
Ad-Hoc Usage of Web Services with Dynvoker

Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer,
and Alexander Schill

Dresden University of Technology, Dept. of Computer Science,
Chair for Computer Networks, 01062 Dresden, Germany

{josef.spillner,marius.feldmann,
iris.braun,thomas.springer,alexander.schill}@tu-dresden.de

Abstract. While web services are often targeted at machine-to-machine
communication, they are also increasingly used directly in the interac-
tions between humans and machines. Instead of developing specialised
client applications for the invocation of these services, a generic human-
driven ad-hoc usage is beneficial in many scenarios, including rapid
service testing and dynamic inclusion of services as plugins into applica-
tions. We argue for the need for such a usage and extract requirements
for generic web service clients. We then present a few selected use cases
and introduce the Dynvoker client which already passes the majority of
evaluation criteria. With its technical capabilities and open and vivid
development, we consider it the most suitable and flexible generic client
available and therefore highlight its role as a central component in a
user-centric web service research project.

1 Introduction

Rich and thin client applications provide a human interface to computational
functionality. In rich client applications, the interface and the functional part are
tied together, contrasting the rather loose coupling in thin clients. Some func-
tional parts are designed to allow primarily programmatic access and provide
an API over the network. Among these are Web Services, which are in most
cases self-described, stateless components. Sometimes, only an informal, textual
description of the interface exists, and the provider offers custom-made toolk-
its to foster client development. Nevertheless, there are widely used file format
specifications to describe aspects like the message syntax, operational semantics
and non-functional properties. When these descriptions are present, it is possi-
ble to call the services with generic clients by introspecting the descriptions and
deducing behavioural information.

There are several use cases where combining evolving services with existing
applications can benefit from ad-hoc usage. In applications with plugin support,
many plugins rely on a specific service interface. With automatically generated
forms to access the service, the service can evolve and be improved without
the need to transfer a new GUI component to the client. Furthermore, once a
form generator for a GUI technology has been developed, it allows the access to

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 208–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ad-Hoc Usage of Web Services with Dynvoker 209

all existing services without the need for cooperation from the service authors.
Even if a custom client is going to be developed, a generic client can assist in
rapid functional tests. Generic clients are also useful in mobile scenarios to avoid
development and installation of custom clients [1].

The process of generating the user interface based on various information
from the service provider and enabling an interaction between the user and
the service consists of a number of steps which are being researched in the
area of WSGUI, or Web Services Graphical User Interfaces [2]. Dynvoker, a
dynamic service explorer and invoker, is an implementation of these concepts,
generally called generic web service client or more technically WSGUI engine.
Compared to existing approaches, we contribute such a WSGUI engine which
accepts multiple web service description formats as its input and can generate
user interfaces and forms in various output formats. This design choice leads
to greater user experience by offering a higher number of services on a higher
number of devices, but also presents some challenges in handling the differences
between the formats. We will show that this design choice is superior to single-
format implementations and will outline results from practical experience with
our open-source implementation.

The structure of this paper is as follows: First, related work is evaluated, con-
centrating on run-time user-centric web service interaction tools. Afterwards, a
requirements analysis of features common to most of these approaches is per-
formed, followed by a number of features in Dynvoker which help to fulfil the
requirements. The text concludes with a brief report on process handling and
an outlook on how Dynvoker will be used in an existing research project.

2 Related Work

Generating user interfaces dynamically to access a well-defined interface or an
underlying data model has been in the focus of research for several years. Central
ideas used in UI generation for web services have been extracted from similar
fields of research and apply as well to areas such as automatic dialogue genera-
tion from the underlying configuration schema1 or inferring user interfaces from
database models [3]. However, the specific field of ad-hoc usage of web services
by automatically created UIs is only unsatisfactorily covered by research and
development projects. Though a lot of preliminary work has been invested into
this area, only a few implementations are still available. An early approach that
clearly formulated the intention to dynamically integrate web services into a user
interface has been the web service User Interface (WSUI) initiative that had the
goal to embed services as visual components into web portals. The initiative has
stopped its activities shortly after its foundation. Neither the website nor the
specification draft are still available.

A further historic approach which forms an important building block for cur-
rent projects is the original WSGUI project [4] which influenced Dynvoker in
many aspects. Besides inferring basic information about the user interfaces from
1 KXForms dialogue generation: http://www.lst.de/∼cs/kode/kxforms.html

http://www.lst.de/~cs/kode/kxforms.html

210 J. Spillner et al.

the web service it introduced the annotation format GUI Deployment Descriptor
(GUIDD)2 that enables aspects such as attaching multilanguage human-readable
labels to input or output fields. After merging inferred information and the op-
tional GUIDD data, the resulting form based screen data was transferred via
XSLT to a concrete user GUI representation.

The open source library Xydra3 can be used for ad-hoc creation of UIs for
web services. It produces XHTML files with web forms based on an inference
mechanism for WSDL and associated XML Schema. Besides describing service
annotations based on ontologies it employs a technique called TreePath to be able
to represent arbitrary XML structures as key-value pairs required by XHTML
browsers. The project development was stopped in 2003.

Further purely inference-based mechanisms are the Dynamic SOAP Portlet4

and the SOAPClient5. Whereas the first one follows a portlet concept that dy-
namically offers a UI for a generic client for web services [5], the second one
can be seen as a testing tool for web service development. It creates on-demand
a rudimentary HTML form for all operations found within a WSDL file spec-
ified by the user. There is no information available about the interior of this
application.

Some common development tools offer support for web service UI creation.
An advanced implementation is the XML Forms Generator6 available as Eclipse
plug-in. Though it does not fit into the category of ad-hoc UI generation, it
offers interesting concepts relevant for the on-demand creation process as well. It
analyses a WSDL document and enables combining derived data with an Eclipse
Modelling Framework model like an XML Schema file or a UML diagram for
providing information such as type information. The tool generates an XHTML
output with associated CSS style sheet. For REST-based interfaces described
by WADL, the NetBeans IDE7 offers a forms inference tool for testing services
during the development time.

Academic publications covering the topic of ad-hoc UI generation for web
services are rare. [6] directs a focus on dynamic creation of multimodal UIs
using XForms and VoiceXML elements generated from WSDL inference. The
transformation to concrete UI representations is based on XSLT. Though it is
pointed out that service descriptions can be imported to a system specific proxy
server for providing additional information to improve the quality of the UI,
no details about this possibility are given. Furthermore, various future research
intentions are mentioned though none of them have been realised yet. In [7],
a further system for UI generation at runtime is proposed using four different
WSDL annotation files containing UI related information. The system supports
a profile-driven adaptation to different user-clients. No arguments are provided

2 GUIDD specification: http://wsgui.berlios.de/guidd/
3 Xydra generic client: http://www.extreme.indiana.edu/xgws/xydra/
4 Dynamic SOAP Portlet: http://soap-portlet.sourceforge.net/
5 SOAPClient: http://soapclient.com/
6 XML Forms Generator: http://www.alphaworks.ibm.com/tech/xfg
7 NetBeans: http://www.netbeans.org/

http://wsgui.berlios.de/guidd/
http://www.extreme.indiana.edu/xgws/xydra/
http://soap-portlet.sourceforge.net/
http://soapclient.com/
http://www.alphaworks.ibm.com/tech/xfg
http://www.netbeans.org/

Ad-Hoc Usage of Web Services with Dynvoker 211

for the chosen system architecture. The different WSDL annotation formats are
not described in any detail beyond their overall focus.

The mentioned approaches do not offer a generic solution covering various
service interface descriptions such as WADL or WSDL at once. All of them are
bound to concrete service technologies. Furthermore, XSLT is a quite common
means to realise the transformation to concrete UI representations, although the
difficulties regarding its complexity are well-known. Only a few of the analysed
projects are still active and offer a directly testable implementation. Despite
some of them providing basic information about the overall mechanisms, they
mainly do not provide any internal details.

3 Aspects of Ad-Hoc Usage

Ad-hoc usage of simple services requires at least navigation to find the desired
service, form generation and submission as functionality. While submission is
done in the background and involves the interaction with a service, navigation
and form generation involve the user and are therefore of interest to us.

3.1 Navigation to the Service

Navigation guides the user from the expression of a goal to the input form,
which is generated automatically. After the submission of the form, the service
is invoked and the output form is rendered based on the results. All of these steps
bound together form an interaction pattern. For simple cases, the goal would be
expressed as a direct link to the service description file as shown in Fig. 1. For
more advanced cases like interacting with processes consisting of many services,
like selecting a service from a registry first before using it, a more sophisticated
interaction pattern needs to be defined. Interestingly, it could be derived from a
formal process model, too. The relationship between navigation, form generation,
submission and interaction in such an advanced case is represented in Fig. 2. It
is worth mentioning that forms can either be pure input and output forms, or be
of a hybrid nature, using previous input or output information to pre-fill parts
of the input form.

Fig. 1. Basic interaction model for ad-hoc service usage

212 J. Spillner et al.

Fig. 2. Complex interaction including search and orchestration

3.2 Form Generation

Form generation is a traditional topic in the model-driven and human factors
communities. Like most other approaches, we are focusing on the generation
itself and do not currently evaluate usability concerns, although we acknowledge
their importance for acceptance with users.

A number of individual steps have to be performed in order to achieve a suit-
able form. Among them are the creation of form elements, layout and embedding
the form into an application context like a desktop dialogue or a website.

An additional requirement for practical use is that it should be possible to
augment existing services with local hints for the graphical representation. This
does not exclude an approach which integrates such hints with the service de-
scription, but allows for a greater independence from service providers.

In summary, we have identified the following technical requirements for a
generic web service client:

– Ability to understand a variety of web service description formats, with or
without integrated hints for graphical representation

– Ability to load external graphical, textual and semantic hints
– Ability to generate user interfaces in a variety of formats, either abstract or

concrete
– Ability to define interaction models to not limit the engine to a single web

service invocation
– Complete and correct visual representation of the programmatic interface

4 Dynvoker Approach

Following the discussion of requirements, this section is presenting the features
and implementation of Dynvoker as a generic web service client. Before delv-
ing into the feature set, the overall architecture is briefly presented in Fig. 3.
Dynvoker consists of a relatively small application core which can be run as a
servlet, a web service or a command-line application. The generic handling of

Ad-Hoc Usage of Web Services with Dynvoker 213

Fig. 3. Overall architecture of Dynvoker

input, i.e. web service descriptions, and output, i.e. user interfaces, is reflected
in the modular architecture. It contains several adapters to generate forms, and
inference modules for various service description formats.

4.1 Inference from Web Service Descriptions

In order to use web services without prior knowledge of their expected input
or behaviour, it is necessary to infer this knowledge from the service descrip-
tion. Knowledge about the service methods, parameter names and structure can
usually be derived from it. We have previously reported on details and issues
of inference of user interfaces from XML Schema [8] and will therefore concen-
trate on the nature of inference from generic service description formats. The
dominant description format is WSDL 1.1, which is used mostly for method-
centric, i.e. SOAP-based services, although its successor WSDL 2.0 also contains
bindings for resource-centric, i.e. REST-based services. However, alternative for-
mats like WADL, the Web Application Description Language, exist for generic
REST-based services, and even specialised formats like OpenSearch [9] for the
specific domain of REST-based search services. Both WSDL and WADL use
XML Schema to define the structure of the messages or resource representa-
tions, whereas OpenSearch is limited to formatted query URLs for the input
and extended RDF for the output.

Dynvoker is able to infer the contents of a service, like the operations or
resources it offers, from WSDL and WADL files, and will generate output which
lets the user navigate to the service of choice and select the appropriate service.
When a WADL-described service is chosen, the service selection interaction is
extended by offering a number of resources for each method. Input and output
forms are generated based on the XML Schema. The generation architecture is
shown in Fig. 4.

Alternative service descriptions can be supported through transformations.
OpenSearch descriptions are converted to WSDL first and can then be handled
as usual without additional code. D-Bus, the dominant application-level inter-
process communication (IPC) system on Linux, provides its own IDL-like method

214 J. Spillner et al.

Fig. 4. Inference transformation process

description format which can be retrieved through service introspection. We have
implemented a bidirectional gateway between web services and D-Bus, which
works independently from Dynvoker, to prove our claim.8 Since WSDL provides
a superset of the service description abilities of D-Bus, the conversion always
works in the direction we need for Dynvoker.

4.2 Additional GUI Hints

Automatically generated user interfaces are at risk of providing inferior quality
and usability than manually designed ones, depending on the completeness of
the information in the model or any web service description. On the other hand,
a strictly rule-based design leads to consistent interfaces which can completely
encompass the service functionality and automatically adapt to evolving services,
including the alteration of message formats [10][11].

Therefore, as many aspects of the generation process as possible should be
configurable without endangering the consistency and completeness properties.
The amount of hints needed decreases with the expressiveness of the service
description format. For common WSDL-described services, Dynvoker can use
GUIDD files containing semantic hints, UI hints and UI services to improve the
resulting forms, as shown in Fig. 5.

Semantic hints are useful in combination with purely syntactical description
formats like WSDL to yield more appropriate user interfaces. For example, the
only inferable information about the password field in Fig. 7 is that it is of type
string. To avoid a free-form input field and use a special password entry field
8 D-Bus Web Service Proxy: http://techbase.kde.org/Projects/D-Bus-WS

http://techbase.kde.org/Projects/D-Bus-WS

Ad-Hoc Usage of Web Services with Dynvoker 215

Fig. 5. Information sources containing additional GUI hints

instead, a semantic hint is added and will result in password fields independent
of the output format.

UI hints include labels with translations, frame captions and substitutes for
otherwise auto-generated fields, so-called form components. As opposed to se-
mantic hints, they depend on the resulting output format. For web-based inter-
faces, style sheets can be used to give form components a consistent look and
feel. UI hints for abstract user interfaces are also possible and are discussed in
the evaluation part.

UI services represent a novel concept which lifts explicit GUI hints to a service-
oriented level. This lifting makes it possible to exchange the hints or the providers

Fig. 6. UI services and web services in dual use

216 J. Spillner et al.

Fig. 7. Hint locators in a GUIDD file applied to a SOAP message instance

of the hints, therefore driving the customisation of applications. Our implemen-
tation of UI services is based on a widget repository with query interface for
Dynvoker and a submission interface for UI widget designers as shown in Fig. 6.
A widget connector within Dynvoker searches for available widgets and renders
them into form components, aligning the further processing with UI hints. This
includes a distinction between simple and complex UI hints, the latter ones cov-
ering complex types like lists.

All of these three groups of hints are stored in the already mentioned GUIDD
files. If they are passed to Dynvoker, the generated forms can be improved. The
reusability of GUIDD files, especially in combination with reusable data schemas
in WSDL files, helps in further advancing the acceptance of SOA by eliminating
redundant client development.

In Fig. 7, the locator mechanism for interleaving GUI hints for a user man-
agement operation in the SOAP API of the Asterisk telephony server is shown.
GUIDD uses higher-level schema and instance XPath expressions which are
aligned with the reusability of schema components. In the figure, the semantic
hint for the password entry field collides with the UI service for the complex user
data type array. The use of a GUIDD editor can help avoiding such collisions.

4.3 Process Integration

Up until now we have assumed the interaction between a user and a single service
in our explications. This is not always sufficient in dynamic service landscapes
with complex interactions between humans and processes.

We have previously proposed the WSInterConnect distributed architecture to
integrate humans into processes based on interactions with Dynvoker [12]. The
industry proposal BPEL4People/WS-HumanTask was already mentioned as a
potential hook for this distributed architecture and has matured since then, but
implementations are still not widely and freely available. Major flaws of this
extension include an insufficiently specified visual representation of messages to
the user and a lack of process launching interaction. A Dynvoker-based approach
named Unified Process and Task Management Interface, or UPATMI, is currently
being developed by us to solve this problem.

Ad-Hoc Usage of Web Services with Dynvoker 217

Fig. 8. Links between service operations

Another approach is to reduce the number of interactions needed with a pro-
cess by inspecting it, essentially treating it as a grey box, whenever possible. The
Dynvoker variant GUI4CWS has proven it to work for a subset of BPEL [13].

Finally, light-weight links between service calls without the need for an exe-
cuted process were implemented as a GUIDD extension. This makes it possible
to implement interactive applications with purely declarative syntax. For ex-
ample, the list of topics in a forum as output message of the default operation
listThreads would add a link to each thread which invokes Dynvoker with the
operation getThread like shown in Fig. 8.

4.4 Status of the Resulting Implementation

Dynvoker has been developed for about two years now, entailing a number of
improvements in a still ongoing process. On the other hand, it has uncovered a
number of weaknesses in existing standards and implementations especially for
XML Schema and XForms. This section compares the current implementation
with the list of requirements, reasons about deviations and confirms the necessity
of some of the assumptions we made.

Abstract user interface languages are currently not supported, but the Dyn-
voker architecture allows the creation of new output adapters for such languages.
The resulting forms could then be displayed in applications which can render
them, or convert them for display on legacy applications. This approach can
also be followed with the existing XForms adapter by converting the output to
HTML with JavaScript. However, according to our tests, even advanced tools
like Chiba do perform this task correctly, as can be verified by anybody by select-
ing this transformation mode on the Dynvoker website. Therefore, we focused
on writing adapters for concrete UI languages, but appreciate the potential of
abstract languages.

We have not yet implemented the interaction models as executable processes
within Dynvoker. All interaction patterns are currently hard-coded. We strive
to add this in a future version based on GUI4CWS.

All the remaining requirements we have outlined are already supported by
Dynvoker. In particular, the ability to use both resource-centric and method-
centric web services contributes to hiding protocol details from the user. Addi-
tional GUI hints are supported in a way that the correctness and completeness
properties from the inference mechanism will not be violated.

A large number of services with WSDL and WADL descriptions can already
be used with Dynvoker. For those services for which a GUIDD exists, the user

218 J. Spillner et al.

experience is clearly better than for those without. We follow a live validation ap-
proach where any interested person can verify our results on the Dynvoker portal.9

5 Summary and Future Steps

Building up on previous detailed analysis of issues in ad-hoc service usage, we
have shown that Dynvoker is a viable generic client which solves many of the
issues. None of the alternative approaches can dynamically explore method-
centric and resource-centric services alike, output forms in various formats or
integrate GUI services to provide a richer user experience. The generic design
of many parts of Dynvoker has yielded a lightweight architecture which is freely
available to any interested person as an open source project.10

In the future, we expect to integrate even more process-related functionality
and add collaboration methods to the Dynvoker portal to help building com-
munities of users of explorable services. Furthermore, a major focus will be
directed to the optimisation of UI design for complex web services, especially
in the dimension of usability by solving partial aspects during a design-time
stage. Its central goal is to create a model-driven service engineering methodol-
ogy supported by design-time concepts and tools for the development of client
applications for single and composed web services. Due to the obvious fact that
some aspects such as dynamic binding of concrete services and runtime optimi-
sation are not feasible during design-time, we aim to define a runtime platform
for handling these and further runtime dynamic concerns within the ServFace
project.11

References

1. Sánchez-Nielsen, E., Mart́ın-Ruiz, S., Rodŕıguez-Pedrianes, J.: Mobile and dynamic
web services. In: Proceedings of the ECOWS 2006 Workshop on Emerging Web
Services Technology, Zurich, Switzerland (December 2006)

2. Spillner, J., Braun, I., Schill, A.: Flexible human service interfaces. In: Proceed-
ings of ICEIS. Volume HCI. International Conference on Enterprise Information
Systems (ICEIS), Funchal, Madeira - Portugal, pp. 79–85 (June 2007)

3. Bajaj, A.: Inferring the User Interface from an EER Data Schema. In: Proceed-
ings of the Americas Conference on Information Systems (AMCIS), paper 471,
Acapulco, Mexico (August 2006)

4. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 7(4), 66–73 (2003)

5. Gesser, C.E.: Uma abordagem para a integraçã dynâmica de servios web em por-
tais. Master’s thesis, Universidade Federal de Santa Catarina (2006)

6. Steele, R., Khankan, K., Dillon, T.: Mobile web service discovery and invocation
through auto-generation of abstract multimodal interface. itcc 2, 35–41 (2005)

9 Dynvoker portal: http://dynvoker.org/
10 Dynvocation research project: http://dynvocation.selfip.net/
11 ServFace website: http://www.servface.eu/

http://dynvoker.org/
http://dynvocation.selfip.net/
http://www.servface.eu/

Ad-Hoc Usage of Web Services with Dynvoker 219

7. He, J., Yen, I.L.: Adaptive user interface generation for web services. In: Proceed-
ings of the IEEE International Conference on e-Business Engineering, Hong Kong,
China (October 2007)

8. Spillner, J., Schill, A.: Analysis on inference mechanisms for schema-driven forms
generation. In: Tagungsband XML-Tage, Berlin, Germany, June 2007, pp. 113–124
(2007)

9. LeVan, R.: OpenSearch and SRU: Continuum of searching. Information Technolo-
gies and Libraries (ITAL) 25(3), 151–153 (2006)

10. Trapp, M., Schmettow, M.: Consistency in use through model based user interface
development. In: The Many Faces of Consistency in Cross-Platform Design at CHI
2006, Montréal, Québec, Canada (April 2006)

11. Nichols, J., Chau, D.H., Myers, B.A.: Demonstrating the viability of automatically
generated user interfaces. In: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 1283–1292 (2007)

12. Spillner, J., Braun, I., Schill, A.: WSInterconnect: Dynamic composition of web
services through web services. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006.
LNCS, vol. 4025. Springer, Heidelberg (2006)

13. Bleyh, N.: Analyse und Vergleich von Ansätzen zur Einbindung von menschlichen
Interaktionen in komplexe Web Services. Master’s thesis, TU Dresden (June 2006)

	Ad-Hoc Usage of Web Services with Dynvoker
	Introduction
	Related Work
	Aspects of Ad-Hoc Usage
	Navigation to the Service
	Form Generation

	Dynvoker Approach
	Inference from Web Service Descriptions
	Additional GUI Hints
	Process Integration
	Status of the Resulting Implementation

	Summary and Future Steps
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

