
An Integrated Approach for the Run-Time Monitoring
of BPEL Orchestrations�

Luciano Baresi1, Sam Guinea1, Raman Kazhamiakin2, and Marco Pistore2

1 Politecnico di Milano – Dipartimento di Elettronica e Informazione, Italy
{baresi,guinea}@elet.polimi.it

2 Fondazione Bruno Kessler – IRST, Trento, Italy
{raman,pistore}@fbk.eu

Abstract. In this paper, we compare and integrate Dynamo and ASTRO, two
previous approaches of the authors for run-time monitoring of BPEL orchestra-
tions. A key element of the proposed integrated framework is the capability to
cover a wide range of features, including the detection of complex behavioural
patterns, the possibility to measure boolean, numeric and time-related properties,
the possibility to monitor the behaviour of the composition both at the level of
a single execution instance and by aggregating the information of all execution
instances of a given composition.

1 Introduction

BPEL (Business Process Execution Language) is the most widely used solution for
workflow based cooperation amongst web services. The distributed nature of BPEL
processes, the absence of a single stakeholder, the fact that partner services can dynam-
ically change their functionality and/or QoS, and the possibility to define abstract pro-
cesses and look for actual services at run time, preclude design- time validation of such
systems. The reliability and robustness of these systems must be enforced by means of
defensive programming techniques and suitable monitoring of executions, in order to
detect problems and trigger recovery activities. BPEL supports primitive forms of prob-
ing (e.g., timeouts) and exception handling, but these features are not as powerful and
flexible as needed. For this reason, several approaches have been proposed in literature
for specifying monitoring directives externally to the BPEL processes and for support-
ing the run-time monitoring of these directives – see for instance [2,3,4,5,6,7,8,9,10,11].
Among all these different alternatives, we focus here on two approaches developed by
the authors of this paper, namely Dynamo [5,6] and ASTRO [2,3]. Even if both ap-
proaches address the problem of the run-time monitoring of BPEL processes, the de-
veloped solutions are rather different. Indeed, in [5,6] the focus is on the specification
of monitoring directives that can be activated and de-activated for each process exe-
cution, according to the user’s preferences; the actual monitoring of these directives is
performed by weaving them into the process they belong to. In [2,3], instead, the focus
is on the specification of properties which may span over multiple executions of BPEL

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. Baresi et al.

processes and that aggregate information about all these executions; moreover the ar-
chitecture clearly separates the BPEL execution engine and the monitoring engine.

In this paper, we perform a detailed comparison of the two approaches, in terms of
the basic events they are able to monitor, the way these basic events can be combined to
monitor complex properties, the granularity of executions that a monitor can cover (sin-
gle execution vs multiple executions), and the level of integration of process execution
and monitoring (e.g., tangled together or separated). The outcome of this comparison
is that the two approaches have taken complementary approaches in all these perspec-
tives, and as a consequence they have complementary strengths and weaknesses. This
complementarity opens up the possibility of combining the two approaches in order to
exploit the strengths of both of them. In this paper, we propose a novel approach that is
obtained by integrating the two existing approaches. We describe both the language and
the monitoring architecture for this new approach. A key element of the new framework
is the capability to cover a wider range of features than any other monitoring approach
for BPEL orchestration the authors are aware of.

The organisation of the paper is as follows. Section 2 presents a simple case study
used throughout the paper. Section 3 and 4 briefly introduce Dynamo and ASTRO,
while Section 5 compares them. Section 6 sketches the integrated approach resulting
from combining the two aforementioned proposals. Section 7 concludes the paper.

2 Tele-Assistance Service

The Tele-Assistance Service (from now on TA) is a BPEL process that manages the re-
mote tele-assistance of patients with diabetes mellitus. These patients have glucose me-
ters at home that communicates with TA, allowing their glucose levels to be constantly
monitored. Figure 1 illustrates the overall process. It uses square brackets to indicate
the nature of the BPEL activity, and angular brackets to indicate the remote partner ser-
vice being called. The process interacts with five partners: (a) the patient’s home device
(PHD), (b) the hospital’s patient record registry (PRR), (c) the hospital’s medical labora-
tory (LAB), (d) a pool of doctors that can provide on-the-fly home assistance (DOC), and
(e) an ambulance emergency center (AMB).

A new instance of service TA is instantiated remotely when the client turns on his/her
glucometer, which sends an appropriate startAssistance message. The process starts
by obtaining the patient’s medical records from PRR, in order to tell the patient (through
their glucometer) the exact insulin dose to use. Once this “setup” phase is concluded,
TA enters a loop in which a BPEL pick activity is used to gain information from the
outside world. The pick activity defines three possible [ON MESSAGE] branches. No-
tice that all the decisions taken within the process are made persistent by calling the
PRR service. The first branch, called vitalParams, is used to receive a periodic update
from the patient’s glucometer. It immediately starts by sending the data to the medical
lab ([INVOKE] analyzeData) for an online analysis; when the results are ready they
are used to decide what to do. If the patient’s results are fine, no action is performed.
If there are reasons to change the insulin dose being used, this is communicated to the
patient ([INVOKE] changeDose). If the results highlight a “mild” anomaly, it is com-
municated to the doctors ([INVOKE] alarm(’mild’)) so that they can schedule a visit

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 3

Fig. 1. The Tele-Assistance Service

to the patient. Notice that whenever the process contacts the doctors it expects an im-
mediate acknowledgement message. If the results highlight a “serious” anomaly, it is
communicated to the doctors ([INVOKE] alarm(’high’)). This causes the doctors to
rush to the patient’s house and perform a complete checkup. The results are received
by TA through a new receive activity called doctorEval, after which two things can
happen. Either the doctors have solved the problem and the TA service can continue
regularly, or the problem cannot be solved easily and hospitalisation is deemed nec-
essary. In this case an order is sent to the ambulance ([INVOKE] sendAmbulance) so
that it can go pick up the patient. The second branch, called pButton, represents a
panic button that the patient can use to communicate an emergency. This emergency is
treated exactly as in the previous thread. The third branch, called stop, can be used to
terminate the TA service. This branch is called either when the patient turns off his/her
glucometer, or when the ambulance picks up the patient for hospitalisation. The overall
process also provides an [EVENTHANDLER], which can be used at any time to require
the patient’s immediate hospitalisation. It is used by the doctors, for example, to require
hospitalisation in case of a “mild” alarm which turns out to be worse than expected.

In the following, we report some examples of monitoring directives that are relevant
in this service. A first property is that the changes in the insulin doses suggested by the
medical lab analysis should not vary “too” much during a short period. For instance, we
may require that a suggested insulin dose should not differ from the previous value by
more than 5%. Or we may require that the difference between the highest and the lowest
suggested doses are within a range of 20%. A second property is on the performance
of the service. For instance, we may want to monitor that the time it takes the doctors
to send back an acknowledgement must never exceed 500ms, and that the average re-
sponse time should be below 200ms. Notice that the average response time should be
computed considering all the executions of the TA service, not just one. A third property

4 L. Baresi et al.

is on the number of times a given event occurs: for instance, we may be interested in
knowing the number of times hospitalisation has been necessary for a given patient.
Notice that this property should be computed considering all the executions of the TA
service for a given patient. A fourth property is on the temporal behaviour of the service:
for instance, we may be interested in monitoring whether hospitalisation has been de-
cided after the insulin dose has been progressively incremented for three or more times;
we may also be interested in knowing the percentage of cases where such an increment
in the dose has lead to hospitalisation. Other properties may result from the combina-
tion of the TA process described in this section with other services. For instance, if a
patient is monitored with more sensors than just the glucometer (e.g., sensors for heart
rate, pression, temperature...) and these sensors are managed by other services, then
would be important to define monitoring properties that correlate conditions and events
across these services.

3 Dynamo

In Dynamo [5,6] monitoring rules are made up of a location and a monitoring property.
Additionally, a set of reaction strategies can be defined [6], but this is out of the scope of
this paper. The location uses an XPath expression to select the point in the process for
which we are defining monitoring, and a keyword for the “kind” of triggering condition
we want (a pre- or a post-condition). Possible points of interest are for instance BPEL
invoke and receive activities.

Monitoring properties are defined using WSCoL, an XML-aware language for the
definition of behavioural properties. WSCoL defines three kinds of variables (i.e., inter-
nal, external, and historical), and expresses relationships that must hold between them.
Internal variables consist of data that belong to the state of an executing process, and are
defined by indicating the name of a BPEL variable (preceded by a $) and an XPATH
expression that “chooses” one of the simple data values it contains (i.e., a number, a
string, or a boolean). External variables consist of data that cannot be obtained from
within the process, but must be obtained externally through a WSDL interface. This
solution facilitates the distribution of probes and helps control the deployment of the
monitoring infrastructure. This also allows for specifying certain QoS properties that
can only be collected with the help of special purpose probes. Finally, historical vari-
ables are introduced to predicate on internal and external variables collected during
previous activations of the monitoring framework, either from within the same process
execution or from a completely different process.

In WSCoL, we can also define variable aliases. This allows us to write simpler and
clearer properties, and more importantly, when we have the same external variable ref-
erenced more than once in a property, we can either collect it is as many times as
needed or collect it once and define an alias for future references. This is crucial when
the value of an external variable may vary depending on the exact moment in which it is
collected. To define the relationships that must hold among these variables, we can use
the typical boolean, relational, and mathematical operators. The language also allows
us to predicate on sets of values through the use of universal and existential quantifiers,
and provides a number of aggregate constructs such as max, min, avg, sum, product,

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 5

and num Of. These constructs become quite meaningful in conjunction with historical
variables and allow us to compare the behaviour of a remote service with previous it-
erations. To better clarify how WSCoL is used, we present the following monitoring
properties, defined in the context of our TA service example.

let $doseNew=($labResults/suggestedDose);
let $doseOld=retrieve(pID, uID, iID,

’[INVOKE]changeDose/postcondition’, ’$doseStored’, 1);
$doseNew <= $doseOld*1.05 && $doseNew >= $doseOld*0.95;

In this example we define a post-condition for [INVOKE] analyzeData, in which we
state that the change in the insulin dose suggested by the medical lab analysis should not
differ from the previous value by more than 5%. The property uses two variable aliases.
The former (i.e., $doseNew) is defined for an internal variable responsible for extracting
the new insulin dose from the BPEL variable labResults using the XPath expression
/suggestedDose. The latter (i.e., $doseOld) is defined for a historical variable. The
historical variable is obtained using the appropriate WSCoL retrieve function. The func-
tion takes, as parameters, the process name, the user ID, and the instance ID, allowing
us to indicate that we are only interested in variables that were stored from within the
process instance in execution. Its remaining parameters, on the other hand, allow us to
state that we are interested in a variable that was stored in [INVOKE] changeDose’s
post-condition, and that was called “doseStored”.

This example can be extended by stating that the difference between the highest
and the lowest dosage suggestions should be within a 20% range. To do this we must
calculate the maximum and minimum of the last 10 dosages that were stored:

let $vals=retrieve(pID, uID, iID,
’[INVOKE]changeDose/postcondition’, ’$doseStored’, 10);

let $min= (min $d in $vals; $d); let $max= (max $d in $vals; $d);
$min > $max * 0.80;

Here we use the min and max aggregate functions, which return the minimum or max-
imum of a parametric expression calculated using values taken from a finite range. In
this case the range is the set of dosages extracted from the historical storage ($stored),
and the expression to calculate is the value itself ($d).

As a second example, we add a pre-condition to [INVOKE] alarm(’high’) stating
that average time it takes the doctors to send back an acknowledgement must not exceed
200ms, and that a single invocation should never take more than 500ms.

let $range = retrieve(pID, null, null,
’[INVOKE]alarm(’high’)/postcondition’, $rt, 50);

(avg $t in $range; $t) < 200 && $rt < 500;

$rt is a special purpose keyword that can be used only in post-conditions and that refers
to the amount of time it took the service to respond. $range, on the other hand, retrieves
the last 50 $rts stored in [INVOKE]Alarm(’high’)’s post-condition. With respect to
the previous example, we use the receive function to collect historical variables that
belong to the entire process family. We are not looking at the response times that this

6 L. Baresi et al.

process instance has experienced, but at all the response times experienced by all the
instances of service TA.

As a third example, we are interested on predicating on the number of times a patient
is hospitalised. This needs to be computed considering all the executions of the TA
service for a given patient. We will state that hospitalisations should be less than 3.
We could use this, for example, to signal that a fourth hospitalisation should not be
requested without contacting the patient’s doctor directly.

let $hosps = retrieve(pID, uID, null, null, $hospEvent, 10);
(num_Of $h in $hosps; $h) < 3;

$hosps contains the last 10 $hospEvent variables added to the historical storage. The
num Of aggregate function provided by the WSCoL language allows us to count how
many values in a range satisfy a given property. In this case, we use this function to
count how many $hospEvents (aliased as $h) were extracted from the historical stor-
age, and compare its value with the constant 3.

To store these values in the historical storage we need to use the WSCoL store func-
tion. The following WSCoL code can be added throughout the TA service, in all those
points in which a hospitalisation is performed.

let $hospEvent = 1; store $hospEvent;

Notice that in our retrieve function we only specify the user ID, and the process ID, but
neither the instance ID nor the location in which the $hospEvents were stored. This
is a must since there are different place in the process in which the hospitalisation may
have been requested. We are interested in all of them.

4 ASTRO

In ASTRO [2,3], the approach to monitoring is characterised by three main features.
(1) Monitors are independent software modules that run in parallel to BPEL processes,
observe their behaviour by intercepting the input/output messages that are received/sent
by the processes, and signal some misbehaviour or, more in general, some situation or
event of interest. That is, the ASTRO approach does not require the monitored services
to be decorated or instrumented to any extent, in order to guarantee direct usage of
third party services. (2) The approach supports two different kinds of monitors: instance
monitors, which observe the execution of a single instance of a BPEL process; and class
monitors, which report aggregated information on all the instances of a given BPEL
process. The latter assume a crucial importance to enact the computation of statistics
and that therefore aggregate multiple executions of other processes. (3) Monitors are
automatically generated and deployed starting from properties defined in RTML (Run-
Time Monitor specification Language), which is based on events and combines them
exploiting past-time temporal logics and statistical functionalities.

RTML stands on the notion of monitorable event, defining what can be immedi-
ately tracked by a monitoring process which observes the behaviour of services. Basic
events correspond message exchanges (for instance, msg(TA.output = changeDose)

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 7

denotes the emission of a recommendation of changing the insulin dose by the TA ser-
vice), and creation and termination of service instances (denoted by the start and
end keywords). Regarding instance monitor properties, RTML offers the ability to ob-
tain monitor information of both logical and quantitative nature. The logical portion
of RTML consists of standard boolean operators, and of a past-time linear temporal
logic; that is, RTML allows for specifying properties on the whole past history of a
given instance monitor, using “temporal” formulas such as f1 Since f2 (formula f1 has
been true since the last instant formula f2 has been true) or Once f (f has been true at
least once in the past). Such kinds of RTML expressions are useful to track down unex-
pected behaviours of a service, which in most cases can be represented by simple linear
logic formulae. For instance, the following formula checks whether an hospitalisation
is requested after at least one request to change the insuline dose:

msg(TA.output= sendAmbulance) && Once(msg(TA.output= changeDose))

The numeric portion of RTML allows counting events (operator count), and comput-
ing the time-span between events (operator time); this is very useful when checking,
for instance, the QoS of the service instance being monitored. Indeed, the numeric and
logical portions of RTML are closely integrated, so that it is possible to count the oc-
currences of complex behaviours (represented by temporal formulae), or vice versa, to
trigger a boolean monitoring condition based on comparisons amongst numerical quan-
tities (for instance, a certain event taking place more often than expected). An example
of a numeric property is the fact that a hospitalisation is requested after three requests
to change the insulin dose:

msg(TA.output = sendAmbulance) &&
count(Once(msg(TA.output = changeDose))) = 3

An example of a time-based property is the fact that the time it takes the doctors to send
back an acknowledgement (i.e., the time during which no doctorEval is received since
the last alarm (’high’) event) must never exceed 500ms:

time((!msg(TA.input = doctorEval)) Since
(msg(TA.output = alarm(’high’))) <= 500ms

Besides the instance monitors we considered so far, RTML also offers the possibility
to specify class monitors, which aggregate monitoring results over all executions (or
instances) of a given BPEL process. For instance, using an appropriate “class count”
operator Count, it is possible to compute the total amount of times a certain property
holds through all executions of a given process. For instance,

Count(msg(TA.output = sendAmbulance) &&
count(Once(msg(TA.output = changeDose))) = 3)

computes the total number of times a hospitalisation has followed three recommenda-
tions to change the insulin dose. Similarly, an appropriate “class average” operator Avg
allows us to compute the average times spent by services undertaking certain tasks. So,

Avg(time((!msg(TA.input = doctorEval)) Since
msg(TA.output = alarm(’high’)))) <= 200ms

constrains the average time it takes to the doctors to answer to an emergency.

8 L. Baresi et al.

The ASTRO approach to support monitoring is based on converting RTML proper-
ties into state-transition systems that evolve on the basis of basic events of the process
executions (e.g., reception and emission of messages). The states of the these state-
transition systems codify the current evaluation of the formula, so that certain states are
associated to the satisfaction of the monitoring requirement, while other states corre-
spond to failures. A monitoring engine is responsible for receiving the relevant events
from the BPEL execution engine, for correlating these events to the monitoring prop-
erties which depend on these events, for progressing the state of the state-transition
systems that correspond to these properties, and for reporting failures and violations.
This engine is built as an extension of ActiveBPEL [1], one of the most prominent
engines for executing BPEL processes. The ASTRO extension allows for intercepting
input/output messages and other relevant events such as the creation and termination of
process instances. The extension also includes the ActiveBPEL admin console, which
is exploited to report the information on the status of the monitors.

5 Comparison

In this section, we draw a comparison between Dynamo and ASTRO. This comparison
will cover different aspects of a monitoring approach, namely: the kinds of basic events
the approaches are able to monitor, the way these basic events can be combined in order
to monitor more complex properties, the granularity of executions that a monitor can
cover, and the level of integration of process execution and monitoring.

Basic events. We identify three different kind of basic events. Messages, i.e., the fact
that a given message (with given values) is sent or received by the process; this kind
of basic event can be managed by both approaches. Control points, i.e., the fact that
the execution has reached a given point of the BPEL process; only Dynamo supports
this kind of basic event. These events contain the variable values that are visible at that
point in the process (in accordance with BPEL’s own scoping rules). Life cycle, i.e.,
the possibility to monitor events related to the life cycle of a service execution, such as
the fact that a new execution of a service is started, that the execution terminates with
success or with an exception; only ASTRO supports this kind of basic events.

Event combination. We identify three different dimensions among which previous
events can be combined in order to express complex monitoring properties. Statistical
dimension, i.e., the possibility of producing aggregated information on a set of vari-
ables; both approaches support this dimension through operators such as max, min, avg,
sum, count. Time dimension, i.e., the possibility of measuring durations and time in-
tervals between events; this dimension is supported in a native way by ASTRO, while
it can be encoded in Dynamo through external variables. Temporal (or behavioural) di-
mension, i.e., the possibility of expressing properties on the temporal evolution of the
service, or behavioural patters that consist of sequences of events; this dimension is
supported in a native way by ASTRO, through the use of temporal logic operators; it
can be encoded in Dynamo through historical variables and quantifiers.

Granularity. This aspect is related to the granularity of process executions that are
covered by a monitoring property. In particular, a property can refer to the following

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 9

execution granularities. Location, i.e., the property is associated with a specific location
of a BPEL process, and the monitoring is performed when the execution of a process
instance reaches that location; Dynamo is based on this kind of granularity. Process
instance, i.e., the property is associated with a single execution instance of a BPEL pro-
cess, and the monitoring is performed through the instance execution; both approaches
support this natively. Process class, i.e., the property is associated with all the exe-
cutions of a BPEL process; ASTRO supports this kind of granularity in a native way
(through class monitors); in Dynamo, these properties can be monitored using histori-
cal variables, quantifiers, and aggregated operators. Cross-process, i.e., the monitoring
property can correlate events that refer to (execution instances of) different processes;
ASTRO does not support this granularity; Dynamo requires encoding them in terms of
“local” monitors and additional state variables.

Integration level. This aspect refers to the level of integration of the process execu-
tion engine with the monitor execution language. We identified the following levels of
integration. At the level of the BPEL specification, i.e., the monitor is performed by in-
strumenting the BPEL specification with specific instructions that activate and advance
the monitoring engine; this is the level of integration supported by Dynamo. At the level
of the BPEL engine, i.e., the BPEL engine is tightly integrated with the monitoring en-
gine and their executions are synchronised; neither Dynamo nor ASTRO support this
level of integration. Through asynchronous events sent by the BPEL engine (or any
other event source) to the monitoring engine; the monitoring engine is responsible for
deciding which events are relevant for which monitors, and for advancing the monitor-
ing task; ASTRO adopts this level of integration.

Discussion. A summary of the comparison of the Dynamo and ASTRO approaches is
reported in Table 1. (The last row corresponds to the integrated approach defined in
Section 6). The comparison shows that the two approaches are complementary under
several aspects. In particular, Dynamo defines monitoring properties that are attached
to specific locations of the BPEL specification, while ASTRO defines monitors that
are associated to the whole execution of a BPEL specification. This difference also has
effects on other aspects: on the level of integration between service execution and mon-
itoring (strictly interconnected in the case of Dynamo, mediated by events in the case
of ASTRO); on the capability to access the internal state of the BPEL process (sup-
ported by Dynamo but not by ASTRO); and on the capability of expressing properties
that combine events in a complex way (easy to achieve in ASTRO, while slightly more
difficult in Dynamo).

Table 1. Comparison of Dynamo and ASTRO approaches

Basic events Combination Granularity Integration level
mes- ctrl life statis- tem- loca- in- cross
sages points cycle tical time poral tion stance class process BPEL engine events

Dynamo + + – + +/– –/+ + + –/+ –/+ + – –
ASTRO + – + + + + – + + – – – +
Int.Appr. + + – + + + + + + + + + +

Legenda: +: yes –: no +/–: yes, with light encoding –/+: yes, with heavy encoding

10 L. Baresi et al.

6 Integration

In this section we discuss a possible way of integrating the approaches of Dynamo
and ASTRO, trying to exploit as much as possible the complementarity of the two
approaches and to achieve the highest level of expressiveness.

Basic events. We base our approach on WSCoL, i.e., we associate basic events to spe-
cific locations of the BPEL specification and we allow them to access the values of
the internal BPEL variables. A basic event is hence defined by a declaration, a loca-
tion within the BPEL code and by a property. The declaration defines the name, event
parameters, and type of the event (see below). The location consists of an XPath ex-
pression and of a keyword defining the kind of triggering condition we want (a pre-
or a post-condition), as in the Dynamo approach. The property is defined in an exten-
sion of the WSCoL language which extends the types of values properties can evalu-
ate to. More precisely, we identify the following three types of WSCoL expressions.
Boolean expressions, i.e., WSCoL expressions describing boolean conditions; all the
WSCoL expressions in the Dynamo approach, hence including the examples reported
in Section 3, are of this type. Numeric expressions, i.e., WSCoL expressions that eval-
uate to a numeric value; an example is the following expression for event ratio(uId:
string): numeric, which computes the ratio between the current and the previous
insulin dose:

let $doseNew = ($labResults/suggestedDose);
let $doseOld = retrieve(pID, uID, iID,
’[INVOKE]changeDose/post-condition’, ’doseStored’, 1);

let $ratio = $doseNew / $doseOld;
$ratio;

Tick expressions, i.e., WSCoL expression that express the fact that a given event has
occurred; these expressions are useful if a given event, associated to a given BPEL
location has to be reported to higher level monitors only under certain conditions; an
example is the following expression for event ratioOutOfBounds(uId: string):
tick, which reports an event only if the insuline ratio is out of bounds:

let $doseNew=...; $let $doseOld=... ; $let ratio=...;
($ratio>0.95 && $ratio<1.05 ? NOTICK : TICK)

Notice that the NOTICK keyword can be used also with numeric or boolean expressions,
in case the valued event has to be reported only under certain condition; an example is
the following expression for event ratioIfOutOfBounds(uId: string): numeric,
which reports the insulin ratio only if it is out of bounds:

let $doseNew=...; $let $doseOld=... ; $let ratio=...;
($ratio>0.95 && $ratio<1.05 ? NOTICK : $ratio)

Composite monitor properties. While basic events are based on Dynamo, the com-
bination of these basic events into complex monitoring properties is based on the AS-
TRO approach. That is, we replace the basic events described in Section 4 with the

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 11

events just introduced, while we keep the same operators and formulas defined in Sec-
tion 4 for instance monitors and class monitors. More precisely, the syntax for events
is “name(%corr = par, ...)”, where name is the name of the event as defined in the
WSCoL expression, par is the name of a parameter of the WSCoL declaration, and
corr is a correlation variable, which is used to correlate events of different processes
in a class monitor. Assume for instance that two basic events have been defined for
service TA, namely ratio (uId: string): numeric, and hospitalisation(uId:
string): tick. Then, the following instance monitor checks whether hospitalisation
has been decided after the insulin dose has been incremented three times:

hospitalisation & count(Once(ratio > 1)) >= 3

The following class monitor reports the number of cases in which such an increment in
the dose has lead to a hospitalisation for a given patient:

Count(hospitalisation(%pat = uId) &
count(Once(ratio(%pat = uId) > 1)) >= 3)

Notice the usage of the correlation variable to select only the service executions corre-
sponding to the same patient. If the correlation variable is removed, then a total count
for all patients is computed:

Count(hospitalisation & count(Once(ratio > 1)) >= 3

We remark that the explicit correlation mechanism we adopt allows for the definition
of cross-process class monitors. Indeed, it is easy to correlate events defined in different
processes. Assume for instance that a different service monitors blood pression and
defines basic events lowPression/normPression(uId: string): TICK. If we want
to monitor the case where an increase in the insulin rate is recommended after a low
blood pression is reported, we can define the following monitor:

(ratio(\%pat = uId) > 1) &
((!normPression(\%pat = uId)) Since (lowPression(\%pat = uId)))

Architecture. Since the monitoring language we have defined combines the localised
basic events à la Dynamo with instance and class monitors approach à la ASTRO, the
monitoring architecture is also a combination of Dynamo and ASTRO. More specifi-
cally, the computation of basic events is achieved by instrumenting the BPEL processes.
This requires a slight modification of the code that is weaved by Dynamo into the ex-
ecution engine. The instrumented processes, which are then deployed and executed on
a standard BPEL engine, send information on the occurrence and value of basic events
to the monitoring engine. This communication may occur through both asynchronous
events and synchronous communications, allowing for both asynchronous and syn-
chronous work by part of the execution and monitoring engine. The monitoring engine
performs a correlation step in order to decide which monitor instances are relevant for a
given basic event (and possibly instantiates new monitors if necessary). The monitoring
engine also updates the status of the relevant monitor instances and reports problems
and violations. The generation of the run-time components for the monitors combines
the Dynamo and ASTRO approaches as well. Indeed, the former approach is exploited
for instrumenting the BPEL processes, while the latter approach is responsible of gen-
erating the monitor instances executed by the monitoring engine.

12 L. Baresi et al.

7 Conclusions

In this paper, we proposed a novel monitor approaches that leverages Dynamo and
ASTRO, two existing approaches for the run-time monitoring of BPEL orchestrations
which have been developed within the research groups of the authors of this paper. The
new approach is able to monitor a wider range of features than any other monitoring
approach for BPEL orchestration the authors are aware of.

Our future work will concentrate on the implementation of the proposed integrated
approach and on its thorough evaluation on real-world applications; this will also re-
quire detailing the definition of the novel language and of the architecture described in
Section 6. On the side, we are also interested in evaluating the possibility to integrate
other approaches that were not developed by the authors. In a longer term, we plan to
investigate extensions of the proposed approach that include reactions to the anomalies
and emergencies identified by the monitoring; the goal is to close the loop and influence
the behaviour of the services according to the information collected during the moni-
toring. We also plan to extend the monitoring approach to the case of compositions of
web services that are distributed among different nodes of the network; in this case,
both the monitoring language and the monitoring architecture will have to deal with the
necessity of collecting events over the network.

References

1. ActiveBPEL. The Open Source BPEL Engine, http://www.activebpel.org
2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of the Execution

of Plans for Web Service Composition. In: Proc. ICAPS 2006, pp. 346–349 (2006)
3. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and

Classes of Web Service Compositions. In: Proc. ICWS 2006, pp. 63–71 (2006)
4. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proc. ICSOC

2004, pp. 193–202 (2004)
5. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In: Benatallah,

B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

6. Baresi, L., Guinea, S.: A dynamic and reactive approach to the supervision of BPEL pro-
cesses. In: Proc. ISEC 2008, pp. 39–48 (2008)

7. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with queries. In:
Proc. VLDB 2007, pp. 603–614 (2007)

8. Bianculli, D., Ghezzi, C.: Monitoring Conversational Web Services. In: Proc. IW-SOSWE
2007 (2007)

9. Mahbub, K., Spanoudakis, G.: Run-time Monitoring of Requirements for Systems Composed
of Web Services: Initial Implementation and Evaluation Experience. In: Proc. ICWS 2005,
pp. 257–265 (2005)

10. Momm, C., Malec, R., Abeck, S.: Towards a Model-driven Development of Monitored Pro-
cesses, Wirtschaftsinformatik, vol. 2 (2007)

11. Roth, H., Schiefer, J., Schatten, A.: Probing and monitoring of WSBPEL processes with web
services. In: Proc. CEC-EEE 2006 (2006)

http://www.activebpel.org

	An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations
	Introduction
	Tele-Assistance Service
	Dynamo
	ASTRO
	Comparison
	Integration
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

