
Towards Correctness Assurance in Adaptive
Service-Based Applications�

Raman Kazhamiakin1, Andreas Metzger2, and Marco Pistore1

1 FBK-Irst, via Sommarive 18, 38050, Trento, Italy
{raman,pistore}@fbk.eu

2 SSE, University of Duisburg-Essen, Schützenbahn 70, 45117 Essen, Germany
andreas.metzger@sse.uni-due.de

Abstract. Service-based applications (SBAs) increasingly have to become adap-
tive in order to operate and evolve in highly dynamic environments. Research on
SBAs thus has already produced a range of adaptation techniques and strategies.
However, adaptive SBAs are prone to specific failures that would not occur in
“static” applications. Examples are faulty adaptation behaviours due to changes
not anticipated during design-time, or conflicting adaptations due to concurrently
occurring events. For adaptive SBAs to become reliable and thus applicable in
practice, novel techniques that ensure the correctness of adaptations are needed.
To pave the way towards those novel techniques, this paper identifies different
kinds of adaptation-specific failures. Based on a classification of existing adap-
tation approaches and generic correctness assurance techniques, we discuss how
adaptation-specific failures can be addressed and where new advanced techniques
for correctness assurance of adaptations are required.

1 Introduction

A wide range of research approaches addresses the problem of adaptation in Service-
Based Applications (SBAs). Those include solutions for the definition and realization
of adaptation requirements as well as strategies for adapting the applications to new sit-
uations and to react to various events and failures. As SBAs increasingly have to operate
and evolve in highly dynamic environments and must dynamically and autonomously
accommodate for various changes and events, dynamic adaptation is particularly impor-
tant since it allows for automated and timely modification of the underlying application.

In general, the approach to dynamic SBA adaptation may be described as follows:
At design time, the service integrator prescribes the adaptation specification, by (i)
identifying the dynamic part of the application (i.e., what can change or can happen in
the application or its environment that requires the application to adapt), (ii) defining
the adaptation requirements that the underlying application should respect, and (iii)
selecting the strategies to realize these requirements. During run-time, the application
detects the changes and executes the selected adaptation strategies according to the
adaptation specification.

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 25–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 R. Kazhamiakin, A. Metzger, and M. Pistore

While the functional behavior of an SBA typically is controlled by user input, dy-
namic adaptation is triggered by additional information about the application and its
context (e.g., failures of constituent services or different network connectivity). As a
consequence, dynamic adaptation may lead to new kinds of failures. Those adaptation-
specific failures include:

– the execution of the adaptation specification may fail, when the application encoun-
ters a situation that is not covered by the adaptation specification, i.e. which has not
been taken into account during the design phase;

– the adaptation actions are concurrent with the other events and activities of the
application leading to unpredictable results;

– inadequate adaptation strategies are chosen over and over again (i.e., the adaptation
enters a life-lock), wasting resources without achieving expected results.

Those kinds of adaptation-specific failures are not explicitly addressed by traditional
correctness assurance techniques. Thus, novel means for the correctness assurance of
adaptations are needed. In order to provide such correctness assurance techniques for
adaptive SBAs, the specific aspects of one or another adaptation approach as well as the
specific characteristics of the adaptation-specific failures need to be taken into account.

To pave the way towards those techniques, this paper thus sets out to

– provide a classification of existing adaptation approaches (Section 2);
– identify and classify potential adaptation-specific failures (Section 3);
– provide our vision on how to address these adaptation-specific failures (Section 4).

2 Adaptation in SBA

Depending on the type of adaptation, different adaptation-specific failures may occur
and may have a different impact on the functionality of the application. In this section
we will thus provide an overview of the different types of adaptations for SBAs. We
remark that in this work we focus on the problems related to the adaptation performed
automatically at run-time, since the adaptation performed at design-time may be ana-
lyzed by conventional quality assurance means, such as verification or testing.

We distinguish between configuration (or parameter) adaptation and composition
adaptation. Configuration adaptation includes modification of certain application pa-
rameters and properties (e.g., non-functional properties) or modification of services in-
volved in the composition (e.g., replacement of one service with another). Composition
adaptation deals with changes in the application structure, i.e., the flow of the activi-
ties is modified. As examples, additional activities are invoked, previous operations are
undone, or completely different composition fragments are executed.

Another important factor – orthogonal to the above one – concerns the way the adap-
tation strategy is determined and realized. In some approaches the strategy is predefined
at design time, in other approaches the strategy is defined dynamically depending on the
concrete situation. While the former approaches are easier to realize, they are less flexi-
ble at run-time. On the contrary, the latter approaches are more appropriate at run-time,
but require complex algorithms and may be time consuming.

Towards Correctness Assurance in Adaptive Service-Based Applications 27

2.1 Configuration Adaptation

There exists a wide range of approaches where the changes do not affect the under-
lying composition model, but only certain parameters or properties of the application
configuration. A typical scenario for such kind of approaches concerns the situation,
where there is a change of the constituent services, i.e. the services that are bound to the
application. The change may happen due to the fact that constituent services become
unavailable or their quality-of-service characteristics degrade. In this case adaptation is
performed by replacing “bad” services with other ones according to certain criteria. An-
other example of such type of changes is the modification of service-level agreements
taking place as a result of re-negotiation of certain non-functional parameters.

In some of these approaches the expected configuration values or value bounds are
predefined. Typically, these values are specified in service-level agreements; they define
appropriate levels of quality-of-service (QoS) parameters [1,2]. The approaches aim to
discover and bind the services that satisfy these constraints.

Other approaches do not specify any constraints on the parameters but try to dynam-
ically achieve those values that provide the best possible configuration; e.g. in [3] the
optimal value of several QoS metrics is targeted and in [4] the services with the best
reputation are chosen.

2.2 Composition Adaptation

In many approaches, adaptation modifies the way, in which an application is executed,
i,e., the process / composition model of the SBA is changed. These changes may be
entailed by various factors, such as the necessity to customize SBA in order to deal with
particular user types, or the necessity to operate in a new environment, where policies
and constraints for the given SBA are different. In this case, the application should
change the executed flow of activities in accordance to the adaptation specification.
This may include, for example, to skip certain activities or to perform additional ones,
to execute completely different process fragments, or to re-execute or roll back already
performed activities.

A typical scenario for composition adaptation using predefined strategies is pro-
cess migration: a new process model is defined and all the running instances should
be changed in order to correspond to this model [5,6]. Adaptation in this case changes
those parts of the running application instance that have not been executed yet. Other ap-
proaches define potential variants in the application model and conditions, under which
the variant applies [7]. In some approaches the adaptation specification has a form of
meta-level instructions to be applied to the process model, such as “redo a part of the
process”, “roll back to safe point”, “skip to a particular execution point”, “substitute a
part of the process”, etc [8].

There exist approaches where the composition is defined dynamically. Using certain
application requirements, the composition is created automatically and may be even
recomposed in case of certain changes or problems. In [9] the approach relies on a
set of functional and non-functional requirements and constraints, based on which the
services are composed and mediated dynamically. In [10] a domain process model with
the different deviations is used as a basis for the composition.

28 R. Kazhamiakin, A. Metzger, and M. Pistore

3 Adaptation-Specific Failures

Adaptation-specific failures may occur – in general – for all types of adaptations, or they
might be specific to particular approaches or even application domains. Moreover, they
may have different character depending on the way the adaptation problem and real-
ization are defined. This section therefore presents three major classes of adaptation-
specific failures, discusses their causes, and relates them to the types of adaptation
identified above.

3.1 Failures due to Incomplete Knowledge

When SBAs operate in a very open and dynamic environment, the list of potential
events, configurations, and contexts is very broad. This makes problematic the ap-
plicability of adaptation approaches, in which the adaptation strategy is prescribed at
design-time. Indeed, in this case the designer can consider only a relatively small set
of situations, assuming that they are representative for all the possible variants of the
execution. If this optimistic assumption is violated at run-time, the execution of the
predefined adaptation specification may lead to unexpected and dangerous results. For
instance, the inability to complete the adaptation (deadlocks), since the applicability of
the actions is violated in a concrete context; or the possibility to end up in a “wrong”
state not considered at design time.

We remark that this type of problem is specific to the approaches, where the adapta-
tion actions or parameters are predefined.

Configuration adaptation. When adaptation of application configuration is consid-
ered, design-time assumptions refer to the possibility to change the application in such
a way, that predefined values for the parameters are satisfied. For example, there exists
a possibility to satisfy certain level of QoS properties, to discover a service with a given
characteristics, etc. At run-time, however, this assumption may be violated since the
values are not realistic in a given context, and adaptation may fail.

Composition adaptation. In case of composition adaptation, the situation is even more
complex. For the process migration problem, running application instances may be in
a state, where adaptation is not possible, since the resulting execution will neither cor-
respond to the initial model nor to the final one. In case of rule-based or meta-level
specifications, an implicit assumption is that the adaptation specification is correct and
will successfully complete. In practice, however, the execution of adaptation activities
may fail, trigger another adaptation activity, etc. Another critical situation may occur if
adaptation activities are “semantically” incorrect in a given situation, i.e., they lead to a
situation that is undesirable from the application logic point of view.

The situation is made more complex by the fact that adaptation specification is de-
fined independently from the application model using specific languages and notations.
This restricts applicability of traditional techniques, such as verification or testing.

3.2 Failures due to Concurrent Changes during Adaptation

In certain application domains possible changes or events in the application environ-
ment may be as fast as the execution of adaptation activities. In such cases, events that

Towards Correctness Assurance in Adaptive Service-Based Applications 29

occur concurrently with the execution of adaptation activities may trigger another set
of adaptation activities, potentially even contradictory with the initial ones.

Such interleaving of adaptation activities and contextual events executed concur-
rently may lead to variety of problems and inconsistencies in the application: one adap-
tation activity may completely “negate” the results of another one; the system may end
up in an incorrect state or even deadlock; the new events continuously trigger new adap-
tations leading to an “adaptation stack overflow”.

Configuration adaptation. In case of configuration adaptation, the problem refers to
the changes in the corresponding configuration parameters of SBA. If the changes are
so fast that they become comparable to the re-configuration time, the new “version” of
the SBA may become incorrect or non-optimal. For instance, if services (or their QoS
metrics) appear / disappear (or change) within minutes or seconds, newly discovered
and bound service may become unavailable when invoked.

Composition adaptation. In case of composition adaptation, the execution flow of
the application is modified and activities and tasks different from those in the original
model are performed. If during the execution of these task new adaptation triggering
events occur, the execution flow is modified again. Depending on how the adaptation is
defined and depending on the underlying operational semantics, this may lead to a new
composition implementation, where the first adaptation is not complete and therefore
original requirement is not satisfied; concurrently executed processes, which may lead
to incorrect state and therefore the requirements of both adaptations are violated.

Similarly to concurrent systems, the source of the problem is in the way adaptation
activities are modeled, i.e., how fast, atomic, and isolated they are with respect to each
other, to the system execution, and to the changes in the context.

3.3 Failure: Undesired Adaptation Loops

Another potential adaptation-specific failure refers to a situation, where the execution
of adaptation activities directly or indirectly leads to a state, in which the same adap-
tation is triggered again. This situation corresponds to an adaptation livelock: the same
adaptation activities are identified and repeated again and again without, however, any
reasonable outcome.

The adaptation loop may be entailed by the problems identified above. Indeed, when
the adaptation specification is defined, an implicit assumption may expect that the adap-
tation activities successfully complete. In practice, however, the actions may fail and
the system remains in the same situation, triggering another loop of the same adapta-
tion activities. In other cases, concurrent events may terminate the current activity and
start another one (or execute it in parallel), which is the same as the initial one.

Configuration adaptation. Configuration adaptation loops can come in the following
two forms. Firstly, re-configuration of SBA may fail and the system remains in the same
state, from which the adaptation started. For example, if a service becomes unavailable,
adaptation initiates discovery and binding of another service corresponding to required
parameters. If these requirements can not be satisfied in the current context, adaptation
fails and the activities may be started again. Secondly, if the history of adaptations
(configurations) is not taken into account, it is possible that the new configuration will

30 R. Kazhamiakin, A. Metzger, and M. Pistore

be equivalent to the one, for which adaptation was triggered. Accordingly, the execution
of application in this new configuration may lead to the same problems, and the same
adaptation will be triggered.

Composition adaptation. Similar problems occur, when the composition adaptation
is considered. That is, adaptation activities associated to a particular situation may fail
to bring the application to a new state. Consider, for instance, an example from the
travelling domain: with a particular application failure (ticket is not available) one can
associate the adaptation specification that requires executing an alternative path (find
and book ticket using train reservation service). The execution of an alternative may
end up in the same failure (no train ticket is available) and the SBA enters the undesired
adaptation loop.

Similarly, the loop may take place if there are adaptation specifications that are de-
fined independently, but have implicit mutual dependencies. Consider again the travel
domain. One adaptation rule (from the user preferences) may require that if the total
cost estimated for the whole trip is higher than a certain amount, nearby airports should
be used instead. Another adaptation rule may enforce booking a taxi, if the airport is
not within certain distance from the hotel. It is easy to see that under certain conditions,
the first rule may trigger the second one, which will again require changing the airport.

4 Adaptation Correctness Assurance

In order to ensure that the adaptation is specified and executed correctly, the adaptation
approach together with the underlying adaptation toolkit and platform should provide
dedicated techniques and facilities that can uncover and mitigate the problems identified
above. In this section, we first classify and discuss existing techniques for correctness
assurance of service-based applications in general. Based on the capabilities of these
techniques, we sketch how these can be used to address the different kinds of adapta-
tion failures discussed above. Finally, we will highlight potential evolution of existing
techniques in order to address their deficits.

4.1 Existing Means for Correctness Assurance

Classification. We will classify the techniques for correctness assurance according to
the following dimensions.

First, two basic strategies on how to ensure correctness can be differentiated, namely
constructive and analytical. Constructive techniques provide such form of support for
the system design and execution that guarantee its correctness “by construction”. That
is, these techniques rely on a certain formalism and a framework, which takes the appli-
cation specification and a set of predefined correctness requirements, and automatically
augment it with additional facilities necessary to satisfy these requirements. Analytical
techniques provide a possibility to analyze whether the artifacts of the system (includ-
ing its specification and implementation/code) have been built in such a way as to meet
certain predefined correctness properties. If potential problems are identified, the root
cause for these problems is identified and the artifacts are corrected accordingly.

Towards Correctness Assurance in Adaptive Service-Based Applications 31

Table 1. Classification of Correctness Assurance Techniques

Approach Strategy Online / Offline Configuration / Composition

monitoring analytical +/− +/+
testing analytical +/+ −/+
simulation analytical −/+ −/+
verification analytical −/+ −/+
model-driven development constructive −/+ −/+
automated configuration constructive +/− +/−
automated composition constructive −/+ −/+

Second, we can distinguish the techniques with respect to when these are employed
during the life-cycle of SBAs. Offline techniques allow one to identify the problems
before the application is put into the production mode (i.e., before the application is
deployed). Online techniques, on the contrary, are employed while the application is
executed in real settings, i.e. during the actual operation of the applications.

Third, we can distinguish between techniques that address correctness of the config-
uration (i.e., availability of services, their QoS) and techniques that address correctness
of the composition (i.e., application behavior is correct).

Techniques. Table 1 provides an overview of the existing major approaches for correct-
ness assurance in SBAs together with the capabilities they provide:

– Monitoring observes the service-based application during its current execution (i.e.,
actual operation) in order to detect deviations from the expected behavior. This
includes monitoring QoS properties [11], assertions [12], or complex behavioral
properties of compositions [13,14].

– The goal of testing is to (systematically) execute services or service-based applica-
tions with predefined inputs and to observe the outputs in order to uncover failures;
Examples for testing techniques include [15,16].

– Simulation corresponds to testing of a composition specification without actually
executing services [17];

– During verification, artifacts (e.g., a service specification) are systematically exam-
ined (without execution) in order to ascertain that some predefined properties are
met. There exist approaches that use model checking (e.g., [18,19]) or logic-based
techniques [20,21].

– Model-driven development aims at generating low-level specifications (closer to the
implementation) given high-level models and additional transformation rules that
preserve certain properties [22,23].

– During automated configuration a predefined abstract composition model is auto-
matically filled with the concrete services or parameters in order to satisfy some
criteria (e.g., optimization of QoS metrics) [24];

– During automated service composition, services are composed according to the
goal of the user / designer (e.g., provide a composed travel organizer from flight,
hotel, train booking services) together with additional constraints, like transaction-
ality constraints (i.e., do not book hotel if the flight booking fails); examples for
automated service composition frameworks include [25,26].

32 R. Kazhamiakin, A. Metzger, and M. Pistore

4.2 Dealing with Adaptation Failures

The techniques discussed above may also be applied to tackle the failures that are spe-
cific to the adaptation. These failures, however, pose new specific requirements, which
may not be addressed with the existing techniques, and would need their evolution or
even new approaches. For each of the adaptation-specific failure described in Section 3
we will discuss their requirements and the applicability of the existing approaches in
these regards.

Failures due to incomplete knowledge. In the case of configuration adaptation, the
problem refers to the violation of the design-time assumptions about the application
configuration properties (e.g., inability to find services satisfying predefined QoS lev-
els). In case of composition adaptation, the execution of a predefined adaptation strat-
egy leads to unexpected and incorrect behavior, since not all the possible settings and
contexts are considered at design time.

To address these problems, one of the following requirements should be met:

– (1) avoid using predefined (“hard-coded”) specifications but adapt them to concrete
run-time situations or contexts;

– (2) validate the realizability of the specifications before the execution / deployment
of an application;

For what concerns configuration adaptation, requirement (1) may be achieved with
existing techniques, such as automated application configuration through dynamic ne-
gotiation of SLAs, while requirement (2) needs novel approaches as it follows from
Table 1.

For what concerns composition adaptation, the first requirement may be achieved
by extending existing automated composition or model-driven techniques, in order to
accommodate for potential run-time changes and events. Analogously, existing verifica-
tion and simulation techniques require further extensions in order to validate adaptation
specifications. In particular, there is a need to formalize the semantics of the adapta-
tion languages and relate it to the semantics of the underlying application models; it is
necessary to define “correctness” criteria for the adaptation execution; it is necessary to
model and adequately represent the dynamics of the execution context.

Failures due to concurrent changes during adaptation. When the changes and rel-
evant events occur concurrently with the execution of adaptation activities, the adap-
tation may become redundant, have undesirable effects or even failures. In order to
prevent these problems, the adaptation framework should take potential changes and
events into account when the adaptation strategy is determined. In particular, the fol-
lowing requirements should be addressed:

– (1) analyze the dynamics of the execution context of the application (i.e., frequency
and timing of potential changes, duration of application activities);

– (2) analyze the impact of these factors on the adaptation execution in order to guide
the development of proper adaptation specifications.

Existing correctness techniques (i.e., monitoring or verification) do not provide appro-
priate means to address those requirements and therefore should be extended. Indeed, it

Towards Correctness Assurance in Adaptive Service-Based Applications 33

Table 2. Classification of Advanced Correctness Techniques

Approach Strategy Online/Offline Config/Compos Incompl. knowl. Concur. change Adaptation loop

Offline adaptation anal-
ysis

analytical −/+ −/+ + + +

Pre-deployment moni-
toring and testing

analytical −/+ +/+ + + −

Online verification and
simulation

analytical +/− −/+ + + +

Online automated com-
position

constructive +/− −/+ + − −

Built-in adaptation constructive −/+ −/+ + + +
Monitoring adaptation
history

analytical +/− +/+ − − +

Stability metrics constructive +/− +/− − + −

is necessary not only to observe the relevant events and changes, but also to monitor how
frequent these changes are with respect to the application activities. This information
should then be modelled and used in the analysis, and, consequently, when adaptation
specifications are derived.

Failure: Undesired adaptation loops. When for some reason adaptation fails or brings
the application to a situation from which it has been initiated, the same set of adaptation
activities may be initiated. As a result, the application enters the “adaptation loop”, thus
consuming resources without any effect. In order to avoid this problem, the informa-
tion about previous situations and triggered adaptations should be considered when the
adaptation strategy is determined. That is,

– (1) define adaptation in such a way that the loop can not appear, or
– (2) define a special mechanisms to leave the loop when it is detected.

Neither in case of composition adaptation nor in case of configuration adaptation, exist-
ing correctness techniques are enough to address these requirements. Indeed, analytical
(respectively, constructive) techniques require specific means to check the specification
against such loops (resp., to construct loop-free specifications and executions).

4.3 Advanced Correctness Techniques

In order to tackle the failures that are specific to the adaptation of SBA, the existing
correctness assessment techniques are not applicable in the way they are used for static
applications. These techniques require specific extensions, and, moreover, in certain
cases novel approaches are necessary. Here we highlight future potential techniques that
could be applied in combination with the SBA adaptation approaches. Table 2 classifies
advanced techniques and maps them to the adaptation-specific failures.

Offline adaptation verification and simulation. The approach to extend conventional
techniques with the ability to verify application specification in combination with the
adaptation specification. This requires (i) representing the latter using the same formal-
ism as for the application; (ii) representing the dynamics of the environment (changes
and events) that are relevant for the adaptation; and (iii) defining specific properties to

34 R. Kazhamiakin, A. Metzger, and M. Pistore

be checked by the analysis tool. In case of problem due to incomplete knowledge, this
may include the necessity to complete the adaptation execution or an ability to reach
some “stable” or “correct” state. In case of adaptation loop problem, the property may
express absence of such loops. In case of concurrent changes, the model and properties
may express timed constraints on the adaptation behavior [27].

The most challenging problem here is to model and represent the behavior of the
environment, which is often difficult to foresee for open systems, or may generate be-
haviors that never happen in practice.

An initial step towards offline adaptation analysis has been presented by Fugini et al.
[28]. They present an approach for testing SBAs extended with fault injection mecha-
nisms. The goal of the approach is to check if and how the application reacts to certain
faults, such as delays or data errors.

Pre-deployment monitoring and testing. Here the idea is to evaluate some proper-
ties and metrics of the application and its environment before the system is ready for
deployment. This may include, in particular, monitoring the QoS of potential services,
evaluating characteristics of the context, estimating duration of application activities,
etc. Furthermore, this kind of analysis may be applied in order to evaluate the dynamics
of the application context, e.g., how often relevant changes happen, what are the ranges,
etc. This information may be used to restrict the models of the environment exploited by
the previous approach and, therefore, to make this models more compact and realistic.

Online verification and simulation. This technique consist of verifying or simulat-
ing the adaptation specification at run-time before its actual execution. Similarly to the
offline adaptation analysis, this technique permits verifying correctness of the specifi-
cation. On the positive side, it is applied in a concrete situation, and therefore is simpler
to model and represent. On the downside, such analysis may slow down the application
adaptation.

A sort of first attempt towards online verification of adaptation has been presented in
[29]. It aims to verify correctness constraints in the scope of process migration problem.
When the running process instance is dynamically changed, the proposed technique is
used to check that the changes are compatible with certain constraints.

Online automated composition. This approach aims to bring the automated techniques
applied at design-time to the execution phase. In this way, the adaptation specification
is defined dynamically, taking into account concrete situation. However, as in the case
of online analysis, such technique may considerably slow down the adaptation.

Built-in adaptation. This approach combines model-driven techniques with the au-
tomated composition approach. The adaptation specification defined at design-time is
automatically composed with (i.e., built-in) the application specification. As a result,
an integrated executable specification is generated that takes into account possible run-
time changes and events. As in the case of offline adaptation analysis, the need to model
possible events increases the complexity of the technique. On the positive side, the re-
sulting specification is efficient with respect to online composition.

Monitoring adaptation history. One way to deal with the adaptation loop problem is
to monitor and store the information about previous adaptations (adaptation history).

Towards Correctness Assurance in Adaptive Service-Based Applications 35

In particular, this information includes the event/situation, in which the adaptation was
triggered, and the outcome of its execution (i.e., positive/negative, state reached, etc.).
When the need for adaptation is identified, the system will compare the situation with
previous histories. If the situation was already registered and the previous adaptation
failed, then in the current situation some other strategy should be applied.

Stability metrics. In order to deal with highly dynamic environments, in which the
changes may happen during adaptation, one can use special stability metrics. This met-
rics may be used in order to estimate and keep information on how stable a certain prop-
erty is over time, for example, the frequency of changes in certain QoS parameter of the
service involved in the composition. Such metrics would allow one to discover and bind
only “stable” services, such that the adaptation is not triggered too often. Indeed, this
requires specific monitoring techniques, as well as the corresponding capability of, e.g.,
the discovery framework.

5 Conclusions

Adaptive service-based application are often subject to specific failures and problems
that are not exposed in “static” systems. In order to address these problems, novel ap-
proaches that extend both adaptation and traditional correctness assessment means are
necessary. In this paper we have identified and classified adaptation-specific failures;
we have also demonstrated how these failures show themselves in different adaptation
approaches. Through a review and a classification of the existing correctness assurance
techniques we have demonstrated that these techniques are not enough to deal with
adaptation specific failures. Based on the identified gaps and requirements, we have re-
vealed future directions and approaches that would improve correctness in the adaptive
service-based applications. As a future work we would like to instantiate the proposed
approaches and to integrate them within concrete adaptation frameworks.

References

1. Al-Ali, R.J., Hafid, A., Rana, O.F., Walker, D.W.: QoS Adaptation in Service-Oriented Grids.
In: Middleware Workshops, pp. 200–210 (2003)

2. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service
Composition Based on Genetic Algorithms. In: Proceedings of the 2005 conference on Ge-
netic and evolutionary computation, pp. 1069–1075 (2005)

3. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service
Composition and Execution. In: Int. Conference on Web Services - ICWS, pp. 549–557
(2006)

4. Bianculli, D., Jurca, R., Binder, W., Ghezzi, C., Faltings, B.: Automated Dynamic Main-
tenance of Composite Services based on Service Reputation. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 449–455. Springer, Heidelberg
(2007)

5. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with adept2.
In: ICDE, pp. 1113–1114 (2005)

36 R. Kazhamiakin, A. Metzger, and M. Pistore

6. Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process Life Cycle.
Technical report, University of Twente, TR-CTIT-07-87 (2007)

7. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Systems Self-
adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 255–268. Springer, Heidelberg (2005)

8. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: ESSPE 2007: Int. workshop on Engineering of software services for
pervasive environments, pp. 11–20 (2007)

9. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S Approach for
Configuring and Executing Dynamic Web Processes. Technical report (2005)

10. Lazovik, A., Aiello, M., Papazoglou, M.P.: Associating Assertions with Business Processes
and Monitoring their Execution. In: Service-Oriented Computing - ICSOC 2004, Second Int.
Conference, pp. 94–104 (2004)

11. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated SLA Moni-
toring for Web Services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002. LNCS,
vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

12. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

13. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An Event Calculus-Based Ap-
proach. In: Baresi, L., Nitto, E.D. (eds.) Test and Analysis of Web Services, pp. 265–306.
Springer, Heidelberg (2007)

14. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and
Classes of Web Service Compositions. In: Int. Conference on Web Services (ICWS), pp.
63–71 (2006)

15. Bai, X., Chen, Y., Shao, Z.: Adaptive Web Services Testing. In: 31st Annual Int. Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 233–236 (2007)

16. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of Int. Workshop
on Web Services - Modeling and Testing - WS-MaTE, pp. 3–12 (2006)

17. Mayer, P., Luebke, D.: Towards a BPEL Unit Testing Framework. In: Workshop on Testing,
Analysis, and Verification of Web Services and Applications, TAV WEB 2006, pp. 33–42
(2006)

18. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proceedings of the
13th Int. World Wide Web Conference (WWW 2004) (2004)

19. Sharygina, N., Krning, D.: Model Checking with Abstraction for Web Services. In: Test and
Analysis of Web Services, pp. 121–145 (2007)

20. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: CTR-S: A Logic for Specifying Contracts in
Semantic Web Services. In: Proc. WWW, pp. 144–153 (2004)

21. Grüninger, M.: Applications of PSL to Semantic Web Services. In: Proc. 1st Int. Workshop
on Semantic Web and Databases, pp. 217–230 (2003)

22. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proceedings of
the Enterprise Distributed Object Computing Conference (EDOC), pp. 47–57 (2004)

23. Castro, V.D., Marcos, E., Sanz, M.L.: A Model-Driven Method for Service Composition
Modelling: a Case Study. Int. J. Web Eng. Technol. 2, 335–353 (2006)

24. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web
Services Composition. In: WWW 2003 (2003)

25. Marconi, A., Pistore, M., Poccianti, P., Traverso, P.: Automated Web Service Composition
at Work: the Amazon/MPS Case Study. In: Int. Conference on Web Services (ICWS), pp.
767–774 (2007)

Towards Correctness Assurance in Adaptive Service-Based Applications 37

26. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of Services with
Nondeterministic Observable Behavior. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826. Springer, Heidelberg (2005)

27. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, Verification, and Computation
of Timed Properties in Web Service Compositions. In: Proceeding of the Int. Conference on
Web Services (ICWS), pp. 497–504 (2006)

28. Fugini, M.G., Pernici, B., Ramoni, F.: Quality Analysis of Composed Services through Fault
Injection. In: Business Process Management Workshops, pp. 245–256 (2007)

29. Ly, L.T., Rinderle, S., Dadam, P.: Integration and Verification of Semantic Constraints in
Adaptive Process Management Systems. Data Knowl. Eng. 64, 3–23 (2008)

	Towards Correctness Assurance in Adaptive Service-Based Applications
	Introduction
	Adaptation in SBA
	Configuration Adaptation
	Composition Adaptation

	Adaptation-Specific Failures
	Failures due to Incomplete Knowledge
	Failures due to Concurrent Changes during Adaptation
	Failure: Undesired Adaptation Loops

	Adaptation Correctness Assurance
	Existing Means for Correctness Assurance
	Dealing with Adaptation Failures
	Advanced Correctness Techniques

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

