
Using MDE to Build a Schizophrenic

Middleware for Home/Building Automation

Grégory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel

IRISA/INRIA/university of Rennes1, Equipe Triskell, F-35042 Rennes Cedex

Abstract. In the personal or corporate spheres, the home/office of
tomorrow is soon to be the home/office of today, with a plethora
of networked devices embedded in appliances, such as mobile phones,
televisions, thermostats, and lamps, making it possible to automate and
remotely control many basic household functions with a high degree of ac-
curacy. In this domain, technological standardization is still in its infancy,
or remains fragmented. The different functionalities of the various appli-
ances, as well as market factors, imply that the devices that control them
communicate via a multitude of different protocols (KNX, LonWorks,
InOne). Building a high level middleware to support all the appliances
seems to be a reasonable approach. However, market factors has shown
that the emergence of a unique and universal middleware is a dream. To
solve this issue, we have built a new generation of schizophrenic middle-
ware in which service access can be generated from an abstract services
description. EnTiMid, our implementation of schizophrenic middleware,
supports various services access models (several personalities): SOAP
(Simple Object Access Protocol), UPnP and DPWS (Device Profile for
WebServices). In this paper, we describe how these personalities are gen-
erated using a Model Driven Engineering approach and discuss the ben-
efits of our approach in the context of a deployment of new services at
the city level.

1 Introduction

Time after time, each building parts manufacturer has developed his own com-
munication protocol, and this for two reasons. The first one is the increasing
need of communication between the devices. Then, the belief that a close proto-
col is more secured, is still present in minds and make the second reason. As a
consequence, devices of today are communicating through dozens of protocols,
and most of them are private and protected. For example, X2D1, InOne2 or IO-
homecontrol3 are private protocols. Open protocols are emerging such as KNX,
LonWorks or BacNet, but interconnections between each other and/or with pri-
vate protocols are often made ’on demand’. Building a high level middleware to
support all the appliances and allow the development of high level services seems
1 Dela-Dore protocol (http://www.deltadore.com)
2 Legrand protocol (http://www.legrand.fr)
3 IO-homecontrol consortium protocol (http://www.io-homecontrol.com)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 49–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 G. Nain et al.

to be a reasonable approach. However, building automation market factors has
shown that the emergence of a unique and universal middleware is a dream. To
solve this issue, we present in this paper a new generation of schizophrenic mid-
dleware [15] in which service access can be generated from an abstract services
description. EnTiMid, our schizophrenic middleware implementation, supports
various services access models (several personalities): SOAP (Simple Object Ac-
cess Protocol), UPnP [12] and DPWS (Device Profile for WebServices) [6]. In
this paper, we describe how these personalities are generated using an Model
Driven Engineering approach and discuss the benefits of our approach in the
context of a deployment of new services at the city level.

The remainder of the paper is organized as follows. Section 2 presents an
overview of EnTiMid, a middleware for home automation and presents the meta-
model embedded into EnTiMid to export devices services at the business level.
Section 3 presents the generative tool chain of personalities. Section 4 discusses
the usage of EnTiMid in the context of a city deployment. Section 5 highlights
some selected related works and Section 6 wraps up with conclusions and outlines
some future work.

2 Overview of EnTiMid

EnTiMid is a middleware implementation developed in a house or building au-
tomation context. The aim of this middleware, is to offer a level-sufficient ab-
straction, making it possible for high level services to interact with physical
devices (such as lamps, heater or temperature sensors).

2.1 A Layered Middleware Based on Services

Based on a service-oriented architecture [5], this middleware incites people to
build their software as a set of services working together. Thus, each user can
customize the services offered by the software, according to his needs.

The OSGi Alliance[9], ’consortium of technology innovators’, has released a set
of specifications which define a service-oriented platform[1], and its common ser-
vices. The OSGi kernel is a standard container-provider to built service-oriented
software. It implements a cooperative model where applications can dynamically
discover and use services provided by other applications running inside the same
kernel. It provides a continuous computing environment. Applications can be
installed, started, stopped, updated and uninstalled without a system restart. It
offers a remote management model for applications that can operate unattended
or under control of a platform operator. Finally it embeds an extensive security
model so that applications can run in a shielded environment. According to these
specifications, an application is then divided on several bundles. A bundle is a
library component in OSGi terms. It packages services that are logically related.
It imports and exports Java packages and offers or requires services. Services are
implementations of Java interfaces.

Inspired by the CBSE (ComponentBased Software Engineering) paradigm [11],
each bundle is designed to reach the highest level of independence, giving the

Using MDE to Build a Schizophrenic Middleware 51

Fig. 1. EnTiMid architecture

software enough modularity to allow partial services updates, adds or removes.
This programming style allows software-builders, to deploy the same pieces of
software for all of their clients, either professionals or private individuals, and
then simply adapt the services installed. Moreover, the services running on the
system can be changed during execution.

On top of this kernel, EnTiMid is structured around three layers as presented
in Figure 1: a low-level layer which manages communication with the physical de-
vices, a middle layer (the kernel), offering a message oriented middleware (MOM),
and giving a first abstraction level of low-level layer, a high-level layer which pub-
lishes services and enables the device access through standard protocol. The Fig-
ure 1 gives an overview on how services are organized. EnTiMid defines a set of
interfaces between the services provided by the low level layer and the services
required by the middle layer to allow the access to the physical devices.

The low-level offers a common abstraction to the EnTiMid Kernel to access
the different devices. It wraps existing library to support some protocols, for

52 G. Nain et al.

example, it wraps the Calimero toolkit to provide an access to KNX devices 4.
It provides also home-made drivers to access protocol such as X2D or X10.
The EnTiMid kernel (middle layer) and the high level layer are described more
precisely in Sections 2.3 and 3.

2.2 A Schizophrenic Middleware

High-level protocols, such as DPWS, SOAP or UPnP, are going to be more
and more present in our everyday life. Each of them offers a different access to
devices, according to their main goal. For example, UPnP has been developed
to ease media sharing, whereas SOAP is a protocol to programmatically access
services such as devices provided services. So, manufacturers choosing to imple-
ment a high-level access to their devices, will select the protocol offering the best
accordance with the devices applications.

In a few years, new high and low level protocols will probably appear, and
some will become useless. Existing protocol will evolve and EnTiMid, which
aims to ease the device interconnection, has to support all the new protocols
and new protocols versions. An interesting solution to face the need of protocol
management flexibility (both low and high level), is the schizophrenic middle-
ware, presented by Laurent Pautet[15]. A schizophrenic middleware offers several
personalities to access services. Consequently, in EnTiMid, high-level protocols
define application personalities. As the middleware has to support lots of appli-
cation personalities, we propose in this paper to use a MDE approach to gen-
erate these application personalities from an internal representation of devices.
This choice is driven by the features provided by a MDE approach (abstraction,
transformation language) and by the improvement of the maturity of MDE tools
(we use the Eclipse Modelling Framework [3] for the meta-model definition and
Kermeta [8] for the transformation). Next subsection presents in depth the in-
ternal representation of the device services. Section 3 presents the details of the
generative approach used for the UPnP and the DPWS personalities.

2.3 EnTiMid Kernel

Figure 2 shows a part of the structure of the middle-level layer. Each manufac-
turer provides a Bundle. This bundle will use a Gateway contained in a Zone in
order to access the devices. Each low-level bundle implements a method called
getAvailableProducts(). This method returns a catalogue of the devices the bun-
dle is able to control/provide. Then, users just have to instantiate the device they
need to interact with. According to the type of the device, the actions offered
are different.

Actuators inform the system about the actions they are able to realise, giving a
list of CommonAction (on, off, up, down...). Then, for each CommonAction, they
produce a HouseAction containing all necessary information for the action to be
done on a device. These HouseActions can be valued to specify light intensity
for example.
4 calimero.sourceforge.net

Using MDE to Build a Schizophrenic Middleware 53

Fig. 2. Simple EnTiMid model

Fig. 3. Message transmission on action detection

Sensors are divided in different categories, and we focus on ModularSensors.
They are composed of Modules, and those modules are only containers. At setup
time, a sensor in charge to switch off a light, will ask the light actuator for
the HouseAction to be sent to switch off the light, and this HouseAction is then
stored in a list. Then, at use time, when the push() method is called on a Module
of a ModularSensor, all the HouseActions stored in the Module list are published
to all HouseActionListeners.

54 G. Nain et al.

Figure 3 illustrates what append when push method is called on a Module.
A HouseEvent containing a HouseAction is sent for each HouseAction to each
HouseEventListener. Then, the bundle able to route the information on the
destination network (here the LonWorks network) will translate and send the
message to the concerned device.

3 A MDE Approach to Generate Middleware Personality

3.1 From PIM to PSM

The Object Management Group (OMG) promotes an approach to achieve adapt-
ability at the application level with the Model-Driven Architecture (MDA) [10,4].
The concepts involved in MDA are based on the definition of two kinds of model:
Platform Independent Models (PIM) and Platform Specific Models (PSM). A
PIM provides an abstract representation of an application independently of any
standards and aims at capturing only the business concerns. A PSM is the re-
sult of the transformation of a PIM to apply it on a particular technology or a
particular standard. PIM and PSM are defined by specific meta-models which
constrain the expression of the models. The EnTiMid internal device services
model can be considered as a PIM, due to the fact that all devices types are
specified in the framework, and specifications are common to all technologies. On
the opposite, UPnP or DPWS personalities, for example, are to be considered
as PSMs, because the device description mode is very specific for each device
and dependent of the protocol.

3.2 UPnP Personality Generation

Device

Embedded

Service

Param1

Param2

State
Vars

Action

Fig. 4. UPnP-Device structure

UPnP Meta-model. UPnP [12] is
based on a discovery-search mechanism.
As an UPnP-Device joins the UPnP net-
work, it sends an XML description file to
all UPnP-ControlPoints, presenting itself
with information such as manufacturer,
device type, device model or uuid.

Most of times a UPnP-Device is self-
contained, describing itself and publishing
all services it can offer. The UPnP specifi-
cation allows devices to contain other de-
vices (called embedded devices); if so, the
rootDevice (the container) have to publish
its self-description and the description of
each embedded device.

Moreover, UPnP-Devices (embedded or not) can offer UPnP-Services, as
shown in Figure 4. Each service type provided by an UPnP-Device, must be
described in a separated file. The description explicits all the UPnP-Actions
the service renders, and all the UPnP-StateVariables, used by these actions, in

Using MDE to Build a Schizophrenic Middleware 55

Fig. 5. UPnP mapping example

a UPnP-StateTable. Indeed, UPnP-Actions can be parametered, and sens (in
or out), name and related StateVar are specified for each parameter. UPnP-
StateVars are used to offer more precise information about parameters, such as
value type or allowed value list.

Meta-binding. The Figure 5 shows how the binding between EnTiMid-Devices
and UPnP-Devices is done. An EnTiMid-Device is exported as a UPnP-
RootDevice, beeing Sensor or Actuator.

In the case the device is a Sensor, and more precisely, a ModularSensor, all the
modules it contains are exported as UPnP-EmbeddedDevices. The RootDevice
do not offer any services: only modules are offering such a thing. But, actuators
do not contain any Module, and so, can not be exported as simply as sensors.

In order to allow users to generate actions on actuators, a new UPnP-Device
is created and is given as BasicModule as it offers CommonActions. For example,
if a simple light actuator offers ”on” and ”off” CommonAction, a BasicModule
will be created for each action, and added to the RootDevice. By this way, it
will be presented as a UPnP-Device containing two Modules (one ”on” ans one
”off”) each one offering a push() method.

As a consequence, EnTiMid-Devices are mapped to UPnP-RootDevices; the
Modules are mapped to UPnP-EmbeddedDevices and CommonActions are spec-
ified as ServiceStateVariables.

Files. As previously said, each UPnP-RootDevice and each UPnP-Service must
be defined in an XML description file. During its life, the UPnP-Device will

56 G. Nain et al.

frequently be asked to send its description file to other UPnP-Devices, and ser-
vices descriptions are consulted each time a service is likely to be used.

In a commercial point of view, those description files are defined once (for a
proper device), and embedded in the product. But the dynamics of EnTiMid,
its abstraction level and its modularity, implies that information, such as device
type or description, about the devices installed on the system, are never known in
advance. Moreover, the EnTiMid implementation of a product can offer different
services, and those services are implementation dependent. That is why the
description files are generated at runtime.

Service description file generation. Our choices of implementation has led
to the fact that only Modules offer services. UPnP-Actions, offered by a UPnP-
Service, are an UPnP-Export of some methods of the module class. Methods to
be exported are signaled to be UPnP-Compliant, thanks to the presence of an
UPnP-Method annotation. This annotation offers some interesting information.
The first information is that the annotated method has to be exported in the
service; then, the annotation gives, at runtime, a semantic name to the param-
eters and the returned value of an action. More precisely, without annotation,
the only information one can get on a parameter at runtime is its place on the
method signature and its type. In this case, the user can not have the informa-
tion that the first string parameter is for the name, and the second for the age.
The annotation brings these information.

So, if the BasicModule service description file does not exist yet, a simple
reflexive research on the class’s methods make it possible for the system to
generate it, and all devices offering this service will then be able to point to this
file.

Device description file generation. In order to generate the description
file of a device only once, the name of file is the device class name. Device
des s. The first one gives general information about the device: manufacturer,
description, model type, model number or uuid; some are statically completed
by the EnTiMid-System (such as manufacturer), others are retrieved from the
device itself (model type, model number). The second part contains the types,
identifiers and links of the services offered by the device. For example, the first
BasicModule declared will complete its services list with:

<serviceType>urn:www.entimid.org:service:BasicModule:1</serviceType>

<serviceId>urn:www.entimid.org:serviceId:BasicModule1</serviceId>

<SCPDURL>/service/BasicModule/description.xml</SCPDURL>

<controlURL>/service/BasicModule/control</controlURL>

<eventSubURL>/service/BasicModule/eventSub</eventSubURL>

The last description file part contains the description of each embedded devices.
Those descriptions are composed of the two previous part, for each embedded
device.

UPnP events management. A different listener is created for each service of
the device, to simply manage UPnP events. By this way, a listener is linked with

Using MDE to Build a Schizophrenic Middleware 57

a unique module, and side-effects with other modules or devices are avoided.
Each listener is then attached to each action of the service.

When an action event is received, the first work is to identify the method that
has been actionned. Once done, the second work is to cast the UPnP-Action
parameters into the real method argument types. Then the method is invoked,
and, if necessary, the result is translated into a UPnP-VarType and sent.

3.3 DPWS Personality Generation

The Device Profile for Web Services (DPWS) [6] defines a minimal set of
implementation constraints to enable secure Web Service messaging, discov-
ery, description, and eventing on resource-constrained devices. Its objectives are
similar to those of Universal Plug and Play (UPnP) but, in addition, DPWS
is fully aligned with Web Services technology. Moreover, it includes numerous
extension points, allowing for seamless integration of device-provided services
in enterprise-wide application scenarios. From a conceptual point of view, the
DPWS meta-model is closed to the UPnP meta-model described in Figure 4.
Consequently, building the abstract model of the service to export, follows the
same way: we use the Java annotation in the low level layer to infer the model.
However, the generation process is different. To build the DPWS layer, we use
the WS4D project [16]. This project proposes a programming model to create
DPWS services. This model is based on the concept of service, device, operation
and parameter.

A DPWS service provides an implementation of one or more WS (Web Ser-
vices) port types to DPWS clients. The messages, a service receives and sends,
are specified by its WS port types. The DPWS services definition is different of
the standard definition of the term service in the WSDL specification. A device
hosts one or more services and provides common functions like messaging or
discovery. It is classified by its port types. According to the DPWS specifica-
tion a device is a target service of the WS-Discovery specification. The basic
functionality of a device is implemented by the class HostingService. An Opera-
tion/Action is a named message exchange pattern of a port type. It can consist
of an input and output message, and multiple fault messages. The appearance
and order of the input and output messages in the WSDL determine the type
of the operation (request-response (in-out), solicit-response (out-in), notification
(out), one-way (in)).

For each device, service and operation, a Java class has to be generated.
This class must extend respectively HostedService, HostingService and Action.
For each parameter, an instance of the class Parameter has to be implemented.
Consequently, the generation process can be done automatically. To achieve that
we use the JET Framework to create generation template for DPWS. We em-
bed the JDT compiler provided by the eclipse project to compile the generated
code. Finally, we programmatically create a new bundle containing all generated
classes. Once loaded, this new bundle provides all generated classes, and allow
them to be used.

58 G. Nain et al.

4 Use Case

4.1 Context: Application to a City-Level Project

EnTiMid is currently used in a Brittany project to allow old persons to hold
in their home as long as possible. Two associations of the Rennes metropolis,
the ”CODESPAR” and the ”ASSAD”, are working together in a project called
”Maintiens à domicile et habitat évolutif ”. With the support of industrial part-
ners, they are conceiving an environment around health professionals and old
people, composed of new information technologies. As previously said, the main
goal of the project is to help people to stay at home as long as possible, but this
can not be done without helping health professionals in their everyday work.

From March to October 2007, an initial study has permitted to obtain a set of
recommendations. The second phase of the project aims to find technical answers
to these recommendations. However, technical solutions are often multiples, and
the probability to install this technical environment over, or mixed with, an
already installed technologies is not null.

Consequently, the software used to manage the technologies and ease the
access to the house for health professionals, will have to be fully adaptable to
the in-place technology, and require a short development time to reach new
technologies or new protocol versions.

Its unified technology management, provided by the middleware abstraction
of the underlying protocols, and its multiple access personalities, inherited from
its schizophrenic aspect, have led EnTiMid to be a privileged candidate to be
deployed as the access point to the equipped houses.

4.2 Advantages of a Schizophrenic Middleware in This Context

The schizophrenia of this middleware and its generative capabilities are advan-
tages in two dimensions.

In space. The city scale deployment of the project necessarily implies that the
technologies used will sometimes be different, due to some physical constraints,
or because a technology is already installed, and people do not want to change.
EnTiMid will then propose an abstraction of the deployed devices technologies;
it will expose different personalities of these devices for high level application
developers. Consequently, services provider associated to the project will be able
to develop high level services directly on top of DPWS or UPnP. Finally, the
management capabilities provided by the OSGI gateway will also help to update
and reconfigure the gateway.

In time. Software, technologies and protocols constantly evolves and versions
change with, sometimes, some compatibilities problems. That is to say that dur-
ing its life, the OSGi gateway will have to implement new protocols, or different
versions of a given protocol. Moreover, protocols can be used in different ver-
sions, at a given time, in different places of the city. Once again, the different
personalities make it possible for EnTiMid to gain multiple version compliance,
for different protocols.

Using MDE to Build a Schizophrenic Middleware 59

5 Related Work

Xie Li [7] has developed a residential service gateway, which aim is to rely ”inside-
of-house” system to a ”outside-of-house” system, allowing users to connect their
residential gateway from a centralized point ”outside-of-house”. The connection
is recommended to be done by a VPN solution, and offers an HTTP interface to
control devices through the Lonworks PLC technology and they have planned in
future work to export their services to UPnP. The ”inside-of-house” system, de-
veloped on an OSGi platform, implements algorithm giving Plug&Play facilities
to the system for ”pre-defined devices”. Compared to this system, our implemen-
tation is designed to be Plug&Play. Our system also eases the interoperability
and can access several technologies.

The paper [13] presents a ”Service Oriented Pervasive Applications Based On
Interoperable Middleware”. As EnTiMid, the described middleware is composed
of three layers: a drivers layer, in charge of the connexion between the devices
and the ”Unified Service” layer. Then a bridges layer links the Unified Service
instances to diverse ”service technologies (UPnP, WS,...)”. The solution is simi-
lar, but they do not use the OSGi technology. Besides, we made the choice in this
paper to use an MDE based generative approach to propose several personalities
for the diverse ”service technologies (UPnP, WS,...)”.

Valtchev et al.[14] have developed a gateway to control a smart house. This
gateway defines an abstract layer to manage the hardware protocol used to com-
municate with physical devices. Moreover it is defined to manage many services
gateways. But it does not define a high level abstraction to offer services through
protocols like DPWS or UPnP. This abstraction could be done using their gate-
way but for practical reason we have choosen to define our own implementation,
because their implementation offers many things like we don’t want to use now.
Even if, later, EnTiMid could be bigger and need to manage many gateways for
examples.

Bottaro et al. have developed a service platform[2] to offer service abstraction
like DPWS over device communication. Into this platform, each device has to
register on the OSGi context, for each high level protocol it implements. At run-
time, the high level protocol ’manager’ gets all registered devices and publishes
them on the network. The main difference between this platform and EnTiMid
comes from the service registration. Indeed, for each high level protocol a device
want to offer, it has to implement a set of specific interfaces(API) and register
to the OSGi context. The generative approach used in EnTiMid simplifies the
development of devices. All installed devices are natively exported toward high
level protocols, thanks to their EnTiMid-Device implementation.

6 Conclusions and Perspectives

The plethora of networked devices embedded in appliances, such as mobile
phones, televisions, thermostats, and lamps, makes possible to automate and
remotely control many basic household functions with a high degree of accuracy.

60 G. Nain et al.

Consequently, a new breed of technologies is needed to address the challenges
of the development and deployment of building automation applications over
an evolving, large-scale distributed computing infrastructure. The approach and
the tools, provided by EnTiMid, and described in this paper, are an example of
such a technology.

EnTiMid offers a first solution to manage the multiplicity and the evolution
of communication protocols through a layered schizophrenic middleware. This
solution consists of offering a common abstraction of the home device topology
and provides a generative approach to offer an access to the devices through
different personalities. To improve the flexibility of this middleware, the high
level protocols are generated and loaded at runtime. It enables a dynamic re-
configuration of the application and the high-level protocol bundle without any
system restart.

EnTiMid have been implemented to form a complete middleware for home
automation5. Future work includes technical improvement and new scientific in-
vestigations. As a technical improvement of the platform, the AMIGO European
project designed a 3D application called VantagePoint, in order to model a room
with objects and devices. Moreover, the JDT compiler embedded to compile the
DPWS personalities is heavyweight for implementation in small commodity set-
top box. The DPWS generation tool chain has to be technically improved. This
could be a really good way to generate the configuration file of a house, or to
provide a 3D device management application. As a scientific future work, we
will work on the definition of a context-aware service composition operator in
order to provide users the relevant high level services. In this context, we will
follow the work of the S-Cube project in particular the work on the adaptation
of service-oriented applications.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube). (http://www.s-cube-network.eu).

References

1. The OSGi Alliance. Osgi service platform core specification, release 4, avril (2007)

2. Seyvoz, S., Bottaro, A., Simon, E., Gérodolle, A.: Dynamic web services on a
home service platform. In: 22nd International Conference on Advanced Information
Networking and Applications, pp. 378–385 (March 2008)

3. ECore. The eclipse modeling framework project home page,
http://www.eclipse.org/emf

4. Fuentes, L., Pinto, M., Vallecillo, A.: How mda can help designing component- and
aspect-based applications. In: EDOC 2003: Proceedings of the 7th International
Conference on Enterprise Distributed Object Computing, Washington, DC, USA,
p. 124. IEEE Computer Society, Los Alamitos (2003)

5 http://house-manager.gforge.inria.fr

http://www.eclipse.org/emf

Using MDE to Build a Schizophrenic Middleware 61

5. Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEE
Trans. Industrial Informatics 1(1), 62–70 (2005)

6. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using
the devices profile for web services. In: MPAC 2005: Proceedings of the 3rd inter-
national workshop on Middleware for pervasive and ad-hoc computing, pp. 1–8.
ACM, New York (2005)

7. Li, X., Zhang, W.: The design and implementation of home network system using
osgi compliant middleware. IEEE Transactions on Consumer Electronics 50 (May
2004)

8. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Kent, S., Briand, L. (eds.) MoDELS 2005. LNCS,
vol. 3713. Springer, Heidelberg (2005)

9. Osgi alliance, http://www.osgi.org/About/HomePage
10. Soley, R., OMG Staff: Model-Driven Architecture. OMG Document (November

2000)
11. Szyperski, C.: Component technology: what, where, and how? In: ICSE 2003: Pro-

ceedings of the 25th International Conference on Software Engineering, Washing-
ton, DC, USA, pp. 684–693. IEEE Computer Society, Los Alamitos (2003)

12. The UPnP Forum, http://www.upnp.org
13. Uribarren, A., Parra, J., Uribe, J.P., Makibar, K., Olalde, I., Herrasti, N.: Service

oriented pervasive applications based on interoperable middleware. In: Workshop
on Requirements and Solutions for Pervasive Software Infrastructure (RSPSI 2006)
(2006)

14. Valtchev, D., ProSyst Software AG, Frankov, I.: Service gateway architecture for
a smart home. IEEE Communications Magazine 40, 126–132 (2002)

15. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: Polyorb: A schizophrenic middle-
ware to build versatile reliable distributed applications. In: Llamośı, A., Strohmeier,
A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 106–119. Springer, Heidelberg
(2004)

16. Zeeb, E., Bobek, A., Bohn, H., Prueter, S., Pohl, A., Krumm, H., Lück, I., Gola-
towski, F., Timmermann, D.: Ws4d: Soa-toolkits making embedded systems ready
for web services. In: 3rd International Conference on Open Source Systems, Em-
bedded Workshop on Open Source Software and Product Lines, Limerick, Ireland
(2007)

http://www.osgi.org/About/HomePage
http://www.upnp.org

	Using MDE to Build a Schizophrenic Middleware for Home/Building Automation
	Introduction
	Overview of EnTiMid
	A Layered Middleware Based on Services
	A Schizophrenic Middleware
	EnTiMid Kernel

	A MDE Approach to Generate Middleware Personality
	From PIM to PSM
	UPnP Personality Generation
	DPWS Personality Generation

	Use Case
	Context: Application to a City-Level Project
	Advantages of a Schizophrenic Middleware in This Context

	Related Work
	Conclusions and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

