
Monitoring Web Services: A Database Approach�

Mohamed Amine Baazizi1, Samir Sebahi1, Mohand-Said Hacid1,
Salima Benbernou1, and Mike Papazoglou2

1 University Claude Bernard Lyon 1, LIRIS CNRS UMR 5205, France
2 Tilburg University, The Netherlands

Abstract. Monitoring web services allows to analyze and verify some
desired properties that services should exhibit. Such properties can be re-
vealed by analyzing the execution of the services. Specifying monitoring
expressions and extracting relevant information to perform monitoring
is however not an easy task when the processes are specified by means
of BPEL. In this paper we design a monitoring approach that makes use
of business protocols as an abstraction of business processes specified by
means of BPEL. High level queries are expressed against this abstrac-
tion and then translated into SQL queries that are evaluated against a
database that stores the excustion traces of the services.

1 Introduction

The task of observing some process and tracking specific situations is known as
monitoring. Amongst the many fields that witness special need of monitoring,
there are Service Based Systems (SBS) which tend to support most today’s ap-
plications. Today’s enterprises rely on SBS to export their products. Different
stakeholders may communicate with each other combining their existing prod-
ucts to constitute other ones more tangible to end users. This interaction is
specified in a complex manner and advocates defining all the activities taking
place in it. Moreover, each participant operates in an information system differ-
ent from those used by the other parties. This was overcome by establishing a
stack of protocols leveraging the heterogeneity that could take place. However,
planing monitoring for those systems remains difficult since it advocates not
only knowing details of the process being monitored, but also mastering tools
and languages that served to specify it. All this to say that a new way to mon-
itor business processes is more than required. It should take into account the
difficulties of finding suitable models that bridge the gap between the modeled
processes and the restricted knowledge of decision making actors.

In this paper, we build on previous work by Wombacher et al. [5] and Benatal-
lah et al. [4] to provide a methodology for monitoring web services by considering
their business protocols. The methodology is shown on figure 1. A BPEL speci-
fication is transformed into a business protocol. From the business protocol we
� The research leading to this result has received funding from the European Com-

munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-CUBE).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 98–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Monitoring Web Services: A Database Approach 99

Fig. 1. The monitoring Framework

generate a (relational) database schema. Monitoring queries are specified against
the protocols and translated into SQL queries against the relational database.

The paper is organized as follows: we first introduce, in section 2, a few notions
on web services that are relevant in our work. Section 3 defines the monitoring
process in web services. Section 4 describes our architectural and design princi-
ples of our approach for monitoring web services. We conclude in section 5 by
summarizing our work and anticipating on necessary extensions.

2 Preliminaries

In this section we introduce relevant concepts to our work. We assume the reader
familiar with Service Oriented Architectures (SOA) and notions related to Web
services.

2.1 Business Process Execution Language (BPEL)

A business process consists of a bounded set of activities where data is manip-
ulated and results are produced following the logic of the business it describes.
Before the advent of web services, enterprises workflows were broadly used in de-
scribing the collaboration of many actors to produce a result. This was modeled
by a graphical notation that shows the activities to be performed and the schedul-
ing to respect in addition to the intermediate products that are passed between
activities. In the same way, web services collaboration is captured by Business
Process Execution Language (BPEL) [1], an XML-based standard used to or-
chestrate the enactment of the different services of the collaboration that interact



100 M.A. Baazizi et al.

to perform some specified task. It specifies the process behavior by defining the
activities it is composed of and the external processes that interact with it.

2.2 Business Protocols

Making several partners’ processes collaborate in an effective way needs an a
priori look on their descriptions to depict eventual mismatches before their en-
actment. The actual standard for specifying web service offers neither enough
visibility on the processes it specifies nor suitable tools that could help design-
ers statically analyze the behavior of these processes that they manage to make
communicate in a correct manner. This is why the authors in [4] investigated a
way to represent the protocol that two services must follow to interact correctly.
This was called business protocol since it represents the allowed conversations
between a requester and a provider in terms of messages according to the states
that they reached in the local execution of their respective business processes.

3 Monitoring Web Services

Web services are characterized by the fact that they are contracted somewhere
in the time and may not be available after that or can still be available but in a
different version making their evolution highly volatile. Additionally, every par-
ticipant is mandated to correctly perform the task it has to carry out otherwise
it will affect the entire process execution.

Monitoring copes with those deficiencies by observing web services execution
after they have been deployed. It consists of a dedicated activity responsible of
raising alert or triggering predefined actions when some situation is observed. It
also consists of gathering useful information that will serve analysis. It could be
extended with capabilities that allow avoiding some unwanted situations.

Monitoring web services was influenced by many techniques dealing with
contracts and agreements, distributed systems property and safety verification,
event processing, etc.

Many criteria could be considered when classifying monitoring approaches.
According to [2], we can focus on the technique used to perform monitoring
(verification, planning...) as well as on the data of interest to be monitored
and many other aspects such as the abstraction of the language that serves
monitoring specification and the degree of invasiveness on the monitored process.

4 A Database Approach for Monitoring Web Services

In this section we define the framework we are designing for monitoring business
processes specified in BPEL. We will detail each component’s functionality and
the transformations undergone. We also provide the language used for formu-
lating monitoring queries and characterize them regarding the abstraction upon
which they are expressed.



Monitoring Web Services: A Database Approach 101

4.1 The Overall Architecture

Figure 1 depicts the main components of the framework and the transformations
that lead to each of them. We consider the executable BPEL specification of the
business process to monitor. This specification will be mapped to a correspond-
ing business protocol, provided some changes that will be discussed later. The
mapping operation rests on a set of required transformation rules. A query lan-
guage is then used for retrieving information by navigating through the states
of the business process. Each query will be transformed into a suitable SQL
query over a database which schema is a faithful mapping of the business proto-
col resulting from the transformation of the business process. This database is
populated during the execution of the service supporting the business process.

4.2 A Business Protocol as an Abstraction

The abstraction of BPEL that we consider is a business protocols defined in [4]
that we extend with variables associated with the states. The core definitions
are kept identical. A protocol is defined as a tuple A=(Q, q0, F, φ , Σ ,ψ, Var)
where:

– Q is a finite set of states the process goes through during its execution
– q0 is the initial state
– F⊆ Q is the set of final states where F �= ∅
– φ is the set of messages. There are two types of messages, those consumed

by the protocol, these are assigned the polarity sign + and those produced
by the protocol are assigned the - sign.

– Σ ⊆ Q×φ×Q is the transition set where every transition is labeled with a
message name and its polarity.

– ψ is a partial function that assigns to the states where a transition labeled
with a receive message enters, the variable that is modified by this message.
Not all states are assigned variables since only entering messages deliver
information that is recorded in their corresponding variables.

– Var is the finite set of variables of the business process to be transformed.

4.3 Transformation of BPEL Business Processes to Business
Protocols

In this section, we are interested in the mechanism that allows to generate an
abstraction of a business process specified in BPEL by a set of rules. First, we
have to define the different elements of a BPEL specification as stated in its
specification [1].

For transformation purpose, we proceed by generating segments of the proto-
col corresponding to the basic activities and then combine the resulting segments
by looking into the structured activities to which they belong.

4.3.1 Transformation of Basic Activities
For each activity represented in BPEL syntax, we give its corresponding protocol
segment definition. States named as q indexed with an integer i are just used for
representation and could be renamed.



102 M.A. Baazizi et al.

invoke activity
<invoke partnerLink="PL" portType="PT" operation="op" in-

putVariable="inVar" outputVariable="outVar"/>

is mapped into the following segment of the protocol

({qi , qi+1 , qi+2 }, qi , {qi+2},{m, n},{(qi , (−)m, qi+1),(qi+1 , (+)n, qi+2)},
ψ(qi+1) = inV ar, ψ(qi+2) = outV ar, {inV ar, outV ar})

Here, qi+1 is an intermediate state meaning that a message has been sent
from a process to one of its partners and is blocked waiting for a message to be
returned to change its state and affects the variable defined in this state.

receive activity
The receive activity which waits for a message that will be consumed takes the
form <receive partnerLink="PL" portType="PT" operation="op"
variable="var">

and is mapped to the protocol defined by

({qi , qi+1}, qi , {qi+1},{n}, {(qi , (+)n, qi+1)}, ψ(qi+1) = V ar, {V ar})

assign activity
<assign><copy> <from>...</from> <to variable=”var".../> </copy>
<assign/> is mapped to its corresponding protocol

({qi , qi+1}, qi , {qi+1},{},(qi , Assign, qi+1), ψ(qi+1) = V ar, {V ar})

The assign activity is local to a process and does not require any message ex-
change. This is why no polarity sign is used.

reply activity
<reply partnerLink="PL" portType="PT" operation="op" vari-
able="Var"> is mapped to the protocol

({qi , qi+1}, qi , {qi+1},{m}, {(qi , (−)m, qi+1)}, ψ(qi+1) = Var, {Var})

Other activities like wait, exit, empty, throw and rethrow are available in the
BPEL specification but not all are relevant. Wait which makes the process wait
for a precise moment or until a certain time could be mapped to a business
protocol using temporal transitions defined in [3] that are implicit transitions to
be taken when the time constraint defined for them is satisfied. Exit is mapped
to a transition leading to a final state.

4.3.2 Transformation of Structured Activities
Structured activities are used to link between basic activities following a logic
we have in mind at design-time. This is done using different constructs such as
flow which expresses that the activities defined in its scope run concurrently,
sequence which links between basic or structured activities that are designed
to run sequentially, if-then-else express conditional branching to a point in the



Monitoring Web Services: A Database Approach 103

process, while and repeat-until are used to loop through a set of activities and
pick waits for a suitable message to trigger the corresponding action or a default
action if time overruns. As done for the basic activities, we assign for each type
of activity given in BPEL syntax its corresponding automaton definition.

4.4 A Monitoring Query Language

The monitoring methodology we propose consists of querying the business pro-
tocol corresponding to the business process we want to monitor rather than
handling this latter itself. This is why we define our monitoring language upon
business protocols to take advantage of the abstraction they offer. A business
protocol represents the modeled system as a finite state automaton which tran-
sitions are annotated with messages exchanged and states are the mapping of
the steps the process goes through until it ends. This visual representation of
a system greatly simplifies its comprehension, and could hence be exploited to
express queries in a natural and efficient manner. Figure 2 shows the business
protocol of loan process system obtained from the transformation of BPEL code
provided with the specification [1] using the transformation rules stated in § 4.3.
The process starts by receiving customers’ requests and decides, based on the
asked amount, whether to check the loan request by the assessor service whose

Fig. 2. The business protocol for the Loan approval example



104 M.A. Baazizi et al.

role is to evaluate the risk of accepting the loan (expressed by the (-)Check mes-
sage) or to check it directly by the approval service (expressed by the (-)Approve
Message). If the risk is low, the acceptance will be decided locally and then as-
signed to a local variable that will be transmitted to the customer. Otherwise a
processing from the approval service is needed and this latter has the responsi-
bility to directly inform the customer in case of refusal or to return the response
to the loan service that will forward it to the customer in case of acceptance. In
both cases the customer is informed of the result of her/his request.

We first give some definitions that will serve introducing our monitoring lan-
guage, then we will provide a syntax.

4.4.1 Execution Paths
As defined in the work [4] all traces left by the execution of a business process
are captured by the corresponding business protocol. In the above example, the
sequence Start, request(+), LoanRequested, check(-), LoanMsgSent,
check(+)LoanChecked is an execution path. A complete execution path is
an execution path that starts with the first state of the protocol and ends with
its final state. It denotes a complete execution of the process represented by this
protocol.

Definition 1. Given a business protocol P, an execution path is formed by all
the nodes (states of P) and edges (transitions of P) traversed during an execution.
All the instances of the execution of one process generate execution paths that
will be represented in a tree of executions. Figure 3 represents four paths of four
different instances identified by their instance ID.

Fig. 3. A tree of all execution instances



Monitoring Web Services: A Database Approach 105

Definition 2. Let us consider a business protocol P defined as a tuple P=(Q,
q0, F, φ, Σ,ψ, Var). A query over a business protocol P is a function that takes
a path expression as input, that is a start node, an end node and eventually a
set intermediate nodes constrained with the names of states defined in P (that is
Q). It returns the values of variables defined on those nodes, an aggregation of
those variables or a number of paths.

4.4.2 The Query Language Syntax
A query over the business protocol P is an expression built using the the syntax
shown figure 4, where terminals constitute keywords of the language and non-
terminals are used in production rules and are thus underlined.

A query is composed of three clauses:

– Retrieve
– Where
– Constrain

The Retrieve clause specifies the information that will constitute the answer. It
could be an attribute or a set of attributes. It could also be an aggregate result
on the number of selected paths or the average number of executions leading to
the selected paths.

The where clause specifies the paths to select given a start node and an end
node (the start and the end keyword respectively). We could restrict the selected
paths by indicating intermediate nodes to cross or not to cross. The answer
returned by the Retrieve clause is the set of attribute values of the selected
paths if the query is intended to return attribute values, or an aggregate on
these values or the number of paths that were selected. We can restrict even
more the paths that will be selected using the constrain clause by fixing the
values of attributes or the value of aggregates made on attributes values, or
aggregates of time.

4.5 Query Evaluation

As mentioned previously, the queries formulated over the business protocol will
be translated into SQL queries over an event database that captures the business
process execution. First, we give the schema of such a database that will enable to
retrieve the information as stated in the query language. Then, the above queries
will be translated into their corresponding SQL queries over the database.

4.5.1 The Database Schema
The schema of the database is obtained by mapping each state of the business
protocol to a relation of the database. Each relation is given the name of the state
from which it is generated and the attributes identified in that state. Additional
transformations are however required in case the variables defined in the business
protocol (taken directly from BPEL specification which is XML-based) do not fit
into relational table columns unless the host RDBMS allows storing such XML
types.



106 M.A. Baazizi et al.

Fig. 4. The query language syntax

Each state is designated by the ID it will have at run-time which is given
by the BPEL engine to every running instance. At a given time, each state is
linked with one and only one state (the following state in the execution path).
The resulting table from a given state has the Instance ID (IID) as primary key,
the variables of the state as attributes and a 1 to 1 multiplicity with the states
coming right after it in the protocol representation.

For simplicity, we consider the example of figure 5 that shows the database
schema resulting from the transformation of the protocol of figure 2. The in-
termediate states of the protocol (states without variables) are not mapped to
any table in this schema. They are, however, stored elsewhere in a table called



Monitoring Web Services: A Database Approach 107

Fig. 5. A database schema of the protocol in figure 2

‘Actual’ that given an instance ID returns the name of the last state reached by
the execution of an instance (the states in the business protocol). This table can
be populated following two ways: each time a different instance is inserted into a
table representing one state of the protocol, the ‘state’ attribute of the ‘Actual’
table is updated with the name of that table for the same IID. This is done by
associating a trigger to every table. On each tuple insertion to a table, the name
of this table is inserted into the state field of the ’Actual’ table with teh schema:

Actual (IID,state, status,timestamp)

where: IID is the primary key and corresponds to the IID of the table where
a tuple is inserted, state is the name of the table where the tuple is inserted,
timestamp is the instance of time when the tuple was inserted into the original
table and status has special significance which will be explained after. The trig-
ger of a table resulting from a state Si can be defined as:

CREATE TRIGGER state_i_run
ON INSERT ON state_i_table
DECLARE
–-X will hold the IID of the inserted tuple
X
BEGIN
–- If a tuple with the same IID already exists
IF X IN (SELECT IID FROM Actual) THEN
–- Update only the ’status’ field
UPDATE Actual SET state=’state_i’
ELSE



108 M.A. Baazizi et al.

–- if the instance has not been yet recorded
INSERT INTO Actual (X,state_i)
END

Another way to populated the table is done at the level of the business process
enactment by capturing messages sent in an invoke activity (cf. §4.3.1 ) that
have not yet been responded by the partner link (if a response is required).
The information which will be stored is the name of the partner link involved.
Without this information we would never be capable of tracking the processes
involved in failure or estimate their response time. Indeed, this prevents from
mapping the intermediate states that denote in the business protocol that a
message request has been sent and a response is expected.

At run-time, each created instance of the business process is stored in the
database by filling the suitable fields with information generated during the
execution. Each row of the database table is timestamped to enable the retrieval
of temporal information.

The duration of a complete execution path is then given as the difference
between its final and initial states’ timestamps.

5 Conclusion

In this work, we provided a preliminary framework for business process moni-
toring using queries. This is just a starting work that will be helpful in:

– providing an abstraction of the monitored process that captures enough de-
tails relevant to monitoring issues, and not too much that could hinder the
understanding of the modeled process;

– allowing an intuitive query formulation by visually selecting and eliminating
parts of the process abstraction;

– ensuring efficient query evaluation by relying on relational databases that
turn out to be more useful than expected when exploiting related mecha-
nisms such as statistical analysis, actions triggering using the ECA paradigm
but also off-line analysis since data is made persistent.

This work suggests reconsidering the problem of monitoring by taking another
look that may lead to a solution when a important number of requirements will
be satisfied. This is why we consider extending the high level query language so
that it can deal with the maximum of situations one could need when monitoring
any kind of process. This could be done by defining another syntax or extending
the actual one while ensuring semantically correct queries with regards to a
convention that will be made. A semantic compilation has to be defined at this
level of abstraction so that high level queries will be mapped to the right SQL
ones.

Since this monitoring works jointly with the BPEL standard specification, a
deep review of the abilities of this latter could be of great benefit for optimization
issues. for example, we could exploit the exception handling mechanisms defined
in BPEL rather than redefining another one.



Monitoring Web Services: A Database Approach 109

Additional extensions may concern querying flow activities after representing
them and providing the suitable transformation mechanisms.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web services business process
execution language version 2.0 (OASIS standard). WS-BPEL TC OASIS (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer, Heidelberg
(2007)

3. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of web
service protocols. In: Belo, O., Eder, J., Cunha, J.F., Pastor, O. (eds.) CAiSE Short
Paper Proceedings. CEUR Workshop Proceedings, vol. 161, CEUR-WS.org (2005)

4. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W. (eds.) ER 2004.
LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

5. Wombacher, A., Fankhauser, P., Neuhold, E.J.: Transforming BPEL into annotated
deterministic finite state automata for service discovery. In: ICWS, pp. 316–323.
IEEE Computer Society, Los Alamitos (2004)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

	Monitoring Web Services: A Database Approach
	Introduction
	Preliminaries
	Business Process Execution Language (BPEL)
	Business Protocols

	Monitoring Web Services
	A Database Approach for Monitoring Web Services
	The Overall Architecture
	A Business Protocol as an Abstraction
	Transformation of BPEL Business Processes to Business Protocols
	Transformation of Basic Activities
	Transformation of Structured Activities

	A Monitoring Query Language
	Execution Paths
	The Query Language Syntax

	Query Evaluation
	The Database Schema


	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




