ σ◦τ �� ϑ, defined by (σ ◦ τ)A = σA ◦ τA, is a natural
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transformation. In order to define the corresponding horizontal composition, let
ϕ′, ψ′ : C ��D be functors and let ϕ′ τ ′ �� ψ′ be a natural transformation. The
star product (horizontal composition) ϕ′ ◦ ϕ τ ′�τ �� ψ′ ◦ ψ is defined by

τ ′ � τ = τ ′ψ ◦ ϕ′τ = ψ′τ ◦ τ ′ϕ. (1)

For the identity transformation idϕ : ϕ �� ϕ, also written as 1ϕ or 1, we have

1ϕ � 1ψ = 1ϕ◦ψ. (2)

For a natural transformation τ : ϕ ��ψ, and a functor ϑ, ϑτ = 1ϑ �τ and τϑ =
τ � 1ϑ. For natural transformations ϕ τ �� ψ σ �� ϑ and ϕ′ τ ′ �� ψ′ σ′ �� ϑ′

we have the Interchange Law (σ′ ◦ τ ′) � (σ ◦ τ) = (σ′ � σ) ◦ (τ ′ � τ).

3.4 Monads and Kleisli Categories

In the following we include some formal definitions of concepts required.

Definition 2. Let C be a category. A monad (or triple, or algebraic theory) over
C is written as Φ = (ϕ, η, µ), where ϕ : C → C is a (covariant) functor, and
η : id → ϕ and µ : ϕ◦ϕ → ϕ are natural transformations for which µ◦ϕµ = µ◦µϕ
and µ ◦ ϕη = µ ◦ ηϕ = idϕ hold.

Definition 3. A Kleisli category CΦ for a monad Φ over a category C is given
with objects in CΦ being the same as in C, and morphisms being defined as
homCΦ(X, Y ) = homC(X, ϕY ). Morphisms f : X ⇁ Y in CΦ are thus morphisms
f : X → ϕY in C, with ηϕ

X : X → ϕX being the identity morphism. Composition
of morphisms in CΦ is defined as

(X
f
⇁ Y ) � (Y

g
⇁ Z) = X

µϕ
Z◦ϕg◦f
−→ ϕZ. (3)

Composition in the case of the term monad comes down to substitution, and this
brings us immediately to substitution theories in general for monads. Monads
can be composed and especially the composition of the powerset monad with
the term monad provides groundwork for a substitution theory as a basis for
many-valued logic [21]. In the following we will elaborate on powerset monads.
The concept of subfunctors and submonads can be used to provide a technique
for constructing new monads from given ones.

Definition 4. Let ϕ be a set functor. A set functor ϕ′ is a subfunctor of ϕ,
written ϕ′ ≤ ϕ, if there exists a natural transformation e : ϕ′ �� ϕ, called the
inclusion transformation, such that eX : ϕ′X �� ϕX are inclusion mappings,
i.e., ϕ′X ⊆ ϕX. The conditions on the subfunctor imply that ϕf |ϕ′X= ϕ′f for
all mappings f : X �� Y . Further, ≤ is a partial ordering.

Proposition 1 ([13]). Let Φ = (ϕ, η, µ) be a monad over Set, and consider
a subfunctor ϕ′ of ϕ, with the corresponding inclusion transformation e : ϕ′
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��ϕ, together with natural transformations η′ : id ��ϕ′ and µ′ : ϕ′ϕ′ ��ϕ′

satisfying the conditions

e ◦ η′ = η, (4)
e ◦ µ′ = µ ◦ ϕe ◦ eϕ′. (5)

Then Φ′ = (ϕ′, η′, µ′) is a monad, called the submonad of Φ, written Φ′ � Φ.

4 Examples of Monads

Monads have been used in many different areas such as topology or functional
programming. The applications and use of monads in computer science is well-
known and provides an abstract tool to handle properties of structures. Ex-
amples developed in this section have an important role in many applications.
Powerset monads and their many-valued extensions are in close connection to
fuzzification and are good candidates to represent situations with incomplete or
imprecise information. With respect to topological application, the fuzzy filter
monad is a key construction when studying convergence structures from a more
general point of view. Unless otherwise stated, we assume L to be a completely
distributive lattice. For L = {0, 1} we write L = 2.

Remark 1. Extending functors to monads is not trivial, and unexpected situa-
tions may arise. Let the id2 functor be extended to a monad with

ηX(x) = (x, x) and µX((x1, x2), (x3, x4)) = (x1, x4).

Further, the proper powerset functor P0, where P0X = PX \ {∅}, as well as
id2 ◦ P0 can, respectively, be extended to monads, even uniquely. However, as
shown in [15], P0 ◦ id2 cannot be extended to a monad.

4.1 The Term Monad

Notations in this part follow [17], which were adopted also in [15, 11]. Let Ω =⋃∞
n=0 Ωn be an operator domain, where Ωn contains n-ary operators. The term

functor TΩ : SET → SET is given as TΩ(X) =
⋃∞

k=0 T k
Ω(X), where

T 0
Ω(X) = X,

T k+1
Ω (X) = {(n, ω, (mi)i≤n) | ω ∈ Ωn, n ∈ N, mi ∈ T k

Ω(X)}.

In our context, due to constructions related to generalised terms [14, 13, 11],
it is more convenient to write terms as (n, ω, (xi)i≤n) instead of the more
common ω(x1, . . . , xn). It is clear that (TΩX, (σω)ω∈Ω) is an Ω-algebra, if

σω((mi)i≤n) = (n, ω, (mi)i≤n) for ω ∈ Ωn and mi ∈ TΩX . Morphisms X
f→ Y

in Set are extended in the usual way to the corresponding Ω-homomorphisms
(TΩX, (σω)ω∈Ω)

TΩf−→ (TΩY, (τω)ω∈Ω), where TΩf is given as the Ω-extension of

X
f→ Y ↪→ TΩY associated to (TΩY, (τnω)(n,ω)∈Ω). To obtain the term monad,

define ηTΩ

X (x) = x, and let µTΩ

X = id�
TΩX be the Ω-extension of idTΩX with

respect to (TΩX, (σnω)(n,ω)∈Ω).
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Proposition 2. [32] TΩ = (TΩ, ηTΩ , µTΩ ) is a monad.

4.2 The Powerset Monad

The covariant powerset functor Lid is obtained by LidX = LX , i.e. the set of
mappings (or L-fuzzy sets) A : X → L, and following [22], for a morphism
f : X → Y in Set, the category of sets and functions, by defining

Lidf(A)(y) =
∨

f(x)=y

A(x).

Further, define ηX : X → LidX by

ηX(x)(x′) =

{
1 ifx=x’
0 otherwise

(6)

and µ : Lid ◦ Lid → Lid by

µX(M)(x) =
∨

A∈LidX

A(x) ∧M(A).

Proposition 3. [32] Lid = (Lid, η, µ) is a monad.

Note that 2id is the usual covariant powerset monad P = (P, η, µ), where PX
is the set of subsets of X , ηX(x) = {x} and µX(B) =

⋃
B.

4.3 Powerset Monads with Fuzzy Level Sets

In [12], a number of set functors extending the powerset functor together with
their extension principles are introduced. By extension principles we mean the
two possible generalizations of a mapping f : X ��Y where X, Y are sets, when
working in the fuzzy case according to an optimistic or pessimistic interpretation
of the fuzziness degree.

1. Maximal extension principle: FfM : FX �� FY ,

FfM (A)(y) =

⎧⎨
⎩

sup{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

2. Minimal extension principle: Ffm : FX �� FY ,

Ffm(A)(y) =

⎧⎨
⎩

inf{A(x) | f(x) = y and A(x) > 0} if the set is nonempty

0 otherwise

Both extensions FfM and Ffm coincide with the direct image extension in the
case of crisp subsets, that is, given A ∈ PX , then PfM (A) = Pfm(A) = f(A) ∈
PY . These maximal and minimal extension principles can be further generalized
to the L-fuzzy powersets, just changing the calculations of suprema and infima
by the lattice join and meet operators. We will use the set I = {x ∈ X | f(x) =
y and A(x) > 0}:



Categorical Innovations for Rough Sets 55

1. Maximal L-fuzzy extension principle: LfM : LX �� LY is

LfM (A)(y) =

⎧⎨
⎩

∨
I A(x) if I �= ∅

0 otherwise

2. Minimal L-fuzzy extension principle: Lfm : LX �� LY ,

Lfm(A)(y) =

⎧⎨
⎩

∧
I A(x) if I �= ∅

0 otherwise

We can now extend the definition of powersets to powersets with fuzzy level sets.
Functors for α-upper L-fuzzy sets and α-lower L-fuzzy sets, denoted Lα and Lα,
respectively, are given as follows:

LαX = {A ∈ LidX | A(x) ≥ α or A(x) = 0, for all x ∈ X}
LαX = {A ∈ LidX | A(x) ≤ α or A(x) = 1, for all x ∈ X}.

For mappings f : X �� Y , we define Lαf : LαX �� LαY as the restriction of
the mapping given by the minimal L-fuzzy extension principle to the L-fuzzy set
LαX . Similarly, Lαf : LαX �� LαY is given as the restriction of the mapping
given by the maximal L-fuzzy extension principle. L-fuzzy set categories are
defined for each of these extended power set functors and the rationality of the
extension principle is proved in the categorical sense, i.e. the associated L-fuzzy
set categories are shown to be equivalent to the category of sets and mappings.
We can easily generalize the fact that (Lid, η, µ) is a monad and obtain:

Proposition 4. [12] (Lα, ηα, µα) is a monad.

For Lα we define:

ηαX(x)(x′) =

⎧⎨
⎩

1 if x = x′

0 otherwise

µαX(A)(x) =

⎧⎪⎪⎨
⎪⎪⎩

∧
A∈I

A(x) ∧ A(A) if I = {A ∈ LαX | A(x) ∧ A(A) > 0} �= ∅

0 otherwise

Proposition 5. [12] (Lα, ηα, µα) is a monad.

Remark 2. For mappings f : X �� Y , we could obtain Lαf as Lidf|LαX
. Thus,

Lα become subfunctor of Lid and Lα = (Lα, ηLα

, µLα

) is a submonads of Lid.

Remark 3. For L = 2, Lα = Lα = 2id.
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4.4 The Covariant Double Contravariant Powerset Monad

The contravariant powerset functor Lid is the contravariant hom-functor related
to L, i.e. Lid = hom(−, L) : Set �� Set, which to each set X and mapping
f : X �� Y assigns the set LX of all mappings of X into L, and the mappings
hom(f, L)(g) = g◦f (g ∈ LY ), respectively. Note that 2id is the usual contravari-
ant powerset functor, where 2idX = PX , and morphisms X f �� Y in Set are
mapped to 2idf representing the mapping M �→ f−1[M ] (M ∈ PY ) from PY to
PX . For double powerset functors it is convenient to write LLid

= Lid ◦Lid and
LLid

= Lid ◦ Lid. Note that LLid

is a covariant functor. It may be interesting
also to note that the filter1 functor is a subfunctor of 22id

, but not a subfunctor
of 22id

. In the case of LLid

, for X f �� Y in Set and M ∈ LLX

, we have
LLid

f(M) = M◦ Lidf , and hence, LLid

f(M)(g) = M(g ◦ f).

Proposition 6. [15] The covariant set functor LL = Lid ◦ Lid can be extended
to a monad, considering the following definitions of the natural transformations
ηLL and µLL:

ηLL
X (x)(A) = A(x), µLL

X (U) = U ◦ ηLL
LX .

It is well-known that the proper2 filter functor F0 becomes a monad where
ηF0 : id �� F0 is the unique natural transformation and µF0 : F0 ◦ F0 �� F0
is given by

µF0
X (U) =

⋃
R∈U

⋂
M∈R

M

i.e. the contraction mapping suggested in [30].

Remark 4. In relation with the functor 22id

, it can easily be seen that µ22id

X (U) =
µF0

X (U).

5 Partially Ordered Monads

Godement in 1958 used monads named as standard constructions and Huber
in 1961 showed that adjoint pairs give rise to monads. In 1965, Kleisli [28],
Eilenberg and Moore [4] proved the converse. Lawvere [31] introduced univer-
sal algebra and thereby the term monad. These developments provide all cat-
egorical tools for generalized substitutions. In 2000, Gähler develops partially
ordered monads [18], where topology and convergence provided underlying the-
ories. Partially ordered monads contain sufficient structure also for modelling
rough sets [33] in a generalized setting with set functors. This generalization
builds upon a more general powerset functor setting far beyond just strings
[27] and relational algebra [37]. Let acSLAT be the category of almost complete
1 A filter on a set X is a nonempty set F of subsets of X such that: (i) ∅ /∈ F , (ii)

A,B ∈ F ⇒ A∩B ∈ F , (iii) A ∈ F A ⊆B ⇒ B ∈F .
2 F0X = FX \ {∅}
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semilattices, i.e. partially ordered sets (X,≤) such that the suprema supM of
all non-empty subsets M of X exists. Morphisms f : (X,≤) → (Y,≤) satisfy
f(supM) = sup f [M] for non-empty subsets M of X . A basic triple ([18]) is a
triple Φ = (ϕ,≤, η), where (ϕ,≤) : SET → acSLAT, X �→ (ϕX,≤) is a covariant
functor, with ϕ : SET → SET as the underlying set functor, and η : id → ϕ is a
natural transformation. If (ϕ,≤, ηϕ) and (ψ,≤, ηψ) are basic triples, then also
(ϕ ◦ ψ,≤, ηϕψ ◦ ηψ) is a basic triple.

Definition 5. A partially ordered monad is a quadruple Φ = (ϕ,≤, η, µ), such
that

(i) (ϕ,≤, η) is a basic triple.
(ii)µ : ϕϕ → ϕ is a natural transformation such that (ϕ, η, µ) is a monad.
(iii)For all mappings f, g : Y → ϕX, f ≤ g implies µX ◦ ϕf ≤ µX ◦ ϕg,

where ≤ is defined argumentwise with respect to the partial ordering of ϕX.
(iv)For each set X, µX : (ϕϕX),≤) → (ϕX,≤) preserves non-empty

suprema.

The usual covariant powerset monad P = (P, η, µ), can be extended to a partially
ordered monad, (P,⊆, η, µ), considering as the partial ordering the inclusion, ⊆.
Clearly by the properties of the monad, (P,⊆, η) is a basic triple, µ is a natural
transformation and µX : (PPX),⊆) → (PX,⊆) preserves non-empty suprema.
Given f, g : Y �� PX with f ⊆ g e.g. f(y) ⊆ g(y) for all y ∈ Y implies
µX ◦ Pf ⊆ µX ◦ Pg:

(µX ◦ Pf)(B) =
⋃

y∈B⊆Y

f(y) ⊆
⋃

y∈B⊆Y

g(y) = (µX ◦ Pg)(B)

The powerset monad, (Lid, η, µ) can also be extended to a partially ordered
monad, considering the partial order defined as A ≤ A′, with A, A′ ∈ LidX if
A(x) ≤ A′(x) for all x ∈ X . Let us see that µX ◦ Lidf ≤ µX ◦ Lidg: provided
that f ≤ g where f, g : Y �� LidX .

µLid

X (Lidf(B))(x) =
∨

A∈LidX

A(x) ∧ Lidf(B)(A)

=
∨

A∈LidX

A(x) ∧
∨

f(y)=A

B(y)

=
∨

A∈LidX

∨
f(y)=A

A(x) ∧ B(y)

=
∨

y∈Y

f(y)(x) ∧ B(y)

≤
∨

y∈Y

g(y)(x) ∧ B(y)

= µLid

X (Lidg(B))(x).
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Finally, also the monad (Lα, ηα, µα) can be extended to a partially ordered
monad. This result is a generalization of Lid being extendable to a partially
ordered monad. To provide Lα with the partially ordered monad structure we
need to check that if f, g : Y �� LαX are such that f ≤ g then µX ◦ Lαf ≤
µX ◦ Lαg. In the same way as the case of Lid, the partial order is defined as
A ≤ A′, with A, A′ ∈ LαX meaning A(x) ≤ A′(x) for all x ∈ X .

µLα

X (Lαf(B))(x) =
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧ Lαf(B)(A)

=
∧

A∈LαX,A(x)>0,Lαf(B)(A)>0

A(x) ∧
∧

y∈Y,f(y)=A,B(y)>0

B(y)

=
∧

A∈LαX,A(x)>0,f(y)=A,B(y)>0

A(x) ∧ B(y)

=
∧

B(y)>0

f(y)(x) ∧ B(y)

≤
∧

B(y)>0

g(y)(x) ∧ B(y)

= µLα

X (Lαg(B))(x).

Note that f ≤ g implies f(y)(x) ∧ B(y) ≤ g(y)(x) ∧ B(y) for all x ∈ X and
therefore µLα

X (Lαf(B))(x) ≤ µLα

X (Lαg(B))(x).

6 Relations, Kleisli Categories and Rough Sets

Rough sets and fuzzy sets are both methods to represent uncertainty. By using
partially ordered monads we can find connections between these two concepts.
Partially ordered monads are appropriate categorical formalizations and gener-
alizations of rough sets. In this section we introduce relations from a categor-
ical point of view and justify how its composition can be seen within Kleisli
categories. Partially ordered monadic reformulation of rough sets based on the
powerset partially ordered monad and the fuzzy powerset monad are presented
and some properties are studied.

6.1 Crisp Situation

Let us consider a binary relation R ⊆ X × Y . We will use the notation xRy to
represent that the element (x, y) ∈ R. Considering P , the crisp powerset functor,
we can represent the relation as a mapping ρ : X �� PY , where

ρ(x) = {y ∈ Y such that xRy}

As regarded as mappings, considering the composition of two relations, ρ : X
�� PY and ρ′ : Y �� PZ we clearly see that the conventional composition of

mappings can not be done since the domain of ρ′ and codomain of ρ are different.
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To find the appropriate definition of this composition we have to consider the
Kleisli composition as defined previously by (3), i.e. we need to use that P is a
monad and has a “flattering” operator, µ:

(X
ρ
⇁ Y ) � (Y

ρ′

⇁ Z) = X
µP

Z◦Pρ′◦ρ−→ PZ.

The reason for this to work is the following proposition:

Proposition 7. The Kleisli category associated to the crisp powerset monad is
equivalent to the category of sets and relations, SetRel.

Indeed, ρ : X �� PY corresponds to a relation R ⊆ X × Y by the observation
(x, y) ∈ R if and only if y ∈ ρ(x).

Proposition 8. Kleisli composition associated to P is given by:

µP
Z ◦ Pρ′(ρ(x)) =

⋃
y∈ρ(x)

ρ′(y)

Clearly Kleisli composition, in this case, corresponds to the usual composition
of relations R ⊆ X × Y , R′ ⊆ Y × Z, (x, z) ∈ R′ ◦ R if and only if ∃y, y ∈
ρ(x), z ∈ ρ′(y). Based on indistinguishable relations, rough sets are introduced by
defining the upper and lower approximation of sets. These approximations rep-
resent uncertain or imprecise knowledge. Let us consider a relation R on X , i.e.
R ⊆ X × X . We represent the relation as a mapping ρX : X �� PX , where
ρX(x) = {y ∈ X |xRy}. The corresponding inverse relation R−1 is represented as
ρ−1

X (x) = {y ∈ X |xR−1y}. To be more formal, given a subset A of X , the lower
approximation of A correspond to the objects that surely (with respect to an in-
distinguishable relation) are in A. The lower approximation of A is obtained by

A↓ = {x ∈ X |ρX(x) ⊆ A}

and the upper approximation by

A↑ = {x ∈ X |ρX(x) ∩ A �= ∅}.

Let us see now the partially ordered monadic reformulation of rough sets based
on the powerset partially ordered monad. In what follows we will assume that
the underlying almost complete semilattice has finite infima, i.e. is a join com-
plete lattice. Considering P as the functor in its corresponding partially ordered
monad we then immediately have

Proposition 9. [6] The upper and lower approximations of a subset A of X are
given by

A↑ =
∨

ρX (x)∧A>0

ηX(x) = µX ◦ Pρ−1
X (A)

and
A↓ =

∨
ρX (x)≤A

ηX(x),

respectively.
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The corresponding R-weakened and R-substantiated sets of a subset A of X are
given by

A⇓ = {x ∈ X |ρ−1
X (x) ⊆ A}

and
A⇑ = {x ∈ X |ρ−1

X (x) ∩ A �= ∅}.

Proposition 10. [6] The R-weakened and R-substantiated sets of a subset A of
X are given by

A⇑ = µX ◦ PρX(A)

and
A⇓ =

∨
ρ−1

X (x)≤A

ηX(x),

respectively.

Proposition 11. If A ⊆ B then A↑ ⊆ B↑, A↓ ⊆ B↓, A⇑ ⊆ B⇑, A⇓ ⊆ B⇓.

The upper and lower approximations, as well as the R-weakened and R-
substantiated sets, can be viewed as ↑X , ↓X ,⇑X ,⇓X : PX �� PX with ↑X

(A) = A↑, ↓X (A) = A↓, ⇑X (A) = A⇑ and ⇓X (A) = A⇓. Considering the
crisp powerset monad we define equivalence relations (reflexive, symmetric and
transitive) by

Definition 6. ρX : X �� PX is reflexive if ηX ⊆ ρX , symmetric if ρX = ρ−1
X

and transitive if y ∈ ρ(x) implies ρ(y) ⊆ ρ(x).

In what follows, equivalence relations are now connected to upper and lower
approximations.

Proposition 12. The following properties hold:

(i) If ρX is reflexive A↓ ⊆ A and A ⊆ A↑.
(ii)If ρX is symmetric A↓↑ ⊆ A and A ⊆ A↑↓.
(iii)If ρX is transitive A↑↑ ⊆ A↑ and A↓ ⊆ A↓↓.

Corollary 1. If ρX is an equivalence relation, A↓↑ = A↓ and A↑↓ = A↑.

Inverse relations in the ordinary case means to mirror pairs around the diagonal.
The following propositions relate inverses to the multiplication of the correspond-
ing monads.

Proposition 13. [6] In the case of P ,∨
ρX (x)∧A>0

ηX(x) = µX ◦ Pρ−1
X (A)

if and only if
ρ−1

X (x) =
⋃

ηX (x)≤ρX(y)

ηX(y).
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6.2 Many-Valued Situation

We will show now how to extend this view of relations to fuzzy relations. In
particular it will be interesting the situation where Kleisli composition is defined
for composing fuzzy relations. This can be connected to situations where we
want to combine different information systems and study rough approximations.
Relations can now be extended to fuzzy relations. Let X and Y be nonempty
sets. A fuzzy relation R is a fuzzy subset of the cartesian product X × Y . If
X = Y we say that R is a binary fuzzy relation on X . R(x, y) is interpreted
as the degree of membership of the pair (x, y) in R. If we consider now the
generalized powerset monad, LidX is the set of all L-fuzzy sets. An L-fuzzy set
A is nothing but a mapping A : X �� L. As a first step, and in the same
way as before we can extend the concept of relation to a fuzzy relation, i.e. a
mapping ρ : X �� LidY , ρ(x) is nothing but an element in LidY , a mapping
ρ(x) : Y ��L. An element y ∈ Y will be assigned a membership degree, ρ(x)(y)
representing, as a value in L, the degree on which the elements x and y are fuzzy
related. Note that this situation extend the classical relations (crisp powerset
situation) in the sense that membership values are 1 if the elements are related
and 0 otherwise. With respect to the Kleisli category associated to the powerset
monad Lid, the objects are sets and homomorphisms are given as mappings X

�� LidY in Set.

Proposition 14. [8] The Kleisli category associated to Lid is equivalent to the
category of set and fuzzy relations, SetFuzzRel.

Proposition 15. [8] Kleisli composition associated to Lid is given by:

µLid
Z (Lidρ

′(ρ(x)))(z) =
∨

y∈Y

ρ′(y)(z) ∧ ρ(x)(y)

The previous proposition tells which membership grade we should assign to the
composition of two fuzzy relations, i.e. the suprema of the membership grades on
the fuzzy relations. This Kleisli composition of fuzzy relations can be connected
to situations where we want to combine different information systems and study
rough approximations. Similarly to the crisp situation we can now introduce
rough set operators for the fuzzy powerset monad. Let ρX : X �� LidX be a
fuzzy relation on X and let a ∈ LidX . The upper and lower approximations are
then

↑X (a) = µX ◦ Lidρ
−1
X (a) ↓X (a) =

∨
ρX (x)≤a

ηX(x)

Corresponding generalizations of ρ-weakenedness and ρ-substantiatedness, are
given by

⇑X (a) = µX ◦ LidρX(a) ⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Concerning inverse relations, in the case of Lid we would accordingly define
ρ−1

X (x)(x′) = ρX(x′)(x).
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Proposition 16. [6] In the case of Lid,

µX ◦ Lidρ
−1
X (A)(x) =

∨
x′∈X

(ρX(x) ∧ A)(x′).

Consider now the powerset monads with fuzzy level sets, Lα and Lα. For Lα is
similar to Lid situation. Let us see how is the situation for Lα

Proposition 17. [8] In the case of Lα,

µX ◦ Lαρ−1
X (A)(x) =

∧
x′∈X

(ρX(x) ∧ A)(x′).

Note that in the case of L = 2, for the functor 2α we obtain the classical definition
of the upper approximation of a set A. Generalizing from the ordinary power
set monad to a wide range of partially ordered monads requires attention to
relational inverses and complement. The role of the diagonal clearly changes,
and the representation of inverses is an open question. Inverses and complements
must be based on negation operators as given by implication operators within
basic many-valued logic [23].

7 Rough Monads

In the previous section we have shown how rough sets can be given using partially
ordered monads. From a more abstract point of view, we present in this section
a generalized view of rough set constructions based on general partially ordered
monads. We name these generalizations rough monads. Considering the partially
ordered powerset monad, we showed in [6] how rough sets operations can be
provided in order to complement the many-valued situation. This is accomplished
by defining rough monads. Let Φ = (ϕ,≤, η, µ) be a partially ordered monad.
We say that ρX : X �� ϕX is a Φ-relation on X , and by ρ−1

X : X �� ϕX we
denote its inverse. The inverse must be specified for the given set functor ϕ. For
any f : X �� ϕX , the following condition is required:

ϕf(
∨
i

ai) =
∨
i

ϕf(ai)

This condition is valid both for P as well as for Lid.

Remark 5. Let ρX and ρY be relations on X and Y , respectively. Then the
mapping f : X �� Y is a congruence, i.e. x′ ∈ ρX(x) implies f(x′) ∈ ρY (f(x)),
if and only if Pf ◦ ρX ≤ ρY ◦ f . Thus, congruence is related to kind of weak
naturality.

Let ρX : X �� ϕX be a Φ-relation and let a ∈ ϕX . The upper and lower
approximations are then

↑X (a) = µX ◦ ϕρ−1
X (a) ↓X (a) =

∨
ρX (x)≤a

ηX(x)



Categorical Innovations for Rough Sets 63

with the monadic generalizations of ρ-weakenedness and ρ-substantiatedness, for
a ∈ ϕX , being

⇑X (a) = µX ◦ ϕρX(a) ⇓X (a) =
∨

ρ−1
X (x)≤a

ηX(x)

Proposition 18. [6] If a ≤ b, then ⇑X a ≤⇑X b, ↓X a ≤↓X b, ↑X a ≤↑X b,
⇓X a ≤⇓X b.

In the case of ϕ = P , i.e. the conventional powerset partially ordered monad,
these operators coincide with those for classical rough sets. In this case inverse
relations exist accordingly. In the case of fuzzy sets we use the many-valued
powerset partially ordered monad based on the many-valued extension of P to
Lid. Basic properties of relations can now be represented with ‘rough monads
terminology:

Definition 7. ρX : X �� ϕX is reflexive if ηX ≤ ρX , and symmetric if ρ =
ρ−1.

Note that in the case of relations for P and Lid, if the relations are reflexive, so
are their inverses.

Proposition 19. [6]

(i) If ρ is reflexive, a ≤⇑X (a).
(ii) ρ is reflexive iff ↓X (a) ≤ a.
(iii) ρ−1

X is reflexive iff a ≤↑X (a).
(iv) If ρ is symmetric, then ↑X (↓X (a)) ≤ a.

In the particular case a = ηX(x) we have a ≤↓X ◦ ↑X (a). The idea of sub-
monad is similar to the idea of subsets.In this sense, the calculations related
to submonads are a way to reduce data in a given information system. Let
Φ′ = (ϕ′,≤, η′, µ′) be a partially ordered submonad of Φ = (ϕ,≤, η, µ). Given
a′ ∈ ϕ′X we have the following proposition:

Proposition 20. [8] For a′ ∈ ϕ′X,

↑X (a′) = µX ◦ ϕρ−1
X (a′) ↓X (a′) =

∨
ρX (x)≤a′

ηX(x)

This proposition shows us that rough approximations are well defined wrt sub-
monads, i.e. their definition in the submonad correspond to the one for the
monad.

8 Applications

Our theoretical developments are an inspiration for application development. As
a first step we have focused on ICT solutions within health care. Information
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representation based on medical ontologies are usually rather narrow and ori-
ented towards crisp specifications of data information. At the same time, health
care ICT solutions call for representation of vagueness and uncertainties both
for use within medical records and information databases, as well as for decision
support and guideline implementations. We will discuss various fields of health
care and possible use of generalized rough sets, and we will in particular de-
velop concrete examples in the area of decision support and, more specifically,
decisions related to diagnosis and treatment.

8.1 Drug Interactions

Pharmacological treatment is an excellent area for our experimental purposes
where e.g. drug interactions [10] can be favourably described using generalized
rough sets. Pharmacological databases provide rich and complete information
for therapeutic requirements. In particular, the ATC code with its unique iden-
tification of drug compound is the basis e.g. of modelling of generic substi-
tutes and drug interactions. Two drugs are generic substitutes if they have the
same ATC code, the same dosages and the same administration route. This
is straightforward and precise but the notion of drug-drug interaction is more
complicated. In addition, drug-condition interaction adds further complexity as
medical conditions themselves are not easy to formalize. Rough sets described
by partially ordered monads are able to capture interactions with respect to
different granularities in the information hierarchy. The data structure for phar-
macologic information is hierarchical in its subdivision according to anatomic,
therapeutic and chemical information of the drug compound. National cata-
logues of drugs aim at being complete with respect to chemical declarations,
indications/contraindications, warnings, interactions, side-effects, pharmacody-
namics/pharmacokinetics, and pure pharmaceutical information. The Anatomic
Therapeutic Chemical (ATC) classification system is a WHO (World Health Or-
ganization) standard. The ATC structure can be understood from Table 1 on the
classification of verapamil (code C08DA01) for hypertension with stable angina
pectoris. Drugs in ATC are, with a very few exceptions, classified according to
their main indication of use. The ATC coded is for therapeutic use, while the
article code is a unique identifier which is used in the patient’s record. For drugs
showing therapeutically significant interactions we need to distinguish between
types of interactions and to what extent we have evidence for that particular type
of interaction. The types of interaction are recommended combination, neutral
combination (no harmful interactions), risky combination (should be monitored)
and dangerous combination (should be avoided). The degrees of evidence are
strong evidence (internationally), reasonable belief (several studies exist), some
indications (only some studies exist, and results are not conclusive) and no evi-
dence. With these qualifications it is clear that a linear quantification cannot be
given. Further, the drugs are affected in different ways, according to no change
in effect, increases effect, reduces effect and other (e.g. a new type of side effect).
Interaction type, evidence level, and effect need to be considered in the guide-
line for respective treatments. In our subsequent discussion we focus on guideline
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Table 1. Classification of verapamil

C cardiac and 1st level

vessel disease medication main anatomical group

C08 calcium channel blockers 2nd level,

therapeutic subgroup

C08D selective cardiac 3rd level,

calcium channel blockers pharmacological subgroup

C08DA phenylalcylamins 4th level,

chemical subgroup

C08DA01 verapamil 5th level

based pharmacologic treatment of hypertension [38]. See also [34] for an imple-
mentation of these guidelines for primary care. Typical drugs for hypertension
treatment are beta-blockers (C07, C07A) like an atenolol (C07AB03) and diuret-
ics (C03) like thiazides (C03A, C03AA). Atenolol is a selective beta-1-blocker
(C07AB). A frequently used thiazide is hydrochlorothiazide (C03AA03). Note
that beta-blockers are both therapeutic as well as pharmacological subgroups.
Similarly, thiazides are both pharmacological as chemical subgroups. As a basic
example concerning interactions consider treatment of hypertension in presence
of diabetes. Beta-blockers may mask and prolong beta-blockers insulin-induced
hypoglycemia. If the patient shows the medical condition of diabetes without
any other medical condition present, then the ACE inhibitor (C09A, C09AA)
enalapril (C09AA02) is the first choice for treatment [38].

Drug interactions as relations can be interpreted as mappings ρL
X : X ��LX ,

based on the many-valued powerset monad (L, η, µ). Let M be a set of medical
conditions and let ρL[M ] be the subrelation of ρ which considers interactions
with pharmacological treatments based on these medical conditions in M . We
then observe that the clinical usefulness of these interpretations comes down to
defining ρL[M ] so as to correspond to real clinical situations. Operating with
these sets then becomes the first step to identify connections to guidelines for
pharmacological treatment.

In [26], a software framework for pharmacological information representa-
tion is suggested. This framework enables clients to recover information from
databases with pharmacological information. In the current implementation, the
framework uses ATC codes in the drug metadata. Specifically, the framework
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provides information about interactions as a set of ATC codes for a particular
ATC code (drug). This software framework will be used to recover pharmacologi-
cal information and related drug interactions, and further using this information
in a knowledge-discovery application using the rough set and monad theoreti-
cal framework as described in this chapter. The experiment will extract drug
information relates also to hypertension treatment [34] from the drug database.
Further, to demonstrate that this representation is usable in a realistic situation,
the forming of the sets described earlier will indeed take into account a set of
medical conditions. These conditions will be described codes from the ICD and
corresponding diagnosis encoding system. The hypothesis is that rough monads
provide drug interactions with an adequate representation for pharmacological
hypertension treatment with respect to an individual and typical patient case.

8.2 Dementia Differential Diagnosis

The differential diagnosis process in the case of dementia involves e.g. to dis-
tinguish between dementias of Alzheimer’s and vascular type. In the case of
Alzheimer’s, pharmacological treatment following an early detection can be use-
ful for maintaining acetylcholin in the synapsis between nerve cells. Receptors
then remain stimulated thus maintaining activitity and nerve signals. In the sce-
nario of early detection it is important to observe the situations where cognitive
problems are encountered and by whom these observations are made. Clearly,
the very first observations of cognitive decline are made by relatives (if not
self-detected by the patient) or social workers in home care who would forward
information about the problems encountered, thus seeking advice firstly from
nurses and primary care doctors within their local health care centres. Repre-
sentatives in social care and nursing will not perform any diagnosis. However,
providing some observation and even ‘qualified guesses’ can speed up the process
leading eventually to an accurate diagnosis with possibilities for further phar-
macological treatments. It is then important to identify respective information
types and rule representations for these professional groups providing everything
from ’qualified guesses’ to accurate diagnosis. Note that not even autopsy can
provide higher diagnostic accuracy than around 80%, so early detection is really
hard and challenging. Many-valuedness provides tools for logic transformations
between professional groups. Regardless of where decision and/or observations
are made, we always need to guarantee consistency when information and knowl-
edge is mapped between ontological domains as understood and used by these
professional groups. For further reading on the general logics approach to trans-
formations, see [16]. The intuition of using rough sets and monads is here very
natural and even rather obvious. In differential diagnosis we are viewing the
set of attributes (symptoms and signs) in a relational setting. Indeed attributes
are related not just on powerset level, but also in a ’sets of sets of attributes’
fashion. Heteroanamnesis, for instance, is a set of attributes which are grouped
according to their interrelations. Thus we are dealing with heteroanamnesis as a
set of sets of attributes. Upper and lower approximations are useful as they pro-
vide operators transforming a set (or generalized sets), as a relation, to another
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boundary in some canonic way. Full interpretations are yet to be given, and the
pragmatic is still somewhat open, but these developments build upon software
developments and real clinical use of these software tools.

9 Conclusion

Rough sets are naturally categorical once we observe how rough set operators
can be generalized using other set functors, extendable to partially ordered mon-
ads, than just the powerset partially ordered monad representing relations on
ordinary sets. The categorical instrumentation reveals many aspects and possi-
bilities for further developments of rough monads, both from theoretical as well
as from application points of view. Theoretical developments involve extensions
using partially ordered monads and invokes e.g. logical viewpoints that would
not appear unless the categorical generalizations are used. Application develop-
ments make use of entirely new ways to arrange sets and sets of sets in a wide
range of ways. Information pieces and blocks organized as many-valued sets of
terms or even filters and ideals opens up an avenue of possibilities for further
exploration of intuition combined with formalism.
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Summary. Multilevel granular structures play a fundamental role in granular com-
puting. In this chapter, we present a general framework of granular spaces. Within the
framework, we examine the granular structures and approximations in rough set anal-
ysis and knowledge spaces. Although the two theories use different types of granules,
they can be unified in the proposed framework.

1 Introduction

Granular computing is an emerging field of study focusing on structured think-
ing, structured problem solving and structured information processing with mul-
tiple levels of granularity [1, 2, 7, 8, 13, 17, 19, 20, 21, 22, 24, 25, 29]. Many
theories may be interpreted in terms of granular computing. The main objective
of this chapter is to examine the granular structures and approximations used
in rough set analysis [10, 11] and knowledge spaces [3, 4].

A primitive notion of granular computing is that of granules. Granules may be
considered as parts of a whole. A granule may be understood as a unit that we
use for describing and representing a problem or a focal point of our attention
at a specific point of time. Granules can be organized based on their inherent
properties and interrelationships. The results are a multilevel granular structure.
Each level is populated by granules of the similar size or the similar nature.
Depending on a particular context, levels of granularity may be interpreted as
levels of abstraction, levels of details, levels of processing, levels of understanding,
levels of interpretation, levels of control, and many more. An ordering of levels
based on granularity provides a hierarchical granular structure.

The formation of granular structures is based on a vertical separation of levels
and a horizontal separation of granules in each level. It explores the property of
loose coupling and nearly-decomposability [14] and searches for a good approxi-
mation [12]. Typically, elements in the same granules interact more than elements
in different granules. Granules in the same level are relatively independent and
granules in two adjacent levels are closely related.
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Rough set analysis and knowledge spaces use set-theoretic formulations of
granular structures. A granule is interpreted as a subset of a universal set, sat-
isfying a certain condition. In the case of rough set analysis, a granule must
be definable with respect to a logic language [23, 28]. In the case of knowledge
spaces, a granule must be defined by a surmise relation or a surmise system [3, 4].
Granules are ordered by the set-inclusion relation. The family of granules forms
a subsystem of the power set of the universal set. As a consequence, one needs
to study approximations of any subset by granules in the subsystem [16, 26].

The above discussion suggests a unified framework for studying granular
structures. It serves as a basis of the current study. The rest of the chapter
is organized as follows. Section 2 proposes a framework of granular spaces.
Sections 3 and 4 examine the granular structures and approximations in rough
sets and knowledge spaces.

2 Granular Spaces

A set-theoretic interpretation of granules and granular structures is presented
and a framework of granular spaces is introduced.

2.1 A Set-Theoretic Interpretation of Granules

Categorization or classification is one of the fundamental tasks of human intel-
ligence [12]. In the process of categorization, objects are grouped into categories
and a name is given to each category. One obtains high-level knowledge about
groups of objects. Such knowledge may be applied later to similar objects of
the category, since each object is no longer viewed as a unique entity. In order
to obtain a useful categorization, one needs to search for both similarity and
dissimilarity between objects. While similarity leads to the integration of indi-
viduals into categories, dissimilarity leads to the division of larger categories into
smaller subcategories.

The idea of categorization immediately leads to a set-theoretic interpretation
of granules. A granule may be simply viewed as the set of objects in a category.
The process of categorization covers two important issues of granulation, namely,
the construction of granules and the naming of granules. The construction of
granules explores both the similarity and dissimilarity of objects. Objects in the
same categories must be more similar to each other, and objects in different
granules are more dissimilar to each other. Consequently, one may view objects
in the same category as being indistinguishable or equivalent from a certain
point of view. For those objects, it may be more economic to give a name, so
that one can talk about the category by its name instead of many individuals.
In addition, we can apply the common properties of the objects in the category
to similar objects in order to make meaningful inference in the future [12].

With the set-theoretic interpretation of granules, we can apply a set-inclusion
relation on granules to form sub-super relations between granules. We can also
apply set-theoretic operations on granules to construct new granules. The result-
ing family of granules forms a multilevel hierarchical structure.
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There is another way to arrange granules. Once names are assigned to gran-
ules, we may use these names to form more abstract new granules. In this case,
the elements of a granule are names to other granules. That is, a granule is
treated as a whole by its name in a higher-level granule. A granule therefore
plays dual roles. In the current level, it is a set of individuals; in its adjacent
higher-level, it is considered as a whole by its name.

2.2 A Formulation of Granules as Concepts

The set-theoretic interpretation of granules can be formally developed based on
the notion of concepts, a basic unit of human thought.

The classical view of concepts defines a concept jointly by a set of objects,
called the extension of the concept, and a set of intrinsic properties common to
the set of objects, called the intension of the concept [15]. The intension reflects
the intrinsic properties or attributes shared by all objects (i.e., instances of a
concept). Typically, the name of a concept reflects the intension of a concept.
The extension of a concept is the set of objects which are concrete examples of a
concept. One may introduce a logic language so that the intension of a concept
is represented by a formula and the extension is represented by the set of objects
satisfying the formula [28].

The language L is constructed from a finite set of atomic formulas, denoted
by A = {p, q, ...}. Each atomic formula may be interpreted as basic knowledge.
They are the elementary units. In general, an atomic formula corresponds to one
particular property of an individual. The construction of atomic formulas is an
essential step of knowledge representation. The set of atomic formulas provides a
basis on which more complex knowledge can be represented. Compound formulas
can be built from atomic formulas by using logic connectives. If φ and ϕ are
formulas, then (¬φ), (φ ∧ ϕ), (φ ∨ ϕ), (φ → ϕ), and (φ ↔ ϕ) are also formulas.

The semantics of the language L are defined in the Tarski’s style by using
the notions of a model and satisfiability [9, 11, 28]. The model is a nonempty
domain consisting of a set of individuals, denoted by U = {x, y, ...}. For an
atomic formula p, we assume that an individual x ∈ U either satisfies p or does
not satisfy p, but not both. For an individual x ∈ U , if it satisfies an atomic
formula p, we write x |= p, otherwise, we write x � p. The satisfiability of an
atomic formula by individuals of U is viewed as the knowledge describable by the
language L. An individual satisfies a formula if the individual has the properties
as specified by the formula. To emphasize the roles played by the set of atomic
formulas A, the operations {¬,∧,∨} and the set of individuals U , we also rewrite
the language L as L(A, {¬,∧,∨}, U).

If φ is a formula, the set m(φ) defined by:

m(φ) = {x ∈ U | x � φ}, (1)

is called the meaning of the formula φ. The meaning of a formula φ is indeed
the set of all objects having the properties expressed by the formula φ. In other
words, φ can be viewed as the description of the set of objects m(φ). As a result,
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a concept can be expressed by a pair (φ, m(φ)), where φ ∈ L. φ is the intension
of a concept while m(φ) is the extension of a concept. A connection between
formulas and subsets of U is established. Similarly, a connection between logic
connectives and set-theoretic operations can be stated [11]:

(i) m(¬φ) = (m(φ))c,

(ii) m(φ ∧ ψ) = m(φ) ∩ m(ψ),
(iii) m(φ ∨ ψ) = m(φ) ∪ m(ψ),
(iv) m(φ → ψ) = (m(φ))c ∪ (m(ψ))c,

(v) m(φ ≡ ψ) = (m(φ) ∩ m(ψ)) ∪ ((m(φ))c ∩ (m(ψ))c),

where (m(φ))c = U −m(φ) is the complement of m(φ). Under this formulation,
we can discuss granules in terms of intensions in a logic setting and in terms of
extension in a set-theoretic setting.

2.3 Granular Spaces and Granular Structures

Each atomic formula in A is associated with a subset of U . This subset may be
viewed as an elementary granule in U . Each formula is obtained by taking logic
operations on atomic formulas. The meaning set of the formula can be obtained
from the elementary granules through set-theoretic operations. With the language
L, for each formula, we can find its meaning set by equation (1). On the other hand,
for an arbitrary subset of the universe U , one may not be able to find a formula to
precisely represent it. This leads to the introduction of the definability of granules
in a logic language. We say a subset or a granule X ⊆ U is definable if and only if
there exists a formula φ in the language L such that,

X = m(φ). (2)

Otherwise, it is undefinable [23]. By the formulation of the logic language, it
follows that each definable granule can be expressed in terms of elementary
granules through set-theoretic operations.

A definable granule is represented by a pair (φ, m(φ)) or simply m(φ). The
family of all definable granules is given by:

Def(L(A, {¬,∧,∨}, U)) = {m(φ) | φ ∈ L(A, {¬,∧,∨}, U)}, (3)

which is a subsystem of the power set 2U , closed under set complement, inter-
section and union. Based on these notions, we formally define a granular space
by the triplet:

(U,S0,S), (4)

where

U is the universe,
S0 ⊆ 2U is a family of elementary granules, i.e., S0 = {m(p) | p ∈ A},
S ⊆ 2U is a family of definable granules, i.e., S = Def(L(A, {¬,∧,∨}, U)).

Note that S can be generated from S0 through set-theoretic operations.
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The family S of definable granules is called a granular structure. Since the
logic language uses logic operations ¬,∧, and ∨, the family of definable granules
S is closed under set complement, intersection and union. That is, S is an σ-
algebra. Note that S0 is not necessarily the basis of the σ-algebra S.

There are additional requirements to make the granular space more practical.
For example, the family of elementary granules normally can not be all singleton
subsets of U , as a singleton subset is equivalent to its unique object. The set
of all granules constructed from the family of elementary granules is normally a
superset of the family of elementary granules. Furthermore, it is typically a subset
of the power set of U . Otherwise, we do not have the benefits of granulation. It
also requires that the union of all the elementary granules covers the universe
U . That is, an object satisfies at least one basic formula in A.

From the above discussion, the granular structure can be described by a logic
language L(A, {¬,∧,∨}, U). To make the granular structure more practical, one
may consider a logic language using a subset of logic connectives. As a special
case, suppose that the granular structure is closed under set intersection and
union but not complement. Since the logic operators ∧ and ∨ correspond to set
intersection and union, we can use a logic language L(A, {∧,∨}, U) to describe
this type of granular structures. Two more special cases of granular structures
are defined by the languages L(A, {∧}, U) and L(A, {∨}, U), respectively [28].
While the former is closed under set intersection, the latter is closed under set
union. Note that a granular structure containing U and being closed under set
intersection is called a closure system.

3 Rough Set Analysis

The granular space of rough set analysis is a quotient space induced by an
equivalence relation.

3.1 Granular Spaces and Granular Structures

Rough set analysis studies relationships between objects and their attribute val-
ues in an information table [10, 11]. An information table provides a convenient
way to describe a finite set of objects by a finite set of attributes. Formally, an
information table can be expressed as:

M = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}), (5)

where U is a finite nonempty set of objects, At is a finite nonempty set of
attributes, Va is a nonempty set of values for an attribute a ∈ At, and Ia : U →
Va is an information function.

For a set of attributes P ⊆ At, one can define an equivalence relation on the
set of objects:

xEP y ⇐⇒ ∀a ∈ P (Ia(x) = Ia(y)). (6)

Two objects are equivalent if they have the same values on all attributes in P .
Rough set theory is developed based on such equivalence relations.
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Let E ⊆ U ×U denote an equivalence relation on U . The pair apr = (U, E) is
called an approximation space [10]. The equivalence relation E partitions the set
U into disjoint subsets called equivalence classes. This partition of the universe
is denoted by U/E. The partition U/E may be considered as a granulated view
of the universe. For an object x ∈ U , the equivalence class containing x is given
by:

[x]E = {y | yEx}. (7)

Equivalence classes are referred to as elementary granules.
By taking the union of a family of equivalence classes, we can obtain a com-

posite granule. The family of all such granules contains the entire set U and the
empty set ∅, and is closed under set complement, intersection and union. More
specifically, the family is an σ-algebra, denoted by σ(U/E), with the basis U/E.

The above formulation can be expressed in terms of a logic language. For an
attribute-value pair (a, v), where a ∈ At and v ∈ Va, we have an atomic formula
a = v. The meaning of a = v is the following set of objects:

m(a = v) = {x ∈ U | Ia(x) = v}. (8)

It immediately follows that the equivalence class [x] is defined by the formula∧
a∈At a = Ia(x). That is, [x] is a definable granule. One can easily see that the

union of a family of equivalence classes is also a definable granule. Thus, the set
of all definable granules is σ(U/E).

Based on the above discussion, we can conclude that a granular space used in
rough set theory is given by:

(U, U/E, σ(U/E)),

where

U is the universe,
U/E ⊆ 2U is the family of equivalence classes,
σ(U/E) ⊆ 2U is the σ-algebra generated from U/E.

That is, the granular space and granular structure of rough set analysis are a
special case of the ones introduced in the last sect.

3.2 Rough Set Approximations

An arbitrary set A ⊆ U may not necessarily be the union of some equivalence
classes. This implies that one may not be able to describe A precisely using the
logic language L. In order to infer information about such undefinable granules,
it is necessary to approximate them by definable granules.

For a subset of objects A ⊆ U , it may be approximated by a pair of lower and
upper approximations:

apr(A) =
⋃

{X ∈ σ(U/E) | X ⊆ A},

apr(A) =
⋂

{X ∈ σ(U/E) | A ⊆ X}. (9)
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The lower approximation apr(A) is the union of all the granules in σ(U/E) that
are subsets of A. The upper approximation apr(A) is the intersection of all the
granules in σ(U/E) that contain A. This is referred to as the subsystem based
definition [16, 18, 26]. Since σ(U/E) is closed under ∩ and ∪, the definition is
well defined. In addition, apr(A) ∈ σ(U/E) is the largest granule in σ(U/E) that
is contained by A, and apr(A) ∈ σ(U/E) is the smallest granule that contains
A. That is, the pair (apr(A), apr(A)) is the tightest approximation.

Lower and upper approximations are dual to each other in the sense:

(Ia) apr(A) = (apr(Ac))c,

(Ib) apr(A) = (apr(Ac))c.

The set A lies within its lower and upper approximations:

(II) apr(A) ⊆ A ⊆ apr(A).

One can also verify the following properties:

(IIIa) apr(A ∩ B) = apr(A) ∩ apr(B),
(IIIb) apr(A ∪ B) = apr(A) ∪ apr(B).

The lower (upper) approximation of the intersection (union) of a finite number
of sets can be obtained from their lower (upper) approximations. However, we
only have:

(IVa) apr(A ∪ B) ⊇ apr(A) ∪ apr(B),
(IVb) apr(A ∩ B) ⊆ apr(A) ∩ apr(B).

It is impossible to obtain the lower (upper) approximation of the union (intersec-
tion) of some sets from their lower (upper) approximations. Additional properties
of rough set approximations can be found in [10] and [27].

3.3 An Example

Suppose U = {a, b, c, d, e}. Given an equivalence relation:

aEa, aEb, bEa, bEb, cEc, cEe, dEd, eEc, eEe,

it induces the partition U/E = {{a, b}, {c, e}, {d}}. We can construct an σ-
algebra by taking union of any family of equivalence classes:

σ(U/E) = {∅, {a, b}, {c, e}, {d}, {a, b, c, e}, {a, b, d}, {c, d, e}, U}.

The corresponding granular space is:

(U, U/E, σ(U/E)),

where

U = {a, b, c, d, e},
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U/E = {{a, b}, {c, e}, {d}},
σ(U/E) = {∅, {a, b}, {c, e}, {d}, {a, b, c, e}, {a, b, d}, {c, d, e}, U}.

Consider a subset of objects A = {a, b, c, d}. It can not be obtained by taking
union of some elementary granules. That is, it is an undefinable granule. We
approximate it by a pair of subsets from below and above in the σ-algebra
σ(U/E). From equation (9), we have:

apr(A) =
⋃

{X ∈ σ(U/E) | X ⊆ A} = {a, b} ∪ {d} ∪ {a, b, d} = {a, b, d},

apr(A) =
⋂

{X ∈ σ(U/E) | A ⊆ X} = {a, b, c, d, e}.

It follows that apr(A) = {a, b, d} ⊆ A ⊆ apr(A) = {a, b, c, d, e}.

4 Knowledge Space Theory

Knowledge spaces [3, 4, 5, 6] represent a new paradigm in mathematical psychol-
ogy. It is a systematic approach to the assessment of knowledge by constructing
sequences of questions to be asked.

In knowledge spaces, we consider a pair (Q,K), where Q is a finite set of ques-
tions and K ⊆ 2Q is a collection of subsets of Q. Each element K ∈ K is called
a knowledge state and K is the set of all possible knowledge states. Intuitively,
the knowledge state of an individual is represented by the set of questions that
he is capable of answering. Each knowledge state can be considered as a granule.
The collection of all the knowledge states together with the empty set ∅ and the
whole set Q is called a knowledge structure, and may be viewed as a granular
knowledge structure in the terminology of granular computing.

There are two types of knowledge structures. One is closed under set union
and intersection, and the other is closed only under set union, and the latter is
called a knowledge space.

4.1 Granular Spaces Associated to Surmise Relations

One intuitive way to study a knowledge structure is through a surmise relation.
A surmise relation on the set Q of questions is a reflexive and transitive relation
S. By aSb, we can surmise the mastery of a if a student can correctly answer
question b. A surmise relation imposes conditions on the corresponding knowl-
edge structure. For example, aSb means that if a knowledge state contains b, it
must also contain a.

Formally, for a surmise relation S on the (finite) set Q of questions, the asso-
ciated knowledge structure K is defined by:

K = {K | ∀q, q′ ∈ Q((qSq′, q′ ∈ K) =⇒ q ∈ K)}. (10)

The knowledge structure associated to a surmise relation contains the empty set
∅, the entire set Q, and is closed under set intersection and union.
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For each question q in Q, under a surmise relation, we can find one unique
prerequisite question set Rp(q) = {q′ | q′Sq}. The family of the prerequisite
question sets for all the questions is denoted by B, which is a covering of Q.
Each prerequisite set for a question is called an elementary granule. By taking
the union of prerequisite sets for a family of questions, we can obtain a knowledge
structure K associated to the surmise relation S. It defines a granular space
(Q,B,K). All knowledge states are called granules in (Q,B,K).

As a result, we have a granular space based on a surmise relation:

(Q,B,K),

where

Q is a set of question set,
B ⊆ 2Q is a family of prerequisite sets, i.e., B = {Rp(q) | q ∈ Q},
K ⊆ 2Q is a family of knowledge states.

Note that B ⊆ K and each knowledge state can be expressed as a union of some
elements of B.

4.2 An Example

Suppose Q = {a, b, c, d, e}. Given a surmise relation:

aSa, aSd, bSb, bSc, bSd, bSe, cSc, cSd, cSe, dSd, eSe,

we have a knowledge structure:

K = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, e}, {a, b, c, e}, {a, b, c, d}, Q}.

It can be easily seen that the knowledge structure is closed under set union and
intersection. It is a knowledge structure associated to a surmise relation. As a
result, we can find the prerequisite set for each question:

Rp(a) = {a},
Rp(b) = {b},
Rp(c) = {b, c},
Rp(d) = {a, b, c, d},
Rp(e) = {b, c, e}.

As a result, we have a granular space based on a surmise relation:

(Q,B,K),

where

Q = {a, b, c, d, e},
B = {{a}, {b}, {b, c}, {a, b, c, d}, {b, c, e}},
K = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, {b, c, e}, {a, b, c, e}, {a, b, c, d}, Q}.

A granule in K can be attained by taking union of some elementary granules in
B. For example, {a, b} = {a} ∪ {b} and {a, b, c, e} = {a} ∪ {b, c, e}.
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4.3 Granular Spaces Associated to Surmise Systems

Modeling a knowledge structure with a surmise relation is sometimes too restric-
tive. That is, a question can only have one prerequisite set. In real-life situations,
a question may have several prerequisite sets. This leads to the concept of surmise
systems.

A surmise system on a (finite) set Q is a mapping σ that associates any element
q ∈ Q to a nonempty collection σ(q) of subsets of Q satisfying the following three
conditions [4]:

(1) C ∈ σ(q) =⇒ q ∈ C,

(2) (C ∈ σ(q), q′ ∈ C) =⇒ ∃C′ ∈ σ(q′)(C′ ⊆ C),
(3) C ∈ σ(q) =⇒ ∀C′ ∈ σ(q)(C′ � C),

where C is a subset in σ(q) called a clause for question q. A surmise system may
be interpreted as a neighborhood system. A clause for question q is actually a
prerequisite set for q. Each question may have several prerequisite sets, namely,
the clauses for question q are not always unique. Condition (1) generalizes the
reflexivity condition for a relation, while the second condition extends the notion
of transitivity. Condition (3) requires that the clauses for question q are the
maximal sets.

Formally, for a surmise system (Q, σ), the associated knowledge structure is
given by:

K = {K | ∀q ∈ Q(q ∈ K =⇒ ∃C ∈ σ(q)(C ⊆ K))}, (11)

which is closed under set union. Any knowledge structure that is closed under
union is called a knowledge space. There is a one-to-one correspondence between
surmise systems on Q and knowledge spaces on Q.

There always exists exactly one minimal sub-collection B of K. For a minimal
sub-collection B, any knowledge state in the sub-collection can not be the union
of any other knowledge states in B. All the knowledge states in a knowledge space
can be obtained by the union of some subsets in the minimal sub-collection. We
call a minimal sub-collection a basis of K. It can be easily shown that the basis is
a covering of Q. The subsets in the basis are called elementary granules. The cor-
responding knowledge space defines a granular space (Q,B,K). The knowledge
states in the knowledge space are also called granules.

We have a granular space in a knowledge space:

(Q,B,K),

where

Q is the question set,
B ⊆ 2Q is the basis of a knowledge space called elementary granules,
K ⊆ 2Q is a family of knowledge states in a knowledge space called granules.

It has been proven that the basis of a knowledge space is the family of all
clauses [6]. Each of the clauses is an element of the basis B. Conversely, each
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element of the basis is a clause for some question. Let Bq represent the set of
all minimal states containing question q in a knowledge space K with a basis
B. Thus, Bq ⊆ Kq, where Kq is the set of all states containing q. We also have
Bq ⊆ B for any question q, and the set σ(q) of all the clauses for q is obtained
by setting:

σ(q) = Bq. (12)

Equation (12) specifies how the clauses can be constructed from the basis of a
knowledge space.

4.4 An Example

Suppose Q = {a, b, c, d, e}. Given a surmise system:

σ(a) = {{a}},
σ(b) = {{b, d}, {a, b, c}, {b, c, e}},
σ(c) = {{a, b, c}, {b, c, e}},
σ(d) = {{b, d}},
σ(e) = {{b, c, e}},

we can obtain a knowledge structure K = {∅, {a}, {b, d}, {a, b, c}, {b, c, e},
{a, b, d}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}, Q}. It can be easily verified that it is a
knowledge space closed under set union.

We have a granular space in the knowledge space:

(Q,B,K),

where

Q = {a, b, c, d, e},
B = {{a}, {b, d}, {a, b, c}, {b, c, e}},
K = {∅, {a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e},

Q}.

K can be constructed by taking union of any clauses in the basis B.

4.5 Rough Set Approximations in Knowledge Spaces

The two types of knowledge structures defined by a surmise relation and a sur-
mise system satisfy different properties. They produce different rough-set-like
approximations.

Knowledge Structure Defined by a Surmise Relation

Each knowledge state is considered as a granule. For an arbitrary subset of ques-
tions A ⊆ Q, it may not be a knowledge state. We can use a pair of states from
below and above to approximate A. Since the knowledge structure associated to
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a surmise relation is closed under set intersection and union, we can extend the
subsystem based definition [16, 18, 26]. The lower and upper approximations are
unique. They are defined by:

apr(A) =
⋃

{K ∈ K | K ⊆ A},

apr(A) =
⋂

{K ∈ K | A ⊆ K}. (13)

If A is a knowledge state, we have apr(A) = A = apr(A). The lower approxi-
mation apr(A) is the union of all the knowledge states which are subsets of A.
The upper approximation apr(A) is the intersection of all the knowledge states
which contain A. The knowledge structure associated to a surmise relation is not
closed under complement. It follows that the lower and upper approximations
are no longer dual to each other.

The physical interpretation of approximations in knowledge spaces may be
given as follows. Suppose A is a set of questions that can be answered correctly.
Since it is not a knowledge state, we approximate it by two knowledge states. The
lower approximation represents the affirmatory mastery of a subset of questions,
while the upper approximation describes the possible mastery of a subset of
questions.

Knowledge Structure Defined by a Surmise System

A knowledge structure associated to a surmise system is only closed under set
union, but not necessarily closed under set intersection. In this case, we can still
use a subsystem-based definition [16, 18, 26] to define the lower approximation.
However, we must introduce a new definition for upper approximation.

By keeping the interpretation of lower and upper approximations as the great-
est knowledge states that are contained in A and the least knowledge states that
contain A, we have the following definition:

apr(A) = {∪{K ∈ K | K ⊆ A}} ,

apr(A) = {K ∈ K | A ⊆ K, ∀K ′ ∈ K(K ′ ⊂ K =⇒ A � K ′)}. (14)

The lower approximation in knowledge spaces is unique while the upper approx-
imation is a family of sets [16]. If A is a knowledge state, we have apr(A) =
{A} = apr(A).

5 Conclusion

Granules and granular structures are two fundamental notions of granular com-
puting. A set-theoretic framework of granular spaces is proposed. The framework
considers three levels of characterization of a universal set U , namely, the triplet
(U,S0,S). They are the ground level which is U , the elementary granule level
which is a subsystem S0 of 2U , and the granular structure level which is a sys-
tem S of 2U . Typically, S0 is a covering of U and S is a hierarchical structure
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generated from S0. The framework enables us to study rough set analysis and
knowledge spaces in a common setting. Moreover, results from the two theories
can be applied to each other, which brings more insights into the research of the
two theories.

With the proposed framework, we demonstrate that rough set analysis and
knowledge spaces both consider a similar type of granular space. Their main
differences lie in the construction and interpretation of elementary granules and
granular structures. This observation immediately opens up new avenues of re-
search. As an illustration, we introduce the notion of approximations from rough
set analysis to knowledge spaces theory. The results are a new type of approxi-
mations not considered in rough set analysis.

The framework of granular spaces can also be used to interpret other theories.
For example, it can be used to study formal concept analysis [26]. As future
research, the potential of the proposed framework will be further explored.
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Summary. In this chapter we mainly focus on the study of some topological aspects
of rough sets and approximations of classifications. The topological classification of
rough sets deals with their types. We find out types of intersection and union of rough
sets, New concepts of rough equivalence (top, bottom and total) are defined, which
capture approximate equality of sets at a higher level than rough equality (top, bottom
and total) of sets introduced and studied by Novotny and Pawlak [23,24,25] and is
also more realistic. Properties are established when top and bottom rough equalities
are interchanged. Also, parallel properties for rough equivalences are established. We
study approximation of classifications (introduced and studied by Busse [12]) and find
the different types of classifications of an universe completely. We find out properties
of rules generated from information systems and observations on the structure of such
rules. The algebraic properties which hold for crisp sets and deal with equalities loose
their meaning when crisp sets are replaced with rough sets. We analyze the validity of
such properties with respect to rough equivalences.

1 Introduction

The notion of rough sets was introduced by Pawlak [26,27,28] as an extension of
the concept of crisp sets to capture impreciseness. Imprecision in this approach
is expressed by the boundary region of a set. In fact, the idea of rough set is
based upon approximation of a set by a pair of sets, called the lower and upper
approximations of the set.

In real life situations, fruitful and accurate applications of rough sets require
two aspects, called accuracy measure and topological characterization. We shall
mainly concentrate on topological characterization of rough sets in this chapter.
The other related aspect to be dealt with is approximations of classifications,
which are in a sense extensions of the concept of approximation of sets but their
characteristics are not exactly same. We shall study the types of union and inter-
section of rough sets which are also used in dealing with types of classifications.
New notions of approximate equalities, called rough equivalences are introduced
and their properties are studied. Using this notion, some basic algebraic prop-
erties for crisp sets are extended to rough sets. We also touch the topic of rule
generation from information systems.
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Now, we present the detailed structure of the chapter here. In sect. 2, we
establish two theorems on rough approximations which provide necessary and
sufficient conditions for equality to hold in two of the properties, where in general
inclusions hold true. There are several applications of these results as we shall
see in sections 4.3, 5.5 and 9.4.

As mentioned by Pawlak [30], one important difference between the concept
of rough set and the classical notion of set is the equality of sets. In classical
set theory, two sets are equal if they have exactly the same elements. But a
more practically applicable form of equality (approximate equality) called rough
equality was introduced in [23,24,25]. Here, two sets may not be equal in the
classical sense but they have enough of close features (that is they differ slightly
from each other) to be assumed to be approximately equal. These types of equal-
ities of sets refer to the topological structure of compared sets but not to the
elements they consist of. In fact two sets can be exactly equal in one knowledge
base but approximately equal or not equal in another. The practicality of this
notion depends upon the common observation that things are equal or not equal
from the point of view of our knowledge about them. Certain properties of these
equalities were established by Novotny and Pawlak [23,24,25]. But they have
remarked that these properties cease to be true when top and bottom rough
equalities are replaced one by the other. In sect. 3, we see that some of these
properties are true under replacement and others hold true if some additional
conditions are imposed.

A topological characterization of imprecision defined through the lower and
upper approximation of sets is the notion of type of rough sets. There are four
such types [30]. This method of characterization of imprecision complements
the other method of characterization of imprecision through accuracy measures,
which expresses degree of completeness of our knowledge about a set. As observed
by Pawlak ([30], p. 22), in practical applications of rough sets we combine both
kinds of information. As far as the information available, no further study is
found in rough set literature on this topic after its introduction. In sect. 4, we
study the types of rough sets obtained by union and intersection of rough sets.
We shall deal with applications of these results in sects. 5, 7 and 9.

As mentioned above, rough equalities deal with topological structures of the
compared sets. In sect. 5, we introduce and study another type of approximate
equality, called rough equivalence of sets, which captures topological structures
of the compared sets at a higher level than rough equality. By this, we mean that
any two sets comparable with the notions of rough equalities (bottom, top and
total) are also comparable with the corresponding notion of rough equivalence
(bottom, top and total) and the converse is not necessarily true. In fact, there
are many practical situations, where we can talk of approximate equality of the
compared sets with new notion but can not do so with the old one. More impor-
tantly, this new comparison very much matches with our perception of equality
depending upon our knowledge about the universe. We illustrate this with some
examples. Also, properties rough equivalences, which are in parallel with those
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for rough equalities along with the corresponding replacement properties are
analyzed and established.

To deal with knowledge acquisition under uncertainty, Busse [12] considered
the approximations of classifications as a new approach. Some earlier approaches
to the acquisition of knowledge and reasoning under uncertainty by expert sys-
tems research community are in [1,11,19,44]. Uncertainty may be caused by
ambiguous meanings of the terms used, corrupted data or uncertainty in the
knowledge itself [12]. One of the popular ways to acquire the knowledge is based
upon learning from examples [12]. The information system (a data base-like
system) represents what is called an ’instant space’ in learning from examples.
In the approach of Busse, inconsistencies are not corrected. Instead, produced
rules are categorized into certain rules and possible rules. Some other authors
who have dealt without correcting inconsistencies in information systems are
Mamdani et. al.[19] and Quinlan [35]. Four results were established by Busse
on approximation of classifications. In sect. 6, we generalize these results to
necessary and sufficient type ones from which, along with the results of Busse
many other results can be obtained as corollaries. The types of classifications
are thoroughly analyzed and their properties are studied in sect. 7. We find that
the eleven numbers of possible types reduce either directly or transitively to the
five types considered by Busse. In sect. 8, we present some of the properties of
rules generated from information systems and obtain many observations on the
structure of such rules.

There are many fundamental algebraic properties of crisp sets with respect to
the operations of union, intersection and complementation. All these properties
involve equality of two such expressions. When the involved sets are taken to
rough sets the equalities bear very little meaning (particularly, after the intro-
duction of the concepts of rough equalities and rough equivalences). To make
them more and more meaningful, one has to consider rough equality or rough
equivalence in general. In sect. 9, we consider the validity of many of these basic
properties with crisp equality being replaced by rough equivalence. Rough equal-
ities being special cases of rough equivalences, we can derive the corresponding
validities easily. We shall end the chapter with some concluding remarks and
finally provide a bibliography of papers and other related materials, which are
referred during the compilation of the materials of the chapter.

2 Rough Sets and Properties of Approximations

In this sect. we shall first introduce the definitions of rough set and related
concepts in sect. 2.1. In sect. 2.2 we introduce some properties of lower and
upper approximations and establish two theorems related to these properties,
which are to be used in later sections.

2.1 Rough Sets

Let U be a universe of discourse and R be an equivalence relation over U. By
U/R we denote the family of all equivalence classes of R, referred to as categories
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or concepts of R and the equivalence class of an element x ∈ U is denoted
by [x]R. The basic philosophy of rough set is that knowledge is deep-seated
in the classificatory abilities of human beings and other species. Knowledge is
connected with the variety of classification patterns related to specific parts of
real or abstract world, called the universe. Knowledge consists of a family of
various classification patterns of a domain of interest, which provide explicit
facts about reality-together with the reasoning capacity able to deliver implicit
facts derivable from explicit knowledge ([30], p. 2).

There is, however a variety of opinions and approaches in this area, as to how
to understand, represent and manipulate knowledge [3,4,6,7,9,15,20,21].

Usually, we do not deal with a single classification, but with families of clas-
sifications over U. A family of classifications over U is called a knowledge base
over U. This provides us with a variety of classification patterns which consti-
tute the fundamental equipment to define its relation to the environment. More
precisely, by a knowledge base we mean a relational system K=(U,R), where U
is as above and R is a non-empty family of equivalence relations over U.

For any subset P(�= φ) ⊆ R, the intersection of all equivalence relations in
P is denoted by IND(P) and is called the indiscernilibity relation over P. By
IND(K) we denote the family of all equivalence relations defined in K, that is
IND(K) = {IND(P ) : P ⊆ R, P �= φ}.

Given any X ⊆ U and R ∈ IND(K), we associate two subsets, RX =
⋃
{Y ∈

U/R : Y ⊆ X} and R̄X =
⋃
{Y ∈ U/R : Y ∩ X �= φ}, called the R-lower and

R-upper approximations of X respectively. The R-boundary of X is denoted by
BNR(X) and is given by BNR(X) = R̄X −RX . The elements of RX are those
elements of U which can certainly be classified as elements of X and elements
of R̄X are those elements of U which can possibly be classified as elements of
X, employing the knowledge of R. We say that X is rough with respect to R if
and only if RX �= R̄X , equivalently BNR(X) �= φ. X is said to be R-definable
if and only if RX = R̄X , or BNR(X) = φ.

2.2 Properties of Approximations

The lower and upper approximations of rough sets have several properties [30].
We shall be using the following four properties in our discussions:

RX ∪ RY ⊆ R(X ∪ Y ) (1)

R̄(X ∩ Y ) ⊆ R̄X ∩ R̄Y (2)

R̄(X ∪ Y ) = R̄(X) ∪ R̄(Y ) (3)

R(X ∩ Y ) = R(X) ∩ R(Y ) (4)

The inclusions in (1) and (2) can be proper [30] and also can be extended to
a finite number of sets. These results confirm to the obvious observation that,
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in general knowledge included in a distributed knowledge base is less than the
integrated one. That is, in general, dividing the knowledge base into smaller
fragments causes loss of information [30]. This leads to the interesting problem
of determining the exact circumstances under which there will be no loss of in-
formation even if one distributes the knowledge base or equivalently under what
circumstances there will definitely be loss of information. The following two the-
orems [37] establish necessary and sufficient conditions for the inclusions (1) and
(2) to be proper. The corollaries derived from these results provide necessary
and sufficient conditions for equalities to hold in (1) and (2). Thus answers to
the questions raised above have been obtained. We shall find many applications
of these results in this chapter.

Theorem 1. Let {E1, E2, E3, ..., En} be the partition of any universe U with
respect to an equivalence relation R. Then for any finite number of subsets X1,
X2, X3, . . ., Xm, of U ,

m⋃
i=1

R(Xi) ⊂ R(
m⋃

i=1

Xi) (5)

if and only if there exists at least one Ej such that

Xi ∩ Ej ⊂ Ej , for i = 1, 2, ..., m and
m⋃

i=1

Xi ⊇ Ej (6)

Proof. The sufficiency follows from the fact that Ej �⊂ R(Xi), for i = 1, 2, ..., m,
but Ej ⊂ R(

⋃m
i=1 Xi). Conversely, suppose

⋃m
i=1 R(Xi) ⊂ R(

⋃m
i=1 Xi). As

RX for any X is the union of Ej ’s only, there is at least one Ej such that
Ej ⊆ R(

⋃m
i=1 Xi) and Ej �⊂ R(Xi) for any i = 1, 2, ..., m. So, Ej ⊆

⋃m
i=1 Xi, but

Ej �⊂ Xj , for any i = 1, 2, ..., m. Thus Xi ∩ Ej ⊂ Ej and Ej ⊆
⋃m

i=1 Xi.

Corollary 1. A necessary and sufficient condition for

m⋃
i=1

R(Xi) = R(
m⋃

i=1

Xi) (7)

is that there exist no Ej such that

Xi ∩ Ej ⊂ Ej , i = 1, 2, ..., m and

m⋃
i=1

Xi ⊇ Ej . (8)

We shall be using the following example to illustrate the results of this sect.

Example 1. Let us consider an organization having four different sites. For
simplicity in computation we assume that there are 20 employees only in the
organization who are distributed over four sites.

Further, suppose that these employees are working on different projects pi, i =
1, 2, 3, 4; irrespective of their branch. Some of the employees are involved in more
than one project whereas some are not involved in any of the projects. Let the
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sets E1, E2, E3, E4 denote employees working at the four sites and X1, X2, X3,
X4 be the set of employees working for the projects p1, p2, p3 and p4 respectively.
Let

E1 = {e1, e2, e3, e4, e5}
E2 = {e6, e7, e8, e9, e10}
E3 = {e11, e12, e13, e14, e15}
E4 = {e16, e17, e18, e19, e20}

X1 = {e1, e2, e4, e7, e11, e13, e19}
X2 = {e4, e7, e11, e12, e15, e19}
X3 = {e4, e7, e11, e16, e18, e19} and
X4 = {e4, e7, e11, e16, e17, e18, e19, e20}

Let us define a relation R over the set of employees U in the organization as
eiRej if and only if both ei and ej work in the same branch.

The lower approximation of a set Xi, i = 1, 2, 3, 4 here provides the fact
whether all the employees in a particular site work in a given project or not.
Similarly, the upper approximation of these sets provide the fact whether any
employee in a particular site works in a project or not. For example, RX4 = E4,
says that all the employees in site 4 work in project 4. Similarly, R̄X1 = U means
that some employees of every site work in project 1.

Illustration for Corollary 1. Here, (
4⋃

i=1

Xi) �⊇ Ej for j = 1, 2, 3 and for E4,

(
4⋃

i=1

Xi) ⊇ E4, but X4 ∩ E4 = E4.

So, the conditions of Corollary 1 are satisfied. Hence we must have the equality
true.

In fact, we see that

R(
4⋃

i=1

Xi) = E4 and (
4⋃

i=1

RXi) = E4 as RX1 = RX2 = RX3 = φ

and RX4 = E4.

Theorem 2. Let {E1, E2, ..., En} be a partition of any universe U with respect
to an equivalence relation R. Then for a finite number of subsets X1, X2, ..., Xm

of U , the necessary and sufficient condition for

R̄(
m⋂

i=1

Xi) ⊂
m⋂

i=1

R̄(Xi) (9)

is that there exists at least one Ej such that

Xi ∩ Ej �= φ for i = 1, 2, ..., m and (
m⋂

i=1

Xi) ∩ Ej = φ (10)
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Proof. The sufficiency follows from the fact that

Ej �⊂ R̄(
m⋂

i=1

Xi) and R̄(Xi) ⊇ Ej for i = 1, 2, ..., m.

Conversely, suppose the conclusion is true. Then for some Ej ,

Ej ⊆
m⋂

i=1

R̄(Xi) but Ej �⊂ R̄(
m⋂

i=1

Xi).

So, Ej ⊆ R̄(Xi) for i = 1, 2, ..., m and Ej

⋂
(
⋂m

i=1 Xi) = φ.

That is Ej ∩ Xi �= φ, i = 1, 2, ..., m and (
⋂m

i=1 Xi)
⋂

Ej = φ.

This completes the proof.

Corollary 2. Let {E1, E2, ..., En} be a partition of U with respect to an equiv-
alence relation R. Then for any finite number of subsets X1, X2, ..., Xm of U ,

R̄(
m⋂

i=1

Xi) =
m⋂

i=1

R̄(Xi) (11)

if and only if there is no Ej such that

Xi ∩ Ej �= φ for i = 1, 2, ..., m and (
m⋂

i=1

Xi) ∩ Ej = φ. (12)

Illustration for Corollary 2

Here

4⋂
i=1

Xi = {e4, e7, e11, e19}. So, Ej ∩
4⋂

i=1

Xi �= φ for j = 1, 2, 3, 4.

Also, Xi ∩ Ej �= φ, for i = 1, 2, 3, 4 and j = 1, 2, 3, 4. Hence conditions of
Corollary 2 are satisfied. Also, we see that

R̄(
4⋂

i=1

Xi) = U =
4⋂

i=1

R̄(Xi).

3 Rough Equality of Sets

Comparison of sets plays a major role in classical set theory. When we move
to the representation of approximate knowledge through rough sets the usual
comparisons loose their meaning and in a sense are of no use. To bring about more
meaning into such comparisons of rough sets which translate into approximate
comparison of knowledge bases, Novotny and Pawlak [23,24,25] introduced three
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notions of rough equalities (bottom, top and total) and established several of
their properties. However, it is mentioned [30] that these properties fail to hold
when notions of bottom and top rough equalities are replaced one by the other.
We show in this sect. that some of these properties hold under such interchanges
and establish suitable conditions under which these interchanges are valid. Some
other papers which have dealt with rough equalities are [2,5,8].

Two sets are said to be equal in crisp set theory if and only if they have the
same elements. The concept has been extended to define rough equalities of sets
by Novotny and Pawlak [23,24,25]. In the next sect. we state these equalities.

3.1 Definitions

Definition 1. Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈ IND(K).
We say that

(i) Two sets X and Y are bottom R-equal (X=BY ) if RX = RY ;
(ii) Two sets X and Y are top R-equal (X=T Y ) if R̄X = R̄Y ;
(iii) Two sets X and Y are R-equal (X=Y ) if (X=BY ) and (X=T Y );

equivalently, RX = RY and R̄X = R̄Y .

We have dropped the suffix R in the notations to make them look simpler and
easy to use. Also the notations used are different from the original ones. This
has been done due to non-availability of the original notations in the symbol
set. It can be easily verified that the relations bottom R-equal, top R-equal and
R-equal are equivalence relations on P(U), the power set of U.

The concept of approximate equality of sets refers to the topological structure
of the compared sets but not the elements they consist of. Thus, sets having
significantly different elements may be rough equal. In fact, if X =B Y then
RX = RY and as X ⊇ RX, Y ⊇ RY , X and Y can differ only in elements of
X−RX and Y −RY . However, taking the example; U = {x1, x2, ..., x8} and R =
{{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}, we see that the two sets X = {x1, x3, x5}
and Y = {x2, x4, x6} are top R-equal, even though X ∩ Y = φ.

As noted by Pawlak [30, p.26], this concept of rough equality of sets is of
relative character, that is things are equal or not equal from our point of view
depending on what we know about them. So, in a sense the definition of rough
equality refers to our knowledge about the universe.

3.2 Properties of Rough Equalities

The following properties of rough equalities are well known [30].

X=BY if and only if X ∩ Y =BX and X ∩ Y =BY. (13)

X=T Y if and only if X ∩ Y =T X and X ∩ Y =T Y. (14)
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If X=T X ′ and Y =T Y ′ then X ∪ Y =T X ′ ∪ Y ′. (15)

If X=BX ′ and Y =BY ′ then X ∩ Y =BX ′ ∩ Y ′. (16)

If X=T Y then X ∪ −Y =T U. (17)

If X=BY then X ∩ −Y =Bφ. (18)

If X ⊆ Y and Y =T φ then X=T φ. (19)

If X ⊆ Y and X=T U then Y =T U. (20)

X=T Y if and only if − X=B − Y. (21)

If X=Bφ or Y =BU then X ∩ Y =Bφ. (22)

If X=T U or Y =T U then X ∪ Y =T U. (23)

It has been pointed out that (see for instance [30]) the above properties fail
to hold if =T is replaced by =B or conversely. However, we have the following
observations in connection with this interchange.

I. The properties (19) to (23) hold true under the interchange.
That is we have

X ⊆ Y and Y =Bφ ⇒ X=Bφ. (19′)

If X ⊆ Y and X=BU ⇒ Y =BU. (20′)

X =BY if and only if − X=T − Y. (21′)

If X=T φ or Y =T φ then X ∩ Y =T φ , and (22′)

If X=BU or Y =BU then X ∪ Y =BU. (23′)

II. The properties (17) and (18) holds true under the interchange in the following
form:

If X=BY then X ∪ −Y =BU if BNR(Y ) = φ. (17′)

If X=T Y then X ∩ −Y =T φ if BNR(Y ) = φ. (18′)
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Proof of (17’). R(X ∪−Y ) ⊇ R(X) ∪ R(−Y )
= R(Y ) ∪ (−R̄(Y ))
= R(Y ) ∪ (−R(−Y )) ∪ BNR(Y )
= R(Y ) ∪ (−R(Y )) ∩ (−BNR(Y ))
= R(Y ) ∪ (−R(Y )) ∩ (RY ∪ (−BNR(Y )))
= U ∩ (RY ∪ (−BNR(Y )))
= RY ∪ (−BNR(Y )))
= RY ∪ (RY ∪ (−R̄Y ))
= RY ∪ (−R̄Y )
= (−BNR(Y ))
= U .

So, X ∪ (−Y )=BU .

Proof of (18’). R̄(X ∩−Y ) ⊆ R̄(X) ∩ R̄(−Y )
= R̄(Y ) ∩ R̄(−Y ))
= R̄(Y ) ∩ (−R(Y ))
= R̄(Y ) ∩ ((−R̄(Y )) ∪ (−BNR(Y )))
= (R̄(Y ) ∩ ((−R̄(Y )))) ∪ (R̄Y ∩ BNR(Y ))
= φ ∪ (R̄Y ∩ BNR(Y ))
= BNR(Y )
= φ.

III. (i) The properties (13) and (16) hold under the interchange, if conditions
of Corollary 2 hold with m = 2.
(ii) The properties (14) and (15) hold under the interchange, if conditions of
Corollary 1 hold with m = 2.

So, we get

X=T Y if and only if X ∩ Y =T X and X ∩ Y =T Y, (13′)

X=BY if and only if X ∪ Y =BX and X ∪ Y =BY, (14′)

X=BX ′ and Y =BY ′ ⇒ X ∪ Y =BX ′ ∪ Y ′, (15′)

X=T X ′ and Y =T Y ′ ⇒ X ∩ Y =BX ′ ∩ Y ′. (16′)

Proof of (13’). X=T Y ⇒ R̄X = R̄Y ⇒ R̄(X ∩ Y ) = R̄X ∩ R̄Y = R̄X = R̄Y .
So, X ∩ Y =BX and X ∩ Y =T Y . The converse is trivial.

Proof of (14’). X=BY ⇒ RX = RY ⇒ R(X ∩ Y ) = RX ∪ RY = RX = RY .
So, X ∩ Y =T X and X ∩ Y =T Y . The converse is trivial.

The proofs of (15’) and (16’) are similar.
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4 Types of Rough Sets

We have mentioned in the introduction there are four important and different
topological characterizations of rough sets called their types. In this sect., we
shall start with the introduction of these types. The physical interpretation and
intuitive meanings of these types can be found in [30].

Type 1: If RX �= φ and R̄X �= U , then we say that X is roughly R-definable.
Type 2: If RX = φ and R̄X �= U , then we say that X is internally R-undefinable.
Type 3: If RX �= φ and R̄X = U , then we say that X is externally R-undefinable.
Type 4: If RX = φ and R̄X = U , then we say that X is totally R-undefinable.

The union and intersection of rough sets have importance from the point
of distribution of knowledge base and common knowledge respectively. In this
context the study of types of union and intersection of different types of rough
sets have significance. For example, if two rough sets are roughly R-definable
(Type 1), then there are some objects in the universe which can be positively
classified, based on the available information to belong to each these sets. Now,
one would like to get information about elements in the universe which can be
positively classified to be in both. If the intersection is of Type 1/Type 3, then
one can obviously conclude this. On the contrary if the intersection is of Type
2/Type 4, then no such element exists. From the table in sect. 4.1 we see that
the intersection is Type 1/Type 2. So, it can not be said definitely that the
element is in both. In fact this matches with our normal observation. Similarly,
for such sets there are some other elements which can be negatively classified
without any ambiguity as being outside the sets. Now, what can one say about
the union of two such sets ? That is, are there are still some elements which can
be negatively classified without any ambiguity being outside the union of their
elements ? If the type of the union is Type 1/Type 2, then we are sure of such
elements. On the other hand if it is of Type 3/Type 4 no such elements exist.
From the table in sect. 4.2 we see that the union is of Type 1/Type 3. So, one
can not be sure about some elements being negatively classified as outside the
union. This again matches with our observation. In this sect. we shall produce
general results on the types of union and intersection of rough sets of different
types. We shall also try to reduce the ambiguities in the possible cases under
suitable conditions through establishment of theorems.

So far nothing has been said in the literature regarding the type of a rough
set which is obtained as union or intersection of different types of rough sets. In
the next two sub-sections we obtain the results of union and intersection of any
two types of rough sets. This study was initiated in [37].

4.1 Intersection

In the next sub-section we establish and present in a table, the results of inter-
section of two rough sets of different types. It is interesting to note that out of
sixteen cases, as many as nine are unambiguous. The other ambiguous cases are
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Table 1. Intersection of different types of rough sets

⋂
Type1 Type2 Type3 Type4

Type1 Type1/Type2 Type2 Type1/Type2 Type2

Type2 Type2 Type2 Type2 Type2

Type3 Type1 / Type2 Type2 Type1 to Type4 Type2/Type4

Type4 Type2 Type2 Type2 / Type4 Type2 / Type4

mainly due to the inclusion (2). Applying Theorem 2 above, some of the ambi-
guities of the table can be reduced or removed under suitable conditions which
are provided by the theorem. These conditions being of necessary and sufficient
type, cannot be improved further.

Proofs

We shall denote the entry in ith row and jth column of the table by (i, j). In
the proofs, we shall be using (2) and the property that for any two rough sets
X and Y

R(X ∩ Y ) = RX ∩ RY (24)

We shall provide the proofs for the cases (1,2) and (3,3). The rest of the proofs
can be worked out similarly.

Proof of (1,2)
Here, X is of Type 1 and Y is of Type 2. So RX �= φ, R̄X �= U and RY =
φ, R̄Y �= U . Hence by (24) R(X∩Y ) = φ , and by (2) R̄(X∩Y ) ⊆ R̄X∩R̄Y �= U .
So, X ∩ Y is of Type 2.

Proof of (3,3)
Let both X and Y be of Type 3.

Then RX �= φ, R̄X = U and RY �= φ, R̄Y = U . Now, by (24) R(X ∩ Y ) may
or may not be φ and by (2) R̄(X ∩ Y ) may or may not be U. X ∩ Y can be of
any of the four Types.

Examples

In this sect. we provide examples to show that the ambiguous cases in the table
can actually arise for (3). The other cases can be justified similarly. We continue
with the same example of sect. 3.

Examples for (3,3)
Let X = {e1, e2, ...., e10, e14, e19} and Y = {e4, e9, e11, e12, e13, e14, e15, e17}.
Then X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
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Table 2. Union of different types of rough sets

⋃
Type1 Type2 Type3 Type4

Type1 Type1/Type3 Type1/Type3 Type3 Type3

Type2 Type1/Type3 Type1 to Type4 Type3 Type3/Type4

Type3 Type3 Type3 Type3 Type3

Type4 Type3 Type3/Type4 Type3 Type3/Type4

RY = E3 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e4, e9, e14}. So that
R(X ∩ Y ) = φ, R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3 and hence, X ∩ Y is of Type 2.

Again, considering X = {e1, e2, ...., e10, e14, e19} and Y = {e1, e2, e7, e14, e20},
both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
RY = E1 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e1, e2, , e7, e14}. So that
R(X ∩ Y ) = E1 and R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3. Hence, X ∩ Y is of Type 1.

Also, taking X = {e1, e2, ...., e10, e14, e19} and Y = {e4, e9, e14, e16, e17, e18, e19,
e20}, both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪ E3 ∪ E4,
RY = E4 and R̄Y = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y = {e4, e9, e14, e19}. So that
R(X ∩ Y ) = φ and R̄(X ∩ Y ) = E1 ∪ E2 ∪ E3 ∪ E4. Hence, X ∩ Y is of Type 4.

Finally, taking X = {e1, e2, ..., e10, e14, e19} and Y = {e1, e6, ..., e10, e11, e16,
..., e20}, both X and Y are of Type 3 as RX = E1 ∪ E2, R̄X = E1 ∪ E2 ∪
E3 ∪ E4, RY = E2 ∪ E4 and R̄X = E1 ∪ E2 ∪ E3 ∪ E4. But X ∩ Y =
{e1, e6, e7, e8, e9, e10, e19}. So that R(X ∩ Y ) = E2 and R̄(X ∩ Y ) = E1 ∪ E2 ∪
E3 ∪ E4. Hence, X ∩ Y is of Type 3.

4.2 Union

In this sub-sect. we establish and present in a table, the results of union of two
rough sets of different types. Like the cases of intersection, here also nine cases
are unambiguous. The other ambiguous cases are mostly due to the inclusion (1).
Applying Theorem 1 above, some of the ambiguities in the table can be reduced
or removed under suitable conditions which are provided by the theorem. These
conditions being of necessary and sufficient type, cannot be improved further.

Proofs

We shall denote the entry in ith row and jth column of the table by (i, j) to
represent the different possible cases. In the proof, we shall be using (1) and the
property that for any two rough sets X and Y

R̄(X ∪ Y ) = R̄X ∪ R̄Y (25)

We shall provide the proof for the cases (1,2) and (2,2). The rest of the proofs
can be worked out similarly.
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Proof of (1,2)
Let X be of Type 1 and Y be of Type 2. Then RX �= φ,R̄X �= U and RY = φ,
R̄Y �= U . So, by (1) R(X ∪Y ) is not φ. But, by (25), R̄(X ∪Y ) may or may not
be U. So, X ∪ Y can be of Type 1 or of Type 3.

Proof of (2,2)
Let X and Y be of Type 2. Then RX = φ, R̄X �= U and RY = φ, R̄Y �= U . By
(1) R(X ∪ Y ) may or may not be φ and by (25) R̄(X ∪ Y ) may or may not be
U. So, X ∪ Y can be of any of the four Types.

Examples

Below, we provide examples to show that all the possibilities in the ambiguous
cases can actually arise for (2,2). The other cases can be justified similarly. We
continue with the same Example of sect. 3.

Examples for (2,2)
Let X = {e4, e9, e14} and Y = {e9, e14, e19}. Then both X and Y are of Type 2
as RX = φ, R̄X = E1∪E2 ∪E3, RY = φ and R̄Y = E2 ∪E3∪E4. But X ∪Y =
{e4, e9, e14, e19}. So that R(X ∪ Y ) = φ, R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3 ∪ E4 = U
and hence, X ∪ Y is of Type 4.

Again considering X = {e4, e9, e14} and Y = {e4, e9}, both X and Y are of
Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄Y = E1 ∪ E2. But
X ∪ Y = {e4, e9, e14}. So that R(X ∪ Y ) = φ and R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3.
Hence, X ∪ Y is of Type 2.

Also, taking X = {e4, e9, e14} and Y = {e6, e7, e8, e10, e14}, both X and Y are
of Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄Y = E2 ∪ E3. But
X ∪ Y = {e4, e6, e7, e8, e9, e10, e14}. So that R(X ∪ Y ) = E2 and R̄(X ∪ Y ) =
E1 ∪ E2 ∪ E3. Hence, X ∪ Y is of Type 1.

Finally, taking X = {e4, e9, e14} and Y = {e4, e6, e7, e8, e10, e19}, both X
and Y are of Type 2 as RX = φ, R̄X = E1 ∪ E2 ∪ E3, RY = φ and R̄X =
E1∪E2∪E4. But X∪Y = {e4, e6, e7, e8, e9, e10, e14, e19}. So that R(X∪Y ) = E2
and R̄(X ∪ Y ) = E1 ∪ E2 ∪ E3 ∪ E4. Hence, X ∪ Y is of Type 3.

4.3 Application of Theorems 1 and 2

As we have seen in sect. 3, there are a number of ambiguous entries in the union
and intersection tables. However, if the conditions of corollaries 1 and 2 are
satisfied, equalities hold in (1) and (2) and as a result the number of ambiguities
decreases. This provides a much more convenient and improved situation. The
conditions being of necessary and sufficient types cannot be improved further,
under the circumstances.

Table for Intersection

As observed above, there were seven ambiguous cases in the table for intersection.
Now, if hypotheses of Corollary 2 are satisfied with m = 2, then the number
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Table 3. Intersection of different types of rough sets after applying Corollary 2

⋂
Type 1 Type 2 Type 3 Type 4

Type 1 Type 1/Type 2 Type 2 Type 1/Type 2 Type 2

Type 2 Type 2 Type 2 Type 2 Type 2

Type 3 Type 1/Type 2 Type 2 Type 3/Type 4 Type 4

Type 4 Type 2 Type 2 Type 4 Type 4

reduces to four. In the new table presented below, we find that there is no
ambiguous entry having all four Types.

Table for Union

As in case of intersection, there were seven ambiguous cases in the union table
also. Now, if the hypotheses of Corollary 1 are satisfied with m = 2, then the
number reduces to four. As in case of intersection, there are no ambiguous entries
in the improved table, which we present below.

Table 4. Union of different types of rough sets after applying Corollary 1 with m = 2

⋃
Type 1 Type 2 Type 3 Type 4

Type 1 Type 1/Type 3 Type 1/Type 3 Type 3 Type 3

Type 2 Type 1/Type 3 Type 2/Type 4 Type 3 Type 4

Type 3 Type 3 Type 3 Type 3 Type 3

Type 4 Type 3 Type 4 Type 3 Type 4

5 Rough Equivalence of Sets

A new concept of rough equivalence is to be introduced in this sect. As men-
tioned in the introduction, this concept captures approximate equality of sets at
a higher level than rough equality. In parallel to rough equalities (bottom, top
and total) we shall deal with three corresponding types of rough equivalences.
Obviously, these concepts deal with topological structures of the lower and up-
per approximations of the sets. The rough equalities depend upon the elements
of the approximation sets but on the contrary rough equivalences depend upon
only the structure of the approximation sets. As shall be evident from the defi-
nitions, rough equalities (bottom, top and total) imply the corresponding rough
equivalences (bottom, top and total) but the converse is not true. However, we
shall see through a real life example that the new concepts are very much used
by us to infer imprecise information.
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5.1 Definitions

I. We say that two sets X and Y are bottom R-equivalent if and only if both
RX and RY are φ or not φ together (we write, X is b eqv. to Y ). We put the
restriction here that for bottom R-equivalence of X and Y either both RX and
RY are equal to U or none of them is equal to U .

II. We say that two sets X and Y are top R-equivalent if and only if both
R̄X and R̄Y are U or not U together (we write, X is t eqv. to Y ). We put the
restriction here that for top R-equivalence of X and Y either both R̄X and R̄Y
are equal to φ or none of them is equal to φ.

III. We say that two sets X and Y are R-equivalent if and only if X and
Y are bottom R-equivalent and top R-equivalent (we write, X is eqv. to Y ).
We would like to note here that when two sets X and Y are R-equivalent, the
restrictions in I and II become redundant.

For example, in case I, if one of the RX and RY are equal to U then the
corresponding upper approximation must be U and for rough equivalence it is
necessary that the other upper approximation must also be U . Similarly, the
other case.

5.2 Elementary Properties

I. It is clear from the definition above that in all cases (bottom,top,total)
R-equality implies R-equivalence.

II. Obviously, the converses are not true.
III. Bottom R-equivalence, top R-equivalence and R-equivalence are equiva-

lence relations on P(U).
IV.The concept of approximate equality of sets refers to the topological struc-

ture of compared sets but not to the elements they consist of.
If two sets are roughly equivalent then by using our present knowledge, we

may not be able to say whether two sets are approximately equal as described
above, but, we can say that they are approximately equivalent. That is both the
sets have or not have positive elements with respect to R and both the sets have
or not have negative elements with respect to R.

5.3 Example 2

Let us consider all the cattle in a locality as our universal set U . We define a
relation R over U by xRy if and only if x and y are cattle of the same kind.
Suppose for example, this equivalence relation decomposes the universe into
disjoint equivalence classes as given below.

C = {Cow, Buffalo, Goat, Sheep, Bullock}.
Let P1 and P2 be two persons in the locality having their set of cattle repre-

sented by X and Y .
We cannot talk about the equality of X and Y in the usual sense as the cattle

can not be owned by two different people.
Similarly we can not talk about the rough equality of X and Y except the

trivial case when both the persons do not own any cattle.
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We find that rough equivalence is a better concept which can be used to decide
the equality of the sets X and Y in a very approximate and real sense.

There are four different cases in which we can talk about equivalence of P1
and P2.

Case I. R̄X, R̄Y are not U and RX, RY are φ. That is P1 and P2 both have
some kind of cattle but do not have all cattle of any kind in the locality. So, they
are equivalent.

Case II. R̄X, R̄Y are not U and RX, RY are not φ. That is P1 and P2 both
have some kind of cattle and also have all cattle of some kind in the locality. So,
they are equivalent.

Case III. R̄X, R̄Y are U and RX, RY are φ. That is P1 and P2 both have all
kinds of cattle but do not have all cattle of any kind in the locality. So, they are
equivalent.

Case IV. R̄X, R̄Y are U and RX, RY are not φ. That is P1 and P2 both have
all kinds of cattle and also have all cattle of some kind in the locality. So, they
are equivalent.

There are two different cases under which we can talk about the non - equiv-
alence of P1 and P2.

Case V. One of R̄X and R̄Y is U and the other one is not. Then, out of P1 and
P2 one has cattle of all kinds and other one dose not have so. So, they are not
equivalent. Here the structures of RX and RY are unimportant.

Case VI. Out of RX and RY one is φ and other one is not. Then, one of P1
and P2 does not have all cattle of any kind, whereas the other one has all cattle
of some kind. So, they are not equivalent. Here the structures of R̄X and R̄Y
are unimportant.

It may be noted that we have put the restriction for top rough equivalence
that in the case when R̄X and R̄Y are not equal to U , it should be the case
that both are φ or not φ together. It will remove the cases when one set is φ
and the other has elements from all but one of the equivalence classes but does
not have all the elements of any class completely being rough equivalent. Taking
the example into consideration it removes cases like when a person has no cattle
being rough equivalent to a person, who has some cattle of every kind except
one.

Similarly, for bottom rough equivalence we have put the restriction that when
RX and RY are not equal to φ, it should be the case that both are U or not U
together.

5.4 General Properties

In this sect. we establish some properties of rough equivalences of sets, which
are parallel to those stated in sect. 4.2. Some of these properties hold, some are
partially true and some do not hold at all. For those properties, which do hold
partially or do not hold at all, we shall provide some sufficient conditions for
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the conclusion to be true. Also, we shall verify the necessity of such conditions.
The sufficient conditions depend upon the concepts of different rough inclusions
(Pawlak [30], p.27) and rough comparabilities which we introduce below.

Definition 2. Let K = (U,R) be a knowledge base, X, Y ⊆ U and R ∈
IND(K). Then

(i)We say that X is bottom R-included in Y (X�BRY ) if and only if RX ⊆
RY .

(ii)We say that X is top R-included in Y (X�TRY ) if and only if R̄X ⊆ R̄Y .
(iii)We say that X is R-included in Y (X �R Y ) if and only if X�BRY and

X�TRY .
We shall drop the suffixes R from the notations above in their use of make

them simpler.

Definition 3
(i) We say X , Y ⊆ U are bottom rough comparable if and only if X�BY or
Y �BX holds.
(ii) We say X , Y ⊆ U are top rough comparable if and only if X�T Y or Y �T X
holds.
(iii) We say X , Y ⊆ U are rough comparable if and only if X and Y are both
top rough comparable and bottom rough comparable.

Property 1
(i)If X ∩ Y is b eqv to X and X ∩ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii) The converse is true if in addition X and Y are bottom rough comparable.
(iv) The condition in (iii) is not necessary.

Proof
(i) Since R(X ∩ Y ) and RX are φ or not φ together and R(X ∩ Y ) and RY are
φ or not φ together, R(X ∩ Y ) being common we get that RX and RY are φ or
not φ together. Hence X is bottom equivalent to Y .
(ii) The cases when RX and RY are both not φ but R(X ∩Y ) = φ the converse
is not true.
(iii) We have R(X ∩ Y ) = RX ∩ RY = RX or RY , as the case may be. Since
X and Y are bottom rough comparable.

So,X ∩ Y is b eqv to X and X ∩ Y is b eq to Y .
(iv)We provide an example to show that this condition is not necessary. Let us
take U = {x1, x2, .., x8} and the partition induced by an equivalence relation R
be {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}.

Now, for X = {x1, x2, x3, x4} and Y = {x3, x4, x5, x6}, we have RX = X �=
φ, RY = Y �= φ, X ∩ Y = {x3, x4} and R(X ∩ Y ) = {x3, x4} �= φ. So, X ∩ Y is
b eqv to both X and Y . But X and Y are not bottom rough comparable.

Property 2
(i) If X ∪ Y is t eqv to X and X ∪ Y is t eqv to Y then X is t eqv to Y .
(ii) The converse of (i) may not be true.
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(iii)A sufficient condition for the converse of (i) to be true is that X and Y are
top rough comparable.
(iv) The condition in (iii) is not necessary.

Proof
(i) Similar to part(i) of property 1.
(ii) The cases when R̄(X) �= U and R̄(Y ) �= U but R̄(X ∪ Y ) = U , the

converse is not true.
(iii) Similar to part(iii) of property 1.
(iv) We take the same example as above to show that this condition is

not necessary. Here, we have R̄X = X �= U, R̄Y = Y �= U, R̄(X ∪ Y ) =
{x1, x2, x3, x4, x5, x6} �= U . So, X is t eqv to Y .Also, X ∪ Y is t eqv to both
X and Y . But X and Y are not top rough comparable.

Property 3
(i) If X is t eqv to X ′ and Y is t eqv to Y ′ then it may or may not be true

that X ∪ Y is t eqv to X ′ ∪ Y ′.
(ii) A sufficient condition for the result in (i) to be true is that X and Y are

top rough comparable and X ′ and Y ′ are top rough comparable.
(iii) The condition in (ii) is not necessary for result in (i) to be true.

Proof
(i) The result fails to be true when all of R̄(X), R̄(X ′), R̄(Y ) and R̄(Y ′) are

not U and exactly one of X ∪ Y and X ′ ∪ Y ′ is U .
(ii) We have R̄(X) �= U , R̄(X ′) �= U , R̄(Y ) �= U and R̄(Y ′) �= U . So, under

the hypothesis,R̄(X ∪ Y ) = R̄X ∪ R̄Y = R̄(X) or R̄(Y ), which is not equal to
U . Similarly, R̄(X ′ ∪ Y ′) �= U . Hence, X ∪ Y is t eqv to X ′ ∪ Y ′.

(iii) Continuing with the same example, taking X = {x1, x2, x3}, X ′ =
{x1, x2, x4}, Y = {x4, x5, x6} and Y ′ = {x3, x5, x6}, we find that R̄X =
{x1, x2, x3, x4} = R̄X ′ �= U and R̄Y = {x3, x4, x5, x6} = R̄Y ′ �= U . So, X
and Y are not top rough comparable. X ′ and Y ′ are not top rough comparable.
But, R̄(X∪Y ) = {x1, x2, x3, x4, x5, x6} = R̄(X ′∪Y ′). So, X∪Y is top equivalent
to X ′ ∪ Y ′.

Property 4
(i) X is b eqv to X ′ and Y is b eqv to Y ′ may or may not imply that X ∩ Y

is b eqv to X ′ ∩ Y ′.
(ii) A sufficient condition for the result in (i) to be true is that X and Y are

bottom rough comparable and X ′ and Y ′ are bottom rough comparable.
(iii) The condition in (ii) is not necessary for result in (i) to be true.

Proof
(i) When all of R(X), R(X ′), R(Y ) and R(Y ′) are not φ and exactly one of

the X ∩ Y and X ′ ∩ Y ′ is φ, the result fails.
(ii) Now, under the hypothesis, we have R(X ∩ Y ) = R(X) ∩ R(Y ) = R(X)

or R(Y ) �= φ, Similarly, R(X ′ ∩ Y ′) �= φ. So, X ∩ Y is b eq to X ′ ∩ Y ′.
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(iii) Continuing with the same example and taking X = {x1, x2, x3}, X ′ =
{x3, x4, x5}, Y = {x3, x7, x8} and Y ′ = {x5, x7, x8}, we find that RX �= φ,
RX ′ �= φ, RY �= φ and RY ′ �= φ. So, X is b eqv to X ′ and Y is b eqv to Y ′.
Also, R(X∩Y ) = φ and R(X ′∩Y ′) = φ. So, X∩Y is b eqv to X ′∩Y ′. However,
X and Y are not bottom rough comparable and so are X ′ and Y ′.

Property 5
(i) X is t eqv to Y may or may not imply that X ∪ (−Y ) is t eqv to U .
(ii) A sufficient condition for result in (i) to hold is that X=BY .
(iii) The condition in (ii) is not necessary for the result in (i) to hold.

Proof
(i) The result fails to hold true when R̄(X) �= U , R̄(Y ) �= U and still R̄(X ∪
(−Y )) = U .
(ii) As X=BY , we have RX = RY . So, −RX = −RY . Equivalently, R̄(−X) =
R̄(−Y ). Now, R̄(X ∪−Y ) = R̄(X)∪ R̄(−Y ) = R̄(X)∪ R̄(−X) = R̄(X ∪−X) =
R̄(U) = U . So, X ∪ −Y is t eqv to U .
(iii) Continuing with the same example and taking X = {x1, x2, x3},
Y = {x2, x3, x4} we get −Y = {x1, x5, x6, x7, x8}. So that RX = {x1, x2}
and RY = {x3, x4}. Hence, it is not true that X=BY . But, X ∪ −Y =
{x1, x2, x3, x5, x6,
x7, x8}. So, R̄(X ∪ −Y ) = U . That is, X ∪ −Y t eqv to U .

Property 6
(i) X is b eqv to Y may or may not imply that X ∩ (−Y ) is b eqv to φ.
(ii) A sufficient condition for the result in (i) to hold true is that X=T Y .
(iii) The condition in (ii) is not necessary for the result in (i) to hold true.

Proof
(i) The result fails to hold true when R(X) �= φ, R(Y ) �= φ and R(X) ∩
R(−Y ) = φ.
(ii) As X=T Y , we have R̄X = R̄Y . So, −R̄X = −R̄Y . Equivalently, R(−X) =
R(−Y ). Now, R(X ∩−Y ) = R(X)∩R(−Y ) = R(X)∩R(−X) = R(X ∩−X) =
R(φ) = φ. Hence, X ∩ −Y is b eqv to φ.
(iii) Continuing with the same example by taking X = {x1, x2, x3},
Y = {x1, x2, x5} we have −Y = {x3, x4, x6, x7, x8}. So, X is b eqv to Y . But X
is not top equal to Y . However, X ∩−Y = {x3} and so, R(X ∩−Y ) = φ. Hence,
X ∩−Y is b eqv to φ.

Property 7. If X ⊆ Y and Y is b eqv to φ then X is b eqv to φ.

Proof. As Y is b eqv to φ, we have R(Y ) = φ. So, if X ⊆ Y , R(X) ⊆ R(Y ) = φ.

Property 8. If X ⊆ Y and X is t eqv to U then Y is t eqv to U .

Proof. The proof is similar to that of Property 7.

Property 9. X is t eqv to Y if and only if −X is b eqv to −Y .
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Proof. The proof follows from the property, R(−X) = −R̄(X).

Property 10. X is b eqv to φ, Y is b eqv to φ ⇒ X ∩ Y is b eqv to φ.

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R(X) = R(Y ) = φ.

Property 11. If X is t eqv to U or Y is t eqv to U then X ∪ Y is t eqv to U .

Proof. The proof follows directly from the fact that under the hypothesis the
only possibility is R̄(X) = R̄(Y ) = U .

5.5 Replacement Properties

In this sect. we shall consider properties obtained from the properties of sect. 5.4
by interchanging top and bottom rough equivalences. We shall provide proofs
whenever these properties hold true. Otherwise, sufficient conditions are to be
established under which these properties are valid. In addition, we shall test if
such conditions are also necessary for the validity of the properties. Invariably,
it has been found that such conditions are not necessary. We shall show it by
providing suitable examples.

Property 12
(i) If X ∩ Y is t eqv to X and X ∩ Y is t eqv to Y then X is t eqv Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that conditions

of Corollary 2 hold with m = 2.
(iv) The condition in (iii) is not necessary.

Proof
(i) Here R̄X and R̄(X ∩ Y ) are U or not U together and R̄Y and R̄(X ∩ Y )

are U or not U together being common, we get R̄X and R̄(Y ) are U or not U
together. So, X is t eqvY .

(ii) The result fails when R̄X and R̄(X) = UR̄(Y ) and R̄(X ∩ Y ) �= U .
(iii) Under the hypothesis, we have R̄(X ∩ Y ) = R̄(X) ∩ R̄(Y ). If X is t eqv

to Y then both R̄X and R̄Y are equal to U or not equal to U together. So,
accordingly we get R̄(X ∩Y ) equal to U or not equal to U . Hence the conclusion
follows.

(iv) We see that the sufficient condition for the equality to hold when m =
2 in Corollary 2 is that there is no Ej such that X ∩ Ej �= φ, Y ∩ Ej �= φ and
X ∩ Y ∩ Ej = φ.

Let us take U and the relation as above. Now, taking X = {x1, x3, x6},
Y = {x3, x5, x6}. The above sufficiency conditions are not satisfied as {x5, x6}∩
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X �= φ, {x5, x6} ∩ Y �= φ and {x5, x6} ∩ X ∩ Y = φ. However, R̄X =
{x1, x2, x3, x4, x5, x6} �= U .

Property 13
(i) X ∪ Y is b eqv to X and X ∪ Y is b eqv to Y then X is b eqv to Y .
(ii) The converse of (i) is not necessarily true.
(iii) A sufficient condition for the converse of (i) to hold true is that the

condition of Corollary 1 holds for m = 2.
(iv) The condition in (iii) is not necessary.

Proof
(i) RX and R(X ∪ Y ) are φ or not φ together and RY and R(X ∪ Y ) are

φ or not φ together. Since R(X ∪ Y ) is common, RX and RY are φ or not φ
together. So, X is b eqv to Y .

(ii) Suppose X and Y are such that RX and RY are both φ but R(X∪Y ) �= φ.
Then X is b eqv to Y but X ∪ Y is not b eqv to any one of X and Y.

(iii) Suppose X is b eqv to Y . Then RX and RY are φ or not φ together.
If the conditions are satisfied then R(X ∪ Y ) = RX ∪ RY . So, if both RX and
RY are φ or not φ together then R(X ∪ Y ) is φ or not φ accordingly and the
conclusion holds.

(iv) Let us take U as above. The classification corresponding to the equiva-
lence relation be given by {{x1, x2}, {x3, x4, x5}, {x6}, {x7, x8}}.

Let X = {x1, x3, x6}, Y = {x2, x5, x6}. Then R(X) �= φ, R(Y ) �= φ and
R(X ∪ Y ) �= φ. The condition in (iii) is not satisfied as taking E = {x1, x2} we
see that X ∩ E ⊂ E, Y ∩ E ⊂ E and X ∪ Y ⊇ E.

Property 14
(i) X is b eqv to X ′ and Y is b eqv to Y ′ may not imply X ∪ Y is b eqv to

X ′ ∪ Y ′.
(ii) A sufficient condition for the conclusion of (i) to hold is that the conditions

of corollary 2 are satisfied for both X , Y and X ′, Y ′ separately with m = 2.
(iii) The condition in (ii) is not necessary for the conclusion in (i) to be true

Proof
(i) When RX , RY ,RX ′, RY ′ are all φ and out of X ∪ Y and X ′ ∪ Y ′ one is

φ but the other one is not φ, the result fails to be true.
(ii) Under the additional hypothesis, we have R(X ∪ Y ) = RX ∪ RY and

R(X ′ ∪ Y ′) = RX ′ ∪RY ′. Here both RX and RX ′ are φ or not φ together and
both RY and RY ′ are φ or not φ together. If all are φ then both R(X ∪ Y ) and
R(X ′ ∪ Y ′) are φ. So, they are b eqv. On the other hand, if at least one pair is
not φ then we get both R(X ∪ Y ) and R(X ′ ∪ Y ′) are not φ and so they are
b eqv.

(iii) The condition is not satisfied means there is Ei with X ∩ Ei ⊂ Ei,
Y ∩ Ei ⊂ Ei and X ∪ Y ⊇ Ei; there exists Ej ( not necessarily different from
Ei) such that X ′ ∩ Ej ⊂ Ej , Y ′ ∩ Ej ⊂ Ej and X ′ ∪ Y ′ ⊇ Ej .

Let us consider the example, U = x1, x2, ..., x8 and the partition induced by
an equivalence relation R be {{x1, x2}, {x3, x4}, {x5, x6}{x7, x8}}. X = {x1, x5},



On Approximation of Classifications, Rough Equalities 107

Y = {x3, x6}, X ′ = {x1, x4} and Y ′ = {x3, x7}. Then RX = RX ′ = RY =
RY ′ = φ. Also, R(X ∪ Y ) �= φ, R(X ′ ∪ Y ′) �= φ. So, X is b eqv to X ′, Y is
b eqv to Y ′ and X ∪ Y is b eqv to X ′ ∪ Y ′. However, X ′ ∩ {x3, x4} ⊂ {x3, x4},
Y ′ ∩ {x3, x4} ⊂ {x3, x4} and X ′ ∪ Y ′ ⊇ {x3, x4}. So, the condition are not
satisfied.

Property 15
(i) X is t eqv to X ′ and Y is t eqv to Y ′ may not necessarily imply that

X ∩ Y is t eqv to X ′ ∩ Y ′.
(ii) A sufficient condition for the conclusion in (i) to hold is the conditions of

corollary 1 are satisfied for both X, Y and X’, Y’ separately with m = 2.
(iii) The condition in (ii) is not necessary for the conclusion in (i) to hold.

Proof
(i)When R̄X = R̄X ′ = R̄Y = R̄Y ′ = U and out of R̄(X ∩ Y ), R̄(X ′ ∩ Y ′)

one is U whereas the other one is not U the result fails to be true.
(ii)If the conditions of corollary 1 are satisfied for X, Y and X’, Y’ separately

then the case when R̄X = R̄X ′ = R̄Y = R̄Y ′ = U , we have R̄(X ′ ∩ Y ′) =
R̄X ′∩ R̄Y ′ = U and R̄(X ∩Y ) = R̄X ∩ R̄Y = U . In other cases, if R̄X and R̄X ′

not U or R̄Y and R̄Y ′ not U then as R̄(X ′ ∩ Y ′) �= U and R̄(X ∩ Y ) �= U . So,
in any case X ∩ Y and X ′ ∩ Y ′ are t eqv to each other.

(iii) We continue with the same example. The conditions are not satisfied
means there is no Ej such that X ∩ Ej �= φ, Y ∩ Ej �= φ and X ∩ Y ∩ Ej = φ
or X ′ ∩ Ej �= φ, Y ′ ∩ Ej �= φ and X ′ ∩ Y ′ ∩ Ej = φ. Taking X = {x1, x5},
Y = {x3, x5}, X ′ = {x1, x4} and Y ′ = {x2, x4} we have X ∩ {x5, x6} �= φ,
Y ′ ∩ {x5, x6} �= φ and X ∩ Y ∩ {x5, x6} = φ. X ′ ∩ {x3, x4}, Y ′ ∩ {x3, x4} �= φ
and X ′ ∩Y ′ ∩{x3, x4}. So, the conditions are violated. But R̄X �= U , R̄X ′ �= U ,
R̄Y �= U , R̄Y ′ �= U . So, X is t eqv and Y is t eqv Y’. Also, R̄(X ∩ Y ) �= U and
R̄(X ′ ∩ Y ′) �= U . Hence, X ∩ Y is t eqv to X ′ ∩ Y ′.

Remark
We would like to make the following comments in connection with the properties
16 to 19, 21 and 22:

(i) We know that RU = U . So, bottom R-equivalent to U can be considered
under the case that RU �= φ.

(ii) We know that R̄φ = φ. So, top R-equivalent to φ can be considered under
the case that R̄φ �= U .

The proofs of the properties 16, 17, 18 and 19 are trivial and we omit them.

Property 16. X is b eqv to Y may or may not imply that X ∪ −Y is b eqv
to U .

Property 17. X is t eqv to Y may or may not imply that X ∩ −Y is t eqv
to φ.

Property 18. If X ⊆ Y and Y is t eqv to φ then X is t eqv to φ.
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Property 19. If X ⊆ Y and X is b eqv to U then Y is b eqv to U .

Property 20. X is b eqv to Y if and only if −X is t eqv to −Y .

Proof. Follows from the identity R̄(−X) = −R̄(X).
The proofs of the following two properties are also trivial.

Property 21. X is t eqv to φ and Y is t eqv to φ ⇒ X ∩ Y is t eqv to φ.

Property 22. X is b eqv to U and Y is b eqv to U ⇒ X ∪ Y is b eqv to U .

6 Approximation of Classifications

Approximation of classifications is a simple extension of the definition of approx-
imation of sets. Let F = {X1, X2, ..., Xn} be a family of non empty sets, which
is a classification of U in the sense that Xi ∩ Xj = φ for i �= j and

n⋃
i=1

Xi = U.

Then RF = {RX1, RX2, ..., RXn} and R̄F = {R̄X1, R̄X2, ..., R̄Xn} are called
the R-lower and R-upper approximations of the family F , respectively.

Grzymala-Busse [12] has established some properties of approximation of clas-
sifications. But, these results are irreversible in nature. Pawlak [30, p.24] has
remarked that these results of Busse establish that the two concepts, approxi-
mation of sets and approximation of families of sets (or classifications) are two
different issues and the equivalence classes of approximate classifications cannot
be arbitrary sets. He has further stated that if we have positive example of each
category in the approximate classification then we must have also negative exam-
ples of each category. In this sect., we further analyze these aspects of theorems
of Busse and provide physical interpretation of each one of them by taking a
standard example.

One primary objective is to extend the results of Busse by obtaining necessary
and sufficient type theorems and show how the results of Busse can be derived
from them. The results of Busse we discuss here are in their slightly modified
form as presented by Pawlak [30]. Some more work in dealing with incomplete
data are due to Busse [13,14].

6.1 Theorems on Approximation of Classifications

In this sect., we shall establish two theorems which have many corollaries gener-
alizing the four theorems established by Busse [12] in their modified forms [30].
We shall also provide interpretations for most of these results including those of
Busse and illustrate them through a simple example of toys [30].

Example 3. Suppose we have a set of toys of different colours red, blue, yellow
and different shapes square, circular, triangular. We define the first description
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as a classification of the set of toys and represent the second description as an
equivalence relation R. We say for two toys x and y, xRy if x and y are of the
same shape.

We shall use the following notations for representational convenience :
Nn = {1, 2, ..., n} and for any I ⊂ Nn, by Ic we mean the complement of I

in Nn.

Theorem 3. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for any I ⊂ Nn,

R̄(
⋃
i∈I

(Xi)) = U if and only if R(
⋃

j∈Ic

(Xj)) = φ.

Proof. We have

R(
⋃

j∈Ic

(Xj)) = φ ⇔ R(U −
⋃

i∈Ic

(Xi)) = φ ⇔ −R̄
⋃
i∈I

(Xi) = φ ⇔ R̄(
⋃
i∈I

(Xi)) = U.

This completes the proof.

Corollary 3. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for I ⊂ Nn,

if R̄(
⋃
i∈I

(Xi)) = U then RXj = φ for each j ∈ Ic.

Proof. By the above theorem, using the hypothesis we get

R(
⋃

j∈Ic

(Xj)) = φ.

As
RXj ⊆ R(

⋃
i∈Ic

(Xj))

for each j ∈ Ic, the conclusion follows.

Interpretation
Suppose, in a classification of a universe, there is no negative element for the
union of some elements of the classification taken together with respect to an
equivalence relation. Then for all other elements of the classification there is no
positive element with respect to the equivalence relation. Referring to the exam-
ple, if we have circular or triangular toys of all different colours then all the toys
of no particular colour are rectangular in shape.

Corollary 4. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on it. Then for each i ∈ Nn, R̄Xi = U if and only if

R(
⋃
j �=i

(Xj) = φ.
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Proof. Taking I = {i}, in Theorem 3 we get this.

Corollary 5. Let F = {X1, X2, ..., Xn} be a classification of U and let R be an
equivalence relation on U . Then for each i ∈ Nn, RXi = φ if and only if

R̄(
⋃
j �=i

Xj) = U.

Proof. Taking I = {i}c, in Theorem 3 we get this.

Corollary 6. [30, Proposition 2.6 ] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on U . If there exists i ∈ Nn such that
R̄Xi = U then for each j other than i in Nn, then RXj = φ.

Proof. From Corollary 4., R̄Xi = U

⇒ R(
⋃
j �=i

Xj) = φ.

⇒ RXj = φ for each j �= i.

Interpretation
Suppose in a classification of a universe, there are positive elements of one mem-
ber of the classification with respect to a equivalence relation. Then there are
negative elements of all other members of the classification with respect to the
equivalence relation.

Taking the above example into consideration if all red toys are of triangular
shape (say) then for toys of circular and rectangular shape at least one colour is
absent.

Corollary 7. [30, proposition 2.8] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on it. If for all i ∈ Nn, R̄Xi = U holds
then RXi = φ for all i ∈ Nn.

Proof. If for some i, 1 ≤ i ≤ n, RXi �= φ, then by Corollary 6 R̄Xj �= U for
some j(�= i) in Nn ; which is a contradiction.

This completes the proof.

Interpretation
Suppose in a classification of a universe, there is no negative element of one
member of the classification with respect to an equivalence relation. Then for all
other members of the classifications there is no positive element with respect to
the equivalence relation.

Referring to the example, if there are triangular toys of all different colours
then for any other shape (circular or rectangular) all the toys of no particular
colour are of that shape.
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Theorem 4. Let F = {X1, X2, ..., Xn} be a partition of U and R be an equiva-
lence relation on U . Then for any I ⊂ Nn,

R(
⋃
i∈I

Xi) �= φ if and only if
⋃

j∈IC

R̄(Xj) �= U.

Proof. (Sufficiency) By property of lower approximation,

R̄(
⋃

j∈Ic

Xj) = (
⋃

j∈Ic

R̄Xj) �= U.

So, there exists [x]R for some x ∈ U such that

[x]R ∩ (
⋃

j∈Ic

Xj) = φ.

Hence,
R(

⋃
i∈I

Xi) �= φ.

(Necessity) Suppose,
R(

⋃
i∈I

Xi) �= φ.

Then there exists x ∈ U such that

[x]R ⊆ (
⋃
i∈I

Xi).

Thus, [x]R ∩ Xj = φ for j /∈ I. So, x /∈ R̄Xj , for j /∈ I. Hence

(
⋃

j∈Ic

R̄Xj) �= U.

Corollary 8. Let F = {X1, X2, ..., Xn be a classification of U and let R be an
equivalence relation on U . Then for I ⊂ Nn,

if R(
⋃
i∈I

Xi) �= φ then R̄Xj �= U for each j ∈ Ic.

Proof. By Theorem 4,
R(

⋃
i∈I

Xi) �= φ

⇒ (
⋃

j∈Ic

R̄Xj) �= U

⇒ R̄Xj �= U for each j ∈ Ic.
This completes the proof.
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Interpretation
Suppose in a classification of a universe, there are positive elements for the union
of some elements of the classification taken together with respect to an equiva-
lence relation. Then for all other elements of the classification there are negative
elements with respect to the equivalence relation. Referring to the same example,
if all toys of red colour are rectangular or triangular in shape then circular toys
of at least one colour is absent.

Corollary 9. Let F = {X1, X2, ..., Xn} be a partition of U and R be an equiv-
alence relation on U . Then for each i ∈ Nn,

RXi �= φ if and only if (
⋃
j �=i

R̄Xj) �= U.

Proof. Taking I = {i} in Theorem 4 we get this.

Corollary 10. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on U . Then for all i, 1 ≤ i ≤ n, R̄Xi �= U if and only if

R(
⋃
j �=i

Xj) �= φ.

Proof. Taking I = {i}C in Theorem 4. we get this. Also, this result can be
obtained as a contrapositive of Corollary 9.

Corollary 11. [30, proposition 2.5] Let F = {X1, X2, ..., Xn} be a classification
of U and let R be an equivalence relation on U . If there exist i ∈ Nn such that
RXi �= φ then for each j(�= i) ∈ Nn, RXj �= U .

Proof. By Corollary 9,

RXi �= φ ⇒ (
⋃
j �=i

R̄Xj) �= U ⇒ R̄Xj �= U,

for each j �= i, 1 ≤ i ≤ n.

Interpretation
Suppose in a classification of a universe, there are positive elements of one mem-
ber of classification with respect to an equivalence relation. Then there are nega-
tive elements of all other numbers of the classification with respect to equivalence
relation. Taking the example into consideration if all red toys are of triangular
shape (say) then for toys for circular or rectangular shape at least one colour is
absent.

Corollary 12. [30, proposition 2.7] Let F = {X1, X2, ..., Xn}, n > 1 be a clas-
sification of U and let R be an equivalence relation on U . If for all i ∈ Nn,
RXi �= φ holds then R̄Xi �= U for all i ∈ Nn.
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Proof. As RXi �= φ for all i ∈ Nn, we have

R(
⋃
j �=i

Xj) �= φ for all i ∈ Nn. So, by Corollary 10 R̄Xi �= U for all i ∈ Nn.

Interpretation
Suppose in a classification, there is a positive element in each member of the
classification with respect to an equivalence relation. Then there is a negative
element in each member of the classification with respect to the equivalence
relation.

Referring to the example, if all toys of red colour are triangular, all the toys of
green colour are circular and all the toys of blue colour are rectangular in shape
then there is no green colour toy of triangular shape and so on.

7 Some Properties of Classifications

In this sect. we shall establish some properties of measures of uncertainty [12]
and discuss in detail on properties of classifications with two elements and three
elements.

7.1 Measures of Uncertainty

The following definitions are taken from Grzymala-Busse [12].

Definition 4. Let F = {X1, X2, ..., Xn} be a classification of U and R be an
equivalence relation on U . Then the accuracy of approximation of F by R, de-
noted by βR(F ) and is defined as

βR(F ) = (
n∑

i=1

| RXi |)/(
n∑

i=1

| R̄Xi |). (26)

Definition 5. Let F and R be as above. Then the quality of approximation of
F by R is denoted by γR(F ) and is defined as

γR(F ) = (
n∑

i=1

| RXi |)/ | U | . (27)

The accuracy of classification expresses the percentage of possible correct deci-
sion when classifying objects employing the knowledge R. The quality of classi-
fication expresses the percentage of objects which can be correctly classified to
classes of F employing knowledge R.

Let R1 and R2 be any two equivalence relations on U . F1 and F2 be the clas-
sification of U generated by R1 and R2 respectively.

Definition 6
(i) We say that R2 depends in degree k on R1 in U and denote it by

R1 −→k R2 if and only if γR1(F2) = k. (28)
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(ii)We say that R2 totally depends on R1 in U if and only if k = 1.
(iii) We say that R2 roughly depends on R1 in U if and only if 0 < k < 1.
(iv) We say that R2 totally independent on R1 in U if and only if k = 0.
(v) We say F2 depends in degree k on F1 in U , written as

F1 −→k F2 if and only if R1 −→k R2.

Property 23. For any R-definable classification F in U , βR(F ) = γR(F ) = 1
So, if a classification F is R-definable then it is totally independent on R.

Proof. For all R-definable classifications F ,RF = R̄F . So, by definition βR(F ) =
1. Again, by property of upper approximation and as F is a classification of U ,
we have

n∑
i=1

| R̄Xi |≥
n∑

i=1

| Xi |=|
n⋃

i=1

Xi |=| U | .

Also,
n∑

i=1

| RXi |≤
n∑

i=1

| Xi |=|
n⋃

i=1

Xi |=| U | .

But, for R-definable classifications

n∑
i=1

| RXi |=
n∑

i=1

| R̄Xi | .

Hence,
n∑

i=1

| RXi |=| U | .

So, we get γR(F ) = 1.

Property 24. For any classification F in U and an equivalence relation R on
U , βR(F ) ≤ γR(F ) ≤ 1.

Proof. Since | RXi | ≤| Xi |, we have

n∑
i=1

| RXi |≤
n∑

i=1

| Xi |=| U | .

So, γR(F ) ≤ 1. Again, as shown above,

n∑
i=1

| R̄Xi |≥| U | .

Hence,

βR(F ) = (
n∑

i=1

| RXi |)/(
n∑

i=1

| R̄Xi |) ≤ (
n∑

i=1

| RXi |)/ | U |= γR(F ).
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7.2 Classification Types

In this sect. we present Types of classifications and their rough definability as
stated by Busse [12]. As mentioned, classifications are of great interest in the
process of learning from examples, rules are derived from classifications gener-
ated by single decisions.

Definition 7. Let R be an equivalence relation on U . A classification F =
{X1, X2, ..., Xn} of U will be called roughly R-definable, weak in U if and only
if there exists a number i ∈ Nn such that RXi �= φ.

It can be noted from Corollary 9 that for a R-definable weak classification F of
U , there exists j(�= i) ∈ Nn such that R̄Xj �= U .

Definition 8. Let R and F be as above. Then F will be called roughly R-
definable strong in U (Type 1) if RXi �= φ and only if i ∈ Nn for each. By
Corollary, in roughly R-definable strong classification in U , R̄Xi �= U for each
i ∈ Nn.

Definition 9. Let R and F be as above. Then F will be called internally R-
undefinable weak in U if and only if RXi = φ for each i ∈ Nn and there exists
j ∈ Nn such that R̄Xj �= U .

Definition 10. Let R and F be as above. Then F will be called internally R-
undefinable strong in U (Type 2) if and only if RXi = φ and R̄Xi �= U for each
i ∈ Nn.

It has been observed by Busse [12] that due to Corollary 10 no externally P-
undefinable set X exists in U . So, extension of Types of rough sets, classified on
Type 3 is not possible to the case of classifications.

Definition 11. Let R and F be as above. Then F will be called totally R-
undefinable in U (Type 4) if and only if RXi = φ and R̄Xi = U for each i ∈ Nn.

7.3 Classifications with Two or Three Elements

As remarked by Pawlak [30], approximation of sets and approximation of families
of sets are two different issues and equivalence classes of approximate classifica-
tion cannot be arbitrary sets, although they are strongly related. The concepts of
compliments in case of sets and in case of classifications are different, which may
lead to new concepts of negation in the case of binary and multivalued logics.

In this sect. we shall analyze the structure and properties of classifications
having 2 elements and classifications having 3 elements. This may shed some
light on the above statement of Pawlak. We shall use T − i to represent Type− i,
i=1,2,3,4 from this sect. onwards.
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Classifications with Two Elements

Let χ = {X1, X2}. Then X2 = XC
1 . Since complements of T-1/T-4 rough sets

are T-1/T-4 respectively and T-2/T-3 rough sets have complements of T-3/T-2
respectively, ([30], proposition 2.4), out of 16 possibilities for χ with respect to
Typing only four alternates are possible. Namely, {T-1,T-1}, {T-2, T-3}, {T-3,
T-2} and {T-4, T-4}. Again, the second and third possibilities are similar. So,
there are only three distinct alternates. Hence, we have.

Property 25. A classification with two elements is roughly R-definable weak or
of T-1 or of T-4 only.

Classifications with Three Elements

In a classification with 3 elements, say {X1, X2, X3} there are supposed to be
64 possibilities. But we shall show that only 8 of these possibilities can actually
occur and other possibilities are not there.

Property 26. In a classification F = {X1, X2, X3} of U there are 8 possibilities
for F with respect to Types of X1, X2, X3. These are {T-1,T-1, T-1}, {T-1,T-1,T-
2}, {T-1,T-2,T-2}, {T-2,T-2,T-2}, {T-2,T-2,T-4}, {T-2,T-4,T-4}, {T-3,T-2,T-2}
and { T-4,T-4,T-4}.

Proof. We shall consider four cases depending upon the Type of X1.
Case 1. X1 is of T-1. Then X2 ∪ X3 being compliment of X1, must be of T-1.
So, from the table of sect. 5.2, three cases arise for X2 and X3, that is {T-1,T-1},
{T-1,T-2}, and {T-2,T-2}.

Case 2. X1 is of T-2. Complement of T-2 being Type -3, X2 ∪ X3 is of T-3.
Now, from the table of sect. 5.2, there are nine cases for X2 and X3. Out of these
{T-1,T-1} and {T-1,T-2} have been covered in Case 1. {T-1,T-3} cannot occur
as {T-2 ∪ T-3} = T-3 and (T-1)C = T-1. Similarly, {T-1,T-4} cannot occur
as {T-2 ∪ T-4} = T-3 and (T-4)C = T-4. So, four cases remains {T-2,T-2},
{T-2,T-4} and {T-4,T-4}.

Case 3. X1 is of T-3, X2 ∪ X3 must be of T-2. Referring to the table of sect.
5.2. There is only one possibility for X2, X3 that is {T-2,T-2} which has been
covered in Case 2.

Case 4. X1 is of T-4. Then X2 ∪ X3 must be of T-4. Referring to the table
of sect. 5.2, there are three possibilities for X2 and X3. Out of these cases {T-
2,T-2} and {T-2,T-4} have been considered in Case 2. So, only one case remains
{T-4,T-4}.

This completes the proof of the property.

7.4 Further Types of Classifications

First we present two theorems which shows that the hypothesis in the theorems
of Busse, as presented in Corollary 7 and Corollary 12 can be further relaxed
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to get the conclusions. However, even these hypothesis are to be shown as not
necessary for the conclusions to be true.

Theorem 5. Let F = {X1, X2, ..., Xn}, where n > 1 be a classification of U and
let R be an equivalence relation on U . If there exists p and q, 1 ≤ p, q ≤ n and
p �= q such that RXp �= φ, RXq �= φ then for each i ∈ Nn, R̄Xi �= U .

Proof. Since RXp �= φ, by Corollary 11, R̄Xi �= U for i �= p and since RXq �= φ,
by the same Corollary, R̄Xi �= U for i �= q. So, from these two we get R̄Xi �= U
for all i as p �= q.

Note 1. The above condition is not necessary. Let us consider U = {x1, x2, ..., x8}
and R be an equivalence relation on U with equivalence classes X1 = {x1, x3, x5},
X2 = {x2, x4} and X3 = {x6, x7, x8}. Then taking the classification {Z1, Z2, Z3}
defined by Z1 = {x2, x4}, Z2 = {x1, x3, x6} and Z3 = {x5, x7, x8}, we find that
R̄Z1 �= U , R̄Z2 �= U , R̄Z3 �= U . But R̄Z1 �= φ, R̄Z2 �= φ, R̄Z3 �= φ.

Theorem 6. F = {X1, X2, ..., Xn}, where n > 1 be a classification of U and let
R be an equivalence relation on U . If there exists p and q 1 ≤ p, q ≤ n and p �= q
such that R̄Xp = R̄Xq = U then for each i ∈ Nn, RXi = φ.

Proof. Since R̄Xp = U , by Corollary 6, RXi = φ for i �= p and since RXq = U ,
by the same Corollary, RXi = φ for i �= q. So, from these two we get RXi = φ
for all i as p �= q.

Note 2. The above condition is not necessary. Let us consider U , R and X1,
X2 and X3 as in the above note. We take the classification defined by Z1, Z2, Z3
defined by Z1 = {x2, x6}, Z2 = {x1, x3, x4} and Z3 = {x5, x7, x8}. We find that
RZ1 = φ, RZ2 = φ and RZ3 = φ whereas R̄Z1 �= U , R̄Z2 �= U and R̄Z3 �= U .

Observation 1. In Corollary 11, we have R̄Xj �= U for all j �= i if ∃Xi such
that RXi �= φ. It is easy to observe that R̄Xi may or may not be U under the
circumstances.

Observation 2. In Corollary 6, we have RXj = φ for all j �= i if ∃Xi such
that R̄Xi = U . It is easy to observe that RXi may or may not be φ under the
circumstances.

For any classification F = {X1, X2, ..., Xn} of U we have the following possibil-
ities with respect to lower and upper approximations.

Basing upon the above table, possible combinations for classifications are
(i, j); i = 1, 2, 3, 4 and j = 5, 6, 7, 8.

Out of these, several cases have been considered by Busse [12]. We shall exam-
ine all the possibilities closely. In fact we have the following table of combinations.
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We shall be using the following abbreviations in Table 6:

Roughly R-definable weak 2 = RRdW2
Internally R-undefinable weak 2 = IRudW2
Internally R-undefinable weak 3 = IRudW3
Roughly R-definable weak 1 = RRdW1
Internally R-definable weak 1 = IRdW1
Totally R-undefinable weak 3 = TRudW3
Externally R-undefinable = ERud
Totally R-undefinable weak 1 = TRudW1

Table 5. Possibilities w.r.t. lower and upper approximations

F Lower �= φ Lower = φ Upper �= U Upper = U

∀ 1 2 5 6

∃ 3 4 7 8

Table 6. Possible combinations

5 6 7 8

1 T-1 Not Possible T-1 Not Possible

2 T-2 T-4 IRudW3 TRudW3

3 RRdW2 Not Possible RRdW1 ERud

4 IRudW2 T-4 IRdW1 TRudW1

The cases (1,6) and (1,8) are not possible by Corollary 12. The case (3,6)
is not possible by Corollary 7. The case (1,7) reduces to (1,5) by Corollary 12.
The case (1,5) has been termed as roughly R-definable strong classification by
Busse and we call it T-1 as all the elements of the classifications are of T-1. So
far as row-1 of the table is concerned, the only possible classification is roughly
R-definable strong or T-1.

The case (2,5) has been termed by Busse as internally R-undefinable strong.
We call it T-2 as all the elements of the classifications are of T-2. The case (2,6)
has been termed as totally R-undefinable by Busse and we call it T-4 as all
the elements of the classification are of T-4. The case (2,7) has been termed as
internally R-undefinable weak by Busse.

The Characterisation. We have the following conventions in connection with
types of classifications:

(I) Internal definability: Lower approximation �= φ
(II) Internal undefinibility: Lower approximation = φ
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(III)External definibility: Upper approximation �= U
(IV) External undefinability: Upper approximation = U

Also, from the set of elements in a classification, if we have ∃ some element
satisfying a typing property, it leads to a weak type. On the other hand, if a
typing property is true ∀ element, it leads to a strong type.

So, we have the following general types of classifications.

(I) Roughly R-definable ⇔ Internally R-definable and Externally R-definable
(II) Internally R-undefinable ⇔ Internally R-undefinable and Externally

R-definable
(III) Externally R-undefinable ⇔ Internally R-definable and Externally R-

undefinable
(IV) Totally R-undefinable ⇔ Internally R-undefinable and Externally R-

undefinable

In case (I) we have one strong type, we call it T-1. This is the case when ∀i,
RXi �= φ and ∀j, RXj �= U .

Also there are two weak types. We set them as:

(i) Roughly R-definable (weak -1) if and only if ∃i, RXi �= φ and ∃j, RXj �= U
and

(ii) Roughly R-definable (weak -2) if and only if and ∃i, RXi �= φ and ∀j,
RXj �= U .

In case (II) we have one strong type, we call it T-2. This is the case when ∀i,
RXi �= φ and ∀j, R̄Xj �= U .

Also there are three weak types. We set them as:

(i) Internally R-definable (weak -1) if and only if ∃i, RXi = φ and ∃j,
R̄Xj �= U .

(ii) Internally R-definable (weak -2) if and only if ∃i, RXi = φ and ∀j,
R̄Xj �= U .

(iii) Internally R-definable (weak -3) if and only if ∀i, RXi = φ and ∃j,
R̄Xj �= U .

In case (III) we have one strong type, we call it Externally R-undefinable only
as there is no weak type possible in this case. This is the case when ∃i, RXi �= φ
and ∃j, R̄Xj = U .

In case (IV) we have one strong type, we call it T-4. This is the case when ∀i,
RXi = φ and ∃j, R̄Xj = U .

Also there are two weak types. We set them as

(i) Totally r-undefinable (weak -1) if and only if ∃i, RXi = φ and ∃j,
R̄Xj = U .

(ii) Totally R-undefinable (weak -2) if and only if ∀i, RXi = φ and ∃j,
R̄Xj = U .
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Fig. 1. A schematic representation of Busse’s cases

Out of these eleven possibilities only five have been considered by Busse [12].
In Fig. 1, we represent the cases considered by Busse inside rectangles and those
not considered by him inside ellipses. The arrows show the reduction of the
six cases not considered by Busse to those considered by him either directly or
transitively.

7.5 Application

A new approach to knowledge acquisition under uncertainty based on rough set
theory was presented by Busse [12]. The real world phenomena are represented

Table 7. An example of inconsistent information system

Q c1 c2 d1 d2 d3 d4 d5 d6

x1 v1 w1 0 0 0 0 0 0

x2 v1 w2 1 0 0 0 0 0

x3 v1 w1 0 0 0 1 2 1

x4 v1 w2 1 0 0 1 2 1

x5 v2 w2 0 0 0 0 0 0

x6 v2 w2 0 1 1 1 1 1

x7 v3 w1 1 1 0 0 1 0

x8 v3 w1 1 1 1 1 2 1

x9 v3 w1 1 1 1 1 2 2



On Approximation of Classifications, Rough Equalities 121

by information system, where inconsistencies are included. For this he considered
the example of opinion of six doctors d1, d2, d3, d4, d5 and d6 on nine patients x1,
x2,..., x9 based upon the result of two tests c1 and c2. On the basis of values of
tests, experts classify patients as being on some level of disease. The information
system is represented in a tabular form, which is clearly inconsistent.

The classification, generated by the set C of conditions is equal to {{x1, x3},
{x2, x4}, {x5, x6}, {x7, x8, x9}}.

If we denote the classification Xi generated by the opinion of doctor di,
i = 1, 2, 3, 4, 5, 6 then

X1 = {{x1, x3, x5, x6}, {x2, x4, x7, x8, x9}},
X2 = {{x1, x2, x3, x4, x5}, {x6, x7, x8, x9}},
X3 = {{x1, x2, x3, x4, x5, x7}, {x6, x8, x9}},
X4 = {{x1, x2, x5, x7}, {x3, x4, x6, x8, x9}},
X5 = {{x1, x2, x5}, {x3, x4, x8, x9}, {x6, x7}}
and
X6 = {{x1, x2, x5, x7}, {x3, x4, x6, x8 {x9}}

It is easy to see that the above classifications are of type C-definable, roughly
C-definable strong, roughly C-definable weak, totally C-undefinable, internally
C-undefinable and internally C-undefinable weak respectively.

8 Rule Generation

By rules on information systems we mean conditional statements that specify
actions under conditions. The following notations are used :

Constants: 0,1
Atomic expression: a := υ ≡ {ρ(x, a) = υ : x ∈ U}
Boolean Operations: ¬,∨,∧
0 ≡ Empty set.
1 ≡ U.

8.1 Definitions

(i) Rules computed from lower approximations are certain rules.
(ii) Rules computed from upper approximations are possible rules.

The following properties hold for rule generation.

I. Necessary and sufficient condition for a classification χ to induce certain rules
is Cχ �= φ.
II. The number of certain rules is equal to the number of non-empty lower
approximations in the classification.
III. The number of possible rules is equal to the number of non-empty boundaries
in the classification.
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8.2 Observations

I. For C-definable classifications, all the rules are certain rules.
II. For roughly C-definable strong and roughly C-definable weak classifications
both certain and possible rules exist.
III. For totally C-undefinable, internally C-undefinable strong and internally
C-undefinable weak classifications there are no certain rules.
IV. For roughly C-definable strong sets the number of certain rules is equal to
the number of elements in the classification.
V. All types of classifications other than C-definable classifications have the
property that there is at least one possible rule.
VI. For roughly C-definable weak classifications there is at least one certain rule.
VII. For totally C-undefinable classifications, there is no certain rule. The num-
ber of possible rules is equal to the number of elements in the classification.
VIII. For intrenally C-undefinable strong classifications, there is no certain rule.
The number of possible rules is at most equal to the number of elements in the
classification.
IX. For internally C-undefinable weak classifications, there is no certain rule.
There is no guarantee about the existence of possible rules.

8.3 Examples

Let us see how some certain and possible rules can be generated from the
example 7.5.

(I)X1 is C-definable and hence all the rules corresponding to it are certain rules.
In fact, the rules are
(i)((c1 = υ1) ∧ (c2 = w1)) ∨ ((c1 = υ2) ∧ (c2 = w2)) ⇒ (d1 = 0) and
(ii) ((c1 = υ1) ∧ (c2 = w2)) ∨ ((c1 = υ3) ∧ (c2 = w1)) ⇒ (d1 = 1)

(II)X2 is roughly C-definable strong. So, it has both type of rules,
(i)((c1 = υ1) ⇒ (d2 = 0) (Certain rule) and
(ii) ((c1 = υ2) ∧ (c2 = w2)) ⇒ (d2 = 0) (Possible rule).

(III)X5 is internally C-undefinable strong. So, it has no certain rules. As it has
three elements, by Observation VIII it can have at most three possible rules. In
fact the rules are
(i)(c1 = υ1) ∨ (c1 = υ2) ∨ (c2 = w2) ⇒ (d5 = 0)
(ii) ((c1 = υ2) ∨ (c1 = υ3) ⇒ (d5 = 1) and
(iii) (c1 = υ1) ∨ (c1 = υ3) ∨ (c2 = w1) ⇒ (d5 = 2).

9 Rough Equivalence of Algebraic Rules

We have several algebraic properties with respect to the set theoretic operations
of union, intersection and complementation. Ordinary equality when the sets
involved are taken to be rough sets bears little meaning and does not comply
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with common sense reasoning. So, rough equality or rough equivalence seems to
be a possible solution. In this sect. we continue with rough equivalence and verify
the validity of rough equivalence of left and right hand sides of these properties.
This study was initiated in [39].

9.1 Associative Rule

The two Associative laws for crisp sets are:
For any three sets A, B and C,

A ∪ (B ∪ C) = (A ∪ B) ∪ C (29)

and
A ∩ (B ∩ C) = (A ∩ B) ∩ C (30)

Now, it is interesting to verify whether the left and right hand side of (29) and
(30) match with their Types. For this, we consider four different cases depending
upon Types of A with B and C being of any of the four Types. We take it as case
i, when A is of T-i, i = 1, 2, 3, 4. It is observed that in all these cases the left hand
side and right hand side of the above equalities match with each other as is evident
from the corresponding tables. First we consider the four cases for union and than
for intersection. Tables 1 and 2 are used to derive the tables below.

Union

Table 8. Union: case 1

⋃
T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-1/T-3 T-3 T-3

T-2 T-1/T-3 T-1/T-3 T-3 T-3

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3 T-3 T-3

Table 9. Union: case 2

⋃
T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-1/T-3 T-3 T-3

T-2 T-1/T-3 T-1/T-2/T-3/T-4 T-3 T-3/T-4

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-4 T-3 T-3/T-4
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Table 10. Union: case 3

⋃
T-1 T-2 T-3 T-4

T-1 T-3 T-3 T-3 T-3

T-2 T-3 T-3 T-3 T-3

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3 T-3 T-3

Table 11. Union: case 4

⋃
T-1 T-2 T-3 T-4

T-1 T-3 T-3 T-3 T-3

T-2 T-3 T-3/T-4 T-3 T-3/T-4

T-3 T-3 T-3 T-3 T-3

T-4 T-3 T-3/T-4 T-3 T-3/T-4

Table 12. Intersection: case 1

⋂
T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-2 T-1/T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-1/T-2 T-2 T-1/T-2 T-2

T-4 T-2 T-2 T-2 T-2

Table 13. Intersection: case 2

⋂
T-1 T-2 T-3 T-4

T-1 T-2 T-2 T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-2 T-2 T-2 T-2

T-4 T-2 T-2 T-2 T-2
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Table 14. Intersection: case 3

⋂
T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-2 T-1/T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-1/T-2 T-2 T-1/T-2/T-3/T-4 T-2/T-4

Type 4 T-2 T-2 T-2/T-4 T-2/T-4

Table 15. Intersection: case 4

⋂
T-1 T-2 T-3 T-4

T-1 T-2 T-2 T-2 T-2

T-2 T-2 T-2 T-2 T-2

T-3 T-2 T-2 T-2/T-4 T-2/T-4

T-4 T-2 T-2 T-2/T-4 T-2/T-4

Table 16. Double negations for different types of rough sets

A T-1 T-2 T-3 T-4

(A)C T-1 T-3 T-2 T-4

((A)C)C T-1 T-2 T-3 T-4

Intersection

9.2 Complement and Double Negation

The Types of complement of rough sets of different Types have been obtained
by (Pawlak [30], Theorem 2.4). Using this, it is easy to compute the double
negations of different Types of rough sets as provided in the following table and
see that the complementation law holds for rough equivalence.

9.3 De Morgan’s Theorems

De Morgan’s Theorems for crisp sets state that for any two sets X and Y ,

(X ∪ Y )C = (X)C ∩ (Y )C (31)

and
(X ∩ Y )C = (X)C ∪ (Y )C (32)
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Also, when both X and Y are rough sets of different types we observe that
both sides of (31) and (32) are rough equivalent as is evident from the following
tables.

Table for both the sides of (31) is:

Table 17

Table 17. De Morgan’s union for different types of rough sets

T-1 T-2 T-3 T-4

T-1 T-1/T-2 T-1/T-2 T-2 T-2

T-2 T-1/T-2 T-1/T-2/T-3/T-4 T-2 T-2/T-4

T-3 T-2 T-2 T-2 T-2

T-4 T-2 T-2/T-4 T-2 T-2/T-4

Table for both the sides of (32) is:

Table 18. De Morgan’s intersection for different types of rough sets

T-1 T-2 T-3 T-4

T-1 T-1/T-3 T-3 T-1/T-3 T-3

T-2 T-3 T-3 T-3 T-3

T-3 T-2 T-2 T-2 T-2

T-4 T-3 T-3 T-3/T-4 T-3/T-4

9.4 Distributive Property

The two distributive properties for crisp sets state that, for any three sets A, B
and C,

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (33)

and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (34)

We have the following observations with respect to the rough equivalence of
Left hand side and Right hand side of (33) and (34):

When A is T-2, the left hand side and right hand side of (33) are rough
equivalent and the case is similar for (34) when A is of T-3.
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In other cases, we have following observations:

(i) When A is of T-1, left hand side of (33) is of T-1 or T-3, whereas right hand
side can be any of the four types. The result remains same even by using our
Corollaries 1 and 2.

So left hand side and right hand side are not rough equivalent of any kind.
When A is of T-1, left hand side of (34) is of T-1 or T-2, whereas right hand

side can be any of the four types.
The result remains unchanged even by using our Corollaries. So left hand side

and right hand side are not rough equivalent of any kind.
(ii) When A is of T-2, both left hand sides and right hand sides of (33) can be
any of the four types.

So, they are not rough equivalent.
When A is of T-2, left hand side of (34) is of T-2, whereas right hand side can

be any of the four types.
So, left hand sides and right hand sides of (34) are not rough equivalent.
However, left hand side is Bottom Rough equivalent to its right hand side

when condition of Corollaries 1 and 2 are satisfied.
(iii) When A is of T-3, left hand side of (33) is of T-3, whereas right hand side
can be any of the four types.

So, left hand sides and right hand sides are not rough equivalent.
However, left hand side is Top Rough equivalent to its right hand side when

condition of Corollaries 1 and 2 are satisfied.
When A is of T-3, left hand side and right hand side of (34) can be of any of

the four types.
So, left hand sides and right hand sides are not rough equivalent.

(iv) When A is of T-4, left hand side of (33) is of T-3 or T-4, whereas right hand
side can be any of the four types.

So, again left hand sides and right hand sides of (34) are not rough equivalent.
However, left hand side is Top Rough equivalent to its right hand side when

Corollaries 1 and 2 are used.
When A is of T-4, left hand side of (34) is of T-2 or T-4, whereas right hand

side can be any of the four types.
However, left hand side is Top Rough equivalent to its right hand side when

Corollaries 1 and 2 are used. So, in general the left hand side and right hand
side of distributive properties are not rough equivalent.

9.5 Idempotent and Absorption Property

Idempotent Property

The two idempotent properties for crisp sets state that for any set A,

A ∩ A = A (35)

and
A ∪ A = A (36)
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When A is a Rough set, it is clear from the diagonal entries of the union and
intersection table in Sect. 3 that (35) holds good with Type matching only when
A is of T-2. For rest of types, the left hand side is not Rough equivalent to its
right hand side. However we observe that in (35), for A of T-1, the left hand side
is Top Rough equivalent to its right hand side. For A of T-3, the left hand side
is Top Rough equivalent to its right hand side when conditions of Corollary 2
are satisfied. For A of T-4, the left hand side is Bottom Rough equivalent to its
right hand side.

When A is a Rough set, the left hand side and right hand side of (36) are
rough equivalent only when A is of T-3 and for rest of the types, the left hand
side is not Rough equivalent to its right hand side. However we observe that in
(36), for A of T-1, the left hand side is Bottom Rough equivalent to its Right
Hand Side. For A of T-2, the left hand side is Bottom Rough equivalent to its
right hand side, when conditions of Corollary 1 are satisfied. For A of T-4, the
left hand side is Top Rough equivalent to its right hand side.

Absorption Property

The two absorption properties for crisp sets state that for any two sets A and B

A ∪ (A ∩ B) = A (37)

and
A ∩ (A ∪ B) = A (38)

Taking A and B as Rough sets, we find that when A is of T-3, both the sides of
(37) are of T-3 and when A is of T-2, both the sides of (38) are of T-2. Hence, the
left hand side and rough hand side are rough equivalent. In the rest of the cases
left hand side and right hand sides of (37) and (38) are not rough equivalent. In
fact the following properties hold good:

(i) When A is of T-1, left hand side of (37) is of T-1 or T-3.
So, left hand side is Bottom Rough equivalent to its right hand side.
(ii) When A is of T-2, left hand side of (37) is any of the four types. However,

left hand side is Bottom Rough equivalent to its right hand side when condition
of Corollaries 1 and 2 are satisfied.

(iii) When A is of T-4, left hand side of (37) is of T-3 or T-4.
So, left hand side is Top Rough equivalent to its right hand side.
(iv) When A is of T-1, left hand side of (38) is of T-1 or T-2.
So, left hand side is Top Rough equivalent to its right hand side.
(v) When A is of T-3, left hand side of (38) is any of the four types.
So, left hand side is Top Rough equivalent to its right hand side when condi-

tions of Corollaries 1 and 2 are satisfied.
(vi) When A is of T-4, left hand side of (38) is of T-2 or T-4.

However, left hand side is Bottom Rough equivalent to its right hand side.
So, Left hand side and Right hand sides of absorption rules are not rough

equivalent in general.
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9.6 Kleene’s Property

The Kleene’s property states that for any two sets A and B ,

(A ∪ AC) ∪ (B ∩ BC) = A ∪ AC (39)

and
(A ∪ AC) ∩ (B ∩ BC) = B ∩ BC (40)

We show below that for Rough sets A and B, both sides of (39) and (40)
match with each other with respect to types. Due to symmetry of the operations
of union and intersection, it is enough to consider the ten cases; case ( i, j ) being
A of Type i and B of Type j; i, j =1,2,3,4 and j ≥ i.

Proof of (39)

In cases (1,1), (1,2), (1,3) and (1,4) both the left hand side and right hand side
of (39) are of Type 1 or Type 3.

In cases (2,2), (2,3), (2,4), (3,3) and (3,4) both the left hand side and right
hand side of (39) are of Type 3.

Finally, in case of (4, 4) both the left hand side and right hand side of (39)
are of Type 3 or Type 4.

Proof of (40)

In case of (1,1) both the left hand side and right hand side of (40) are of Type
1 or Type 2.

In cases (1,2), (1,3), (2,2), (2,3) and (3,3) both the left hand side and right
hand side of (40) are of Type 2.

In cases (1,4), (2,4), (3,4) and (4,4) both the left hand side and right hand
side of (40) are of Type 2 or Type 4.

Hence, from the above observations, it is clear that the left hand side and
right hand sides of Kleene’s property are rough equivalent.

9.7 Maximum and Minimum Elements’ Properties

It is obvious that both φ and U are crisp sets with respect to any equivalence
relation defined over the universe.

Maximum Element

The Maximum element property for crisp sets state that for any set A

A ∪ U = U (41)

and
A ∩ U = A (42)

For any Rough set A, as A is a subset of U both (41) and (42) hold true. So,
the rough equivalence of both side are obvious.
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Minimum Element

The Minimum element property for crisp sets state that for any set A,

A ∪ φ = A (43)

and
A ∩ φ = φ (44)

For any Rough set A, as φ is a subset of A both (43) and (44) hold true. So,
the rough equivalence of both side is automatically satisfied.

9.8 Complementary Laws

The complementary laws for crisp sets state that for any set A,

A ∪ AC = U (45)

and
A ∩ AC = φ (46)

For any Rough set A, A is a subset of U and also AC is a subset of U . So,
both (45) and (46) hold true. Hence, the rough equivalence of both sides is
automatically satisfied.

10 Conclusions

Study of topological classification of sets under consideration provides some in-
sight into how the boundary regions are structured. This has a major role in
practical application of rough sets. In this chapter we studied some properties of
topological classification of sets starting with types of rough sets, then we moved
to find properties of types of union and intersection of rough sets. The concept
of rough equivalences of sets introduced by Tripathy and Mitra [38], which cap-
tures approximate equality of rough sets at a higher level than rough equalities
of Novotny and Pawlak [23,24,25] was discussed in detail. Some real life exam-
ples were considered in support of the above claim. Properties of rough equalities
which were noted to be not true when bottom and top rough equalities are inter-
changed, were dealt with and established along with parallel properties for rough
equivalences. Approximation of classifications of universes was introduced and
studied by Busse [12]. The types of classifications were studied completely by us
in this chapter. Also, theorems of Busse establishing properties of approximation
of classifications wee completely generalized to their necessary and sufficient type
form. From these results new results could be obtained as corollaries. All these
results were interpreted with the help of simple examples. Complete characteri-
zations of classifications having 2 or 3 elements are done. A characterization of
a general classification having n elements is still awaited. Such a solution would
shed light on negation in case of multivalued logic. Continuing with the study of
rough equivalences, the algebraic properties involving rough sets were analyzed
and established.
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Summary. This study focuses on bringing two rough-set-based clustering algorithms
into the framework of partially supervised clustering. A mechanism of partial super-
vision relying on either fuzzy membership grades or rough memberships and non-
memberships of patterns to clusters is envisioned. Allowing such knowledge-based hints
to play an active role in the discovery of the overall structure of the dataset has proved
to be highly beneficial, this being corroborated by the empirical results. Other ex-
isting rough clustering techniques can successfully incorporate this type of auxiliary
information with little computational effort.

Keywords: rough clustering, partial supervision, knowledge-based hints, membership
grades, rough c-means.

1 Introduction

For many years, clustering [1] has been regarded as an essential component of
data mining activities as well as an active research topic. This mechanism of
unsupervised learning leads to the discovery of knowledge structures (clusters)
which are one of the primary sources of information about the underlying dy-
namics of a dataset.

The wealth of descriptive capabilities contributed by fuzzy set theory has
given rise to the fuzzy clustering domain [2], one of the most rapidly evolving
areas within Intelligent Data Analysis. By means of fuzzy sets, it is now possi-
ble to precisely represent the behavior of borderline patterns, which are quite
common in real-life problems, thus arriving at a more elaborate picture of the
suite of clustering activities. Fuzzy clustering provides an additional conceptual
enhancement by allowing the pattern to be located to several clusters and with
various membership degrees [3].

This very idea has been pursued from the standpoint of rough set theory [4, 5].
As a well-settled methodology for coping with uncertainty (mostly emerging
in the form of data inconsistencies), the introduction of the lower and upper
approximations as distinctive features of any cluster enables us to provide the
degree of flexibility about membership of patterns to clusters already achieved by

A. Abraham, R. Falcón, and R. Bello (Eds.): Rough Set Theory, SCI 174, pp. 137–161.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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fuzzy set theory. The pioneering works in the field of Lingras and West [6, 7, 8, 9]
among others [10], have opened a new direction in rough set research.

Recently, granular computing has brought traditional clustering techniques
to a new level [11] by laying information granules (arising in the form of fuzzy
sets, rough sets, shadowed sets and the like) in a privileged position as the
main vehicle through which the optimization scheme is carried out rather than
continue leaning upon traditional data patterns. In this context, fuzzy cluster-
ing has largely profited from considering several tips coming from the outside
world and embedding them into the standard optimization workflow of the most
popular clustering engines. These knowledge-based hints have turned clustering
into a semi-supervised fashion of discovering knowledge. While one can wit-
ness many successful studies outfitting fuzzy clustering with partial supervision
[12, 13, 14, 15, 16, 17, 18], to our knowledge this innovative idea has not been
taken yet to the realm of rough clustering techniques.

In this chapter we are going to show how rough clustering algorithms can
take advantage of partial supervision mechanisms. The assurance that an object
certainly belongs to a cluster or doesn’t belong to it at all can be effectively used
as a hint for driving the entire discovery of the knowledge structures. Member-
ship grades of patterns to clusters can serve the same purpose. The proposed
partially supervised algorithms behave well in presence of imbalanced datasets,
i.e. unevenly distributed classes. The presented ideas can be extended to other
approaches of the same kind with little computational effort.

The chapter has been structured as follows. Section 2 elaborates on the aug-
mentation of fuzzy clustering techniques with some sort of supervised informa-
tion concerning a subset of labeled data patterns. Some existing rough-set-based
clustering approaches are outlined in Sect. 3 whereas the proposed modifica-
tions to embrace the corresponding knowledge-based hints are presented next.
The benefits brought about by partial supervision are empirically analyzed in
Sect. 5 in presence of synthetic and real-world datasets. Finally, some concluding
remarks are stated.

2 Clustering with Partial Supervision

In clustering scenarios, determining the underlying structure in data is a process
usually accomplished by means of an objective function whose minimization
drives the whole clustering scheme. The strength of this unsupervised method
lies in that no pattern needs to be flagged with its corresponding class. However,
the structural search in the data set could be substantially enhanced by the
careful use of some domain knowledge about the classification problem. One
can find many real-life scenarios for which a more active engagement of human
experts in the clustering process is highly desirable and the term “clustering
with partial supervision” has been coined for designating this novel manner of
seeking knowledge structures.

Partial supervision in fuzzy clustering manifests as a subset of labeled pat-
terns, i.e. some columns of the partition matrix (holding the set of membership
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grades for some predefined patterns) are provided a priori. A mixture of labeled
and unlabeled objects may be found in many practical situations. From that
point on, the ensuing optimization activities are strongly influenced by the ex-
ternal knowledge-based tips and the overall structure to be uncovered is expected
to conform to the suite of membership grades already provided for the selected
objects [11].

Techniques of this type in the context of c-means clustering were first discussed
by Pedrycz [12], who came up with an augmented objective function including
a term for minimizing the differences between the provided membership grades
and the partition matrix under construction.

Kersten [13] realized that the clustering of signal vectors could benefit from
utilizing some signal quality measures often available, such as the signal-to-noise
ratio (SNR). This fact led to the modification of the Fuzzy C-Means (FCM) [19]
and Fuzzy C-Medoids (FCMED) [13] approaches in order to consider this type
of auxiliary information. As a consequence, faster convergence rates and more
accurate cluster prototypes in moderate SNR environments were obtained.

A different approach was introduced in [14]. It was pointed out by Bensaid
et al that two typical problems endured by clustering techniques, i.e. (1) the a
priori determination of the optimal number of clusters and (2) the assignment of
meaningful labels to the automatically revealed knowledge structures fade away
when some data from each class is labeled beforehand. A semi-supervised fuzzy
c-means algorithm (SSFCM) was crafted and found particularly suited to image
segmentation ‘cause a human expert often examines an image and selects few
clearly defined pixels from different classes, which can subsequently be employed
to guide the modification towards a realistic labeling of the remaining pixels. As
an additional advantage of the proposed approach, it overcomes the intrinsic
tendency of FCM to recommend solutions that equalize cluster populations.
This is especially important when one deals with imbalanced datasets, where one
or more classes are poorly described in terms of the number of representative
patterns.

The SSFCM method, though largely motivated by the standard fuzzy
c-means, is not to be regarded as a true generalization of it because the core op-
timization activities of the latter have been redesigned, therefore leading to a dif-
ferent objective function. The partition matrix U will have the form U = [Ud|Uu]
where Ud holds the set of labeled patterns and Uu stands for the (most likely
larger) set of unlabeled objects of the dataset. The first set of cluster prototypes
is computed by relying upon the labeled data alone. This results in an initial
number of cluster centroids that have no influence coming from the unlabeled
objects. Since the knowledge-based hints are assumed to be reliable and must be
preserved throughout the clustering process, only the columns of the Uu matrix
are updated in an specific manner. Subsequent updates for the cluster prototypes
are realized in the traditional way, i.e. all columns of U are utilized to recom-
pute the cluster prototypes after the first pass of the algorithm. The authors were
fully cognizant about the fact that, in practice, only a small subset of labeled
data can be provided by the experts with an acceptable degree of confidence. In
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order to counter the influence exercised by the (larger) unlabeled portion of the
data set, it became a must to stress the importance of the external knowledge
than that of the still unknown objects. This was attained by introducing a set
of weights w = (w1, . . . , wnd

), being nd the number of labeled patterns. Being
this so, it is possible to weigh each pattern differently or to apply a common
weighing scheme to all labeled entities. The w vector is application-dependent
and must be set up in a careful way. Bearing all this in mind, the SSFCM was
conveniently devised and its performance proved to be higher than other fully
supervised approaches.

Assuming that the labeled portion of the partition matrix U must be kept
fixed impels us to seek for the most suitable membership grades for the unla-
beled examples. While traditional alternate optimization techniques provide a
fast response to the want for optimal membership grades and cluster prototypes,
this sort of methods are very sensitive to initialization and usually get caught in
local optima. That’s why evolutionary programming is considered in [15] as an
appealing choice for coming up with a good clustering result, this being thought
of in terms of the highest possible classification rate of the labeled examples and,
at the same time, achieving compact clusters on the basis of the unlabeled pat-
terns. These two criteria are mixed in the objective function ruling the ensuing
optimization activities. Each chromosome(individual) of the population encodes
a prospective matrix Uu, that is, the unlabeled portion of the partition matrix.
Though more time-consuming than SSFCM, the evolutionary semi-supervised
fuzzy clustering (ESSFC) approach proved to outperform SSFCM and a fully
supervised classifier over two benchmark data sets.

The above algorithms perform on the assumption that the knowledge-based
hints (membership grades) fueled by the expert are in direct correspondence to
the array of classes describing the problem. A wider setting envisioning classes
as meta-concepts encompassing the actual clusters is presented in [16]. No longer
domain knowledge tips can be regarded as membership grades but as class (in
the broader sense) information for some or all patterns in the data set. A penalty
term added to the objective function guarantees that no object is assigned to
a cluster belonging to a class different than the pattern’s. This idea is closer to
the one encountered in [17] but enunciated from a different perspective.

3 Some Rough Clustering Schemes

This Sect. is devoted to outline the main features of some rough cluster-
ing schemes found in literature. A thorough analysis on their weaknesses and
strengths is beyond the aim of this chapter. It is also presupposed that the reader
is acquainted with the fundamentals of rough set theory [4, 5]. Though exhibiting
some remarkable differences concerning design issues and performance, several
aspects blend together to make up the common denominator of these rough
clustering approaches, among them:

• The crisp notion of cluster is gracefully extended to embrace a wider concept
in which some objects are located at the lower approximation of a cluster
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(thus implying full membership to it) while others are laid at its upper
approximation, this way making room for managing uncertainty about the
membership of patterns to clusters.

• The rough sets are “artificially” constructed, meaning that a formal departure
from the traditional rough set approach governed by equivalence relations
is consciously developed. Some generalizations of rough sets relaxing the
assumptions of the underlying equivalence relation [20, 21] become the sound
foundation upon which the lower and upper approximations of any set X
are shaped. This is done with due respect to some fundamental properties of
rough sets, which ought to be preserved if we are to end up with interpretable
results.

The so-built rough set model is guaranteed to satisfy the following properties:

1. A member of any lower approximation is also a member of the corresponding
upper approximation.

2. An object must belong to at most one lower approximation.
3. If an object is not member of any lower approximation, then it must belong

to two or more upper approximations.

3.1 Rough Set Genome

Genetic Algorithms (GAs) [22] were seamlessly combined with rough sets to
bring forth a rough set genome [7] for classification tasks in an unsupervised
context. Each individual (chromosome) of the population is encoded in such a
way that it represents the entire classification scheme.

Let U = {u1, . . . , un} be the set of objects to be partitioned into m classes
given by U/P = {X1, . . . , Xm}. For each object in the dataset, a gene is added
to the chromosome. This gene, in turn, is comprised of a 2m-length binary
string. The first m bits are associated with the lower approximations of the
different clusters to be created while the remaining ones correspond to the upper
approximations. This means, for example, that only a single bit in the first half
of the binary string could be on at every moment of the chromosome’s life cycle,
in perfect compliance with the aforementioned rough set basic properties to be
preserved.

Figure 1 displays some examples of invalid genes within an individual that can
not be generated during the optimization process. To ensure this, the authors
leaned upon an already implemented GA library [23] which makes it possible to
enumerate a set of valid gene values. All the standard genetic operators (muta-
tion, crossover, inversion and selection) will then only create genomes that have
these valid values.

One of the key aspects of the configuration of any evolutionary algorithm is
the fitness function , mainly intended for quantitatively assessing the quality of
a given individual. Lingras chose the within-group-error measure proposed by
Sharma and Werner [24] as shown in expression (1) below.
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Fig. 1. Some examples of invalid genes for an individual in the RSG approach

∆ =
m∑

i=1

∑
uh,uk∈Xi

d(uh, uk) (1)

where d(uh, uk) is any distance measure between patterns uh and uk and can be
chosen according to the problem at hand. In his study, Lingras makes a distinc-
tion between three different cases one would encounter during the optimization:

1. Both uh and uk lie at the same lower approximation B(Xi).
2. uh is in a lower approximation B(Xi) and uk is in the corresponding upper

approximation B(Xi) and case 1 is not applicable.
3. Both uh and uk belong to the same upper approximation B(Xi) and the

past two cases are not applicable.

The above options give rise to three corresponding within-group-error mea-
sures ∆1, ∆2, ∆3 which, additionally, do not carry the same importance for the
global clustering process. That is, it is more important the quest for consis-
tency among patterns known to be full members of the lower approximation
than among patterns placed outside this confidence region. So, the final within-
group-error measure is nothing but a weighted sum of the aforesaid factors:

∆total = w1 × ∆1 + w2 × ∆2 + w3 × ∆3 (2)

with w1 > w2 > w3 for obvious reasons. However, the final expression for
computing the fitness of an individual reads as in expression (3):

f = p × precision +
e

∆total
(3)

where p, e are additional parameters and the precision measure (percentage of
objects classified in lower approximations) is incorporated to the fitness function



Rough Clustering with Partial Supervision 143

in an attempt to offset the natural tendency of the GAs, which will try to assign
most of the objects to upper approximations since w3 < w1. Maximizing f
translates into a less total error and a greater precision.

Overall, five parameters are now in place which need to be properly tuned
for the algorithm to behave well. This adaptation is heavily dependent on the
application’s characteristics.

Another choice for devising fitness functions relative to the overall classifi-
cation task would be to adapt some well-known cluster validity indices to the
rough set framework, as done in [10] with the Davies-Bouldin and Dunn indices
[25].

The rough set genome (RSG) clustering scheme was applied to the classifi-
cation of 350 highway sections in the province of Alberta, Canada into com-
muter/business, long distance and recreational. It was expected to specify lower
and upper approximations for these classes. The feasibility of the approach was
empirically demonstrated in this case, but shortly after it was obvious that RSG
did not scale well to large datasets, such as the web mining tasks undertaken
with data catering to first and second year computer science students, who were
meant to be tagged as studious, crammers or workers. RSG managed to group
1,264 visits occurring during a two-week period around midterm for the course
but it proved unfit for coping with the 8,442 visits in a sixteen-week-period [8].
This is mostly caused by the number of times the distance function is invoked
along the algorithm’s execution. In this latter case, it was in the order of the
21 trillion times for a hundred individuals evolving across 1000 generations. In
a short time, a more powerful and less demanding rough clustering algorithm
would be designed.

3.2 Rough C-Means

The partitive C-Means [6] algorithm is perhaps one of the most popular cluster-
ing techniques. Despite the fact that it provides a crisp classification of patterns,
which might not be appropriate in many real-life scenarios, conventional appli-
cations resort to its low computational cost and demonstrated efficiency in order
to come up with a global view of the intrinsic relationships lying among data.
Moreover, Lingras and Huang illustrated the computational advantages of the
C-Means approach for large datasets [26].

In C-Means, randomly selected objects are used as the cluster prototypes
during the algorithm’s first iteration. The objects are then assigned to clusters
on the basis of their distance to the closest prototype. The newly formed clusters
are then used to determine new centroids. The process goes on until the clusters
stabilize, i.e. no more new assignments from patterns to clusters are made.

Extending classical C-Means to the rough set framework is straightforward
once we have found how to have the basic rough set properties described at the
beginning of this Sect. met. Algorithm 1 depicts the entire workflow of Rough
C-Means (RCM).
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Algorithm 1. Rough C-Means
1: procedure RCM(clusters c, dist measure d, parameters wlow, wup, threshold)
2: repeat
3: Assign initial centroids vi for the c clusters
4: for each object (pattern) xk in the dataset do
5: Compute distance to all cluster centroids D = {djk}, j ∈ {1, . . . , c}
6: dik ← the minimal distance in D
7: for each j ∈ {1, . . . , c}, j �= i do
8: if djk − dik < threshold then
9: Assign xk to both upper approximations xk ∈ BXi, xk ∈ BXj

10: and xk can not be a member of any lower approximation
11: else
12: Assign xk to the lower approximation xk ∈ BXi

13: end if
14: end for
15: end for
16: Compute new cluster centroids vi according to (4)
17: until there are no more new assignments of objects
18: Output BXi, BXi for each cluster i ∈ {1, . . . , c}
19: end procedure

vi =

⎧⎪⎪⎨
⎪⎪⎩

wlow

∑
xk∈BXi

xk

|BXi| + wup

∑
xk∈BNXi

xk

|BNXi| , if BXi �= ∅ ∧ BNXi �= ∅∑
xk∈BNXi

xk

|BNXi| , if BXi = ∅ ∧ BNXi �= ∅∑
xk∈BXi

xk

|BXi| , otherwise

(4)

where BNXi represents the boundary region of the cluster Xi, wlow and wup

are the relative importance of the lower and upper approximations, respectively.
These values are often chosen so that wlow + wup = 1. Besides, the “threshold”
parameter is critical in the performance of the algorithm because it is involved
in determining whether a pattern will be assigned to a lower approximation or to
two or more upper approximations. Usually, threshold ∈ [0, 0.5]. A small thresh-
old value will provoke that many objects will be assigned to any of the existing
lower approximations. This might lead to a more accurate overall classification
but at the cost of disregarding the topological aspects of the data. Careful se-
lection of these values is a painstaking task which can be aided by evolutionary
computation, as reported in [27].

Notice from the above expression that when all clusters are crisp (all bound-
ary regions are empty) the RCM algorithm boils down to the traditional
C-Means method. Encouraging, interpretable results were obtained after a com-
parison of both approaches in the context of mining three students’ web sites
[28]. It was observed that there were many similarities and a few differences
between the characteristics of conventional and interval clusters for the three
web sites. The interval set representation of clusters made it easier to identify
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these subtle differences between the three courses than the conventional C-means
approach.

As to the former rough set genome approach, RCM proved to consume much
less computational resources than its predecessor, this measured in the number
of times the most frequent instruction (invoking the distance function) was ex-
ecuted [8]. With RCM, the 8,442 visits recorded at the students’ web log were
processed only in a few minutes. This speaks highly about its scalability prop-
erties. Although some improvements to the method are always a plausible and
very welcomed option [29], this algorithm preserves good knowledge discovery
capabilities and is an appealing choice to be regarded as one of the benchmarks
in the field.

3.3 Rough Fuzzy C-Means

A fuzzy version of the RCM algorithm was designed by Mitra et al [10]. Now,
each cluster receives fuzzy inputs in the form of membership grades uij , which
translates into a greater robustness of the clustering with respect to different
choices of parameters.

The partition matrix U borrowed from FCM plays a pivotal role in determin-
ing the membership of patterns to clusters. A pattern belongs to two or more
upper approximations if the difference in its associated membership grades is
less than some predefined threshold, otherwise the pattern is assigned to the
lower approximation of the cluster with maximal membership value. The steps
of the RFCM approach are displayed in Algorithm 2.

Algorithm 2. Rough Fuzzy C-Means
1: procedure RFCM(c, fuzzifier m, distance d, parameters wlow, wup, threshold)
2: repeat
3: Assign initial centroids vi for the c clusters
4: Compute uik by (5) for c clusters and N patterns.
5: for each object (pattern) xk in the dataset do
6: uik ← the maximal membership grade for pattern k
7: for each j ∈ {1, . . . , c}, j �= i do
8: if uik − ujk < threshold then
9: Assign xk to both upper approximations xk ∈ BXi, xk ∈ BXj

10: and xk can not be a member of any lower approximation
11: else
12: Assign xk to the lower approximation xk ∈ BXi

13: end if
14: end for
15: end for
16: Compute new cluster centroids vi according to (6)
17: until there are no more new assignments of objects
18: Output BXi, BXi for each cluster i ∈ {1, . . . , c}
19: end procedure
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uik =
1

c∑
j=1

(
dik

djk

) 2
m−1

(5)

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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um

ik
, otherwise

(6)

A recommended parameter configuration is m = 2, wup = 1 − wlow , 0.5 <
wlow < 1 and 0 < threshold < 0.5 although the optimal set of values for a given
problem will be reached after undergoing a tuning stage.

4 Partially Supervised Rough Clustering

The introduction of some core concepts from rough set theory, like set approx-
imations, into the conventional clustering machinery allows to provide a finer
degree of control over the way patterns are assigned into clusters, thus continu-
ing the departure from the original crisp allocation model which, truth be told,
falls short of providing a coherent paint about the data at hand in many real-life
scenarios.

Although this departure was successfully initiated with fuzzy membership
grades at the heart of the clustering algorithms, as one can see along the domain
of fuzzy clustering, when it comes to partial supervision mechanisms in this
realm, there is an underlying need to quantify the degree of membership of a
pattern to all clusters, viz it is necessary to fill out a column of the partition
matrix in advance. This is seldom an straightforward task for the expert in
charge of providing the knowledge-based tips which will have a direct bearing in
the overall clustering result, especially if he is dealing with a borderline pattern.
Actually, the trend of describing vague concepts (i.e. memberships of objects to
groups) by means of precise, numerical values has raised many concerns in the
past and a quest for more qualitative models has been undertaken long time ago.

In daily practice, however, it is more common to tag an object as definitely
pertaining to a predefined class or, the other way around, to be confident about
excluding the object from some group. This, in the language of rough set theory,
is equivalent to locate the object inside the lower approximation (positive region)
of the concept or to place it outside its upper approximation (i.e., within the
negative region), respectively.

In light of this, one easily realizes that partial supervision mechanisms in
rough clustering algorithms must be formulated in terms of memberships (and



Rough Clustering with Partial Supervision 147

non-memberships) of patterns to classes. While foreign evidence about the in-
clusion of a pattern into two or more upper approximations could eventually be
considered, the inherent ambiguity associated with this information could lead
us to an undesirable outcome. This is why we confine ourselves to regard only
precise domain knowledge hints, even though if they come in the fashion of fuzzy
membership degrees, as happens with fuzzy clustering.

Mathematically put, we define a set POS(X) where X = {X1, . . . , Xm}
is the set of m classes to be discovered during clustering and POS(X) =
{POS(X1), . . . , POS(Xm)} in which every POS(Xi) contains the set of ob-
jects known to belong to the Xi class. Likewise, we define the set NEG(X) =
{NEG(X1), . . . , NEG(Xm)} with each NEG(Xi) holding the set of objects
clearly not members of the Xi group.

Contrary to what one encounters in partially supervised fuzzy clustering ap-
proaches, where the membership grades of a pattern to all possible clusters is
to be provided in advance, the limited knowledge the expert might have on a
certain object (for instance, the physician is sure that patient Pj doesn’t suffer
from sclerosis but can not say anything about the patient being or not being
hit by arthritis) still proves useful as it is embedded into the rough clustering
machinery.

We can equip the existing rough clustering algorithms with mechanisms of
partial supervision by making slight modifications to their workflow of activities
which, generally speaking, take few computational effort. In particular, we have
assumed that the RCM approach will be able to assimilate external information
coming in the form of positive and negative regions of clusters, whereas for
the RFCM algorithm, a subset of labeled patterns has been supplied (i.e., some
columns of the partition matrix are known beforehand). These, of course, are not
the only ways in which foreign guidance schemes can be devised and incorporated
into rough clustering approaches, but serve well to illustrate this point.

4.1 Partially Supervised Rough C-Means

The sequence of detailed activities for the Partially Supervised Rough C-Means
(PS-RCM) algorithm is as follows:

vi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
xk∈POS(Xi)

xk

|POS(Xi)| , POS(Xi) �= ∅;

random pattern, otherwise

(7)

vi =

⎧⎨
⎩

wlow × ϕi + wup × φi, if BXi �= ∅ ∧ BNXi �= ∅
φi, if BXi = ∅ ∧ BNXi �= ∅
ϕi, otherwise

(8)
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Algorithm 3. Partially Supervised Rough C-Means
1: procedure PS-RCM(clusters c, distance measure d, parameters

wlow, wup, threshold, positive regions POS(X), negative regions NEG(X))
2: repeat
3: Compute initial centroids vi by using (7)
4: for each object (pattern) xk in the dataset do
5: if xk ∈ POS(Xi), i = {1, . . . , c} then
6: Assign xk ∈ BXi

7: else
8: Compute distance to all cluster centroids D = {djk}, j ∈ {1, . . . , c}
9: dik ← the minimal distance in D such that xk /∈ NEG(Xi)

10: for each j ∈ {1, . . . , c}, j �= i and xk /∈ NEG(Xj) do
11: if djk − dik < threshold then
12: Assign xk to both upper approxs xk ∈ BXi, xk ∈ BXj

13: and xk can not be a member of any lower approximation
14: else
15: Assign xk to the lower approximation xk ∈ BXi

16: end if
17: end for
18: end if
19: end for
20: Compute new cluster centroids vi according to (8)
21: until there are no more new assignments of objects
22: Output BXi, BXi for each cluster i ∈ {1, . . . , c}
23: end procedure

where:

ϕi =

∑
xk∈POS(Xi)

wkxk +
∑

xk∈BXi−POS(Xi)

xk

∑
xk∈POS(Xi)

wk + |BXi − POS(Xi)|

(9)

φi =

∑
xk∈BNXi

xk

|BNXi|

The first observation here is that the initial set of cluster prototypes (line 3),
which was composed of randomly chosen patterns in the original RCM algorithm,
now exploits the supervised hints in an active way. That is to say, if some patterns
are known to belong to a given class, then its initial cluster centroid may be set
up as the mean vector of those lying within its positive region. This allows us
to “anchor” the cluster prototype by relying upon solid domain knowledge clues
available, which will have a great importance later, as we will see during the
experiments. All other classes having no a priori information of this type are
assigned a random pattern in the dataset as their initial cluster prototype.
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Since the partial supervision in this scenario arises as positive and negative
regions of the clusters, we must prioritize the assignment of any pattern to the
corresponding cluster’s lower approximation (lines 5–6). We take for granted
that the external information is consistent, so an object can only belong to at
most one lower approximation.

When a pattern has not been a priori assigned to a certain class, the assign-
ment must be done in the traditional way, i.e. considering the nearness of the
pattern to the cluster prototypes (lines 8–17). Notice that we must carefully
check that no negative-region-based tip is violated during the process, so the
pattern cannot be allocated neither to the lower nor to the upper approximation
of any class whose negative region the pattern belongs to.

The last significant modification in the proposed approach lies in the way
cluster prototypes are recalculated (line 20). This time we purposefully make a
distinction between those patterns definitely belonging to a concept according
to the expert’s consideration and those allocated there as a consequence of the
algorithm’s computations, thus highlighting the importance of the former ones.
Each labeled pattern xk has its own weight wk which denotes its worth within
the data set. What weight must accompany each labeled pattern is something
that must be determined in view of the topological features of the data set we
are working with. Further on we will illustrate this point by using a synthetic
data repository.

4.2 Partially Supervised Rough Fuzzy C-Means

Although the RFCM algorithm [10] is not substantially different from its pre-
decessor, the way patterns are assigned to classes is now governed by fuzzy
membership grades. Labeling a share of the underlying partition matrix takes
us into the realm of partially supervised fuzzy clustering but still in presence of
rough clusters. In light of this, we can borrow some ideas from [14] and come up
with the semi-supervised version of RFCM, which is fully outlined below.

Let us make clear some notation first. Given that some objects have been
labeled, the set of patterns X can now be described as X = Xd ∪ Xu where
Xd is the subset of labeled patterns whereas Xu contains the unlabeled ones,
nd = |Xd|, nu = |Xu|. A similar situation occurs with the partition matrix, that
is U = [Ud|Uu] and Ud remains unaltered throughout the algorithm’s execution.

vi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nd∑
k=1

(ud
ik)mxd

k

nd∑
k=1

(ud
ik)m

, 1 ≤ i ≤ c, Xd �= ∅;

random pattern, otherwise

(10)
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Algorithm 4. Partially Supervised Rough Fuzzy C-Means
1: procedure PS-RFCM(nr. of clusters c, fuzzifier m, distance measure d, parame-

ters wlow, wup, threshold, labeled subset of patterns Xd, labeled partition matrix
Ud)

2: repeat
3: Compute initial centroids vi by using (10)
4: Compute uu

ik by (11) for c clusters and nu patterns.
5: for each object (pattern) xk in the dataset do
6: uik ← the maximal membership grade for pattern k
7: for each j ∈ {1, . . . , c}, j �= i do
8: if uik − ujk < threshold then
9: Assign xk to both upper approximations xk ∈ BXi, xk ∈ BXj

10: and xk can not be a member of any lower approximation
11: else
12: Assign xk to the lower approximation xk ∈ BXi

13: end if
14: end for
15: end for
16: Compute new cluster centroids vi according to (12)
17: until there are no more new assignments of objects
18: Output BXi, BXi for each cluster i ∈ {1, . . . , c}
19: end procedure

uu
ik =

1
c∑

j=1

(
dik

djk

) 2
m−1

, 1 ≤ i ≤ c, 1 ≤ k ≤ nu (11)

vi =

⎧⎨
⎩

wlow × χi + wup × ψi, if BXi �= ∅ ∧ BNXi �= ∅
ψi, if BXi = ∅ ∧ BNXi �= ∅
χi, otherwise

(12)

where:
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ψi =
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∑
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∑
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(uu
ik)m

Just like in the previous algorithm, the calculation of the initial cluster pro-
totypes has been modified (line 3) so as to allow only labeled patterns exercise
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influence over the early class representatives, as expression (10) clearly states.
There is no need to pick a random pattern as a cluster centroid, as in PS-RCM, as
long as some labeled data are provided, since the auxiliary information available
includes membership degrees for all clusters.

Afterwards, only the unlabeled entries of the partition matrix want to be
calculated (line 4) due to the fact that the columns of Ud are regarded as reliable
and must therefore be fixed. This computation involves only unlabeled objects
from Xu, so when we read dij in expression (11) we mean ‖xu

k − vi‖.
The last major change, like in PS-RCM, appears when updating the cluster

prototypes (see line 16). It happens again that some distinction must be made
between labeled and unlabeled patterns, no matter whether they have been
allocated to the lower or to the upper approximation of any cluster. Expression
(12) boils down to (6) when there is no supervised information at all.

5 Experimental Studies

In order to estimate the effects of the injected knowledge-based hints into some
previously described clustering methods, it was necessary to conduct some ex-
periments using both synthetic and real-world data. There is a need to shed
light on how the traditional behavior of the clustering algorithms might be af-
fected by partial supervision for data sets exhibiting different degrees of overlap
between their classes. Also important is to determine how many patterns are to
be labeled per class and what their corresponding weights should be so that the
number of overall misclassifications gets reduced.

We have employed four rough clustering techniques, i.e. RCM, RFCM and
their partially supervised variants (PS-RCM and PS-RFCM) which were pre-
sented in the previous Sect. The experiments were realized against three data
sets having different characteristics. The first one (SD) is comprised of 43 syn-
thetic, two-dimensional patterns which are unevenly distributed into two classes
(40 for the bigger class and 3 for the smaller class). It is important to stress that
these classes are well defined in the feature space and do not overlap. The whole
data can be found in Appendix A of reference [14].

The second dataset (Iris) comes from the UCI Machine Learning Repository
[30] and has been extensively used as a standard benchmark for testing both su-
pervised and unsupervised learning algorithms. Patterns are equally distributed
over the three classes (50 each) although two of them are difficult to discern due
to the substantial degree of overlap.

Finally, a third data set, which we will denote by “AC” (anticancer), is con-
cerned with 961 patterns representing drugs whose anticancer properties are
described in terms of 11 medical features. The two classes stand for the (rela-
tive) success or failure in battling the disease and consist of 298 and 663 cases,
respectively. This is the most imbricated data set since most of the patterns
from both classes form an homogeneous mesh around the center of the 2D fea-
ture space. With the exception of a handful of patterns belonging to the first
class (which resemble a large comet tail when plotted) and a bunch of objects
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Fig. 2. A 2-D plot of the anticancer database (P0 vs P10)

Fig. 3. Prototypes for the synthetic data set

located near the coordinate center (belonging to the second class), all remaining
patterns are very difficult to segregate. Figure 2 displays a schematic view of the
Anticancer data set.

Experiment 1. Largely used fuzzy clustering algorithms such as FCM and
FCMED are prone to equalize the cluster populations, due to the minimization
of the underlying objective function (the sum of the squared errors of the dis-
tances from patterns to cluster centroids). This is particularly detrimental in
imbalanced data sets, i.e. data which are unevenly distributed into the exist-
ing classes, giving rise to poor representation of some natural groupings. With
the SD data set, the observed behavior [14] is that the centroid of the smaller
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class is drifted toward the centroid of the larger class, thus leading to the incor-
rect assignment of some patterns and ending up with a more or less equalized
population.

This very tendency has been corroborated with the unsupervised rough clus-
tering algorithms. From Figure 3 one can notice that both RCM and RFCM
locate the two centroids within the cloud of patterns actually belonging to the
first class, for the influence of the three foreign data patterns in the middle right
of the feature space is underestimated. Though RCM and its fuzzy version are
not governed by any objective function to be optimized, the way the cluster
prototypes are updated bestows the same importance to all objects lying in the
lower approximation of each cluster and naturally arrives to such a result.

On the contrary, the partially supervised clustering algorithms (PS-RCM and
PS-RFCM) clearly place the prototypes in their fair location, owing to the foreign
guidance received by two labeled patterns which were a priori flagged as certain
members of each lower approximation, i.e. x1 ∈ BX1 and x43 ∈ BX2. The in-
crease in the weight of the training pattern corresponding to the smallest class
leads to a steeper impact of the knowledge-based hints and a more stable pic-
ture of the ensuing knowledge structures, as a direct outcome of expressions (9)
and (13).

Figure 4 schematically portrays how the rough clusters were shaped after the
execution of every algorithm. One can readily observe that unsupervised rough
clustering techniques are incapable of capturing the topological aspects of the
synthetic data and end up nearly balancing the number of patterns assigned to
each cluster. This is not the behavior of their supervised versions, which signifi-
cantly reduce the size of the boundary regions and mold the clusters in a much
more accurate way, owing to the displacement of the cluster prototypes after
being drawn by the two labeled data points. Moreover, the degree of fuzziness
present in PS-RFCM approach led to a perfect description of the original data
without any borderline pattern.

(a) RCM (b) RFCM

(c) PS-RCM (d) PS-RFCM

Fig. 4. Approximations for the synthetic data set. Dotted lines represent upper ap-
proximations whereas solid lines are lower approximations.
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Table 1. Number of misclassifications reported by the algorithms with no auxiliary
information provided

RCM RFCM PS-RCM PS-RFCM

Synthetic data 22 (51.2%) 21 (48.9%) 22 (51.2%) 18 (41.9%)

Iris 30 (20%) 28 (18.7%) 30 (20%) 29 (19.3%)

Anticancer 380 (39.5%) 385 (40.1%) 377 (39.2%) 384 (40%)

Table 2. Weight values and number of wrongly classified examples in the synthetic
data set

PS-RCM PS-RFCM

w=1 21 4

w=2 10 0

w=3 8 2

w=4 1 2
...

w=10 1 2

One encounters the same poor performance exhibited by RCM across all data
repositories, as depicted in Table 1. Fully unsupervised pursuit of accurate knowl-
edge structures doesn’t lead to good results in presence of the three data sets
under consideration.

Table 2 displays the improvements accomplished through the use of partial
information with the SD repository. The same vectors x1 and x43 were labeled as
shown above. The values of w used in each run of the semi-supervised algorithms
and the number of errors incurred during classification are reported as well.
For both methods, parameters wlow and threshold were set to 0.9 and 0.3,
respectively. While it is crystal clear that the supplied auxiliary tips had a greater
impact on PS-RFCM (reflected in its accurate classification rate), even reaching
the optimal classification for w = 2, increasing values of w for all training
patterns do not eventually lessen the number of misclassifications, as observed
with PS-RCM.

Therefore some guidelines for setting the weights will become a useful tool if
we are to achieve an acceptable classification rate. An appealing discussion of
this topic, originally confined to the domain of fuzzy clustering, can be found
in [14] and some of its ensuing considerations may be taken into account when
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dealing with rough clustering techniques. We can anticipate that, although some
guiding principles in this sense can be derived after pondering, among other
factors, the number and quality (reliability) of the training patterns per class,
the intrinsic characteristics of the particular problem (degree of overlap between
the classes, population density per class, etc.) will be better managed by an
automated, heuristic-driven approach that proposes the optimal weight vector.
This, of course, lies far beyond the scope of this chapter.

Experiment 2. One interesting point when dealing with rough clustering
schemes under partial supervision arises when we own some knowledge about
the domain but are hesitant on how to describe it, i.e. given the multiple choices
of foreign guidance available as rough memberships (or non-memberships) of a
pattern to a cluster and fuzzy membership grades of objects to classes, we must
pick a convenient way for representing what we know about the environment so
that it leads to the highest performance among all other options.

Let us shed some light on this by means of straightforward experiments con-
sidering the Iris database. Suppose we are fully certain about two exemplars
belonging to the Iris-versicolor category, one being tagged as Iris-setosa and a
last flower which is known to be Iris-virginica. Let us denote by x53, x85, x25
and x130 such known patterns and let be C1, C2 and C3 the subsets of patterns
corresponding to the Iris-setosa, Iris-versicolor and Iris-virginica classes, respec-
tively. The subscript of the previously labeled objects refers to the zero-based
index they occupy within the Iris repository.

The knowledge we possess about the four flowers can be put in various man-
ners. The simplest of them is advising the algorithms that they are full mem-
bers of the lower approximation of the corresponding clusters, i.e. x25 ∈ BC1,
x53 ∈ BC2 and x130 ∈ BC3. With this type of auxiliary information, the PS-
RCM method achieved a classification rate of 81% (see Table 3) which, although
very close to the behavior of the algorithm without any supervised tips for this

Table 3. Behavior of the semi-supervised rough clustering approaches when fed with
different types of knowledge-based hints

Supplied information Performance Comments

All positive hints 81% No misclassified hints

All negative (accurate) hints 78% x25 ∈ C2, x130 ∈ C1

All negative (imprecise) hints 50% x85 ∈ C1. C2 and C3 nearly
blend

Positive and negative hints 81% No misclassified hints

Fuzzy membership grades 67% Only x130 ∈ C3. C2 and C3

nearly blend
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data set, has the advantage that the early prototypes for all clusters have been
“anchored”, thus allowing the subsequent assignments of patterns to groups to
be driven by this positive guidance. The quest for the optimal number of training
patterns per class remains a challenge and some underlying tendencies in this
sense will be disclosed in the next experiment. We must, however, focus now on
the effect provoked by changing the way the supervised information is wired into
the clustering mechanisms.

If we choose not to employ lower approximations but negative regions for
describing the information about the environment, we will seldom be in position
of tagging a pattern as not pertaining to the majority of the clusters, for our
knowledge about all categories will very likely be permeated to some extent by
uncertainty and vagueness. Notice that the previous situation (i.e. all known
patterns belong to some positive region) boils down to assigning those objects
to the negative regions of all clusters except the one they are members of. If this
is the case, we can talk about an “accurate” knowledge communicated to the
clustering engines solely in the form of non-memberships of patterns to classes
(2nd row of Table 3). We write accurate within quotation marks because we don’t
know in advance which cluster belongs to which class in practice. Put in other
words, claiming that x25 ∈ NEG(C2) and x25 ∈ NEG(C3) will not be enough
to classify this pattern as member of Iris-setosa unless the PS-RCM algorithm
has grouped all of its related objects into the first cluster. This is deeply rooted
in the manner in which initial cluster prototypes are selected in PS-RCM. If
no external information is available in the form of positive memberships (as in
the previous case), random patterns give rise to the first set of cluster centroids
and the problem of cluster mismatch emerges. After this rationale, it is easy
to understand why this second scenario, though structurally equivalent to the
former one, may lead to some misclassified labeled patterns and, consequently,
to a lower performance.

Most of the times, however, we will only be able to state that an object is not
indeed a member of some predefined group due to our limited knowledge of the
environment. The third row of Table 3 shows that leaning upon a few external
hints formulated as non-memberships of patterns to classes takes one to the
worst possible scenario in terms of classification performance. The problem of
cluster mismatch becomes sharpened because we have less reliable information
at hand. In the experiments it was demonstrated that clusters corresponding to
Iris-versicolor and Iris-virginica almost completely amalgamated.

The good news is that we can combine both types of supervised information
(positive and negative regions) in order to overcome the lack of assurance about
all patterns fully belonging to a definite group, which might be hard to get in
practice. Both types of auxiliary information are to be seamlessly integrated
into the clustering algorithms, reaching its more profoundly visible effect after
nourishing the formation of all early cluster prototypes with some already known
patterns being located into the respective groups.

Finally, expressing this type of available information as fuzzy membership
grades (Table 3, 5th row) allowed only to correctly classify 2/3 of the available



Rough Clustering with Partial Supervision 157

Fig. 5. Labeling a varying number of objects in the ‘Anticancer’ repository

patterns. Contrary to what one would expect, the PS-RFCM method behaved
poorly after being driven by the foreign tips, even worse than the 80.7% classi-
fication rate reached with no supervised information at all, resulting in a very
similar scenario to the one encountered in the 3rd row of the table. From this
observation one can derive that fuzzy membership grades might need to be
supplied abundantly to the partially supervised rough clustering approaches
before an acceptable classification rate can be accomplished, although this
observation may dramatically vary in presence of other data sets exhibiting dif-
ferent characteristics.

Experiment 3. We are going to finish this sect. taking a glimpse at the in-
fluence of the number of training patterns over the semi-supervised rough clus-
tering techniques. Let us choose the ‘Anticancer’ data set for this experiment
given that it consists of two largely overlapping clusters, as previously shown in
Figure 2.

For each class, a different number of randomly chosen patterns was labeled
in each run of the partially supervised rough c-means algorithm. The amount of
patterns labeled a priori as sure members of each category varied from a single
pattern up to 25% of the total class population. The results are portrayed in
Figure 5. Axes x and y of the 3D plot correspond to the number of patterns
flagged as full members of the lower approximation of classes 1 and 2, respec-
tively, whereas axis z displays the error rate obtained. The PS-RCM was exe-
cuted with the following parameter configuration: wlow = 0.9, threshold = 0.3
and w = 20.

The 3D mesh clearly shows that the steep cone near the center of the feature
space (whose peak almost reaches 400 wrongly assigned objects) only involves a
limited subset of the possible numbers of labeled patterns per class, viz between
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(a) PS-RCM

(b) PS-RFCM

Fig. 6. Means and standard deviations of the error rates incurred over 20 itera-
tions with the ‘Anticancer’ repository for the two semi-supervised rough clustering
approaches

30 and 40 patterns of class 1 and 60 - 100 patterns of the second cluster. From
the chart one can additionally realize that high classification errors are also the
direct outcome of labeling too few patterns in either group, although this effect
is more visible regarding the less crowded cluster.
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Notice that in no case the effect of partial supervision allows to drive the
number of misclassifications below than 100 patterns, being 118 the lowest error
rate obtained after randomly picking 24 objects from the first class and 99 objects
from the second one and furnishing the algorithm with these knowledge-based
tips. Nonetheless, this can be considered as a good, positive impact of the domain
knowledge hints over the data set, given the highly interwoven nature of its
underlying knowledge structures.

Moreover, it seems that when an acceptable number of objects (say, above
20%) for each class is supplied in advance to the PS-RCM method, there is an
evident benefit which translates into an increase in the classification rate, as one
can remark by looking at the roughly plain, valley-like region at the rear part of
the graph.

This conclusion is empirically supported by the evidence collected after 20
iterations of every partially supervised rough clustering method over the reposi-
tory under consideration. This information has been summarized and presented
to the reader in Figure 6 in terms of averages and standard deviations of the
error rates. The common denominator is that a greater subset of training pat-
terns leads to a more accurate classification, even when there are two or more
very overlapping clusters. The impact is more remarkable in the case of the
PS-RFCM algorithm, given the inherent advantage that represents having fuzzy
sets modeling the assignment of patterns to clusters. Another interesting is-
sue is that the standard deviation of the error rates dramatically decreases
as more patterns are labeled beforehand, thus becoming a reliable indicator
of the pivotal role played by the foreign guidance throughout the clustering
schemes.

6 Concluding Remarks

The problem of feeding clustering algorithms with some knowledge-based hints
has been extended in this chapter to the realm of rough clustering techniques.
More specifically, the rough c-means and rough-fuzzy c-means approaches were
endowed with mechanisms of partial supervision leaning upon the observer’s
assurance of the membership (or non-membership) of some patterns to existing
categories, this being expressed either as traditional fuzzy membership grades
or simply by allocating objects to positive or negative regions of the underlying
concepts under construction.

After examining the evidence collected throughout several conducted experi-
ments, we witness an immediate, superior behavior in the way clustering schemes
look for knowledge structures in the data set. While fuzzy entries of the partition
matrix continue to be a major source of improvement of the algorithms’ perfor-
mance when associated to a labeled set of patterns, it has been empirically
demonstrated that having early cluster prototypes being anchored by patterns
known to lie within the confidence region (lower approximation) of some classes
exercises a crucial influence over the ensuing optimization activities and leads to
more stable, meaningful results.
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We acknowledge there exists an array of multiple manners in which foreign
guidance could be incorporated into rough clustering approaches. Existing and
yet-to-come computational models falling under this umbrella will very likely be
able to seamlessly assimilate the knowledge provided by the experts with little
further computational effort.
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Abstract. This chapter presents a generic scheme for generating prediction rules based
on rough set approach for stock market prediction. To increase the efficiency of the
prediction process, rough sets with Boolean reasoning discretization algorithm is used
to discretize the data. Rough set reduction technique is applied to find all the reducts
of the data, which contains the minimal subset of attributes that are associated with
a class label for prediction. Finally, rough sets dependency rules are generated directly
from all generated reducts. Rough confusion matrix is used to evaluate the performance
of the predicted reducts and classes. For comparison, the results obtained using rough
set approach were compared to that of artificial neural networks and decision trees.
Empirical results illustrate that rough set approach achieves a higher overall prediction
accuracy reaching over 97% and generates more compact and fewer rules than neural
networks and decision tree algorithm.

1 Introduction

Over the last few decades statistical techniques such as regression and Bayesian
models and econometric techniques have dominated the research activities in
prediction. Data mining [10] and computational intelligence techniques such as
neural networks, fuzzy set, evolutionary algorithms, rough set theory, machine
learning, multi-criteria decision aid (MCDA), etc., emerged as alternative tech-
niques to the conventional statistical and econometric models and techniques
that have dominated this field since the 1930s [56] and have paved the road
for the increased usage of these techniques in various areas of economics and
finance[45, 26, 21]. Examples of the utilization of these techniques are the ap-
plications of genetic algorithms and genetic programming [22] for portfolio op-
timization [5], neural network in stocks selection [33] and predicting the S&P
100 index using rough sets [46] and various types of intelligent systems for mak-
ing trading decisions [1, 2, 3, 8, 16, 27, 28, 29, 34, 50, 51]. Other real world
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applications in the field of finance such as credit cards assessment, country
risk evaluation, credit risk assessment, corporate acquisitions[56], business fail-
ure prediction, [32, 56, 11], prediction of the financial health of the dot.com
firms.[7]and bankruptcy prediction[35], customer segmentation [9] are but few
examples showing the diversity of the coverage of these new techniques.

In recent years, and since its inception, rough set theory has gained momen-
tum and has been widely used as a viable intelligent data mining and knowledge
discovery technique in many applications including economic, financial and in-
vestment areas. Applications of rough sets in economic and financial prediction
can be divided into three main areas: database marketing, business failure pre-
diction and financial investment [17, 4].

Database marketing is a method of analyzing customer data to look for pat-
terns among existing preferences and to use these patterns for a more targeted
selection of the customers [17, 15]. It is based on the principle that through col-
lecting and organizing information about a business, one can reduce the cost of
the businessŠs marketing efforts and increase profit. Database marketing is char-
acterized by enormous amounts of data at the level of the individual consumer.
However, these data have to be turned into information in order to be useful. To
this end, several different problem specifications can be investigated. These in-
clude market segmentation, cross-sell prediction, response modelling, customer
valuation and market basket analysis. Building successful solutions for these
tasks requires applying advanced data mining and machine learning techniques
to find relationships and patterns in historical data and using this knowledge to
predict each prospect’s reaction to future situations. The rough set model has
been applied in this domain (see [41, 25]).

Business failure prediction [32, 44, 56, 11], of the financial health of the
dot.com firms [7] and bankruptcy prediction[35], are examples of an important
and challenging issue that has served as the impetus for many academic studies
over the past three decades[32]. Recently, there has been a significant increase
in interest in business failure prediction, from both industry and academia. Fi-
nancial organizations, such as banks, credit institutes, clients, etc. need these
predictions for evaluating firms in which they have an interest[17]. Accurate
business failure prediction models would be extremely valuable to many indus-
try sectors, particularly in financial investment and lending institutes. Despite
the fact that Discriminant analysis has been the most popular approach, there
are also a large number of alternative techniques available such as rough sets
[12, 52].

Many financial analysis applications [45] such as financial investment employ
predictive modeling techniques, for example, statistical regression, Bayesian ap-
proach and neural networks [45, 26, 21], to create and optimize portfolios and
to build trading systems. Building trading systems using the rough set model
was studied by several researchers. Ziarko et al. [54], Golan and Edwards [20]
applied the rough set model to discover strong trading rules from the historical
database of the Toronto stock exchange. Reader may refer to [17] for a detailed
review of applications of rough sets in financial domain.
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Despite the many prediction attempts using rough set models, prediction still
remains a challenging and difficult task to perform specially within complicated,
dynamic and often stochastic areas such as economic and finance. In response to
this challenge, this chapter presents a generic scheme for generating prediction
rules using rough set. The scheme, which could be applied in various areas of
economic and finance such as stock price movement prediction, etc., is expected
to extract knowledge in the form rules to guide the decision maker in making
the right decision, say buy, hold or sell in the area of stock trading and portfo-
lio management. To increase the efficiency of the prediction process, rough sets
with Boolean reasoning discretization algorithm is used to discretize the data.
Rough set reduction technique is, then, applied to find all reducts of the data
which contains the minimal subset of attributes that are associated with a class
used label for prediction. Finally, rough set dependency rules are generated di-
rectly from all generated reducts. Rough confusion matrix is used to evaluate
the performance of the predicted reducts and classes.

This chapter is organized as follows. Sect. 2 gives a brief introduction to rough
sets. Sect. 3 discusses the proposed rough set prediction model in detail. Experi-
mentation is covered in Sect. 4 including data preparation and its characteristic,
analysis, results and discussion of the results and finally, conclusions are provided
in Sect. 5.

2 Rough Sets: Foundations

Rough set theory , a new intelligent mathematical tool proposed by Pawlak
[37, 38, 39], is based on the concept of approximation spaces and models of sets
and concepts. The data in rough set theory is collected in a table called a decision
table. Rows of the decision table correspond to objects, and columns correspond
to features. In the data set, we also assume that a set of examples with a class
label to indicate the class to which each example belongs are given. We call the
class label a decision feature, the rest of the features are conditional. Let O,F
denote a set of sample objects and a set of functions representing object features,
respectively. Assume that B ⊆ F , x ∈ O. Further, let [x]B denote:

[x]B = {y : x ∼B y} .

Rough set theory defines three regions based on the equivalent classes induced
by the feature values: lower approximation BX , upper approximation BX and
boundary BNDB(X). A lower approximation of a set X contains all equivalence
classes [x]B that are subsets of X , and upper approximation BX contains all
equivalence classes [x]B that have objects in common with X , while the boundary
BNDB(X) is the set BX \ BX , i.e., the set of all objects in BX that are not
contained in BX . So, we can define a rough set as any set with a non-empty
boundary.

The indiscernibility relation ∼B (or by IndB) is a fundamental principle of
rough set theory. Informally, ∼B is a set of all objects that have matching de-
scriptions. Based on the selection of B, ∼B is an equivalence relation partitions
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a set of objects O into equivalence classes. The set of all classes in a partition is
denoted by O/ ∼B (also by O/IndB). The set O/IndB is called the quotient set.
Affinities between objects of interest in the set X ⊆ O and classes in a partition
can be discovered by identifying those classes that have objects in common with
X . Approximation of the set X begins by determining which elementary sets
[x]B ∈ O/ ∼B are subsets of X .

In the following subsections, we provide a brief explanation of the basic frame-
work of rough set theory, along with some of the key definitions. For a detailed
review of the basic material, reader may consult sources such as [37, 38, 39].

2.1 Information System and Approximation

Definition 1. (Information System) Information system is a tuple (U, A),
where U consists of objects and A consists of features. Every a ∈ A corresponds
to the function a : U → Va where Va is a’s value set. In applications, we of-
ten distinguish between conditional features C and decision features D, where
C ∩ D = ∅. In such cases, we define decision systems (U, C, D).

Definition 2. (Indiscernibility Relation) Every subset of features B ⊆ A in-
duces indiscernibility relation

IndB = {(x, y) ∈ U × U : ∀a∈B a(x) = a(y)}

For every x ∈ U , there is an equivalence class [x]B in the partition of U defined
by IndB.

Due to the imprecision, which exists in real world data, there are sometimes
conflicting classification of objects contained in a decision table. The conflicting
classification occurs whenever two objects have matching descriptions, but are
deemed to belong to different decision classes. In such cases, the decision table
is said to contain inconsistencies.

Definition 3. (Lower and Upper Approximation)
In rough set theory, approximations of sets are introduced to deal with incon-
sistency. A rough set approximates traditional sets using a pair of sets named
the lower and upper approximation of the set. Given a set B ⊆ A, the lower
and upper approximations of a set Y ⊆ U, are defined by equations (1) and (2),
respectively.

BY =
⋃

x:[x]B⊆X

[x]B . (1)

BY =
⋃

x:[x]B∩X �=∅
[x]B . (2)

Definition 4. (Lower Approximation and positive region) The positive region
POSC(D) is defined by
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POSC(D) =
⋃

X:X∈U/IndD

CX.

POSC(D) is called the positive region of the partition U/IndD with respect to
C ⊆ A, i.e., the set of all objects in U that can be uniquely classified by elementary
sets in the partition U/IndD by means of C [40].

Definition 5. (Upper Approximation and Negative Region) The negative region
NEGC(D) is defined by

NEGC(D) = U −
⋃

X:X∈U/IndD

CX,

i.e., the set of all all objects that can be definitely ruled out as members of X.

Definition 6. (Boundary region) The boundary region is the difference between
upper and lower approximation of a set X that consists of equivalence classes
having one or more elements in common with X. It is given as follows:

BNDB(X) = BX − B̄X (3)

2.2 Reduct and Core

Often we wonder whether there are features in the information system, which are
more important to the knowledge represented in the equivalence class structure
than other features and whether there is a subset of features which by itself can
fully characterize the knowledge in the database. Such a feature set is called
a reduct. Calculation of reducts of an information system is a key issue in RS
theory [38, 39, 42] and we use reducts of an information system in order to
extract rule-like knowledge from an information system.

Definition 7. (Reduct) Given a classification task related to the mapping C →
D, a reduct is a subset R ⊆ C such that

γ(C, D) = γ(R, D)

and none of proper subsets of R satisfies analogous equality.

Definition 8. (Reduct Set) Given a classification task mapping a set of variables
C to a set of labeling D, a reduct set is defined with respect to the power set P (C)
as the set R ⊆ P (C) such that Red = {A ∈ P (C) : γ(A, D) = γ(C, D)}. That is,
the reduct set is the set of all possible reducts of the equivalence relation denoted
by C and D.

Definition 9. (Minimal Reduct) A minimal reduct Rminimal is the reduct such
that ‖R‖ ≤ ‖A‖, ∀A ∈ R. That is, the minimal reduct is the reduct of least
cardinality for the equivalence relation denoted by C and D.
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Definition 10. (Core) Attribute c ∈ C is a core feature with respect to D, if
and only if it belongs to all the reducts. We denote the set of all core features by
Core(C). If we denote by R(C) the set of all reducts, we can put:

Core(C) =
⋂

R∈R(C)

R (4)

The computation of the reducts and the core of the condition features from a
decision table is a way of selecting relevant features. It is a global method in
the sense that the resultant reduct represents the minimal set of features which
are necessary to maintain the same classification power given by the original and
complete set of features. A straight forward method for selecting relevant features
is to assign a measure of relevance to each feature and then select the features
with higher values. And based on the generated reduct system, we generate a
list of rules that will be used for building the classifier model which will be able
to identify new objects and assign them the correct class label corresponding
decision class in the reduced decision table ( i.e. the reduct system). Needless to
say, the calculation of all the reducts is fairly complex (see [47, 23, 48]).

2.3 Significance of the Attribute

The significance of features enables us to evaluate features by assigning a real
number from the closed interval [0,1], expressing the important a feature in an
information table. Significance of a feature a in a decision table DT can be
evaluated by measuring the effect of removing of the feature a in C from feature
set C on a positive region defined by the table DT. As shown in definition 2.3,
the number γ(C, D) express the degree of dependency between feature C and
D or accuracy of approximation of U/D by C.. The formal definition of the
significant is given as follows:

Definition 11. (Significance) For any feature a ∈ C, we define its significance
ζ with respect to D as follows:

ζ(a, C, D) =
|POSC\{a}(D)|
|POSC(D)| (5)

Definitions 7-11 are used to express the importance of particular features in
building the classification model. For a comprehensive study, reader may consult
[49]. An important measure is to use frequency of occurrence of features in
reducts. One can also consider various modifications of Definition 7, for example
approximate reducts, which preserve information about decisions only to some
degree [47]. Further more, positive region in Definition 4 can be modified by
allowing for the approximate satisfaction of inclusion [x]C ⊆ [x]D, as proposed,
e.g., in VPRS model [53]. Finally, in Definition 2, the meaning of IND(B) and
[x]B can be changed by replacing equivalence relation with similarity relation,
especially useful when considering numeric features. For further reading, see
[38, 42].
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2.4 Decision Rules

In the context of supervised learning, an important task is the discovery of
classification rules from the data provided in the decision tables. These decision
rules not only capture patterns hidden in the data but also can be used to
classify new unseen objects. Rules represent dependencies in the dataset, and
represent extracted knowledge, which can be used when classifying new objects
not present in the original information system. Once reducts were found, the job
of creating definite rules for the value of the decision feature of the information
system is practically done. To transform a reduct into a rule, one has to bind
the condition feature values of the object class from which the reduct originated
to the corresponding features of the reduct. To complete the rule, a decision
part comprising the resulting part of the rule is added. This is done in the same
way as for the condition features. To classify objects, which has never been seen
before, rules generated from a training set are used. These rules represent the
actual classifier. This classifier is used to predict classes to which new objects are
attached. The nearest matching rule is determined as the one whose condition
part differs from the feature vector of re-object by the minimum number of
features. When there is more than one matching rule, a voting mechanism is
used to choose the decision value. Every matched rule contributes votes to its
decision value, which are equal to the number of times objects are matched by
the rule. The votes are added and the decision with the largest number of votes
is chosen as the correct class. Quality measures associated with decision rules
can be used to eliminate some of the decision rules.

3 Rough Set Prediction Model (RSPM)

Figure 1 illustrates the overall steps in the proposed Rough Set Prediction
Model(RSPM) using a UML Activity Diagram where a square or rectangular
represents a data object, a rounded rectangular represents an activity, solid and
dashed directed lines indicate control flow and data object flow respectively.
Functionally, RSPM can be partitioned into three distinct phases:

• Pre-processing phase(Activities in Dark Gray). This phase includes tasks such
as extra variables addition and computation, decision classes assignments,
data cleansing, completeness, correctness, attribute creation, attribute selec-
tion and discretization.

• Analysis and Rule Generating Phase(Activities in Light Gray). This phase
includes the generation of preliminary knowledge, such as computation of
object reducts from data, derivation of rules from reducts, rule evaluation
and prediction processes.

• Classification and Prediction phase (Activities in Lighter Gray). This phase
utilize the rules generated from the previous phase to predict the stock price
movement
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Fig. 1. General overview of rough set prediction model

3.1 Pre-processing Phase

In this phase, the decision table required for rough set analysis is created. In do-
ing so, a number of data preparation tasks such as data conversion, data cleans-
ing, data completion checks, conditional attribute creation, decision attribute
generation, discretization of attributes are performed. Data splitting is also
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performed which created two randomly generated subsets, one subset for analy-
sis containing 75% of the objects in the data set and one validation containing
the remainder 25% of the objects. It must be emphasized that data conversion
performed on the initial data must generate a form in which specific rough set
tools can be applied.

Data Completion and Discretization Processes

Data Completion

Often, real world data contain missing values. Since rough set classification in-
volves mining for rules from the data, objects with missing values in the data
set may have undesirable effects on the rules that are constructed. The aim of
the data completion procedure is to remove all objects that have one or more
missing values. Incomplete data or information systems exist broadly in practical
data analysis, and approaches to complete the incomplete information system
through various completion methods in the preprocessing stage are normal in
data mining and knowledge discovery. However, these methods may result in
distorting the original data and knowledge, and can even render the original
data to be un-minable. To overcome these shortcomings inherent in the tradi-
tional methods, we used the decomposition approach for incomplete information
system ( i.e. decision table )proposed in [43].

Data Discretization

When dealing with attributes in concept classification and prediction, it is ob-
vious that they may have varying importance in the problem being considered.
Their importance can be pre-assumed using auxiliary knowledge about the prob-
lem and expressed by properly chosen weights. However, in the case of using the
rough set approach to concept classification and prediction, it avoids any addi-
tional information aside from what is included in the information table itself.
Basically, the rough set approach tries to determine from the data available in
the information table whether all the attributes are of the same strength and, if
not, how they differ in respect of the classifier power.

Therefore, some strategies for discretization of real valued features must be
used when we need to apply learning strategies for data classification (e.g., equal
width and equal frequency intervals). It has been shown that the quality of learn-
ing algorithm is dependent on this strategy, which has been used for real-valued
data discretization [14]. It uses data transformation procedure which involves
finding cuts in the data sets that divide the data into intervals. Values lying
within an interval are then mapped to the same value. Performing this process
leads to reducing the size of the attributes value set and ensures that the rules
that are mined are not too specific. For the discretization of continuous-valued
attributes, we adopt, in this chapter, rough sets with boolean reasoning (RSBR)
algorithm proposed by Zhong et al. [43] The main advantage of RSBR is that it
combines discretization of real-valued attributes and classification. For the main
steps of the RSBR discretization algorithm, reader may consult [4].
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3.2 Analysis and Rule Generating Phase

Analysis and Rule Generating Phase includes generating preliminary knowledge,
such as computation of object reducts from data, derivation of rules from reducts,
and prediction processes. These stages lead towards the final goal of generating
rules from information system or decision table.

Relevant Attribute Extraction and Reduction

One of the important aspects in the analysis of decision tables is the extraction
and elimination of redundant attributes and also the identification of the most
important attributes from the data set. Redundant attributes are attributes that
could be eliminated without affecting the degree of dependency between the re-
maining attributes and the decision. The degree of dependency is a measure used
to convey the ability to discern objects from each other. The minimum subset of
attributes preserving the dependency degree is called reduct. The computation
of the core and reducts from a decision table is, in a way, selecting the relevant
attributes [6, 48].

In decision tables, there often exist conditional attributes that do not provide
(almost) any additional information about the objects. These attributes need
to be removed in order to reduce the complexity and cost of decision process
[6, 18, 42, 48]. A decision table may have more than one reduct. Any of these
reducts could be used to replace the original table. However, finding all the
reducts from a decision table is NP-complete but fortunately, in applications, it
is usually not necessary to find all of them – one or a few of them are sufficient.
Selecting the best reduct is important. The selection depends on the optimality
criterion associated with the attributes. If a cost function could be assigned
to attributes, then the selection can be based on the combined minimum cost
criteria. But in the absence of such cost function, the only source of information
to select the reduct from is the contents of the table. In this chapter, we adopt
the criteria that the best reducts are the those with minimal number of attributes
and – if there are more such reducts – with the least number of combinations of
values of its attributes cf. [6, 36].

In general, rough set theory provides useful techniques to reduce irrelevant
and redundant attributes from a large database with a lot of attributes. The
dependency degree (or approximation quality, classification quality) and the in-
formation entropy are two most common attribute reduction measures in rough
set theory. In this chapter, we use the dependency degree measure to compute
the significant features and measuring the effect of removing a feature from the
feature sets. [24].

Computation of the Reducts

A reduced table can be seen as a rule set where each rule corresponds to one
object of the table. The rule set can be generalized further by applying rough
set value reduction method. The main idea behind this method is to drop those
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redundant condition values of rules and to unite those rules in the same class.
Unlike most value reduction methods, which neglect the difference among the
classification capabilities of condition attributes, we first remove values of those
attributes that have less discrimination factors. Thus more redundant values
can be reduced from decision table and more concise rules can be generated.
The main steps of the Rule Generation and classification algorithm are outlined
in Algorithm-1:

Algorithm 1. Reduct Generation algorithm
Input: information table (ST ) with discretized real valued attribute.
Output: reduct sets Rfinal = {r1 ∪ r2 ∪ .... ∪ rn}
1: for each condition attribute c ∈ C do
2: Compute the correlation factor between c and the decisions attributes D
3: if the correlation factor > 0 then
4: Set c as relevant attributes.
5: end if
6: end for
7: Divide the set of relevant attribute into different variable sets.
8: for each variable sets do
9: Compute the dependency degree and compute the classification quality

10: Let the set with high classification accuracy and high dependency as an initial
reduct set.

11: end for
12: for each attribute in the reduct set do
13: Calculate the degree of dependencies between the decisions attribute and that

attribute.
14: Merge the attributes produced in previous step with the rest of conditional

attributes
15: Calculate the discrimination factors for each combination to find the highest

discrimination factors
16: Add the highest discrimination factors combination to the final reduct set.
17: end for
18: repeat
19: statements 12
20: until all attributes in initial reduct set are processed

Rule Generation from a Reduced Table

The generated reducts are used to generate decision rules. The decision rule, at
its left side, is a combination of values of attributes such that the set of (almost)
all objects matching this combination have the decision value given at the rule’s
right side. The rule derived from reducts can be used to classify the data. The set
of rules is referred to as a classifier and can be used to classify new and unseen
data. The main steps of the Rule Generation and classification algorithm are
outlined as Algorithm-2):
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Algorithm 2. Rule Generation
Input: reduct sets Rfinal = {r1 ∪ r2 ∪ .... ∪ rn}
Output: Set of rules
1: for each reduct r do
2: for each corresponding object x do
3: Contract the decision rule (c1 = v1 ∧ c2 = v2 ∧ .... ∧ cn = vn) −→ d = u
4: Scan the reduct r over an object x
5: Construct (ci, 1 ≤ i ≤ n)
6: for every c ∈ C do
7: Assign the value v to the corresponding attribute a
8: end for
9: Construct a decision attribute d

10: Assign the value u to the corresponding decision attribute d
11: end for
12: end for

The quality of rules is related to the corresponding reduct(s). We are espe-
cially interested in generating rules which cover largest parts of the universe U .
Covering U with more general rules implies smaller size rule set.

3.3 Classification and Prediction Phase

Classification and prediction is the last phase of our proposed approach. We
present a classification and prediction scheme based on the methods and tech-
niques described in the previous sections. Figure 2 illustrates the classification
scheme for a construction of particular classification and prediction algorithm.
To transform a reduct into a rule, one only has to bind the condition feature
values of the object class from which the reduct originated to the corresponding
features of the reduct. Then, to complete the rule, a decision part comprising
the resulting part of the rule is added. This is done in the same way as for the
condition features. To classify objects, which has never been seen before, rules
generated from a training set will be used. These rules represent the actual clas-
sifier. This classifier is used to predict to which classes new objects are attached.
The nearest matching rule is determined as the one whose condition part differs
from the feature vector of re-object by the minimum number of features. When
there is more than one matching rule, we use a voting mechanism to choose the
decision value. Every matched rule contributes votes to its decision value, which
are equal to the t times number of objects matched by the rule. The votes are
added and the decision with the largest number of votes is chosen as the correct
class. Quality measures associated with decision rules can be used to eliminate
some of the decision rules.

The global strength defined in [6] for rule negotiation is a rational number
in [0, 1] representing the importance of the sets of decision rules relative to the
considered tested object. Let us assume that T = (U, A

⋃
(d)) is a given decision

table, ut is a test object, Rul(Xj) is the set of all calculated basic decision rules
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Fig. 2. Rough set classification and prediction scheme

for T , classifying objects to the decision class Xj(v
j
d = vd), MRul(Xj, ut) ⊆

Rul(Xj) is the set of all decision rules from Rul(Xj) matching tested object ut.
The global strength of decision rule set MRul(Xj, ut) is defined by the following
form [6]:
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MRul(Xj, ut) =

∣∣∣⋃r⊂MRul(Xj ,ut) |Pred(r)|A ∩ |d = vj
d|A

∣∣∣∣∣∣|d = vj
d|A

∣∣∣ .

Measure of strengths of rules defined above is applied in constructing classi-
fication algorithm. To classify a new case, rules are first selected matching the
new object. The strength of the selected rule sets is calculated for any decision
class, and then the decision class with maximal strength is selected, with the
new object being classified to this class.

4 Experimental Results

4.1 Data Set and Its Characteristics

To test and verify the prediction capability of the proposed RSPM, the daily
stock movement of a banking stock traded in Kuwait Stock Exchange and span-
ning over a period of 7 years ( 2000-2006), were captured. Figure 3 depicts a
sample of the stock’s daily movements.

Fig. 3. A sample of the stock daily movement

Table 1 shows the attributes used in the creation of the rough set deci-
sion table, where MA: Moving average of price,UP : Upward price change,
Dw:Downward price change; Pi: closing price. The first five attributes in the
Table, i.e. Last( or Closing Price), High, Low, Trade, and Value) were extracted
from the stock daily movement. The other important attributes in the table were
compiled from the literature [31] along with the formula for their computation.
The decision attributed, D, in Table 1, which indicates the future direction of
the the data set, is constructed using the following formula:

Decatt =
∑i=n

i=1 ((n + 1) − i).sign[close(i)− close(0)]∑n
i=1 i

(6)

where close (0) is today’s closing price and close (i) is the ith closing price in the
future. Equation (1) specifies a range -1 to +1 for Decatt A value of +1 indicate
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Table 1. Stock price movement decision table

Attribute Attribute description

Last closing price

High High price

Low Low price

Trade

Value

Lagi, i = 1..6 An event occurring at time t + k (k > 0)

is said to lag behind event occurring at time t,

Aver5 moving average of 5 days for close price

Momentum Pi − Pi−4

Disparity in 5 days Pi
MA5

∗ 100

Price Osculiator OSCP = 100 − 100

1+
∑n−1

i=0 UPi−1/n∑n−1
i=0 DWi−1/n

RSI (relative strength index) = 100 − 100∑
i=0n−1UPi/n

ROC rate of change Pi−Pi−n

Pi
∗ 100

D Decision attribute

that every day up to n days in the future, the market closed higher than today.
Similarly, -1 indicates that every day up to n days in the future, the market
closed lower than today.

Figure 4 presents a snapshot of the 21 index for the period covering from Jan.
1st 2000 to Jan. 31th 2000, and the fluctuation of the Decatt. Figure 5 illustrates
part of the calculated daily stock movement time series data set according the
attributes described in Table 1.

4.2 Analysis, Results and Discussion

For many data mining tasks, it is useful to learn about the general character-
istics of the given data set and to identify the outliers - samples that are not
consistent with the general behavior of the data model. Outlier detection is
important because it may affect the classifier accuracy. As such we performed
several descriptive statistical analysis, such as measures of central tendency and
data dispersion. In our statistical analysis, we used the mean and the median to
detect the outliers in our data set. Table 2 represents the statistical analysis and
essential distribution of attributes, respectively.
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Fig. 4. Snapshot of 21 index for the period covering January 2000

Fig. 5. Samples of the banking sector data - after post processing

We reach the minimal number of reducts that contains a combination of at-
tributes which has the same discrimination factor. The final generated reduct
sets, which are used to generate the list of rules for the classification are:

{high, low, last, momentum, disparity in 5 days, Roc}

A natural use of a set of rules is to measure how well the ensemble of rules
is able to classify new and unseen objects. To measure the performance of the
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Table 2. Statistical results of the attributes

Attribute Mean Std. Dv Median Correlation

with decision class

Last-Close 497.8 145.17 490.0 0.255

High 498.9 145.6 490 0.2500

Low 493.7 143.5 485.0 0.24

Vol 626189.3 1314775.6 240000 0.097

Trade 13.3 15.12 8.0 0.185

Value 322489.3 674862.3 118900.0 0.1065

Lag1 522.25 94.5 490.0 -0.0422

Lag2 493.8 0.4828 490.0 0.0055

Lag3 496.4 148.5 490.0 0.092

Aver5 501.5 103.6 488.0 0.075

Momentum 2.44 163.1 0.0 0.266

Disparity in 5 days 99.0 25.2 100.3 0.28

Price Osculator .0002 0.095 0.006 0.156

RSI 49.8 1.4.36 49.8 -0.035

ROC -4.7 21.5 0.0 -0.365

rules is to assess how well the rules perform in classifying new cases. So we apply
the rules produced from the training set data to the test set data.

The following present the rules in a more readable format:

R1: IF Closing Price(Last) = (403 OR 408) AND
High = (403 OR 408) AND
Low = (3 OR 8) AND
momentum = (403 OR 408) AND
disparityin5dayes = (100.48700 OR 100.60700) AND
ROC = (−0.50505 OR 0.51021)

THEN Decision Class is 0.0

Table 3 shows a partial set of the generated rules. These obtained rules are
used to build the prediction system.

Several runs were conducted using different setting with strength rule thresh-
old. Rule importance and rule strength measures are used to obtain a sense of
the quality of the extracted rules. These measures are chosen according to the
number of times a rule appears in all reducts, number of generated reducts, and
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Table 3. A partial set of the generated rules

Rule number Rule form

R1 Last/close=(403 or 408) AND High=(403 RO 408)

AND Low=(403 or 408) AND momentum=(3 OR 8)

AND disparityin5dayes=(100.48700 or 100.60700)

AND ROC=(-0.50505 or 0.51021) =⇒ d = 0

R2 Last/close=(398 or 403) AND High=(398 or 403)

AND Low=(393 or 398) AND momentum=(-2 or 3)

AND disparityin5dayes=(125.19600 or 125.43000)

AND ROC=(-0.50505 or 0.51021) =⇒ d = 0

R3 Last/close=(403 or 408)) AND High( 403 or 408)

AND Low=(398 or 403) AND momentum(3 or 8)

AND disparityin5dayes=(100.93900 or 101.01500)

AND ROC=(0.51021) =⇒ d = 1.0

R4 Last/close=(378 or 385) AND High( 378 or 385 )

AND Low=(378 or 385)) AND momentum=(-25 or -17)

AND disparityin5dayes=(97.70110)

AND ROC=(-0.50505) =⇒ d = −1.0

R5 Last/close=(183 or 370) AND High=(368, 373)

AND Low=(183, 368) AND momentum=(-37, -32)

AND disparityin5dayes=(113.76700 or 120.81700)

AND ROC=(-0.50505) =⇒ d = 1.0

R6 Last/close=(403, 408) AND High=(403 or 408)

AND Low=([398 or 403)) AND momentum=(-2 or 3)

AND disparityin5dayes=(100.24500 or 100.27300)

AND ROC=(0.51021) =⇒ d = 1.0
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Table 4. Number of generated rules

Method Generated rule number

Neural networks 630

Rough sets 371

Table 5. Model prediction performance (confusion matrix)

Actual Predict Predict Predict

Class1 Class2 Class3 Accuracy

Class1 (-1) 39 1 0 0.975 %

Class2 (0) 0 76 0 1.0 %

Class3 (+1) 0 2 34 0.94%

1.0 .962 1.0 0.9802 %

the support the strength of a rule. The rule importance and Rule Strength are
given by the following forms:

Rule Importance. Rule Importance measures (Importancerule) is used to as-
sess the quality of the generated rule and it is defined as follows:

Importancerule =
τr

ρr
, (7)

where τr is the number of times a rule appears in all reducts and ρr is the number
of reduct sets.

Rule Strength. The strength of a rule, Strengthrule, states how well the rule
covers or represent the data set and can be calculated as follows:

Strengthrule =
Supportrule

|U | , (8)

where |U | denotes the number of all objects in the training data or objects in
the universe in general. The strength of a rule states how well the rule covers or
represents the data set.

Table 4 shows the number of generated rules using rough sets and for the
sake of comparison we have also generated rules using neural network. Table 4
indicates that the number of rules generated using neural networks is much larger
than that of the rough set approach.

Measuring the performance of the rules generated from the training data set
in terms of their ability to classify new and unseen objects is also important. Our
measuring criteria were Rule Strength and Rule Importance [30] and to check
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Fig. 6. Comparative analysis in terms of the prediction accuracy

the performance of our method, we calculated the confusion matrix between
the predicted classes and the actual classes as shown in Table 5. The confusion
matrix is a table summarizing the number of true positives, true negatives, false
positives, and false negatives when using classifiers to classify the different test
objects.

Figure 6 shows the overall prediction accuracy of well known two approaches
compared with the proposed rough set approach. Empirical results reveal that
the rough set approach is much better than neural networks and ID3 decision
tree. Moreover, for the neural networks and the decision tree classifiers, more
robust features are required to improve their performance.

5 Conclusions and Future Research

This chapter presented a generic stock price prediction model using rough set
theory. The model was able to extract knowledge in the form of rules from daily
stock movements. These rules then could be used to guide investors whether to
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buy, sell or hold a stock. To increase the efficiency of the prediction process,
rough sets with Boolean reasoning discretization algorithm is used to discretize
the data. Rough set reduction technique is, then, applied to find all reducts of
the data which contains the minimal subset of attributes that are associated
with a class used label for prediction. Finally, rough set dependency rules are
generated directly from all generated reducts. Rough confusion matrix is used
to evaluate the performance of the predicted reducts and classes.

Using a data set consisting of daily movements of a stock traded in Kuwait
Stock Exchange, a preliminary assessment showed that performance of the rough
set based stock price prediction model, given the limited scoped of the data
set, was highly accurate and as such this investigation could lead to further
research using a much larger data set consisting of the entire Kuwait Stock
Exchange, which would in turn prove the model’s generalizability that the model
is accurate and sufficiently robust and reliable as a forecasting and prediction
model. For comparison purposes, the results obtained using rough sets were
compared to those generated by neural networks and decision tree algorithms.
It was shown, using the same constrained data set, that rough set approach has
a higher overall accuracy rates and generate more compact and fewer rules than
neural networks. A future research, based on this finding, could be to implement
a hybrid approach using rough sets as reducts generator and neural networks for
knowledge discovery and rule generator utilizing the rough set reducts.
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Summary. The demand for Internet content rose dramatically in recent years. Servers
became more and more powerful and the bandwidth of end user connections and back-
bones grew constantly during the last decade. Nevertheless users often experience poor
performance when they access web sites or download files. Reasons for such problems
are often performance problems, which occur directly on the servers (e.g. poor per-
formance of server-side applications or during flash crowds) and problems concerning
the network infrastructure (e.g. long geographical distances, network overloads, etc.).
Web caching and prefetching have been recognized as the effective schemes to alleviate
the service bottleneck and to minimize the user access latency and reduce the network
traffic. In this chapter, we model the uncertainty in Web caching using the granularity
of rough set (RS) and inductive learning. The proposed framework is illustrated using
the trace-based experiments from Boston University Web trace data set.

1 Introduction

Good interactive response-time has long been known to be essential for user
satisfaction and productivity [1, 2, 3]. This is also true for the Web [4, 5]. A
widely-cited study from Zona Research [6] provides an evidence for the “eight
second rule” in electronic commerce, “if a Web site takes more than eight seconds
to load, the user is much more likely to become frustrated and leave the site”.

Lu et al.[7] has mentioned that most business organizations and government
departments nowadays have developed and provided Internet based electronic
services (e-services) that feature various intelligent functions. This form of e-
services is commonly called e-service intelligence (ESI). ESI integrates intelli-
gent technologies and methodologies into e-service systems for realizing intelligent
Internet information searching, presentation, provision, recommendation, online
system design, implementation, and assessment for Internet users. These intelli-
gent technologies include machine learning, soft computing, intelligent languages,
and data mining etc. ESI has been recently identified as a new direction for the
future development stage of e-services. E-services offer great opportunities and
challenges for many areas of services, such as government, education, tourism,
commerce, marketing, finance, and logistics. They involve various online service
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providers, delivery systems and applications including e-government, e-learning,
e-shopping, e-marketing, e-banking, and e-logistics.

A surprising fact is that many people tend to access the same piece of informa-
tion repeatedly [7, 8] in any ESI. This could be weather related data, news, stock
quotes, baseball scores, course notes, technical papers, exchange rate informa-
tion and so on. If too many people attempt to access a Web site simultaneously,
then they may experience problems in getting connected to the Web site. This
is due to slow responses from the server as well as incapability of Web site in
coping with the load.

An alternative way to tackle these problems is an implementation of Web
caching in enhancing Web access [9, 8]. Web caching is beneficial to broad users
including those who are relied on slow dial-up links as well as on faster broadband
connections. The word caching refers to the process of saving data for future
use. In other words, Web caching is the process of saving copies of content from
the Web closer to the end user for quicker access. Web caching is a fairly new
technology whose history is linked to that of the Web [10].

At the same time, Web prefetching is another well-known technique for reduc-
ing user web latency by preloading the web object that is not requested yet by
the user [8, 9, 11, 12]. In other words, prefetching is a technique that downloads
the probabilistic pages that are not requested by the user but could be requested
again by the same user. Conventionally, there is some elapse time between two
repeated requests by the same user. Prefetching usually performs the preloading
operation within an elapse time and puts web objects into the local browser or
proxy cache server to satisfy the next user’s requests from its local cache.

However, the Web caching and prefetching technologies are the most popular
software based solutions [11, 12]. Caching and prefetching can work individually
or combined. The blending of caching and prefetching (called as pre-caching)
enables doubling the performance compared to single caching [13]. These two
techniques are very useful tools to reduce congestion, delays and latency prob-
lems. There are three most important features of web caching [14]:

• Caching that reduces network bandwidth usage
• Caching that also reduces user-perceived delays
• Caching that reduce loads on the original server

1.1 Problem in WWW Services

World Wide Web (WWW) has become the most ideal place for business and
entertainment to enrich their presentation with interactive features. This has
caused the evolution of Web growing and rising fast and drastically. Human
interaction with objects or so called interactive features has leaded the Web to
be more easily guided and capable to perform business task between distance
places. These pages are linked and managed for certain purposes that perform as
a Web application. These interactive Web pages consist of pages that are able to
perform application logical task. The rising popularity of using Web applications
in WWW causes tremendous demands on the Internet.
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A key strategy for scaling the Internet to meet these increasing demands is to
cache data near clients and thus improve access latency and reduce the network
and server load [15, 16]. Mohamed et. al [17, 18, 19] has proposed an intelli-
gent concept of Smart Web Caching with integrated modules of artificial neu-
ral networks (ANN), environment analysis and conventional caching procedure.
The results are convincing in reducing the internet traffic flow and enhancing
performances. However, implementing this integrated analyzer in Web caching
environment causes highly computational cost [20, 17, 21] due to the complexity
of the integrated process generation.

Caching is a technique used to store popular documents closer to the user.
It uses algorithms to predict user’s needs to specific documents and stores im-
portant documents. According to Curran and Duffy [22], caching can occur any-
where within a network, on the user’s computer or mobile devices, at a server,
or at an Internet Service Provider (ISP). Many companies employ web proxy
caches to display frequently accessed pages to their employees, as such to re-
duce the bandwidth with lower costs [22, 23]. Web cache performance is directly
proportional to the size of the client community [24, 22]. The bigger the client
community, the greater the possibility of cached data being requested, hence,
the better the cache’s performance [22].

Moreover, caching a document can also cause other problems. Most documents
on the Internet change over time as they are updated. Static and Dynamic
Caching are two different technologies that widely used to reduce download
time and congestion [20]. Static Caching stores the content of a web page which
does not change. There is no need to request the same information repeatedly.
This is an excellent approach to fight congestion. Dynamic Caching is slightly
different. It determines whether the content of a page has been changed. If the
contents have changed, it will store the updated version [23]. This unfortunately
can lead to congestion and thus it is possibly not a very good approach as it
does require verification on the source of the data prior to updating. If these two
technologies are implemented simultaneously, then the latency and congestion
can be diminished.

According to Davison [14] caching helps to bridge the performance gap be-
tween local activity and remote content. Caching assists improvement of Web
performance by reducing the cost and end-user latency for Web access within
a short term. However, in the long term, even as bandwidth costs continue to
drop and higher end-user speeds become available; caching will continue to ob-
tain benefits for the following reasons:

Bandwidth will always have some cost . The cost of bandwidth will never reach
zero, even though the competition is increasing, the market is growing, and
the economies of scale will reduce end-user costs. The cost of bandwidth at
the core has stayed relatively stable, requiring ISPs to implement methods
such as caching to stay competitive and reduce core bandwidth usage so that
edge bandwidth costs can be low.

Nonuniform bandwidth and latencies will persist. Because of physical limita-
tions such as environment and location as well as financial constraints, there
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will always be variations in bandwidth and latencies. Caching can help to
smooth these effects.

Network distances are increasing. Firewalls, other proxies for security and pri-
vacy, and virtual private networks for telecommuters have increased the num-
ber of hops for contents delivery, hence slow Web response time.

Bandwidth demands continue to increase. The growth of user base, the popu-
larity of high-bandwidth media, and user expectations of faster performance
have guaranteed the exponential increase in demand for bandwidth.

Hot spots in the Web will continue. Intelligent load balancing can alleviate
problems when high user demand for a site is predictable. However, a Web
site’s popularity can also appear as a result of current events, desirable con-
tent, or gossips. Distributed Web caching can help alleviate these “hot spots”
resulting from flash traffic loads.

Communication costs exceed computational costs. Communication is likely to
always be more expensive (to some extent) than computation. The use of
memory caches are preferred because CPUs are much faster than main mem-
ory. Likewise, the cache mechanisms will prolong as both computer systems
and network connectivity become faster.

Furthermore, caching is the most relevant technique to improve storage sys-
tem, network, and device performance. In mobile environments, caching can con-
tribute to a greater reduction in the constraint of utilization resources such as
network bandwidth, power, and allow disconnected operation [29]. A lot of stud-
ies are focused on developing a better caching algorithm to improve the choice of
item to replace, and simultaneously, building up techniques to model access be-
havior and prefetch data. From 1990’s until today, researchers on caching have
produced different caching policies to optimize a specific performance and to
automate policy parameter tuning. Prior to this, administrator or programmer
had to select a particular parameter to observe workload changes. However, an
adaptive and self-optimizing caching algorithm offer another advantage when
considered mobile environments, where users of mobile devices should not ex-
pect to tune their devices to response the workload changes [29]. The workload
depends on the current position of the mobile node in relation to other nodes
and stations, and also depends on the current location and context of the mobile
user.

Caching is effectively for data with infrequent changes. Besides, caching data
locally to mobile nodes helps the ability to retrieve data from a nearby node,
rather than from a more distant base station [28]. By simply retrieving data
using multiple short-range transmissions in wireless environments provides a
reduction in overall energy consumed. Santhanakrishnan et al. [29] illustrated
on the demand-based retrieval of the Web documents in the mobile Web.
They proposed caching scheme; Universal Mobile Caching which performed
the most basic and general form of caching algorithms and largely emphasize
the impact of the adaptive policy. This scheme is suitable for managing object
caches in structurally varying environments. Ari et al. [30] proposed Adaptive
Caching using Multiple Experts (ACME), which the individual experts were full
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replacement algorithms, applied to virtual caches, and their performance was
estimated based on the observed performance of the virtual caches. The term
expert refers to any mechanism for offering an answer to the question. For cache
replacement, the answer they seek is the identity of the object in the cache with
the least likelihood of subsequent future access.

Contrast to a single algorithm, there are not so many research works on inte-
grated schemes. Aiming at integrating caching and prefetching, Yang and Zhang
[26] employed a prediction model, whereas Teng et al. [31] presented a new cache
replacement algorithm, considering the impact of prefetching engine located at
Web server and a few cache parameters. Kobayashi and Yu [32] discussed the
performance model for mobile Web caching and prefetching and provided the
estimate of the total average latency, hit ratio, cache capacity and wireless band-
width required.

Prefetching is an intelligent technique used to reduce perceived congestion,
and to predict the subsequent page or document to be accessed [24, 12]. For
example, if a user is on a page with many links, the prefetching algorithm will
predict that the user may want to view associated links within that page. The
prefetcher will then appeal the predicted pages, and stores them until the actual
request is employed. This approach will display the page significantly faster
compared to the page request without prefetching. The only drawback is that if
the user does not request the pages, the prefetching algorithm will still implement
the prediction of the subsequent pages, thus causes the network to be congested
[25, 26, 27, 28].

In addition, Web prefetching method evolves from prefetching top-10 popular
pages [33] or hyperlinks [34] into prefetching by user’s access patterns. Statistical
prefetching algorithms [35] make use of Markov modeling, and establish a Markov
graph based on user’s access histories and make prefetching predictions based
on the graph which needs to be updated continuously while accessing Web.
Prefetching strategies in [25, 36] used data mining technique, to decide whether
to prefetch or not according to the probability of the pages accessed recently.
But it is possible that the prefetched pages are far away from the current page
sequence so that the cache hit ratio may not benefit from prefetching.

Hence, Web prefetching strategy need to achieve a balance between network
loads and performance gains. Some research studies have found that too aggres-
sive prefetching will increase Web access latency, since more prefetching will lead
to replacement of more cache items even including the pages that will be accessed
in near future. Under the wireless environment, Yin and Cao [37] proposed to
dynamically adjust the number of prefetching according to power consumption
for mobile data dissemination.

Wu et al. [38] introduced a rule-based modular framework for building self-
adaptive applications in mobile environments. They developed techniques that
combine static and dynamic analysis to uncover phase structure and data access
semantics of a rule program. The semantic information is used to facilitate in-
telligent caching and prefetching for conserving limited bandwidth and reducing
rule processing cost. As well, Komninos and Dunlop [39] found that calendars
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can really provide information that can be used to prefetch useful Internet con-
tent for mobile users. While it is expected that such an approach cannot fulfill
the whole of Internet content needs for a user, the work presented provided ev-
idence to the extent to which a mobile cache can be populated with relevant
documents that the user could find of interest. However, a foreseeable problem
with the current system is that the current adaptation algorithm adjusts the sys-
tem gradually, and not immediately, to the needs of a user. Thus, if a dramatic
change of circumstances was to occur, or if a user was to require information
from a very specific and known source, it is likely the system would fail to provide
the necessary information.

2 Why Web Caching?

Web caching is the temporary storage of Web objects (such as HTML docu-
ments) for later retrieval. There are three significant advantages to Web caching:
reduced bandwidth consumption (fewer requests and responses that need to go
over the network), reduced server load (fewer requests for a server to handle),
and reduced latency (since responses for cached requests are available immedi-
ately, and closer to the client being served). Together, they make the Web less
expensive and better performing.

Caching can be performed by the client application, and is built in to most
Web browsers. There are a number of products that extend or replace the built-
in caches with systems that contain larger storage, more features, or better
performance. In any case, these systems cache net objects from many servers
but all for a single user.

Caching can also be utilized in the middle, between the client and the server
as part of a proxy. Proxy caches are often located near network gateways to
reduce the bandwidth required over expensive dedicated Internet connections.
These systems serve many users (clients) with cached objects from many servers.
In fact, much of the usefulness (reportedly up to 80% for some installations) is
in caching objects requested by one client for later retrieval by another client.
For even greater performance, many proxy caches are part of cache hierarchies,
in which a cache can inquire of neighboring caches for a requested document to
reduce the need to fetch the object directly.

Finally, caches can be placed directly in front of a particular server, to reduce
the number of requests that the server must handle. Most proxy caches can be
used in this fashion, but this form has a different name (reverse cache, inverse
cache, or sometimes httpd accelerator) to reflect the fact that it caches objects
for many clients but from (usually) only one server [21].

2.1 How Web Caching Works?

All caches have a set of rules that they use to determine when to serve an object
from the cache, if it’s available. Some of these rules are set in the protocols
(HTTP 1.0 and 1.1), and some are set by the administrator of the cache (either
the user of the browser cache, or the proxy administrator).
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Generally speaking, these are the most common rules that are followed for a
particular request [21]:

1. If the object’s headers notify the cache not to keep the object, then it will
do so. Simultaneously, if there is no validation, then most caches will mark
that as uncacheable item.

2. If the object is authenticated or secured, then it will not be cached.
3. A cached object is considered fresh (that is, able to be sent to a client without

checking with the origin server) if:
• It has an expiry time or other age-controlling directive set, and is still

within the fresh period.
• If a browser cache has already seen the object, and has been set to check

once a session.
• If a proxy cache has seen the object recently, and it was modified rel-

atively long ago. Fresh documents are served directly from the cache,
without checking with the origin server.

4. If an object is stale, the origin server will be executed to validate the object,
or notify the cache whether the existing copy is still good.

Mutually freshness and validation are the most important mechanisms that
make cache works with content. A fresh object will be available instantly from
the cache, while a validated object will avoid sending the entire object all over
again if it has not been changed.

3 Performance Measurement for Web Optimization

Performance measurement of Web caching is needed to establish the efficiency of
a Web caching solution [9, 17, 32]. Some performance benchmarks or standards
are required for a particular Web caching solution to be evaluated. Such bench-
marks may assist in choosing the most suitable Web caching solution for the
problem we encounter. In this situation, a possibility of a particular structure
will beneficial for certain applications while other applications may require some
other substitutes.

Some organizations may choose for proxy based caching solutions. They may
try to overcome the problem of configuration Web browsers by forcing the use
of browsers that provide auto-configuration. For massive organizations, network
components such as routers and switches [9, 10] might be considered; otherwise,
transparent caching can be employed. Some organizations may prefer highly
scalable solutions for anticipating future needs. Besides, organizations which Web
sites contain highly dynamic content might occupy Active Cache [41] or possibly
will utilize Web server accelerators. Obviously, the subject of measurement of
performance is controlled not just to find the competence of a given Web caching
solution but also to cover evaluation of the performance of cache consistency
protocols, cache replacement algorithms, the role of fundamental protocols such
as HTTP and TCP and others.
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3.1 Parameters for Measuring Web Performance

Several metrics are commonly used when evaluating Web caching policies [41].
These include [42]:

1. Hit rate is generally a percentage ratio of documents obtained by using the
caching mechanism and total documents requested. If measurement focuses
on byte transfer efficiency, then weighted hit rate is a better performance
measurement [43].

2. Bandwidth utilization is an efficiency metric measurement. The reduction
bandwidth consumption shows that the cache is better.

3. Response time/access time –response time is the time taken for a user to get
a document.

The are various parameters such as user access patterns, cache removal policy,
cache size and document size that can significantly affect cache performance.
Other common metrics that are used to quantify the performance of Web caching
solutions proposed by Mohamed [17] include hit ratio, byte hit ratio, response
time, bandwidth saved, script size and current CPU usage.

Performance of Web caching solutions may be quantified by measuring pa-
rameters as follows [9]:

1. price
2. throughput (e.g. the number of HTTP requests per second generated by

users, the rate at which a product delivers cache hits etc.)
3. cache hit ratio (the ratio of the number of requests met in the cache to the

total number of requests)
4. byte hit ratio (the fraction of the number of bytes served by the cache divided

by the total number of bytes sent to its clients)
5. the number of minutes until the first cache hit/miss after a breakdown
6. the cache age (the time after which the cache become full)
7. hit ratio/price (e.g. hits/second per thousand dollars)
8. downtime (e.g. time to recover from power outrages or cache failures)

Techniques for measuring the efficiency and usefulness of Web caching solu-
tions have been evolving slowly since this field is relatively a new discipline; the
theory of Web Caching has advanced much faster than practice [9].

Despite quantifying the performance of caching clarifications, other aspects
such as client side latencies, server side latencies, aborted requests, DNS lookup
latencies, cookies, different popularity characteristics among servers, the type of
content, network packet losses should not be disregarded since there are some pa-
rameters are interrelated. For illustration, hit ratio is affected by inadequate disk
space in a cache server, and these lacking in the object placement/replacement
policies can cause the network to be overloaded. Hence, by maximizing a single
parameter alone may not be adequate [9].
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4 Uncertainty in Web Caching

Uncertainty, as well as evolution, is a part of nature. When humans describe com-
plex environments, they use linguistic descriptors of cognized real-world circum-
stances that are often not precise, but rather “fuzzy”. The theory of fuzzy sets
[44] provides an effective method of describing the behavior of a system, which
is too complex to be handling with the classical precise mathematical analysis.
The theory of rough sets [61] emerged as another mathematical approach for
dealing with uncertainty that arises from inexact, noisy or incomplete informa-
tion. Fuzzy set theory assumes that the membership of the objects in some set
is defined as a degree ranging over the interval [0,1]. Rough Set Theory (RST)
focuses on the ambiguity caused by the limited distinction between objects in a
given domain.

Uncertainty occurs in many real-life problems. It can cause the information
used for problem solving being unavailable, incomplete, imprecise, unreliable,
contradictory, and changing [46]. In computerized system, uncertainty is fre-
quently managed by using quantitative approaches that are computationally
intensive. For example, a binary that processes ‘TRUE or FALSE’, or ‘YES’ or
‘NO’ type of decisions, is likely to arrive at a conclusion or a solution faster than
one that needs to handle uncertainty.

Organizing uncertainty is a big challenge for knowledge-processing systems
[46]. In some problems, uncertainty can possibly be neglected, though at the
risk of compromising the performance of a decision support system. However, in
most cases, the management of uncertainty becomes necessary because of critical
system requirements or more complete rules are needed. In these cases, elimi-
nating inconsistent or incomplete information when extracting knowledge from
an information system may introduce inaccurate or even false results, especially
when the available source information is limited. Ordinarily, the nature of un-
certainty comes from the following three sources: incomplete data, inconsistent
data, and noisy data.

Thus, in a proxy cache, the superfluous of logs dataset with the huge number
of records, the frequency of errors (incomplete data), and the diversity of log
formats (inconsistent data) [10] will ground the practical challenges to analyze
it either to cache or not cache objects in the popular documents. Table 1 depicts
the sample of Web log data from Boston University Web Trace [47].

4.1 How Rough Sets Boost Up Web Caching Performance?

Another approach to represent uncertainty is using Rough Set (RS). RS are
based on equivalence relations and set approximations, and the algorithms for
computing RS properties are combinatorial in nature. The main advantages of
RST are as follows [48]:

• It does not need any preliminary or additional information about data;
• It is easy to handle mathematically;
• Its algorithms are relatively simple.
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Table 1. Sample Web log data

bugs 791131220 682449 “http://cs-www.bu.edu/” 2009 0.518815
bugs 791131221 620556 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1805
0.320793
bugs 791131222 312837 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 717
0.268006
bugs 791131266 55484 “http://cs-www.bu.edu/courses/Home.html” 3279
0.515020
bugs 791131266 676413 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bugs 791131266 678045 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0
bugs 791131291 183914 “http://cs-www.bu.edu/students/grads/tahir/CS111/”
738 0.292915
bugs 791131303 477482 “http://cs-www.bu.edu/students/grads/tahir/CS111/
hw2.ps” 41374 0.319514
bugs 791131413 265831 “http://cs-www.bu.edu/students/grads/tahir/CS111/if-
stat.ps” 10202 0.380549
bunsen 791477692 218136 “http://cs-www.bu.edu/” 2087 0.509628
bunsen 791477693 134805 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 1803
0.286981
bunsen 791477693 819743 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 715
0.355871
bunsen 791477719 107934 “http://cs-www.bu.edu/techreports/Home.html” 960
0.335809
bunsen 791477719 518262 “http://cs-www.bu.edu/lib/pics/bu-logo.gif” 0 0.0
bunsen 791477719 520770 “http://cs-www.bu.edu/lib/pics/bu-label.gif” 0 0.0

Wakaki et al. [48] used the combination of the RS-aided feature selection
method and the support vector machine with the linear kernel in classifying
Web pages into multiple categories. The proposed method gave acceptable accu-
racy and high dimensionality reduction without prior searching of better feature
selection. Liang et al. [49] used RS and RS based inductive learning to assist
students and instructors with WebCT learning. Decision rules were obtained
using RS based inductive learning to give the reasons for the student failure.
Consequently, RS based WebCT Learning improves the state-of-the-art of Web
learning by providing virtual student/teacher feedback and making the WebCT
system much more powerful.

Ngo and Nguyen [50] proposed an approach to search results clustering based
on tolerance RS model following the work on document clustering. The appli-
cation of tolerance RS model in document clustering was proposed as a way to
enrich document and cluster representation to increase clustering performance.
Furthermore, Chimphlee et al. [51] present a RS clustering to cluster web trans-
actions from web access logs and using Markov model for next access prediction.
Users can effectively mine web log records to discover and predict access patterns
while using this approach. They perform experiments using real web trace logs
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collected from www.dusit.ac.th servers. In order to improve its prediction ration,
the model includes a rough sets scheme in which search similarity measure to
compute the similarity between two sequences using upper approximation.

In [52], the authors employed RS based learning program for predicting the
web usage. In their approach, web usage patterns are represented as rules gener-
ated by the inductive learning program, BLEM2. Inputs to BLEM2 are clusters
generated by a hierarchical clustering algorithm that are applied to preprocess
web log records. Their empirical results showed that the prediction accuracy of
rules induced by the learning program is better than a centroid-based method,
and the learning program can generate shorter cluster descriptions.

In general, the basic problems in data analysis that can be undertaken by
using RS approach is as follows [46]:

• Characterization of a set of objects in terms of attribute values;
• Finding the dependencies (total or partial) between attributes;
• Reduction of superfluous attributes (data);
• Finding the most significant attributes;
• Generation of decision rules.

Fig. 1. Framework of the RClass System [46]
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4.2 A Framework of Rough Sets

The RClass system integrates RST with an ID3-like learning algorithm [46] as
shown in Figure 1. It includes three main modules; a consistency analyzer, a rough
classifier and an induction engine. The consistency analyzer analyses the training
data and performs two tasks; elimination of redundant data items, and identifica-
tion of conflicting training data. The rough classifier has two approximators; the
upper approximator and the lower approximator. The rough classifier is employed
to treat inconsistent training data. The induction engine module has an ID3-like
learning algorithm based on the minimum-entropy principle. The concept of en-
tropy is used to measure how informative an attribute is.

5 Rough Sets and Inductive Learning

Rough Set Theory [53] was introduced by Zdzislaw Pawlak as a tool to solve
problems with ambiguity and uncertainty [46]. Typically, data to be analyzed
consists of a set of objects whose properties can be described by multi-valued
attributes. The objects are described by the data that can be represented by a
structure called the information system (S) [54]. An information system can be
viewed as information table with its rows and columns consequent to objects
and attributes.

Given a set E of examples described by an information table T , we classify
objects in two different ways: by a subset C of the condition attributes and by
a decision attribute D in the information table to find equivalence classes called
indiscernibility classes Ω ={Ω1,...,Ωn} [55]. Objects within a given indiscerni-
bility class are indistinguishable from each other on the basis of those attribute
values. Each equivalence class based on the decision attribute defines a concept.
We use Des(Ωi) [49] to denote the description, i.e., the set of attribute values,
of the equivalence class Ωi. RS theory allows a concept to be described in terms
of a pair of sets, lower approximation and upper approximation of the class. Let
Y be a concept. The lower approximation Y and the upper approximation Y of
Y are defined as [49]:

Y = {e ∈ E|e ∈ ΩiandXi ⊆ Y } (1)

Y = {e ∈ E|e ∈ ΩiandXi ∩ Y =∅} (2)

Lower approximation is the intersection of all those elementary sets that are
contained by Y and upper approximation is the union of elementary sets that
are contained by Y .

Inductive Learning is a well-known area in artificial intelligence. It is used to
model the knowledge of human experts by using a carefully chosen sample of
expert decisions and inferring decision rules automatically, independent of the
subject of interest [56]. RS based Inductive Learning uses RS theory to find
general decision rules [57, 58]. These two techniques are nearness to determine
the relationship between the set of attributes and the concept.
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5.1 Rough Set Granularity in Web Caching

In our research, BU Web trace dataset from Oceans Research Group at Boston
University are used [47]. We considered 20 sample objects only, i.e., January 1995
records. In our previous research, we used the same dataset with implementation
of RS [59] and integration of Neurocomputing and Particle Swarm Optimization
(PSO) algorithm [60] to optimize the Web caching performance. Three condi-
tional attributes are taken into consideration; request time (Timestamp, TS ) in
seconds and microseconds, a current CPU usage (Sizedocument, SD) in bytes
and response time (Objectretrievaltime, RT ) in seconds. Consequently, a cache,
CA is chosen as a decision for the information table; 1 for cache and 0 for not
cache. Decision rules are obtained using RS based Inductive Learning [57] for

Table 2. Sample of log files dataset information table

Object
Attributes Decision

TS SD RT CA

S1 790358517 367 0.436018 0

S2 790358517 514 0.416329 0

S3 790358520 297 0.572204 0

S4 790358527 0 0 1

S5 790358529 0 0 1

S6 790358530 0 0 1

S7 790358530 0 0 1

S8 790358538 14051 0.685318 0

S9 790362535 1935 1.021313 0

S10 790362536 1804 0.284184 0

S11 790362537 716 0.65038 0

S12 790363268 1935 0.76284 0

S13 790363270 716 1.050344 0

S14 790363270 1804 0.447391 0

S15 790363329 1935 0.553885 0

S16 790363330 716 0.331864 0

S17 790363330 1804 0.342798 0

S18 790363700 0 0 1

S19 790363700 0 0 1

S20 790363700 1136 0.428784 0
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Web caching. Table 2 depicts the structure of the study: 20 objects, 3 attributes,
and a decision.

Detailed description and analysis are given in Table 3. The domain E and two
concepts Ycache and Ynotcache from the decision attribute (CA) are obtained as
follows:

E= {e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e17,e18, e19, e20}
Ycache = {e4,e5,e6,e17}
Ynotcache = {e1,e2,e3, e7,e8,e9,e10,e11,e12,e13,e14,e15,e16,e18}

Initially we find the indiscernibility classes based on TS that are {e1, e2}, {e12,
e13}, {e15, e16},{e17, e18}and{e3}, {e4},{e5},{e6},{e7}, {e8},{e9},{e10}, {e11},
{e14}.

The discriminant index of a concept Y is defined using the following formula:

αCi (Y ) = 1 − |Y − Y |/|E| (3)

Consequently, the discriminant index of TS is αC1 (Y ) = 1 − |Y − Y |/|E| =
1-(9-0)/20 = 0.55 determines the effectiveness of the singleton set of attributes
consisting of TS in specifying the membership in Y (the cache concept). Sub-
sequently, the indiscernibility classes of SD is conducted and the results are
{e4, e5, e6, e17},{e10, e12, e15}, {e9, e13, e16},{e8, e11, e14} and
{e1},{e2},{e3},{e7}, {e18}.

The lower approximation is illustrated as
Y =∪Ωi⊆Y Ωi={e1},{e2},{e3}, {e7},{e18}. The upper approximation is given as
Y = ∪Ωi∩Y �=∅ Ωi= {e4, e5, e6, e17, e10, e12, e15, e9, e13, e16, e8, e11, e14}. Hence, the
discriminant index of SD is αC2 (Y ) = 1− |Y − Y |/|E|= 1− (15− 5)/20 = 0.5.

The indiscernibility classes based on RT are {e4, e5, e6, e17} and {e1},{e2},
{e3},{e7},{e8},{e9},{e10},{e11},{e12},{e13},{e14},{e15},{e16},{e18}. The lower
approximation is given as Y = ∪Ωi⊆Y Ωi=∅. The upper approximation is
Y = ∪Ωi∩Y �=∅ Ωi= {e4, e5, e6, e17}. The discriminant index of RT is αC3 (Y ) =
1 − |Y − Y |/|E|= 1 - (6 - 0)/20 = 0.7.

By comparing the discriminant indices of all attributes, we identify that the
discriminant index of RT has the highest value, αCondition3(Y )= 0.7. This value
determines better membership in Y . Hence, the first rule is obtained as:

R1 : {Objectretrievaltime = 0} ⇒ {Cache = 1}

Since RT is the most important condition attribute, we merge this condition
attribute with other condition attributes to produce a new domain and to execute
new rules (refer to Table 3).

To discover the new domain, initially, the following equation is used to remove
unnecessary elements. (E − Y ) ∪ (Y ) = {e1, e2, e3, e7, e8, e9, e10, e11, e12, e13, e14,
e15, e16} ∪ ∅. The new element set are given as, (E − [(E − Y ) ∪ (Y )] = (E −
{e1, e2, e3, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16} ∪ ∅) = {e4,e5,e6,e17}
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Table 3. Collapsed log files dataset information table

Object
Attributes Decision

Total
TS SD RT CA

e1 790358517 367 0.436018 0 1

e2 790358517 514 0.416329 0 1

e3 790358520 297 0.572204 0 1

e4 790358527 0 0 1 1

e5 790358529 0 0 1 1

e6 790358530 0 0 1 2

e7 790358538 14051 0.685318 0 1

e8 790362535 1935 1.021313 0 1

e9 790362536 1804 0.284184 0 1

e10 790362537 716 0.65038 0 1

e11 790363268 1935 0.76284 0 1

e12 790363270 716 1.050344 0 1

e13 790363270 1804 0.447391 0 1

e14 790363329 1935 0.553885 0 1

e15 790363330 716 0.331864 0 1

e16 790363330 1804 0.342798 0 1

e17 790363700 0 0 1 2

e18 790363700 1136 0.428784 0 1

Table 4. Horizontal selection of collapsed table

Object
Attributes Decision

Total
TS SD RT CA

e4 790358527 0 0 1 1

e5 790358529 0 0 1 1

e6 790358530 0 0 1 2

e17 790363700 0 0 1 2
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Table 5. Further horizontally collapsed reduction table

Object
Attributes Decision

Total
TS CA

e4 790358527 1 1

e5 790358529 1 1

e6 790358530 1 2

e17 790363700 1 2

Subsequently, the horizontal selection of the collapsed information table is
obtained (Table 4). The total number of objects becomes 6.

The illustrations of this selected information table are given as Ycache =
{e4,e5, e6, e17} and Ynotcache= ∅, and the domain is E= {e4,e5, e6, e17}. We
locate the indiscernibility classes based on SD and RT as ∅. The lower ap-
proximation is Y = ∪Ωi⊆Y Ωi=∅ and the upper approximation is Y = ∪Ωi∩Y �=∅
Ωi= {e4, e5, e6, e17}. The discriminant index of SD and RT is αC2,C3 (Y ) =
1 − |Y − Y |/|E|= 1 − (6 − 0)/6 = 0.

The indiscernibility classes based on TS and RT is {e4, e5, e6, e17}. The lower
approximation is Y = ∪Ωi⊆Y Ωi= {e4, e5, e6, e17} and the upper approximation
is Y = ∪Ωi∩Y �=∅Ωi = {e4, e5, e6, e17}. The discriminant index of TS and RT is
αC1,C3 (Y ) = 1 − |Y − Y |/|E|= 1 - (6 - 6)/6 = 1.

By comparing the discriminant indices, we discover that αC1,C3 (Y ) = 1 best
determines the membership in Y . Thus, we attain the sample of second rule:

R2 : {Timestamp = 790358527, Objectretrievaltime = 0} ⇒{Cache
= 1}

Two rules have been found. If new domain is uncovered and new rules are
computed using the same method as previous, then the irrelevant elements can
be removed as (E − Y ) ∪ (Y ) = ∅ ∪ {e4, e5, e6, e17}.

By referring to Table 3, we can see that the first set is empty and the second
set has been handled by rule 2. Hence, the new set of elements becomes (E −
[(E − Y ) ∪ (Y )] = {e4, e5, e6, e17}.

Based on this assumption, we obtain supplementary collapsed information
table in which SD and RT are omitted due to superfluous attributes (see
Table 5).

The rules are fruitfully induced. A question that rises is how much we can
believe in these rules. Therefore, we need to evaluate the strength of the rules
as follows [61, 54]:

# of positive objects covered by the rule
# of objects covered by the rule (including both positive and negative)
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Based on this equation, the first rule has strength of 6/20. It shows that 30%
Classes of e4, e5, e6, ande17 (Table 3) are positive examples covered by the rule.
Class e1 is a negative example covered by the first rule. The second rule has the
strength of 6/6, that is, 100%. In applying the first rule to this object, there is a
30% chance that the reason for cache the object is exclusively the cache of RT .
However, there is a higher probability that the reason for cache is due to extra
timing of TS and RT , due to 100% strength of the second rule. Algorithm 1
illustrates the algorithm of rules induction using RS [57].

Algorithm 1. Rough set algorithm [57]
1: for each decision class do
2: Initialise universe of objects
3: Select decision class
4: Find class relation
5: repeat
6: for each attribute do
7: Select attribute
8: Find equivalence relation
9: Find lower subset

10: Find upper subset
11: Calculate discriminant index
12: end for
13: Select attribute with highest discriminant index
14: Generate rules
15: Reduce universe of objects
16: Reduce class relation
17: until no objects with selected decision class
18: end for

This part presents substantial RS analysis based on Inductive Learning meth-
ods to optimize Web caching performance to probe significant attributes and
generate the decision rules. RS granularity in Web caching allows decision rules
to be induced. These rules are important in optimizing user storage by exe-
cuting caching strategy in specifying the most relevant condition attributes.
This approach provides guidance to the administrator in Web caching regarding
to selection of the best parameters to be cached. Based on this analysis, the
administrator may reorganize the parameter of log data set in proxy caching
accordingly.

6 Experimental Results

In this part describes experimental results of dataset for HTTP requests and
user behavior of a set of Mosaic clients running in the Boston University (BU),
Computer Science Department [47].
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6.1 BU Log Dataset

In this experiment, BU Web Trace collected by Oceans Research Group at
Boston University is employed. BU traces records consist of 9,633 files with
a population of 762 different users, and recording 1,143,839 requests for data
transfer. The data for January 1995 comprises of 11 to 220 users with 33,804
records. However, after data cleaning, only 10,727 dataset is left.

Moreover, in this research RS is exploited to reduce the rules of a log file and
simultaneously to enhance the prediction performance of user behavior. RS is
beneficial in probing the most significant attributes with crucial decision rules
to facilitate intelligent caching and prefetching to safeguard limited bandwidth
and minimize the processing cost.

The dataset is split in two; 70% (7,187 objects) for training and 30% (3,540
objects) for testing. To simplify data representation, a Näıve Discretization
Algorithm (NA) is exploited and Genetic Algorithm (GA) is chosen to generate
the object rules. Next, Standard Voting Classifier (SVC) is selected to classify
the log file dataset. The derived rules from the training are used to test the effec-
tiveness of the unseen data. In addition, 3-Fold Cross Validation is implemented
for validation of our experiment. First fold (K1) the testing data from 1 to 3540,
second fold (K2) from 3541 to 7081 and third fold (K3) from 7082 to 10622.
Data are stored in decision table. Columns represent attributes, rows represent
objects whereas every cell contains attribute value for corresponding objects and
attributes. A set of attributes are URL, Machinename, Timestamp, Useridno,
Sizedocument, Objectretrievaltime, and Cache as a decision.

6.2 Data Discretization and Reduction

Training data is discretized using NA. This discretization technique is imple-
mented a very straightforward and simple heuristic that may result in very many
cuts, probably far more than are desired. In the worst case, each observed value
is assigned its own interval. GA is used for reduct generation [63] as it provides
more exhaustive search of the search space. Reducts generation have two options
[64]; full object reduction and object related reduction. Full object reduction
produces set of minimal attributes subset that defines functional dependencies,
while reduct with object related produce a set of decision rules or general pat-
tern through minimal attributes subset that discern on a per object basis. The
reduct with object related is preferred due to its capability in generating reduct
based on discernibility function of each object.

Table 6 illustrates the comparison results of generation of a log file dataset
in different K-fold (K1, K2 and K3). The highest testing accuracy is 98.46%
achieved through NA discretization method and GA with full reduct method.
Number of reducts for K1, K2 and K3 are equivalent. Object related reduct, 22
and full reduct, 6. In our observation, the highest number of rules are GA with
full reduct, 63311 for K1, K2 and K3 and the highest testing accuracy is GA
with full reduct for K1, 98.46%.
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Table 6. Comparison reduct for K1, K2 and K3

Discretize
Method

Reduct Method K-fold No.of
Reduct

No.of
Rules

Testing
Accuracy
(%)

NA

GA (object related)
K1 22 26758 96.8644

K2 22 26496 96.8644

K3 22 26496 96.8079

GA (full object)
K1 6 63311 98.4618

K2 6 63311 5.76271

K3 6 63311 5.79096

6.3 Rule Derivation

A unique feature of the RS method is its generation of rules that played an
important role in predicting the output. ROSETTA tool has listed the rules
and provides some statistics for the rules which are support, accuracy, coverage,
stability and length. Below is the definition of the rule statistics [64]:

• The rule LHS support is defined as the number of records in the training
data that fully exhibit property described by the IF condition.

• The rule RHS support is defined as the number of records in the training
data that fully exhibit the property described by the THEN condition.

• The rule RHS accuracy is defined as the number of RHS support divided by
the number of LHS support.

• The rule LHS coverage is the fraction of the records that satisfied the IF
conditions of the rule. It is obtained by dividing the support of the rule by
the total number of records in the training sample.

• The rule RHS coverage is the fraction of the training records that satisfied
the THEN conditions. It is obtained by dividing the support of the rule by
the number of records in the training that satisfied the THEN condition.

The rule length is defined as the number of conditional elements in the IF
part. Table 7 shows the sample of most significant rules. These rules are sorted
according to their support value. The highest support value is resulted as the
most significant rules. From the Table 7, the generated rule of {Sizedocument(0)
⇒ Cache(1)} is considered the most significant rules with the outcome of not
cache (output=0) and with cache (output=1). This is supported by 3806 for
LHS support and RHS support value. Subsequently, the impact of rules length
on testing accuracy are evaluated based on rules set from Table 7. Consequently,
the same rules are divided into two groups; 1≤ rules of length ≤2. It seems that
the rules with length ≥1 contribute better classification compared to the rules
with length ≤2.
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Table 7. Sample for sorted of highest rule support values from data decision table for
K1, K2 and K3

Rule LHS
Sup-
port

RHS
Sup-
port

LHS
Length

RHS
Length

K1

Sizedocument(0) ⇒ Cache(1) 3806 3806 1 1

Objectretrievaltime(0.000000) ⇒
Cache(1)

3805 3805 1 1

Sizedocument(2009) ⇒ Cache(0) 233 233 1 1

Sizedocument(717) ⇒ Cache(0) 128 128 1 1

K2

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Sizedocument(0) ⇒ Cache(1)

1009 1009 2 1

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Objectretrievaltime(0.00000)
⇒ Cache(1)

1009 1009 2 1

Machinename(beaker) AND Sizedoc-
ument(0) ⇒ Cache(1)

308 308 2 1

Machinename(beaker) AND Objec-
tretrievaltime(0.00000) ⇒ Cache(1)

308 308 2 1

K3

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Objectretrievaltime(0.00000)
⇒ Cache(1)

989 989 2 1

URL(http://cs-
www.bu.edu/lib/pics/bu-logo.gif)
AND Sizedocument(0) ⇒ Cache(1)

989 989 2 1

Machinename(beaker) AND Sizedoc-
ument(0) ⇒ Cache(1)

306 306 2 1

Machinename(beaker) AND Objec-
tretrievaltime(0.00000) ⇒ Cache(1)

306 306 2 1
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6.4 Classification

From the analysis, it shows that the classification is better. Furthermore, the core
attributes and the significant rules can improve the accuracy of classification.Table
8 shows the result of classification performance of K1, K2 and K3 for the original
table and the new decision table of log file dataset. Hence, Figure 2 depicts an over-
all accuracy for log file, 36.67% for all rules in original decision table and 96.85% for
selected rules in new decision table. This result shows a different of overall accuracy
up to 60.18% between the original decision table and new decision table.

Table 8. Classification performance of K1, K2 and K3 for both original decision table
and new decision table of log file dataset

Decision Table Rule Set K-fold Accuracy
(%)

Overall
Accu-
racy
(%)

New decision table Selected rules
K1 96.8644

96.85K2 96.8644

K3 96.8079

Orig. decision table All rules
K1 98.4618

36.67K2 5.76271

K3 5.79096

Rough Web Caching 22

Fig. 2. Overall classification accuracy for both original decision table and new decision
table of log file dataset
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7 Conclusions

This chapter illustrated the usage of rough set theory for performance enhance-
ment of Web caching. The RClass System framework [46] is used as a knowledge
representation scheme for uncertainty in data for optimizing the performance of
proxy caching that use to store the knowledge discovery of user behaviors in log
format.

Furthermore, substantial RS analysis based on Inductive Learning methods is
presented to optimize Web caching performance to probe significant attributes
and generate the decision rules. RS granularity in Web caching allows decision
rules to be induced. These rules are important in optimizing users’ storage by exe-
cuting caching strategy in specifying the most relevant condition attributes. This
approachprovides guidance to the administrator inWeb caching regarding to selec-
tion of the best parameters to be cached. Based on this analysis, the administrator
may reorganize the parameter of log data set in proxy caching accordingly.

Moreover, an empirical study has been conducted for searching optimal classi-
fication. A RS framework for log dataset is illustrated mutually with an analysis
of reduced and derived rules, with entrenchment of their implicit properties for
better classification outcomes.

In the future, more experiments on huge data will be conducted on hybridiza-
tion of RS and evolutionary computation to deal with multiple knowledge of
Web caching in reducing network latency.
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Summary. This chapter is an extension of our earlier work in combining and compar-
ing rough hybrid approaches with neuro-fuzzy and partial decision trees in
classifying software defect data. The extension includes a comparison of our earlier
results with linear and non-linear support vector machines (SVMs) in classifying de-
fects. We compare SVM classification results with partial decision trees, neuro-fuzzy
decision trees(NFDT), LEM2 algorithm based on rough sets, rough-neuro-fuzzy deci-
sion trees(R-NFDT), and fuzzy-rough classification trees(FRCT). The analyses of the
results include statistical tests for classification accuracy. The experiments were aimed
at not only comparing classification accuracy, but also collecting other useful software
quality indicators such as number of rules, number of attributes (metrics) and the type
of metrics (design vs. code level). The contribution of this chapter is a comprehensive
comparative study of several computational intelligence methods in classifying soft-
ware defect data. The different methods also point to the type of metrics data that
ought to be collected and whether the rules generated by these methods can be easily
interpreted.

Keywords: Classification, fuzzy-rough classification trees, neuro-fuzzy decision trees,
rough sets, software defects, support vector machines.

1 Introduction

In the context of software defect classification, the term data mining refers to
knowledge-discovery methods used to find relationships among defect data and
the extraction of rules useful in making decisions about defective modules either
during development or during post-deployment of a software system. A software
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defect is a product anomaly (e.g, omission of a required feature or imperfection
in the software product) [19]. As a result, defects have a direct bearing on the
quality of the software product and the allocation of project resources to program
modules. Software metrics make it possible for software engineers to measure and
predict quality of both the product and the process.

There have been several studies in applying computational intelligence tech-
niques such as rough sets [18], fuzzy clustering [8, 29], neural networks [13] to
software quality data. Statistical predictive models correlate quality metrics to
number of changes to the software. The predicted value is a numeric value that
gives the number of changes (or defects) to each module. However, in practice,
it is more useful to have information about modules that are highly defective
rather than knowing the exact number of defects for each module.

This chapter is an extension of our earlier work [20, 21] in comparing rough
hybrid approaches in classifying software defect data. Significant enhancements
include i) the comparison with linear and non-linear support vector machines
(SVMs) ii) Using rough set based LEM2 algorithm [27] iii) preprocessing of data
and experimenting with several iterations.

We compare SVM classification results with partial decision trees [25], neuro-
fuzzy decision trees [1], rough-neuro-fuzzy decision trees, and fuzzy-rough clas-
sification trees [3, 4]. The analyses of the results include statistical tests for
classification accuracy. In [20], the hybrid approach was limited to employing
the strength of rough sets to attribute reduction as the first step in classification
with neuro-fuzzy decision trees. In [21], Fuzzy-Rough Classification Trees that
employ fuzzy-rough dependency degree [9, 2] for the induction of FRCT. Other
data mining methods reported in this chapter are from rough set theory [17] and
fuzzy decision trees [28].

In this work, the defect data consists of product metrics drawn from the
PROMISE1 Software Engineering Repository data set. The results are very
promising in terms of how different methods point to the type of metrics data
that ought to be collected and whether the rules generated by these methods can
be easily interpreted.. In addition, we observed that the rule set with LEM2 was
significantly smaller than our earlier reported result [20, 21]. The contribution
of this chapter is a comprehensive comparative study of several computational
intelligence methods in classifying software defect data.

This chapter is organized as follows. In Sect. 2, we give a brief overview of
the various methods that were used in our experiments. The details of the defect
data and classification methods are presented in Sect. 3. This is followed by an
analysis of the classification results in Sect. 4.

2 Approaches

2.1 Neuro-Fuzzy Decision Trees

Fuzzy decision trees are powerful, top-down, hierarchical search methodology
to extract easily interpretable classification rules [2]. However, they are often
1 http://promise.site.uottawa.ca/SERepository
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criticized for poor learning accuracy [26]. In [1] a Neuro-Fuzzy Decision Trees
(NFDT) algorithm was proposed to improve the learning accuracy of fuzzy de-
cision trees. In the forward cycle, NFDT constructs a fuzzy decision tree using
the standard FDT induction algorithm fuzzy ID3 [28]. In the feedback cycle,
parameters of fuzzy decision trees (FDT) have been adapted using stochastic
gradient descent algorithm by traversing back from each leaf to root nodes.
Forward cycle means construction of fuzzy decision tree by doing forward pass
through data. Feedback cycle means tuning of FDT parameters using N-FDT
algorithm. With the computation of mean-square-error, feedback regarding the
classification performance of FDT is continuously available, which is being used
to tune the FDT parameters. During the parameter adaptation stage, NFDT
retains the hierarchical structure of fuzzy decision trees. A detailed discussion
of NFDT algorithm with computational experiments using real-world datasets
and analysis of results are available in [1].

We will now give a brief discussion about standard crisp decision trees and
fuzzy decision trees. This will provide the useful reference for the study of neuro-
fuzzy decision trees. The most important feature of decision trees is their capa-
bility to break down complex decision making method into a collection of locally
optimal simple decisions through top-down greedy search technique. State-of-
the-art survey of various crisp decision tree generation algorithms, including
the most important and popular Quinlan’s ID3 family and C4.5 [25], is given
in [23, 24],and by Safavian and Landgrebe [22]. Although the decision trees gen-
erated by these methods are useful in building knowledge-based expert systems,
they are often not capable of handling cognitive uncertainties consistent with
human information processing, such as vagueness and ambiguity. In general,
vagueness is related to the difficulty in making sharp classification boundaries.
Ambiguity is associated with one-to-man mapping. To overcome these defi-
ciencies, various researchers have developed fuzzy decision tree induction algo-
rithms [28]. All fuzzy decision tree generation techniques evaluate classification
abilities of fuzzified attributes using some suitable measure of uncertainty. In-
corporating this measure in crisp decision tree generation algorithm like ID3,
fuzzy decision trees can be constructed.

Figure 1 shows fuzzy decision tree using fuzzy ID3 algorithm for a toy dataset
of two class classification problem. As shown in Fig. 1, fuzzy decision trees are
composed of a set of internal nodes representing variables used in the solution of a
classification problem, a set of branches representing fuzzy sets of corresponding
node variables, and a set of leaf nodes representing the degree of certainty with
which each class has been approximated. Patterns are classified by starting from
the root node and then reaching to one or more leaf nodes by following the
path of degree of memberships greater than zero. Each path-m is defined on
the premise space composed of input features available in traversing from root
node to mthleaf node. In Fig. 1, path-1, path-2, and path-3 are composed on
the premise space x1 = x2 = x3 = [x6, x2], where as path-4 and path-5 are
composed on the premise space x4 = x5 = [x6]. Number of variables appearing
on the path defines the length of that path. For example, in Fig. 1, length of
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Fig. 1. Exemplary neuro-fuzzy decision tree

path-1, path-2, path-3 = 2. Fuzzy decision tree being a hierarchical structure,
share the membership functions along the paths leading to each leaf node from
root node. In Fig. 1, membership function F63 has been shared by path-1, path-
2, and path-3. With this preliminary discussion on fuzzy decision trees and its
advantages over crisp decision trees, what follows is the formal notation and
details of the neuro-fuzzy decision trees:

Figure 1 shows an exemplary NFDT with two summing nodes to carry out
the inference process. There are five paths starting from root node to five leaf
nodes. Root node is indicated by x6. Leaf nodes are shown by dots and indexed
as m = 1, 2, , 5. Training patterns are labeled as {xi, yi} where i = 1, ..., n and
yi ∈ {0, 1} where where xi represents the ith object(pattern) and yi represents
the prediction certainty of the decision class for the ith object. The input to
NFDT is a decision table. Let βml be the certainty factor corresponding to mth

leaf node and decision class-l. From all the leaf nodes, certainty corresponding
to decision class-l are summed up to calculate output yl. Traversing path from
root node x6 to second leaf node is represented by:

path2 = x6 is F63 ∧ x2 is F22
leaf2 : y1 = Class1(β21), y2 = Class2(β22)

(1)

The firing strength (FS) of path-m with respect to decision class-l for the ith

object is defined by (2)
FSm = µi

pathm
× βml, (2)

where µi
pathm

is the membership degree of ith object for path-m and can be
calculated as shown in (3)
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µi
pathm

=
∏
j

µF m
j

(
xi

j

)
. (3)

where µF m
j

(
xi

j

)
is the degree of membership of the ith pattern of the jth input

xj into Fm
j . Fm

j is fuzzy membership function for jth attribute on path-m. This
way, µi

pathm
is zero if for any of the input variable on mth path the degree of

membership of ith pattern to the fuzzy membership function Fm
j is zero.

Firing strengths of all the paths for a particular decision class-l are summed
up to calculate the prediction certainty yi

l of ith object(pattern) to lth class
through fuzzy decision tree as shown in (4)

yi
l =

M∑
m=1

FSm, (4)

where 0 ≤ yi
l ≤ 1 and q is total number of classes. When classification to a

unique class is desired, the class with the highest membership degree needs to
be selected, i.e., classify given object(pattern) to class l0, where

l0 = arg max
l=1,...,q

{
yi

l

}
. (5)

To fuzzify input attributes, we have selected Gaussian membership functions out
of many alternatives due to its differentiability property (i.e., existence of the
differentiation). For ith object(pattern), membership degree of path-m can be
calculated as shown in (6)

µi
pathm

=
∏
j

µF m
j

(
xi

j

)
=

∏
j

exp

((
xi

j − cjm

)2

2σ2
jm

)
, (6)

where cjm and σjm are center and standard deviation (width) of Gaussian mem-
bership function of jth attribute of input object(pattern) xi on path-m, i.e., of
Fm

j . We now briefly outline the strategy of NFDT by performing an adaptation
of all types of parameters (centers, widths, and certainty factors) simultaneously
on the structure shown in Fig. 1. We define as the error function of the fuzzy
decision tree, the mean-square-error defined by (7)

MSE =
1
2n

q∑
l=1

n∑
i=1

(
di

l − yi
l

)2
, (7)

where n is the total number of training patterns and di
l and yi

l are the desired
prediction certainty and the actual prediction certainty of class-l for ith ob-
ject(pattern), respectively. At each epoch (iteration), the complete parameter
P = {cjm, σjm, βml | m = 1, ..., M ; l = 1, ..., q} is moved by a small distance η in
the direction in which MSE decreases most rapidly, i.e., in the direction of the
negative gradient − ∂E

∂θ where θ is the parameter vector constituted from the
set P. This leads to the parameter update rule shown in (8)
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θτ+1 = θτ − η
∂E

∂θ
, (8)

where τ is the iteration index and η is the learning rate. The update equations for
centers, widths, and certainty factors can be found in [1]. Parameter adaptation
continues until error goes below certain small positive error goal ε or the specified
number of training epochs has been completed. Neuro-fuzzy decision trees take as
input the fuzzy decision tree structure and try to minimize the mean-square-error
by tuning the centers and standard deviations of Gaussian membership functions
along with certainty factors associated with each node. For example, if there
is high degree of overlap (or very less overlap) between adjacent membership
functions in the initial fuzzy decision tree structure if cluster centers are too
close (or too far). Neuro-fuzzy decision tree algorithm tries to minimize the
mean-square-error and in the process adjust the cluster centers and standard
deviations.

What follows are details about the computational set-up for the experiments
reported in this chapter with NFDT. All the attributes have been fuzzified using
fuzzy c-means algorithm [5] into three fuzzy clusters. From the clustered row
data, Gaussian membership functions have been approximated by introducing
the width control parameter λ. The center of each gaussian membership function
has been initialized by fuzzy cluster centers generated by the fuzzy c-means
algorithm. To initialize standard deviations, we have used a value proportional
to the minimum distance between centers of fuzzy clusters. For each numerical
attribute xj and for each gaussian membership function, the Euclidean distance
between the center of Fjk and the center of any other membership function Fjh

is given by dc (cjk, cjh), where h �= k. For each kth membership function, after
calculating dcmin (cjk, cjh), the standard deviation σjk has been obtained by (9)

σjk = λ × dcmin (cjk, cjh) ; 0 < λ ≤ 1, (9)

where λ is the width control parameter. For the computational experiments
reported here, we have selected various values of λ ∈ (0, 1] to introduce variations
in the standard deviations of initial fuzzy partitions.

2.2 Fuzzy-Rough Classification Trees

Fuzzy-Rough Classification Trees (FRCT) integrate rule generation technique of
fuzzy decision trees and rough sets. The measure used for the induction of FRCT
is fuzzy-rough dependency degree proposed in [3, 4]. The dependency degree
measure in the context of rough set theory has been proposed by Pawlak [17].
Fuzzy-rough dependency degree measure is an extension of Pawlak’s measure to
accommodate fuzzy data. Pawlak’s measure is only applicable to crisp partitions
of feature space. In [3, 4], we have shown that our measure of fuzzy-rough de-
pendency degree is more general one and covers Pawlak’s measure as a limiting
case when partitions are crisp rather than fuzzy. In this sect., we briefly outline
the steps of computing the fuzzy-rough dependency degree.
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Formally, a data (information) table IS is represented by a pair (X, A), where
X is a non-empty, finite set of objects and A is a non-empty, finite set of at-
tributes, where aj : X → V aj for every aj ∈ A where aj is the jth input of
attribute a and V aj is the value set of aj . A decision table is represented by a
pair (X, C, D), where C, D ⊆ A. In other words, the attribute set A is partitioned
into: condition attributes C and decision attribute D. Let |C| = p i.e., the total
number of input of variables are p. Let |D| = q, i.e., the total number of classes
are q. In other words, each input pattern is classied into one of the q classes. Let
Fjk be the kth fuzzy set of attribute aj . The fuzzy set represents overlapping
and non-empty partitions of real-valued attributes aj ∈ C where (1 ≤ j ≤ p) on
the set of training set T ⊆ X . For notational convenience, we will use j instead
of aj for attributes.

The membership function of the lower approximation of an arbitrary class-l
of Fjk for the ith object( pattern) denoted by xi

j ∈ T with decision di is given
by:

µl (Fjk) = inf
∀i∈U

max
{
1 − µFjk

(
xi

j

)
, µl

(
di

)}
The dependency degree γxj (d) for the ith object (pattern) and jth attribute can
be calculated as follows:

• Calculate the lower approximation member function µl (Fjk) using the above
definition

• Calculate fuzzy positive region µPOS (Fjk) = sup
l=1,..,q

{
µl (Fjk)

}
• Calculate the degree of membership of the ith pattern to the fuzzy positive

region
µPOS

(
xi

j

)
= sup

l=1,..,q
min

{
µFjk

(
xi

j

)
, µPOS (Fjk)

}

• Calculate the dependency degree γxj (d) =

n∑
i=1

µPOS(xi
j)

n

Fuzzy-rough dependency degree of attribute xj , denoted here as γxj lies be-
tween 0 and 1, i.e., 0 ≤ γxj (d) ≤ 1. d = 1 indicates that decision attribute d
completely depends on input attribute xj , in other words, xj alone is sufficient to
approximate all the decisions given in decision attribute d. d = 0 indicates that
decision attribute d is not completely dependent on on input attribute xj . Any
value of γxj (d) that is in (0,1) indicates partial dependency. Partial dependency
means addition of other input attributes is required to completely approximate
all the decisions given in decision attribute d. This property of fuzzy-rough de-
pendency degree makes it a good choice as an attribute selection criterion for
the induction of fuzzy decision trees. We call fuzzy decision trees wherein fuzzy-
rough dependency degree is used as an attribute selection criterion, a fuzzy-rough
classification trees.

Given fuzzy partitions of feature space, leaf selection threshold βth, and fuzzy-
rough dependency degree γ as expanded attribute (attribute to represent each
node in fuzzy decision tree) selection criterion, the general procedure for gener-
ating fuzzy decision trees using FRCT algorithm is outlined in Alg. 1.
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Algorithm 1. Algorithm for generating fuzzy decision trees using FRCT
Require: fuzzy partitions of feature space, βth, γ
Ensure: fuzzy decision trees
1: while ∃ candidate nodes do
2: Select node with highest γ; � dependency degree
3: Generate its child nodes; � root node will contain attribute with highest γ
4: if βchild−node ≥= βth then
5: child-node = leaf-node
6: else
7: Search continues with child-node as new root node
8: end if
9: end while

Before training the initial data, the α cut is usually used for the initial data [4].
Usually, α is in the interval (0, 0.5]. A detailed description of fuzzy-rough depen-
dency degree is available in [3]. The cut of a fuzzy set F is defined as:

µFα (a) =
{

µF (a) ; µF (a) ≥ α
0; µF (a) < α

.

In the case of FRCT experiments, fuzzy partitioning of the feature space has
been generated by the following method. Fuzzy c-means [5] algorithm has been
utilized to fuzzify continuous attributes into three fuzzy clusters. The triangular
approximation of the clustered raw data is done in two steps. First, the convex
hull of the original clustered data is determined through MATLAB R© function
“convhull”, and then the convex hull is approximated by a triangular member-
ship function. We mention here that three fuzzy clusters have been chosen only
to report experimental results. Choosing different number of clusters may affect
the result. In general, one should iterate from a few minimum to maximum num-
ber of clusters, construct fuzzy-rough classification trees, and choose one which
gives best classification accuracy with acceptable number of rules.

2.3 Support Vector Machines

In this sect., we give a brief discussion of linear and nonlinear Support Vector
Machines (SVMs) used in our computational experiments [6]. Linear and nonlin-
ear SVMs trained on non separable (and separable) data results in a quadratic
programming problem.

Linear SVM

Let training patterns are labeled as {xi, yi}, where i = 1, ..., n, yi ∈ {−1, +1} , xi

∈ �. Let there exist some separating hyper plane which separates the positive
from the negative patterns. The points x, which lie on the hyper plane satisfy

xi · w + b = 0 (10)
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where w is normal to the hyper plane |b|
|w| is the perpendicular distance from the

hyper plane to the origin, and ‖w‖ is the Euclidean norm of w. For the linearly
separable case, the SVM algorithm simply looks for the separating hyper plane
with largest margin i.e., w and b which can maximize the margin. Once optimal
b and w are obtained, we simply have to determine on which side of the decision
boundary a given test pattern x lies and assign the corresponding class label,
i.e., we take the class of x to be sgn(w · x + b) given as

xi · w + b ≥ 1, for yi = 1, xi ·w + b ≤ −1, for yi = −1. (11)

Equation 11 can be combined into one set of inequalities:

y (xi · w + b) − 1 ≥ 1, for i (12)

However, in practice, it is difficult to find problems with perfectly linearly separa-
ble case. The actual SVM formulation described above for the linearly separable
case is modified by introducing positive slack variables ζi where i=1,...,n in the
constraints. Equation 11 can be be rewritten as:

xi · w + b ≥ 1 − ζi, for yi = 1, (13)
xi · w + b ≤ −1 − ζi, for yi = −1 where ζi ≥ 0 for i (14)

NonLinear SVM

To handle cases where the decision function is not a linear function of the data,
a nonlinear version of the SVM is normally used. In this case, we first map the
data to some other (possibly infinite dimensional) Euclidean space H using a
mapping φ where φ : � → H . SVM training algorithm would only depend on
the data through dot products in H i.e., on functions of the form φ (xi) · φ (xj).

Now if there is a ’Kernel function’ K such that, K (xi) ·K (xj) = φ (xi) ·φ (xj).
we would only need to use K in the training algorithm, and would never need
to explicitly know the value(s) for φ. One such example is Gaussian kernel, used
in the computational experiments reported here. A detailed discussion of lin-
ear and nonlinear SVMs for separable and non-separable cases, with interesting
mathematical results can be found in [6].

3 Software Defect Data

The PROMISE data set includes a set of static software metrics about the
product as a predictor of defects in the software. The data includes measurements
for 145 modules (objects). There are a total of 94 attributes and one decision
attribute (indicator of defect level). The defect level attribute value is TRUE
if the class contains one or more defects and FALSE otherwise. The metrics at
the method level are primarily drawn from Halstead’s Software Science met-
rics [10] and McCabe’s Complexity metrics [15]. The metrics at the class level,
include such standard measurements as Weighted Methods per Class (WMC),
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Fig. 2. Exemplary data set

Depth of Inheritance Tree (DIT), Number of Children (NOC), Response For a
Class (RFC), Coupling Between Object Classes (CBO), and Lack of Cohesion
of Methods (LCOM) [7]. A sample data set of 30 modules with 22 attributes
are shown in Fig. 2.

In this chapter, for the purposes of illustration we have given a brief descrip-
tion of the first 22 attributes. Since the defect prediction is done at a class-level,
all method level features were transformed to the class level. Transformation was
achieved by obtaining min, max, sum, and avg values over all the methods in a
class. Thus this data set includes four features for each method-level features.

• a1: PERCENT-PUB-DATA . The percentage of data that is public and pro-
tected data in a class.

• a2: ACCESS-TO-PUB-DATA. The amount of times that a class’s public and
protected data is accessed.

• a3: COUPLING-BETWEEN-OBJECTS. The number of distinct non-
inheritance-related classes on which a class depends.
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• a4: DEPTH. The level for a class. For instance, if a parent has one child the
depth for the child is two.

• a5: LACK-OF-COHESION-OF-METHODS. For each data field in a class,
the percentage of the methods in the class using that data field. This metric
indicates low or high percentage of cohesion.

• a6: NUM-OF-CHILDREN. The number of classes derived from a specified
class.

• a7: DEP-ON-CHILD. Whether a class is dependent on a descendant.
• a8: FAN-IN. This is a count of calls by higher modules.
• a9: RESPONSE-FOR-CLASS. A count of methods implemented within a

class plus the number of methods accessible to an object class due to
inheritance.

• a10: WEIGHTED-METHODS-PER-CLASS. A count of methods imple-
mented within a class rather than all methods accessible within the class
hierarchy.

• a11: minLOC-BLANK. Lines with only white space or no text content.
• a12: minBRANCH-COUNT. This metric is the number of branches for each

module.
• a13: minLOC-CODE-AND-COMMENT. Lines that contain both code and

comment.
• a14: minLOC-COMMENTS. Minimum lines with comments.
• a15: minDESIGN-COMPLEXITY. Design complexity is a measure of a mod-

ule’s decision structure as it relates to calls to other modules.
• a17: minESSENTIAL-COMPLEXITY. Essential complexity is a measure of

the degree to which a module contains unstructured constructs.
• a18: minLOC-EXECUTABLE. Minimum Source lines of code that contain

only code and white space.
• a19: minHALSTEAD-CONTENT. Complexity of a given algorithm indepen-

dent of the language used to express the algorithm.
• a20: minHALSTEAD-DIFFICULTY. Minimum Level of difficulty in the

program.
• a21: minHALSTEAD-EFFORT. Minimum estimated mental effort required

to develop the program.
• a22: minHALSTEAD-ERROR-EST. Estimated number of errors in the

program.

Data Preprocessing

Since all the data is real-valued with a wide variation in the values for attributes
from 0.1 to 105, it was necessary to normalize the attribute values for experiments
that were not based on fuzzy sets. What follows are some data preprocessing
tasks that were performed on the defect data:

• All attributes were normalized using the WEKA2unsupervised instance based
filter method.

2 http://www.cs.waikato.ac.nz/ml/weka
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• For 10-Fold CV, pairs of testing-training data sets were generated indepen-
dently and used in all our experiments with different methodologies.

• All attribute values were discretized in experiments with LEM2 and J48.
The version of LEM2 included in RSES3 works only with discretized data.
Discretization alogrithm implemented in WEKA was used with J48. Dis-
cretization is by simple binning in the unsupervised mode.

Experimental Setup - Discretization in RSES

Whenever the domain of a real-valued condition attribute is exceptionally large,
then the number of decision rules that are generated can be unmanageably
large. In such cases, discretization of attribute value sets provides a mecha-
nism for reducing the domain space without significantly altering the quality
of the rules that are derived. That is, we need to obtain approximate knowl-
edge of a continuum by considering parts of the continum for an attribute.
Discretization of a continuum entails the partition of the interval of a real-
valued attribute into subintervals of reals. Let DT = (U, A ∪ d) be a decision
table where U = {x1, . . . , xn}. In addition, assume that the value set Va for
each attribute of DT is a subset of the reals. For example, consider the inter-
val of reals Va = [la, ra] for values of an attribute a ∈ A in a decision system
DT = (U, A∪ d) where la ≤ a(x) ≤ ra. Discretization of Va entails searching for
a partition Pa of Va for any a a ∈ A (i.e., discovering a partition of the value
sets of conditional attributes into intervals). A partition of Va is defined by a
sequence of what are known as cuts la = v1 < v2 < v3 < . . . << vn−1 < vn = ra

so that Va = [la, v2)[v2, v3) . . . [vn−1, ra). The search for partitions of attributes
into subintervals of the reals is carried out on consistent decision tables. In rough
set theory, discretization leads to partitions of value sets so that if the name of
the interval containing an arbitrary object is substituted for any object instead
of its original value in DT, a consistent decision system is also obtained. The
discretization concept defined by cuts has been generalized by using oblique hy-
perplanes. The boundary between each pair of decision classes is a linear plane
called a hyperplane. The quality of a hyperplane has been treated by a num-
ber of measures. Measure values are viewed as energy levels of a hyperplane.
During discretization of a set of numeric attributes, the search of hyperplanes is
carried out using simulated annealing. A detailed description of this approach
to discretization is outside the scope of this article. A complete presentation
containing the details about discretization in the context of rough sets is given
in [16].

Experimental Setup - Rough Set-based LEM2 and J48

LEM2 based on rough set theory learns the concept with the smallest set of
rules [27]. In the results reported in [20, 21], rule-set used by the rough set classi-
fier in RSES was quite large (average number of rules was 280). We also compared
our results with a classical partial decision tree-based method (J48) method in
WEKA using a variant of the well-known C4.5 revision 8 algorithm [25].
3 http://logic.mimuw.edu.pl/∼rses
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Experimental Setup - Hybrid Methods

In all our hybrid methods involving fuzzy sets, the attribute values were not nor-
malized. The Rough-NFDT method included i) generating reducts from rough
set methods ii) using the data from the reduced set of attributes to run the
NFDT algorithm. For the NFDT algorithm, after attribute fuzzification, the
fuzzy ID3 algorithm with cut α = 0 and leaf selection threshold βth = 0.75 was
used. The fuzzy decision trees have been tuned using the NFDT algorithm for
500 epochs with the target MSE value 0.001.

For the computational experiments reported with the FRCT, all parameters
were set as described in Sect. 2.2.

Experimental Setup - SVM

The data set was classified using nonlinear SVM( SVM-NL) as well as linear
SVM (SVM-L). The tuning parameters involved with nonlinear SVM are penalty
parameter C and Gaussian Kernel parameter µ. These two parameters were
tuned based on grid search [12]. The range for C used is 2−12 to 212. The range
for µ used is 2−35 to 24. The best values of C and µ are 2−1 and 2−29. All
algorithms were implemented in MATLAB 7.3.0 (R2006b) [14] environment on a
PC with Intel Core2Duo processor (2.13GHz), 1GB RAM running Ms-Windows
XP operating system. The dual quadratic programming problems arising in SVM
were solved using Mosek optimization toolbox 4 for MATLAB which implements
fast interior point based algorithms.

4 Analysis of Classification Results

A comparison of pairs of differences in classification accuracy during one-fold of
a 10Fold CV and a paired t-test is also discussed in this sect. Table 1 gives a
summary of computational experiments using seven methods and Table 2 gives
the average size of the rule set (and support vectors). Percentage classification
accuracy has been calculated by nc

n × 100%, where n is the total number of test
patterns, and nc is the number of test patterns classified correctly.

Figure 3 gives a sample LEM2 rule set for a single run of the 10fold CV. It
can be observed that the most frequestly used attributes (metrics) are:

a4(DEPTH), a5(LACK-OF-COHESION-OF-METHODS),
a23(minHALSTEAD-LENGTH), a35(maxLOC-COMMENTS),
a53(avgLOC-BLANK), a56(avgLOC-COMMENTS) and a63(avgHALSTEAD-
LENGTH).

4.1 T-Test

In this sect., we discuss whether there is any difference between the various
methods in terms of classification accuracy (and the number of rules) statistically
4 http://www.mosek.com
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Table 1. Defect data classification I

%Accuracy

Run NFDT R-NFDT LEM2 FRCT J48 SVM-NL SVM-L

1 93 71 85 86 86 76 71

2 83 93 82 86 79 76 86

3 64 71 55 71 57 57 57

4 71 71 80 93 86 86 71

5 64 57 44 71 28 64 64

6 79 79 57 79 57 93 71

7 86 71 67 86 50 64 50

8 71 79 67 71 79 64 79

9 93 100 86 93 93 93 100

10 89 89 85 89 84 89 89

Avg.Acc 80 78 71 83 73 77 74

Table 2. Defect data classification II

Average Number of Rules and Support Vectors

NFDT R-NFDT LEM2 FRCT J48 SVM-NL SVM-L

7.2 5.6 26 17.3 12 123 49

Fig. 3. Exemplary rule set
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Table 3. T-test results

Accuracy

Pairs Avg. Diff. Std. Deviation t-stat

R-NFDT/NFDT −1.43 9.99 −0.45

R-NFDT/LEM2 7.43 11.07 2.12

R-NFDT/J48 8.33 14.85 1.77

NFDT/LEM2 8.86 9.21 3.04

NFDT/J48 9.76 16.83 1.83

LEM2/J48 0.90 9.31 0.31

FRCT/R-NFDT 4.29 10.76 1.26

FRCT/NFDT 2.86 7.68 1.18

FRCT/LEM2 11.71 9.01 4.11

FRCT/J48 12.61 16.41 2.43

FRCT/SVM-NL 5.71 9.48 1.91

SVM-NL/NFDT −2.86 11.33 −0.80

SVM-NL/R-NFDT −1.43 11.65 −0.39

SVM-NL/LEM2 6.00 12.93 1.47

SVM-NL/J48 6.90 17.03 1.28

SVM-L/NFDT −5.86 13.45 −1.38

SVM-L/R-NFDT −4.43 8.32 −1.68

SVM-L/LEM2 3.00 12.68 0.75

SVM-L/J48 3.90 14.58 0.85

using the well-known t-test. This is done by formulating the hypothesis that the
mean difference in accuracy between any two classification learning algorithms
is zero. Table 3 gives the t-test results.

Let µd denote the mean difference in accuracy during a 10-fold classification
of software defect data. Let H0 denote the hypothesis to be tested (i.e., H0 :
µd = 0). This is our null hypothesis. The paired difference t-test is used to test
this hypothesis and its alternative hypothesis (HA : µd �= 0). Let d , S2

d denote
the mean difference and variance in the error rates of a random sample of size n
from a normal distribution N(µd, σ2), where µd and σ2 are both unknown. The
t statistic used to test the null hypothesis is as follows:

t =
d̄ − µd

Sd/
√

n
=

d̄ − 0
Sd/

√
n

=
d̄
√

n

Sd
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Table 4. Null-hypothesis results for accuracy

Accept H0 (ud = 0) if |t value| < 2.262

Pairs t-stat(Acc.) Acc/Rej H0

R-NFDT/NFDT −0.45 Accept

R-NFDT/LEM2 2.12 Accept

R-NFDT/J48 1.77 Accept

NFDT/LEM2 3.04 Reject

NFDT/J48 1.83 Accept

LEM2/J48 0.31 Accept

FRCT/R-NFDT 1.26 Accept

FRCT/NFDT 1.18 Accept

FRCT/LEM2 4.11 Reject

FRCT/J48 2.43 Reject

FRCT/SVM-NL 1.91 Accept

SVM-NL/NFDT −0.80 Accept

SVM-NL/R-NFDT −0.39 Accept

SVM-NL/LEM2 1.47 Accept

SVM-NL/J48 1.28 Accept

SVM-L/NFDT −1.38 Accept

SVM-L/R-NFDT −1.68 Accept

SVM-L/LEM2 0.75 Accept

SVM-L/J48 0.85 Accept

where t has a student’s t-distribution with n-1 degrees of freedom [11]. In our
case, n − 1 = 9 relative to 10 sample error rates. The significance level α of the
test of the null hypothesis H0 is the probability of rejecting H0 when H0 is true
(called a Type I error). Let tn−1, α/2 denote a t-value to right of which lies α/2
of the area under the curve of the t-distribution that has n-1 degrees of freedom.
Next, formulate the following decision rule with α/2 = 0.025:

Decision Rule: Reject H0 : µd = 0 at significance level α if, and only if
|t − value| > 2.262
Pr-values for tn−1, α/2 can be obtained from a standard t-distribution table. It
should be noted that we repeated the experiments 30 times and averages have
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remained consistent. However, for the purposes of analysis, we have restricted
the reporting to 10 experiments.

4.2 Analysis

In terms of the t-test for accuracy, in general the three hybrid methods (FRCT,
R-NFDT and NFDT) and SVM methods are comparable in that there is no
significant difference in any of the methods based on the null hypothesis. In con-
trast, there is a difference in accuracy between three pairs of methods outlined
above(FRCT and LEM2, FRCT and J48 and NFDT and LEM2). This result
corroborates our earlier result reported in [21]. Also of note is that SVM based
methods have not had any effect in terms of classification accuracy. In terms of
rules, in this chapter, we have only reported average number of rules over 10
runs (see Table 2). It is clear that the hybrid R-NFDT classifier has the smallest
rule set.

The other important observation is the role that reducts play in defect data
classification. On an average, only 6 attributes out of 95 were used by LEM2 in its
rules with no significant reduction in classification accuracy. The R-NFDT and
NFDT method uses an average of 4 out of 95 attributes resulting in a minimal
number of rules with comparable accuracy.

The metrics at the method level that are most significant for R-NFDT and
NFDT classifiers include: i) Halstead’s metric of essential complexity which is
a measure of the degree to which a module contains unstructured constructs,
ii) Halstead’s metric of level which is the level at which the program can be
understood, iii) Halstead’s metric of number of unique operands which includes
variables and identifiers, constants (numeric literal or string) function names
when used during calls iv) total lines of code v) number of unique operators is
the number of branches for each module. These metrics were the most frequently
occurring attributes in the rule set that contribute to the highest classification
accuracy.

The metrics at the class-level that are most significant for R-NFDT, NFDT
and LEM2 classifiers include: Depth of Inheritance Tree (DIT), Coupling Be-
tween Object Classes (CBO) and Lack of Cohesion of Methods (LCOM).

5 Conclusion

This chapter has presented a combination of hybrid and native methods based on
rough sets, fuzzy sets, neural networks and support vector machines to classifica-
tion of software defect data. The t-test shows that there is no significant difference
between any of the hybrid methods in terms of accuracy at the 95% confidence
level. However, in terms of rules, there is a difference between these methods. The
experiments were aimed at not only comparing classification accuracy, but also
collecting other useful software quality indicators such as number of rules, num-
ber of attributes (metrics) and the type of metrics (design vs. code level). In con-
clusion, the R-NFDT classifier seems to be the most desired classifier in terms of
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comparable accuracy, average number of attributes used and smallest rule set. The
Rough-NFDT method consists of generating reducts (reduced set of attributes)
from rough set theory and then using the data from the reduced set of attributes
to run the NFDT algorithm. The desired metrics (attributes) are: COUPLING-
BETWEEN-OBJECTS, DEPTH, LACK-OF-COHESION-OF-METHODS max
NUM-OPERATORS, max. NUM-UNIQUE-OPERANDS, max. HALSTEAD-
LEVEL and min. LOC-TOTAL.
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Carretera Camajuańı km 5.5, Santa Clara, Cuba
{rbellop,ygomezd,rfalcon}@uclv.edu.cu

2 Informatics Department, University of Camagüey, Cuba
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Summary. The feature selection problem has been usually addressed through heuris-
tic approaches given its significant computational complexity. In this context, evo-
lutionary techniques have drawn the researchers’ attention owing to their appealing
optimization capabilities. In this chapter, promising results achieved by the authors in
solving the feature selection problem through a joint effort between rough set theory
and evolutionary computation techniques are reviewed. In particular, two new heuris-
tic search algorithms are introduced, i.e. Dynamic Mesh Optimization and another
approach which splits the search process carried out by swarm intelligence methods.

Keywords: meta-heuristic, evolutionary computation, feature selection.

1 Introduction

The solution of a great deal of problems can be formulated as an optimization
problem. The quest for the problem’s solution is often stated as finding the
optimum of an objective function f : D → �; i.e., finding a point x0 ∈ D such
that f(x0) ≤ f(x) ∀x ∈ D, for the minimization case. The Feature Selection
Problem (FSP) can well illustrate this point.

The relevance of the feature selection methods has been widely acknowledged
[15, 28]. These methods search throughout the space of feature subsets aiming
to find the best subset out of the 2N − 1 possible feature subsets (N stands for
the number of attributes characterizing the problem). The search is guided by
an evaluation measure. Every state denotes a subset of features in the search
space.

All feature selection techniques share two crucial components: an evaluation
function (used for numerically assessing the quality of a candidate feature subset)
and a search engine (an algorithm responsible for the generation of the feature
subsets).

The evaluation function attempts to estimate the capability of an attribute or
a subset of attributes to discriminate between the collection of existing classes. A

A. Abraham, R. Falcón, and R. Bello (Eds.): Rough Set Theory, SCI 174, pp. 235–260.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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subset is said to be optimal with regards to a given evaluation function. Several
categories of evaluation functions stand nowadays, like distance measures, in-
formation measures (e.g., entropy), dependency measures, consistency measures
and classification error measures [8]. More recently, the “quality of the classifi-
cation” measure borrowed from rough set theory (RST) has been employed as
a numerical estimator of the quality of reducts [11, 1, 2, 24, 25]. A reduct is a
minimal subset of attributes which preserves the partition over a universe, as
stated in [14] wherein also the role played by reducts in feature selection and
reduction is explained.

The second component of a feature selection algorithm is the search engine,
which acts as a procedure for the generation of the feature subsets. The search
strategies are important because this type of problem can be extremely time-
consuming and an exhaustive search of a rather “optimal” subset can be proved
infeasible, even for moderate values of N . Algorithms to feature selection are
usually designed by using heuristics or random search strategies in order to
reduce complexity. Heuristic search is very fast because it is not necessary to
wait until the search ends but it doesn’t guarantee to find the best solution
although a better one is known when it is found in the process. An illustrative
example of search strategies is given by the evolutionary methodologies.

Evolutionary algorithms perform on the basis of a subset of prospective solu-
tions to the problem, called “population”, and they locate the optimal solution
through cooperative and competitive activities among the potential solutions.
Genetic Algorithms (GA) [10], Ant Colony Optimization (ACO) [9] and Particle
Swarm Optimization (PSO) [12] are genuine exemplars of this sort of powerful
approaches. They have also been termed as “bioinspired computational models”
owing to the natural processes and behaviors they have been built upon.

Diverse studies have been carried out concerning the performance of the above
meta-heuristics in the feature selection problem. Some of them have exhibited
good results, mainly attained by using ACO- or PSO-based approaches, such as
[11, 1, 2, 24, 25, 26]. In [3] and [4], a new approach to feature selection based on
the ACO and PSO methodologies is presented. The chief thought is the split of
the search process accomplished by the agents (ants or particles) into two stages,
such that an agent is commanded in the first stage to find a partial solution to the
problem, which in turn is afterwards used as an initial state during the upcoming
phase. The application of the two-step approach to the feature selection problem
provokes that, after finishing the first stage, agents hold feature subsets which
are prospective reducts of the system. They are taken as initial states for the
agents during the remaining phase.

The new meta-heuristic named Dynamic Mesh Optimization (DMO) also falls
under the umbrella of the evolutionary computation techniques. A set of nodes
characterizing potential solutions of an optimization problem make up a mesh
which dynamically expands itself and moves across the search space. To achieve
this, intermediate nodes are generated at each cycle (iteration) between the mesh
nodes and those nodes regarded as local optima, as well as between the mesh
nodes and the global optimum. Moreover, new nodes are also generated out
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of the most external mesh nodes, thus allowing for a broader covering of the
search space. The fittest nodes of the ensuing mesh are promoted to make up
the mesh at the next cycle. The performance achieved by the DMO procedure
in the context of feature selection is studied.

In this chapter, we study the integration between rough set theory and the
aforementioned evolutionary algorithms for working out the feature selection
problem. No attempt has been made to cover all approaches currently existing
in literature but our intention has been to highlight the role played by rough set
theory across several evolutionary algorithms in the quest for really meaningful
attributes.

The study is structured as follows: after enunciating the fundamentals of rough
set theory in section 2, the application of a greedy algorithm to feature selection
is presented. Next we elaborate on the way this challenge is tackled by Ge-
netic Algorithms and Swarm Intelligence meta-heuristic approaches, like ACO
and PSO. Section 6 discusses the novel DMO evolutionary optimization method
whereas section 7 is devoted to unfold a comparative study between the different
algorithmic models under consideration. Finally, some conclusions are derived.

2 Rough Set Theory: Basic Concepts

Rough set theory (RST) was proposed by Z. Pawlak [19]. The rough set philos-
ophy is anchored on the assumption that some information is associated with
every object of the universe of discourse [21]. Rough set data analysis is one of
the main techniques arising from RST; it provides a manner for gaining insight
into the underlying data properties [29]. The rough set model has several appeal-
ing advantages for data analysis. It is based on the original data only and does
not rely on any external information, i.e. no assumptions about data are made.
It is suitable for analyzing both quantitative and qualitative features leading to
highly interpretable results [23].

In RST a training set can be represented by a table where each row repre-
sents an object and each column represents an attribute. This table is called
an “information system”; more formally, it is a pair S = (U, A), where U is a
non-empty finite set of objects called the universe and A is a non-empty finite
set of attributes. A decision system is a pair DS = (U, A ∪ {d}), where d ∈ A is
the decision feature or class attribute. The basic concepts of RST are the lower
and upper approximations of a subset X ⊆ U . These were originally introduced
with reference to an indiscernibility relation IND(B), where objects x and y
belong to IND(B) if and only if x and y are indiscernible from each other by
features in B.

Let B ⊆ A and X ⊆ U . It can be proved that B induces an equivalence
relation. The set X can be approximated using only the information contained
in B by constructing the B-lower and B-upper approximations of X, denoted by
BX and BX respectively, where BX = {x ∈ U : [x]B ∈ X} and BX = {x ∈
U : [x]B ∩ X �= ∅} and [x]B denotes the equivalence class of x according to the
B-indiscernible relation. The objects in BX are guaranteed to be members of X
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while those in BX are possible members of X . The boundary region BNX =
BX − BX determines the roughness of a concept X , namely X is said to be
rough if its boundary region is not empty, otherwise it is said to be a crisp
(precise) concept.

RST offers several measures for gauging the quality of a decision system.
Among them one can find the “quality of classification”, displayed in expression
(1). It quantifies the percentage of objects which are correctly classified into the
given decision classes Y = {Y1, . . . , Yn} employing only the knowledge induced
by the set of features in B.

γB(Y ) =

n∑
i=1

|BYi|

|U | (1)

An important issue concerning RST is attribute reduction based on the reduct
concept. A reduct is a minimal set of features that preserves the partitioning of
the universe and hence the ability to perform classifications. The subset B is a
reduct if IND(A) = IND(B); that is, γA(Y ) = γB(Y ). The notion of reduct is
one of the most important concepts within rough set theory.

However, their practical use is limited because of the heavy workload involved
in computing the reducts. The problem of finding a globally minimal reduct for
a given information system is NP-hard. For that reason, methods for calculating
reducts have been developed on the basis of heuristic-driven approaches [22].

3 A Greedy Algorithm to Feature Selection

The incorporation of rough sets to a greedy approach for finding reducts has
been studied in [7]. The method begins with an empty set of attributes and
constructs good reducts in an acceptable time. The heuristic search performed
by the algorithm adds the fittest attributes to the solution according to some
predefined criterion.

The criterion for assessing the quality of an attribute is borrowed from the ID3
classifier with respect to the normalized entropy and the gain of the attributes as
well as the degree of dependency between attributes, this latter indicator coming
from RST. In this algorithm we use the terms R(A) and H(A) proposed in [20].
R(A) lies within [0,1] and stands for the relative importance of attribute A while
H(A) represents heuristic information about a subset of candidate features.

R(A) can be computed by the following expression:

R(A) =
k∑

i=1

|Si|
|S| · e1−Ci (2)

where k is the number of different values of attribute A whereas Ci represents
the number of different classes present in the objects having the i-th value for
the feature A. Moreover, |Si| indicates the amount of objects with the value i in
the feature A and |S| the total number of objects.
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On the other hand, the term H(A) is obtained by the procedure below:

1. Calculate R(A) for each attribute in the problem and make up a vector with
the best n attributes (n selected by the user) according to the R(A) indicator.
As a result of it, the vector BR = (R(Ai), R(Aj), . . .) with n = |BR| is
obtained.

2. Create another vector holding the combinations of n in p (this value also
inputted by the user) of the attributes in BR. The combination vector looks
like Comb = ({Ai, Aj , Ak}, . . . , {Ai, At, Ap})

3. Compute the degree of dependency of the decision classes with respect to
every combination lying in Comb. Let us denote by DEP(d) the vector
containing the degree of dependency of decision class d with respect to ev-
ery subset of attributes in Comb, that is DEP(d) = (k(Comb1, d), . . . , k
(Comb|Comb|,d))

4. Compute H(A) =
∑

∀i:A∈Combi

k(Combi, d)

where k =
|POSB(d)|

|U | and POSB(d) =
⋃

X∈U/B

BX

If k = 1 then d totally depends on B else it partially depends on it.
Another alternative measure that has been used successfully is the gain ratio

[17] which is defined in terms of the following measure:

SplitInformation(S, A) = −
c∑

i=1

|Si|
|S| · log2

|Si|
|S| (3)

where c is the cardinality of the domain of values of attribute A. This measure
is the entropy of S with respect to A.

The gain ratio G(A) quantifies how much information gain attribute A pro-
duces or how important it is to the data set. The formal expression is shown
below:

G(A) =
G(S, A)

SplitInformation(S, A)
(4)

G(S, A) = Entropy(S) −
∑

v∈VA

|Sv|
|S| · Entropy(Sv) (5)

where VA is the set of values of attribute A and Sv is the subset of S for which
attribute A has the value v, namely Sv = {s ∈ S |A(s) = v}

Entropy(S) =
c∑

i=1

− Pi · log2Pi (6)

where Pi is the ratio of objects in S belonging to the i-th decision class.
The cost of an attribute can be defined using expressions (7) or (8):

C(A) =
G2(S, A)
Cost(A)

(7)
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where Cost(A) is the cost of attribute A (say, for instance, the cost of running
a medical exam). This value ranges between 0 and 1 and must be specified by
the user.

C(A) =
2G(S,A) − 1

(Cost(A) + 1)w
(8)

where Cost(A) is just like in (7) and w is a constant value also in [0,1] that
determines the relative importance of the cost versus information gain.

Bearing the measures R(A), H(A), G(A) and C(A) in mind, the RSReduct
algorithm was devised and implemented as shown in Algorithm 1.

Algorithm 1. RSReduct
procedure RSReduct( )

STEP 1 Form the distinction table with a binary matrix B (m2 − m)/2 ×
(N + 1). Each row corresponds to a pair of different objects. Each column of this
matrix corresponds to an attribute; the last column corresponds to the decision value
(treated as an attribute).

For each attribute, let b((k, n), i) ∈ B corresponding to the pair (Ok, On) and
attribute i be defined as

b((k, n), i) =
{

1, if ai(Ok)¬R ai(On) ∀i = {1, . . . , N}
0, otherwise

b((k, n), N + 1) =
{

0, if di(Ok) �= di(On)
1, otherwise

where R is a similarity relation depending on the type of attribute ai

STEP 2 For each attribute A calculate the value of RG(A) for any of the fol-
lowing three heuristics and then form an ordered list of attributes starting from the
most relevant attribute (that which maximizes RG(A)):
• Heuristic 1: RG(A) = R(A) + H(A)
• Heuristic 2: RG(A) = H(A) + G(A)
• Heuristic 3: RG(A) = H(A) + C(A)

STEP 3 With i = 1, R = ∅ and (A1, A2, . . . , An) an ordered list of attributes
according to step 2, consider if i ≤ n then R = R ∪ Ai, i = i + 1.

STEP 4 If R satisfies condition I (see below) then Reduct=minimal subset R′ ⊆
R does meet condition I, so stop otherwise go to step 3.

Condition I uses the following relation between objects x and q for attribute a:
qaRxa ⇔ sim(xa, qa) ≥ ε where 0 ≤ ε ≤ 1
end procedure

The RSReduct approach has been tested with several data sets from the UCI
machine learning repository [6] that are available at the ftp site of the Uni-
versity of California. Some of the databases belong to real-world data such as
Vote, Iris, Breast Cancer, Heart and Credit while the other ones represent re-
sults obtained in labs such as Balloons-a, Hayes-Roth, LED, M-of-N, Lung Can-
cer and Mushroom. The results portrayed in Table 1 were obtained after using
RSReduct with the three heuristic functions defined in step 2 of Algorithm 1.
Furthermore, the execution time of the algorithm has been recorded in each case.
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Table 1. Average length of reducts and computational time required by the RSReduct
approach

Data set name Heuristic 1 Heuristic 2 Heuristic 3

(cases#, attr#) Time(s) Avg. len Time(s) Avg. len Time(s) Avg. len

Ballons-a (20,4) 5.31 2 3.12 2 16.34 2

Iris (150,4) 40.15 3 30.79 3 34.73 3

Hayes-Roth(133,4) 36.00 3 32.30 3 39.00 3

Bupa(345,6) 74.20 6 89.00 6 89.00 6

E-Coli(336,7) 57.00 5 41.15 5 46.60 5

Heart(270,13) 30.89 9 16.75 9 54.78 10

Pima(768,8) 110.00 8 110.00 8 110.00 8

Breast-Cancer(683,9) 39.62 4 31.15 4 32.56 5

Yeast(1484,8) 82.00 6 78.00 6 85.70 6

Dermatology(358,34) 148.70 8 125.9 8 190.00 9

Lung-Cancer(27,56) 25.46 7 18.59 7 31.5 8

LED(226,25) 78.10 9 185.00 8 185.00 9

M-of-N(1000,14) 230.26 6 162.50 6 79.4 6

Exactly(780,13) 230.00 11 215.00 11 230.00 11

Mushroom(3954,22) 86.20 8 64.10 8 67.2 8

Credit(876,20) 91.20 14 86.01 14 90.2 15

Vote(435,16) 37.93 12 21.25 11 26.9 12

In the experiments displayed in Table 1, C(A) has been computed as in (8),
Cost(A) takes random values and w = 0.1.

4 Feature Selection by Using a Genetic Approach

Arising as a true exemplar of evolutionary computation techniques, Genetic
Algorithms (GAs) have been widely utilized for attribute reduction. GAs are
stochastic search methods based on populations. First, a population of random
individuals is generated and the best individuals (in accord with some predefined
criterion) are selected. Then, the new individuals making up the population will
be generated using the mutation, crossover and (possibly) inversion operators.
In [27], three methods for finding short reducts are presented. They use genetic
algorithms together with a greedy approach and have defined the adaptability
functions f1, f2 and f3.

An adaptation of the GA plan is the Estimation of Distribution Algorithms
(EDA) [18] but most of them don’t use crossover or mutation because the new
population is generated from the distribution of the probability estimated from
the selected set. The principal problem of the EDA is the estimation of ps(x, t)
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Table 2. Results obtained with the proposed Estimation Distribution Algorithms
(EDA)

Data set name Algorithms with Wróblewski’s functions

(cases#, attr#) f1 f2 f3

AT ARL ANR AT ARL ANR AT ARL ANR

Ballons-a(20,4) 0.167 2 1 1.860 2 1 0.260 2 1

Iris(150,4) 82.390 3 4 3.540 3 4 17.250 3 4

Hayes-Roth(133,4) 40.830 4 1 30.100 4 1 22.450 4 1

Bupa(345,6) 436 3 6.85 995.300 3 8 466 3 8

E-Coli(336,7) 64.150 3 6.85 1514 3 7 169.200 3 7

Heart(270,13) 337 3 8 2782 3 18 1109 3 17

Pima(768,8) 2686 3 17 6460 3 18.4 4387 3 18.6

Breast-Cancer(683,9) 1568 4 6.55 8250 4 7.83 2586 4 8

Yeast(1484,8) 1772 4 2 12964 4 2 2709 4 2

Dermatology(358,34) 1017 6.05 10.15 15553 6 14.90 30658 6 47

Lung-Cancer(27,56) 7.780 4.2 9.55 0.0956 4 15.95 264.200 4 38.6

and the generation of new points according to this distribution in a way that yields
reasonable computational efforts. For this reason, different manners to determine
ps(x, t) have been crafted.

One of the members of this family is the Univariate Marginal Distribution
Algorithm (UMDA) for discrete domains [18], which takes into account uni-
variate probabilities alone. This algorithm is capable of optimizing non-linear
functions as long as the additive (linear) variance of the problem has an accept-
able weight in the total variance. The UMDA version for continuous domains [16]
was introduced in 2000. In every generation and for each variable, UMDA carries
out statistic tests to find the density function that best fits to the variable. The
continuous variant of UMDA is an algorithm of structure identification in the
sense that the density components are identified through hypotheses tests.

We have defined a method [7] for calculating reducts starting from the in-
tegration of the adaptability functions (f1, f2, f3) of the methods reported by
Wróblewski in [27] and the UMDA approach, thus leading to encouraging results
which are shown in Table 2. The values of the parameters used were: N = 100;
g = 3000; e = 50; T = 0.5 where N is the number of individuals, g is the
maximum number of evaluations that will be executed, e is the number of elite
(best fitting) individuals which pass directly to the next generation and T is the
percentage of the best individuals that were selected to do all the calculations.

In Table 2, AT means the average time required to calculate the reducts
(measured in seconds), ARL stands for the average length of the reducts found
and ANR their average number.

The use of the three functions reported in [27] in the Estimation of Distribu-
tion Algorithms turned out successful. EDA performed the calculation of small
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reducts in little time when the set of examples was not very large (say, less than
600 cases) even though the number of attributes characterizing the data set was
huge. The best combination was accomplished with f1 when it comes to the ex-
ecution time; however f3 found a larger number of reducts in a reasonable time
frame.

5 Swarm Intelligence in Feature Selection

This section will unfold the potential of major swarm intelligence approaches to
be applied in the feature selection (attribute reduction) problem.

5.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a heuristic method which uses a popula-
tion of particles and is strongly inspired by the natural behavior of bird flocks
and fish schools. Each particle symbolizes a potential solution to the optimiza-
tion problem. The system begins with an initial population (most of the times,
random individuals) and searches for optima according to some fitness func-
tion by updating particles over generations; that is, particles “fly” through the
N -dimensional problem search space by following the current best-performing
particles.

Each particle records its own best position Xpbest (that is, its fittest function
value ever achieved) as well as the global best position Xgbest ever reached by
the swarm. As shown in expression (9), the particles are drawn to some degree
by Xpbest and Xgbest. At each iteration the velocity vector V associated with
every particle is updated according to (9). Acceleration constants c1 and c2 are
empirically determined and used to set up a tradeoff between the exploration
and convergence capabilities of the algorithm. The particle’s new position is
calculated by means of (10).

V′
i = w ·Vi + c1 · r1 · (Xpbest − Xi) + c2 · r2 · (Xgbest − Xi) (9)

X′
i = Xi + Vi (10)

where Vi, Xi, Xpbest and Xgbest are N -dimensional vectors and w is the inertia
weight. A suitable selection of w provides a balance between global and local
exploration. Random numbers r1 and r2 usually follow a normal distribution
within [0,1] and outfit the algorithm with the stochastic component.

In feature selection we have a N -dimensional search space, where N is the
number of features characterizing the problem. The optimal position along the
search space is the shortest subset of features with the highest quality of classi-
fication. Being this so, the configuration of the PSO meta-heuristic is as follows:
each particle encodes a N -dimensional binary vector with the i-th bit set to one
if the corresponding feature is part of the subset and zero otherwise.
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The algorithm seeks for minimal reducts R, that is, minimal subsets of features
whose quality of the classification γR(Y ) is equal to that yielded by the whole set
of features γA(Y ) (Y being the set of decision classes). In this case, the fitness
function is the same used in [26], see expression (11), which takes into account
the quality of classification and length of the reducts for deeming the worth of
a prospective solution. The ensuing optimization activities attempt to maximize
the fitness function value.

fitness = α · γR(Y ) + β · N − |R|
N

(11)

In light of the particle encoding scheme used in this proposal, it is necessary
to redefine expression (10). The movement of the particle is realized by the flip
of the bit value and the velocity is no longer a change ratio of its position but
a change probability of it. We propose expression (12) in [4] to calculate the j-
dimension of the i-th particle. This is based on the position and velocity update
equations of the particle as shown in [13] and [30].

X ′
ij =

{
1, if rand() ≤ 1

1 + e1.5·N ·Vij

0, otherwise
(12)

The value of the inertia weight w is defined by a positive linear function
changing according to the current iteration, as shown below:

w = wmax − wmax − wmin

NC
× k (13)

where wmax is the initial value of the inertia weight, wmin its final value, NC
the maximal number of cycles (iterations) allowed and k denotes the current
iteration number.

The PSO-driven approach is outlined in Algorithm 2.

Algorithm 2. PSO-RST-FS
1: procedure PSO-RST-FS( )
2: Generate initial population by setting the Xi and Vi vectors
3: repeat
4: Compute Xpbest for each particle
5: Compute Xgbest for the swarm
6: Reducts = Reducts ∪ {R} such that γR(Y ) = γA(Y )
7: Update velocity and position of every particle by (9) and (12)
8: until k = NC
9: Output the set Reducts

10: end procedure

A new approach concerning PSO is introduced in [4] . The Two-Step Particle
Swarm Optimization (TS-PSO) algorithm is rooted on the idea of splitting the
search process carried out by the particles into two stages so that, in the first
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stage, preliminary results are reached which could be subsequently used to make
up the initial swarm for the second stage. In the case of FSP, this means that
subsets of features which are potential reducts of the information system are
generated along the first stage. These subsets are used to modify the swarm
resulting from the last cycle in the first stage; the modified swarm is used as the
initial population of the second stage.

Determining the state by which the search process should commence has long
been an interesting problem in heuristic search. It is well known that setting up
the initial state has an important bearing over the global search process. The
purpose is to be able to approach the initial state to the goal state. Of course, it
is necessary to consider an adequate balance between the computational cost of
obtaining that initial state and the total cost; in other words, the sum of the cost
of approaching the initial state towards the goal state plus the cost of finding
the solution from that “improved” location should not be greater than the cost
of looking for the solution from a random initial position.

More formally, the aim is the following. Let Ei be the initial state which has been
either randomly generated or produced after the execution of any other method
without a significant computational cost, E∗

i the initial state generated by some
method M that approaches it to the goal state. By CM(Ei, E

∗
i ) we denote the cost

of getting E∗
i from state Ei by means of M and CCHSA(x) is the computational

cost involved in finding a solution from state x using a Heuristic Search Algorithm
(HSA). Then, the goal is that CM(Ei, E

∗
i ) + CCHSA(E∗

i ) < CCHSA(Ei).
In the two-step approach proposed here, the procedures to generate E∗

i and
the HSA are both the PSO algorithm, so the objective is CPSO(Ei, E

∗
i ) +

CCPSO(E∗
i ) < CCPSO(Ei). Since PSO is used in both phases, some parame-

ters of the model are meant to distinguish between them. A ratio r is introduced
in order to establish the relative setting of the values of the algorithm parame-
ters in both stages; the ratio indicates the proportion of the overall search that
will be carried out during the first stage. For example, if r = 0.3 for the NC
parameter, it means that the first part of the search process will involve 30% of
the total number of iterations whereas the subsequent step will be responsible
for realizing the remaining 70%.

The parameters that establish the differences between stages are the following:
ratioQ and ratioC . The first one is related to the definition of a quality threshold
according to expression (14) and is involved in the selection of the candidate
feature subsets. In the first stage, each candidate reduct R whose quality of
classification exceeds the quality threshold is selected as a potential reduct. The
ratioC parameter is used to compute the number of cycles in each stage according
to (15) and (16).

φ = ratioQ · γA(Y ) (14)

nc1 = round(ratioC · NC) (15)

nc2 = NC − nc1 (16)

where round(x) denotes the closest integer to x.
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Algorithm 3. TS-PSO-RST-FS
procedure TS-PSO-RST-FS( )

*****STAGE 1*****
Generate initial population by setting the Xi and Vi vectors
repeat

Compute Xpbest for each particle
Compute Xgbest for the swarm
PR = PR ∪ {R} such that γR(Y ) ≥ φ
Update velocity and position of every particle by (9) and (12)

until k = nc1

*****POST PROCESSING STAGE*****
Compute UsedFeatures and NotUsedFeatures using PR
currentSwarm ← last swarm of stage 1
for each particle Xi in currentSwarm do

if rand() ≤ 0.5 then
Xi ← UsedFeatures

else
Modify Xi by resetting all features in NotUsedFeatures

end if
end for
*****STAGE 2*****
repeat

Compute Xpbest for each particle
Compute Xgbest for the swarm
Reducts = Reducts ∪ {R} such that γR(Y ) = γA(Y )
Update velocity and position of every particle by (9) and (12)

until k = nc2

Output the set Reducts
end procedure

The TS-PSO-RST-FS algorithm introduces a step between the first and sec-
ond phases (called “postprocessing step”) in which the set of potential reducts
PR is used to build the UsedFeatures and NotUsedFeatures N-dimensional
binary vectors; the features highlighted in these vectors have value 1 in their
corresponding vector component. The UsedFeatures vector sets to one its i-th
component provided that the i-th feature in the data set belongs to a number
of candidate reducts greater than a given percentage threshold, called PerUsed,
of the total number of potential reducts found; for instance, if PerUsed=75%,
this means that only features which belong to at least the 75% of the potential
reducts will receive a signaling in their associated bit within UsedFeatures. On
the other hand, the NotUsedFeatures vector highlights all features belonging
to at most PerNotUsed of potential reducts; for instance, if PerNotUsed=30%
this means that only features which are included in at most the 30% of the
potential reducts become signalized in NotUsedFeatures.

By means of the UsedFeatures and NotUsedFeatures vectors, the opti-
mal swarm of the first stage is modified to give rise to the startup swarm of
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Table 3. Results obtained with the proposed PSO-based approaches. Columns 4 and
6 display the average length of the reducts while columns 5 and 7 show the number of
times the algorithm found minimal reducts.

Data set name Features Instances PSO PSO TS-PSO TS-PSO

(1) (2) (3) (4) (5) (6) (7)

Breast cancer 9 699 4.95 6 4.6 6

Heart 13 294 7.97 4 6.8 6

Exactly 13 1000 6 6 6 6

Credit 20 1000 12.4 4 10.3 5

Dermatology 34 358 15.3 3 12.6 5

Lung 56 32 15.6 3 12.8 5

the second stage in the following way. Each particle Xi in the optimal swarm
is replaced by the vector UsedFeatures or is modified by using the vector
NotUsedFeatures in a random way: if rand() ≤ 0.5 then replace else modify.
Modify means that all features included in NotUsedFeatures are reset in the
particle encoding.

Greater values of the inertia weight during both the first and processing steps
help to find good seeds to build the initial swarm for the second stage. The entire
description of the two-step approach can be found in Algorithm 3.

The algorithms PSO-RST-FS and TS-PSO-RST-FS were executed by using
the following parameters: NC= 120, c1 = c2 = 2, population size = 21 and α =
0.54. In the case of the TS-PSO-RST-FS algorithm, ratioQ = 0.75, ratioC = 0.3,
PerUsed=66% and PerNotUsed=30%.

In the two-step approach, the values of the ratios have important bearing
over the desired outcome. A low value of ratioQ yields many low-quality po-
tential reducts, consequently the UsedFeatures and NotUsedFeatures vec-
tors include useless information about the features; therefore, the effect of using
UsedFeatures and NotUsedFeatures to modify the swarm is poor. On the
other side, a value near to one produces subsets close to the definition of reducts
in the first stage. As to ratioC , a low value allows to perform a greater quantity
of cycles in the second stage from the modified swarm.

The two algorithms were tested and compared using six data sets from UCI
Repository. Each algorithm was executed six times on every data set and the
average results are offered in Table 3. The performances obtained were compared
in terms of the average length of the resulting reduct set (columns 4 and 6) and
the number of times in which the algorithm found the minimal reducts (columns
5 and 7). The length of a reduct is defined by the number of features in it.

These results are very interesting because they shed light on the fact that
the two-step PSO approach ends up with shorter reducts than the PSO-RST-FS
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algorithm. So, the certainty of finding minimal length reducts increases by using
the TS-PSO-RST-FS method.

5.2 Ant Colony Optimization

Another very popular swarm intelligence technique is Ant Colony Optimiza-
tion (ACO). ACO is a generic strategy (meta-heuristic) [9] used to guide other
heuristics in order to obtain superior solutions than those generated by local
optimization methods. In the early ACO model, a colony of artificial ants co-
operates to look for good solutions to discrete optimization problems. Artificial
ants are simple agents that incrementally build a solution by adding components
to a partial solution under construction.

Ant System (AS) [9] is considered as the first ACO algorithm and was intro-
duced using the Travel Salesman Problem (TSP). In TSP, we have a set of N
fully connected cities c1, . . . , cn by edges (i, j). Edges have associated pheromone
trails τij which denote the desirability of visiting city j directly from city i. Also,
the function ηij = 1/dij indicates the heuristic desirability of going from i to
j, where dij is the distance between cities i and j. Initially, ants are randomly
associated to cities. In the successive steps, ant k applies a random proportional
rule to decide which city to visit next according to (17):

pk
ij =

(τij)α · (ηij)β∑
l∈Nk

i

(τil)α · (ηil)β
if j ∈ Nk

i (17)

where Nk
i is the neighborhood of the k-th ant while α and β are two parameters

that point out the relative importance of the pheromone trail and the heuristic
information, respectively. After all ants have built their tours, the values τij are
updated in two different ways. First, τij values decrease because of the evap-
oration (τij = (1 − ρ) · τij). The ρ parameter is meant to prevent unlimited
pheromone accumulation along the edges. Second, all ants reinforce the value of
τij on the edges they have passed on in their tours (τij = τij + Incij), where
Incij is the amount of pheromone deposited by all ants which included edge
(i, j) in their tour. Usually, the amount of pheromone deposited by the k-th ant
is equal to 1/Ck, where Ck is the length of the tour of ant k.

Some direct successor algorithms of Ant Systems are: Elitist AS, Rank-based
AS and MAX-MIN AS [9]. A more different ACO approach is Ant Colony System
(ACS) which employs the following pseudo-random proportional rule to select
the next city j from city i:

j =

⎧⎪⎨
⎪⎩

arg max
l∈Nk

i

{τij · (ηil)β}, if q < q0

random selection as in (17), otherwise

(18)

where q is a random variable uniformly distributed in [0,1] and 0 ≤ q0 ≤ 1,
controls the amount of exploration. In ACS, ants have a local pheromone trail
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update which is defined as (τij = (1−ρ)·τij+ρ·τij(0)) and is applied after crossing
an edge (i,j), where τij(0) represents the initial pheromone value. Furthermore,
a global pheromone trail update (τij = (1 − ρ) · τij + ρ · Incij) is executed only
by the best-so-far ant.

The feature selection problem is an example of a tough discrete optimization
problem which can be represented as a graph problem; this is why the ACO
model is well suited to solve it.

For this study we used the ACS-RST-FS according to results showed in [1]
and [2]. Let A = {a1, a2, . . . , anf} be a set of features. One can think of this
set as an undirected graph in which nodes represent features and all nodes are
connected by bidirectional links. Pheromone values τi are associated to nodes
ai. The amount of pheromone is a function of the dependency of the feature
associated to that node to all other features. The pheromone stands for the
absolute contribution of that feature to a reduct.

The solution consists of reducts which have to be gradually constructed by
the system agents (ants). Initially the ants are distributed over the nodes of the
graph and each one stores an empty subset which has to become a candidate
reduct. The behavior of a single ant can be described as follows. In the first step,
the ant is assigned to one of the nodes, from which it will move to some other
node in the network. By doing so, the ant performs a forward selection in which
it expands its subset step-by-step by adding new features. To select the next
node to visit, the ant looks for all features which are not yet included in the
subset and selects the next one according to the ACS rule. On the one hand, it
is drawn by the pheromone the other ants have already put down in the graph
and, on the other hand, by the heuristic function. We have confined ourselves to
choose the standard quality of classification (see expression 1) as the heuristic
function for our problem. It is used too for determining whether the candidate
subset is a reduct or not. Over time, the quality of the subsets constructed by the
ants will improve, which is supported by the monotonicity property of classical
RST; these converge to nearly optimal reducts.

The initial deployment of the ants during each cycle (iteration) is governed
by the following rules. Recall that m is the population size (number of ants)
whereas nf is the number of features present in the data set.

1. If m < nf then perform a random initial distribution of ants.
2. If m = nf then one ant is assigned to each feature.
3. If m > nf then assign the first m ants according to (2) and the remaining

ones as in (1).

The process of finding the candidate reduct sets B happens in a sequence of
cycles NC = 1, 2, . . . In each cycle, all ants build their own set Bk. The process
stop criterion is met (PSC = true) once the maximal number of cycles has been
exceeded NC > NCmax. Each ant k keeps adding one feature at a time to its
current partial set Bk until γBk

(Y ) = γA(Y ). This is known as the ant stopping
criterion (ASCk=true). The population size is envisioned as a function of the
number of features m = f(nf) where round(x) denotes the closest integer to x.
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Algorithm 4. ACS-RST-FS
1: procedure ACS-RST-FS( )
2: PSC ← false, NC ← 1
3: Calculate τi(0), i = 1, . . . ,nf (random initial values for trail intensity)
4: repeat
5: Each ant k is assigned to an attribute ai, ∀k ∈ {1, . . . , m} and Bk ← {ai}
6: ASCk ← false ∀k ∈ {1, . . . , m}
7: repeat
8: for k ← 1 to m do
9: if ASCk = false then

10: Select new feature a∗
i according to (1)

11: Bk = Bk ∪ {a∗
i }

12: τi ← (1 − ξ) · τi + ξ · τi(0) � i is the index of a∗
i

13: Update ASCk � Did ant k complete a reduct Bk?
14: end if
15: end for
16: until ASCk =true ∀k ∈ {1, . . . , m}
17: B∗

k ← best Bk � Now that all ants have finished, select the best reduct
18: for each ai ∈ B∗

k do
19: τi ← (1 − ρ) · τi + ρ · γk

B(Y ) � update global pheromone trail
20: end for
21: For each feature i do τi = τi

n∑
j=1

τj

22: NC ← NC + 1
23: Update PSC
24: until PSC = true
25: end procedure

R1: If nf < 19 then m = nf
R2: If 20 ≤ nf ≤ 49 then if 2/3 nf ≤ 24 then m=24 else m=round(2/3 nf)
R3: If nf > 50 then if nf/2 ≤ 33 then m = 33 else m = round(nf/2)

The above rules are the direct outcome of a thorough experimental analysis
conducted with the purpose in mind of setting the population size on the basis
of the number of features describing the data set.

Now we are ready to present the ACS-RST-FS approach in a more formal
way. Let us look at Algorithm 4.

A new approach in Ant Colony Optimization for solving the feature selection
problem was introduced in [3] . The two-step ACO algorithm is also based on the
idea of splitting the process of finding reducts into two stages. The algorithm
dynamically constructs candidate feature subsets during the first stage which
shall be afterwards used as starting points for each ant’s own candidate feature
subset in the second stage. The number of cycles, the number of ants and the
desired quality of the subsets are degrees of freedom of the model related to each
stage. We use the same ratio r that affects the three aforementioned parameters.
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Algorithm 5. TS-ACS-RST-FS
procedure TS-ACS-RST-FS( )

Compute the population size (m) on the basis of the number of features (nf)
Compute the quality of classification using (1) and B = A
STAGE 1
Calculate parameter values in the first stage as follows:
NCmax1 = r · NCmax, m1 = r · m, γB1(Y ) = r · γB(Y )
Run the ACS-RST-FS approach
CS ← output of ACS-RST-FS � CS holds the candidate reducts
STAGE 2
Calculate parameter values in the second stage as follows:
NCmax2 = NCmax − NCmax1, m2 = m − m1, γB2(Y ) = γB(Y )
Run the ACS-RST-FS approach but assign in each cycle a random subset
from CS as initial subset for each ant

end procedure

For instance, suppose we are interested in carrying out 100 cycles as the overall
algorithm’s execution and we will use 30 ants for generating Bk subsets with the
maximum possible quality of classification (NCmax = 100, m = 30, γB(Y ) = 1).
Setting r = 0.3 means that the first stage will last only 30 iterations, involving 9
ants and will settle for reducts whose quality would be 0.3 or above. Being this so,
the values of these parameters during the second phase will be NCmax = 70, m =
21 and the algorithm will look for subsets with the maximum possible quality
of classification. The workflow of activities of the TS-ACS-RST-FS proposed
approach is depicted in Algorithm 5.

Of course, any other alternative ACO-based implementation can be used
rather than the ACS-RST-FS algorithm. An important issue in this approach is
to study which is the most suitable value for ratio r. High values of r (near to 1)
cause the two-step algorithm to obtain candidate subsets close to the definition
of reducts in the first stage, therefore ants in the second step swiftly find reducts
but using very limited iterations and a scarce number of search agents (ants). On
the contrary, if the ratio value is low, the quality of the candidate feature subsets
computed during the first stage is poor yet there are more ants to work for a
larger number of cycles in the second stage. We have developed an experimental
study which is concerned with this tradeoff.

The following values for the ratio parameter have been proposed r ∈ {0.2, 0.3,
0.36, 0.5, 0.6, 0.8} and the impact of each of these values over the number of
reducts obtained, their length as well as the computational time needed to pro-
duce the output has been observed. Table 4 reports the average results achieved
after 20 iterations. A synthetic repository comprised of 20 objects which are
described by 16 features provides the data for conducting the experiments. The
maximum number of cycles is 21.

We can see that r = 0.3 bears the best results. This setting implies a number of
reducts similar to ACS-RST-FS but only in the 23% of the time. Similar results
can be witnessed across other data sets. For instance, in Table 5 we display
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Table 4. Results obtained with the proposed ACO-based approaches. The last two
columns portray the average number of reducts, the average length of the reducts and
the computational time (in seconds), these three indicators separated by backslash.

Algorithm NCmax1 NCmax2 m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS – – – – 46.7/3.95/228 123/4.19/274

TS-ACS r = 0.2 4 17 3 13 32.7/4.2/82 76.3/4.2/89.9

TS-ACS r = 0.3 6 15 5 11 43.3/4.1/53 71.3/4.2/64

TS-ACS r = 0.36 8 13 6 10 38.7/3.9/39 67.3/4.1/47

TS-ACS r = 0.5 10 11 8 8 29.7/3.8/32 43.3/4.1/44

TS-ACS r = 0.6 13 8 10 6 20.33/3.8/41 37/4.2/49

TS-ACS r = 0.8 17 4 13 3 9/3.8/82 10.67/4.2/97

Table 5. A comparison between ACS and several configurations of the two-step ACO
approach using r = 0.3, NCmax1 = 6 and NCmax2 = 15

Algorithm m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS (m = 16) – – 46.7/228 123/274

TS-ACS (m = 16) 5 11 92%/23% 58%/23%

TS-ACS (m′ = 1.33m = 21) 6 15 96%/31% 81%/37%

TS-ACS (m′ = 1.5m = 24) 7 17 109%/38% 83%/42%

TS-ACS (m′ = 1.8m = 29) 9 20 120%/52% 89%/55%

TS-ACS (m′ = 2.1m = 34) 10 24 126%/66% 99%/69%

the results using the Breast Cancer database from UCI Repository. The result
here is not surprising, since the value r = 0.3 provides a good balance between
both stages; a higher number of ants and cycles in the second stage allows the
algorithms to perform a larger exploration of the search space departing from
initial subsets with an acceptable quality.

Another point worthwhile stressing is that the time complexity of TS-ACS-
RST-FS is very low. In light of this, we propose a second idea: to increase the
number of ants in order to bring about a greater exploration of the search space.
In Table 6 the same data set than in Table 4 was used but now the population
size is increased by the factors 1.33, 1.5, 1.8 and 2.1, respectively. In columns
4 and 5 the relationship between each alternative and the ACS-RST-FS bench-
mark algorithm is reported in terms of the amount of reducts achieved and the
computational time needed. For instance, when the number of ants is 1.8m, the
TS-ACS-RST-FS approach gets 120% of reducts with respect to the number of
reducts computed via ACS-RST-FS only in 52% of the time required by the
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Table 6. A comparison between ACS and several configurations of the two-step ACO
approach using NCmax1 = 6 and NCmax2 = 15

Algorithm m1 m2 β = 5, q0 = 0.9 β = 1, q0 = 0.3

ACS (m = 9) – – 46.7/228 123/274

TS-ACS (r = 0.2) 2 7 60%/34% 70%/49%

TS-ACS (r = 0.3) 3 6 109%/31% 73%/37%

TS-ACS (r = 0.36) 3 6 105%/25% 77%/31%

TS-ACS (r = 0.5) 4 9 100%/22% 73%/26%

TS-ACS (r = 0.6) 5 4 65%/13% 50%/20%

TS-ACS (r = 0.8) 7 2 33%/27% 31%/26%

TS-ACS (r = 0.3, m′ = 1.8m = 16) 5 11 102%/58% 98%/74%

TS-ACS (r = 0.3, m′ = 2.1m = 19) 6 13 124%/67% 103%/83%

latter one (for β = 5 and q0 = 0.9). Here we have set r = 0.3 because this
value accomplishes the most encouraging results throughout several experimen-
tal studies. In the case of β = 1 and q0 = 3, the TS-ACS-RST-FS method
reached the same number of reducts (99%) but only using 69% of the CPU time
than its counterpart, the ACS-RST-FS model.

Table 6 sketches a similar study using the Breast Cancer database. These
results are very interesting because the two-step ACO approach enables us to
obtain the same or an even greater number of reducts in less time than ACS-RST-
FS, hence the feasibility of splitting the search process is empirically confirmed
once again.

6 Dynamic Mesh Optimization in Feature Selection

We want to elaborate now on a novel optimization technique called “Dynamic
Mesh Optimization” (DMO) [5] which follows some patterns already present in
earlier evolutionary approaches but provides a unique framework for managing
both discrete and continuous optimization problems.

The essentials behind the DMO method is the creation of a mesh of points in
the multi-dimensional space wherein the optimization of the objective function
is being carried out. The mesh endures an expansion process toward the most
promising regions of the search space but, at the same time, becomes finer in
those areas where there exist points that constitute local ends of the function.
The dynamic nature of the mesh is given by the fact that its size (number of
nodes) and configuration both change over time. When it comes to the feature se-
lection problem, nodes can be visualized as binary vectors n = (n1, n2, . . . , nN)
of N components, one per attribute, with the component ni = 1 if the i-th
attribute is being considered as part of the solution or zero otherwise. This
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is the same representation adopted in the previously discussed evolutionary
approaches.

At every cycle, the mesh is created with an initial number of nodes. Subse-
quently, new nodes are generated until an upper boundary in the number of
nodes is reached. The mesh at the next cycle is comprised of the fittest nodes of
the mesh in the current iteration. Along the search process, the node carrying
the best value of the objective (evaluation) function so far is recorded, so ng

denotes the global end attained up to now by the search algorithm.
In the case of the feature selection problem, the evaluation (fitness) function

for the DMO meta-heuristic is expression (11), which attempts to achieve a
tradeoff between the classificatory ability of a reduct and its length.

The dynamic nature of our proposal manifests in the generation of (i) the
initial mesh; (ii) intermediate nodes oriented toward the local optima; (iii) in-
termediate nodes in the direction of the global optimum and (iv) nodes aiming
at expanding the dimensions of the current mesh.

The model gives rise to the following parameters: (i) Ni → size of the initial
mesh, (ii) N → maximum size of the mesh across each cycle (Ni < N) and (iii)
M → number of cycles.

The DMO method is defined in the following manner:

STEP 1. Generate the initial mesh for each cycle: At the beginning of
the algorithm’s execution, the initial mesh will be made up of Ni randomly
generated nodes while in the remaining iterations, the initial mesh is built upon
the selection of the best (in terms of evaluation measure) Ni nodes of the mesh
in the preceding cycle.
STEP 2. Node generation toward local optima: The aim of this step is to
come up with new nodes laid in the direction of the local optima found by the
algorithm.

For each node n, its K-nearest neighbor nodes are computed (the Hamming
distance is a suitable option for the FSP). If none of the neighbors surpasses
n in fitness function value, then n is said to be a local optimum and no nodes
are begotten out of it in this step. Conversely, suppose that node ne is “better”
than n and the rest of its neighbors. In this case, a new node arises somewhere
between n and ne.

The proximity of the newly generated node n∗ to the current node n or to
the local optimum ne is contingent upon a factor r which is calculated based on
the fitness function values at both nodes n and ne. Each component of n∗ takes
either the value of ni or nei according to a rule involving a stochastic component.
The threshold r determining how every component n∗

i must be fixed is calculated
as in (19).

r = 1 − 0.5
Eval(n)
Eval(ne)

(19)

f(n,ne, r) : For each component ni: If random() < r then n∗
i = nei otherwise

n∗
i = ni
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Algorithm 6. The DMO meta-heuristic
1: procedure D(M)O
2: Randomly generate Ni nodes to build the initial mesh
3: Evaluate all the mesh nodes
4: repeat
5: for each node n in the mesh do
6: Find its K-nearest neighbors
7: nbest ← the best of its neighbors
8: if nbest is better than n then
9: Generate a new node by using function f

10: end if
11: end for
12: for each initial node in the current mesh do
13: Generate a new node by using function g
14: end for
15: repeat
16: Select the most outward node of the mesh
17: Generate a new node by using function h
18: until MeshSize = N
19: Select the best Ni nodes of the current mesh and set up the next mesh
20: until CurrentIteration = M
21: end procedure

Notice from (19) that the lower the ratio between Eval(n) and Eval(ne), the
more likely it is that n∗

i takes the value of the i-th component of the local
optimum.
STEP 3. Node generation toward global optimum: Here the idea is the
same as in the previous step but now r is computed differently and a new function
g is introduced. Needless to say that ng represents the global optimum found
thus far by the algorithm.

r = 1 − 0.5
Eval(n)
Eval(ng)

(20)

g(n,ng, r) : For each component ni: If random() < r then n∗
i = ngi otherwise

n∗
i = ni

STEP 4. Mesh expansion: In this step, the mesh is stretched from its outer
nodes using function h, i.e. using nodes located at the boundary of the initial
mesh in each cycle. The weight w depicted in (13) assures that the expansion
declines along the search process (i.e., a bigger expansion is achieved at the early
cycles and it fades out as the algorithm progresses). To determine which nodes
lie in the outskirts of the mesh, we turn to the norm of a vector. Those nodes
exhibiting the lowest and greatest norm values are picked. Remark that, in this
step, as many outer nodes as needed are selected so as to fill out the maximum
mesh size N . The rules regulating this sort of node generation can be found next:
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For each node nl in the lower boundary (those with the lowest norm):
h(nl, w) : For each component ni: If random() < w then n∗

i = 0 otherwise
n∗

i = nli
For each node nu in the upper boundary (those with the greatest norm):

h(nu, w) : For each component ni: If random() < w then n∗
i = 1 otherwise

n∗
i = nui

In the context of feature selection, the norm of a node (vector) is the number of
components set to one. Algorithm 6 outlines the workflow of the DMO approach.
It is also worth remarking that no direct search algorithm guarantees to find the
global optimum no matter how refined the heuristic search might be.

7 A Comparative Study

The conducted experimentation embraces a comparison between DMO and ex-
isting ACO- and PSO-based approaches. The chosen criteria were the number
and length of the reducts found as well as the computational time required by
every method.

Concerning ACO, the Ant Colony System (ACS) model was picked for bench-
marking following the advice in [1] and [2], for it reported the most encouraging
outcomes. As to the parameter setting, we stuck to the guidelines provided in
the aforesaid studies, i.e. β = 5, q0 = 0.9, NCmax = 21 and the population
size (number of ants) depending on the number of features as in the previously
enunciated rules.

Regarding the TS-ACS-RST-FS approach, the value of the ratio r used for
determining the number of ants, number of cycles and threshold of the quality
of the classification in each stage was set to 0.3 whereas the number of ants m
is increased 2.1 times, i.e. m′ = 2.1m

Moving on to the PSO-driven approaches’ configuration, each individual was
shaped as a binary vector whose length matches the number of attributes in
the system. The parameters associated with the PSO-RST-FS were fixed as
c1 = c2 = 2, maxCycles = 120 and swarmSize = 21. The inertia weight w
keeps its dynamic character as reflected in (13). As to the TS-PSO-RST-FS
method, the factor used to calculate the quality of the classification in the first
stage (ratioQ) takes 0.75 while the parameter involved in the computation of
the number of cycles (ratioC) for each phase was set to 0.3.

The configuration of the DMO-RST-FS (DMO + RST to feature selection)
has been defined as follows: a mesh with 30 nodes is used, 9 of them regarded
as initial nodes (which means that it is necessary to generate 21 nodes per
cycle, just the same number of particles than in the PSO-based models) and the
computations lasted for 90 iterations.

Table 7 reports the experimental results obtained after applying the above
methods over the Breast Cancer, Heart and Dermatology data sets coming from
the UCI Repository. Each table entry holds the average number of reducts found,
the average length (number of attributes) of the reducts in addition to the length
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Table 7. Quality of the reducts found by different evolutionary algorithms. First datum
is the average number of reducts found, followed by their average length, the length of
the shortest reduct and, finally, the percentage of times a reduct of the same length
was found throughout the different executions of the algorithm.

Method BreastCancer Heart Dermatology

DMO-RST-FS 18.3/5.1/4,100% 14.8/8.29/6, 83% 179.5/20.9/9,50%

TS-PSO-RST-FS 11/4.6/4,100% 3/6.8/6,100% 39.3/12.6/9, 50%

PSO-RST-FS 14/4.95/4,100% 6/7.97/6,67% 78.2/15.3/9, 50%

TS-ACS-RST-FS 12.7/4.74/4,100% 7/7/6,67% 249/13/9,33%

ACS-RST-FS 11.75/4.94/4,100% 14.3/7.53/6,100% 300/14.17/10,66%

Table 8. Average number of evaluations of the fitness function in each algorithm

Algorithm Avg. number of times

DMO-RST-FS 2530

TS-PSO-RST-FS 2542

PSO-RST-FS 2968

TS-ACS-RST-FS 17222

ACS-RST-FS 13487

of the shortest reduct and the number of times it was found with regards to the
number of runs performed by the algorithm. Every algorithm was executed six
times per data set. From the information in Table 7 we notice, for instance, that
the DMO-RST-FS algorithm discovered 18.3 reducts on average for the Breast
Cancer data set, the reducts having average length of 5.1 and the shortest reduct
found is composed of four attributes, having a reduct of such length always
(100%) been found throughout the different runs of the algorithm.

From the outlook of the computational cost, one may notice that the DMO-
RST-FS, TS-PSO-RST-FS and PSO-RST-FS algorithms have a very similar per-
formance. This is clearly understood if we keep in mind that the greater the
number of times expression (1) is computed, the more time-consuming the algo-
rithm turns into. While PSO-based and DMO approaches compute this indicator
roughly P × Q times (P being the number of cycles and Q the number of agents
engaged in the search process, viz particles in PSO and nodes in DMO), the ACO-
based models evaluate this function a far greater number of times, i.e. roughly
P × Q × k (Q being the number of ants and k the average length of the reducts
found, since every time an ant adds a node to the solution, it must evaluate all
possible alternatives at hand, namely, all attributes still not considered so far).
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Regarding the average amount of times the fitness function was calculated by
all approaches under discussion, Table 8 presents the corresponding magnitudes.

8 Conclusions

An study on the performance of several evolutionary techniques for tackling the
feature selection problem has been outlined. The common denominator has been
the pivotal role played by rough set theory in assessing the quality of a feature
subset as a prospective reduct of the system under consideration. Therefore this
criterion has been successfully incorporated to the fitness function of all the
studied algorithms and the preliminary results allow to confirm the feasibility
and efficiency of this sort of techniques for attribute reduction.

Moreover, the introduction of the two-step search paradigm for the swarm
intelligence methods translated into a substantial reduction of the computational
time needed to find the reducts of the information system.

Under empirical evidence we can also conclude that the Dynamic Mesh Opti-
mization approach explores the search space in a similar way to the algorithms
based on the Ant Colony Optimization model but with a computational cost
very close to that of Particle Swarm Optimization.
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Summary. Finding reducts is one of the key problems in the increasing applications of
rough set theory, which is also one of the bottlenecks of the rough set methodology. The
population-based reduction approaches are attractive to find multiple reducts in the
decision systems. In this chapter, we introduce two nature inspired population-based
computational optimization techniques, Particle Swarm Optimization (PSO) and Ge-
netic Algorithm (GA) for rough set reduction. Particle Swarm Optimization (PSO) is
particularly attractive for the challenging problem as a new heuristic algorithm. The
approach discover the best feature combinations in an efficient way to observe the
change of positive region as the particles proceed throughout the search space. We
evaluated the performance of the two algorithms using some benchmark datasets and
the corresponding computational experiments are discussed. Empirical results indicate
that both methods are ideal for all the considered problems and particle swarm op-
timization technique outperformed the genetic algorithm approach by obtaining more
number of reducts for the datasets. We also illustrate a real world application in fMRI
data analysis, which is helpful for cognition research.

1 Introduction

Rough set theory [1, 2, 3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4, 5, 6, 7, 8, 9, 10].

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a computa-
tional point of view. Finding reducts in a large information system is still an
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NP-hard problem [11]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal
solutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [12, 13]. The heuristic algorithm is
a better choice. Hu et al. [14] proposed a heuristic algorithm using discernibility
matrix. The approach provided a weighting mechanism to rank attributes. Zhong
and Dong [15] presented a wrapper approach using rough sets theory with greedy
heuristics for feature subset selection. The aim of feature subset selection is to
find out a minimum set of relevant attributes that describe the dataset as well
as the original all attributes do. So finding reduct is similar to feature selection.
Zhong’s algorithm employed the number of consistent instances as heuristics.
Banerjee et al. [16] presented various attempts of using Genetic Algorithms in
order to obtain reducts. Although several variants of reduct algorithms are re-
ported in the literature, at the moment, there is no accredited best heuristic
reduct algorithm. So far, it is still an open research area in rough sets theory.

Conventional approaches for knowledge discovery always try to find a good
reduct or to select a set of features [17]. In the knowledge discovery applications,
only the good reduct can be applied to represent knowledge, which is called a
single body of knowledge. In fact, many information systems in the real world
have multiple reducts, and each reduct can be applied to generate a single body
of knowledge. Therefore, multi-knowledge based on multiple reducts has the po-
tential to improve knowledge representation and decision accuracy [18]. However,
it would be exceedingly time-consuming to find multiple reducts in an instance
information system with larger numbers of attributes and instances. In most of
strategies, different reducts are obtained by changing the order of condition at-
tributes and calculating the significance of different condition attribute combina-
tions against decision attribute(s). It is a complex multi-restart processing about
condition attribute increasing or decreasing in quantity. Population-based search
approaches are of great benefits in the multiple reduction problems, because dif-
ferent individual trends to be encoded to different reduct. So it is attractive to
find multiple reducts in the decision systems.

Particle swarm algorithm is inspired by social behavior patterns of organisms
that live and interact within large groups. In particular, it incorporates swarming
behaviors observed in flocks of birds, schools of fish, or swarms of bees, and
even human social behavior, from which the Swarm Intelligence (SI) paradigm
has emerged [19]. The swarm intelligent model helps to find optimal regions
of complex search spaces through interaction of individuals in a population of
particles [20, 21, 22]. As an algorithm, its main strength is its fast convergence,
which compares favorably with many other global optimization algorithms [23,
24]. It has exhibited good performance across a wide range of applications [25,
26, 27, 28, 29]. The particle swarm algorithm is particularly attractive for feature
selection as there seems to be no heuristic that can guide search to the optimal
minimal feature subset. Additionally, it can be the case that particles discover
the best feature combinations as they proceed throughout the search space.
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The main focus of this chapter is to introduce how particle swarm optimization
algorithm may be applied for the difficult problem of finding multiple reducts.
The rest of the chapter is organized as follows. Some related terms and theorems
on rough set theory are explained briefly in Sect. 2. The proposed approach based
on particle swarm algorithm is presented in Sect. 3. In Sect. 4, experiment results
and discussions are provided in detail. In Sect. 5, we illustrate an application in
fMRI data analysis. Finally conclusions are made in Sect. 6.

2 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and
illustrated with examples in [1, 2, 3, 15, 30, 31, 17]. Here, we illustrate only the
relevant basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃
a∈A

Va

f : U×A → V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C∪D}, C∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪D, P ⊆ C ∪D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)

The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.
Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

APR−
R(X) =

⋃
{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
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of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

APR−
B(Di) (3)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (4)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard
to classification of elements of the universe. Usually, there are many reducts in
an instance information system. Let 2A represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let RED represent the set of
reducts, i.e.,

RED = {B | POSB(D) = POSC(D), POS(B−{a})(D) < POSB(D)} (5)

Multi-knowledge: Given a decision table T = (U, C, D, V, f). Let RED represent
the set of reducts, Let ϕ is a mapping from the condition space to the decision
space. Then multi-knowledge can be defined as follows:

Ψ = {ϕB | B ∈ RED} (6)

Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u′

1]C , [u
′

2]C , · · · , [u
′

m]C}, Reduced Positive
Universe U

′
can be written as:

U
′
= {u′

1, u
′

2, · · · , u
′

m}. (7)

and
POSC(D) = [u

′

i1 ]C ∪ [u
′

i2 ]C ∪ · · · ∪ [u
′

it
]C . (8)

Where ∀u
′

is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′

pos = {u′

i1 , u
′

i2 , · · · , u
′

it
}. (9)

and ∀B ⊆ C, reduced positive region
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POS
′

B(D) =
⋃

X∈U ′ /B∧X⊆U ′
pos∧|X/D|=1

X (10)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′

B = U
′

pos [31]. It is to be noted that U
′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′

pos, POS
′

B and then
compare POS

′

B with U
′

pos.

3 Nature Inspired Heuristics for Reduction

Combinatorial optimization problems are important in many real life applica-
tions and recently, the area has attracted much research with the advances in
nature inspired heuristics and multi-agent systems.

3.1 Particle Swarm Optimization for Reduction

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consist of m attributes. We set up a search space of m dimension for the reduc-
tion problem. Accordingly, each particle’s position is represented as a binary bit
string of length m. Each dimension of the particle’s position maps one condition
attribute. The domain for each dimension is limited to 0 or 1. The value ‘1’
means the corresponding attribute is selected while ‘0’ not selected. Each po-
sition can be “decoded” to a potential reduction solution, an subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence of
the attribute will not be changed during the iteration. But after updating the
velocity and position of the particles, the particle’s position may appear real val-
ues such as 0.4, etc. It is meaningless for the reduction. Therefore, we introduce
a discrete particle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
POS

′

E = U
′

pos or not (E is the subset of attributes represented by the potential
reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′

E = U
′

pos is used as the criterion of the solution validity.
As a summary, the particle swarm model consists of a swarm of particles,

which are initialized with a population of random candidate solutions. They
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move iteratively through the d-dimension problem space to search the new solu-
tions, where the fitness f can be measured by calculating the number of condition
attributes in the potential reduction solution. Each particle has a position rep-
resented by a position-vector pi (i is the index of the particle), and a velocity
represented by a velocity-vector vi. Each particle remembers its own best po-
sition so far in a vector p#

i , and its j-th dimensional value is p#
ij . The best

position-vector among the swarm so far is then stored in a vector p∗, and its
j-th dimensional value is p∗j . When the particle moves in a state space restricted
to zero and one on each dimension, the change of probability with time steps is
defined as follows:

P (pij(t) = 1) = f(pij(t − 1), vij(t − 1), p#
ij(t − 1), p∗j(t − 1)). (11)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12)

At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(13) and (14):

vij(t) = wvij(t−1)+φ1r1(p
#
ij(t−1)−pij(t−1))+φ2r2(p∗j (t−1)−pij(t−1)). (13)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(14)

Algorithm 1. A Rough Set Reduct Algorithm Based on Particle Swarm
Optimization

1: Calculate U
′
, U

′
pos using Eqs.(7) and (9)

2: Initialize the size of the particle swarm n, and other parameters
3: Initialize the positions and the velocities for all the particles randomly
4: while the stop criterion is not met do
5: t ← t + 1
6: Calculate the fitness value of each particle
7: if POS

′
E �= U

′
pos then

8: the fitness is punished as the total number of the condition attributes
9: else

10: the fitness is the number of ‘1’ in the position
11: end if
12: p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)))
13: for i= 1 to n do
14: p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t))
15: for j = 1 to d do
16: Update the j-th dimension value of pi and vi

17: according to Eqs.(13) and (14)
18: end for
19: end for
20: end while
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Where φ1 is a positive constant, called as coefficient of the self-recognition com-
ponent, φ2 is a positive constant, called as coefficient of the social component. r1
and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,
1]. From Eq.(13), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. The pseudo-code for the
particle swarm search method is illustrated in Algorithm 1.

3.2 Genetic Algorithms for Reduction

In nature, evolution is mostly determined by natural selection, where individuals
that are better are more likely to survive and propagate their genetic material.
The encoding of genetic information (genome) is done in a way that admits
asexual reproduction, which results in offspring’s that are genetically identi-
cal to the parent. Sexual reproduction allows some exchange and re-ordering
of chromosomes, producing offspring that contain a combination of information
from each parent. This is the recombination operation, which is often referred
to as crossover because of the way strands of chromosomes crossover during the
exchange. Diversity in the population is achieved by mutation. A typical evolu-
tionary (genetic) algorithm procedure takes the following steps: A population of
candidate solutions (for the optimization task to be solved) is initialized. New so-
lutions are created by applying genetic operators (mutation and/or crossover).

Algorithm 2. A Rough Set Reduct Algorithm Based on Genetic Algorithm

1: Calculate U
′
, U

′
pos using Eqs.(7) and (9)

2: Initialize the population randomly, and other parameters
3: while the stop criterion is not met do
4: Evaluate the fitness of each individual in the population
5: if POS

′
E �= U

′
pos then

6: the fitness is punished as the total number of the condition attributes
7: else
8: the fitness is the number of ‘1’ in the position
9: end if

10: Select best-ranking individuals to reproduce
11: Breed new generation through crossover operator and give birth to offspring
12: Breed new generation through mutation operator and give birth to offspring
13: Evaluate the individual fitnesses of the offspring
14: if POS

′
E �= U

′
pos then

15: the fitness is punished as the total number of the condition attributes
16: else
17: the fitness is the number of ‘1’ in the position
18: end if
19: Replace worst ranked part of population with offspring
20: end while
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The fitness (how good the solutions are) of the resulting solutions are evalu-
ated and suitable selection strategy is then applied to determine which solutions
will be maintained into the next generation. The procedure is then iterated
[38]. The pseudo-code for the genetic algorithm search method is illustrated in
Algorithm 2.

4 Experiments Using Some Benchmark Problems

For all experiments, Genetic algorithm (GA) was used to compare the perfor-
mance with PSO. The two algorithms share many similarities [33, 34]. Both
methods are valid and efficient methods in numeric programming and have been
employed in various fields due to their strong convergence properties. Specific
parameter settings for the algorithms are described in Table 1, where D is the
dimension of the position, i.e., the number of condition attributes. Besides the
first small scale rough set reduction problem shown in Table 2, the maximum
number of iterations is (int)(0.1 ∗ recnum + 10 ∗ (nfields − 1)) in each trial,
where recnum is the number of records/rows and nfields− 1 is the number of
condition attributes. Each experiment (for each algorithm) was repeated 3 times
with different random seeds. If the standard deviation is larger than 20%, the
times of trials were set to larger, 10 or 20.

To analyze the effectiveness and performance of the considered algorithms,
first we tested a small scale rough set reduction problem shown in Table 2.
In the experiment, the maximum number of iterations was fixed as 10. Each
experiment was repeated 3 times with different random seeds. The results (the

Table 1. Parameter settings for the algorithms

Algorithm ParameterName V alue

GA

size of the population (int)(10 + 2 ∗ sqrt(D))

Probability of crossover 0.8

Probability of mutation 0.08

PSO

Swarm size (int)(10 + 2 ∗ sqrt(D))

Self coefficient φ1 1.49

Social coefficient φ2 1.49

Inertia weight w 0.9 → 0.1

Clamping Coefficient ρ 0.5
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Table 2. A decision table

Instance c1 c2 c3 c4 d

x1 1 1 1 1 0

x2 2 2 2 1 1

x3 1 1 1 1 0

x4 2 3 2 3 0

x5 2 2 2 1 1

x6 3 1 2 1 0

x7 1 2 3 2 2

x8 2 3 1 2 3

x9 3 1 2 1 1

x10 1 2 3 2 2

x11 3 1 2 1 1

x12 2 3 1 2 3

x13 4 3 4 2 1

x14 1 2 3 2 3

x15 4 3 4 2 2

number of reduced attributes) for 3 GA runs were all 2. The results of 3 PSO runs
were also all 2. The optimal result is supposed to be 2. But the reduction result
for 3 GA runs is {2, 3} while the reduction results for 3 PSO runs are {1, 4} and
{2, 3}. Table 3 depicts the reducts for Table 2. Figure 1 shows the performance
of the algorithms for Table 2. For the small scale rough set reduction problem,
GA has faster convergence than PSO. There seems like a conflict between the
instances 13 and 15. It depends on conflict analysis and how to explain the
obtained knowledge, which is beyond the scope of this chapter.

Further we consider the datasets in Table 4 from AFS1, AiLab2 and UCI3.
Figures 2, 3, 4 and 5 illustrate the performance of the algorithms for lung-
cancer, lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer
dataset, the results (the number of reduced attributes) for 3 GA runs were 10:
{1, 3, 9, 12, 33, 41, 44, 47, 54, 56} (The number before the colon is the num-
ber of condition attributes, the numbers in brackets are attribute index, which
represents a reduction solution). The results of 3 PSO runs were 9: { 3, 8, 9,

1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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Table 3. A reduction of the data in Table 2

Reduct Instance c1 c2 c3 c4 d

{1, 4}

x1 1 1 0

x2 2 1 1

x4 2 3 0

x6 3 1 0

x7 1 2 2

x8 2 2 3

x9 3 1 1

x13 4 2 1

x14 1 2 3

x15 4 2 2

{2, 3}

x1 1 1 0

x2 2 2 1

x4 3 2 0

x6 1 2 0

x7 2 3 2

x8 3 1 3

x9 1 2 1

x13 3 4 1

x14 2 3 3

x15 3 4 2

12, 15, 35, 47, 54, 55}, 10: {2, 3, 12, 19, 25, 27, 30, 32, 40, 56}, 8: {11, 14, 24,
30, 42, 44, 45, 50}. For zoo dataset, the results of 3 GA runs all were 5: {3,
4, 6, 9, 13}, the results of 3 PSO runs were 5: {3, 6, 8, 13, 16, }, 5: {4, 6, 8,
12, 13}, 5: {3, 4, 6, 8, 13}. For lymphography dataset, the results of 3 GA runs
all were 7: {2, 6, 10, 13, 14, 17, 18}, the results of 3 PSO runs were 6: {2, 13,
14, 15, 16, 18}, 7: {1, 2, 13, 14, 15, 17, 18}, 7: {2, 10, 12, 13, 14, 15, 18}. For
mofn-3-7-10 dataset, the results of 3 GA runs all were 7: {3, 4, 5, 6, 7, 8, 9} and
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Table 4. Data sets used in the experiments

Dataset Size ConditionAttributes Class GA PSO

lung-cancer 32 56 3 10 8

zoo 101 16 7 5 5

corral 128 6 2 4 4

lymphography 148 18 4 7 6

hayes-roth 160 4 3 3 3

shuttle-landing-control 253 6 2 6 6

monks 432 6 2 3 3

xd6-test 512 9 2 9 9

balance-scale 625 4 3 4 4

breast-cancer-wisconsin 683 9 2 4 4

mofn-3-7-10 1024 10 2 7 7

parity5+5 1024 10 2 5 5
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Fig. 1. Performance of rough set reduction for the data in Table 2

the results of 3 PSO runs were 7: {3, 4, 5, 6, 7, 8, 9}. Other results are shown in
Table 4, in which only the best objective results are listed. PSO usually obtained
better results than GA, specially for the large scale problems. Although GA and
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Fig. 2. Performance of rough set reduction for lung-cancer dataset
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Fig. 3. Performance of rough set reduction for zoo dataset

PSO achieved the same results, PSO usually requires only very few iterations, as
illustrated in Fig. 4. It indicates that PSO have a better convergence than GA
for the larger scale rough set reduction problem, although PSO is worst for some
small scale rough set reduction problems. It is to be noted that PSO usually can
obtain more candidate solutions for the reduction problems.
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Fig. 4. Performance of rough set reduction for lymphography dataset
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Fig. 5. Performance of rough set reduction for mofn-3-7-10 dataset

5 Application in fMRI Data Analysis

Functional Magnetic Resonance Imaging (fMRI) is one of the most important
tools for Neuroinformatics, which combines neuroscience and informatics science
and computational science to develop approaches needed to understand human
brain [35]. The study of human brain function has received a tremendous boost
in recent years due to the advent of the new brain imaging technique.
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With the development of the new technology, a mass of fMRI data is col-
lected ceaselessly. These datasets implicate very important information, which
need to be extracted and translated to intelligible knowledge. Recently most
of the research are focused on the activation features on the Region of Inter-
est (ROI) through statistical analysis for single experiment or using only a few
data. Neuroscientists or psychologists provide explanation for the experimental
results, which depends strongly on their accumulative experience and subjec-
tive tendency. What is more, it is difficult to deal with slightly large datasets.
So it is exigent to develop some computational intelligence methods to analyze
them effectively and objectively. Rough set theory provides a novel approach
to reduct the fMRI data and extract meaningful knowledge. There are usually
many reducts in the information system, which can be applied to generate multi-
knowledge. The rough set approach consists of several steps leading towards the
final goal of generating rules [36].

The main steps of the rough set approach are: (1)mapping of the informa-
tion from the original database into the decision system format; (2) completion
of data; (3) discretization of data; (4) computation of reducts from data; (5)
derivation of rules from reducts; (6) filtering of rules. One of most important
task is the data reduction process.

Algorithm 3. Feature selection & extraction algorithm for fMRI data
Step 1. Find out the most active voxels in several regions of brain under the t-test
of basic models in SPM99 and save their coordinates
Step 2. Scan fMRI image and search the voxels according to the coordinates saved
Step 3. Respectively average all voxels in the spherical region whose center is cor-
responding saved voxel and whose radius is a predefined constant. These results of
a single image are formed one feature vector
Step 4. If the image isn’t the last one, go to Step 2, otherwise, end

A typical normalized image contains more than 500,000 voxels, so it is impos-
sible that feature vector can contain so immense voxels. We transform datasets
from MNI template to Talairach coordinate system. Then we can use the re-
gion information in Talairach as features to reduce the dimensionality of the
images. We used a SPM99 software package4 and in-house programs for image
processing, including corrections for head motion, normalization and global fMRI
signal shift [37]. A simplified workflow is illustrated in Fig. 6. Feature selection
& extraction algorithm for fMRI data is described in Algorithm 3. The location
for feature selection & extraction is shown in Fig. 7.

We analyzed the fMRI data from three cognition experiments: Tongue move-
ment experiment, Associating Chinese verb experiment, and Looking at or silent
reading Chinese word experiment. They are involved in 9 tasks: 0 - Control task;
1 - Tongue movement; 2 - Associating verb from single noun; 3 - Associating verb
4 http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6. Pre-processing workflow for fMRI data

from single non-noun; 4 - Making verb before single word; 5 - Looking at num-
ber; 6 - Silent reading Number; 7 - Looking at Chinese word; 8 - Silent reading
Chinese word. Some of rules are described as follows:

Rule1: if M1=2, SMA=2, Broca=2 then Task=1;
Rule2: if BAs { 7,19,20,40,44,45 } =3, BSC=2 then Task=2;
Rule3: if BAs { 10,11,13,44,45 } =3, BSC=1 then Task=3;
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Fig. 7. Developed software interface for feature selection and extraction

Rule4: if BAs { 7,19,40 } =3, BSC=3 then Task=4;
Rule5: if SMA=2, Broca=3 then Task=6;
Rule6: if SMA=2, Broca=2, Wernike=3 then Task=8.

6 Conclusions

In this Chapter, we introduced the problem of finding optimal reducts using
particle swarm optimization and genetic algorithm approaches. The considered
approaches discovered the good feature combinations in an efficient way to ob-
serve the change of positive region as the particles proceed throughout the search
space. Population-based search approaches are of great benefits in the multiple
reduction problems, because different individual trends to be encoded to differ-
ent reduct. Empirical results indicate that PSO usually required shorter time
to obtain better results than GA, specially for large scale problems, although
its stability need to be improved in further research. PSO have a better conver-
gence than GA for the larger scale rough set reduction problem, although PSO
is worst for some small scale rough set reduction problems. PSO also can obtain
more candidate solutions for the reduction problems. The population-based al-
gorithms could be ideal approaches for solving the reduction problem. We also
illustrated an application in fMRI data analysis. Although the correctness of the
rules need neuroscientists to analyze and verify further, the approach is helpful
for cognition research.

Acknowledgements

This work was partly supported by NSFC (60373095) and DLMU (DLMU-ZL-
200709).



Nature Inspired Population-Based Heuristics for Rough Set Reduction 277

References

1. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ences 11, 341–356 (1982)

2. Pawlak, Z.: Rough Sets: Present State and The Future. Foundations of Computing
and Decision Sciences 18, 157–166 (1993)

3. Pawlak, Z.: Rough Sets and Intelligent Data Analysis. Information Sciences 147,
1–12 (2002)

4. Kusiak, A.: Rough Set Theory: A Data Mining Tool for Semiconductor Manu-
facturing. IEEE Transactions on Electronics Packaging Manufacturing 24, 44–50
(2001)

5. Shang, C., Shen, Q.: Rough Feature Selection for Neural Network Based Image
Classification. International Journal of Image and Graphics 2, 541–555 (2002)

6. Francis, E.H., Tay, S.L.: Economic And Financial Prediction Using Rough Sets
Model. European Journal of Operational Research 141, 641–659 (2002)
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“Intelligent Electronic Devices (IEDs) can provide a flood of data. What is lack-
ing are the tools to convert that data into useful information and knowledge”.
∼ William J. Ackerman, ABB Automation USA (2002)

Summary. Supervisory Control and Data Acquisition (SCADA) systems are funda-
mental tools for quick fault diagnosis and efficient restoration of power systems. When
multiple faults, or malfunctions of protection devices occur in the system, the SCADA
system issues many alarm signals rapidly and relays these to the control center. The
original cause and location of the fault can be difficult to determine for operators un-
der stress without assistance from a computer aided decision support system. In cases
of power system disturbances, network operators in the control center must use their
judgement and experience to determine the possible faulty elements as the first step
in the restoration procedures. If a breaker or its associated relays fail to operate, the
fault is removed by backup protection. In such cases, the outage area can be large and
it is then difficult for the network operators to estimate the fault location. Multiple
faults, events and actions may eventually take place with many breakers being tripped
within a short time. In these circumstances, many alarms need to be analysed by the
operators to ensure that the most appropriate actions are taken [1]. Therefore, it is
essential to develop software tools to assist in these situations.

This chapter proposes a novel and hybrid approach using Rough Set Theory and a Ge-
netic Algorithm (RS-GA) indexrough hybrid to extract knowledge from a set of events
captured by (microprocessor based) protection, control and monitoring devices (referred
to as Intelligent Electronic Devices (IED)). The approach involves formulating a set of
rules that identify the most probable faulty section in a network. The idea of this work is
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to enhance the capability of substation informatics and to assist real time decision sup-
port so that the network operators can diagnose the type and cause of the events in a time
frame ranging from a few minutes to an hour. Building knowledge for a fault diagnostic
system can be a lengthy and costly process. The quality of knowledge base is sometimes
hampered by extra and superfluous rules that lead to large knowledge based systems
and serious inconveniences to rule maintenance. The proposed technique not only can
induce the decision rules efficiently but also reduce the size of the knowledge base with-
out causing loss of useful information. Numerous case studies have been performed on a
simulated distribution network [2] that includes relay models [3]. The network, modelled
using a commercial power system simulator; PSCAD (Power Systems Computer Aided
Design/EMTDC (ElectroMagnetic Transients including DC), was used to investigate
the effect of faults and switching actions on the protection and control equipment. The
results have revealed the usefulness of the proposed technique for fault diagnosis and
have also demonstrated that the extracted rules are capable of identifying and isolating
the faulty section and hence improves the outage response time. These rules can be used
by an expert system in supervisory automation and to support operators during emer-
gency situations, for example, diagnosis of the type and cause of a fault event leads to
network restoration and post-emergency repair.

1 Introduction

With the advent of Artificial Intelligence (AI), rule-based expert systems offer
capability of powerful inference and explanation for the knowledge intensive
problem of fault diagnosis. However, they suffer from some bottlenecks. The size
of a conventional knowledge base for a substation can be very large depending
on its duty. The process of knowledge acquisition, knowledge base construction
and maintenance for a great number of rules can be quite tedious and time
consuming. Often the process involves interviews with experts and engineers
and thus significant effort is required to establish a rule-based system with good
performance. As such, the cost of developing and/or maintaining a knowledge
based system is generally high. Owing to the nature of conventional knowledge
representation and inference mechanisms, the on line response time required by
an expert system is often unsatisfactory in a real time context. Once a rule-based
expert system has been built, it is difficult for it to improve its performance by
learning from new experiences. To compound matters, some rule-based systems
may be well suited for one substation but not for others and the situation can get
a lot more complicated with distributed generation integrated into the network
as it no longer behaves as a passive circuit. This will not only have an impact
on the protection system design but also on the conventional rule-based systems
designed to operate upon a traditional passive network.

In [4, 5, 6], the use of supervised and unsupervised rough classification, was
proposed for handling large numbers of messages received during an emergency,
in order to reduce the quantity of data, while maintaining useful and concise
information. This is crucial to alarm processing as the network operator could
be overwhelmed by the large quantity of alarm messages during an emergency.
Without methods for reducing these messages, operators will not respond ef-
fectively to the emergency within required time limits. In this chapter, we are
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concerned about knowledge base construction for on-line intelligent switching,
fault identification and service restoration in which detailed rules covering every
possible scenario that may occur in a substation are needed. A classical infor-
mation system may not cope well with high volumes of data and the existing
system may rely on particular data relating to the state of the power system.
If the latter are not available or missing, such a system may not perform ac-
curately. Consequently, power system state estimation is required to calculate
missing voltage and power data across the entire network to enable accurate
diagnosis of faults.This chapter serves as an improvement of our published work
in [7]; a classification method based on rough sets for knowledge base reduction
and rule induction.

With many IEDs being deployed on the network, we now have significant
volumes of redundant information. If one particular IED is missing/out of service,
there is still information available in other IEDs within the network that can
help diagnose the problem. In this chapter, a new classification method using
rough sets and a genetic algorithm is proposed to make use of the redundant
information from all IED sources to improve the operation of the power system.
The model is capable of extracting good quality inference rules from these sets
of event data. The idea is to build a scheme for autonomous rule induction
followed by subsequent classification to verify the extracted rules without the
presence of an expert. It is believed that ultimately experts will still be required
to perform a final verification check before these rules are applied. The proposed
technique can reduce the time needed to install such a knowledge based system
whenever a new substation configuration arises and hence reduces the set up and
maintenance costs. For an effective rule synthesis and induction, the simulated
event data should be as complete as possible, so that the rule induction system
can recognise a large variety of events for classification.

Almost all of the IEDs can provide some level of automation in collecting and
storing the recorded data from a substation. However, most of the data analysis
systems today still require the operators and engineers to perform the manual
operation associated with selecting and viewing the files. The future trend of
substation analysis is for these to operate automatically with minimum interac-
tion from utility staff. This requires conventional substations to be refurbished in
order to provide automated data collection, storage, processing of the recorded
data and distribution of the analysis reports. Figure 1 depicts a modern digital
control system (DCS) integrated with an information management unit (IMU)
to deliver useful information to the appropriate manpower groups in a utility.
Each group uses the monitored data for a different purpose and consequently
has varied information requirements. All the requirements need to be satisfied;
the right information must be delivered to the right people, at the right place,
at the right time.

The future trend of data concentration and processing is to decentralise the in-
telligence. The concept of distributed intelligence related to protection, automa-
tion and control moves centralised data processing closer to the data collection
point. Devices at higher levels are allowed to access and use a subset of the data
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Fig. 1. Integration of future DCS with IMU

from the lower level devices, which reduces data traffic over the substation net-
work. The processed information is then transferred to the right end users. This
can improve local response and reduce the amount of data transmitted to the
control centre. Also, the information collected by protection and control IEDs
can be processed locally to estimate for example, the remaining lifetime until
maintenance is required. Maintenance can then be performed when needed, in-
stead of at regular intervals. This can lead to reduced maintenance effort and
restrict the number of unexpected failures [8]. Some recent developments of sub-
station automation can be found in reference papers [9][10][11][12][13].

This chapter consists of four following sections. Section 2 introduces, defines
and explains the theoretical basis of proposed Rough Sets and Genetic Algo-
rithms. Sections 3 and 4 present two case studies and the results obtained from
the data collected using the power system simulation. The former illustrates
how the knowledge is extracted from a simple bus bar substation while the
latter presents and explains the results based on a more complex double bus
bar distribution substation. Two different sets of data have been considered to
demonstrate and evaluate the proposed algorithm in extracting knowledge from
a substation; one is based on the fault data in time series and the other is based
on various fault scenarios on defined protection zones. Section 5 consolidates
the ideas from the previous parts and suggests future directions for the research
as well as conclude the achievements of this application in power engineering
domain.

2 Rule Induction System

The proposed rule induction system consists of a hybrid model of rough sets,
a genetic algorithm and a standard voting classifier. Detailed descriptions of
rough sets and the genetic algorithm are not included in this chapter. They can
be found in the reference papers [14][15][16][17][18].
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2.1 Rough Set Theory - An Overview

Rough Set Theory was first introduced by Prof. Zdzislaw Pawlak and his co-
workers in the early 1980s. This relatively new theory has become one of the
crucial and fundamental approaches in the area of machine learning, knowledge
discovery from databases and decision support systems [19]. It offers an oppor-
tunity to explore data, which is neither accommodated by classical statistics
nor by conventional analytical models[20]. The results simplify the search for
dominating and minimal attributes leading to specific rules[21].

The concept of rough sets applies the idea of using approximations of a set
to deal with uncertainty (or inconsistencies). The approximation is based on
the assumption that every object (event) of universe is associated with some
information (data, knowledge). Events that can be characterized by the same
information are said to be indiscernible in view of the available information
about them. This can also be interpreted as the fact that our knowledge about
elements of the universe is limited and therefore we are unable to discern them
[22]. The approximations of a set consist of the positive (lower approximation),
negative (complement of the upper approximation) and boundary (difference
between the upper and lower approximation) regions. A lower approximation
defines the collection of events in which the equivalence classes are fully con-
tained in the set of events which is to be reduced to its essential attributes.
The upper approximation, however, defines the collection of events in which the
equivalence classes are at least partially contained in the set of events to be re-
duced. These two approximations provide crisp and rough descriptions of a data
set respectively. If a universe can be formed as a union of some elementary sets,
it is called crisp, otherwise it is rough.

The theory of rough sets is made up by two main parts; dispensable attribute
reduction and rule extraction. ‘Discernibility’ is the main theme of rough set
analysis, defined as the ability to discern events from each other. It requires
understanding of how the characteristics of one event differ from another be-
fore the two events can be classified. To achieve this, a discernibility matrix is
used. A discernibility matrix is a symmetric n × n matrix where n denotes
the number of elementary sets [23]. All the events in the rows and the columns
are listed in the same order. In each entry of the matrix, the differences be-
tween the event corresponding to the row and the event corresponding to the
column are compared and recorded. Naturally, the matrix will be symmetric due
to the fact that the attribute, which differs in value for events a and b differs
the other way around in value for events b and a [23]. However, it is important
to remark that the symmetry of the discernibility matrix is only valid when
considering symmetric indiscernibility relations, which is the assumption made
in this study. Two examples will be introduced in this chapter to demonstrate
how rough sets and a discernibility matrix are used to compute reducts. A
reduct is a reduced set of attributes, e.g voltages and currents, that conveys the
same amount of information about a data set as a complete set of attributes. A
relative discernibility matrix is then applied to this minimal attribute set to look
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for the core before any rules are extracted. A core is the set of relations occurring
in every reduct, i.e. the set of all indispensable relations that characterise the
equivalence relation.

Decision rules are generated on the basis of the computed reducts via the
discernibility matrix for classification of objects. They constitute one of the
most important results of rough set data analysis. Given a decision system
D = (U, A ∪ {d}), a descriptor is defined as a simple expression a = v where
a ∈ A and v ∈ Va. A decision rule is denoted α → β, where α is a conjunction of
descriptors, formed by overlaying a reduct B ∈ RED(A) over an object x ∈ U
and reading off the value of x for every a ∈ B, and β is the corresponding de-
scriptors d = d(x). α is called the rule’s antecedent and β is called the rule’s
consequent [24]. Each row of the decision table specifies a decision rule, which
determines the decision (action) that should be performed if specific conditions
are satisfied. A decision rule can be expressed as a logical statement: IF some
conditions are met, THEN some decisions rule can be commended. The con-
dition part is a conjunction of elementary conditions, and the decision part is
a disjunction of recommended decisions. A rule is said to cover an object if all
conditions in the condition part are matched by the attribute values of an object.

The advantages of using Rough Set approach is that it is able to discover
the dependencies that exist within the data, remove superfluous and redundant
data not required for the analysis and finally generate decision rules. It does this
by classifying the events of interest into similar classes indistinguishable to each
other. It generally constitutes a smaller size of the substation database allowing
faster knowledge acquisition and significantly reduces the time and costs for
rules based maintenance. Unlike other techniques e.g. probability in statistics
and grade of membership in fuzzy sets, the rough set approach does not require
additional information about the data to justify the outcome of interest [19].

2.2 Genetic Algorithms

Genetic algorithms (GAs) are the stochastic global search algorithm that reflects
in a primitive way some of the processes of natural biological evolution [25]. They
are generally effective for rapid search of large, nonlinear and poorly understood
spaces. Unlike classical feature, selection strategies where one solution is opti-
mised, a population can be modified at the same time. This can result in several
optimal feature subsets as output [26]. The motivation for using GAs in this work
is because they provide us flexibility to generate a number of rules according to
the parameter settings. They have been used successfully to generate shorter
reducts in knowledge processing and has good adaptive capability[27]. A GA
starts by generating a large set of possible solutions to a given problem. It then
evaluates each of those solutions, and decides on a fitness level for each solution
set. These solutions then breed new solutions. The parent solutions that have
better fitness level are more likely to reproduce, while those that have less fitness
level are more unlikely to do so. GAs evolve the search space scope over time or
generation to a point where the solution can be found. The reduct computation
process using GAs begins with initialising the population of chromosomes (or
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individuals) from the discernibility functions f(B) via rough sets. This is repre-
sented in the following steps: -

1. Generate an initial population. An initial population is created from a
random selection of solutions. Bit-vectors are used to represent the sets and
their hitting sets. For a collection of subsets S of a universe U, a hitting set
is a non empty subset H of U that intersects/hits every set in S. A minimal
hitting set is the element that can not be removed from S without violating
the hitting set property. These bit-vectors are called chromosomes, and each
bit is called gene, and all of the chromosomes are called population. Each
of the chromosomes is assigned a weight to record the number of times it
appears in f (B) before the fitness of all the chromosomes is evaluated. A
straightforward choice of population is a set P of elements from the power
set of A, written P(A) or 2A encoded as bit-vectors where each bit indicates
the presence of a particular element in the set. Given a set A, 2A is the
set of all subsets of A. As 2 can be defined as {0, 1}, 2A is the set of all
functions from A to {0, 1}. Assume that we have 10 IED relays in our net-
work {R1, R2, . . . , R10} and a candidate reduct A = {R1, R4, R9}. Then, 2A

is {} , {R1} , {R4} , {R9} , {R1, R4}, {R1, R9} , {R4, R9} , {R1, R4, R9}. The
candidate reduct can be represented as 1001000010.

2. Evaluate fitness. Fitness is a value assigned to each solution (chromosome)
depending on how close it actually is to solving the problem. These solu-
tions are possible characteristics that the system would employ to reach the
answer.

The fitness function f (B) evaluates an individual candidate solution
based on how well it performs at solving the problem. The fitness func-
tion depends on the number of attributes (should be kept as low as possible)
and decision ability (should be kept as high as possible). It drives the search
in GAs by optimising the fitness that determines how good a solution is.
The better a solution performs, the higher rated fitness value it receives.
The fitness function in use by the algorithm is defined in Eq. (1), where B⊆
A and S is the set of sets corresponding to the discernibility function. The
cost function specifies the cost of an attribute subset. If no cost information
is used, then a default unit cost is effectively defined as cost (B) = |B| [28].

f (B) = (1 − ρ) × cos t (A) − cos t (B)
cos t (A)

+ ρ × hf (B, S) (1)

where : hf (B, S) = min
{

ε,
|[Si in S|Si ∩ B �= ∅]|

|S|

}
The subsets B of A are found through the evolutionary search driven by the
fitness function. The parameter ρ defines a weighting between subset cost
and hitfraction (hf ). The first term of Eq. (1) rewards the shorter elements
and the second term ensures that hitting sets are rewarded to guarantee the
decision ability.
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3. Reproduction, selection, mutation, inversion and crossover. In the
reproduction, crossover, mutation and inversion are performed to create off-
spring. The mutation operator chooses a random location in the bit string
and changes that particular bit. The inversion operator inverts the order of
the elements between two randomly chosen points on a single chromosome.
It rearranges the bits in a string allowing linked bits to migrate and move
close together by keeping track of the original positions of the genes. The
crossover operator recombines two individuals by exchanging parts of their
strings to form two new individuals (offspring).

4. Control next generation. If the new generation contains a solution that
produces an output that is close enough or equal to the desired answer then
the problem has been solved. Otherwise, the process is repeated until the
predetermined number of generations has been exceeded or an acceptable
performance level has been reached.

2.3 Rule Accuracy and Assessment

The rules generated must be assessed to validate their accuracy. The metrics
described below are used to evaluate the quality of a given decision rule [28]:

1. Support: the number of events that possess both property α then β. The
pattern α is called the rule’s antecedent while the pattern β is called the
rule’s consequent, which can be represented in metric as follows: -

Support (α) = | ||α|| | (2)
where ||α|| is the norm of the element α of a normal vector space.

2. Accuracy: A decision rule α → β, read as “if α then β”, may only reveal
partially the overall picture of the derived decision system. Given pattern
α, the probability of the conclusion β can be assessed by measuring how
trustworthy the rule is in drawing the conclusion β on the basis of evidence
α using Eq. (3).

Accuracy (α → β) =
support (α · β)
support (α)

(3)

3. Coverage: The strength of the rule relies upon the large support basis
that describes the number of events, which support each rule. The quantity
coverage (α → β) is required in order to measure how well the evidence α
describes the decision class. It can be defined by Eq. (4): -

Coverage (α → β) =
support (α · β)

support (β)
(4)

2.4 Standard Voting Algorithm

A voting algorithm is used to resolve the rule conflicts and rank the predicted
outcomes. This works reasonably well for rule-based classification. The concept
of the voting algorithm can be divided into three parts [28]:
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1. Let RUL denote an unordered set of decision rules. The set of rules RUL
searches for applicable rules RUL(x ) that match the attributes of event x
(i.e. rules that fire) in which RUL(x ) ⊆ RUL.

2. If no rule is found, i.e. RUL(x ) = ∅, no classification will be made. The
most frequently occurring decision is chosen. If more than one rule fires, this
means that more than one possible outcome exists.

3. The voting process is a way of employing RUL to assign a certainty factor
to each decision class for each event. It is performed in three stages: -

• Casting the votes: Let a rule r ∈ RUL(x ) cast as many votes, votes(r)
in favour of its outcomes associated with the support counts as given by
Eq. (5):-

votes(r) = | ||α ∩ β|| | = | ||α|| ∩ ||β|| | (5)

• Compute a normalisation vector norm(x). The normalization fac-
tor is computed as the total number of votes cast and only serves as a
scaling factor in Eq. (6): -

norm(x) =
∑

r∈RUL(x)

votes (ri) (6)

• Certainty Coefficient: The votes from all the decision rules β are accu-
mulated before they are divided by the normalisation factor norm(x ) to
yield a numerical certainty coefficient. Certainty(x, β) for each decision
class is given in Eq. (7): -

Certainty (x, β) =
(

votes (β)
norm (x)

)
(7)

in which the votes (β) =
∑

{votes (r)} and r ∈ RUL(x) ∧ r ≡ (α → β).
The certainty coefficient for every decision class decides which label (de-
cision class) the unknown event is assigned to.

2.5 Classifier’s Performance

The set of rules derived from the reducts must be evaluated on its classification
performance, readability and usefulness before it can be effectively used for on
line fault diagnosis. Usually, a domain expert shall be the one who evaluates the
usefulness of the rules because of his/her knowledge about the power system and
experience from operating and monitoring the process. When classifying a new
and unseen event using a set of rules, we generally expect to see a return value
for each event from the classification algorithm. If rules are matched and able
to classify all events, that decision is definitely chosen. However, in those cases
where the rules are not able to classify all events, particularly when more than
one classification is possible, the algorithm will then have to make an educated
guess. A good guess may indeed correctly classify some of the undefined events.
However, a wrong guess could result in incorrect classification and action. In
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power systems, event classification is crucial. Wrong classification may lead to
a dangerous situation in the worst case. If the rules are not able to classify all
events, the operators should be informed. This is because the operators would
stand a better chance and are more qualified to make an educated guess than a
classification algorithm.

For assessing the classifier performance, the data set is divided into a training
set and a test set. The training set is a set of examples used for learning that is
used to fit the parameters, whereas the test set is a set of examples used only to
assess the performance of a classifier. Rules are mined from a selection of events
in each training set using a discernibility matrix based rough set approach with
genetic algorithms to calculate the minimal reducts. These rules are then used to
classify the events in the test set. If the rules cannot classify the events in the test
set satisfactorily, the rules must be notified to the user and refined to suit the real
application. This method can be carried out for two purposes. First, the rule set
can be viewed as a classifier, used for the purpose of classifying only. Second, the
computed reducts and the generated rules can be used by domain experts to learn
more about the data. The last approach often requires a small set of rules for the
human expert to examine, thus rule filtering can be carried out [24].

Real time data is the main asset for a substation control system but often it
is very difficult to obtain for research purposes. Because of the complexity of a
power network, it is almost impossible to anticipate or provide an infinite case
of problems to investigate every scenario in a substation. To partially solve the
problems, the primary and secondary systems of 132/11kV substations given in
Figs. 2 and 3 have been simulated using PSCAD/EMTDC [2].

3 Example I

The objective of this example is to demonstrate how the knowledge (in the
form of rules) is extracted from substation data and thus, the rule assessment
and classification will not be considered in this demonstration. The simulation
data were collected from a simple 132/11kV substation model with a single bus
arrangement as given in Fig. 2.

A selection of fault scenarios was applied to the network model protected
by several types of relay models, each of which includes one or more of the
protection function listed in Table 1. The relay R5 includes time graded earth
fault elements to protect the 11kV busbar and provides backup for the 11kV
load feeders, supervised by relays R1 and R2. To simplify the studies, we ignore
the unit protection relays that are used to protect the transformer and the auto
re-closers at the two load feeders L1 and L2 are also disabled.

Table 2 lists the information of the auxiliary contacts, 52A and 52B, which
are used to determine the contact condition of a breaker and relay. ‘01’ indicates
that the contact of the breaker/relay is closed. ‘10’ indicates that the contact
of breaker/relay is open/tripped, ‘00’ indicates failure of the breaker/relay and
‘11’ indicates an undefined breaker/relay state. These information are essential
for assessing protection system failures.
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Fig. 2. 132/11kV substation model with a single bus arrangement

Table 1. List of IED relay models in the 132/11kV single bus substation

IED Plate numbers 1,2 5 7

Instantaneous Overcurrent, 50
√ √ √

Instantaneous Earth Fault, 50N
√ √ √

Time delayed Overcurrent, 51
√ √ √

Time delayed Earth Fault, 51N
√ √ √

Balanced Earth Fault, 51G × × √

Auto-recloser, 79 (disabled) × × ×
√

: available, ×: not available.

3.1 Fault Scenarios on Defined Protection Zones

The substation data consists of a list of recorded voltage and current patterns
and the switching actions caused by the protection systems subject to various
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Table 2. Auxiliary contacts of circuit breakers

Case Auxiliary contacts Breaker

52a 52b Status

1 Closed (0) Closed (0) Failure

2 Closed (0) Open (1) Closed

3 Open (1) Closed (0) Open

4 Open (1) Open (1) Unknown

Table 3. List of voltage and current patterns with defined fault zones in Fig. 2

R1 R2 R5 R7 ZONE

V1 I1 V2 I2 V5 I5 V7 I7

L H L L L H N H Z11

L L L H L H N H Z12

L L L L L H N H Z25

L L L L L L L H Z27

Table 4. List of switching actions with defined fault zones in Fig. 2

R1 R2 R5 R7 B1 B2 B5 B7 ZONE

10 01 01 01 10 01 01 01 Z11

01 10 01 01 01 10 01 01 Z12

01 01 10 01 01 01 10 01 Z25

01 01 01 10 01 01 01 10 Z27

faults at different locations in the substation. As some situations in the event
data set may occur in more than one decision class can specify, we thus consider
the two different sets of data separately. For instance, a new event might occur
at the same time as an existing event and consequently the decision classes
overlap [29]. To overcome such problem and prevent the loss of information,
the data set is split into two different tables; measurement data in Table 3 and
protection data in Table 4. The rules extracted from the measurement data table
are merged with the protection data to produce robust rules for fault diagnosis.
This is done by incorporating the change of protection trip signals with respect
to each decision attribute.
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Table 5. Discernibility matrix for Table 3

Index 1 2 3 4

1 ∅

2 R1,R2 ∅

3 R1 R2 ∅

4 R1,R5,R7 R2,R5,R7 R5,R7 ∅

The voltage and current are used because they are the fundamental compo-
nents in the power system. The normal operating voltage range (N) is typically
from 0.90 to 1.10 p.u. of the nominal value. Lower than 0.90p.u., the voltage is
considered as Low (L) and above 1.10p.u., it is high (H). As the current varies
significantly more than the voltage, a wider range of threshold is used. The nom-
inal current range (N) is considered to be between 0.50 and 1.50p.u, meaning
that if the current is lower than 0.50pu, it is low (L) and if it is higher than
1.50p.u., it is high (H).

Vx and Iy in which x = {1, . . . , 8} and y = {1, · · · , 12} represent the three
phase voltage and current. To assist our fault section estimation, we defined two
protection zones in Fig. 2. Breakers BRK5 and BRK7 are regarded one breaker
zone labelled as “BZ2”. Zone 1 represents the protection zones of R1 and R2.
Zone 2 includes the protection zones of R5 and R7. Zone 25 indicates the regional
Zone 2 supervised by the relay R5.

Before defining the discernibility function, Table 3 must be converted into a
discernibility matrix as shown in Table 5. Then, a discernibility function f(B)
is used to express how an event (or a set of events) can be discerned from a
certain subset of the full universe of events. Assume the attribute B ⊆ A and
the decision table is represented as D = (U, B ∪ {d}). The discernibility matrix
of a decision system, Md (B) can be defined as: -

Md(B) =
{

md
B(xi, xj)

}
n×n

, for i, j = 1, ...., n and n = |U/IND(B)|

md
B (xi, xj) =

⎧⎨
⎩

∅ if ∂d
B (xi)=∂d

B (xj)

mB (xi, xj) − {d} = { b ∈ B : b (xi) �= b(xj)} if ∂d
B (xi) �= ∂d

B (xj)

where the notion ∂d
B (x) denotes the set of possible decisions for a given class

x ∈ U/IND (B). The entry md
B (xi, xj) in the discernibility matrix is the set

of all (condition) attributes from B that classify events xi and xj into different
classes in U/IND(B) if ∂d

B (xi) �= ∂d
B (xj). Empty set ∅ denotes that this case

does not need to be considered. All disjuncts of minimal disjunctive form of this
function define the reducts of B.

A discernibility function f (B) is a boolean function that expresses how an
object (or a set of events) can be discerned from a certain subset of the full uni-
verse of events [28]. A boolean expression normally consists of Boolean variables
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and constants, linked by disjunction (
∨

) and conjunction (
∧

). The discernibility
function derived from a decision system is generally less complex and constrain-
ing than a discernibility function of an information system. This is because the
decision functions become equal when the decision attribute d assigns unique
decision values to all events and there will be no product terms to eliminate.
Given a decision system D = (U, B ∪ {d}), the discernibility function of D is: -

fd
B (xi) =

∧{∨
m̄d

B (xi, xj) : 1 ≤ j ≤ i ≤ n, md
B (xi, xj) �= ∅

}
where n = |U/IND (B)|, and

∨
m̄d

B (xi, xj) is the disjunction taken over the
set of Boolean variables m̄d

B (xi, xj) corresponding to the discernibility matrix
md

B (xi, xj) [14].
To find an approximation of the decision d, the decision relative discernibility

function of B can be constructed to discern an object from events belonging
to another class. The decision relative discernibility function for an object class
xk = (1 ≤ k ≤ n) over attributes B is a Boolean function of m variables:

f (xk, B) =
∧{∨

m̄d
B (xk, xj) : 1 ≤ j ≤ n, md

B (xk, xj) �= ∅
}

This function computes the minimal sets of attributes B in the decision sys-
tem that are necessary to distinguish xk from other object classes defined by
B [14].

For better interpretation, the Boolean function attains the form ‘+’ for the
operator of disjunction (

∨
) and ‘·’ for the operator of conjunction (

∧
). The final

discernibility function obtained is: -

f (B) = f (1) · f (2) · f (3) · f (4)
= R1 · R2 · (R5 + R7)

The final reducts can be either {R1 · R2 · R5} or {R1 · R2 · R7}, which are
represented respectively in Tables 6 and 7.

Table 6. Reduct (R1 · R2 · R5)

R1 R2 R5 ZONE

V1 I1 V2 I2 V5 I5

L H L L L H Z11

L L L H L H Z12

L L L L L H Z25

L L L L L L Z27

Table 7. Reduct (R1 · R2 · R7)

R1 R2 R7 ZONE

V1 I1 V2 I2 V7 I7

L H L L N H Z11

L L L H N H Z12

L L L L N H Z25

L L L L L H Z27
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Table 8. RDM for Table 6

Index Z11 Z12 Z25 Z27

Z11 ∅ R1,R2 R1 R1,R5

Z12 R1,R2 ∅ R2 R2,R5

Z25 R1 R2 ∅ R5

Z27 R1,R5 R2,R5 R5 ∅

f(Z11) = R1; f(Z12) = R2;
f(Z25) = R1·R2·R5;f(Z27) = R5.

Table 9. RDM for Table 7

Index Z11 Z12 Z25 Z27

Z11 ∅ R1,R2 R1 R1,R7

Z12 R1,R2 ∅ R2 R2,R7

Z25 R1 R2 ∅ R7

Z27 R1,R7 R2,R7 R7 ∅

f(Z11) = R1; f(Z12) = R2;
f(Z25) = R1·R2·R7; f(Z27) = R7.

Table 10. Rules for Reduct:(R1 · R2 · R5)

R1 R2 R5 ZONE Yes

V1 I1 V2 I2 V5 I5

L H • • • • Z11
√

• • L H • • Z12
√

L L L L L H Z25
√

• • • • L L Z27
√

Table 11. Rules for Reduct (R1 · R2 · R7)

R1 R2 R7 ZONE Yes

V1 I1 V2 I2 V7 I7

L H • • • • Z11 R

• • L H • • Z12 R

L L L L N H Z25
√

• • • • L H Z27
√

•: do not care.
√

: good rules. ×: bad rules. ‘R’: redundant rules.

The discernibility function obtained may still include some unnecessary values
of the condition attributes in the decision table. To solve this, we calculate a rela-
tive reduct and core of attribute values using the relative discernibility function.
For simplicity, the demonstration is based on the relative discernibility matrix
(RDM) constructed for the subspace {R1 · R2 · R5} and {R1 · R2 · R7} as shown
in Tables 8 and 9. For instance in Table 8, f(Z11) = {R1 + R2} · R1 · {R1 + R5}
= R1. Note: individual voltage and current measurements can be considered to
yield more concise rules.

Four concise decision rules can be formed by refining the list of the rules
extracted from Tables 10 and 11 and by combining the switching action data in
Table 4. The rules can be read as: -

Rule 1: IF LOW voltage and HIGH current at LOAD BUS L1 AND breaker
BRK1 OPEN, THEN FAULT in ZONE 11

Rule 2: IF LOW voltage and HIGH current at LOAD BUS L2 AND breaker
BRK2 OPEN, THEN FAULT in ZONE 12

Rule 3: IF LOW voltage and LOW current at LOAD BUS L1 and L2 AND
HIGH CURRENT at BUSES L5 and L7 AND breaker BRK5 OPEN, THEN
FAULT in ZONE 25
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Table 12. GA Reducts for Case 3.1

No Reducts Support Length

1 {V1, I1} = {R1} 100 1

2 {V2, I2} = {R2} 100 1

3 {V5, I5} = {R5} 100 1

4 {V7, I7} = {R7} 100 1

5 {V1, I1, V2, I2, V5, I5} = {R1, R2, R5} 100 3

6 {V1, I1, V2, I2, V7, I7} = {R1, R2, R7} 100 3

Rule 4: IF LOW voltage and HIGH current at BUS L7 AND LOW VOLTAGE
at BUS L5 AND breaker BRK7 OPEN, THEN FAULT in ZONE 27

To optimise the search of reducts, we employed a GA, in which the candidates
are converted to bit vectors; that is 1110 or 1101. Note: {R1, R2, R5, R7} = 1111,
{R1, R2, R5} = 1110 and {R1, R2, R7} = 1101. The performance of an individual
solution is evaluated using the fitness function given in Eq. (1). Tables 12 and
13 show the reducts and the rules generated using the GA, which is similar to
the combined decision rules of Tables 10 and 11.

Each reduct in Table 12 has an associated support count that measures the
strength of the reduct equivalent to the reduct’s hitting fraction multiplied by
100. This is the percentage of sets in the collection of sets that the attribute of
interest has a non-empty intersection with [28]. Length indicates the number of
attributes in the reducts.

The quality of rules from Table 13 can be assessed based on the metrics:
RHS and LHS support, accuracy coverage and length. The LHS (“left hand
side”) support signifies the number of events in the data set. The RHS (“right
hand side”) support signifies the number of events in the data set that matches
the ‘if’ part of the decision rule and has the decision value of the ‘then’ part
(consequent). For an inconsistent rule, the ‘then’ part shall consist of several
decisions. Accuracy and coverage are computed from the support counts using
Eq. (3) and Eq. (4). Since there is no inconsistency in the decision system, the
accuracy of rules is equal to 1.0. Length (not shown due to the space constraints
in the tables) indicates the number of attributes in the LHS or RHS. For instance,
Rule 2 in Table 13 has LHS length = 1 {(V2, I2)} and RHS length = 1 {(Z11)},
whereas Rule 3 has LHS length = 3 {(V1, I1), (V2, I2), (V5, I5)} and RHS length
= 1 {(Z25)}.

Some rules generated are redundant due to similar patterns or carrying the
same information. Thus, they are denoted as ‘R’. Depending on data availability,
these redundant reducts can be used to classify the events if there are some IED
relays not available or out of service. For example, if R5 is not available, we can
use the data from R7 to classify the fault zone in Zone 25 and Zone 27.
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Table 13. GA Rules generated from Table 12

No List of rules LSup RSup Acc LCov RCov Zone Yes

1 {V1(L), I1(H)} 1.0 1.0 1.0 0.25 1.000 Z11
√

2 {V2(L), I2(H)} 1.0 1.0 1.0 0.25 1.000 Z12
√

3 {V1(L), I1(L)} ∧
{V2(L), I2(L)} ∧
{V5(L), I5(H)}

1.0 1.0 1.0 0.25 3.000 Z25
√

4 {V1(L), I1(L)} ∧
{V2(L), I2(L)} ∧
{V7(N), I7(H)}

1.0 1.0 1.0 0.25 3.000 Z25 R

5 {V7(L), I7(H)} 1.0 1.0 1.0 0.25 1.000 Z27
√

6 {V5(L), I5(L)} 1.0 1.0 1.0 0.25 1.000 Z27 R

‘LSup’: LHS Support. ‘RSup’: RHS Support. ‘Acc’: Accuracy. ‘LCov’: LHS Coverage.
‘RCov’: RHS Coverage.

3.2 Fault Data in Time Series

Unlike the data given in Tables 3 and 4, the real time operational data captured
in a substation is usually in a time series format. Thus, it is necessary to extract
knowledge from this type of data set. This example considers a single phase to
ground fault (F1) applied to the bus L1 in Fig. 2 using the data collected from
the simulation. The fault initiated at 1.000s results in the operation of the relay
R1, the tripping of BRK1 and the isolation of bus L1.

Table 14 shows that the IED1 relay has operated whilst the other relays remain
stable. 0.139s is the time required for the simulated system to reach the steady
state condition from its initial zero value. The IED1 relay picked up the fault at
1.004s, tripped at 1.937s and reset at 2.010s after the current has dropped below
the threshold value. The breaker BRK1 opened at 2.007s.

Table 15 presents a simple modified time series data set, which is composed of
a set of discrete voltages and currents over a time period of 0.139s to 2.012s. U is
the universe of events and B is the set of condition attributes {R1, R2, R5, R7}. A
set of decision values is pre-classified in the decision attribute d=d1d2. d1 consists
of four state classification i.e. Normal (N), Alert (A), Emergency (E) and Safe
(S). Normal (N) indicates that all the constraints and loads are satisfied, i.e.
the voltages and currents are nominal. Alert (A) indicates at least one current
is high and the voltages are nominal, or the currents are nominal but at least
one voltage is abnormal. Emergency (E) indicates at least two physical operating
limits are violated (e.g. under voltages and over currents). Safe (S) is when those
parts of the power system that remain are operating normally, but one or more
loads are not satisfied after a breaker has opened [30]. d2 is used to capture
the breaker information. d2 = 1 indicates that a breaker has opened and the
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Table 14. Protection status of IED Relay R1

Time R1

t/s Pickup Trip AR 52A 52B

0.139 0 0 0 0 1

1.004 1 0 0 0 1

1.937 1 1 0 0 1

2.007 1 1 0 1 0

2.010 0 0 0 1 0

R1: IED relay 1, Pickup: pickup time, Trip: trip time, AR: auto re-closer (disabled),
52A and 52B: breaker auxiliary contacts in which ‘01’: close; ‘10’: open.

Table 15. IED data in time Series (decision system)

Time R1 R2 R5 R7 Decision

t/s V1 I1 V2 I2 V5 I5 V7 I7 d1d2

0.139 N N N N N N N N NS

1.003 N H N N N N N N A0

1.004 L H N N N N N H E0

1.005 L H N L N H L H E0

1.006 L H L L L H L H E0

2.007 L N L L L H L H E1

2.011 L N L N L H L N A1

2.012 L L N N N N N N S1

State classification: NS = normal with no breaker operation, A0 = abnormal with no
breaker operation, A1 = abnormal with breaker(s) operation, E0 = emergency with
no breaker operation, E1 = emergency with breaker(s) operation, S1 = safe with
breaker(s) operation.

respective line has been disconnected whereas d2 = 0 indicates that a breaker
has closed and the respective line has been connected.

By observing the set of events in Table 15, it may be easily identified that
the problem is actually within the supervised region of the IED1 relay. However,
given that there are n number of events and m number of relays, this may become
impractical in an actual problem. Additionally, the data set is given in a perfect
pattern, which may not be always the case with the real time data received from
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the control system. The irregularity in data pattern makes it much harder for a
human to handle a complex situation.

Table 16 shows the discernibility matrix for Table 15. Due to the lack of
space, the columns of the discernibility matrix in the table have been simplified
such that R1 is given as “1”, R2 as “2” and etc. The discernibility function is
calculated using an absorption law in each column of Table 16.

Table 16. Discernibility matrix for Table 15

Time 0.139 1.003 1.004 1.005 1.006 2.007 2.011 2.012

0.139 ∅

1.003 1 ∅

1.004 1,7 1,7 ∅

1.005 1,2,5,7 1,2,5,7 ∅ ∅

1.006 1,2,5,7 1,2,5,7 ∅ ∅ ∅

2.007 1,2,5,7 1,2,5,7 1,2,5,7 1,2,5 1 ∅

2.011 1,2,5,7 1,2,5,7 1,2,5,7 1,2,5,7 1,2,7 2,7 ∅

2.012 1 1 1,7 1,2,5,7 1,2,5,7 1,2,5,7 1,2,5,7 ∅

Notation 1,2,5,7: {R1, R2, R5, R7} and 1,7: {R1, R7}.

The final discernibility function is: -
f (B) = f (0.139) · f (1.003) · f (1.004) · f (1.005) · ...f (2.007) ... · f (2.011)

= 1 · 1 · (1 + 7) · (1 + 2 + 5) · ... (2 + 7) ... · (1 + 2 + 5 + 7)
= 1 · (2 + 7) ⇒ {R1} · {R2 + R7}

The example shows that the R1 and R2 or R7 relays are the main source of
information to justify the outcome of interest. Table 15 can then be reduced to
Tables 17 and 18. Tables 21 and 22 show the list of the concise rules extracted
using the relative discernibility matrices derived in Tables 19 and 20. For sim-
plicity, the discernibility matrices are constructed for the subspace {R1, R2)}
and {R1, R7} respectively rather than considering individual voltage and cur-
rent measurements which can typically yield more concise rules.

The event rules formed from both Tables 21 and 22 are combined and cate-
gorised into 4 different classes according to their outcomes. To avoid confusion,
they are renamed to Rule 1 - 5 as follows, omitting the first event which rep-
resents the normal operation and is not of interest for fault classification and
event extraction: -

RULES applied to a FAULT within ZONE 11

Rule 1: IF NOMINAL voltage AND HIGH current ON BUS L1
=⇒ CLASSIFIED STATE: ABNORMAL. System at High Alert. Zone
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Table 17. Reduct:{R1 · R2}

Time R1 R2 Dec.Yes

t/s V1 I1 V2 I2 d1d2

0.139 N N N N NS
√

1.003 N H N N A0
√

1.004 L H N N E0
√

1.005 L H N L E0
√

1.006 L H L L E0
√

2.007 L N L L E1 ×

2.011 L N L N A1
√

2.012 L L N N S1
√

Table 18. Reduct:{R1 · R7}

Time R1 R7 Dec.Yes

t/s V1 I1 V7 I7 d1d2

0.139 N N N N NS
√

1.003 N H N N A0
√

1.004 L H N H E0
√

1.005 L H L H E0
√

2.007 L N L H E1
√

2.011 L N L N A1
√

2.012 L L N N S1
√

Table 19. RDM for Table 17

Index 0.139 1.003 1.004 1.005 1.006 2.007 2.011 2.012

0.139 ∅ R1 R1 R1, R2 R1, R2 R1, R2 R1, R2 R1

1.003 R1 ∅ R1 R1, R2 R1, R2 R1, R2 R1, R2 R1

1.004 R1 R1 ∅ ∅ ∅ R1, R2 R1, R2 R1

1.005 R1, R2 R1, R2 ∅ ∅ ∅ R1, R2 R1, R2 R1, R2

1.006 R1, R2 R1, R2 ∅ ∅ ∅ R1 R1, R2 R1, R2

2.007 R1, R2 R1, R2 R1, R2 R1, R2 R1 ∅ R2 R1, R2

2.011 R1, R2 R1, R2 R1, R2 R1, R2 R1, R2 R2 ∅ R1, R2

2.012 R1 R1 R1 R1, R2 R1, R2 R1, R2 R1, R2 ∅

f (B) R1 R1 R1 R1 + R2 R1 R1 · R2 R2 R1

11 experiences LOW Voltage and High Current. Monitor the operation of
relays (any pickups or tripping) and generate alarms to operator.

Rule 2: IF LOW voltage and NOMINAL current ON BUS L2 OR BUS L7
AND BRK1 OPEN
=⇒ CLASSIFIED STATE: ABNORMAL. Protection at Zone 11 has
responded. System recovering. Situation under control but still unsafe. Mon-
itor voltage threshold and initiate a voltage regulator if necessary.

Rule 3: IF LOW voltage and HIGH current ON BUS L1 AND HIGH CUR-
RENT ON BUS L7 OR LOW CURRENT ON BUS L2
=⇒ CLASSIFIED STATE: EMERGENCY. System is unstable and
urgent action is required. Protection has not yet responded. Check the con-
dition of relays and initiate back up protection if necessary.



Developing a Knowledge-Based System Using Rough Set Theory 299

Table 20. RDM for Table 18

Time 0.139 1.003 1.004 1.005 2.007 2.011 2.012

0.139 ∅ R1 R1, R7 R1, R7 R1, R7 R1, R7 R1

1.003 R1 ∅ R1, R7 R1, R7 R1, R7 R1, R7 R1

1.004 R1, R7 R1, R7 ∅ ∅ R1, R7 R1, R7 R1, R7

1.005 R1, R7 R1, R7 ∅ ∅ R1 R1, R7 R1, R7

2.007 R1, R7 R1, R7 R1, R7 R1 ∅ R7 R1, R7

2.011 R1, R7 R1, R7 R1, R7 R1, R7 R7 ∅ R1, R7

2.012 R1 R1 R1, R7 R1, R7 R1, R7 R1, R7 ∅

f (B) R1 R1 R1 + R7 R1 R1 · R7 R7 R1

Table 21. Rules for Reduct {R1 · R2}

Time R1 R2 Dec. Yes

t/s V1 I1 V2 I2 d1d2

0.139 N N • • NS ×

1.003 N H • • A0
√

1.004 L H • • E0
√

1.005 L H • • E0 R

1.005 • • N L E0 ×

1.006 L H • • E0 R

2.007 L N L L E1 ×

2.011 • • L N A1
√

2.012 L L • • S1
√

Table 22. Rules for Reduct {R1 · R7}

Time R1 R7 Dec. Yes

t/s V1 I1 V7 I7 d1d2

0.139 N N • • NS ×

1.003 N H • • A0 R

1.004 L H • • E0 R

1.004 • • N H E0 ×

1.005 L H • • E0 R

2.007 L N L H E1
√

2.011 • • L N A1 R

2.012 L L • • S1 R

Rule 4: IF LOW voltage and NOMINAL current ON BUS L1 AND HIGH
CURRENT ON BUS L7 OR LOW CURRENT ON BUS L2 AND BRK1
OPEN
=⇒ CLASSIFIED STATE: EMERGENCY. Protection at Zone 11 has
responded. Situation not yet under control and still very unstable. Moni-
tor voltage and current threshold at Bus L1 and L7. Fault location within
Zone 11.

Rule 5: IF LOW voltage and LOW current on BUS L1 AND BRK1 OPEN
=⇒ CLASSIFIED STATE: SAFE. System within the safe margin. Gen-
erate a fault analysis report that identifies the fault type and the affected
region. The condition of the protection is evaluated. Restoration procedure
and maintenance records also generated accordingly.
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Despite the tedious way of extracting rules, detailed rules for each fault sce-
nario can be obtained relatively easy via extension simulation of the power net-
work. The rules generated are for EACH scenario and they are stored in the
knowledge base system. The inference engine then uses a lookup table to re-
trieve the mapping between the input values and the rule’s consequent(s) for
each scenario. This means that if the fault symptom matches the list of rules
given (the antecedents of the extracted rules), a fault in Zone Z11 (Zone 1 super-
vised by the relay R1) is concluded. Different sets of decisions could also be fired
based on the rule’s consequent(s). A lookup table can be thought of as a matrix,
which has as many columns as there are inputs, and as many rows as outcomes.
The inference engine thus takes a set of inputs and matches this input pattern
with the patterns in the matrix, stored in rows. The best match determines the
outcome. The matching process could sum the matching bits in a row, or carry
out a multiplication of the input as a column vector with the matrix. The largest
element in the product column selects the outcome. In a time independent sys-
tem, where the outcome depends only on the instantaneous state of the inputs,
the case structure can be very conveniently expressed in this form of matrix.
The advantage of using this method is that the rules can be induced easily. This
saves significant time and cost when developing a knowledge base.

The two examples show that the RS-GA approach is capable of inducing the
decision rules from a substation database, even though the data may not be
complete because the database has been simplified for this demonstration pur-
pose. A more complete decision system and substation topology has been used
and tested (see the following section) and the algorithm is still able to work
efficiently despite the presence of some levels of missing/defective data in the
database. The rules may also look predictable for a small substation in Fig. 2.
However, when considering a larger substation or a complex power network with
a significant number of protection system(s), extracting rules manually may be
time-consuming and require significant resources. As such, this hybrid method
will be useful to power utilities for exploiting substation rules. Furthermore, re-
lying on the switching actions for estimating a faulty section might not always
be adequate when considering relay failures and the complexity of a power net-
work. Therefore, we believe that voltage and current components should also be
considered in a fault section estimation procedure.

The classification sometimes does not clearly justify the status alarm (see the
event at 1.005s, 2.007s in Table 21 and event at 1.004s in Table 22). If the ex-
tracted rule does not comply with the state classification (Normal, Abnormal,
Emergency and Safe) set earlier, it does not mean that the rule extraction is in-
accurate, because the data set does not contain adequate information to classify
the events. This limited knowledge of the data set can be noticed by comparing
the unmatched rules with the original table. These rules should be verified and
refined by experts to improve their coverage.

Tables 23 and 24 show the reducts and rules generated using a GA. The
outcomes are those obtained in the example but with additional rules from relay
R5 {V5, I5}.
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Table 23. GA Reducts for Case 3.2

No Reducts Support Length

1 {V1, I1} 100 1

2 {V2, I2} 100 1

3 {V5, I5} 100 1

4 {V7, I7} 100 1

5 {V1, I1} , {V2, I2} 100 2

6 {V1, I1} , {V5, I5} 100 2

7 {V1, I1} , {V7, I7} 100 2

Table 24. GA Rules generated from Table 23

No List of rules LSup RSup Acc LCov RCov Zone Yes

1 {V1(N), I1(N)} 1 1 1.0 0.125 1.000 NS ×

2 {V1(N), I1(H)} 1 1 1.0 0.125 1.000 A0
√

3 {V1(L), I1(H)} 3 3 1.0 0.375 1.000 E0
√

4 {V2(N), I2(L)} 1 1 1.0 0.125 0.333 E0 ×

5 {V1(L), I1(N)} ∧
{V2(L), I2(L)}

1 1 1.0 0.125 1.000 E1 ×

6 {V2(L), I2(N)} 1 1 1.0 0.125 1.000 A1
√

7 {V1(L), I1(L)} 1 1 1.0 0.125 1.000 S1
√

8 {V7(N), I7(H)} 1 1 1.0 0.125 0.333 E0 ×

9 {V7(L), I7(N)} 1 1 1.0 0.125 1.000 A1
√

10 {V1(L), I1(N)} ∧
{V7(L), I7(H)}

1 1 1.0 0.125 1.000 E1
√

11 {V5(N), I5(H)} 1 1 1.0 0.125 0.333 E0 ×

12 {V5(L), I5(N)} 1 1 1.0 0.125 1.000 A1
√

13 {V1(L), I1(N)} ∧
{V5(L), I5(H)}

1 1 1.0 0.125 1.000 E1
√

Depending on the fitness function setting, the GA searches all the possible
solutions to characterise the events. The GA settings used in this case study
are: mutation rate = 0.01, crossover rate = 0.6, inversion rate = 0.05, number
of generations = 500, population = 70. This is however not the optimum setting
for rule generation since the large inversion rate (of 0.05) could lead to lower
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fitness than 0.01 [31]. The fitness function bias, the weighting between the subset
cost and hitfraction, is set to 0.9 to reward shorter elements/rule length as we
want to pick the shortest length reducts that satisfy the results. These settings
are applied intentionally to demonstrate that GA can provide us with more
flexibility to generate a number of rules subject to the parameter settings we
provide. Such function is important in the substation rule extraction. It leads to
a simple problem formulation that is able to produce global optimal solutions.
The rules generated by the GA are generally large and its advantage becomes
much more visible when few events are available and more knowledge is required
to justify the entire outcomes.

4 Example II

This example demonstrates a more complex distribution substation that is com-
prised of various types of relay models.

4.1 Fault Scenarios on Defined Protection Zones

Figure 3 shows a typical double bus 132/11kV substation network model devel-
oped using PSCAD/EMTDC. Like the Case Study 3.1 in Example 1, a selection
of fault scenarios was applied to the network and the operating responses of the
relays, circuit breakers, voltage and current sensors were collected and stored in
an event database.

The network model is protected by several types of relay models, each of
which includes one or more of the protection functions listed in Table 25. For
instance, the directional relays at R5 and R6 also include non-directional time
graded earth fault elements to protect the 11kV busbar and provide backup for
the 11kV feeders supervised by relays R1, R2, R3 and R4. Table 26 shows the
trip data of IED R6 and R8 collected from the PSCAD/EMTDC simulation.
Unlike the previous example, four protection zones are defined in Fig. 3 due to
the size of the supervised network and IED devices. Breakers BRK5 and BRK7
are regarded as one breaker zone labelled as “BZ2”. Similarly, BRK6 and BRK8
are regarded as one labelled as “BZ3”. Zone 1 represents the protection zones
of R1, R2, R3 and R4. Zone 2 includes the protection zones of R5, R7, R9 and
R11 and Zone 3 covers the protection zones of R6, R8, R10 and R12. Zone 4 is
the busbar protection zone (not considered in this scenario). Zone 25 indicates
the regional Zone 2 supervised by the relay R5.

The bus-coupler BC is assumed closed prior to the fault. To prevent both
transformers from tripping as the result of a fault on the 11kV terminal, R5 and
R6 are set to look into their respective transformers in accordance with IEEE
nomenclature 67. Both 132/11kV transformers are protected by differential unit
protection, restricted earth fault protection and balanced earth fault protection
[32]. The sensitive earth fault protection is not required since the neutral of the
transformer is solidly earthed. The set of collected situations for this example
are approximately 7,000 - 10,000 cases (1ms time tagged) and more than 300
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Fig. 3. 132/11kV substation model with a double bus arrangement

condition attributes (i.e. single phase and three phase power, voltage, current
and phase angle as well as other protection trip signals and fault indictors) are
available. However, only 35 attributes of three phase voltages and currents and
respective protection trip signals are chosen.

The case covers a wide range of typical voltage and current situations that
occur in each scenario. Due to its large size, only change of state data is presented.

Tables 27 and 28 lay out a list of recorded voltage and current patterns as well
as the switching actions caused by the protection system(s) subject to various
faults at different locations in the substation. Bx is the short form of the breaker
BRKx in which x = {1, 2, 3, 4}. H1 indicates the current is flowing in the direction
that would trigger one of the directional relays, i.e. R5 and R6.

Table 27 was converted into a discernibility matrix and the discernibility func-
tions are derived from each column before the final discernibility function is cal-
culated. A total of 24 reducts based on Relay Box measurements are generated
and listed in Table 29. Tables 30 and 31 list the decision rules generated by
the hybrid RS-GA model. The former considers a relay box that combines both
the voltage and current measurements while the latter considers the two mea-
surements separately. Combining the relay trip signals and breaker data from
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Table 25. List of IED relay models in the 132/11kV double bus substation

IED Plate numbers 1,2,3,4 5,6 7,8 9,10 11,12

Instantaneous Overcurrent, 50
√ √ √ × ×

Instantaneous Earth Fault, 50N
√ √ √ × ×

Time delayed Overcurrent, 51
√ √ √ × ×

Time delayed Earth Fault, 51N
√ √ √ × ×

Balanced Earth Fault, 51G × × √ × ×

Standby Earth Fault, 51NB × × × × √

Directional Phase Overcurrent, 67 × √ × × ×

Directional Earth Fault, 67N × √ × × ×

Auto-recloser, 79
√ × × × ×

Restricted Earth Fault, 87N × × × × √

Transformer Differential, 87T × × × √ ×
√

: available, ×: not available.

Table 26. Protection status of IED Relay R6 and R8

Time R6 R8

t/s 67 50/51 52A 52B 50/51 52A 52B

0.139 0 0 0 1 0 0 1

1.039 1 1 0 1 0 0 1

1.119 1 1 1 0 0 1 0

1.133 0 1 1 0 0 1 0

1.139 0 0 1 0 0 1 0

Table 28, we can improve the coverage of the extracted rules. In Table 30, it can
be seen that the rules 5, 8, 22 and 29 are not really useful because I9, I10, I11 and
I12 are from the unit protections which are only important if there is a fault on
the transformer. Rules 12, 19, 28 and 36 are also not good enough to be consid-
ered due to the lack of rule coverage. For instance, low voltage and current on
the bus 7 or 8 as indicated by rule 12 and 28 may not necessarily indicate a fault
on Zone Z38 or Z27 respectively. Disregarding the unit protection data, Rule 19
and Rule 36 are inconsistent as they are practically the same, but give different
outcomes. Furthermore, high current and low voltage on branch 7 and 8 indicate
that the fault is downstream but do not necessarily indicate the transformer at
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Table 27. List of voltage and current patterns with defined fault zones in Fig. 3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 ZONE

V1 I1 V2 I2 V3 I3 V4 I4 V5 I5 V6 I6 V7 I7 V8 I8 I9 I10 I11 I12

L H L L L L L L L H L H N H N H L L L L Z11

L L L L L L L L L H1 L H N H N H L L L L Z25

L L L L L L L L L H L H1 N H N H L L L L Z36

L L L L L L L L L L L L L H L L L L L L Z27

L L L L L L L L L L L L L L L H L L L L Z38

L L L L L L L L L H1 L H L H L H H L L L Z2T

L L L L L L L L L H1 L H L H L H L L H L Z2T

L L L L L L L L L H1 L H L H L H H L H L Z2T

L L L L L L L L L H L H1 L H L H L H L L Z3T

L L L L L L L L L H L H1 L H L H L L L H Z3T

L L L L L L L L L H L H1 L H L H L H L H Z3T

Table 28. List of switching actions with defined fault zones in Fig. 3

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 B1 B2 B3 B4 BZ2 BZ3 ZONE

10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 Z11

01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 Z12

01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 Z13

01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 01 Z14

01 01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 01 Z25

01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 01 01 10 Z36

01 01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 10 01 Z27

01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 01 01 10 Z38

01 01 01 01 01 01 01 01 10 01 10 01 01 01 01 01 10 01 Z2T

01 01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 10 01 Z2T

01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 10 01 Z2T

01 01 01 01 01 01 01 01 01 10 01 10 01 01 01 01 01 10 Z3T

01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 10 Z3T

01 01 01 01 01 01 01 01 01 01 01 10 01 01 01 01 01 10 Z3T

fault. Without the information about the switching actions of the relays and
proper refinements, these rules 5, 8, 22 and 28 will not be good/fit enough for
use. If the extracted rule does not comply with zone classification (decision) set
earlier, the rule should thus be verified and refined by experts to improve its
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Table 29. GA Reducts generated (based on Relay Box) for Case 4.1

No Reducts Support Length

1 {V1, I1} 100 1

2 {V5, I5} · {V6, I6} 100 2

3 {V5, I5} · {V8, I8} 100 2

4 {V5, I5} · {V7, I7} 100 2

5 {V5, I5} · I9 · I11 100 3

6 {V1, I1} · {V6, I6} · {V7, I7} 100 3

7 {V1, I1} · {V6, I6} · {V8, I8} 100 3

8 {V1, I1} · {V6, I6} · I9 · I11 100 4

9 {V6, I6} · {V8, I8} 100 2

10 {V6, I6} · {V7, I7} 100 2

11 {V6, I6} · I10 · I12 100 3

12 {V1, I1} · {V5, I5} · {V8, I8} 100 3

13 {V1, I1} · {V5, I5} · {V7, I7} 100 3

14 {V1, I1} · {V5, I5} · I10 · I12 100 4

15 {V8, I8} 100 1

16 {V7, I7} · I9 · I10 · I11 · I12 100 5

17 {V7, I7} 100 1

18 {V8, I8} · I9 · I10 · I11 · I12 100 5

19 {I9} 100 1

20 {V7, I7} · {V8, I8} · I10 · I12 100 4

21 I11 100 1

22 I10 100 1

23 {V7, I7} · {V8, I8} · I9 · I11 100 4

24 I12 100 1

coverage. To form a more complete final set of rules for locating the fault section
in the network, we combine the rules given in Table 30 or Table 31 with the
switching actions of protection systems in Table 28 to improve the coverage and
accuracy of the rules.

Voting results: Table 32 illustrates the results computed by the voting algo-
rithm with the certainty coefficients computed for each decision class. In Case A,
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Table 30. GA Rules generated from Table 29

No List of rules LSup RSup Acc LCov RCov Zone Yes

1 {V1(L), I1(H)} 1.0 1.0 1.0 0.091 1.000 Z11
√

2 {V5(L), I5(H)} ∧ {V6(L), I6(H)} 1.0 1.0 1.0 0.091 1.000 Z11
√

3 {V5(L), I5(H1)} ∧ {V7(N), I7(H)} 1.0 1.0 1.0 0.091 1.000 Z25
√

4 {V5(L), I5(H1)} ∧ {V8(N), I8(H)} 1.0 1.0 1.0 0.091 1.000 Z25 R

5 {V5(L), I5(H1)} ∧ I9(L) ∧ I11(L) 1.0 1.0 1.0 0.091 1.000 Z25 ×

6 {V1(L), I1(L)} ∧ {V6(L), I6(H)} ∧
{V7(N), I7(H)}

1.0 1.0 1.0 0.091 1.000 Z25
√

7 {V1(L), I1(L)} ∧ {V6(L), I6(H)} ∧
{V8(N), I8(H)}

1.0 1.0 1.0 0.091 1.000 Z25 R

8 {V1(L), I1(L)} ∧ {V6(L), I6(H)} ∧
I9(L) ∧ I11(L)

1.0 1.0 1.0 0.091 1.000 Z25 ×

9 {V5(L), I5(L)} ∧ {V7(L), I7(H)} 1.0 1.0 1.0 0.091 1.000 Z27
√

10 {V6(L), I6(L)} ∧ {V7(L), I7(H)} 1.0 1.0 1.0 0.091 1.000 Z27 R

11 {V7(L), I7(H)} ∧ I9(L) ∧ I10(L) ∧
I11(L) ∧ I12(L)

1.0 1.0 1.0 0.091 1.000 Z27
√

12 {V8(L), I8(L)} 1.0 1.0 1.0 0.091 1.000 Z27 ×

13 {V5(L), I5(H1)} ∧ {V7(L), I7(H)} 3.0 3.0 1.0 0.373 1.000 Z2T
√

14 {V5(L), I5(H1)} ∧ {V8(L), I8(H)} 3.0 3.0 1.0 0.373 1.000 Z2T R

15 {V6(L), I6(H)} ∧ {V7(L), I7(H)} 3.0 3.0 1.0 0.373 1.000 Z2T
√

16 {V6(L), I6(H)} ∧ {V8(L), I8(H)} 3.0 3.0 1.0 0.373 1.000 Z2T R

17 I9(H) 2.0 2.0 1.0 0.182 0.667 Z2T
√

18 I11(H) 2.0 2.0 1.0 0.182 0.667 Z2T
√

19 {V7(L), I7(H)} ∧ {V8(L), I8(H)} ∧
I10(L) ∧ I12(L)

3.0 3.0 1.0 0.373 1.000 Z2T ×

20 {V6(L), I6(H1)} ∧ {V8(N), I8(H)} 1.0 1.0 1.0 0.091 1.000 Z36
√

21 {V6(L), I6(H1)} ∧ {V7(N), I7(H)} 1.0 1.0 1.0 0.091 1.000 Z36 R

22 {V6(L), I6(H1)} ∧ I10(L) ∧ I12(L) 1.0 1.0 1.0 0.091 1.000 Z36 ×

23 {V1(L), I1(L)} ∧ {V5(L), I5(H)} ∧
{V8(N), I8(H)}

1.0 1.0 1.0 0.091 1.000 Z36
√

24 {V1(L), I1(L)} ∧ {V5(L), I5(H)} ∧
{V7(N), I7(H)}

1.0 1.0 1.0 0.091 1.000 Z36 R

25 {V1(L), I1(L)} ∧ {V5(L), I5(H)} ∧
I10(L) ∧ I12(L)

1.0 1.0 1.0 0.091 1.000 Z36
√

26 {V6(L), I6(L)} ∧ {V8(L), I8(H)} 1.0 1.0 1.0 0.091 1.000 Z38
√

27 {V5(L), I5(L)} ∧ {V8(L), I8(H)} 1.0 1.0 1.0 0.091 1.000 Z38 R

28 {V7(L), I7(L)} 1.0 1.0 1.0 0.091 1.000 Z38 ×

29 {V8(L), I8(H)} ∧ I9(L) ∧ I10(L) ∧
I11(L) ∧ I12(L)

1.0 1.0 1.0 0.091 1.000 Z38 ×

30 {V5(L), I5(H)} ∧ {V8(L), I8(H)} 3.0 3.0 1.0 0.373 1.000 Z3T
√

31 {V5(L), I5(H)} ∧ {V7(L), I7(H)} 3.0 3.0 1.0 0.373 1.000 Z3T R

32 {V6(L), I6(H1)} ∧ {V8(L), I8(H)} 3.0 3.0 1.0 0.373 1.000 Z3T
√

33 {V6(L), I6(H1)} ∧ {V7(L), I7(H)} 3.0 3.0 1.0 0.373 1.000 Z3T R

34 I10(H) 2.0 2.0 1.0 0.182 0.667 Z3T
√

35 I12(H) 2.0 2.0 1.0 0.182 0.667 Z3T
√

36 {V7(L), I7(H)} ∧ {V8(L), I8(H)} ∧
I9(L) ∧ I11(L)

3.0 3.0 1.0 0.373 1.000 Z3T ×
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Table 31. GA Rules generated for Case 4.1 based on Individual Voltage and Current
measurements to identify the faulty section

No List of rules LSup RSup Acc LCov RCov Zone Yes

1 I1(H) 1 1 1 0.091 1.000 Z11
√

2 I5(H) · I6(H) 1 1 1 0.091 1.000 Z11
√

3 I1(L) · I6(H) · I9(L) · I11(L) 1 1 1 0.091 1.000 Z25 ×

4 I1(L) · I6(H) · V7(N) 1 1 1 0.091 1.000 Z25
√

5 I1(L) · I6(H) · V8(N) 1 1 1 0.091 1.000 Z25 R

6 I5(H1) · I9(L) · I11(L) 1 1 1 0.091 1.000 Z25 ×

7 I5(H1) · V7(N) 1 1 1 0.091 1.000 Z25
√

8 I5(H1) · V8(N) 1 1 1 0.091 1.000 Z25 R

9 I5(L) · I7(H) 1 1 1 0.091 1.000 Z27
√

10 I6(L) · I7(H) 1 1 1 0.091 1.000 Z27 R

11 I8(L) 1 1 1 0.091 1.000 Z27 ×

12 I11(H) 2 2 1 0.182 0.667 Z2T
√

13 I5(H1) · V7(L) 3 3 1 0.273 1.000 Z2T
√

14 I5(H1) · V8(L) 3 3 1 0.273 1.000 Z2T R

15 I6(H) · V7(L) 3 3 1 0.273 1.000 Z2T
√

16 I6(H) · V8(L) 3 3 1 0.273 1.000 Z2T R

17 I7(H) · V8(L) · I8(H) · I10(L) · I12(L) 3 3 1 0.273 1.000 Z2T
√

18 I9(H) 2 2 1 0.182 0.667 Z2T
√

19 V7(L) · I7(H) · I8(H) · I10(L) · I12(L) 3 3 1 0.273 1.000 Z2T ×

20 I1(L) · I5(H) · I10(L) · I12(L) 1 1 1 0.091 1.000 Z36 ×

21 I1(L) · I5(H) · V7(N) 1 1 1 0.091 1.000 Z36
√

22 I1(L) · I5(H) · V8(N) 1 1 1 0.091 1.000 Z36 R

23 I6(H1) · I10(L) · I12(L) 1 1 1 0.091 1.000 Z36 ×

24 I6(H1) · V7(N) 1 1 1 0.091 1.000 Z36
√

25 I6(H1) · V8(N) 1 1 1 0.091 1.000 Z36 R

26 I5(L) · I8(H) 1 1 1 0.091 1.000 Z38
√

27 I6(L) · I8(H) 1 1 1 0.091 1.000 Z38 R

28 I7(L) 1 1 1 0.091 1.000 Z38 ×

29 I10(H) 2 2 1 0.182 0.667 Z3T
√

30 I12(H) 2 2 1 0.182 0.667 Z3T
√

31 I5(H) · V7(L) 3 3 1 0.273 1.000 Z3T
√

32 I5(H) · V8(L) 3 3 1 0.273 1.000 Z3T R

33 I6(H1) · V7(L) 3 3 1 0.273 1.000 Z3T
√

34 I6(H1) · V8(L) 3 3 1 0.273 1.000 Z3T R

35 I7(H) · V8(L) · I8(H) · I9(L) · I11(L) 3 3 1 0.273 1.000 Z3T ×

36 V7(L) · I7(H) · I8(H) · I9(L) · I11(L) 3 3 1 0.273 1.000 Z3T ×
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Table 32. Accumulating the casted votes for all rules that fires

Index Certainty Fraction Decimal

certainty(x, (ZONE = Z11)) 1/11 0.09

certainty(x, (ZONE = Z25)) 3/11 0.27

1a certainty(x, (ZONE = Z27)) 1/11 0.09

certainty(x, (ZONE = Z36)) 1/11 0.09

certainty(x, (ZONE = Z38)) 1/11 0.09

certainty(x, (ZONE = Z2T)) 3/11 0.27

certainty(x, (ZONE = Z3T)) 1/11 0.09

2a certainty(x, (ZONE = Z25)) 1/2 0.50

certainty(x, (ZONE = Z2T)) 1/2 0.50

certainty(x, (ZONE = Z11)) 1/15 0.07

certainty(x, (ZONE = Z25)) 4/15 0.27

1b certainty(x, (ZONE = Z27)) 2/15 0.13

certainty(x, (ZONE = Z36)) 1/15 0.07

certainty(x, (ZONE = Z38)) 2/15 0.13

certainty(x, (ZONE = Z2T)) 3/15 0.20

certainty(x, (ZONE = Z3T)) 2/15 0.13

2b certainty(x, (ZONE = Z25)) 3/5 0.60

certainty(x, (ZONE = Z2T)) 1/5 0.20

certainty(x, (ZONE = Z3T)) 1/5 0.20

assuming that only the rules presented with V5 = L or I5 = H1 were fired, the
voting algorithm for the support count index 1a (based on Table 30) concluded
that the fault is in Zone 2. However, the algorithm is not able to distinguish
specifically if the fault is in Zone 25 (fault on feeder 5) or Zone 2T (fault on
Transformer T2).

The support count for the case V5 = L or I5 = H1 with outcome Zone Z25
is 3, whereas the total support count for the case V5 = L or I5 = H1 regardless
any outcome is 11. The same procedure applies to Z2T in which the support
count for the case V5 = L or I5 = H1 with outcome Z2T is also 3. The support
count index 2a (based on Table 31) also shows no marginal preferences for Zone
25 or Zone 2T. The reason for this conflict is because both fault locations give
the similar effects on voltage and current on the feeder 5. To distinguish the two
types of fault, extra information will be required.
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Table 33. Classifier result using the 90% Training Set and 10% Test set

Training Test Sets (10%) Mean

Set (90%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 1.000 1.000 1.000 1.000 1.000

2 1.000 0.000 1.000 1.000 0.750

3 1.000 1.000 0.000 1.000 0.750

4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 0.875

Table 34. Classifier result using the 70% Training Set and 30% Test set

Training Test Sets (30%) Mean

Set (70%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 1.000 1.000 1.000 1.000 1.000

2 1.000 0.333 0.667 0.667 0.667

3 1.000 0.667 0.000 1.000 0.667

4 1.000 0.667 1.000 0.333 0.750

Measure of Accuracy 0.771

Table 35. Classifier result using the 50% Training Set and 50% Test set

Training Test Sets (50%) Mean

Set (50%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 0.800 1.000 1.000 0.800 0.900

2 1.000 0.600 0.600 0.800 0.750

3 1.000 0.600 0.200 0.800 0.650

4 0.400 0.400 0.600 0.000 0.350

Measure of Accuracy 0.663

Let us now assume that in Case B, the rules presented with I9 = L,V5 = L
or I5 = H1 are fired. We have accumulated the cast votes for all rules that fire
and divided them by the number of support count for all rules that fire, i.e 15
for support count index 1b (based on the rules in Table 30) and 5 for support
count index 2b (based on the rules in Table 31). With more information given
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Table 36. Protection status for Breaker BRK1 failure

Time R1 R5 R6 Z11 BZ2 BZ3 R1 Failure

t/s 50/51 79 67 50/51 67 50/51 BRK1 BRK5-7 BRK6-8 Indicator

0.139 0 0 0 0 0 0 01 01 01 0

1.004 0 0 0 0 0 0 01 01 01 0

1.007 0 0 0 0 0 0 01 01 01 0

1.011 1 0 0 0 0 0 01 01 01 0

1.091 1 0 0 0 0 0 00 01 01 1

1.339 1 0 0 1 0 1 00 01 01 1

1.419 1 0 0 1 0 1 00 10 10 1

1.442 1 0 0 0 0 0 00 10 10 1

1.444 0 0 0 0 0 0 00 10 10 1

Table 37. IED data in time series for Breaker BRK1 failure

Time R1 R2 R5 R6 R7 R8 BZ2 BZ3 S

t/s V1 I1 V2 I2 V5 I5 V6 I6 V7 I7 V8 I8 BRK57 BRK68 d

0.139 N N N N N N N N N N N N 01 01 N

1.004 L N L N L N L N N N N N 01 01

1.005 L H L L L N L N N N N N 01 01

1.006 L H L L L N L N N N N N 01 01

1.007 L H L L L H L H N N N N 01 01

1.008 L H L L L H L H N H N H 01 01

1.419 L H L L L H L H N H N H 10 10

1.434 L H L L L H L H N H N H 10 10

1.437 L H L L L H L H N H N H 10 10

1.438 L H L L L H L H N H N H 10 10

1.439 L H L L L H L H N H N H 10 10

1.440 L H L L L H L H N L N L 10 10

1.442 L H L L L L L L N L N L 10 10

1.443 L L L L L L L L L L L L 10 10

1.444 L L L L L L L L L L L L 10 10

1.445 L L L L L L L L L L L L 10 10

BRK57: BRK5 and BRK7, BRK68: BRK6 and BRK8.

this time, the voting algorithm now indicates that the fault is in Zone 25 rather
than in Zone 2T due to its higher support count in the given set of rules. This is
in-line with expectations. However, the suggestion from the voting result should
always be left, in the final analysis, to domain experts to decide the necessary
action to be taken.
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Table 38. GA Reducts (Relay Box) for
Case 4.2 without Breaker data

No Reducts Support Length

1 {V1, I1} 100 1

2 {V2, I2} 100 1

3 {V5, I5} 100 1

4 {V6, I6} 100 1

5 {V7, I7} 100 1

6 {V8, I8} 100 1

7 {V1, I1, V5, I5} 100 2

8 {V1, I1, V6, I6} 100 2

9 {V1, I1, V7, I7} 100 2

10 {V1, I1, V8, I8} 100 2

11 {V2, I2, V5, I5} 100 2

12 {V2, I2, V6, I6} 100 2

13 {V2, I2, V7, I7} 100 2

14 {V2, I2, V8, I8} 100 2

15 {V5, I5, V7, I7} 100 2

16 {V5, I5, V8, I8} 100 2

17 {V6, I6, V7, I7} 100 2

18 {V6, I6, V8, I8} 100 2

Table 39. GA Reducts (Relay Box) for
Case 4.2 with Breaker data

No Reducts Support Length

1 {V1, I1}, {BZ2} 100 2

2 {V1, I1}, {BZ3} 100 2

3 {V2, I2}, {V7, I7}, {BZ2} 100 3

4 {V2, I2}, {V7, I7}, {BZ3} 100 3

5 {V2, I2}, {V8, I8}, {BZ2} 100 3

6 {V2, I2}, {V8, I8}, {BZ3} 100 3

Table 40. GA Reducts (Individual Mea-
surements) for Case 4.2 with Breaker data

Index No. Number of reducts Support Length

1 I1, V2, {BZ2 OR BZ3} 100 3

2 I1, V3, {BZ2 OR BZ3} 100 3

3 I1, V4, {BZ2 OR BZ3} 100 3

4 I1, V5, {BZ2 OR BZ3} 100 3

5 I1, V6, {BZ2 OR BZ3} 100 3

Classifier’s Performance: The original simulation data is randomly divided
into three different training sets and test sets respectively with a partition of
90%, 70% and 50% of the data for training and 10%, 30% and 50% for testing.
The procedure is repeated four times for four random splits of the data. This
means that four different test sets were generated in each case and each of these
was tested on every split of the training sets for a total of 4 runs. The splits
are used to avoid results based on rules that were generated for a particular
selection of events [33]. This makes the results more reliable and independent of
one particular selection of events. Note: the classifier performance is assessed on
the simulation data with relay box measurements, that is to use the combined
voltage and current measurements rather than treating the two recorded sets of
data separately.

The average accuracy of the classifier for the 10% test data is reasonably
good, 87.5% (see Table 33). The results have demonstrated that most of the
rules generated from the training sets are able to classify the events in the test
set. The inaccuracy occurred when the rules generated from the training sets
2 and 3 were used to classify the respective test sets 2 and 3. Only one event
with the decision class Z3T was unclassified. The cause of this problem is due
to the small data set used in this case study (only 11 events) and this leads to
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Table 41. GA Rules generated from Table 38

No List of rules LSup RSup Acc LCov RCov Zone Yes

1 {V1(N), I1(N)} 1.0 1.0 1.0 0.063 1.000 NS ×

2 {V2(N), I2(N)} 1.0 1.0 1.0 0.063 1.000 NS ×

3 {V5(N), I5(N)} 1.0 1.0 1.0 0.063 1.000 NS ×

4 {V6(N), I6(N)} 1.0 1.0 1.0 0.063 1.000 NS ×

5 {V1(L), I1(N)} 1.0 1.0 1.0 0.063 1.000 A0
√

6 {V2(L), I2(N)} 1.0 1.0 1.0 0.063 1.000 A0
√

7 {V1(L), I1(H)}, {V5(L), I5(N)} 2.0 2.0 1.0 0.125 0.500 E0
√

8 {V1(L), I1(H)}, {V6(L), I6(N)} 2.0 2.0 1.0 0.125 0.500 E0 R

9 {V1(L), I1(H)}, {V7(N), I7(N)} 3.0 3.0 1.0 0.188 0.750 E0
√

10 {V1(L), I1(H)}, {V8(N), I8(N)} 3.0 3.0 1.0 0.188 0.750 E0 R

11 {V2(L), I2(L)}, {V5(L), I5(N)} 2.0 2.0 1.0 0.125 0.500 E0
√

12 {V2(L), I2(L)}, {V6(L), I6(N)} 2.0 2.0 1.0 0.125 0.500 E0 R

13 {V2(L), I2(L)}, {V7(N), I7(N)} 3.0 3.0 1.0 0.188 0.750 E0
√

14 {V2(L), I2(L)}, {V8(N), I8(N)} 3.0 3.0 1.0 0.188 0.750 E0 R

15 {V5(L), I5(H)}, {V7(N), I7(N)} 1.0 1.0 1.0 0.063 0.250 E0
√

16 {V5(L), I5(H)}, {V8(N), I8(N)} 1.0 1.0 1.0 0.063 0.250 E0 R

17 {V6(L), I6(H)}, {V7(N), I7(N)} 1.0 1.0 1.0 0.063 0.250 E0
√

18 {V6(L), I6(H)}, {V8(N), I8(N)} 1.0 1.0 1.0 0.063 0.250 E0 R

19a {V7(N), I7(H)} 6.0 1.0 0.2 0.375 0.250 E0 ×

19b {V7(N), I7(H)} 6.0 5.0 0.8 0.375 0.714 E1 ×

20a {V8(N), I8(H)} 6.0 1.0 0.2 0.375 0.250 E0 ×

20b {V8(N), I8(H)} 6.0 5.0 0.8 0.375 0.714 E1 ×

21 {V1(L), I1(H)}, {V5(L), I5(L)} 1.0 1.0 1.0 0.063 0.143 E1
√

22 {V1(L), I1(H)}, {V6(L), I6(L)} 1.0 1.0 1.0 0.063 0.143 E1 R

23 {V7(N), I7(L)} 2.0 2.0 1.0 0.125 0.286 E1 ×

24 {V8(N), I8(L)} 2.0 2.0 1.0 0.125 0.286 E1 ×

25 {V1(L), I1(L)} 3.0 3.0 1.0 0.188 1.000 S1
√

26 {V7(L), I7(L)} 3.0 3.0 1.0 0.188 1.000 S1
√

27 {V8(L), I8(L)} 3.0 3.0 1.0 0.188 1.000 S1 R

higher classification errors since the 10% of the data we used for testing may be
different than the 90% we used for training. As such, the rules generated do not
cover the case in the 10% of the test data.

The same procedure is repeated again, this time with different training sets
and split of data. For the training set that comprises of 70% of the data,leaving
30% for the test set, the accuracy of classification is approximately 77.1% (see
Table 34). In the final assessment, the accuracy of classification dropped, as
expected, to approximately 66.3% (see Table 35) when the smaller variety of
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Table 42. Classifier result using the 90% Training Set and 10% Test set

Training Test Sets (10%) Mean

Set (90%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000

3 1.000 1.000 0.750 1.000 0.938

4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 0.984

Table 43. Classifier result using the 70% Training Set and 30% Test set

Training Test Sets (30%) Mean

Set (70%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 0.909 1.000 1.000 1.000 0.977

2 1.000 1.000 1.000 1.000 1.000

3 1.000 1.000 0.909 1.000 0.977

4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 0.989

Table 44. Classifier result using the 50% Training Set and 50% Test set

Training Test Sets (50%) Mean

Set (50%) Split 1 Split 2 Split 3 Split 4 Accuracy

1 0.941 1.000 0.941 1.000 0.971

2 1.000 1.000 1.000 1.000 1.000

3 0.706 0.765 0.471 0.765 0.676

4 1.000 1.000 1.000 1.000 1.000

Measure of Accuracy 0.912

training set is used (only 50% of the data). The overall average accuracy for the
three experiments is (87.5 + 77.1 + 66.3)/3 = 76.97%. The reason of the lower
accuracy in 30% and 50% test data cases is because the system has been trained
on a smaller variety of events and therefore it may not recognise a larger variety
of events for classifications. The larger size of the test set is used as it tends to
have more events i.e. 3 events in the 30% partitions, but only 1 event in the 10%.
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As the strength of the rule relies upon the large support basis that describes the
number of events (which support each rule), the accuracy estimated from the
30% partition is therefore higher than the 10% partition. Another explanation is
that the events are not equally distributed over the given decision classes when
the data set is split. One decision class may dominate over the other decision
classes. Due to lack of events in this analysis, the number of unclassified and/or
misclassified events is more frequent. To overcome this problem, the events can
be duplicated to ensure the same equal number of events are distributed over the
decision classes in order to make the voting process more capable of detecting
these events. This gives significant improvement in classification rate as can be
seen in following Tables 42, 43 and 44.

The number of unclassified and/or misclassified events in power system should
always be treated with high priority as it indicates the failure of the classifier
and hence it needs to be verified by experts. The results showed that the overall
classification rates are still good even though a small data set has been used.

4.2 Fault Data in Time Series

When a circuit breaker is tripped, the trip event and the disturbance must
always be reviewed to verify the operating performance of the protection system.
Despite the fact that the breaker failure in a substation is a rare event, it is still
an important issue for substation data analysis. This case study was carried out
to evaluate the data patterns in Fig. 3 when the overcurrent relay R1 or breaker
BRK1 failed to operate. A single phase A to earth fault was applied at 1.0s to
the load bus L1. The failure of breaker BRK1 at 1.091s has caused the upstream
relays R5 and R6 to trip at 1.339s. Both IED relays, which serve as a backup to
the downstream protection, saw the fault at the busbar. They both tripped the
breakers BRK5 and BRK6 and inter-tripped the respective breakers BRK7 and
BRK8 simultaneously. The trip category for the breaker BRK1 failure is given in
Table 36 with inclusion of the fault indicator data while Table 37 listed out the
voltage and current measurements captured before and after the breaker BRK1
failed. R9, R10, R11, R12 are excluded from Table 37 since these unit protection
relays do not contribute to this fault analysis.

Table 38 shows a set of 18 reducts computed using the RS-GA model. In the
parameter setting, the size of the keep list is set to 10. With the same setting, if
we enlarge the size of the keep list by a factor of 10 times, the number of results
generated would be 36. If we are interested only in shorter length of reducts, we
can reward the short length reducts and filter out the longer reducts. Table 39
considers GA reducts in the relay box with breaker data, while Table 40
considers the GA reducts in individual voltage and current measurement and
breaker data. The inclusion of breaker data reduces the number of rules gen-
erated but increases the restriction of using other relays for fault diagnosis. In
other words, it decreases the coverage.

Table 41 listed the decision rules derived from the reduct sets in Table 38. The
first four rules that represent the steady state normal operation, NS are ignored
since they do not play an essential part in the decision making/support. Some of
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the listed rules are redundant labelled as ‘R’ due to the similar patterns captured
by different IED relays. As previously noted, they can be useful when one or
more of these IED relays in operation are not working or in service. Therefore,
these redundant rules can be used as the ‘reserved rules’ in the knowledge based
system. Two inconsistencies were identified in Rules 19 and 20. The rules are
not able to distinguish the outcome of E0 and E1. Rules 23 and 24 are discarded
because they are not good enough to justify the emergency situation due to
the lack of information. As for the smaller system proposed in the previous
section, the idea is to extract, analyse and evaluate the decision rules for each
simulated scenario before adding them into the knowledge based system. Each
fault scenario has different pattern of rules. If the symptom matches the list
of all given rules for a particular fault as in this case, for instance, then it
can be concluded that the fault is at the load bus L1 and the breaker BRK1
has malfunctioned. The drawback of this system however is that each time the
network topology changes, the knowledge base has to be updated/revised. An
automatic update of the knowledge base can be achieved relatively easily by
linking the simulation results performed on all topologies in which that the
network can possibly be configured. However, this will greatly increase the size
of knowledge base. The solution is to develop a generic knowledge base that
could reuse some of the knowledge which are common to all the scenarios (See
the following Sect. 5: Future Work).

Classifier’s Performance: At 98.4%, the average accuracy of the classifier for
the 10% test data is good (see Table 42). The results demonstrated that most of
the rules generated from the training sets are able to classify the events in the
test set. The inaccuracy occurred when the rules generated from the training
set 3 were used to classify the test set 3. Only one event with the decision class
E1 was left unclassified as the classifier was not able to distinguish it from the
events with the decision class E0. The cause of this problem is likely due to the
small dataset used in this study (only 35 events).

The same procedure is repeated again, this time with different training sets
and splits of data. For the training set that consists of 70% of the data with
30% for the test set, the accuracy of classification is approximately 98.9% (see
Table 43). In the final assessment, the accuracy of classification dropped, as
expected, to approximately 91.2% (see Table 44) when the smaller variety of
training set is used (only 50% of the data). The overall average accuracy for all
the three experiments is (98.4 + 98.9 + 91.2)/3 = 96.17%. From the classifier
results, we can see that only one event was actually unclassified in the 10% of
data for testing whereas in the 30% and 50% partition, there are two events and
six events left unclassified, respectively. The classification rates for the three tests
in Tables 42, 43 and 44 perform better than the previous example simply because
the events have been duplicated before the splits to ensure equal distribution of
decision classes. This verifies that the classification rate in the first example is
largely caused by unequal distribution of decision classes as the result of the
small set of data used, rather than any misclassification of rules extracted in the
training sets.
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5 Future Work

There are many kinds of primary substations and each of them may have dif-
ferent configurations, operational rationale etc. It is therefore necessary to build
a knowledge extraction system suitable for every kind of primary substation. In
addition to that, increased penetration of distributed generation (DG) within a
distribution network will alter the direction of the conventional power flows in
the network and frequently trigger changes of network topology (disconnection
and reconnection of the DGs). To overcome this challenge, a direct way is to
use multiple sets of training database that consist of a set of rules that suits
particular network configuration in the knowledge based system. However, such
an approach will result a very large knowledge based system that may be costly
to build and difficult to maintain. In order to resolve this problem it is necessary
to share generic knowledge to reduce the cost of building each knowledge based
system. This generic knowledge base is composed of general rules that operate
the power system with the minimum human interaction. It should be applica-
ble to most primary substations overlooking a portion of a distribution network
and is easily adaptable even when the configurations of primary substations are
changed. Building a generic knowledge base requires the understanding of the
problem solving process of an expert, identifying the suitable method used, and
characteristics of the problem solving knowledge.

In the event of a fault, at least one piece of equipment/asset in parallel could
be overloaded as the result of losing one or more feeders. The current carrying
capacity of the overloaded feeder will be twice higher than its previous nominal
value after the event. In the case involving the tripping of one transformer, it
shows that the system current returns to normal after the faulty feeder has
been isolated. However, it does not indicate that the current state is in the
full load or overload condition, meaning that if one transformer is isolated from
the system, the other could have temporarily taken or exceeded the full-load
capacity. Therefore, the future work is to develop a generic knowledge base
system that is partially independent of network topology and is able to inform
responsible engineers about the status of other transformers after the system is
restored.

6 Conclusion

This chapter suggests the use of a hybrid RS-GA method to process and ex-
tract implicit knowledge from operational data derived from relays and circuit
breakers. The proposed technique simplifies the rule generation process, reduces
the rule maintenance costs, the outage response time and resources required to
develop a rule-based diagnostic system. Two given examples have demonstrated
how knowledge can be induced from data sets and the promise for practical ap-
plication. The approach is also able to extract rules from time series data. The
advantage of integrating RST and GA approach is that the former can effectively
reduce a large quantity of data and generate efficient rules whereas the latter
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provides us flexibility to generate a number of rules subject to the parameter
settings we provide, hence produce global optimal solutions. More importantly,
when the population of nearly optimal (but different) individuals was computed,
new objects/events can also be added dynamically. This is because the genetic
algorithm is able to adapt itself to this new situation after a few generations
[27]. The methodology is more attractive than some techniques e.g. Bayesian
approach and Dempster Shafer theory, because no assumption about the inde-
pendence of the attributes is necessary nor is any background knowledge about
the data required [34].

Classic expert systems were developed to handle a specific task for a fixed
network topology. Increased penetration of distributed generation (DGs) will al-
ter the distribution network topology from time to time and could complicate
the fault diagnosis task. Classic rules developed in the conventional knowledge
based systems are no longer efficient enough to supervise active networks. An
automated rule induction system is therefore essential for extracting rules from
various simulated topologies in a distribution system influenced by the connec-
tion/disconnection of DGs. Future work is to develop generic rules applicable
to all the simulated topologies that are identified and stored in one common
database while other rules unique to specific topologies are kept separately in
other databases.
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