
A Framework for Proactive Self-adaptation of
Service-Based Applications Based on Online Testing�

Julia Hielscher1, Raman Kazhamiakin2, Andreas Metzger1, and Marco Pistore2

1 SSE, University of Duisburg-Essen, Schützenbahn 70, 45117 Essen, Germany
{hielscher,metzger}@sse.uni-due.de
2 FBK-Irst, via Sommarive 18, 38050, Trento, Italy

{raman,pistore}@fbk.eu

Abstract. Service-based applications have to continuously and dynamically self-
adapt in order to timely react to changes in their context, as well as to efficiently
accommodate for deviations from their expected functionality or quality of ser-
vice. Currently, self-adaptation is triggered by monitoring events. Yet, monitoring
only observes changes or deviations after they have occurred. Therefore, self-
adaptation based on monitoring is reactive and thus often comes too late, e.g.,
when changes or deviations already have led to undesired consequences. In this
paper we present the PROSA framework, which aims to enable proactive self-
adaptation. To this end, PROSA exploits online testing techniques to detect
changes and deviations before they can lead to undesired consequences. This pa-
per introduces and illustrates the key online testing activities needed to trigger
proactive adaptation, and it discusses how those activities can be implemented
by utilizing and extending existing testing and adaptation techniques.

1 Introduction

Service-based applications operate in highly dynamic and flexible contexts of contin-
uously changing business relationships. The speed of adaptations is a key concern in
such a dynamic context and thus there is no time for manual adaptations, which can be
tedious and slow. Therefore, service-based applications need to be able to self-adapt in
order to timely respond to changes in their context or their constituent services, as well
as to compensate for deviations in functionality or quality of service. Such adaptations,
for example, include changing the workflow (business process), the service composition
or the service bindings.

In current implementations of service-based applications, monitoring events trigger
the adaptation of an application. Yet, monitoring only observes changes or deviations
after they have occurred. Such a reactive adaptation has several important drawbacks.
First, executing faulty services or process fragments may have undesirable con-
sequences, such as loss of money and unsatisfied users. Second, the execution of adapta-
tion activities on the running application instances can considerably increase execution
time, and therefore reduce the overall performance of the running application. Third,

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 122–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for Proactive Self-adaptation of Service-Based Applications 123

it might take some time before problems in the service-based application lead to mon-
itoring events that ultimately trigger the required adaptation. Thus, in some cases, the
events might arrive so late that an adaptation of the application is not possible anymore,
e.g., because the application has already terminated in an inconsistent state.

Proactive adaptation presents a solution to address these drawbacks, because – ide-
ally – the system will detect the need for adaptation and will self-adapt before a devia-
tion will occur during the actual operation of the service-based application and before
such a deviation can lead to the above problems.

In this paper we introduce the PROSA framework for PRO-active Self-Adaptation.
PROSA’s novel contribution is to exploit online testing solutions to proactively trigger
adaptations. Online testing means that testing activities are performed during the oper-
ation phase of service-based applications (in contrast to offline testing which is done
during the design phase). Obviously, an online test can fail; e.g., because a faulty ser-
vice instance has been invoked during the test. This points to a potential problem that
the service-based application might face in the future of its operation; e.g., when the
application invokes the faulty service instance. In such a case, PROSA will proactively
trigger an adaptation to prevent undesired consequences.

The remainder of the paper is structured as follows: In Section 2 we give an overview
of current research results on using monitoring to enable (reactive) adaptation and of
the state-of-the-art in online and regression testing. In Section 3 we present the PROSA
framework. While describing the key elements of the framework, we discuss how those
could be implemented by utilizing or extending existing testing and adaptation tech-
niques. Section 4 introduces several application scenarios to illustrate how PROSA ad-
dresses different kinds of deviations and changes. Finally, Section 5 critically reviews
the framework and highlights future research issues.

2 State-of-the-Art

2.1 Monitoring for Adaptation

Existing approaches for adaptation of service-based applications rely on the possibility
to identify and realize – at run-time – the necessity to change certain characteristics
of an application. In order to achieve this, adaptation requests are explicitly associated
to the relevant events and situations. Adaptation requests (also known as adaptation
requirements or specifications) specify how the underlying application should be mod-
ified upon the occurrence of the associated event or situation. These events and situa-
tions may correspond to various kinds of failures (like application-level exceptions and
infrastructure-level failures), changes in contextual settings (like execution environment
and usage context), changes among available services and their characteristics, as well
as variations of business-level properties (such as key performance indicators).

In order to detect these events and situations, the majority of adaptation approaches
resorts to exploiting monitoring techniques and facilities, as they provide a way to col-
lect and report relevant information about the execution and evolution of the application.
Depending on the goal of a particular adaptation approach, different kinds of events are
monitored and different techniques are used for this purpose.

124 J. Hielscher et al.

In many approaches (e.g., [1,2,3,4]) the events that trigger the adaptation are fail-
ures. These failures include typical problems such as application exceptions, network
problems and service unavailability [1,4], as well as the violation of expected proper-
ties and requirements. In the former case fault monitoring is provided by the underly-
ing platform, while in the latter case specific facilities and tools are necessary. In [2]
Baresi et al. define the expected properties in the form of WS-CoL assertions (pre-,
post-conditions, invariants), which define constraints on the functional and quality of
service (QoS) parameters of the composed process and its context. In [5] Spanoudakis
et al. use properties in the form of complex behavioral requirements expressed in event
calculus. In [3] Erradi at al. express expected properties as policies on the QoS param-
eters in the form of event-condition-action (ECA) rules. When a deviation from the
expected QoS parameters is detected, the adaptation is initiated and the application is
modified. In such a case, adaptation actions may include re-execution of a particular
activity or a fragment of a composition, binding/replacement of a service, applying an
alternative process, as well as re-discovering and re-composing services. In [6] Siljee
et al. use monitoring to track and collect the information regarding a set of predefined
QoS parameters (response time, failure rates, availability) infrastructure characteristics
(load, bandwidth) and even context. The collected information is checked against ex-
pected values defined as functions of the above parameters, and in case of a deviation,
the reconfiguration of the application is triggered.

Summarizing, all these works follow the reactive approach to adaptation, i.e., the
modification of the application takes place after the critical event happened or a problem
occurred.

The situation with reactive adaptation is even more critical for approaches that rely
on post-mortem analysis of the application execution. A typical monitoring tool used in
such approaches is the analysis of process logs [7,8,9]. Using the information about his-
tories of application executions, it is possible to identify problems and non-optimalities
of the current business process model and to find ways for improvement by adapting
the service-based application. However, once this adaptation happens, many process
instances might have already been executed in a “wrong” mode.

2.2 Online Testing and Regression Testing

The goal of testing is to systematically execute service instances or service-based appli-
cations (service compositions) in order to uncover failures, i.e., deviations of the actual
functionality or quality of service from the expected one.

Existing approaches for testing service-based applications mostly focus on testing
during design time, which is similar to testing of traditional software systems. There
are a few approaches that point to the importance of online testing of service-based
applications. In [10] Wang et al. stress the importance of online testing of web-based
applications. The authors, furthermore, see monitoring information as a basis for on-
line testing. Deussen et al. propose an online validation platform with an online test-
ing component [11]. In [12] metamorphic online testing is proposed by Chan et al.,
which uses oracles created during offline testing for online testing. Bai et al. propose
adaptive testing in [13,14], where tests are executed during the operation of the service-
based application and can be adapted to changes of the application’s environment or of

A Framework for Proactive Self-adaptation of Service-Based Applications 125

the application itself. Finally, the role of monitoring and testing for validating service-
based applications is examined in [15], where the authors propose to use both strate-
gies in combination. However, all these approaches do not exploit testing results for
(self-)adaptation.

An approach related to online testing is regression testing. Regression testing aims
at checking whether changes of (parts of) a system negatively affect the existing func-
tionality of that system. The typical process is to re-run previously executed test cases.
Ruth et al. [16,17] as well as Di Penta et al. [18] propose regression test techniques for
Web services. However, none of the techniques addresses how to use test results for the
adaptation of service-based applications.

Summarizing, in spite of a number of approaches for online testing and regression
testing, none of these approaches targets the problem of proactive adaptation. Still, sev-
eral of the presented approaches provide baseline solutions that can be utilized and
extended to realize online testing for proactive adaptation. This will be discussed in the
following section.

3 PROSA: Online Testing for Proactive Self-adaptation

As introduced in Section 1, the novel contribution of the PROSA framework is to exploit
online testing for proactive adaptation. Therefore, the PROSA framework prescribes the
required online testing activities and how they lead to adaptation requests. Figure 1 pro-
vides an overview of the PROSA framework and how the proactive adaptation enabled
by PROSA relates to “traditional” reactive adaptation which is enabled by monitoring.

Service-based
Application

adaptation
request

adaptation
request

monitoring data

test input

test
output

PROSA

Test Object

3. Test
Execution

2. Test Case
Generation/
Selection

1. Test
Initiation

4. Adaptation
Triggering Adaptation Monitoring

tetest
request

test
case adaptation

reactiveproactive

= activity

= data flow

Service Instances

= „bound to“

Fig. 1. The PROSA Framework

The PROSA framework prescribes the following four major activities:

1. Test initiation: The first activity in PROSA is to determine the need to initiate online
tests during the operation of the service-based application. The decision on when
to initiate the online tests depends on what kind of change or deviation should be
uncovered (see Section 3.1).

126 J. Hielscher et al.

2. Test case generation/selection: Once online testing has been initiated by activity 1,
this second activity determines the test cases to be executed during online testing.
This can require creating new test cases or selecting from already existing ones (see
Section 3.2).

3. Test execution: The test cases from activity 2 are executed (see Section 3.3).
4. Adaptation triggering: Finally, an analysis of the test results provides information

on whether to adapt the service-based application and thus to create adaptation
requests (see Section 3.4).

It should be noted that – as depicted in Figure 1 – online testing does not interfere
with the execution of the actual application in operation, i.e. with those instances of the
application which are currently used by actual users. Rather, online testing performs
tests of the constituent parts of the service-based application (e.g., individual services
or service compositions) independent from and in parallel to the operating applications.

Details about the above activities and how those can be implemented with existing
techniques are discussed in the remainder of this section.

3.1 Test Initiation

In order to initiate the actual online testing activities (PROSA’s activities 2 and 3), two
questions need to be answered: “When to test?” and “What to test?”. The answer of
these questions depends on the kinds of changes or deviations that should be proactively
addressed in addition to reactive techniques like monitoring. Those possible kinds of
changes are listed in Table 1.

To give an answer to the question “When to test?”, Table 1 provides an explanation
when to initiate online testing depending on the kind of change or deviation. Those
kinds of changes and deviations are illustrated in more detail in Section 4, where differ-
ent application scenarios for PROSA are introduced.

Table 1. Different cases for initiating online testing

Case Why to initiate online testing? When to initiate online testing? What to
test?

1 Uncovering failures introduced due
to the adaptation of the service-based
application.

Once the respective adaptation (e.g.
binding of a new service) has been
performed.

service or
composition

2 Detecting changes in the service-
based application or its context that
could lead to failures in the “future”.

Once monitoring has detected a
change that does not reactively trig-
ger an adaptation.

service or
composition

3 Identifying failures of an application
execution.

Periodically (e.g. randomly or by
testing future service invocations
along the execution path of the appli-
cation).

composition

4 Uncovering failures (i.e., deviations
from expected functionality or qual-
ity) or unavailability of constituent
services.

Periodically (e.g., randomly or by
predicting future service invocations
along the execution path of the appli-
cation).

service

A Framework for Proactive Self-adaptation of Service-Based Applications 127

To provide an answer to the question “What to test?” (i.e., to determine the test
object), we have considered the following two major strategies that can be performed
in order to uncover the different kinds of changes or deviations (Table 1 shows what
strategy could be followed depending on the kind of change or deviation):

– Testing constituent service instances: Similar to unit or module testing, the individ-
ual, constituent service instances of a service-based application can be tested (i.e.,
the service instances that are or will be bound to the service-based application).

– Testing service compositions: Similar to system and integration testing, the com-
plete service composition of a service-based application or parts thereof can be
tested.

To implement activity 1 of PROSA, one can rely on information provided by exist-
ing monitoring techniques for case 2 (see Table 1) or adaptation techniques for case 1.
The other cases require new and specific techniques, which can be very simple (like
randomly triggering the tests) or more challenging (like predicting future service invo-
cations along the execution path of the application).

3.2 Test Case Generation/Selection

In Section 3.1 two strategies for online testing were introduced. In order to implement
these two different strategies and thus to realize activity 2 of the PROSA framework,
different kinds of techniques for determining test cases have to be employed:

– Testing constituent service instances: For testing constituent service instances, ex-
isting techniques for test case generation from service descriptions, like WSDL, can
be exploited (e.g., [19,20,21]). Additionally, test cases from the design phase can
be re-used if such test cases exist. However, usually the test cases from the design
phase will not suffice, because typically at that time not all services are known due
to the adaptation of a service-based application that can happen during run-time.

– Testing service compositions: For testing service compositions, test cases can be
generated from composition specifications, like BPEL (e.g., [22,23]). If a set of test
cases for testing service compositions already exists, online testing has to determine
which of those test cases to execute again (i.e., test cases have to be selected). This
is similar to regression testing, which has been discussed in Section 2.2. Conse-
quently, existing techniques for regression testing of services (like [16,17,18]) can
be utilized.

A more detailed survey on existing test case generation and selection techniques for
service-based applications can be found in [24].

3.3 Test Execution

The responsibility of activity 3 in the PROSA framework is to execute the test cases
that have been determined by activity 2. This means that the test object (which is either
a service instance or a service composition) is fed with concrete inputs (as defined in
the test cases) and the produced outputs are observed.

128 J. Hielscher et al.

The test execution can be implemented by resorting to existing test execution en-
vironments, e.g., the ones presented in [19,18]. It is important to note that invoking
services can lead to certain “side effects” which should not occur when invoking the
service for testing purposes only (this problem is also discussed in [22]). As an exam-
ple, when invoking the service of an online book seller for testing purposes, one would
not like to have the “ordered” books actually delivered. Thus, it is necessary to provide
certain services with a dedicated test mode. As an example, one could follow the ap-
proaches suggested for testing software components, where components are provided
with interfaces that allow the execution of the component in “normal mode” or in “test
mode” (see [25]).

3.4 Adaptation Triggering

The final activity 4 of PROSA determines whether to issue an adaptation request, which
ultimately leads to the modification of the service-based application. Such an adaptation
request should be issued when the observed output of a test deviates from the expected
output, i.e., whenever a test case fails. This includes deviations from the expected func-
tionality as well as from the expected quality of service.

As has been discussed above, existing adaptation solutions rely on monitoring to is-
sue adaptation requests whenever a deviation is observed (see reactive loop in Figure 1).
In order to exploit those existing solutions (see Section 2.1), triggering of adaptations
based on online testing should conform to the requests from the monitoring component.
Thereby, activity 4 could be implemented within a unified adaptation framework.

To achieve such a unification, the following two issues need to be resolved: First,
specific adaptation requests should be explicitly assigned to individual test cases. In
reactive approaches such adaptation requests are assigned to certain monitoring events.
The events may represent application or network failures (e.g., service is unavailable),
violation of assertions (e.g., post-condition on data returned by service call) or even of
complex behavioral properties (e.g., if flight is found but there are no rooms available,
the trip plan can not be created). In a similar way, test cases represent dedicated exe-
cution scenarios, where specific deviations or changes can be checked (this has been
highlighted in Table 1). If the test fails, this is similar to the occurrence of a monitoring
event, and thus the adaptation assigned to the test case is triggered.

Second, it may be necessary to modify the adaptation requests from monitoring in
order to take into account the specifics of proactive adaptation. Indeed, some adaptation
requests from monitoring might specify instructions that are not applicable in proactive
adaptation (e.g., “retry” operation, or “rollback to safe point”). Therefore, the speci-
fication should be changed such that these instructions do not appear when used for
proactive adaptation. An interesting line of future work in these regards could be to
devise means to automatically derive adaptation requests for proactive adaptation from
the adaptation requests already available for monitoring.

4 Application Scenarios

In this section we illustrate how PROSA enables the proactive adaptation of a service-
based application. For this purpose we introduce an example application based on which

A Framework for Proactive Self-adaptation of Service-Based Applications 129

Suggest
Destination

Search Flight Search Train

Rate Hotels
Search Closest

Hotels

[distance > 100 km]

[distance <= 100 km]

Suggest
Travel Plans

Air1

Wings3

RailYW

HS45 Rate24 H-Guide PlanIt

cost: 2 €
response time: 5 ms

cost: 1 €
response time: 15 ms

cost: 1,50 €
response time: 5 ms

cost: 0,80 €
response time: 10 ms

cost: 0,20 €
response time: 5 ms

cost: 0,99 €
response time: 10 ms

cost: 1,20 €
response time: 15 ms

= service

= service instance
GuessTravel

cost: 0,20 €
response time: 10 ms

…

TrainZ
cost: 1,90 €
response time: 20 ms

Fig. 2. Example Application: “Travel Planning”

we describe scenarios that demonstrate how PROSA can be applied to the different
cases for online testing introduced in Table 1. The service composition of the example
and possible constituent service instances are depicted in Figure 2.

Our example application provides a travel planning service, which includes a com-
bined search for transportation and hotel accommodation. The constituent services of
this application are invoked in the following order:

1. Suggest destination: First, the user of the application is provided with a suggestion
of different travel destinations based on her/his preferences.

2. Search flight/train: Once the user has chosen a destination, the application will
determine the best way to reach that destination. Depending on the distance to the
suggested destination, either an appropriate flight or a train connection is searched.

3. Search closest hotels: After a suitable means of transportation has been found, ho-
tels in the vicinity of the airport or the railway station of the destination are located.

4. Rate hotels: Using one of the many hotel rating services available, each hotel from
the list is checked for its rating and the hotel list, sorted according to the rating, is
returned.

5. Suggest travel plans: Finally, the first hotel from the sorted list (i.e., the one with
the best overall rating) is chosen and the travel information (itineraries, information
about the hotel, etc.) is compiled to produce a comprehensive travel plan.

In Figure 2, gray boxes denote concrete service instances that can be bound to the
application in order to compute the travel plan. Some of those concrete service instances
can already be known at design time, while others are dynamically discovered or added
due to adaptations during the operation of the service-based application. The annotated
information about cost and response time denotes the negotiated quality for each of the
service instances (e.g., by means of service level agreements).

130 J. Hielscher et al.

4.1 Case 1: Failure Introduced due to Adaptation

Let us assume that the service instance “H-Guide” was bound to our service-based
application at operation time, because the service instance “Rate24” has turned out to
be too expensive. The binding of that new service instance is reported by the adaptation
component to the PROSA framework. Consequently, PROSA’s activity 1 triggers the
online testing activities, which react to this adaptation by determining test cases to check
whether the newly bound service instance behaves as expected (see Table 1, case 1).
Let us say that the expected output of one of those test cases is “Palermo Premium
Class Hotel”, which clearly is the hotel with the best ratings for the chosen location.
Unfortunately, the observed output of “H-Guide” is “Casa Palermo”, which is the hotel
with one of the lowest ratings (the reason for this presumed failure is that – other than
expected – “H-Guide” returns the list of hotels in ascending order, starting with the
lowest ratings). Online testing reports this failure to the adaptation component, which
can – for example – switch back to the initial service instance “Rate24”, which has
already been used successfully.

4.2 Case 2: Change That Could Lead to Failures in the Future

Let us assume that a new regulation concerning the pricing of flights enters into force
during the operation of the service-based application. The regulation requires that the
overall cost of a flight (including taxes) has to be stated and that it may not anymore
be stated as the price for the flight with the note “plus taxes”. This legal change thus
represents a change in the context of the application (see Table 1, case 2). As a result,
PROSA will initiate online testing activities – when this new regulation enters into force
– in order to determine whether the constituent service instances of the service-based
application conform to this new regulation. This means that online tests will be triggered
in order to check whether the service instances for flight booking (“Air1” and “Wings3”)
conform to the new regulation. If one of those service instances does not implement the
new regulation, the service-based application will be adapted accordingly before that
service instance is invoked during the actual operation of the application.

4.3 Case 3: Failure of an Application Execution

The output of “search train” (resp.“search flight”) contains the name of the city close
to the airport or the railway station. This city name is passed on to “search closest ho-
tels” in order to determine the list of hotels in the vicinity of the destination. Let us
assume that the service instance “RailYW” always provides the name of the destination
in “short” form, meaning that even if there is more than one city with this name, like
“Frankfurt am Main” and “Frankfurt an der Oder”, this service instance will always re-
turn “Frankfurt”. When the hotel searching service “HS24” receives such an ambiguous
input, it will terminate with an error message. By running test cases to check deviations
in the service composition (see Table 1, case 3), PROSA can uncover such a failure and
– as a proactive corrective action – can request that a different service instance is bound
to the application (e.g., “TrainZ”).

A Framework for Proactive Self-adaptation of Service-Based Applications 131

4.4 Cases 4: Failure of a Constituent Service

For the booking of an appropriate flight, two service instances are available: “Air1”
and “Wings3”. “Air1” is used for premium clients, which are willing to pay more for
a shorter response time. “Wings3” is the preferred choice of clients who want to save
money. At operation time the online testing component runs several test cases per hour
(periodically testing, see Table 1, case 4). Let us assume that one of those tests uncovers
that “Wings3” does not respond. PROSA then provides the adaptation component with
this information, such that the alternative service instance “Air1” (which is working as
expected) is used for all queries.

5 Discussion and Perspectives

This paper has introduced the PROSA framework, which defines key activities for en-
abling the proactive self-adaptation of service-based applications. The novel contri-
bution of PROSA is to exploit online testing techniques in order to anticipate future
deviations or changes of a service-based application and thereby to trigger adaptation
requests. In addition to the definition of those key activities, the paper has discussed
how those activities can be implemented by building on or extending existing testing
and adaptation techniques.

In contrast to the “traditional” form of reactive adaptation (e.g., based on monitor-
ing), PROSA provides the following important benefits: First, changes or deviations
from expected functionality or quality of service can be uncovered and addressed be-
fore they lead to undesirable consequences. Second, the execution of adaptation activi-
ties – if done proactively – does not interfere with the execution of the actual application
instances, i.e., the users of the application won’t be affected by the adaptation. Third,
proactive adaptation can provide adaptation requests early enough such that an adapta-
tion of the service-based application still is possible (in contrast to reactive adaptation,
where the application can have already terminated in an inconsistent state, for instance).
Due to these benefits, we are confident that the PROSA framework will enable novel
service-based applications that are able to proactively adapt and thus to better meet their
expectations.

In addition to uncovering failures, monitoring is also often used to improve (or op-
timize) a service-based application. Accordingly, online testing could be used in this
respect, for instance by determining the best possible alternative for an adaptation de-
cision before the adaptation is executed. This means whenever an adaptation decision
is imminent and different alternatives exist, those alternatives could be “pre-tested” and
the best one chosen. For example, consider an adaptation specification, where on fail-
ure of a service instance three strategies are defined: retry invoking the service instance
three times, replace the service instance with another service instance, change the ser-
vice composition to use different services. Testing can now “simulate” all those three
strategies and maybe detect that “change composition” is the only way to successfully
drive the adaptation.

Although exploiting only testing for proactive adaptation provides many benefits,
we acknowledge at this stage that further work is required in order to demonstrate the
applicability of the PROSA idea in practice. One aspect that, for example, has to be

132 J. Hielscher et al.

investigated, is the possible impact of the execution of test cases on the performance of
the application. Thus, key issues that we will target in our future work are to create a
proof-of-concept prototypes based on existing techniques and tools (as discussed in the
paper) and to apply these prototypes to realistic cases.

As we have briefly pointed out in the paper, proactive and reactive adaptation may
work together in an integrated dynamic adaptation framework. In such a framework,
online testing and monitoring could mutually benefit from each other, thereby improv-
ing the overall quality and efficiency of adaptation. In further work, we thus plan to
investigate on how to best exploit the synergies between monitoring and testing. As an
example, the results of monitoring may be used to identify “better” test cases for on-
line testing. When complex behavioral properties are monitored (e.g., see [5,26]), the
violations or successful executions are represented as traces containing information of
the composition activities. A set of such traces from previous executions may be used
to derive new test cases for online testing. Furthermore, monitoring may be used to
parametrize the test cases. As the configuration of tests may depend on the operational
context of the application, such context information can be provided by monitoring.

References

1. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Service Compositions. In: First Con-
ference on the PRInciples of Software Engineering (PRISE 2004), pp. 11–20 (2004)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: ESSPE 2007: International workshop on Engineering of software ser-
vices for pervasive environments, pp. 11–20 (2007)

3. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middleware for Self-adaptation of Web
Services Compositions. In: ACM/IFIP/USENIX 7th International Middleware Conference,
pp. 62–80 (2006)

4. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-BPEL engines.
In: 1st workshop on Middleware for Service Oriented Computing, pp. 48–53 (2006)

5. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A Service Discovery Framework for Service
Centric Systems. In: SCC 2005: Proceedings of the 2005 IEEE International Conference on
Services Computing, pp. 251–259 (2005)

6. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Systems Self-
adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 255–268. Springer, Heidelberg (2005)

7. van der Aalst, W.M.P., Pesic, M.: Specifying and Monitoring Service Flows: Making Web
Services Process-Aware. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web Services,
pp. 11–55. Springer, Heidelberg (2007)

8. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining - Adaptive Process Simplification
Based on Multi-perspective Metrics. In: Business Process Management, 5th International
Conference, BPM, pp. 328–343 (2007)

9. Nezhad, H.R.M., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving Protocol Models from
Imperfect Service Conversation Logs. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) (to appear, 2008)

10. Wang, Q., Quan, L., Ying, F.: Online testing of Web-based applications. In: Proceed-
ings of the 28th Annual International Computer Software and Applications Conference
(COMPSAC), pp. 166–169 (2004)

A Framework for Proactive Self-adaptation of Service-Based Applications 133

11. Deussen, P., Din, G., Schieferdecker, I.: A TTCN-3 based online test and validation platform
for Internet services. In: Proceedings of the 6th International Symposium on Autonomous
Decentralized Systems (ISADS), pp. 177–184 (2003)

12. Chan, W., Cheung, S., Leung, K.: A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research 4,
61–81 (2007)

13. Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC), pp. 233–236 (2007)

14. Bai, X., Xu, D., Dai, G., Tsai, W., Chen, Y.: Dynamic reconfigurable testing of service-
oriented architecture. In: Proceedings of the 31st Annual International Computer Software
and Applications Conference (COMPSAC), pp. 368–375 (2007)

15. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of International
Workshop on Web Services - Modeling and Testing - WS-MaTE, pp. 3–12 (2006)

16. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for web services. In: Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC), pp. 729–734 (2007)

17. Ruth, M., Tu, S.: A safe regression test selection technique for Web services. In: Second
International Conference on Internet and Web Applications and Services (ICIW) (2007)

18. Di Penta, M., Bruno, M., Esposito, G., et al.: Web Services Regression Testing. In: Baresi,
L., Di Nitto, E. (eds.) Test and Analysis of Web Services, pp. 205–234. Springer, Heidelberg
(2007)

19. Martin, E., Basu, S., Xie, T.: Automated Testing and Response Analysis of Web Services. In:
IEEE International Conference on Web Services (ICWS), pp. 647–654 (2007)

20. Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-Based Automatic Test Case Generation
for Web Services Testing. In: Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE), pp. 215–220. IEEE Computer Society, Los Alamitos
(2005)

21. Tarhini, A., Fouchal, H., Mansour, N.: A simple approach for testing Web service based
applications. In: Bui, A., Bui, M., Böhme, T., Unger, H. (eds.) IICS 2005. LNCS, vol. 3908,
pp. 134–146. Springer, Heidelberg (2006)

22. Lübke, D.: Unit Testing BPEL Compositions. In: Baresi, L., Di Nitto, E. (eds.) Test and
Analysis of Web Services, pp. 149–171. Springer, Heidelberg (2007)

23. Dong, W.L., Yu, H., Zhang, Y.B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: EDOC 2006: Proceedings of the 10th IEEE International Enter-
prise Distributed Object Computing Conference, pp. 441–444. IEEE Computer Society, Los
Alamitos (2006)

24. Pernici, B., Metzger, A. (eds.): Survey of quality related aspects relevant for SBAs. S-
Cube project deliverable: PO-JRA-1.3.1 (2008), http://www.s-cube-network.eu/
achievements-results/s-cube-deliverables

25. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka, R.: The
MORABIT approach to runtime component testing. In: Proceedings of the 30th Annual Int’l.
Computer Software and Applications Conference (COMPSAC), pp. 171–176 (2006)

26. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and
Classes of Web Service Compositions. In: IEEE International Conference on Web Services
(ICWS 2006), pp. 63–71 (2006)

http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables

	A Framework for Proactive Self-adaptation of Service-Based Applications Based on Online Testing
	Introduction
	State-of-the-Art
	Monitoring for Adaptation
	Online Testing and Regression Testing

	PROSA: Online Testing for Proactive Self-adaptation
	Test Initiation
	Test Case Generation/Selection
	Test Execution
	Adaptation Triggering

	Application Scenarios
	Case 1: Failure Introduced due to Adaptation
	Case 2: Change That Could Lead to Failures in the Future
	Case 3: Failure of an Application Execution
	Cases 4: Failure of a Constituent Service

	Discussion and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

