

Lecture Notes in Computer Science 5377
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Petri Mähönen Klaus Pohl
Thierry Priol (Eds.)

Towards
a Service-Based Internet
First European Conference, ServiceWave 2008
Madrid, Spain, December 10-13, 2008
Proceedings

13

Volume Editors

Petri Mähönen
RWTH Aachen University, Department of Wireless Networks
Kackertstrasse 9, 52072 Aachen, Germany
E-mail: pma@mobnets.rwth-aachen.de

Klaus Pohl
University Duisburg-Essen, Software Systems Engineering
Schützenbahn 70, 45117, Essen, Germany
E-mail: pohl@sse.uni-due.de

Thierry Priol
INRIA Rennes - Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes Cedex, France
E-mail: thierry.priol@inria.fr

Library of Congress Control Number: 2008940580

CR Subject Classification (1998): K.6, K.8, K.4.4, H.4, H.3.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-89896-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-89896-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12581429 06/3180 5 4 3 2 1 0

Foreword

Today it is almost impossible to remember what life was like with no computer,
no mobile phone, and no Internet for accessing information, performing trans-
actions or exchanging emails and data. New technology is bringing wave after
wave of new benefits to daily life: organisations are doing business with each
other via the Internet; people are filling in tax declarations online and booking
their next vacation through the Internet. In general we are all progressively us-
ing (and dependent on) software and services running on computers, connecting
mobile phones and other devices, and exchanging information on the Internet.

People like to shop around and exercise choice. So do businesses and public
administrations. Today they can buy a complete software package that best
suits their needs, even though they may never use some of the tools it offers, or
other desirable tools are not available. In the future they may no longer have to
compromise on choice. Alternative approaches like “Software as a Service” and
“Computing Resources as a Service” are emerging. Software is provided on-line
as a service when and where it is needed, and the same for computing resources
needed to run software. Such an approach allows individuals and organisations
to tap into and effectively harness the immense wealth of information, knowledge
and analytical resources when they need them, paying only for what they use.
Customers are bound to benefit when there is a sufficiently rich choice of services.

But what does this mean when seen from the supply side? Although it may
not yet be so evident to the outside world, the software industry is rapidly
restructuring and changing patterns of competition and business. Relatively new
internet companies are successfully providing software and computing resources
as a service. They are seriously competing with established industries delivering
traditional packaged software, forcing the latter to adapt their business models.

I believe that the restructuring of the market and the industry represents a
tremendous opportunity for Europe and for the European software industry.

The number of companies and researchers involved in the European Technol-
ogy Platforms eMobility, EPoSS, ISI, NEM and NESSI, shows that industry is
also taking this opportunity seriously. These Technology Platforms are collab-
orating to define a strategy for addressing the challenges in delivering software
and computing resources as a service, and in developing new attractive context-
based, device-independent services addressing the precise needs of the user that
exploit the possibilities offered by the convergence of the media, telecom and IT
industries.

ServiceWave 2008 presents the main results of European industrial and aca-
demic collaboration in this field. It reflects the great potential and the contin-
ued strength of European expertise in many fields of service development. The

VI Foreword

challenge now is to bring these advancements to the market and to ensure the
European leadership in the new Internet economy.

Viviane Reding
Commissioner for Information Society and Media

Preface

The Internet is becoming a critical infrastructure for the growth of the modern
economy and society by allowing anyone to access information in a transparent
way, independent of the location or computing device used. While today, users’
main interactions with the Internet remain web browsing or exchange of e-mails,
a revolution is on-going through the availability of software services.

The convergence of smarter networks, resource virtualization and collabora-
tive and intelligent services will pave the way to the Future Internet with new
software services which will be as revolutionary as the e-mail and the Web were
when they appeared initially.

The Future Internet will enable new and unforeseen collaborative applications
based on dynamic adaptation to the context and to the available services and
resources. The technological and architectural advances in the Internet domain
will also take economic and service-oriented facts into account.

Furthermore, the Future Internet will reinforce the need for interdisciplinary
collaboration between domains such as computer science, electrical engineer-
ing and social sciences - disciplines that have already moved forward in working
together but whose level of collaboration will have to increase considerably. How-
ever, before this revolution can be completed, several research challenges must
be addressed and a tighter collaboration between industry and academia is of
utmost importance.

The ServiceWave conference series aims to establish the premier European
forum for researchers, educators and industrial practitioners to present and dis-
cuss the most recent innovations, trends, experiences and concerns in software
services (or the “Future of the Internet of Services”) and related underlying net-
work technologies. ServiceWave fosters the creation of cross-community scientific
excellence by gathering together industrial and academic experts from various
disciplines such as business process management, distributed systems, computer
networks, wireless and mobile communication networks, grid computing, embed-
ded and smart systems, networking, service science and software engineering.

ServiceWave 2008 was organized along four tracks designed to foster the
collaboration and lively exchange of ideas between industry and academia:

– ETPs Future Internet Track: dedicated to presentations on the common
vision of the Future of the Internet elaborated and shared by the major Eu-
ropean Technology Platforms active in the ICT domain—namely, eMobility,
EPoSS, ISI, NEM and NESSI

– Industrial Panels Track: multidisciplinary open debate panels focusing on
topics which, starting from traditional service-based systems engineering,
brought the discussions toward the ambitious target of Future Internet

VIII Preface

– Scientific Track: presentation of the papers, selected by the ServiceWave
2008 Program Committee, from research and industry, covering the state of
practice and real-world experiences in service engineering

– Workshop Track: meetings organized by Working Groups active within the
Future Internet activities, the intra-ETP activities or within an ETP as well
as research and industrial communities wishing to present their work

These proceedings cover the peer-reviewed Scientific Track of ServiceWave
2008 for which we received 102 submissions. In an extensive and careful review
process, the Scientific Program Committee of ServiceWave 2008 accepted 28
papers—an acceptance rate of 27%.

We offer our sincere thanks to the members of the ServiceWave 2008 Program
Committee for devoting their time and knowledge to reviewing and discussing
the submitted papers. We would especially like to thank the members of the Pro-
gram Committee who attended the two-day Program Committee meeting held
in Essen, Germany on September 1 and 2, 2008. Special thanks go to Andreas
Gehlert and Julia Hilscher for their responsive and helpful support during the
paper evaluation and selection process, as well as during the preparation of the
proceedings.

We would also like to thank David Kennedy for organizing the ETP Track,
Stefano De Panfilis and Wolfgang Gerteis for the Industrial Track and Frédéric
Gittler for the Workshop Track.

In addition, ServiceWave 2008 would not have been possible without the
efforts and expertise of a number of people who selflessly offered their time
and energy to help to make this conference a success. We would like to thank
Universidad Politécnica de Madrid, host of the 2008 edition of ServiceWave, for
their continous support.

We would like to thank all the people on the Organizing Committee, espe-
cially Federico Alvarez, Nuria Sánchez Almodóvar, Usoa Iriberri Zubiola, Bruno
François-Marsal, Véronique Pevtschin and Barbara Pirillo.

Finally,we thank themain conference sponsors and supporters:Alcatel-Lucent,
Atos Origin, Engineering, Siemens, Telefónica, Thales, IBBT, HP and IBM as
well as INRIA, RWTH Aachen, and University of Duisburg-Essen.

December 2008 Reinhold Achatz
Guillermo Cisneros

Petri Mähönnen
Klaus Pohl

Thierry Priol

Organization

ServiceWave 2008 was organized by NESSI and hosted in Madrid by UPM in
cooperation with:

– The European Technology Platforms eMobility, EPoSS, ISI and NEM
– Spanish Technology Platform INES
– Networks of Excellence CoreGrid and S-Cube
– Support actions Eiffel, 4NEM and NESSI 2010
– ICSOC, the International Conference on Service-Oriented Computing

General Chairs

Reinhold Achatz Siemens, Germany
Guillermo Cisneros Universidad Politécnica de Madrid, Spain

Program Chairs

Petri Mähönnen,
Coordinator of EIFFEL RWTH Aachen University, Germany

Klaus Pohl,
Coordinator of S-Cube University Duisburg-Essen, Germany

Thierry Priol,
Coordinator of CoreGRID INRIA, France

Program Committee

Federico Alvarez Universidad Politécnica Madrid, Spain
Mike Boniface University of Southampton, UK
Vincent Boutroux France Telecom, France
Jose Maria Cavanillas ATOS Origin SA, Spain
Costas Courcoubetis Athens University of Economics and Business,

Greece
Marco Danelutto University of Pisa, Italy
Stefano De Panfilis Engineering I.I., Italy
Eric Dubois CRP Henri Tudor, Luxembourg
Serge Druais Thales, France
Schahram Dustdar Vienna University of Technology, Austria
Frank Fitzek University of Aalborg, Denmark
Paraskevi Fragopoulou FORTH, Greece
Vladimir Getov University of Westminster, UK
Carlo Ghezzi Politecnico di Milano, Italy

X Organization

Sergei Gorlatch University of Muenster, Germany
Pierre Guisset CETIC, Belgium
Andrei Gurtov HIIT, Finlande
Mohand-Said Hacid University of Lyon, France
Stephen Hailes University College London, UK
Manuel Hermenegildo Universidad Politécnica Madrid, Spain
Paola Inverardi University of L’Aquila, Italy
Borka Jerman-Blazic Jozef Stefan Institute, Slovenia
Peter Kacsuk MTA SZTAKI, Hungary
Roger Kilian-Kehr SAP, Germany
Domenico Laforenza ISTI-CNR, Italy
Frank Leymann University of Stuttgart, Germany
Neil Maiden City University London, UK
Katharina Mehner Siemens AG, Germany
Andreas Metzger University of Duisburg-Essen, Germany
Norbert Meyer Supercomputing Center, Poland
Werner Mohr Nokia Siemens Networks, Germany
Christos Nikolaou University of Crete, Greece
Evgeny Osipov LTU, Sweden
Jörg Ott TKK Helsinki, Finland
Dimitri Papadimitriou Alcatel-Lucent, Belgium
Mike Papazoglou Tilburg University, The Netherlands
Jean-Louis Pazat INSA-Rennes, France
Ron Perrott Queen’s University of Belfast, UK
George Polyzos AUEB, Greece
Janne Riihijärvi RWTH Aachen University, Germany
Santi Ristol Chairman of INES, Spain
Ita Ritchardson Lero, University of Limerick, Ireland
Colette Rolland University Paris 1, France
Ian Sommerville St. Andrews University, UK
Domenico Talia Università della Calabria, Italy
Paolo Traverso FBK, Trento, Italy
Dirk Trossen British Telecom, UK
Klaus Wehrle RWTH Aachen, Germany
Ramin Yahyapour University of Dortmund, Germany
Wolfgang Ziegler Fraunhofer SCAI, Germany

Referees

I. Aktas
M. Autili
A. Basukoski
E. Bertin
D. Bianculli
C. Cordier

M. Carro
J.-M. Cavanillas
A. Charfi
C. Comito
M. Coppola
C. Cunningham

O. Danylevych
P. Dazzi
J. Duennweber
H. Eberle
C. Ghezzi
R. Giaffreda

Organization XI

F. Glinka
M.-C. Gomes
K. Görlach
E. Grandry
A. Gurtov
T. Harmer
J. Hawkins
T. Heer
P. Inverardi
D. Ivanovic
G. Jankowski
M.C. Jäger
B. Jerman-Blazic
R. Krishnaswamy
P. Kegel
J. Koskela
S. Kubicki
G. Kunz
O. Landsiedel
H. Li

R. Lichwala
J.A. Bitsch Link
P. Lopez-Garcia
K. Loughran
D. Malandrino
C. Mastroianni
W. Mohr
G. Monakova
J. Navas
E. Di Nitto
S. Nurcan
M. Owsiak
P. Pelliccione
G. Peter
E. Pfeuffer
G. Pirrò
M. Plociennik
A. Ploss
A. Raed
F. Raimondi

S. Ramel
M. Reiter
D. Di Ruscio
R. Sasnauskas
D. Schumm
L. Serafini
A. Spriestersbach
Y. Taher
M. Tivoli
G. Tolomei
I. Trajkovska
P. Trunfio
T. Unger
K. Voigt
E. Weingaertner
S. Wieczorek
P. Wright
E. Zumpano

Table of Contents

I Adaptation/Monitoring (1)

An Integrated Approach for the Run-Time Monitoring of BPEL
Orchestrations . 1

Luciano Baresi, Sam Guinea, Raman Kazhamiakin, and
Marco Pistore

Towards Goal-Driven Self Optimisation of Service Based
Applications . 13

Andreas Gehlert and André Heuer

Towards Correctness Assurance in Adaptive Service-Based
Applications . 25

Raman Kazhamiakin, Andreas Metzger, and Marco Pistore

II Model Driven Architecture

A Service Based Development Environment on Web 2.0 Platforms 38
Xabier Larrucea, Rafael Fernandez, Javier Soriano,
Andrés Leonardo Mart́ınez, and Jesus M. Gonzalez-Barahona

Using MDE to Build a Schizophrenic Middleware for Home/Building
Automation . 49

Grégory Nain, Erwan Daubert, Olivier Barais, and
Jean-Marc Jézéquel

Model-Driven Integration and Management of Data Access Objects in
Process-Driven SOAs . 62

Christine Mayr, Uwe Zdun, and Schahram Dustdar

III Network Services

WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet
of Services . 74

David Moro, David Lozano, and Manuel Macias

Describing Next Generation Communication Services: A Usage
Perspective . 86

Emmanuel Bertin and Noel Crespi

XIV Table of Contents

IV Adaptation/Monitoring (2)

Monitoring Web Services: A Database Approach . 98
Mohamed Amine Baazizi, Samir Sebahi, Mohand-Said Hacid,
Salima Benbernou, and Mike Papazoglou

Milestones: Mythical Signals in UML to Analyze and Monitor
Progress . 110

Richard Torbjørn Sanders and Øystein Haugen

A Framework for Proactive Self-adaptation of Service-Based
Applications Based on Online Testing . 122

Julia Hielscher, Raman Kazhamiakin, Andreas Metzger, and
Marco Pistore

V Service Oriented Architecture

The inContext Pervasive Collaboration Services Architecture 134
Stephan Reiff-Marganiec, Hong-Linh Truong, Giovanni Casella,
Christoph Dorn, Schahram Dustdar, and Sarit Moretzky

Leveraging the Upcoming Internet of Services through an Open
User-Service Front-End Framework . 147

David Lizcano, Miguel Jiménez, Javier Soriano, José M. Cantera,
Marcos Reyes, Juan J. Hierro, Francisco Garijo, and
Nikolaos Tsouroulas

Domain-Specific Languages for Service-Oriented Architectures: An
Explorative Study . 159

Ernst Oberortner, Uwe Zdun, and Schahram Dustdar

VI Business Process Management

Managing the Alignment between Business and Software Services
Requirements from a Capability Model Perspective 171

Eric Grandry, Eric Dubois, Michel Picard, and André Rifaut

Active Energy-Aware Management of Business-Process Based
Applications (Position Paper) . 183

Danilo Ardagna, Cinzia Cappiello, Marco Lovera,
Barbara Pernici, and Mara Tanelli

Table of Contents XV

An Architecture for Managing the Lifecycle of Business Goals for
Partners in a Service Network . 196

Marina Bitsaki, Ohla Danylevych, Willem-Jan van den Heuvel,
George Koutras, Frank Leymann, Michele Mancioppi,
Christos Nikolaou, and Mike Papazoglou

VII Deployment/Invocation

Ad-Hoc Usage of Web Services with Dynvoker . 208
Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer, and
Alexander Schill

A Web Services Gateway for the H2O Lightweight Grid Computing
Framework . 220

Mauro Migliardi

A Flexible and Extensible Architecture for Device-Level Service
Deployment . 230

Thomas Frenken, Patrik Spiess, and Jürgen Anke

VIII Security

Fine-Grained Continuous Usage Control of Service Based Grids – The
GridTrust Approach . 242

Syed Naqvi, Philippe Massonet, Benjamin Aziz, Alvaro Arenas,
Fabio Martinelli, Paolo Mori, Lorenzo Blasi, and
Giovanni Cortese

An Approach to Identity Management for Service Centric Systems 254
Laurent Bussard, Elisabetta Di Nitto, Anna Nano,
Olivier Nano, and Gianluca Ripa

IX Workflow

A Dynamic Orchestration Model for Future Internet Applications 266
Giuseppe Avellino, Mike Boniface, Barbara Cantalupo, Justin Ferris,
Nikolaos Matskanis, Bill Mitchell, and Mike Surridge

Defining the Behaviour of BPELlight Interaction Activities Using
Message Exchange Patterns . 275

Jörg Nitzsche, Benjamin Höhensteiger, Frank Leymann,
Mirko Sonntag, and Markus Tost

Managing Technical Processes Using Smart Workflows 287
Matthias Wieland, Daniela Nicklas, and Frank Leymann

XVI Table of Contents

X SLA/QoS

Model Driven QoS Analyses of Composed Web Services 299
Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola

Semantic-Aware Service Quality Negotiation . 312
Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani

Multi-level SLA Management for Service-Oriented Infrastructures 324
Wolfgang Theilmann, Ramin Yahyapour, and Joe Butler

Author Index . 337

An Integrated Approach for the Run-Time Monitoring
of BPEL Orchestrations�

Luciano Baresi1, Sam Guinea1, Raman Kazhamiakin2, and Marco Pistore2

1 Politecnico di Milano – Dipartimento di Elettronica e Informazione, Italy
{baresi,guinea}@elet.polimi.it

2 Fondazione Bruno Kessler – IRST, Trento, Italy
{raman,pistore}@fbk.eu

Abstract. In this paper, we compare and integrate Dynamo and ASTRO, two
previous approaches of the authors for run-time monitoring of BPEL orchestra-
tions. A key element of the proposed integrated framework is the capability to
cover a wide range of features, including the detection of complex behavioural
patterns, the possibility to measure boolean, numeric and time-related properties,
the possibility to monitor the behaviour of the composition both at the level of
a single execution instance and by aggregating the information of all execution
instances of a given composition.

1 Introduction

BPEL (Business Process Execution Language) is the most widely used solution for
workflow based cooperation amongst web services. The distributed nature of BPEL
processes, the absence of a single stakeholder, the fact that partner services can dynam-
ically change their functionality and/or QoS, and the possibility to define abstract pro-
cesses and look for actual services at run time, preclude design- time validation of such
systems. The reliability and robustness of these systems must be enforced by means of
defensive programming techniques and suitable monitoring of executions, in order to
detect problems and trigger recovery activities. BPEL supports primitive forms of prob-
ing (e.g., timeouts) and exception handling, but these features are not as powerful and
flexible as needed. For this reason, several approaches have been proposed in literature
for specifying monitoring directives externally to the BPEL processes and for support-
ing the run-time monitoring of these directives – see for instance [2,3,4,5,6,7,8,9,10,11].
Among all these different alternatives, we focus here on two approaches developed by
the authors of this paper, namely Dynamo [5,6] and ASTRO [2,3]. Even if both ap-
proaches address the problem of the run-time monitoring of BPEL processes, the de-
veloped solutions are rather different. Indeed, in [5,6] the focus is on the specification
of monitoring directives that can be activated and de-activated for each process exe-
cution, according to the user’s preferences; the actual monitoring of these directives is
performed by weaving them into the process they belong to. In [2,3], instead, the focus
is on the specification of properties which may span over multiple executions of BPEL

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 L. Baresi et al.

processes and that aggregate information about all these executions; moreover the ar-
chitecture clearly separates the BPEL execution engine and the monitoring engine.

In this paper, we perform a detailed comparison of the two approaches, in terms of
the basic events they are able to monitor, the way these basic events can be combined to
monitor complex properties, the granularity of executions that a monitor can cover (sin-
gle execution vs multiple executions), and the level of integration of process execution
and monitoring (e.g., tangled together or separated). The outcome of this comparison
is that the two approaches have taken complementary approaches in all these perspec-
tives, and as a consequence they have complementary strengths and weaknesses. This
complementarity opens up the possibility of combining the two approaches in order to
exploit the strengths of both of them. In this paper, we propose a novel approach that is
obtained by integrating the two existing approaches. We describe both the language and
the monitoring architecture for this new approach. A key element of the new framework
is the capability to cover a wider range of features than any other monitoring approach
for BPEL orchestration the authors are aware of.

The organisation of the paper is as follows. Section 2 presents a simple case study
used throughout the paper. Section 3 and 4 briefly introduce Dynamo and ASTRO,
while Section 5 compares them. Section 6 sketches the integrated approach resulting
from combining the two aforementioned proposals. Section 7 concludes the paper.

2 Tele-Assistance Service

The Tele-Assistance Service (from now on TA) is a BPEL process that manages the re-
mote tele-assistance of patients with diabetes mellitus. These patients have glucose me-
ters at home that communicates with TA, allowing their glucose levels to be constantly
monitored. Figure 1 illustrates the overall process. It uses square brackets to indicate
the nature of the BPEL activity, and angular brackets to indicate the remote partner ser-
vice being called. The process interacts with five partners: (a) the patient’s home device
(PHD), (b) the hospital’s patient record registry (PRR), (c) the hospital’s medical labora-
tory (LAB), (d) a pool of doctors that can provide on-the-fly home assistance (DOC), and
(e) an ambulance emergency center (AMB).

A new instance of service TA is instantiated remotely when the client turns on his/her
glucometer, which sends an appropriate startAssistance message. The process starts
by obtaining the patient’s medical records from PRR, in order to tell the patient (through
their glucometer) the exact insulin dose to use. Once this “setup” phase is concluded,
TA enters a loop in which a BPEL pick activity is used to gain information from the
outside world. The pick activity defines three possible [ON MESSAGE] branches. No-
tice that all the decisions taken within the process are made persistent by calling the
PRR service. The first branch, called vitalParams, is used to receive a periodic update
from the patient’s glucometer. It immediately starts by sending the data to the medical
lab ([INVOKE] analyzeData) for an online analysis; when the results are ready they
are used to decide what to do. If the patient’s results are fine, no action is performed.
If there are reasons to change the insulin dose being used, this is communicated to the
patient ([INVOKE] changeDose). If the results highlight a “mild” anomaly, it is com-
municated to the doctors ([INVOKE] alarm(’mild’)) so that they can schedule a visit

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 3

Fig. 1. The Tele-Assistance Service

to the patient. Notice that whenever the process contacts the doctors it expects an im-
mediate acknowledgement message. If the results highlight a “serious” anomaly, it is
communicated to the doctors ([INVOKE] alarm(’high’)). This causes the doctors to
rush to the patient’s house and perform a complete checkup. The results are received
by TA through a new receive activity called doctorEval, after which two things can
happen. Either the doctors have solved the problem and the TA service can continue
regularly, or the problem cannot be solved easily and hospitalisation is deemed nec-
essary. In this case an order is sent to the ambulance ([INVOKE] sendAmbulance) so
that it can go pick up the patient. The second branch, called pButton, represents a
panic button that the patient can use to communicate an emergency. This emergency is
treated exactly as in the previous thread. The third branch, called stop, can be used to
terminate the TA service. This branch is called either when the patient turns off his/her
glucometer, or when the ambulance picks up the patient for hospitalisation. The overall
process also provides an [EVENTHANDLER], which can be used at any time to require
the patient’s immediate hospitalisation. It is used by the doctors, for example, to require
hospitalisation in case of a “mild” alarm which turns out to be worse than expected.

In the following, we report some examples of monitoring directives that are relevant
in this service. A first property is that the changes in the insulin doses suggested by the
medical lab analysis should not vary “too” much during a short period. For instance, we
may require that a suggested insulin dose should not differ from the previous value by
more than 5%. Or we may require that the difference between the highest and the lowest
suggested doses are within a range of 20%. A second property is on the performance
of the service. For instance, we may want to monitor that the time it takes the doctors
to send back an acknowledgement must never exceed 500ms, and that the average re-
sponse time should be below 200ms. Notice that the average response time should be
computed considering all the executions of the TA service, not just one. A third property

4 L. Baresi et al.

is on the number of times a given event occurs: for instance, we may be interested in
knowing the number of times hospitalisation has been necessary for a given patient.
Notice that this property should be computed considering all the executions of the TA
service for a given patient. A fourth property is on the temporal behaviour of the service:
for instance, we may be interested in monitoring whether hospitalisation has been de-
cided after the insulin dose has been progressively incremented for three or more times;
we may also be interested in knowing the percentage of cases where such an increment
in the dose has lead to hospitalisation. Other properties may result from the combina-
tion of the TA process described in this section with other services. For instance, if a
patient is monitored with more sensors than just the glucometer (e.g., sensors for heart
rate, pression, temperature...) and these sensors are managed by other services, then
would be important to define monitoring properties that correlate conditions and events
across these services.

3 Dynamo

In Dynamo [5,6] monitoring rules are made up of a location and a monitoring property.
Additionally, a set of reaction strategies can be defined [6], but this is out of the scope of
this paper. The location uses an XPath expression to select the point in the process for
which we are defining monitoring, and a keyword for the “kind” of triggering condition
we want (a pre- or a post-condition). Possible points of interest are for instance BPEL
invoke and receive activities.

Monitoring properties are defined using WSCoL, an XML-aware language for the
definition of behavioural properties. WSCoL defines three kinds of variables (i.e., inter-
nal, external, and historical), and expresses relationships that must hold between them.
Internal variables consist of data that belong to the state of an executing process, and are
defined by indicating the name of a BPEL variable (preceded by a $) and an XPATH
expression that “chooses” one of the simple data values it contains (i.e., a number, a
string, or a boolean). External variables consist of data that cannot be obtained from
within the process, but must be obtained externally through a WSDL interface. This
solution facilitates the distribution of probes and helps control the deployment of the
monitoring infrastructure. This also allows for specifying certain QoS properties that
can only be collected with the help of special purpose probes. Finally, historical vari-
ables are introduced to predicate on internal and external variables collected during
previous activations of the monitoring framework, either from within the same process
execution or from a completely different process.

In WSCoL, we can also define variable aliases. This allows us to write simpler and
clearer properties, and more importantly, when we have the same external variable ref-
erenced more than once in a property, we can either collect it is as many times as
needed or collect it once and define an alias for future references. This is crucial when
the value of an external variable may vary depending on the exact moment in which it is
collected. To define the relationships that must hold among these variables, we can use
the typical boolean, relational, and mathematical operators. The language also allows
us to predicate on sets of values through the use of universal and existential quantifiers,
and provides a number of aggregate constructs such as max, min, avg, sum, product,

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 5

and num Of. These constructs become quite meaningful in conjunction with historical
variables and allow us to compare the behaviour of a remote service with previous it-
erations. To better clarify how WSCoL is used, we present the following monitoring
properties, defined in the context of our TA service example.

let $doseNew=($labResults/suggestedDose);
let $doseOld=retrieve(pID, uID, iID,

’[INVOKE]changeDose/postcondition’, ’$doseStored’, 1);
$doseNew <= $doseOld*1.05 && $doseNew >= $doseOld*0.95;

In this example we define a post-condition for [INVOKE] analyzeData, in which we
state that the change in the insulin dose suggested by the medical lab analysis should not
differ from the previous value by more than 5%. The property uses two variable aliases.
The former (i.e., $doseNew) is defined for an internal variable responsible for extracting
the new insulin dose from the BPEL variable labResults using the XPath expression
/suggestedDose. The latter (i.e., $doseOld) is defined for a historical variable. The
historical variable is obtained using the appropriate WSCoL retrieve function. The func-
tion takes, as parameters, the process name, the user ID, and the instance ID, allowing
us to indicate that we are only interested in variables that were stored from within the
process instance in execution. Its remaining parameters, on the other hand, allow us to
state that we are interested in a variable that was stored in [INVOKE] changeDose’s
post-condition, and that was called “doseStored”.

This example can be extended by stating that the difference between the highest
and the lowest dosage suggestions should be within a 20% range. To do this we must
calculate the maximum and minimum of the last 10 dosages that were stored:

let $vals=retrieve(pID, uID, iID,
’[INVOKE]changeDose/postcondition’, ’$doseStored’, 10);

let $min= (min $d in $vals; $d); let $max= (max $d in $vals; $d);
$min > $max * 0.80;

Here we use the min and max aggregate functions, which return the minimum or max-
imum of a parametric expression calculated using values taken from a finite range. In
this case the range is the set of dosages extracted from the historical storage ($stored),
and the expression to calculate is the value itself ($d).

As a second example, we add a pre-condition to [INVOKE] alarm(’high’) stating
that average time it takes the doctors to send back an acknowledgement must not exceed
200ms, and that a single invocation should never take more than 500ms.

let $range = retrieve(pID, null, null,
’[INVOKE]alarm(’high’)/postcondition’, $rt, 50);

(avg $t in $range; $t) < 200 && $rt < 500;

$rt is a special purpose keyword that can be used only in post-conditions and that refers
to the amount of time it took the service to respond. $range, on the other hand, retrieves
the last 50 $rts stored in [INVOKE]Alarm(’high’)’s post-condition. With respect to
the previous example, we use the receive function to collect historical variables that
belong to the entire process family. We are not looking at the response times that this

6 L. Baresi et al.

process instance has experienced, but at all the response times experienced by all the
instances of service TA.

As a third example, we are interested on predicating on the number of times a patient
is hospitalised. This needs to be computed considering all the executions of the TA
service for a given patient. We will state that hospitalisations should be less than 3.
We could use this, for example, to signal that a fourth hospitalisation should not be
requested without contacting the patient’s doctor directly.

let $hosps = retrieve(pID, uID, null, null, $hospEvent, 10);
(num_Of $h in $hosps; $h) < 3;

$hosps contains the last 10 $hospEvent variables added to the historical storage. The
num Of aggregate function provided by the WSCoL language allows us to count how
many values in a range satisfy a given property. In this case, we use this function to
count how many $hospEvents (aliased as $h) were extracted from the historical stor-
age, and compare its value with the constant 3.

To store these values in the historical storage we need to use the WSCoL store func-
tion. The following WSCoL code can be added throughout the TA service, in all those
points in which a hospitalisation is performed.

let $hospEvent = 1; store $hospEvent;

Notice that in our retrieve function we only specify the user ID, and the process ID, but
neither the instance ID nor the location in which the $hospEvents were stored. This
is a must since there are different place in the process in which the hospitalisation may
have been requested. We are interested in all of them.

4 ASTRO

In ASTRO [2,3], the approach to monitoring is characterised by three main features.
(1) Monitors are independent software modules that run in parallel to BPEL processes,
observe their behaviour by intercepting the input/output messages that are received/sent
by the processes, and signal some misbehaviour or, more in general, some situation or
event of interest. That is, the ASTRO approach does not require the monitored services
to be decorated or instrumented to any extent, in order to guarantee direct usage of
third party services. (2) The approach supports two different kinds of monitors: instance
monitors, which observe the execution of a single instance of a BPEL process; and class
monitors, which report aggregated information on all the instances of a given BPEL
process. The latter assume a crucial importance to enact the computation of statistics
and that therefore aggregate multiple executions of other processes. (3) Monitors are
automatically generated and deployed starting from properties defined in RTML (Run-
Time Monitor specification Language), which is based on events and combines them
exploiting past-time temporal logics and statistical functionalities.

RTML stands on the notion of monitorable event, defining what can be immedi-
ately tracked by a monitoring process which observes the behaviour of services. Basic
events correspond message exchanges (for instance, msg(TA.output = changeDose)

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 7

denotes the emission of a recommendation of changing the insulin dose by the TA ser-
vice), and creation and termination of service instances (denoted by the start and
end keywords). Regarding instance monitor properties, RTML offers the ability to ob-
tain monitor information of both logical and quantitative nature. The logical portion
of RTML consists of standard boolean operators, and of a past-time linear temporal
logic; that is, RTML allows for specifying properties on the whole past history of a
given instance monitor, using “temporal” formulas such as f1 Since f2 (formula f1 has
been true since the last instant formula f2 has been true) or Once f (f has been true at
least once in the past). Such kinds of RTML expressions are useful to track down unex-
pected behaviours of a service, which in most cases can be represented by simple linear
logic formulae. For instance, the following formula checks whether an hospitalisation
is requested after at least one request to change the insuline dose:

msg(TA.output= sendAmbulance) && Once(msg(TA.output= changeDose))

The numeric portion of RTML allows counting events (operator count), and comput-
ing the time-span between events (operator time); this is very useful when checking,
for instance, the QoS of the service instance being monitored. Indeed, the numeric and
logical portions of RTML are closely integrated, so that it is possible to count the oc-
currences of complex behaviours (represented by temporal formulae), or vice versa, to
trigger a boolean monitoring condition based on comparisons amongst numerical quan-
tities (for instance, a certain event taking place more often than expected). An example
of a numeric property is the fact that a hospitalisation is requested after three requests
to change the insulin dose:

msg(TA.output = sendAmbulance) &&
count(Once(msg(TA.output = changeDose))) = 3

An example of a time-based property is the fact that the time it takes the doctors to send
back an acknowledgement (i.e., the time during which no doctorEval is received since
the last alarm (’high’) event) must never exceed 500ms:

time((!msg(TA.input = doctorEval)) Since
(msg(TA.output = alarm(’high’))) <= 500ms

Besides the instance monitors we considered so far, RTML also offers the possibility
to specify class monitors, which aggregate monitoring results over all executions (or
instances) of a given BPEL process. For instance, using an appropriate “class count”
operator Count, it is possible to compute the total amount of times a certain property
holds through all executions of a given process. For instance,

Count(msg(TA.output = sendAmbulance) &&
count(Once(msg(TA.output = changeDose))) = 3)

computes the total number of times a hospitalisation has followed three recommenda-
tions to change the insulin dose. Similarly, an appropriate “class average” operator Avg
allows us to compute the average times spent by services undertaking certain tasks. So,

Avg(time((!msg(TA.input = doctorEval)) Since
msg(TA.output = alarm(’high’)))) <= 200ms

constrains the average time it takes to the doctors to answer to an emergency.

8 L. Baresi et al.

The ASTRO approach to support monitoring is based on converting RTML proper-
ties into state-transition systems that evolve on the basis of basic events of the process
executions (e.g., reception and emission of messages). The states of the these state-
transition systems codify the current evaluation of the formula, so that certain states are
associated to the satisfaction of the monitoring requirement, while other states corre-
spond to failures. A monitoring engine is responsible for receiving the relevant events
from the BPEL execution engine, for correlating these events to the monitoring prop-
erties which depend on these events, for progressing the state of the state-transition
systems that correspond to these properties, and for reporting failures and violations.
This engine is built as an extension of ActiveBPEL [1], one of the most prominent
engines for executing BPEL processes. The ASTRO extension allows for intercepting
input/output messages and other relevant events such as the creation and termination of
process instances. The extension also includes the ActiveBPEL admin console, which
is exploited to report the information on the status of the monitors.

5 Comparison

In this section, we draw a comparison between Dynamo and ASTRO. This comparison
will cover different aspects of a monitoring approach, namely: the kinds of basic events
the approaches are able to monitor, the way these basic events can be combined in order
to monitor more complex properties, the granularity of executions that a monitor can
cover, and the level of integration of process execution and monitoring.

Basic events. We identify three different kind of basic events. Messages, i.e., the fact
that a given message (with given values) is sent or received by the process; this kind
of basic event can be managed by both approaches. Control points, i.e., the fact that
the execution has reached a given point of the BPEL process; only Dynamo supports
this kind of basic event. These events contain the variable values that are visible at that
point in the process (in accordance with BPEL’s own scoping rules). Life cycle, i.e.,
the possibility to monitor events related to the life cycle of a service execution, such as
the fact that a new execution of a service is started, that the execution terminates with
success or with an exception; only ASTRO supports this kind of basic events.

Event combination. We identify three different dimensions among which previous
events can be combined in order to express complex monitoring properties. Statistical
dimension, i.e., the possibility of producing aggregated information on a set of vari-
ables; both approaches support this dimension through operators such as max, min, avg,
sum, count. Time dimension, i.e., the possibility of measuring durations and time in-
tervals between events; this dimension is supported in a native way by ASTRO, while
it can be encoded in Dynamo through external variables. Temporal (or behavioural) di-
mension, i.e., the possibility of expressing properties on the temporal evolution of the
service, or behavioural patters that consist of sequences of events; this dimension is
supported in a native way by ASTRO, through the use of temporal logic operators; it
can be encoded in Dynamo through historical variables and quantifiers.

Granularity. This aspect is related to the granularity of process executions that are
covered by a monitoring property. In particular, a property can refer to the following

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 9

execution granularities. Location, i.e., the property is associated with a specific location
of a BPEL process, and the monitoring is performed when the execution of a process
instance reaches that location; Dynamo is based on this kind of granularity. Process
instance, i.e., the property is associated with a single execution instance of a BPEL pro-
cess, and the monitoring is performed through the instance execution; both approaches
support this natively. Process class, i.e., the property is associated with all the exe-
cutions of a BPEL process; ASTRO supports this kind of granularity in a native way
(through class monitors); in Dynamo, these properties can be monitored using histori-
cal variables, quantifiers, and aggregated operators. Cross-process, i.e., the monitoring
property can correlate events that refer to (execution instances of) different processes;
ASTRO does not support this granularity; Dynamo requires encoding them in terms of
“local” monitors and additional state variables.

Integration level. This aspect refers to the level of integration of the process execu-
tion engine with the monitor execution language. We identified the following levels of
integration. At the level of the BPEL specification, i.e., the monitor is performed by in-
strumenting the BPEL specification with specific instructions that activate and advance
the monitoring engine; this is the level of integration supported by Dynamo. At the level
of the BPEL engine, i.e., the BPEL engine is tightly integrated with the monitoring en-
gine and their executions are synchronised; neither Dynamo nor ASTRO support this
level of integration. Through asynchronous events sent by the BPEL engine (or any
other event source) to the monitoring engine; the monitoring engine is responsible for
deciding which events are relevant for which monitors, and for advancing the monitor-
ing task; ASTRO adopts this level of integration.

Discussion. A summary of the comparison of the Dynamo and ASTRO approaches is
reported in Table 1. (The last row corresponds to the integrated approach defined in
Section 6). The comparison shows that the two approaches are complementary under
several aspects. In particular, Dynamo defines monitoring properties that are attached
to specific locations of the BPEL specification, while ASTRO defines monitors that
are associated to the whole execution of a BPEL specification. This difference also has
effects on other aspects: on the level of integration between service execution and mon-
itoring (strictly interconnected in the case of Dynamo, mediated by events in the case
of ASTRO); on the capability to access the internal state of the BPEL process (sup-
ported by Dynamo but not by ASTRO); and on the capability of expressing properties
that combine events in a complex way (easy to achieve in ASTRO, while slightly more
difficult in Dynamo).

Table 1. Comparison of Dynamo and ASTRO approaches

Basic events Combination Granularity Integration level
mes- ctrl life statis- tem- loca- in- cross
sages points cycle tical time poral tion stance class process BPEL engine events

Dynamo + + – + +/– –/+ + + –/+ –/+ + – –
ASTRO + – + + + + – + + – – – +
Int.Appr. + + – + + + + + + + + + +

Legenda: +: yes –: no +/–: yes, with light encoding –/+: yes, with heavy encoding

10 L. Baresi et al.

6 Integration

In this section we discuss a possible way of integrating the approaches of Dynamo
and ASTRO, trying to exploit as much as possible the complementarity of the two
approaches and to achieve the highest level of expressiveness.

Basic events. We base our approach on WSCoL, i.e., we associate basic events to spe-
cific locations of the BPEL specification and we allow them to access the values of
the internal BPEL variables. A basic event is hence defined by a declaration, a loca-
tion within the BPEL code and by a property. The declaration defines the name, event
parameters, and type of the event (see below). The location consists of an XPath ex-
pression and of a keyword defining the kind of triggering condition we want (a pre-
or a post-condition), as in the Dynamo approach. The property is defined in an exten-
sion of the WSCoL language which extends the types of values properties can evalu-
ate to. More precisely, we identify the following three types of WSCoL expressions.
Boolean expressions, i.e., WSCoL expressions describing boolean conditions; all the
WSCoL expressions in the Dynamo approach, hence including the examples reported
in Section 3, are of this type. Numeric expressions, i.e., WSCoL expressions that eval-
uate to a numeric value; an example is the following expression for event ratio(uId:
string): numeric, which computes the ratio between the current and the previous
insulin dose:

let $doseNew = ($labResults/suggestedDose);
let $doseOld = retrieve(pID, uID, iID,
’[INVOKE]changeDose/post-condition’, ’doseStored’, 1);

let $ratio = $doseNew / $doseOld;
$ratio;

Tick expressions, i.e., WSCoL expression that express the fact that a given event has
occurred; these expressions are useful if a given event, associated to a given BPEL
location has to be reported to higher level monitors only under certain conditions; an
example is the following expression for event ratioOutOfBounds(uId: string):
tick, which reports an event only if the insuline ratio is out of bounds:

let $doseNew=...; $let $doseOld=... ; $let ratio=...;
($ratio>0.95 && $ratio<1.05 ? NOTICK : TICK)

Notice that the NOTICK keyword can be used also with numeric or boolean expressions,
in case the valued event has to be reported only under certain condition; an example is
the following expression for event ratioIfOutOfBounds(uId: string): numeric,
which reports the insulin ratio only if it is out of bounds:

let $doseNew=...; $let $doseOld=... ; $let ratio=...;
($ratio>0.95 && $ratio<1.05 ? NOTICK : $ratio)

Composite monitor properties. While basic events are based on Dynamo, the com-
bination of these basic events into complex monitoring properties is based on the AS-
TRO approach. That is, we replace the basic events described in Section 4 with the

An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations 11

events just introduced, while we keep the same operators and formulas defined in Sec-
tion 4 for instance monitors and class monitors. More precisely, the syntax for events
is “name(%corr = par, ...)”, where name is the name of the event as defined in the
WSCoL expression, par is the name of a parameter of the WSCoL declaration, and
corr is a correlation variable, which is used to correlate events of different processes
in a class monitor. Assume for instance that two basic events have been defined for
service TA, namely ratio (uId: string): numeric, and hospitalisation(uId:
string): tick. Then, the following instance monitor checks whether hospitalisation
has been decided after the insulin dose has been incremented three times:

hospitalisation & count(Once(ratio > 1)) >= 3

The following class monitor reports the number of cases in which such an increment in
the dose has lead to a hospitalisation for a given patient:

Count(hospitalisation(%pat = uId) &
count(Once(ratio(%pat = uId) > 1)) >= 3)

Notice the usage of the correlation variable to select only the service executions corre-
sponding to the same patient. If the correlation variable is removed, then a total count
for all patients is computed:

Count(hospitalisation & count(Once(ratio > 1)) >= 3

We remark that the explicit correlation mechanism we adopt allows for the definition
of cross-process class monitors. Indeed, it is easy to correlate events defined in different
processes. Assume for instance that a different service monitors blood pression and
defines basic events lowPression/normPression(uId: string): TICK. If we want
to monitor the case where an increase in the insulin rate is recommended after a low
blood pression is reported, we can define the following monitor:

(ratio(\%pat = uId) > 1) &
((!normPression(\%pat = uId)) Since (lowPression(\%pat = uId)))

Architecture. Since the monitoring language we have defined combines the localised
basic events à la Dynamo with instance and class monitors approach à la ASTRO, the
monitoring architecture is also a combination of Dynamo and ASTRO. More specifi-
cally, the computation of basic events is achieved by instrumenting the BPEL processes.
This requires a slight modification of the code that is weaved by Dynamo into the ex-
ecution engine. The instrumented processes, which are then deployed and executed on
a standard BPEL engine, send information on the occurrence and value of basic events
to the monitoring engine. This communication may occur through both asynchronous
events and synchronous communications, allowing for both asynchronous and syn-
chronous work by part of the execution and monitoring engine. The monitoring engine
performs a correlation step in order to decide which monitor instances are relevant for a
given basic event (and possibly instantiates new monitors if necessary). The monitoring
engine also updates the status of the relevant monitor instances and reports problems
and violations. The generation of the run-time components for the monitors combines
the Dynamo and ASTRO approaches as well. Indeed, the former approach is exploited
for instrumenting the BPEL processes, while the latter approach is responsible of gen-
erating the monitor instances executed by the monitoring engine.

12 L. Baresi et al.

7 Conclusions

In this paper, we proposed a novel monitor approaches that leverages Dynamo and
ASTRO, two existing approaches for the run-time monitoring of BPEL orchestrations
which have been developed within the research groups of the authors of this paper. The
new approach is able to monitor a wider range of features than any other monitoring
approach for BPEL orchestration the authors are aware of.

Our future work will concentrate on the implementation of the proposed integrated
approach and on its thorough evaluation on real-world applications; this will also re-
quire detailing the definition of the novel language and of the architecture described in
Section 6. On the side, we are also interested in evaluating the possibility to integrate
other approaches that were not developed by the authors. In a longer term, we plan to
investigate extensions of the proposed approach that include reactions to the anomalies
and emergencies identified by the monitoring; the goal is to close the loop and influence
the behaviour of the services according to the information collected during the moni-
toring. We also plan to extend the monitoring approach to the case of compositions of
web services that are distributed among different nodes of the network; in this case,
both the monitoring language and the monitoring architecture will have to deal with the
necessity of collecting events over the network.

References

1. ActiveBPEL. The Open Source BPEL Engine, http://www.activebpel.org
2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of the Execution

of Plans for Web Service Composition. In: Proc. ICAPS 2006, pp. 346–349 (2006)
3. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and

Classes of Web Service Compositions. In: Proc. ICWS 2006, pp. 63–71 (2006)
4. Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proc. ICSOC

2004, pp. 193–202 (2004)
5. Baresi, L., Guinea, S.: Towards dynamic monitoring of WS-BPEL processes. In: Benatallah,

B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

6. Baresi, L., Guinea, S.: A dynamic and reactive approach to the supervision of BPEL pro-
cesses. In: Proc. ISEC 2008, pp. 39–48 (2008)

7. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with queries. In:
Proc. VLDB 2007, pp. 603–614 (2007)

8. Bianculli, D., Ghezzi, C.: Monitoring Conversational Web Services. In: Proc. IW-SOSWE
2007 (2007)

9. Mahbub, K., Spanoudakis, G.: Run-time Monitoring of Requirements for Systems Composed
of Web Services: Initial Implementation and Evaluation Experience. In: Proc. ICWS 2005,
pp. 257–265 (2005)

10. Momm, C., Malec, R., Abeck, S.: Towards a Model-driven Development of Monitored Pro-
cesses, Wirtschaftsinformatik, vol. 2 (2007)

11. Roth, H., Schiefer, J., Schatten, A.: Probing and monitoring of WSBPEL processes with web
services. In: Proc. CEC-EEE 2006 (2006)

http://www.activebpel.org

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 13–24, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards Goal-Driven Self Optimisation of Service
Based Applications

Andreas Gehlert and André Heuer

University of Duisburg-Essen, Schützenbahn 70
45117 Essen

{andreas.gehlert,andre.heuer}@sse-uni-due.de

Abstract. Service based applications are constructed to be easily adaptable to
changing environments. This adaptation was primarily investigated with respect
to monitoring events, e. g., a service based application is adapted when the exe-
cution of a service fails. In this paper we focus on the adaptation of service
based applications due to newly available service. In this respect we discuss
whether a service of the service based application should be replaced by a ser-
vice, which becomes available. From the requirements engineering perspective
we argue that a service based application may be adapted when the new ser-
vices contribute better to the goals of the service based application. In addition,
we show that it may also be valuable to adapt a service based application when
newly available services provide more functionality than the ones previously
used. Both analyses are based on model comparison techniques with Tropos
goal models and Tropos’ reasoning techniques.

Keywords: Adaptation of Service Based Applications, Model Comparison,
Goal Models, Requirements Engineering.

1 Introduction

In traditional software engineering three different motivations for software mainte-
nance and corresponding software adaptations are distinguished [1, p. 493]: Correc-
tive maintenance aims to eliminate errors in the software which were not discovered
during the testing phase. Adaptive maintenance reacts to changes in the system’s
context and adapts the software to new requirements. Perfective maintenance aims to
improve the current software, e. g. its performance.

Due to an increased number of mergers in the industry [2, pp. 12] and an increased
pressure on IT departments to improve their efficiency [3, pp. 5] service based appli-
cations (SBA) evolved, which particularly facilitate adaptation. This adaptation is
enabled by defining technologies for describing, finding and composing services. By
service we understand any computational resource offered over a network [4, p. 51].

One current vision is to engineer SBAs to enable self-optimization. Such self-
optimising systems “… continually seek ways to improve their operation, identifying
and seizing opportunities to make themselves more efficient ….” [5, p. 43] Although

14 A. Gehlert and A. Heuer

current adaptation and monitoring approaches aim to eliminate errors in the SBA
(corrective maintenance) or to improve the performance of the SBA (perfective main-
tenance), they are usually technology-centred and disregard requirements engineering
(RE) aspect of SBAs.

In this paper we complement current adaptation and monitoring approaches with a
RE perspective. Our approach strives to achieve self-optimising SBAs (perfective
maintenance) by means of fulfilling given requirements. To focus the paper we limit
the discussion of adaptation scenarios to the analysis whether existing services in the
SBA should be replaced by newly available services. Other adaptation techniques,
e. g. the reconfiguration of the workflow or an adaptation of the service infrastructure
are not addressed.

If a new service is available, the requirement engineer investigates whether the new
service improves the SBA with respect to its requirements. In order to use a new ser-
vice in a SBA, we raise two requirements: First, the service must “fit” in the existing
SBA. Second, the service must contribute to the SBA’s requirements better than pre-
viously available services. The first requirement ensures that the service provides the
functionality needed by the SBA. The second requirement ensures that the new ser-
vice is superior to existing services.

To satisfy both requirements, we chose a goal-driven approach. The main reason
for this choice is the availability of reasoning techniques for goal models, which al-
lows analysing the effect of the satisfaction of a single goal on the whole goal model.
This facilitates the analysis of the impact of a single service on the entire SBA. To
address requirement one, we compare the goal model of the SBA and the goal model
of the new service. The service is only useable if its goal model is identical or similar
to the goal model of the SBA. To find out whether the service provides higher satis-
faction ratios for the SBA’s goal model, we use the goal reasoning mechanisms pro-
vided in [6]. We argue, that an adaptation of an initial SBA is advisable if all goals are
at least as satisfied as in the initial situation but one goal has a higher satisfaction
(pareto principle). In case that some goals of the SBA achieve higher satisfaction rates
in the new situation and some goals achieve lower satisfaction rates, the requirements
engineer may decide on the adaption of the SBA. Lastly, an adaptation may also be
advisable when the new service provides additional functionally.

We chose to use Tropos as goal modelling approach [7, 8]. The rationale for using
Tropos is threefold: First, Tropos is a comprehensive approach to develop software
systems from early requirements to its implementation. We are particularly interested
in the early RE activities, which are well covered by Tropos. Second, Tropos was
already applied to the service discipline, e. g., it was already shown that it is applica-
ble to SBAs [e. g. 9, 10-13]. Third, Tropos comes with a formalisation which allows
analysing the influence of the satisfaction of one goal on the entire goal model [6].

The paper is organised as follows: In section X2 X we introduce Tropos’ goal model-
ling techniques, which are used throughout this paper. In section X3 X we show how goal
models can be used to decide whether a new service should be used in an existing
SBA, e. g. whether an adaption of this SBA is beneficial. We discuss the limitations
of our approach along its assumptions in section X4, review the related work in sec-
tion X5 X and provide conclusions in section X6 X.

 Towards Goal-Driven Self Optimisation of Service Based Applications 15

2 Goal Modelling in Tropos

Tropos rests on the agent oriented paradigm and uses goal modelling techniques
known from i* [14] for analysing early and late requirements. These early require-
ments are documented as actor and goal models. Actor models include actors, their
goals and their dependencies. The actor diagram is complemented by a goal model for
each actor. This goal model shows the decomposition of the actor’s goals into sub-
goals and plans (tasks in i*; cf. Fig. 1 for an example).

Since we are only interested in the SBA (represented as actor in Tropos) and not its
interrelation with other actors, we only use Tropos’ s goal models. Its main concepts
are actors, goals, resources and plans. These elements are connected with decomposi-
tion, contribution and means-end links. An actor represents an organisational unit, a
position or a role. The actor’s strategic interests are represented by goals. Goals are
further divided into hard-goals and soft-goals. While hard-goals have clear cut meas-
urement criteria to specify its fulfilment, soft-goals do not have such criteria. In this
paper we use hard-goals to model functional and soft-goals to model quality require-
ments. Goals can be decomposed using And/Or decomposition links. A plan is an
activity which may contribute to a goal. A plan may also contribute positively or
negatively to soft-goals. Means-end links are used to represent which plan or goal
(means) is used to fulfil a goal (end, [7, pp. 206]).

In a SBA each plan describes a service, which realises this plan [9, p. 21]. To imple-
ment a SBA, it is, therefore, necessary to find services, whose descriptions fit the plan.
Consequently, a SBA in the Tropos early RE perspective is a set of services fitting a set
of plans. The description of this fitness relation is described in the next section.

3 Using Goal-Models for Adapting SBAs

To define the fitness relation between a plan and a service we need to define what a
plan and a service is. A plan in Tropos is defined by its name and its relations to goals
and soft-goals via a set of means-end links M and via a set of contribution links C .
Since we later use a satisfaction propagation mechanism to describe the dependencies
between different goals, it is sufficient to include only directly connected means-end
and contribution links in the definition of a plan. Thus, we can define a plan as a tuple
of sets of means-end and contribution links: ,plan M C=< > .

To compare plans and services we assume:

(A1) Services are described by Tropos goal models. These goal models are registered
together with the service in a service registry.

(A2) Each service’s goal model contains only the name of the service as plan and only
goals and soft-goals connected by means-end and contribution links. Conse-
quently, the service goal model is structurally equivalent to the plan’s goal
model.

Assumption X(A1) X is critical insofar as service providers need to describe their ser-
vices with goal models. A detailed discussion of this assumption is postponed to sec-
tion X44 X. Assumption X(A2) X is not critical as we describe below an algorithm, which
produces this sub-model from any Tropos goal model.

16 A. Gehlert and A. Heuer

According to assumption X(A2) X services and plans are described by the same ele-
ments. Consequently a service is also a tuple of sets of means end and contribution
links: ,service M C=< > . A means-end link m M∈ is a connection between one
Tropos model element e and a goal g . Each contribution link c C∈ is a connection

between one Tropos model element e and a soft-goal s . It is attributed with a quanti-
tative number to express the strength ω of the contribution to this soft-goal:

, ,c e s ω=< > .
As we concentrate on requirements engineering for adapting SBAs, we assume that

a SBA is already running and that its initial set of requirements are expressed as Tro-
pos goal model. In addition, each service in this SBA fits to one plan in the require-
ments specification.

After the initial SBA is operating, the service provision is monitored, e. g. by regu-
larly querying service registries. When new services are available, an adaptation cycle
is triggered. The first activity in this cycle extracts a goal model for each plan of the
SBA’s goal model. These goal models are in turn compared to the service’s goal
model. After this comparison, the goal achievements for all goals in the Tropos goal
model are calculated based on formal reasoning techniques described below. These
results are than used to decide about the adaptation of the SBA. After this adaption
the process starts again. The underlying assumption of this RE process can be formu-
lated as follows:

(A3) New services become available over time.

This assumption is fair because the flexibility of SBAs is only feasible when new
services are made available over time.

In the next step we need to describe how the goal model for each plan can be ex-
tracted from the entire Tropos model. Extracting a goal model for each plan is neces-
sary since we want to delegate the execution of each plan to a service and since the
Tropos model represents the entire SBA and not only one individual service. Intui-
tively the goal model for each plan contains all its contribution and means-end links
and all the connected elements. Both link types are important because we want to
know how the service for each plan influences the goal achievement of the entire
SBA. In sum, the plan’s goal models contains: the plan, all connected goals via con-
tributions links and all connected goals via means-end links.

To illustrate the extraction of the goal model for one plan, Fig. 1 X provides an ex-
ample of a retailer system [partially taken from 9, p. 22]. The main goal of this retailer
system is to sell products. A goal analysis revealed the goals “order handling” and
“cataloguing” (And decomposition). Tasks and soft-goals were added to the diagram
and were connected to these goals with means-end relationships and contribution
links respectively. The warehouse service for instance contributes positively with the
strength of +0.3 to the soft-goal “performance”. For the initial SBA, each plan is the
description of a service. At the beginning of the RE process, the goal model of this
service is identical to the extracted goal model of the plan. The goal model for the
plan “eShop Service” for instance contains the hard-goal “Cataloguing” and the soft-
goals “Performance”, “Availability”, “Transaction Reliability” as well as the respec-
tive means-end and contribution links (XFig. 1 X, right).

 Towards Goal-Driven Self Optimisation of Service Based Applications 17

Fig. 1. Extracting the Sub-Model for the Plan “eCatalogue Service” [example partially taken
from 9, p. 22]

3.1 Comparing the Service and the Plan Goal Models

After the specification of the initial requirements and the extraction of the goal model
for each plan, we need to monitor the service provision. If the service provision
changed we want to find out whether the newly available services “fit” the existing
plans better than the initial set of services. In this section we define this fitness rela-
tion. This fitness relation is based on the comparison of the plan’s goal model and the
service’s goal model in accordance with assumptions X(A1) X and X(A2).

The systematic analysis of model comparison conflicts was initially developed in
the data modelling discipline. Batini et al. distinguish between naming conflicts,
structural conflicts and type conflicts.

• Naming conflicts arise due to the different usage of the natural language in models

[14, p. 344].
• Type conflicts can be traced back to the divergent usage of the modelling language,

e. g. to express one and the same real world phenomenon as entity type or as at-
tribute [14, p. 346].

• Structural conflicts arise when a real world proportion is differently reconstructed
by different modellers, e. g. because of different goals of the modelling project [14,
p. 346].

A model comparison technique aims to identify the before-mentioned conflicts.

Naming conflicts can be resolved by analysing the homonyms and synonyms used in
the models and by renaming the respective model elements so that identical names in
both models have the same and different names in the models have different mean-
ings. As this problem was already solved previously [for an overview cf. 15, p. 344],
we assume here that naming conflicts were already resolved:

18 A. Gehlert and A. Heuer

(A4) The service’s goal model and the plan’s goal model use a shared ontology, i.e.
two goals with the same name are identical and two goals with different names
are different.

Resolving type conflicts means to define a similarity relation between equivalent or
similar model structures. Our models contain only hard-goals, soft-goals, contribution
links and means-end links (cf. assumption (A2)). In addition, hard-goals describe
functional requirements and soft-goals represent quality requirements. As functional
requirements in the service domain are described by the web service description lan-
guage (WSDL) and non-functional requirements are described by service level
agreements (SLA) it follows that hard-goals and soft-goals are mutually exclusive and
cannot be resolved in the type conflict analysis. The remaining elements are means-
end and contribution links. Means-end links are used whenever plans and soft-goals
provide a means to achieve a goal [7, p. 208]. Consequently, the means fully satisfies
the goal or soft-goal, which is identical to a contribution link with a degree of +1.0.

To define the fitness relation between a plan and a service we introduce the func-
tions ()name , which returns the name of a goal model element and ()type , which
returns the type of a model element. Based on this analysis of type conflicts we can
now define when a plan matches a service description:

()

()
()

()()

: () () (() ()
:

: () () () - 1

: () ()
:

: () () () -

fits

S S P S P S

P P

S S P S P s

S S P S

p P

S S P S S

p s

m M name g name g type g type g
m M

c M name g name s type g soft goal

c C name s name s
c C

m M name s name g type g soft goal

ω

⎯⎯→ ⇔

∃ ∈ = ∧ = ∨⎛ ⎞
∀ ∈ ∧⎜ ⎟⎜ ⎟∃ ∈ = ∧ = ∧ =⎝ ⎠

⎛ ∃ ∈ = ∨ ⎞
⎜ ⎟∀ ∈
⎜ ∃ ∈ = ∧ =⎝ ⎠

⎟

This fitness relation holds when:

1. Each means-end link Pm in the plan’s goal model exists also in the service’s goal

model (Sm) and the connected goals have identical names and types. As a means

end link can also be represented as contribution link, it follows: Each means end
link Pm of the plan’s goal model exists in the service’s goal model as contribution

link with the strength 1sω = and the connected goals have the same name and the

plan’s goal is a soft-goal.
2. It must additionally hold that for each contribution link in the plan’s goal model pc

there is either a contribution link Sc in the services goal model and the connected

goals have identical names. Alternatively, the contribution link pc may also be rep-

resented as means end link Sm in the service’s goal model. In this case both con-

nected goals must have the same name and the service’s goal must be a soft-goal.

Lastly, structural conflicts cannot be resolved and represent the real differences of

the models. However, they can for instance be used to analyse whether a goal model 1
includes goal model 2 but has additional hard- and/or soft-goals.

 Towards Goal-Driven Self Optimisation of Service Based Applications 19

3.2 Decision Support for Adapting a SBA

An adaptation of the SBA is only feasible if the relation fitsp s⎯⎯→ holds – otherwise

the service does not provide the required functionality needed by the SBA. When a
new service is registered in a registry (assumption X(A3) X) and the fitness relation holds
for this service for one plan, we can distinguish four situations:

Situation 1 Equal Goal Satisfaction: The goal model of the new service is identical

to the plan’s goal model. In this case the new service can be used as substitute of
the existing service, e. g. when the existing service fails.

Situation 2 Different Goal Satisfaction: The new service may contribute differently
to existing soft-goals by assigning different strengths to contribution links. These
different strengths are further propagated in the goal model and may lead to dif-
ferent satisfaction ratios of goals and soft-goals. The adaptation decision is based
on these new goal satisfaction ratios.

Situation 3 Goal extension: The new service may provide additional functionality
not used in the initial SBA. This new functionality is expressed as additional hard-
goals in the service goal model, which do not correspond to any goal in the plan’s
goal model (structural conflict). The SBA may be adapted accordingly to exploit
the additional functionality of the new service.

Situation 4 Goal reduction: The new service may provide less functionality in com-
parison to the one used in the current SBA. The requirements engineer may decide
using this service in combination with another service, which together fulfil the
requirements of the SBA better than the services used previously.

In the following we demonstrate the calculation of the goal satisfaction values in ac-
cordance to the newly available service. We use the quantitative reasoning techniques
in Tropos goal models presented in [6, p. 10]. The algorithm presupposes that each
goal has two variables ()Sat G and ()Den G describing the satisfiability and deniabil-

ity of the goal. These variables are computed according to the strength ω , which is
annotated to contribution links. This strength describes the impact of one goal on an-
other goal. Due to space limitations, we restrict ourselves to goal satisfyability.

For each contribution link 2 1
sG Gω +⎯⎯⎯→ with the strength ω Giorgini et al. define

the following propagation axiom: 2 1 2 1: () () ()sG G Sat G x Sat G xω ω+⎯⎯⎯→ ≥ → ≥ ⊗

[6, p. 12]. The operator ⊗ is defined as 1 2 1 2defp p p p⊗ = ⋅ . In addition, we assume

that means-end links can be treated like contribution links with 1ω = . We can now
use the axiom to calculate ()Sat G for each goal of the goal model. This goal propa-

gation assumes the following:

(A5) The strengths ω of all service’s goal models are comparable, e. g. they are
measured objectively.

This assumption is necessary to actually compare the satisfaction ratios of the soft-

goals among different services. We discuss this assumption in section 4.
The result of the label propagation can be presented as bar chart. The y-axis is la-

belled with goals and soft-goals, the x-axis is labelled with the degree of satisfaction

20 A. Gehlert and A. Heuer

and the bars show the degree of satisfaction of the different goals. The bar chart rep-
resentation of the goal model in XFig. 1 X is depicted in XFig. 2 X X (black bars).

Assume that new services were registered in a service registry. To use these new
services we require, that their goal models are structurally identical to the plan’s goal
model. Two goal models of new services, which fulfil this requirement are depicted in
XFig. 2 (gray bars) X. Both models conform to the before-mentioned situation 2.

In comparison to the goal model in XFig. 1 X, the contribution links of service in
XFig. 2 X to Transaction Reliability and to Availability have an increased strength (0.6
instead of 0.5 and 1.0 instead of 0.3). Using service means to achieve higher ful-
filment rates for all soft-goals. Consequently, using service is beneficial from the
RE perspective and should therefore be used.

Service in XFig. 2 X has a reduced strength for the contribution link to Reliability
(0.3 instead of 0.5) but an increased strength for the contribution link to Availabilty
(0.7 instead of 0.3). The goals Accessibility, Availability and Customer Satisfaction
have now a higher satisfiability. However, the satisfiability of the goal Reliability
dropped. A RE expert has to decide about the adaptation of the SBA. In this case this
may be valuable because the goal Consumer Satisfaction increased slightly. The RE
expert has to balance this advantage with the disadvantage of a lower satisfiability of
the goal Reliability.

4 Discussion

The results of this paper are limited to the assumptions X(A1)X – X�A5�(A5) X. In particular it
relies on the assumption that new services become available over time X(A3) X. This
assumption is fair because changing environments lead to new IT solutions in the past
and will most likely lead to new services in the future.

Assumption X(A2) X is based on assumption (A1) and requires that each provider pro-
vides a goal model as description of his/her service (assumption (A1)) and that this
goal model consists only of one plan representing the service as well as goals and
soft-goals directly connected to the plan with means-end and contribution links. This
assumption is also less critical since we explained how such a reduced goal model can
be extracted from a larger goal model.

Assumption X(A4) X requires that service providers and service consumers use a
shared vocabulary. Although this assumption is not realistic, it can be eliminated by
linguistic approaches, which resolve homonyms and synonyms. For instance, Word-
Net [16] was successfully used to resolve homonyms and synonyms in the SeCSE
approach to requirements engineering [17]. In other words, assumption X(A4) X was
helpful to focus this paper but can be overcome by using existing approaches.

The most critical assumptions are X(A1) and (A5) X. They require that service provid-
ers provide a goal model for each service (assumption (A1)) and that the strengths of
the contribution links are objectively comparable between different services. Both
assumptions seem unrealistic. However, instead of forcing service providers to de-
scribe their services with goal models, these goal models may be generated. The cen-
tral plan element can be generated according to the service’s name. The functional
requirements of this service are described in a WSDL document. Consequently, the
hard-goals are represented by the methods contained in this WSDL document. In

 Towards Goal-Driven Self Optimisation of Service Based Applications 21

0 0,25 0,5 0,75 1

Sell Products

Order Handling

Cataloguing

Performance

C. Satisfaction

Availability

Accessibility

T. Reliability

1

Performance

Cataloguing

eShop
Service

Transaction
Reliability

+0.1 +0.6

Availability

+1.0

2

Performance

Cataloguing

eShop
Service

Transaction
Reliability

+0.1 +0.3

Availability

+0.7

0 0,25 0,5 0,75 1

Sell Products

Order Handling

Cataloguing

Performance

C. Satisfaction

Availability

Accessibility

T. Reliability

Fig. 2. Quantitative Comparison of Goal Models

addition, a SLA describes the quality requirements for a service and it may be used to
generate soft-goals. If the quality characteristics are quantified in the SLA, this quan-
tification can also be used to calculate the strengths of the contribution links. Assume
that the requirement for the parameter “response time” is 1s. Service 1 has a response
time of 2s and service 2 a response time of 3s. Consequently, the strengths of the
contribution links are 0.5 for service 1 and 0.33 for service 2. The feasibility of this
approach, however, is subject to further research.

5 Related Work

Although Tropos was applied in the service domain, these applications do not explain
when to adapt a SBA. Aiello and Giorgini for instance explore quality of service as-
pects using Tropos actor models [9]. The authors use Tropos’ formal reasoning tech-
niques in [6] to calculate the fulfilment of a goal structure according to a given set of
services. As the approach by Aiello and Giorgini does not cover the adaptation of a
SBA, our approach is an extension to [9]. In another approach Penserini et al. explore
how Tropos can be used to develop SBAs. However, the authors do not focus on adap-
tation. Another application of Tropos was put forward by Pistore et al. in [13]. The
authors explain how SBAs can be developed by step-wise refining plans and comple-
menting these plans with a formal workflow definition. Since the focus of Pistore et al.
is on deriving service compositions, the authors do not cover adaptation issues.

A similar approach to ours was put forward by Herold et al. in [18]. The authors re-
late existing components to goal models. This relation is established by so called ge-
neric architectural drivers. These drivers enable the selection of existing components,

22 A. Gehlert and A. Heuer

which fit with the goals and soft-goals of the goal model. Herold et al.’s approach
focus on finding appropriate components and refining the initial goal model with the
help of these components. However, the approach does not address adaptation.

Another RE approach, which is similar to ours, was put forward in the SeCSE pro-
ject [19]. In SeCSE initial requirements are formulated as goal models [19, pp. 21] or
use cases [17, 20-22], which are than translated into services queries [19, p. 31].
These services queries are sent to a registry. The resulting services are used to refine
the initial set of requirements. However, in SeCSE the focus was on refining require-
ments according to the current service provision but not on adapting existing SBAs.

6 Conclusion

In this paper we presented an approach towards self-optimisation of SBAs. In particu-
lar we showed how to decide whether a SBA should use newly available services.
Informally a SBA should use a new service if this service has the same functionality
as the existing service but fulfils the requirements of the SBA better, e. g. has a higher
performance than the existing service.

To measure the fulfilment of the requirements we proposed to use Tropos and its
formal reasoning techniques. The starting point of our approach is a goal model of the
SBA’s requirements. Each plan in this goal model is the description of a service.
When a new service is available, the Tropos goal model is compared to the goal
model of this service. The new service is superior to the previous one, if the goal
satisfaction ratios for all goals in the SBA requirements specification are higher com-
pared to the old service. In addition, the requirements engineer may also decide to
adapt the SBA, when the new service is superior with respect to some goals but infe-
rior to others or when the new service provides additional functionality expressed as
additional goals.

To analyse the impact of one particular service on the whole SBA we use Tropos
formal reasoning techniques. These reasoning techniques allow to propagate the local
satisfaction ratios of goals of one service to the whole goal model and, thus, to ana-
lyse the dependencies of the different services within this SBA.

Our approach clearly shows that the prerequisite of the adaptation of SBAs dis-
cussed here requires that service providers and service consumers speak the same
language, e. g. that both parties agree on a shared ontology. In addition, the difficul-
ties of measuring quality aspects of services are even more evident since a compari-
son between two services with respect to their quality attributes requires a shared
metrics between service providers and service consumers. One approach, which tack-
les this problem can be found in [23].

Our approach can be extended in four ways: First, a revised version may also con-
tain the notion of goal deniability introduced in [6], which we left out due to space
limitations. Second, we need to show that the proposed approach to generate service
goal models from WSDL and SLA specification is feasible. This helps to overcome
the restrictive assumption underlying our approach. Third, the combination of the
proposed requirements engineering approach with adaptation techniques – in particu-
lar with self optimisation techniques – would provide the missing link to the service
engineering domain. Forth, the approach should be formally and empirically validated
to prove its efficiency.

 Towards Goal-Driven Self Optimisation of Service Based Applications 23

Acknowledgements

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube).

References

1. Swanson, E.B.: The Dimensions of Maintenance. In: International Conference on Software
Engineering (ICSE 1976), San Francisco, CA, USA, pp. 492–497 (1976)

2. Budzinski, O., Kerber, W.: Megafusionen, Wettbewerb und Globalisierung: Praxis und
Perspektiven der Wettbewerbspolitik, vol. 5. Lucius & Lucius, Stuttgart (2003)

3. Mutschler, B.: Die IT und betriebliche Informationssysteme im Spannungsfeld von Inno-
vation und Wirtschaftlichkeit. Ulm (2006)

4. Colombo, M., Nitto, E.D., Penta, M.D., Distante, D., Zuccalà, M.: Speaking a Common
Language: A Conceptual Model for Describing Service-Oriented Systems. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 48–60. Springer,
Heidelberg (2005)

5. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer 36,
41–50 (2003)

6. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Formal Reasoning Tech-
niques for Goal Models. Journal on Data Semantics, 1–20 (2003)

7. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Autonomous Agents and Multi-Agent Sys-
tems 8, 203–236 (2004)

8. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. Information Systems 27, 365–389 (2002)

9. Aiello, M., Giorgini, P.: Applying the Tropos Methodology for Analysing Web Services
Requirements and Reasoning about Qualities. UPGRADE: The European Journal for the
Informatics Professional 5, 20–26 (2004)

10. Lau, D., Mylopoulos, J.: Designing Web Services with Tropos. In: International Confer-
ence on Web Services (ICWS 2004), San Diego, CA, USA, pp. 306–313 (2004)

11. Misra, S.C., Misra, S., Woungang, I., Mahanti, P.: Using Tropos to Model Quality of Ser-
vice for Designing Distributed Systems. In: International Conference on Advanced Com-
munication Technology (ICACT 2006), Phoenix Park, Gangwon-Do, Republic of Korea,
pp. 541–546 (2006)

12. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From Stakeholder Needs to Service Re-
quirements. In: 2nd International Workshop on Service-Oriented Computing: Conse-
quences for Engineering Requirements (SOCCER 2006), Minneapolis, Minnesota, USA,
pp. 8–17 (2006)

13. Pistore, M., Roveri, M., Busetta, P.: Requirements-Driven Verification of Web Services.
Electronic Notes in Theoretical Computer Science 105, 95–108 (2004)

14. Yu, E.: An Organisational Modelling Framework for Multiperspective Information System
Design. Requirements Engineering 1993 – Selected Papers. Department of Computer Sci-
ence, University of Toronto, Toronto, pp. 66–86 (1993)

15. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
VLDB Journal 10, 334–350 (2001)

24 A. Gehlert and A. Heuer

16. Miller, G.A.: WordNet - Princeton University Cognitive Science Laboratory (2006),
http://wordnet.princeton.edu/

17. Jones, S.V., Maiden, N.A.M., Zachos, K., Zhu, X.: How Serivce-Centric Systems Change
the Requirements Process. In: 11th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ 2005), Porto, Portugal, pp. 105–119 (2005)

18. Herold, S., Metzger, A., Rausch, A., Stallbaum, H.: Towards Bridging the Gap between
Goal-Oriented Requirements Engineering and Compositional Architecture Development.
In: 2nd Workshop on Sharing and Reusing architectural Knowledge Architecture, Ration-
ale, and Design Intent (SHARK-ADI 2007), Minneapolis, USA (2007)

19. Maiden, N.: Service Centric System Engineering: A2.D5 SeCSE Requirements Process
V2.0. City University London (2006)

20. Zachos, K., Maiden, N.: Web Services to Improve Requirements Specifications: Does It
Help? In: Paech, B., Rolland, C. (eds.) REFSQ 2008. LNCS, vol. 5025, pp. 168–182.
Springer, Heidelberg (2008)

21. Zachos, K., Maiden, N.A.M., Zhu, X., Jones, S.: Discovering Web Services to Specify
More Complete System Requirements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 142–157. Springer, Heidelberg (2007)

22. Zachos, K., Zhu, X., Maiden, N., Jones, S.: Seamlessly Integrating Service Discovery Into
UML Requirements Processes. In: Proceedings of the 2006 International Workshop on
Service-Oriented Software Engineering (SOSE 2006), Shanghai, China, pp. 60–66 (2006)

23. Zachos, K., Dobson, G., Sawyer, P.: Ontology-aided Translation in the Comparison of
Candidate Service Quality. In: Proceedings of the 4th SOCCER Workshop, Barcelona,
Spain, September 8 (2008)

Towards Correctness Assurance in Adaptive
Service-Based Applications�

Raman Kazhamiakin1, Andreas Metzger2, and Marco Pistore1

1 FBK-Irst, via Sommarive 18, 38050, Trento, Italy
{raman,pistore}@fbk.eu

2 SSE, University of Duisburg-Essen, Schützenbahn 70, 45117 Essen, Germany
andreas.metzger@sse.uni-due.de

Abstract. Service-based applications (SBAs) increasingly have to become adap-
tive in order to operate and evolve in highly dynamic environments. Research on
SBAs thus has already produced a range of adaptation techniques and strategies.
However, adaptive SBAs are prone to specific failures that would not occur in
“static” applications. Examples are faulty adaptation behaviours due to changes
not anticipated during design-time, or conflicting adaptations due to concurrently
occurring events. For adaptive SBAs to become reliable and thus applicable in
practice, novel techniques that ensure the correctness of adaptations are needed.
To pave the way towards those novel techniques, this paper identifies different
kinds of adaptation-specific failures. Based on a classification of existing adap-
tation approaches and generic correctness assurance techniques, we discuss how
adaptation-specific failures can be addressed and where new advanced techniques
for correctness assurance of adaptations are required.

1 Introduction

A wide range of research approaches addresses the problem of adaptation in Service-
Based Applications (SBAs). Those include solutions for the definition and realization
of adaptation requirements as well as strategies for adapting the applications to new sit-
uations and to react to various events and failures. As SBAs increasingly have to operate
and evolve in highly dynamic environments and must dynamically and autonomously
accommodate for various changes and events, dynamic adaptation is particularly impor-
tant since it allows for automated and timely modification of the underlying application.

In general, the approach to dynamic SBA adaptation may be described as follows:
At design time, the service integrator prescribes the adaptation specification, by (i)
identifying the dynamic part of the application (i.e., what can change or can happen in
the application or its environment that requires the application to adapt), (ii) defining
the adaptation requirements that the underlying application should respect, and (iii)
selecting the strategies to realize these requirements. During run-time, the application
detects the changes and executes the selected adaptation strategies according to the
adaptation specification.

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 25–37, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 R. Kazhamiakin, A. Metzger, and M. Pistore

While the functional behavior of an SBA typically is controlled by user input, dy-
namic adaptation is triggered by additional information about the application and its
context (e.g., failures of constituent services or different network connectivity). As a
consequence, dynamic adaptation may lead to new kinds of failures. Those adaptation-
specific failures include:

– the execution of the adaptation specification may fail, when the application encoun-
ters a situation that is not covered by the adaptation specification, i.e. which has not
been taken into account during the design phase;

– the adaptation actions are concurrent with the other events and activities of the
application leading to unpredictable results;

– inadequate adaptation strategies are chosen over and over again (i.e., the adaptation
enters a life-lock), wasting resources without achieving expected results.

Those kinds of adaptation-specific failures are not explicitly addressed by traditional
correctness assurance techniques. Thus, novel means for the correctness assurance of
adaptations are needed. In order to provide such correctness assurance techniques for
adaptive SBAs, the specific aspects of one or another adaptation approach as well as the
specific characteristics of the adaptation-specific failures need to be taken into account.

To pave the way towards those techniques, this paper thus sets out to

– provide a classification of existing adaptation approaches (Section 2);
– identify and classify potential adaptation-specific failures (Section 3);
– provide our vision on how to address these adaptation-specific failures (Section 4).

2 Adaptation in SBA

Depending on the type of adaptation, different adaptation-specific failures may occur
and may have a different impact on the functionality of the application. In this section
we will thus provide an overview of the different types of adaptations for SBAs. We
remark that in this work we focus on the problems related to the adaptation performed
automatically at run-time, since the adaptation performed at design-time may be ana-
lyzed by conventional quality assurance means, such as verification or testing.

We distinguish between configuration (or parameter) adaptation and composition
adaptation. Configuration adaptation includes modification of certain application pa-
rameters and properties (e.g., non-functional properties) or modification of services in-
volved in the composition (e.g., replacement of one service with another). Composition
adaptation deals with changes in the application structure, i.e., the flow of the activi-
ties is modified. As examples, additional activities are invoked, previous operations are
undone, or completely different composition fragments are executed.

Another important factor – orthogonal to the above one – concerns the way the adap-
tation strategy is determined and realized. In some approaches the strategy is predefined
at design time, in other approaches the strategy is defined dynamically depending on the
concrete situation. While the former approaches are easier to realize, they are less flexi-
ble at run-time. On the contrary, the latter approaches are more appropriate at run-time,
but require complex algorithms and may be time consuming.

Towards Correctness Assurance in Adaptive Service-Based Applications 27

2.1 Configuration Adaptation

There exists a wide range of approaches where the changes do not affect the under-
lying composition model, but only certain parameters or properties of the application
configuration. A typical scenario for such kind of approaches concerns the situation,
where there is a change of the constituent services, i.e. the services that are bound to the
application. The change may happen due to the fact that constituent services become
unavailable or their quality-of-service characteristics degrade. In this case adaptation is
performed by replacing “bad” services with other ones according to certain criteria. An-
other example of such type of changes is the modification of service-level agreements
taking place as a result of re-negotiation of certain non-functional parameters.

In some of these approaches the expected configuration values or value bounds are
predefined. Typically, these values are specified in service-level agreements; they define
appropriate levels of quality-of-service (QoS) parameters [1,2]. The approaches aim to
discover and bind the services that satisfy these constraints.

Other approaches do not specify any constraints on the parameters but try to dynam-
ically achieve those values that provide the best possible configuration; e.g. in [3] the
optimal value of several QoS metrics is targeted and in [4] the services with the best
reputation are chosen.

2.2 Composition Adaptation

In many approaches, adaptation modifies the way, in which an application is executed,
i,e., the process / composition model of the SBA is changed. These changes may be
entailed by various factors, such as the necessity to customize SBA in order to deal with
particular user types, or the necessity to operate in a new environment, where policies
and constraints for the given SBA are different. In this case, the application should
change the executed flow of activities in accordance to the adaptation specification.
This may include, for example, to skip certain activities or to perform additional ones,
to execute completely different process fragments, or to re-execute or roll back already
performed activities.

A typical scenario for composition adaptation using predefined strategies is pro-
cess migration: a new process model is defined and all the running instances should
be changed in order to correspond to this model [5,6]. Adaptation in this case changes
those parts of the running application instance that have not been executed yet. Other ap-
proaches define potential variants in the application model and conditions, under which
the variant applies [7]. In some approaches the adaptation specification has a form of
meta-level instructions to be applied to the process model, such as “redo a part of the
process”, “roll back to safe point”, “skip to a particular execution point”, “substitute a
part of the process”, etc [8].

There exist approaches where the composition is defined dynamically. Using certain
application requirements, the composition is created automatically and may be even
recomposed in case of certain changes or problems. In [9] the approach relies on a
set of functional and non-functional requirements and constraints, based on which the
services are composed and mediated dynamically. In [10] a domain process model with
the different deviations is used as a basis for the composition.

28 R. Kazhamiakin, A. Metzger, and M. Pistore

3 Adaptation-Specific Failures

Adaptation-specific failures may occur – in general – for all types of adaptations, or they
might be specific to particular approaches or even application domains. Moreover, they
may have different character depending on the way the adaptation problem and real-
ization are defined. This section therefore presents three major classes of adaptation-
specific failures, discusses their causes, and relates them to the types of adaptation
identified above.

3.1 Failures due to Incomplete Knowledge

When SBAs operate in a very open and dynamic environment, the list of potential
events, configurations, and contexts is very broad. This makes problematic the ap-
plicability of adaptation approaches, in which the adaptation strategy is prescribed at
design-time. Indeed, in this case the designer can consider only a relatively small set
of situations, assuming that they are representative for all the possible variants of the
execution. If this optimistic assumption is violated at run-time, the execution of the
predefined adaptation specification may lead to unexpected and dangerous results. For
instance, the inability to complete the adaptation (deadlocks), since the applicability of
the actions is violated in a concrete context; or the possibility to end up in a “wrong”
state not considered at design time.

We remark that this type of problem is specific to the approaches, where the adapta-
tion actions or parameters are predefined.

Configuration adaptation. When adaptation of application configuration is consid-
ered, design-time assumptions refer to the possibility to change the application in such
a way, that predefined values for the parameters are satisfied. For example, there exists
a possibility to satisfy certain level of QoS properties, to discover a service with a given
characteristics, etc. At run-time, however, this assumption may be violated since the
values are not realistic in a given context, and adaptation may fail.

Composition adaptation. In case of composition adaptation, the situation is even more
complex. For the process migration problem, running application instances may be in
a state, where adaptation is not possible, since the resulting execution will neither cor-
respond to the initial model nor to the final one. In case of rule-based or meta-level
specifications, an implicit assumption is that the adaptation specification is correct and
will successfully complete. In practice, however, the execution of adaptation activities
may fail, trigger another adaptation activity, etc. Another critical situation may occur if
adaptation activities are “semantically” incorrect in a given situation, i.e., they lead to a
situation that is undesirable from the application logic point of view.

The situation is made more complex by the fact that adaptation specification is de-
fined independently from the application model using specific languages and notations.
This restricts applicability of traditional techniques, such as verification or testing.

3.2 Failures due to Concurrent Changes during Adaptation

In certain application domains possible changes or events in the application environ-
ment may be as fast as the execution of adaptation activities. In such cases, events that

Towards Correctness Assurance in Adaptive Service-Based Applications 29

occur concurrently with the execution of adaptation activities may trigger another set
of adaptation activities, potentially even contradictory with the initial ones.

Such interleaving of adaptation activities and contextual events executed concur-
rently may lead to variety of problems and inconsistencies in the application: one adap-
tation activity may completely “negate” the results of another one; the system may end
up in an incorrect state or even deadlock; the new events continuously trigger new adap-
tations leading to an “adaptation stack overflow”.

Configuration adaptation. In case of configuration adaptation, the problem refers to
the changes in the corresponding configuration parameters of SBA. If the changes are
so fast that they become comparable to the re-configuration time, the new “version” of
the SBA may become incorrect or non-optimal. For instance, if services (or their QoS
metrics) appear / disappear (or change) within minutes or seconds, newly discovered
and bound service may become unavailable when invoked.

Composition adaptation. In case of composition adaptation, the execution flow of
the application is modified and activities and tasks different from those in the original
model are performed. If during the execution of these task new adaptation triggering
events occur, the execution flow is modified again. Depending on how the adaptation is
defined and depending on the underlying operational semantics, this may lead to a new
composition implementation, where the first adaptation is not complete and therefore
original requirement is not satisfied; concurrently executed processes, which may lead
to incorrect state and therefore the requirements of both adaptations are violated.

Similarly to concurrent systems, the source of the problem is in the way adaptation
activities are modeled, i.e., how fast, atomic, and isolated they are with respect to each
other, to the system execution, and to the changes in the context.

3.3 Failure: Undesired Adaptation Loops

Another potential adaptation-specific failure refers to a situation, where the execution
of adaptation activities directly or indirectly leads to a state, in which the same adap-
tation is triggered again. This situation corresponds to an adaptation livelock: the same
adaptation activities are identified and repeated again and again without, however, any
reasonable outcome.

The adaptation loop may be entailed by the problems identified above. Indeed, when
the adaptation specification is defined, an implicit assumption may expect that the adap-
tation activities successfully complete. In practice, however, the actions may fail and
the system remains in the same situation, triggering another loop of the same adapta-
tion activities. In other cases, concurrent events may terminate the current activity and
start another one (or execute it in parallel), which is the same as the initial one.

Configuration adaptation. Configuration adaptation loops can come in the following
two forms. Firstly, re-configuration of SBA may fail and the system remains in the same
state, from which the adaptation started. For example, if a service becomes unavailable,
adaptation initiates discovery and binding of another service corresponding to required
parameters. If these requirements can not be satisfied in the current context, adaptation
fails and the activities may be started again. Secondly, if the history of adaptations
(configurations) is not taken into account, it is possible that the new configuration will

30 R. Kazhamiakin, A. Metzger, and M. Pistore

be equivalent to the one, for which adaptation was triggered. Accordingly, the execution
of application in this new configuration may lead to the same problems, and the same
adaptation will be triggered.

Composition adaptation. Similar problems occur, when the composition adaptation
is considered. That is, adaptation activities associated to a particular situation may fail
to bring the application to a new state. Consider, for instance, an example from the
travelling domain: with a particular application failure (ticket is not available) one can
associate the adaptation specification that requires executing an alternative path (find
and book ticket using train reservation service). The execution of an alternative may
end up in the same failure (no train ticket is available) and the SBA enters the undesired
adaptation loop.

Similarly, the loop may take place if there are adaptation specifications that are de-
fined independently, but have implicit mutual dependencies. Consider again the travel
domain. One adaptation rule (from the user preferences) may require that if the total
cost estimated for the whole trip is higher than a certain amount, nearby airports should
be used instead. Another adaptation rule may enforce booking a taxi, if the airport is
not within certain distance from the hotel. It is easy to see that under certain conditions,
the first rule may trigger the second one, which will again require changing the airport.

4 Adaptation Correctness Assurance

In order to ensure that the adaptation is specified and executed correctly, the adaptation
approach together with the underlying adaptation toolkit and platform should provide
dedicated techniques and facilities that can uncover and mitigate the problems identified
above. In this section, we first classify and discuss existing techniques for correctness
assurance of service-based applications in general. Based on the capabilities of these
techniques, we sketch how these can be used to address the different kinds of adapta-
tion failures discussed above. Finally, we will highlight potential evolution of existing
techniques in order to address their deficits.

4.1 Existing Means for Correctness Assurance

Classification. We will classify the techniques for correctness assurance according to
the following dimensions.

First, two basic strategies on how to ensure correctness can be differentiated, namely
constructive and analytical. Constructive techniques provide such form of support for
the system design and execution that guarantee its correctness “by construction”. That
is, these techniques rely on a certain formalism and a framework, which takes the appli-
cation specification and a set of predefined correctness requirements, and automatically
augment it with additional facilities necessary to satisfy these requirements. Analytical
techniques provide a possibility to analyze whether the artifacts of the system (includ-
ing its specification and implementation/code) have been built in such a way as to meet
certain predefined correctness properties. If potential problems are identified, the root
cause for these problems is identified and the artifacts are corrected accordingly.

Towards Correctness Assurance in Adaptive Service-Based Applications 31

Table 1. Classification of Correctness Assurance Techniques

Approach Strategy Online / Offline Configuration / Composition

monitoring analytical +/− +/+
testing analytical +/+ −/+
simulation analytical −/+ −/+
verification analytical −/+ −/+
model-driven development constructive −/+ −/+
automated configuration constructive +/− +/−
automated composition constructive −/+ −/+

Second, we can distinguish the techniques with respect to when these are employed
during the life-cycle of SBAs. Offline techniques allow one to identify the problems
before the application is put into the production mode (i.e., before the application is
deployed). Online techniques, on the contrary, are employed while the application is
executed in real settings, i.e. during the actual operation of the applications.

Third, we can distinguish between techniques that address correctness of the config-
uration (i.e., availability of services, their QoS) and techniques that address correctness
of the composition (i.e., application behavior is correct).

Techniques. Table 1 provides an overview of the existing major approaches for correct-
ness assurance in SBAs together with the capabilities they provide:

– Monitoring observes the service-based application during its current execution (i.e.,
actual operation) in order to detect deviations from the expected behavior. This
includes monitoring QoS properties [11], assertions [12], or complex behavioral
properties of compositions [13,14].

– The goal of testing is to (systematically) execute services or service-based applica-
tions with predefined inputs and to observe the outputs in order to uncover failures;
Examples for testing techniques include [15,16].

– Simulation corresponds to testing of a composition specification without actually
executing services [17];

– During verification, artifacts (e.g., a service specification) are systematically exam-
ined (without execution) in order to ascertain that some predefined properties are
met. There exist approaches that use model checking (e.g., [18,19]) or logic-based
techniques [20,21].

– Model-driven development aims at generating low-level specifications (closer to the
implementation) given high-level models and additional transformation rules that
preserve certain properties [22,23].

– During automated configuration a predefined abstract composition model is auto-
matically filled with the concrete services or parameters in order to satisfy some
criteria (e.g., optimization of QoS metrics) [24];

– During automated service composition, services are composed according to the
goal of the user / designer (e.g., provide a composed travel organizer from flight,
hotel, train booking services) together with additional constraints, like transaction-
ality constraints (i.e., do not book hotel if the flight booking fails); examples for
automated service composition frameworks include [25,26].

32 R. Kazhamiakin, A. Metzger, and M. Pistore

4.2 Dealing with Adaptation Failures

The techniques discussed above may also be applied to tackle the failures that are spe-
cific to the adaptation. These failures, however, pose new specific requirements, which
may not be addressed with the existing techniques, and would need their evolution or
even new approaches. For each of the adaptation-specific failure described in Section 3
we will discuss their requirements and the applicability of the existing approaches in
these regards.

Failures due to incomplete knowledge. In the case of configuration adaptation, the
problem refers to the violation of the design-time assumptions about the application
configuration properties (e.g., inability to find services satisfying predefined QoS lev-
els). In case of composition adaptation, the execution of a predefined adaptation strat-
egy leads to unexpected and incorrect behavior, since not all the possible settings and
contexts are considered at design time.

To address these problems, one of the following requirements should be met:

– (1) avoid using predefined (“hard-coded”) specifications but adapt them to concrete
run-time situations or contexts;

– (2) validate the realizability of the specifications before the execution / deployment
of an application;

For what concerns configuration adaptation, requirement (1) may be achieved with
existing techniques, such as automated application configuration through dynamic ne-
gotiation of SLAs, while requirement (2) needs novel approaches as it follows from
Table 1.

For what concerns composition adaptation, the first requirement may be achieved
by extending existing automated composition or model-driven techniques, in order to
accommodate for potential run-time changes and events. Analogously, existing verifica-
tion and simulation techniques require further extensions in order to validate adaptation
specifications. In particular, there is a need to formalize the semantics of the adapta-
tion languages and relate it to the semantics of the underlying application models; it is
necessary to define “correctness” criteria for the adaptation execution; it is necessary to
model and adequately represent the dynamics of the execution context.

Failures due to concurrent changes during adaptation. When the changes and rel-
evant events occur concurrently with the execution of adaptation activities, the adap-
tation may become redundant, have undesirable effects or even failures. In order to
prevent these problems, the adaptation framework should take potential changes and
events into account when the adaptation strategy is determined. In particular, the fol-
lowing requirements should be addressed:

– (1) analyze the dynamics of the execution context of the application (i.e., frequency
and timing of potential changes, duration of application activities);

– (2) analyze the impact of these factors on the adaptation execution in order to guide
the development of proper adaptation specifications.

Existing correctness techniques (i.e., monitoring or verification) do not provide appro-
priate means to address those requirements and therefore should be extended. Indeed, it

Towards Correctness Assurance in Adaptive Service-Based Applications 33

Table 2. Classification of Advanced Correctness Techniques

Approach Strategy Online/Offline Config/Compos Incompl. knowl. Concur. change Adaptation loop

Offline adaptation anal-
ysis

analytical −/+ −/+ + + +

Pre-deployment moni-
toring and testing

analytical −/+ +/+ + + −

Online verification and
simulation

analytical +/− −/+ + + +

Online automated com-
position

constructive +/− −/+ + − −

Built-in adaptation constructive −/+ −/+ + + +
Monitoring adaptation
history

analytical +/− +/+ − − +

Stability metrics constructive +/− +/− − + −

is necessary not only to observe the relevant events and changes, but also to monitor how
frequent these changes are with respect to the application activities. This information
should then be modelled and used in the analysis, and, consequently, when adaptation
specifications are derived.

Failure: Undesired adaptation loops. When for some reason adaptation fails or brings
the application to a situation from which it has been initiated, the same set of adaptation
activities may be initiated. As a result, the application enters the “adaptation loop”, thus
consuming resources without any effect. In order to avoid this problem, the informa-
tion about previous situations and triggered adaptations should be considered when the
adaptation strategy is determined. That is,

– (1) define adaptation in such a way that the loop can not appear, or
– (2) define a special mechanisms to leave the loop when it is detected.

Neither in case of composition adaptation nor in case of configuration adaptation, exist-
ing correctness techniques are enough to address these requirements. Indeed, analytical
(respectively, constructive) techniques require specific means to check the specification
against such loops (resp., to construct loop-free specifications and executions).

4.3 Advanced Correctness Techniques

In order to tackle the failures that are specific to the adaptation of SBA, the existing
correctness assessment techniques are not applicable in the way they are used for static
applications. These techniques require specific extensions, and, moreover, in certain
cases novel approaches are necessary. Here we highlight future potential techniques that
could be applied in combination with the SBA adaptation approaches. Table 2 classifies
advanced techniques and maps them to the adaptation-specific failures.

Offline adaptation verification and simulation. The approach to extend conventional
techniques with the ability to verify application specification in combination with the
adaptation specification. This requires (i) representing the latter using the same formal-
ism as for the application; (ii) representing the dynamics of the environment (changes
and events) that are relevant for the adaptation; and (iii) defining specific properties to

34 R. Kazhamiakin, A. Metzger, and M. Pistore

be checked by the analysis tool. In case of problem due to incomplete knowledge, this
may include the necessity to complete the adaptation execution or an ability to reach
some “stable” or “correct” state. In case of adaptation loop problem, the property may
express absence of such loops. In case of concurrent changes, the model and properties
may express timed constraints on the adaptation behavior [27].

The most challenging problem here is to model and represent the behavior of the
environment, which is often difficult to foresee for open systems, or may generate be-
haviors that never happen in practice.

An initial step towards offline adaptation analysis has been presented by Fugini et al.
[28]. They present an approach for testing SBAs extended with fault injection mecha-
nisms. The goal of the approach is to check if and how the application reacts to certain
faults, such as delays or data errors.

Pre-deployment monitoring and testing. Here the idea is to evaluate some proper-
ties and metrics of the application and its environment before the system is ready for
deployment. This may include, in particular, monitoring the QoS of potential services,
evaluating characteristics of the context, estimating duration of application activities,
etc. Furthermore, this kind of analysis may be applied in order to evaluate the dynamics
of the application context, e.g., how often relevant changes happen, what are the ranges,
etc. This information may be used to restrict the models of the environment exploited by
the previous approach and, therefore, to make this models more compact and realistic.

Online verification and simulation. This technique consist of verifying or simulat-
ing the adaptation specification at run-time before its actual execution. Similarly to the
offline adaptation analysis, this technique permits verifying correctness of the specifi-
cation. On the positive side, it is applied in a concrete situation, and therefore is simpler
to model and represent. On the downside, such analysis may slow down the application
adaptation.

A sort of first attempt towards online verification of adaptation has been presented in
[29]. It aims to verify correctness constraints in the scope of process migration problem.
When the running process instance is dynamically changed, the proposed technique is
used to check that the changes are compatible with certain constraints.

Online automated composition. This approach aims to bring the automated techniques
applied at design-time to the execution phase. In this way, the adaptation specification
is defined dynamically, taking into account concrete situation. However, as in the case
of online analysis, such technique may considerably slow down the adaptation.

Built-in adaptation. This approach combines model-driven techniques with the au-
tomated composition approach. The adaptation specification defined at design-time is
automatically composed with (i.e., built-in) the application specification. As a result,
an integrated executable specification is generated that takes into account possible run-
time changes and events. As in the case of offline adaptation analysis, the need to model
possible events increases the complexity of the technique. On the positive side, the re-
sulting specification is efficient with respect to online composition.

Monitoring adaptation history. One way to deal with the adaptation loop problem is
to monitor and store the information about previous adaptations (adaptation history).

Towards Correctness Assurance in Adaptive Service-Based Applications 35

In particular, this information includes the event/situation, in which the adaptation was
triggered, and the outcome of its execution (i.e., positive/negative, state reached, etc.).
When the need for adaptation is identified, the system will compare the situation with
previous histories. If the situation was already registered and the previous adaptation
failed, then in the current situation some other strategy should be applied.

Stability metrics. In order to deal with highly dynamic environments, in which the
changes may happen during adaptation, one can use special stability metrics. This met-
rics may be used in order to estimate and keep information on how stable a certain prop-
erty is over time, for example, the frequency of changes in certain QoS parameter of the
service involved in the composition. Such metrics would allow one to discover and bind
only “stable” services, such that the adaptation is not triggered too often. Indeed, this
requires specific monitoring techniques, as well as the corresponding capability of, e.g.,
the discovery framework.

5 Conclusions

Adaptive service-based application are often subject to specific failures and problems
that are not exposed in “static” systems. In order to address these problems, novel ap-
proaches that extend both adaptation and traditional correctness assessment means are
necessary. In this paper we have identified and classified adaptation-specific failures;
we have also demonstrated how these failures show themselves in different adaptation
approaches. Through a review and a classification of the existing correctness assurance
techniques we have demonstrated that these techniques are not enough to deal with
adaptation specific failures. Based on the identified gaps and requirements, we have re-
vealed future directions and approaches that would improve correctness in the adaptive
service-based applications. As a future work we would like to instantiate the proposed
approaches and to integrate them within concrete adaptation frameworks.

References

1. Al-Ali, R.J., Hafid, A., Rana, O.F., Walker, D.W.: QoS Adaptation in Service-Oriented Grids.
In: Middleware Workshops, pp. 200–210 (2003)

2. Canfora, G., Penta, M.D., Esposito, R., Villani, M.L.: An Approach for QoS-aware Service
Composition Based on Genetic Algorithms. In: Proceedings of the 2005 conference on Ge-
netic and evolutionary computation, pp. 1069–1075 (2005)

3. Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service
Composition and Execution. In: Int. Conference on Web Services - ICWS, pp. 549–557
(2006)

4. Bianculli, D., Jurca, R., Binder, W., Ghezzi, C., Faltings, B.: Automated Dynamic Main-
tenance of Composite Services based on Service Reputation. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 449–455. Springer, Heidelberg
(2007)

5. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with adept2.
In: ICDE, pp. 1113–1114 (2005)

36 R. Kazhamiakin, A. Metzger, and M. Pistore

6. Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process Life Cycle.
Technical report, University of Twente, TR-CTIT-07-87 (2007)

7. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Systems Self-
adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 255–268. Springer, Heidelberg (2005)

8. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: ESSPE 2007: Int. workshop on Engineering of software services for
pervasive environments, pp. 11–20 (2007)

9. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S Approach for
Configuring and Executing Dynamic Web Processes. Technical report (2005)

10. Lazovik, A., Aiello, M., Papazoglou, M.P.: Associating Assertions with Business Processes
and Monitoring their Execution. In: Service-Oriented Computing - ICSOC 2004, Second Int.
Conference, pp. 94–104 (2004)

11. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A.P.A., Casati, F.: Automated SLA Moni-
toring for Web Services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002. LNCS,
vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

12. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In: Benatallah,
B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer,
Heidelberg (2005)

13. Mahbub, K., Spanoudakis, G.: Monitoring WS-Agreements: An Event Calculus-Based Ap-
proach. In: Baresi, L., Nitto, E.D. (eds.) Test and Analysis of Web Services, pp. 265–306.
Springer, Heidelberg (2007)

14. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and
Classes of Web Service Compositions. In: Int. Conference on Web Services (ICWS), pp.
63–71 (2006)

15. Bai, X., Chen, Y., Shao, Z.: Adaptive Web Services Testing. In: 31st Annual Int. Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 233–236 (2007)

16. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of Int. Workshop
on Web Services - Modeling and Testing - WS-MaTE, pp. 3–12 (2006)

17. Mayer, P., Luebke, D.: Towards a BPEL Unit Testing Framework. In: Workshop on Testing,
Analysis, and Verification of Web Services and Applications, TAV WEB 2006, pp. 33–42
(2006)

18. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proceedings of the
13th Int. World Wide Web Conference (WWW 2004) (2004)

19. Sharygina, N., Krning, D.: Model Checking with Abstraction for Web Services. In: Test and
Analysis of Web Services, pp. 121–145 (2007)

20. Davulcu, H., Kifer, M., Ramakrishnan, I.V.: CTR-S: A Logic for Specifying Contracts in
Semantic Web Services. In: Proc. WWW, pp. 144–153 (2004)

21. Grüninger, M.: Applications of PSL to Semantic Web Services. In: Proc. 1st Int. Workshop
on Semantic Web and Databases, pp. 217–230 (2003)

22. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proceedings of
the Enterprise Distributed Object Computing Conference (EDOC), pp. 47–57 (2004)

23. Castro, V.D., Marcos, E., Sanz, M.L.: A Model-Driven Method for Service Composition
Modelling: a Case Study. Int. J. Web Eng. Technol. 2, 335–353 (2006)

24. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality Driven Web
Services Composition. In: WWW 2003 (2003)

25. Marconi, A., Pistore, M., Poccianti, P., Traverso, P.: Automated Web Service Composition
at Work: the Amazon/MPS Case Study. In: Int. Conference on Web Services (ICWS), pp.
767–774 (2007)

Towards Correctness Assurance in Adaptive Service-Based Applications 37

26. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of Services with
Nondeterministic Observable Behavior. In: Benatallah, B., Casati, F., Traverso, P. (eds.)
ICSOC 2005. LNCS, vol. 3826. Springer, Heidelberg (2005)

27. Kazhamiakin, R., Pandya, P.K., Pistore, M.: Representation, Verification, and Computation
of Timed Properties in Web Service Compositions. In: Proceeding of the Int. Conference on
Web Services (ICWS), pp. 497–504 (2006)

28. Fugini, M.G., Pernici, B., Ramoni, F.: Quality Analysis of Composed Services through Fault
Injection. In: Business Process Management Workshops, pp. 245–256 (2007)

29. Ly, L.T., Rinderle, S., Dadam, P.: Integration and Verification of Semantic Constraints in
Adaptive Process Management Systems. Data Knowl. Eng. 64, 3–23 (2008)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 38–48, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Service Based Development Environment on Web 2.0
Platforms

Xabier Larrucea1, Rafael Fernandez2, Javier Soriano2, Andrés Leonardo Martínez3,
and Jesus M. Gonzalez-Barahona4

1 European Software Institute, Parque Tecnologico de Zamudio 204,
48170 Zamudio, Spain

Xabier.Larrucea@esi.es
2 Computer Networks & Web Technologies Lab., School of Computing,

Universidad Politecnica de Madrid, 28660, Boadilla del Monte, Madrid, Spain
{rfernandez,jsoriano}@fi.upm.es

3 Telefonica Research & Development, 28043 - Emilio Vargas 6, Madrid, Spain
almo@tid.es

4 GSyC/LibreSoft, Universidad Rey Juan Carlos
jgb@gsyc.escet.urjc.es

Abstract. Governments are investing on the IT adoption and promoting the so-
called e-economies as a way to improve competitive advantages. One of the
main government’s actions is to provide internet access to the most part of the
population, people and organisations. Internet provides the required support for
connecting organizations, people and geographically distributed developments
teams. Software developments are tightly related to the availability of tools and
platforms needed for products developments. Internet is becoming the most
widely used platform. Software forges such as SourceForge provide an
integrated tools environment gathering a set of tools that are suited for each
development with a low cost. In this paper we propose an innovating approach
based on Web2.0, services and a method engineering approach for software
developments. This approach represents one of the possible usages of the
internet of the future.

Keywords: Service, Web2.0, Method engineering.

1 Enterprise 2.0 Technologies and Quality Assurance

Nowadays organisations are worried about mainly two main issues: collaboration and
quality assurances. As global market opportunities and competition increase,
collaboration is becoming more and more essential for improving productivity and
accelerating innovation at the personal, team, group, enterprise and business coalition
levels. Many enterprise collaboration platforms have already been developed and
successfully deployed in both large, and small- and medium-sized enterprises
(SMEs). Enterprise collaboration has recently come to benefit from the emergence of
an enterprise-oriented specialization of the Web 2.0 vision, commonly referred to as

 A Service Based Development Environment on Web 2.0 Platforms 39

Enterprise 2.0 [1] providing new models and tools for emergent collaboration and co-
creation. Enterprise collaboration is thus being enhanced by virtual communities that
leverage social linking and tagging tools (like tools for social networking, social
bookmarking and social search), user-contributed content management platforms (like
enterprise Wikis, blogs and forums), tools that leverage user opinions (like tools
supporting comments and voting), subscription-based information distribution tools
(like Enterprise RSS feeds), etc. Used in the context of a carefully engineered
collaboration strategy, these technologies provide a wealth of collaborative services
for software developers [2].

On the other side quality is still representing a nightmare for too many
organizations. In fact quality cost is one of the most important considerations in
software production [3], [4]. Quality assurance practices and software products
quality represent in most of cases the forgotten requirement and it is becoming a hard
task to select an appropriate infrastructure in order to fulfil at the same time
customers’ requirements and some level of quality assurance. The resulting solutions
are usually defined in terms of what functionalities are exposed and the question
about “what is the quality required?” and “How do we achieve this quality?” are
effaced from stakeholders’ memory.

This happening generalises a broad range of situations such as consultancy, in-
house and outsourcing developments. The evolution of Internet technologies such as
Web2.0 and mash up platforms are supporting collaboration mechanisms but at the
same time they need to fulfil quality models requirements (e.g., Capability Maturity
Model Integrated-CMMI) [5]. In order to facilitate the fulfilment of these two
challenges the proposed architecture combines the evolution of these new Enterprise
2.0 technologies and quality assurance facilities. In fact the resulting collaborative
environment is enriched with the savoir-faire (knowledge management) in software
production environments.

2 Ezforge: New Generation of Networked Forges Supporting
Collaborative Software Development

Organizations tend to behave like dynamically reconfigurable networked structures
that carry out their tasks by means of collaboration and teamwork. Effective
teamwork is an essential part of any non-trivial engineering process, and collaborative
capabilities are an essential support for these teams. Software development is no
exception; it is in itself a collaborative team effort, which has its own peculiarities.
Both in the context of open source software development projects and in
organizations that develop corporate products, more and more developers need to
communicate and liaise with colleagues in geographically distant areas about the
software product that they are conceiving, designing, building, testing, debugging,
deploying and maintaining. In their work, these development teams face significant
collaborative challenges motivated by barriers erected by geographic distances, time
factors, number of participants, business units or differences in organizational
hierarchy or culture that inhibit and constrain the natural flow of communication and
collaboration. To successfully overcome these barriers, these teams need tools by
means of which to communicate with each other and coordinate their work. These

40 X. Larrucea et al.

tools should also take into account the functional, organizational, temporal and spatial
characteristics of this collaboration. Software product users are now becoming
increasingly involved in this process, for which reason they should also be
considered. In response to this necessity, forges are gaining importance both in the
open source context and the corporate environment.

Following the ideas in [6], a forge can be described as a kind of collaborative
development environment (CDE) that provides a virtual space wherein all the
stakeholders of a software development project –even if distributed by time or
distance - may negotiate, brainstorm, discuss, share knowledge, and labor together to
carry out a software product and its supporting artifacts. It integrates multiple
collaborative tools and resources, thanks to which it offers a set of services to aid all
the stakeholders in the software development area, including managers, developers,
users, commercial software manufacturers and software product support enterprises,
to communicate, cooperate and liaise. Forges consider software development’s social
nature and assure that the people who design, produce, maintain, commercialize and
use software are aware of and communicate about the activities of the others simply,
efficiently and effectively, also encouraging creativity and driving innovation. In
doing so, forges provides with a safe a centralized solution conceived to optimize
collaborative and distributed software development generally based on Internet
Standards. This solution serves a number of essential purposes, including:

• A holistic integration of disparate collaborative processes and tools through
a collaborative environment,

• an expansion of visibility and change control,
• a centralization and administration of resources, and
• a reinforcement of collaboration, creativity and innovation.

3 EzForge

The appearance of Enterprise 2.0-based forges, such as EzForge [7], enable software
development teams to find, customize, combine, catalogue, share and finally use tools
that exactly meet their individual demands. Supported by the EzForge platform, they
can select and combine development tools hosted by third parties rather than buying a
pre-determined, inflexible and potentially heavyweight software development
environment.

EzForge as the main part of the proposed architecture is based on the idea of
considering forges not as single sites providing a monolithic set of services to host
projects as isolated silos of knowledge, but as a collection of distributed components
providing services among which knowledge is shared. Each project decides on its
own customized set of services, and users can configure their own mashup-based user
interface. Fig. 1 depicts the 3-tier EzForge architecture.

Back-end tier is where integrated and legacy systems reside. It is important to take
into account that the EzForge architecture imposes no limitations to where the
different components may be hosted. Those systems have their own set of basic forge
services, such as source code management, wiki, and issue/bug tracking services, and
they are integrated into the forge following a Web 2.0 approach consisting of

 A Service Based Development Environment on Web 2.0 Platforms 41

Fig. 1. EzForge architecture

transforming their legacy services into a uniform layer of resources. These resources
are components designed following the REST architectural style [8] that can be
accessed through an URI via HTTP. Integrated systems already follow this approach,
while legacy systems needs adapters to perform this task. Thanks to the
aforementioned layer of resources, the EzForge tier can access them to gather and
process their data by means of special resources called operators, elements designed
to get data from resources and use it to produce new data that can be processed by
other resources, enabling their remix and composition. Doing so, EzForge creates the
set of resources the forge will deliver to its final users.

Once the EzForge tier has its forge resources set, final users are empowered by
allowing them to design their own front-end layer (or forge user interface) by means
of composing user interface building blocks called gadgets, which are endowing with
the forge resources. Following this approach, users can mix and compose forge
resources on their own, allowing them to choose the best resources to meet their
needs. User can even include external resources, such as Google Maps or RSS feeds,
into their UI, using all of them as a whole. They will use whichever resources they
like to create ad hoc instant forge UI, encouraging resources mashup, and following
the DIY (“do it yourself”) philosophy.

4 Savoir-Faire in Software Production Environments

More often than we can imagine, developers are plunged in the ocean of tools and
procedures required in their daily work. Until now we have defined a forge (EzForge)

42 X. Larrucea et al.

as a development platform but project responsibilities are delegated to developers and
the management of developers’ know-how is not taken into account. How do we
materialize the know-how of your developments? How can we assure that our
software products are developed as defined by the organization? These questions
represent some of the factors that guide organizations to consider the materialization
of their know-how and of their internal procedures in somehow for helping
organisations to avoid or overcome barriers and hurdles raised during their work. For
example some of these elements are the integration of new developers within
development teams and quality assurance with respect to the requirements of quality
models such as CMMI®.

This is a cornerstone in our software developments and it is part of the knowledge
management (KM) broached by our architecture. One of the competitive advantages
for organizations is their know-how, their human capital. Therefore we need to make
explicit tacit knowledge in order to share information and to promote the savoir-faire
within the organizations. In this sense in the area of KM Peter M. Senge [9] defines
the learning organizations and he states five interrelated disciplines for the creation of
smart and competitive organizations. In our approach we have used method
engineering approach as the way to make explicit tacit software production processes
and methods in order to spread knowledge within the organization.

Method engineering approach [10] is used for several software developments and
approaches [11], [12] and we have applied this approach in our context. In fact we
have adopted Software Process Engineering Metamodel (SPEM) 2.0 [12] as a
language for the definition of software development processes and by the Eclipse
Process Framework (EPF) (www.eclipse.org/epf),as a tool support for defining
processes and methods in a Eclipse-based environment. The main idea is to define a
methodology and relates method elements EzForge resources required for the
software development. The huge number of resource-oriented services that are
envisioned to be available in an Internet-scale networked forge will become
unmanageable and thus useless for its users. Even if a repository service is provided,
it will eventually become difficult for software development stakeholders to find out
which resources (i.e. tool services) are appropriate for their development process.

This is the reason why we have created dedicated catalogues. In fact they provides
navigation services for software development stakeholders and help them to find out
which resources (i.e. tool services) they need to create the mash-ups they want.
EzForge provides a user-contributed, “living” catalogue of resources founded on the
Web 2.0 vision for user co-production and harnessing of collective intelligence (see
Fig. 2.). This would provide all stakeholders with a collaborative semantic Wiki, and
tagging and searching-by-recommendation capabilities for editing, remixing and
locating resources of their interest.

The catalogue sets out the knowledge available within a certain community for
composing resources (e.g. a method from its fragments) in a graphical and intuitive
fashion and for sharing them in a world-wide marketplace of forge services.

The catalogue allows users to create complex mash-up solutions by just looking for
(or being recommended) “pre-cooked” or off-the-shelf resources and customizing
these resources to suit their personal needs and/or the project requirements,
interconnecting resources, and integrating the outcome in their development
workspace. These decisions are defined during the development process definition.

 A Service Based Development Environment on Web 2.0 Platforms 43

Fig. 2. Cataloguing Resources

“Folksonomies” of user-created tags will emerge, grow as users add information
over time and act as important facilitators of a useful marketplace of resources for the
networked forge.

Earlier approaches to service discovery and description like UDDI are not adequate
to support human beings in easy resource retrieval and evaluation. By contrast, the
exploitation of collective intelligence and user-driven resource categorization is
beneficial for users.

A straightforward application of our savoir-faire approach using the catalogue is
split in four steps:

• Evaluation of new developments: taking into account previous experiences,
method engineers evaluate a new software development. In this phase,
Knowledge Management plays a relevant role identifying software
development phases, tasks and problems that are resident in developers’
minds. Method engineers should evaluate previous experiences and clearly
specify what objectives of this new development are.

• Selection of method fragments based on previous experiences: method
engineers select the appropriate set of method fragments fitting software
requirements. In fact in this context each method fragment is related to a set
of Web2.0 resources. A basic catalogue contains the relationships between
software processes and Web2.0 resources. Each task is related to
workproducts representing a resource and therefore method engineers could
specify the appropriate tools support at each software development stage.

• Composition of method fragments in order to produce a software
development process used in the organization. In this step the selected
method fragments are composed defining a flow that it is guided by the
methodology. This composition states which are the selected resources at
each stage of the development process. This approach is similar to
Business Process Execution Language (BPEL) where Web Services are
called following a specific order and sequence.

44 X. Larrucea et al.

• Deployment within the organization. The resulting software development
process is represented as a model and it is used by our forge. At this step
and following CMMI® terminology, the result represents a defined and
managed Standard Software Process (SSP) for an organization. This is a
requirement for organizations aiming to achieve compliancy with
CMMI® level 3.

This novel approach uses a method engineering approach in order to make explicit
the savoir-faire in software developments within an organization (see Fig. 3.).A
catalogue contains relationships between method fragments represented by the
methodology using SPEM2.0, and resources that are represented within the forge as
aggregators or connectors. Method engineers select the required method fragments
needed for their software developments. In this context they select indirectly a set of
aggregators and/or connectors that are related to specific resources. These resources
are the basic tools within the development environment. Therefore we are reducing
the gap between methodologies and software development tools support. This process
allows the customisation of the resources and therefore the user’s interfaces.

ConnectorsConnectors

AggregatorsAggregators

ConnectorsConnectors

AggregatorsAggregators

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors

AggregatorsAggregators

ConnectorsConnectors

AggregatorsAggregators

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors

ConnectorsConnectors AggregatorsAggregators
Method
Fragment
Method
Fragment

Method fragment
relationships

Development environment
guided by a defined and
managed process

Development environment

Development environment
guided by a defined and
managed process

Development environment

ConnectorsConnectors

AggregatorsAggregators

Method
Fragment
Method
Fragment

Catalogue

SPEM2.0 Resources

Defined &
Managed process Resources

Fig. 3. A developer’s environment customisation

5 Method Engineering and EzForge Architecture: A Holistic View

EzForge is a highly configurable and extensible user-centric collaborative software
development tool that follows a novel mashup-based lightweight approach, given by
the EzWeb core technology. Its user interface is defined by the user himself, who is
able to make it up by assembling a set of small web applications called gadgets,
which are the face of the services being offered by the forge. Up to now, there have
been several attempts to bring mashup-based tools to the organizations [14], with
satisfactory results.

But with regard to software development, open source development tools don’t
take into account a key point in the software development within organizations:
quality.

 A Service Based Development Environment on Web 2.0 Platforms 45

Fig. 4. A holistic view of Method Engineering and EzForge

Method Engineering and EzForge architecture (Fig. 4.) is compatible with the
savoir-faire process defined previously and technically it is defined into three levels:

Model stage. The goal of this stage is to link the available gadgets from the EzForge
catalogue with the method fragments that exist in the method repository and that will
conform lately the used methodology. This catalogue provides access in an automated
way to EzForge catalogue in the execution level. For this purpose, we have developed
a folksonomy-based mapping, which allows us to create that link by using social
tagging techniques. By using these tags we will be able to choose the gadget or gadget
group labelled with the method identifier in methodology run time in an easy way.
Besides, it gives us a way to incorporate the organization internal knowledge about
how things work better, as it is their own developers who carry out this tagging
process.

Methodology stage. It is in between model and run stages, and as we said before, it is
where method workers select the method fragments that will make up the
organization’s methodology. To do so, method workers use the Eclipse Process
Framework, which helps us to get, among other things, an XML representation of the
methodology.

Run stage. Once we’ve got the methodology, the next step is to put it in execution by
means of a workflow engine. Thanks to this, EzForge can choose the appropriate and
required development tools depending on the ongoing development phase.

Thus, our proposed infrastructure takes the advantages of method engineering and
brings them all to EzForge, allowing companies and organizations to have a user-
centric collaborative development tool which can guide its users through the
development process.

At this level the resulting and running application, Fig. 5. is shown using a web
browser. Gadgets presented in this interface are those that have been defined by the
method engineer when he was defining the organization’s standard software process.

46 X. Larrucea et al.

Fig. 5. Runtime execution overview

Obviously there are some permanent gadgets in this interface but most of the gadgets
are configured during the model and methodology levels. Once we start/continue a
software development, these gadgets are modified accordingly to a software
development phase. In Fig. 5. the main gadget marked as “1” acts upon the existence of
gadgets marked as “2”. Moreover there are other relationships amongst gadgets as they
are highlighted in this figure. When we select an element in one gadget automatically
there is a selection of the related elements in other gadgets. These relationships are not
specified by the defined and managed methodology, they are implemented by the forge.

Why this approach covers quality practices?

Managers are not worried about the selected architecture but they are more focused on
costs and quality requirements used for the developments carried out in their
organizations. Method engineering & EzForge architecture combines quality practices
and a development infrastructure based on Web2.0 assuring quality aspects, with low
cost, open to new OS tools, it represents an integrated tool and it overcomes new
developer’s barriers.

But why this approach covers quality practices?

CMMI® is one of most used quality reference model and it comprises two
representations: staged and continuous. Whatever CMMI® representation stakeholders
select for their adoption, there is a common problem: a separation between process areas
due to a scarce tool support from a holistic perspective. Nowadays engineering practices

 A Service Based Development Environment on Web 2.0 Platforms 47

and process/project practices are separated and one of the main tasks for adopters is to
assure that all process areas are coherent and consistent among them. Method
engineering & EzForge architecture assures quality practices because the process
defined and managed is used accordingly to its specification, and the development forge
is guided by the methodology designed. In addition it also covers engineering and
support process area because it provides an integrated development environment
gathering requirements and configuration managements.

6 Conclusions

The presented approach combines method engineering and Web2.0 technologies in
order to create a new generation of software developments tools and methods. Our
approach starts from an explicit definition of the main tasks that a developer should
carry out and its development environment is modified with respect to the
organisation’s development process. This novel approach combines an extendable
development environment based on Web2.0 technologies with quality practices and
tools. As results, we reduce the gap between development tools with low cost; we
implement an extendable environment where we can select the appropriate tools
support, and quality practices and tools are assured by this service based architecture.
Web2.0 technologies relevance is becoming during these last years a new wave in
several environments and method engineering approach provides architecture to make
explicit the knowledge managed by organizations. Our experience combining both
approaches places us on the road for a new tool generation of software developments
which benefits are:

• Facilitate collaboration in heterogeneous contexts: Web2.0 technologies
facilitate software developments on the Web.

• User interface configuration: another advantage that comes directly from using
method engineering and EzForge altogether is the possibility of generating the
user interface based either on the methodology used. Thus, when creating a new
project on the forge, it will be able to help the user to choose the tools to be used

• Help developers to add new tools within the development process.
• Compliancy at CMMI® levels 2 and 3 through the definition of defined and

managed standard software processes. The use of method engineering opens the
door to the definition and management of the development processes. That is why
EzForge will give support, for example, to the use of CMMI®. This will make it
possible to ensure that carried out developments will place the organization in a
certain maturity level, allowing an improvement of the methodology used

• Establish a relationship between process a project management tools (EPF) and
engineering tools (forge).

• Provide a new tool in the knowledge management area through the use of
method engineering

Currently we are applying this approach in several test cases and projects. A step
forward in this development is to provide facilities to the forge in order to collect all
kind of metrics. This characteristic will provide a better understanding of our current
developments.

48 X. Larrucea et al.

Acknowledgements

This work was funded by the Vulcano project (Proyecto Singular Ministerio Industria,
Turismo y Comercio- FIT-350503-2007-7). We would like to thank Vulcano partners
for their great feedback.

References

[1] McAfee, A.: Enterprise 2.0: The Dawn of Emergent Collaboration. MIT Sloan
Management Review 47(3), 21–28 (Spring, 2006)

[2] Soriano, J., Lizcano, D., Cañas, M.A., Reyes, M., Hierro, J.J.: Fostering Innovation in a
Mashup-oriented Enterprise 2.0 Collaboration Environment. System and Information
Sciences Notes 1(1) (July 2007); ISSN 1753-2310

[3] Huang, L., Boehm, B.: How much Software Quality Investment is Enough: a value-based
approach. IEEE Software 23(5), 88–95 (2006); Digital Object Identifier
10.1109/MS.2006.127

[4] Campanella, J.: Principles of Quality Costs. American Society for Quality Press; ISBN:
0-87389-443

[5] Crisis, M.B., Konrad, M., Shrum, S.: CMMI® Second Edition. Guidelines for Process
Integration and Product Improvement. Addison-Wesley, Reading; ISBN 0321279670

[6] Booch, G., Brown, A.W.: Collaborative Development Environments. Advances in
Computers 59 (2003)

[7] EzForge project website, http://ezforge.morfeo-project.org/lng/en
[8] Fielding, R.T.: Architectural styles and the design of network-based software

architectures, Ph.D. thesis, University of California, Irvine (2000)
[9] Senge, P.M.: The fifth discipline. Doubleday (1990); ISBN 0-385-26095-4

[10] Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Inf. Software Technol. 38(4), 275–280 (1996)

[11] Henderson-Sellers, B., France, R., Georg, G., Reddy, R.: A method engineering approach
to developing aspect-oriented modelling processes based on the OPEN process
framework. Information and Software Technology, doi:10.1016/j.infsof.2006.08.003

[12] Larrucea, X.: Method Engineering Approach for Interoperable Systems Development.
Journal Software Process: Improvement and Practice (2008), doi:10.1002/spip.371

[13] Software Process Engineering Metamodel (SPEM) 2.0. Object Management Group,
http://www.omg.org/docs/ptc/07-11-01.pdf

[14] Driver, E., et al.: Road Map to an Enterprise Collaboration Strategy. Forrester Research,
August 2 (2004)

Using MDE to Build a Schizophrenic
Middleware for Home/Building Automation

Grégory Nain, Erwan Daubert, Olivier Barais, and Jean-Marc Jézéquel

IRISA/INRIA/university of Rennes1, Equipe Triskell, F-35042 Rennes Cedex

Abstract. In the personal or corporate spheres, the home/office of
tomorrow is soon to be the home/office of today, with a plethora
of networked devices embedded in appliances, such as mobile phones,
televisions, thermostats, and lamps, making it possible to automate and
remotely control many basic household functions with a high degree of ac-
curacy. In this domain, technological standardization is still in its infancy,
or remains fragmented. The different functionalities of the various appli-
ances, as well as market factors, imply that the devices that control them
communicate via a multitude of different protocols (KNX, LonWorks,
InOne). Building a high level middleware to support all the appliances
seems to be a reasonable approach. However, market factors has shown
that the emergence of a unique and universal middleware is a dream. To
solve this issue, we have built a new generation of schizophrenic middle-
ware in which service access can be generated from an abstract services
description. EnTiMid, our implementation of schizophrenic middleware,
supports various services access models (several personalities): SOAP
(Simple Object Access Protocol), UPnP and DPWS (Device Profile for
WebServices). In this paper, we describe how these personalities are gen-
erated using a Model Driven Engineering approach and discuss the ben-
efits of our approach in the context of a deployment of new services at
the city level.

1 Introduction

Time after time, each building parts manufacturer has developed his own com-
munication protocol, and this for two reasons. The first one is the increasing
need of communication between the devices. Then, the belief that a close proto-
col is more secured, is still present in minds and make the second reason. As a
consequence, devices of today are communicating through dozens of protocols,
and most of them are private and protected. For example, X2D1, InOne2 or IO-
homecontrol3 are private protocols. Open protocols are emerging such as KNX,
LonWorks or BacNet, but interconnections between each other and/or with pri-
vate protocols are often made ’on demand’. Building a high level middleware to
support all the appliances and allow the development of high level services seems
1 Dela-Dore protocol (http://www.deltadore.com)
2 Legrand protocol (http://www.legrand.fr)
3 IO-homecontrol consortium protocol (http://www.io-homecontrol.com)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 49–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 G. Nain et al.

to be a reasonable approach. However, building automation market factors has
shown that the emergence of a unique and universal middleware is a dream. To
solve this issue, we present in this paper a new generation of schizophrenic mid-
dleware [15] in which service access can be generated from an abstract services
description. EnTiMid, our schizophrenic middleware implementation, supports
various services access models (several personalities): SOAP (Simple Object Ac-
cess Protocol), UPnP [12] and DPWS (Device Profile for WebServices) [6]. In
this paper, we describe how these personalities are generated using an Model
Driven Engineering approach and discuss the benefits of our approach in the
context of a deployment of new services at the city level.

The remainder of the paper is organized as follows. Section 2 presents an
overview of EnTiMid, a middleware for home automation and presents the meta-
model embedded into EnTiMid to export devices services at the business level.
Section 3 presents the generative tool chain of personalities. Section 4 discusses
the usage of EnTiMid in the context of a city deployment. Section 5 highlights
some selected related works and Section 6 wraps up with conclusions and outlines
some future work.

2 Overview of EnTiMid

EnTiMid is a middleware implementation developed in a house or building au-
tomation context. The aim of this middleware, is to offer a level-sufficient ab-
straction, making it possible for high level services to interact with physical
devices (such as lamps, heater or temperature sensors).

2.1 A Layered Middleware Based on Services

Based on a service-oriented architecture [5], this middleware incites people to
build their software as a set of services working together. Thus, each user can
customize the services offered by the software, according to his needs.

The OSGi Alliance[9], ’consortium of technology innovators’, has released a set
of specifications which define a service-oriented platform[1], and its common ser-
vices. The OSGi kernel is a standard container-provider to built service-oriented
software. It implements a cooperative model where applications can dynamically
discover and use services provided by other applications running inside the same
kernel. It provides a continuous computing environment. Applications can be
installed, started, stopped, updated and uninstalled without a system restart. It
offers a remote management model for applications that can operate unattended
or under control of a platform operator. Finally it embeds an extensive security
model so that applications can run in a shielded environment. According to these
specifications, an application is then divided on several bundles. A bundle is a
library component in OSGi terms. It packages services that are logically related.
It imports and exports Java packages and offers or requires services. Services are
implementations of Java interfaces.

Inspired by the CBSE (ComponentBased Software Engineering)paradigm [11],
each bundle is designed to reach the highest level of independence, giving the

Using MDE to Build a Schizophrenic Middleware 51

Fig. 1. EnTiMid architecture

software enough modularity to allow partial services updates, adds or removes.
This programming style allows software-builders, to deploy the same pieces of
software for all of their clients, either professionals or private individuals, and
then simply adapt the services installed. Moreover, the services running on the
system can be changed during execution.

On top of this kernel, EnTiMid is structured around three layers as presented
in Figure 1: a low-level layer which manages communication with the physical de-
vices, a middle layer (the kernel), offering a message oriented middleware (MOM),
and giving a first abstraction level of low-level layer, a high-level layer which pub-
lishes services and enables the device access through standard protocol. The Fig-
ure 1 gives an overview on how services are organized. EnTiMid defines a set of
interfaces between the services provided by the low level layer and the services
required by the middle layer to allow the access to the physical devices.

The low-level offers a common abstraction to the EnTiMid Kernel to access
the different devices. It wraps existing library to support some protocols, for

52 G. Nain et al.

example, it wraps the Calimero toolkit to provide an access to KNX devices 4.
It provides also home-made drivers to access protocol such as X2D or X10.
The EnTiMid kernel (middle layer) and the high level layer are described more
precisely in Sections 2.3 and 3.

2.2 A Schizophrenic Middleware

High-level protocols, such as DPWS, SOAP or UPnP, are going to be more
and more present in our everyday life. Each of them offers a different access to
devices, according to their main goal. For example, UPnP has been developed
to ease media sharing, whereas SOAP is a protocol to programmatically access
services such as devices provided services. So, manufacturers choosing to imple-
ment a high-level access to their devices, will select the protocol offering the best
accordance with the devices applications.

In a few years, new high and low level protocols will probably appear, and
some will become useless. Existing protocol will evolve and EnTiMid, which
aims to ease the device interconnection, has to support all the new protocols
and new protocols versions. An interesting solution to face the need of protocol
management flexibility (both low and high level), is the schizophrenic middle-
ware, presented by Laurent Pautet[15]. A schizophrenic middleware offers several
personalities to access services. Consequently, in EnTiMid, high-level protocols
define application personalities. As the middleware has to support lots of appli-
cation personalities, we propose in this paper to use a MDE approach to gen-
erate these application personalities from an internal representation of devices.
This choice is driven by the features provided by a MDE approach (abstraction,
transformation language) and by the improvement of the maturity of MDE tools
(we use the Eclipse Modelling Framework [3] for the meta-model definition and
Kermeta [8] for the transformation). Next subsection presents in depth the in-
ternal representation of the device services. Section 3 presents the details of the
generative approach used for the UPnP and the DPWS personalities.

2.3 EnTiMid Kernel

Figure 2 shows a part of the structure of the middle-level layer. Each manufac-
turer provides a Bundle. This bundle will use a Gateway contained in a Zone in
order to access the devices. Each low-level bundle implements a method called
getAvailableProducts(). This method returns a catalogue of the devices the bun-
dle is able to control/provide. Then, users just have to instantiate the device they
need to interact with. According to the type of the device, the actions offered
are different.

Actuators inform the system about the actions they are able to realise, giving a
list of CommonAction (on, off, up, down...). Then, for each CommonAction, they
produce a HouseAction containing all necessary information for the action to be
done on a device. These HouseActions can be valued to specify light intensity
for example.
4 calimero.sourceforge.net

Using MDE to Build a Schizophrenic Middleware 53

Fig. 2. Simple EnTiMid model

Fig. 3. Message transmission on action detection

Sensors are divided in different categories, and we focus on ModularSensors.
They are composed of Modules, and those modules are only containers. At setup
time, a sensor in charge to switch off a light, will ask the light actuator for
the HouseAction to be sent to switch off the light, and this HouseAction is then
stored in a list. Then, at use time, when the push() method is called on a Module
of a ModularSensor, all the HouseActions stored in the Module list are published
to all HouseActionListeners.

54 G. Nain et al.

Figure 3 illustrates what append when push method is called on a Module.
A HouseEvent containing a HouseAction is sent for each HouseAction to each
HouseEventListener. Then, the bundle able to route the information on the
destination network (here the LonWorks network) will translate and send the
message to the concerned device.

3 A MDE Approach to Generate Middleware Personality

3.1 From PIM to PSM

The Object Management Group (OMG) promotes an approach to achieve adapt-
ability at the application level with the Model-Driven Architecture (MDA) [10,4].
The concepts involved in MDA are based on the definition of two kinds of model:
Platform Independent Models (PIM) and Platform Specific Models (PSM). A
PIM provides an abstract representation of an application independently of any
standards and aims at capturing only the business concerns. A PSM is the re-
sult of the transformation of a PIM to apply it on a particular technology or a
particular standard. PIM and PSM are defined by specific meta-models which
constrain the expression of the models. The EnTiMid internal device services
model can be considered as a PIM, due to the fact that all devices types are
specified in the framework, and specifications are common to all technologies. On
the opposite, UPnP or DPWS personalities, for example, are to be considered
as PSMs, because the device description mode is very specific for each device
and dependent of the protocol.

3.2 UPnP Personality Generation

Device

Embedded

Service

Param1

Param2

State
Vars

Action

Fig. 4. UPnP-Device structure

UPnP Meta-model. UPnP [12] is
based on a discovery-search mechanism.
As an UPnP-Device joins the UPnP net-
work, it sends an XML description file to
all UPnP-ControlPoints, presenting itself
with information such as manufacturer,
device type, device model or uuid.

Most of times a UPnP-Device is self-
contained, describing itself and publishing
all services it can offer. The UPnP specifi-
cation allows devices to contain other de-
vices (called embedded devices); if so, the
rootDevice (the container) have to publish
its self-description and the description of
each embedded device.

Moreover, UPnP-Devices (embedded or not) can offer UPnP-Services, as
shown in Figure 4. Each service type provided by an UPnP-Device, must be
described in a separated file. The description explicits all the UPnP-Actions
the service renders, and all the UPnP-StateVariables, used by these actions, in

Using MDE to Build a Schizophrenic Middleware 55

Fig. 5. UPnP mapping example

a UPnP-StateTable. Indeed, UPnP-Actions can be parametered, and sens (in
or out), name and related StateVar are specified for each parameter. UPnP-
StateVars are used to offer more precise information about parameters, such as
value type or allowed value list.

Meta-binding. The Figure 5 shows how the binding between EnTiMid-Devices
and UPnP-Devices is done. An EnTiMid-Device is exported as a UPnP-
RootDevice, beeing Sensor or Actuator.

In the case the device is a Sensor, and more precisely, a ModularSensor, all the
modules it contains are exported as UPnP-EmbeddedDevices. The RootDevice
do not offer any services: only modules are offering such a thing. But, actuators
do not contain any Module, and so, can not be exported as simply as sensors.

In order to allow users to generate actions on actuators, a new UPnP-Device
is created and is given as BasicModule as it offers CommonActions. For example,
if a simple light actuator offers ”on” and ”off” CommonAction, a BasicModule
will be created for each action, and added to the RootDevice. By this way, it
will be presented as a UPnP-Device containing two Modules (one ”on” ans one
”off”) each one offering a push() method.

As a consequence, EnTiMid-Devices are mapped to UPnP-RootDevices; the
Modules are mapped to UPnP-EmbeddedDevices and CommonActions are spec-
ified as ServiceStateVariables.

Files. As previously said, each UPnP-RootDevice and each UPnP-Service must
be defined in an XML description file. During its life, the UPnP-Device will

56 G. Nain et al.

frequently be asked to send its description file to other UPnP-Devices, and ser-
vices descriptions are consulted each time a service is likely to be used.

In a commercial point of view, those description files are defined once (for a
proper device), and embedded in the product. But the dynamics of EnTiMid,
its abstraction level and its modularity, implies that information, such as device
type or description, about the devices installed on the system, are never known in
advance. Moreover, the EnTiMid implementation of a product can offer different
services, and those services are implementation dependent. That is why the
description files are generated at runtime.

Service description file generation. Our choices of implementation has led
to the fact that only Modules offer services. UPnP-Actions, offered by a UPnP-
Service, are an UPnP-Export of some methods of the module class. Methods to
be exported are signaled to be UPnP-Compliant, thanks to the presence of an
UPnP-Method annotation. This annotation offers some interesting information.
The first information is that the annotated method has to be exported in the
service; then, the annotation gives, at runtime, a semantic name to the param-
eters and the returned value of an action. More precisely, without annotation,
the only information one can get on a parameter at runtime is its place on the
method signature and its type. In this case, the user can not have the informa-
tion that the first string parameter is for the name, and the second for the age.
The annotation brings these information.

So, if the BasicModule service description file does not exist yet, a simple
reflexive research on the class’s methods make it possible for the system to
generate it, and all devices offering this service will then be able to point to this
file.

Device description file generation. In order to generate the description
file of a device only once, the name of file is the device class name. Device
des s. The first one gives general information about the device: manufacturer,
description, model type, model number or uuid; some are statically completed
by the EnTiMid-System (such as manufacturer), others are retrieved from the
device itself (model type, model number). The second part contains the types,
identifiers and links of the services offered by the device. For example, the first
BasicModule declared will complete its services list with:

<serviceType>urn:www.entimid.org:service:BasicModule:1</serviceType>

<serviceId>urn:www.entimid.org:serviceId:BasicModule1</serviceId>

<SCPDURL>/service/BasicModule/description.xml</SCPDURL>

<controlURL>/service/BasicModule/control</controlURL>

<eventSubURL>/service/BasicModule/eventSub</eventSubURL>

The last description file part contains the description of each embedded devices.
Those descriptions are composed of the two previous part, for each embedded
device.

UPnP events management. A different listener is created for each service of
the device, to simply manage UPnP events. By this way, a listener is linked with

Using MDE to Build a Schizophrenic Middleware 57

a unique module, and side-effects with other modules or devices are avoided.
Each listener is then attached to each action of the service.

When an action event is received, the first work is to identify the method that
has been actionned. Once done, the second work is to cast the UPnP-Action
parameters into the real method argument types. Then the method is invoked,
and, if necessary, the result is translated into a UPnP-VarType and sent.

3.3 DPWS Personality Generation

The Device Profile for Web Services (DPWS) [6] defines a minimal set of
implementation constraints to enable secure Web Service messaging, discov-
ery, description, and eventing on resource-constrained devices. Its objectives are
similar to those of Universal Plug and Play (UPnP) but, in addition, DPWS
is fully aligned with Web Services technology. Moreover, it includes numerous
extension points, allowing for seamless integration of device-provided services
in enterprise-wide application scenarios. From a conceptual point of view, the
DPWS meta-model is closed to the UPnP meta-model described in Figure 4.
Consequently, building the abstract model of the service to export, follows the
same way: we use the Java annotation in the low level layer to infer the model.
However, the generation process is different. To build the DPWS layer, we use
the WS4D project [16]. This project proposes a programming model to create
DPWS services. This model is based on the concept of service, device, operation
and parameter.

A DPWS service provides an implementation of one or more WS (Web Ser-
vices) port types to DPWS clients. The messages, a service receives and sends,
are specified by its WS port types. The DPWS services definition is different of
the standard definition of the term service in the WSDL specification. A device
hosts one or more services and provides common functions like messaging or
discovery. It is classified by its port types. According to the DPWS specifica-
tion a device is a target service of the WS-Discovery specification. The basic
functionality of a device is implemented by the class HostingService. An Opera-
tion/Action is a named message exchange pattern of a port type. It can consist
of an input and output message, and multiple fault messages. The appearance
and order of the input and output messages in the WSDL determine the type
of the operation (request-response (in-out), solicit-response (out-in), notification
(out), one-way (in)).

For each device, service and operation, a Java class has to be generated.
This class must extend respectively HostedService, HostingService and Action.
For each parameter, an instance of the class Parameter has to be implemented.
Consequently, the generation process can be done automatically. To achieve that
we use the JET Framework to create generation template for DPWS. We em-
bed the JDT compiler provided by the eclipse project to compile the generated
code. Finally, we programmatically create a new bundle containing all generated
classes. Once loaded, this new bundle provides all generated classes, and allow
them to be used.

58 G. Nain et al.

4 Use Case

4.1 Context: Application to a City-Level Project

EnTiMid is currently used in a Brittany project to allow old persons to hold
in their home as long as possible. Two associations of the Rennes metropolis,
the ”CODESPAR” and the ”ASSAD”, are working together in a project called
”Maintiens à domicile et habitat évolutif ”. With the support of industrial part-
ners, they are conceiving an environment around health professionals and old
people, composed of new information technologies. As previously said, the main
goal of the project is to help people to stay at home as long as possible, but this
can not be done without helping health professionals in their everyday work.

From March to October 2007, an initial study has permitted to obtain a set of
recommendations. The second phase of the project aims to find technical answers
to these recommendations. However, technical solutions are often multiples, and
the probability to install this technical environment over, or mixed with, an
already installed technologies is not null.

Consequently, the software used to manage the technologies and ease the
access to the house for health professionals, will have to be fully adaptable to
the in-place technology, and require a short development time to reach new
technologies or new protocol versions.

Its unified technology management, provided by the middleware abstraction
of the underlying protocols, and its multiple access personalities, inherited from
its schizophrenic aspect, have led EnTiMid to be a privileged candidate to be
deployed as the access point to the equipped houses.

4.2 Advantages of a Schizophrenic Middleware in This Context

The schizophrenia of this middleware and its generative capabilities are advan-
tages in two dimensions.

In space. The city scale deployment of the project necessarily implies that the
technologies used will sometimes be different, due to some physical constraints,
or because a technology is already installed, and people do not want to change.
EnTiMid will then propose an abstraction of the deployed devices technologies;
it will expose different personalities of these devices for high level application
developers. Consequently, services provider associated to the project will be able
to develop high level services directly on top of DPWS or UPnP. Finally, the
management capabilities provided by the OSGI gateway will also help to update
and reconfigure the gateway.

In time. Software, technologies and protocols constantly evolves and versions
change with, sometimes, some compatibilities problems. That is to say that dur-
ing its life, the OSGi gateway will have to implement new protocols, or different
versions of a given protocol. Moreover, protocols can be used in different ver-
sions, at a given time, in different places of the city. Once again, the different
personalities make it possible for EnTiMid to gain multiple version compliance,
for different protocols.

Using MDE to Build a Schizophrenic Middleware 59

5 Related Work

Xie Li [7] has developed a residential service gateway, which aim is to rely ”inside-
of-house” system to a ”outside-of-house” system, allowing users to connect their
residential gateway from a centralized point ”outside-of-house”. The connection
is recommended to be done by a VPN solution, and offers an HTTP interface to
control devices through the Lonworks PLC technology and they have planned in
future work to export their services to UPnP. The ”inside-of-house” system, de-
veloped on an OSGi platform, implements algorithm giving Plug&Play facilities
to the system for ”pre-defined devices”. Compared to this system, our implemen-
tation is designed to be Plug&Play. Our system also eases the interoperability
and can access several technologies.

The paper [13] presents a ”Service Oriented Pervasive Applications Based On
Interoperable Middleware”. As EnTiMid, the described middleware is composed
of three layers: a drivers layer, in charge of the connexion between the devices
and the ”Unified Service” layer. Then a bridges layer links the Unified Service
instances to diverse ”service technologies (UPnP, WS,...)”. The solution is simi-
lar, but they do not use the OSGi technology. Besides, we made the choice in this
paper to use an MDE based generative approach to propose several personalities
for the diverse ”service technologies (UPnP, WS,...)”.

Valtchev et al.[14] have developed a gateway to control a smart house. This
gateway defines an abstract layer to manage the hardware protocol used to com-
municate with physical devices. Moreover it is defined to manage many services
gateways. But it does not define a high level abstraction to offer services through
protocols like DPWS or UPnP. This abstraction could be done using their gate-
way but for practical reason we have choosen to define our own implementation,
because their implementation offers many things like we don’t want to use now.
Even if, later, EnTiMid could be bigger and need to manage many gateways for
examples.

Bottaro et al. have developed a service platform[2] to offer service abstraction
like DPWS over device communication. Into this platform, each device has to
register on the OSGi context, for each high level protocol it implements. At run-
time, the high level protocol ’manager’ gets all registered devices and publishes
them on the network. The main difference between this platform and EnTiMid
comes from the service registration. Indeed, for each high level protocol a device
want to offer, it has to implement a set of specific interfaces(API) and register
to the OSGi context. The generative approach used in EnTiMid simplifies the
development of devices. All installed devices are natively exported toward high
level protocols, thanks to their EnTiMid-Device implementation.

6 Conclusions and Perspectives

The plethora of networked devices embedded in appliances, such as mobile
phones, televisions, thermostats, and lamps, makes possible to automate and
remotely control many basic household functions with a high degree of accuracy.

60 G. Nain et al.

Consequently, a new breed of technologies is needed to address the challenges
of the development and deployment of building automation applications over
an evolving, large-scale distributed computing infrastructure. The approach and
the tools, provided by EnTiMid, and described in this paper, are an example of
such a technology.

EnTiMid offers a first solution to manage the multiplicity and the evolution
of communication protocols through a layered schizophrenic middleware. This
solution consists of offering a common abstraction of the home device topology
and provides a generative approach to offer an access to the devices through
different personalities. To improve the flexibility of this middleware, the high
level protocols are generated and loaded at runtime. It enables a dynamic re-
configuration of the application and the high-level protocol bundle without any
system restart.

EnTiMid have been implemented to form a complete middleware for home
automation5. Future work includes technical improvement and new scientific in-
vestigations. As a technical improvement of the platform, the AMIGO European
project designed a 3D application called VantagePoint, in order to model a room
with objects and devices. Moreover, the JDT compiler embedded to compile the
DPWS personalities is heavyweight for implementation in small commodity set-
top box. The DPWS generation tool chain has to be technically improved. This
could be a really good way to generate the configuration file of a house, or to
provide a 3D device management application. As a scientific future work, we
will work on the definition of a context-aware service composition operator in
order to provide users the relevant high level services. In this context, we will
follow the work of the S-Cube project in particular the work on the adaptation
of service-oriented applications.

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube). (http://www.s-cube-network.eu).

References

1. The OSGi Alliance. Osgi service platform core specification, release 4, avril (2007)
2. Seyvoz, S., Bottaro, A., Simon, E., Gérodolle, A.: Dynamic web services on a

home service platform. In: 22nd International Conference on Advanced Information
Networking and Applications, pp. 378–385 (March 2008)

3. ECore. The eclipse modeling framework project home page,
http://www.eclipse.org/emf

4. Fuentes, L., Pinto, M., Vallecillo, A.: How mda can help designing component- and
aspect-based applications. In: EDOC 2003: Proceedings of the 7th International
Conference on Enterprise Distributed Object Computing, Washington, DC, USA,
p. 124. IEEE Computer Society, Los Alamitos (2003)

5 http://house-manager.gforge.inria.fr

http://www.eclipse.org/emf

Using MDE to Build a Schizophrenic Middleware 61

5. Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEE
Trans. Industrial Informatics 1(1), 62–70 (2005)

6. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using
the devices profile for web services. In: MPAC 2005: Proceedings of the 3rd inter-
national workshop on Middleware for pervasive and ad-hoc computing, pp. 1–8.
ACM, New York (2005)

7. Li, X., Zhang, W.: The design and implementation of home network system using
osgi compliant middleware. IEEE Transactions on Consumer Electronics 50 (May
2004)

8. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Kent, S., Briand, L. (eds.) MoDELS 2005. LNCS,
vol. 3713. Springer, Heidelberg (2005)

9. Osgi alliance, http://www.osgi.org/About/HomePage
10. Soley, R., OMG Staff: Model-Driven Architecture. OMG Document (November

2000)
11. Szyperski, C.: Component technology: what, where, and how? In: ICSE 2003: Pro-

ceedings of the 25th International Conference on Software Engineering, Washing-
ton, DC, USA, pp. 684–693. IEEE Computer Society, Los Alamitos (2003)

12. The UPnP Forum, http://www.upnp.org
13. Uribarren, A., Parra, J., Uribe, J.P., Makibar, K., Olalde, I., Herrasti, N.: Service

oriented pervasive applications based on interoperable middleware. In: Workshop
on Requirements and Solutions for Pervasive Software Infrastructure (RSPSI 2006)
(2006)

14. Valtchev, D., ProSyst Software AG, Frankov, I.: Service gateway architecture for
a smart home. IEEE Communications Magazine 40, 126–132 (2002)

15. Vergnaud, T., Hugues, J., Pautet, L., Kordon, F.: Polyorb: A schizophrenic middle-
ware to build versatile reliable distributed applications. In: Llamośı, A., Strohmeier,
A. (eds.) Ada-Europe 2004. LNCS, vol. 3063, pp. 106–119. Springer, Heidelberg
(2004)

16. Zeeb, E., Bobek, A., Bohn, H., Prueter, S., Pohl, A., Krumm, H., Lück, I., Gola-
towski, F., Timmermann, D.: Ws4d: Soa-toolkits making embedded systems ready
for web services. In: 3rd International Conference on Open Source Systems, Em-
bedded Workshop on Open Source Software and Product Lines, Limerick, Ireland
(2007)

http://www.osgi.org/About/HomePage
http://www.upnp.org

Model-Driven Integration and Management of Data
Access Objects in Process-Driven SOAs

Christine Mayr, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group
Information Systems Institute

Vienna University of Technology, Austria
christine.mayr@inode.at, {zdun,dustdar}@infosys.tuwien.ac.at

Abstract. In most process-driven and service oriented architectures (SOA), ser-
vices need to access data stored in a database using database transactions. This
is typically done using Data Access Objects (DAOs), but so far the integration of
the business process, service, and DAO concepts is not well defined. As a con-
sequence, when the number of services in a SOA grows, the number of DAOs
can increase considerably and become hard to manage. In addition to this techni-
cal issue, business processes have to be highly adaptable to both functional and
technical requirements. We propose a model-driven approach for integrating and
managing DAOs in process-driven SOAs. We present a set of models provid-
ing different views tailored to the requirements of various stakeholders, such as
business experts, database designers, database developers, etc. In process-driven
SOAs, process activities running in a process-engine invoke services. We adapt
these process flows to model a sequence of DAOs within a service. A DAO repos-
itory is used to manage DAOs more efficiently and to improve software reuse in
database transaction development. The repository provides functionalities to cre-
ate, update, retrieve, and delete database transactions. As our view-based models
can flexibly be adapted to project requirements, our approach also aims at en-
hancing maintainability and increasing software development productivity.

1 Introduction

In a process-driven, service-oriented architecture, services are invoked from process ac-
tivities running in a process engine [1]. In this paper we concentrate on an important
part of process-driven SOAs: persisting the business objects (and other data) that is used
and manipulated by the processes and services. Nowadays, this is often done by inte-
grating Data Access Objects (DAOs) into services. DAOs are a special kind of objects
providing access to data that is usually read or written from one or more database ta-
bles. Services invoke the DAOs to commit a database transaction to persistent storage.
The goal of this design is to enhance software maintainability and strict separation of
the layers providing business functionality and data access in a SOA. In addition, DAOs
provide an interface that is independent of the underlying database technology. Com-
mon DAO implementations are provided by object-relational mapping (ORM) tools,
such as Hibernate [2] or Ibatis [3]. ORM frameworks support developers in mapping
data between object-oriented programming languages and relational database manage-
ment systems (RDBMS).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 62–73, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model-Driven Integration and Management of Data Access Objects 63

As the number of DAOs, as well as the number of uses of a DAO, grows along with
the number of services, maintaining and managing the DAOs becomes increasingly
difficult when the SOA grows. That is, it becomes hard to deal with tasks such as finding
out which services or processes require which DAO, deciding whether a DAO can be
discarded because it is not used anymore, or whether a suitable DAO for a specific
task has already been defined and can be reused. Different stakeholders involved in a
process should be able to understand the SOA only from their perspective. For instance,
data analysts require mainly information about which DAOs access which data, service
developers require DAOs rather as interfaces to the data, and software architects require
the big picture of service/DAO interconnection.

DAOs are an integral part of many SOAs, but unfortunately services and DAOs are
not well integrated yet. A straightforward approach to solve this problem are cartridges,
such as those provided by AndroMDA [4] or Fornax [5]. Cartridges support separa-
tion of concerns by providing mechanisms for accessing and manipulating data through
DAOs. They are predefined components for model-driven generators that enable de-
velopers to integrate DAOs into services by generating either an instance of a DAO
interface into the service code [4] or generating DAO instances into the service opera-
tion [5]. However, the relationships between DAO operations and service operations are
not specified so far by cartridges. Even though the Fornax cartridge [5] connects DAOs
to service operations, it lacks information about which DAO operations are invoked by
which service operation. This information, however, is important for stakeholders, such
as software architects and service developers, to gain a clear view about which database
transactions are invoked by which service operation. To overcome this problem, we
extend the cartridge approach with the integration of DAO operations into service op-
erations and the introduction of service operation flows consisting of DAO operations.

In our earlier work, we introduced a view-based modeling framework (VbMF) [6]
for separating different concerns in a business process into different views.The idea is to
enable stakeholders to understand each view on its own, without having to look at other
concerns, and thereby reduce the development complexity. VbMF is based on model-
driven software development (MDSD) [7], i.e., executable code, such as BPEL/WSDL
in the example, can be generated from the views.

In this paper, we tackle the problems of integrating DAOs into a process-driven SOA
by extending the VbMF using different views for managing data objects more effec-
tively and efficiently. One important aspect of our solution is the need for a specific
view: the Data Access Object Repository View that particularly offers a fast and effi-
cient retrieval and management of DAOs. Establishing a Data Access Object Repository
increases both software development productivity and maintainability by enabling loose
coupling between DAOs and services, but still supporting the management of DAOs.

This paper is organized as follows: First, we present our approach for managing and
integrating DAOs into process-driven SOAs from the architectural integration point of
view. Section 3 provides a specification of the view-based data modeling framework
and discusses the model-driven aspects of our solution. We validated the applicability
of our approach through a case study in the area of modeling jurisdictional provisions in
the context of a district court, described in Section 4. Section 5 discusses related work
and finally Section 6 concludes.

64 C. Mayr, U. Zdun, and S. Dustdar

2 Architectural overview

In this section we propose an approach for integrating and managing DAOs in process-
driven SOAs. We discuss the relevant components and the relationships between them
from an architectural point of view. In the next section we explain how to support this
architecture using our view-based models. The goal of our integration and management
approach is to enable effective software development, extended analysis methods, and
efficient management of data-related issues in a process-driven SOA. As shown in Fig-
ure 1 the architecture consists of four main components:

1. Process Flow: An executable Process Flow, such as the BPEL process flow in the
example configuration in Figure 1, consists of process activities that each can in-
voke a service operation. Process activities act as service requesters that invoke a
specific service from a service repository.

2. Service Repository: The Service Repository serves providers for publishing and re-
questers for retrieving and invoking services. When a requester discovers a suitable
service, it connects to the specific service provider and invokes the service [8]. In
VbMF, the service repository is modeled by the Collaboration View. It supports
creating, updating, retrieving and deleting of services.

3. Service Operation Flow: When a service operation invokes one or more DAO op-
erations, the Service Operation Flow orchestrates these DAO operation calls by a
data flow of basic process elements such as sequences, flows, and switches.

4. DAO Repository: The Data Access Object Repository is used as central component
for managing DAOs. It provides basic functionality for accessing DAOs and in
particular aims at efficiently retrieving a suitable DAO operation.

These components are part of the runtime architecture generated from our models.
In MDSD [7] models are used to abstract from programming languages and platform-
specific details. In this paper, we use BPEL as an example for a specific process execu-
tion language. In the following sections, we focus on the Service Operation Flow and
the DAO Repository that are novel contributions of the work presented in this paper.

Fig. 1. DAO Service Integration Overview

Model-Driven Integration and Management of Data Access Objects 65

2.1 DAO Repository

As the number of DAOs can grow considerably large as the number of services grows,
retrieving a certain DAO operation, for instance for reusing the operation, can be com-
plex and time consuming. Also, the potentially large number of DAOs must be man-
aged. For instance, it must be decided which DAO is obsolete and which DAOs can be
merged. To support these issues, in our integration and management architecture, we
established a DAO Repository as a central component for managing DAOs efficiently.
Our DAO repository interface provides the following basic functionality:

– Insert: Create a new DAO operation
– Update: Change operation name or parameter definitions of a DAO operation
– Search: Retrieve a DAO operation by certain search criteria
– Delete: Remove a DAO operation

The DAO Repository is the central component for publishing and discovering
DAO operations – the functional parts of a DAO. Within the DAO repository each
DAO operation belongs to one or more database tables and in the end to a database.
This classification enables advanced searching capabilities. Listing 1.1 shows a few
example queries for selecting DAO operations by different search criteria. The query
getDaoOperation returns a list of DAO operations matching a pattern describing
a DAO operation name. The second query operation getDaoOperationByDAO

returns a list of DAO operations belonging to the given daoObject type. The
third query getDaoOperationByDbName returns a list of DAO operations by a
given pattern describing the name of a certain database instance. Finally, the query
getDaoOperationByTableName returns a list of DAO operations accessing a certain
database table. In Section 4 we apply the DAO repository using a concrete example.

DaoOpList[] getDaoOperation(String pattern)
DaoOpList[] getDaoOperationByDAO(DAOObject daoObject)
DaoOpList[] getDaoOperationByDbName(String pattern)
DaoOpList[] getDaoOperationByTableName(String dbPattern, String tablePattern)

Listing 1.1. DAO Repository: Query examples

2.2 Service Operation Flows

In this section, we describe the Service Operation Flows (see Figure 1) in more detail. A
Service Operation Flow supports separation of concerns by enabling service developers
to extract the database transactions from the service implementation. This way, service
developers get a clearer understanding about the data flows within a service. As a result,
development complexity decreases and higher-quality documentation can be generated.

To specify Service Operation Flows we have to integrate DAO operations into ser-
vice operations. Cartridges, such as AndroMDA [4] and Fornax [5], relate DAOs to ser-
vices rather than service operations to DAO operations. Establishing the relationships
between service operations and DAO operations provides the basis to enable advanced
analysis capabilities of database transactions in process-driven SOAs. For example, we
can estimate the average number of calls of a specific DAO operation within a process

66 C. Mayr, U. Zdun, and S. Dustdar

flow for tuning technical database parameters or database indexes. Database indexes can
significantly improve the performance of database transactions, but it must be consid-
ered that update costs have a considerable influence, both in the context of the physical
database design and in access path selection for RDBMS query optimization [9]. The
specification of a database transaction provides the information about which database
indexes are required for a specific application. However, database transactions that are
never invoked must not be selected for index creation.

A DAO consists of a set of DAO operations, and a service consists of 0..n service
operations. When a service operation needs access to the database, it invokes a DAO
operation from the DAO repository. However, often a service operation invokes more
than one DAO operations that can be dependent on each other. Therefore we introduce
Service Operation Flows consisting of database transactions (DAO operations). Our
Service Operation Flows support at the moment sequence and switch elements, but can
be extended with any other kind of data flow structure. We show a detailed example of
a Service Operation Flow in Section 4.

3 Model-Driven Integration of DAOs into Process-Driven SOAs

In this section we present a model-driven solution for the proposed integration and
management architecture of DAOs in process-driven SOAs presented in Section 2. For
that purpose we introduce the View-based Data Modeling Framework (VbDMF) as an
extension of the Viewbased Modeling Framework (VbMF) described in detail in [6].
The rectangles in Figure 2 display models of VbMF and the ellipsoidal boxes denote
the additional models of VbDMF. In VbMF new architectural views can be designed,
existing models can be extended by adding new features, views can be integrated in
order to produce a richer view, and using transformations platform-specific code can be
generated. As displayed by the dashed lines in Figure 2 the new view models of VbDMF
extend basic VbMF views namely the Information View, the Collaboration View, and
the Control-Flow View. The dotted lines in Figure 2 are used to display view integration,
e.g., the Service Repository View integrates the Collaboration and Information View to
produce a combined view.

We describe the resulting view models specifying the architectural components in
Figure 1. Following VbMF’s concepts, we distinguish low-level, technical views from

Fig. 2. VbDMF and VbMF – Overview

Model-Driven Integration and Management of Data Access Objects 67

high-level, conceptual (i.e., often: business-oriented) views. In addition, our low-level
technical view models support separating technology-specific from technology-
independent views, both for presenting the information in the models to different
stakeholders and for supporting platform-independence via model-driven software
development.

3.1 Control-Flow View (BPEL Process) – High Level

The Control-Flow View is an essential part of the Viewbased Modeling Framework
[6]. It extends the Core View model (see Figure 2) that defines basic elements of the
framework. VbMF introduces this Core View model that is derived from the Ecore
meta-model [10] to define and maintain relationships with other view models.
The Control-Flow View describes the control-flow of a process, so we can for instance
apply it for specifying the BPEL Process depicted in Figure 1. As shown in the figure,
a BPEL Process activity can invoke a service operation from the Service Repository
to realize the task of the activity. The relationship between a process-activity and a
service operation is modeled by the Control-Flow View model by view integration with
the Collaboration View model.

3.2 Service Repository View (Service Repository)– High Level

The Service Repository View integrates the Collaboration View and the Information
View. Both view models belong to VbMF [6] and are derived from the Core View
model (see Figure 2). The Collaboration View basically defines service operations re-
quired by a process activity. It defines the information needed to generate a Web Service
Description Language document (WSDL). The Information View specifies the service
operations in more detail by defining data types and messages. Technically speaking,
the data types of the Information View are used to generate a schema definition (XSD).
In distributed systems, data is passed from one system to another. Each system has
its own underlying data structures. For this purpose we specify data type mappings to
support data interoperability between diverse systems:

XSD Data Object View. The XSD Data Object View specifies conversions between
Web Service Description Language (WSDL) Schema types and data types of the service
providers’ software system environment. For this purpose a class XsdObjectMapping
associates each XsdAttribute with an Attribute of a locally defined Data Object.

3.3 DAO Flow View (Service Operation Flow)– High Level

The DAO Flow View model extends the Control-Flow View model in order to specify
Service Operation Flows, as illustrated in Figure 1, and integrates the Collaboration
View model to associate each flow with a specific service operation. The primary en-
tity of the Control-Flow View is the Activity class that is the base class for other
classes such as Sequence, Flow, and Switch [6]. We extend the class Activity

to associate a service operation Operation of the Collaboration View with a flow of
DAO operations. The Control-Flow View model uses the class SimpleActivity for

68 C. Mayr, U. Zdun, and S. Dustdar

representing a concrete process activity [6]. By extending the SimpleActivity class
of the Control-Flow model we can associate each activity SimpleActivity with a
DAOOperation.

3.4 DAO Repository View (DAO Repository)– Low Level

The DAO Repository View is a combined view that integrates the Object Relational
Mapping (ORM) View model and the Data Object View model. Since the main purpose
of the ORM View is to map physical data to data objects, it consists of both the Physical
Data View model, integrating the Database Connection View and the Data Object View.
As a result of this view integration, a DAO Repository service can process complex
queries for retrieving a specific DAO operation by joining the data from different views
(see Section 2.1). DAOs provide an interface that is independent of the used specific
ORM technology. That is, this view model specifies a conceptual view rather than a
technical view. It consists of a list of DAOOperation elements that each holds 0..n
InputParameter parameters and a ReturnParameter.

Database Connection View. The Database Connection View comprises a list of ar-
bitrary, user-defined connection properties and therefore is a conceptual rather than a
technical view. We also support database driver dependent views through model exten-
sion, e.g., a JDBC Database Connection View.

Physical Data View. The Physical Data View contains a class Database Connection

Pool specified by a list of the class DBConnection. We reference the class
DBConnection of the Database Connection View using model integration mech-
anisms (see Figure 2). The Physical Data View contains two more basic classes:
Tables and ColumnTypes. We support most common data types for current
RDBMSs. As data types can differ among different RDBMSs, developers can create a
technology-dependent view by extending this conceptual view model.

Object Relational Mapping View. The Object Relational Mapping View is a
technology-dependent model that provides the basis for specifying object relational
mapping mechanisms in VbDMF. The defined elements result from studying a range
of ORM tools in particular Ibatis [3] and Hibernate [2]. In order to support ORM
framework’s special features, developers should specify a technology-dependent
view by model extension. The basic view specifies a mapping between the two
below-mentioned models – the Data Object View model and the Physical Data View
model. The class DataObjectToTableMapping maps a data object (DataObject)
to a database table (Table). The class MemberVariableToColumnMapping allows
for a more specific mapping between MemberVariable and a table Column.

Data Object View. In object-oriented programming languages information is stored
in the objects’ member variables. We provide a conceptual, technology-independent
model, that consists primarily of a list of data objects DataObject and types
MemberVariableTypes. Again, to define additional data types developers can extend
this view model to gain a technology-dependent view.

Model-Driven Integration and Management of Data Access Objects 69

4 Case Study

In this section we present a case study in the area of modeling jurisdictional provisions
in the context of a district court, which we have performed to validate the applicability
of our approach. First of all, let us explain the Business Process flow and an exemplary
Service Operation flow (see Figure 3) at the land registry court. We use UML extensions
to model our process flows.

As shown in Figure 3, the process starts when a new application is received. The
ValidateApplication activity invokes a service that checks the incoming jurisdic-
tional application for correct syntax and semantic. Successfully validated applications
are saved by the service triggered by the SaveApplication activity. The activity
DeliverDismissal invokes a service that returns incomplete or inconsistent applica-
tions back to the applicant. Stored applications can be executed by the registrar within
the human process activity ExecuteApplication. If the registrar approves the appli-
cation, the service-based activity AccountFees is invoked. Finally, after accounting
the fees, the next activity DeliverApprovalAndFees calls a service that delivers an
approval and, if required, a pre-filled payment form to the applicant. In case of dismissal
the activity DeliverDismissal invokes a service that informs the applicant about the
dismissed application.

Let us now illustrate how to integrate DAO operations into service operations
using the process activity AccountFees as an example to demonstrate the database
transaction flow within an activity. In Figure 3 the dashed lines indicate the data
flows between the DAO operations. The DAO operation isExemptedFromFees of
ApplicantDAO checks whether the applicant is exempted from fees. If the DAO
operation isExemptedFromFees returns true, no further operations are necessary

Fig. 3. Case Study: Process Flow and Service Operation Flow (Process Activity AccountFees)

70 C. Mayr, U. Zdun, and S. Dustdar

Table 1. Case Study: DAO Repository View

DAO DAO operation Transaction Type Database Table

ApplicantDAO isExemptedFromFees select DBTest1 Applicant
ApplicantFeesDAO insertFeesForApplicant insert DBTest1 ApplicantFees
ApplicantDAO isExemptedFromFees select DBProduction1 Applicant
ApplicantDAO selectApplicant select DBProduction1 Applicant
FeesLienDAO getFees select DBProduction2 FeesLien

to terminate the flow. Otherwise the DAO operations for accounting fees and selecting
the applicant can run in parallel, because their data-flows are independent from
each other. Fees are accounted by the fees department and are system-dependent
on the type of application: Fees for applications of type ’Lien’ are calculated by
the DAO operation getFeesForApplicationType of DAO FeesLienDAO, the
DAO operation getFeesForApplicationType of DAO FeesSimpleFeeDAO

accounts fees for applications of type ’FeeSimple’, and the DAO operation
getFeesForApplicationType of DAO FeesOtherDAO calculates the costs
for applications of type ’Other’. The DAO operation insertFeesForApplicant

of DAO ApplicantFeesDAO requires a stored applicant as input parameter. For this
purpose the ApplicantDAO’s DAO operation selectApplicant looks for an
existing applicant. In case the applicant is not stored in the database yet, the DAO
operation insertApplicant is invoked to return the new applicant required as an
input parameter for the DAO operation insertFeesForApplicant. Let us now
consider the main view models instances specifying the process flow illustrated before:

Control-Flow View instance. In our prototype implementation the Control-Flow View
specifies a BPEL Process Flow. A graphical layout of the resulting BPEL model in-
stance is depicted left in Figure 3. The BPEL source code that is not shown here repre-
sents another layout of this view instance.

Service Repository View instance. The Service Repository View models the services
and data types of services often invoked by a process activity. In our concrete example,
the Service Repository View instance specifies the services depicted left in Figure 3.

DAO Repository View instance. Table 1 shows an extract of the data stored in the DAO
Repository after modeling our example process. Due to the view integration mech-
anisms (Database Connection View, Physical Data View, etc.) this DAO Repository
View instance contains data of various categories (DAOs, database, tables, etc.). In our
example we query all DAO operations that belong to a certain database ’DBTest1’. In
another query we can ask for existing DAO operations depending on a specific table
such as ’Applicant’.

DAO Flow View instance. The DAO Flow View instance depicted in Figure 3 illustrates
the connection between the process activity ’AccountFees’ and its Service Operation
Flow. In general, the DAO Flow View is intended for software architects, data analysts,
and service developers to get both a general understanding of the data flows within

Model-Driven Integration and Management of Data Access Objects 71

service operations and to get the information which service operation depends on which
DAO operations. Furthermore we can use this view to query all DAO operations that
are needed by a specific process.

We use the oAW’s Xpand language for source code generation. A BPEL definition
for the process flow and a service description in WSDL are generated from an instance
of the Control-Flow View, the Information View, and the Collaboration View respec-
tively. The Apache Axis2 Web services engine [11] supports us in building Java proxies
and skeletons for the services with WSDL descriptions. So we can generate a service
implementation and use the DAO Flow View model instance to inject the flow of DAO
operations into the relevant service operations. The DAOs themselves are generated
from plenty of model instances, namely of the DAO Repository View, the ORM View,
and the Data Object View. In contrast to generating DAOs, the DAO interfaces are au-
tomatically implemented simply from the DAO Repository View instance and the Data
Object View instance.

5 Related Work

As mentioned before, our approach is related to other model-driven solutions for in-
tegrating DAOs into services, such as AndroMDA’s EJB3 cartridge [4], generating a
persistent tier by integrating DAOs into services, and the Fornax platform [5], aiming
at a more specific integration by modeling the relationships between DAOs and service
operations. In our solution we associate DAO operations with service operations and
thus provide a more in-depth integration solution than these cartridges. Furthermore,
in contrast to earlier model-driven approaches, in our approach a data flow of database
transactions is modeled within a service operation that can be used to extract data de-
pendencies from the whole business logic.

Our work aims at integrating DAOs into process-driven SOAs, so it is concerned
with both processes that typically invoke services and with services that can access
data. Ricken’s top-down approach [12] addresses the same concern by adding service-
orientation to process models to support IT developers in translating business needs
into executable code. In [13] a set of architectural and software design models based on
proven patterns is introduced for process-driven SOAs. Both approaches, however, do
not separate different views or focus specifically on data-related views.

Akin to the approach by Wiederhold [14] our approach uses a mediator-based ar-
chitecture for integrating data stored in heterogeneous database systems. As the DAO
concept provides an abstract and technology-independent interface for accessing data,
Wiederhold’s mediators enable the homogeneous data access by integrating and se-
lecting necessary data among different sources. In the proposal of Roth and Schwarz
[15], a wrapper encapsulates the underlying data and acts as a mediator between the
data source and the middleware. In contrast to these mediator approaches, we propose
a more abstract, higher-level approach by using a DAO repository for managing DAO
operations. Kurz et al. provide a schema-level data integration which specifies how
to select, integrate, and transform data from heterogeneous data sources [16]. Like
our solution, this modeling approach provides a specification in a user-friendly and
platform-/language-independent way. In Section 2 we presented our architectural con-

72 C. Mayr, U. Zdun, and S. Dustdar

cept for managing DAOs in process-driven SOAs. These architectural components are
supported by technology-independent view models and their technology-specific ex-
tensions. As in our approach, Marcos at al. [17] support two different aspects. They
distinguish between platform independent (PIM) and platform specific models (PSM)
and separate models according to distinct aspects. Besides Marcos et al. [17], there are
several approaches for including software architecture into MDA platform. For exam-
ple, Alti et. al [18] integrate software architecture concepts into MDA platform by a
UML profile for Component-Object based Software Architecture extending UML 2.0.

Our view models extend the VbMF [6] to integrate data-related views. Mendling
et al. propose a similar approach for efficient view integration. They identified formal
semantic associations between elements of the process view. Just like VbMF, our data-
related views, in contrast, use a name-based matching algorithm to integrate views. For
the establishment of the DAO repository we were inspired from current web service reg-
istry standards such as UDDI [19], ebXML [20] and WSIL [21]. EbXML Web Service
Registries [20] have interfaces that enable submission, query, and retrieval of the con-
tents of the registry. We adopted the fundamental interface abstractions, used in these
approaches, to integrate the DAO repository into our process-driven architecture.

6 Conclusion and Future Work

In this paper we identified current problems in managing DAO operations in process-
driven SOAs. In order to efficiently manage and integrate data into process-driven
SOAs, we proposed an architecture, that consists of four main components namely
the BPEL Process flow, the Service Repository, Service Operation Flows, and a DAO
Repository. We further provide a model-driven solution to support this architecture by
specifying a set of view models. As our view models are based on VbMF, each model
represents a specific view tailored to the requirements of specific stakeholders. In par-
ticular, we introduced a view model for specifying database transaction flows to extract
data flows from the whole business logic. Up to now, no standard retrieval or submis-
sion interface for DAO repositories has been defined. As the number of services grows,
data development complexity increases with the number of data access object opera-
tions. Hence, retrieving a particular DAO operation can be complex and time-intensive.
More powerful searching capabilities, such as those that can be provided on top of our
approach, are hence desirable. However further work is necessary for specifying the re-
quirements for a DAO Repository in detail. Further work also includes runtime statistics
for measuring how often a DAO operation has been invoked, etc.

Acknowledgement. This work was supported by the European Union FP7 project
COMPAS, grant no. 215175.

References

[1] Zdun, U., Hentrich, C., van der Aalst, W.: A survey of patterns for service-oriented archi-
tectures. International Journal of Internet Protocol Technology 1(3), 132–143 (2006)

[2] Hibernate: Hibernate (2006), http://www.hibernate.org
[3] Ibatis: Ibatis (2006-2007), http://www.ibatis.org

http://www.hibernate.org
http://www.ibatis.org

Model-Driven Integration and Management of Data Access Objects 73

[4] AndroMDA: AndroMDA EJB3 Cartridge (August 2007),
http://web.aanet.com.au/persabi/andromda/

[5] Fornax-Platorm: Fornax-Platform Cartridges (August 2006),
http://www.fornax-platform.org/cp/display/fornax/Cartridges

[6] Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the
development complexity in process-driven SOA. In: Abramowicz, W., Maciaszek, L.A.
(eds.) Business Process and Services Computing: 1st International Conference on Business
Process and Services Computing (BPSC 2007), Leipzig, Germany, September 25-26, 2007.
LNI, GI, vol. 116, pp. 105–124 (2007)

[7] Völter, M., Stahl, T.: Model-Driven Software Development: Technology, Engineering,
Management. Wiley, Chichester (2006)

[8] Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic com-
position of e-services that export their behavior. In: Orlowska, M.E., Weerawarana, S.,
Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer,
Heidelberg (2003)

[9] Schkolnick, M., Tiberio, P.: Estimating the cost of updates in a relational database. ACM
Trans. Database Syst. 10(2), 163–179 (1985)

[10] Eclipse: Eclipse Modeling Framework (2006), http://www.eclipse.org/emf/
[11] Apache Software Foundation: Axis2/Java (2004-2008),

http://ws.apache.org/axis2/index.html
[12] Ricken, J.: Top-down modeling methodology for model-driven soa construction. In: OTM

Workshops, vol. (1), pp. 323–332 (2007)
[13] Zdun, U., Dustdar, S.: Model-driven and pattern-based integration of process-driven soa

models. Int. J. Business Process Integration and Management 2(2), 109–119 (2007)
[14] Wiederhold, G.: Mediators in the architecture of future information systems. Readings in

agents, 185–196 (1998)
[15] Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! a wrapper architecture for legacy data

sources. In: VLDB 1997: Proceedings of the 23rd International Conference on Very Large
Data Bases, pp. 266–275. Morgan Kaufmann Publishers Inc., San Francisco (1997)

[16] Kurz, S., Guppenberger, M., Freitag, B.: A uml profile for modeling schema mappings. In:
ER (Workshops), pp. 53–62 (2006)

[17] Marcos, E., Acuña, C.J., Cuesta, C.E.: Integrating software architecture into a mda frame-
work. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 127–143.
Springer, Heidelberg (2006)

[18] Alti, A., Khammaci, T., Smeda, A.: Integrating software architecture concepts into the mda
platform with uml profile. Journal of Computer Science 3(10), 793–802 (2007)

[19] Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2, UDDI Spec Tech-
nical Committee Draft (October 2004),
http://www.uddi.org/pubs/uddi v3.htm

[20] OASIS/ebXML Registry Technical Committee: OASIS/ebXML Registry Services Specifi-
cation v2.0. (December 2001), http://www.ebxml.org/specs/ebrs2.pdf

[21] Ballinger, K., Brittenham, P., Malhotra, A., Nagy, W.A., Pharies, S.: Web services in-
spection language (ws-inspection) 1.0 (November 2001), http://www.ibm.com/
developerworks/library/specification/ws-wsilspec/

http://web.aanet.com.au/persabi/andromda/
http://www.fornax-platform.org/cp/display/fornax/Cartridges
http://www.eclipse.org/emf/
http://ws.apache.org/axis2/index.html
http://www.uddi.org/pubs/uddi_v3.htm
http://www.ebxml.org/specs/ebrs2.pdf
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/
http://www.ibm.com/developerworks/library/specification/ws-wsilspec/

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 74–85, 2008.
© Springer-Verlag Berlin Heidelberg 2008

WIMS 2.0: Enabling Telecom Networks Assets in the
Future Internet of Services

David Moro1, David Lozano1, and Manuel Macias2

1 Telefónica Investigación y Desarrollo, S.A.U. Parque Tecnológico,
Boecillo (Valladolid), 47151, Spain

{dmf,dll}@tid.es
2 Full on Net, S.L. Hnos. García Noblejas, 41, 28037 Madrid, Spain

mmacias@full-on-net.com

Abstract. WIMS 2.0 initiative, focalized on convergence of telecom networks
with web 2.0, provides mechanisms to offer the unique telecom service assets
as part of the future Internet of Services. To achieve this, WIMS 2.0
technological foundation lays on the Open APIs concept: a so-called Telecom
Exposure Layer at the operator network provides interfaces to easily integrate
telecom capabilities with Internet services. Not withstanding, WIMS 2.0
includes other strategies: the telecom Portable Service Elements, providing a
widget-based penetration of personal communication services into the Internet
loom of services; the telecom-boosted User Generated Content publication and
distribution, exploiting telecom services potential to produce UGC in real-time;
and the Thin Clients, providing virtual terminal representations, ubiquitously
accessible from any point of the Internet. WIMS 2.0 provides a mid-term view
for the immediate evolution towards the future Internet of Services from a
telecom-convergent view.

Keywords: Internet of Services, Web 2.0, telecom, convergence.

1 Introduction

The present paper condenses the ideas developed in the WIMS 2.0 (Web 2.0 & IMS)
initiative. Taking into account the Web 2.0 revolution [2] and the future trends of the
Internet of Services [1], WIMS 2.0 proposes an ecosystem for the creation of
innovative user-centric services through the provision and exposure of unique telecom
operator service assets towards the Internet.

Recently, a new philosophy for the design and development of services has brought
about a massive wave of highly-social services in the Internet, creating the current
Web 2.0. In this new fashion, the user becomes the centre of the service and the
Internet becomes the platform for developing and delivering services, in many cases,
through the mixture of functionalities (mashups) and content (syndication) coming
from different Internet players. Continuing this approach, the future Internet will
follow an open garden philosophy, with a flexible, cost-effective, technology
independent deployment of new services in a plug-and-play service activation fashion.

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 75

In order to adapt to this strategy, telecom operators must move from a network-
centric to a user-centric approach and concentrate on the role of “Enabling Platform
Providers for the Construction of Services”. The appropriate exposure of operator’s
capabilities and platforms towards the Internet will enable the flexible and faster
construction of final services by Internet players (e.g., a service provider on the Web
or a user generating their own applications).

WIMS 2.0 has identified several strategies for exposing telecom capabilities, ideally
based on the IP Multimedia Subsystem (IMS) [3] but not limited to it, from the operator
networks to the Internet. Regarding IMS, it has been considered as the basis platform to
support the exposure of telecom capabilities due to several reasons. Specifically, IMS is
completely based on IP technologies and it was originally designed to support
multimedia communications. Also, IMS-based set of standardized service enablers will
conveniently enrich the capabilities to be exposed. In addition, apart from the above
mentioned advantages, IMS will become the common control system for mobile, fixed
and convergent telecom networks and services; thus, the consideration of IMS allows
conceiving the telecom capabilities exposure strategy from a general point of view, able
to address a widely common telecom operator scenario.

In the first place, in order to illustrate the context of utilisation and motivations of
the WIMS 2.0 initiative, this paper shows some of the relevant characteristics of the
future Internet. Afterwards, WIMS 2.0 convergence strategies are exposed and
organized in different guidelines. Later, the reference architectural model, defined to
obtain the desired convergence along the proposed guidelines, is presented. This
reference model allows establishing the main architectural concepts for the definition
of a specific WIMS 2.0 Service Platform. Finally, and aiming to clarify the viability
of the proposed solution, this paper presents the results of one representative proof of
concept within the WIMS 2.0 initiative. The positive outcomes and the interest of
several WIMS 2.0 proofs of concept and use cases have prompted WIMS 2.0
founders to start a practical implementation of the presented ideas.

2 The Future of the Internet

The future Internet [1] is envisioned as an open garden of services, where new models
will be developed for the deployment, distribution and discovery of services in a
efficient, controlled and network technology independent way. In this context,
Internet will become a flexible open environment for the deployment of new services
in an easy plug & play service activation fashion.

In this context, combination and flexibility becomes major principles for the design
and development of final services, being currently essentials of the Web 2.0
revolution as the first step of the future Internet of Services. In this respect, the
worldwide adoption of Internet and IP connection capabilities, along with the
appropriate use of remote procedure execution schemes (i.e. open Web APIs), is
enabling the mixture of service functionalities (mashups) and content (syndication).
The possibility to combine resources coming from different locations of the Internet,
as if it were a huge computer, provides an extraordinary flexibility to create new
services in a short time. Thus, the Internet becomes the platform for developing and
delivering new cost-effective services, virtually to any part of the world.

76 D. Moro, D. Lozano, and M. Macias

In addition, a new philosophy based on user-centric approach is emerging in the
design and development of new services. In this paradigm the user is the centre: the
user is now regarded as the main active driver of the service, so that he can freely
express his preferences. The users create the service content, they can customize
service features, they effectively affect the service evolution and they can even
participate in service development, directly constructing modules and applications in
order to fulfill their own needs.

Additionally, the new universe of forthcoming services will effectively consider
the situation and context of users, capturing their environment and localization at each
time. These new services will provide extended (multimode, ubiquitous, personal,
contextual, pro-active, self-learning, etc) and multi-device interaction with users,
bringing forward the preferences and necessities of users at each moment. Besides,
the future of internet will be associated with mobility, dynamism and advanced
connectivity. Always-on connectivity will be essential, with services always available
independently of the device and access technology (fixed or mobile, etc).

Taking into account some of these future trends, telecom operators must adapt their
service architecture and business models for converging, being involved and provide
advanced service connectivity for the future Internet. Thus, telecom operators must
implement a service architecture based on the offer of network operator capabilities
and provision of means for users to be always connected and interacting with the
future service-oriented Internet.

3 Exposure of Telecom Operator Service Assets to the Internet

The main objective of WIMS 2.0 is to make the telecom network operator services
available into the future Internet of Services, being the first step to make them
available into the current Web 2.0. Following this approach, the final service is
actually provided by a Third Party located in the Internet, but the operator offers an
added value, maintaining an active role through the provision of unique telecom
service assets, apart from providing connectivity. WIMS 2.0 proposes a strategy
organised in several guidelines. The first three general guidelines are considered
within WIMS 2.0 initiative to cover this approach:

Guideline 1: Incorporation of IMS capabilities into the Internet of Services
through open Web APIs, allowing the integration of IMS and telco capabilities into
the Internet of Services, currently enabling this integration into Web 2.0 mashups.
This potentially applies to any IMS capability and by extension to any telecom service
capability, which would therefore be usable by/from any Internet service. Two
different, but interrelated, strategies are proposed here:

1. Portable Service Elements (PSEs): IMS and telco applications can be
incrusted into the Internet of Services in the form of web-widgets, which
would be the technology-specific implementation of a PSE. The PSEs
provided by the operator (or a Third Party) can be easily integrated by end
users into current Web 2.0 sites and, once incrusted, they are able to handle the
interaction with the operator’s open Web APIs, thus, enabling the use of IMS
communication capabilities from Web 2.0 sites.

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 77

2. Direct incorporation into Internet mashups: Once IMS and telco
capabilities are exposed through open Web APIs, they can be directly
incorporated into any service of the Internet in order to provide
complementary functionalities, just like any other regular mashup. Of course,
the inclusion of IMS and other telco capabilities is a decision of the Internet
service (i.e. the Third Party); however, the final outcome is a complete
integration of telecom capabilities in the resulting service. Due to the fact that
current Web 2.0 service operation must be modified to consider the use of IMS
APIs, the application of this strategy is not immediate, but for the mid and
long-term it enables a convergence of great impact and further applicability.

Guideline 2: Publication of user-generated content enabled by IMS. Mobile
handsets are expected to be one of the main sources of multimedia content in the
future. This convergence guideline aims to obtain new ways for content publication
through the usage of IMS or legacy multimedia transmission capabilities. Operators
can provide new solutions to receive the multimedia content from the user and
automatically upload it to Internet and currently more concretely to the Web 2.0 sites.
An example application is “YouTube real-time video generation”, where users video-
call YouTube to create a spontaneous clip. Other examples may explore the use of
other types of user-generated data, such as IMS Presence or other user’s context
information. By extension, pre-IMS capabilities like e.g. videotelephony are good
candidates to be considered in this guideline too.

Guideline 3: IMS on-line applications. Through the use of AJAX and other
technologies, current Web 2.0 applications have achieved major advances in the field
of user interfaces. WIMS 2.0 favours for the usage of these technologies in order to
build on-line application that directly use the operator’s communication services. The
objective of this convergence guideline is to achieve that web applications act as the
user terminal. The benefits of such kind of IMS/telco applications are, mainly,
ubiquity and a great simplification of service development and deployment, since the
client service logic actually resides on the operator’s network. An example of
application is to enable a virtual IMS terminal within an end-user’s browser.

Additionally WIMS 2.0 incorporate a fourth guideline for the integration of generic
multimedia content and events from the Internet within telco services. This strategy
will enhance end-user experience, completing in this way Internet and telecom
network operator convergence:

Guideline 4: Incorporation of future Internet content and events into telecom
services. Since Web 2.0 services are already holding the successful content (the user-
generated content) the WIMS 2.0 initiative champions new mechanisms and
functionalities for obtaining generic multimedia content and events from the Internet.
Among the content, we may find videos, advertisements, podcasts, news, etc. Among the
events, we may find contextual information associated to social networks, new content
publication alerts, etc. The introduction, integration and distribution of all this
information within IMS services is of great interest, since it can enhance end-user’s
satisfaction. As example services, we may consider special feed readers for mobile
handset, the inclusion of social networks events into IMS Presence or Web 2.0 video and
music automatic distribution using IMS/legacy multimedia transmission capabilities.

78 D. Moro, D. Lozano, and M. Macias

4 A Reference Model for the WIMS 2.0 Service Platform

This section introduces a reference model for the WIMS 2.0 service architecture. The
proposed reference model covers the WIMS 2.0 strategic convergence guidelines
presented above. From a high level point of view, the WIMS 2.0 service architecture
must be a service platform that, acting as an intermediary for the adaptation between
the operator network and the Internet, enables the convergence in the desired terms.
The proposed reference model is reflected below in Fig. 1.

The above reference model defines a framework that identifies the required logical
entities, as well as the relationships existing among them. Due to the different natures
of the systems to be converged, this level of abstraction permits to settle the main
concepts and design principles prior to the definition of a concrete service architecture
considering specific technologies.

Two main groups of entities can be identified in the WIMS 2.0 reference model:
entities exposing telco capabilities to the Internet of Services, including the ones
providing IMS/telco-based online applications to the end-user’s browser, and entities
for the exchange of multimedia content and events between the Internet of Services
and the operator network. For these two groups, a common entity is set as the axis of
the reference model, the IMS Exposure Layer entity for exposing telco and IMS
capabilities. For clarity reasons, we will present this basic entity within the first
group.

Fig. 1. Architectural reference model for the WIMS 2.0 service platform

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 79

The entities dedicated to the exposure of telco capabilities to the Internet, and their
functionalities are presented below:

- IMS Exposure Layer: The entity for the exposure of IMS capabilities is the IMS
Exposure Layer. This entity exposes IMS capabilities to the outer world through
open Web APIs. Concretely, WIMS 2.0 focuses on the use of REST
(Representational State Transfer) [4][5] for these APIs, since it is simpler and
lighter than other RPC-based approaches (e.g. SOAP Web Services) [6] and, more
importantly, REST APIs are the predominant technology in today’s Internet
mashups. Therefore, on the outer side, the IMS Exposure Layer manages RESTful
HTTP messages [11] requesting or responding to the execution of a specific
procedure [7], while, on the inner side, it interacts with IMS/telco capabilities
using the appropriate protocol (SIP [8] or XCAP [9]). As it can be noticed, it is
actually a gateway between HTTP and other telco protocols. In principle, all the
available IMS/telco capabilities can and should be exposed by this entity following
this approach.
- IMS 2.0 PSEs Platform: This entity hosts and serves telco widgets or PSEs to be
incrusted into Internet sites (user’s browsers). These PSEs are provided by the
operator and they offer telecom service features using the operator’s APIs exposed
to the Internet of Services environment. This platform can expose simplified APIs
and translate the interactions through those APIs towards the “complete” APIs
exposed by the IMS Exposure Layer. IMS 2.0 PSE may also access the telco
capabilities directly.
- IMS/Telco Thin client: Entity for the delivery of IMS on-line applications. On
one side, this entity interacts with IMS/Telco capabilities, acting as the final
IMS/Telco client. On the other side, it shows a rich multimedia Web interface to
the user, according to the service being provided. This entity must also handle a
continuous media interface towards the user, as well as an asynchronous interface
to signal the need to refresh the Web interface due to an incoming network event.
As the final result, this entity enables the virtual terminal within the end-user’s
browser.
- Access control entity: To secure the use of the operator’s APIs, performing
identity authorization and authentication and parameters conversions.

The entities for the exchange of multimedia content and events, and their
functionalities, are the following:

- User-Generated Content enabler: This is the most relevant entity in terms of
providing user generated content in real time towards internet services. This entity
receives content from IMS/Telco terminals and, after adapting its format, it
uploads this content to the Internet, and more concretely currently to Web 2.0
services. To receive the content from the user, it uses a specific set of IMS
capabilities.
- Subscription Management enabler: It subscribes to content and events of any
kind generated in the Internet of Services. Currently it subscribes through
RSS/Atom [10] channels to contents and events of Web 2.0 services. Subscriptions
may be made on behalf of the operator or directly on behalf of the final user. This
entity talks with the Content & Events Distribution enabler to inform about the
existence of new content/events to be obtained.

80 D. Moro, D. Lozano, and M. Macias

- Content & Events Distribution enabler: It downloads, adapts and transmits
content and events from the Internet of Services to IMS/Telco users. To perform
the transmission on the telecom network side, it uses a specific set of IMS/Telco
capabilities.
- IDs & Preferences: Database that stores the relationships between IMS identities
and the identities used by the Internet of Services. The other entities of this group
consult this database to perform the conversion of identities when using Internet
services APIs.

In this model, the IMS Exposure Layer is of paramount importance since it
provides a basis for the rest of entities to access the telco capabilities in a simple way,
while permitting other external applications in the Internet of Services ecosystem to
access the telco environment and its service creation assets. Thus, the IMS Exposure
Layer is responsible for enabling the so-called network mashups combining
functionalities from the Internet and the telco world. The use of RESTful APIs in the
IMS Exposure Layer provides non-telco developers with an understandable and
familiar view of the telco service capabilities, which is ultimately intended for the
promotion of its extensive use within the Web 2.0 world.

The proposed reference model has been tested through several proofs of concept:
IMS communication widgets, telco-enabled mashups based on IMS APIs, and content
publication and distribution services that use telco transmission capabilities for
exchanging Web 2.0 contents. The result of these proofs of concept have validated the
correctness of the proposed architecture, although a high capacity, industrial
environment still needs to be developed in order to test the scalability of the system.
An example of such proofs of concept is presented in the next section.

5 Proof of Concept: Mashing up Telecom Services with Web-
Oriented Applications. The FindUs Application for Social
Networks

In order to illustrate the WIMS 2.0 concept, a use case “Find Us Application for
social networks” has been implemented. This use case is in the scope of the first
guideline of the WIMS 2.0 service strategy presented above: Incorporation of IMS
capabilities into the Internet of Services through open Web APIs, featured for the
current Web 2.0. Specifically, this use case is materialized as a gadget application
which implements a mashup re-mixing several external functionalities/services. The
gadget application is included in a social network container. In this example, the host
social network is the popular Facebook. In this social network environment, this kind
of gadget applications are not provided by the social platform operator, but rather by
end-users. Even though the end-users are required to entitle some developing skills,
this ratifies the user-centric approach as one of the axis of the new-era Internet. In the
near future, developing tools for User Generated Services will allow almost anyone to
synthesize smart applications by combining available service resources in the Internet
of Services.

The end-user service concept of the FindUs application is shown in Fig. 2 below.
As shown, the gadget is embedded in Facebook, thus user interface of the application

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 81

Fig. 2. Service concept of FindUs gadget application

is rendered by web technologies. With this application, a social network user can
locate his/her group of friends in a map and if available, their position is calculated
utilizing mobile location. Alternatively, the civil address included in the social
network user profile is utilized and marked as such. For each located user, an icon is
drawn representing the user’s current presence communicating status and the personal
note describing current user context. This personal note is normally imputed by the
user in his/her mobile terminal or Communicator application and automatically
obtained by the FindUs application.

When clicking on any of his/her located contacts, the user can obtain a list of
service features that can be invoked to communicate with the located users. For
instance, the user can request a click-to-call service to establish a communication
between his/her mobile phone and the located user’s mobile phone. Alternatively, the
user might be able to start an instant messaging conversation from the web interface
of the gadget towards the located user’s mobile phone, or just send a single message
to this located user.

In the specific case of the FindUs gadget application, several resources from a
current instantiation of the Future Internet of Services are utilized. The application is
mashing up programmatically-controllable Maps from Google and User Profile data
provided by Facebook with telecom service assets like IMS Presence, IMS Third
Party Call, IMS IP messaging and cellular location. All these service resources are
made available to the wide Internet by means of Open APIs interfaces, which expose
the functionality and perform service invocation. Figure 3 shows this new paradigm
for service creation with the utilization of telco operator service assets as service
resources available in the Internet. Concretely, in our example, telco services assets
consisting of person-to-person conversational capabilities (i.e. click to call), user
context information (i.e. presence) and messaging capabilities (i.e. instant messaging)

82 D. Moro, D. Lozano, and M. Macias

Fig. 3. Example of the Internet of Services for the FindUs gadget

are exposed and made available for combination together with other service resources
across the Internet, such as the social user profile information from Facebook, maps
from Google or Presence information from an Internet Server. The combination of
this range of services brings about innovative and enhanced mashup applications also
able to be combined and used as service resources.

Regarding the proof of concept implementation, Fig. 4 shows a high level
overview of the interworking between the entities from the Web 2.0 and the operator
network that supports the present use case. From the operator network side, some of
the entities from the WIMS 2.0 reference model presented above are involved.
Concretely: the Telco/IMS Exposure Layer, the Telco/IMS PSEs Platform and the
Access Control together with a series of enablers (i.e. location, presence, telephony
and instant messaging) that finally provide the telco capabilities. In order to avoid
current State of the Art restrictions with regard to telco capabilities, enablers are not
mandatory based on IMS, being pre-IMS telco enablers also considered in this
implementation. This fact validates and remarks that WIMS 2.0 is viable for general
Telco environments, not just for those based on IMS.

For this use case, the FindUs application is hosted within the PSEs platform, which
is in charge of invoking the necessary telco APIs (usually based on REST technology)
and other Web APIs from the Internet. In this scenario, when a Facebook user starts a
session in Facebook and executes the FindUs application, the Facebook platform acts
as a merely HTML traffic intermediary, forwarding requests and responses between
the user’s browser and the PSEs platform. As the first step in order to provide the
FindUs functionality previously presented, the PSEs platform invokes a particular
Facebook Rest API including the Facebook credentials of the user to obtain the
contact details of his/her group of friends. Subsequently, when the telephone number
from each friend of the group is retrieved, the PSEs platform invokes the cellular
location API exposed by the Telco/IMS Exposure Layer. This location information
will be forwarded back to the user’s browser, being .the location of any friend of the

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 83

Fig. 4. High level overview of the interworking between Web 2.0 and WIMS 2.0 Reference
Model for “The FindUs” application

group available at the user’s browser. Finally the user’s browser will access the REST
API from Google Maps, to obtain the maps for the graphical representation of the
location of each friend of the group. A similar procedure will apply for the case of
retrieving friends’ presence information from the operator network, where PSEs
platform will invoke the presence API of the Telco/IMS Exposure Layer. Regarding,
the remaining telco functionalities, for instance, if the user wants to starts a
conversational or instant messaging session, the PSE platform will send the necessary
requests towards the appropriate telco capabilities exposed by the Telco/IMS
Exposure layer.

This proof of concept clearly reflects the power of a typical Web 2.0 concept that,
this time, is applied in the telco environment: service mashups. The combined used of
different Open Web APIs has enabled the fast creation of a service that mixed
standard-web services, like social User Profile and Maps, with IMS/Telco
communication and user context features. As it can be observed, this represents a
powerful tool for creating new application by combining resources made available in
the Internet of Services.

6 Conclusions

The future internet is envisioned as an open garden of services, where services will be
deployed easily in a plug & play service activation fashion, resulting from the flexible

84 D. Moro, D. Lozano, and M. Macias

combination of resources and services from anywhere. In this context, telecom
operators must follow this new philosophy adapting their infrastructure and business
model with new mechanism for exposing their unique service assets as service
resources towards the Internet. Thus, operators will integrate into the future of
internet value chain in order to be not only a connectivity provider but also an added-
value provider in the creation of innovative services.

WIMS 2.0 establishes a series of strategies for efficiently exposing telecom
operator network services to the future Internet of Services and for enabling the
convergence of telco and Internet worlds. WIMS 2.0 is based on the aperture of
telecom capabilities through Open APIs providing web friendly interfaces to easily
integrate telecom capabilities with Internet services. Together with this Open API
strategy, WIMS 2.0 establishes additional strategies for convergence that include:
Portable Service Elements, providing a widget-type penetration of personal
communication into Internet applications, User Generated Content publication and
distribution for exporting UGC in real time, and the so-.called Thin Clients, providing
telco-based online applications, like virtual terminal representations, ubiquitously
accessible from any point of the Internet.

To materialize this convergence approach, a reference model for the WIMS 2.0
Services Platform has been proposed following the general idea of providing an
intermediate layer to break the frontiers and adapt the interactions between telco and
Internet domains. This core reference model mainly lies upon the exposure of
telco/IMS capabilities via open APIs, based on a Web 2.0-friendly approach in order
to maximize the effective and widespread adoption. Besides the entities exposing
telco capabilities to the Internet, this reference model includes several entities for the
exchange of multimedia content and events between the Internet and the operator
network to establish a full convergence.

Finally, one proof of concept, based on the strategy of incorporating and remixing
IMS capabilities along with other Web 2.0 services through open Web APIs has been
implemented and presented in this paper, as an example to illustrate and validate the
potential of the WIMS 2.0 principles.

References

1. European Commission Information Society and Media: The future of the Internet. Area 2,
Service Architectures, Brussels, Belgium, pp. 54–55 (2008)

2. O’Reilly, T.: What is Web 2.0? Design Patterns and Business Models for the Next Generation
of Software, http://www.oreilly.com/pub/a/oreilly/tim/news/2005/09/
30/what-is-Web-20.html

3. 3GPP TS 23.228 v 8.3.0, IMS: IP Multimedia Subsystem, Stage 2,
 http://www.3gpp.org

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures.
Ph.D Thesis, ch.5. University of California, Irvine (2000)

5. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. In:
Proceedings of the 22nd international conference on Software engineering, Limerik,
Ireland, pp. 407–416 (June 2000)

6. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. “Big” Web
Services: Making the Right Architectural Decision. In: WWW 2008, Beijing, China, April
21–25, 2008. ACM, New York (2008)

 WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services 85

7. Lozano, D., Galindo, L.A., García, L.: WIMS 2.0: Converging IMS and Web 2.0.
Designing REST APIs for the exposure of session-based IMS capabilities. In: International
Conference and Exhibition on Next Generation Mobile Applications, Services and
Technologies, Cardiff, Wales, UK, September 6-19 (2008)

8. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., Schooler, E.: SIP: Session Initiation Protocol, IETF RFC 3261 (June 2002),
http://www.ietf.org/rfc/rfc3261.txt

9. Rosenberg, J.: The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP) (May 2007), http://www.ietf.org/rfc/rfc4825.txt

10. Nottingham, M., Sayre, R.: The Atom Syndication Format. IETF RFC 4287 (December
2005), http://www.ietf.org/rfc/rfc4287.txt

11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.:
Hypertext Transfer Protocol –HTTP 1.1. IETF RFC 2616 (June 2006),

 http://www.ietf.org/rfc/rfc2616.txt

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 86–97, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Describing Next Generation Communication Services:
A Usage Perspective

Emmanuel Bertin1 and Noel Crespi2

1 Orange Labs - France Télécom R&D - 42 rue des Coutures 14066 Caen, France
emmanuel.bertin@orange-ftgroup.com

2 TELECOM SudParis - 9 Rue Charles Fourier, 91011, Evry Cedex, France
noel.crespi@it-sudparis.eu

Abstract. Telecom services are usually described from an applicative perspective.
Service providers should yet describe formally what their services do for their
users, in order to adapt them to user's needs and to compose them. We propose
here a framework to describe communication services from a usage perspective,
by describing formally the actions of the service users and of the service
provider. This description is then used as a common library to compose new
services and to check the consistence of these composed services.

1 Introduction

Telecom services evolve toward Next Generation Communication Services, also
named user centric services, designed to fulfil user's needs instead of focusing on
technologies and protocols. Similar evolutions are ongoing in multiple service area,
like healthcare or education services. As user's needs are various and diverse, a single
service can not be suitable for all communication needs: Different services must
cooperate. How can this cooperation be achieved?

First, as learnt from software engineering, the various services should be kept
separated with explicit boundaries, and not tightly integrated. This is usually referred
as the loose coupling principle. Each service is responsible for a give task, and offers
a public and well defined interface to other services. In addition, cooperation between
services requires a common understanding of what each service do, i.e. a shared
service description. Current service description languages like WSDL (Web Services
Description Language) are focused on software aspects (API description) and not on
what achieve the service for its user. This lack is especially underlined with
communication services, where the value is not in data treatment, but in the quality of
the user interaction and in the reliability of the executed tasks.

In this paper, we propose to describe communication services from the user point
of view, by describing the actions from both the service users and the service
provider. This paper is structured as follows. In section 2, we briefly survey the
evolution toward user-centric services. We then study in section 3 the related work on
the description of communication services. Next, we introduce in section 4 the notion
of action to describe services and illustrate it step by step with the email example. The
last section provides some conclusive remarks.

 Describing Next Generation Communication Services: A Usage Perspective 87

2 Toward User Centric Services

2.1 Trends and Motivations

Communication services are part of a broader story; their usage evolves in accordance
with the transformations of the whole service sector. In addition to information and
telecommunication, the service sector at large includes for example healthcare and
social assistance, educational services, finance and insurance or public administration,
as classified for instance in the North American Industry Classification System [1].
The current and future economic growth of the developed nations is mainly driven by
the service sector, as reminded in Table 1.

Table 1. Sectoral shares in employment, Developed Economies and European Union [2]

 Employment in sector as share

of total employment

Year 1997 2007

Agriculture sector 6.1% 3.9%

Industry sector 28.3% 24.5%

Services sector 65.6% 71.5%

These rates witness our societal transformation from an industry society into a
service society, as surveyed for example in [3], [4] or [5]. In an industry society,
driven by mass market production, even services are considered as products,
developed and marketed like products. In our service society, services are driven by
individual and specific needs. As a single service entity is not able to meet alone the
needs of users, a service is more and more considered as a composition of basic
services. We observe this evolution in various social fields like healthcare services,
education services or employment services: the trend everywhere is to enhance the
"user experience" by making cooperating different entities to meet a unique user need
[6]. The same trend can be noticed in IT.

According to this trend, service organizations are shifting from a product-centric
paradigm to a customer/user-centric paradigm, as surveyed for example in 2006 by
Shah [7], Day [8] or Kellogg [9]. Where the product-centric approach consists
basically in selling products to whomever is ready to buy it, the customer/user-centric
approach consists in serving customers/users by taking into account their needs. Rust
[10] underlines even that "we witness the rise of “mass service,” driven by improved
coordination and a greater availability of information. Whereas mass production
focused on the product, the new philosophy is customer-centric."

2.2 User Versus Customer

We should draw here a distinction between users and customers. When considered
with a product-oriented mindset, a service is seen as a delivery according to a client

88 E. Bertin and N. Crespi

order. When considered with a service-oriented mindset, a service is seen as a value
co-creation process between the service consumer and the service provider, as
established clearly by Tien [11] or Spohrer [12]. The more recent researches on
services emphasize indeed that the user is directly implied in the value creation
process of the service.

This is even more accurate with the rise of the audience economical models, where
services are free and where service providers are remunerated by advertisers. The
value of a service for a service provider is thus correlated with its capacity to drain
advertising incomes. This capacity is itself correlated with the value of the service for
users. In an audience model, the primary actor is thus no more the customer (the one
who pays the bill), but the user (the one who sees the ads). Service providers should
then consider the usefulness of their services for users. We have thus to investigate
what is a service as seen by the user, and not only as designed or operated by the
provider.

2.3 Services as Systems

Services at large are studied in marketing, in sociology and in organization
management studies. Some of these studies are now merging with IT studies around a
thematic named service science or SSME for Services Sciences, Management and
Engineering [13].

Services are not standalone and tangible entities like products. A product does exist
without clients, but a service does not exist without users. This is usually referred as
the inseparability of production and consumption [14]: A service can not be
considered independently of its consumption, of its usage. To reflect this, many
authors envisage a service as a system [11, 12] composed from business actors (user
and provider), from products and technologies (including hardware, software,
protocols), and from a service logic (or service processes) linking the whole. This
system is connected with other service systems.

Now, let us come back to communication services. First, communication services
are evolving as presented above: they are more and more considered as a composition
of basic services, they more and more follow a user-centricity paradigm, they are
integrated in a whole service system. In addition, communication services are
interactive services. Following [15], communication services can thus be classified as
user-intensive. This means that the user provides significant inputs in the service logic.

We focus in this paper on the service logic that links the service user and the
service provider, taking into account the interactive nature of communication
services. We propose a high-level service description method to specify the
interactions of users and providers. Let us review now the existing ways to describe
communication services.

3 Existing Approaches to Describe Telecom Services

Describing telecom services is not a novel issue. As surveyed recently in [16], this has
been a recurrent task in the telecom world, first inside the Intelligent Network
paradigm, then through the TINA-C (Telecommunications Information Networking

 Describing Next Generation Communication Services: A Usage Perspective 89

Architecture consortium) initiative at the end of the 90ies, and more recently at ITU-
T, ETSI or at the OMA (Open Mobile Alliance) [17]. At the same time, in the IT
world, the service description issue has been mainly considered through the SOA
(Service Oriented Architecture) paradigm, and the SOA approach is now percolating
through to telecom services. Moreover, the semantic web community has also focused
on this issue and its methods are now considered for describing telecom services, for
example in European projects like Spice [18].

3.1 Telco Initiatives

Inside the telecom world, the first comprehensive initiative for modeling services has
been the Intelligent Network, developed in the 80ies. A service is viewed from a user
perspective as a collection of service features that complement a teleservice, where "a
teleservice is a type of service that provides the complete capability, including
terminal equipment functions, for communication between users" [19]. For example,
the Call Forwarding feature complements the telephony service. Theoretically, this
model enables to compose service feature to form new services, but, as acknowledged
in [16], this possibility was never exploited. Norms mention service features nearly
anecdotally, without defining structuring rules or composition rules. Service feature
are defined as significant functions from the user point of view, but why and how
these functions are significant is not clear. In summary, telecom operators and
vendors have forged and have used the IN concepts with a product-oriented mindset,
to sell nearly standardized services where users were interchangeable.

The TINA initiative tried to overtake the IN shortcomings, but did not specify a
high-level service description language, focusing rather on a generic service session
concept that should fit to every kind of services.

As surveyed in [20], ITU-T, ETSI and OMA have introduced more recently the
concept of service building block. These service building blocks are called "Service
Capabilities" by the 3GPP, "Service Support Capabilities" by the ITU-T and "Service
Enablers" by the OMA. Service Support Capabilities studied at the ITU-T [21]
typically include presence, location, group management, message handling,
broadcast/multicast, push and session handling or device management. Service
Enablers at the OMA [22] include for example data synchronization, device
management, digital rights management, downloading, e-mail notification, instant
messaging, presence and mobile location or multimedia messaging. Service
capabilities defined at the 3GPP typically include presence [23] and messaging [24]
or conferencing [25]. The functional implementation of these service building blocks
is described in the according standards. But there is no high-level description method
to specify the added value for the end-user and to position these building blocks one
over the other.

3.2 IT Initiatives

Inside the IT world, innovation is mostly driven by the Information Systems (IS)
evolutions. In order to adapt their IS to the service era, companies had to break the
boundaries between their various applications [26]. The IT world has forged the
Service Oriented Architecture (SOA) paradigm to overcome the lack of cooperation

90 E. Bertin and N. Crespi

between various software applications. Applications should no more be considered as
standalone entities, but divided into services, i.e. discrete and independent units of
business that perform a specific task and that are only accessible through an open and
well-defined service interface.

Companies have discovered that the main challenge to apply this SOA paradigm
was not a technical challenge. The main issue is indeed to identify and define the
services, these discrete and independent units of business. Which part of the business
should be considered as services? Should the services be fine grained (one function
per service) or coarse grained (many functions per services)? How to ensure
independence between services? How to ensure that the services suit to the enterprise
business and strategy? How to identify the services that are necessary to meet a
specific need? In the enterprise IT context, these questions may be answered by
considering the enterprise business processes, as they describe the internal activity of
the enterprise. Nevertheless, the services offered to end-users are usually not
described through business processes, as indicated in [27]. With a product-oriented
mindset, the main assets of a firm are indeed the efficiency of its internal processes,
and not the service it offers to its users.

Moreover, when building and composing such IT services, most software engineers
tend, in the end, to consider the user as a system component, providing inputs and
requesting outputs like a software component (as surveyed for instance in [28]). This is
not really a trouble for data services, which goal is to provide data that are treated to
fulfill user needs. But concerning communication services, the complexity and the
value of the service do not rely in the data treatment, but in the exchanges between the
service users (e.g. caller and callee) though the service provider and in the way these
exchanges are presented to the user, as detailed in [29]. As a consequence,
communication services engineers are usually attaching great importance to protocols
(like SIP, SMTP…) that describes the exchanges between parties.

3.3 Semantic Web Initiatives

The semantic web community has also widely studied mechanisms for service
description, taking into account the added value of the service, as surveyed for
instance by Zhixiong [30] or Arroyo [31]. Projects like Spice [18] aim to build a
marketplace of services, where a user can request a service in (nearly) natural
language. A service is then constructed according to his needs, by composing the
existing services of the marketplace. The value is here more brought by the
marketplace and its users, than by the service providers that become indeed
interchangeable.

We saw above that the role of the user is shrunk when a service is considered with
a product-oriented mindset. With this semantic marketplace, the role of the service
provider is shrunk instead, the key actor being the marketplace provider that supplies
a way to access to service resources. If this model seems effective for data services
(e.g. with search engines like Google), it is not the case for communication services.
Gmail is for example a "classical" email service provider and not something like an
"emailing marketplace". Community and user experience are essential for
communication services. As mentioned before, the value of communication services
do not come from their data assets, but from the exchanges between three parties: the

 Describing Next Generation Communication Services: A Usage Perspective 91

service user, the service provider and other service users that communicates with the
first one. This three-party model cannot be decomposed into 2 two-party models. In
other words, the network effect is important for communication services, as illustrated
for example recently with Skype or Facebook.

In addition, like in the IN approach of service features, there is no method to
identify and to classify what do a service. One could argue that this classification can
be done automatically through ontology mechanisms, as the features of a service are
described using a semantic language. But as surveyed by Bedini in [32], such
automated tools are indeed really pertinent when they build up on an existing
classification.

Finally, the integration upon the existing services and platforms is definitively a
tough issue, both technically and functionally. Technically, the introduction of new
technologies and software tools is required (e.g. for ontology). Functionally, the web
semantic paradigm follows an open world assumption, as described for instance in
[33] that is not easily compatible with a component based architecture, where
component are loosely-coupled (each component is a "closed world", a black box that
offers services to other components).

4 Modeling Service Actions

Inside the SOA or semantic web paradigms, some studies attempt to link the offered
services and the needs of the users, in order to achieve an automatic matching
between users and services. However, these studies largely fail to model user needs
because their variety and diversity. No framework can model in detail the needs of a
human being and high level hierarchy like the Maslow pyramid (as proposed for
instance in [34]) are not very useful to match precisely needs and services.

To take into account the previously mentioned shortcomings, we propose to
describe a service through the exchange between the service user and the service
provider. By representing formally such exchanges, we intend to describe in a formal
way the added value of the service for its end-users (as mentioned, a service may
imply several users, for example caller and callee for a telephony service). Our
service description is based on the human language, which is a shared institution,
rather than on human needs or goals.

4.1 User and Provider Actions

In our view, the concept of action is the most adapted tool to describe this exchange
between service user and service provider. Service user and service providers interact
by performing actions. For instance, a caller requests a phone call and the telephony
provider then delivers the call to the callee. Both the call request (action of the user)
and the call delivery (action of the provider) are seen by users as a part of the service.
By action of the user, we do not mean the concrete action done on the GUI (Graphical
User Interface), but the immaterial activity, that the user is trying to perform. For
example, the action of sending an email is not a matter of clicking on a send button
(GUI), but of effectively sending an email. This accomplishment might be enabled by
clicking on a button, but this GUI aspect is not considered here.

92 E. Bertin and N. Crespi

In summary, actions done by users and service providers within the course of a
service are not a matter of GUIs. It is neither a question of service platforms or
service infrastructure. So we have now shifted from the "how to describe what
services do" question to the "how to describe the actions of users and provider within
a service" question.

4.2 Describing Actions

We propose to establish these action descriptions on the language usage. As stated by
John Searle (widely noted for his account of social reality) in [35]: "My dog has very
good vision, indeed much better than mine. But I can still see things he cannot see. We
can both see, for example, a man crossing a line carrying a ball. But I can see the man
score a touchdown and the dog cannot (…). To see a touchdown scored he would have
to be able to represent what is happening as the scoring of a touchdown, and without
language he cannot do that." In our case, we can observe that actions are usually
described with the same words within a given service, whatever the service provider.
For example, the words "signing in" indicate the action of logging in into the provider's
system, or the term "send" in a webmail context indicates the action of sending an
email. We could observe the same in other European languages than English. This
leads us to identify the actions that are common for communication services.

The description of the actions to consider for a given communication service are
chosen according to the following criteria.

• First, their description should be a usual answer to the "what are you doing?"
question or to the "what is the service provider doing" question. What are
you doing? I'm writing an email. I'm checking my mailbox. I'm talking on
the phone…

• Then, these actions should be known by the user as mandatory to perform the
service. Delivering an email is for instance mandatory to the email service,
but adding a smiley is not.

4.3 The Example of Email

Let us illustrate our approach with some services around email. Our first step consists
in identifying actions and actors. The email service involves 3 parties: the email
sender, the email service provider and the email receiver. All these 3 roles interact to
perform the email service. We can identify the following actions:

• Contact selecting action (by email sender)
• Message composing action (by email sender)
• Message sending action (by email sender)
• Message delivering action (by email service provider)
• Mailbox checking action (by email receiver)
• Message reading (by email receiver)

Moreover, we observe that some actions require another action to be achieved

before. For example, Message composing is required before Message sending. We

 Describing Next Generation Communication Services: A Usage Perspective 93

describe this fact with dependencies between actions. We can establish the following
dependencies for any email service:

• The message composing action requires the selection of a contact to whom
the email will be sent.

• The message sending action requires the composition of a message.
• The message reading action requires both the checking of the mailbox by the

receiver and the delivery of the message by the email provider.
• The mailbox checking action requires the signing in of the receiver as a

principal in the email provider system (the term principal is used here
according to the Liberty Alliance vocabulary (http://www.projectliberty.org)
and mean someone whose identity can be authenticated).

• The signing in action requires the subscription of an email account by a
customer of the email provider (signing up action).

• The message delivering action requires the validity of the email address from
the receiver, and so the subscription of an email account in the email
provider system.

These actions and their dependencies are then manipulated with the semi-formal
UML syntax, as represented on the figure 1. Actions are modeled as UML classes.
These classes are tagged with the stereotype <<XXX>>, where XXX stands for the
actor that performs the action (for example <<sender>> for an action performed by
the party that sends an email). The dependencies are modeled with standard UML
dependencies, graphically represented with a dotted arrow. We are using the

class Messaging serv ice

«sender»
Contact selecting

Action

«receiver»
Mailbox checking

Action

«sender»
Message

composing Action

«email provi...
Message

deliv ering Action

«receiver»
Message reading

Action

«sender»
Message sending

Action

«principal»
Siging in Action

«customer»
Signing up action

Fig. 1. Emailing actions

94 E. Bertin and N. Crespi

sd phone2mail

«sender»

:Message sending
Action

«sender»

:Message
composing Action

«caller»

:Talking Action

«sender»

:Contact selecting
Action

«principal»

:Siging in Action

compose message()

select contact()
sign in()

user identity()

selected contact()

record content()

recorded content()

composed message()

Fig. 2. Phone2mail actions

Enterprise Architect (from Sparx Systems) UML tool as a repository for our service
descriptions. We have achieved these descriptions for the main communication
services, like making and receiving calls, connecting to a communication network,
sharing a personal context, signing in, signing up, watching video or hearing music,
setting privacy parameters. We have identified so about forty different actions
involved in the commonly used communication services.

Our second step consists in using these action descriptions as a library to describe
new services. For instance, let us imagine a service to dictate emails. The service user
selects a contact in his address book, triggers the service and then dictates its
message, which is sent as an email to the aforementioned contact, through an attached
audio file. Let us suppose that this service is marketed as the "phone2mail" service.
The previous service description is rather clear but informal. It can not be shared
within a formal service repository, nor interpreted by machines. With our
communication action library, we can model it as an UML sequence diagram, as
shown on figure 2.

The order of the sequence is not a temporal order, but a requirement order. The
object at the left side of the sequence indicates the final purpose of the phone2mail
service that is to send a message. The continuous arrows indicate a requirement and
the dotted arrows indicate the information that is returned to fulfill the requirement.
The temporal order is usually the opposite of the requirement order (the user first
signs in, then selects a contact, then composes his message by talking and finally
sends it).

With this formal description of service actions, we can verify the logical
consistence of a service by checking if its particular chain of actions respects the
general dependencies established above and represented on the figure 1 for email
services. In the case of the phone2mail service, the sequence is coherent with these

 Describing Next Generation Communication Services: A Usage Perspective 95

dependencies. For example, the phone2mail service sequence is coherent with the
dependency from the Message composing action toward the Contact selecting action.

Moreover, we can also deduce from this diagram the actors of our phone2mail
service. The phone2mail user should also act as a principal for authentication, as an
email sender and as a phone caller. In summary, we have here represented formally
the phone2mail service with a UML sequence diagram that makes use of a common
action library.

Within our UML repository, we have modeled several services provided by Orange,
using this common action library. This enables us, in a third step, to compare
objectively these services because they use the same description method and semantic.
We are now working with the marketing business units in order to make use of this
repository at the business level. This will enable marketers to describe formally their
offers and to compare them with existing ones. This will also enable them to browse
existing offers, especially in order to reuse existing services to build new ones.

5 Conclusion

User centricity is a key challenge for services in general and for next-generation
communication services in particular. In order to adapt services to user's needs and to
compose them, service providers should be able to describe formally what their
services do for their users. We propose here to achieve this goal by describing
formally the actions of service users and of service providers, using a common library
of actions. This way to describe services is worked with marketers in order to build a
conceptual tool that suit to their needs. They can in particular build new services by
recomposing existing actions and check the consistence of this service according to
existing logical dependencies between actions.

We plan to further investigate two topics. First, we are going to link these service
descriptions with technologies like IMS (IP Multimedia Subsystem) or SDP (Service
Delivery Platform) by considering the technical patterns (protocols, reference
points…) behind them. Then, we will study how to compose automatically a service
in a web environment, according to a sequence of actions.

References

1. North American Industry Classification System 2007 (Naics), US Dept. of Commerce
(September 2007)

2. Global Employment Trends: January 2008, International Labour Office (2008)
3. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Commun.

ACM 49(7), 35–40 (2006)
4. Spohrer, J., Vargo, S.L., Caswell, N., Maglio, P.P.: The Service System Is the Basic

Abstraction of Service Science. In: Proceedings of the 41st Annual Hawaii international
Conference on System Sciences. HICSS, January 07 - 10, 2008, p. 104. IEEE Computer
Society, Washington (2008)

5. Child, J., McGrath, R.G.: Organizations unfettered: Organizational form in an
information-intensive economy. Aced. Manaement Journal 44(6), 1135–1148 (2001)

96 E. Bertin and N. Crespi

6. Zeithaml, V., Bitner, M., Gremler, D.: Services Marketing: Integrating Customer Focus
Across the Firm, 4th edn. McGraw-Hill, New York (2006)

7. Shah, Denish, Rust, Roland, T., Parasuraman, A., Staelin, Richard, Day, G.S.: The Path to
Customer Centricity. Journal of Service Research 9, 113–124 (2006)

8. Day, G.S.: Aligning the Organization with the Market. MIT Sloan Management
Review 48(1), 41–49 (Fall, 2006)

9. Kellogg, K.C., Orlikowski, W.J., Yates, J.: Life in the Trading Zone: Structuring
Coordination Across Boundaries in Postbureaucratic Organizations. Organization
Science 17(1), 22–44 (2006)

10. Rust, R.T., Miu, C.: What academic research tells us about service. Commun. ACM 49(7),
49–54 (2006)

11. Tien, J.M., Berg, D.: A Case for Service Systems Engineering. J. Systems Science and
Systems Eng., 113–128 (March 2003)

12. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps Toward a Science of Service
Systems. Computer 40(1), 71–77 (2007)

13. http://www.research.ibm.com/ssme/
14. Gronroos, C.: In Search of a New Logic for Marketing: Foundations of Contemporary

Theory. John Wiley & Sons Inc., Chichester (2007)
15. Pinhanez, C.: Service Systems as Customer-Intensive Systems and Its Implications for

Service Science and Engineering. In: Proceedings of the 41st Annual Hawaii international
Conference on System Sciences. HICSS, January 07 - 10, 2008, p. 117. IEEE Computer
Society, Washington (2008)

16. Simoni, N.: Sous la direction de, Des réseaux intelligents à la nouvelle génération de
services, Lavoisier (February 2007)

17. http://www.openmobilealliance.org/
18. http://www.ist-spice.org
19. Keck, D.O., Kuehn, P.J.: The Feature and Service Interaction Problem in

Telecommunications Systems: A Survey. IEEE Transactions on Software
Engineering 24(10), 779–796 (1998)

20. Bertin, E., Ben Yahia, I., Crespi, N.: Modeling IMS Services. Journal of Mobile
Multimedia 3(2), 150–167 (2007)

21. Carugi, M., Hirschman, B., Narita, A.: Introduction to the ITU-T NGN focus group release
1: target environment, services, and capabilities. IEEE Communication Magazine 43(10),
42–48 (2005)

22. OMA, OMA Service Environment, Approved Version 1.0.4, 01, OMA-AD-Service-
Environment-V1_0_4-20070201-A (February 2007)

23. 3GPP, Presence service using the IP Multimedia (IM) Core Network (CN) subsystem; TS
24.141, version 7.4.0 (September 2007)

24. 3GPP, Messaging using the IP Multimedia (IM) Core Network (CN) subsystem; TS
24.247, version 7.2.0 (June 2007)

25. 3GPP, Conferencing using the IP Multimedia (IM) Core Network (CN) subsystem, TS
24.147, version 7.6.0 (September 2007)

26. Rouse, W.B., Baba, M.L.: Enterprise transformation. Commun. ACM 49(7), 66–72 (2006)
27. Bertin, E., Fodil, I., Crespi, N.: A business view for NGN service usage. In: 2nd

IEEE/IFIP International Workshop on Broadband Convergence Networks, 2007. BcN
2007, pp. 1–5, May 21 (2007)

28. Lamb, Kling: Reconceptualizing Users as Social Actors in Information Systems Research.
Management Information Systems Quarterly 27(1), Article 2

 Describing Next Generation Communication Services: A Usage Perspective 97

29. Bertin, E., Lesieur, P.: Which architecture for integrated services? In: ICNS 2006.
International conference on Networking and Services, p. 62 (2006)

30. Zhixiong, J., Leqiu, Q., Xin, P.: A Formal Framework for Description of Semantic Web
Services. In: Proceedings of the 7th IEEE international Conference on Computer and
information Technology. CIT, October 16 - 19, 2007, pp. 1065–1070. IEEE Computer
Society, Washington (2007)

31. Arroyo, S., Lopez-Cobo, J.M.: Describing web services with semantic metadata. Int. J.
Metadata Semant. Ontologies 1(1), 76–82 (2006)

32. Bedini, I., Gardarin, G., Nguyen, B.: Deriving Ontologies from XML Schema. In:
Proceedings 4émes Journées francophones sur les Entrepôts de Données et l’Analyse en
ligne (EDA 2008), Toulouse, France, June 5 - 6 (2008)

33. Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the
Semantic Web. Web Semant. 5(4), 240–250 (2007)

34. Cai, H., Chung, J., Su, H.: Relooking at Services Science and Services Innovation. In:
Proceedings of the IEEE international Conference on E-Business Engineering. ICEBE,
October 24 - 26, 2007, pp. 427–432. IEEE Computer Society, Washington (2007)

35. Searle, J.R.: What is an institution? Journal of Institutional Economics 1(01), 1–22 (2005)

Monitoring Web Services: A Database Approach�

Mohamed Amine Baazizi1, Samir Sebahi1, Mohand-Said Hacid1,
Salima Benbernou1, and Mike Papazoglou2

1 University Claude Bernard Lyon 1, LIRIS CNRS UMR 5205, France
2 Tilburg University, The Netherlands

Abstract. Monitoring web services allows to analyze and verify some
desired properties that services should exhibit. Such properties can be re-
vealed by analyzing the execution of the services. Specifying monitoring
expressions and extracting relevant information to perform monitoring
is however not an easy task when the processes are specified by means
of BPEL. In this paper we design a monitoring approach that makes use
of business protocols as an abstraction of business processes specified by
means of BPEL. High level queries are expressed against this abstrac-
tion and then translated into SQL queries that are evaluated against a
database that stores the excustion traces of the services.

1 Introduction

The task of observing some process and tracking specific situations is known as
monitoring. Amongst the many fields that witness special need of monitoring,
there are Service Based Systems (SBS) which tend to support most today’s ap-
plications. Today’s enterprises rely on SBS to export their products. Different
stakeholders may communicate with each other combining their existing prod-
ucts to constitute other ones more tangible to end users. This interaction is
specified in a complex manner and advocates defining all the activities taking
place in it. Moreover, each participant operates in an information system differ-
ent from those used by the other parties. This was overcome by establishing a
stack of protocols leveraging the heterogeneity that could take place. However,
planing monitoring for those systems remains difficult since it advocates not
only knowing details of the process being monitored, but also mastering tools
and languages that served to specify it. All this to say that a new way to mon-
itor business processes is more than required. It should take into account the
difficulties of finding suitable models that bridge the gap between the modeled
processes and the restricted knowledge of decision making actors.

In this paper, we build on previous work by Wombacher et al. [5] and Benatal-
lah et al. [4] to provide a methodology for monitoring web services by considering
their business protocols. The methodology is shown on figure 1. A BPEL speci-
fication is transformed into a business protocol. From the business protocol we
� The research leading to this result has received funding from the European Com-

munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-CUBE).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 98–109, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Monitoring Web Services: A Database Approach 99

Fig. 1. The monitoring Framework

generate a (relational) database schema. Monitoring queries are specified against
the protocols and translated into SQL queries against the relational database.

The paper is organized as follows: we first introduce, in section 2, a few notions
on web services that are relevant in our work. Section 3 defines the monitoring
process in web services. Section 4 describes our architectural and design princi-
ples of our approach for monitoring web services. We conclude in section 5 by
summarizing our work and anticipating on necessary extensions.

2 Preliminaries

In this section we introduce relevant concepts to our work. We assume the reader
familiar with Service Oriented Architectures (SOA) and notions related to Web
services.

2.1 Business Process Execution Language (BPEL)

A business process consists of a bounded set of activities where data is manip-
ulated and results are produced following the logic of the business it describes.
Before the advent of web services, enterprises workflows were broadly used in de-
scribing the collaboration of many actors to produce a result. This was modeled
by a graphical notation that shows the activities to be performed and the schedul-
ing to respect in addition to the intermediate products that are passed between
activities. In the same way, web services collaboration is captured by Business
Process Execution Language (BPEL) [1], an XML-based standard used to or-
chestrate the enactment of the different services of the collaboration that interact

100 M.A. Baazizi et al.

to perform some specified task. It specifies the process behavior by defining the
activities it is composed of and the external processes that interact with it.

2.2 Business Protocols

Making several partners’ processes collaborate in an effective way needs an a
priori look on their descriptions to depict eventual mismatches before their en-
actment. The actual standard for specifying web service offers neither enough
visibility on the processes it specifies nor suitable tools that could help design-
ers statically analyze the behavior of these processes that they manage to make
communicate in a correct manner. This is why the authors in [4] investigated a
way to represent the protocol that two services must follow to interact correctly.
This was called business protocol since it represents the allowed conversations
between a requester and a provider in terms of messages according to the states
that they reached in the local execution of their respective business processes.

3 Monitoring Web Services

Web services are characterized by the fact that they are contracted somewhere
in the time and may not be available after that or can still be available but in a
different version making their evolution highly volatile. Additionally, every par-
ticipant is mandated to correctly perform the task it has to carry out otherwise
it will affect the entire process execution.

Monitoring copes with those deficiencies by observing web services execution
after they have been deployed. It consists of a dedicated activity responsible of
raising alert or triggering predefined actions when some situation is observed. It
also consists of gathering useful information that will serve analysis. It could be
extended with capabilities that allow avoiding some unwanted situations.

Monitoring web services was influenced by many techniques dealing with
contracts and agreements, distributed systems property and safety verification,
event processing, etc.

Many criteria could be considered when classifying monitoring approaches.
According to [2], we can focus on the technique used to perform monitoring
(verification, planning...) as well as on the data of interest to be monitored
and many other aspects such as the abstraction of the language that serves
monitoring specification and the degree of invasiveness on the monitored process.

4 A Database Approach for Monitoring Web Services

In this section we define the framework we are designing for monitoring business
processes specified in BPEL. We will detail each component’s functionality and
the transformations undergone. We also provide the language used for formu-
lating monitoring queries and characterize them regarding the abstraction upon
which they are expressed.

Monitoring Web Services: A Database Approach 101

4.1 The Overall Architecture

Figure 1 depicts the main components of the framework and the transformations
that lead to each of them. We consider the executable BPEL specification of the
business process to monitor. This specification will be mapped to a correspond-
ing business protocol, provided some changes that will be discussed later. The
mapping operation rests on a set of required transformation rules. A query lan-
guage is then used for retrieving information by navigating through the states
of the business process. Each query will be transformed into a suitable SQL
query over a database which schema is a faithful mapping of the business proto-
col resulting from the transformation of the business process. This database is
populated during the execution of the service supporting the business process.

4.2 A Business Protocol as an Abstraction

The abstraction of BPEL that we consider is a business protocols defined in [4]
that we extend with variables associated with the states. The core definitions
are kept identical. A protocol is defined as a tuple A=(Q, q0, F, φ , Σ ,ψ, Var)
where:

– Q is a finite set of states the process goes through during its execution
– q0 is the initial state
– F⊆ Q is the set of final states where F �= ∅
– φ is the set of messages. There are two types of messages, those consumed

by the protocol, these are assigned the polarity sign + and those produced
by the protocol are assigned the - sign.

– Σ ⊆ Q×φ×Q is the transition set where every transition is labeled with a
message name and its polarity.

– ψ is a partial function that assigns to the states where a transition labeled
with a receive message enters, the variable that is modified by this message.
Not all states are assigned variables since only entering messages deliver
information that is recorded in their corresponding variables.

– Var is the finite set of variables of the business process to be transformed.

4.3 Transformation of BPEL Business Processes to Business
Protocols

In this section, we are interested in the mechanism that allows to generate an
abstraction of a business process specified in BPEL by a set of rules. First, we
have to define the different elements of a BPEL specification as stated in its
specification [1].

For transformation purpose, we proceed by generating segments of the proto-
col corresponding to the basic activities and then combine the resulting segments
by looking into the structured activities to which they belong.

4.3.1 Transformation of Basic Activities
For each activity represented in BPEL syntax, we give its corresponding protocol
segment definition. States named as q indexed with an integer i are just used for
representation and could be renamed.

102 M.A. Baazizi et al.

invoke activity
<invoke partnerLink="PL" portType="PT" operation="op" in-

putVariable="inVar" outputVariable="outVar"/>

is mapped into the following segment of the protocol

({qi , qi+1 , qi+2 }, qi , {qi+2},{m, n},{(qi , (−)m, qi+1),(qi+1 , (+)n, qi+2)},
ψ(qi+1) = inV ar, ψ(qi+2) = outV ar, {inV ar, outV ar})

Here, qi+1 is an intermediate state meaning that a message has been sent
from a process to one of its partners and is blocked waiting for a message to be
returned to change its state and affects the variable defined in this state.

receive activity
The receive activity which waits for a message that will be consumed takes the
form <receive partnerLink="PL" portType="PT" operation="op"
variable="var">

and is mapped to the protocol defined by

({qi , qi+1}, qi , {qi+1},{n}, {(qi , (+)n, qi+1)}, ψ(qi+1) = V ar, {V ar})

assign activity
<assign><copy> <from>...</from> <to variable=”var".../> </copy>
<assign/> is mapped to its corresponding protocol

({qi , qi+1}, qi , {qi+1},{},(qi , Assign, qi+1), ψ(qi+1) = V ar, {V ar})
The assign activity is local to a process and does not require any message ex-
change. This is why no polarity sign is used.

reply activity
<reply partnerLink="PL" portType="PT" operation="op" vari-
able="Var"> is mapped to the protocol

({qi , qi+1}, qi , {qi+1},{m}, {(qi , (−)m, qi+1)}, ψ(qi+1) = Var, {Var})

Other activities like wait, exit, empty, throw and rethrow are available in the
BPEL specification but not all are relevant. Wait which makes the process wait
for a precise moment or until a certain time could be mapped to a business
protocol using temporal transitions defined in [3] that are implicit transitions to
be taken when the time constraint defined for them is satisfied. Exit is mapped
to a transition leading to a final state.

4.3.2 Transformation of Structured Activities
Structured activities are used to link between basic activities following a logic
we have in mind at design-time. This is done using different constructs such as
flow which expresses that the activities defined in its scope run concurrently,
sequence which links between basic or structured activities that are designed
to run sequentially, if-then-else express conditional branching to a point in the

Monitoring Web Services: A Database Approach 103

process, while and repeat-until are used to loop through a set of activities and
pick waits for a suitable message to trigger the corresponding action or a default
action if time overruns. As done for the basic activities, we assign for each type
of activity given in BPEL syntax its corresponding automaton definition.

4.4 A Monitoring Query Language

The monitoring methodology we propose consists of querying the business pro-
tocol corresponding to the business process we want to monitor rather than
handling this latter itself. This is why we define our monitoring language upon
business protocols to take advantage of the abstraction they offer. A business
protocol represents the modeled system as a finite state automaton which tran-
sitions are annotated with messages exchanged and states are the mapping of
the steps the process goes through until it ends. This visual representation of
a system greatly simplifies its comprehension, and could hence be exploited to
express queries in a natural and efficient manner. Figure 2 shows the business
protocol of loan process system obtained from the transformation of BPEL code
provided with the specification [1] using the transformation rules stated in § 4.3.
The process starts by receiving customers’ requests and decides, based on the
asked amount, whether to check the loan request by the assessor service whose

Fig. 2. The business protocol for the Loan approval example

104 M.A. Baazizi et al.

role is to evaluate the risk of accepting the loan (expressed by the (-)Check mes-
sage) or to check it directly by the approval service (expressed by the (-)Approve
Message). If the risk is low, the acceptance will be decided locally and then as-
signed to a local variable that will be transmitted to the customer. Otherwise a
processing from the approval service is needed and this latter has the responsi-
bility to directly inform the customer in case of refusal or to return the response
to the loan service that will forward it to the customer in case of acceptance. In
both cases the customer is informed of the result of her/his request.

We first give some definitions that will serve introducing our monitoring lan-
guage, then we will provide a syntax.

4.4.1 Execution Paths
As defined in the work [4] all traces left by the execution of a business process
are captured by the corresponding business protocol. In the above example, the
sequence Start, request(+), LoanRequested, check(-), LoanMsgSent,
check(+)LoanChecked is an execution path. A complete execution path is
an execution path that starts with the first state of the protocol and ends with
its final state. It denotes a complete execution of the process represented by this
protocol.

Definition 1. Given a business protocol P, an execution path is formed by all
the nodes (states of P) and edges (transitions of P) traversed during an execution.
All the instances of the execution of one process generate execution paths that
will be represented in a tree of executions. Figure 3 represents four paths of four
different instances identified by their instance ID.

Fig. 3. A tree of all execution instances

Monitoring Web Services: A Database Approach 105

Definition 2. Let us consider a business protocol P defined as a tuple P=(Q,
q0, F, φ, Σ,ψ, Var). A query over a business protocol P is a function that takes
a path expression as input, that is a start node, an end node and eventually a
set intermediate nodes constrained with the names of states defined in P (that is
Q). It returns the values of variables defined on those nodes, an aggregation of
those variables or a number of paths.

4.4.2 The Query Language Syntax
A query over the business protocol P is an expression built using the the syntax
shown figure 4, where terminals constitute keywords of the language and non-
terminals are used in production rules and are thus underlined.

A query is composed of three clauses:

– Retrieve
– Where
– Constrain

The Retrieve clause specifies the information that will constitute the answer. It
could be an attribute or a set of attributes. It could also be an aggregate result
on the number of selected paths or the average number of executions leading to
the selected paths.

The where clause specifies the paths to select given a start node and an end
node (the start and the end keyword respectively). We could restrict the selected
paths by indicating intermediate nodes to cross or not to cross. The answer
returned by the Retrieve clause is the set of attribute values of the selected
paths if the query is intended to return attribute values, or an aggregate on
these values or the number of paths that were selected. We can restrict even
more the paths that will be selected using the constrain clause by fixing the
values of attributes or the value of aggregates made on attributes values, or
aggregates of time.

4.5 Query Evaluation

As mentioned previously, the queries formulated over the business protocol will
be translated into SQL queries over an event database that captures the business
process execution. First, we give the schema of such a database that will enable to
retrieve the information as stated in the query language. Then, the above queries
will be translated into their corresponding SQL queries over the database.

4.5.1 The Database Schema
The schema of the database is obtained by mapping each state of the business
protocol to a relation of the database. Each relation is given the name of the state
from which it is generated and the attributes identified in that state. Additional
transformations are however required in case the variables defined in the business
protocol (taken directly from BPEL specification which is XML-based) do not fit
into relational table columns unless the host RDBMS allows storing such XML
types.

106 M.A. Baazizi et al.

Fig. 4. The query language syntax

Each state is designated by the ID it will have at run-time which is given
by the BPEL engine to every running instance. At a given time, each state is
linked with one and only one state (the following state in the execution path).
The resulting table from a given state has the Instance ID (IID) as primary key,
the variables of the state as attributes and a 1 to 1 multiplicity with the states
coming right after it in the protocol representation.

For simplicity, we consider the example of figure 5 that shows the database
schema resulting from the transformation of the protocol of figure 2. The in-
termediate states of the protocol (states without variables) are not mapped to
any table in this schema. They are, however, stored elsewhere in a table called

Monitoring Web Services: A Database Approach 107

Fig. 5. A database schema of the protocol in figure 2

‘Actual’ that given an instance ID returns the name of the last state reached by
the execution of an instance (the states in the business protocol). This table can
be populated following two ways: each time a different instance is inserted into a
table representing one state of the protocol, the ‘state’ attribute of the ‘Actual’
table is updated with the name of that table for the same IID. This is done by
associating a trigger to every table. On each tuple insertion to a table, the name
of this table is inserted into the state field of the ’Actual’ table with teh schema:

Actual (IID,state, status,timestamp)

where: IID is the primary key and corresponds to the IID of the table where
a tuple is inserted, state is the name of the table where the tuple is inserted,
timestamp is the instance of time when the tuple was inserted into the original
table and status has special significance which will be explained after. The trig-
ger of a table resulting from a state Si can be defined as:

CREATE TRIGGER state_i_run
ON INSERT ON state_i_table
DECLARE
–-X will hold the IID of the inserted tuple
X
BEGIN
–- If a tuple with the same IID already exists
IF X IN (SELECT IID FROM Actual) THEN
–- Update only the ’status’ field
UPDATE Actual SET state=’state_i’
ELSE

108 M.A. Baazizi et al.

–- if the instance has not been yet recorded
INSERT INTO Actual (X,state_i)
END

Another way to populated the table is done at the level of the business process
enactment by capturing messages sent in an invoke activity (cf. §4.3.1) that
have not yet been responded by the partner link (if a response is required).
The information which will be stored is the name of the partner link involved.
Without this information we would never be capable of tracking the processes
involved in failure or estimate their response time. Indeed, this prevents from
mapping the intermediate states that denote in the business protocol that a
message request has been sent and a response is expected.

At run-time, each created instance of the business process is stored in the
database by filling the suitable fields with information generated during the
execution. Each row of the database table is timestamped to enable the retrieval
of temporal information.

The duration of a complete execution path is then given as the difference
between its final and initial states’ timestamps.

5 Conclusion

In this work, we provided a preliminary framework for business process moni-
toring using queries. This is just a starting work that will be helpful in:

– providing an abstraction of the monitored process that captures enough de-
tails relevant to monitoring issues, and not too much that could hinder the
understanding of the modeled process;

– allowing an intuitive query formulation by visually selecting and eliminating
parts of the process abstraction;

– ensuring efficient query evaluation by relying on relational databases that
turn out to be more useful than expected when exploiting related mecha-
nisms such as statistical analysis, actions triggering using the ECA paradigm
but also off-line analysis since data is made persistent.

This work suggests reconsidering the problem of monitoring by taking another
look that may lead to a solution when a important number of requirements will
be satisfied. This is why we consider extending the high level query language so
that it can deal with the maximum of situations one could need when monitoring
any kind of process. This could be done by defining another syntax or extending
the actual one while ensuring semantically correct queries with regards to a
convention that will be made. A semantic compilation has to be defined at this
level of abstraction so that high level queries will be mapped to the right SQL
ones.

Since this monitoring works jointly with the BPEL standard specification, a
deep review of the abilities of this latter could be of great benefit for optimization
issues. for example, we could exploit the exception handling mechanisms defined
in BPEL rather than redefining another one.

Monitoring Web Services: A Database Approach 109

Additional extensions may concern querying flow activities after representing
them and providing the suitable transformation mechanisms.

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Guízar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web services business process
execution language version 2.0 (OASIS standard). WS-BPEL TC OASIS (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2. Baresi, L., Di Nitto, E.: Test and Analysis of Web Services. Springer, Heidelberg
(2007)

3. Benatallah, B., Casati, F., Ponge, J., Toumani, F.: On temporal abstractions of web
service protocols. In: Belo, O., Eder, J., Cunha, J.F., Pastor, O. (eds.) CAiSE Short
Paper Proceedings. CEUR Workshop Proceedings, vol. 161, CEUR-WS.org (2005)

4. Benatallah, B., Casati, F., Toumani, F.: Analysis and management of web service
protocols. In: Atzeni, P., Chu, W.W., Lu, H., Zhou, S., Ling, T.W. (eds.) ER 2004.
LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

5. Wombacher, A., Fankhauser, P., Neuhold, E.J.: Transforming BPEL into annotated
deterministic finite state automata for service discovery. In: ICWS, pp. 316–323.
IEEE Computer Society, Los Alamitos (2004)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 110–121, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Milestones: Mythical Signals in UML to Analyze and
Monitor Progress

Richard Torbjørn Sanders1 and Øystein Haugen1,2

1 SINTEF, N-7465 Trondheim, Norway
richard.sanders@sintef.no

2 University of Oslo, Dept. of Informatics, N-0316 Oslo, Norway
oystein.haugen@sintef.no

Abstract. Many applications are evolving towards Service Oriented Architec-
ture (SOA) with technologies such as Web services. Services can be modeled
platform independently through UML2 collaborations in the upcoming UML
profile for services, SoaML. We observe an increasing need for validation of
services. However, such validation is often based on syntactic descriptions of
the services and of their interfaces, which are insufficient to ensure that desired
liveness properties are satisfied. In this paper, we present a language construct
called “milestone” embedded in UML and define its semantics using mythical
signals. We show how this interpretation of milestones can be used for liveness
analysis and for runtime monitoring of services. The approach is illustrated with
a simple bidding service.

1 Introduction

In recent years the software community has shown large interest in adopting Service
Oriented Architectures (SOA) to overcome the challenges of distributed computing
[1]. SOA is an architectural approach for constructing complex software-intensive
systems from a set of interconnected and interdependent building blocks. A service is
a stand-alone unit of functionality available through a formally defined interface.

While SOA in itself is not tied to any particular technology, most practitioners con-
sider contemporary SOA to be that offered by web services. Semantic web services
seek to characterize what a service can provide by offering means of expressing inter-
faces using Web Services Description Language (WSDL) [2]. Although WSDL aims
at providing a formal definition of the interface to a service, it is restricted to a static
description of operations and associated messages. This may change with the upcom-
ing response to the OMG’s RFP [3]. Called SoaML [4], the UML profile for services
will allow one to formally define the behavior of a service on an interface, without
binding the implementation to a particular technology. SoaML prescribes modeling
services using UML2 Collaborations, see Fig. 1, as we argued in [5].

We have suggested the concept of milestones to express the desired behavior of a
service [6]. In this article we show how the semantics of milestones can be defined by
mythical signals, and how these are modeled by specialized UML Comments in
SoaML. Mythical signals are signals which are useful for analysis and monitoring, but
can be omitted in implemented systems. This work is a result of the SIMS project [7].

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 111

The structure of this paper is as follows: first we present the rationale for mile-
stones by way of a bidding example. Then we show how milestones are defined in
UML, and how they contribute to the analysis and monitoring of progress. We also
discuss related work, and finally conclude.

2 Buyers and Sellers – Progress of a Bidding Process

In this Section we introduce our illustrative example about buyers and sellers in-
volved in a bidding process. We give an intuitive explanation of the example and then
show how milestones can improve the understanding of the scenario as well as be a
formal basis for liveness analysis.

Our situation is one where a seller offers an item to the market. We assume that the
item is of considerable value such that a bidding process will be applied. The context
is given by the UML collaboration shown in Fig. 1.

«ServiceContract»
BiddingService

«ServiceInterface»
seller:Seller[1]

«ServiceInterface»
buyer:Buyer[1..*]

Fig. 1. Bidding service modeled as a collaboration

The seller will advertise the item for sale. We model this by assuming a message
broadcast to a set of potential buyers. Some of the buyers will react favorably and re-
turn a message to indicate their interest. More information is then provided by the
seller to all the buyers that have shown interest. After this preamble the bidding will
start and a subset of the interested buyers will present a bid to the seller. We assume
that the bid will contain additional information such as the price they are willing to
pay, financing method etc. These additional pieces of information are not of much in-
terest to our analysis and we have left them out of our simple model.

We then assume a series of bidding rounds where the seller will multicast to the
remaining bidders the highest bid in the most recent round. Then the bidders may re-
new their bid with changed parameters. This procedure will go on for some time: it is
not important for our analysis how many rounds or for how long the bidding process
takes place.

Finally the bidding will terminate when the seller has selected a winner; the chosen
one gets a message to pay and in return gets a contract for the item.

The bidding process is shown in Fig. 2. We have applied an augmented sequence
diagram notation based on the notation and definition given in [8]. Compared to stan-
dard UML 2 sequence diagrams our notation has the capability to express broadcast-
ing/multicasting in a precise yet compact way. The clue is that the buyer lifeline
represents the whole set of buyers, but for each message (or combined fragment) we
describe clearly what subset of the buyers will send or receive the message. Subsets of
properties are defined in standard UML 2 [9].

112 R.T. Sanders and Ø. Haugen

sd Bidding

seller:Seller buyer:Buyer

advertisement {all buyer}

interest {all interested subsets buyer}

prospect {all interested}

«milestone» Buy
<Prospect
received>

«milestone» Sell
<Prospect sent>

bid {all bidding subsets interested}
«milestone» Sell
<Bids received>

alt {all bidding}
bid-rejected

bid-acknowledged

«milestone» Buy
<Bid rejected>

«milestone» Buy
<Bid
acknowledged>

loop {all bidding}

opt

current-high-bid

bid

«milestone» Sell
<High bid
announced>

bid-won {all winner subsets bidding }
«milestone» Sell
<Winner
informed>

«milestone» Buy
<Won bid>

payment «milestone» Buy
<Paid>

{all winner }
«milestone» Sell
<Payment received>

contract «milestone» Buy
<Completed>

{all winner }

Fig. 2. The bidding process modeled by a sequence diagram

Furthermore, we have added our notation for milestones that we shall introduce
shortly. Milestones express that something useful has been achieved at this point in
the behavior. For instance when a seller outputs “bid-won”, the bidding process has
progressed to “Winner informed” in Fig. 2.

In a multi-stage interaction, like the bidding process, it makes sense to indicate a
series of partial goals, each corresponding to something worthwhile having been
achieved. In actual bidding interactions, many potential buyers never get past receiv-
ing prospects or having their bids rejected; these are nonetheless identifiable partial
goals and represent fully acceptable outcomes of the interaction.

Likewise, it is useful to define goals for the participants of the interaction, in this
case seller and buyer. The milestones are annotated such that the collaboration role to
which they refer is made clear, i.e. Sell and Buy; as we shall shortly see, Sell and
Buy are in fact progress signals. Fig. 2 states that the ultimate goal of the seller is to
receive payment, while for the buyer it is to receive the contract – leading up to this
are the steps or sub-goals of the bidding process needed to reach these final goals.

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 113

In addition to improving the reader’s understanding, milestones are useful for stat-
ing requirements. For instance, in a bidding process buyers do not want prospects
from sellers that withhold their acknowledgements until the buyers have lost interest.
Nor do sellers want to reward buyers with a track record of withholding payment.

Most importantly, milestones act as a formal basis for liveness analysis. Liveness
analysis is concerned with systems doing something good, and milestones can be used
for expressing what is considered useful. As we shall see, with milestones we can
analyze at design time how objects are capable of behaving, and/or monitor at runtime
how objects actually behave. This can help us ascertain whether buyers and sellers are
well-behaved and follow the intensions of a service specification. For instance, in a
bidding process we do not want sellers that invariably reject all bids.

One benefit of milestones is that goal achievement is easier for people to recognize
and follow, saving one from time-consuming analysis of programming code, proce-
dure calls, message exchanges and other implementation artifacts. A benefit of this
approach is that we do not need additional validation models unlike what is associated
with formal methods; including milestones in a design provides analysis and monitor-
ing opportunities without increasing the complexity of the model. At runtime, moni-
toring progress signals is a more practical instrument than monitoring all message ex-
changes and performing a progress analysis on these.

2.1 Defining Milestones in a UML Context

Milestones are marks of progress placed on behavioral elements of the UML specifi-
cation. In our example given in Fig. 2 we have placed the milestones on message
transmissions and message receptions. We may place milestones on any behavioral
element where it is well defined when that behavioral element is executed at runtime.

The milestones in Fig. 2 are depicted as comments and the way they are written
may lead people to believe that they represent pure constraints, but this would be a
misconception. A constraint is something that is either true or false whenever the exe-
cution reaches this element. A milestone is something that states the fact that this be-
havioral element has been reached. While constraints are declarative and passive,
milestones are imperative and active.

On the other hand, milestones share with constraints the fact that they are not nec-
essary for the specification to execute properly. Just as all constraints can be removed
from an executable model, so can all milestones. Both constraints and milestones are
descriptions that are used for analysis alone. By analysis we mean not only the formal
analysis provided by automatic means, but also informal analysis done by designers.

That milestones can be removed without changing the executable definition does
not mean that milestones are useless or unimportant. In fact, the same can be said
about other model elements; for instance sequence diagrams are normally considered
redundant relative to the executable model. There are numerous algorithms that par-
tially or totally generate executable models from sequence diagrams, but given a
UML system defined with both state machines and sequence diagrams, the sequence
diagrams will be used as advanced requirements on the executions and not the source
of execution themselves.

Milestones are part of this tradition. They are also the first imperative constructs
suggested in a UML context that have analysis as sole purpose. What should then

114 R.T. Sanders and Ø. Haugen

happen when a milestone is encountered during execution? It is not sufficient to raise
a flag since the same milestone may be encountered a number of times during an exe-
cution, and only raising a flag would not distinguish between encountering the mile-
stone once and encountering it multiple times. The numbers or frequencies of these
encounters may be of significance to what we call progress.

Thus, we decide that encountering a milestone should result in sending a signal to
an observer totally outside our system. The signal name is given in the milestone
along with an optional ordinal number representing the degree of progress. In our ex-
ample in Fig. 2 we have used one progress signal Sell for the seller’s progress and
another progress signal Buy for the buyers’ progresses.

A formal semantics for milestones would have to enhance the formal semantics of
UML as such. The enhancement would have to comprise the external observer and a
precise definition of exactly when during the execution of a behavioral primitive the
progress signal should be sent. A formal semantics goes beyond this paper; here we
explain in UML terms how the execution of milestones is.

The progress signals are declared as any other signal, and may in fact be signals
that are used for other purposes in the specification. This means that the signals may
have attributes and these attributes will get the runtime values at the time of the send-
ing of the signal; the scope of the signal arguments follows normal UML scope rules.

The signals sent when milestones are encountered are sent only for the purpose of
analysis and we imagine these signals are sent to a possibly fictitious observer outside
our system. Since these signals could be omitted and since they may be understood as
only being present for those that analyze, we call them “mythical signals”. The term
has some merit, as the term “mythical variable” was coined already in the seventies
[10, 11]. The term “mythical variable” was used for variables that were not needed for
the execution itself, but were auxiliary variables used to facilitate the reasoning. Typi-
cally the mythical variables have represented a history of states [12, 13] and as such
they are similar to our mythical signals since the sequence of these signals represents
a way to trace the history of the execution. In fact, we could apply a mythical variable
to represent the sequence of mythical signals.

We have contributed the concept of milestones to the upcoming standard on ser-
vice modeling (SoaML) [4], where the piece of the metamodel for milestones is de-
picted as in Fig. 3.

Fig. 3. Metamodel for Milestones

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 115

The metamodel expresses exactly what we have presented in this Section. A mile-
stone is a kind of comment associated with a signal and an expression for the argu-
ments of that associated signal. Furthermore, there is the progress value representing
the degree of progress as an ordinal integer.

Milestones are not redundant in the sense that no other UML construct covers the
same purpose. One may argue that sending a signal at selected places in the behav-
ioral description can be done with ordinary UML means. This is true, but just
including a number of signal-sending constructs does not serve the same purpose for
the following reasons:

1. Milestones provide a uniform concept and notation across the different behavioral

views of UML. Just sending signals will require different kinds of constructs for
each of the behavioral diagrams.

2. Milestones are easily distinguished from sending signals that are necessary for the
functioning of the system itself. This is what constitutes the mythical property of
the milestones, that they are only used for analysis and not for specifying the func-
tionality itself.

3. Milestones define sending of signals to an imaginary observer that is external to
the outermost running system. Within UML there are constraints associated with
sending of signals to indicate where the signal is sent. E.g. in sequence diagrams
signal sending is represented by messages and these may go to the frame border.
This is, however, the definition of a gate and must be matched where that Interac-
tion is referenced. For our analytical purposes such constraints are counterproduc-
tive while they are practical and useful for pure functional purposes.

Milestones are not made superfluous by advanced model-driven debuggers either.

It is possible to configure model execution support tools to report on reaching behav-
ioral elements, but this is not well integrated with the modeling itself and it is an ac-
tivity related to monitoring rather than analysis.

2.2 Progress Analysis

Validation at design time can be performed to ensure that components involved in a
service will be able to interact safely with each other. We consider that components
interact safely when their interactions do not lead to any unspecified signal receptions,
deadlocks or improper termination.

The desired interface behavior of a participant in a service can be specified in a
state machine like the one in Fig. 4 below. Here we see the specification of the inter-
face behavior of the Buyer referred to in Fig. 1 and Fig. 2, where milestones are in-
serted at appropriate points. Interface behavior specifies the input and output signals
on an interface, and is thus only a partial state machine; in particular it does not define
causality of signal output. Fig. 4 constitutes what we have called a semantic interface
[14]; it is indeed the milestones that contribute with the semantics of the interface.

Given a requirement specification detailing the interaction behavior, a component
does not necessarily have to implement the complete behavior to be considered being
compatible with the specification in terms of safety properties. Simply stated, a com-
ponent can provide less output and accept more input than a specification, and (within

116 R.T. Sanders and Ø. Haugen

sm BuyerInterface

1 2
advertisement

3
^interest

4

prospect «milestone» Buy
<Prospect
received>

5
^bidbid-rejected

6

bid-acknowledged

7

current-high-bid

8
bid-won

«milestone» Buy
<Bid rejected>

«milestone» Buy
<Bid
acknowledged>

«milestone» Buy
<Won bid>

9
^payment

«milestone» Buy
<Paid>

contract

«milestone» Buy
<Completed>

current-high-bid^bid

Fig. 4. Interface behavior of Buyer with milestones

certain constraints) still be safe, as we have discussed [14]. Interactions are consid-
ered safe if no unexpected signals are received and deadlocks do not arise (meaning
that the peers wait endlessly for signals from each other). A safe behavior with less
output is what we call a safe subtype [15].

However, that a component can interact safely in a service does not mean that it is
useful. This is exemplified by the following diagram: Fig. 5 shows the possible be-
havior of a buyer that always responds with interest when it receives advertisements,
but never does anything with the prospect it subsequently receives. The bidding world
is full of would-be buyers that demonstrate behavior like this.

sm SimpleBuyer

Idle
Awaiting
Prospect

advertisement / ^interest prospect / display(prospect)

Fig. 5. Buyer behavior that is safe but not very useful

At first glance, Fig. 4 and Fig. 5 seem quite different; state names are different, and
there are less states and signals in the latter. Some of these differences are due to the
fact that the latter is the state machine of an object or classifier, while the former
represents the interface behavior, and can be obtained by projection on an interface.
Projection is due to the work of Floch [16], and is a mechanical process performed in
order to simplify interface validation. In simple terms, projection removes events not
visible on the interface, such as display(prospect) in Fig. 5, and transforms the
state machine into a transition chart, e.g. the input of advertisement and the out-
put of interest are placed in separate transitions, and auto-generated state names
(numbers) are used. Projecting the state machine of SimpleBuyer (see Fig. 5) on
the interface to the Seller results in the interface behavior in Fig. 6 below.

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 117

Fig. 6. Interface behavior of SimpleBuyer

Comparing Fig. 6 with Fig. 4 is straight-forward; we can see that SimpleBuyer
performs the first part of the specification, ending where the specification reaches
state 4. Formally, a buyer acting according to the state machine in Fig. 5 can behave
safely in the bidding service; it is capable of receiving the initial signals output from a
seller1, and does not output anything that a seller is incapable of handling according to
Fig. 4. It is indeed a safe subtype, implying that it behaves safely in a bidding process.
A seller would not receive any unexpected signals from such a buyer, nor would a
seller wait endlessly for any signals from it, since bidding is not mandatory according
to the service specification. However, seen from the perspective of a seller it is not
very satisfactory, as such a buyer would never provide any bid.

This is where milestones come in. We can use milestones to analyze the behavior
of an object or class and check if it is able to achieve the goals defined in a service
specification. For buyers following the service behavior of the SimpleBuyer we
see by comparing its projection in Fig. 6 with the specification in Fig. 4 that only one
of the sub-goals can be achieved, Buy <Prospect received>, and neither the
ultimate goal of seller nor buyer discussed earlier can be obtained in any interaction.
Clearly, seen from the perspective of the seller, such buyer behavior is not fully satis-
factory, since sellers want buyers to bid, not just to browse prospects. Analysis of the
buyer behavior can disclose this; knowing this, sellers can take measures to avoid in-
volving such participants in the bidding process.

A more serious case for the bidding process, however, would be buyers that win
bids but are not able to provide payment, or sellers that never announce a winner, re-
gardless of what bids are received. The latter case is an important one given the de-
sign of this bidding process: according to the specification, only the winner is in-
formed, so active bidders are not able to check if a winner is ever announced.
Analysis at design time can find this kind of discrepancy in the implemented behavior
of a seller; monitoring at runtime, discussed below, can also reveal this.

Such design time validation exploits what is called a reachability analysis in formal
methods. The example above is so trivial that no tool support is needed to perform the
analysis. However, this is not the case in general; discovering errors and analyzing in-
teraction behavior to find them can be difficult, and may require dedicated validation
tools such as SPIN [17]. On the other hand, if one performs validation of collabora-
tive behavior between components, one can simplify the analysis by focusing on in-
terface behavior, and ensuring that the latter is well-formed (i.e. safe), meaning that
nothing bad happens, and useful (i.e. live), meaning that it can achieve goals. As the
example above shows, inserting milestones in interface behavior specifications can be

1 We assume that a seller will not send messages like current-high-bid to buyers that do not

submit bids. This is indeed as specified by the subset constructs in the sequence diagram.

118 R.T. Sanders and Ø. Haugen

used to validate liveness of subtypes, checking that progress can be achieved in the in-
teractions. In the example above, the simple buyer is not able to achieve all the goals
of the specification, and is thus not what we call a live subtype [15].

An example of more satisfactory buyer behavior is shown in Fig. 7 below. Using
the validation approach mentioned above one can validate that the SeriousBuyer
is fully goal compatible with that of Buyer in Fig. 4; analyzing its projection will
show it to be a safe subtype, and that it contains transitions corresponding to all the
milestones of the specification. This means it is a live subtype, and can achieve all the
goals of the bidding process.

Fig. 7. A buyer that can achieve all the goals of the bidding service

The purpose of the analysis is to ascertain what progress is possible in interactions
with a state machine. This does not imply that the goals are guaranteed to be fulfilled
in every interaction. For instance, SeriousBuyer may be capable of achieving the
ultimate goal of receiving a contract, but only if the bid is high enough. The analysis
only shows that, given favorable conditions, this goal can be achieved. For the Sim-
pleBuyer, however, the analysis concludes that no contract will ever be received.

In [15] we have suggested various kinds of milestones: graded milestones where a
numeric value is specified by the label (for instance <<Progress>> Buy (8)),
and service specific milestones of the kind used in Fig. 2 and Fig. 4. Both kinds are
supported by the metamodel in Fig. 3. A graded milestone is modeled by the integer
value, and can be used in making the best selection between a set of alternatives, for
instance between a set of service implementations. A number of implementations may
be compatible with a service specification, and a service discovery mechanism can se-
lect the implementation which exhibits the highest progress level.

Milestones are a mechanism that can be used for various needs; the analysis needs
will determine what behavioral elements they are attached to. As can be seen from the
metamodel in Fig. 3, milestones are specializations of comments; while comments
can be attached to any model element in UML, milestones should only be attached to
behavioral elements such as:

• MessageOccurrenceSpecifications in interactions (as exemplified in Fig. 2)
• Transitions in state machines (as exemplified in Fig. 4)
• ControlFlows in activities

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 119

For each of the different behavioral elements on which we may attach milestones
we need to define precisely at what time instance at runtime the progress signal
should be transmitted. For the three examples above, the MessageOccurrenceSpecifi-
cation is not problematic as the associated event at runtime is normally considered to
take zero time. The other two need more careful consideration. In most runtime situa-
tions transitions and control flows can also be considered instantaneous, but in cases
where they are not we may define the progress as transmitted when the transition is
finished or the control flow has given the control to the next activity node.

In the context of SoaML, service specifications seem natural candidates for exploi-
tation of milestones; with this in place, service implementations can be validated with
respect to their capabilities of fulfilling the goals expressed by the milestones.

Note that the examples presented here are simple, and do not demonstrate analysis
of details such as guarded transitions. Furthermore, the analysis of interface behavior
assumes that output eventually well be sent, which may not always be the case; vali-
dation of such properties using traditional state space exploration can be performed as
a supplement - see [14, 15, 18] for further details of the validation approach. The
benefit of milestone analysis lies primarily in the ease of use and understanding of the
human designer, and the smaller size of the state space to be explored by machines.

2.3 Progress Monitoring

While we favor performing a comprehensive analysis of the models to establish pro-
gress and liveness, we also realize that most modelers do their analysis either through
inspection or through testing. Formal analysis of milestones does not make testing ob-
solete. There may be characteristics of the system that are too difficult or too time
consuming to analyze by symbolic means. Assume that there are strict time require-
ments on the bidding rounds, e.g. that a bidding round should not exceed one hour. A
symbolic analysis of this requirement would require a lot of extra information about
the behaviors of the bidders, and most certainly in a real situation the requirement
could not be proved correct. Monitoring the progress on the other hand, requires only
that the external observer (or in this case a “monitor”) is actually implemented and the
additional requirements on the progress checked by the implemented observer.

This monitoring could be compared with a special purpose debugging system or trace
system. We could implement it as a state machine that consumes the mythical signals
and reacts to them by compiling aggregate measures or performing checks on the fly.

In agile modeling one advocates small steps where every step is represented by an
executable model. This is a very effective approach as long as it is easily established
that the early immature systems perform what they should. Milestones and progress
monitoring represent a lightweight approach to establishing that an immature system
actually does something good without having to add all kinds of extra instrumentation
to the model that must be removed later. The milestones may remain in the system,
and the progress monitor may later choose not to react on certain progress signals.

3 Related Work

Clint [10] already in 1973 talks about “dummy statements” that cause “mythical”
pushdown stacks to be updated with the new values of selected variables and thus

120 R.T. Sanders and Ø. Haugen

recording the ongoing changes of the values. This is in fact quite similar to our ap-
proach of sending signals, only that he chose to keep the registration within the pro-
gram. His aim was to prove correctness of co-routines and ours is to prove liveness of
systems with concurrent, interacting processes.

In [11] Dahl applies mythical variables to count the number of times certain con-
structs are executed. This is again similar to our milestones as the mythical variable
shows condensed information about the progress of the total program. Furthermore
these mythical program variables are only meant for program analysis as their pri-
mary purpose is to appear in invariants that are used to prove the correctness of the
program. [12] and [13] bring this technique one step further as the mythical variable is
used to hold the whole history of the program.

The concept of milestones is inspired by mechanisms in traditional model checking,
specifically the marking of so-called progress states in Promela [17]. While progress
states markings are a mechanism used to detect non-progress cycles and livelocks in
validation models, milestones are inserted into ordinary UML models in order to ex-
press, validate and monitor useful behavior, i.e. liveness in broad terms.

Milestones express the fulfillment of goals in interactions, and are a means of
achieving automatic reasoning of goal achievement. The concept of goals is not
unique to our work; for instance Business Motivation Model (BMM) defines the con-
cepts of ends and goals [19]. In BMM, an end is something the business seeks to ac-
complish. An end does not include any indication of how it will be achieved. In BMM
a goal is a statement about a state or condition of the enterprise to be brought about or
sustained through appropriate means. The definitions of end and goal are not precise;
the examples in [19] show normally only natural language. And although BMM goals
can be formalized into OCL statements, this is less than what is desired; no algorithm
can assess these goals, unlike the milestone approach we present here. Milestones
seem to be a practical way of reasoning over goals.

4 Conclusion

In this article we have presented how the semantics of milestones is defined by so-
called mythical signals, and how this concept can be included in extensions to UML
such as the upcoming UML profile for services (SoaML). Milestones can be used to
analyze and monitor service behavior, and (differently from model checking) do not
require the construction of validation models; instead, milestones are embedded in or-
dinary UML models, to the benefit of the modeler.

We have discussed opportunities for such analysis and monitoring in terms of a
simple bidding process. The application of milestones is not limited to toy examples;
in ongoing research we are evaluating its use in mobile services [7].

Acknowledgements

Our work is funded by the European Community under the Sixth Framework Pro-
gramme, contract FP6-IST-027610 SIMS. The work is also partially supported by the
MoSiS project ip06035, a project within the ITEA 2 – Eureka framework.

 Milestones: Mythical Signals in UML to Analyze and Monitor Progress 121

References

1. Erl, T.: Service-Oriented Architecture - Concepts, Technology, and Design, 6th edn. Prentice
Hall, Englewood Cliffs (2006)

2. W3C, Web Services Description Language (WSDL) Version 2.0 (2006),
 http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/

3. OMG, UML Profile and Metamodel for Services (UPMS) RFP - soa/06-09-09 (2006),
http://www.omg.org/cgi-bin/doc?soa/2006-9-9

4. OMG, Service oriented architecture Modeling Language (SoaML) - ad/2008-08-04 (2008),
http://www.omg.org/cgi-bin/doc?ad/08-08-04.pdf

5. Sanders, R.T., et al.: Using UML 2.0 Collaborations for Compositional Service Specification.
In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 460–475. Springer,
Heidelberg (2005)

6. Sanders, R.T., Floch, J., Bræk, R.: Dynamic Behaviour Arbitration using Role Negotiation. In:
Next Generation Networks. Eunice 2003, Budapest, Hungary (2003)

7. SIMS - Semantic Interfaces for Mobile Services (2008), http://www.ist-sims.org
8. Haugen, Ø.: Challenges to UML 2 to describe FIPA Agent protocol. In: ATOP @ AAMOS

2008, Estoril, Portugal (2008)
9. OMG, UML 2.0 Superstructure Specification, Revised Final Adopted Specification, ptc/04-10-

02, Object Management Group, Needham, MA, USA (2004)
10. Clint, M.: Program Proving: Coroutines. Acta Informatica 2, 50–63 (1973)
11. Dahl, O.-J.: An approach to Correctness Proofs of SemiCoroutines. In: Blikle, A. (ed.) MFCS

1974. LNCS, vol. 28, pp. 157–174. Springer, Heidelberg (1975)
12. Gjessing, S., Munthe-Kaas, E.: Trace Based Verification of Parallel Programs with Shared

Variables. In: Twenty-Second Annual Hawaii International Conference on System Sciences,
Kailua-Kona, HI, USA (1989)

13. Johnsen, E.B., Owe, O.: Object-Oriented Specification and Open Distributed Systems. In: Owe,
O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS,
vol. 2635. Springer, Heidelberg (2004)

14. Sanders, R.T., et al.: Service Discovery and Component Reuse with Semantic Interfaces. In:
Prinz, A., Reed, R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530. Springer, Heidelberg (2005)

15. Sanders, R.T.: Collaborations, semantic interfaces and service goals: a way forward for service
engineering, Norwegian University of Science and Technology (NTNU), Trondheim (2007),
http://www.diva-portal.org/ntnu/abstract.xsql?dbid=1476

16. Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles, Norwegian
University of Science and Technology (NTNU), Trondheim (2003)

17. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall, Englewood Cliffs
(1991)

18. SIMS deliverable D2.1 - Language and Method Guidelines, 1st version (2007),
 http://www.ist-sims.org/

19. OMG, Business Motivation Model (BMM) Specification dtc/07-08-03 (2007),
 http://www.omg.org/docs/dtc/07-08-03.pdf

A Framework for Proactive Self-adaptation of
Service-Based Applications Based on Online Testing�

Julia Hielscher1, Raman Kazhamiakin2, Andreas Metzger1, and Marco Pistore2

1 SSE, University of Duisburg-Essen, Schützenbahn 70, 45117 Essen, Germany
{hielscher,metzger}@sse.uni-due.de
2 FBK-Irst, via Sommarive 18, 38050, Trento, Italy

{raman,pistore}@fbk.eu

Abstract. Service-based applications have to continuously and dynamically self-
adapt in order to timely react to changes in their context, as well as to efficiently
accommodate for deviations from their expected functionality or quality of ser-
vice. Currently, self-adaptation is triggered by monitoring events. Yet, monitoring
only observes changes or deviations after they have occurred. Therefore, self-
adaptation based on monitoring is reactive and thus often comes too late, e.g.,
when changes or deviations already have led to undesired consequences. In this
paper we present the PROSA framework, which aims to enable proactive self-
adaptation. To this end, PROSA exploits online testing techniques to detect
changes and deviations before they can lead to undesired consequences. This pa-
per introduces and illustrates the key online testing activities needed to trigger
proactive adaptation, and it discusses how those activities can be implemented
by utilizing and extending existing testing and adaptation techniques.

1 Introduction

Service-based applications operate in highly dynamic and flexible contexts of contin-
uously changing business relationships. The speed of adaptations is a key concern in
such a dynamic context and thus there is no time for manual adaptations, which can be
tedious and slow. Therefore, service-based applications need to be able to self-adapt in
order to timely respond to changes in their context or their constituent services, as well
as to compensate for deviations in functionality or quality of service. Such adaptations,
for example, include changing the workflow (business process), the service composition
or the service bindings.

In current implementations of service-based applications, monitoring events trigger
the adaptation of an application. Yet, monitoring only observes changes or deviations
after they have occurred. Such a reactive adaptation has several important drawbacks.
First, executing faulty services or process fragments may have undesirable con-
sequences, such as loss of money and unsatisfied users. Second, the execution of adapta-
tion activities on the running application instances can considerably increase execution
time, and therefore reduce the overall performance of the running application. Third,

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 122–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Framework for Proactive Self-adaptation of Service-Based Applications 123

it might take some time before problems in the service-based application lead to mon-
itoring events that ultimately trigger the required adaptation. Thus, in some cases, the
events might arrive so late that an adaptation of the application is not possible anymore,
e.g., because the application has already terminated in an inconsistent state.

Proactive adaptation presents a solution to address these drawbacks, because – ide-
ally – the system will detect the need for adaptation and will self-adapt before a devia-
tion will occur during the actual operation of the service-based application and before
such a deviation can lead to the above problems.

In this paper we introduce the PROSA framework for PRO-active Self-Adaptation.
PROSA’s novel contribution is to exploit online testing solutions to proactively trigger
adaptations. Online testing means that testing activities are performed during the oper-
ation phase of service-based applications (in contrast to offline testing which is done
during the design phase). Obviously, an online test can fail; e.g., because a faulty ser-
vice instance has been invoked during the test. This points to a potential problem that
the service-based application might face in the future of its operation; e.g., when the
application invokes the faulty service instance. In such a case, PROSA will proactively
trigger an adaptation to prevent undesired consequences.

The remainder of the paper is structured as follows: In Section 2 we give an overview
of current research results on using monitoring to enable (reactive) adaptation and of
the state-of-the-art in online and regression testing. In Section 3 we present the PROSA
framework. While describing the key elements of the framework, we discuss how those
could be implemented by utilizing or extending existing testing and adaptation tech-
niques. Section 4 introduces several application scenarios to illustrate how PROSA ad-
dresses different kinds of deviations and changes. Finally, Section 5 critically reviews
the framework and highlights future research issues.

2 State-of-the-Art

2.1 Monitoring for Adaptation

Existing approaches for adaptation of service-based applications rely on the possibility
to identify and realize – at run-time – the necessity to change certain characteristics
of an application. In order to achieve this, adaptation requests are explicitly associated
to the relevant events and situations. Adaptation requests (also known as adaptation
requirements or specifications) specify how the underlying application should be mod-
ified upon the occurrence of the associated event or situation. These events and situa-
tions may correspond to various kinds of failures (like application-level exceptions and
infrastructure-level failures), changes in contextual settings (like execution environment
and usage context), changes among available services and their characteristics, as well
as variations of business-level properties (such as key performance indicators).

In order to detect these events and situations, the majority of adaptation approaches
resorts to exploiting monitoring techniques and facilities, as they provide a way to col-
lect and report relevant information about the execution and evolution of the application.
Depending on the goal of a particular adaptation approach, different kinds of events are
monitored and different techniques are used for this purpose.

124 J. Hielscher et al.

In many approaches (e.g., [1,2,3,4]) the events that trigger the adaptation are fail-
ures. These failures include typical problems such as application exceptions, network
problems and service unavailability [1,4], as well as the violation of expected proper-
ties and requirements. In the former case fault monitoring is provided by the underly-
ing platform, while in the latter case specific facilities and tools are necessary. In [2]
Baresi et al. define the expected properties in the form of WS-CoL assertions (pre-,
post-conditions, invariants), which define constraints on the functional and quality of
service (QoS) parameters of the composed process and its context. In [5] Spanoudakis
et al. use properties in the form of complex behavioral requirements expressed in event
calculus. In [3] Erradi at al. express expected properties as policies on the QoS param-
eters in the form of event-condition-action (ECA) rules. When a deviation from the
expected QoS parameters is detected, the adaptation is initiated and the application is
modified. In such a case, adaptation actions may include re-execution of a particular
activity or a fragment of a composition, binding/replacement of a service, applying an
alternative process, as well as re-discovering and re-composing services. In [6] Siljee
et al. use monitoring to track and collect the information regarding a set of predefined
QoS parameters (response time, failure rates, availability) infrastructure characteristics
(load, bandwidth) and even context. The collected information is checked against ex-
pected values defined as functions of the above parameters, and in case of a deviation,
the reconfiguration of the application is triggered.

Summarizing, all these works follow the reactive approach to adaptation, i.e., the
modification of the application takes place after the critical event happened or a problem
occurred.

The situation with reactive adaptation is even more critical for approaches that rely
on post-mortem analysis of the application execution. A typical monitoring tool used in
such approaches is the analysis of process logs [7,8,9]. Using the information about his-
tories of application executions, it is possible to identify problems and non-optimalities
of the current business process model and to find ways for improvement by adapting
the service-based application. However, once this adaptation happens, many process
instances might have already been executed in a “wrong” mode.

2.2 Online Testing and Regression Testing

The goal of testing is to systematically execute service instances or service-based appli-
cations (service compositions) in order to uncover failures, i.e., deviations of the actual
functionality or quality of service from the expected one.

Existing approaches for testing service-based applications mostly focus on testing
during design time, which is similar to testing of traditional software systems. There
are a few approaches that point to the importance of online testing of service-based
applications. In [10] Wang et al. stress the importance of online testing of web-based
applications. The authors, furthermore, see monitoring information as a basis for on-
line testing. Deussen et al. propose an online validation platform with an online test-
ing component [11]. In [12] metamorphic online testing is proposed by Chan et al.,
which uses oracles created during offline testing for online testing. Bai et al. propose
adaptive testing in [13,14], where tests are executed during the operation of the service-
based application and can be adapted to changes of the application’s environment or of

A Framework for Proactive Self-adaptation of Service-Based Applications 125

the application itself. Finally, the role of monitoring and testing for validating service-
based applications is examined in [15], where the authors propose to use both strate-
gies in combination. However, all these approaches do not exploit testing results for
(self-)adaptation.

An approach related to online testing is regression testing. Regression testing aims
at checking whether changes of (parts of) a system negatively affect the existing func-
tionality of that system. The typical process is to re-run previously executed test cases.
Ruth et al. [16,17] as well as Di Penta et al. [18] propose regression test techniques for
Web services. However, none of the techniques addresses how to use test results for the
adaptation of service-based applications.

Summarizing, in spite of a number of approaches for online testing and regression
testing, none of these approaches targets the problem of proactive adaptation. Still, sev-
eral of the presented approaches provide baseline solutions that can be utilized and
extended to realize online testing for proactive adaptation. This will be discussed in the
following section.

3 PROSA: Online Testing for Proactive Self-adaptation

As introduced in Section 1, the novel contribution of the PROSA framework is to exploit
online testing for proactive adaptation. Therefore, the PROSA framework prescribes the
required online testing activities and how they lead to adaptation requests. Figure 1 pro-
vides an overview of the PROSA framework and how the proactive adaptation enabled
by PROSA relates to “traditional” reactive adaptation which is enabled by monitoring.

Service-based
Application

adaptation
request

adaptation
request

monitoring data

test input

test
output

PROSA

Test Object

3. Test
Execution

2. Test Case
Generation/
Selection

1. Test
Initiation

4. Adaptation
Triggering Adaptation Monitoring

tetest
request

test
case adaptation

reactiveproactive

= activity

= data flow

Service Instances

= „bound to“

Fig. 1. The PROSA Framework

The PROSA framework prescribes the following four major activities:

1. Test initiation: The first activity in PROSA is to determine the need to initiate online
tests during the operation of the service-based application. The decision on when
to initiate the online tests depends on what kind of change or deviation should be
uncovered (see Section 3.1).

126 J. Hielscher et al.

2. Test case generation/selection: Once online testing has been initiated by activity 1,
this second activity determines the test cases to be executed during online testing.
This can require creating new test cases or selecting from already existing ones (see
Section 3.2).

3. Test execution: The test cases from activity 2 are executed (see Section 3.3).
4. Adaptation triggering: Finally, an analysis of the test results provides information

on whether to adapt the service-based application and thus to create adaptation
requests (see Section 3.4).

It should be noted that – as depicted in Figure 1 – online testing does not interfere
with the execution of the actual application in operation, i.e. with those instances of the
application which are currently used by actual users. Rather, online testing performs
tests of the constituent parts of the service-based application (e.g., individual services
or service compositions) independent from and in parallel to the operating applications.

Details about the above activities and how those can be implemented with existing
techniques are discussed in the remainder of this section.

3.1 Test Initiation

In order to initiate the actual online testing activities (PROSA’s activities 2 and 3), two
questions need to be answered: “When to test?” and “What to test?”. The answer of
these questions depends on the kinds of changes or deviations that should be proactively
addressed in addition to reactive techniques like monitoring. Those possible kinds of
changes are listed in Table 1.

To give an answer to the question “When to test?”, Table 1 provides an explanation
when to initiate online testing depending on the kind of change or deviation. Those
kinds of changes and deviations are illustrated in more detail in Section 4, where differ-
ent application scenarios for PROSA are introduced.

Table 1. Different cases for initiating online testing

Case Why to initiate online testing? When to initiate online testing? What to
test?

1 Uncovering failures introduced due
to the adaptation of the service-based
application.

Once the respective adaptation (e.g.
binding of a new service) has been
performed.

service or
composition

2 Detecting changes in the service-
based application or its context that
could lead to failures in the “future”.

Once monitoring has detected a
change that does not reactively trig-
ger an adaptation.

service or
composition

3 Identifying failures of an application
execution.

Periodically (e.g. randomly or by
testing future service invocations
along the execution path of the appli-
cation).

composition

4 Uncovering failures (i.e., deviations
from expected functionality or qual-
ity) or unavailability of constituent
services.

Periodically (e.g., randomly or by
predicting future service invocations
along the execution path of the appli-
cation).

service

A Framework for Proactive Self-adaptation of Service-Based Applications 127

To provide an answer to the question “What to test?” (i.e., to determine the test
object), we have considered the following two major strategies that can be performed
in order to uncover the different kinds of changes or deviations (Table 1 shows what
strategy could be followed depending on the kind of change or deviation):

– Testing constituent service instances: Similar to unit or module testing, the individ-
ual, constituent service instances of a service-based application can be tested (i.e.,
the service instances that are or will be bound to the service-based application).

– Testing service compositions: Similar to system and integration testing, the com-
plete service composition of a service-based application or parts thereof can be
tested.

To implement activity 1 of PROSA, one can rely on information provided by exist-
ing monitoring techniques for case 2 (see Table 1) or adaptation techniques for case 1.
The other cases require new and specific techniques, which can be very simple (like
randomly triggering the tests) or more challenging (like predicting future service invo-
cations along the execution path of the application).

3.2 Test Case Generation/Selection

In Section 3.1 two strategies for online testing were introduced. In order to implement
these two different strategies and thus to realize activity 2 of the PROSA framework,
different kinds of techniques for determining test cases have to be employed:

– Testing constituent service instances: For testing constituent service instances, ex-
isting techniques for test case generation from service descriptions, like WSDL, can
be exploited (e.g., [19,20,21]). Additionally, test cases from the design phase can
be re-used if such test cases exist. However, usually the test cases from the design
phase will not suffice, because typically at that time not all services are known due
to the adaptation of a service-based application that can happen during run-time.

– Testing service compositions: For testing service compositions, test cases can be
generated from composition specifications, like BPEL (e.g., [22,23]). If a set of test
cases for testing service compositions already exists, online testing has to determine
which of those test cases to execute again (i.e., test cases have to be selected). This
is similar to regression testing, which has been discussed in Section 2.2. Conse-
quently, existing techniques for regression testing of services (like [16,17,18]) can
be utilized.

A more detailed survey on existing test case generation and selection techniques for
service-based applications can be found in [24].

3.3 Test Execution

The responsibility of activity 3 in the PROSA framework is to execute the test cases
that have been determined by activity 2. This means that the test object (which is either
a service instance or a service composition) is fed with concrete inputs (as defined in
the test cases) and the produced outputs are observed.

128 J. Hielscher et al.

The test execution can be implemented by resorting to existing test execution en-
vironments, e.g., the ones presented in [19,18]. It is important to note that invoking
services can lead to certain “side effects” which should not occur when invoking the
service for testing purposes only (this problem is also discussed in [22]). As an exam-
ple, when invoking the service of an online book seller for testing purposes, one would
not like to have the “ordered” books actually delivered. Thus, it is necessary to provide
certain services with a dedicated test mode. As an example, one could follow the ap-
proaches suggested for testing software components, where components are provided
with interfaces that allow the execution of the component in “normal mode” or in “test
mode” (see [25]).

3.4 Adaptation Triggering

The final activity 4 of PROSA determines whether to issue an adaptation request, which
ultimately leads to the modification of the service-based application. Such an adaptation
request should be issued when the observed output of a test deviates from the expected
output, i.e., whenever a test case fails. This includes deviations from the expected func-
tionality as well as from the expected quality of service.

As has been discussed above, existing adaptation solutions rely on monitoring to is-
sue adaptation requests whenever a deviation is observed (see reactive loop in Figure 1).
In order to exploit those existing solutions (see Section 2.1), triggering of adaptations
based on online testing should conform to the requests from the monitoring component.
Thereby, activity 4 could be implemented within a unified adaptation framework.

To achieve such a unification, the following two issues need to be resolved: First,
specific adaptation requests should be explicitly assigned to individual test cases. In
reactive approaches such adaptation requests are assigned to certain monitoring events.
The events may represent application or network failures (e.g., service is unavailable),
violation of assertions (e.g., post-condition on data returned by service call) or even of
complex behavioral properties (e.g., if flight is found but there are no rooms available,
the trip plan can not be created). In a similar way, test cases represent dedicated exe-
cution scenarios, where specific deviations or changes can be checked (this has been
highlighted in Table 1). If the test fails, this is similar to the occurrence of a monitoring
event, and thus the adaptation assigned to the test case is triggered.

Second, it may be necessary to modify the adaptation requests from monitoring in
order to take into account the specifics of proactive adaptation. Indeed, some adaptation
requests from monitoring might specify instructions that are not applicable in proactive
adaptation (e.g., “retry” operation, or “rollback to safe point”). Therefore, the speci-
fication should be changed such that these instructions do not appear when used for
proactive adaptation. An interesting line of future work in these regards could be to
devise means to automatically derive adaptation requests for proactive adaptation from
the adaptation requests already available for monitoring.

4 Application Scenarios

In this section we illustrate how PROSA enables the proactive adaptation of a service-
based application. For this purpose we introduce an example application based on which

A Framework for Proactive Self-adaptation of Service-Based Applications 129

Suggest
Destination

Search Flight Search Train

Rate Hotels
Search Closest

Hotels

[distance > 100 km]

[distance <= 100 km]

Suggest
Travel Plans

Air1

Wings3

RailYW

HS45 Rate24 H-Guide PlanIt

cost: 2 €
response time: 5 ms

cost: 1 €
response time: 15 ms

cost: 1,50 €
response time: 5 ms

cost: 0,80 €
response time: 10 ms

cost: 0,20 €
response time: 5 ms

cost: 0,99 €
response time: 10 ms

cost: 1,20 €
response time: 15 ms

= service

= service instance
GuessTravel

cost: 0,20 €
response time: 10 ms

…

TrainZ
cost: 1,90 €
response time: 20 ms

Fig. 2. Example Application: “Travel Planning”

we describe scenarios that demonstrate how PROSA can be applied to the different
cases for online testing introduced in Table 1. The service composition of the example
and possible constituent service instances are depicted in Figure 2.

Our example application provides a travel planning service, which includes a com-
bined search for transportation and hotel accommodation. The constituent services of
this application are invoked in the following order:

1. Suggest destination: First, the user of the application is provided with a suggestion
of different travel destinations based on her/his preferences.

2. Search flight/train: Once the user has chosen a destination, the application will
determine the best way to reach that destination. Depending on the distance to the
suggested destination, either an appropriate flight or a train connection is searched.

3. Search closest hotels: After a suitable means of transportation has been found, ho-
tels in the vicinity of the airport or the railway station of the destination are located.

4. Rate hotels: Using one of the many hotel rating services available, each hotel from
the list is checked for its rating and the hotel list, sorted according to the rating, is
returned.

5. Suggest travel plans: Finally, the first hotel from the sorted list (i.e., the one with
the best overall rating) is chosen and the travel information (itineraries, information
about the hotel, etc.) is compiled to produce a comprehensive travel plan.

In Figure 2, gray boxes denote concrete service instances that can be bound to the
application in order to compute the travel plan. Some of those concrete service instances
can already be known at design time, while others are dynamically discovered or added
due to adaptations during the operation of the service-based application. The annotated
information about cost and response time denotes the negotiated quality for each of the
service instances (e.g., by means of service level agreements).

130 J. Hielscher et al.

4.1 Case 1: Failure Introduced due to Adaptation

Let us assume that the service instance “H-Guide” was bound to our service-based
application at operation time, because the service instance “Rate24” has turned out to
be too expensive. The binding of that new service instance is reported by the adaptation
component to the PROSA framework. Consequently, PROSA’s activity 1 triggers the
online testing activities, which react to this adaptation by determining test cases to check
whether the newly bound service instance behaves as expected (see Table 1, case 1).
Let us say that the expected output of one of those test cases is “Palermo Premium
Class Hotel”, which clearly is the hotel with the best ratings for the chosen location.
Unfortunately, the observed output of “H-Guide” is “Casa Palermo”, which is the hotel
with one of the lowest ratings (the reason for this presumed failure is that – other than
expected – “H-Guide” returns the list of hotels in ascending order, starting with the
lowest ratings). Online testing reports this failure to the adaptation component, which
can – for example – switch back to the initial service instance “Rate24”, which has
already been used successfully.

4.2 Case 2: Change That Could Lead to Failures in the Future

Let us assume that a new regulation concerning the pricing of flights enters into force
during the operation of the service-based application. The regulation requires that the
overall cost of a flight (including taxes) has to be stated and that it may not anymore
be stated as the price for the flight with the note “plus taxes”. This legal change thus
represents a change in the context of the application (see Table 1, case 2). As a result,
PROSA will initiate online testing activities – when this new regulation enters into force
– in order to determine whether the constituent service instances of the service-based
application conform to this new regulation. This means that online tests will be triggered
in order to check whether the service instances for flight booking (“Air1” and “Wings3”)
conform to the new regulation. If one of those service instances does not implement the
new regulation, the service-based application will be adapted accordingly before that
service instance is invoked during the actual operation of the application.

4.3 Case 3: Failure of an Application Execution

The output of “search train” (resp.“search flight”) contains the name of the city close
to the airport or the railway station. This city name is passed on to “search closest ho-
tels” in order to determine the list of hotels in the vicinity of the destination. Let us
assume that the service instance “RailYW” always provides the name of the destination
in “short” form, meaning that even if there is more than one city with this name, like
“Frankfurt am Main” and “Frankfurt an der Oder”, this service instance will always re-
turn “Frankfurt”. When the hotel searching service “HS24” receives such an ambiguous
input, it will terminate with an error message. By running test cases to check deviations
in the service composition (see Table 1, case 3), PROSA can uncover such a failure and
– as a proactive corrective action – can request that a different service instance is bound
to the application (e.g., “TrainZ”).

A Framework for Proactive Self-adaptation of Service-Based Applications 131

4.4 Cases 4: Failure of a Constituent Service

For the booking of an appropriate flight, two service instances are available: “Air1”
and “Wings3”. “Air1” is used for premium clients, which are willing to pay more for
a shorter response time. “Wings3” is the preferred choice of clients who want to save
money. At operation time the online testing component runs several test cases per hour
(periodically testing, see Table 1, case 4). Let us assume that one of those tests uncovers
that “Wings3” does not respond. PROSA then provides the adaptation component with
this information, such that the alternative service instance “Air1” (which is working as
expected) is used for all queries.

5 Discussion and Perspectives

This paper has introduced the PROSA framework, which defines key activities for en-
abling the proactive self-adaptation of service-based applications. The novel contri-
bution of PROSA is to exploit online testing techniques in order to anticipate future
deviations or changes of a service-based application and thereby to trigger adaptation
requests. In addition to the definition of those key activities, the paper has discussed
how those activities can be implemented by building on or extending existing testing
and adaptation techniques.

In contrast to the “traditional” form of reactive adaptation (e.g., based on monitor-
ing), PROSA provides the following important benefits: First, changes or deviations
from expected functionality or quality of service can be uncovered and addressed be-
fore they lead to undesirable consequences. Second, the execution of adaptation activi-
ties – if done proactively – does not interfere with the execution of the actual application
instances, i.e., the users of the application won’t be affected by the adaptation. Third,
proactive adaptation can provide adaptation requests early enough such that an adapta-
tion of the service-based application still is possible (in contrast to reactive adaptation,
where the application can have already terminated in an inconsistent state, for instance).
Due to these benefits, we are confident that the PROSA framework will enable novel
service-based applications that are able to proactively adapt and thus to better meet their
expectations.

In addition to uncovering failures, monitoring is also often used to improve (or op-
timize) a service-based application. Accordingly, online testing could be used in this
respect, for instance by determining the best possible alternative for an adaptation de-
cision before the adaptation is executed. This means whenever an adaptation decision
is imminent and different alternatives exist, those alternatives could be “pre-tested” and
the best one chosen. For example, consider an adaptation specification, where on fail-
ure of a service instance three strategies are defined: retry invoking the service instance
three times, replace the service instance with another service instance, change the ser-
vice composition to use different services. Testing can now “simulate” all those three
strategies and maybe detect that “change composition” is the only way to successfully
drive the adaptation.

Although exploiting only testing for proactive adaptation provides many benefits,
we acknowledge at this stage that further work is required in order to demonstrate the
applicability of the PROSA idea in practice. One aspect that, for example, has to be

132 J. Hielscher et al.

investigated, is the possible impact of the execution of test cases on the performance of
the application. Thus, key issues that we will target in our future work are to create a
proof-of-concept prototypes based on existing techniques and tools (as discussed in the
paper) and to apply these prototypes to realistic cases.

As we have briefly pointed out in the paper, proactive and reactive adaptation may
work together in an integrated dynamic adaptation framework. In such a framework,
online testing and monitoring could mutually benefit from each other, thereby improv-
ing the overall quality and efficiency of adaptation. In further work, we thus plan to
investigate on how to best exploit the synergies between monitoring and testing. As an
example, the results of monitoring may be used to identify “better” test cases for on-
line testing. When complex behavioral properties are monitored (e.g., see [5,26]), the
violations or successful executions are represented as traces containing information of
the composition activities. A set of such traces from previous executions may be used
to derive new test cases for online testing. Furthermore, monitoring may be used to
parametrize the test cases. As the configuration of tests may depend on the operational
context of the application, such context information can be provided by monitoring.

References

1. Baresi, L., Ghezzi, C., Guinea, S.: Towards Self-healing Service Compositions. In: First Con-
ference on the PRInciples of Software Engineering (PRISE 2004), pp. 11–20 (2004)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the
JBoss rule engine. In: ESSPE 2007: International workshop on Engineering of software ser-
vices for pervasive environments, pp. 11–20 (2007)

3. Erradi, A., Maheshwari, P., Tosic, V.: Policy-Driven Middleware for Self-adaptation of Web
Services Compositions. In: ACM/IFIP/USENIX 7th International Middleware Conference,
pp. 62–80 (2006)

4. Modafferi, S., Mussi, E., Pernici, B.: SH-BPEL: a self-healing plug-in for Ws-BPEL engines.
In: 1st workshop on Middleware for Service Oriented Computing, pp. 48–53 (2006)

5. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A Service Discovery Framework for Service
Centric Systems. In: SCC 2005: Proceedings of the 2005 IEEE International Conference on
Services Computing, pp. 251–259 (2005)

6. Siljee, J., Bosloper, I., Nijhuis, J., Hammer, D.: DySOA: Making Service Systems Self-
adaptive. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 255–268. Springer, Heidelberg (2005)

7. van der Aalst, W.M.P., Pesic, M.: Specifying and Monitoring Service Flows: Making Web
Services Process-Aware. In: Baresi, L., Di Nitto, E. (eds.) Test and Analysis of Web Services,
pp. 11–55. Springer, Heidelberg (2007)

8. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining - Adaptive Process Simplification
Based on Multi-perspective Metrics. In: Business Process Management, 5th International
Conference, BPM, pp. 328–343 (2007)

9. Nezhad, H.R.M., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving Protocol Models from
Imperfect Service Conversation Logs. IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) (to appear, 2008)

10. Wang, Q., Quan, L., Ying, F.: Online testing of Web-based applications. In: Proceed-
ings of the 28th Annual International Computer Software and Applications Conference
(COMPSAC), pp. 166–169 (2004)

A Framework for Proactive Self-adaptation of Service-Based Applications 133

11. Deussen, P., Din, G., Schieferdecker, I.: A TTCN-3 based online test and validation platform
for Internet services. In: Proceedings of the 6th International Symposium on Autonomous
Decentralized Systems (ISADS), pp. 177–184 (2003)

12. Chan, W., Cheung, S., Leung, K.: A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research 4,
61–81 (2007)

13. Bai, X., Chen, Y., Shao, Z.: Adaptive web services testing. In: 31st Annual International
Computer Software and Applications Conference (COMPSAC), pp. 233–236 (2007)

14. Bai, X., Xu, D., Dai, G., Tsai, W., Chen, Y.: Dynamic reconfigurable testing of service-
oriented architecture. In: Proceedings of the 31st Annual International Computer Software
and Applications Conference (COMPSAC), pp. 368–375 (2007)

15. Canfora, G., di Penta, M.: SOA: Testing and Self-checking. In: Proceedings of International
Workshop on Web Services - Modeling and Testing - WS-MaTE, pp. 3–12 (2006)

16. Ruth, M., Oh, S., Loup, A., Horton, B., Gallet, O., Mata, M., Tu, S.: Towards automatic
regression test selection for web services. In: Proceedings of the 31st Annual International
Computer Software and Applications Conference (COMPSAC), pp. 729–734 (2007)

17. Ruth, M., Tu, S.: A safe regression test selection technique for Web services. In: Second
International Conference on Internet and Web Applications and Services (ICIW) (2007)

18. Di Penta, M., Bruno, M., Esposito, G., et al.: Web Services Regression Testing. In: Baresi,
L., Di Nitto, E. (eds.) Test and Analysis of Web Services, pp. 205–234. Springer, Heidelberg
(2007)

19. Martin, E., Basu, S., Xie, T.: Automated Testing and Response Analysis of Web Services. In:
IEEE International Conference on Web Services (ICWS), pp. 647–654 (2007)

20. Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-Based Automatic Test Case Generation
for Web Services Testing. In: Proceedings of the IEEE International Workshop on Service-
Oriented System Engineering (SOSE), pp. 215–220. IEEE Computer Society, Los Alamitos
(2005)

21. Tarhini, A., Fouchal, H., Mansour, N.: A simple approach for testing Web service based
applications. In: Bui, A., Bui, M., Böhme, T., Unger, H. (eds.) IICS 2005. LNCS, vol. 3908,
pp. 134–146. Springer, Heidelberg (2006)

22. Lübke, D.: Unit Testing BPEL Compositions. In: Baresi, L., Di Nitto, E. (eds.) Test and
Analysis of Web Services, pp. 149–171. Springer, Heidelberg (2007)

23. Dong, W.L., Yu, H., Zhang, Y.B.: Testing BPEL-based Web Service Composition Using
High-level Petri Nets. In: EDOC 2006: Proceedings of the 10th IEEE International Enter-
prise Distributed Object Computing Conference, pp. 441–444. IEEE Computer Society, Los
Alamitos (2006)

24. Pernici, B., Metzger, A. (eds.): Survey of quality related aspects relevant for SBAs. S-
Cube project deliverable: PO-JRA-1.3.1 (2008), http://www.s-cube-network.eu/
achievements-results/s-cube-deliverables

25. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka, R.: The
MORABIT approach to runtime component testing. In: Proceedings of the 30th Annual Int’l.
Computer Software and Applications Conference (COMPSAC), pp. 171–176 (2006)

26. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-Time Monitoring of Instances and
Classes of Web Service Compositions. In: IEEE International Conference on Web Services
(ICWS 2006), pp. 63–71 (2006)

http://www.s-cube-network.eu/achievements-results/s-cube-deliverables
http://www.s-cube-network.eu/achievements-results/s-cube-deliverables

The inContext Pervasive Collaboration Services
Architecture�

Stephan Reiff-Marganiec1, Hong-Linh Truong2, Giovanni Casella3,
Christoph Dorn2, Schahram Dustdar2, and Sarit Moretzky4

1 Department of Computer Science, University of Leicester, UK
srm13@le.ac.uk

2 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dorn,dustdar}@infosys.tuwien.ac.at

3 Softeco Sismat SpA, Italy
giovanni.casella@softeco.it

4 Innovation Lab, Comverse, Israel
Sarit.Moretzky@comverse.com

Abstract. Traditional collaborative work environments are often pro-
prietary systems. However, the demands of todays e-worker are such
that they use their own tools and services and collaborate across com-
pany boundaries making highly integrated solutions less feasible. Ser-
vice oriented computing provides an obvious solution here, in providing
mechanisms to loosely integrate many tools and services. In this paper,
we present the inContext PCSA (Pervasive Collaboration Services Ar-
chitecture), which is a reference architecture for building context aware
collaborative systems that are based on service oriented techniques.

1 Introduction

Collaborative systems are tools supporting collaborative work, typical examples
are document management systems or customer information systems where dif-
ferent staff of the same organisation can access information and contribute to
information in order to jointly bring forward the aim of the organistion. Many
of the existing collaborative systems are not integrated with each other, so for
example workflow and document management are not connected, or the com-
munications systems are entirely separate from the other two. This means that
information either needs to be transferred manually (e.g. logging call activities
in a workflow system), or is simply not available where and when it is required.
Clearly this calls for an infrastructure that allows for integration of the different
activities. The other major disadvantage is that systems are usually used within a
single organization, while nowadays collaborative work often spans institutional
boundaries calling for platforms that operate across these boundaries. A further
disadvantage of existing systems is that they are not context aware, that is the
user’s context is not automatically available to support the given activities.
� This work is supported by inContext (Interaction and Context Based Technologies

for Collaborative Teams) project: IST IST-2006-034718.

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 134–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The inContext Pervasive Collaboration Services Architecture 135

Work in the past has addressed some of the above aspects, in particular the
issue about context. However, it has not done so by considering a single platform
addressing all needs – which partly might have been due to limitations with
the available middleware and underlying systems. In the inContext project we
have developed a platform, or reference architecture called inContext PCSA
(Pervasive Collaboration Services Architecture) which provides a context aware
setting in which independent collaborative services, exposed as web services,
can be used to build different collaboration tools. The platform provides a novel
middleware layer that allows selection and composition of services at runtime
to fulfil a users current needs. It is pervasive in both the sense that the user
does not need to be aware of how and which services are selected, they simply
achieve the desired aim by using systems build on top of the platform and thath
services can run on different types of devices or platforms. To achieve this service
selection, and in particular to identify the most suitable service for a user in
their current context the platform is context aware. Context here covers not
only location and devices, but also activities creating the all-essential link for
integrating collaborative artifacts and information.

Overview. This paper is structured as follows: the next section provides a moti-
vating example and background information on context aware and collaborative
systems. We then turn our attention to the PSCA by providing an overview
and discussing the essential subsystems. Before drawing concluding remarks and
discussing further work, we present examples of the use of the architecture.

2 Motivation and Background

In terms of motivation, let us consider a scenario that is typical in the area of
collaborative work, and which calls for many of the PCSA features presented
in this paper. Imagine a user in an internal project A in his company requires
a document relevant for his current activity. The PCSA will utilize document
search service dsA, through which the documents for the project can be accessed.
Later the same user switches to project B – a joint venture between his own
company and an external association. Again the user request a document search
service, this time the platform will use dsB, a public repository service with
access by subscribers. We can see that in this simple example based on the user
context (mostly his activity in this case) differing services are selected as most
appropriate and are consequently invoked in a transparent manner to achieve the
user’s aim. Behind the scenes there is much technical activity and usual examples
are much larger: the document search might be part of a meeting planning tool
or a governmental policy review systems.

A vast number of tools supporting collaborative work is available today, as
indicated in [1,2,3]. However, many of these tools are used within a single or-
ganization’s boundaries, while many emerging collaborative work scenarios are
spanning these boundaries. When we consider the dynamic and distributed col-
laboration spanning different organizations and the support of user participa-
tion/customization required we find that existing collaborative tools are simply

136 S. Reiff-Marganiec et al.

insufficient. There is a number of requirements that emerging collaborative tools
need to support. First, there is a need to utilize different collaboration tools
which can be provided and hosted by different organizations. Second, there is
a need to adapt collaboration tools to the context of the collaboration as we
have seen in the motivating example earlier on. Existing collaboration tools pro-
vide rich features which work very well when utilised in isolation, for example,
for sharing documents or for managing activities. However, those features are
not easily integrated into a single collaboration toolset, where various features
are required to accomplish the collaboration for various reasons, such as they
are propriety collaboration tools, they provide no open interface, or they are
tightly-coupled systems.

Dynamic user-defined and user-customized collaboration calls for well-defined,
common collaboration services which can be easily composed and adapted for
different collaboration contexts. We have found that commodity of CWE services
is in increasing use and open standards are widely employed for collaboration
tools [3]. However, there are many open questions that need addressing: How can
we support diverse collaboration services that can be composed and customized?
How can we enable context-awareness and collaboration adaptation across or-
ganizational boundaries? How can we support the user to perform collaboration
from anywhere with any device? These questions motivated us to investigate the
concept of commodity collaboration services which are composable and common.
We approach this concept by utilizing Web services technologies and activity-
based collaboration techniques to develop a so-called pervasive collaboration
services architecture (PCSA).

3 Overview of the PCSA

The inContext Architecture, also referred to as PCSA (Pervasive Collaboration
Services Architecture), consists of three main parts: the user applications, the
collaboration services and the inContext core platform [4] - we consider these in
turn. To provide an overview, the overall architecture is depicted in Figure 1.

User applications have not been at the forefront of the development here, but
our case studies have been supported with respective frontends. Applications at
this level are meant to be used by the collaborative worker, so some effort has
been spent on considering user applications technologies for both mobile and
stationary workers.

Underpinning the environemnt are collaborative services: essentially any ser-
vice (implemented as a web service) or any software whose interfaces have been
exposed as web services that have a meaning for collaborative work. Services at
this level are, for example, a Document Service (allowing to retrieve and collate
documents that are relevant to the current user activity), an Activity Service
(concerned with any information regarding activities), or an User and Team
Management Service (providing all sorts of team related information).

The core platform contains four main ingredients: the Access Layer, the Con-
text Management, the Service Management and the Interaction Mining. Each of
these is developed as services, providing much flexibility to the platform.

The inContext Pervasive Collaboration Services Architecture 137

Collaboration Services

Document
Search

User Applications

InContext Platform

User interaction

Service selection
and invocation

Interaction patterns and
metrics, log information

Log
information

Context
Information

Service Invocation/
Adaptation

Context
Information

Context
Information

Log information,
Interaction

Patterns and
Metrics

Interaction
Mining

Access Layer

Service Management

Context
Management

SMS Email Calendar Instant
Messaging

Document
Management

Meeting
Scheduler

User and Team
Management

Team Analysis
Service

Management Portal

Client App
Interaction

Viewer

User Portal

Fig. 1. An overview of the inContext system [4]

The Access Layer controls access to the platform by checking user credentials
– it is the main entry point to using the inContext platform. However, its func-
tionality goes beyond authentication: any transaction across the Access Layer is
tracked to gather information on user activities (which in turn enrich the context
information) and user decisions (e.g. when a number of services was available it
is monitored which was actually selected by the user).

The Context Management sub-system is concerned with gathering, storing,
providing and enriching context information, but also provides mechanisms to
retrieve context from the store. Furthermore, reasoning techniques allow deriving
new, richer context information from the information available in the store. The
contex model implementation is based upon RDF triples and the reasoning is
based on an enhanced version of the Jena engine. Interaction Mining provides
additional information by considering past behavior. Context management and
interaction mining are beyond the scope of this paper1.

The Service Management constitutes the part of the inContext platform most
relevant for this paper, as it is here were the collaboration services are drawn
together and composed into rich context aware collaboration tools on demand.
Service Management is concerned with registration and lookup of services and
their execution – this goes beyond standard web service functionality by iden-
tifying the best suitable choice for the users current context and activity based
on non-functional attributes of services.

4 Common SOA-Based Collaboration Services

The inContext PCSA is based on SOA to allow for collaboration services to be
dynamically located and invoked. The platform supports flexible and dynamic
1 inContext D2.2 and D2.3 discuss these in detail; both are available at www.in-

context.eu.

138 S. Reiff-Marganiec et al.

Table 1. Examples of common collaboration services

Collaboration Services Description

User and Team

Management Service

provides a list of projects related to a user with detailed in-
formation on project members, timeline and team structure.

Member Search Service searches for relevant people based on specific role or exper-
tise.

Personal Document

Search Service

allows searching for text patterns inside a set of documents
stored on specific hosts which were declared as shared for the
inContext platform.

Document Service manages virtual ’shared areas’ for documents.
Short Message Service enables to send SMS to mobile users.
Meeting Scheduling

Service

is a composed service allowing setting up a meeting.

Activity Service manages the activities associated to a project, enabling the
creation and the organization of such activities in an activity
tree and assigning them to users, documents, locations, etc.

collaborative working environments able to aggregate heterogeneous services
while at the same time considering and exploiting the user’s context.

Common collaboration services can be developed and provided by different
organizations, following well-defined interfaces to support fundamental tasks typ-
ically required by collaboration tools. Based on the inContext’s case studies, we
have analyzed requirements for collaboration platforms and identified various
common collaboration services and have as part of the platform provided a set
of such services. Although, these services were demanded by the inContext case
studies, they are not specific to these. The services are more general and can
be used in a wide variety of emerging collaborative work scenarios as well as be
served as basic services for building different collaboration tools. Table 1 presents
a selection to show the flavour of typical collaboration services.

Common collaboration services can be atomic or composite – as is typical
for web services. By utilizing well-developed publish-registry techniques in Web
services, common collaboration service will be registered in a repository named
Service Registry. However, when registering a service some extra information is
required: All services (actually each operation) are organized in categories, within
the Service Registry. Each registered service belongs to at least one category. The
category is important, as it is this which is used for lookup; each category also has
associated non-functional attributes and a well defined generic service interface.
Then, common collaboration services can be used to build collaboration tools
which could discover and execute the services based on collaboration context.

5 Context-Aware Service Management

The context-aware service management identifies the most appropriate services
based on the user’s context and current needs and composes these into a col-
laborative tool-set. There are three aspects here that go beyond what standard

The inContext Pervasive Collaboration Services Architecture 139

service oriented techniques offer: (1) we have addressed the need to select the
most appropriate service automatically, (2) we have addressed the requirements
for selecting services as part of a worklfow and (3) we have provided techniques
to invoke services through a standard interface by automatically mapping spe-
cific service interfaces to more generic interfaces that are exposed to the user
application. We will consider these 3 aspects in the next few sections.

Selecting Services. One of the challenging aspects in service oriented computing
is selecting the best service if a number of services are on offer. We devised a
ranking mechanism called the RelevanceEngine which ties in with service lookup
in the service management subsystem. The RelevanceEngine has one job: to
consider a list of suitable services that all seem to functionally address the user’s
requirements and rank these so that the user can see which service is most
appropriate for supporting their activity in their current situation.

The ranking mechanism makes use of a number of inputs: it queries the context
management system to obtain information about the user’s context; it queries
the data mining component to gain an insight into historical handling of a similar
situation and it of course explores the services profile – the extra meta data in
the registry that is associated with the service category. For example, if the user
is looking for a printing service, the meta data will tell us static information
such as whether the service is colour or not and how fast the printer is; it will
also provide a query URL to find out about the current service use (e.g. queue
length). The user’s context will amongst others provide insight into whether he
requires the printout very quickly and whether the document is very long. All
these facts are combined and a rank value is calculated for each service by using
an automated, type based version of LSP (Logic Scoring for Preferences). This
paper provides a wider overview of the architecture and a very detailed discussion
of the ranking mechanism is beyond the scope, however this has extensively been
described in [5]. Briefly, the LSP mechanism can handle large numbers of criteria
while maintaining an assurance that even factors with a small weight but which a
user cares strongly about are given appropriate weighting in the resulting score.
It can also act as both “ranker” and “filter” – that is we consider hard and soft
criteria using the same mechanism and ensure that services which do not meet
hard criteria are shown as inappropriate in the ranking (essentially a score of
0): for example a hard criteria might be “the service must be free”, while the
related soft criteria would be “the service should cost as little as possible”.

It is worthwhile pointing out that we are using a pragmatic extension to
service models in a standard UDDI repository: we have developed a model for
capturing key non-functional data about services in this way. This mechanism is
lightweight and requires little technologythat goes beyond standard web services;
in particular it only requires for a service developer to register a few extra values
in the repository. Of course one could consider semantic web technologies here,
which provide mechanisms to express properties but these are a more fundamen-
tal shiftin the technology used and hence we decided against them. Independent
of this, the data about services is an input to the ranking mechanisms and the

140 S. Reiff-Marganiec et al.

same would be still appropriate in the context of semantic web services with
richer service descriptions.

The Composition Context. The mechanism just described was initially devel-
oped to find the most appropriate service for a given activity, considering the
user’s context but not necessarily the context of execution of the service. How-
ever, usually services are not required in isolation but are often invoked as part
of a workflow. The ranking mechanism has been extended by what is called com-
position context, essentially information gathered about the last stages in the
workflow that we have executed: did services from a certain provider fail? Are
there policies that disallow us to select (or would mean preferential treatment
if we chose) a future service from a specific provider? The concept and related
ranking mechanism have been described in [6], but the idea is probably best
explained with a small example: consider ordering a book. You have a choice
of two providers, provider A charges e10 for the book, provider B e13. If we
select the most optimal single service, we would select provider A. But in our
workflow context, we know that the book also has to be shipped to us and find
that provider A charges e5 for shipping, while provider B offers it for free, thus
overall provider B is the better choice. This example is simple but it is only
meant to show that local optima differ from global ones; further one could argue
that some websites currently already provide such functionality: they usually do
so by considering services offered by the same provider. The composition context
explored here is not bound to just relating information by the same provider,
but can be applied to services from different providers.

Mapping Interfaces. Considering that we retrieve services from all sorts of
providers at runtime, we must ensure that they can be invoked by the platform
in a coherrent way. In order to achieve this, we have assigned to each category
a common interface and each service in that category has to provide mapping
information on how to map the service interface to the common interface. This
way we enable transparent execution of various services with different interfaces
for a specific category.

To support this mechanism of service interface mapping, we implemented a
service called Interface Mediator. This service forwards web service calls after
applying a transformation in order to match the destination web service inter-
face. As already mentioned, if a service is registered under a certain category the
consumer should use the common interface to use service of this category. During
runtime the interface mediator relies on XSLT style sheets to map the common
interface to a service interface. This allows the service providers to perform some
complex data manipulation to match their requirements. In order to expose the
PCSA capabilities, we created some XSLT templates that can be directly used
to (1) query and use context data, (2) gather user preferences / information or
(3) Query any service metadata.

While offering high flexibility and enabling scenarios like translating content
based on user’s language, sending an SMS to the relevant phone number, or
converting data to the right format (e.g. currency units, or temperature scales),

The inContext Pervasive Collaboration Services Architecture 141

this transformation implies of course an overhead compared to a direct call. Its
impact on the performance is very limited for several reasons.

– The style sheet is compiled to machine code allowing for very fast execution.
– The data is manipulated at the XML level without being marshaled to any

programming model which removes expensive conversions.
– The external service calls go through the Access Layer anyway in order to

be logged and to provide feedback to the system. Integrating the interface
mediator there implies no network overhead for the transformation itself.

– XSLT is standard technology with very fast engines emerging.

The overheads are outweighed by the benefits of being able to dynamically select
a service based on the current situation. This mechanism makes the platform
more robust (being able to use another service if one fails), but also increases its
adaptability by offering to add/ remove services to existing categories.

6 Context-Aware Collaboration Services

In typical service composition one considers functional and QoS parameters.
Collaborative work scenarios require in addition for context to be considered as
a main criteria. In this section we address two issues: context-aware composition
and adaptation support for collaboration services.

Context-aware Composition. The composition of collaboration services is based
on collaboration context. By utilizing collaboration services, collaboration tools
can be built. In our PCSA, a collaboration is described by collaboration activities
which are performed by a set of users. Consequently, a collaboration context will
be determined when the activities are specified and the context will be updated
by the user or by the services which monitor actions within activities.

A tool supporting the end user to collaborate can utilize collaboration services,
thus it has to manage compositions for collaborations. During the collaboration,
the user will specify activities which include information about who is involved
in them, which artifacts are needed, the type of collaboration services used, etc.
Specified activities are managed by the Activity Service. All context information
related to activities are managed, for example, the location of involved people and
the status of services being used for the activities. When collaboration services
are required, the most appropriate services will be determined and composed
based on the current collaboration context; we discussed the technical mechanism
for service ranking in the previous section.

Supporting Adaptation based on Collaboration Context. Collaboration services
are deployed as web services. These services must be aware of changes in the col-
laboration context, and therefore they need access to the current collaboration
context. The PCSA supports two types of context-based adaptation: (1) service-
level adaptation focuses on improving the behavior of the invoked service de-
pending on provided context information and (2) composition-level adaptation
aims at selecting and combining the most suitable set of services to fulfil the
user’s requirements in the given situation.

142 S. Reiff-Marganiec et al.

To this end, we provide a generic solution for distributed collaboration con-
text sharing. The sharing mechanism remains context model agnostic. While the
actual context information is managed by the context management framework,
the context sharing mechanism is responsible for providing correlation informa-
tion. This correlation information acts as the initial context entry point, thereby
allowing a service to retrieve the relevant information from the context store. To
remain independent of service interface and Web service stack, we insert the cor-
relation information in the header part of a SOAP message. Whenever a service
operation is invoked, the message header includes the URI of the invoking user
and the user’s current activity. This provides sufficient correlation for a service
to obtain the context information and adapt its operation, if needed.

One of the main advantages of using Web services technologies for common
collaboration services is the ability to loosely couple context information: (1)
services do not need to explicitly pass along large sets of context information
of which each individual service requires potentially only a small subset; (2)
services need to understand only that part of the overall context model that
they require; and (3) extensions for domain specific collaboration services (e.g.,
health care) can place additional correlation information in the SOAP header
without having to update existing services.

Utilizing the SOAP header extension for context correlation yields another
benefit to simplify cross-organizational collaboration. SOAP intermediaries such
as the Access Layer but also message routers, security checkpoints, and gover-
nance mechanism for SLAs in general can access the header information and
subsequently base their decision on the available context instead of inflexible
policies and rules. Thus, adaptation at the service composition level becomes
increasingly feasible and manageable. For example, consider the following adap-
tation supported by the PCSA: (a) The Access Layer forwards a notification
request to the most suitable communication service based on user preferences,
costs, and available devices. (b) The service interface mediator is able to extract
missing data from the context to invoke a service demanding for additional input
parameters not specified by the generic service interface. (c) Once a shared doc-
ument space is selected for an activity, all subsequent service calls are forwarded
to the same service endpoint.

7 Experimental Evaluation

In this section, we discuss how we utilize PCSA to build different collaboration
tools. We present our experiences based on the development of two real case
studies proposed by our end-user partners:

Scheduling a meeting: The Electrolux Group is one of the world’s largest
manufacturers of white goods. Within the company secretaries must often
organize meetings which is a difficult task. In fact, managers are often un-
available to participate to meetings due to the multiple activities in which
they are involved, in which case the secretary can select his/her project proxy
which requires an understanding of the project team structure. Moreover it

The inContext Pervasive Collaboration Services Architecture 143

Fig. 2. The Event Management Tool

is often difficult to communicate with them (e.g. to establish a meeting date)
due to their travels (they are frequently in different time zones, are not al-
ways able to access the web or to answer phone calls).

Wolverhampton Fair: Every year the West Midlands Local Government As-
sociation organizes and manages the Wolverhampton fair. In particular a
manager must build the staff to manage the fair (the workers belong to dif-
ferent departments and have different skills and experiences), must assign
the activities related to the fair and must check that during the fair coordi-
nation and communicating between all staff is as expected, which requires
tools to exchange documents and to communicate quickly.

The two usage scenarios are addressing very specialised needs which are very
different in their requirements. We were able to exploit the PCSA successfully to
build two user applications to handle these scenarios. The two user tools exploit
a subset of common collaborative services, which are composed and adapted in
different ways to satisfy the user needs. Figure 2 shows the GUI of the Event
Management Tool as an example. The Event Management Tool offers a set of
tools to organize events but is also applicable to manage general projects. The
Meeting Scheduling Tool addresses the needs of the Electrolux case study.

The following shows some collaboration services used for each of the two
tools, where SM and EM are used for the Schedule a Meeting Tool and the
Event Management Tool respectively; the last three servcies are composite.

User & Team Management Service is used to retrieve participants details
and project team structures (SM) and to maintain the event stuff structure
and to retrieve user details, skills, experiences, etc. (EM)

Activity Service is used to explore the project activity tree in which the meet-
ing is created (SM) and to create the activities that must be handled in the
event and to assign such activities to the staff members (EM).

144 S. Reiff-Marganiec et al.

Document Service is used to retrieve information about relevant documents
for a meeting and to store the meeting agenda (SM) and to share and orga-
nize documents (EM).

The Relevant Documents Finder is a composition of the activity service
and the document service. Based on relations between the current user ac-
tivity (e.g. the meeting that is scheduled and a general activity) and others
project activities it retrieves the documents associated to these activities.
Some reasoning rules are applied to identify the relevant documents.

The Relevant User Finder is a composition of of the activity service and
the User & Team management service. Based on the relations between the
current user activity and others project activities it provides information
about users involved in these activities. Again, some reasoning rules help to
ensure that all appropriate users are identified.

The Notification Service is a composition of the Instant Messaging Service,
the SMS and the Mail Service. By exploiting the user context this service
decides which is the best way to notify a user about something (e.g. an
important message informs that he must attend a meeting) and sends the
message using the best service selected.

Collabration services become sometimes unavailable (this is unavoidable in a
distributed, dezentralised environment). In these cases the PCSA lookup mech-
anism enables selection of an alternative service in a manner transparent to the
user by using context and the interface mediator.

Our experimental evaluation shows that the PCSA enables the exploitation
of a set of collaboration services to build heterogeneous collaboration tools ad-
dressing different requirements and functionalities. Moreover, by using the ser-
vice common interfaces composition of simple services to offer new complex
services which are able to satisfy the user needs is possible. Finally the dynamic
management of services enables integration of different services with the same
functionalities and to exploit them according to their availability.

While we considered two specific cases here – both taken from the domain of
collaborative work – these are only meant to illustrate the ideas. The platform
developed addresses the need of collaborative systems which we have analysed
and briefly introduced at the start of the paper and hence allows for the dynamic
building of tools for collaborative work environments which tend to require flex-
ible system structures where the system takes much of the burden of providing
the right service at the right time based on the users activity. Many of the devel-
oped mechanisms can be applied outside collaborative systems, for example the
approach for service selection has not been developed with only collaboration
services in mind, but rather with a wider view of service slection.

8 Related Work

Many basic collaboration tools and services, such as document sharing, calen-
dars, and instant messaging have been developed. However, currently it is not

The inContext Pervasive Collaboration Services Architecture 145

easy to compose these services and make them interoperable for Web-based, user-
customized collaborations because most of them lack well-defined Web services
interfaces. Web services support have been incorporated into few collaboration
services such as BCWS, Google Doc, and Microsoft Sharepoint for document
sharing. In our work, we not only propose solutions for the interoperability of
collaboration services but also present how common collaboration services can
be composed suitable for different collaborations based on context.

Recently, various researchers have advocated the standardization of (basic)
collaboration services. A CoCoS Working Draft2 proposes common collabora-
tion services in terms of message representation, service operations and service
behaviors. CoCoS addresses a subset of common collaboration services proposed
in our PCSA but does not discuss the composition and execution aspects of col-
laboration services. The ECOSPACE project3 also investigates various common
collaboration services. However, it focuses on document sharing services. The
OCA-WG (Open Collaborative Architecture Working Group4) aims at defining
a reference architecture for collaboration services.

In the area of service selection [7] propose the addition of a broker component
to the service selection architecture which essentially sits between the UDDI
repository and the invoker and monitors service invocations and the resulting
quality. However they, like most other approaches (e.g. [8]), only consider service
quality as criteria for service ranking. We have signifcantly added to this with the
more complex context model that is used in our work. Also, we have extended
the Data model in the repository itself to get richer service information.

9 Conclusion and Further Work

The lack of common collaboration services and an open architecture for collab-
orative working environments hinders the integration and reusability of diverse
collaboration tools. We have presented the inContext PCSA – a reference ar-
chitecture for context aware collaborative systems that defines and provides an
open platform with various common collaboration services. The PCSA allows to
combine collaboration services into larger platforms that fulfil the needs of an
organisation or user. What should be noted is that the combination is loose, in
the sense that the actual service for a specific task is only selected at runtime
based on the users activites and current needs.

What constitutes a collaboration service is open: in principle any service could
be used as part of a collaboration and can be easily introduced to the platform
by the creator of the service registering the same and providing some meta data.
The PCSA itself is also built from services and hence can be used in its entirety,
or selected components can be used within other contexts.

2 http://www.ubicollab.net/images/stories/UbiCollab/Standards/CoreCollaboration
Services v0.1.pdf

3 http://www.ip-ecospace. org
4 http://www.oca-wg.org

http://www.ubicollab.net/images/stories/UbiCollab/Standards/CoreCollaborationServices_v0.1.pdf
http://www.ubicollab.net/images/stories/UbiCollab/Standards/CoreCollaborationServices_v0.1.pdf

146 S. Reiff-Marganiec et al.

The resulting technical platform has been used to implement two quite diverse
toolsets for two real case studies and initial test results have been discussed. Cur-
rently we are running extensive end-user tests by exposing the toolsets to larger
audiences. Another line of future work is improvements at the level of individual
system components, such as further refinement of the ranking mechanisms or
enhancement of service profiles.

References

1. O’Leary, D.E.: Wikis: From each according to his knowledge. Computer 41(2), 34–41
(2008)

2. Optaros, Inc.: Unleashing the power of open source in document management. Op-
taros Whitepaper (2006), http://www.optaros.com/system/files/optaros wp os

crm 20060316%282%29.pdf

3. Skopik, F., Truong, H.L., Dustdar, S.: Current and Future Technologies for Collabo-
rative Working Environments, ESA Report (2008), https://www.vitalab.tuwien.
ac.at/autocompwiki/index.php/Main Page

4. Truong, H.L., Dustdar, S., Baggio, D., Corlosquet, S., Dorn, C., Giuliani, G., Gom-
botz, R., Hong, Y., Kendal, P., Melchiorre, C., Moretzky, S., Peray, S., Polleres, A.,
Reiff-Marganiec, S., Schall, D., Stringa, S., Tilly, M., Yu, H.: Incontext: A pervasive
and collaborative working environment for emerging team forms. In: SAINT, pp.
118–125. IEEE Computer Society, Los Alamitos (2008)

5. Reiff-Marganiec, S., Yu, H.Q., Tilly, M.: Service selection based on non-functional
properties. In: NFPSLASOC 2007. LNCS. Springer, Heidelberg (in press, 2007)

6. Yu, H., Reiff-Marganiec, S., Tilly, M.: Composition context for web services selec-
tion. In: ICWS 2008 (in press, 2008)

7. Al-Masri, E., Mahmoud, Q.: Discovering the best web service. In: Proceedings of
the 16th international conference on World Wide Web, pp. 1257–1258. ACM, New
York (2007)

8. Seo, Y., Jeong, H., Song, Y.: A study on web services selection method based on
the negotiation through quality broker: A maut-based approach. In: Proceedings of
International Conference on Embedded Software and Systems, pp. 65–73 (2004)

http://www.optaros.com/system/files/optaros_wp_os_crm_20060316%282%29.pdf
http://www.optaros.com/system/files/optaros_wp_os_crm_20060316%282%29.pdf
https://www.vitalab.tuwien.ac.at/autocompwiki/index.php/Main_Page
https://www.vitalab.tuwien.ac.at/autocompwiki/index.php/Main_Page

Leveraging the Upcoming Internet of Services
through an Open User-Service Front-End

Framework

David Lizcano1, Miguel Jiménez1, Javier Soriano1, José M. Cantera2,
Marcos Reyes2, Juan J. Hierro2, Francisco Garijo2, and Nikolaos Tsouroulas2

1 Universidad Politécnica de Madrid
28660 - Boadilla del Monte, Madrid, Spain
{dlizcano,mjimenez,jsoriano}@fi.upm.es

2 Telefónica I+D
28043 - Emilio Vargas 6, Madrid, Spain

{jmcf,mru,jhierro,fgarijo,nik}@tid.es

Abstract. The Internet of the Future is expected to be composed of a
mesh of interoperable Web Services accessed from all over the Web. This
approach has not yet caught on since a global user-service interaction
is still an open issue. This paper states our position with regard to the
next generation front-end technology for the Internet of the Future. This
approach will enable the massive deployment of services over the Inter-
net in a user-centric fashion. This paper advocates the full development
of front-end technologies to bring services closer to users, empowering
them anytime and anywhere. It also outlines all the main gaps and tech-
nological challenges that have to be addressed. Finally, a model and an
architecture are proposed for building these technologies into NESSI’s
Open Framework Reference Architecture, NEXOF-RA.

1 Introduction

One of Internet’s future ambitions is the massive deployment of services and
service-oriented systems across the whole Web. Actually, Web Services-based
Service Oriented Architectures (SOAs) have gained momentum over the last few
years [1]. And SOAs are expected to be the key to the user-service interaction
take-off. However, these solutions are currently confined to company boundaries,
and the desired global provision and consumption of user-centric compositional
services from the envisioned Internet of Services is still at an early stage [2]. De-
spite high expectations, the emergence of a mesh of interoperable Web Services
that could foster the massive deployment of user-friendly services is continu-
ously shattered by a series of well-known shortcomings [3], such as high tech-
nical complexity, implementation and maintenance costs, inflexibility and lack
of widely accepted standards and open service frameworks. These issues are un-
derstandable considering that the underlying technologies were spawned by a
machine-to-machine approach, not featuring a ”face” for human users[4].

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 147–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 D. Lizcano et al.

This paper states our position, as Chairs and members of the NESSI User-
Service Interaction Working Group (NESSI-USIWG), with regard to the next
generation front-end technology for the Internet of the Future. This technology
will enable the massive deployment of services over the Internet in a user-centric
fashion [5]. In this paper we advocate the full development of front-end tech-
nologies to bring the services closer to users, empowering them anytime and
anywhere. We outline all the main gaps and what technological challenges have
to be addressed. We express in the paper what the NESSI USIWG is about
to deliver as a research alignment in a forthcoming Position Paper, and we
propose both a model and an architecture for building this technology. The out-
comes and the vision presented in this deliverable will become part of NESSI’s
Open Framework Reference Architecture (NEXOF-RA): a coherent and con-
sistent open service framework leveraging research in the area of service-based
systems to consolidate and trigger innovation in service-oriented economies. The
overall goal of NEXOF-RA, and thus the guiding principle of this paper, is to
deliver a coherent set of globally applicable technologies. These technologies are
intended to provide Europe with a digital services infrastructure to improve ser-
vice flexibility, interoperability and quality. In addition, NEXOF-RA will try to
establish strategies and policies to speed up the dynamics of the services ecosys-
tem, as well as to foster the safety, security and wellbeing of citizens by means
of new societal applications.

The remainder of this paper is organized as follows. First we present the
shortcomings of the current SOA technologies with a view to the desired Internet
of Services. We then go on to illustrate the guiding principles to achieve our aim.
A reference model and its architecture are also proposed. Finally, we explain
other related work, the main conclusions that can be drawn from the ideas in
this paper, and what we consider to be the work that needs to be undertaken in
the future.

2 Current Shortcomings on the Road towards an Internet
of Services

The massive deployment of user-centric services over the Internet demands ser-
vices that must be accessible for all users (not only enterprise stakeholders).
Therefore, services should flexibly and dynamically support common daily pro-
cesses (both business processes carried out by companies and processes con-
ducted by individuals or groups in their daily life) at any time[4]. Users will see
the tools supporting their daily work replaced by composite applications based
on Web Services, but traditional Web Services are not well enough tailored to
users and their daily processes.Obviously, SOA, as it was originally conceived,
represents an architecture focused fundamentally on a B2B context. It is weak
for B2C problems, since it does not offer the best prospects for dealing with
user-service interaction [3]. We can tackle its shortcomings from three different
perspectives:

Leveraging the Upcoming Internet of Services 149

1. SOA’s aim: Conventional SOAs merely aim to facilitate seamless machine-
machine collaboration. SOA deployments are very abstract and invisible to
users. Its customers of choice are medium-sized or larger corporations in-
stead of normal end users along the long tail of Internet. Therefore, with
SOA, normal Internet users with little IT expertise have not been able to
easily retrieve and use services because services mostly reside within com-
pany boundaries and are only accessed for professional use in a corporate
context.

2. SOA’s technology: Apart from SOA’s aims, this architecture relies on a set of
complex standards that are not user friendly [1]. Because, technically speak-
ing, SOA is extremely complex, there needs to be one or more expert players
within the value chain to build and provide solutions for their customers.
In contrast to this one-to-many value chain model of numerous SOA use
cases (where one expert serves many clients), new value chains should be-
gin to be mostly loosely coupled (many-to-many) networks of self-managed
self-sufficient users who can offer and consume resources via the Web.

3. SOA’s governance: Finally, SOAs are subject to clearly defined regulatory
frameworks since they mostly exist in the corporate context. The design,
provision, maintenance, and coupling of services must be compliant with
legal frameworks. Therefore, they do not allow for the flexibility that the
described new user-services interaction model appears to need.

3 Design Principles Enabling the Internet of Services

The evolution of Web 2.0 sites and applications is a testimony to the progress
achieved to improve user relevance and service usability. However, current ser-
vice front-ends are far from meeting end-user expectations [6]. Applications are
still based on monolithic, inflexible, and unfriendly UIs. This is a serious obsta-
cle for achieving the benefits of the Internet of Services. In order to build the
next generation service front-end for this ecosystem of services we propose three
guiding principles. These principles are further detailed in the following.

3.1 Enabling Users to Design and Share Their Operating
Workspace and Applications

Users should be able to design and implement their own interfaces in a flexi-
ble and friendly manner. New generation front-ends should provide new tools
aiding end-user UI creation and self-adaptation, while supporting a dynamic
computing infrastructure [7]. Community-based collaboration tools should also
be supported to satisfy the demands for secure social interaction and improve
knowledge and resource sharing. More to the point, the following aspects should
be covered [5]:

1. Empower users to select resources of their interest, annotate, and configure
their own personalized operating environment

150 D. Lizcano et al.

2. Promote user pro-activeness for creating new resources, to improve versions
of resources, and share further expertise about these resources, their use,
and their interrelationships

3. Provide social facilities to share services, results, knowledge and resources
with other users

4. Foster social interaction by providing visual mechanisms to manage user
communities, user identity, privacy and security constraints, and the infor-
mation to be shared, annotated, or send to specific groups and individuals

The new generation of user-service front-ends should be based on helping users
with the flexible composition of applications. Application and service front-ends
will no longer be conceived as monolithic blocks, but as a set of interopera-
ble service front-end components –called gadgets–, which are available from a
catalogue. A catalogue of components or gadgets will be available for creating
application or service front-ends by using and combining these building blocks to
construct new components. Users should be able to create their own applications
by combining different catalogue components without any help from IT experts
or a thorough knowledge of the underlying infrastructure [8].

3.2 Businesses Need to Adapt to the New Reality

Today’s competitiveness-driven business markets and the severe time-to-market
restrictions on applications, specifically for enterprise IT systems, have increased
the business needs to evolve applications to suit this new reality. They can be
evolved through the following key guidelines:

1. Businesses need to embrace the Software as a Service (SaaS) model as an
effective software-delivery mechanism [9]. This approach helps to reach a
marketplace of services that can be composed to create unanticipated busi-
ness solutions adapted to real needs.

2. Next generation Web Services ecosystems must respond to unforeseen busi-
ness requirements that emerge or evolve spontaneously. This should be sup-
ported by new software development methodologies that ease the integration,
adaptation and evolution of service-based applications.

3. Company boundaries must be eroded, evolving towards the Internet of Ser-
vices vision. This approach can be split into two perspectives:
(a) Next generation business systems should adopt a user-centric approach

to take into account users. Users of these services are no longer just
the company’s employees; clients should also access the same business
resources. This could even affect the entrepreneurial service-based work-
flows [10].

(b) Collaboration between companies, irrespective of their size, must be fos-
tered, thus increasing productivity and accelerating innovation [7]. The
creation of collaborative services by integrating components from disag-
gregated companies will afford new business opportunities and improve
the global service provided to end-users.

Leveraging the Upcoming Internet of Services 151

3.3 Context-Adapted User-Service Interaction

The proliferation of multiple Internet-enabled devices allows end users to access
the Web anytime and anywhere. As a result, there is a wide range of situations
in which a user might need to access these services, and they must therefore be
provided the right user interface for the right situation. These situations can be
defined as the context [11] in which access occurs.

Next generation service front-ends should take into account the following con-
text aspects:

1. The delivery context, that is, a set of attributes that characterizes the en-
vironment in which a service is going to be delivered. Delivery context is a
crucial aspect with regard to service front-ends, as it provides a clear indica-
tion of what the capabilities of the target device, web browser and network
are. Such aspects play an important role in the end user experience. The in-
formation about these capabilities should be exploited by service front-ends
to provide a harmonized experience adapted to the peculiarities of every
delivery context.

2. Users and their circumstances: This aspect includes properties such as user
identity, profile and roles, social network, tastes and personal preferences.

3. The surrounding environment, including the spatial location, speed, light
conditions, temperature, level of noise, nearby objects/things...

4. The situation / time which has to do with variables such as date and time,
weather, season, at home or at work, on vacation, on a business trip...

4 High Level Architecture

This section describes our overall proposed architecture for service front-ends
(see Fig. 1). The architecture is consistent with the guiding principles and model.
The central piece of the architecture is the NG-SOA Broker. The broker stores,
indexes and references every available resource [12], empowering users by giving
them access to context-aware functionalities, such as resource discovery and
recommendation, knowledge sharing through a social network, establishment of
marketplace relationships between resource providers and other user roles. Three
high-level modelling phases are proposed:

– Delivery Access Layer
– Access Layer Composition
– Access Layer Development.

Each phase takes into account one of the above aspects. It defines models and
standards in order to take into account the associated elementary building blocks
(workspaces, gadgets, application services, content delivery services...) and all
the possible interactions among them. This overview should also define the dif-
ferent user roles we envision in the NG-user/services interaction. These roles
should specify how users will exploit the services, how they will adapt services

152 D. Lizcano et al.

Fig. 1. High level architecture for the next generation of service front-ends

to their requirements and needs and how (and who) will develop the parts en-
abling this interaction. To address this functionality several tools must be defined
to create, compose and exploit the different models. These tools are the Gadget
Development Platform, Mashup Platform and the Access Mechanism.

In this scenario authors or developers can build their own service front-end
access point or gadget by combining a universe of accessible resources. Users are
not supposed to be technological experts, they will be domain experts able to
define and solve concrete problems by combining the provided services and tools.
To do so, users should employ the facilities offered by the Gadget Development
Platform.

The Application Composer role will build the Service Front-End Layer by
composing several gadgets to build a fully interoperable application. The appli-
cation will be able to enact end user processes in a fast and dynamic manner
and deal with situational applications.

It will be the end user that exploits the results of the developed applications.
These users will not notice any difference between the conventional applications
and the applications built according to the above development method. They
will access applications suited to their context in a location-, device-, technology-
independent manner.

4.1 Delivery Access Layer

The Delivery Access Layer will be in charge of adapting and enriching the service
front-end to meet the restrictions imposed by a given context. Therefore, this
layer is responsible for providing a harmonized user experience in every context,

Leveraging the Upcoming Internet of Services 153

hiding back-end services and developers from the underlying complexities. The
functionalities implemented by this layer include, but are not limited to:

– Delivery Context Detection using some kind of evidence such as the HTTP
headers (User Agent, Accept, UAProf ...)

– Simple Content and Application Adaptation depending on the Delivery Con-
text: sending the correct markup, style sheets and script code, selecting the
most appropriate resources taking into account restrictions such as the sup-
ported image formats, or the dimensions of the screen, and so on.

– Advanced (Semantic) Content and Application Adaptation. This funct-
ionality has to do with exploiting the context and application seman-
tics (knowledge) to perform advanced adaptation processes such as item
collection reordering, menu contextualization, content priorization or user
interface enrichment.

– Automatic binding of the data coming from the back-end services. This func-
tionality acts as the glue between the services back-end and the front-end.

– Execute the application flow according to the author’s intentions and taking
into account access mechanism restrictions.

The Delivery Access Layer should be guided in order to operate in accordance to
the developer’s / author’s intentions. Therefore, a declarative language capable
of expressing different ”Adaptation Policies” should be available to drive this
layer.

4.2 Workspace Layer Composition

Taking advantage of the results produced by Access Layer Development, Ac-
cess Layer Composition allows end users to build their own instant applications.
These applications can be composed by mashing up gadgets extracted from a
NG-SOA Broker Gadget Repository. Gadget mashup should be construed gener-
ally not only as a spatial composition of gadgets inside a dynamic environment
but also as the construction of fully integrated applications. To do so, several
platform service modules are defined:

– Wiring Communication Module
– Session Module
– Knowledge Module
– Context Module
– User Preferences Module
– Identity Management Module

These modules are software packages oriented to support specific architectural
objectives. They provide support for a set of standard gadget capabilities, so
they can use platform functionality in a loosely coupled way. Each gadget should
define a set of policies in order to negotiate the usage of available platform ca-
pabilities, because not every platform will necessarily have to include all the
capabilities. For instance, support for the persistence capability can be optional

154 D. Lizcano et al.

Fig. 2. Composition layer of the reference architecture

for one gadget and mandatory for another. The usage of the capabilities should
be defined declaratively and will be the main link between a gadget and a specific
mashup platform (however it is necessary to define a standard handler mecha-
nism linking capabilities to gadget functionality)(see Fig. 2).

4.3 Access Layer Development

The next generation SOA access layer consists of composite applications that are
based on service front-end resources or gadgets. These gadgets are the building
blocks of the interface and behaviour to be designed and developed, and consti-
tute single access elements to the underlying service back-end resources. These
gadgets are self-contained components focused on a single goal. This reduces
their complexity. Gadgets make up a substantial part of the interface and logic
for invoking one or more use-case services, the user query forms and screens (see
Fig. 3).

The gadget development process should be user-centric rather than program-
centric, as the user is its final consumer. Thus the developers should bear users
in mind when developing the front-end that they will see and interact with.
This new approach calls for the use of fully visual development environments.
Visual environments are more accessible and flexible for developers, who are
domain experts but not necessarily technical users. These developers will visually
compose a gadget from its building blocks (i.e. UI artifacts, back-end resources,
operators), establish the connection to back-end Web Services, and integrate
gadgets with the agnostic graphical user interface, thereby creating a service
front-end resource.

The potential users of the next-generation SOA front-end should not be tied
to any technology or access channel. This will promote the use of the wide range
of services that will be available over the Internet. One of the objectives of

Leveraging the Upcoming Internet of Services 155

Fig. 3. Access layer development

the access layer is to serve as a multi-platform access mechanism to the SOA,
suitable not only to be accessed by any platform or technology used at the client
(desktop PC, mobile device, etc.) but also independently of the deployment
infrastructure (i.e. the service front-end workspace platform). This technology
independence should also be considered in the design and implementation of
the gadgets that will make up the service front-end access layer. As a result,
a device- and mashup platform-independent authoring language is needed to
define the gadgets (i.e. their behaviour and interface) in a way that can be
automatically converted to the target service front-end workspace platform and
device technology. The gadgets will be defined in this language agnostically, with
no focus on any specific access mechanism, and following a visual approach as
mentioned above. The development environment is in charge of maintaining the
mappings between the different layers of the authoring language.

Gadgets are not just mere UI parts and behaviour; they can form more so-
phisticated functionality around a piece of coherent business workflow. Gadget
complexity can therefore vary depending on whether the UI comprises a single
screen (i.e. simple gadget) or a screenflow inside the gadget itself (i.e. a complex
gadget). This idea is especially relevant for highly constrained devices with lim-
ited display capabilities, such as mobile devices. Mashup-based compositional
applications are seldom well designed for these devices because the user experi-
ence is based on disparate simultaneous views that are not affordable on small
screens. The use of screenflows to model business logic in a single-piece view is
better suited for these devices. The use of complex service front-end resources or
complex gadgets in mobile environments is a good example of taking a proactive
environment-dependent attitude, which, like technology independence, is a key
objective of the SOA service front-end layer. These context-aware gadgets are
then programmed to adapt their behaviour, interface and, maybe, part of their

156 D. Lizcano et al.

functionality to the specific context in which they have been deployed and are
running.

5 Related Work and Future Trends

The approach depicted in this paper is being developed as part of the NEXOF-
RA initiative1, a project partially funded under the European Commission’s 7th
Framework Programme. NEXOF-RA is contributing to NESSI, the networked
European software and services initiative. This initiative asserts that Informa-
tion and Communication Technology (ICT) will be an essential driving force for
innovation and a core enabler of economic growth in the coming years. Enter-
prises in Europe (both private and public sector) are facing significant structural
changes and will rely on software and services to support them in adapting ef-
fectively. The main focus of NESSI is that of service and its overall ambition is
to deliver NEXOF, a coherent and consistent open service framework leveraging
research in the area of service-based systems to consolidate and trigger innova-
tion in service-oriented economies. NEXOF-RA is the specific effort to define a
model and a reference for this open service framework.

In addition, there are several projects, led by some of the authors of this
paper, related to the approach of this paper and that are very close to NESSI’s
objectives and ambitions:

– MyMobileWeb2 is the open source reference implementation of the next gen-
eration content and application adaptation platform for the mobile web.
MyMobileWeb enables the (time-to-market) creation of high quality mobile
applications capable of adapting to multiple delivery contexts.

– EzWeb3 pursues the development of an enriched enterprise mash-up platform
and the development of key technologies to be employed in building the front-
end layer of new generation SOA architecture.

– FAST4 aims at providing an innovative visual programming environment
that will facilitate the development of next-generation composite user inter-
faces. It is a novel approach to application composition and business process
definition from a top-down user-centric perspective.

Future work will focus on evolving the proposed reference architecture, as an
open source service framework that builds on all the key guiding principles de-
scribed above and on the proposed vision of the Internet of Services. We expect
this architecture to become a major hub for the publishing, brokerage, cus-
tomization and finally the consumption of Web-based resources on a global,
cross-organizational scale, revolutionizing the user-service interaction.

1 NEXOF-RA project, http://www.nexof-ra.eu/
2 MyMobileWeb Project, http://mymobileweb.morfeo-project.org
3 EzWeb Project, http://ezweb.morfeo-project.org
4 FAST Project, http://www.fast-project.eu

Leveraging the Upcoming Internet of Services 157

6 Conclusion

The appearance of user-centric approaches to next generation service front-ends,
such as the one proposed in this paper, will be a major step forward, providing
solutions to currently hard-to-solve problems in the traditional SOA paradigm.
The emergence of such service architectures will solve key problems in three
different scenarios. Large enterprises may capitalize on faster application de-
velopment (for what are known as instant applications), a more agile system
landscape and the empowerment of their employees to design their own appli-
cations that best satisfy their unique requirements, and to share this knowledge
with other employees better than in traditional Web service architectures.

On the other hand, the proposed architecture enables SMEs to find, cus-
tomize, combine, catalogue, share and finally use applications that exactly meet
their individual demands by leveraging the SaaS model, viewed as Utopian from
a traditional SOA perspective. Supported by the new Internet of Services ap-
proach, they can select and combine resources hosted by third parties rather
than buying a pre-determined, inflexible and potentially heavyweight solution
or deal with complex B2B services.

Finally, individuals benefit from a sharp increase in the potential for person-
alization and participation. This approach will provide end-users with intuitive,
unsophisticated IT ways to discover, remix and use those Web-based services
that they consider interesting and useful. It will also allow them to participate,
swap information with other users and service providers and to actively con-
tribute in a way that encourages extensive use of the resources offered. This
speeds up the service innovation pace. Focusing on the ”long tail” advanced by
Chris Anderson rather than a limited number of sophisticated experts, a user-
centric SOA will involve the bulk of private users or small businesses and allow
for ”customer self-service”.

Acknowledgments

This work is supported in part by the European Commission under the first call
of its Seventh Framework Program (NEXOF-RA and FAST Projects, grant FP7-
216446 and INFSO-ICT-216048) and by the European Social Fund and both the
UPM and CAM under their respective Researcher Training programmes.

References

1. Alonso, G., Casati, F., Cuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures and Applications. In: Data-Centric Systems and Applications. Springer,
Heidelberg (2004)

2. McAfee, A.P.: Enterprise 2.0: The dawn of emergent collaboration. MIT Sloan
Management Review 47(3), 21–28 (2006)

3. Hierro, J.J., Janner, T., Lizcano, D., Reyes, M., Schroth, C., Soriano, J.: Enhancing
user-service interaction through a global user-centric approach to soa. In: Proceed-
ings of The Fourth International Conference on Networking and Services (ICNS
2008), pp. 194–203. IEEE Computer Society Press, Los Alamitos (2008)

158 D. Lizcano et al.

4. Schroth, C., Christ, O.: Brave new web: Emerging design principles and tech-
nologies as enablers of a global soa. In: Proceedings of the IEEE International
Conference on Services Computing, 2007. SCC 2007, pp. 597–604 (2007)

5. Soriano, J., Lizcano, D., Cañas, M.n., Reyes, M., Hierro, J.J.: Fostering innova-
tion in a mashup-oriented enterprise 2.0 collaboration environment. System and
Information Science Notes 1(1), 62–69 (2007); SIWN International Conference on
Adaptive Business Systems (ICABS 2007). Chengdu, China

6. Schroth, C., Janner, T.: Web 2.0 and soa: Converging concepts enabling the internet
of services. IT Professional 9(3), 36–41 (2007)

7. Smith, R.: Enterprise mashups: an industry case study. In: Keynote at New York
PHP Conference and Expo. (June 2006)

8. Lizcano, D., Soriano, J., Fernández, R., López, J.A., Reyes, M.: Tackling composite
application developments from an enterprise 2.0 mash-up perspective. In: Proceed-
ings of the 14th International Conference on Concurrent Enterprising (ICE 2008)
(June 2008)

9. Gartner: Hype cycle for software as a service. Gartner research, Gartner Inc. (Au-
gust 2006)

10. Anderson, C.: The Long Tail: Why the Future of Business Is Selling Less of More.
Hyperion (July 2006)

11. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
Journal 5(1), 4–7 (2001)

12. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. Ph.D thesis, University of California, Irvine (2000)

Domain-Specific Languages for Service-Oriented
Architectures: An Explorative Study

Ernst Oberortner, Uwe Zdun, and Schahram Dustdar

Distributed Systems Group, Information Systems Institute,
Vienna University of Technology, Vienna, Austria

{e.oberortner,zdun,dustdar}@infosys.tuwien.ac.at

Abstract. Domain-specific languages (DSLs) are an important software devel-
opment approach for many service-oriented architectures (SOAs). They promise
to model the various SOA concerns in a suitable way for the various technical
and non-technical stakeholders of a SOA. However, so far the research on SOA
DSLs concentrates on novel technical contributions, and not much evidence or
counter-evidence for the claims associated to SOA DSLs has been provided. In
this paper, we present a qualitative, explorative study that provides an initial anal-
ysis of a number of such claims through a series of three prototyping experiments
in which each experiment has developed, analyzed, and compared a set of DSLs
for process-driven SOAs. Our result is to provide initial evidence for a number of
popular claims about SOA DSLs which follow the model-driven software devel-
opment (MDSD) approach, as well as a list of design trade-offs to be considered
in the design decisions that must be made when developing a SOA DSL.

1 Introduction

Service-oriented Architectures (SOA) use platform-independent interfaces, or services,
for performing business processes [6]. A SOA, in which services realize individual
process steps or tasks, is called a process-driven SOA [26]. Process-driven SOAs deal
with multiple concerns, such as orchestration of business processes, information in
processes, collaboration between processes and services, data, transactions, human-
computer interaction, service deployment, and many more. Hence, many domains need
to be considered. Furthermore, a SOA has different stakeholders, including various do-
main experts and technical experts [24].

Using Domain-Specific Languages (DSL) for SOAs, based on Model-driven Soft-
ware Development (MDSD) [7,18], enables technical experts and domain experts to
work at higher levels of abstraction compared to using technical interfaces, executable
process models, or service interface descriptions, such as programming APIs, Business
Process Execution Language (BPEL) code, or interfaces described in the Web Service
Description Language (WSDL). Furthermore, MDSD can be used for separating con-
cerns. Hence, the multiple concerns of process-driven SOAs can be modeled indepen-
dently through MDSD.

This paper presents an explorative study in which we developed a number of MDSD-
based DSL prototypes, as well as a model-driven infrastructure to generate a running

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 159–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

160 E. Oberortner, U. Zdun, and S. Dustdar

process-driven SOA from the models expressed in the DSLs. We present three exper-
iments, in which we have focused on finding design decisions and/or trade-offs for
developing model-driven DSLs. DSLs for domain experts (from now on called high-
level DSL) and DSLs for technical experts (from now on called low-level DSL) were
designed and developed. Two of our experiments deal with model-driven DSLs devel-
oped for process-driven SOAs, and the third one focuses on extending SOAs with Web
user interfaces (UI), i.e., non-process-driven SOA concerns.

An in-depth study of specific claims about model-driven DSLs for SOAs was con-
ducted. The claims target on (1) a systematic development approach for model-driven
DSLs for SOAs, (2) the multiple concerns of SOAs, (3) the different levels of abstrac-
tion presented to the different stakeholders, and (4) on providing facilities for exten-
sions. An analysis of the claims was made for each experiment in order to collect ev-
idences and counter-evidences for claims about model-driven DSLs for SOAs. Hence,
our results aim to help in making design decisions and considering the relevant design
trade-offs, when engineering a model-driven DSL for SOAs.

This paper is organized as follows: Section 2 gives some background information on
MDSD. Next, Section 3 describes our research method and discusses in detail the previ-
ously mentioned claims. Section 4 provides a description of our research experiments.
The observations and results of the experiments are discussed in Section 5. Section 6
compares to related work. Finally, Section 7 concludes the paper.

2 Background: DSLs in Model-Driven Software Development

In the initial phase of our study we decided to focus on the MDSD approach to develop
DSLs for SOAs (details about the reasons can be found in Section 3). Before we go into
details of the technical parts of our study, we want to briefly explain the background.

MDSD is based on the notion of DSLs or specification languages for modeling var-
ious types of models. DSLs are small languages that are tailored to be particularly
expressive in a certain problem domain. The DSL describes knowledge via a graphical
or textual syntax which is tied to domain-specific modeling elements through a pre-
cisely specified language model. That is, the DSL elements are defined in terms of the
language model that can be instantiated in concrete application model instances. The
application model instances are defined in the DSL’s concrete syntax which represents
the language model. The OMG’s MDA proposal [16] is one specific MDSD approach
that has some notable differences to our MDSD approach in general – especially in its
sole focus on interoperability and platform independence.

An MDSD tool introduces some way to specify transformations. There are different
kinds of transformations, such as model-to-model or model-to-code transformations.
Also, different ways to specify transformations, such as transformation rules, imperative
transformations, or template-based transformations, exist. In any case, the ultimate goal
of all transformations in MDSD tools is to generate code in executable languages, such
as programming languages or process execution languages. The MDSD tools are used
to generate all those parts of the executable code which are schematic and recurring,
and hence can be automated.

Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study 161

3 Research Method and Approach Overview

Many DSLs for specific aspects of SOAs have been designed (see for instance [15,10]),
but to the best of our knowledge, no study provides evidence for specific aspects and
claims associated to SOA DSLs. Hence, this research field is clearly of explorative
nature. For this reason, we have decided to use an explorative, qualitative research
method to get insights and evidences in this first study, following a similar approach
to constructing a grounded theory [20]. Our plan is to use the results of this study in
our future research to conduct more detailed qualitative and quantitative studies about
specific aspects of our results.

In our case, the initial analysis has been performed by developing a number of DSLs
in various projects (among others we considered those reported in [9,25]), as well as a
thorough literature review and discussions with both experienced and new DSL devel-
opers. There are many ways to implement a DSL, such as using MDSD or extending
a dynamic language (see [8] for details). Following our first results, we decided to in-
vestigate further on a specific kind of DSL development style: DSLs developed using
MDSD (as proposed in [18,10]). We have decided for this style because, in our expe-
rience, the explicit support for language models is useful for representing the various
concerns and stakeholders of a process-driven SOA. However, this decision limits the
generalizability of the results of our study: not necessarily the results are applicable
without modification for other styles of developing SOA DSLs.

After the initial investigation phase, we decided to conduct an in-depth study of spe-
cific claims associated to MDSD-based SOA DSLs using a controlled series of three
prototyping experiments. In each experiment, we have developed a number of MDSD-
based DSL prototypes, as well as a model-driven infrastructure to generate a running
process-driven SOA from the models expressed in the DSLs. All three prototyping ex-
periments have been conducted in a project that has run for 12 month and included 4
developers. Two developers worked with approximately 50% of their time for the full
project duration, one contributed 20% of his time for the full duration, and one con-
tributed approximately 50% of his time for 5 month. The project did not only include
DSL development, but also development of other artifacts, such as models and transfor-
mations, needed to obtain a running prototype solution.

In particular, we investigated the following claims in-depth:

– Developing model-driven DSLs follows a systematic development approach
[18,10].

– A process-driven SOA encompasses multiple concerns, such as orchestration of
business processes, information in processes, collaboration between processes and
services, data, transactions, human-computer interaction, service deployment, and
many more. To express these concerns, it is claimed that using DSLs and language
models reduces the complexity of the overall system, compared to a system devel-
oped without DSL/MDSD support [3].

– Using DSLs and language models for expressing SOA concerns enables develop-
ers and other stakeholders to work at a higher level of abstraction compared to
using technical interfaces, such as programming APIs, executable process mod-
els expressed in BPEL code, or service interface descriptions such as WSDL (see

162 E. Oberortner, U. Zdun, and S. Dustdar

[24]). Hence, DSLs can be tailored by providing constructs that are common to
the domain the different stakeholders work in [4]. This enhances the readability
and understandability of each DSL for the different stakeholders. But, the different
levels of abstractions imply the definition of integration points or transformations
between the constructs of the DSLs from the different layers [5].

– Due to the different levels of abstraction, it is claimed that language models should
provide clear extension points for integrating new concerns [19].

In our study, we performed three controlled experiments, in which a number of DSL
prototypes have been developed:

– Realization of a number of DSLs for process-driven SOA basic concerns (basic
concerns)

– Extension with additional DSLs for supporting long-running transactions and hu-
man participation (extensional concerns)

– Realization of DSLs for non-process-driven SOA concerns: extensions of process-
driven SOAs with Web applications, especially Web UIs (external concerns)

Step-by-step we analyzed the various claims by reviewing and analyzing the de-
sign decisions made in our project. Within each experiment, we compared the different
DSLs and their artifacts (such as DSL syntax, language models, transformations, and
extension points) and used the results as input for our study. Also, the inputs led to
refactoring of the DSLs in order to improve them. In addition, with each additional
experiment stage, we compared the DSLs between the stages. That is, we followed a
constant comparison method, as advocated by grounded theory approach [20], through-
out our study. For comparison, we used different methods, such as expert reviews of
our DSLs and models, student experiments with the models, and the application of the
DSLs and models in industrial case studies.

4 Study Details

Figure 1 outlines a systematic development approach of an MDSD-based DSL archi-
tecture, as proposed in [14,18,19]. High-level and low-level DSLs represent appropriate
language models. Language models can have multiple DSL syntaxes. Furthermore, lan-
guage models can have multiple language model instances, which are defined using the
DSL’s syntax. High-level DSL syntaxes, language models, and model instances extend
low-level DSL syntaxes, language models, and model instances respectively. Low-level
DSLs provide constructs that are tailored for technical experts, whereas high-level DSLs
are tailored for domain experts. A suitable separation of concerns can be established
by splitting the language model into high- and low-level models, where the high-level
model extends the low-level model. Hence, a separation of technical and domain con-
cerns can be established to present only the appropriate concerns to each of the different
groups of stakeholders.

In this approach, high-level concerns, relevant for non-technical stakeholders, are dis-
tinguished from low-level technical concerns to achieve better understandability for the
different stakeholders. Due to the diverse backgrounds and knowledges of the different

Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study 163

High-level DSL
Syntax

High-Level
Language

Model

Low-level DSL
Syntax

extends

Low-Level
Language

Model

extends

represents

represents

*

*

1

1

High-Level
Model

Instance

Low-Level
Model

Instance

extends

instanceOf *

*

1

1 instanceOf

defined in

1 *

defined in

1 *

Domain Expert

Technical Expert

Fig. 1. MDSD - DSLs

stakeholders, it makes sense to present to each group of stakeholders only the models
they need for their work, and omit other details, as proposed in [24]. That is, high-level
DSLs, designed with support for the domain experts, enable to work in a language in
which domain concerns are depicted in or close to the domain’s terminology. For in-
stance, in the banking domain terms like account, bond, fund, or stock order are used
in the high-level DSL. Low-level DSLs, in contrast, are utilized by technical experts to
specify the technical details missing in the high-level DSLs. These details are needed by
the model-driven code generator to turn the model instances, expressed in the DSLs, into
a running system. For instance, in the process-driven SOA domain, relevant low-level
concerns are service, service deployment, process variable, or database connection.

In the field of this study, we tried to provide evidence or counter-evidence for the
claims summarized above. In particular, we evaluated the claims for three experiments.
The experiments deal with process-driven SOAs, as well as an extension of process-
driven SOAs with Web UIs. We focused in our experiments on the design decisions
made and on the design trade-offs that have been considered. At first we will to describe
the experiments in detail and after that in Section 5 our main results.

In the first experiment, the language models were designed together and at the same
time. The extension points were specifically designed for integrating the language mod-
els. The organization of the language models is shown in Figure 2(1). A Core language
model provides the extension points for modeling the basic concerns of process-driven
SOAs, such as collaboration, controlflow, and information. During the second experi-
ment, the extension points were used for introducing extensional concerns for which
the extension points in the basic models have not originally been designed for. The lan-
guage model structure of the second experiment is shown in Figure 2(2). In the third ex-
periment, we investigated in how far external extensions, i.e., non-process-driven SOA
concerns, can be integrated with the existing language models for process-driven SOAs.
In particular, we integrated Web UIs with the process-driven SOA models. The organi-
zation of the Web UI’s language models is depicted in Figure 2(3).

Process-driven SOA Basic Concern Language Models
The first experiment concentrates on basic concerns of process-driven SOAs, as well as
providing high- and low-level DSLs for the different stakeholders [4]. The View-based

164 E. Oberortner, U. Zdun, and S. Dustdar

C o r e
M o d e l

C o l l a b o r a t i o n
M o d e l

C o n t r o l f l o w
M o d e l

I n f o r m a t i o n
M o d e l

B P E L - W S D L
C o l l a b o r a t i o n

M o d e l

B P E L - W S D L
C o n t r o l f l o w

M o d e l

B P E L - W S D L
I n f o r m a t i o n

M o d e l

B P E L - W S D L
C o d e

h i g h - l e v e l

l o w - l e v e l

(1) V i e w - b a s e d M o d e l i n g F r a m e w o r k
B a s i c C o n c e r n s

C o r e
M o d e l

T r a n s a c t i o n
M o d e l

H u m a n
M o d e l

B P E L - W S D L
T r a n s a c t i o n

M o d e l

B P E L 4 P e o p l e /
W S - H u m a n T a s k

M o d e l

B P E L - W S D L
C o d e

(2) V i e w - b a s e d M o d e l i n g F r a m e w o r k
E x t e n s i o n s

U I - a n d P a g e f l o w
M o d e l

J S F
U I - a n d P a g e f l o w

M o d e l

J S F
W e b A p p l i c a t i o n

(3) N o n - p r o c e s s - d r i v e n S O A -
P a g e f l o w & U I o f W e b A p p l i c a t i o n

Fig. 2. Experiments Overview

Modeling Framework (VbMF) [22,23] is a model-driven framework for reducing the
development complexity in process-driven SOAs, as well as to improve interoperabil-
ity and reusability of models. It provides multiple language models, high-level and
low-level, each responsible for a different concern of process-driven SOAs (i.e., con-
trolflow, collaboration, and information). The structure of high-level and low-level lan-
guage models is shown in Figure 2(1).

In this experiment, we used a systematic development approach as follows. First,
high-level language models were designed. A central Core language model provides
extension points for defining new language models for the appropriate concerns. Fur-
thermore, it provides extension points for various language models for basic and exten-
sional concerns. The following language models extend the Core language model for
modeling basic concerns of process-driven SOAs:

– The Controlflow language model offers constructs for modeling controlflows of
business processes, which consist of many activities and control structures. Ac-
tivities are process tasks, e.g., service invocations or data handling. The execution
order of activities is described through control structures, e.g., conditional switches.

– To compose the functionality provided by services or other processes, the Collab-
oration language model is used. This language model extends the Core language
model to represent interactions between a business process and its partners.

– The Information language model represents the flow of data objects inside the
business process. Furthermore, it provides a representation of message objects trav-
eling back and forth between the process and the external world.

For each high-level language model, except the Core language model, the low-level
language models were designed as an extension of the high-level language models.
Both the high-level and low-level language models are close to the concepts of BPEL
and WSDL. Finally, the DSL syntaxes were developed. The high-level DSL syntaxes
are based on the constructs of the high-level language models, whereas low-level
DSL syntaxes are based on the constructs of the low-level language models. Hence,
domain experts can – with the help of technical experts – use the high-level DSLs for

Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study 165

modeling domain concerns, and technical experts can model technical concerns with
the low-level DSLs.

Process-driven SOA Extensions of VbMF
In contrast to the first experiment, which analyzed the basic concerns of process-driven
SOAs, this experiment uses the introduced extension points of the Core language model
for integrating extensional concerns, such as transaction and human language models.
The goal of this experiment is to figure out if the systematic development approach,
used in the first experiment, can be applied for extensional concerns of process-driven
SOAs. The structure of the high- and low-level language models for both experiments
is shown in Figure 2(2).

To extend VbMF for long-running transactions, transactional concerns were inte-
grated into the VbMF through a newly defined language model [22,23]. In the same
way as the Controlflow, Collaboration, and Information language models were created,
the first step was to design a high-level Transaction language model which extends
the Core language model. Afterwards, a low-level Transaction language model was de-
signed which extends the high-level Transaction language model. Like the low-level
language models of the first experiment, the low-level Transaction language model is
based on BPEL and WSDL concepts too. Finally, high-level and low-level DSLs were
developed to support the modeling of transactions, based on the constructs of the ap-
propriate language model.

A second extension of VbMF is the support of human participation in SOA-based
business processes [21]. Again, a high-level Human language model was designed
which extends the Core language model. Human aspects are assigned to processes and
activities. A low-level Human language model extends the high-level Human language
model, and it is based on concepts from BPEL4People [2] and WS-HumanTask [1]. Fi-
nally, high- and low-level DSLs were implemented, based on the appropriate language
models, to support the modeling of human tasks for SOA-based business processes.

Non-Process-Driven SOA Extensions: Web User Interfaces
The third experiment followed again the systematic development approach, as adopted
in the first two experiments. The language model hierarchy is depicted in Figure 2(3).
The goal of this experiment is to figure out, if the systematic development approach can
also be applied to extensions of process-driven SOAs with non-process-driven SOA
concerns. The experiment deals with the modeling of Web UIs for Web pages, as well
as process-oriented modeling of the pageflow through Java-like IF-ELSE statements.
Web UIs contain the input and output components which are displayed to the user on
Web pages. The pageflow provides the basis for selecting the subsequent Web page that
should be displayed to the user, dependent on the current page and user interactions,
e.g., which link or button is pressed by the user.

First, the high-level language model is introduced for modeling the pageflow and
the UIs of the Web pages. A low-level language model for modeling the pageflow is
introduced which is based on the pageflow definition of JavaServer Faces (JSF) [11]
Web applications. The DSLs were implemented to provide suitable modeling of the
pageflow and the UIs. The developed DSLs provide constructs that are very similar to
the language model. In this experiment, there is no need for a mapping between the
constructs of the DSL and the constructs of the language model.

166 E. Oberortner, U. Zdun, and S. Dustdar

5 Study Results

In this section, we summarize the evidences and counter-evidences we found in our ex-
plorative experiments. First, the experiments provided some useful insights into design
decisions required during the design of model-driven DSLs for process-driven SOAs:

– A design decision for the relation between DSL syntax and language model con-
structs must be made. We observed that in all three experiments the relationship be-
tween the names used in the DSL syntaxes and the names of the constructs defined
in the language models was a concern. In all three experiments, we decided that
the DSL syntaxes provide constructs that are named equivalently to the constructs
in the language model. If the DSL syntax constructs are not named equivalently to
the language model constructs, a more complex mapping between DSL and lan-
guage model constructs is required, which means that extra efforts are required
to develop this mapping. The mapping might also make the relationships between
syntax constructs and models harder to understand. However, with a different nam-
ing in models and syntaxes, the syntax and modeling elements can be tailored more
easily.

– In all three experiments, the low-level language models are extensions of the high-
level language models. Hence, a relationship exists between them. A design deci-
sion must be made, in which order and dependency the high-level and low-level
models are designed. The high-level language models can be designed first, and af-
terwards the low-level language models. Hence, domain concerns can be expressed
close to their domain notions, such as compliance concerns in business processes.
Another possible design approach is to derive the high-level language models from
the low-level language models, which are based on technical concerns, e.g., con-
structs similar to BPEL (as done in our basic models). In this case, emphasis must
be put on the high-level design of technical concerns, in order to make them under-
standable to domain experts, too. This is often not easy. Yet another approach is to
design high- and low-level language models and DSLs in parallel. The main prob-
lem lies in the huge differences of the offered constructs between the languages.
An example are languages like the Business Process Modeling Notation (BPMN)
and BPEL. This approach requires a mapping between the often incompatible high-
level and low-level language models, with possible inconsistencies. A part of this
design decision is the development order of the high- and low-level language mod-
els and DSL syntaxes. If possible, the design of the high-level DSL syntax and
language models should be performed together with the domain experts.

– In the first two experiments, which deal with basic and extensional concerns of
process-driven SOAs, multiple language models where used. Multiple language
models reduce the complexity by separation of concerns. This leads to providing
tailored views for the different stakeholders. The main challenge of splitting lies in
finding appropriate extension points for merging models. Poor extension points can
lead to inconsistencies between the models. In addition, merging through extension
points is more complex than using modeling abstractions, such as associations. In
the third experiment, one language model is used for modeling the pageflow and
UIs of Web applications. Having only one language model does not provide a good

Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study 167

separation of concerns for the development team and other stakeholders, but, on
the other hand, there is no need for providing suitably designed extension and inte-
gration points, as well as possibly complex merging algorithms for the integration
of multiple models. The design decision is whether it makes sense to split one lan-
guage model into multiple models or not, and if splitting is chosen, where to split.
Trade-offs for this design decision concern the number of concerns, development
teams, and stakeholders.

Second, we found the following evidences for model-driven DSLs for claims asso-
ciated to Section 3:

– It is possible to follow a systematic development approach, such as the one de-
scribed in our three experiments in Section 4. In our case, this is not only valid for
process-driven SOAs but also for non-process-driven SOA concerns, such as in our
case Web applications.

– The systematic development approach used for the basic concerns of process-driven
SOAs, such as controlflow, collaboration, or information of process-driven SOAs,
can be followed for modeling extensional concerns, such as the transactional or
human concerns in our experiments.

– Through a separation in high- and low-level DSLs, it is possible to support different
stakeholders with different background and knowledge, i.e., domain experts and
technical experts.

– Model-driven DSLs can enhance the understandability and readability for the in-
dividual stakeholders of a process-driven SOA. Furthermore, MDSD-based DSLs
can reduce the complexity of process-driven SOAs.

Finally, the following counter-evidences, for the claims described in Section 3,
should be considered as design trade-offs for the development of model-driven DSLs
for SOAs:

– It is possible that the integration of high- and low-level concerns lead to DSL lan-
guage design issues, such as redundancy in languages, inconsistencies, and which
language should be chosen for overlapping concerns.

– Detailed separations of one language model into multiple ones can result in loose
coupling of the different language models. Thus, the result is: the more detailed the
separation, the more complex the model integration points for merging the differ-
ent application models. Possible ways to achieve model integration are name-based
matching, ontology-based matching, or inheritance. Hence, there is a trade-off be-
tween the complexity of the integration points and the degree of separation of con-
cerns achieved in the language models.

– We observed another trade-off between model integration point design for the dif-
ferent stakeholders and the understandability, as well as the readability. The more
complex the integration points are, the less understandable and readable the DSLs
and/or their language models get in many cases. Hence, enhancing understand-
ability and readability for one type of stakeholders increases the complexity of
integrating models for other stakeholders. That is, the complexity for stakeholders,
who need to integrate and understand all models at once, can rise even though the
complexity for individual stakeholders decreases.

168 E. Oberortner, U. Zdun, and S. Dustdar

6 Related Work

Pitkänen and Mikkonen [17] argue that well designed DSLs, modeling tools, and code
generators increase the productivity. They concentrate on lightweight and modular
DSLs instead of full-blown DSLs. Some situations of full-blown DSLs are described,
e.g., several different implementation platforms. The lightweight approach can be an
aid in defining the scope and concepts of DSLs before the implementation of a full-
blown DSL starts. In comparison to our study, the systematic development approach
can be applied to lightweight, as well as full-blown DSLs. The different design deci-
sions and/or trade-offs, described in Section 5, are also valid for developing lightweight
model-driven DSLs.

Bierhoff et al. [13] describe an incremental approach for developing DSLs. First,
they choose an application and develop a DSL which is expressive enough to describe
the application. Also, domain boundaries are defined. Then, the DSL grows until it is
too expensive to extend it more. The approach is demonstrated on CRUD applications,
i.e., create, retrieve, update, delete applications. The approach by Bierhoff et al. reflects
the evolution of our three experiments described in Section 4. Also, we started by an
initial experiment and extended it incrementally.

Maximilien et al. [15] developed a DSL for Web APIs and Services Mashups. A
number of interesting design issues for DSLs are mentioned: (1) levels of abstraction,
(2) terse code, (3) simple and natural syntax, and (4) code generation. These goals are
very similar to our proposed claims. The developed DSL is used for SOAs, and the
described approach and results are in line with our results.

Tolvanen [12] provides a guidance for defining and developing DSLs based on his
long-year experiences in building DSLs. The development process is divided into four
phases: (1) Identifying abstractions, (2) specifying the language models, (3) creating no-
tations for the language based on the language models, and (4) defining model validators
and code generators. The development phases are very similar to our observations. We
started by defining abstractions of the domain, designed high- and low-level language
models, developed a DSL with notations equivalent to the language models. Also, we
provide model validators and code generators. The proposed approach by Tolvanen is
similar to our systematic development approach for model-driven DSLs: (1) identifying
the concepts of the domain and their relations, (2) designing the language models, (3)
developing the DSLs based on the language models, and (4) generating code of valid
domain models through a code generator.

7 Conclusion

The scope of this paper is to provide an initial study on a systematic development ap-
proach for SOA DSLs based on MDSD. It is likely, but not necessary, that many of
our results are also valid for other DSL implementation techniques. We followed the
MDSD-based DSL approach quite closely. Hence, our results should be valid for a
wide range of DSL tools.

We have addressed a broad range of process-driven SOA concerns (including basic,
extensional, and external concerns). One result is that all of them can be expressed

Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study 169

relatively easy using a distinct language model and integrated with existing language
models using simple techniques such as inheritance or matching algorithms. However,
it is possible that other process-driven SOA concerns exist for which this is not easily
possible.

Also, this paper discusses the design decisions and/or trade-offs we observed, as
well as evidences and counter-evidences for the claims around model-driven DSLs for
SOAs. Model-driven DSLs can enhance complexity, understandability, and readability
for the individual stakeholders of SOAs. Therefore, DSLs can be tailored for domain
experts and technical experts. But enhancing understandability and readability for do-
main experts, decreases understandability and readability for technical experts and vice
versa.

During our study, we have used only a limited number of comparison and analy-
sis techniques (such as code reviews, expert reviews, and student experiments). Other
comparison or analysis methods might reveal properties that have not been revealed so
far with our techniques used. Hence, we want to follow the systematic development
approach in more studies and analyze the results.

Acknowledgement

This work was supported by the European Union FP7 project COMPAS, grant no.
215175.

References

1. Agrawal, A., Amend, M., Das, M., Keller, C., Kloppmann, M., König, D., Leymann, F.,
Müller, R., Pfau, G., Ploesser, K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P.,
Trickovic, I., Yiu, A., Zeller, M.: Web Services Human Task (WS-HumanTask), version 1.0
(2007)

2. Agrawal, A., Amend, M., Das, M., Keller, C., Kloppmann, M., König, D., Leymann, F.,
Müller, R., Pfau, G., Ploesser, K., Rangaswamy, R., Rickayzen, A., Rowley, M., Schmidt, P.,
Trickovic, I., Yiu, A., Zeller, M.: WS-BPEL extension for people (BPEL4People), version
1.0 (2007)

3. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design Decisions. In:
WICSA 2005: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architec-
ture, Washington, DC, USA, pp. 109–120. IEEE Computer Society, Los Alamitos (2005)

4. Schmidmeier, A.: Aspect oriented DSLs for business process implementation. In: DSAL
2007: Proceedings of the 2nd workshop on Domain specific aspect languages, p. 5. ACM,
New York (2007)

5. Sánchez-Ruı́z, A.J., Saeki, M., Langlois, B., Paiano, R.: Domain-Specific Software Devel-
opment Terminology: Do We All Speak the Same Language?,
http://www.dsmforum.org/events/DSM07/papers/sanchez-ruiz.pdf

6. Barry, D.K.: Web Services and Service-oriented Architectures. Morgan Kaufmann Publish-
ers, San Francisco (2003)

7. Fowler, M.: Language workbenches and model driven architecture (June 2005), http://
www.martinfowler.com/articles/mdaLanguageWorkbench.html

8. Fowler, M.: Language workbenches: The killer-app for domain specific languages? kbench
(June 2005),
http://www.martinfowler.com/articles/languageWorkbench.html

http://www.dsmforum.org/events/DSM07/papers/sanchez-ruiz.pdf
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html
http://www.martinfowler.com/articles/mdaLanguageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

170 E. Oberortner, U. Zdun, and S. Dustdar

9. Goedicke, M., Koellmann, K., Zdun, U.: Designing runtime variation points in product line
architectures: three cases. Science of Computer Programming 53(3), 353–380 (2004)

10. Greenfield, J., Short, K.: Software Factories: Assembling Applications with Patterns, Frame-
works, Models & Tools. J. Wiley and Sons Ltd., Chichester (2004)

11. JavaServer Faces Technology,
http://java.sun.com/javaee/javaserverfaces/

12. Tolvanen, J.-P.: Domain-Specific Modeling: How to Start Defining Your Own Language (last
accessed, July 2008), http://www.devx.com/enterprise/Article/30550

13. Bierhoff, K., Liongosari, E.S., Swaminathan, K.S.: Incremental Development of a Domain-
Specific Language That Supports Multiple Application Styles. In: OOPSLA 6th Workshop
on Domain Specific Modeling, pp. 67–78 (October 2006)

14. Luoma, J., Kelly, S., Tolvanen, J.-P.: Defining Domain-Specific Modeling Languages: Col-
lected Experiences. In: Proceedings of the 4th OOPSLA Workshop on Domain-Specific
Modeling (DSM 2004), Vancouver, British Columbia, Canada (2004)

15. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain specific-language for web
apis and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

16. OMG. MDA Guide Version 1.0.1. Technical report, Object Management Group (2003)
17. Pitkänen, R., Mikkonen, T.: Lightweight Domain-Specific Modeling and Model-Driven De-

velopment. In: OOPSLA 6th Workshop on Domain Specific Modeling, pp. 159–168 (October
2006)

18. Stahl, T., Voelter, M.: Model-Driven Software Development. J. Wiley and Sons Ltd., Chich-
ester (2006)

19. Cook, S.: Domain-Specific Modeling and Model Driven Architectures (2004),
http://www.bptrends.com

20. Strauss, A., Corbin, J.: Grounded theory in practice. Sage, London (1997)
21. Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling Human Aspects of Business Processes

- A View-Based, Model-Driven Approach. In: ECMDA-FA, pp. 246–261 (2008)
22. Tran, H., Zdun, U., Dustdar, S.: View-based and model-driven approach for reducing the

development complexity in process-driven SOA. In: Abramowicz, W., Maciaszek, L.A. (eds.)
BPSC, GI. LNI, vol. 116, pp. 105–124 (2007)

23. Tran, H., Zdun, U., Dustdar, S.: View-based integration of process-driven soa models at var-
ious abstraction levels. In: Kutsche, R.-D., Milanovic, N. (eds.) Proceedings of First Interna-
tional Workshop on Model-Based Software and Data Integration MBSDI 2008, pp. 55–66.
Springer, Heidelberg (2008)

24. Perrone, V., Bolchini, D., Paolini, P.: A Stakeholders Centered Approach for Conceptual
Modeling of Communication-Intensive Applications. In: SIGDOC 2005: Proceedings of the
23rd annual international conference on Design of communication, pp. 25–33. ACM, New
York (2005)

25. Zdun, U.: Tailorable language for behavioral composition and configuration of software com-
ponents. Computer Languages, Systems and Structures: An International Journal 32(1), 56–
82 (2006)

26. Zdun, U., Hentrich, C., van der Aalst, W.: A survey of patterns for service-oriented architec-
tures. International Journal of Internet Protocol Technology 1(3), 132–143 (2006)

http://java.sun.com/javaee/javaserverfaces/
http://www.devx.com/enterprise/Article/30550
http://www.bptrends.com

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 171–182, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Managing the Alignment between Business and Software
Services Requirements from a Capability Model

Perspective

Eric Grandry, Eric Dubois, Michel Picard, and André Rifaut

Public Research Centre Henri Tudor,
29, av. J. F.Kennedy, L-1855 Luxembourg, Kirchberg

{eric.grandry,eric.dubois,michel.picard,andre.rifaut}@tudor.lu

Abstract. In this paper we introduce a framework for capturing and managing
the requirements associated with the non-functional part of the services like
service management, security management, assurance, for which norms, rec-
ommendations and good practices exist. The proposed framework considers
these service requirements both from a business and a software perspective. The
elicitation, the capture and the traceability issues related to these requirements
are solved with goal-oriented requirements engineering techniques, while the
structuring and the assessment of the requirements is based on the ISO/IEC-
15504 standard. The overall framework is illustrated with a business case run
by our research centre in a public/private partnership. It is associated with the
design of project management services delivered through a portal and is focus-
ing on the services management requirements in relation with the IT service
management ISO/IEC 20000 norm.

Keywords: Business Service Design, Service Level Objective, Capability
Model, Goal-Oriented Requirements Engineering, Service management.

1 Introduction

Analogously to [1] we make a distinction between QoS associated with software ser-
vices (like e.g. those considered in the ISO/IEC 9126 standard [2]) and those associ-
ated with the business facet of a service, i.e. that add value to a service at a value web
level [3]: the SERVQUAL model [4] or the recent work of O’Sullivan et al. [5] con-
sider credibility, trust, security, availability as business level attributes of QoS. Our
view is in line with these approaches but focuses on a specific dimension: the capabil-
ity of a service provider to offer a service that is compliant with a number of assur-
ance and regulation reference models. Assurance reference models include ITIL [6],
ISO 20000 series for service management [7], ISO 27000 series for security manage-
ment [8]. Regulation reference models include Sarbanes-Oxley [9], COSO [10] or
Basel II [11] in the financial sector. These reference models define rules and objec-
tives that organizations need to comply. We claim that the capability to comply
should be part of the services the organizations expose since it represents elements of
value for the services consumers. We therefore propose a framework that answers the
following research issues:

172 E. Grandry et al.

1. How to identify, to capture and to structure the requirements on the business QoS
underlying these assurance and regulation reference models. This is done by us-
ing the ISO/IEC 15504 standard [12] (abbreviated to “15504”) that offers a tem-
plate for organizing the requirements into a framework allowing to measure the
capability and the performance level of an organization to comply with reference
models.

2. How to support the alignment between the business perspective on assurance and
regulatory requirements and the lower-level software services requirements im-
plementing the business service.

To answer these two questions, we will use Goal-Oriented Requirements Engineer-

ing (GORE) models to support the formalization of QoS requirements as well as in
support to their traceability at business and software levels. In the rest of the paper we
will use i* [13]. However other GORE notations are also eligible.

We will illustrate the whole approach with a real business case currently managed
by our public research centre together with a network of professional consultants in
project management [14]: setting up a portal based on a SOA architecture offering
project management services dedicated to SME’s that usually do not have the re-
sources (money and/or competences) to access complete project management soft-
ware suites For the sake of this paper, we will focus only on one facet of the assur-
ance requirements associated with these services: the IT service management. IT ser-
vice management is handled through different norms, including ITIL [6] documented
by the British Office of Government Commerce (OGC) and the emergent ISO/IEC
20000 [7] (abbreviated to “20000”) organized in two parts under the general title of
“Information Technology – Service Management”.

In section 2, we present the role of GORE in the alignment between business and
software services, and outline our proposed approach. In section 3 we detail the
15504-based approach applied to the structuring and the performance measurements
of requirements associated with the IT 20000 service management. The section 4 ex-
plains our approach regarding the progressive refinement of business-oriented and
software-oriented service management requirements. Finally section 5 wraps up the
paper and discusses some open issues.

2 Requirements Engineering and Service Description

Figure 1 revisits the well-known business/IT alignment from [15] and introduces the
role that GORE plays in guaranteeing the business/software services alignment thanks
to the fact that goals can be used at different decision-making levels. At the bottom of
the vertical axis, one can see the traditional use of GORE for the progressive elabora-
tion of IS/software systems from strategic goals. Goals support the characterization of
a system in terms of desired state of affairs to be achieved and/or maintained. GORE
has been proven useful in the progressive elicitation and structuring of the require-
ments (usually referred as non-functional requirements – NFR) related to QoS. Such
NFR can be attached e.g. to use cases associated with the description of software ser-
vices. Several examples of this approach can be found in the literature using notations
like those provided by KAOS [16] or i* [13].

 Managing the Alignment between Business and Software Services Requirements 173

IS Requirements
BUSINESS PROCESS

CONFIGURATION

Architectural
Requirements

Strategic Goals
BUSINESS

Strategy IT
Strategy

BUSINESS IT

BUSINESS
MODEL

ORGANIZATION
Infrastructure

IS
Infrastructure

strategy

infrastructure

Requirements
Engineering

Business
Requirements

Business services

Software
services

AAssurance
Reference

models

AAssurance
Reference

models

Norms and
Regulations
Norms and
Regulations

IS Requirements
BUSINESS PROCESS

CONFIGURATION

Architectural
Requirements

Strategic Goals
BUSINESS

Strategy IT
Strategy

BUSINESS IT

BUSINESS
MODEL

ORGANIZATION
Infrastructure

IS
Infrastructure

strategy

infrastructure

Requirements
Engineering

Business
Requirements

Business services

Software
services

AAssurance
Reference

models

AAssurance
Reference

models

Norms and
Regulations
Norms and
Regulations

Fig. 1. GORE in support to Business/Software Services Alignment

On the left part of figure 1, we define business services from a business value
model perspective: the functional business part of these services directly contributes
to the creation of value in a networked value constellation according to the strategy
defined by an organization [3]. We do not cover how these business services are dis-
covered but we can refer to approaches as e3value [1] or strategic map [17]. Business
strategy does not only include an economic and financial dimension but has to ac-
commodate with constraints from the environment of the organization such as na-
tional, cross-industry or industry-specific regulations and assurance best practices.
These constraints need to be formalized and structured in terms of requirements (top
part of figure 1). In section 3, we present the joint application of GORE and 15504 to
meet this objective.

Business services functional and non-functional requirements express specifica-
tions against which different solutions in terms of business processes (BP) configura-
tions can be designed and evaluated (left bottom-part of figure 1). Our work does not
concentrate on how to design such BP configurations, but once the BP’s have been
identified, they still need to be realized through an IT/IS (Information System) (right
bottom part of figure 1). From a requirements perspective, this calls for a further re-
finement of business requirements into software requirements. In the domain of QoS
attributes we need to refine non-functional business requirements derived from norms
and assurance best practices into software requirements that can be functional and/or
non functional. Section 4 will illustrate this aspect of our work.

3 Elicitation and Structuring of Service Management
Requirements

We use a methodology for the progressive elicitation, formalization and structuring of
catalogues of QoS requirements inherent to regulations and assurance norms. This

174 E. Grandry et al.

approach is based on a joint use of GORE and 15504 standard. The methodology has
been extensively applied in our Centre for the design of different business requirements
compliance frameworks in different domains as, for example: security management [18]
(based on ISO 17799 and ISO 27000 series [8]), knowledge management [19], project
management, credit management, venture capital management [20], risk management
and Anti-Money Laundering compliance management for the fund industry and Basel
II operational risk management [21]. In this section we present the results of the ap-
plication of this methodology on the 20000 IT service management norm. This sec-
tion summarizes the method defined in [30] and [24] and applied in [22]. In all these
domains, the approach is always to capture requirements associated with the QoS of
BP to be put in place and to define the required level of performance capability
needed from the service provider in their execution.

3.1 The ISO 15504 Assurance and Performance Framework Model

For structuring and organizing the business QoS requirements inherent to regulations
and assurance norms, we have found and experimented a valuable requirements tem-
plate and associated guidelines that are made available through the 15504 standard
[12]. In this 15504 a generic requirements’ taxonomy and a predefined requirements’
structure define a framework used for eliciting and structuring QoS requirements as
well as for assessing and measuring the compliance of deployed BP against these re-
quirements. Analogously to standards such as COSO [10] and CMM [23], 15504
(previously known as SPICE) provides an assessment model against which the assur-
ance aspects of an organization in terms of realization of its BP and their contribution
to business services objectives can be defined and measured. Built on top of those
predecessors, the main originality of 15504 “Process Assessment Model” (PAM) is to
standardize the structure of assurance requirements by defining a taxonomy of generic
BP assurance goals that are applicable to BP of business domains not limited to IT
software engineering domain. Figure 2 presents the generic guidelines associated with
the construction of a PAM. On the left part of figure 2, from the bottom to the top,
one can read the business capability goal of the services at level 1, and then, from 2.1
to 5.2, the different level of assurance that can be associated to this business goal.

According to 15504, a Process Assessment Model (PAM) describes requirements
on BP implementing QoS assurance attribute with the purpose and outcomes of each
assurance attribute. The purpose of an assurance attribute “describes at a high level
its overall objectives” [12]. Each purpose is fully decomposed into outcomes. Each
outcome is an observable achievement of some assurance attribute. Actually, an out-
come describes that an artifact is produced, or that a significant change of state oc-
curred, or that some constraint has been met. Outcomes can be further detailed with
indicators focusing on “sources of objective evidence used to support a judgment
about the fulfillment of outcomes”, for instance: work products (“an artifact associ-
ated with the execution of a process”), practices (“activities that contributes to the
purpose or outcomes of a process”), or resources (e.g. “human resources, tools, meth-
ods and infrastructure”) [12].

 Managing the Alignment between Business and Software Services Requirements 175

Fig. 2. GORE in support to Business/Software Services Alignment

Outcomes and indicators are organized into different aspects. The first aspect is re-
lated to the main activity while the other aspects are related to different assurance
aspects associated with the activity. This results in a taxonomy of assurance require-
ments goals. The right part of Fig 2 lists the different aspects and details the objec-
tives of the outcomes and indicators associated with the assurance aspect “2.2”.

Service Level Management 1 2.1 2.2

Purpose Service Level is defined and agreed with the
service customer, and recorded and managed

… The service level agreement is
adequately managed

a) Service level is agreed on the basis of the
customer needs and documented

a) SLA is standardised

b) Service level is monitored according to the
agreed SLA

b) SLA is reviewed internally

c) Service level are monitored and reported
against targets
Practices:
Agree SL; Monitor SL; Report SL

Practices:
Standardise SLA

Work Products:
SLA; SL Report

Work Products:
Standardised SLA

Outcomes

Indicators

Fig. 3. Requirements associated with the Service Level Management QoS attribute

For ease of understanding, a concrete example (instantiation) is given in figure 3 with
a fragment of the final result of our methodology applied to the 20000 IT Service Man-
agement document. The application of the methodology has resulted in the transforma-
tion of natural language flat requirements from the norm to structured requirements in a
PAM. This work has been performed by a CRP Henri Tudor’s team in the context of a
New Work Item accepted in the Sub Committee 7 of the ISO/IEC JTC1 (Joint Techni-
cal Committee on Information Technology) dealing with Software and Systems Engi-
neering. More details about this application can be found in [24]. The presented frag-
ment illustrates a part of the requirements associated with one QoS related to “Service
Level Management”. In total 17 other QoS attributes have been characterized in terms

176 E. Grandry et al.

of their associated requirements. They include e.g.: Incident Management, Problem
Management, Change Management, Information Security management.

3.2 Building Compliant 15504 Service Management Requirements Models

As explained in the preceding section, 15504 helps to better structure goal-based QoS
requirements models with PAM. Difficulties arise when creating those PAM: 15504
does not provide any guidance in the incremental elaboration of a PAM. It provides
generic concepts used in PAM and rules (meta-requirements) that must be satisfied by
PAM, but gives no guidance to the identification of the business processes, nor the
formalization of the knowledge domain which is needed for that. This guidance can
be given by GORE techniques, such as i* [13] which relies on a taxonomy of con-
cepts close and compatible to those of 15504. The rules and heuristics that we have
discovered regarding the use of i* in support to the progressive and systematic elabo-
ration of PAM are presented in [24]. They are summarized in the next paragraph in
the context of the elaboration of the paraphrased result presented in figure 3.

Level 1 Level 2.1 Level 2.2Level 1 Level 2.1 Level 2.2

Fig. 4. Requirements Goal Tree Associated with the Service Level Management Attribute

Let us now review i* concepts used in this model. Following [24], the QoS goals are
expressed in terms of i* soft-goals and goals. The 15504 standard makes an explicit link
between the purpose and the set of objectives to be fulfilled when executing BP that
implement the service. So, as indicated in figure 4, purposes are modeled with a soft-
goal and this soft-goal can be detailed by refining it into an equivalent collection of
other soft-goals and/or goals associated with domain knowledge model. Because out-
comes are objectively observable, they are modeled as goals (which can be further re-
fined) and never with soft-goals. Indicators are added and modeled according their
types, e.g. practices, work products and resources needed for the performance of the BP
realizing the desired QoS. They are easily mapped into i* concepts of task (for prac-
tices), i* resources (for work products and resources) and actors (for resources).

To conclude, we would like to stress that our current contributions reported at the
beginning of this section has convinced the ISO 15504 community that our GORE
methodology was helpful in supporting the development of models compliant with
ISO/IEC 15504. More details on this issue are reported in [30] and [24].

 Managing the Alignment between Business and Software Services Requirements 177

4 From Business to Software Services QoS Requirements

Our research centre is currently developing project management services dedicated to
the network of SME partners, and aiming at defining and steering the projects the
SME’s partners of the Centre run. This system is a set of business services that sup-
port the management of projects where several partners are involved; it is realized by
software components and human processes, that both cooperate to deliver the required
business level objectives.

Step 1: value analysis. A value analysis, supported by e3-models, allowed us to iden-
tify that our research center could provide project management services to our SME
network, and that we can therefore act as an actor in this network.

Step 2: business service identification. We identified our business services accord-
ing to the normalized five successive phases of business collaboration of ISO Open
EDI value-based model [25]: 1) planning, 2) identification, 3) negotiation, 4) actuali-
zation and 5) post-actualization. The business services required to support those
phases are amongst others: “Define Proposal” in phase 1, “Steer Project” in phase 4,
and “Negotiate Contract in phase 3”. The business service “Define Proposal” allows a
project manager to define and manage a project proposal involving multiple partners,
including its review and acceptance.

Step 3: strategic dependency model. We adopted a goal-oriented technique to first
identify the business level objectives of the business services. A strategic dependency
model captures the relevant business services and their interactions with the business
actors, as illustrated in figure 5. The objectives of the Project Owner (the SME) are
supported by the objectives of the ProjectMgt Service Provider (our research centre),
which is derived into three business services (“Define Proposal”, “Steer Project”,
“Negotiate Contract”). The business services of Step 2 are therefore modeled by de-
scribing their objective in the strategic dependency diagram. The Project Partners
(actor Partner) have a basic objective of participating to projects, which is not further
detailed in this paper.

Fig. 5. Strategic Dependency Model – Context for Project Management Services

178 E. Grandry et al.

Step 4: refining with service catalog. Once identified and represented in their con-
text, the business services objectives are refined by selecting and instantiating the
appropriate requirements from the catalogue introduced in the previous section. In our
case, regarding IT service management, and referring to figure 4, the collaboratively
designed business service results in a goal tree, as illustrated in figure 6. In this ex-
cerpt of the model, level 1 of service level management has been selected, and instan-
tiated to the “Define Proposal” business service. A specific service level requirement
is shown in figure 6: the Turnaroud Time associated with the review and acceptance
of the project proposal.

Level 1 Level 2.1 Level 2.2Level 1 Level 2.1 Level 2.2

Fig. 6. Business Requirements on Business Service “Define Proposal”

Step 5: operationalization of core services. Once specified from the business per-
spective, the business level objectives of the services are operationalised by allocating
human and technical resources to perform the required activities. The business proc-
esses supporting the required tasks and work products are modeled, integrating the
service level management tasks. The requirements of the “Define Proposal” business
service are supported by two BP deployed by the service provider: a BP is dedicated
to the registration of the customer with the service, and implements the core tasks
“Register Customer” and “Agree Service”, but also the service level management
tasks “Agree SLA” and “Record SLA”; a BP is dedicated to the actual service per-
formance (and orchestrating the core business tasks). Figure 7 illustrates the BP
model in a UML activity diagram.

Step 6: identification and modeling of software services. Although the business
process “Register with Service” is not automated (the agreement on the service and on
the required service level is still a human-based process), we decided to electronically
record the SLA. The activity “Record SLA” of the business process becomes an
automated task and requires the support of a software-based system. We come back to

 Managing the Alignment between Business and Software Services Requirements 179

the intentional model (the goal tree in figure 8 that specifies the business service) to
design this system: the requirement “Record SLA” is realised by a software-based
task “Store eSLA”. This task, together with other related tasks (“Retrieve eSLA”,
“Version eSLA”) are tasks of the new software service “Manage eSLA”. Some busi-
ness level requirements are not realized with business processes, like “Monitor Re-
view” and “Monitor Partners”. We indeed decided to implement them directly with
the supporting information system. They therefore are transformed into a software
level objective (“Monitor the System”), which is the root objective of the software
service “Monitoring Service”.

Pr
oj

ec
t

M
an

ag
er

Pa
rt

ne
r

Pr
oj

ec
tM

gt
 S

vc
 P

ro
vi

de
r

Submit Proposal

Review Proposal

Accept Proposal

Modify Proposal

Setup Project

Cancel Project

Update Proposal

Register with Service

Agree SL

Record SLA

Fig. 7. Business Processes Supporting Business Service “Define Proposal”

Fig. 8. Requirements for Software Services Supporting Business Level Requirements

180 E. Grandry et al.

Step 7: management of services. The introduction of the service management aspect
as business level objectives introduces additional software services dedicated to the
realization of the requirements associated with these business service management
objectives. Figure 8 illustrates the requirements associated with these new software
services, and shows an excerpt of the traceability we reach by using a goal-oriented
modeling technique. The software services supporting the business level requirements
are abstracted as new actors in the i* model. We apply the same modeling steps that
we used for modeling business service: the software service is modeled as a root goal
(the objective of the service), which is refined into other soft goals, goals, tasks and
resources. The software services are not only issued from the non-functional aspects
(service management) associated with the business service. Figure 8 illustrates a
software service identified from a functional requirement associated with the business
service: “Request Partner Acceptance” justifies the introduction of a software service
dedicated to the management of the partners (“Partner Relation Service”). The most
prominent quality requirement associated with this service is interoperability, mod-
eled as a soft goal of the software service.

5 Conclusion and Future Work

In this paper, we have reported on our framework related to the use of GORE tech-
niques in the context of the management of QoS requirements expressed both at busi-
ness and software levels. This framework applies to specific requirements whose are
those inherent to norms, regulations and assurance domains. In these domains, infor-
mation provided is often poorly structured and organized. In most cases, ambiguities,
incompleteness, and even sometimes inconsistencies can be found in the available
documents and sources of information. So, as it is claimed in e.g. [26, 27, 28], there is
much sense to use requirements techniques (and GORE in particular) for the purpose
of requirements clarification and formalization. With respect to these works, our work
differs in its application to the characterization of e-services QoS as well as in the use
of 15504, which allows us to organize requirements according to different capability
levels that an organization may want to reach and expose to its customers. As illus-
trated in the presented case study, an organization can decide to adopt a service man-
agement of a level that can vary from 2 to 5. This variability issue is one that we need
to further consider in the future. Analogously to [29], we need to consider variability
associated goals graphs and requirements.

Another important issue considered in our approach is traceability. As explained
and illustrated, a part of the QoS requirements at the software level can be systemati-
cally derived and traced to requirements identified at the business level. By establish-
ing explicit traceability links between requirements at the two levels it is possible to
demonstrate the compliance of software services with respect to regulations, norms
and assurance recommendations. In a world where these compliance aspects are be-
coming crucial we feel that the proposed approach is a very first answer in the ser-
vices domain. As part of our future work, like in [26] we intend to better formalize the
traceability model underlying our framework in order to support a more effective de-
ployment. We also intend to further refine our approach through the handling of new
real business cases, which require this business/IT services alignment perspective.

 Managing the Alignment between Business and Software Services Requirements 181

References

1. Zarvić, N., Wieringa, R.J., van Daneva, M.: Towards Information Systems Design for Value
Webs. In: Proceedings of Workshops of CAiSE 2007, Trondheim, Norway, pp. 453–460.
Tapir Academic Press, London (2007)

2. ISO, ISO/IEC 9126-1: Software Engineering – Product Quality – Part 1: Quality Model (2001)
3. Gordijn, J., Akkermans, H.: Value based requirements engineering: Exploring innovative e-

commerce idea. Requirements Engineering Journal 8(2), 114–134 (2003)
4. Parasuraman, A., Zeithaml, V.A., Berry, L.: A Conceptual Model of Service Quality and Its

Implications for Future Research. Journal of Marketing 49, 41–50 (1985)
5. O’Sullivan, J., Edmond, D., ter Hofstede, A.: What’s in a Service? Towards Accurate De-

scriptions of Non-Functional Service Properties. Distributed and Parallel Databases 12, 117–
133 (2002)

6. IT Infrastructure Library – Service Delivery, The Stationery Office Edition (2000); ISBN
011 3308671

7. ISO, ISO/IEC 20000-1:Information Technology – Service Management – Part 1: Specifica-
tion (2005)

8. ISO, ISO/IEC 27005: Information Technology – Security Techniques – Information Security
Risk Management (2008)

9. The Sarbanes-Oxley Act of 2002, Pub. L. No. 107-204, 116 Stat. 745, USA. Public Company
Accounting Reform and Investor Protection Act (SOX) (July 30, 2002)

10. COSO (1994) Internal Control – Integrated Framework, CSOTC, USA, (Retrieved Decem-
ber 1, 2007), http://www.coso.org/

11. Basel Committee on Banking Supervision: International Convergence of Capital Measure-
ment and Capital Standards. Bank for International Settlements Press & communication,
Basel (2004)

12. ISO, ISO/IEC 15504: Information Technology – Process Assessment: Part1 - Part5 (2003)
13. Yu, E., Mylopoulos, J.: Understanding “Why” in Software Process Modelling, Analysis, and

Design. In: Proceedings of 16th International Conference on Software Engineering (1994)
14. http://www.gestiondeprojet.lu
15. Henderson, J.C., Venkatraman, N.: Strategic Alignment: Leveraging Information Technol-

ogy for Transforming Organizations. IBM Systems Journal 38, 472–484 (2004)
16. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal Directed Requirements Acquisition.

Science of Computer Programming 20, 3–50 (1993)
17. Thevenet, L.H., Salinesi, C.: Aligning IS to Organization’s Strategy: The InStAlMethod. In:

Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,
pp. 203–217. Springer, Heidelberg (2007)

18. Barafort, B., Humbert, J.-P., Poggi, S.: Information Security Management and ISO/IEC
15504: the link opportunity between Security and Quality. In: Proc. Conf. SPICE 2006, Lux-
embourg (2006)

19. Valoggia, P., Di Renzo, B.: Assessment and Improvement of Firm’s Knowledge Manage-
ment Capabilities by Using a KM Process Assessment Compliant to ISO/IEC 15504. A Case
Study. In: Proc. Conf. SPICE 2007, Seoul, Korea (2007)

20. Rifaut, A., Di Renzo, B., Picard, B.,, M.: ISO/IEC 15504, a Basis for Generally Accepted
Sound Process Models in Financial Institutions: A Case Study about Venture Capital Fund
Management. In: Proc. Conf. SPICE 2008, Nuremberg (2008)

21. Rifaut, A., Picard, M., Di Renzo, B.: ISO/IEC 15504 Process Improvement to Support Basel
II Compliance of Operational Risk Management in Financial Institutions. In: Proc. Conf.
SPICE 2006, Luxembourg (2006)

182 E. Grandry et al.

22. Barafort, B., Renault, A., Picard, M., Cortina, S.: A Transformation process for Building
PRMs and PAMs Based on a Collection of Requirements – Example with ISO/IEC 20000.
In: SPICE 2008, Nuremberg, Germany (2008)

23. CMM® (2007): Capability Maturity Model for Software, Software Engineering Measure-
ment and Analysis Initiative, Carnegie Mellon University, USA (Retrieved December 1,
2007), http://www.sei.cmu.edu/cmm

24. Rifaut, A., Dubois, E.: Using Goal-Oriented Requirements Engineering for Improving the
Quality of ISO/IEC 15504 based Compliance Assessment Frameworks. In: Proc. IEEE Intl.
Conf. On Requirements Engineering (RE 2008), Barcelona. IEEE Press, Los Alamitos
(2008)

25. ISO, ISO/IEC 14662: Information Technology – Open EDI Reference Model (2004)
26. Breaux, T.D., Vail, M., Anton, A.: Towards Regulatory Compliance: Extracting Rights and

Obligations to Align Requirements with Regulations. In: Proc. 14th IEEE International Re-
quirements Engineering Conference (RE 2006), pp. 46–55. IEEE Press, Los Alamitos (2006)

27. Ghanavati, S., Amyot, D., Peyton, L.: Towards a Framework for Tracking Legal Compliance
in Healthcare. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007.
LNCS, vol. 4495, pp. 218–232. Springer, Heidelberg (2007)

28. Karagianis, D., Mylopoulos, J., Schwab, M.: Business Process-Based Regulation Compli-
ance: The Case of the Sarbanes-Oxley Act. In: Proc. 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 315–321. IEEE Press, Los Alamitos (2007)

29. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-Driven Design and Configuration
Management of Business Processes. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

30. Rifaut, A.: Goal-Driven Requirements Engineering for Supporting the ISO 15504 Assess-
ment Process. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI 2005.
LNCS, vol. 3792, pp. 151–162. Springer, Heidelberg (2005)

Active Energy-Aware Management of
Business-Process Based Applications

Position Paper

Danilo Ardagna, Cinzia Cappiello, Marco Lovera, Barbara Pernici,
and Mara Tanelli

Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy
lastname@elet.polimi.it

Abstract. Energy management is becoming a priority in the design and
operation of complex service-based information systems, as the energy
costs of IT infrastructures increase. This paper aims at introducing a
novel interdisciplinary approach for the development of advanced ac-
tive energy-aware business process applications, based on expertise from
several research areas: Web service technologies, data deduplication, op-
timization, performance evaluation, model identification, robust and pre-
dictive control. The basic idea is that enforcing energy efficiency goals for
the development of green business process systems can only be achieved
by recognizing their multi-layer feedback nature, which can be success-
fully exploited by combining IT methodologies with methods and tools
from systems and control theory.

Keywords: Green IT, Business Process Optimization, Resource Alloca-
tion, QoS management, SLA, System identification and Control Theory.

1 Introduction

Energy management is rapidly becoming a priority in the design and operation of
complex business process-based systems, as the impact of energy consumption
associated with IT infrastructures increases [4]. The growth in the number of
servers and the increasing complexity of the network infrastructure have caused
an enormous spike in electricity usage. Power consumption per rack has increased
from 1kW in 2000 to 8kW in 2006 and is expected to rise to 20kW by 2010.
IT analysts predict that, by 2012, up to 40% of IT budget will be consumed
by energy costs [10]. This trend is striving green computing activities in the
industry research agenda (see for example IBM’s project Big Green 1 and HP’s
Green up initiative 2).

Research and innovation within industry offer the possibility for significant
improvement in energy efficiency management for computing systems. For ex-
ample, software as a service suggests economies of scale. In recent years, large
1 http://www-03.ibm.com/press/us/en/photo/21514.wss
2 http://www.hp.com/hpinfo/newsroom/feature-stories/2007/07-360-greenup.html

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 183–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 D. Ardagna et al.

service centers have been setup to provide computational capacity on demand
to many customers who share a pool of IT resources.

In the context of Web services and Service Oriented Architecture (SOA) based
systems, service centers need to comply also to the Service Level Agreements
(SLAs) stipulated with their customers. At run time, service requestors address
their invocation to the most suitable provider according to their Quality of Ser-
vice (QoS) preferences. QoS requirements are difficult to satisfy because of the
high variability of Internet workloads. It is difficult to estimate workload require-
ments in advance, as they may vary by several orders of magnitude within the
same business day [15]. To handle workload variations, many service centers em-
ploy autonomic self-managing techniques (see, e.g., [3,16]), such that resources
are dynamically allocated among running Web services based on short-term de-
mand estimates. The goal is to meet the application requirements while adapting
the IT architecture.

Current work in sustainable and energy aware computing suggests to provide
services with a trade-off between performance and energy consumption. There
exists a significant body of resource management work focused on attaining max-
imum performance (see, e.g., [16,11]). It is important that energy efficiency be
given a role of equal importance in resource management. Service centers have
mainly focused their early energy efficiency efforts on consolidating and virtual-
izing servers. Yet, in spite of significant gains in server consolidation and energy
savings, storage remains a gaping hole in the enterprise service center. IDC pre-
dicts storage annual growth around 60% due to increased business continuity
requirements which necessitate the replication of data. As a result, storage con-
sumes more and more power, and the same principles that govern server energy
savings should be applied to the storage sub-system as well [7].

The aim of our research is to develop novel energy-aware resource allocation
mechanisms and policies for SOA, and business process-based applications via an
interdisciplinary approach. The main goal is to provide services with QoS guaran-
tees, while minimizing the energy consumption of the computing infrastructure.

The remainder of the paper is organized as follows. Section 2 illustrates our
energy aware business process framework. Preliminary results that have been
already achieved at the lower layers of the framework are reported in Section 3.
A summary of the most relevant literature proposals is reported in Section 4.
Conclusions are finally drawn in Section 5.

2 Active Energy Aware Resource Management
Framework

In modern service based systems, workload variations and SLA management of
business processes lead to the problem of efficient use of resources and the re-
duction of energy expenses. Energy management at a service center is a complex
problem and, in our vision, can be achieved by considering three distinct layers
(see Figure 1): the Process layer, the Infrastructure layer, and the Control layer.
Each layer will be thoroughly described in the following Sections.

Active Energy-Aware Management of Business-Process 185

Virt. Machine Monitor

OS

App1

OS

App2

OS

Appn…

VM1 VM2 VMn

Storage
tier

Server
tier

Service
Center
Infrastructure

Business
Process

t2

t1

t3

t4

System

Controller

Performance

Performance
Objectives

Servers’ DVS
Load balancing

...

...

Process
Layer

Max QoS for the end User
Constrained Optimization Problem
Optimization of single process instance
Data Dedup.: reduction of Business Obj. accesses

Infrastr.
Layer

Control
Layer

Max SLA revenues – Energy costs
Queuing Network Model and Non-linear Opt.
Half an hour time scale
Data Dedup.: Business objects preservation

Trade-off Performance-Energy
Identification and Control Theory
One minute time scale

•Web service components
performance parameters
•SLA guarantees

•Web service
components
workload

•Performance achievements
•Parameters estimate
•Optimization triggering

•Performance
goals

•New perf.
objectives

•QoS
Re-negotiation

•Tasks’
energy costs

Controllers

Fig. 1. Active Energy Aware Resource Management Framework

2.1 Process Layer

The Process layer manages business process end user applications. In advanced
SOA systems, complex applications are described as abstract business processes
(composed by tasks t1, t2,...tN in Figure 1), which are executed by invoking a
number of available Web services. End users can specify different preferences
and constraints and service selection can be performed by dynamically identi-
fying the best set of services available at run time. Indeed, a service provider
can offer functionally equivalent business processes and/or Web service compo-
nents with several QoS profiles characterized by different energy costs. At this
layer, resource allocation techniques provided by the literature [18] focused on
the maximization of the QoS for the end user, since this has an impact on user’s
satisfaction, provider’s reputation, and, hence, on provider’s revenue in the long
term. Web service selection results in an optimization problem (whose goal is
to optimize a single process instance), which has been studied both in the re-
search areas of service oriented computing for business processes and of grid
environments [19]. Anyway, performance issues are usually not considered and
energy consumption has always been neglected. Several research contributions
[1,19] have formalized the resource allocation problem as a constrained optimiza-
tion problem. In such an optimization process, the performance of Web service
components have to be guaranteed by the low level layers of the infrastructure.
Furthermore, QoS optimization does not analyze the process efficiency in terms
of accesses and management of business objects. Data redundancy, for example,
affects energy consumption since multiple copies of the same data have to be kept

186 D. Ardagna et al.

synchronized. At this level, data deduplication techniques [6] can be applied in
order to identify and merge different copies of the same object and thus reduce
the number of accesses to business objects. Green IT calls for a new approach
to data management in business processes, since at design time the trade-off
between energy consumption and the availability provided by data replication
should be evaluated carefully.

In [1], we have proposed an optimization technique for QoS maximization
based on mixed integer linear programming which has been demonstrated to be
efficient under stringent constraints and for large processes instances. In current
work we are extending that approach in order to include explicitly energy issues
and object replica management in the QoS evaluation.

2.2 Infrastructure Layer

The Infrastructure layer focuses on workload variations and on the trade-off
between the performance of Web service components (which have to be guar-
anteed to the first layer), and energy consumption. At this layer, Web service
components invoked by business processes are mapped to multi-tier server ap-
plications which are currently executed by independent Virtual Machines (VMs)
in hosted virtualized environments (e.g., based on VMWare or Xen). Physical
resources (e.g., CPU, disks, communication network) are partitioned into mul-
tiple virtual ones, creating isolated virtual machines each running at a fraction
of the physical system capacity. Each VM is usually dedicated to serve a single
application. Autonomic self-managing techniques are currently implemented by
network controllers which can establish the set of applications (VMs) executed
by each server (VM placement sub-problem), the request volumes at various
servers (load balancing sub-problem), and the capacity devoted to the execution
of each application (VM) at each server (capacity allocation sub-problem). The
network controller can also decide to turn on or off servers depending on the
system load or to reduce the frequency of operation of servers [9] (servers provi-
sioning and frequency scaling sub-problems). Overall, autonomic self-managing
techniques are designed to maximize the SLA profits (including revenues and
penalties), while balancing the cost of using resources (including energy and air
conditioning) [11,15,16]. In [2] we have designed resource allocation techniques
for the management of multi-tier virtualized systems. Allocation policies provide
a joint solution to the server provisioning, frequency scaling, VMs placement,
load balancing and capacity allocations problems. The joint problem has been
formalized as a mixed integer non linear programming problem whose goal is
to maximize the profits associated with multiple class SLAs while minimizing
energy cost. The problem is NP-hard and the inclusion of energy costs in the
objective function keeps its soloution very challenging. We developed heuristic
solutions by implementing a local-search algorithm which can solve problem in-
stances up to 400 physical servers and 100 requests classes within a half an hour
optimization time constraint.

Energy efficiency in storage can be achieved by adopting data deduplication
also at this layer. Indeed, the basic idea is to store only data changes on storage

Active Energy-Aware Management of Business-Process 187

devices, while redundant data is replaced with a pointer to the unique data
copy. In our approach data deduplication is also applied for archiving purposes
focusing on high level application requirements. For example, business objects
can undergo accidental or intentional deletions due to storage limitation or to
under-evaluation of their importance. This loss of information can be avoided
by detecting and preserving important objects. We have started improving data
quality techniques for the identification of the only relevant copy to be preserved.

2.3 Control Layer

The differentiation between the Infrastructure and the Control layers is mainly
motivated by the different time scales corresponding to the respective actions:
server provisioning and VM placement decisions, i.e., the activities correspond-
ing to the Infrastructure, are taken about every half an hour [3,11,16] because
they introduce a significant system overhead. At this layer, the system is usually
described by means of a performance model based on queueing theory embed-
ded within an optimization framework. The resource allocation problem can be
formalized as a non linear and mixed integer optimization problem which has to
be solved within strict time constraints.

Load balancing, capacity allocation, and frequency scaling problems, on the
other hand, have tight time constraints but imply a relatively low computation
burden so they can be actuated in the system (without introducing any overhead)
every few minutes. The Control layer is therefore associated with such operations.
The main problem here is given by the fact that queueing theory is based on
the assumption that the overall system is at a steady state and therefore cannot
accurately model system transients. Hence, models based on queueing theory
are effective for open-loop planning on a medium term time horizon (i.e., half
an hour, [3,12]) but represent very crude approximations of the actual behavior
of the system during transients. In particular, relying on such models for closed-
loop control system design, as is frequently done in the literature [3,16], can
only lead to poor performance in terms of QoS and, as a consequence, to highly
inefficient systems in terms of energy consumption. These considerations lead
to a different view of the third layer of the framework which aims at tackling
workload variations and adjusting the system configuration within a very short
time frame (e.g., every minute). We argue that these goals can only be attained
by using dynamical models which can accurately represent system transients
under varying workload conditions and by relying on genuine control-theoretic
approaches for the design. The third layer is therefore viewed as a feedback loop,
where the SLA objectives (determined at the second layer) are translated into
set-points for the response time of the servers (possibly different according to the
customer classes) and tracking performance is traded-off with energy savings.

In [14] we identified a control-oriented dynamic model of an application server
based on the Linear Parameter Varying (LPV) framework capable of capturing
system behavior at a very fine-grained time resolution (e.g., minutes or seconds),
with an accuracy suitable for control purposes. This identification process is the

188 D. Ardagna et al.

first step in order to design a closed-loop controller for service center infrastruc-
tures able to meet SLAs requirements while minimizing energy costs.

2.4 Need for an Integrated Approach

The solutions for resource management provided in the literature usually con-
sider each of the above described layers in isolation.

We argue that, in order to achieve energy efficiency in modern service centers,
an integrated approach is needed. Indeed, the solutions at different layers have
important interrelations.

For example, the solution of the optimization problem at the Process layer
determines the request volume of the server applications and VMs of the Infras-
tructure layer. At the Process layer, we advocate a totally new approach in the
design of process based applications. Business process designers have to consider
that each operation in the service center has a cost and energy efficiency can be
achieved only by considering users’ behaviour and concurrent execution of mul-
tiple process instances. Users’ behaviour has an impact on system workload. As
it will be discussed also in the next Section, it is more difficult to manage system
resources under peak workload and delaying the execution of some tasks could re-
duce the power budget of the service center and increase its energy efficiency [4].
Similarly, with the current practice of server and storage consolidation, multiple
process instances compete in the access to shared resources at the Infrastructure
layer. This implies an additional coupling between process and infrastructure,
whose management calls for additional efforts in order to optimize the execu-
tion of multiple instances and include energy issues in the business process QoS
evaluation.

The interrelations among the models adopted at the Infrastructure and Con-
trol layers are also very promising. Recently [20], control techniques have been
applied for the estimate of the performance model parameters which govern the
optimization decisions at the Infrastructure layer. The analysis of the different
time scales which govern the control decisions at the second and third layers
has not yet been addressed in the literature and constitutes a challenging and
important research problem. Nowadays, control time horizons are determined by
technology constraints (e.g., the time and overhead required to move a VM). The
Control layer could also govern and adapt the control time horizon used at the
Infrastructure layer for example by triggering the global optimization only when
needed instead of periodically as in the current practice. Furthermore, from a
theoretical point of view, system stability has been demonstrated only for the
local controllers which work at the Control layer, but the stability of the global
decisions taken at the Infrastructure layer has not yet been proven.

Finally, there exist interrelations also between the Control and Process layers.
Indeed, the Control layer is based on a very fine time grain, it can describe
accurately the system behavior both under transient and stationary conditions,
and hence can determine accurately the energy consumption associated with
each task operation. Associating energy costs with task operation is important in
order to evaluate precisely business process green key performance indicators [4].

Active Energy-Aware Management of Business-Process 189

Furthermore, if performance objectives can not be fulfilled at the Process layer,
the QoS for the end user should be re-negotiated as the profile of Web service
components. The implementation of the overall framework is part of our ongoing
work. Our aim is the development of an integrated energy-aware middleware for
execution of green business processes with QoS guarantees. The next Section is
devoted to the presentation of the preliminary results which have been already
achieved at the Infrastructure and Control layers.

3 Experimental Results

3.1 Infrastructure Layer Preliminary Results

In this Section, we compare the results which can be achieved by our energy-
aware resource allocation policies [2] with respect to the top performing state-
of-the art solutions currently implemented in real systems (IBM Websphere and
Tivoli). In particular our solution is compared with

– the server provisioning and VM placement solutions proposed in [15];
– the load balancing and capacity allocation solutions proposed in [11,16].

In the following we will refer to Pacifici et al. works [11,15,16] also as the alter-
native solution.

The comparison is based on realistic workloads created from a trace of requests
obtained by the Web site of a large University in Italy. The system includes al-
most 100 servers and the trace contains the number of request sessions, on a
per-hour basis, over a one year period (01/01/06 to 31/12/06). Realistic work-
loads are built by assuming request arrivals to follow non-homogeneous Poisson
processes with rates changing every hour according to the trace. Several analy-
ses of actual e-commerce site traces, see for example [17], have shown that the
Internet workload follows a Poisson distribution as first approximation. From
this logs, we have extracted 10 requests classes which correspond to the days
with the highest workloads experienced during the year (see Figure 2).

2 4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [hours]

T
hr

ou
gh

pu
t [

re
q/

s]

Fig. 2. Requests throughput

190 D. Ardagna et al.

5 10 15 20 25
0

1

2

3

4

5

6

7

Time [hours]

R
es

po
ns

e
tim

e
[s

]

(a)

2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

Time [hours]

R
es

po
ns

e
tim

e
[s

]

(b)

2 4 6 8 10 12 14 16 18 20 22 24
60

65

70

75

80

85

90

95

100

Time [hours]

P
er

ce
nt

ag
e

of
 o

n
lin

e
se

rv
er

s

Pacifici et al.

Our algorithm

%

(c)

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

45

Time [hours]

E
ne

rg
y

P
er

ce
nt

ag
e

S
av

in
gs

%

(d)

Fig. 3. (a) Response times obtained by our algorithm; (b) Response times obtained by
the alternative solution; (c) Percentage of on line servers in Pacifici et al. comparison;
(d) Percentage energy saving with respect to static allocation

The comparison is based on simulation tests where long-tails distribution for
service times have been considered (in particular, log-normal distributions as
observed for several real applications [17]). Results have been obtained with
the Anylogic 6.0 simulator and show that our algorithm performs much better
during the peak hours (between 9.00-20.00) while, under light load (1.00-8.00,
21.00-24.00), the two solutions provide similar results. Our solution (see plots in
Figures 3(a) and 3(b)) provides response times one order of magnitude better
than the alternative one. This result is achieved since the alternative solution
always evenly balance the workload among running servers, while our algorithm
mainly assigns dedicated servers to VMs and that provides better performance
(see [2]). The plot reported in Figure 3(c) shows the percentage of servers avail-
able at the service center adopted by the two solutions. Our solution obtains a
more efficient use of the resources since, excluding the initial part of the day, it is
able to provide better response times while adopting a lower number of servers.
Overall, during the 24 hours, our net revenues, which include SLA profits and
energy costs, are about 30% higher than the alternative ones.

Active Energy-Aware Management of Business-Process 191

Finally, in order to evaluate the energy savings which can be achieved by a
static allocation, we considered another scenario where: (i) the service center
(which includes 400 servers and 100 requests on four tiers) always run at full ca-
pacity, (ii) only energy cost are considered, and (iii) SLA revenues are neglected.
Results are reported in Figure 3(d). Significant energy savings can be obtained
under light load conditions. By varying system parameters (e.g., energy costs,
air conditioning costs, etc.) over the 24 hours the energy savings range between
13 and 25%.

3.2 Control Layer Preliminary Results

As mentioned in Section 2.3, the main issue associated with the design of the
Control layer is the development of dynamical models of the Infrastructure layer
servers capable of capturing transients. In fact, our aim is to obtain a control-
oriented dynamical description of the servers’ behavior. The Control layer will
need to operate at a very fine grained time resolution (e.g., seconds), in order to
ensure that SLAs requirements are met while minimizing energy costs. As the
behavior of the server response time is highly time varying and the workload
conditions change substantially within the same business day, a modelling class
capable of capturing such effects has to be considered.

To this purpose, Linear Parametrically Varying (LPV) models, which are lin-
ear models whose dynamics are scheduled by external time-varying parameters,
seem very promising for modeling such systems as they can relate the relevant
control input (such as, e.g., the server operating frequency) to the output (i.e.,
the response time of the individual server), taking into account the role of the
sustained server workload (as measured by, e.g., the requests arrival rate λ and
the requests service time s) which enters the model as a scheduling parameter. It
is apparent from the recent literature (see, e.g., [12] and the references therein)
that black-box identification methods represent a very promising approach to
this modelling problem. In this Section we summarize the preliminary results
which have been achieved in the identification of state-space LPV models for a
single class, single tier Web service application (see [14] for further details) whose
goal is to determine a model description able to capture Web service dynamics.
We assume that the physical servers available at the service center implements
the Dynamic Voltage Scaling (DVS) mechanism which varies both CPU sup-
ply voltage and operating frequency. The adoption of DVS is very promising,
as power consumption is proportional to the cube of the operating frequency,
while servers performance varies linearly with the operating frequency [2]. Fur-
thermore, DVS, unlike hibernating and restoring, does not introduce any system
overhead.

In the experimental framework, a workload generator and a micro-benchmark-
ing Web service application have been used. The workload generator is based
on a custom extension of the Apache JMeter 2.3.1 workload injector, which al-
lows to generate workload according to an open model [8] with a Poisson arrival
process. The Web service is a Java servlet designed to consume a fixed amount
of CPU time generated according to deterministic (for identification purposes),

192 D. Ardagna et al.

(a) (b)

Fig. 4. (a) Time history of the request rate applied during a validation test; (b) Detail of
the measured (solid line) and the response time obtained with ∆t = 10 s an LPV model
with p1 = λ s (dashed line) and p2 = [λ s (λ s)2] (dash-dotted line) on identification
data in with q = 4

Poisson, Pareto and log-normal distributions (for validation). The adoption of a
micro benchmarking application allows the validation of the effectiveness of our
approach both for workload intensive and for computationally intensive applica-
tions. Furthermore, the CPU time standard deviation of the micro benchmarking
application has been varied in order to verify if LPV models performance de-
pends on the variability of the CPU time distribution: the standard deviation
σ[s] has been chosen as q times the average of the service time distribution E[s],
i.e., σ[s] = q E[s], where q was set equal to 2, 4 and 6. For model validation,
the incoming workload reproduces the 24 hour trace corresponding to the peak
workload considered in Section 3.1 where a Gaussian noise (see Figure 4(a)) pro-
portional to the workload intensity has been added as in [9]. To quantitatively
evaluate the models, two metrics have been considered: the percentage Variance
Accounted For (VAF), defined as V AF =

(
1 − V ar[yk−ŷk(θ)]

V ar[y(k)]

)
, where yk is the

measured signal (i.e., application response time), and ŷk(θ) is the output ob-
tained from the simulation of the identified model, and the percentage average
simulation error eavg, computed as eavg =

(
E[|yk−ŷk(θ)|]

E[|yk|]
)
.

In the LPV identification, we analysed two possible choices for the scheduling
parameters, namely the server utilization (i.e., p1 = λ s, see also [12]) and the
server utilization and its square (that is, p2 =

[
λ s (λ s)2

]
). The system output

is the service response time.
The identification data were processed to extract the average values over a

sampling interval ∆t = 10s and two LPV second order models, one with p1 = λ s
and the other with p2 = [λ s (λ s)2] have been identified (see Figure 4(b) for a
plot of a detail of the results).

As can be seen from the Figure, the models are capable of providing a response
time which correctly follows the peaks of the measured one. Results reported in

Active Energy-Aware Management of Business-Process 193

Table 1. Performance of the identified models with ∆t = 10s on validation data

Valid. Performance - LPV q=2 q=4 q=6
∆t = 10 s (p1) (p2) (p1) (p2) (p1) (p2)

VAF on 24h 58.31% 74.14% 54.01% 71.50% 58.85% 74.52%
VAF light load (1-8, 21-24)h 86.68% 91.58% 78.60% 80.20% 76.57% 73.61%

VAF heavy load (9-20)h 54.34% 71.59% 48.50% 67.10% 57.15% 77.52%
eavg on 24h 25.70% 18.36% 20.30% 7.40% 31.87% 31.67%

eavg light load (1-8, 21-24)h 28.78% 12.55% 20.02% 2.50% 44.47% 41.35%
eavg heavy load (9-20)h 26.22% 21.19% 22.50% 9.25% 28.88% 29.05%

Table 1 also show that the performance of LPV models are almost independent
on the value of q, i.e., the models are robust to the variability of the service time
distribution of the Web service application.

4 Related Work

The most relevant contributions provided in the literature [1,13,16,19] usually
consider each sub-problem addressed at different layers of our framework in iso-
lation. Business process optimization has been applied in context-aware business
processes and e-science research fields. The literature has provided three gener-
ations of solutions [1]. First generation solutions implemented local approaches
[18,19] which select component Web services one at the time by associating the
running task to the best candidate service which supports its execution. Local
approaches can guarantee only local QoS constraints, i.e., candidate services are
selected according to a desired characteristic, e.g., the price of a single Web ser-
vice is lower than a given threshold. Second generation solutions proposed global
approaches [5,18,19]. The set of services which satisfy the process constraints
and user preferences for the whole application are identified before executing
the process. In this way, QoS constraints can predicate at a global level, i.e.,
constraints posing restrictions over the whole composed service execution can
be introduced. Finally, third generation techniques [1] focus on the execution of
processes under severe QoS constraints.

The autonomic management of the infrastructure layer has been largely con-
sidered by the research community and some features are currently implemented
in commercial products, e.g., IBM Tivoli [11,15,16]. Early solutions switched
servers on and off [3], while more recent proposals [9] have started reducing
the frequency of operation of servers by exploiting the DVS mechanisms imple-
mented in new servers.

Finally at the control layer, modern approaches provide solution for the QoS
management of services infrastructures. LPV models have been adopted in Qin
and Wang work [12] in order to implement an autonomic controller able to
provide performance guarantees by means of DVS.

194 D. Ardagna et al.

5 Conclusions

Climate debate and sustainable growth concern over energy use will strive green
computing in the Service area research agenda [4]. In our work, we have provided
solutions able to determine QoS and energy trade-off at the individual layers of
our framework. Ongoing work is focusing on the analysis of the different time
scales and the interrelations which characterize the resource managers working
at the different layers. The aim is to exploit information from the lower layers to
quantitatively estimate the energy consumption required for business processes
and component Web services execution.

Acknowledgments

This work has been partially supported by the project Q-ImPrESS and S-Cube
NoE funded under the European Union’s Seventh Framework Programme (FP7).

References

1. Ardagna, D., Pernici, B.: Adaptive Service Composition in Flexible Processes.
IEEE Transactions on Software Engineering 33(6), 369–384 (2007)

2. Ardagna, D., Trubian, M., Zhang, L.: Energy-Aware Autonomic Resource Alloca-
tion in Multi-tier Virtualized Environments. Politecnico di Milano, Dipartimento
di Elettronica e Informazione Technical report number 2008. 13 (July 2008)

3. Ardagna, D., Trubian, M., Zhang, L.: SLA based resource allocation policies in
autonomic environments. Journal of Parallel and Distributed Computing 67(3),
259–270 (2007)

4. Barroso, L.A., Hoolzle, U.: The case for energy-proportional computing. IEEE
Computer 40 (2007)

5. Canfora, G., Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of
Composite Web Services. In: ICWS 2005 Proc., Orlando (2005)

6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (2007)

7. Karlsson, M., Karamanolis, C., Zhu, X.: Triage: Performance Diff. for Storage
Systems Using Adaptive Control. ACM Transactions on Storage 1(4), 457–480
(2005)

8. Kleinrock, L.: Queueing Systems. John Wiley and Sons, Chichester (1975)
9. Kusic, D., Kandasamy, N.: Risk-Aware Limited Lookahead Control for Dynamic

Resource Provisioning in Enterprise Computing Systems. In: ICSOC Proc. (2006)
10. Metha, V.: A Holistic Solution to the IT Energy Crisis (2007)
11. Pacifici, G., Spreitzer, M., Tantawi, A.N., Youssef, A.: Performance Management

for Cluster-Based Web Services. IEEE Journal on Selected Areas in Communica-
tions 23(12) (December 2005)

12. Qin, W., Wang, Q.: Modeling and control design for performance management of
web servers via an LPV approach. IEEE Transactions on Control Systems Tech-
nology 15(2), 259–275 (2007)

13. Rolia, J., Cherkasova, L., McCarthy, C.: Configuring Workload Manager Control
Parameters for Resource Pools. In: IEEE NOMS, Vancouver, Canada (April 2006)

Active Energy-Aware Management of Business-Process 195

14. Tanelli, M., Ardagna, D., Lovera, M.: LPV model identification for power manage-
ment of web services. In: IEEE Multi-conference on Systems and Control (2008)

15. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement
controller for enterprise data centers. In: WWW 2007 (2007)

16. Urgaonkar, B., Pacifici, G., Shenoy, P.J., Spreitzer, M., Tantawi, A.N.: Analytic
modeling of multitier Internet applications. ACM Transactions on the Web 1(1)
(2007)

17. Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web Workload Characteriza-
tion: Ten Years Later. In: Web Content Delivery. Springer, Heidelberg (2005)

18. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Transactions on the Web 1(1), 1–26 (2007)

19. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Transactions on Software Engi-
neering 30(5) (May 2004)

20. Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406
(2008)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 196–207, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Architecture for Managing the Lifecycle of Business
Goals for Partners in a Service Network*

Marina Bitsaki1, Ohla Danylevych2, Willem-Jan van den Heuvel3, George Koutras1,
Frank Leymann2, Michele Mancioppi3, Christos Nikolaou1, and Mike Papazoglou3

1 Computer Science Department, Universuty of Crete, Greece
{bitsaki,koutras,nikolau}@tsl.gr

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{olha.danylevych,frank.leymann}@iaas.uni-stuttgart.de

3 Department of Information Systems and Management, Tilburg University, Netherlands
{W.J.A.M.vdnHeuvel,michele.mancioppi,mikep}@uvt.nl

Abstract. Networks of interdependent organizations cooperate to produce goods
or, nowadays, services that are of value to their markets as well as to the partici-
pating organizations. Such co-operations can be supported by corresponding busi-
ness processes which are based on SOA technology. Developing and managing
SOA-based business processes in such service networks necessitates a compre-
hensive architecture which is on the one hand grounded on solid design principles,
and on the other hand capturing best-practices and experiences. Such an architec-
ture is currently lacking. This paper outlines a first attempt to develop and validate
an architecture for developing, monitoring, measuring and optimizing SOA-
enabled business processes in service networks. A case study from the telecom-
munications industry is analyzed, and different aspects of service networks are
addressed.

Keywords: Service Value Network, Key Performance Indicator, Business
Process Management, Business Activity Monitoring.

1 Introduction

The emerging service economy and the advances in information technology have dra-
matically increased the complexity of understanding how organizations evolve within a
world of interactions and partnerships. Instead of large, vertically integrated organiza-
tions, we observe the emergence of globe-spanning networks of interdependent compa-
nies that cooperate to provide value to their markets based on services (so-called service
value networks). Business processes technology is used to prescribe how organizations
work internally and how they work together to achieve the value of the service network.
But the overall management of the corresponding business processes is growing more
complex because of the inter-organizational and intra-organizational nature of business
processes supporting the complex web of interactions of service value networks.

* The research leading to these results has received funding from the European Community's

Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

 An Architecture for Managing the Lifecycle of Business Goals for Partners 197

Several studies focus on creating and reconfiguring service value networks (see
[1,3]). [1] proposes a methodology for analyzing the dynamics of value in networks at
the operational, tactical, and strategic level with an emphasis on visualization and
qualitative methods. In [2], the authors combine IT systems analysis with economic-
based business modeling in order to build an e-business model that specifies e-business
scenarios rather than on defining values. Besides the qualitative approaches, there is a
growing need for quantitative methods. [3] presents a method for computing values by
taking into consideration partners’ satisfaction and additional value that is accrued by
the relationship levels developed by the various partners.

In this paper we will focus our attention on Service Networks (SNs) (see [4,5]): it
offers services that are obtained by composing other services provided inside the SN
by a diversity of service providers by means of business processes.

From the operational view of the service network, one should focus on the man-
agement of the business processes and the monitoring of financial and operational
measures of performance also called Key Performance Indicators (KPIs) in order to
evaluate or improve them. Examples are overall process execution time, percentage of
service requests fulfilling Quality of Service specifications, customer satisfaction
index, etc. Business Process Management (BPM) together with Service Oriented
Architecture (SOA) support organizations in the continuous improvement of their
business’s performance through the effective convergence of IT and business [6].

From the business view of the service network, there is a need to define the activi-
ties that achieve business goals such as cost cuts, market share increase, profit in-
crease, customer satisfaction increase etc. Moreover, different partners may have
different business goals, which may possibly be conflicting. For instance, one partner
may be more interested in customer satisfaction, which may require an increase in
costs to be achieved. This may be unacceptable for partners whose first priority is cost
reduction. In [3] it is shown how the concept of value, properly defined, can be used
as a unifying concept for studying service networks (called service value networks in
that context) instead of the various heterogeneous business goals.

In this paper, we address the currently existing gap between business strategy and
business models from one side and service system implementations on the other side.
Strategic decisions (such as how to restructure the network; whether to leave a par-
ticular network to join another; or whether it is advantageous to join multiple net-
works at the same time; etc.) have to be made by the partners in order to increase their
own value. Restructuring of a service network may be required to respond to compet-
ing networks or innovation in processes and technologies. Changes in the structure of
the service network could drastically affect network partners’ business objectives
and/or network-wide business processes. Unfortunately, the current methods and tools
for developing and managing service networks are highly fragmented, merely provid-
ing support for isolated parts of the huge task. This paper outlines a first attempt to
develop and validate a comprehensive methodology for developing, monitoring,
measuring and optimizing SOA-enabled business processes in SNs. We have devel-
oped the Service Network Notation (SNN) to represent participants in a SN and their
interactions in terms of offerings and revenues. Such a comprehensive methodology is
currently lacking. By adding SNs on top of the current BPM stack, analysts focusing
on strategic goals of a business benefit from the detailed description and functionality
of the business processes without being directly involved with BPM. This level of

198 M. Bitsaki et al.

abstraction that is achieved through the linkage of SN to BPM provides them a better
understanding of how to accomplish their goals.

The remainder of the paper is organized as follows. Section 2 introduces SNs
through an example borrowed from the telecommunications industry. Section 3 intro-
duces a meta-model of the SN. Section 4 shows how to analyze SNs and describe
their basic properties. Section 5 describes standard BPM approaches, while section 6
proposes a novel architecture, SN4BPM, linking SN and BPM. Finally, section 7
provides some concluding remarks and discusses directions for future work.

2 SN by Example

In this section we describe the structure of service networks through an example taken
from the telecommunications industry. Considering the methodology developed in
[3], we model the service network of the telecommunications companies as a flow
graph which comprises nodes (economic entities) and transfer objects (offerings
which could be goods, services, information).

Our example is based on the Enhanced Telecom Operations Map (eTOM) [7]
which is a reference framework for categorizing all the business activities that a ser-
vice provider may use. In particular, we will describe the service network that is
formed in order to set up a new service. We consider the following entities that col-
laborate with each other: the service provider (SP) offers services (realized as bun-
dles of services such as orders for digital subscriber line, wireless, Internet data centre
services, etc) to the subscribers. The external partners of the SP include the suppliers
who provide resources (equipment, infrastructure, etc) and content providers with
whom the SP co-operates in order to produce the bundle of services offered to the
subscriber (e.g. video on demand, music educational content etc.) The internal part-
ners of the SP (who can be outsourced and become external partners as well) are the
call centre who provides information to subscribers over the telephone, the sales agent
who provides prices for the different services to the subscribers, the service agent who
is responsible for the set up and configuration of a subscriber’s order, the field agent
who performs service installations at the subscriber’s site, the account manager who
creates updates and manages accounts once the order is fulfilled and the billing agent
who is responsible for the management of the billing system.

In Fig. 1, we provide a representation of the service network showing the relations
created among the various entities. The economic entities are represented by circles
and offering flows are represented through arcs. There are two types of offerings:
services (depicted by solid arrows) and revenues (depicted by dashed arrows). A pos-
sible scenario for this example could be the following: A new subscriber contacts the
call centre and orders the digital subscriber line service. The call centre enters the
subscriber’s information (name, address, etc.) to a customer information system and
asks the sales agent to determine which services can be provided to this specific sub-
scriber. The sales agent provides a list of possible services to the call centre which in
turn informs the subscriber. The subscriber selects the service he wants and makes the
order. The call centre submits the order to an order management system of the service
provider. The account manager creates a new account for the subscriber and the service

 An Architecture for Managing the Lifecycle of Business Goals for Partners 199

Fig. 1. The service network for a new service set up

agent configures the requested service and asks the field agent to install the equipment
at the subscriber’s site. As soon as the field agent completes his work, the service agent
activates the new service.

The participants of the network, at the business level, are primarily interested in
making sure that they derive value from their participation in the network. Partici-
pants in the network are also interested in promoting their own more general business
objectives through their participation in the network, such as for example their market
share, or their effectiveness in responding to market needs and being innovative, or
their customer satisfaction. In section 4, we show how all these business objectives
can be interconnected and also linked to IT level performance criteria such as SLAs,
business processes, workflows performance etc.

3 SNN Meta-model

The meta-model for the SNN is shown in Fig. 2 as a UML2 Class Diagram. A Service
Network consists of participants that are connected by relations. Participants and
relations are represented by instances of the interfaces Participant and Relation. In-
stances of service networks, participants and relations have a name and are uniquely
identified by an identifier. The interface Participant is implemented by the class Busi-
ness Entity, representing providers and consumers of functionalities that generate
value in a service network. SNN models comprise two kinds of relations: offering and
revenue. Both kinds of relations connect a source and a target participant. Offering
relations (modeled by the class Offering Relation) specify what services are offered
(specified by the field offering) by the source participant (acting as service provider)

200 M. Bitsaki et al.

Fig. 2. A UML2 Class Diagram describing the SNN meta-model

to the target. Offerings could be goods or services, or a combination of both. Revenue
relations (class Revenue Relation) describe the gain that the target participant has
from the source in exchange for provided service. Revenues (modeled by the field
revenue) are usually sums of money.

Generally, a SNN model describes interactions among a set of participants that
take place over multiple, unrelated business processes. All the offering and revenue
relations that take place over the same business process are correlated. Correlations
allow to immediately visualize which parts of an SNN models pertain to a given busi-
ness process, and which not.

4 Analysis of SNs

Organizations are expected to work worldwide fostering complex relations and devel-
oping complementary skills to generate and exchange goods, services or information.
In order to evaluate and measure the performance of an organization within a service
network and define business objectives as part of the firm’s strategic behavior, the
organization identifies specific KPIs [8]. Apart from measurements that take place at
the BPM lifecycle (described in Section 6), KPIs are connected to parameters given in
SLAs and parameters given by the interacting participants. For example, the value
that a participant derives from the network is a KPI and could be connected, among
other factors, to the satisfaction of this participant’s customers. Satisfaction, in turn,
depends on many factors such as the service delivery time, which usually should not
exceed an upper bound specified in the relevant SLA.

To implement this service network, quite a few business processes must be deployed
and operate such as: “order receipt”, “order handling”, “service configuration”, “service
installation”, and “inquiries and complaint handling”. These processes are distributed
between several business units and business partners. To efficiently implement all these
processes, SLAs will have to be agreed between partners. For example a cost KPI and
cost reduction target for the SP will be affected by SLA requirements that a new service
installation has to handled within a very limited timeframe, since the SP will have to pay
service technicians and engineers to be available and on call to cover all new services
requests by customers. Value derived from the network for, say, a content provider is
affected by costs incurred for having sufficient equipment available to handle any real-
time requests for content. On the other hand, if SLAs are not satisfied, then penalties for
non-SLA compliance may have to be applied and customers’ satisfaction may drop,

 An Architecture for Managing the Lifecycle of Business Goals for Partners 201

thereby reducing the value derived for the content provider from its participation in the
network.

It can therefore be seen that if business processes are implemented in sloppy and
inefficient ways, or system and/or human resources are not used judiciously and are
either wasted or under-provided, then the whole service network may break down,
simply because the individual partners will not be achieving their desired KPIs and/or
they will not be deriving sufficient value from their participation in the network. We
now present elements of our modelling effort that tries to link satisfaction of business
objectives and KPIs with SLAs and business process performance yardsticks.

The partners of a service network need to monitor on a periodic basis their KPIs
and take corrective action as need be. The partners’ job could be made significantly
easier if they could use models that predict what the effect on a specific KPI, of a
corrective action will be, and even better, what would be the optimal change (if this
can be found) of parameter values and processes to yield the best possible change of a
specific KPI. We are working on such models, and in what follows, we show how
these models could be applied to our telecom’ example to improve a specific KPI.

In our models, the KPIs are perceived as functions of all parameters that may affect
their value. The shape of these functions can be affected by the structure of the busi-
ness processes (for example, if the telecom provider in our example innovates and
elimininates the need of technicians to install a new service, then a technician labor
rate will obviously cease to have an effect on the function expressing the dependence
of a cost KPI to various cost parameters). Let 1(, ,), 1,i i iKx x x i n= =r

K K be the input

vector (e.g. services, resources, prices etc.) of a node (economic entity) ib that is used

by the various functions expressing the KPIs of interest. For example, in the tele-
communications example the vector

r
ix for the SP could be prices he imposes for the

services he offers and the labor rates he pays to his employees. Consider now the
function ()i if x

r
that denotes a KPI for ib due to its participation in the network. For

example, this function could represent a revenues KPI, resulting from the sum of
revenues of ib , from all its network partners, to whom ib sells his services.

On the other hand, any prediction of improvement or even optimization of a KPI in
our models, should also take into account constraints that exist. There are two forms
of constraints: those that are intrinsic to the partner, such as maximum capacity of
resources (number of people employed, maximum storage and CPU power available,
etc.) and those that are imposed to the partner through the SLAs, for example maxi-
mum price tolerated by a partner’s services buyer, or maximum delay tolerated for
installing a new service in our telecom example, etc.

In general therefore, we can define the following maximization problem:

max () . . i i if x s t x C<
rr r

 (1)

where 1(, ,)KC C C=
r

K is the vector of constraints.

Next, we apply this framework to the telecommunications example. We choose to
focus on value created for each partner, since this KPI has also been studied by us for
other examples as well, see [3]. Though there are multiple ways to express value in
models, we choose a relatively simple one: each participant captures value which is
given by the sum of profits from interacting with nodes in a time interval and the

202 M. Bitsaki et al.

expected value in the next time interval. The expected value of a participant repre-
sents the effect that all its relations have upon it and depends on the expected reve-
nues of the next time period and on the expected degree of satisfaction that the par-
ticipant’s buyers have for his services.

How close is this representation of value to common practices in the marketplace?
We claim that it is very close. The value of a business entity is usually estimated as
the sum of several components, some of which are relevant to our service networks
such as the profits of a business unit over a certain period (revenues minus costs) and
the expectation of revenues over the next time period, and some of which are not
related such as savings, capital equipment, etc. Notice also that estimating revenues is
harder when a business unit is operating alone in the marketplace (its customer list
being unpredictable and volatile) as opposed to when a business entity is operating
within a network where buyers and sellers are fixed (at least for some period of time)
and where customers tend to have long term relationships with their service providers.
In such a network it is also feasible to get customers evaluations about the quality of
their providers’ services and integrate them into a “satisfaction index”. Satisfaction
index Sat in our example is a function of the service delivery time, the price p paid

by the customer for the service, the requests/hour 1n performed by agents, the number

2n of customers that withdrew in the last period and the number 3n of customers that

complained in the last period. Although we give here simple examples of dependen-
cies between the satisfaction index and the other parameters, empirical market studies
can establish more accurate relationships.

Let us now apply the above ideas to our example and formulate a simple price op-
timization problem. We assume that calculations take place within a fixed time inter-
val in which the network remains stable in number of participants. The value spV of

the service provider at the end of time interval 1[,]N NT T− as given in [3] is:

() () () ()sp N sp N sp N sp NV T R T P T v T= − + (2)

where
1

()
n

sp N i
i

R T p
=

=∑ are the revenues by setting price ip for service type i ,

1

()
m

sp N i
i

P T r
=

=∑ are the payments by setting labor rate ir for type of employee i and

(,)i Nv T Sat is the expected value due to all the relations partner ib has in 1[,]N NT T + .

(For a more detailed description see [3].)
In order to calculate value according to equation 2 we need to calculate the above

parameters. An upper bound on price p and a labor rate r are given in Service Level

Agreements (SLAs) between the service provider and the customer and the service
provider and his employees respectively. Response time t is given in SLAs as upper
bound and is calculated by the lower levels of the BPM layering stack. n and n1 are
calculated by the BPM layering stack and are used in order to calculate t . 2n and 3n

are calculated by the BPM layering stack and are given together with t and n in the
SN level in order to calculate the satisfaction and the value of the participants accord-
ing to the equation 2.

 An Architecture for Managing the Lifecycle of Business Goals for Partners 203

In order to determine price p such that the value of the service provider is maxi-

mized we solve the maximization problem given in equation 1 that is formed in the
given example as follows:

1 2 3
1 1

max () max((, (, , , ,))

. .
. .

n m

sp i i sp N
i i

SLA
SLA

V p p r v T Sat t p n n n

s t p p
s t p p

= =

⎫− +⎫⎪ ⎪⇒⎬ ⎬< ⎪⎭ ⎪< ⎭

∑ ∑r

r r
r r

 (3)

where r
r

is a function of p
r

: ()r g p=r r
 and SLAp

r
is the upper bound of the price vector

given in the SLA between the customer and the service provider. We assume that time
t is a parameter that is given to us by the analysis phase of the lifecycle described in
section 6. We then calculate the price vector that maximizes value according to that
price vector. In section 6 we will explain how this procedure enables the business
analyst to adapt a changing environment to the participants’ needs.

5 BPM Layering

From our study so far we have realized that in order to calculate KPIs and improve
the performance of the network, we need to connect SN to BPM. For example, the
response time depends on how business processes are performed and can only be
calculated based on a detailed description of the corresponding business processes.

The currently accepted Business Process Management Layers will serve as a basis
for the implementation/enactment of SNs. These different layers exhibit different
levels of abstraction and different purpose of the models involved. The introduction of
SNs as an additional layer on top of that stack has the goal of simplifying the proce-
dure of modeling business processes that achieve strategic goals and hence reducing
the gap between the business experts’ view and the IT view on business processes.
The extended BPM layering is shown in Fig. 3.

The process models layer contains process models defined in an abstract technol-
ogy-independent manner. The target user group is mainly the group of business ana-
lysts. The processes are modeled in a coarse-grained manner - the main functional
blocks are identified and connected, and no implementation details are specified here.

Fig. 3. Enhanced BPM Layering

204 M. Bitsaki et al.

This layer contains choreographies as well as orchestrations ([9], [10], [11]. The com-
position layer is the one with technology-specific definitions of process models. The
target user group is the technical analysts. Both, choreographies and orchestrations are
represented at this layer in terms of artifacts of a particular technology and refined
and enriched with implementation-specific details [12], [13].

The service layer represents the set of available services that are exposed for use by
the composition layer. The implementations of services are transparent, as well as the
platforms on which they are deployed.

6 Enhanced BPM Lifecycle

In the BPM state of the art, the different techniques and technologies focusing on
business processes are connected with each other by the BPM lifecycle, presented in
Fig. 4 on the left. It comprises six phases: analysis, modeling, IT refinement, deploy-
ment, execution and monitoring.

The analysis phase consists of the elicitation of the requirements for the business
processes. The modeling phase revolves around the design of abstract, high-level
business processes (e.g., BPMN models, abstract BPEL processes) from the require-
ments gathered during the analysis phase. The abstract business process models, while
not immediately executable, outline the overall structure of the final processes to a
level of detail suitable to humans. Often during the modeling phase there are defects
that emerge in the collected requirements. In such cases, the lifecycle reverts to the
analysis phase in order to solve the issues. Abstract business processes models are
transformed into executable process models during the IT refinement phase. The de-
ployment phase deals with deploying on the enterprise information infrastructure the
executable processes models produced in the IT refinement phase.

Once deployed, executable business process models enter the execution phase,
where they are finally run. During their execution, processes instances produce events
conveying information about executed activities, their performance, exceptions and
faults that occur, and more. The events are collected and analyzed in the monitoring
phase to adapt business process instances, measure KPIs, keep track of the overall
state of the system, capture trends and patterns in the current usage of the processes,
etc. The data processed in the monitoring phase are also taken into account in the
analysis phase of the following iteration of the BPM lifecycle, providing feedback to
evolve the business process models.

Fig. 4. The comparison between BPM lifecycle and enhanced BPM lifecycle

 An Architecture for Managing the Lifecycle of Business Goals for Partners 205

The canonical BPM lifecycle explained so far needs to be extended in order to
benefit from the SNN and the analysis methods introduced in section 4. Fig. 4 (right
side) presents the Enhanced BPM Lifecycle, obtained by adding a new phase, called
rationalization, which deals with the modeling and analysis of SNN models.

The rationalization phase produces information which is used during either the
modeling or analysis phase. We envision three ways of sequencing analysis, rationali-
zation and modeling in the enhanced BPM lifecycle: analysis–rationalization–
analysis, modeling–rationalization–analysis and analysis–rationalization–modeling.
In the analysis–rationalization–analysis sequence (Fig. 5), the requirements resulting
from the analysis phase are used in the rationalization one to create SNN models that
represent the values flows among the participants. For example, the value calculation
analysis described in section 4.1 is based on the requirements (e.g. an upper bound of
the service delivery time) obtained from the analysis phase. The results are taken into
account when modifying the abstract processes in order to maximize value. The new
information on the desired characteristics of the process are then integrated with the
previous set of requirements during another iteration of the analysis phase, during
which takes place the resolution of conflicts that may arise between the original and
new set of requirements.

In the modeling–rationalization–analysis sequence (Fig. 6), the existing abstract
process resulting from the modeling phase is transformed into an SNN model through
a BottomUp transformation. The value-maximizing analysis is then applied to the
SNN model, producing a new set of requirements (e.g. a decreased upper bound of the
service delivery time), which are integrated with the already existing ones in the up-
coming iteration of the analysis phase. By analyzing SNN models extracted from
abstract processes coming from outside the enterprise, it is possible to study the value
flows from the point of view of the adopter of the processes and, for instance, take
strategic decisions such as re-negotiate of the processes shared among participants.

Fig. 5. The analysis-rationalization-analysis sequence

Fig. 6. The modeling-rationalization-analysis sequence

206 M. Bitsaki et al.

Fig. 7. The analysis-rationalization-modeling sequence

In the analysis–rationalization–modeling sequence (Fig. 7), the requirements re-
sulting from the analysis phase are used in the rationalization phase to realize one or
more SNN models. These models are transformed into abstract process models by
applying TopDown transformations. The transformations use the correlations among
offering and revenue relations to define the boundaries of the conversations involving
the participants in the service networks.

The analysis–rationalization–modeling and modeling–rationalization–analysis se-
quences create a bond between SNN models and the abstract process models developed
during the enhanced BPM lifecycle. Revenue and offering relations connecting parties
in SNN models are translated into conversations and interactions in the abstract proc-
esses. Changes to SNN models (i.e., the removal of a revenue relation) can be mapped,
through changes in the requirements, to changes to be applied to the abstract processes.

7 Conclusions and Future Work

Currently, we are witnessing an evolution in service oriented economies that need tech-
nological means to support them. In this paper we propose an architecture to coordinate
business processes lifecycle and bridge existing gaps between technical and business
perspectives. Our approach provides an abstract way to support business processes (in
the SN level) and conversely a detailed description of the service network (in the BPM
level). Next, we aim to formulate variations of optimization problems involving differ-
ent kinds of KPIs and SLAs. The behavior of competing networks is also an open prob-
lem to be addressed possibly through means of game theoretic concepts. In this context,
as interaction among different business roles in the process of providing a service is a
key element in understanding and observing service systems, the field of game theory
becomes a useful tool for identifying rules and strategies that optimize business objec-
tives. As it was already done, all these studies have to be linked to the lifecycle man-
agement of business processes so that any progress made at the optimization level can
be exploited by the business analysts.

References

1. Verna, A.: Reconfiguring the Value Network. Journal of Business Strategy 21(4) (July-
August 2000)

2. Gordijn, J., Akkermans, H.: Designing and evaluating e-business models. IEEE Intelligent
Systems 16(4), 11–17 (2001)

 An Architecture for Managing the Lifecycle of Business Goals for Partners 207

3. Caswell, N., Feldman, S., Nikolaou, C., Sairamesh, J., Bitsaki, M., Koutras, G.D., Iacovidis,
G.: Estimating Value in Service Systems – A theory and an example. IBM Systems Jour-
nal 47(1) (2008)

4. Sampson, S.E.: Understanding Service Businesses: Applying Principles of Unified Services
Theory. Wiley Press, Chichester (2001)

5. Spohrer, J., Maglio, P., Bailey, J., Gruhl, D.: Steps Towards a Science of Service Systems.
Computer 40(1), 71–77 (2007)

6. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: a
Research Roadmap. Int. J. Cooperative Inf. Syst. 17(2), 223–255 (2008)

7. Enhanced Telecom Operations Map The Business Process Framework For The Informa-
tion and Communications Services Industry, TeleManagement Forum (2003),

 http://www.tmforum.org
8. Neely, A., Gregory, M., Platts, K.: Performance measurement system design: A literature re-

view and research agenda. International Journal of Operations & Production Manage-
ment 25(12), 1228–1263 (2005)

9. Business Process Modeling Notation (BPMN) Specification, Final Adopted Specification.
Technical report, OMG (Feburary 2006), http://www.bpmn.org/

10. Keller, G., Nüttgens, N., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grund-
lage Ereignisgesteuerter Prozessketten (EPK). Technical Report Heft 89, Universität des
Saarlandes, Veröffentlichungen des Instituts für Wirtschaftsinformatik, IWi (1992)

11. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: A Language for Service Behavior Mod-
eling. In: CoopIS, Montpellier, France (November 2006)

12. Leymann, F.: Web Services Flow Language WSFL. IBM Corporation (2001), http://
www.ibm.com/software/solutions/webservices/resources.html

13. Thatte, S.: XLANG: Web Services for Business Process Design. Microsoft Corporation (2001),
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.html

Ad-Hoc Usage of Web Services with Dynvoker

Josef Spillner, Marius Feldmann, Iris Braun, Thomas Springer,
and Alexander Schill

Dresden University of Technology, Dept. of Computer Science,
Chair for Computer Networks, 01062 Dresden, Germany

{josef.spillner,marius.feldmann,
iris.braun,thomas.springer,alexander.schill}@tu-dresden.de

Abstract. While web services are often targeted at machine-to-machine
communication, they are also increasingly used directly in the interac-
tions between humans and machines. Instead of developing specialised
client applications for the invocation of these services, a generic human-
driven ad-hoc usage is beneficial in many scenarios, including rapid
service testing and dynamic inclusion of services as plugins into applica-
tions. We argue for the need for such a usage and extract requirements
for generic web service clients. We then present a few selected use cases
and introduce the Dynvoker client which already passes the majority of
evaluation criteria. With its technical capabilities and open and vivid
development, we consider it the most suitable and flexible generic client
available and therefore highlight its role as a central component in a
user-centric web service research project.

1 Introduction

Rich and thin client applications provide a human interface to computational
functionality. In rich client applications, the interface and the functional part are
tied together, contrasting the rather loose coupling in thin clients. Some func-
tional parts are designed to allow primarily programmatic access and provide
an API over the network. Among these are Web Services, which are in most
cases self-described, stateless components. Sometimes, only an informal, textual
description of the interface exists, and the provider offers custom-made toolk-
its to foster client development. Nevertheless, there are widely used file format
specifications to describe aspects like the message syntax, operational semantics
and non-functional properties. When these descriptions are present, it is possi-
ble to call the services with generic clients by introspecting the descriptions and
deducing behavioural information.

There are several use cases where combining evolving services with existing
applications can benefit from ad-hoc usage. In applications with plugin support,
many plugins rely on a specific service interface. With automatically generated
forms to access the service, the service can evolve and be improved without
the need to transfer a new GUI component to the client. Furthermore, once a
form generator for a GUI technology has been developed, it allows the access to

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 208–219, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ad-Hoc Usage of Web Services with Dynvoker 209

all existing services without the need for cooperation from the service authors.
Even if a custom client is going to be developed, a generic client can assist in
rapid functional tests. Generic clients are also useful in mobile scenarios to avoid
development and installation of custom clients [1].

The process of generating the user interface based on various information
from the service provider and enabling an interaction between the user and
the service consists of a number of steps which are being researched in the
area of WSGUI, or Web Services Graphical User Interfaces [2]. Dynvoker, a
dynamic service explorer and invoker, is an implementation of these concepts,
generally called generic web service client or more technically WSGUI engine.
Compared to existing approaches, we contribute such a WSGUI engine which
accepts multiple web service description formats as its input and can generate
user interfaces and forms in various output formats. This design choice leads
to greater user experience by offering a higher number of services on a higher
number of devices, but also presents some challenges in handling the differences
between the formats. We will show that this design choice is superior to single-
format implementations and will outline results from practical experience with
our open-source implementation.

The structure of this paper is as follows: First, related work is evaluated, con-
centrating on run-time user-centric web service interaction tools. Afterwards, a
requirements analysis of features common to most of these approaches is per-
formed, followed by a number of features in Dynvoker which help to fulfil the
requirements. The text concludes with a brief report on process handling and
an outlook on how Dynvoker will be used in an existing research project.

2 Related Work

Generating user interfaces dynamically to access a well-defined interface or an
underlying data model has been in the focus of research for several years. Central
ideas used in UI generation for web services have been extracted from similar
fields of research and apply as well to areas such as automatic dialogue genera-
tion from the underlying configuration schema1 or inferring user interfaces from
database models [3]. However, the specific field of ad-hoc usage of web services
by automatically created UIs is only unsatisfactorily covered by research and
development projects. Though a lot of preliminary work has been invested into
this area, only a few implementations are still available. An early approach that
clearly formulated the intention to dynamically integrate web services into a user
interface has been the web service User Interface (WSUI) initiative that had the
goal to embed services as visual components into web portals. The initiative has
stopped its activities shortly after its foundation. Neither the website nor the
specification draft are still available.

A further historic approach which forms an important building block for cur-
rent projects is the original WSGUI project [4] which influenced Dynvoker in
many aspects. Besides inferring basic information about the user interfaces from
1 KXForms dialogue generation: http://www.lst.de/∼cs/kode/kxforms.html

http://www.lst.de/~cs/kode/kxforms.html

210 J. Spillner et al.

the web service it introduced the annotation format GUI Deployment Descriptor
(GUIDD)2 that enables aspects such as attaching multilanguage human-readable
labels to input or output fields. After merging inferred information and the op-
tional GUIDD data, the resulting form based screen data was transferred via
XSLT to a concrete user GUI representation.

The open source library Xydra3 can be used for ad-hoc creation of UIs for
web services. It produces XHTML files with web forms based on an inference
mechanism for WSDL and associated XML Schema. Besides describing service
annotations based on ontologies it employs a technique called TreePath to be able
to represent arbitrary XML structures as key-value pairs required by XHTML
browsers. The project development was stopped in 2003.

Further purely inference-based mechanisms are the Dynamic SOAP Portlet4

and the SOAPClient5. Whereas the first one follows a portlet concept that dy-
namically offers a UI for a generic client for web services [5], the second one
can be seen as a testing tool for web service development. It creates on-demand
a rudimentary HTML form for all operations found within a WSDL file spec-
ified by the user. There is no information available about the interior of this
application.

Some common development tools offer support for web service UI creation.
An advanced implementation is the XML Forms Generator6 available as Eclipse
plug-in. Though it does not fit into the category of ad-hoc UI generation, it
offers interesting concepts relevant for the on-demand creation process as well. It
analyses a WSDL document and enables combining derived data with an Eclipse
Modelling Framework model like an XML Schema file or a UML diagram for
providing information such as type information. The tool generates an XHTML
output with associated CSS style sheet. For REST-based interfaces described
by WADL, the NetBeans IDE7 offers a forms inference tool for testing services
during the development time.

Academic publications covering the topic of ad-hoc UI generation for web
services are rare. [6] directs a focus on dynamic creation of multimodal UIs
using XForms and VoiceXML elements generated from WSDL inference. The
transformation to concrete UI representations is based on XSLT. Though it is
pointed out that service descriptions can be imported to a system specific proxy
server for providing additional information to improve the quality of the UI,
no details about this possibility are given. Furthermore, various future research
intentions are mentioned though none of them have been realised yet. In [7],
a further system for UI generation at runtime is proposed using four different
WSDL annotation files containing UI related information. The system supports
a profile-driven adaptation to different user-clients. No arguments are provided

2 GUIDD specification: http://wsgui.berlios.de/guidd/
3 Xydra generic client: http://www.extreme.indiana.edu/xgws/xydra/
4 Dynamic SOAP Portlet: http://soap-portlet.sourceforge.net/
5 SOAPClient: http://soapclient.com/
6 XML Forms Generator: http://www.alphaworks.ibm.com/tech/xfg
7 NetBeans: http://www.netbeans.org/

http://wsgui.berlios.de/guidd/
http://www.extreme.indiana.edu/xgws/xydra/
http://soap-portlet.sourceforge.net/
http://soapclient.com/
http://www.alphaworks.ibm.com/tech/xfg
http://www.netbeans.org/

Ad-Hoc Usage of Web Services with Dynvoker 211

for the chosen system architecture. The different WSDL annotation formats are
not described in any detail beyond their overall focus.

The mentioned approaches do not offer a generic solution covering various
service interface descriptions such as WADL or WSDL at once. All of them are
bound to concrete service technologies. Furthermore, XSLT is a quite common
means to realise the transformation to concrete UI representations, although the
difficulties regarding its complexity are well-known. Only a few of the analysed
projects are still active and offer a directly testable implementation. Despite
some of them providing basic information about the overall mechanisms, they
mainly do not provide any internal details.

3 Aspects of Ad-Hoc Usage

Ad-hoc usage of simple services requires at least navigation to find the desired
service, form generation and submission as functionality. While submission is
done in the background and involves the interaction with a service, navigation
and form generation involve the user and are therefore of interest to us.

3.1 Navigation to the Service

Navigation guides the user from the expression of a goal to the input form,
which is generated automatically. After the submission of the form, the service
is invoked and the output form is rendered based on the results. All of these steps
bound together form an interaction pattern. For simple cases, the goal would be
expressed as a direct link to the service description file as shown in Fig. 1. For
more advanced cases like interacting with processes consisting of many services,
like selecting a service from a registry first before using it, a more sophisticated
interaction pattern needs to be defined. Interestingly, it could be derived from a
formal process model, too. The relationship between navigation, form generation,
submission and interaction in such an advanced case is represented in Fig. 2. It
is worth mentioning that forms can either be pure input and output forms, or be
of a hybrid nature, using previous input or output information to pre-fill parts
of the input form.

Fig. 1. Basic interaction model for ad-hoc service usage

212 J. Spillner et al.

Fig. 2. Complex interaction including search and orchestration

3.2 Form Generation

Form generation is a traditional topic in the model-driven and human factors
communities. Like most other approaches, we are focusing on the generation
itself and do not currently evaluate usability concerns, although we acknowledge
their importance for acceptance with users.

A number of individual steps have to be performed in order to achieve a suit-
able form. Among them are the creation of form elements, layout and embedding
the form into an application context like a desktop dialogue or a website.

An additional requirement for practical use is that it should be possible to
augment existing services with local hints for the graphical representation. This
does not exclude an approach which integrates such hints with the service de-
scription, but allows for a greater independence from service providers.

In summary, we have identified the following technical requirements for a
generic web service client:

– Ability to understand a variety of web service description formats, with or
without integrated hints for graphical representation

– Ability to load external graphical, textual and semantic hints
– Ability to generate user interfaces in a variety of formats, either abstract or

concrete
– Ability to define interaction models to not limit the engine to a single web

service invocation
– Complete and correct visual representation of the programmatic interface

4 Dynvoker Approach

Following the discussion of requirements, this section is presenting the features
and implementation of Dynvoker as a generic web service client. Before delv-
ing into the feature set, the overall architecture is briefly presented in Fig. 3.
Dynvoker consists of a relatively small application core which can be run as a
servlet, a web service or a command-line application. The generic handling of

Ad-Hoc Usage of Web Services with Dynvoker 213

Fig. 3. Overall architecture of Dynvoker

input, i.e. web service descriptions, and output, i.e. user interfaces, is reflected
in the modular architecture. It contains several adapters to generate forms, and
inference modules for various service description formats.

4.1 Inference from Web Service Descriptions

In order to use web services without prior knowledge of their expected input
or behaviour, it is necessary to infer this knowledge from the service descrip-
tion. Knowledge about the service methods, parameter names and structure can
usually be derived from it. We have previously reported on details and issues
of inference of user interfaces from XML Schema [8] and will therefore concen-
trate on the nature of inference from generic service description formats. The
dominant description format is WSDL 1.1, which is used mostly for method-
centric, i.e. SOAP-based services, although its successor WSDL 2.0 also contains
bindings for resource-centric, i.e. REST-based services. However, alternative for-
mats like WADL, the Web Application Description Language, exist for generic
REST-based services, and even specialised formats like OpenSearch [9] for the
specific domain of REST-based search services. Both WSDL and WADL use
XML Schema to define the structure of the messages or resource representa-
tions, whereas OpenSearch is limited to formatted query URLs for the input
and extended RDF for the output.

Dynvoker is able to infer the contents of a service, like the operations or
resources it offers, from WSDL and WADL files, and will generate output which
lets the user navigate to the service of choice and select the appropriate service.
When a WADL-described service is chosen, the service selection interaction is
extended by offering a number of resources for each method. Input and output
forms are generated based on the XML Schema. The generation architecture is
shown in Fig. 4.

Alternative service descriptions can be supported through transformations.
OpenSearch descriptions are converted to WSDL first and can then be handled
as usual without additional code. D-Bus, the dominant application-level inter-
process communication (IPC) system on Linux, provides its own IDL-like method

214 J. Spillner et al.

Fig. 4. Inference transformation process

description format which can be retrieved through service introspection. We have
implemented a bidirectional gateway between web services and D-Bus, which
works independently from Dynvoker, to prove our claim.8 Since WSDL provides
a superset of the service description abilities of D-Bus, the conversion always
works in the direction we need for Dynvoker.

4.2 Additional GUI Hints

Automatically generated user interfaces are at risk of providing inferior quality
and usability than manually designed ones, depending on the completeness of
the information in the model or any web service description. On the other hand,
a strictly rule-based design leads to consistent interfaces which can completely
encompass the service functionality and automatically adapt to evolving services,
including the alteration of message formats [10][11].

Therefore, as many aspects of the generation process as possible should be
configurable without endangering the consistency and completeness properties.
The amount of hints needed decreases with the expressiveness of the service
description format. For common WSDL-described services, Dynvoker can use
GUIDD files containing semantic hints, UI hints and UI services to improve the
resulting forms, as shown in Fig. 5.

Semantic hints are useful in combination with purely syntactical description
formats like WSDL to yield more appropriate user interfaces. For example, the
only inferable information about the password field in Fig. 7 is that it is of type
string. To avoid a free-form input field and use a special password entry field
8 D-Bus Web Service Proxy: http://techbase.kde.org/Projects/D-Bus-WS

http://techbase.kde.org/Projects/D-Bus-WS

Ad-Hoc Usage of Web Services with Dynvoker 215

Fig. 5. Information sources containing additional GUI hints

instead, a semantic hint is added and will result in password fields independent
of the output format.

UI hints include labels with translations, frame captions and substitutes for
otherwise auto-generated fields, so-called form components. As opposed to se-
mantic hints, they depend on the resulting output format. For web-based inter-
faces, style sheets can be used to give form components a consistent look and
feel. UI hints for abstract user interfaces are also possible and are discussed in
the evaluation part.

UI services represent a novel concept which lifts explicit GUI hints to a service-
oriented level. This lifting makes it possible to exchange the hints or the providers

Fig. 6. UI services and web services in dual use

216 J. Spillner et al.

Fig. 7. Hint locators in a GUIDD file applied to a SOAP message instance

of the hints, therefore driving the customisation of applications. Our implemen-
tation of UI services is based on a widget repository with query interface for
Dynvoker and a submission interface for UI widget designers as shown in Fig. 6.
A widget connector within Dynvoker searches for available widgets and renders
them into form components, aligning the further processing with UI hints. This
includes a distinction between simple and complex UI hints, the latter ones cov-
ering complex types like lists.

All of these three groups of hints are stored in the already mentioned GUIDD
files. If they are passed to Dynvoker, the generated forms can be improved. The
reusability of GUIDD files, especially in combination with reusable data schemas
in WSDL files, helps in further advancing the acceptance of SOA by eliminating
redundant client development.

In Fig. 7, the locator mechanism for interleaving GUI hints for a user man-
agement operation in the SOAP API of the Asterisk telephony server is shown.
GUIDD uses higher-level schema and instance XPath expressions which are
aligned with the reusability of schema components. In the figure, the semantic
hint for the password entry field collides with the UI service for the complex user
data type array. The use of a GUIDD editor can help avoiding such collisions.

4.3 Process Integration

Up until now we have assumed the interaction between a user and a single service
in our explications. This is not always sufficient in dynamic service landscapes
with complex interactions between humans and processes.

We have previously proposed the WSInterConnect distributed architecture to
integrate humans into processes based on interactions with Dynvoker [12]. The
industry proposal BPEL4People/WS-HumanTask was already mentioned as a
potential hook for this distributed architecture and has matured since then, but
implementations are still not widely and freely available. Major flaws of this
extension include an insufficiently specified visual representation of messages to
the user and a lack of process launching interaction. A Dynvoker-based approach
named Unified Process and Task Management Interface, or UPATMI, is currently
being developed by us to solve this problem.

Ad-Hoc Usage of Web Services with Dynvoker 217

Fig. 8. Links between service operations

Another approach is to reduce the number of interactions needed with a pro-
cess by inspecting it, essentially treating it as a grey box, whenever possible. The
Dynvoker variant GUI4CWS has proven it to work for a subset of BPEL [13].

Finally, light-weight links between service calls without the need for an exe-
cuted process were implemented as a GUIDD extension. This makes it possible
to implement interactive applications with purely declarative syntax. For ex-
ample, the list of topics in a forum as output message of the default operation
listThreads would add a link to each thread which invokes Dynvoker with the
operation getThread like shown in Fig. 8.

4.4 Status of the Resulting Implementation

Dynvoker has been developed for about two years now, entailing a number of
improvements in a still ongoing process. On the other hand, it has uncovered a
number of weaknesses in existing standards and implementations especially for
XML Schema and XForms. This section compares the current implementation
with the list of requirements, reasons about deviations and confirms the necessity
of some of the assumptions we made.

Abstract user interface languages are currently not supported, but the Dyn-
voker architecture allows the creation of new output adapters for such languages.
The resulting forms could then be displayed in applications which can render
them, or convert them for display on legacy applications. This approach can
also be followed with the existing XForms adapter by converting the output to
HTML with JavaScript. However, according to our tests, even advanced tools
like Chiba do perform this task correctly, as can be verified by anybody by select-
ing this transformation mode on the Dynvoker website. Therefore, we focused
on writing adapters for concrete UI languages, but appreciate the potential of
abstract languages.

We have not yet implemented the interaction models as executable processes
within Dynvoker. All interaction patterns are currently hard-coded. We strive
to add this in a future version based on GUI4CWS.

All the remaining requirements we have outlined are already supported by
Dynvoker. In particular, the ability to use both resource-centric and method-
centric web services contributes to hiding protocol details from the user. Addi-
tional GUI hints are supported in a way that the correctness and completeness
properties from the inference mechanism will not be violated.

A large number of services with WSDL and WADL descriptions can already
be used with Dynvoker. For those services for which a GUIDD exists, the user

218 J. Spillner et al.

experience is clearly better than for those without. We follow a live validation ap-
proach where any interested person can verify our results on the Dynvoker portal.9

5 Summary and Future Steps

Building up on previous detailed analysis of issues in ad-hoc service usage, we
have shown that Dynvoker is a viable generic client which solves many of the
issues. None of the alternative approaches can dynamically explore method-
centric and resource-centric services alike, output forms in various formats or
integrate GUI services to provide a richer user experience. The generic design
of many parts of Dynvoker has yielded a lightweight architecture which is freely
available to any interested person as an open source project.10

In the future, we expect to integrate even more process-related functionality
and add collaboration methods to the Dynvoker portal to help building com-
munities of users of explorable services. Furthermore, a major focus will be
directed to the optimisation of UI design for complex web services, especially
in the dimension of usability by solving partial aspects during a design-time
stage. Its central goal is to create a model-driven service engineering methodol-
ogy supported by design-time concepts and tools for the development of client
applications for single and composed web services. Due to the obvious fact that
some aspects such as dynamic binding of concrete services and runtime optimi-
sation are not feasible during design-time, we aim to define a runtime platform
for handling these and further runtime dynamic concerns within the ServFace
project.11

References

1. Sánchez-Nielsen, E., Mart́ın-Ruiz, S., Rodŕıguez-Pedrianes, J.: Mobile and dynamic
web services. In: Proceedings of the ECOWS 2006 Workshop on Emerging Web
Services Technology, Zurich, Switzerland (December 2006)

2. Spillner, J., Braun, I., Schill, A.: Flexible human service interfaces. In: Proceed-
ings of ICEIS. Volume HCI. International Conference on Enterprise Information
Systems (ICEIS), Funchal, Madeira - Portugal, pp. 79–85 (June 2007)

3. Bajaj, A.: Inferring the User Interface from an EER Data Schema. In: Proceed-
ings of the Americas Conference on Information Systems (AMCIS), paper 471,
Acapulco, Mexico (August 2006)

4. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 7(4), 66–73 (2003)

5. Gesser, C.E.: Uma abordagem para a integraçã dynâmica de servios web em por-
tais. Master’s thesis, Universidade Federal de Santa Catarina (2006)

6. Steele, R., Khankan, K., Dillon, T.: Mobile web service discovery and invocation
through auto-generation of abstract multimodal interface. itcc 2, 35–41 (2005)

9 Dynvoker portal: http://dynvoker.org/
10 Dynvocation research project: http://dynvocation.selfip.net/
11 ServFace website: http://www.servface.eu/

http://dynvoker.org/
http://dynvocation.selfip.net/
http://www.servface.eu/

Ad-Hoc Usage of Web Services with Dynvoker 219

7. He, J., Yen, I.L.: Adaptive user interface generation for web services. In: Proceed-
ings of the IEEE International Conference on e-Business Engineering, Hong Kong,
China (October 2007)

8. Spillner, J., Schill, A.: Analysis on inference mechanisms for schema-driven forms
generation. In: Tagungsband XML-Tage, Berlin, Germany, June 2007, pp. 113–124
(2007)

9. LeVan, R.: OpenSearch and SRU: Continuum of searching. Information Technolo-
gies and Libraries (ITAL) 25(3), 151–153 (2006)

10. Trapp, M., Schmettow, M.: Consistency in use through model based user interface
development. In: The Many Faces of Consistency in Cross-Platform Design at CHI
2006, Montréal, Québec, Canada (April 2006)

11. Nichols, J., Chau, D.H., Myers, B.A.: Demonstrating the viability of automatically
generated user interfaces. In: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 1283–1292 (2007)

12. Spillner, J., Braun, I., Schill, A.: WSInterconnect: Dynamic composition of web
services through web services. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006.
LNCS, vol. 4025. Springer, Heidelberg (2006)

13. Bleyh, N.: Analyse und Vergleich von Ansätzen zur Einbindung von menschlichen
Interaktionen in komplexe Web Services. Master’s thesis, TU Dresden (June 2006)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 220–229, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Web Services Gateway for the H2O Lightweight Grid
Computing Framework

Mauro Migliardi

CIPI – Universita’ di Genova
Via Opera Pia 13
16145 – Genoa

Italy

Abstract. H2O is a lightweight distributed component framework for the dy-
namic aggregation of software components, services and computational re-
sources into Grid Computing Systems. H2O provides a powerful separation of
roles clearly distinguishing providers of software components from provides of
computational services, this model allows developers to easily design layered
applications and to deploy them on top of dynamically aggregated computa-
tional nodes. The ease of use does not exact a weak security system, in fact, by
combining the native Java sandbox model and the use of JAAS, H2O provides a
robust security layer. Although H2O supports an extended version of Java RMI
(RMIX) as its native inter-component communication language, the software
components deployed inside an H2O virtual machine are exposed only as Java
Objects. In this paper we present the H2O Web Services Gateway, a set of H2O
software component capable of dynamically capturing the deployment of new
software components into an H2O virtual machine and automatically generating
and publishing the WSDL description of these components. This feature, com-
bined with the use of the Web Services Invocation Framework, enables the
automated export of software components deployed into an H2O virtual ma-
chine as Web Services and facilitates the integration of lightweight Grid appli-
cation into Service Oriented Architectures.

Keywords: Grid-Computing, Web Services, Service Oriented Architecture,
Software Components Frameworks.

1 Introduction

H2O is a lightweight distributed component framework for the dynamic aggregation
of software components, services and computational resources into Grid Computing
Systems [1][2][3][4]. H2O provides a powerful separation of roles clearly distinguish-
ing providers of software components from providers of computational services; this
model allows developers to easily design layered applications and to deploy them
on top of dynamically aggregated computational nodes. The ease of use does
not imply a weak security system, in fact, by combining the native Java sandbox model
and the use of JAAS [5], H2O provides a robust security layer. H2O supports an extended

 A Web Services Gateway for the H2O Lightweight Grid Computing Framework 221

version of Java RMI (RMIX [4][6]) as its native inter-component communication
language. This technology implements a powerful pluggable mechanism that allows
transporting an almost complete set of Java RMI call semantics on top of an extensi-
ble set of transport protocols. The RMIX included in the standard H2O distribution
supports transport protocols such as Java RMI and SOAP. However, while this plug-
gability allows using RMI style programming on top of heterogeneous protocols,
H2O currently provides mostly client side modules, thus the software components
deployed inside an H2O virtual machine are still exposed only as local or remote Java
Objects. Furthermore, while H2O is designed to be easily extended with resource moni-
toring facilities both local to each node and spread over distributed virtual machines [1],
the standard H2O distribution does not include any form of resource monitoring service,
thus it is not possible to automatically discover and manage new services.

In this paper we present the H2O Web Services Gateway, a set of H2O software
component capable of dynamically capturing the deployment of new software com-
ponents into an H2O virtual machine and automatically generating and publishing
the WSDL description of these components. This feature allows using standard
Web Services client side invocation semantics and software, such as the Web Ser-
vices Invocation Framework [7], to access software components deployed into an
H2O virtual machine. Thus the H2O Web Service Gateway enables the automated
export of software components deployed into an H2O virtual machine as Web Ser-
vices and facilitates the integration of lightweight Grid application into Service
Oriented Architectures.

This paper is structured as follows, in section 2 we provide a brief description of
the H2O framework, its main characteristiques and the capabilities of its native inter-
component communication protocol RMIX; in section 3 we describe the software
components that combine into the Web Services Gateway; finally, in section 4 we
provide some concluding remarks.

2 The Framework

In this section we provide a brief introduction to the H2O framework and RMIX, its
native inter-component communication protocol. The description provided in this paper
is extremely introductory any further detail can be found in [1], [2], [3], [4] and [6].

2.1 H2O

H2O is a Meta-computing project designed and developed at the Distributed Comput-
ing Laboratory of the Emory University of Atlanta.

It takes origin from the HARNESS [8] project developed in the end of 1990s in the
same laboratory. H2O is a Java-based middleware implementing the concept of ser-
vices container in a totally distributed way. H2O is designed to provide support to the
plug-in based distributed virtual machine model first described by the HARNESS
system [9]. H2O is explicitly designed to be a secure, scalable, stateless, and light-
weight middleware for distributed applications. Conceptually, H2O is a distributed

222 M. Migliardi

Fig. 1. Layered Architecture of the H2O Framework

component framework [10], however it distances itself from mainstream technologies
and frameworks such as J2EE [11] as it removes the static binding between service
deployment/deployer and resource provision/provider. The services deployment can
be done by any third part or client, and it is clearly not required that it is performed by
the resource owner. Hence, resource sharing and grid computing systems can be built
up using H2O in a very lightweight fashion.

H2O provides Java APIs for remote component deployment and management, and
inter-component communication. H2O components can communicate via remote
method invocations (both synchronous and asynchronous), and through a publisher-
subscriber distributed event model. The protocol-related communication aspects are
cleanly separated from the application code, making development of secure, distrib-
uted applications simple and efficient. With H2O it is possible to build Grid and Par-
allel application using Java language avoiding completely the adoption of classical
parallel programming paradigm as MPI or PVM. Even if the framework does not
provide any explicit support with parallel libraries, the set of communication proto-
cols together with deployment and management capabilities provided by the platform
make easy to deploy Grid application. Moreover, the administrative management of
the whole distributed infrastructure is totally equivalent to a common Java applica-
tion. H2O may support wide range of distributed programming paradigms, including
self-organizing applications, widely distributed applications, massively parallel appli-
cations, task farms, component composition frameworks, and more [12][13]. H2O
simplifies security ensuring the safety of shared resources and that of users data via
the well-established technologies like SSL, JSSE [14] for data transmission and JAAS
for users authentication.

In Figure 1 is shown how H2O service components can be layered into different
logical programming environments.

 A Web Services Gateway for the H2O Lightweight Grid Computing Framework 223

Fig. 2. The RMIX Architecture

2.2 RMIX

RMIX derives from the need to allow interaction among frame work adopting differ-
ent communication protocols. Most solutions require protocol homogeneity at the
endpoints, while one of the main goals of the H2O framework is to allow the dynamic
enrolment of heterogeneous resources. The proposed solution is RMIX (whose name
stands for RMI eXtended), a flexible framework for the unification of remote method
invocation technologies [6].

The RMIX model allows selecting the underlying transportation protocol at run-
time (see Figure 2). This live selection, based on Java dynamic linking capabilities, has
to be supported by providing a jar file containing all the classes needed. The runtime
selection capability allows removing any dependency from a specific protocol imple-
mentation and provides hot-plug extensibility.

The design requirements of RMIX are:

• The call semantics should be simple enough to be supported by simple and
straightforward protocols;

• Nonetheless, the call semantics should allow the clients to take advantage of the
full power of the H2O framework in a simple way;

• It should be possible to port existing protocols to RMIX without extensive
modifications.

These requirements are not simple to be fulfilled. However, RMIX has taken advan-
tage of the fact that Java RMI already provides a significant unification of the charac-
teristics of most present RPC/RMI protocols. These unified characteristics are:

• The clients use stubs or proxies to access remote objects;
• The stubs or proxies implement the same interface that is exposed by the remote

object;
• There is a base interface that provides the facilities needed to setup and tear down

the communication path;
• The event of remote errors is signaled by some container exception;
• The parameter passing semantics are forced by the absence of a common address

space.

These common characteristics form the core semantics of any RMIX call while the spe-
cifics of serialization and other features such as endpoint replication and distributed iden-
tity are delegated to the implementation of providers of single transport protocols [4].

224 M. Migliardi

3 The Web Services Gateway

As we described in previous section, H2O is a very powerful and extensible platform for
the assembly of distributed application on top of a lightweight grid infrastructure and
RMIX provides an extensible mechanism to access software components. However, in
its standard distribution H2O lacks some fundamental features to enable integrating its
dynamic capabilities into a full fledged Service Oriented Architecture. First, there is no
monitoring facility; the framework provides the basic services to build a distributed
monitoring system but none is readily available. Second, while RMIX is extensible and
a SOAP provider is part of the standard distribution, there is no readily available service
capable of automatically exposing H2O pluglets as Web Services.

In this section we will describe the components of the H2O Web Services Gateway
and we will show how they fill the above mentioned gaps between H2O and a full
fledged Service Oriented Architecture.

3.1 The RMIX Binding

The first component of the Web Services Gateway is a new WSDL binding dedicated
to RMIX and the implementation of the Java classes needed to automatically generate
the WSDL document from the Java pluglet interface. To achieve our goal we lever-
aged the WSDL4J [15] open source package and the org.w3c.dom Java package. The
first step is the definition of a set of extension elements suitable to provide a complete
description of RMIX while avoiding the adoption of an already made but restrictive
one such as the one available for SOAP. These extensions will be realized as Java
classes implementing the ExtensibilityElement interface defined by WSDL4J.

To define the extension elements it is necessary to associate a namespace to the
RMIX binding. We chose to follow the standard format and we defined the name-
space as shown below:

<definitions

xmlns:rmix=http://schemas.xmlsoap.org/wsdl/rmix/

... />

Obviously, at present the URL does not correspond to any actual schema. However, we
chose to follow this convention to foster future standardization of the RMIX binding.

Next step consists of the actual implementation of the Java Classes.
A first group is composed by:

1. RmixAddress
2. RmixBinding
3. RmixOperation.

These classes have to implement the ExtensibilityElement interface in order to be part
of a Definition object. Definition is the class that WSDL4J uses to objectify a com-
plete WSDL document.

A second group is composed by:

4. RmixBindingSerializer
5. RmixBindingConstants.

 A Web Services Gateway for the H2O Lightweight Grid Computing Framework 225

RmixBindingSerializer implements both the ExtensionSerializer and the ExtensionDe-
serializer interfaces as defined by WSDL4J. This class provides the capability to mar-
shal and un-marshal the ExtensibilityElements part of the previous group of classes.

Finally, RmixBindingConstants is a simple container class that collects all the con-
stants needed to complete the definition of the RMIX binding.

The classes in the first group, namely RmixAddress, RmixBinding and
RmixOperation, define the elements that plugs in the binding and address sections of
the WSDL document. More in detail, the binding section is as follows:

<wsdl:binding name="RMIXBinding"
type="tns:NomePortType">

<rmix:binding style="transparent"/>

<format:typeMapping encoding="..." style="...">

<format:typeMap typeName="..." formatType="..." />

</format:typeMapping>

<wsdl:operation name="kernelInfo">

<rmix:operation

methodName="..."

methodType="..."

parameterOrder="..."

returnPart="..."/>

<wsdl:input name="...">

</wsdl:input>

<wsdl:output name="...">

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

While the address section is as follows:

<wsdl:service>

<wsdl:port name="..." binding="tns:RMIXBinding">

<rmix:address plugletURI="..."/>

</wsdl:port>

</wsdl:service>

Besides the similarities that our mapping shows with the JavaObject binding as
defined by WSIF, it is important to notice the presence of the format:typeMapping
element. This element is not part of WSDL4J (although it is supported as an Extensi-
bilityElement). On the contrary it is part of the WSIF framework and it is used by

226 M. Migliardi

WSIF on the client side to allow direct mapping of Java types used by H2O to and
from WSDL types, without an explicit and extensive types section of the binding.

In the address section it is important to notice the presence inside the port element
of the ExtensibilityElement rmix:address. This element defines the attribute
plugletURI that defines the invocation address of the H2O pluglet that the WSDL
document exposes as a Web Service.

RmixBinding and RmixOperation are ExtensibilityElements of the binding section
while, as mentioned above, RmixAddress is an ExtensibilityElement of the address
section.

The structure of these classes is rather homogeneous. They all define the fields re-
lated to the WSDL document and the fields related to their interface with getter and
setter methods. The class RmixOperation does not define a way to build the QName
(qualified name) as a matter of fact the QName is generated automatically using the
constants values defined in the RmixConstants class.

The RmixBindingSerializer class is used to marshal (and un-marshal) Java inter-
faces. Its structure has three main parts dedicated to three specific tasks:

1. marshalling
2. unmarshalling
3. registering the serializer.

This class leverages the standard WSDL4J DOMUtils class. More in details, the mar-
shalling task makes heavy use of the printAttribute method. The actual operation
starts analyzing the ExtensibilityElement to check if it is an instance of the Rmix-
Binding class or of the RmixOperation class or of the RmixAddress class. Once the
exact type has been identified, the code selects the specific attributes as defined by the
different classes and serializes them by means of the PrintWriter associated with the
Definition object.

The un-marshalling task reverses the operations described above and fills up the at-
tributes according to the values contained in the document.

Finally, the registerSerializer task consists of the instantiation of a QName object
corresponding to the element (e.g. rmix:binding), then of the declaration that the class
RmixBindingSerializer provides marshalling and un-marsalling facilities for objects of
the type identified by the QName.

The following Java code snippet shows the actual task implementation:

public void registerSerializer(ExtensionRegistry
registry) {

registry.registerSerializer(javax.wsdl.Binding.class,
RmixBindingConstants.Q_ELEM_RMIX_BINDING, this);

registry.registerDeserializer(javax.wsdl.Binding.class,
RmixBindingConstants.Q_ELEM_RMIX_BINDING, this);

registry.mapExtensionTypes(javax.wsdl.Binding.class,
RmixBindingConstants.Q_ELEM_RMIX_BINDING,
RmixBinding.class);

The code may be used to generate WSDL documents that contains elements of type
rmix:binding, rmix:operation, rmix:address.

 A Web Services Gateway for the H2O Lightweight Grid Computing Framework 227

3.2 The Monitoring Pluglet

In the previous section we described the process used to generate a WSDL document
capable of representing the interface exposed by an H2O software component (a
pluglet) so that it may be automatically exported as a Web Service. In this section we
show how we implemented a pluglet capable of monitoring the set of services de-
ployed onto an H2O node. The deployment of a pluglet generates an H2O event that
our pluglet is capable of capturing. Once the deployment has been detected, our moni-
toring pluglet extracts from the new service its URI (needed to set the value of the
rmix:address attribute) and the path to the jar archive containing its code. The code of
the new service is then analyzed using Java reflections to capture the functional inter-
face of the new service so that newly deployed services can be automatically proc-
essed to produce their WSDL description.

The actual development of this monitoring pluglet requires three classes:

• The interface MonPluglet;
• The implementation MonPlugletImpl;
• A client to deploy, initialize and start the pluglet in an H2O kernel.

The default security policy enforced by H2O sandboxes each pluglet inside an en-
vironment independent from any other pluglet. In order to allow the monitoring
pluglet collect information about other pluglets we had to set a special security policy
for it. More in details we had to add to the Policy.xml file that defines the H2O kernel
security policy the following lines:

<grant
codebase="${h2o.service.base.url}/prove/MonPluglet.jar">

<permission type="java.security.AllPermission"/>

</grant>

This grants to our pluglet the right to investigate the whole H2O kernel state in-
stead of sanitizing it in its own sandbox.

The initialization of the monitoring pluglet instantiates two objects implementing
the interfaces DeployListener and PlugletStateListener. These interfaces are defined
by H2O that uses them to allow user implemented objects to receive notifications of
internal kernel events.

The first interface defines a method:

plugletDeployed(DeployEvent evt)

This method is a callback that the kernel invokes to notify every object of type De-
ployListener that a new pluglet has been deployed inside the kernel; the monitoring
pluglet uses this callback to capture the events of new services deployment. However,
it is not sufficient to capture this kind of events. In fact, a newly deployed pluglet is
not accessible as a service provider and it is not possible to connect to a pluglet until it
has reached the lifecycle state ACTIVE.

Thus, it is necessary for the monitoring pluglet to be aware not only of deployment
events, but also of changes in the other pluglets lifecycle state. We implemented this
feature leveraging the other Listener interface defined by H2O, the PlugletStateListener.

228 M. Migliardi

Table 1. Java to WSDL elements correspondence

Pluglet WSDL Definition
Interface portType
Method Operation (rmixOperation,

bindingOperation)
Input parameters parameterOrder in rmixOperation

Return value returnPart in rmixOperation

This interface defines a method:

Changed(PlugletStateEvent evt)

This method is a callback; the kernel invokes it on every object implementing the
PlugletStateListener interface every time a pluglet makes a transition in its lifecycle.
The monitoring pluglet traces all the PlugletStateEvents: as soon as a pluglet reaches
the ACTIVE state, it connects to this pluglet (the exact details of the connection to the
pluglet are out of the scope of this paper) and analyzes it and its code to extract the
information required to generate the WSDL document.

Once the connection to the deployed pluglet is made, we obtain the functional in-
terface of the service offered by it by means of Java reflection. More in details, we
use the correspondences we show in table 1.

Once the WSDL document has been generated according to the rules described in
the previous section, the monitoring pluglet publishes it.

At present, the H2O Web Services Gateway neither implements a full fledged
UDDI server nor is capable of interacting with an external one. The current solution
for WSDL services description publication is limited to insertion in a jetty based web
site. In future developments, we plan to extend the H2O Web Services Gateway with
full UDDI compliance.

4 Conclusions

In this paper we have presented the H2O Web Services Gateway, a set of H2O soft-
ware components capable of dynamically capturing the deployment of new software
components into an H2O virtual machine and automatically generating and publishing
the WSDL description of these components.

The H2O Web Services Gateway is composed by three main parts: i) the monitor-
ing pluglet, ii) the Java2WSDL_Rmix service and iii) the WSDL publisher. Currently,
there are two main limitations in our Web Services Gateway. First, the
Java2WSDL_Rmix generator does not support the complete RMIX serialization se-
mantics. Second, the WSDL publisher is a simple http server that allows clients to
simply retrieve the WSDL description of the software components deployed inside an
H2O virtual machine. In future versions we plan to extend the capabilities of the
Java2WSDL_Rmix generator to achieve complete compatibility with RMIX. Fur-
thermore, we plan to leverage the UDDI4J package to integrate inside the H2O Web
Services Gateway the capability to interact with a full fledged UDDI server to achieve
full compliance with Web Services standards.

 A Web Services Gateway for the H2O Lightweight Grid Computing Framework 229

Even with its current limitations, The H2O Web Service Gateway represents a sig-
nificant extension to the H2O framework as it allows using standard Web Services
client side invocation semantics and software, such as the Web Services Invocation
Framework [16], to access software components deployed into an H2O virtual ma-
chine. A software developer can leverage the H2O Web Service Gateway to enable
the automated export of software components deployed into an H2O virtual machine
as Web Services. Thus, it is possible to easily integrate lightweight Grid application
into Service Oriented Architectures.

References

[1] Migliardi, M., Kurzyniec, D., Sunderam, V.: Standard Based Heterogeneous Metacomput-
ing: The Design of HARNESS II. In: Proc. of the Heterogeneous Computing Workshop part
of the International Parallel Distributed Processing Symposium 2002, Fort Lauderdale (FL),
April 15-19 (2002)

[2] Sunderam, V., Kurzyniec, D.: Lightweight self-organizing frameworks for metacomputing.
In: The 11th International Symposium on High Performance Distributed Computing, Edin-
burgh, Scotland (July 2002)

[3] H2O Project, home page, http://dcl.mathcs.emory.edu/h2o/
[4] Kurzyniec, D.: Towards lightweight and reconfigurable resource sharing frameworks, Ph.D.

Thesis, Atlanta (GA), February 21 (2007)
[5] Sun Microsystems Inc., Java SE Security,
 http://java.sun.com/javase/technologies/security/

[6] Kurzyniec, D., Wrzosek, T., Sunderam, V.S., Slominski, A.: RMIX: A Multiprotocol RMI
Framework for Java. In: Proc. of the International Parallel Distributed Processing Sympo-
sium 2003, Nice, France, April 22-26 (2003)

[7] AA.VV. Web Services Invocation Framework, http://www.ws/apache.org/wsif
[8] Migliardi, M., Sunderam, V.: The Harness metacomputing framework. In: Proceedings of

the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio
(TX), USA, March 22-24 (1999)

[9] Migliardi, M., Sunderam, V.: Plug-ins, Layered Services and Behavioral Objects: Applica-
tion Programming Styles in the Harness Metacomputing System. Future Generation Com-
puter Systems 17(6), 795–811 (2001)

[10] Kurzyniec, D., Wrzosek, T., Drzewiecki, D., Sunderam, V.: Towards self-organizing dis-
tributed computing frameworks: The H2O approach. Parallel Processing Letters 13(2), 273–
290 (2003)

[11] Sun Microsystems Inc., JavaTM 2 Platform Enterprise Edition Specification, v1.4,
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

[12] Kurzyniec, D., Sunderam, V.: Combining FT-MPI with H2O: Fault-tolerant MPI across
administrative boundaries. In: Proceedings of the 14th Heterogeneous Computing Work-
shop (2005)

[13] Kurzyniec, D., Hwang, P., Sunderam, V.: Failure resilient heterogeneous parallel computing
across multidomain clusters. International Journal of High Performance Computing Appli-
cations (IJHPCA) (2005); Special Issue: Best Papers of EuroPVM/MPI 2004

[14] Sun Microsystems Inc., Java Secure Socket Extension (JSSE),
 http://java.sun.com/products/jsse/

[15] AA. VV. Web Services Description Language for Java,
 http://sourceforge.net/projects/wsdl4j

A Flexible and Extensible Architecture for
Device-Level Service Deployment

Thomas Frenken1, Patrik Spiess1, and Jürgen Anke2

1 SAP Research CEC Karlsruhe, Vincenz-Prießnitz-Straße 1, Karlsruhe, Germany
mail@thomasfrenken.de, patrik.spiess@sap.com

2 ubigrate GmbH
juergen.anke@ubigrate.com

Abstract. Integration of functionality and information from the Inter-
net of Things (IoT) into the Internet of Services (IoS) is highly desirable
but a complex endeavour. One hard to realize aspect is the remote de-
ployment and configuration of services. While this has become common-
place in the business back-end, it is still a topic of research for networked
embedded systems, mainly due to great heterogeneity. In this paper, we
focus on remote management issues and propose a flexible and extensi-
ble architecture for systems performing deployment and configuration of
services. The architecture is mainly targeted at environments compris-
ing a large number of networked embedded devices, therefore integrating
them effectively with the IoS. The key method of dealing with the ob-
served heterogeneity is the dynamic exchange of algorithms (strategies)
for steps of a common deployment process during runtime by config-
uration. Further on, we present an implementation of the architecture
within the domain of future manufacturing.

Keywords: Service-Oriented Architecture (SOA), Internet of Things
(IoT), Internet of Services (IoS), Service Deployment and Configuration,
Deployment Planning and Execution, SOCRADES.

1 Introduction

Today, enterprises are moving more and more towards service-oriented archi-
tectures (SOA) composing applications and business processes by dynamically
combining services. The application of the SOA paradigm to the whole internet
leads to an Internet of Services (IoS). The key technology used for the realiza-
tion of the services is web services (WS) based on the SOAP protocol. However,
the IoS vision currently mainly includes services from the enterprise level. An-
other important trend, which is meant to shape the way business is handled in
the future, is the Internet of Things (IoT). The IoT comprises millions of net-
worked embedded devices also called smart items [1]. These devices are capable
of collecting information about themselves, their environment, and associated
devices and communicate this information to other devices and systems via the
all-connecting internet. Many of them feature significant local computational

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 230–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Flexible and Extensible Architecture for Device-Level Service Deployment 231

power, allowing for dynamic configuration, installation, or execution of code.
We summarize all these devices under the notion of smart devices.

The integration of information from the IoT into the IoS on the enterprise level
has many advantages, e.g. be the replacement of manual keyboard entry with
sensed location and state information of assets. Integration works efficiently if the
smart devices expose their functionality as services (e.g. as WS). More powerful
devices may host them internally, while for simpler devices encapsulation and
abstraction through web service proxies is possible [2]. However, services will
always be handled differently at enterprise and device level since device-level
services are e.g. more fine-grained, focused on technology, and cannot guarantee
high reliability. Additionally, systems at the device level are much more hetero-
geneous than at the enterprise level and lack universal communication standards.

In a dynamic service environment like the IoS remote deployment and config-
uration of services is essential. Although commonplace on the enterprise level,
these functions are still a topic of research on the device level, where they are
required for an effective integration of IoT and IoS.

The objective of the research project SOCRADES1 is to develop an architec-
ture for next-generation industrial automation systems. By integrating future
manufacturing services with services from all corporate functions via SOA, more
flexible processes with high information visibility will emerge. This includes WS
hosted on smart devices within the IoT of manufacturing [3]. This work is part of
a middleware developed in SOCRADES, which helps to overcome the differences
between the service levels.

Within this paper we analyse the requirements for deployment and configura-
tion of services for large populations of smart devices like the IoT and propose a
high-level architecture for this purpose. The architecture is designed to be flex-
ible enough for very heterogeneous environments and to be extensible to future
scenarios and other application domains. It summarizes experiences gained dur-
ing the implementation of deployment and configuration within the SOCRADES
middleware, which has been used to perform these operations on simulated and
physical devices in the scope of a set of future manufacturing scenarios. We de-
scribe implementation details, focussing on deployment planning and how we
addressed the expected heterogeneity by following the strategy design pattern.
The metrics used for selecting strategies are illustrated using a short sample sce-
nario. A GUI, the Deployment Cockpit, is presented to supervise the deployment
process and to visualize existing devices and services.

2 Related Work

Deployment and configuration of a distributed application’s components is a
challenging task even at the enterprise level. Deployment refers to the process
1 http://www.socrades.eu (8 July 2008). The authors would like to thank the Eu-

ropean Commission and the partners of the European IST FP6 project Service-
Oriented Cross-layer infRAstructure for Distributed smart Embedded devices for
their support.

http://www.socrades.eu

232 T. Frenken, P. Spiess, and J. Anke

between acquisition of software and its deprecation. Deployment planning, also
called distribution planning or matchmaking, makes the decisions on how the
software will be deployed onto the targeted distributed execution infrastructure
[4]. The output of the deployment planning is a deployment plan whose exe-
cution leads to a certain deployment architecture. Configuration is the task of
controlling and adapting a system’s behaviour and deployment architecture to
changed circumstances after it has been deployed.

Due to missing standards, many ad-hoc solutions for deployment and config-
uration of distributed applications have been developed. Frameworks like pre-
sented in [5] and [6] try to identify common functionality and standardize the de-
velopment. A well known specification from the deployment domain is the OMG
Deployment & Configuration (OMG D&C) [4] specification. It has been adopted
and enhanced several times (e.g. in [5] and [7]). The architecture presented in
this paper is more flexible than previous approaches since implementations for
each step of the deployment process may be exchanged for each deployment job
executed.

Deployment planning is an important operation within the deployment pro-
cess and may influence a system’s availability significantly. The general problem
of deployment planning can be classified as a discrete, multi-objective, combi-
natorial optimization problem with constraints [8]. Therefore, finding a solution
to the general deployment planning problem is most of the time NP-hard [9].
Several algorithms (e.g. [8],[9],[10],[11],[12],[13]) for deployment planning have
been presented. Within this paper we present three algorithms for deployment
planning which are adjustable to very heterogeneous deployment objectives.

Amongst others, information about target sites’ capabilities and components’
requirements is required for deployment planning. Available information is often
very heterogeneous and sparse and many description formats are available. While
in the past mostly key-value-pairs (properties) have been used for describing
this information (e.g. [14]), there is a clear trend towards semantically enhanced
description formats like the Ontology Web Language (OWL) organized according
to various ontologies (like e.g. in [15] according to the FIPA Device Ontology2).
While matching properties within the deployment planning is fast but inflexible,
processing ontologies and reasoning over them is often more resource-consuming.
It may not be expected that vendors will agree on using only one ontology
[15]. The architecture presented within this paper is explicitly designed to be
independent of any specific description format or ontology.

3 Requirements for Deployment and Configuration
within the IoT

The following use cases have to be supported by a system for deployment and
configuration. Service Creation is the first step within a common deployment
process and includes implementing or composing a service as well as describing

2 http://www.fipa.org/specs/fipa00091/PC00091A.html (10 July 2008)

http://www.fipa.org/specs/fipa00091/PC00091A.html

A Flexible and Extensible Architecture for Device-Level Service Deployment 233

additional metadata. Service Publication in modern SOAs is done within a
registry repository and may involve validating services syntactically and semanti-
cally according to ruling guidelines (which are set up within a service governance
process). Service Updating may become necessary for long-living services and
might also include versioning of a service (or fragments of it). Service Query-
ing allows to find published services and might be done using common query
languages like SQL or XQuery, but also by semantic querying which involves
reasoning over stored information. Decisions on where (i.e. into which execution
containers) to deploy services may be done manually by a system architect or
automatically in complex cases. Service (Re)Mapping decides automatically
which services have to be available on which devices in order to execute cer-
tain business processes. Especially within the dynamic IoT, existing mappings
may become disadvantageous or ill-suited (e.g. due to disappearing devices). In
such cases existing deployment plans have to be (re)configured. Service De-
ployment Execution first translates general decisions of generated deploy-
ment plans into concrete actions to perform, and then executes these actions
by sending suitable commands to targeted devices. Service Monitoring refers
to collecting information about devices and service instances by either actively
monitoring these or through receiving suitable events. The collected information
is used during deployment planning and in order to detect possibly ill-suited
deployment plans. Service (De)Activation can speed up deployment by de-
activating currently unused service instances instead of uninstalling them. Later
(re)activation may be faster than reinstallation and saves network traffic. Some
additional functionality like Service Instance Discovery, Service Instance Query-
ing, and Service Instance Selection is required in order to enable business process
execution in dynamic environments. However, dynamic business process execu-
tion is out of the scope of this paper but is nevertheless supported partially by
the architecture presented within this paper.

Additionally, a system for deployment and configuration within the IoT has
to provide means to deal with a high degree of heterogeneity in three dimen-
sions: services, devices, and deployment objectives. Services and devices
are heterogeneous in many aspects especially because they are produced by a
huge number of different vendors. Devices have different capabilities and are not
equally capable of describing these. Available information is most of the time
sparse and heterogeneous and is often delivered in different description formats.
Devices capable of dynamically hosting services may have different deployment
platforms, formats of deployable units, and communication protocols. Services
may be described in different formats and different granularity. Deployable ser-
vices may have implementations for multiple deployment platforms and may
thus include arbitrary content (e.g. executable code, additional programming
libraries, or sets of rules). The third dimension of heterogeneity are deployment
objectives. A deployment job can either instruct the deployment system to com-
pute a new deployment plan or to configure or revert an existing one. Further
on, within each deployment objective category different requirements may be
defined. For an initial deployment e.g. one might specify to either perform a

234 T. Frenken, P. Spiess, and J. Anke

dedicated deployment of a services to a given set of devices or to automatically
generate a deployment plan listing only the services to map.

4 Proposed Architecture

The proposed high-level architecture for deployment and configuration systems
contains components providing the required functionality while respecting the
expected heterogeneity. Therefore, it is especially targeted to environments com-
posed of large number of smart devices and is aligned to lessons learned during
the implementation of deployment and configuration within the SOCRADES
middleware. The main objective is to guide the design of systems for deployment
and configuration and to enable an effective integration of the IoT into the IoS.

Fig. 1. High-Level Architecture for Deployment and Configuration

Figure 1 shows the proposed high-level architecture. Information required for
deployment is delivered by (external system) users and by Platforms hosted on
devices. The User Input component summarizes all information provided by
(external) actors to the system e.g. by providing information about services or
submitting deployment jobs. The Monitor monitors the nodes available within
the Platform and provides information about devices and service instances de-
ployed on those. In order to be able to deal with various existing platforms,
each Monitor consists of a platform-independent part and a platform-dependent
one. The latter hooks into the platform in order to retrieve information using
platform-specific commands and protocols. Information provided by the Monitor
and the User Input construct the System State, which contains, amongst oth-
ers, all information about devices, interconnections, and services the architecture

A Flexible and Extensible Architecture for Device-Level Service Deployment 235

is aware of. The Mapper utilizes this information while performing deployment
planning. The work process of the Mapper is guided by the Strategy, which
decides about concrete implementations (strategies) to use for each step of the
deployment process. The Injector is responsible for deployment execution which
affects the Platform respectively the nodes within it. The Injector utilizes strate-
gies to adapt its work process and consists very much like the Monitor of a
platform-dependent and a platform-independent part.

The most important mean to deal with the expected heterogeneity are strate-
gies. Strategies (as in design patterns) are exchangeable implementations for
the most important steps performed within the deployment process. Which im-
plementation to use for the steps of each single deployment job executed, is
decided by the Strategy. The Strategy decides by considering user requirements
(e.g. Quality-of-Service (QoS) criteria regarding the corresponding business pro-
cesses) defined within deployment jobs, global system goals, and the System
State. By using strategies, the architecture is able to address heterogeneity in
the three dimensions mentioned in the last section.

5 Concrete Implementation

The implementation of deployment and configuration within the SOCRADES
middleware was successfully used to realize a set of lab demonstrators for rep-
resentative scenarios from the future manufacturing domain involving dynamic
deployment and configuration of services on simulated as well as on physical de-
vices. The implementation also contains a set of strategies for the various steps
of the deployment process, a deployment platform, and a GUI (figure 3 (a)) for
visualizing the system state as a graph and supervising the deployment process.
The GUI may additionally be used to perform dynamic invocation of discovered
service instances in order to simulate dynamic business process execution.

5.1 Implemented Strategies

The overall work flow of deployment planning and execution in SOCRADES
is shown in figure 2. As already proposed in [10], we explicitly separated the
deployment planning phase into two steps in order to be more flexible. Within
the first step (node selection), suitable devices for services are selected, the sec-
ond step (matchmaking) allocates services to devices. The input to the node
selection step is the relevant system state, which is mainly comprised of all cur-
rently active devices, the topology of the systems (i.e. physical, network, and
logical interconnects between devices), and the services to be mapped. The node
selection strategies selected by the Strategy component interpret the given in-
formation (device capabilities and service requirements in one of an extensible
list of description formats) and mark all devices with the IDs of services they
are currently suitable for. This enriched system state is the input to the match-
making step which then computes an assignment of n services to k devices that
optimizes the goals defined while respecting given constraints. These constraints

236 T. Frenken, P. Spiess, and J. Anke

Fig. 2. Workflow Deployment Planning and Execution

are dynamic requirements of services upon devices and dependencies of services
amongst each other (currently, description of dynamic constraints is limited to
using properties). The output of the matchmaking step is a deployment plan
that defines which services (and the number of these) shall be made available on
which device.

Within this section we focus on the strategies implemented for the steps node
selection and matchmaking. For the node selection step, currently two strategies
are available, which leverage the advantages of different description formats. The
first strategy is called Property Expressions. In order to utilize this strategy,
device capabilities and service requirements have to be described as properties.
For each requirement, services add an operator (e.g. contains or ≤) in front of
their required value (e.g. a string or an integer). By combining the values of
matching keys, an expression is formed which may either be evaluated to true
or false. The Property Expressions strategy works very efficiently, but device
and service providers need to agree on the keys to use a priori (or an additional
matching list needs to be configured). As a second strategy for this step we im-
plemented Semantic Linking, which utilizes ontological descriptions of devices
and services written in OWL. During runtime, ontologies (created by vendors)
describing devices and services are dynamically linked and a reasoner is used to
proof a statement telling if the device is suitable or not. Although we provide
a general base ontology, neither device nor service ontologies need to be based
on it. The Semantic Linking strategy is extremely flexible in matching device
capabilities and service requirements with the disadvantage of higher complexity
in memory and time for linking the ontologies and performing the reasoning.

The first strategy available for the matchmaking step is called Best Fit De-
creasing Network (BFDN). It is based on the idea of the Best Fit Decreasing
(BFD) algorithm from the bin-packing domain. We modified the original algo-
rithm in order to be suitable for deployment planning within the IoT e.g. by
sorting devices and services according to separate, prioritized lists of properties
and by exchangeable optimization goals. When matching n services to k devices,
BFDN’s worst case complexity is O(n· k), it is deterministic and neither complete
nor optimal. The second strategy is called Probabilistic Network (ProbN).
ProbN (algorithm 1) performs repeated search, starting each search with a

A Flexible and Extensible Architecture for Device-Level Service Deployment 237

random device within the search space and accepts that invalid solutions may be
found. This Monte-Carlo based approach allows to search for solutions in differ-
ent regions of the search space. The selection of devices is guided by a heuristic.
First the device the last service was assigned to is chosen, next neighbouring
devices are evaluated, and the last choice is a random device. ProbN may be
configured to repeat the search up to a given number of iterations or to stop
searching after a certain solution quality was reached. The objective function
used to evaluate the quality of valid solutions is exchangeable by configuration.
The implemented example objective function sums up the network hops between
services, maximizing reliability of network connections and minimizing network
bandwidth use. ProbN’s worst case complexity is O(n· k), it is probabilistic and
neither complete nor optimal.

Algorithm 1. Pseudo Code ProbN
Require: device list k, service list n, service sorting criteria serviceSort, solution

quality limit l, maximum iterations m

1. sort n according to serviceSort descending
2. bestMapping = null
3. while m not reached AND quality of bestMapping < l do
4. lastMapping = null
5. for all service: n do
6. while service not assigned do
7. get next device device according to heuristic
8. if device empty then
9. next iteration

10. if device suitable then
11. if capacity of device not exceeded then
12. if dependencies of service satisfied then
13. Update lastMapping with assignment of service to device
14. evaluate lastMapping
15. if lastMapping.quality < bestMapping.quality then
16. bestMapping = lastMapping
17. return bestMapping

The last strategy for the matchmaking step is based on the implicit enumera-
tion of solutions within the search space and is therefore called Implicit Enum
(IE). It has exponential complexity of O(nk). However, IE may be configured to
stop searching after any solution (with a minimum quality) was found instead
of searching for the optimal solution. IE is the only strategy that guarantees to
find a solution (provided that one exists) and will find the optimal solution, but
is not suitable for many real-world situations including larger set-ups.

5.2 Basis for Decision Regarding Strategy Selection

The metrics (shown at the bottom of figure 2) used for selecting strategies for
the process steps of the implemented deployment process heavily influence a

238 T. Frenken, P. Spiess, and J. Anke

system’s flexibility. One objective of a more complex scenario from the future
manufacturing domain is to monitor the average temperature of a certain area.
Since we are focussing on the deployment planning part, we assume informa-
tion about available devices and services has already been stored in a registry
repository. The available devices are using different description formats (some
use OWL, some properties). Our objective is to automatically deploy a temper-
ature monitoring service on all smart devices which have a temperature sensor
attached. The service instances have to be available as fast as possible. The de-
ployed service instances are later on consumed by an enterprise-level service to
monitor the average temperature.

Strategies for the node selection step are chosen according to the description
formats used by the devices and services comprising the relevant system state.
For each description format found, a suitable strategy is selected (if available)
and enqueued in an execution queue. By executing this node selection strategy
queue, there is no need to enforce the usage of a common description format
or ontology. For the temperature monitoring example, both strategies, Prop-
erty Expressions and Semantic Linking are executed. Matchmaking strategies
are mainly selected according to the deployment’s intention (manual/automatic
mapping, configuration) and the overall objectives of the whole system (e.g.
perform deployment as fast as possible or guarantee mappings have a quality
above a certain threshold). For this example, BFDN is a good choice (auto-
matic planning in reasonable time). Strategies for the deployment list generation
step guarantee adherence to various Quality-of-Service (QoS) criteria (defined
within deployment job descriptions) for the corresponding business processes
(e.g. requirement of dedicated service instances). Selection of strategies for the
deployment list execution step is done according to several execution criteria
(e.g. (de)central, sequential or parallel execution with or without interconnec-
tion check between dependent services) and according to the deployment plat-
forms of targeted devices. Implementing new strategies, as well as enhancing and
standardizing metrics for strategy selection is part of future work.

Fig. 3. (a) Deployment Cockpit, (b) Deployment on Physical Devices

A Flexible and Extensible Architecture for Device-Level Service Deployment 239

5.3 Integration of Physical Devices

To be able to fully control the deployment process, we have implemented a de-
ployment platform (i.e. an execution container) that runs on devices hosting
a Java VM supporting at least Java Mobile Edition 1.4 and the CDC pro-
file. Additionally, we used a network stack that implements all WS-standards
included in the Device Profile for Web Services3 (DPWS) to expose hosted
services as WS and in order to enable eventing etc. We successfully used this
deployment platform to perform dynamic (un)installation, (de)activating, con-
figuration, and monitoring of DPWS hosted services on simulated and physical
devices. In particular we used the deployment platform on an HP iPAQ PDA
(figure 3.b). Simulated as well as physically existing devices were integrated
seamlessly into the deployment process and were visualized within the Deploy-
ment Cockpit.

6 Discussion

Three important attributes of a system for service deployment and configuration
within the IoT are flexibility, extensibility, and scalability. Our high-level archi-
tecture is designed for flexibility in order to deal with the expected heterogeneity.
Extensibility ensures that the architecture may be used in various domains and
for future scenarios. Scalability is especially important in large set-ups.

Flexibility and extensibility are both enabled by using exchangeable strategies.
Strategies for process steps collecting and comparing device and service informa-
tion may be used to deal with heterogeneous and sparse information in various
description formats. In case a new description format or deployment platform is
meant to be supported, only a new strategy has to be implemented. Integration
of this new strategy may be activated by configuration during runtime. Flexible
selection of strategies also allows to deal with heterogeneous deployment objec-
tives. By selecting different strategies for the matchmaking step, algorithms for
allocation and configuration may be exchanged for each single deployment job,
e.g. depending on the number of devices marked within the node selection step.

Scalability is especially important in the IoT (in both meanings: an Intranet
or the Internet of Things) where large set-ups might contain millions of de-
vices. In this case, the components of the architecture may be distributed. We
have developed two distributed instances of the architecture. One guarantees
central process control and adherence to global guidelines, the other does not.
Component distribution is an advanced topic. Briefly said, in case central pro-
cess control is required, components computing deployment decisions (Strategy,
Mapper, and Injector) may only exist once and a consistent view on informa-
tion relevant to deployment planning has to be guaranteed by the System State
component. Components gathering information may be distributed, contributing
information to the central System State. Without the need for central process
control, all components of the middleware may be replicated, e.g. in several
remote production sites.
3 http://schemas.xmlsoap.org/ws/2006/02/devprof/ (8 July 2008)

http://schemas.xmlsoap.org/ws/2006/02/devprof/

240 T. Frenken, P. Spiess, and J. Anke

7 Conclusion and Future Work

Within this paper we have presented a flexible and extensible high-level archi-
tecture for deployment and configuration of services. The architecture is espe-
cially targeted at large populations of smart devices hosting these services. By
addressing the expected heterogeneity and specifics of such environments, the
architecture is meant to integrate functionality of smart devices within the IoT
into the IoS (represented by services on the enterprise level). The standard-
ized communication pattern used is (web) services. The most important de-
sign pattern used for dealing with the expected heterogeneity are exchangeable
implementations, so-called strategies, for all steps of a common deployment
process. Strategies are automatically exchanged for each single deployment job
according to certain metrics. The architecture was successfully applied within
the domain of future manufacturing and was implemented within the
SOCRADES middleware. The implementation contains a set of strategies for
all common deployment process steps. In this paper we focused on strategies
and metrics for deployment planning. Additionally, a deployment platform was
implemented which was used for dynamic (un)installation, (de)activation, con-
figuration, and monitoring of services on simulated and physical devices. A
GUI, the Deployment Cockpit, visualizes the IoT and is used to supervise the
deployment process.

The contribution of our paper is the analysis of requirements for deploy-
ment and configuration of services within the IoT, the design of a flexible and
extensible high-level architecture, and an implementation of this architecture
within the domain of future manufacturing in order to show the applicability
of the architecture. The architecture is meant to transfer experiences gained to
other deployment systems and domains. By enabling effective deployment and
configuration of services on smart devices, the integration of functionality and
information from the IoT into the IoS comes one step closer.

Future work includes the evaluation of the implementation within a pro-
totypical manufacturing plant which is currently under construction. Results
will be used to further enhance the implementation and design principles of
the architecture. We are planning to integrate and evaluate more allocation
and configuration algorithms proposed in research (like Avala [10] or PBFD
[12]) as strategies. Further on, we will consider implementing support for
standards like OMG D&C [4], CC/PP4, and IUPP5. Additional deployment
platforms like OSGi are already supported and will be tested. Semantic de-
scription of devices and services was already tested with promising results.
However, scalability of semantic matching is a challenge, especially in larger
set-ups of the IoT. We will also work towards more sophisticated ontology
authoring for device and service descriptions. Finally, enhancing criteria and
metrics for selection of strategies during deployment is an important part of
future work.

4 http://www.w3.org/TR/CCPP-struct-vocab2/ (10 July 2008)
5 http://www.w3.org/Submission/InstallableUnit-PF/ (10 July 2008)

http://www.w3.org/TR/CCPP-struct-vocab2/
http://www.w3.org/Submission/InstallableUnit-PF/

A Flexible and Extensible Architecture for Device-Level Service Deployment 241

References

1. Karnouskos, S., Spiess, P.: Towards enterprise applications using wireless sensor
networks. In: 9th International Conference on Enterprise Information Systems
(2007)

2. Anke, J., Müller, J., Spieß, P., Chaves, L.W.F.: A service-oriented middleware
for integration and management of heterogeneous smart items environments. In:
Proceedings of the 4th MiNEMA workshop in Sintra (2006)

3. de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., Savio, D.:
SOCRADES: A Web Service based Shop Floor Integration Infrastructure. In: Flo-
erkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.) IOT
2008. LNCS, vol. 4952, pp. 50–67. Springer, Heidelberg (2008)

4. Object Management Group: Deployment and configuration of component-based
distributed applications specifications (2007)

5. Shankaran, N., Balasubramanian, J., Schmidt, D., Biswas, G., Lardieri, P., Mul-
holland, E., Damiano, T.: A framework for (re)deploying components distributed
real-time and embedded systems. In: Proceedings of the 2006 ACM symposium
on Applied computing, Dept. of Electrical Engineering and Computer Science -
Vanderbild University, Lockheed Martin Advanced Technology Labs, April 2006,
pp. 23–27 (2006)

6. Malek, S., Mikic-Rakic, M., Medvidovic, N.: An extensible framework for auto-
nomic analysis and improvement of distributed deployment architectures. In: Pro-
ceedings of the 1st ACM SIGSOFT workshop on Self-managed systems, pp. 95–99
(2004)

7. Deng, G., Schmidt, D.C., Gill, C.D., Wang, N.: QoS-enabled Component Middle-
ware for Distributed Real-Time and Embedded Systems. In: Handbook of Real-
Time And Embedded Systems, pp. 15.1 – 16.1. CRC Press, Boca Raton (2007)

8. Anke, J., Wolf, B., Hackenbroich, G., Kabitzsch, K.: Distributed applications and
interoperable systems. In: 7th IFIP International Conference on Distributed Ap-
plications and Interoperable Systems (2007)

9. Hunt, G.C., Scott, M.L.: The coign automatic distributed partitioning system. In:
Proceedings of the third symposium on Operating systems design and implemen-
tation, pp. 187–200 (1999)

10. Malek, S., Mikic-Rakic, M., Medvidovic, N.: Improving availability in large, dis-
tributed component-based systems via redeployment. In: Dearle, A., Eisenbach, S.
(eds.) CD 2005. LNCS, vol. 3798, pp. 83–98. Springer, Heidelberg (2005)

11. Le Mouël, F., Ibrahim, N., Royon, Y., Frénot, S.: Semantic deployment of services
in pervasive environments. In: Proceedings of the 1st International Workshop on
Requirements and Solutions for Pervasive Software Infrastructures (2006)

12. de Niz, D., Rajkumar, R.: Partitioning bin-packing algorithms for distributed real-
time systems. International Journal of Embedded Systems 2006 2, 196–206 (2006)

13. Zimmerova, B.: Component placement in distributed environment w.r.t. compo-
nent interaction. In: Proceedings of the 2nd Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science, pp. 260–267 (2006)

14. Tryggeseth, E., Gulla, B., Conradi, R.: Modelling systems with variability using
the proteus configuration language. In: The ICSE SCM-4 and SCM-5 Workshops,
on Software Configuration Management, pp. 216–240 (1992)

15. Chrysoulas, C., Koumoutsos, G., Denazis, S., Thramboulidis, F.K., Koufopavlou,
O.: Dynamic service deployment using an ontologybased description of devices and
services. In: Proceedings of the Third International Conference on Networking and
Services, p. 80 (2007)

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 242–253, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Fine-Grained Continuous Usage Control of Service
Based Grids – The GridTrust Approach

Syed Naqvi1, Philippe Massonet1, Benjamin Aziz2, Alvaro Arenas2, Fabio Martinelli3,
Paolo Mori3, Lorenzo Blasi4, and Giovanni Cortese5

1 Centre of Excellence in Information and Communication Technologies (CETIC), Belgium
{syed.naqvi,philippe.massonet}@cetic.be

2 e-Science Centre, STFC Rutherford Appleton Laboratory, United Kingdom
{b.aziz,a.e.arenas}@rl.ac.uk

3 CNR Institute of Informatics and Telematics, Italy
{fabio.martinelli,paolo.mori}@iit.cnr.it

4 Hewlett Packard Italiana S.r.l., Italy
lorenzo.blasi@hp.com

5 Interplay Software S.r.l., Italy
g.cortese@ipsoft.it

Abstract. Access control techniques designed for single domain infrastructures,
where users are known by domain administrators, provide considerable liberty in
the usage of resources. This paradigm is not suitable for highly scalable and de-
centralised systems such as Grids and service oriented architectures (SOA), where
resources are shared between domains, and users come from remote domains.
One approach is to provide policy-driven autonomic solutions that operate a con-
tinuous monitoring of the usage of resources by users. This paper presents the
services and tools offered by the GridTrust Security Framework (GSF). GSF
addresses three layers of the next generation of grid (NGG) architecture: the Grid
application layer, the Grid service middleware layer, and the Grid foundation
layer. The framework is composed of security and trust services and tools pro-
vided at the middleware and Grid foundation middleware layers. Various business
case studies are being developed to validate the GridTrust results.

Keywords: Grid technology, usage control, service security, trust infrastructure.

1 Introduction

The Service-based Grids [Foster] have the ability to provide scalable and low cost
service based infrastructures for both business and scientific purposes. They provide
language- and platform-independent techniques for describing, discovering, invoking
and orchestrating collections of distributed computational services, thus facilitating
the development of complex wide-area applications [Gounaris]. However, from the
security point of view, they introduce important challenges because the pool of re-
sources and users are dynamic and managed by different administrative domains.
Current access control technology in Grids only provides coarse grained security – i.e.

 Fine-Grained Continuous Usage Control of Service Based Grids 243

user enjoys unlimited privilege of using the resource once he got access to it. The
GridTrust consortium argues that coarse grained access control leaves Grids inher-
ently vulnerable, and that not only the access to a resource needs to be controlled, but
also the usage that is made of the resource. This paper presents the GridTrust frame-
work that introduces fine grained and continuous usage control in Grids, and provides
the necessary services, tools and methods to deploy it in service-based (OGSA com-
pliant) Grids.

2 Current State of the Art in Grid Security

The native authorization system of Globus, the gridmap one, is too simple to satisfy
the requirements of a cooperative distributed environment such as the Grid one.
Hence, this section describes some attempts to enhance Globus security by integrating
external authorization systems.

The Community Authorization Service, CAS, has been proposed by the Globus
team [Pearlman]. CAS is a service that stores a database of VO policies that deter-
mine the actions that each Grid user can perform as member of the VO. A Grid user
that wants to access a Grid service, requests to the CAS service a credential to access
this service. The CAS returns a credential embedding a CAS policy assertion, and this
credential is presented by the Grid user to the service he wants to exploit. This ap-
proach requires that Grid services are able to understand and enforce the policies
embedded in the CAS credential, and these policies are coarse-grained, because they
only define which of the local services can be accessed by the Grid user.

An alternative solution, described in [Thompson], integrates the Akenti authoriza-
tion system in Globus. Akenti is an authorization system exploiting X.509 certificates
for user identity and distributed digitally signed authorization policy certificates for
access decisions. Once the user has been authenticated, the system retrieves the poli-
cies for each resource referred in the user request, and matches them with the user's
credentials, that include the attributes assigned by the VO to that user. This solution is
a pure pull model in which the user capabilities are collected after his authentication.

The solution presented in [Stell], instead, exploits PERMIS, which is a role-based
access control infrastructure using X.509 certificates to define users' roles. All access
control decisions are driven by an authorization policy that is stored in a X.509 cer-
tificate too. PERMIS supports classical hierarchical RBAC, in which roles are as-
signed to users and privileges on resources are paired with roles.

The Virtual Organization Membership Service (VOMS) [Alfieri] is another ad-
vanced authorization system for Globus. In VOMS a VO has a hierarchical structure
with groups and subgroups; a user in a VO is characterized by a set of attributes, 3-
tuples of the form group, role, capability. The combined values of all these 3-tuples
form a unique attribute, the Fully Qualified Attribute Name (FQAN). A user contacts
one or more VOMS server in order to obtain the authorization information granted by
a VO to him. To access a Grid service the user creates a proxy certificate containing
the information received from the VOMS Servers. To perform the authorization proc-
ess the information is extracted from the user's proxy and combined with the local

244 S. Naqvi et al.

policy. The resource providers periodically query VOMS database to generate a list of
VO users and map them to local accounts.

However, none of the previous systems performs fine-grained controls, i.e. controls
the actions performed during the access. Moreover these models define static rights,
because they depend on credentials that can be modified only by administrative ac-
tions, and these rights are evaluated only before granting the access, and no further
controls are executed while the access is in progress.

Recently, Sandhu et al [Sandhu04] defined a conceptual model, called usage con-
trol (UCON), based on the concepts of mutable attributes and continuity of policy
enforcement. In [Sandhu06] they propose the adoption of UCON in collaborative
computing systems, such as the Grid. A preliminary attempt to adopt this model in
Grid has been made in [Martinelli05], and this is the model that we adopt in the Grid-
Trust framework [Martinelli07].

3 The GridTrust Framework

One of the outcomes of the GridTrust framework is the development of a set of online
trust and security services and a set of policy modeling, analysis and transformation
tools. The objective of developing these tools is to facilitate the development of rigor-
ous Grid-based applications with enhanced security.

3.1 Virtual Organisation (VO) Model

In order to support rapid formation
of VOs, we use the concept of vir-
tual breeding environment (VBE)
[Camarihna- Matos]. A VBE can be
defined as an association of organi-
sations adhering to common operat-
ing principles and infra-structure
with the main objective of partici-
pating in potential VOs. We have
adopted the view that organisations
participating in a VO are selected
from a VBE, as illustrated in Figure
1. Such organisations may provide
resources/ services (ovals), and
include users that utilise VO re-
sources (small squares).

Fig. 1. Organisations and users in VBE

Organisations pre-register to a VBE via a VBE Manager component, including de-
scription of the resources they are willing to share in a Grid and the list of potential
users belonging to the organisation. When a user requests to create a VO, s/he as-
sumes the role of VO Owner and contacts a VO Manager with the description of
needed resources. The VO Manager is in charge of selecting potential providers and
setting up the VO to operation.

 Fine-Grained Continuous Usage Control of Service Based Grids 245

3.2 Framework Services

We describe here the different trust and security services that have been developed
under the GridTrust framework.

• The VBE Manager (VBEM) has the main functionality of a service registry,

where service providers register their services and other GSF services can retrieve
them given abstract service descriptions. Each Virtual Organization (VO) is cre-
ated within a specific Virtual Breeding Environment (VBE); and a VBE may con-
tain several different VOs.

• The VO Manager Service (VOM) coordinates all the other security services and
is the single point of access for users and service providers participating in the
VO. The VO Manager is responsible for handling several functionalities. These
include VO creation, populating VOs with services required by VO owners to
achieve their goals, updating VO policies, evolving the VO by allowing its service
providers to subcontract part of their services to other service providers and fi-
nally, terminating the VO.

• The Policy and Profile Manager (PPM) keeps all the knowledge bases needed
by GSF services, namely: VBE and VOs users, with security preferences and their
trust and reputation credentials; VOs with their owner and security policies; ser-
vice providers with their services and the fine-grained security policies regulating
access and usage of the services.

• The Secure Resource Broker (SRB) is called by VOM with a list of services,
needed by the VO Owner to form its VO, and the associated security require-
ments. It returns the list of providers offering the requested services and also satis-
fying all the specified security requirements. One of those requirements is the
reputation of a service in a VBE.

• The Trust and Reputation Service (TR) keeps track of the past and current
behavior of VO owners, users and service providers and transforms it into trust
and reputation credentials that can be considered by other users, service providers
and GSF services when making decisions.

• The Continuous Usage Control Service (C-UCON) is an implementation of the
UCON policy framework [Sandhu04], where it is deployed on each service pro-
vider and is responsible for the evaluation and runtime enforcement of policies
about resource usage in VOs. It interacts with the TR service to get the current
reputation of users and it also reports feedback to the TR service about users vio-
lating UCON policies.

Each of these services can be invoked only by mean of the API it exports, hiding

all the implementation details on how the service is implemented. The framework is
modular so it allows the possibility of adding future new security services if needed.

Figure 2 shows the different interactions among the GridTrust services when estab-
lishing and running a VO. This is done over several phases. In the first phase, a user
(henceforth called the VO owner) requests from the VOM service the creation of a
VO. In the next phase, the owner registers with the PPM service (through the VOM)
the list of VO users and their security profiles. Then the owner requests from the

246 S. Naqvi et al.

Fig. 2. Establishing a VO using GridTrust Services

VOM to search for suitable business services fulfilling its workflow by including the
abstract description of each business service and any security requirements it must
satisfy (e.g. minimum reputation level). The VOM utilizes the SRB service in its
search and once the right candidates are reported back to the owner, the owner
informs the VOM of its selection and SRB negotiates and schedules the selected can-
didates. The VO is now fully operational. Each of the computational resources under-
lying the business services is protected by a local instance of the C-UCON service,
which monitors the users’ behavior on those resources.

3.3 Policy Tools

These include a set of tools that are being developed to aid designers and analysts for
policy writing during the design phases of the application development.

3.3.1 The Policy Requirements-to-Design Tool
The policy requirements-to-design tool facilitates linking of the security policies ex-
pressed in KAOS goal-oriented requirements model [vanLamsweerde] to the opera-
tional specifications of those policies. These policies are expressed in a formal process
algebraic language POLPA [Martinelli06] [Martinelli07] [Aziz]. The tool eventually
builds up a library of policies that comply with the specified UCON requirements.

 Fine-Grained Continuous Usage Control of Service Based Grids 247

3.3.2 The Policy Refinement Tool
The aim behind the policy refinement tool is to allow policy designers to write VO-
level policies using the stakeholders’ alphabet and then refine it, in a correct and
automatic manner, to a resource-level policy written using the resources’ computa-
tional alphabet. The language at both levels is based on POLPA; however, the tool
allows the designers to automatically derive low-level policies for VO resources. The
tool also composes the refined VO-level policies with existing pre-VO policies at the
resource level.

3.3.3 The VO Modeling and Animation Tool
The VO modeling and animation tool generates Grid-based VO models in a formal
refinement-based manner and then animates changes in the behavior of VOs when
changes in the VO policies take place. We follow a formal approach that is based on
the Event-B refinement language, where we envisage that the tool will develop inter-
faces for the Rodin modeling tool and the Pro-B animation tool.

3.4 Implementation Status

The first version of the GridTrust Framework has already been implemented and most
of its source is available under the Apache 2.0 license. A public demonstration will be
provided during the ICT 2008 conference in Lyon. To access further GridTrust publi-
cations and the current software release please refer to www.gridtrust.eu.

4 Validation Scenarios for GridTrust Framework

4.1 Distributed Content Management Case Study

The case study aims at researching and showcasing dynamic access and usage control
mechanisms, similar to those outlined in [Sandhu06], for applications implemented in
a Grid architecture.

The application outlined by this scenario is a general purpose, workflow-enabled
content management tool, which supports a distributed organization in the execution
of collaborative projects with the following characteristics:

• They aim at the production of some complex, sophisticated ‘digital’ product (e.g.

a software system, or some multimedia product).
• They are ‘knowledge-intensive’ and ‘content-intensive’. Workers depend on and

need access to several sources of knowledge as well as digital content assets,
which they assemble / use to create the product. This need must be supported by
appropriate search facilities.

• The production process is structured along some workflow (e.g. a software pro-
duction process, or a web / content publishing process), and foresees several
phases. Policies which control access to these assets may vary according to the
phase or state in the project workflow.

The application (a ‘VO’ in GridTrust terminology) offers access to a virtual con-
tent management (‘CM VO’) infrastructure, made out of several application servers,

248 S. Naqvi et al.

where users can: a) create a repository or collaborative ‘workspace’ where content can
be stored b) upload content to such workspace c) search and retrieve content. Content
managed through the infrastructure includes unstructured documents as well as mul-
timedia content.

In VO Creation phase, the CM VO application discovers and registers application
servers providing the actual CM services, thus creating the content management infra-
structure.

In VO Usage phase, users access CM services while the GridTrust usage control in-
frastructure enforces appropriate access and usage control. The case study addresses two
perspectives related to usage control: resource usage and collaboration. Overall, it aims
at covering several of the types of usage control policies mentioned in [Sandhu06].

4.1.1 Resource Usage
The CM VO allows on-demand provisioning of a content management infrastructure
(See [Alfresco Cluster in the Cloud] for a similar scenario).

Users of the VO create a workspace, where they can store and share content with
their partners, using the VO resources. The GridTrust infrastructure must ensure that
users use VO resources in a fair and controlled way. To guarantee availability of re-
sources and performance to all users of the CM VO, thresholds on the usage of re-
sources must be enforced. For example:

• User can create and own at a given point in time in the CM VO only ‘max_spaces’

spaces and ‘max_content’ content items, occupying ‘max_disk_space’ i.e. the sum
of the space requested to host the content objects owned by the user

• User can only perform a given number of queries in a time interval (e.g. in a min-
ute/ hour/ day...). Queries can require non-trivial system resources, especially if
they match a large number of content objects.

• Users can download only a given number of contents in a given time period.

Note that access/ usage control may be needed both at VO level and node level.

4.1.2 Collaboration
The CM VO allows controlled sharing of such content resources among several users
and organizations, which require traditional access control mechanisms. It also pro-
vides content workflow capabilities, hence should allow restricting or otherwise cus-
tomizing the access to content / documents to specific users based on context. Types
of policies we research in this case study include several dynamic, history-based ac-
cess and usage control scenarios:

• Status of Shared Objects - access to granted based on the status of a content in a

workflow
• Dynamic Separation of duties

Implementation of the application is work-in-progress. The CM VO is being imple-
mented as a portal where VO users register and get services. Individual nodes provid-
ing content storage, indexing and query capabilities are implemented as Globus
services interfacing to a JSR-170 Content Repository.

 Fine-Grained Continuous Usage Control of Service Based Grids 249

4.2 Supply Chain Case Study

The proposed Supply Chain scenario is based on two main ideas. The first is to use an
auctioning system exploiting competition between transporters and allowing custom-
ers to find the best provider for each task. The second idea is to have route computing
services, i.e. computational services providing maps and libraries to execute applica-
tions that solve the logistic optimization problem, to allow even SME transporters to
optimize their routing. The routing computing service and possibly also the auction-
ing system are hosted on Grid resources.

Vigor, a pharmaceutical company, receives an order from a hospital. Vigor's ware-
house has enough supply of the required goods, so only a transporter is needed to ship
the order and satisfy the customer. Vigor's procurement system creates a Request for
Quotation for the required transportation task specifying source, destination, expected
arrival time, volume, weight and type of the goods and sends it to the Auctioning
Service, thus creating an auction for it.

Celer, a transportation company, gets notified of the RfQ and its Automatic Quota-
tion System analyzes the auction terms versus the company’s policies and current
availability of resources to determine if it’s worth bidding or not. After a positive
bidding decision the Automatic Quotation System needs to calculate the cost of deliv-
ering given the current resource engagement. For this calculation a job is sent for
execution to the Grid Routing Service. The computation considers all the pending
transportation tasks and time / capacity constraints for the Celer’s fleet and optimizes
(recalculates) the whole set of routes, one for each vehicle, to compute the incre-
mental cost of executing the required transportation task. From the result an offer is
created, with an estimated time for delivery, and a bid sent to the Auctioning Service.
Choice of the best offer can be based on price, planned delivery time and transporter’s
reputation, depending on proponent’s requirements.

To give a size to the scenario imagine a small group of 10 producers that create an
auction for each of their 50 daily transportation tasks, and a group of 30 transporters
that bid on every auction. Even for this small group it is 500 auctions per day (nearly

Fig. 3. Supply chain scenario’s actors

250 S. Naqvi et al.

one every minute in working hours), spawning 15.000 jobs of routing optimization
every day. If the group of participant actors is not a small one the number of NP-
complete problems to be solved in a single day may raise to several millions.

The components of the business scenario are the following (see Fig. 3):

 Auctioning system, a custom service running reverse auctions of type First-Price

Sealed-Bid, allows producers to propose Requests for Quotations (RfQ))
 Auction Proponent, it’s the Producer application (creates auction, receives result,

creates Delivery VO)
 Auction Participant, is the i-th Transporter application (notified of an auction,

creates Routing VO, invokes routing calculation, sends an auctioning offer)
 Map&Lib, are Routing support services, (maps, map access library, base routing

functionality) made available by the Computational Service provider
 Java Appl, is the Routing application (executed on Computational Service)

which may be different for each Auction Participant

The resources shared between domains are the Computational Routing Services,

each hosting Distance-Time Matrices (maps) and providing sophisticated algo-
rithms for solving the given Operating Research problem (e.g. VRPTW, see [Gam-
bardella]).

This solution raises several security challenges such as selection of services with
compatible security policies or continuous control of the execution of unknown appli-
cations, among others.

A future implementation of the system will allow monitoring the whole deliv-
ery phase and verifying transporter’s compliance with the offered terms of service
(considering the offer as a SLA). The reputation index of a transporter is based on
a history of its accomplishments; with the current implementation it lowers if the
transporter's behavior is not in line with VO security policies, but using a SLA
monitor the reputation can be increased with successful shipments and lowered if
the transporter doesn't fully comply with the terms agreed in the SLA.

4.3 Benefits of the GridTrust Framework

SRB is useful to clients as it allows to find Computing Services with compatible poli-
cies and granting access to the needed libraries.

UCON benefits Service providers in that continuously controls that the unknown
code running on their servers is not violating policies or even executing harmful op-
erations; UCON benefits clients too, because each executing application and data are
protected against intrusion of other clients' applications.

TR is most useful to Service Providers by providing a measure of users'
reputation, but may be useful to clients too when they want to base their partner's
choice on the reputation index in addition to other parameters such as cost or
performance.

VOM and VBEM at the end are the essential coordinators of the whole GridTrust
Security infrastructure.

 Fine-Grained Continuous Usage Control of Service Based Grids 251

5 Discussions

Trust and security are fundamental issues in Grid, because of its collaborative and
highly distributed nature. Grid users belong to distinct administrative domains that
adopt distinct security mechanisms and have different security policies. These users
are typically unknown, and no trust relations may exist among them. Hence, sharing
resources in the Grid could be dangerous, because unknown and untrusted users could
execute dangerous or even malicious applications on them. Another important issue is
that accesses to services could be long-lived, i.e. could last hours or even days, and
users’ permissions may depend on conditions which are mutable over time.

The authorization systems adopted in Grid so far do not address all these issues.
These authorization systems simply decide whether to allow a given user to access a
service. No further controls are executed on the actions performed by the applications
executed by remote Grid users on the local resource. Otherwise in GridTrust both VO
Owners and Service Providers can define fine-grained security policies which are then
continuously enforced by the GridTrust C-UCON Service.

The GridTrust project is innovative because it addresses the main security issues of
Grid environments by proposing an integrated framework that provides a set of ser-
vices performing the main Grid interactions in a secure way. These tools allow the
Grid participant to create and manage VOs, to select resource providers having certain
security requirements, to manage users’ reputation, and to execute applications on
behalf of remote Grid users while performing a fine-grained and continuous monitor-
ing of computational services according to the UCON model.

Hence, a main advantage of the GridTrust framework is that it is not a simple au-
thorization system, but consists of a set of services enhancing the security of the
whole Grid lifecycle, from VO formation to VO dissolution.

Another interesting feature of the GridTrust framework is that all the components
have been developed as Globus services and have been integrated in the Globus envi-
ronment. Hence, the GridTrust framework could be adopted in current Grid nodes
built on Globus with minor modifications. For the same reason, the GridTrust compo-
nents could be easily integrated with other Globus based (security) services.

6 Conclusions and Perspectives

The GridTrust framework addresses the security and trust requirements of service-based
Grids. In this paper, we have presented its approach for fine-grained continuous usage
control of Grid resources. The Continuous Usage Control service of the GridTrust
framework controls the usage of Grid’s computational resources by applying fine-grained
and history-based access control, and improves state of the art with mutable attributes,
obligations and continuous enforcement. The GridTrust framework features fine grained
monitoring of the actions performed by applications on the resources. The history of
these actions is used in the evaluation of new requests. The access rights are therefore
dynamic in GridTrust framework because attributes and conditions may change over
time. The two presented use cases confirm GridTrust framework’s workability.

252 S. Naqvi et al.

Acknowledgements

The research leading to the results presented in this paper has received funding from
the European Union’s sixth framework programme under grant agreement number
FP6-033817.

References

[Alfieri] Alfieri, R., Cecchini, R., Ciaschini, V., dell Agnello, L., Frohner, A., Gianoli, A., Lor-
entey, K., Spataro, F.: VOMS: An Authorisation System for Virtual Organizations. In: Proceed-
ings of 1st European Across Grid Conference (2003)
[Alfresco Cluster in the Cloud] Alfresco Cluster in the Cloud, http://ihatecubicle.
blogspot.com/2008/05/alfresco-cluster-in-compute-cloud.html
[Aziz] Aziz, B., Arenas, A., Martinelli, F., Matteucci, I., Mori, P.: Controlling Usage in Business
Processes Workflows through Fine-Grained Security Policies. In: Furnell, S.M., Katsikas, S.K.,
Lioy, A. (eds.) TrustBus 2008. LNCS, vol. 5185. Springer, Heidelberg (2008)
[Camarihna-Matos] Camarinha-Matos, L.M., Afsarmanesh, H.: Elements of a base VE infrastruc-
ture. Journal of Computers in Industry 51(2), 139–163 (2003),
http://www.uninova.pt/~cam/ev/CiI.PDF
[Foster] Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid Services for Distributed System
Integration. IEEE Computer 35(6), 37–46 (2002)
[Gambardella] Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows. In: Corne, D., Dorigo, M.,
Glover, F. (eds.) New Ideas in Optimization, pp. 63–76. McGraw-Hill, New York (1999)
[Gounaris] Gounaris, A., Paton, N., Sakellariou, R., Fernandes, A., Smith, J., Watson, P.: Modular
Adaptive Query Processing for Service-Based Grids CoreGRID Technical Report TR-0076
(March 2007)
[Martinelli05] Martinelli, F., Mori, P., Vaccarelli, A.: Towards Continuous Usage Control on Grid
Computational Services. In: Proceedings of Joint International Conference on Autonomic and
Autonomous Systems and International Conference on Networking and Services (ICAS-ICNS
2005), p. 82. IEEE Computer Society, Los Alamitos (2005)
[Martinelli06] Martinelli, F., Mori, P., Vaccarelli, A.: Fine Grained Access Control for Computa-
tional Services. Technical Report Number TR-06/2006, Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche, Pisa (2006)
[Martinelli07] Martinelli, F., Mori, P.: A Model for Usage Control in GRID Systems. In: Proceed-
ings of the First International Workshop on Security, Trust and Privacy in Grid Systems (GRID-
STP 2007) (2007)
[Pearlman] Pearlman, L., Kesselman, C., Welch, V., Foster, I., Tuecke, S.: The Community Au-
thorization Service: Status and Future. In: Proceedings of Computing in High Energy and Nuclear
Physics (CHEP 2003) (2003)
[Sandhu04] Sandhu, R., Park, J.: The UCONABC usage control model. ACM Transactions on
Information and System Security 7(1), 128–174 (2004)
[Sandhu06] Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.: A usage-based authorization
framework for collaborative computing systems. In: Proceedings of the Eleventh ACM Sympo-
sium on Access Control Models and Technologies. SACMAT 2006, Lake Tahoe, California,
USA, June 07 - 09, 2006, pp. 180–189. ACM, New York (2006)

 Fine-Grained Continuous Usage Control of Service Based Grids 253

[Stell] Stell, A.J., Sinnott, R.O., Watt, J.P.: Comparison of Advanced Authorisation Infrastructures
for Grid Computing. In: Proceedings of High Performance Computing System and Applications,
HPCS 2005, pp. 195–201 (2005)
[Thompson] Thompson, M.R., Essiari, A., Keahey, K., Welch, V., Lang, S., Liu, B.: Fine-Grained
Authorization for job and resource management using Akenti and the Globus toolkit. In: Proceed-
ings of Computing in High Energy and Nuclear Physics (CHEP 2003) (2003)
[vanLamsweerde] van weerde, L.: Requirements Engineering in the Year 2000: A Research Per-
spective. In: Proceedings of the 22nd International Conference on Software Engineering, Limer-
ick, Ireland, pp. 5–19. ACM, New York (2000), http://www.sis.uncc.edu/~seoklee/
teaching/Papers/lamsweerde00requirements.pdf

An Approach to Identity Management for
Service Centric Systems

Laurent Bussard1, Elisabetta Di Nitto2, Anna Nano1,
Olivier Nano1, and Gianluca Ripa3

1 European Microsoft Innovation Center, Aachen, Germany
2 Politecnico di Milano, Milan, Italy

3 CEFRIEL, Milan, Italy
{LBussard,AnnaW,ONano}@microsoft.com, dinitto@elet.polimi.it,

gianluca.ripa@cefriel.it

Abstract. Today users consume applications composed by services from
different providers across trust domains. By experience we know that
security requirements and user identity management make services com-
position difficult. We believe that delegation of access rights across trust
domains will become an essential mechanism in services composition sce-
narios. Users care about security but cannot deal with the variety of
existing solutions for access control. A unified interface of access control
and delegation is essential for multi-domain composite services. This pa-
per addresses the problem of identity management for service-centric
systems and proposes a novel approach based on an abstract delegation
framework supporting different access control mechanisms. We show how
the abstract delegation framework is designed to give control and clarity
to the user consuming applications based on service composition. Besides
the theoretical aspects, the paper shares experiences based on scenarios
from the automotive industry.

1 Introduction

Agility and dynamicity are the focus of today’s businesses. Service centric sys-
tems enable companies to react quickly to new opportunities. A service centric
system is an application composed by services from different providers across dif-
ferent trust domains. Users access service centric systems which, in turn, access
services that might be in different trust domains.

In a multi-trust domain environment accessing and invoking services requires
proper authentication and access rights. With state of the art access control a
proper federation of all the services is established before hand, the user will have
to give his identity and credentials to enable the services to be invoked.

From the perspective of identity management (IdM), service centric systems
are different from any other software system in the fact that they are built by
composing existing services that are not necessarily under the control of the
owner of the service centric system. This means that composed services may
have access policies that are different from those of the service-centric systems
that are exploiting them [1], and potentially belong to different trust domains.

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 254–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Approach to Identity Management for Service Centric Systems 255

Various initiatives exist to address the issues mentioned above (we describe
some of them in Section 7) but most of them are only suited for single trust
domains or impose a specific authentication mechanism.

In this paper we are particularly interested in service centric systems which
allow dynamic replacement of services. For example, if the service centric system
needs to access the user’s calendar on line, the actual calendar being accessed
(e.g., Google Calendar, Microsoft Exchange ...) will depend on the preference of
the specific user. If a new calendar service enters the market the service centric
system will have to adapt at runtime to take advantage of this new service.
Moreover, either the service centric system is in a federation of trusted domains
with all the possible calendar services, or we should find a way for the user to
dynamically and explicitly delegate his access rights to the service centric system
on his specific calendar. In this paper we investigate this second possibility by
developing a proper delegation framework and integrating it into SCENE, an
existing platform that supports the development and execution of self-adaptable
service centric systems. Our work is particularly useful when a service centric
system needs to access a service on behalf of its user, e.g., for acquiring some
sensible information.

The rest of this paper is structured as follows. In Section 2 we present the
main issues of IdM for service-centric systems. In Section 3 we describe the main
ideas behind our approach. In Section 4 we shortly present SCENE, that is the
runtime infrastructure we have built within the SeCSE project [2] to support the
execution of adaptable service-centric systems [3]. In Section 5 we show how our
approach to IdM has been integrated within SCENE. In Section 6 we present
a case study from the automotive domain, and in Section 7 we present some
related work. Finally, in Section 8 we draw the conclusions and highlight the
challenges for future work.

2 Service Centric Systems and Identity Management

As we mentioned in the introduction we are interested in service centric systems
which enable to dynamically select and adjust which services to use. There are
some approaches in the literature that enable this (see [4] for a classification of
these) and we adopt SCENE. As we will discuss in Section 4, in SCENE a service
centric system is defined in terms of two main aspects: the application-dependent
control logic that is expressed using BPEL, and the policies that enable self-
adaptation at runtime. These policies, among other things, allow designers to
postpone the binding to specific component services until runtime. At design
time the designer associates to a BPEL service invocation an abstract service,
e.g., a generic calendar service in the example mentioned in the introduction, and
defines a binding rule that defines how to determine the binding to a concrete
service. In our specific example, this rule states the dependency between the
user’s profile and the actual calendar to be used.

As mentioned before, composition of services becomes more complicated when
IdM has to be taken into account and the choice of a concrete service for

256 L. Bussard et al.

composition depends on the identity of the user. Moreover, when services con-
tain personal information (personal services), the user wants to explicitly control
who can access them.

Indeed, in the case of service centric systems different parts of the composition
can be owned and operated by different parties, possibly from different trust
domains. Therefore the relation between services in a service composition is
more dynamic and involves trust domains that are not federated a priori.

As such, the challenge is twofold. First, to enable composition of services
from different trust domains potentially protected by different types of access
control mechanisms. Second, at the same time, putting the user in control of
who can access his personal services and letting him make the choice if he wants
to delegate access rights to a service.

Our solution to the problems mentioned above is to build an abstraction layer
that takes care of delegation by addressing the following requirements:

– User Control : Users generally want to keep control on their assets including
personal services (e.g., calendars, online shared pictures, or medical records).
Unfortunately, the different access control mechanisms and management in-
terfaces in place make it very difficult to delegate rights and to keep an
overview on who can access what. This is even worse when composite ser-
vices start asking for access rights. The abstraction layer should define a
unified user experience on top of various access control mechanisms.

– Separation of concerns : When multiple services from different trust domains
have to be combined, details regarding access control and management of
access control should not “pollute” the composition. The abstraction layer
should isolate the composition from delegation details.

– Dynamicity: Personal services, for their nature, cannot be bound to a com-
position at design time, unless that composition is built only for a specific
subset of users. For instance, a composite service requiring the real-time lo-
cation of its user needs to know which location service this user is registered
to and how to authenticate to this service. The abstraction layer should
support dynamic binding and should resolve the delegation issues at run
time.

3 Overview of Abstract Delegation

To address the points above, the delegation framework offers an abstraction layer
for delegation as well as a mechanism to map abstract delegation to concrete
mechanisms. In this paper, authors refer as ‘delegation’ any form of delegation
of rights.

The abstraction covers the following three types of actors:

– The Delegator is the party that grants some rights regarding its personal
services. In many scenarios, the user of a composite service acts as a
delegator.

An Approach to Identity Management for Service Centric Systems 257

– The Delegatee is the party that requests to be granted access. The delega-
tee gets the address of the personal service to be used and a credential to
authenticate to this personal service. The type of credential varies from ser-
vice to service (user-name/password, X.509 certificate, SAML token, etc.).

– The Resource is the personal service chosen by the delegator and accessed
by the delegatee.

Using the delegation framework, the delegator is thus able to specify (in a com-
position or using a unified UI) that an abstract delegatee has some access rights
on an abstract resource. This abstract delegation is mapped at runtime to a
concrete mechanism. For instance, the XACML policy controlling access to the
resource could be modified or a new SecPAL credential could be created and
handled to the delegatee. Abstract revocation of access rights is also mapped to
appropriate mechanisms, e.g. modification of a policy, or adding an entry in a
revocation list. The mapping is done based on a system of plug-ins as described
in more details in [5], [6] and [7]. Authors do not consider impersonation as a
form of delegation because the mains goal of this work is to enable users to con-
trol who can access his resources. Impersonation, i.e. handing one’s credential
to another party, excludes user control.

Figure 1 gives an overview of delegation: a delegator owns a resource and
gives some privileges to a delegatee to access this resource. For instance, Bob
(delegator) is registered to an on-line calendar (resource) and gives read access
to Alice (delegatee).

Delegator
(end-user or

composite service)

Delegatee
(composite service) Resource2) Delegates

4) Revokes

1) Requirements

3) Accesses

2b) Management

0)

2a) Issue Credential

Fig. 1. Overview of delegation

Authors do not assume that delegators always host resources. However, del-
egators must have a way to specify who is authorized to access their resources.
Common examples of resources are on-line medical records, calendars, location
services, and photo galleries. The resource guard that deals with access control
decisions does not have to be part of the resource and can typically be a Security
Token Service (STS) [8] or a policy decision point (PDP) [9].

Delegation results in creating a credential that is provided to the delegatee
(step 2a in Fig. 1), modifying resource-side policy (step 2b in Fig. 1), or a
combination of both.

258 L. Bussard et al.

4 Overview of SCENE

The SCENE platform provides the runtime execution environment for composi-
tions written in the SCENE language. As mentioned in Section 2, the SCENE
language extends the standard BPEL language with rules that are used to guide
the execution of self-adaptation operations at runtime. Figure 2 shows an exam-
ple of a rule, written in pseudocode, referred to the example of the calendar we
have introduced before. The rule allows the runtime environment to bind to the
calendar that has been set in the user’s profile. Of course, different calendars
could have different WSDL interfaces. The runtime platform takes care of such
differences by adopting proper adapters as explained in [10].

The SCENE prototype includes the following components:

– a BPEL engine, Active BPEL [11], which is in charge of executing the process
part of the service composition;

– an open source rule engine, Drools [12], responsible for running the rules;
– WSBinder [13], responsible for executing binding actions at runtime based

on the directions defined in the rule language;
– a set of Proxies that decouple the BPEL process and the execution environ-

ment from the logic needed to support reconfiguration.

The components of SCENE interact through a publish-subscribe paradigm. At
runtime, when the execution of the process reaches the invocation of an external
service, a proxy operation is actually called. If the proxy does not refer to any
concrete service, it emits a bindingEvent. The rule engine – that has subscribed
to this event – receives it and activates a rule able to handle – possibly with the
activation of WSBinder – the missing binding. The control is then passed to
the proxy that, possibly activating an adapter, invokes the proper operation on
the bound service, and then passes the control back to the BPEL execution
environment.

Event: bindingEvent

Condition: action=checkSchedule

userProfile.Calendar not empty

Action: bind checkSchedule to userProfile.Calendar.checkIfBusy

Fig. 2. Rule that establishes the binding with a specific calendar

5 Solution Architecture: SCENE and Abstract Delegation

In this section we present the architecture of the IdM solution as it has been
incorporated into SCENE. Figure 3 shows the components of SCENE that are
relevant to the integration, i.e., the BPEL engine and a proxy, and the compo-
nents of the delegation approach. In the figure, the client represents the user
interface of a service centric system. Such client must have a callback interface

An Approach to Identity Management for Service Centric Systems 259

for allowing the delegation framework to ask for delegation. Also, it incorporates
a delegation browser that keeps track of all delegations that have been given by
the user. The figure highlights a service that is the one being called at a certain
time. It exposes a management interface in order to allow the management of its
Access Control Lists. The registry stores the specifications of all services that,
from the perspective of this paper, include the WSDL interfaces and policies.

Client

Resource

Delegation
Browser

Delegation Framework

Delegation
Selector

Del.
Cards

Res.
Cards

Plug-ins
- communication
- management
- authentication

ResourceService

ResourceResource Guard
(ACL, STS, PDP)

10

User (Delegator)
C

al
lb

ac
k

W
S

M
gm

t

Service Provider
(Resource)

SCENE (Delegatee)

BPEL Engine

W
S

Proxy
1

2

3
7

8

10'

11

12 18

14

15

19

0

9

16

17

WS

Idm
Adapter

Registry
WS

Policy

4 5

6

13

Credential
Provider Service

Fig. 3. Integration of SCENE and the Delegation Approach

The main components of the Delegation Approach are:

– A Resource Card contains the information necessary to delegate access. Re-
source cards should typically be provided by service providers. For instance,
when registering to a medical record service, the user should get a resource
card specifying the delegation model, the address of the management inter-
face, the credential to use to authenticate, and the granularity of the priv-
ileges. The abstract privilege is a higher representation of the underlying
privileges that can be delegated.

– A Delegatee Card identifies a delegatee. The delegatee card of a mash-up
could contain its X.509 certificate while the delegatee card of Alice could
contain her fingerprint and/or her corporate alias.

– The Delegation Framework that is the core of the system and manages the
cards owned by the user. As mentioned in Section 3, the cards are related
to resources, i.e., the personal services, and to delegatees. The Delegation
Framework is installed at the Client site and assumes that the delegator
authenticates before using it. More details on this component are provided
below.

– The Credential Provider Service that is the server-side component of the
delegation framework. It is invoked by SCENE as a web service and enables
delegation for the service centric system.

260 L. Bussard et al.

– The IdM Adapter that is part of the proxy. It retrieves from the registry
the policy of the service to be invoked, contacts, when delegation is needed,
the credential provider service, and constructs the invocation message to be
sent to the service based on the output provided by the credential provider
service and on the policy published by the service.

The delegation framework offers three main functions: Delegate is used to del-
egate rights. This can be achieved by creating a chain of credentials with, for
instance, SPKI [14] or SecPAL [15]. Another form of delegation results from the
modification of an authorization policy, e.g. XACML [9], or from adding an iden-
tity to an access control list (ACL). Revoke makes it possible to revoke rights.
Depending on the underlying delegation models, revocation may imply modi-
fication of a policy or adding an entry to a certificate revocation list. Finally,
GetDelegationStatus, returns a list of ongoing delegations (DelegateeCards
and AbstractPrivileges) that is used to keep an overview of the delegation
status.

A plug-in mechanism is used in the Delegation Framework to support different
delegation models. The following plug-ins have been implemented to validate the
framework, but of course others could be easily implemented:

– SecPAL Plugin: It is based on the resource’s SecPAL policy and the delega-
tor’s SecPAL credential. It creates a new credential stating that the delegatee
can access a subset of the resource for the required duration.

– STS Plug-in: It is developed to show that also legacy security token ser-
vices (STS), BizTalk Services Identity Provider4, can be managed by the
Delegation Framework.

– Google Calendar Plug-in: It is used when the Delegator needs to grant access
to the Google Calendar. It shows the feasibility of interacting with non-SOAP
legacy management interfaces as the ones of Google that offers a REST API5.

– Fingerprint Plug-in: This plug-in is not related to service composition but
has been developed to look at resources that are neither SOAP web services
nor REST. This plug-in has been used to control access to a car.

In Section 6 we clarify the role of all components through an example.

6 A Case Study

We are currently evaluating our approach in some service centric systems that
are being developed by the industrial partners of the SeCSE project. Here we
focus on one example that is taken from the automotive domain. This example is
a composed service called XTRIP that helps drivers of some cars in keeping their
schedule updated depending on the status of their travel. The service allows
a driver to plan a trip. Based on the plan and on a navigation system that
allows the service to know the geographical position of the car, the service itself
4 See http://labs.biztalk.net/identity.aspx
5 See http://code.google.com/apis/calendar/

http://labs.biztalk.net/identity.aspx
http://code.google.com/apis/calendar/

An Approach to Identity Management for Service Centric Systems 261

is able to automatically check the calendar of the driver to make sure that he
will be on time for the scheduled appointments. In case of problems, the service
automatically establishes a telephone communication between the end user in
the car and his secretary so that they can take actions to change the schedule
as needed. XTRIP exploits some component services to collect data about the
current position of the car, to access the user’s calendar, and to establish a
telephone call when needed.

This example highlights the two aspects that are relevant in this paper, that
is, dynamicity of bindings and need for some IdM mechanism.

As for the first issue, besides the selection of the concrete calendar service that
should depend on the preferences of the actual user which requests the service,
other cases of dynamic binding are highlighted. In particular, the selection of
the actual service for planning the trip could be decided at runtime based on the
geographical location of the user. This way, it is possible to take advantage of
navigation systems specialized on specific areas. Also, the selection of the service
to establish the telephone call could depend on the telecom provider that offers
the best rate to connect the traveler with his secretary and also on performance.
To address these issues we exploit the rule-based approach offered by SCENE
as shortly explained in Section 4 and detailed in [3].

As for the second issue, different IdM needs are coexisting here. As the reader
can imagine, both the calendar and the phone call services are likely to require
some access control and delegation mechanism. In the case of the phone call
service we can imagine that the provider of the composite service can prelim-
inarily establish agreements with some telecom providers that, in turn, grant
access to the composite service according to a pay per use policy. In principle,
this interaction between XTRIP and the telecom service does not require any
sensible information about the XTRIP user to be passed to the service, with the
exception of the phone numbers to call that XTRIP will be able to pass to the
telecom service without the need of any explicit reference to its owners. Thus,
in this case the access to the telephone service does not require any awareness
and delegation by users.

In the case of the calendar, on the other hand, the identity of the XTRIP user is
very relevant. Without knowing it, the calendar would not been able to provide
to XTRIP the information about the user’s appointments. Indeed, the calendar
should be able to check that the user has granted access to his information to
XTRIP. Only by presenting some evidence of the delegated rights to the calendar
service XTRIP will obtain the user’s appointments. Moreover, different calendars
could be exploited by differend users, and they could have different delegation
models and access control mechanisms.

So far, we have experimented with the approach of using two different calendar
systems that have been developed independently from each other and from our
platform. The first one is the Google Calendar service [16]. It allows users to
create one or more calendars associated with an account and to share them with
other users (with various access rights). It is not a web service but it provides a
REST API that we have used to wrap the service as a web service. This service

262 L. Bussard et al.

has also associated a Resource Card. This card states that delegating the access
rights to the Calendar is accomplished by sharing the Delegator’s calendar with
the Delegatee, with priviledges for both reading and writing or reading only.

The second calendar application we have exploited is the Exchange Service. It
allows access to calendars hosted on a Microsoft Exchange system. In the current
implementation this service is assumed to be installed in the same trust domain
of the Service Centric System being executed by the SCENE platform. Also the
two share the same Authentication Authority thus enabling a Single Sign-On
approach. Based on this, the same credentials the user provides to XTRIP can
be used to recognize the user also on the calendar. In this case no delegation
is needed since the Exchange Service trusts the SCENE platform and allows
it to access to the data of users who, based on the information stored in the
Authentication Authority, have authorized it.

During the execution of XTRIP, the Proxy, after an initial processing to find
the binding to the appropriate calendar service, invokes the IdM adapter. This
last one checks if there is a Security Policy stored in the registry, linked to the
bound service. Then, the Idm Adapter calls the Delegation Framework (through
the Credential Provider Service) in order to obtain a delegation to access the cal-
endar information of the requesting user (the delegator). The Delegation Frame-
work asks the user for delegation and then, if the user agrees and selects the
appropriate card, it calls the plugin responsible for the management of the ac-
cess control mechanism protecting the calendar service. The Google Calendar
plugin exploits the Google API in order to share the calendar of the requesting
user with the SCENE platform account on Google Calendar. After the sharing is
set, the IdM Adapter calls the service adapting the SOAP message, as required
by the access control policy.

7 Related Work

Identity management and especially authentication and authorization manage-
ment need to be improved to tackle the challenges of cross-domain service com-
position. This paper focuses on authorization and assumes associated authenti-
cation mechanisms. Multiple initiative exist to unify authentication mechanisms,
e.g. OpenID 6 and Project Concordia 7, and to offer unified user experience, e.g.
CardSpace 8 and Higgins project 9. However, this state of the art focuses on
authorization and delegation of rights in distributed system and service compo-
sition.

Some research works deal with access control in service composition. For in-
stance, the approaches proposed in [17, 18] enable dynamic authorization for
SOA. Wimmer et al. [19] support our reasoning, that “when integrating au-
tonomous sub-activities into workflows, security dependencies must be
6 See http://openid.net
7 See http://projectconcordia.org
8 See http://netfx3.com/content/WindowsCardspaceHome.aspx
9 See http://www.eclipse.org/higgins

http://openid.net
http://projectconcordia.org
http://netfx3.com/content/WindowsCardspaceHome.aspx
http://www.eclipse.org/higgins

An Approach to Identity Management for Service Centric Systems 263

considered” and illustrate this with an e-health scenario. Such approaches are
however mainly suitable for single trust domain SOA and impose a specific au-
thentication mechanism.

It is broadly accepted [15, 20, 21, 22] that application-specific access control
mechanisms are not suitable to compose services from different trust domains.
In multi trust domain cases, there is clearly a trend to move to standardized
mechanisms. XACML (Extensible Access Control Markup Language) [9] and
SecPAL (Security Policy Assertion Language) [15] are recent declarative policy
languages to express access rights. Both policy languages enable delegation of
rights in distributed system and can be covert by the Delegation Framework.
However, those policy languages do not enable dealing with the composition of
legacy systems using other access control and management mechanisms. OAuth
(Open Authentication) [23] and Windows Live ID Delegated Authentication [24]
propose delegation mechanisms for managing access rights in unified ways, but
they focus on web sites. Finally, Yu [25] also proposes to separate access control
from services in order to reuse access control and management infrastructure.

Even if there is a trend to aggregate and standardize access control and dele-
gation mechanisms, authors of this paper are convinced that multiple solutions
will remain and that an abstraction layer able to manage many of them is nec-
essary. The only work directly related to the abstraction layer proposed in the
Delegation Framework is from Lang et al. [26]. They abstract a policy decision
point with an object-oriented interface, which supports abstract operations to
give access. Our approach offers an improved flexibility by adding new resource
cards and plug-ins without touching the application.

8 Conclusion

In this paper we have presented our approach to IdM that consists in the inte-
gration of a Delegation Framework within a platform, SCENE, that supports the
design and execution of self-adaptable Service Centric Systems. Such integration
enables flexible adaptation of composite services by abstracting them from the
need to know the service requirements in terms of Security Policies and Resource
Cards.

In Section 6 we have shown how in a composed service various IdM needs
may arise. Our approach addresses all of those in which users want to keep their
personal services under control, but, at the same time, want to allow composed
services to access personal services in a controlled way. Moreover, the approach
can coexist with others, for instance, based on the federation of trust domains.

Our Delegation Approach does not require specific design effort to developers
of a composed service. The Delegation Framework is automatically invoked by
the runtime support when needed and takes care of all needed actions, from the
request to the user for obtaining a delegation, to the actual invocation of the
required service.

As future work we plan to continue experimenting with various application
cases to verify the generality of our approach. Moreover, we are studying the

264 L. Bussard et al.

integration of other IdM solutions in our architecture to be able to address as
many IdM cases as possible.

Acknowledgments

We thank Fabio Alloni, Giovanni Biscaro, Ali Muhammad and Uli Pinsdorf who
have contributed to this work.

Parts of the work were sponsored by the European Commission in course of
IST FP6 project SeCSE and of the IST FP7 NoE S-Cube. The technical details
and opinions expressed in this paper are the authors’ point of view and not
necessarily the one of Microsoft Corp., the project participants in SeCSE and
S-Cube, or the European Commission.

References

1. Tziviskou, C., Di Nitto, E.: Logic-based management of security in web services.
In: IEEE SCC, pp. 228–235. IEEE Computer Society, Los Alamitos (2007)

2. SeCSE: SeCSE IST Project, http://secse.eng.it
3. Colombo, M., Di Nitto, E., Mauri, M.: Scene: A service composition execution

environment supporting dynamic changes disciplined through rules. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer,
Heidelberg (2006)

4. Papazoglou, M.: The challenges of service evolution. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074. Springer, Heidelberg (2008) (keynote address)

5. CEFRIEL, EMIC, L.T.: A4.d14 state of art and impact analysis of identity
management. Report, SeCSE project (May 2007),
http://www.secse-project.eu/wp-content/uploads/2007/09/a4d14-state-of-

the-art-and-impact-analysis-of-identity-management.pdf

6. CEFRIEL, EMIC, L.T.T.: A4.d16 design of the 3nd version of the secse delivery
platform. Report, SeCSE project (September 2007),
http://www.secse-project.eu/wp-content/uploads/

a4d16-design-of-the-3nd-version-of-the-service-delivery-platform.zip

7. SeCSE Consortium: Design of the 3rd version of the SeCSE delivery plat-
form (focused on IdM). Public report A4.D19, SeCSE Project (February 2008),
http://secse.eng.it/wp-content/uploads/.

8. Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., Granqvist, H.: OASIS WS-Trust
1.4. Specification Version 1.4, OASIS, Currently in draft status, refer to version 1.3
for latest approved version (February 2008)

9. Moses, T.: OASIS eXtensible Access Control Markup Language (XACML) Version
2.0. OASIS Standard oasis-access control-xacml-2.0-core-spec-os, OASIS (February
2005)

10. Cavallaro, L., Di Nitto, E.: An approach to adapt service requests to actual service
interfaces. In: SEAMS 2008: Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, pp. 129–136. ACM,
New York (2008)

11. Active Endpoints: The ActiveBPEL Community Edition Engine,
http://www.activevos.com/community-open-source.php

http://secse.eng.it
http://www.secse-project.eu/wp-content/uploads/2007/09/a4d14-state-of-the-art-and-impact-analysis-of-identity-management.pdf
http://www.secse-project.eu/wp-content/uploads/2007/09/a4d14-state-of-the-art-and-impact-analysis-of-identity-management.pdf
http://www.secse-project.eu/wp-content/uploads/2007/09/a4d16-design-of-the-3nd-version-of-the-service-delivery-platform.zip
http://www.secse-project.eu/wp-content/uploads/2007/09/a4d16-design-of-the-3nd-version-of-the-service-delivery-platform.zip
http://secse.eng.it/wp-content/uploads/
http://www.activevos.com/community-open-source.php

An Approach to Identity Management for Service Centric Systems 265

12. JBoss: Drools, http://www.jboss.org/drools/
13. Di Penta, M., Esposito, R., Villani, M.L., Codato, R., Colombo, M., Di Nitto, E.:

Ws binder: a framework to enable dynamic binding of composite web services. In:
ICSE Workshop on Service-Oriented Software Engineering (IW-SOSE 2006) (2006)

14. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: Rfc 2693
– spki certificate theory (1999)

15. Becker, M.Y., Gordon, A.D., Fournet, C.: Secpal: Design and semantics of a de-
centralized authorization language. Technical Report MSR-TR-2006-120, Microsoft
Research (September 2006)

16. Google: Google calendar, http://www.google.com/calendar
17. Robinson, P., Kerschbaum, F., Schaad, A.: From business process choreography to

authorization policies. In: [27] pp. 297–309 ISBN 978-3-540-36796-3
18. Mukkamala, R., Atluri, V., Warner, J., Abbadasari, R.: A distributed coalition

service registry for ad-hoc dynamic coalitions: A service-oriented approach. In:
[27] ISBN 978-3-540-36796-3

19. Wimmer, M., Kemper, A., Rits, M., Lotz, V.: Consolidating the access control of
composite applications and workflows. In: [27], pp. 44–59 ISBN 978-3-540-36796-3

20. She, W., Thuraisingham, B., Yen, I.L.: Delegation-based security model for web
services. In: Proceedings of 10th IEEE High Assurance Systems Engineering Sym-
posium (HASE 2007), pp. 82–91. IEEE Computer Society, Los Alamitos (2007)

21. López, G., Cánovas, O., Gómez-Skarmeta, A.F., Otenko, S., Chadwick, D.W.: A
Heterogeneous Network Access Service Based on PERMIS and SAML. In: Chad-
wick, D., Zhao, G. (eds.) EuroPKI 2005. LNCS, vol. 3545, pp. 55–72. Springer,
Heidelberg (2005)

22. Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V.: dRBAC: Dis-
tributed role-based access control for dynamic coalition environments. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems
(ICDCS 2002), Washington, DC, USA, pp. 411–420. IEEE Computer Society, Los
Alamitos (2002)

23. OAuth Core Workgroup: OAuth Core 1.0. Technical report (2007)
24. Anonymous: Understanding Windows Live delegated authentication. White paper,

Microsoft Corporation (February 2008),
http://msdn2.microsoft.com/en-us/library/cc287613.aspx

25. Yu, W.D.: An intelligent access control for web services based on service oriented
architecture platform. In: Proceedings of the The Fourth IEEE Workshop on Soft-
ware Technologies for Future Embedded and Ubiquitous Systems, and the Second
International Workshop on Collaborative Computing, Integration, and Assurance
(SEUS-WCCIA 2006), pp. 190–198. IEEE Computer Society, Los Alamitos (2006)

26. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R., Freeman, T.: A mul-
tipolicy authorization framework for grid security. In: Fifth IEEE International
Symposium on Network Computing and Applications, pp. 269–272. IEEE Press,
Los Alamitos (2006)

27. Damiani, E., Liu, P. (eds.): Data and Applications Security 2006. LNCS, vol. 4127.
Springer, Heidelberg (2006)

http://www.jboss.org/drools/
http://www.google.com/calendar
http://msdn2.microsoft.com/en-us/library/cc287613.aspx

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 266–274, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Dynamic Orchestration Model for Future Internet
Applications

Giuseppe Avellino2, Mike Boniface1, Barbara Cantalupo2, Justin Ferris1,
Nikolaos Matskanis1, Bill Mitchell1, and Mike Surridge1

1 University of Southampton IT Innovation Centre
2 Venture Road, Chilworth Science Park, Southampton, SO16 7NP
{mjb,nm,bm,ms}@it-innovation.soton.ac.uk

2 Elsag Datamat spa, Via Laurentina 760, 00143, Rome, Italy
{giuseppe.avellino,barbara.cantalupo}@elsagdatamat.com

Abstract. Society and business are demanding systems that can securely and cost-
effectively exploit opportunities presented by an Internet of Services. To achieve
this goal a system must dynamically adapt to its environment and consider multi-
ple and shifting stakeholder concerns such as application functionality, policies
and business processes. In this paper we describe a dynamic orchestration model
called the Virtual Infrastructure Model (VIM) which allows consumers to develop
service-oriented systems that adapt to the needs of different business actors. It is
based on the idea that adaptive workflow and dynamic binding to services can fa-
cilitate abstraction of both business processes and requisite interactions with the
underlying infrastructure. Key requirements for federated orchestration are ad-
dressed including runtime service binding, secure and accountable dynamic pro-
curement, infrastructure adaption, and separation of stakeholder concerns. The
VIM is a fundamental component of the Next Generation Grid Architecture de-
veloped in the context of the EU funded NextGRID project.

Keywords: SOA dynamics, orchestration, lifecycle, workflow, business processes.

1 Introduction

After more than 10 years research and development of service-oriented systems, an
economically viable Internet of Services have yet to materialise. Current software
engineering theories, service specification and composition approaches assume soft-
ware lifecycle models that significantly restrict the potential of service-oriented sys-
tems and the ability of such systems to support meaningful and dynamic social and
economic relationships between communities and business partners.

Service-oriented systems are formed through the “recruitment” of services, possi-
bly provided by different organizations, which are then orchestrated to achieve a de-
sired objective. They cannot be subjected to conventional design “in advance”, so
developers are left to create parts of a system that must fit together in ways that can-
not be anticipated until run-time. Future service-oriented systems will therefore need
to be operated by business stakeholders rather than developed by engineers. To
achieve this operational model new orchestration approaches are required that support

 A Dynamic Orchestration Model for Future Internet Applications 267

multiple stakeholder interactions allowing them to manage the lifecycle of assets and
interact with other stakeholders flexibly and dynamically whilst considering distrib-
uted policy and regulatory compliance.

In this paper we describe an orchestration framework to makes service-oriented
systems adaptable to the needs of different business stakeholders. This framework has
been termed the Virtual Infrastructure Model and has been designed and developed in
the context of EU funded NextGRID project [1]. The architecture is based on the idea
that adaptive workflows and dynamic binding to services can facilitate abstraction of
both business processes and requisite interactions with underlying infrastructure sepa-
rating functional system aspects from the business processes that govern service inter-
actions. A prototype of the VIM has been implemented and reference scenarios in
several application domains have been developed to validate effectiveness of the
approach in real business contexts.

2 Dynamic Service-Oriented Systems

The ability to select and use services from a variety of independent sources and to
integrate them into a system that delivers the functionality and performance desired is
required for dynamic service-oriented systems. In any service-oriented architecture
(SOA) the key functional components are services and systems. The fact that systems
can be considered to be composed of services, which services themselves are pro-
vided by systems, is important. The recursive self-referential characteristic of SOAs is
why they are so powerful. However, it also means that service-oriented systems can
quickly become extremely complex concealing lower level structures from end-users.

The complexity is dramatically increased when systems are built from an Internet
of Services that incorporates a multitude of federations between service consumers
and providers. Business relationships are generally codified in contracts making all
relevant details explicit such as defining what is to be provided at what service level,
relevant business practices and standards to be used, as well as pricing and penalties
for failing to meet the specified conditions. In an Internet of Services, these terms are
expressed in Service Level Agreements (SLAs) that identify the business context for
relationships between systems and services and determine many of the technical poli-
cies that govern the interactions.

Federation is established in service-oriented systems by introducing business proc-
esses that result in federation contexts (SLAs) that provide a link between access to
service and the management the service. To achieve federation in a dynamic way each
of these aspects need to specified separately allowing systems to be built independ-
ently of the business models for provision and procurement of services from which
they are composed. By introducing a separation of concerns, multiple stakeholder
objectives can be supported and used to govern systems as they are operated. In addi-
tion, service providers will host different infrastructures with different business poli-
cies, and this may be true even when they offer the same service functionality. When
consumers need their system to achieve a functional goal services need to be selected
at runtime from multiple, sometimes competing, service providers. It is the dynamic
orchestration of business relationships that supports the delivery of system functional-
ity in a secure, trustworthy and accountable way that will provide an essential enabler
to an economically viable Internet of Services.

268 G. Avellino et al.

3 The Workflow Landscape

Workflow is a critical technology for the orchestration of the interactions between
systems and services. Workflow is important because it can be considered as the pro-
gramming language for service-oriented systems and therefore has the potential to
support process flexibility by soft-coding system behavior. In a SOA context, work-
flow is used to express a composition of services and there are several competing
standards, initiatives and many more proprietary solutions.

The most widely used specifications for describing procedural workflows within
businesses are XPDL [2] and ebXML [3], and the most widely used workflow speci-
fication with reference to SOAs is WSBPEL [4]. The focus of BPEL, and most busi-
ness-oriented workflow languages, is control flow. However, extensive research on
workflow control patterns has shown that all languages have limitations in terms of
what can be easily expressed [5]. This insufficient expressivity and lack of rigorous
semantics significantly limits their ability to support adaptation mechanisms and dy-
namics. Van de Aalst provides an extensive pattern comparison of workflow lan-
guages and implementations. Whilst the post-hoc evaluation of existing workflow
languages against workflow patterns with well defined semantics is useful, it does not
address the problem of inherent lack of rigorous machine-interpretable semantics
within each workflow language.

The semantic web service community, on the other hand, is producing rigorous
models and logics for the semantic description of Web Services. Several European
projects inc. SEKT, DIP, SUPER, ASG are working together through the European
Semantic Systems Initiative and have collaborated to develop the Web Service Mod-
elling Ontology (WSMO) [6] and Web Service Modelling Language (WSML) [7].
Meanwhile work done by academia and industry through SWSI has resulted in the
Semantic Web Service Framework (SWSF) [8], which has both a language (SWSL)
 [9], and an ontology (SWSO) [10] (based on OWL-S) that includes a process model.
These languages and models make workflows more amenable to machine reasoning,
making it easier to create abstract representations of processes and runtime binding to
the services that incorporate the both functionality and QoS.

As far as we can ascertain, very few of the current approaches are considering the
need to consider dynamic stakeholder concerns in workflow orchestration and as far
as we can establish none have attempted to design and implement a complete archi-
tectural model addressing all the issues described in section 3.

4 Virtualised Infrastructure Model

The vision of the VIM is to provide a run-time adaptable infrastructure that meets the
key requirements for dynamic systems operating in an Internet of Services, in particular:

• Run-time bindings: system workflows need not specify a binding of every task to

a specific service, so that the bindings can be chosen at run-time.
• Selective enactment: a single service may provide multiple functions, and it must

be possible to choose which is bound to an abstract task, supported by the service.
• Workflow substitution: some abstract tasks may be bound at run-time to more

detailed workflows that can be inserted into the enactment at run-time. A common

 A Dynamic Orchestration Model for Future Internet Applications 269

example is substitutions with template business operations such as account and
billing workflows.

• Workflow prioritization: Critical processes, which are either expensive in re-
sources or define the result or the performance of the workflow, must have high
priority in the evaluation order.

A key feature of the VIM’s approach is the abstraction of business processes so

developers do not have to encode business processes explicitly in their systems. This
allows systems to remain functional even if a service provider wants to use a different
business model or process (e.g. pay-as-you-go instead of subscription-based access to
services). The result is a workflow enactment model with a corresponding workflow
enactment engine that provides a way to dynamically assemble system functionality
using an abstract application workflow specification as a starting point, and introduc-
ing business processes at run-time as specified by the service providers and consum-
ers involved in executing the application.

The capability is achieved by combining adaptive semantic workflow, semantic
discovery and service selection heuristics with supporting business and security ser-
vices that govern functional services. System logic can be captured with abstract “ap-
plication workflows” that include the functional constraints of the system. Service
providers can publish workflows to describe the interactions and preconditions neces-
sary for a consumer to use their service. During workflow execution, abstract tasks
are resolved to concrete implementations including business process steps through a
process that includes discovery, selection and rewiring, before execution.

4.1 Workflow Enactment Model

The overall enactment model for the VIM is illustrated in Figure 1. At its core the VIM
provides an Enactor that is based on "evaluate - apply" cycles, as used in functional

Fig. 1. VIM Enactment Model

270 G. Avellino et al.

programming. The aim of the evaluation is to replace abstract service descriptions with
concrete services at runtime using components of the environment. Evaluation produces
“concrete” processes that are either concrete Application Services or sub-workflows,
which may contain abstract processes that also need to be evaluated. The apply phase
that follows, executes the realized concrete processes. The evaluation algorithm in-
cludes four phases: prioritisation, candidate discovery, federation context acquisition,
and candidate selection.

The evaluation order of a set of abstract processes in a workflow is determined by
both enactor evaluation policies and prioritisation. Evaluation policies dictate whether to
perform lazy or eager evaluation of conditional expressions, or when and how to fully
evaluate nested composite workflows. Prioritization assigns priority weights to the
workflow graph. Abstract processes with highest priority are evaluated first. Abstract
processes that share the same priority level are evaluated together. Prioritisation helps
the enactor to locate problems with availability of bindings for the abstract processes on
critical parts of the workflow (e.g. missing SLAs). It also allows the enactor to to opti-
mize execution by considering dependencies and data/control constraints.

Once prioritisation is completed candidate bindings for abstract processes are dis-
covered from one or more Registry Services within the consumer’s organisation.

In order to execute a candidate a consumer may need to acquire a federation con-
text from supporting Security and Business Services. For example, if a SLA cannot
be found, the enactor will use negotiation to establish a new SLA. SLA negotiations
may also be required if service discovery fails to find any candidates. The negotiation
of new SLAs can then allow access to more services, and when the SLA is agreed
these services are added to the candidates list.

Fig. 2. Enactment Engine

 A Dynamic Orchestration Model for Future Internet Applications 271

Lastly the run-time binding of each abstract task to one of the candidates is deter-
mined using Decision services that apply selection heuristics and local organization
policies. Selection operates across the whole workflow and may take account of co-
location and other constraints. After selection of a candidate, replacement is made by
rewiring the workflow and the (“Apply”) phase is executes the task.

The workflow representation language that we adopted to represent workflows is
OWL-WS. OWL-WS stands for “OWL for Workflows and Services” and is a work-
flow (and service) ontology fully based on OWL-S [11]. OWL-WS extends the OWL-
S concept of Service to Abstract Process (an Atomic Process without implementation
information), and uses the OWL-S concept of Composite Process for workflow mod-
elling. In OWL-WS, Profile is available to any Process providing the ability to repre-
sent information at any level of the workflow composition. A more detailed descrip-
tion of the language is provided in [12]. A detailed model of the VIM can be seen in
Figure 2.

4.2 Workflow Enactment Engine

The workflow enactment model has been implemented by integrating a range of ser-
vice-oriented technologies. The Enactor is based on the Mindswap OWL-S API
[13],which supports representation and enactment of OWL-S elements. Mindswap
was extended to provide additional features to support OWL-WS extensions, and
more complex and dynamic eval/apply execution semantics.

The evaluation order of an Abstract Process can be set both manually by the work-
flow author and automatically by the Prioritizer component. The Prioritizer uses QoS
and historical information to assign evaluation priorities to those abstract processes
that have not yet been prioritised. The Discoverer component looks for candidate
bindings for an abstract process starting from its Profile. The Profile expresses con-
straints on the discovery process, effectively encapsulating a query that should be
used to locate candidates. Discovery is performed by querying service registries that
are located in the consumer’s domain. This registry implementation is based on the
Globus GT4 implementation of the WSRF-SG specification, and supports the XPath
query language [14].

Federation context acquisition is implemented using the SLA Discovery and Bro-
ker components. The SLA Discovery component retrieves SLAs from a SLA registry.
Many concrete services can only be executed under an agreement with the service
provider, so an SLA reference is essential for the execution of these services. Negotia-
tion of new SLAs with service providers is performed by means of the Broker com-
ponent. The broker uses service provider registries to look for advertised services that
fulfill consumer requirements. Once these have been decided the negotiation process
takes place in order to establish a new SLA. The SLA that is produced is then regis-
tered to the SLA Registry followed by an update to the application service registry to
register new service functionality that has been procured. The current Broker imple-
mentation consists of five components: the Matchmaker, the Negotiator, the Recon-
ciler, the Template Retriever, and the Deal Closer and is described in detail in [15].

272 G. Avellino et al.

Fig. 3. VIM Components

The final selection of service bindings is performed by a Selector component. The
selection process involves choosing a single candidate for each Abstract Process from
the set of candidates found in the discovery phase. The selector implements an algo-
rithm that takes into account criteria taken from an SLA, historical data and service
parameters. User hints may also influence the selection. In order to determine the best
from the available candidates for each step the selector takes into account services
selected in other nodes of the workflow. The enactor gathers information of the ser-
vice performance under a SLA, and can then be submitted to a Quality of Experience
analysis service if the user so chooses. The QoE analysis can then also be used to
produce criteria for the Selector component, based on previous experience of the
candidate service providers [16].

Apart from the evaluation components the enactor uses Groundings to infrastruc-
ture implementations. These Groundings encapsulate the information required to
construct and send appropriate messages to services and other executable components
that are external to the Enactor. The WSDL and Java groundings enable Web Service
and local service invocations. The GRIA grounding supports services hosted by the
GRIA middleware [17], while the NextGRID grounding provides similar functional-
ity but supports NextGRID specifications for SLAs and exchanged messages.

5 Real Context Experiments

The VIM architecture has been verified by architectural experiments and used in
reference applications within the NextGRID project [18]. These applications include:

• Digital Media (DM): This application uses workflows that consume Rendering
services for a for a television advertising company.

• Electronic Data Record (EDR). This application uses Grid services for a telecom-
munications company.

In the following paragraph we chose to analyse the Digital Media experiment. In
the DM scenario, users want to run video rendering application workflows that have

 A Dynamic Orchestration Model for Future Internet Applications 273

been written with the OWL-WS workflow-authoring tool by the application system
experts. These workflows are abstract. The users have control over which workflow
to use, over its input data and over the parameters for the execution through a web-
portal. Parameters can specify preferences on price, availability, required time or
other business factors. The application workflow in this scenario is shown in Figure 4:

Rendering
Service

Textures
Compilation

Service

Shaders
Compilation

Service

Input Data Output Data

Fig. 4. 3D Video Rendering Scenario

Each of the abstract processes in this workflow is resolved by discovery and selec-
tion to a concrete application process with the SLA EPR information. The discovery
performed in an order defined by the prioritiser implementation and the selection is
taking into account the SLA terms, user preferences and Quality of Experience analy-
sis results. The selection is done through out the workflow to take into account co-
allocation issues according to the selector implementation.

This experiment demonstrated the ability of the system, through its user interface,
to setup the environment of VIM infrastructure and enact abstract workflows of the
video rendering application with different inputs and parameters. By changing the
QoE parameters, users influenced selection and led to different concrete workflows
that had different business models. In any case the abstract processes were evaluated
by the VIM and concrete workflows with business management rules and policies
were successfully enacted using NextGRID compliant application services.

6 Conclusions and Future Outlook

In this paper we presented an orchestration architecture for Future Internet applica-
tions based on a dynamic and adaptive workflow model. The architecture addresses
the key requirements for service-oriented systems operating in an Internet of Services
(runtime binding to services, secure and accountable dynamic procurement, infra-
structure adaption, and separation of stakeholder concerns). A prototype workflow
engine with related components has been developed and validated in significant busi-
ness applications demonstrating how the lifecycle of system functionality and busi-
ness processes governing underlying services can be separated.

The current implementation is limited to adapting consumer systems to service pro-
vider business processes by injecting these processes into application workflows at run-
time. As we move towards an Internet of Services, consumers require systems that deal
with the increased complexity and allow them to assess and mitigate threats in a more
open world. To deal with these issues multiple business stakeholders (operations, finance,
legal, quality, and marketing) will govern interactions and will work together to achieve an
overall business objective. Effectively the atomic view of a consumer or service provider
business process will be insufficient as multiple consumers will need to orchestrate their

274 G. Avellino et al.

perspectives in goal-oriented event driven approach. This will require more fine-grained
adaptive workflows to manage the lifecycle of different aspects of systems and services.

The creation and governance of applications of service-oriented infrastructures
must become much easier for all stakeholders as the diversity and scale of assets dra-
matically increases, especially for applications that span multiple administrative
domains. The VIM orchestration model introduces dynamics into service-oriented
systems in a way that could not be previously achieved. Future work will continue to
focus on orchestrating federations and will examine how the VIM model can be en-
hanced by applying functional programming and process algebra approaches to dy-
namic service composition and agent-based functionality in decision services.

References

1. Next Generation GRIDs Expert Group Report 3, Future for European Grids: GRIDs and Ser-
vice Oriented Knowledge Utilities (January 2006)

2. Workflow Management Coalition Workflow Standard, XML Process Definition Language
(XPDL), Document Number WFMC-TC-1205 FINAL: Version 2.0, October 3 (2005)

3. OASIS standard v2.0.4, ebXML Business Process Specification Schema Technical Specifi-
cation v2.0.4 (December 2006)

4. Alves, A., et al. (eds.): Web Services Business Process Execution Language Version 2.0,
OASIS Committee Specification (January 2007)

5. Workflow Control-Flow Patterns A Revised View. Nick Russell, Arthur H.M. ter Hofstede
(BPM Group, Queensland University of Technology) and Wil M.P. van der Aalst, Nataliya
Mulyar (Department of Technology Management, Eindhoven University of Technology)

6. http://www.wsmo.org/
7. http://www.wsmo.org/wsml/
8. http://www.w3.org/Submission/SWSF/
9. http://www.w3.org/Submission/SWSF-SWSL/

10. http://www.daml.org/services/swsf/1.0/swso/
11. Martin, D. (ed.): OWL-S: Semantic Markup for Web Services, W3C Member submission

(November 2004)
12. Beco, S., Cantalupo, B., Giammarino, L., Matskanis, N., Surridge, M.: OWL-WS: A Work-

flow Ontology for Dynamic Grid Service Composition. In: 1st Int. Conf. on e-Science and
Grid Computing (2005)

13. See Mindswap OWL-S API project,
 http://www.mindswap.org/2004/owl-s/api/

14. Hasselmeyer, P.: On Service Discovery Process Types. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 144–156. Springer, Heidelberg
(2005)

15. Hasselmeyer, P., et al.: Towards Autonomous Brokered SLA Negotiation. In: Paul, Cun-
ningham, M. (eds.) Exploiting the Knowledge Economy - Issues, Applications, Case Studies,
vol. 3. IOS Press, Amsterdam (2006)

16. McKee, P., Taylor, S.J., Surridge, M., Lowe, R., Ragusa, C.: Strategies for the Service
Marketplace. In: Veit, D.J., Altmann, J. (eds.) GECON 2007. LNCS, vol. 4685, pp. 58–70.
Springer, Heidelberg (2007)

17. GRIA Middleware for Service Oriented Collaborations for Industry and Commerce,
http://www.gria.org/

18. NextGRID application fliers, Digital Media application, http://www.nextgrid.org/
download/flyers/NextGRID%20Digital%20Media%20Flyer.pdf, Electronic
Data Records application, http://www.nextgrid.org/download/flyers/
NextGRID%20Digital%20Media%20Flyer.pdf

Defining the Behaviour of BPELlight Interaction
Activities Using Message Exchange Patterns

Jörg Nitzsche, Benjamin Höhensteiger, Frank Leymann, Mirko Sonntag,
and Markus Tost

Institute of Architecture of Application Systems
University of Stuttgart

Universitaetsstrasse 38, 70569 Stuttgart, Germany
{nitzsche,leymann}@iaas.uni-stuttgart.de

{hoehenbn,sonntamo,tostms}@studi.informatik.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

Abstract. BPELlight is an extension of BPEL that allows defining exe-
cutable business processes independant of WSDL port types and opera-
tions. However, it adopts BPELs principle of having either non-blocking
activities that only send or receive a single message or blocking activ-
ities, that are restricted to at most two messages, i.e. they implement
a send-receive or receive-send behaviour. In recent work BPELlight has
been used to define arbitrary complex message exchange patterns. In
this paper we use message exchange patterns defined in BPELlight to
describe the behaviour of interaction activities in a generic manner. This
is beneficial as complex behaviour like a “request-for-bid” only have to
be modelled once on an abstract level and can then be reused by simply
referencing the corresponding message exchange pattern and filling in
parameters whenever needed. This makes process modelling more conve-
nient as the modelling primitives are not restricted to a request-response
behaviour but are lifted to a business oriented level.

1 Introduction

Workflow technology [1,2] has become a very successful area in industry and re-
search as it enables programming on a higher, i.e. business process oriented level
[3] by separating business process logic and implementation of business functions.
Process orientation has been discussed for many years but with the emergence of
Web Services [4,5] (WS) which is the most popular implementation of a service
oriented architecture [6,7] (SOA) workflow technology got established to a great
extent. A workflow in general comprises 3 dimensions: process logic (’what’ is to
be done), organization (’who’ does it) and infrastructure (’which’ tools are used).
In the Business Process Execution Language [8] (BPEL), which is part of the WS
standard stack, the ’what’ and ’which’ dimensions are strongly coupled. Activi-
ties which are an aspect of the process logic (’what’) directly refer to operations
(’which’) defined using the Web Service Description Language [9]. This ties BPEL
to WSDL for referring to activity implementations and inhibits the reuse of pro-
cesses or parts thereof in different contexts with different partners.

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 275–286, 2008.
� Springer-Verlag Berlin Heidelberg 2008

http://www.iaas.uni-stuttgart.de

276 J. Nitzsche et al.

BPELlight [10] gets over these deficiencies by defining a new interaction model
using BPEL’s extensibility. Thus, the interface of BPELlight processes and the in-
terfaces of business functions used to implement activities of BPELlight processes
can be described via any interface definition languages, i.e. it can be used even in
non-WS environments (WSDL-less BPEL). The interaction model of BPELlight

adopts BPELs principle of having either non-blocking activities that only send
or receive a single message or blocking activities, that are restricted to at most
two messages, i.e. they implement a send-receive or receive-send behaviour which
is similar to that of WSDL 1.1 operations.

In recent work [11,12] BPELlight was used to define (WSDL 2.0 [13]) Message
Exchange Patterns (MEPs). In this paper we use BPELlight MEPs to define the
behaviour of BPELlight interaction activities in a generic manner. This enables the
recursive definition of BPELlight MEPs and eases process modelling significantly.
Instead of modelling for instance a request for bid behaviour using single message
interaction activities every time it is required, an MEP can be modelled once which
then can be reused to specify the behaviour of a complex interaction activity.

The remainder of the paper is structured as follows. Section 2 introduces
BPEL and its extension BPELlight. The application of BPELlight in the field
of modelling MEPs is elaborated in section 3. In section 4 MEPs defined in
BPELlight are used to describe BPELlight interaction activities and it is shown
how this improves modelling processes and MEPs themselves. Section 5 con-
cludes the paper and gives directions for future work.

2 BPEL and BPELlight

BPEL has been approved as an OASIS1 standard in 2007. It is the de facto
standard for specifying business processes in a WS world and employs WSDL 1.1
to describe activity implementations. It enables both, the composition of WSs [4]
and rendering the composition itself as WSs. Thus, BPEL provides a recursive
aggregation model for WSs. The composition of WSs can be specified as a flow
between operations of WS. According to the different operation types it provides
several so called interaction activities. The control flow between activities can be
structured either block-based by nesting structured activities like <sequence>
(for sequential control flow), <flow> (for parallel control flow) and <if> (for
conditional branches in the control flow) activities, or graph-based by defining
<links> (i.e. directed edges) between activities in a <flow> activity; both styles
can be used intermixed. BPEL does not support explicit data flow. Instead,
data is stored in shared variables that are referenced and accessed by interaction
activities and manipulation activities (e.g. <assign> activity).

As BPEL uses WSDL to define the operations a partner has to provide it
lacks flexibility and reusability. To enable modelling flexible and reusable pro-
cesses BPELlight [10] defines a new WSDL-less interaction model which com-
pletely decouples the process logic and interface definitions. The extensions

1 http://www.oasis-open.org/

http://www.oasis-open.org/

Defining the Behaviour of BPELlight Interaction Activities 277

BPELlight defines in a seperate namespace2 are (i) interaction activities, (ii)
a <bl:conversation> that is referenced by a group of interaction activities to
define a bilateral message exchange that is concerned with a certain business
goal and (iii) a <bl:partner> that is used to define that several conversations
have to take place with one and the same partner. All extensions do not reference
WSDL elements, i.e. they are WSDL-less. The interaction activities include a ba-
sic <bl:interactionActivity> (see listing 1.1) that implements the behaviour
of <receive> (receiving a message), <reply> (sending a message) and <invoke>
(sending and then receiving a message) activities as well as first receiving and
then sending a message, a <bl:pick> that implements a deferred choice and
<bl:eventHandler>s. The behaviour of the <bl:interactionActivity> is de-
fined via the attribute ’mode’.

� �

<bpel:extensionActivity>

<bl:interactionActivity name="NCName"

inputVariable="NCName"?

outputVariable="NCName"?

mode="in-out|out-in"?

conversation="NCName"

createInstance="yes|no"?

standard-attributes>

standard-elements

</bl:interactionActivity>

</bpel:extensionActivity>
� �

Listing 1.1. BPELlight’s <interactionActivity>

3 Formalizing MEPs Using BPELlight

In contrast to WSDL 1.1, where a fixed set of operation types is defined, WSDL
2.0, which became a W3C3 recommendation in 2007, defines operation types
generically using so called message exchange patterns (MEPs). However, the
expressivity of the formalism provided to define these MEPs is not sufficient
because (i) it only allows defining a sequence of messages without any conditions,
(ii) it does not distinguish partner node types and instances and (iii) it is too
imprecise (it is not defined how the receipient of an optional message can find out
whether the message will arrive or not). Therefore in [11] and [12] BPELlight was
applied to modelling MEPs. In contrast to process models, MEPs do not define
data types and are generically defined as they are aimed to be reusable [14].
This requires from BPELlight the possibility to define a flow between abstract
messages that are received and sent without defining the concrete data type of
these messages. Thus, an abstract BPELlight profile for MEPs was created [11].
2 xmlns:bl=http://iaas.uni-stuttgart.de/BPELlight/
3 http://www.w3.org

xmlns:bl=http://iaas.uni-stuttgart.de/BPELlight/
http://www.w3.org

278 J. Nitzsche et al.

� �

<bpel:process

xmlns:bpel="http://.../wsbpel/2.0/process/abstract"

xmlns:bl="http://.../BPELlight/"

suppressJoinFailure="yes"

abstractProcessProfile="http://.../bpel-light/abstract/mep/2008/"

targetNamespace="http://../mep-in-bpel"

name="request-wih-referral">

<bl:conversations>

<bl:conversation name="request-with-referral"/>

</bl:conversations>

<bl:partners>

<bl:partner name="contacted-provider"/>

<bl:partner name="responding-provider"/>

</bl:partners>

<bpel:flow>

<bpel:links>

<bpel:link name="L1"/>

</bpel:links>

<bl:interactionActivity name="Out" inputVariable="##opaque"

partner="contacted-provider"

conversation="request-with-referral">

<bpel:sources>

<bpel:source linkName="L1"/>

</bpel:sources>

</bl:interactionActivity>

<bl:pick>

<bpel:targets>

<bpel:target linkName="L1"/>

</bpel:targets>

<bl:onMessage name="In" outputVariable="##opaque"

partner="responding-provider"

conversation="request-with-referral">

<bpel:empty/>

</bl:onMessage>

<bl:onMessage name="InFault" faultName="##opaque"

outputVariable="##opaque"

partner="responding-provider"

conversation="request-with-referral">

<bpel:empty/>

</bl:onMessage>

</bl:pick>

</bpel:flow>

</bpel:process>
� �

Listing 1.2. “Request-with-Referral” MEP in abstract BPELlight

Defining the Behaviour of BPELlight Interaction Activities 279

This profile is associated with a namespace URI4 and allows the use of all con-
structs allowed in the common base. The prefix associated with the MEP profile
namespace URI is mep. Additionally it restricts the common base in the following
manner5:

– Omission shortcuts (i.e. omitted elements) MUST NOT be used in the MEP
profile with one exception: Timing definitions, i.e. <for>, <until>, and
<repeatEvery>, MAY be omitted in <onAlarm> and <wait> elements. In
this case, deadlines and durations MUST be defined by a newly introduced
timing expression element which is necessary to enable expressing timing
constraints without deciding whether they are defined via durations, dead-
lines or repetitions.

– Explicit opaque tokens, i.e. opaque activity, opaque attributes, opaque ex-
pression, and opaque from-spec, MUST NOT occur in MEP models except
for variable references, types and time constraints. These opaque tokens de-
note the points of variability which have to be substituted later in order to
come to a concrete meaningful form of this MEP process model.

– In order to define generic MEPs, data types MUST NOT be directly ref-
erenced by variables in MEP models. Instead, an opaque placeholder can
be embedded which is to be replaced later. If message passing within the
MEP process is not essential, inputVariable or outputVariable respec-
tively can be marked opaque, the type is then automatically derived from
the referenced messages. This way variable declarations can be omitted.

– Faults MUST be explicitly specified using BPELlight’s faultName attribute
in receiving activities (i.e. bl:interactionActivity, bl:onMessage within
a bl:pick).

Using BPELlight’s abstract profile for MEPs, an MEP can be defined in
the following manner: For each MEP a seperate <process> definition is used.
Within this definition an arbitrary flow between BPELlight’s interaction activities
(<bl:interactionActivity>, <bl:pick> and <bl:eventHandler>) is defined
using BPELs control flow primitives. Note that for modelling MEPs only single
message <bl:interactionActivity>s are used. Additionally a single conversa-
tion is defined to group these activities to an MEP.

Since MEPs are in general not restricted to be bilateral [14], the application of
the <bl:partner> element in BPELlight has been modified. Instead of grouping
whole conversations to indicate that they have to take place with one and the
same partner, a <bl:partner> element is used to define for each message from
which partner it is received or to which partner it is sent.

Listing 1.2 [12] presents a BPELlight description for the MEP request-with-
referral. The activities or elements named “Out”, “In” and “InFault” in combi-
nation with the corrsponding opaque variables represent the abstract messages.

4 http://iaas.uni-stuttgart.de/BPELlight/abstract/mep/2008/
5 The upper case keywords ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”,

”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”,
and ”OPTIONAL” in this document are to be interpreted as described in [15].

http://iaas.uni-stuttgart.de/BPELlight/abstract/mep/2008/

280 J. Nitzsche et al.

They are grouped via the conversation named “request-with-referral”. The part-
ners “contacted-provider” and “responding-provider” indicate that both, the in-
coming message as well as the incoming fault, are received from the same partner
which is different from the partner the first message was sent to. Additional sam-
ple MEPs can be found in [11] (in-only, robust-out-only, out-optional-in) and [12]
(request-for-bid).

4 Describing Interaction Activities with MEPs

MEPs provide means to describe the flow of messages that are sent and received
from the point of view of a service on an abstract level. They are used to describe
the type of WSDL 2.0 operations. In BPEL, interaction activities correspond to
the behaviour of WSDL 1.1 operations. A <receive> implements for instance
a one-way operation, i.e. it only receives a single message, and an <invoke>
behaves like a notification or solicit-response operation as it first sends a message
and later may receive a message.

When first designed, BPELlight also adapted this behaviour for its interaction
model, in particular for the <bl:interactionActivity>. However, as a task
in a process – like an operation of a service – is supposed to provide support
on a business oriented level by performing business functions like for instance a
request-for-bid, it is reasonable to leverage reusable, abstract MEPs for defining
the behaviour of interaction activities generically.

Therefore the syntax of the <bl:interactionActivity> has been refined (see
listing 1.3). The attribute “mode” with its fixed values “in-out” and “out-in” has
been replaced with the much more expressive attribute “mep” that points to any

� �

<bpel:extensionActivity>

<bl:interactionActivity conversation="NCName"?

createInstance="yes|no"?

mep="anyURI"?

standard-attributes>

standard-elements

<bl:input .../>*

<bl:output .../>*

<bl:infault .../>*

<bl:outfault .../>*

<bl:timingExpression .../>*

<bl:partner .../>+

...

</bl:interactionActivity>

</bpel:extensionActivity>
� �

Listing 1.3. Syntax of <interactionActivity>

Defining the Behaviour of BPELlight Interaction Activities 281

kind of MEP definition, including MEPs defined in BPELlight. As an MEP may
need several inputs and may provide several outputs the corresponding “input”
and “output” attributes have been changed to elements with infinite cardinality.
In addition, an MEP may need to send predefined faults and may receive faults.
Hence, corresponding “infault” and “outfault” elements were defined. Apart from
messages and faults an MEP parameterizes partner definitions and timing ex-
pressions used in <onAlarm> statements in <bl:pick>s or <bl:eventHandler>s.
As an MEP may define several partners and timing expressions, the interaction
activity provides elements with infinite cardinality for referencing them.

4.1 Recursive Definitions of MEPs

In recent work [11,12] BPELlight has been used to define MEPs. Within the given
MEP definitions only single message interaction activities were used. Defining
the bebaviour of interaction activities using MEPs, however, enables defining
MEPs recursively, i.e. a MEP can be composed of several MEPs.

Listing 1.4 presents the refined syntax of the elements of the interaction
activity including all attributes required to define MEPs recursively. The at-
tribute “messageLabel” of the input and output element is used to distinguish
all bl:input and bl:output elements defined within an abstract process that
models a MEP from each other, i.e. messageLabels of input and output have
to be unique throughout an MEP definition. The “messageRef” attribute is
used to map an element to a corresponding input or output, defined in the
MEP referenced via the “mep” attribute of the <bl:interactionActivity>.
The same principle of identifying and referencing elements is applied to tim-
ing expressions. Once defined for a pick or eventHandler, the timing expres-
sions are referenced from a <bl:interactionActivity>, referencing the MEP
they are defined in, using the “timingExpressionRef” attribute. Within the
<bl:interactionActivity> the element referencing the timing expression is
in turn identified via the “timingExpressionLabel” attribute.

This enables the identification of all abstract elements throughout the recur-
sive definitions, that are defined in the scope of a <bl:interactionActivity>
and that need to be instantiated when used in a concrete process. Additionally,

� �

<bl:input messageLabel="NCName"?

messageRef="QName"?/>*

<bl:output messageLabel="NCName"?

messageRef="QName"?/>*

<bl:timingExpression timingExpressionLabel="NCName"?

timingExpressionRef="QName"?/>*
� �

Listing 1.4. Syntax of <interactionActivity> elements for defining MEPs
recursively

282 J. Nitzsche et al.

<interactionActivity ...
mep=“out-optional-in”
<input messageLabel=“request-for-bid!Out”

messageRef=“out-optional-in!Out”/>
<output messageLabel=“request-for-bid!In”

messageRef=“out-optional-in!In”/>
...

</interactionActivity>

<interactionActivity ...
mep=“out-only”
<input messageLabel=“out-optional-in!Out”

messageRef=“out-only!Out”/>
...

</interactionActivity>

<interactionActivity ...
<input messageLabel=“out-only!Out”

...
</interactionActivity>

out-only

out-optional-in

request-for-bid

<onMessage
messageLabel=“out-optional-in!In”/>

Fig. 1. Recursive Definition of “request-for-bid”

Defining the Behaviour of BPELlight Interaction Activities 283

abstract defintions that are not defined in the scope of a single activity of a
MEP but in the scope of the whole MEP need to be identified. This category
comprises partner definitions as well as expression definitions needed to define
the control flow by means of transition conditions for <link>s or conditions in
<if> activities.

Figure 1 presents a scenario that illustrates the recursive definition of MEPs:
the MEP “request-for-bid” is defined using a BPEL <forEach> performing sev-
eral “out-optional-in” MEPs in parallel. Sending a message in this “out-optional-
in” pattern is in turn defined using an “out-only” pattern. The figure uses the
Business Process Modelling Notation (BPMN) [16] to visualize the control flow
defined in BPELlight. BPMN tasks represent <bl:interactionActivity>s. In
addition, BPELlight code snippets are included in the BPMN diagram to show
how the relationship of the different MEPs is defined.

The “out-only” pattern is defined by a single <bl:interactionActivity>.
Within the activity one input with the messageLabel “out-only!Out” is defined.
The MEP “out-optional-in” is defined by a <bl:interactionActivity> fol-
lowed by a deferred choice pattern representing a <bl:pick> that consists of an
event based gateway, an incoming message event representing a <bl:onMessage>
event, a timer event representing an <onAlarm> event and an exclusive gate-
way. For the sake of simplicity, faults are not considered in this example. The
<bl:interactionActivity> is specified by referencing the pattern “out-only”.
Thus, it defines one input with the messageLabel “out-optional-in!Out” and
maps to the abstract message definition in the “out-only” pattern via the mes-
sageRef attribute that points to the messageLabel “out-only!Out”. The
message received via the <bl:onMessage> event is identified with the messageLa-
bel “out-optional-in!In”. The “request-for-bid” pattern is defined using a loop in-
cluding one task representing a <bl:interactionActivity>. This
<bl:interactionActivity> references the “out-optional-in” pattern and de-
fines one input and one output. The input is defined via the messageLabel
“request-for-bid!Out” and maps to the abstract message definition in the “out-
optional-in” pattern via the messageRef attribute that points to the messageLa-
bel “out-optional-in!Out”. The output is defined accordingly.

Note, that a <bl:interactionActivity> can – instead of referencing the
pattern “out-only” – also omit the “mep” attribute and define only one input.
These two respresentations are semantically equivalent. The same applies to the
pattern “in-only”.

4.2 Use in Concrete Process

When using MEPs to define the behaviour of <bl:interactionActivity>s in
an executable process, concrete values have to be assigned to the abstract def-
initions. For defining the message types of inputs and outputs an additional
variables attribute is sufficient (see Listing 1.5). Timing expressions can be con-
figured according to the mechanism described in [11]. The same principle can also
be applied to assigning concrete values to abstract definitions that are defined
globally in the MEP like expressions and partners.

284 J. Nitzsche et al.

� �

<bl:input variable="NCName"

messageRef="QName"?/>*

<bl:output variable="NCName"

messageRef="QName"?/>*
� �

Listing 1.5. Assigning variable values to inputs and outputs of the
<interactionActivity>

In case the MEP that is used to define the <bl:interactionActivity> has
been defined recursively, it is not only possible to step-wise zoom into the MEP
definition during modelling but it is also possible to suck in layer per layer into
the main process. Once a layer is included in the main process, it is also possible
to include additional control dependencies as long as they do not change the over-
all behaviour of the predefined MEP. In case a layer is drawn into the process,
the conversation that defines a MEP becomes a conversation in the main process.
As the relationship between the conversation the <bl:interactionActivity>
was involved in and the conversation that defines the MEP used to specify the
behaviour of this activity needs to be presereved, the conversation has been ex-
tended to enable pointing to a parent conversation. This way, BPELlight provides
a broad spectrum of granularities of process models: from coarse grained busi-
ness processes where a flow between <bl:interactionActivity>s with complex
behaviour is specified to fine grained processes where the flow between single
messages is visible.

5 Conclusion and Outlook

BPELlight is an extension of BPEL that allows defining executable business
processes independent of WSDL port types and operations. In its first version
it adopted the principle of having either non-blocking activities that only send
or receive a single message or blocking activities, that are restricted to at most
two messages, i.e. they implement a send-receive or receive-send behaviour.

In this paper reusable MEPs were applied to BPELlight to enable describing
the behaviour of interaction activities generically. Therefore BPELlight and in
particular the interactionActivity was extended to enable both, the recursive
definition of MEPs using BPELlight’s abstract profile for MEPs as well as us-
ing existing, reusable MEP definitions to describe the behaviour of executable
processes. This eases process modelling as complex behaviour like a “request-for-
bid” only has to be modelled once on an abstract level and can then be reused by
simply referencing the corresponding MEP and filling in parameters whenever
needed. The extensions shown make process modelling more convenient as the
modelling primitives are not restricted to a request-response behaviour but are
lifted to a business oriented level. This enables covering a broad spectrum of
granularities of process models: from coarse grained business processes where a

Defining the Behaviour of BPELlight Interaction Activities 285

flow between <bl:interactionActivity>s with complex behaviour is specified
to fine grained processes where the flow between single messages is visible.

To benefit from the expressivity provided by the new BPELlight interaction
model tool support is required. To enable modelling MEPs as well as executable
processes the eclipse BPEL designer6, which is a GEF7 based Eclipse plug-in
that provides means to graphically model BPEL processes, is currently being
extended to implement BPELlight extensions including the abstract profile for
MEPs. In addition to the modelling tool, an execution environment is needed
that is able to execute BPELlight processes. Therefore the Apache ODE engine8

is being extended.

Acknowledgements

The work published in this article was partially funded by the SUPER project9

under the EU 6th Framework Programme Information Society Technologies Ob-
jective (contract no. FP6-026850).

References

1. Leymann, F., Roller, D.: Production workflow. Prentice Hall, Englewood Cliffs
(2000)

2. van der Aalst, W., van Hee, K.: Workflow management. MIT Press, Cambridge
(2002)

3. Leymann, F., Roller, D.: Workflow-based applications. IBM Systems Journal 36(1),
102–123 (1997)

4. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River (2005)

5. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2004)

6. Burbeck, S.: The Tao of e-Business Services. IBM Corporation (2000)
7. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture

Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle River (2004)
8. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,

Goland, Y., Guizar, A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M.,
Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web Services Business
Process Execution Language Version 2.0. Committee specification, OASIS Web
Services Business Process Execution Language (WSBPEL) TC (January 2007)

9. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. W3C Note (2001)

10. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In: 5th
International Conference on Business Process Management (BPM), Brisbane, Aus-
tralia (September 2007)

6 http://www.eclipse.org/bpel/
7 http://www.eclipse.org/gef/
8 http://ode.apache.org/
9 http://www.ip-super.org/

http://www.eclipse.org/bpel/
http://www.eclipse.org/gef/
http://ode.apache.org/
http://www.ip-super.org/

286 J. Nitzsche et al.

11. van Lessen, T., Nitzsche, J., Leymann, F.: Formalising Message Exchange Patterns
using BPELlight. In: 5th International Conference on Services Computing (SCC),
Honululu, Hawaii, USA (July 2008)

12. Nitzsche, J., van Lessen, T., Leymann, F.: Extending BPELlight for Expressing
Multi-Partner Message Exchange Patterns. In: 12th IEEE International EDOC
Conference (EDOC 2008), Munich, Germany (September 2008)

13. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language. W3C Recommendation
(2007)

14. Nitzsche, J., van Lessen, T., Leymann, F.: WSDL 2.0 Message Exchange Patterns:
Limitations and Opportunities. In: 3rd International Conference on Internet and
Web Applications and Services (ICIW), Athens, Greece (June 2008)

15. Bradner, S.O.: Key Words for Use in RFCs to Indicate Requirement Levels. Internet
RFC 2119 (March 1997)

16. White, S.: Business Process Modeling Notation (BPMN) Version 1.0. Object Man-
agement Group/Business Process Management Initiative, BPMN.org. (2004)

Managing Technical Processes Using Smart
Workflows

Matthias Wieland1,�, Daniela Nicklas2, and Frank Leymann1

1 Institute of Architecture of Application Systems, Universität Stuttgart
wielanms,leymann@iaas.uni-stuttgart.de

2 Computer Science Department, Carl von Ossietzky Universität Oldenburg
dnicklas@acm.org

Abstract. Technical processes that are crossing the boundary to the
physical world can be found in many application domains, like logistics
or in Smart Factory environments. We show how these processes can be
realized by so-called Smart Workflows. To integrate external information
sources like context provisioning services, we introduce the Integration
Process architecture pattern. This pattern generally solves the problem
of integrating different complex systems that provide functional similar
services with non-fitting interfaces into workflows. The pattern allows
that workflows use simple domain specific interfaces that are the same
for any of these systems and by that allow the exchange of underlying
systems without changing the workflows. This is accomplished by reduc-
ing the interface complexity of the systems via a hierarchical Web Service
stack that reaches from the lowest technical granularity needed by IT ex-
perts to the domain specific granularity needed by the domain experts.
Furthermore the paper presents a concrete realization of the pattern for
integrating different context provisioning systems into workflows.

1 Introduction

Technical processes that are crossing the boundary to the physical world, like
production processes or maintenance processes in a smart factory, are not well
supported by workflow technology yet. Our vision is compared to the current
state of the art to automatically execute and control such technical processes.
This leads to the same amount of flexibility enterprises gained by introducing
workflow management systems [1]. Furthermore, technical processes are enabled
to easily interact with the back office, bridging the gap between business and pro-
duction. Modeling a technical process becomes similar to modeling of a business
process. The difference is that for modeling technical processes various informa-
tion about the physical world like current state of all involved real world entities
is needed, e.g., machines, tools, and workers in a production environment. If this
information—often referred to as context [2]—is captured automatically by sen-
sors in a smart environment, technical processes can be executed pervasively and
� This work was funded by the Collaborative Research Center Nexus: Spatial World

Models for Mobile Context-Aware Applications (grant SFB 627).

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 287–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 M. Wieland, D. Nicklas, and F. Leymann

mobile workers

w
or

ki
ng

pl
an

tool is
attrited

start tool
exchange

get tool
from stock

context model
managed by a context provisioning system

mobile workers

sen
so

rs,
m

ach
in

e
states

ta
sk

s,
in

fo
rm

at
io

n

tool is
attrited

start tool
exchange

even
t

n
o

tificatio
n

s

co
n

te
xt

q
u

er
ys

get tool
from stock

progress
report

a) Today's reality b) Vision of Smart Workflows

technical production processes technical production processes

workflow Smart Workflow

paper written
coordination

paper written
coordination

Fig. 1. Smart workflows: Incorporate context information into workflow technology

adapt to changes in their physical context. We call such context aware processes
Smart Workflows (SW). To realize this vision we employ context data managed
in a context model (see Figure 1). In Section 1.1 we illustrate a sample scenario
in a Smart Factory [3].

While designing a service oriented system, a main challenge is to choose an
adequate granularity of the services. It could be either generic and rather tech-
nical (like complex SQL queries) or domain-specific and rather semantic for a
given application domain (like functions for retrieving machine tool information
for a set of parameters). This choice cannot be made in general. Also there are
no standards available how services can be re-used, e.g., in a service hierarchy
where services are derived from each other (comparable to a class hierarchy in
a programming language).

For coping with both problems we developed the integration process archi-
tectural pattern. Integration processes (IPs) are processes that are derived from
each other, i.e., their interfaces get more restricted and thereby more concrete
and domain specific. With that concept it is possible to build up a hierarchical
Web Service stack that reaches from the lowest technical granularity needed by
IT experts to the domain specific granularity needed by the domain experts.

In the remainder of this section we describe a concrete scenario and derive
challenges and requirements. After a discussion of the related work in Section 2
we present the main contribution of this paper, the concept of IPs, in Section 3. In
Section 4 we show a concrete realization of that concept, the context integration
processes (CIPs). Finally, we describe the prototype implemented for evaluation
and proof of concept in Section 5 and conclude the paper in Section 6.

1.1 Example Scenario: Machine Maintenance Process

The following process is used as concrete example throughout the paper and
represents the kind of processes we implement with Smart Workflows (SWs): A
sensor in a machine measures the attrition of an installed tool, a drill. When the

Managing Technical Processes Using Smart Workflows 289

tool is attrited, a SW starts to arrange the replacement of that tool. First, the SW
finds out whether a spare drill is in stock. If not, it starts a business process in the
back office that orders new tools and registers a notification for when the spare
part is available. Now that a spare part is in stock, the SW creates a human task:
somebody should transport the spare part from the storage to the measuring
device to prepare it for installation. The exact location of the spare part within
the storage and the available measuring device are part of this task. Also, the SW
monitors the execution of this task using location information. Soon, a mobile
agent (a transport robot or a worker) that is near to the storage picks up this
task. When the transport task is completed, the SW creates a preparation task
which can be picked up by another agent that is capable of doing this work.
Again, the completion of this task is monitored so that a transport task to the
machine can be invoked. Arriving there, the old drill can be exchanged by the
spare part. The last action triggers an event for the tool life-cycle SW of the old
drill that now checks whether the old drill can be refitted or has to be recycled.

1.2 Challenges and Requirements

To realize scenarios as the one given, several challenges must be addressed:

1. Smart workflow modeling: A domain expert should be able to easily model
SWs. For that, new concepts for workflows are needed, like context-based de-
cisions, or context information requests. These concepts require the access of
context data. Since the domain expert should not be burdened with unneces-
sary technical details (like the syntax of a general context query language), the
context access for SWs needs a high number of simple, domain-specific func-
tional interfaces. Here, we need a design that offers good maintainability of
these domain-specific functions because they are often extended to new appli-
cation needs. Finally, the SWs must be executed in an efficient manner. The
easiest way would be to use existing workflow execution engines. Thus, existing
standards like BPEL [4] should be used for modeling SWs whenever possible.

2. Context provisioning: We need an environment to capture, manage, and
provide context information in an efficient way. This information is distributed
over various systems within the factory. Also, it varies regarding update rate,
selectivity, usage for selection, and required data quality. Hence, a single server
solution is not feasible. In the Nexus project3, we developed a model-based, ex-
tensible context provisioning platform that is able to cope with high amounts
of distributed context data [5]. Since context modeling and management is ex-
pensive, the main goal is to provide reusable context information for different
applications, like in a shared database. Thus, the interfaces of such a platform
are rather generic: for context information requests, a flexible query language
is provided; for event-based interaction, complex physical world events can be
declared using an event definition language.

3. System integration: Since the context access functions used for SW model-
ing are often domain-specific they should be understandable by domain experts.
3 Nexus project website: http://www.nexus.uni-stuttgart.de/index.en.html

http://www.nexus.uni-stuttgart.de/index.en.html

290 M. Wieland, D. Nicklas, and F. Leymann

Hence, there is a gap between generic provisioning of context (e.g., query lan-
guages) and the concepts needed in the SW (e.g., ”spare tool available?”). This
context access functions must be organized in an extensible modular architecture
that allows the easy reuse of existing functions. Also, they should be realized
using the same modeling techniques as for the SWs to allow domain experts to
easily extend the available domain-specific functional interfaces.

2 Related Work

IBM’s information integration for BPEL (II4BPEL) [6] allows simple and ef-
ficient access of relational database systems, using SQL, from within business
processes. Other vendors provide comparable SQL support in BPEL [7]. These
solutions could be used to integrate context information into SWs. However,
only BPEL engines implementing this extension could be used. Our approach
works with every engine conforming to the BPEL standard.

The PerCollab System [8] extended workflow technology to support adaptive
collaboration between people in business processes. While this work can be used
to enhance the collaboration of workers in a shop floor, it does not take the
context of the tasks or activities of the process into account. In [9], a ubiquitous
workflow service framework for the development of context aware services named
uFlow is introduced, which defines an own workflow description language and
workflow engine. Again, the usage of standard BPEL allows us to leverage the
advantages of existing workflow engines, e.g., the process management or server
stability.

There are many approaches specialized on the handling of context data like
the Context Toolkit [10], the Location Stack [11], or the CML based approach
by Henricksen et al. [12]. They provide simple software components to access
sensor data, to refine the raw sensor data to some higher level and for the inter-
pretation of situations based on the sensed data. In our approach we need a more
powerful context model which offers us the ability to model and access a wide
range of common objects in a unified manner. We also model our applications as
workflows, thus we are rather focused at accessing software components defined
as Web Services.

In previous work we proposed an extension to BPEL to cope with the special
needs of context aware workflows, called Context4BPEL [13]. To execute Con-
text4BPEL workflows an extended workflow engine is needed. The SW approach
in this paper can be either build on top on Context4BPEL or using only standard
BPEL. In contrast to the Context4BPEL approach [13], this paper presents a full
end-to-end solution providing both domain-specific workflow functions needed
by domain-experts and a generic execution architecture using standard BPEL
workflow technology. Nevertheless the CIPs on the higher layers, especially the
domain-specific CIPs are needed in both cases because it is not feasible to de-
fine a workflow modeling language that contains all domain specific extensions.
In [14] we presented a short work in progress overview of the SW vision and the
layered system architecture needed for realization.

Managing Technical Processes Using Smart Workflows 291

3 Concept of the Integration Processes Pattern

The concept of Integration Processes (IPs) addresses the service granularity
problems described in Section 1. On Figure 2 the generic design of the Integra-
tion Process architecture pattern is shown.

At the bottom of the architecture the systems that provide generic services
(data and functionality) are shown (system A, system X). These systems are
the artifacts of integration. The aim is to access them from the top most part
of the architecture, the service users (here: a Smart Workflow (SW)). The SW
represents the technical processes executed in the production environment in our
scenario. For defining SWs, we chose the Business Process Execution Language
(BPEL) [4]. This language can be used to orchestrate Web Services. The SWs use
the functionality provided by the IPs analog to external Web Service invocation.
In future work, the BPEL extension for subprocesses [15] will be used to invoke
the IPs.

The IPs are the main part of the architecture. They are located between
the systems and the users and are implemented similarly as BPEL workflows.
Hence, they are accessible as Web Services. There are three different granularity
levels for IPs: core, domain independent, and domain specific IPs. The lowest
level processes are the core IPs. They are responsible for the integration of each
service the systems provide. Each service has its own interfaces and one concrete
core IP that wraps that interface.

On the highest level the domain specific IPs are located. The SWs on the
application layer use them to access the services of the systems in a simplified
manner. In general, the domain specific IPs receive fewer parameters than the
other IPs. The aim of this design is that domain experts can easily model SWs
using only the domain specific IPs. The interface parameters of these IPs de-
rive from the application area and thus form the terminology of the domain
experts. If functionality is missing, the domain expert could create a request for

system A (to be integrated)

In
te

gr
at

io
n

P
ro

ce
ss

es

core IPs (for system A)

domain independent IPs

domain specific Integration Processes (IPs)

service user (e.g. Smart Workflow, application)

core IPs (for system X)

domain independent IPs

system X (to be integrated)

 semantical domain specific interface

technical IT-system specific interface

abc

 Legend:

= set of services implemented
 as BPEL process

= hierarchical invocation
dependency

= external users or systemsxyz

Fig. 2. Architectural pattern for the concept of integration processes

292 M. Wieland, D. Nicklas, and F. Leymann

that interface and an information scientist could implement this functionality by
deriving from and thus reusing existing domain independent or core IPs.

The most important level is located in between the other two layers. The
domain independent IPs mediate between the core IPs with complex interfaces
and the domain specific IPs with easy-to-use interfaces. The domain independent
IPs can be reused in different application domains because they offer a general
and not application specific functionality. The main functionality of the IPs
on this layer is the transformation from the simple request/response message
formats of the IPs on the higher levels to the more complex request/response
message formats of the IPs on the lower level.

The reusability of services is further enhanced by the hierarchical structure
of the pattern. This has the following advantages: if the interfaces of system
A are changed, only the core IPs wrapping that interfaces have to be changed.
The process does not notice the changes and even the IPs on the higher level
do not have to be changed. In addition, if a new interface is requested by a
domain expert it can be provided easily by attaching it on top of an appropriate
existing IP.

The hierarchical structure should be part of the naming scheme of the pro-
cesses, i.e., the processes on the core layer should have a name describing their
functionality (e.g., FunctionA). The processes on the domain independent layer
should add their specialization characteristics to the end of the name of the core
IP they are using (e.g. FunctionAFiltered). In contrast, the processes on the
domain specific layer should use names from the application domain and not
technical functionality descriptions (e.g. QueryTool).

4 Realization of Context Integration Processes

To solve the challenges described in Section 1.2 we implemented following system
based on the Integration Processes pattern. On system level we use the Nexus
Context Provisioning System, which solves challenge 2 (context provisioning).
On the user level we use BPEL or Context4BPEL [13] for modeling the technical
processes in the Smart Factory, which addresses challenge 1 (Smart Workflow
modeling). The integration of the Nexus system (challenge 3) or other context
provisioning systems is realized by a set of implemented Context Integration
Processes (CIPs) described in Section 4.2.

4.1 Nexus Context Provisioning System

To provide the highly dynamic context information for SW in an adequate man-
ner, a mature context management is needed. We use the Nexus platform for
that purpose. It is an open platform that supports the development of various
context aware applications. It is based on a common context model, the so-called
Augmented World Model (AWM). This context model is used to integrate and
cache the highly dynamic context information from various sensor sources and
to provide an abstraction for different context aware applications [5]. It models

Managing Technical Processes Using Smart Workflows 293

Nexus context provisioning system

Context
Query

Context
Manipulation

Context
Event

ContextManipulation
Append

ContextManipulation
Delete

Context
Insert

core CIPs
(for Nexus
system)

domain
specific
CIPs
(for any
system)

ContextEvent
OnEnterArea

ContextManipulation
Update

ContextQuery
Exclude

ContextQuery
Include

ContextQuery
IncludePos

Query
MeasuringDevice

Register
TransportEvent

Query
Tool

Query
MachineByToolId

domain
independent
CIPs
(for Nexus
system)

AWQL, AWML AWML, CRL ERL, ENL, EventInfoAWQL, CRL

message
exchange
(with Nexus
system)

Legend: = public Web Service interface (WSDL) = BPEL process used as sub process in a Smart Workflow

= hierarchical invocation dependency = message exchange with external system

abc

Fig. 3. Context Integration Processes for the Nexus context provisioning system

context data in different areas, like geographical data, dynamic sensor data, in-
frastructural context, or related information such as documents. Nexus consists
of basic services and value added services to provide the context information.
Nexus is a federated system and there exist many different kinds of implemented
and ready to use context servers for diverse needs [5]. To exchange context infor-
mation between applications and the Nexus platform, several data formats have
been defined [16]:

– the Augmented World Modeling Language (AWML) for data modeling and
serialization of context information;

– the Augmented World Query Language (AWQL) for querying and manipu-
lating context information. The results for manipulations (success or error)
are reported with the Change Report Language (CRL);

– the Event Registration Language (ERL) and the Event Notification Lan-
guage (ENL) for context event observation;

– the map service can be used to generate topographic maps based on the
objects (e.g. buildings) stored in the context servers. As exchange formats
the map service offers the Map Predicate Language (MapPL) and the Map
Modeling Language (MapML); and

– the navigation service is responsible for calculating travel routes and offers
the Navigation Parameter Language (NPL) and the Navigation Result Lan-
guage (NRL) for exchanging data.

4.2 Context Integration Processes

Figure 3 shows as a concrete implementation of the Integration Process pattern
for the integration of the Nexus services. We call this concrete set of IPs Context

294 M. Wieland, D. Nicklas, and F. Leymann

Integration Processes (CIP) hence it is used for integration of context data into
Smart Workflows (SW).

As core CIPs we need the following four processes:

– ContextQuery is used for querying context data. It integrates the querying
functionality of the Nexus federation component. ContextQuery integrates
the AWQL format for the query declaration and the AWML format for the
result presentation.

– ContextInsert is used for inserting new context data. It integrates the AWML
format for describing data objects that have to be inserted to the context
model and the CRL format for reporting the result of an insert operation.

– ContextManipulation is used for changes on existing context data. It inte-
grates the AWQL format for the manipulation request and the CRL format
for manipulation results.

– ContextEvent integrates the functionality of the event component from the
context provisioning layer. It integrates the ERL format for the registra-
tion of events and the ENL format for event notifications (more detailed
description in 4.2).

The CIPs on this level have the advantage of offering the full functionality of the
integrated Nexus components by supporting the complex exchange formats of
the Nexus components. However, for client processes (e.g., SWs) the interfaces
of these CIPs are too complex for an easy usage.

Hence, following domain independent CIPs are defined that simplify these
interfaces:

– ContextQueryExclude allows the blanking out of a set of attributes to min-
imize the size of the result set. It uses the core CIP ContextQuery for the
query execution.

– ContextQueryInclude allows the selection of a set of attributes. Only this set
of attributes is included in the objects of the result set. That can be used
to downsize the messages that have to be transferred. It uses the core CIP
ContextQuery for the query execution.

– ContextQueryIncludePos is used by QueryMeasuringDevice, QueryTool and
QueryMachineByToolId. It returns just the location attribute of an object.
It gets a restriction parameter that holds the condition for the objects that
should be searched for. It uses the CIP ContextQueryInclude for further
processing of the query.

– ContextManipulationDelete, ContextManipulationUpdate, ContextManipulat-
ionAppend are specializations of the core CIP ContextManipulation. They
allow the deletion of complete objects in the context model, the update of
already existing objects and the extension of existing objects with new at-
tributes.

– ContextEventOnEnterArea is used by RegisterTransportEvent. It requires the
ID of the mobile object, the observation period of the event, the geographic
area that should be observed, a threshold probability for the event firing, and
further configuration parameters (more detailed description in 4.2).

Managing Technical Processes Using Smart Workflows 295

receive
OnEnterArea

document

transform
document

to ERL

asynchronous
invocation of
ContextEvent

receive
notification in
ENL format

invoke

result

ERL ENL

ContextEvent
OnEnterArea

request
ENL

send
result

Fig. 4. ContextEventOnEnterArea

receive ERL

Nexus event service

synchronous
invocation of
event service

assign notification
message to

output variable

return result

invoke

ERL/
EventInfo

ENL

ENL

pick

assign ERL
to invocation

variable

onMessageonAlarm

singalize
„timeout“

result

synchronous
deregistration call

event service

Event
Info

asynchronous
notification

synchronous
registration

result

ContextEvent
(CIP)

Nexus context provisioning system

ContextEventOn
EnterArea (CIP)

ERL

Fig. 5. ContextEvent

For the Smart Factory application domain we modeled following domain-
specific CIPs (see Figure 3):

– QueryMachineByToolId queries the machine where the tool has to be ex-
changed. This CIP takes the ID of the old tool that should be exchanged by
the worker, and searches for the machine with this tool installed. The return
value is the location of the machine.

– QueryTool queries a tool as spare part for a machine. This CIP takes a tool
type as parameter and returns the exact geographic location of an available
and not worn out tool in the factory.

– QueryMeasuringDevice queries a measuring device, where a tool can be cali-
brated by a factory worker. This CIP accepts only a location area parameter,
e.g., the factory area, because it is intended to search measuring devices in
a given area. It returns the location of the measuring device.

– RegisterTransportEvent observes the transportation process of a tool. It gets
three parameters: an arbitrary mobile object, a geographic area as transport
destination and the observation duration of the event.

Detailed Realization of Two Example CIPs. To illustrate the concrete
realization, we show the detailed structure of the core CIP ContextEvent and the
domain-independent CIP ContextEventOnEnterArea building up hierarchically
on that core CIP. In Figure 4, we see the realization of the ContextEventOn-
EnterArea CIP. It calls the ContextEvent CIP as a subprocess to register its
specialized event (an object enters a specified area). Therefore it offers a simpler
interface to clients by defining its own request format. The new request format
holds, compared to the ERL format, only fewer parameters necessary for that

296 M. Wieland, D. Nicklas, and F. Leymann

special event type. Thus, a transformation step is needed before the invocation
of the ContextEvent CIP to adapt the more complex ERL format. The received
result from the ContextEvent CIP will be forwarded to the client. The client has
thus unmodified access to the complete result data described in ENL format.

In Figure 5, the realization of the ContextEvent CIP is illustrated. A client
process (e.g., the previous ContextEventOnEnterArea CIP) sends an event regis-
tration request in ERL format to the ContextEvent integration process. Contex-
tEvent itself takes the message and sends it synchronously to the event service
located on the Nexus platform. The request is send synchronously with an im-
mediate response that confirms the registration of the event. However, the noti-
fication of the event occurrence is performed asynchronously. The ContextEvent
CIP stores the current process state and waits for the event notification by sus-
pending the process activity. When a notification arrives, the process wakes up
and continues processing by forwarding the result to the client process. Alterna-
tively, a timer activates the process if the event was not observed in a given time,
thus allowing the client process to take appropriate action in this case. This CIP
is used to integrate the event service of the Nexus platform by integrating the
complex documents described in ERL and ENL.

This example showed the hierarchical approach of enhancing and reducing
the complexity of the requests and responses and showed how the CIPs can be
implemented as BPEL workflows. All other CIPs are implemented and wired the
same way.

5 Implemented Prototypes

To evaluate the concept of SWs, we implemented two prototypes in the Smart
Factory environment [3]. This example factory contains a storage area, a mea-
suring device for drills, and some machines that use different drills for producing
personalized plastic coins. Furthermore several sensors are available for context
observation. The drills are equipped with RFID tags for identification. Tools are
transported in an intelligent transport box. This box is tracked by an UbiSense4

indoor positioning system. Different possible locations of the tools (i.e., the trans-
port box, the storage, or the machine) are equipped with a RFID reader. Thus,
the position of a specific tool is available anytime using indirect localization.
Also, the usage time of drills within machines is measured. This allows the con-
text management system to calculate the attrition of the tools. The whole factory
layout—i.e., the positions of the machines and workstations—is managed by a
Nexus context model. Also, the transport cart, which is used to transport the
tool boxes, is tracked by the UbiSense system. Transport carts are moved only by
workers. Hence, the system can infer the positions of workers without tracking
them directly. This improves the acceptability of the system due to the enhanced
privacy for workers.

Within this setup we implemented following two SWs: First, the machine
maintenance process described in Section 1, and secondly, a process for handling
4 UbiSense Real-time Location System: http://www.ubisense.de/

http://www.ubisense.de/

Managing Technical Processes Using Smart Workflows 297

individual customer orders. For the execution of the modeled BPEL processes
we used the Oracle BPEL process manager5. The provided Dashboard gives a
good overview of all deployed, in-flight, and recently completed BPEL processes.
Furthermore the Oracle BPEL process manager provides a Human Task Man-
agement Service with web interface which is used for the interaction with the
workers. A worker can list and access all his ongoing tasks via the human task
manager. Thus the workflows used in the Smart Factory can be controlled both
directly by human interaction and pervasively by observing changes and events
in the real world (e.g., movement of the transport cart). From our experience
with these first prototypes we derived the great need for an easy maintainable
and hierarchically structured service layer. So we invented the integration process
architecture pattern and implemented the CIPs as BPEL workflows therewith.
The most important benefit was that domain experts could now better under-
stand and use the resulting workflows because of the mainly domain specific
interfaces called by the SWs.

6 Conclusion

In this paper we introduced the notion of Smart Workflows (SWs), which cross
the boundaries to the physical world. Many application areas like logistics or the
upcoming domain of Smart Factories could benefit from workflow technology if
these are enhanced by context information to SWs. To realize SWs, we need
context-based features at the process modeling level, an efficient provisioning
of context information, and a maintainable integration layer for providing the
context information at the right semantical level.

Our prototype leverages the usage of standards like WSDL and BPEL, for
both the realization of SWs and the provisioning of various context services
by Context Integration Processes (CIPs), which are used to bind an off-the-shelf
workflow engine (Oracle) with an existing context provisioning platform (Nexus).
This binding is realized by implementing the Integration Processes pattern de-
scribed in this paper. By splitting up different semantical layers (from general
context access to highly application-dependent services) into a hierarchy of dif-
ferent CIPs, we achieved a high maintainability and reusability of the services.
This approach dramatically facilitated the development of SWs, which is an im-
portant pre-condition for the adoption of that technology by industry. Like in
business process engineering, SWs should be developed by domain experts using
modeling techniques rather than be programmed by computer scientists. The
usage of BPEL as a well known workflow modeling language speeds up the mod-
eling of new SWs compared to using an application specific workflow language,
or even against programming a context aware application supporting the process
(for example in Java). It enables domain experts to model their SWs themselves.
These resulting workflow models can be used very good as a basis for discussion
between domain experts and the computer scientists.

5 Oracle BPEL Process Manager http://www.oracle.com/technology/bpel/

http://www.oracle.com/technology/bpel/

298 M. Wieland, D. Nicklas, and F. Leymann

References

1. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, Englewood Cliffs (1999)

2. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Comput-
ing 5(1) (2001)

3. Westkaemper, E., et al.: Smart Factory - Bridging the gap between digital planning
and reality. In: Proc. of the 38th CIRP Intl. Seminar on Manufacturing Systems
(2005)

4. OASIS: Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

5. Großmann, M., et al.: Efficiently Managing Context Information for Large-Scale
Scenarios. In: Proc. of the Third IEEE Intl. Conf. on Pervasive Computing and
Communications (2005)

6. IBM: Information Integration for BPEL on WebSphere Process Server. (2005),
http://www.alphaworks.ibm.com/tech/ii4bpel

7. Vrhovnik, M., et al.: An Overview of SQL Support in Workflow Products. In: Proc.
of the 24th International Conference on Data Engineering (2008)

8. Chakraborty, D., Lei, H.: Pervasive Enablement of Business Processes. In: Proc. of
the Second IEEE Intl. Conf. on Pervasive Computing and Communications (2004)

9. Han, J., Cho, Y., Kim, E., Choi, J.-Y.: A Ubiquitous Workflow Service Framework.
In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3983, pp. 30–39. Springer,
Heidelberg (2006)

10. Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In: CHI 1999: Proc. of the SIGCHI Conf. on
Human factors in computing systems. ACM Press, New York (1999)

11. Hightower, J., Brumitt, B., Borriello, G.: The Location Stack: A Layered Model
for Location in Ubiquitous Computing. In: Proc. of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications (2002)

12. Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-Aware
Pervasive Computing. In: Proc. of the Second IEEE Intl. Conf. on Pervasive Com-
puting and Communications (2004)

13. Wieland, M., et al.: Towards Context-Aware Workflows. In: Pernici, B., Gulla, J.A.
(eds.) CAiSE 2007 Proc. of the Workshops and Doctoral Consortium, vol. 2. Tapir
Acasemic Press (2007)

14. Wieland, M., Kaczmarczyk, P., Nicklas, D.: Context Integration for Smart Work-
flows. In: Proc. of the Sixth IEEE Intl. Conf. on Pervasive Computing and Com-
munications (2008) (work in progress paper)

15. Kloppmann, M., et al.: WS-BPEL 2.0 Extensions for Sub-Processes. Whitepaper,
IBM, SAP AG (2005)

16. Bauer, M., et al.: Information Management and Exchange in the Nexus Plat-
form. Technischer Bericht Informatik 2004/04, Universität Stuttgart, Universität
Stuttgart, Institut für Parallele und Verteilte Systeme, Verteilte Systeme (2004)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.alphaworks.ibm.com/tech/ii4bpel

Model Driven QoS Analyses of
Composed Web Services

Danilo Ardagna, Carlo Ghezzi, and Raffaela Mirandola

Politecnico di Milano, Dipartimento di Elettronica e Informazione,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{ardagna,ghezzi,mirandola}@elet.polimi.it

Abstract. The problem of composing services to deliver integrated business so-
lutions has been widely studied in the last years. Besides addressing functional
requirements, services compositions should also provide agreed service levels.
Our goal is to support model-based analysis of service compositions, with a fo-
cus on the assessment of non-functional quality attributes, namely performance
and reliability. We propose a model-driven approach, which automatically selects
the set of available services, transforms a design model of service composition
into an analysis model, which then feeds a probabilistic model checker for qual-
ity prediction. To bring this approach to fruition, we developed a prototype tool
and we show the results which can be achieved with a simple example.

Keywords: Web services composition, QoS, Business Process Optimization,
Probabilistic Model. Checking.

1 Introduction

Service-Oriented Architectures (SOAs) provide a new paradigm for the creation of busi-
ness applications. This paradigm enforces decentralized developments and distributed
systems compositions: new added-value services may be created by composing inde-
pendently developed services.

Web services (WSs) are an increasingly important and practical instance of SOAs
and are supported by standards and specific technologies. Typically, services can be
composed in an orchestrated manner by using a process language, like the BPEL [1].

We argue that SOAs can benefit from the Model Driven Development (MDD) [4]
paradigm. In essence, this means that models are built to support software engineers
in reasoning at the software architecture level. As a satisfactory solution is built at
the model level, transformation steps (possibly automated) derive the final, platform-
specific implementation. In the case of SOAs, model-level reasoning should support
the early QoS assessment of a service composition. The composition may be assessed
at design time, before a concrete binding from the workflow to the externally invoked
services is established. Indeed, applications can be specified as abstract processes with
unbounded invocations to external services. Concrete services can then be selected and
bound at run time according to some optimizing strategy [27]. QoS assessment hence
has to be performed on the abstract process. It is requested, however, that a specifica-
tion of the external services in terms of their functional and non-functional attributes is
available.

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 299–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

300 D. Ardagna, C. Ghezzi, and R. Mirandola

The use of models extends beyond the initial design of an application. Models may
be used to support both the initial derivation of an implementation and then an evolution
of the software architecture. They can also be useful to devise suitable reconfiguration
strategies for the dynamic contexts where the application will be deployed. Once the
application is running, model-based reasoning may be used to predict the impact of
different reconfigurations in a changing context, driving the reconfiguration process.

In this paper we propose an overall framework for the automatic service selection
and QoS analysis of composed Web services. In particular, the service selection is for-
malized as a non-linear optimization problem which allows to determine an optimal
solution for the execution of multiple composed services. The QoS analysis is built on
stochastic models and architectural reasoning is performed through probabilistic model
checking [6,7,22].

The paper is organized as follows. In Sections 2 and 3 we describe the proposed
architectural evaluation framework and the composed process model. Section 4 intro-
duces a reference example, while the two steps of service selection and analysis of the
service composition are described in Sections 5 and 6 respectively. Section 7 briefly
summarizes the related work and Section 8 concludes the paper.

2 The Architectural Evaluation Framework

In the system under study, service providers assure QoS guarantees and publish their
profiles in a WS registry. It is then possible to select automatically the set of services
to be invoked at run time according to varying workload conditions and end user QoS
preferences. Our architectural framework, illustrated in Figure 1, is based on two main
functional components: (i) a service optimizator based on SNOPT [24] that, starting
from composed service descriptions, determines an optimal service selection satisfy-
ing a set of global QoS constraints; and (ii) a composed quality analyzer [15], which
automatically derives stochastic models that can be solved by PRISM [22] to provide
insights about the overall application quality.

In our approach, the software architect describes a set of applications he intends
to realize and their functional and non-functional requirements as annotated abstract
BPEL processes. Abstract processes are composed by abstract services which act as
place holders of Web service components invoked at run time. In this way, the “best”
set of services can be selected at run-time by solving an optimization problem. Web

Annotated
Abstract

Processes
Specification

WS
Registry

Concrete
Services Performance

and
Reliability
Results

Composed WS
Optimizator

SNOPT PRISM

Composed WS
Quality Analyzer

Fig. 1. General Framework

Model Driven QoS Analyses of Composed Web Services 301

services are then invoked by implementing a dynamic/late binding mechanism. To per-
form quantitative analyses, composed services specifications are also annotated in or-
der to provide statistics on processes executions. Each composed process is then trans-
formed in a Directed Acyclic Graph (DAG). Without loss of generality, we assume that
BPEL processes have single starting and ending points, and the loops are peeled or un-
folded before the analysis is computed as in [3,10,27]. Hence the DAG has a source
node and a sink node. An execution of the composite service consists of the invocation
of the services on a path from the source to the sink.

Several quality criteria can be associated with Web services execution. Furthermore,
if the same Web service is accessible from the same provider, but with different quality
characteristics, then multiple copies of the same Web service are stored in the registry,
each copy being characterized by its quality profile. In the following, Web services will
be indexed by j and denoted by wsj .

In this paper, we focus on a subset of quality dimensions, which have been the basis
for QoS consideration also in other approaches [13,20,27].

– Service Reliability denoted by rj , a real number between 0 and 1 that represents the
reliability of the service invocation wsj ;

– Service Execution Time denoted by ej , represents the expected execution time of
the service invocation wsj ;

– Service Cost, denoted by cj , which indicates the cost associated with the invocation
of service wsj .

This quality model can be extended in order to include other quality dimensions. Fur-
thermore, each abstract service process specification is associated with the Service Invo-
cations Attempts which represents the number of failed invocations necessary to declare
a service to be faulty at run-time.

The composed service optimizator determines through SNOPT (a state of the art non
linear solver [24]) the set of concrete Web services which will be invoked at run time.
Then, the Composed Quality Analyzer module supports the evaluation of reliability and
performance metrics by using the PRISM stochastic model checker.

In the next section we introduce the composed service model and the notation
adopted in the framework.

3 Composed Service Model

As discussed above, the quality profiles are stored in an extended UDDI registry. Fur-
thermore, as in [19], we assume that the service providers (SPs) store the maximum
service rate µj , i.e., the maximum incoming workload which can be accepted by the
service provider. As in grid environments [3], we assume that each SP pre-allocates
some resources to the system in order to provide QoS guarantees. In the following we
will model each service wsj as a M/M/1 queue [9].

The model of composed services adopted in this paper is driven by [11]. We denote
by K the set of QoS classes, by γk class-k requests incoming workload (k ∈ K), and
by γ = (γ1, ..., γ|K|) the overall user requests arrival rate to the system.

302 D. Ardagna, C. Ghezzi, and R. Mirandola

For each class-k request, the Composed WS Optimizator has to assign a concrete
service wsj for each abstract service i in the DAG, under given global QoS constraints
(i.e., constraints over the overall composed service execution).

Let be Vk the set of indexes of abstract services specified in class-k process. We
denote by Jk

i the set of all concrete services wsj , j ∈ Jk
i , that implement the abstract

service i ∈ Vk, and let be J =
⋃

k∈K

⋃
i∈Vk

Jk
i .

In Figure 2, each macro-node depicted as a rectangular box represents an atomic
abstract service i ∈ Vk in the DAG. The directed edge from the macro-node r to the
macro-node s represents a sequencing constraint; that is, it indicates that service r must
complete before service s may begin.

n11 …..i=1

k

(xk
11,....,xk

1n1)

n21 …..i=2 n31 …..i=3

(xk
31,....,xk

3n3)

n1 …..i=

(xk
1,....,xk)

k
k

kk k

.

.

.

.

.

pk
12 pk

13

(xk
21,....,xk

2n2)

Fig. 2. Example of DAG for class-k process

Multiple edges exiting from a macro-node r are weighted by a probability, which
provides statistical information about the next abstract service required by a client of
the composite service. The Composed WS Optimizator can use its observation of the
execution patterns generated by the clients to estimate these probabilities. In this proba-
bilistic model of the workflow execution pattern we do not include the parallel execution
of services. We are currently working toward inclusion of parallelism in our model. In
the following we denote with pk

rs the probability expressing the frequency with which
service s is executed after completion of service r in process k. For each macro-node
r,

∑
s∈succ(r) pk

rs = 1. If only one edge exits node r, the probability is equal to 1 and
we omit its value in the graph. Different service classes are associated with a different
process schema and probabilities.

Let λk
i be the rate of class-k requests that arrive at the abstract service i ∈ Vk.

Using well-known flow conservation arguments [9], we get the following set of linear
equations for the request rates, that can be used to calculate λk

i :

λk = PkTλk + γk e1 ∀k ∈ K (1)

Model Driven QoS Analyses of Composed Web Services 303

where λk = (λk
1 , ..., λk

|Vk|) and e1 = (1, 0, ..., 0) are column vectors and Pk = [pk
rs]

is the |Vk| × |Vk| routing probability matrix for class-k requests. In the following we
will denote by λk∗

i the flow of requests for the abstract service i given by the solution
of equation (1).

Each DAG macro-node contains the concrete services (shown in Figure 2 as circles
inside the rectangular box representing the abstract service), that correspond to specific
implementations of a given abstract service.

Finally, each request class is associated with:

– a set of normalized weights {wk
e , wk

c , wk
r}, wk

e +wk
c +wk

r = 1, indicating a relative
priority among the set of quality dimensions for class k end users;

– the maximum (minimum) values of QoS required for the composed service invo-
cation, i.e., maximum execution time ek

max, maximum cost ck
max and minimum

reliability rk
min;

– class k weight Ωk , which denotes the class k relative priority, and
∑

k∈K

Ωk = 1.

4 Reference Example

In this section, we introduce a simple case study which in the following will be used to
exemplify the use of the proposed framework.

We consider 2 processes including 7 abstract services which can be supported by
11 concrete Web services (see Figure 3). Requests for the first and second composite
service are classified as silver and gold classes, respectively.

The first composed service includes a simple sequence while the second introduces
a switch. Each abstract service can be supported by two different candidate services
while, in both cases, the last service is supported only by the concrete service ws5.

76

01.02

98

0.5 0.5

1110

5

21

1.01

43

5

Gold classSilver class

Fig. 3. A Simple Case Study

304 D. Ardagna, C. Ghezzi, and R. Mirandola

Table 1. Parameters of the example

Parameters Values
(γ1, γ2) (0.1, 0.01)
(µ1, µ2, µ3, µ4, µ5, µ6, (0.2, 0.4, 0.8, 0.5, 0.3, 0.3
µ7, µ8, µ9, µ10, µ11) 0.4, 0.8, 0.9, 0.9, 0.3)
(c1, c2, c3, c4, c5, c6, (0.9, 1.3, 1.2, 0.3, 0.8, 1.1
c7, c8, c9, c10, c11) 0.5, 0.7, 1.2, 1.8, 2.6)
(r1, r2, r3, r4, r5, r6, (0.99, 0.999, 0.99, 0.999, 0.99, 0.999
r7, r8, r9, r10, r11) 0.999, 0.99, 0.999, 0.99, 0.999)
(Ω1, Ω2) (0.3, 0.7)
(c1

max, c2
max) (3, 4)

The routing probability matrices for the two processes are P1 =
[

0 1 0
0 0 1
0 0 0

]
and P2 =[

0 .5 .5 0
0 0 0 1
0 0 0 1
0 0 0 0

]
. Users in the gold class accept to pay a higher cost (c2

max = 4) and are

interested in the maximization of the process reliability, i.e., w2
r = 1, while users in

the silver class introduce stringent execution costs (c1
max = 3) and are interested in the

minimization of the execution time w1
e = 1. Table 1 summarizes the system parameters.

5 Composed WS Optimizator

The goal of the Composed WS Optimizator is to select, for each QoS class-k, the con-
crete service wsj , j ∈ Jk

i , that must be used to fulfill a request for the abstract service
i in order to maximize the QoS perceived by the end user and guaranteeing global
constraints. The Composed WS Optimizator generally acts on behalf of many poten-
tial requestors, it is able to identify recurrent requests for typical service compositions,
as well as usage patterns of these compositions. In our approach, service selection is
performed probabilistically and constraints are guaranteed statistically. The decision
variables of the problems are xk

ij which denote the probability that the concrete service
j ∈ Jk

i will be invoked by the class-k request when the workflow reaches the stage
indicated by the macro-node i.

Given a flow of requests λk∗
i for the abstract service i, the Composed WS Opti-

mizator splits it among the corresponding concrete services j ∈ Jk
i according to the

x = [xk
ij] probabilities. Hence, xk

ijλ
k∗
i is the flow of requests for the concrete service j

generated by clients belonging to the QoS class k.
The global QoS that is experienced by class-k users depends both on the total request

flow addressed to each concrete service, and on the value of the service QoS attributes.
The Composed WS Optimizator can affect this QoS by appropriately setting the xk

ij

values, which are under its control. Given a matrix x, we denote by F k(x) the corre-
sponding global QoS for class-k. Under the M/M/1 assumption, the average execution
time of each abstract service i can be computed as:

Model Driven QoS Analyses of Composed Web Services 305

exeT imei =
λk∗

i

γk

X

j∈Jk
i

xk
ij/µk

j

1 − P
h∈K

P
a∈νh

xh
ajλh

a

µh
j

(2)

In the following, we indicate with Ek, Ck , and Rk respectively the average of the
execution time, execution cost, and reliability for the composed service which can be
evaluated as follows:

Ek(x) =
X

i∈Vk

exeT imei (3)

Ck(x) =
X

i∈Vk

λk∗
i

γk

X

j∈Jk
i

xk
ijc

k
j (4)

Rk(x) =
Y

i∈Vk

λk∗
i

γk

X

j∈Jk
i

xk
ijr

k
j (5)

note that, λk∗
i /γk is the mean number of class-k invocations to the i-th abstract service.

Ck and Rk are obtained as in [3,27] and are computed as the sum of the average
cost (product of the average reliability) of invoked services. The expression for Ek i.e.,
the mean execution time for class-k requests, is evaluated under the hypothesis of the
BCMP theorem [9]1.

In general, the Composed WS Optimizator has to mediate among multiple QoS at-
tributes, which can be either mutually independent or possibly conflicting (e.g., usually
the lower is the response time and the higher is the cost); therefore, the optimal service
selection results in a multi-objective optimization. As in other approaches proposed in
the literature [3,11,27], the multi-objective problem is transformed into a single objec-
tive problem by applying the Simple Additive Weighting (SAW) technique [16], one
of the most widely used techniques to obtain a score from a list of dimensions. Since
quality dimensions have different units of measure, the SAW method first normalizes
the raw values for each quality dimension and then sums up the normalized values by
considering the QoS weights. In this way the overall score associated with class k can
be evaluated as (see [2] for further details):

F k(x) = wk
e

Ek(x) − Ek
min

Emax − Emin
+ wk

c
Ck(x) − Ck

min

Ck
max − Ck

min

+ wk
r

Rk
max − Rk(x)

Rk
max − Rk

min

(6)

Ek
max (Ek

min), Ck
max (Ck

min) and Rk
max (Rk

min) denote respectively the maximum
(minimum) value for the execution time, the cost, and the reliability for class k. We
will explain how to determine them after introducing the constraints of the optimization
problem.

The objective function of the optimization problem is obtained by considering the
weighted average of functions F k(x), where each function is weighted by the relative
importance of class-k, Ωk multiplied by the incoming workload γk:

F (x) =
P

k∈K ΩkγkF k(x)P
k∈K γk

(7)

1 If the conditions of the BCMP theorem do not hold, (3) can be still used as a measure of the
congestion at the concrete service j, that can be used to avoid highly congested nodes [8].

306 D. Ardagna, C. Ghezzi, and R. Mirandola

The service selection problem can be modelled by the following non-linear problem:

P1) max : F (x) =
P

k∈K ΩkγkF k(x)
P

k∈K γk

X

j∈Ji

xk
ij = 1 ∀k ∈ K, i ∈ Vk (8)

X

h∈K

X

a∈Vh

xh
ajλ

h
a

µj
< 1 ∀j ∈ J (9)

Ek(x) ≤ ek
max ∀k ∈ K (10)

Ck(x) ≤ ck
max ∀k ∈ K (11)

Rk(x) ≥ rk
min ∀k ∈ K (12)

0 ≤ xk
ij ≤ 1 ∀k ∈ K, i ∈ Vk, j ∈ Jk

i

Constraints family (8) guarantees that all abstract service invocations are served by
concrete services. Constraints family (9) entails the equilibrium condition for M/M/1
queue, while constraints families (10-12) are the global QoS constraints.

The values Ek
max, Ck

max, Ak
max, Ek

min, Ck
min, Rk

min included in each function
F k(x) can be determined as follows. Ek

max, Ck
max, and Rk

min are set equal to the global
constraints:

Ek
max = ek

max; Ck
max = ck

max; Rk
min = rk

min∀k ∈ K

Ek
min is the minimum execution time which can be experienced by class-k requests.

For each abstract service i ∈ Vk the minimum execution time is given by ek
i (min) =

min
j∈Jk

i

1
µj

(i.e., under the assumption that each concrete service wsj is under light load

and hence its response time is estimated by its service time 1
µj

). Ek
min can then be

evaluated by looking for the minimum cost path from the sink to the tank node of the
composed service DAG, where ek

i (min) is considered as node cost. The same argu-
ments hold for the evaluation of Ck

min and Rk
max where nodes cost (reliability) is set

equal to ck
i (min) = min

j∈Jk
i

ck
ij (rk

i (max) = max
j∈Jk

i

rk
ij).

Problem P1) is a non linear optimization problem in the continuous variables xk
ij .

In [2] we have shown that the objective function of problem P1) is neither concave
nor convex and we have proposed a heuristic algorithm that gives good solutions for
problem instances up to 300 abstract services and 100,000 candidates concrete services
which can be solved in less than half an hour by a Pentium D workstation.

In the optimum solution of our reference example, the abstract services of the gold
class are executed by the most reliable candidate services (ws6, ws9, ws5, and ws11),
i.e., the assignment is deterministic. The overall reliability is equal to 0.988 and the
total cost is 3.8. For the silver class, the first abstract service is executed by ws2 which
is the fastest server available, the node i = 3 is executed by ws5, while the macro node
i = 2 is executed with a probability x1

23=0.7 by the fastest concrete service available
(ws3) and with a probability x1

24 = 0.3 by service ws4, with a total cost equal to the
global constraint 3$.

Model Driven QoS Analyses of Composed Web Services 307

6 Composed Service Quality Analyzer

The output provided by the composed WS optimizator is the set of variables xk
ij which

determines the probability that the concrete service wsj will be invoked by the class-k
request when the workflow reaches the stage indicated by the macro-node i. The aggre-
gated value of QoS for the abstract service i then can be computed as the average of the
quality dimensions of the invoked services weighted by xk

ij . In this way, each abstract
service can be considered as a black-box entity. The composed service quality analyzer
derives models suitable for applying probabilistic model checking techniques. Software
architects may exploit this prediction to evaluate and compare different alternatives at
design-time.

Our approach starts from the composed services specifications and derives quality
predictions, such as the composed service Success probability or Mean Response Time
through the probabilistic model checker PRISM [15,22].

The software architect analyzes the output produced by the probabilistic model
checker to verify if the service composition matches the quality goals required by the
application domain. If these goals are not met, alternative compositions should be eval-
uated in order to reach the required goals (e.g., eliminating some concrete services
candidates and/or changing global constraints).

The evaluation starts by translating the DAG representation to a Markov model. De-
pending on the nature of the composed service specification and on the type of analysis
to be performed, different Markovian models can be chosen as output of the translation
process.

In particular the Discrete Time Markov Chains (DTMC), and Continuous Time
Markov Chains (CTMC) models can be considered. In our framework, the DTMC
model is used to model simple service compositions when the average execution time is
not considered in the analysis. A CTMC model is instead adopted if the analysis focuses
on the average execution time. By modeling the transition probability as an exponential
distribution, each service invocation can be represented as a state whose transition pa-
rameter is related to the expected duration of the service execution. Using a parameter Λ
representing the rate of the exponential distribution and defining it as 1/exeT imei (see
equation 2), the model approximates the real temporal behavior of the system, giving a
time-depending probabilistic result. The system is characterized by an initial transient
phase and finally probability values asymptotically stabilize.

We can analyze the model by verifying properties specified in temporal logic and
evaluated through model checking. Basic properties on a service composition can be the
reliability value of the whole complex system (e.g., the probability that starting from
the initial state the system eventually reaches the success state), specified in PCTL as

P [F (system state = success)]

which states the probability that, eventually (operator F) the success state will be
reached. Similar properties can be evaluated starting from each state of the system:

system state = ”a certain service invocation” ⇒ P [F (system state = success)]

308 D. Ardagna, C. Ghezzi, and R. Mirandola

Fig. 4. Success probability evolution

The evaluation of these properties support the discovery of configurations that can be
critical for the system. Properties can also be specified to obtain a boolean result. In-
deed, we can also express properties like

P≥threshold[F (system state = success)]

whose evaluation yields a boolean value (true if the probability result complies with the
threshold bound). Depending on the desired analysis, different logic properties can be
formulated over the model and then submitted to the model checker.

The translation process from DAGs to Markov models is based on the exploration
of the original model, starting from the initial node along the execution path defined
by the control flow. The initial and final nodes of the DAGs correspond to the initial
and final states of the Markov model. Each abstract service in a DAG is translated into
a node with two outgoing transitions: the success transition and the failure transition.
The probabilities associated with the two transitions depend on the annotations of the
original composed service specification; the destination states can be the next state, in
case of success, and a retry or a fail state, in case of failure. In particular, the Service
Invocations Attempts (see Section 2) is used to determine the probability to reach the
fail state of each abstract service. Details can be found in [15].

In our reference example, the composed WS quality analyzer determines an average
execution time for the silver class equal to 17.22 sec. Figure 4 shows, as an example, the
probability value of reaching the success state within time t for the class gold process,
computed for t ranging in an interval [0, 20] (seconds). In this case the aggregated values
of QoS of each abstract service coincide with the corresponding values of the concrete
services selected for the execution since the assignment is deterministic.

The plot in Figure 4 represents how the probability of success evolves over time after
the invocation of the composed service. This value tends in the long run to the value
obtained with the DTMC model (0.988), the reliability value of the service.

7 Related Work

Recently, QoS evaluations of Web service compositions have attracted great interest
in the research community. Research related to our work can be classified into two

Model Driven QoS Analyses of Composed Web Services 309

main areas: (i) QoS-based service selection, and (ii) probabilistic model checking for
SOA. In the QoS-based service selection research community, a first class of works
provides some methods to derive performance related measures of workflow processes
[12,18,23]. Cardoso [12] proposes two different metrics to evaluate the control-flow
complexity of BPEL Web processes before their actual implementation. Dynamic Web
service composition techniques can be classified into two main categories: composition
by planning and business process optimization [25]. The former approach, proposed
by the Semantic Web and AI communities, investigates the problem of synthesizing
a complex behavior from an explicit goal and a set of candidate services which con-
tribute to a partial solution of the complex problem. In the latter case [21,27], complex
applications are specified as BPEL processes and the best set of services are dynami-
cally selected at run time by solving an optimization problem. The Semantic Web and
AI approach is very flexible since a composed service process is built automatically or
semi-automatically from a high level specification of the required functionality. Any-
way composed process synthesis is computationally intensive and QoS optimization is
not the primary concern. Early solutions for business process optimization considered
only local constraints (i.e., constraints which can pose restrictions only on the execu-
tion of individual abstract services). In that case, the service selection is very simple
and can be performed at run time by a greedy approach which selects the best candidate
service suitable for the execution [17]. More recent solutions support also global con-
straints [3,10,11,26,27] and are based on mixed integer linear programming, genetic
algorithm or heuristics. In this work we have extended these solutions by considering
the optimization of multiple process instances and evaluating Web service performance.
Taking into account explicitly Web service response time makes the problem non-linear.
With respect to the work in [11], we consider processes with different specifications;
the optimization problem in this way becomes much harder since the objective function
is non-convex.

The work in our group on Probabilistic Model Checking for SOA area is an evolu-
tion of previous work described in [5], which dealt with model checking service com-
positions described by BPEL orchestrations. This earlier approach did not refer to a
probabilistic model checker, but the Bogor model checker [14] to perform design-time
analysis was used.

8 Conclusions and Future Work

In this paper we have presented a model-driven approach, which automatically selects
the set of services to be invoked at run time, transforms a design model of service com-
position into an analysis model, which then feeds a probabilistic model checker for
quality prediction. Our framework is supported by a tool and our initial assessment of
the approach has been encouraging. As future work, we will extend the optimization
model in order to include abstract services parallel execution and to support determin-
istic execution as an explicit constraint. A further development of case studies will be
also part of our future activities; specifically, we intend to take advantage from the
case studies developed within the Q-ImPrESS and S-Cube projects to validate the pro-
posed framework. Finally, we will also focus on systematizing the feedback loop from

310 D. Ardagna, C. Ghezzi, and R. Mirandola

run-time observations of the quality attributes of a running composite service back to
the design environment. If the running system is found to behave inconsistently with
respect to the design model, it would be desirable to evaluate different architectural
scenarios and possibly derive an improved implementation.

Acknowledgments

This work has been partially supported by the project Q-ImPrESS and S-Cube NoE
funded under the European Union’s Seventh Framework Programme (FP7).

References

1. Alves, A., et al.: Web service business process execution language version 2.0. Committee
Draft (May 17, 2006)

2. Ardagna, D., Mirandola, R.: Service Selection Policies for the execution of Autonomic Ser-
vices, note = Politecnico di Milano, Dipartimento di Elettronica e Informazione Technical
report number 2008.13 (July 2008)

3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans. on
Software Engineering (June 2007)

4. Atkinson, C., Kuhne, T.: Model-driven development: A metamodeling foundation. IEEE
Software 20(5), 36–41 (2003)

5. Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web service
compositions. IET Software 1(6), 219–232 (2007)

6. Baresi, L., Gerosa, G., Ghezzi, C., Mottola, L.: Playing with time in publish-subscribe using
a domain-specific model checker. In: SAVCBS 2007: Proceedings of the 2007 conference
on Specification and verification of component-based systems, pp. 55–62. ACM, New York
(2007)

7. Baresi, L., Ghezzi, C., Mottola, L.: On accurate automatic verification of publish-subscribe
architectures. In: ICSE 2007: Proceedings of the 29th International Conference on Software
Engineering, pp. 199–208. IEEE Computer Society, Washington (2007)

8. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice Hall, Englewood Cliffs (1991)
9. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains.

J. Wiley, Chichester (1998)
10. Canfora, G., di Penta, M., Esposito, R., Villani, M.L.: QoS-Aware Replanning of Composite

Web Services. In: ICWS 2005 Proc., Orlando (2005)
11. Cardellini, V., Casalicchio, E., Grassi, V., Mirandola, R.: A framework for optimal service

selection in broker-based architectures with multiple QoS classes. In: Services computing
workshops, SCW 2006, pp. 105–112. IEEE computer society, Los Alamitos (2006)

12. Cardoso, J.: Complexity analysis of bpel web processes. Software Process: Improvement and
Practice 12(1), 35–49 (2007)

13. Chandrasekaran, S., Miller, J.A., Silver, G., Arpinar, I.B., Sheth, A.P.: Performance Analysis
and Simulation of Composite Web Services. Electronic Market: The Intl. Journal of Elec-
tronic Commerce and Business Media 13(2), 120–132 (2003)

14. Dwyer, M.B., Hatcliff, J., Hoosier, M., Robby.: Building your own software model checker
using the bogor extensible model checking framework. In: Etessami, K., Rajamani, S.K.
(eds.) CAV 2005. LNCS, vol. 3576, pp. 148–152. Springer, Heidelberg (2005)

15. Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service com-
positions through probabilistic model checking (2008)

Model Driven QoS Analyses of Composed Web Services 311

16. Hwang, C.L., Yoon, K.: Multiple Criteria Decision Making. Lecture Notes in Economics and
Mathematical Systems. Springer, Heidelberg (1981)

17. Maamar, Z., Sheng, Q.Z., Benatallah, B.: Interleaving web services composition and execu-
tion using software agents and delegation. In: WSABE 2003, Melbourne (2003)

18. Marzolla, M., Mirandola, R.: Performance prediction of web service workflows. In: Over-
hage, S., Szyperski, C., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp.
127–144. Springer, Heidelberg (2008)

19. Menascé, D.A., Dubey, V.: Utility-based qos brokering in service oriented architectures. In:
ICWS (2007)

20. Ouzzani, M., Bouguettaya, A.: Efficient Access to Web Services. IEEE Internet Comp. 37(3),
34–44 (2004)

21. Patil, A.A., Oundhakar, S.A., Sheth, A.P., Verma, K.: METEOR-S web service annotation
framework. In: WWW 2004 Proc., New York, pp. 553–562 (2004)

22. PRISM, Probabilistic Model Checker, http://www.prismmodelchecker.org/
23. Rud, D., Schmietendorf, A., Dumke, R.: Performance modeling of ws-bpel-based web ser-

vice compositions. Scw 0, 140–147 (2006)
24. SNOPT, Software for Large-Scale Nonlinear Programming
25. Srivastava, B., Koehler, J.: Web service composition — current solutions and open problems.

In: ICAPS 2003 Proc. (2003)
26. Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with end-to-end

qos constraints. ACM Trans. Web 1(1), 1–26 (2007)
27. Zeng, L., Benatallah, B., Dumas, M., Kalagnamam, J., Chang, H.: QoS-aware middleware

for web services composition. IEEE Trans. on Software Engineering 30(5) (May 2004)

http://www.prismmodelchecker.org/

Semantic-Aware Service Quality Negotiation�

Marco Comuzzi1, Kyriakos Kritikos2, and Pierluigi Plebani1

1 Politecnico di Milano – Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

{comuzzi, plebani}@elet.polimi.it
2 Institute of Computer Science, FORTH

Heraklion, Crete, Greece
kritikos@ics.forth.gr

Abstract. The goal of Web service (WS) discovery is to select WSs that
satisfy both the users’ functional and non functional requirements. Fo-
cusing on non functional requirements, a matchmaking algorithm usually
takes place to verify if the quality offered by the WS provider overlaps
the quality requested by the user. Since quality, in a provider perspective,
is costly, a further step, a negotiation, should be performed to identify a
mutually agreed quality level. In this work, we join previous work on a
semantic-based quality definition model and WS negotiation, to provide
a framework enabling semantic-aware automated WS negotiation. More
specifically, OWL-Q, a semantic QoS-based WS description language, is
extended with appropriate negotiation concepts and properties.

1 Introduction

According to the OASIS (http://www.oasis-open.org) definition the “Service
Oriented Architecture (SOA) is a paradigm for organizing and utilizing dis-
tributed capabilities that may be under the control of different ownership do-
mains”. Thus, the ownership holds a key-role in realizing a SOA: for instance,
who builds and makes a service available might be different from who consumes
the service and they might not know each other in advance. As a consequence,
at design-time, service providers try to identify which could be the requirements
of a potential user and develop the service accordingly. On the other side, service
consumers need to select the best service among a set of available ones, consid-
ering both what the service does (functional perspective), and how the service
works (non-functional perspective).

In this paper, we focus on the non-functional perspective and, in particular, on
the quality of service (QoS hereafter) negotiation, i.e., the process that produces
an agreement between a service consumer and a service provider with respect
to a) the QoS a service must ensure during its execution and b) the amount of
money the consumer has to pay. In this scenario, the consumer and the provider
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme FP7/2007-2013 under grant agreement
215483 (S-Cube) and the Italian FIRB Project TEKNE.

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 312–323, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Semantic-Aware Service Quality Negotiation 313

might be aware of each other just before the service invocation takes place. Thus,
the research direction is to make the negotiation process as much automatic as
possible [11], but this goal is achievable only if both service providers and users
agree on the same model for expressing QoS dimensions.

In a previous work [1], we introduced an approach where as soon as the users
expectations are defined and providers clarify their capabilities, then the match-
making and the agreement processes are automatically performed on-the-fly.
The main limitation of this approach is about the assumption that both users
and providers must share the same set of quality dimensions to describe the re-
quirements and capabilities, respectively. Actually, in some application domains,
different domain experts may not come to a complete agreement for a common
(domain-dependent) QoS model. In this way, there may be two or more ‘stan-
dard’ QoS models for a specific application domain and users may choose one of
them for expressing their QoS requirements/capabilities.

In this paper, we aim at overcoming this limitation by adopting and improving
OWL-Q [5], an extension of OWL-S for a rich, semantic, and extensible QoS-
based service description. There are lot of reasons for using ontologies and rules
to express quality models and to automate QoS matchmaking and negotiation.
First, ontologies provide a formal, syntactic, and semantic description model
of concepts, properties and relationships between concepts. They give mean-
ing to concepts like QoS dimensions, value types, offers, and requests so that
they are human-understandable and machine-interpretable, while providing the
means for interoperability. Moreover, ontologies are extensible as new concepts,
properties, or relationships can be added to an ontology. In addition, Semantic
Web (SW) techniques can be used for reasoning about concepts or for ontology
mapping. These techniques can lead to the syntactic and semantic matching
of ontological concepts and to the enforcement of class and property (e.g. type
checking, cardinality) constraints. Therefore, by providing semantic description
of concepts and by supporting reasoning mechanisms, ontologies cater for better
discovery process with higher precision and recall. Last but not least, ontolo-
gies can help specialized agents in performing very complex reasoning tasks like
service discovery, mediation, or negotiation. If QoS models and specifications
are expressed with ontologies, then they could be aligned with each other so
that the WS discovery and negotiation processes are not actually affected by a
pre-existent ontology mismatch. This alignment process is realized with the ad-
ditional use of rules that define mappings between concepts of different models
and specifications.

The discussion about our proposal on semantic-aware quality negotiation will
be tied to a running example, i.e. SMS Monitoring. This service is available to
all the users that have a contract with a national mobile phone company. When
a user sends to the service his or her mobile phone number, the service returns
how many SMSs have been sent from that number starting from the beginning of
the current month. In this case, we consider service availability, response time,
and coverage (i.e., how many mobile phone companies can be queried by the
service) as the most relevant quality dimensions.

314 M. Comuzzi, K. Kritikos, and P. Plebani

The work is structured as follows. In Section 2, we introduce the requirements
of a quality model that need to be satisfied to support automated negotiation.
Section 3 briefly analyzes the main elements composing OWL-Q. In Section 4,
we extend OWL-Q with new concepts specifically intended for supporting au-
tomated negotiation and we introduce examples of rules to reason about QoS
matching and negotiation. Finally, Section 5 discusses related work, while Sec-
tion 6 concludes the paper outlining possible future research directions.

2 Quality Model Requirements

As discussed in Kritikos and Plexousakis [6], we can define a set of requirements
that a WS QoS description needs to satisfy to be adopted. First, quality can be
defined both as a requirement and as a capability. Thus, it should be possible
to specify both the QoS properties that clients require and the QoS properties
that services provide. These two aspects should be specified in two separated
documents that must be compared during the service discovery phase, to realize
if the quality provided by a service satisfies the user’s requirements.

Due to the high dependability of quality definition on the application domain,
a QoS model has to be extensible, that is, it has to include both domain inde-
pendent QoS dimensions, and domain specific QoS dimensions. Moreover, new
domain specific criteria could be added and used to evaluate QoS without chang-
ing the underlying computation (i.e. matchmaking and ranking) model. In order
to allow knowledge sharing and the comparison between capabilities and require-
ments, users and providers have to agree on the adopted syntax and semantics.
About the syntax, the QoS model has to be compliant with already widely-
accepted standards, e.g., WS-Policy. Concerning semantics, QoS concepts must
be formally described in order to have terms/concepts with specific meaning for
both requesters and providers.

To improve its flexibility, a QoS model should be syntactically separated from
other parts of service specification, such as the interface definition. On the one
hand, this improves reusability in describing several services with the same QoS
or a service with different levels of QoS. On the other hand, this allows the
specification of classes of service, determined by the discrete variation of the
complete service and QoS provided by one WS.

Due to these initial requirements, QoS models are usually defined by a com-
position of several quality dimensions (a.k.a. quality parameters, or quality at-
tributes). Each attribute is measured with the help of a metric that gives an
objective way to state which are the possible and actual values for a given di-
mension. Quality dimensions are important inputs to the overall QoS of a service.
Some attributes are common across domains and some are specific to domains.
More specifically, a QoS dimension should be defined at least by the following
aspects:

(i) The value set for the metric (and its allowed value range) to determine
which are the admissible values for the dimension;

(ii) The domains that this attribute belongs to;

Semantic-Aware Service Quality Negotiation 315

(iii) The weight of the metric relative to its domain and user preferences (to
rank the dimensions in order of importance);

(iv) The characteristic of the function, from metric values to overall QoS
values, to determine how the quality varies with respect to variation of a quality
dimension;

(v) The temporal characteristic of the metric value;
(vi) The description (mathematical or otherwise formal) of how a QoS metric

value of a complex WS can be derived from the corresponding QoS metrics values
of the individual WSs that constitute the complex one;

(vii) A set of reference ontologies, e.g., ontology of measurement units, on-
tology of currency units, ontology of measured properties and ontology of mea-
surement methods.

The first aspect, i.e., the value set for the metric, represents the starting point
for the matchmaking phase. Indeed, in the user requirements document, this set
expresses the value range in which a quality dimension may vary during the
service execution. For instance, the user may request availability r ∈ [95%..99%]
1. On the other side, in the provider capabilities document, this set expresses
the value range in which the provider promises that the quality dimension varies
(e.g., availability c ∈ [90%..99%]).

The intersection between these two sets is evaluated during the matchmaking
phase to state if a non empty set of values exists, which the provider supports and
that satisfies the user, e.g., availability r ∩ availability c ∈ [95%..99%]. If this
happens for all the quality dimensions included in the requirements document,
then the provider is able to support all the user requirements. It is worth noting
that the matchmaking only gives a technical evaluation, i.e., it states that the
user requirements may be fulfilled, even though an economical evaluation must
be performed in order to determine if the actual values assumed by a quality
dimension can be supported. For this reason, we also consider the negotiation as
a further step after the matchmaking. The goal of the negotiation is to identify,
for each quality dimension, which are the values that maximize the expectations
of the user who has a specific budget. As a consequence, the QoS model has to
include elements for evaluating the cost for supporting (provider perspective) or
receiving (user perspective) a given quality dimension level. Since in this paper
we also deal with negotiation, the requirements of a QoS model introduced in [6]
and discussed above have to be updated accordingly.

From the provider perspective, the QoS model needs to include the cost model,
i.e., a function that calculates how much is the effort for the provider for offering
a given value for a quality dimension. In this way, the provider calculates how
much is the cost for providing a set of capabilities and, consequently, the provider
decides the price for the service. For instance, the cost may be proportional to
the availability value according to the following formula: cost(availability) =
availability �3$. Thus, assuming that the provider has a fixed revenue of 5$, the
price for having an availability in the range [0.95%..0.97%] is ∈ [7.85$..7.97$].
1 Hereafter, we use the characters ’r’ and ’c’ as subscripts to indicate a quality dimen-

sion in the request or capabilities document, respectively.

316 M. Comuzzi, K. Kritikos, and P. Plebani

Fig. 1. Overall negotiation framework

From the user perspective, the QoS model needs to consider the user’s budget,
i.e., the amount of money the user is willing to pay for the service. During the
negotiation the budget is strictly related to the weights that express the user
preferences among the quality dimensions. Thus, the QoS model needs to con-
sider the Negotiation strategy. Usually, the strategy assumes that the greater is
the weight, the higher is the preference on that quality dimension. Thus, these
weights indicate how the budget should be split among the quality dimensions.
Assuming an overall budget of 20$, and availability and response time equally
important (their related weights are both 0.5), then the user is willing to pay
up to 10$ and, accordingly to the cost model expressed above, this can be fea-
sible. On the contrary, assuming 7.9$ as the budget for availability, then the
range of values for this quality dimension must be rearranged accordingly, i.e.,
[0.95%..0.966%].

It is worth noting that not all the quality dimensions can be negotiable. A
user can ask that the range/set of values for a specific quality dimension must be
entirely supported. For instance, for the user may be mandatory that coverage
includes the values of Orange and Verizon. So, the negotiation strategy is not
allowed to modify this value set.

On the basis of the above quality model requirements, in this work we propose
a framework for semantic-aware negotiation. As shown in Figure 1, we rely on
OWL-Q for expressing user capabilities and provider requirements. An extension
of OWL-Q, discussed in Section 4, allows the definition of negotiation strategies
and cost models that will be used by the negotiation broker to generate the SLAs.

3 OWL-Q

OWL-Q has been introduced by Kritikos and Plexousakis in [5] with the ob-
jective of providing a means for rich, semantic, and extensible QoS-based WS
description. OWL-Q is an upper ontology that satisfies all the requirements
introduced in the previous section. The OWL-Q ontology complements OWL-
S [12] and comprises of many sub-ontologies/facets. Each facet concentrates on
a particular aspect of the QoS modeling and can be extended independently of
the others. It is worth noting that some of the concepts here presented, that are

Semantic-Aware Service Quality Negotiation 317

Fig. 2. Overview on OWL-Q

also discussed in depth in [5], have been revised according to the quality model
presented in [1], which puts the basis for a model oriented towards WS QoS
negotiation.

The main element in OWL-Q is the QoSDimension (see Figure 2) that can be
attached to any owls:ServiceElement for expressing preferences or capabilities
of a service element of any type. Each dimension has a Name and can assume
a set of values of a given ValueType. A dimension can be either Categorical
or Ordinal. An example of a Categorical dimension is coverage, where its set
of values are the list of mobile phone operators supported by the service, e.g.,
Orange, Verizon, Cingular. In case of Ordinal dimensions, the value type is a
range of values in which a quality dimension varies. For instance, availability
can vary from [0%..100%]. This set can be partitioned in several sub-ranges,
i.e.,AdmissibleValueTypes. This allows both users and requesters to express the
values of requirements or capabilities not as a single value, but as a range of
permitted values (e.g., [90%..94%];[95%..99%]). An additional classification is
given by the dependency on the application domain. Some quality dimensions
are Domain Independent, so they can be useful regardless of the considered type
of service (e.g., response time and availability); on the contrary, other quality
dimensions are Domain Dependent and are related to an Application domain
(e.g., coverage).

A definition of who is in charge of measuring a QoS dimension and in which
way the measurement takes place is given by the OWL-Q Metric facet shown in
Figure 3. In more detail, the values of a dimension are provided by a Party that
is in charge of measurement. This actor might be a Provider, a Requester, or a
Third-party. There are simple QoS metrics measuredBy a MeasurementDirective
or complex ones. ComplexMetrics are derived from other metrics with the help of
a MetricFunction. Metrics can be positively or negatively monotonic. In this way,
we know if one metric’s value is better than another value. This is fundamental
whenever we have to compare several quality definitions in order to state which

318 M. Comuzzi, K. Kritikos, and P. Plebani

Fig. 3. OWL-Q Metric facet

is the best one. In addition, a Metric can be also classified as static or dynamic
metric: a StaticQoSMetric is computed only once according to a trigger, whereas
a DynamicQoSMetric is computed repeatedly according to a schedule.

4 Semantic-Aware Negotiation

In the multiagent computing literature, a generic automated negotiation frame-
work is usually defined by three elements [3]:

Negotiation Object. It represents the features of what is under negotiation.
In particular, the definition of the negotiation object concerns the identification
of the issues under negotiation, their properties, and their admissible values;

Negotiation Protocol. It identifies the rules that must be followed by the
negotiation participants, defining the admissible states of a negotiation and the
behaviors that can be endorsed by participants. Classic negotiation protocols
are the iterated bilateral negotiation protocol, in which two negotiators alterna-
tively exchange offers, or price-only auction protocols, in which a third party,
i.e., the auctioneer, collects offers from the negotiators and identifies the winner
according to a pre-specified market clearing rule;

Negotiators’ decision model. It identifies the strategy of the participants
in the negotiation. In particular, the decision model sets the rules followed by
a negotiator to generate new offers and to decide whether to accept or refuse
offers, or to withdraw from the negotiation.

Our OWL-Q extensions focus on the Negotiation Object and on the Nego-
tiators’ decision models. We extend OWL-Q with a new set of concepts and
properties, which are grouped as Quality-related and Negotiation-specific exten-
sions. The former extend the ontology in order to accommodate the Negotiation
Object, i.e., the description of what can be negotiated. The latter introduce new

Semantic-Aware Service Quality Negotiation 319

Fig. 4. OWL-Q Extensions

concepts, such as the negotiator actor or service consumers’ negotiation strate-
gies, which are then used to define the negotiators’ decision model. Figure 4
reports the extended OWL-Q.

For what concerns the negotiation protocol, the extension of OWL-Q that de-
scribes various negotiation protocols, such as trading and tendering, is currently
under development. In this paper, our approach is limited to QoS configuration
algorithms for which the the negotiators’ strategies are parameterized [1]. The
WS QoS configuration protocols proposed in the paper can be implemented by
a broker-based architecture for QoS negotiation, as shown in our framework in
Figure 1.

We introduce quality-related extensions to cope with two fundamental issues
raised by the need to support QoS negotiation through an ontology:

(i) not all QoS dimensions, either technical or domain dependent, are negotiable.
A QoS dimension is Negotiable when its value can be set by the service provider at
runtime, i.e., when the service is invoked. Non-negotiable QoS dimensions are the
ones for which the value cannot be set at runtime by the service provider. For in-
stance, when a service is invoked, its reputation is fixed, regardless of the technique
adopted for assessing reputation. Moreover, the service provider can always decide
whether to allow or not the negotiation of a specific quality dimension. In our SMS
service running example, response time can be considered as negotiable, since the
response time value can be altered by the provider at execution time according
to the customer requirements. However, in case the provider’s provisioning infras-
tructure does not allow such an adaptation, our ontology allows the provider to
declare the response time as non negotiable;

(ii) In order to automatically negotiate the QoS of a service [1], we also need to
define a total ordering relation among admissible values identified for each QoS
dimension. This ordering is established by the communities of domain experts
that define the quality documents associated to a category of WSs.

320 M. Comuzzi, K. Kritikos, and P. Plebani

Negotiation-specific extensions concern the concepts and properties, besides
QoS definition, required to establish a negotiation framework. In particular, we
identify the following concepts:

Negotiator Actor. Usually, the participants involved in WS QoS negotiation
are the service provider and the service consumer. However, a more flexible ap-
proach should consider that the execution of a negotiation may be delegated
to a trusted third party, such as, for instance, an ad-hoc agent explicitly de-
signed to negotiate on the behalf of the service provider or the service customer.
Introducing the negotiation actor also enables our framework to accommodate
other negotiation protocols, such as, for instance, single-text mediated negotia-
tions, which require the existence of a third party trusted by all the negotiation
participants;

Negotiation Strategy. As previously introduced, our semantic-aware negoti-
ation framework relies on the assumption of having parameterized negotiation
strategies, i.e., negotiation strategies that are fully determined when a negotia-
tor actor specifies the values of a set of parameters, such as the initial offer and
the degree of concession over time to the counterpart.

Cost model. From the provider’s point of view, the negotiation often relies on
a cost model, i.e., parameterized functions that are used to evaluate the cost
sustained by the service provider for giving a certain level of quality in his or
her service offers. Usually, WS QoS cost models are additive, that is, the cost of
a service offer is given by the costs associated by the cost model to each single
QoS value that appears in the offer.

Derivation of new knowledge is actually the main driving reason for using rules
with ontologies. New knowledge may come in different forms, such as equivalence
of quality dimensions, matchmaking of a QoS offer with a demand, producing
the price of a specific QoS level for a provider, etc. Generally, the whole discovery
and negotiation algorithms may be written in the form of a modular set of rules
so that only specific functions need to be actually implemented in places where
mathematical tools are required.

By using the application domain of SMS Monitoring, we are now going to
show a small example of how reasoning can support the negotiation process.
Assume that a WS provider advertises that his or her WS has availability in the
range of [0.9, 0.99] (value type is [0.0, 1.0]), response time in the range of [0.5, 2.0]
seconds (value type is (0.0, 2.0]) and coverage = {Orange, V erizon, Cingular}.
In addition, let us assume that the cost model of the WS provider is defined by
the formula: price = costavail+costresp+costcov dollars, where costavail = avail∗
3, costresp = 3 ∗ 2−resp

1.5 and costcov = |coveragead ∩ coveragereq|. Further, let us
also assume that there is a WS requester that requests a WS having availability in
[95, 99]% (value type is [0, 100]), response time in [100, 1000] milliseconds (value
type is (0, 2000]) and coverage = {Orange, V erizon}. Finally, assume that the
WS requester has budget 7$.

Semantic-Aware Service Quality Negotiation 321

Now consider that the WS’s capabilities ad and the WS requester’s require-
ments req have been submitted to a negotiation broker by using our proposed
semantic QoS model. This broker uses the following rules (in abstract form) in
order to infer if the QoS offer and demand are compatible for negotiation:

matches (ad, req) ⇐ ∀qdi1 ∈ req ∃qdi2 ∈ ad s.t match (qdi1, qdi2)
match (qdi1, qdi2) ⇐ equiv (qdi1, qdi2) ∧ c values (qdi1, qdi2)

c values (qdi1, qdi2) ⇐ ∃v1 ∈ qdi1.values ∧ ∃v2 ∈ dqi2.values s.t
utfqdi1.unit�→qdi2.unit (v1) = v2

compatible (ad, req) ⇐ matches (ad, req) ∧ req.Bugdet ≥ MinCost (ad, req)

The first rule expresses that the QoS offer matches the QoS demand when
for each quality dimension (qd) in the demand there exists a corresponding
matching qd of the offer. The second rule expresses that two qds match if they
are equivalent and they have a common value in their corresponding admissible
values. Equivalence of qds is actually reduced to equivalency of their metrics.
Kritikos and Plexousakis in [5] propose a semantic QoS metric matching algo-
rithm in which two simple metrics are equivalent if they have compatible value
types and units. In our example, considering the aforementioned algorithm, it is
easy to see that the availability and response time of the ad and req specs are
equivalent. More details of how this equivalence is inferred can be found in [5].
The third rule expresses that two qds have common values if there exists a value
included in the admissible value type of the first qd that can be transformed to
a value included in the admissible value type of the second qd by using a utility
transformation function (utf). In our example, value 1000 of req’s response time
admissible value type is transformed to value 1.0 which is included in the admis-
sible value type of ad’s response time by using the utf: utfms�→s(x) = x

1000 . This
is also the case for the availability qd (the case of coverage qd is trivial). Thus,
based on the first three rules, one can infer that the QoS offer and demand of
our example can be matched.

The fourth and final rule infers that a QoS offer ad is compatible to a QoS
demand req if they match and the requester’s budget is less or equal to the
minimum cost of the WS. Rule MinCost can be a user function that transforms
the offer and the demand into an optimization problem, in order to find the
minimum cost of the WS that respects the constraints of the demand. Based
on our example, the smallest common value is 0.95 for availability and 1.0 for
response time. Therefore, the minimum cost of the WS will be: 2 + 3 ∗ 0.95+ 3 ∗
(2 − 1)/1.5 = 6.85, which is less than the requester’s budget. Thus, finally, the
QoS offer and the demand are compatible as the fourth rule is satisfied.

5 Related Work

The need for automated management of quality SLAs or, more generally, con-
tracts, is being addressed as one of the main driver for the adoption of service
based systems in real-world scenarios [11]. As already remarked, we argue that

322 M. Comuzzi, K. Kritikos, and P. Plebani

giving formal semantics to the description of QoS and the elements that compose
the negotiation framework represents a tenet for modern service based systems.
Semantic-based negotiation mechanisms and protocols have been often inspired
by the agent community literature (see [7] for a survey on approaches for multi-
attribute negotiation in Artificial Intelligence).

Focusing on the SW community, Chiu et al. [2] discuss how ontology can
be exploited for supporting negotiation. In particular, the authors highlight how
shared and agreed ontologies provide common definitions of the terms to be used
in the subsequent negotiation process. Lamparter et al. [8] introduce a model for
specifying policies for automated negotiation of WSs, by relying on the upper
ontology DOLCE [9]. About the use of ontologies for specifying the agreement
among parties, [10] presenta reasoning methods for the components of a WS-
Agreement agreement which must be compatible for quality matches. With the
same goal [13] discusses the KAoS policy ontology, which allows the specification,
management, and enforcement of policies within the specific contexts established
by complex organizational structures. Other approaches, such as [14], focus only
on semantically describing the QoS capabilities and requirements of WSs for the
purposes of WS discovery.

onQoS-QL [4] and OWL-Q [5] are the most rich semantic languages for QoS-
based WS description adopting all the requirements expressed in [6]. They are
also supported by WS discovery frameworks. However, the main drawback of
onQoS-QL is that its expressivity concerning metric functions, directives, and
QoS constraints is limited. In addition, the QoS profile of a WS contains only
QoS metrics and not QoS constraints on these metrics.

Based on the above analysis, it is clear that each research approach, inde-
pendently of its efficiencies and deficiencies, describes QoS for WSs focusing on
supporting either WS discovery or WS negotiation. So in order to support both
of the latter two processes, one has to follow two alternative directions: either
use the best approach in each process and provide a mapping between them or
create a new uniform approach by extending an existing one. This paper follows
the second direction as it seems more promising and efficient, extending one of
the best approaches for QoS-based WS description and discovery in order to
further support WS negotiation.

6 Conclusion

Although the need for a semantic-aware description of the quality of WS is now
recognized, most of the current work mainly focus on the definition of quality
attributes. In this paper, we have proposed to go one step ahead discussing the
need for a semantic-oriented negotiation in SOA. With this aim, starting from
an existing QoS ontology, i.e., OWL-Q, we have identified which are the missing
elements and we have proposed possible extensions that allow to deal with the
negotiation process. As our work is preliminary, it can be further extended in
terms of concepts and mechanisms for reasoning on the quality attributes to
assist and automate the algorithm for enacting the negotiation.

Semantic-Aware Service Quality Negotiation 323

References

1. Cappiello, C., Comuzzi, M., Plebani, P.: On automated generation of web service
level agreements. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 264–278. Springer, Heidelberg (2007)

2. Chiu, D.K.W., Cheung, S.C., Hung, P.C.K., Fung Leung, H.: Facilitating e-
negotiation processes with semantic web technologies. In: Proc. 38th Annual Hawaii
International Conference on System Sciences (2005)

3. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Int. Journal of Robotics and Autonomous Systems 24(3-4), 159–
182 (1998)

4. Giallonardo, E., Zimeo, E.: More semantics in qos matching. In: Int. Conf. on
Service-Oriented Computing and Applications, pp. 163–171 (2007)

5. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: Proc. of ECOWS
2006, pp. 265–274 (2006)

6. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service description
and discovery. In: Proc. of COMPSAC 2007, pp. 467–472 (2007)

7. Lai, G., Li, C., Sycara, K., Giampapa, J.A.: Literature review on multi-attribute
negotiations. Technical Report CMU-RI-TR-04-66, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA (December 2004)

8. Lamparter, S., Luckner, S., Mutschler, S.: Formal specification of web service con-
tracts for automated contracting and monitoring. In: Proc. HICSS 2007 (2007)

9. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.:
Wonderweb deliverable d17. the wonderweb library of foundational ontologies and
the dolce ontology

10. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic ws-agreement partner
selection. In: WWW 2006, pp. 697–706 (2006)

11. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Com-
puting: State of the art and research challenges. IEEE Computer 11, 38–45 (2007)

12. Sycara, K., et al.: OWL-S 1.0 Release. OWL-S Coalition (2003),
http://www.daml.org/services/owl-s/1.0/

13. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,
Johnson, M., Kulkarni, S., Lott, J.: Kaos policy and domain services: Toward a
description-logic approach to policy representation, deconfliction, and enforcement.
In: Proc. 4th IEEE Int. Workshop on Policies for Distributed Systems and Networks
(2003)

14. Zhou, C., Chia, L.-T., Lee, B.-S.: Daml-qos ontology for web services. In: Proc.
IEEE ICWS 2004, pp. 472–479 (2004)

http://www.daml.org/services/owl-s/1.0/

P. Mähönen, K. Pohl, and T. Priol (Eds.): ServiceWave 2008, LNCS 5377, pp. 324–335, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-level SLA Management for
Service-Oriented Infrastructures*

Wolfgang Theilmann1,**, Ramin Yahyapour2,**, and Joe Butler3,**

1 SAP Research, Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
wolfgang.theilmann@sap.com

2 Dortmund University of Technology, ITMC, 44221 Dortmund, Germany
ramin.yahyapour@udo.edu

3 Intel Ireland Ltd., Collinstown Industrial Estate, Leixlip, Ireland
joe.m.butler@intel.com

Abstract. The ongoing transformation of a product-oriented economy towards
a service-oriented economy has come to a critical point. In order to have ser-
vices as tradable goods, the conditions of their provisioning need to be exactly
specified and managed. Service Level Agreements (SLAs) have become a
common means for specifying these conditions at a singular level. However, re-
alistic service provisioning scenarios involve multiple stakeholders and layers
of a business/IT stack.

This paper presents an approach for multi-level SLA management, where
SLAs are consistently specified and managed within a service-oriented infra-
structure (SOI). We present the general approach of an SLA management
framework, a conceptual architecture and some insights into industrial practice
in various domains.

Keywords: service level agreement (SLA), service-oriented infrastructure (SOI),
e-contracting, adaptive infrastructures, manageability, non-functional properties.

1 Introduction

The ongoing transformation of a product-oriented economy towards a service-
oriented economy has come to a critical point. IT-supported service provisioning has
become of major relevance in all industries and domains. However, the nature of
these setups is typically quite static because it requires significant effort to create
service offers, to negotiate provisioning details with customers and to manage and
control provided services.

 * The research leading to these results is partially supported by the European Community's

Seventh Framework Programme ([FP7/2001-2013]) under grant agreement n° 216556.
** On behalf of the SLA@SOI consortium [3] including T. Ellahi, H. Li (SAP), F. Torelli (En-

gineering), J. Kennedy (Intel), M. Alvarez, A. Castro, J. Lambea (Telefonica Investigación y
Desarrollo), C. Kotsokalis (University of Dortmund), M. Trifu, C. Momm (Research Centre
Karlsruhe), A. Marconi, M. Pistore (Fondazione Bruno Kessler), L. Baresi (Politechnico Mi-
lano), G. Spanoudakis (CITY University), R. Perrot, T. Harmer (Queens University Belfast),
G. Pipan (XLAB), G. Armellin (GPI) and M. Evenson (eTel).

 Multi-level SLA Management for Service-Oriented Infrastructures 325

Truly dynamic service provisioning will be a major milestone for the further evolu-
tion towards a service-oriented economy, where IT-based services can be flexibly
traded as economic good, i.e. under well defined and dependable conditions and with
clearly associated costs. Eventually, this will allow for dynamic value networks that
can be flexibly instantiated thus driving innovation and competitiveness.

Service Level Agreements (SLAs) have become a common means for specifying
the conditions under which a certain service is provisioned by a service provider to a
service consumer. However, SLA management frameworks typically focus at the
level of singular service interfaces and do not recognize/support the fact that many
services are composed on lower-level services, might involve 3rd party service provid-
ers and rely on a possibly complex business/IT stack [1].

In order to realize this vision of dynamic service provisioning we see 3 main chal-
lenges (also identified in [2]):

• Predictability & Dependability: The quality characteristics of services must be
predictable and enforceable at run-time.

• Transparent SLA management: Service level agreements (SLAs) defining the exact
conditions under which services are provided/consumed must be transparently
managed across the whole business and IT stack.

• Automation: The whole process of negotiating SLAs and provisioning, delivery
and monitoring of services must be automated allowing for highly dynamic and
scalable service consumption.

The following business scenario highlights the integrated view on these challenges:
A service provider offers services with differentiated, dependable and adjustable
SLAs and can negotiate concrete SLAs with (individual or groups of) customers in an
automated fashion. This business goal imposes requirements on software providers (to
provide components with predictable non-functional behaviour) and infrastructure
providers (to support an SLA aware management of resources) and also the service
provider (to translate and manage SLAs from business level along the IT stack down
to the infrastructure). Of course, complete business value chains can be easily com-
posed on top of this setup.

The research project SLA@SOI [3] addresses the integrated research on the afore-
mentioned challenges. The main goal is to provide an SLA management framework that
allows for consistent specification and management of SLAs in a multi level environ-
ment. The framework is designed for integration into different service-oriented infra-
structures and will be evaluated within various complementary industrial use cases.

The remainder of this paper is organized as follows. Section 2 introduces the tech-
nical approach for the SLA management framework and its most important elements.
Section 3 discusses the scientific state of the art. Conceptual target architecture is then
defined in Section 4 while Section 5 highlights current state of practice in selected
industrial areas. Section 6 concludes with a brief summary and outlook.

2 SLA Management Framework

The objective of the SLA Management Framework is to support a holistic view for
the management of service level agreements (SLAs) and to implement a framework
that can be easily integrated into a service-oriented infrastructure (SOI). The main

326 W. Theilmann, R. Yahyapour, and J. Butler

innovative features of the framework are (1) an automated e-contracting framework,
(2) systematic grounding of SLAs from the business level down to the infrastructure,
(3) exploitation of virtualization technologies at infrastructure level for SLA enforce-
ment, and (4) advanced engineering methodologies for creation of predictable and
manageable services.

Fig. 1. Envisaged interaction of SLA stakeholders

Figure 1 gives a simplified overview of this systematic SLA management process.
As today’s business systems typically consist of complex layered systems, user-level
SLAs cannot be directly mapped onto the physical infrastructure. Services might be
composed of other more fundamental services that could be even provided by external
parties. Consequently, a stepwise mapping of higher-level SLA requirements onto
lower levels and the aggregation of lower-level capabilities to higher levels is crucial
for grounding user-level SLAs to the infrastructure. This vertical information flow
must carefully reflect service interdependencies as well as the originating business
context. In addition to SLAs, the vertical information flow also covers monitoring,
tracking, and accounting data and must support brokering and negotiation processes at
each layer. As shown in the figure, the overall SLA management process may include
different stakeholders, namely customers, service and infrastructure providers, and
also various business steps such as business assessment, contracting and sales. The
overview is intentionally simplified in the sense that no service chains are visualized.
Such chains would represent all cases where service providers rely on additional ex-
ternal providers. Finally, the figure also shows the role of the software provider in
charge of creating components with predictable behaviour.

The main challenge in this context is the integrated consideration of multiple facets
as there are multiple stakeholders (software/service/infrastructure providers and

Service Provider

SOA

SOI

SLA (Re-)Negotiation

physical

virtual

SLA

Procurement

Business
Use

Service Demand

Customer

Infrastructure Provider

Monitoring, Arbitration

Business
Assessment,
Contracting/

Sales

SLA
Orchestration/

Transformation/
Aggregation

Provisioning

Mapping

Business
Assessment

Monitoring
Enforcement

Alerting

Software Provider

 Multi-level SLA Management for Service-Oriented Infrastructures 327

customers), multiple roles (business / IT people, experts, users), multiple layers (on
business and IT level), multiple service types (human-centric services, software
services, …), various service level aspects (security, performance, …) and the consid-
eration of the complete service lifecycle (engineering, composition, negotiation,
provisioning, operation, monitoring, adjustment, decommissioning, …).

The integrated research into these aspects requires at least consideration of the fol-
lowing aspects:

1. The design and implementation of a core SLA management framework that relates
perspectives of relevant stakeholders including:
• Standardized models for SLA descriptions at different layers of a service-

oriented architecture.
• Concepts and algorithms for translating SLA descriptions between layers.
• Methods and tools for multi-layer SLA management including planning, opti-

mization, and provisioning.
• Methods, tools, and techniques for monitoring (classic and predictive) and

accounting services and SLAs.
2. The design and implementation foundations of an adaptive SLA-aware infrastruc-

ture including:
• Standardized interfaces for adaptive infrastructures which allow for harmo-

nized access to different virtualization technologies.
• Advanced technologies for SLA enforcement and adjustment on infrastructure

level by exploiting advanced virtualization technologies.
• Advanced management technologies for service-oriented infrastructures by

exploiting advanced virtualization technologies.
3. Advances in the engineering of predictable service-oriented systems by method-

ologies, modelling techniques, and prediction tools covering SOA and SOI com-
ponents including
• Prediction methods aware of usage profiles and supporting underspecified

environments.
• Manageability support by design.

4. To design and implement a comprehensive business management suite for e-
contracting that covers the complete business lifecycle of a service provision-
ing/delivery including
• Methodologies for end-user SLA negotiation and standards for end-user SLA

specifications, heavily building upon recent proposed standards and research
results (such as WS-Agreement and NextGrid).

The research project SLA@SOI addresses the integrated research on these challenges
and will provide an open source SLA management framework that can be integrated
into different service-oriented infrastructures.

3 Scientific Challenges and State of the Art

On the business level, there is a need to create a standardized business SLA model,
common interfaces and tools to cover the whole commercial lifecycle addressing the

328 W. Theilmann, R. Yahyapour, and J. Butler

whole business interaction between service providers and customers from the com-
mercial product definition to post-sale relationship. One of the main challenges on the
business level are the automatic merging of SLAs offered by different services into a
final business SLA, something that does not exist today. Similarly, service-level ob-
jectives need to be translated towards the business objectives. Overall goal is the
improved and well-determined quality of customer experience.

Service management plays a key enabler role for the holistic multi-layer SLA man-
agement challenge. Service management itself encompasses a variety of functional
dimensions each of which tries to solve a different set of problems. Firstly, software
components that make up the end services must be amenable to management related
operations and expose introspection features. The second aspect is elaborate model-
ling of the service and IT infrastructure landscapes. The modelling practice includes
expressive description of the entities within the landscapes, their functional attributes
and operational interfaces, relationships and associations among the entities, con-
straints etc. These elaborate models can be applied to change impact analysis, what-if
type scenarios etc.

SLA-aware service management has implications on service discovery and compo-
sition. The implications of SLAs on discovery are particularly manifested in contexts
where dynamic composition of services is required. Dynamic composition usually
implies dynamic discovery, selection and engagement of service implementations.
Dynamic discovery and composition may further entail both translation of SLAs from
different IT levels and consideration of the current consumer/provider execution con-
texts. SLA@SOI will give the opportunity to study these issues in depth and provide
concrete solutions.

Concerning manageability, many standards have been proposed for implementing
management interfaces [4]. Also, a variety of proprietary solutions for instrumenting
components is available. So far, a development approach is missing that sufficiently
supports a tight integration of manageability concerns for an SLA-driven management
at design-time, while abstracting from specific technologies used for implementing
the management interfaces and the instrumentation.

For such a heterogeneous and scaleable infrastructure layer suitable for SLA-aware
service deployment, key requirements are appropriate abstraction, autonomic self-
manageability, enforceability of contracted SLA’s and alerting of violations, as well
as the necessary accounting. Current state of the art is centered on policy-enabled
autonomics, primarily fault detection and failover, and resilience to attack. Advanced
diagnostics using statistics-based predictive models are emerging, applied to resource
management and failure model analysis.

Virtualization interfaces are not harmonized to a level where they can be dynami-
cally selected and interchanged [2]. Through SLA@SOI, introduction of SLA mapping
with enforcement support will significantly benefit dynamic optimization, by reflecting
criticality from upwards in the stack. Application of predictive analytics to resource
consumption will enable proactive and pre-emptive reconfiguration decisions to safe-
guard SLAs and maximize efficiency. SLA@SOI will provide harmonized management
interfaces for various virtualization/Grid-technologies thus enabling their transparent
usage depending on SLA-driven requirements.

With regard to SLA management, there is a significant amount of ongoing research
(e.g. [5]), but most of the relevant issues still remain open. The part relevant to

 Multi-level SLA Management for Service-Oriented Infrastructures 329

modelling SLAs is being addressed to a large extent by the Open Grid Forum and the
WS-Agreement specification [6]. WS-Agreement defines a representation of SLA
templates with terms free to modify, SLA offers based on these templates, and agree-
ments themselves. However, negotiation of SLAs is only starting to be discussed.
Suitable negotiation strategies for different use cases are one of the core subjects that
SLA@SOI will investigate. Developing a negotiation protocol that can fit all these
strategies is also part of the work; such a protocol would have to deal with lack of
reliable message delivery, clock synchronization issues, race conditions and change of
landscape. In the same context, advance reservation and co-allocation of resources is
a topic that, although significantly researched, there are no clear solutions. Additional
complexity is inserted by the multi-layer nature of our architecture.

The optimization of SLA allocation, typically taking into account multiple criteria
and objectives, is an active research topic with methods ranging from evolutionary
algorithms to decision support systems. Even after the SLA is established, its moni-
toring and the reaction to exceptions is an area without pre-existing common
solutions, where the project will have to provide them. SLA monitoring using events
coming from the infrastructure and the services, their correlation and analysis in rele-
vance to the SLA terms and the policies in place, as well as the action to take in the
case of exceptions, are issues to consider and research. Re-provisioning, re-
negotiating and fallback to penalties are the most evident options; populating any of
the three approaches up the SLA hierarchy invokes dependencies that have not been
explored yet.

As the provided services have to adhere to certain quality requirements at run-time,
it should be possible to predict the quality of service on basis of design-time models.
This allows evaluating different design alternatives with regard to the resulting quality
and enables the service provider to estimate feasible service offerings depending on
the particular environment. Therefore, an engineering methodology for developing
predictable software services is required. Currently no model-based prediction ap-
proach [7] explicitly considers all relevant factors influencing the quality of software
modules. Particularly the internal composition of components and the usage profile
are supported insufficiently. Furthermore, the specifics of service-oriented application
design and the flexibility offered by virtualized infrastructures as the software’s de-
ployment context are not sufficiently regarded.

4 Conceptual Architecture

The first challenge for designing an SLA management framework is to create a con-
ceptual architecture which consistently bridges/mediates the various views of stake-
holders and business/IT layers. We present this architecture in terms of data view and
functional view. The functional view is further divided into negotiation/provisioning-
time and run-time, respectively.

Firstly the data view of the conceptual architecture is shown in Figure 2. The active
data sources in the figure are the monitoring events from the software and infrastruc-
ture components, while others are passive data stores. On one hand, the infrastructure
and software landscape include the collective state of the provider(s) within the con-
text under examination, for instance, the set of middleware/application packages and

330 W. Theilmann, R. Yahyapour, and J. Butler

Business Rules:
• Business values
• CRM
• Service Providers info

Service Registry
• Portfolio, catalogs
• Composite services

/ products

Service Landscape:
• Composition
• Instances + SLA

SLA Registry:
• Agreement terms
• SLA Templates

Policy Repository:
• IT Operation rulesSoftware Landscape:

• Middleware
• Application, packaging
• Configuration, execution

Infrastructure Landscape:
• Physical resources
• Virtualization
• Allocation
• Sensors and Actors

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Monitoring
• software
• infrastructure

Historical Info DB:
• Post-processed
monitoring data

• Usage profiles

Legend

Data Store (passive):

Data Source (active):

Feed info to:

Possibly feed info to:

Business Rules:
• Business values
• CRM
• Service Providers info

Service Registry
• Portfolio, catalogs
• Composite services

/ products

Service Landscape:
• Composition
• Instances + SLA

SLA Registry:
• Agreement terms
• SLA Templates

Policy Repository:
• IT Operation rulesSoftware Landscape:

• Middleware
• Application, packaging
• Configuration, execution

Infrastructure Landscape:
• Physical resources
• Virtualization
• Allocation
• Sensors and Actors

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Monitoring
• software
• infrastructure

Historical Info DB:
• Post-processed
monitoring data

• Usage profiles

Legend

Data Store (passive):

Data Source (active):

Feed info to:

Possibly feed info to:

Legend

Data Store (passive):

Data Source (active):

Feed info to:

Possibly feed info to:

Fig. 2. The data view of the conceptual architecture: data stores and main direct relationships

their configurations in the software landscape. The design-time model (e.g. for capac-
ity planning) may use data from the historical info DB, and it feeds information into
both infrastructure and software landscape. On the other hand, the service landscape
needs information from the software landscape, and it receives data from both service
and SLA registry. For defining operation rules in the policy repository, information
may be required from the business rules and the service landscape. Following such a
high level data view a more detailed information flow analysis will be conducted in a
later stage.

Secondly the negotiation and provisioning-time functional view of the architecture is
sketched, as is shown in Figure 3. A typical control flow starts when a negotiation proc-
ess is initiated by customer or provider. The core SLA management framework on the
provide side, as is shown in the centre of the figure, consists of three main functional
modules. They are SLA negotiation, translation, and planning/optimization. When an
SLA is being negotiated, it needs to be translated across the whole IT stack in order to
construct possible SLA hierarchies. These are then further planned/optimized in a cost-
effective way under facilitation of the design time prediction.

Naturally the negotiation module requires higher level information from
SLA/service registries and business rules. The translation and planning/optimization
counterparts, on the other hand, needs lower level information concerning the soft-
ware and infrastructure landscape. When negotiation is completed, it enters into the
phase of SLA provisioning. By incorporating information from the current service
landscape the provisioning module will invoke physical or virtual resource allocation
and software deployment, which follow the operation rules in the policy repository.
This view clearly shows a multi-level SLA management approach covers the whole
scope from customer contracting down to infrastructure provisioning.

 Multi-level SLA Management for Service-Oriented Infrastructures 331

SLA Planning & OptimizationSLA Translation

SLA (Re-) Negotiation SLA Provisioning

(Virtual) Resource
Allocation

Software Deployment

Design-Time
Prediction

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

Customer

SLA Registry:
• Agreement terms
• SLA Templates

Service Landscape:
• Composition
• Instances + SLA

Policy Repository:
• IT Operation rules

Infrastructure Landscape:
• Physical resources
• Virtualization
• Allocation
• Sensors and Actors

Software Landscape:
• Middleware
• Application, packaging
• Configuration, execution

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Service Registry
• Portfolio, catalogs
• Composite services

/ products

Business Rules:
• Business values
• CRM
• Service Providers info

SLA Planning & OptimizationSLA Translation

SLA (Re-) Negotiation SLA Provisioning

(Virtual) Resource
Allocation

Software Deployment

Design-Time
Prediction

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

CustomerCustomer

SLA Registry:
• Agreement terms
• SLA Templates

Service Landscape:
• Composition
• Instances + SLA

Policy Repository:
• IT Operation rules

Infrastructure Landscape:
• Physical resources
• Virtualization
• Allocation
• Sensors and Actors

Software Landscape:
• Middleware
• Application, packaging
• Configuration, execution

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Service Registry
• Portfolio, catalogs
• Composite services

/ products

Business Rules:
• Business values
• CRM
• Service Providers info

Fig. 3. The negotiation and provisioning-time functional view of the conceptual architecture

Thirdly the run-time functional view of the architecture is shown in Figure 4. At
the bottom of the figure there are two capability modules, namely, monitoring and
steering. In run time, standard monitoring data from the infrastructure and software
are collected and made available to other components. This monitoring information
can be processed in real-time for presenting SLA-specific metrics (SLA monitoring),
for correlating and detecting events, and can be used for run time predictions. Such
predictions, in turn, feed crucial information into the autonomic management modules
which steer the underlying software and infrastructure for quality of service (QoS)
adjustments. The SLA monitoring aggregates all kinds of monitoring data for detect-
ing (possible) SLA violations. Simple SLA violations might be immediately resolved
by an SLA adjustment. More complex ones trigger the SLA Planning & Optimization
module for constructing solutions that span across components and layers. Eventual
SLA adjustments are done via the standard steering capabilities. The SLA Interface
Access Layer is the visual access point for humans to exercise influence on SLA
management decisions. The rest of the functional modules and relationships are simi-
lar to the negotiation/provisioning-time view discussed above.

332 W. Theilmann, R. Yahyapour, and J. Butler

Standard Monitoring CapabilitiesStandard Steering Capabilities
(for adjusting QoS)

Autonomic
management

Predictive MonitoringEvent correlation

SLA Adjustment SLA Monitoring

SLA Planning
& Optimization

SLA Interface
Access Layer

Design-Time
Prediction

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Policy Repository:
• IT Operation rules

Service Landscape:
• Composition
• Instances + SLA

Monitoring
• software
• infrastructure

Historical Info DB:
• Post-processed
monitoring data

• Usage profiles

Business Rules:
• Business values
• CRM
• Service Providers info

Standard Monitoring CapabilitiesStandard Steering Capabilities
(for adjusting QoS)

Autonomic
management

Predictive MonitoringEvent correlation

SLA Adjustment SLA Monitoring

SLA Planning
& Optimization

SLA Interface
Access Layer

Design-Time
Prediction

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

Legend

Data Store (passive):

Data Source (active):

Control Flow:

Data Flow:

Function Module:

Design-Time Models:
• Artifacts
• NFP Annotations
• Profiles

Policy Repository:
• IT Operation rules

Service Landscape:
• Composition
• Instances + SLA

Monitoring
• software
• infrastructure

Historical Info DB:
• Post-processed
monitoring data

• Usage profiles

Business Rules:
• Business values
• CRM
• Service Providers info

Fig. 4. The run-time functional view of the conceptual architecture

It should be noted that also the runtime view implies a hierarchical view on SLA
management as all the various modules may exist at different levels and need proper
synchronisation between them.

5 State of Practice in SLA Management

A range of industrial and government use cases have been selected to assess and
demonstrate the impact of SLA mapping in the real world. Reflecting the current state
of practice of service provisioning in various important contexts, in the real world,
they are an important means of validating the results of SLA@SOI.

Enterprise Resource Planning (ERP). ERP software, as provided e.g. by SAP, be-
longs to the most complex existing software artefacts in the world. Thousands of soft-
ware components with thousands of configuration and deployment options can be
flexibly combined in order to satisfy highly specific customer needs. For managing this
complexity, SAP defined a sophisticated solution lifecycle including a well-defined

 Multi-level SLA Management for Service-Oriented Infrastructures 333

implementation phase for each customer setup where thorough consistency checks are
done before any solution goes live. Technically, an SAP system comprises multiple
architectural layers, including technology platform, business process platform, applica-
tions architectures, service architectures and system landscapes. The integrated
management of non-functional/quality issues is largely done via humans based on
guidelines, checklists and various loosely related support functions. SLAs are typically
either negotiated manually per customer setting or on the basis of predefined system
templates.

The main challenges for a more automated management of quality issues and SLAs
are manifold [8]. Just as example, the main ones relevant for the area of efficiency are
listed below: First, there is the underspecified environment which means that (a) con-
crete deployment and infrastructure are unknown at design time, (b) customer re-
quirements/behaviour are unknown at design time and still underspecified at go-live
time, (c) actual control flow is known vaguely at design time and slightly better at
testing time (scenario-based) again better after business configuration and even better
at run-time, (d) component developers are focussed on one architectural layer while
non-functional characteristics of lower layers are only vaguely specified and subject
to change and (e) the number of configuration & usage variants prevents from exhaus-
tive testing. Second, the various architectures and programming models are just
loosely coupled which means that no formal/provable relationship between architec-
ture models and programming artefacts exists. It is currently unclear whether a closer
coupling is feasible at all with general purpose programming languages. Third, tech-
nical expertise on non-functional behaviour of artefacts is widely spread and poorly
formalized, so it’s hard from an overall perspective to say who knows/does what and
when.

Enterprise IT implementation and operation. In an enterprise context, strategic,
operational (supply chain) and support functions, each make use of specific enterprise
application and platform configurations which present varied workload and criticality
patterns to the IT infrastructure. Currently, infrastructure allocation follows the tradi-
tional static / dedicated model with virtualisation technology mainly seen as a con-
solidation opportunity. The scope of SLAs is restricted to fulfilment of design-time
functional requirements, and operational performance issues such as availability,
response time and capacity. The mapping between high level SLAs, and configura-
tions and policies of IT services and platforms, if it exists at all, is manual and defined
in operational documents and procedures.

While this provides a reasonable safeguard to enterprise service delivery, it makes
platform capacity allocation inefficient in terms of run time utilisation. Additionally it
hinders the timely allocation of compute resources on the basis of business criticality
and value of services.

Enterprise Architecture as a practise grounded in IT, is maturing to the point where
a very sophisticated and fine-grained view can be formed of the processes and ser-
vices that make up the extended enterprise: their interdependencies, their business
value both operational and strategic, and their requirements and costs. Most of these
processes rely in turn on IT services and infrastructure, therefore IT investment in
providing these services, and ensuring their performance, should be commensurate
with the criticality and value to the business.

334 W. Theilmann, R. Yahyapour, and J. Butler

Virtualisation presents an opportunity to more flexibly allocate infrastructure but in
order to operate dynamically, resource allocation needs to be significantly automated.
This in turn requires that the rules which govern allocation of low level resources are
readily reflective of upper level SLAs, and mapping is end-to-end. The Enterprise use
case will assess and demonstrate the results of SLA@SOI, in terms of enabling such a
dynamic and fine grained provisioning model whereby compute resources are opti-
mally allocated to point of value.

Financial Services. The Financial Services Use Case provides a generalised grid
scenario with emphasis on dynamic Virtual Organisation creation, Service Level
Agreements and Service Assurance, Workflow orchestration, service deployment and
federated access to Data/Compute resources. The use case is based around the typical
requirements of the Finance sector in particular applications including Implied Vola-
tility and Risk Management (analysing the risk of a portfolio of stocks/bonds). Some
of these requirements build on and extend results from the NextGRID project [4]. The
key objectives of this Use Case will include:

• Definition of generalised grid SLAs based on the use case scenarios, with a focus
on specific non-functional sector requirements.

• Implementation of the prototype demonstrator with support for Virtual Organisa-
tion, security, Service Assurance, Workflow orchestration and dynamic service
deployment requirements.

• Devising SLAs to support handling sensitive end-user information.

The financial sector depends heavily on process and data intensive computations to
deliver competitive advantage. Financial applications are particularly suited to grid-
based experimentation and research. Many applications involve both process and data
intensive computations. Finance applications demand a high availability of resources.
Non-availability of resources means an absence in market trading which, in turn, can
lead to missed opportunities. Security is of paramount importance. In addition, regula-
tory issues exist within institutions that place restrictions on the accessibility of in-
formation across their distributed enterprises.

E-Government services to citizens and enterprises. The particular context of this
domain are services to citizens and enterprises where we focus on the adoption of
service agreements as a driving tool for the implementation of the Social Service
Sharing System, a service oriented framework which covers in an integrated way the
provisioning and monitoring of social and health assistance services. From the
governance point of view, there is a need for monitoring and analysis of costs, per-
formances and quality of the system as a whole and of the services provided by the
different organizations involved in this scenario (government bodies, hospitals, nurs-
ing homes, social service providers). At the same time, the system will provide an
integrated platform to the citizen, with access to health care and social services ac-
cording to needs and the ability to monitor progress.

The fundamental role of service agreements in e-Government service provisioning
has been already recognized in the context of the so called G2G (government-to-
government) service provisioning. Their adoption is, on the contrary, still very limited
in scenarios such as the Social Service Sharing System, which require also G2B (gov-
ernment-to-business) and G2C (government-to-citizen) service provisioning. The

 Multi-level SLA Management for Service-Oriented Infrastructures 335

particular challenge on SLAs is that these are not only based on market rules, but they
are most often driven by “social” agreements between public bodies and citizens. As a
consequence, the SLA negotiation (both between public bodies and citizens and be-
tween public bodies and private service providers) is different than in market-oriented
domains. Another challenge of this domain is that it requires an integration of human
based services (e.g., home care, medical assistance at home, transport services, and so
on) with IT services; the underlying service oriented infrastructure is hence not only a
technological infrastructure, but also a social and organizational one.

6 Conclusions

This paper discusses the need for multi-level SLA management approaches in order to
fuel the next step towards a service-oriented economy. Rather than considering SLAs
at a singular level we argue for a comprehensive SLA management approach that
spans across multiple stakeholders and layers of a business/IT stack. We detail the
main aspects of such an SLA framework, provide a conceptual architecture and some
insights into industrial practice in various domains.

As next step we intend to provide a first prototype including a fully open source
demonstrator which will give full insight into our approach. Furthermore the open
source nature of our results will allow others to do comparative experiments and ex-
tended research.

References

1. CoreGRID, TR-0096: Using SLA for resource management and scheduling - a survey (Au-
gust 2007), http://www.coregrid.net/mambo/images/stories/Technical-
Reports/tr-0096.pdf

2. Nessi-Grid: Grid Vision and Strategic Research Agenda. Deliverables D.1.1 & D.1.3 from
NESSI-Grid project (IST-033636) (October 2006),
http://www.nessi-europe.com/Nessi/Portals/0/Nessi%20repository/
EU%20Projects/NESSI-Grid/Deliverables/NESSI-Grid-SRA_v1.0.pdf

3. SLA@SOI project (IST- 216556; Empowering the Service Economy with SLA-aware In-
fra-structures), http://www.sla-at-soi.org

4. NextGrid project (IST- 511563; next generation Grid architectures),
http://www.nextgrid.org

5. Papazoglou, M.P., van den Heuvel, W.J.: Web services management: a survey. IEEE Inter-
net Computing 9, 58–64 (2005)

6. The Open Grid Forum: Web Services Agreement Specification (March 2007),
http://www.ogf.org/documents/GFD.107.pdf

7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance Predic-
tion in Software Development: A Survey. IEEE Transactions on Software Engineering,
295–310 (2004)

8. Theilmann, W., Kilian-Kehr, R.: Quality Considerations in SAP Architectures. In: Com-
pArch 2008, Industrial Experience Report Track (October 2008),
http://comparch2008.ipd.uka.de

Author Index

Anke, Jürgen 230
Ardagna, Danilo 183, 299
Arenas, Alvaro 242
Avellino, Giuseppe 266
Aziz, Benjamin 242

Baazizi, Mohamed Amine 98
Barais, Olivier 49
Baresi, Luciano 1
Benbernou, Salima 98
Bertin, Emmanuel 86
Bitsaki, Marina 196
Blasi, Lorenzo 242
Boniface, Mike 266
Braun, Iris 208
Bussard, Laurent 254
Butler, Joe 324

Cantalupo, Barbara 266
Cantera, José M. 147
Cappiello, Cinzia 183
Casella, Giovanni 134
Comuzzi, Marco 312
Cortese, Giovanni 242
Crespi, Noel 86

Danylevych, Ohla 196
Daubert, Erwan 49
Di Nitto, Elisabetta 254
Dorn, Christoph 134
Dubois, Eric 171
Dustdar, Schahram 62, 134, 159

Feldmann, Marius 208
Fernandez, Rafael 38
Ferris, Justin 266
Frenken, Thomas 230

Garijo, Francisco 147
Gehlert, Andreas 13
Ghezzi, Carlo 299
Gonzalez-Barahona, Jesus M. 38
Grandry, Eric 171
Guinea, Sam 1

Hacid, Mohand-Said 98
Haugen, Øystein 110
Heuer, André 13
Hielscher, Julia 122
Hierro, Juan J. 147
Höhensteiger, Benjamin 275

Jézéquel, Jean-Marc 49
Jiménez, Miguel 147

Kazhamiakin, Raman 1, 25, 122
Koutras, George 196
Kritikos, Kyriakos 312

Larrucea, Xabier 38
Leymann, Frank 196, 275, 287
Lizcano, David 147
Lovera, Marco 183
Lozano, David 74

Macias, Manuel 74
Mancioppi, Michele 196
Mart́ınez, Andrés Leonardo 38
Martinelli, Fabio 242
Massonet, Philippe 242
Matskanis, Nikolaos 266
Mayr, Christine 62
Metzger, Andreas 25, 122
Migliardi, Mauro 220
Mirandola, Raffaela 299
Mitchell, Bill 266
Moretzky, Sarit 134
Mori, Paolo 242
Moro, David 74

Nain, Grégory 49
Nano, Anna 254
Nano, Olivier 254
Naqvi, Syed 242
Nicklas, Daniela 287
Nikolaou, Christos 196
Nitzsche, Jörg 275

Oberortner, Ernst 159

338 Author Index

Papazoglou, Mike 98, 196
Pernici, Barbara 183
Picard, Michel 171
Pistore, Marco 1, 25, 122
Plebani, Pierluigi 312

Reiff-Marganiec, Stephan 134
Reyes, Marcos 147
Rifaut, André 171
Ripa, Gianluca 254

Sanders, Richard Torbjørn 110
Schill, Alexander 208
Sebahi, Samir 98
Sonntag, Mirko 275
Soriano, Javier 38, 147
Spiess, Patrik 230

Spillner, Josef 208
Springer, Thomas 208
Surridge, Mike 266

Tanelli, Mara 183
Theilmann, Wolfgang 324
Tost, Markus 275
Truong, Hong-Linh 134
Tsouroulas, Nikolaos 147

van den Heuvel, Willem-Jan 196

Wieland, Matthias 287

Yahyapour, Ramin 324

Zdun, Uwe 62, 159

	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	I Adaptation/Monitoring (1)
	An Integrated Approach for the Run-Time Monitoring of BPEL Orchestrations
	Introduction
	Tele-Assistance Service
	Dynamo
	ASTRO
	Comparison
	Integration
	Conclusions
	References

	Towards Goal-Driven Self Optimisation of Service Based Applications
	Introduction
	Goal Modelling in Tropos
	Using Goal-Models for Adapting SBAs
	Comparing the Service and the Plan Goal Models
	Decision Support for Adapting a SBA

	Discussion
	Related Work
	Conclusion
	References

	Towards Correctness Assurance in Adaptive Service-Based Applications
	Introduction
	Adaptation in SBA
	Configuration Adaptation
	Composition Adaptation

	Adaptation-Specific Failures
	Failures due to Incomplete Knowledge
	Failures due to Concurrent Changes during Adaptation
	Failure: Undesired Adaptation Loops

	Adaptation Correctness Assurance
	Existing Means for Correctness Assurance
	Dealing with Adaptation Failures
	Advanced Correctness Techniques

	Conclusions
	References

	II Model Driven Architecture
	A Service Based Development Environment on Web 2.0 Platforms
	Enterprise 2.0 Technologies and Quality Assurance
	Ezforge: New Generation of Networked Forges Supporting Collaborative Software Development
	EzForge
	Savoir-Faire in Software Production Environments
	Method Engineering and EzForge Architecture: A Holistic View
	Conclusions
	References

	Using MDE to Build a Schizophrenic Middleware for Home/Building Automation
	Introduction
	Overview of EnTiMid
	A Layered Middleware Based on Services
	A Schizophrenic Middleware
	EnTiMid Kernel

	A MDE Approach to Generate Middleware Personality
	From PIM to PSM
	UPnP Personality Generation
	DPWS Personality Generation

	Use Case
	Context: Application to a City-Level Project
	Advantages of a Schizophrenic Middleware in This Context

	Related Work
	Conclusions and Perspectives
	References

	Model-Driven Integration and Management of Data Access Objects in Process-Driven SOAs
	Introduction
	Architectural overview
	DAO Repository
	Service Operation Flows

	Model-Driven Integration of DAOs into Process-Driven SOAs
	Control-Flow View (BPEL Process) – High Level
	Service Repository View (Service Repository)– High Level
	DAO Flow View (Service Operation Flow)– High Level
	DAO Repository View (DAO Repository)– Low Level

	Case Study
	Related Work
	Conclusion and Future Work
	References

	III Network Services
	WIMS 2.0: Enabling Telecom Networks Assets in the Future Internet of Services
	Introduction
	The Future of the Internet
	Exposure of Telecom Operator Service Assets to the Internet
	A Reference Model for the WIMS 2.0 Service Platform
	Proof of Concept: Mashing up Telecom Services with Web- Oriented Applications. The FindUs Application for Social Networks
	Conclusions
	References

	Describing Next Generation Communication Services: A Usage Perspective
	Introduction
	Toward User Centric Services
	Trends and Motivations
	User Versus Customer
	Services as Systems

	Existing Approaches to Describe Telecom Services
	Telco Initiatives
	IT Initiatives
	Semantic Web Initiatives

	Modeling Service Actions
	User and Provider Actions
	Describing Actions
	The Example of Email

	Conclusion
	References

	IV Adaptation/Monitoring (2)
	Monitoring Web Services: A Database Approach
	Introduction
	Preliminaries
	Business Process Execution Language (BPEL)
	Business Protocols

	Monitoring Web Services
	A Database Approach for Monitoring Web Services
	The Overall Architecture
	A Business Protocol as an Abstraction
	Transformation of BPEL Business Processes to Business Protocols
	A Monitoring Query Language
	Query Evaluation

	Conclusion
	References

	Milestones: Mythical Signals in UML to Analyze and Monitor Progress
	Introduction
	Buyers and Sellers – Progress of a Bidding Process
	Defining Milestones in a UML Context
	Progress Analysis
	Progress Monitoring

	Related Work
	Conclusion
	References

	A Framework for Proactive Self-adaptation of Service-Based Applications Based on Online Testing
	Introduction
	State-of-the-Art
	Monitoring for Adaptation
	Online Testing and Regression Testing

	PROSA: Online Testing for Proactive Self-adaptation
	Test Initiation
	Test Case Generation/Selection
	Test Execution
	Adaptation Triggering

	Application Scenarios
	Case 1: Failure Introduced due to Adaptation
	Case 2: Change That Could Lead to Failures in the Future
	Case 3: Failure of an Application Execution
	Cases 4: Failure of a Constituent Service

	Discussion and Perspectives
	References

	V Service Oriented Architecture
	The inContext Pervasive Collaboration Services Architecture
	Introduction
	Motivation and Background
	Overview of the PCSA
	Common SOA-Based Collaboration Services
	Context-Aware Service Management
	Context-Aware Collaboration Services
	Experimental Evaluation
	Related Work
	Conclusion and Further Work
	References

	Leveraging the Upcoming Internet of Services through an Open User-Service Front-End Framework
	Introduction
	Current Shortcomings on the Road towards an Internet of Services
	Design Principles Enabling the Internet of Services
	Enabling Users to Design and Share Their Operating Workspace and Applications
	Businesses Need to Adapt to the New Reality
	Context-Adapted User-Service Interaction

	High Level Architecture
	Delivery Access Layer
	Workspace Layer Composition
	Access Layer Development

	Related Work and Future Trends
	Conclusion
	References

	Domain-Specific Languages for Service-Oriented Architectures: An Explorative Study
	Introduction
	Background: DSLs in Model-Driven Software Development
	Research Method and Approach Overview
	Study Details
	Study Results
	Related Work
	Conclusion
	References

	VI Business Process Management
	Managing the Alignment between Business and Software Services Requirements from a Capability Model Perspective
	Introduction
	Requirements Engineering and Service Description
	Elicitation and Structuring of Service Management Requirements
	The ISO 15504 Assurance and Performance Framework Model
	Building Compliant 15504 Service Management Requirements Models

	From Business to Software Services QoS Requirements
	Conclusion and Future Work
	References

	Active Energy-Aware Management of Business-Process Based Applications
	Introduction
	Active Energy Aware Resource Management Framework
	Process Layer
	Infrastructure Layer
	Control Layer
	Need for an Integrated Approach

	Experimental Results
	Infrastructure Layer Preliminary Results
	Control Layer Preliminary Results

	Related Work
	Conclusions
	References

	An Architecture for Managing the Lifecycle of Business Goals for Partners in a Service Network
	Introduction
	SN by Example
	SNN Meta-model
	Analysis of SNs
	BPM Layering
	Enhanced BPM Lifecycle
	Conclusions and Future Work
	References

	VII Deployment/Invocation
	Ad-Hoc Usage of Web Services with Dynvoker
	Introduction
	Related Work
	Aspects of Ad-Hoc Usage
	Navigation to the Service
	Form Generation

	Dynvoker Approach
	Inference from Web Service Descriptions
	Additional GUI Hints
	Process Integration
	Status of the Resulting Implementation

	Summary and Future Steps
	References

	A Web Services Gateway for the H2O Lightweight Grid Computing Framework
	Introduction
	The Framework
	H2O
	RMIX

	The Web Services Gateway
	The RMIX Binding
	The Monitoring Pluglet

	Conclusions
	References

	A Flexible and Extensible Architecture for Device-Level Service Deployment
	Introduction
	Related Work
	Requirements for Deployment and Configuration within the IoT
	Proposed Architecture
	Concrete Implementation
	Implemented Strategies
	Basis for Decision Regarding Strategy Selection
	Integration of Physical Devices

	Discussion
	Conclusion and Future Work
	References

	VIII Security
	Fine-Grained Continuous Usage Control of Service Based Grids – The GridTrust Approach
	Introduction
	Current State of the Art in Grid Security
	The GridTrust Framework
	Virtual Organisation (VO) Model
	Framework Services
	Policy Tools
	Implementation Status

	Validation Scenarios for GridTrust Framework
	Distributed Content Management Case Study
	Supply Chain Case Study
	Benefits of the GridTrust Framework

	Discussions
	Conclusions and Perspectives
	References

	An Approach to Identity Management for Service Centric Systems
	Introduction
	Service Centric Systems and Identity Management
	Overview of Abstract Delegation
	Overview of SCENE
	Solution Architecture: SCENE and Abstract Delegation
	A Case Study
	Related Work
	Conclusion
	References

	IX Workflow
	A Dynamic Orchestration Model for Future Internet Applications
	Introduction
	Dynamic Service-Oriented Systems
	The Workflow Landscape
	Virtualised Infrastructure Model
	Workflow Enactment Model
	Workflow Enactment Engine

	Real Context Experiments
	Conclusions and Future Outlook
	References

	Defining the Behaviour of BPELlight Interaction Activities Using Message Exchange Patterns
	Introduction
	BPELand BPELlight
	Formalizing MEPs Using BPELlight
	Describing Interaction Activities with MEPs
	Recursive Definitions of MEPs
	Use in Concrete Process

	Conclusion and Outlook
	References

	Managing Technical Processes Using Smart Workflows
	Introduction
	Example Scenario: Machine Maintenance Process
	Challenges and Requirements

	Related Work
	Concept of the Integration Processes Pattern
	Realization of Context Integration Processes
	Nexus Context Provisioning System
	Context Integration Processes

	Implemented Prototypes
	Conclusion
	References

	X SLA/QoS
	Model Driven QoS Analyses of ComposedWeb Services
	Introduction
	The Architectural Evaluation Framework
	Composed Service Model
	Reference Example
	Composed WS Optimizator
	Composed Service Quality Analyzer
	Related Work
	Conclusions and Future Work
	References

	Semantic-Aware Service Quality Negotiation
	Introduction
	Quality Model Requirements
	OWL-Q
	Semantic-Aware Negotiation
	Related Work
	Conclusion
	References

	Multi-level SLA Management for Service-Oriented Infrastructures
	Introduction
	SLA Management Framework
	Scientific Challenges and State of the Art
	Conceptual Architecture
	State of Practice in SLA Management
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

