
Model-Driven Integration and Management of Data
Access Objects in Process-Driven SOAs

Christine Mayr, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group
Information Systems Institute

Vienna University of Technology, Austria
christine.mayr@inode.at, {zdun,dustdar}@infosys.tuwien.ac.at

Abstract. In most process-driven and service oriented architectures (SOA), ser-
vices need to access data stored in a database using database transactions. This
is typically done using Data Access Objects (DAOs), but so far the integration of
the business process, service, and DAO concepts is not well defined. As a con-
sequence, when the number of services in a SOA grows, the number of DAOs
can increase considerably and become hard to manage. In addition to this techni-
cal issue, business processes have to be highly adaptable to both functional and
technical requirements. We propose a model-driven approach for integrating and
managing DAOs in process-driven SOAs. We present a set of models provid-
ing different views tailored to the requirements of various stakeholders, such as
business experts, database designers, database developers, etc. In process-driven
SOAs, process activities running in a process-engine invoke services. We adapt
these process flows to model a sequence of DAOs within a service. A DAO repos-
itory is used to manage DAOs more efficiently and to improve software reuse in
database transaction development. The repository provides functionalities to cre-
ate, update, retrieve, and delete database transactions. As our view-based models
can flexibly be adapted to project requirements, our approach also aims at en-
hancing maintainability and increasing software development productivity.

1 Introduction

In a process-driven, service-oriented architecture, services are invoked from process ac-
tivities running in a process engine [1]. In this paper we concentrate on an important
part of process-driven SOAs: persisting the business objects (and other data) that is used
and manipulated by the processes and services. Nowadays, this is often done by inte-
grating Data Access Objects (DAOs) into services. DAOs are a special kind of objects
providing access to data that is usually read or written from one or more database ta-
bles. Services invoke the DAOs to commit a database transaction to persistent storage.
The goal of this design is to enhance software maintainability and strict separation of
the layers providing business functionality and data access in a SOA. In addition, DAOs
provide an interface that is independent of the underlying database technology. Com-
mon DAO implementations are provided by object-relational mapping (ORM) tools,
such as Hibernate [2] or Ibatis [3]. ORM frameworks support developers in mapping
data between object-oriented programming languages and relational database manage-
ment systems (RDBMS).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 62–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Integration and Management of Data Access Objects 63

As the number of DAOs, as well as the number of uses of a DAO, grows along with
the number of services, maintaining and managing the DAOs becomes increasingly
difficult when the SOA grows. That is, it becomes hard to deal with tasks such as finding
out which services or processes require which DAO, deciding whether a DAO can be
discarded because it is not used anymore, or whether a suitable DAO for a specific
task has already been defined and can be reused. Different stakeholders involved in a
process should be able to understand the SOA only from their perspective. For instance,
data analysts require mainly information about which DAOs access which data, service
developers require DAOs rather as interfaces to the data, and software architects require
the big picture of service/DAO interconnection.

DAOs are an integral part of many SOAs, but unfortunately services and DAOs are
not well integrated yet. A straightforward approach to solve this problem are cartridges,
such as those provided by AndroMDA [4] or Fornax [5]. Cartridges support separa-
tion of concerns by providing mechanisms for accessing and manipulating data through
DAOs. They are predefined components for model-driven generators that enable de-
velopers to integrate DAOs into services by generating either an instance of a DAO
interface into the service code [4] or generating DAO instances into the service opera-
tion [5]. However, the relationships between DAO operations and service operations are
not specified so far by cartridges. Even though the Fornax cartridge [5] connects DAOs
to service operations, it lacks information about which DAO operations are invoked by
which service operation. This information, however, is important for stakeholders, such
as software architects and service developers, to gain a clear view about which database
transactions are invoked by which service operation. To overcome this problem, we
extend the cartridge approach with the integration of DAO operations into service op-
erations and the introduction of service operation flows consisting of DAO operations.

In our earlier work, we introduced a view-based modeling framework (VbMF) [6]
for separating different concerns in a business process into different views.The idea is to
enable stakeholders to understand each view on its own, without having to look at other
concerns, and thereby reduce the development complexity. VbMF is based on model-
driven software development (MDSD) [7], i.e., executable code, such as BPEL/WSDL
in the example, can be generated from the views.

In this paper, we tackle the problems of integrating DAOs into a process-driven SOA
by extending the VbMF using different views for managing data objects more effec-
tively and efficiently. One important aspect of our solution is the need for a specific
view: the Data Access Object Repository View that particularly offers a fast and effi-
cient retrieval and management of DAOs. Establishing a Data Access Object Repository
increases both software development productivity and maintainability by enabling loose
coupling between DAOs and services, but still supporting the management of DAOs.

This paper is organized as follows: First, we present our approach for managing and
integrating DAOs into process-driven SOAs from the architectural integration point of
view. Section 3 provides a specification of the view-based data modeling framework
and discusses the model-driven aspects of our solution. We validated the applicability
of our approach through a case study in the area of modeling jurisdictional provisions in
the context of a district court, described in Section 4. Section 5 discusses related work
and finally Section 6 concludes.

64 C. Mayr, U. Zdun, and S. Dustdar

2 Architectural overview

In this section we propose an approach for integrating and managing DAOs in process-
driven SOAs. We discuss the relevant components and the relationships between them
from an architectural point of view. In the next section we explain how to support this
architecture using our view-based models. The goal of our integration and management
approach is to enable effective software development, extended analysis methods, and
efficient management of data-related issues in a process-driven SOA. As shown in Fig-
ure 1 the architecture consists of four main components:

1. Process Flow: An executable Process Flow, such as the BPEL process flow in the
example configuration in Figure 1, consists of process activities that each can in-
voke a service operation. Process activities act as service requesters that invoke a
specific service from a service repository.

2. Service Repository: The Service Repository serves providers for publishing and re-
questers for retrieving and invoking services. When a requester discovers a suitable
service, it connects to the specific service provider and invokes the service [8]. In
VbMF, the service repository is modeled by the Collaboration View. It supports
creating, updating, retrieving and deleting of services.

3. Service Operation Flow: When a service operation invokes one or more DAO op-
erations, the Service Operation Flow orchestrates these DAO operation calls by a
data flow of basic process elements such as sequences, flows, and switches.

4. DAO Repository: The Data Access Object Repository is used as central component
for managing DAOs. It provides basic functionality for accessing DAOs and in
particular aims at efficiently retrieving a suitable DAO operation.

These components are part of the runtime architecture generated from our models.
In MDSD [7] models are used to abstract from programming languages and platform-
specific details. In this paper, we use BPEL as an example for a specific process execu-
tion language. In the following sections, we focus on the Service Operation Flow and
the DAO Repository that are novel contributions of the work presented in this paper.

Fig. 1. DAO Service Integration Overview

Model-Driven Integration and Management of Data Access Objects 65

2.1 DAO Repository

As the number of DAOs can grow considerably large as the number of services grows,
retrieving a certain DAO operation, for instance for reusing the operation, can be com-
plex and time consuming. Also, the potentially large number of DAOs must be man-
aged. For instance, it must be decided which DAO is obsolete and which DAOs can be
merged. To support these issues, in our integration and management architecture, we
established a DAO Repository as a central component for managing DAOs efficiently.
Our DAO repository interface provides the following basic functionality:

– Insert: Create a new DAO operation
– Update: Change operation name or parameter definitions of a DAO operation
– Search: Retrieve a DAO operation by certain search criteria
– Delete: Remove a DAO operation

The DAO Repository is the central component for publishing and discovering
DAO operations – the functional parts of a DAO. Within the DAO repository each
DAO operation belongs to one or more database tables and in the end to a database.
This classification enables advanced searching capabilities. Listing 1.1 shows a few
example queries for selecting DAO operations by different search criteria. The query
getDaoOperation returns a list of DAO operations matching a pattern describing
a DAO operation name. The second query operation getDaoOperationByDAO

returns a list of DAO operations belonging to the given daoObject type. The
third query getDaoOperationByDbName returns a list of DAO operations by a
given pattern describing the name of a certain database instance. Finally, the query
getDaoOperationByTableName returns a list of DAO operations accessing a certain
database table. In Section 4 we apply the DAO repository using a concrete example.

DaoOpList[] getDaoOperation(String pattern)
DaoOpList[] getDaoOperationByDAO(DAOObject daoObject)
DaoOpList[] getDaoOperationByDbName(String pattern)
DaoOpList[] getDaoOperationByTableName(String dbPattern, String tablePattern)

Listing 1.1. DAO Repository: Query examples

2.2 Service Operation Flows

In this section, we describe the Service Operation Flows (see Figure 1) in more detail. A
Service Operation Flow supports separation of concerns by enabling service developers
to extract the database transactions from the service implementation. This way, service
developers get a clearer understanding about the data flows within a service. As a result,
development complexity decreases and higher-quality documentation can be generated.

To specify Service Operation Flows we have to integrate DAO operations into ser-
vice operations. Cartridges, such as AndroMDA [4] and Fornax [5], relate DAOs to ser-
vices rather than service operations to DAO operations. Establishing the relationships
between service operations and DAO operations provides the basis to enable advanced
analysis capabilities of database transactions in process-driven SOAs. For example, we
can estimate the average number of calls of a specific DAO operation within a process

66 C. Mayr, U. Zdun, and S. Dustdar

flow for tuning technical database parameters or database indexes. Database indexes can
significantly improve the performance of database transactions, but it must be consid-
ered that update costs have a considerable influence, both in the context of the physical
database design and in access path selection for RDBMS query optimization [9]. The
specification of a database transaction provides the information about which database
indexes are required for a specific application. However, database transactions that are
never invoked must not be selected for index creation.

A DAO consists of a set of DAO operations, and a service consists of 0..n service
operations. When a service operation needs access to the database, it invokes a DAO
operation from the DAO repository. However, often a service operation invokes more
than one DAO operations that can be dependent on each other. Therefore we introduce
Service Operation Flows consisting of database transactions (DAO operations). Our
Service Operation Flows support at the moment sequence and switch elements, but can
be extended with any other kind of data flow structure. We show a detailed example of
a Service Operation Flow in Section 4.

3 Model-Driven Integration of DAOs into Process-Driven SOAs

In this section we present a model-driven solution for the proposed integration and
management architecture of DAOs in process-driven SOAs presented in Section 2. For
that purpose we introduce the View-based Data Modeling Framework (VbDMF) as an
extension of the Viewbased Modeling Framework (VbMF) described in detail in [6].
The rectangles in Figure 2 display models of VbMF and the ellipsoidal boxes denote
the additional models of VbDMF. In VbMF new architectural views can be designed,
existing models can be extended by adding new features, views can be integrated in
order to produce a richer view, and using transformations platform-specific code can be
generated. As displayed by the dashed lines in Figure 2 the new view models of VbDMF
extend basic VbMF views namely the Information View, the Collaboration View, and
the Control-Flow View. The dotted lines in Figure 2 are used to display view integration,
e.g., the Service Repository View integrates the Collaboration and Information View to
produce a combined view.

We describe the resulting view models specifying the architectural components in
Figure 1. Following VbMF’s concepts, we distinguish low-level, technical views from

Fig. 2. VbDMF and VbMF – Overview

Model-Driven Integration and Management of Data Access Objects 67

high-level, conceptual (i.e., often: business-oriented) views. In addition, our low-level
technical view models support separating technology-specific from technology-
independent views, both for presenting the information in the models to different
stakeholders and for supporting platform-independence via model-driven software
development.

3.1 Control-Flow View (BPEL Process) – High Level

The Control-Flow View is an essential part of the Viewbased Modeling Framework
[6]. It extends the Core View model (see Figure 2) that defines basic elements of the
framework. VbMF introduces this Core View model that is derived from the Ecore
meta-model [10] to define and maintain relationships with other view models.
The Control-Flow View describes the control-flow of a process, so we can for instance
apply it for specifying the BPEL Process depicted in Figure 1. As shown in the figure,
a BPEL Process activity can invoke a service operation from the Service Repository
to realize the task of the activity. The relationship between a process-activity and a
service operation is modeled by the Control-Flow View model by view integration with
the Collaboration View model.

3.2 Service Repository View (Service Repository)– High Level

The Service Repository View integrates the Collaboration View and the Information
View. Both view models belong to VbMF [6] and are derived from the Core View
model (see Figure 2). The Collaboration View basically defines service operations re-
quired by a process activity. It defines the information needed to generate a Web Service
Description Language document (WSDL). The Information View specifies the service
operations in more detail by defining data types and messages. Technically speaking,
the data types of the Information View are used to generate a schema definition (XSD).
In distributed systems, data is passed from one system to another. Each system has
its own underlying data structures. For this purpose we specify data type mappings to
support data interoperability between diverse systems:

XSD Data Object View. The XSD Data Object View specifies conversions between
Web Service Description Language (WSDL) Schema types and data types of the service
providers’ software system environment. For this purpose a class XsdObjectMapping
associates each XsdAttribute with an Attribute of a locally defined Data Object.

3.3 DAO Flow View (Service Operation Flow)– High Level

The DAO Flow View model extends the Control-Flow View model in order to specify
Service Operation Flows, as illustrated in Figure 1, and integrates the Collaboration
View model to associate each flow with a specific service operation. The primary en-
tity of the Control-Flow View is the Activity class that is the base class for other
classes such as Sequence, Flow, and Switch [6]. We extend the class Activity

to associate a service operation Operation of the Collaboration View with a flow of
DAO operations. The Control-Flow View model uses the class SimpleActivity for

68 C. Mayr, U. Zdun, and S. Dustdar

representing a concrete process activity [6]. By extending the SimpleActivity class
of the Control-Flow model we can associate each activity SimpleActivity with a
DAOOperation.

3.4 DAO Repository View (DAO Repository)– Low Level

The DAO Repository View is a combined view that integrates the Object Relational
Mapping (ORM) View model and the Data Object View model. Since the main purpose
of the ORM View is to map physical data to data objects, it consists of both the Physical
Data View model, integrating the Database Connection View and the Data Object View.
As a result of this view integration, a DAO Repository service can process complex
queries for retrieving a specific DAO operation by joining the data from different views
(see Section 2.1). DAOs provide an interface that is independent of the used specific
ORM technology. That is, this view model specifies a conceptual view rather than a
technical view. It consists of a list of DAOOperation elements that each holds 0..n
InputParameter parameters and a ReturnParameter.

Database Connection View. The Database Connection View comprises a list of ar-
bitrary, user-defined connection properties and therefore is a conceptual rather than a
technical view. We also support database driver dependent views through model exten-
sion, e.g., a JDBC Database Connection View.

Physical Data View. The Physical Data View contains a class Database Connection

Pool specified by a list of the class DBConnection. We reference the class
DBConnection of the Database Connection View using model integration mech-
anisms (see Figure 2). The Physical Data View contains two more basic classes:
Tables and ColumnTypes. We support most common data types for current
RDBMSs. As data types can differ among different RDBMSs, developers can create a
technology-dependent view by extending this conceptual view model.

Object Relational Mapping View. The Object Relational Mapping View is a
technology-dependent model that provides the basis for specifying object relational
mapping mechanisms in VbDMF. The defined elements result from studying a range
of ORM tools in particular Ibatis [3] and Hibernate [2]. In order to support ORM
framework’s special features, developers should specify a technology-dependent
view by model extension. The basic view specifies a mapping between the two
below-mentioned models – the Data Object View model and the Physical Data View
model. The class DataObjectToTableMapping maps a data object (DataObject)
to a database table (Table). The class MemberVariableToColumnMapping allows
for a more specific mapping between MemberVariable and a table Column.

Data Object View. In object-oriented programming languages information is stored
in the objects’ member variables. We provide a conceptual, technology-independent
model, that consists primarily of a list of data objects DataObject and types
MemberVariableTypes. Again, to define additional data types developers can extend
this view model to gain a technology-dependent view.

Model-Driven Integration and Management of Data Access Objects 69

4 Case Study

In this section we present a case study in the area of modeling jurisdictional provisions
in the context of a district court, which we have performed to validate the applicability
of our approach. First of all, let us explain the Business Process flow and an exemplary
Service Operation flow (see Figure 3) at the land registry court. We use UML extensions
to model our process flows.

As shown in Figure 3, the process starts when a new application is received. The
ValidateApplication activity invokes a service that checks the incoming jurisdic-
tional application for correct syntax and semantic. Successfully validated applications
are saved by the service triggered by the SaveApplication activity. The activity
DeliverDismissal invokes a service that returns incomplete or inconsistent applica-
tions back to the applicant. Stored applications can be executed by the registrar within
the human process activity ExecuteApplication. If the registrar approves the appli-
cation, the service-based activity AccountFees is invoked. Finally, after accounting
the fees, the next activity DeliverApprovalAndFees calls a service that delivers an
approval and, if required, a pre-filled payment form to the applicant. In case of dismissal
the activity DeliverDismissal invokes a service that informs the applicant about the
dismissed application.

Let us now illustrate how to integrate DAO operations into service operations
using the process activity AccountFees as an example to demonstrate the database
transaction flow within an activity. In Figure 3 the dashed lines indicate the data
flows between the DAO operations. The DAO operation isExemptedFromFees of
ApplicantDAO checks whether the applicant is exempted from fees. If the DAO
operation isExemptedFromFees returns true, no further operations are necessary

Fig. 3. Case Study: Process Flow and Service Operation Flow (Process Activity AccountFees)

70 C. Mayr, U. Zdun, and S. Dustdar

Table 1. Case Study: DAO Repository View

DAO DAO operation Transaction Type Database Table

ApplicantDAO isExemptedFromFees select DBTest1 Applicant
ApplicantFeesDAO insertFeesForApplicant insert DBTest1 ApplicantFees
ApplicantDAO isExemptedFromFees select DBProduction1 Applicant
ApplicantDAO selectApplicant select DBProduction1 Applicant
FeesLienDAO getFees select DBProduction2 FeesLien

to terminate the flow. Otherwise the DAO operations for accounting fees and selecting
the applicant can run in parallel, because their data-flows are independent from
each other. Fees are accounted by the fees department and are system-dependent
on the type of application: Fees for applications of type ’Lien’ are calculated by
the DAO operation getFeesForApplicationType of DAO FeesLienDAO, the
DAO operation getFeesForApplicationType of DAO FeesSimpleFeeDAO

accounts fees for applications of type ’FeeSimple’, and the DAO operation
getFeesForApplicationType of DAO FeesOtherDAO calculates the costs
for applications of type ’Other’. The DAO operation insertFeesForApplicant

of DAO ApplicantFeesDAO requires a stored applicant as input parameter. For this
purpose the ApplicantDAO’s DAO operation selectApplicant looks for an
existing applicant. In case the applicant is not stored in the database yet, the DAO
operation insertApplicant is invoked to return the new applicant required as an
input parameter for the DAO operation insertFeesForApplicant. Let us now
consider the main view models instances specifying the process flow illustrated before:

Control-Flow View instance. In our prototype implementation the Control-Flow View
specifies a BPEL Process Flow. A graphical layout of the resulting BPEL model in-
stance is depicted left in Figure 3. The BPEL source code that is not shown here repre-
sents another layout of this view instance.

Service Repository View instance. The Service Repository View models the services
and data types of services often invoked by a process activity. In our concrete example,
the Service Repository View instance specifies the services depicted left in Figure 3.

DAO Repository View instance. Table 1 shows an extract of the data stored in the DAO
Repository after modeling our example process. Due to the view integration mech-
anisms (Database Connection View, Physical Data View, etc.) this DAO Repository
View instance contains data of various categories (DAOs, database, tables, etc.). In our
example we query all DAO operations that belong to a certain database ’DBTest1’. In
another query we can ask for existing DAO operations depending on a specific table
such as ’Applicant’.

DAO Flow View instance. The DAO Flow View instance depicted in Figure 3 illustrates
the connection between the process activity ’AccountFees’ and its Service Operation
Flow. In general, the DAO Flow View is intended for software architects, data analysts,
and service developers to get both a general understanding of the data flows within

Model-Driven Integration and Management of Data Access Objects 71

service operations and to get the information which service operation depends on which
DAO operations. Furthermore we can use this view to query all DAO operations that
are needed by a specific process.

We use the oAW’s Xpand language for source code generation. A BPEL definition
for the process flow and a service description in WSDL are generated from an instance
of the Control-Flow View, the Information View, and the Collaboration View respec-
tively. The Apache Axis2 Web services engine [11] supports us in building Java proxies
and skeletons for the services with WSDL descriptions. So we can generate a service
implementation and use the DAO Flow View model instance to inject the flow of DAO
operations into the relevant service operations. The DAOs themselves are generated
from plenty of model instances, namely of the DAO Repository View, the ORM View,
and the Data Object View. In contrast to generating DAOs, the DAO interfaces are au-
tomatically implemented simply from the DAO Repository View instance and the Data
Object View instance.

5 Related Work

As mentioned before, our approach is related to other model-driven solutions for in-
tegrating DAOs into services, such as AndroMDA’s EJB3 cartridge [4], generating a
persistent tier by integrating DAOs into services, and the Fornax platform [5], aiming
at a more specific integration by modeling the relationships between DAOs and service
operations. In our solution we associate DAO operations with service operations and
thus provide a more in-depth integration solution than these cartridges. Furthermore,
in contrast to earlier model-driven approaches, in our approach a data flow of database
transactions is modeled within a service operation that can be used to extract data de-
pendencies from the whole business logic.

Our work aims at integrating DAOs into process-driven SOAs, so it is concerned
with both processes that typically invoke services and with services that can access
data. Ricken’s top-down approach [12] addresses the same concern by adding service-
orientation to process models to support IT developers in translating business needs
into executable code. In [13] a set of architectural and software design models based on
proven patterns is introduced for process-driven SOAs. Both approaches, however, do
not separate different views or focus specifically on data-related views.

Akin to the approach by Wiederhold [14] our approach uses a mediator-based ar-
chitecture for integrating data stored in heterogeneous database systems. As the DAO
concept provides an abstract and technology-independent interface for accessing data,
Wiederhold’s mediators enable the homogeneous data access by integrating and se-
lecting necessary data among different sources. In the proposal of Roth and Schwarz
[15], a wrapper encapsulates the underlying data and acts as a mediator between the
data source and the middleware. In contrast to these mediator approaches, we propose
a more abstract, higher-level approach by using a DAO repository for managing DAO
operations. Kurz et al. provide a schema-level data integration which specifies how
to select, integrate, and transform data from heterogeneous data sources [16]. Like
our solution, this modeling approach provides a specification in a user-friendly and
platform-/language-independent way. In Section 2 we presented our architectural con-

72 C. Mayr, U. Zdun, and S. Dustdar

cept for managing DAOs in process-driven SOAs. These architectural components are
supported by technology-independent view models and their technology-specific ex-
tensions. As in our approach, Marcos at al. [17] support two different aspects. They
distinguish between platform independent (PIM) and platform specific models (PSM)
and separate models according to distinct aspects. Besides Marcos et al. [17], there are
several approaches for including software architecture into MDA platform. For exam-
ple, Alti et. al [18] integrate software architecture concepts into MDA platform by a
UML profile for Component-Object based Software Architecture extending UML 2.0.

Our view models extend the VbMF [6] to integrate data-related views. Mendling
et al. propose a similar approach for efficient view integration. They identified formal
semantic associations between elements of the process view. Just like VbMF, our data-
related views, in contrast, use a name-based matching algorithm to integrate views. For
the establishment of the DAO repository we were inspired from current web service reg-
istry standards such as UDDI [19], ebXML [20] and WSIL [21]. EbXML Web Service
Registries [20] have interfaces that enable submission, query, and retrieval of the con-
tents of the registry. We adopted the fundamental interface abstractions, used in these
approaches, to integrate the DAO repository into our process-driven architecture.

6 Conclusion and Future Work

In this paper we identified current problems in managing DAO operations in process-
driven SOAs. In order to efficiently manage and integrate data into process-driven
SOAs, we proposed an architecture, that consists of four main components namely
the BPEL Process flow, the Service Repository, Service Operation Flows, and a DAO
Repository. We further provide a model-driven solution to support this architecture by
specifying a set of view models. As our view models are based on VbMF, each model
represents a specific view tailored to the requirements of specific stakeholders. In par-
ticular, we introduced a view model for specifying database transaction flows to extract
data flows from the whole business logic. Up to now, no standard retrieval or submis-
sion interface for DAO repositories has been defined. As the number of services grows,
data development complexity increases with the number of data access object opera-
tions. Hence, retrieving a particular DAO operation can be complex and time-intensive.
More powerful searching capabilities, such as those that can be provided on top of our
approach, are hence desirable. However further work is necessary for specifying the re-
quirements for a DAO Repository in detail. Further work also includes runtime statistics
for measuring how often a DAO operation has been invoked, etc.

Acknowledgement. This work was supported by the European Union FP7 project
COMPAS, grant no. 215175.

References

[1] Zdun, U., Hentrich, C., van der Aalst, W.: A survey of patterns for service-oriented archi-
tectures. International Journal of Internet Protocol Technology 1(3), 132–143 (2006)

[2] Hibernate: Hibernate (2006), http://www.hibernate.org
[3] Ibatis: Ibatis (2006-2007), http://www.ibatis.org

http://www.hibernate.org
http://www.ibatis.org

Model-Driven Integration and Management of Data Access Objects 73

[4] AndroMDA: AndroMDA EJB3 Cartridge (August 2007),
http://web.aanet.com.au/persabi/andromda/

[5] Fornax-Platorm: Fornax-Platform Cartridges (August 2006),
http://www.fornax-platform.org/cp/display/fornax/Cartridges

[6] Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the
development complexity in process-driven SOA. In: Abramowicz, W., Maciaszek, L.A.
(eds.) Business Process and Services Computing: 1st International Conference on Business
Process and Services Computing (BPSC 2007), Leipzig, Germany, September 25-26, 2007.
LNI, GI, vol. 116, pp. 105–124 (2007)

[7] Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, Chichester (2006)

[8] Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic com-
position of e-services that export their behavior. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer,
Heidelberg (2003)

[9] Schkolnick, M., Tiberio, P.: Estimating the cost of updates in a relational database. ACM
Trans. Database Syst. 10(2), 163–179 (1985)

[10] Eclipse: Eclipse Modeling Framework (2006), http://www.eclipse.org/emf/
[11] Apache Software Foundation: Axis2/Java (2004-2008),

http://ws.apache.org/axis2/index.html
[12] Ricken, J.: Top-down modeling methodology for model-driven soa construction. In: OTM

Workshops, vol. (1), pp. 323–332 (2007)
[13] Zdun, U., Dustdar, S.: Model-driven and pattern-based integration of process-driven soa

models. Int. J. Business Process Integration and Management 2(2), 109–119 (2007)
[14] Wiederhold, G.: Mediators in the architecture of future information systems. Readings in

agents, 185–196 (1998)
[15] Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! a wrapper architecture for legacy data

sources. In: VLDB 1997: Proceedings of the 23rd International Conference on Very Large
Data Bases, pp. 266–275. Morgan Kaufmann Publishers Inc., San Francisco (1997)

[16] Kurz, S., Guppenberger, M., Freitag, B.: A uml profile for modeling schema mappings. In:
ER (Workshops), pp. 53–62 (2006)

[17] Marcos, E., Acuña, C.J., Cuesta, C.E.: Integrating software architecture into a mda frame-
work. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 127–143.
Springer, Heidelberg (2006)

[18] Alti, A., Khammaci, T., Smeda, A.: Integrating software architecture concepts into the mda
platform with uml profile. Journal of Computer Science 3(10), 793–802 (2007)

[19] Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, UDDI Spec Tech-
nical Committee Draft (October 2004),
http://www.uddi.org/pubs/uddi v3.htm

[20] OASIS/ebXML Registry Technical Committee: OASIS/ebXML Registry Services Specifi-
cation v2.0. (December 2001), http://www.ebxml.org/specs/ebrs2.pdf

[21] Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W.A., Pharies, S.: Web services in-
spection language (ws-inspection) 1.0 (November 2001), http://www.ibm.com/
developerworks/library/specification/ws-wsilspec/

http://web.aanet.com.au/persabi/andromda/
http://www.fornax-platform.org/cp/display/fornax/Cartridges
http://www.eclipse.org/emf/
http://ws.apache.org/axis2/index.html
http://www.uddi.org/pubs/uddi_v3.htm
http://www.ebxml.org/specs/ebrs2.pdf
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/

	Model-Driven Integration and Management of Data Access Objects in Process-Driven SOAs
	Introduction
	Architectural overview
	DAO Repository
	Service Operation Flows

	Model-Driven Integration of DAOs into Process-Driven SOAs
	Control-Flow View (BPEL Process) -- High Level
	Service Repository View (Service Repository)-- High Level
	DAO Flow View (Service Operation Flow)-- High Level
	DAO Repository View (DAO Repository)-- Low Level

	Case Study
	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

