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Abstract. The load balancing framework for high-performance clustered stor-
age systems presented in this paper provides a general method for reconfiguring
a system facing dynamic workload changes. It simultaneously balances load and
minimizes the cost of reconfiguration. It can be used for automatic reconfigura-
tion or to present an administrator with a range of (near) optimal reconfiguration
options, allowing a tradeoff between load distribution and reconfiguration cost.
The framework supports a wide range of measures for load imbalance and re-
configuration cost, as well as several optimization techniques. The effectiveness
of this framework is demonstrated by balancing the workload on a NetApp Data
ONTAP GX system, a commercial scale-out clustered NFS server implementa-
tion. The evaluation scenario considers consolidating two real world systems,
with hundreds of users each: a six-node clustered storage system supporting en-
gineering workloads and a legacy system supporting three email severs.

1 Introduction

The basic premise of clustered storage systems is to offer fine-grained incremental ca-
pacity expansion and cost-effective management with performance that scales well with
the number of clients and workloads [1,2,3,4,5,6]. To address load imbalance, most
previously proposed architectures either dynamically redistribute individual data ob-
jects and hence load among individual nodes in response to changing workloads [2,5],
or use algorithmic approaches for randomized data allocation (e.g., variants of linear
hashing [7]) to distribute workload across cluster nodes [4,6].

However, the first approach is not well suited for enterprise storage systems. First,
deployed systems typically collect only cumulative statistics over a period of time [8,9],
as opposed to detailed traces with per-request timings [10,11]. Yet, systems with data
migration at the level of individual objects [2,5] typically use techniques that require de-
tailed traces to make informed decisions [12]. Second, workloads do not always change
gradually. They often do so in distinct steps, for example, during consolidation when an
existing system inherits a legacy system workload.

A complementary approach to balancing load across system components is to use
offline solvers [8,13]. They typically use a variant of the bin-packing or knapsack prob-
lem [14] to find a cost-efficient system configuration (solution). They require only a
high-level workload description [15] and capacity or performance system model. While
such solvers have been shown to be effective for building an enterprise-scale system
from the ground up, they are less suitable when already deployed systems grow or
experience workload changes over time. Previous work proposed to iteratively apply
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constraint-based search with bin packing [16]. However, doing so does not take into ac-
count the cost of the system configuration change and the resulting impact of potential
data movement on system performance.

To address the shortcomings of the existing solutions, we have developed a load-
balancing framework with two primary objectives: (1) It should be modular and flexible,
allowing for a range of definitions for system load and imbalance, as well as for many
types of optimization techniques instead of using one specific algorithm. (2) The cost
of reconfiguration should be a primary constraint, guiding which solutions are feasible
and preferred. We use a combination of analytical and empirical estimates of cost, along
with a measure of system imbalance, to define a multiobjective optimization problem.

Using this framework, we implemented a load balancing system tailored to the
specifics of the NetApp Data ONTAP GX cluster [1]. Our approach is grounded in real
features of our deployed systems. We are motivated to find practical solutions to prob-
lems experienced by real users of our systems; for example, how to best consolidate
existing application workloads and legacy systems into one easier-to-manage cluster.
We focus on balancing the load of an already operational system; a scenario more likely
to arise in practice than designing a new system from the ground up. We also explore
the use of more formal techniques in the context of production enterprise systems. This
motivation has been recently echoed by a call to employ optimization methods already
in use by the operations-research community in place of more ad-hoc techniques preva-
lent in the computer systems community [17]. We demonstrate the applicability of our
approach using an internally deployed Data ONTAP GX cluster hosting engineering
workloads and home directories. We examine a scenario of consolidating storage in a
data center—rolling a legacy Data ONTAP 7G system with e-mail server workload into
a Data ONTAP GX cluster supporting software development.

2 Load Balancing Framework Overview

The primary goal of our framework is to provide an abstract method for load balancing
that is applicable to a wide range of workloads and systems, as well as allowing for
many different policies and strategies. To facilitate this, we have divided the framework
into four modules, each of which can be modified without requiring significant changes
to any of the others. At a high level, the framework represents a canonical decision
system with a feedback loop—a model that has previously been shown to work well for
storage system configuration [16].

Figure 1 shows the general structure and components of our modular load-balancing
framework. The Observe Load module records, stores, and makes available a set of
statistics that characterize the load on the system. The Detect Imbalance module cal-
culates the imbalance factor of the system—a measure of how evenly the load is dis-
tributed. If the imbalance factor passes some threshold, the Optimize Reconfiguration
Plan module is invoked. It determines a set of system reconfigurations that will mitigate
the load imbalance while minimizing the cost of those reconfigurations. The module
Execute Reconfiguration Plan executes a series of system-level operations.

We now describe each module in greater detail. We first give a general definition of
the module, followed by the details of how that module is applied to the specifics of the
Data ONTAP GX cluster. The system architecture is detailed elsewhere [1].
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Fig. 1. Flow diagram of the load-balancing framework

2.1 Observe Load

We characterize load with two concepts: element and load component. An element is an
object in the storage system that handles load, that is, something that can be overloaded.
This can be a hardware component (e.g., a controller with CPU and memory), an archi-
tectural component, or a software module. A load component is an indivisible source of
load that can be migrated, or otherwise reconfigured, to alleviate the overloading of an
element. This can be a single data object (e.g., a file) or a logical volume.

An important factor for observing load is the frequency of data collection. In practice,
this is driven by the constraints of the collection method used, for example, tracing every
request versus having an agent periodically sample various counters. Another important
factor is the time period over which the load is observed and decisions are made. If that
time period is too short, the system may react too quickly, attempting to re-balance
after a transitory spike in load. Conversely, if the time period is too long, the system
may remain in an imbalanced state for an extended period of time. This period also
depends on how long it takes to implement changes. In particular, it should be long
enough to allow a new steady state to be reached and evaluated before acting again.
Finally, load can be expressed by one or more variables, for example, we can collect
both the throughput and latency of I/O operations over some time period.

Application: Load imbalance in the Data ONTAP GX cluster can be caused in two
ways. First, nodes (Nblades) can be overloaded by client requests, which they must
process and forward. This imbalance can be mitigated by directing client requests away
from heavily loaded nodes by moving an existing virtual interface (VIF) from one
Nblade to another. Second, a node (Dblade) may be overloaded if the data it contains
is heavily requested. This imbalance can be mitigated by migrating data (i.e., volumes
with separate file system instances), or by creating load-balancing volume mirrors on
other nodes with lighter load. Dblades and Nblades constitute elements, each with their
respective load components. We demonstrate their interrelationship with two scenarios.

Scenario 1: Balancing Client-Request Handling. An element is a networking compo-
nent (Nblade), which handles client connections and routes requests to the target data
component (Dblade). A load component is a virtual interface (VIF), through which
clients requests are handled. Each VIF is assigned to a single Nblade. The system can
be reconfigured by migrating a VIF from one Nblade to another; the new node will
handle all future client requests through that VIF.
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Scenario 2: Balancing Data Serving. An element is a data component (Dblade), a
compute node that receives requests from Nblades and serves the requested data to the
client. A load component is a volume, a file system subtree, containing the directories
and files in that subtree. The system can be reconfigured by migrating a volume from
one Dblade to another or mirroring the volume on another Dblade.

For our evaluation in Section 3, we consider the second scenario, defining load in
terms of operations per second contributed by each load component (volume).

2.2 Detect Imbalance

Module 2 compresses the multidimensional expression of load to a single value. This
imbalance factor describes the extent to which the load on the system is evenly dis-
tributed. When this value passes some threshold, Module 3 is invoked to produce a set
of possible reconfiguration plans. Even though this module reduces the load description
to a single value to determine when rebalancing is appropriate, the full load description
is still made available to the optimization methods in Module 3.

The imbalance factor computation uses two different functions to (i) compress the
temporal load on each element to a single scalar value and (ii) calculate the final im-
balance factor from the set of per element load values. We have developed a number of
possible functions for each of these steps. By using different functions, one can choose
under which conditions rebalancing occurs and which possible reconfigurations are op-
timal. For purposes of describing these functions, we define the following notation. Let
ue

t be the load on element e at time t. For example, ue
t could be the number of I/O oper-

ations performed through element (node) e over some period of time (e.g. one minute).
The values ue

1,u
e
2, . . . ,u

e
n would then define the number of I/O operations served by

e over the last n minutes. Let Le define the load on e with the temporal component
removed.

Reduction of Temporal Component. First, we present three possible functions for re-
moving the temporal component from the load observed on each element. Note that the
functions are applicable regardless of the frequency of observations (i.e., the granular-
ity of our measurements) or the period over which we apply the given function. The
functions are defined in Table 1. The simple sum function adds the load on e at each
time, placing equal weight on all possible load values. This is equivalent to a moving
average of the load on an element.

The polynomial function emphasizes large utilization values. This can be useful in
identifying situations where an element sees a large spike in utilization for a small
period of time. With the simple sum function above, this spike would be lost. With this
polynomial function, the spike is emphasized and corresponds to a larger increase in

Table 1. Reduction of temporal component functions

Simple Sum Polynomial Threshold

Le =
n

∑
i=1

ue
i Le =

n

∑
i=1

(ue
i )

α Le =
n

∑
i=1

(ue
i ·T (ue

i ,k)); T (ue
i ,k) =

{
0 if ue

i < k
1 if ue

i ≥ k
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Table 2. Requirements for imbalance function

Definition Description

0≤ f (L)≤ 1 The range of values is from zero to one.
f (0,0, . . . ,1)→ 1 The maximum value is defined as a single element han-

dling all load. Any load handled by more than one element
should have a value less than one.

f (1/n,1/n, . . . ,1/n)→ 0 The minimum value is defined as a perfectly balanced load.
Any other load should have a value greater than zero.

f (a,a+ ε, . . .) > f
(
a+ ε

2 ,a+ ε
2 , . . .

)
Moving load from a more loaded element to a less loaded
one reduces the value.

f (L) < f (0,L) Adding a new element with zero load increases the value.

Le than if that same load had been evenly spread over time. In the polynomial function
definition α > 1; larger values of α emphasize more high utilization values.

In some cases, we may care only about imbalances that cause elements to be over-
loaded. Imbalances that do not cause overloading can be more easily tolerated, and may
not require reconfiguration (especially if that reconfiguration is costly). We define a
threshold function, T (ue

i ,k), where k is a parameter defining the threshold utility value
at which we consider an element to be overloaded.

Imbalance Function. Once we have compressed the temporal component of the load
description, we use another function to calculate the imbalance factor. Instead of choos-
ing a function directly, we first construct a set of requirements for such a function (listed
in Table 2). These requirements formally capture the intuitive notion of balanced. Given
these requirements, we develop a function, f (L), that satisfies them. Note that there are
multiple functions that satisfy the necessary criteria, but we consider only one here.

First, we normalize all load values λe = Le/∑n
i=1 Li and let L =

{
λ1,λ2, . . . ,λn

}
be the set of load values over all elements. None of the common statistical measures
of dispersion satisfies all of the requirements, including range, variance, and standard
deviation. One possible function that takes into account all of the properties in Table 2
is one based on entropy. We define the normalized entropy of a load distribution to be

f (L) = 1− ∑n
i=1

(
λi logλi

)
log 1

n

where the numerator is the traditional definition of entropy, and the denominator is the
normalizing factor. We orient the scale by taking the difference with 1.

Application: This module is independent of the target system. It acts only on the ab-
stract elements and load components defined in Module 1.

2.3 Optimize Reconfiguration Plan

Once an imbalance has been detected, we determine a set of configuration changes that
rebalance the load. The framework does not limit the kinds of configuration changes
that are possible. Instead, the constraints are imposed by the system architecture. For
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example, this could include migrating a data unit such as single volume from one node
to another or creating a load-balancing volume mirror. Each of these changes could
potentially increase or decrease the load observed on each element in the system. We
call a set of configuration changes a reconfiguration plan.

The goal of Module 3 is to determine a reconfiguration plan that minimizes both the
imbalance of the system and the cost of the reconfiguration. Because of these two com-
peting objectives, there may not be a single reconfiguration plan that optimizes both.
Instead, we discover a range of reconfiguration plans, which emphasize each of the ob-
jectives to a different degree. Module 3 is further broken down into two independent
components: evaluation, which calculates the objectives and total cost of any possible
reconfiguration plan; and search, which determines which of the many possible recon-
figuration plans to evaluate. In any practical scenario, it is not feasible to evaluate all
possible reconfiguration plans, and so the search component must be more intelligent
than exhaustive search.

There are many possible search techniques we could apply—one of our goals is to
compare a number of these methods. We choose three methods: greedy algorithms, evo-
lutionary (or genetic) algorithms, and integer programming. The following paragraphs
outline how we estimate reconfiguration costs and describe the details of each of the
three optimization methods applied within our framework.

Objectives and Costs. The objective of a system reconfiguration is to mitigate a load
imbalance. Specifically, we seek to minimize the imbalance factor of the resulting load,
while simultaneously minimizing the cost of the reconfiguration. We define the resulting
load to be what the load would have been had the reconfigurations been made before
the current load was observed. Calculating the cost of a reconfiguration is specific to
the target system and is covered at the end of this section.

Greedy Algorithm. Greedy algorithms, such as hill climbing, are a search technique
that combines a series of locally optimal choices to construct a complete solution. We
are optimizing with respect to multiple objectives, and so there is usually not just a
single optimal choice at each step. Our approach is to randomly select one of the non-
dominated possibilities at each step. A non-dominated solution is one for which there
is no other solution with both a lower cost and lower imbalance factor. Algorithm 1
defines our greedy approach. It is specific to data migration but can be easily adapted to
other reconfiguration options.

Evolutionary Algorithm. Evolutionary algorithms work by maintaining a population
of possible solutions, and explore the search space by recombining solutions that are
found to perform better. In this way, they are similar to natural selection. We use an
algorithm based on the Strength Pareto Evolutionary Algorithm (SPEA) [18], a type of
multiobjective evolutionary algorithm (MOEA).

The algorithm uses three primary input parameters: the population size, s; the num-
ber of generations, n; and the archive size, m. The population size is the number of
possible solutions considered at one time. One generation is defined as the process
of creating a new population of solutions, by recombining solutions from the current
population. So the total number of possible solutions evaluated by the algorithm is the
product of the population size and number of generations. In general, increasing either
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Algorithm 1. Greedy algorithm for load balancing by data migration.

1. let s, the system state currently under consideration, be the original system state.
2. initialize global solutions, S = {current state}.
3. repeat
4. let emax and emin be the elements with maximum and minimum load (in s, respectively).
5. initialize list of locally non-dominated solutions, T = /0.
6. for all load components � on emax do
7. let t be the state of the system after migrating � from emax to emin.
8. calculate the imbalance factor of t and the cost of the migration.
9. if t is non-dominated with respect to T and S, add t to T .

10. end for
11. if T �= /0 then
12. choose a random element r ∈ T .
13. add r to S.
14. update the current state s← r.
15. end if
16. until T = /0

of these two parameters will improve the quality of the final solutions, in exchange for
a longer running time. The archive is a collection of the best (non-dominated) solu-
tions seen by the algorithm at a given time. The size of the archive determines the final
number of solutions produced by the algorithm.

Given the three input parameters m, n, and s, the algorithm generates as output
archive A, a set of non-dominated solutions. At a high level, it works as follows:

1. Initialize: Create a population P of s possible reconfiguration plans, where each
possible plan has a small number of random migrations specified.

2. Evaluate: Find the cost and imbalance factor for each solution in the current pop-
ulation P.

3. Archive: Add all non-dominated solutions from the population P to the archive A.
4. Prune: If the size of the archive A exceeds the maximum size m, remove some of

the solutions based on measures of crowding. This is used to ensure the solutions
take on the full range of possible values, in both imbalance factor and cost.

5. Check Stopping Condition: If the maximum number of generations has been
reached, return A. Otherwise, continue.

6. Select and Recombine: Select individuals from the archive A and recombine them
to form the next population P. A new solution is produced by combining two ran-
dom subsets of migrations, each selected from an existing solution.

7. Return to Step 2.

Integer Programming. Another optimization technique used within our load-balancing
framework is binary integer programming. Integer program solvers guarantee that the
solution found will be optimal with respect to the given formulation. However, this
method places several restrictions on such a formulation. The most important of these
restrictions is that all of the equations, including the objective function, must be lin-
ear. That is, we cannot use arbitrary functions for the cost or imbalance functions.
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Second, the method is not naturally multiobjective. To overcome this, we solve a se-
ries of integer-programming problems, with successively larger cost restrictions.

There are several variables and functions that describe our binary integer program.
We use the following notation in its definition:

Ne The number of elements
Nl The number of load components

yi j =

⎧⎨
⎩

0 if load component i was originally
assigned to element j

1 otherwise

wi the weight of load component i
ci j the cost of migrating load component i to

element j
C the maximum allowed cost of all migrations
U the target load on each element

Decision variables x1, . . . ,xn are binary variables that the program will solve for.

xi j =
{

1 if load component i assigned to element j
0 otherwise

Objective function is a function of the form ∑n
i=1 cixi, where ci are any

constants, and xi are the decision variables. The goal is to maximize
the total weight of all assigned load components:

max
Nl

∑
i=1

wi ·
Ne

∑
j=1

xi j

Constraint functions are of the form ∑m
i=1 cixi < C, where ci are constants, xi are some subset

of the decision variables, and C is a constant.

Ensure that no load component is assigned to more than one element: ∀i≤ Nl :
Ne

∑
j=1

xi j ≤ 1

Ensure that maximum cost is not exceeded:
Nl

∑
i=1

Ne

∑
j=1

xi jyi jci j < C

Ensure that no element is overloaded: ∀ j≤Ne :
Nl

∑
i=1

xi jwi j ≤U

Note that it is possible that some load components will not be assigned to any ele-
ment, either because doing so would exceed the target load or because it would exceed
the maximum reconfiguration cost. These unassigned load components are assumed to
remain on their original elements. The load components that the solver assigns to a new
element make up the reconfiguration plan.

Application: We consider reconfiguration plans that consist of a set of volumes to be
migrated from one Dblade to another (Scenario 2 from Section 2.1). The reconfiguration
plans are evaluated with respect to two objectives: minimizing the imbalance factor
calculated by Module 2; and minimizing the cost of the reconfiguration.

We define four functions for calculating cost, representing both linear and non-linear
functions. The first function assigns a constant cost for each volume migration. The
second function assigns a cost proportional to the total size of the volumes being moved.
The third function uses empirically derived costs as encoded in a table-based model (see
Table 3). The cost is the average latency of all operations while the migrations are taking
place. This cost depends on both the number of volumes being simultaneously migrated
and the workload being handled by the system at the time of reconfiguration. The fourth
function is non-linear and estimates the total time of impairment.

Table 3 shows a sampling of (sanitized) values measured on a four-node cluster with
midrange nodes running a SPECsfs benchmark [19]. The rows represent the relative
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Table 3. Reconfiguration costs measured as average request latency in ms

Volume Load (ops/s)
Moves Base (500) 2× 4× 8× 16×

0 0.5 ms 0.5 0.5 0.7 0.8
1 1.0 ms 0.8 0.9 1.0 1.1

Volume Load (ops/s)
Moves Base (500) 2× 4× 8× 16×

2 1.2 ms 1.0 1.0 1.2 1.5
3 1.2 ms 1.2 1.3 1.5 1.9

costs when moving zero, one, two, or three volumes simultaneously. The columns rep-
resent the “load level” of the benchmark (in SPECsfs terms, the targeted number of
operations per second). The baseline column corresponds to a very light load; the other
columns represent a load-level that is a double, quadruple, and so on, of the baseline
load. A performance engineering group generates similar tables for other cluster config-
urations, system versions and hardware types for other workload classes e.g., Exchange
Server [20], during system development.

We implemented the hill-climbing and integer programming optimization methods
directly in MATLAB. The Strength Pareto Evolutionary Algorithm (SPEA) is written
primarily in JavaTM and controlled by MATLAB. Hence, the SPEA runtime is domi-
nated by interprocess communications. Because of this, we compare the efficiency of
the methods by the number of possible solutions they evaluate, and not runtime.

The integer-programming method is restricted to using only linear cost and objective
functions. It uses only a form of the simple sum function for calculating imbalance, and
uses only the constant and linear cost functions. This corresponds to a form of tradi-
tional bin-packing problems. The greedy and evolutionary algorithms also correspond
to traditional bin-packing when using the simple sum function and constant costs.

2.4 Execute Reconfiguration Plan

As described previously, Module 3 provides a set of (near) optimal reconfiguration
plans, with a range of costs and resulting imbalance factors. The job of Module 4 is
to select one of these possible solutions and perform a series of system-level opera-
tions to execute that plan. The choice of which of the nondominated solutions to choose
depends primarily on the reconfiguration cost that the system can tolerate at the time,
which can be specified by service level objectives (SLOs).

Application: In our case of performing load balancing through the migration of vol-
umes, this module handles the details such as when to perform the migrations, in what
order, and at what rate. In our experiments, we chose to perform all migrations simul-
taneously at the maximum rate. Our system performs this operation on-line with no
client-perceived disruptions (though performance is affected, as described by Table 3).

2.5 Assumptions and Limitations

As presented here, the framework makes a few assumptions. First, we assume that the
load on the system is sufficiently stable. That is, the load we have observed in the recent
past is a good approximation of the load we will experience in the near future. If this
were not the case, the steps taken to rebalance the system would likely be ineffective or
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even detrimental. If a system does not meet this criterion, the load-balancing framework
would need some other means for predicting future load in order to determine a viable
reconfiguration. However, in practice, enterprise system workloads tend to experience
cyclical workloads with daily and weekly periodicities.

Second, we assume that the system is composed of (nearly) homogeneous nodes.
For example, our model does not take into account the amount of memory each node
has. We believe that our framework is applicable without any loss of generality to
non-homogeneous systems. In practice, this requires more performance characteriza-
tion with larger cost-model tables.

3 Experimental Analysis

We evaluate our framework in two different ways. First, using a description of a week-
long workload from an internally deployed system, we explore the various implemented
functions and optimization techniques. Second, we examine the model in a real-world
scenario—a recent hardware upgrade and consolidation effort in one of our data centers.

We compare optimization methods for various imbalance and cost functions using
a data center storage consolidation scenario. In this scenario, we study the effects of
taking an existing stand-alone system with e-mail workload from MS Exchange Servers
and integrating it into the existing six-node system. The first step involves rolling the
existing hardware with its data into a cluster. The second step, and the one targeted by
our framework, involves moving data (volumes) between the nodes of the combined
system to achieve a more balanced load.

3.1 System and Workload Description

Clustered system. A six-node NetApp Data ONTAP GX system with 120 TB of stor-
age across 794 disks and 396 total volumes stores the home directories of approximately
150 users, mostly engineers. Each user has a 200 GB primary volume with a remote site
replica and a secondary RAID-protected volume with additional 200 GB of space that
is not replicated. The home directory volumes are accessible by both NFS and CIFS
protocols. The cluster is used predominantly for software development (compilation of
source code) by individual users as well as build-server farms. There are several large
volumes, one per cluster node, for a build- and regression-testing farm of a few dozen
servers. We do not consider these volumes in our experiments because by manual as-
signment (and in practice), the load from these volumes is already “balanced.” It is this
kind of manual load balancing that we aim to replace with our framework.

Figure 2 shows the load on the cluster over a one-week period. The load is charac-
terized by the total number of file operations performed by the system (aggregated over
30 minute periods). There were a total of approximately 1.4 billion operations, or an
average of 8 million operations per hour. The load has a strong periodic component,
with large spikes occurring during workdays, both during business hours (software de-
velopment) and at night (regression tests). The bars at the top show the daily cumulative
per-node load. Although the cluster has six nodes, it currently uses only the first four—
the other ones have been recently added for future system expansion. We show later on
how our framework redistributes load and populates these nodes with data.
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Fig. 3. Comparison of three load-flattening functions

Stand-alone system. There are 12 volumes supporting e-mail workload from three MS
Exchange Servers with mailboxes for several hundred users. As shown in Figure 2, it
also experiences load at night due to data consolidation and backup.

3.2 Results

Load Imbalance Expression. Figure 3 compares the three flattening functions from
Module 2 with a 24-hour time window. Here, and for the remainder of this paper, we
apply optimizations over a week-long period, since our workload has strong weekly
periodicity. The input is the combined load from the two consolidated systems, shown
in the background. The polynomial and threshold functions emphasize spikes in load
more than the simple sum function, fulfilling their intended purpose. These two func-
tions are also more variable in general, and require larger time windows to avoid rapid
oscillations. Given our workload profile, a 24-hour window is sufficient to remove the
daily load periodicity and more accurately reflect any underlying load imbalance.

Comparison of Optimization Methods. We use four cost functions—constant, lin-
ear, empirical, and non-linear; and three imbalance functions—sum, polynomial, and
threshold, for our comparison of the different optimization methods in Figure 4. For the
constant function, each volume move has a cost of 1. For the linear function, the cost
of moving a set of volumes is the total number of bytes in all moved volumes. For the
empirical function, we use the data from Table 3 and, more specifically, only the last
column of the table with the base latency as 0.8 ms. Moving 1, 2, or 3 volumes increases
the latency to 1.1, 1.5, or 1.9 ms, or respectively, 1.375, 1.875, and 2.375× the base.
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Fig. 4. Comparison of three optimization methods using various measures of imbalance and re-
configuration cost. The three rows correspond to the sum, polynomial, and threshold temporal-
flattening functions. The four columns correspond to different cost models: constant (number of
volumes moved); linear (number of bytes moved); empirical (latency increase); and, nonlinear
(time period of impairment). The experiment using the sum-flattening function and constant mi-
gration cost compares all three optimization methods: greedy algorithm, evolutionary algorithm
(EA), and integer programming. The others exclude integer programming because of their non-
linear objectives. We use two cases for EA with 800 and 1600 solution evaluations respectively.
For all cases, solutions closer to the origin are better.

When moving more than three volumes, we interpolate using the last two values.
So each volume move beyond three adds latency with a 0.5× latency multiplier. In
practice, this linear penalty is too large for several volume moves. Therefore, we use
data with approximate costs that are non-linear when moving more than three volumes
simultaneously. The fourth column in Figure 4 shows the results for this approximation
of a more realistic cost function.

The greedy algorithm uses an unbounded number of solution evaluations, halting
when no further improvements can be made. The graphs display a set of 10 interme-
diate points along the hill-climbing path. The evolutionary algorithm uses a constant
number of solution evaluations based on input parameter settings. The total number of
evaluations is equal to the product of the population size and the number of generations.
We show two settings: population size of 40 and 20 generations (for 800 evaluations)
and population size 50 and 32 generations (for 1,600 evaluations). The results of the
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integer programming method are found in the experiment using only linear objectives
(sum flattening function and constant cost).

We can draw the following general conclusions from the experimental results:

– The greedy algorithm is superior for the constant cost case. That is, it provides
solutions with lower cost and lower imbalance factors.

– The evolutionary algorithm is superior for the linear cost case. With this more com-
plex cost function, the greedy algorithm is more likely to be stuck in a local opti-
mum early in the search, and requires more solution evaluations in total: in this
case, up to 3,815 evaluations.

– The empirical cost function is nearly equivalent to the constant cost function. This
is because each additional volume move adds a nearly constant latency multiplier,
around 0.5×. Consequently, the experimental results of the third column are very
similar to the first column. The greedy results are identical, with the same solution
curves and number of evaluations. The evolutionary algorithm returns different so-
lutions, due to the randomized starting point.

– The greedy algorithm tends to require more evaluations as the imbalance functions
get more complex, moving from sum to polynomial to threshold.

– The integer-programming results are comparable with those found by the greedy
algorithm. Some of its solutions perform slightly worse because the predicted im-
balance of all solutions are evaluated using the normalized entropy function, but
this nonlinear function is not used by the integer program.

Executing a Reconfiguration Plan. The optimization provides a set of nondominated
solutions. The choice of which is most suitable depends on how much additional load
(e.g., the expected increase in request latency) the system can tolerate during data mi-
gration. These are set as service-level objectives (SLOs) by a system administrator,
allowing the reconfiguration plan to be executed automatically. If a single reconfigura-
tion plan cannot reach a sufficiently balanced state without violating some SLOs, the
framework iterates the process, as shown in Figure 1. By executing a small number of

imbf: 0.206

imbf: 0.027
500 GB

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

imbf: 0.010
860 GB

Fig. 5. Comparison of predicted load imbalance after reconfiguration and plan execution. The top
graph is the baseline with imbalance factor (imbf) 0.207 for the combined load from both systems.
The middle graph shows the reconfiguration plan with total cost of 500 GB. and the bottom graph
shows the “best” reconfiguration plan—860 GB of data moved. A single volume contributes to
Thursday’s load on node 4; the spike cannot be flattened by data migration alone. Both graphs
correspond to evolutionary algorithm solutions with the polynomial flattening function and linear
cost function. The line at 1/3 graph height is a visual aid to more easily spot differences.
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migrations over a longer time, or during off-peak hours, load imbalance can be elimi-
nated without sacrificing system performance.

Figure 5 shows the effects of a subset of reconfiguration plans suggested by the
evolutionary algorithm. These graphs illustrate how the load on each cluster node would
change as a result of implementing a reconfiguration plan. The “best” plan at the bottom
would be executed in about eight hours.

4 Related Work

Many components of our framework build upon previous work. Aqueduct, a tool for
executing a series of data-migration tasks, with the goal of minimizing their effect on
the current foreground work [21], is similar to Module 4 of our framework. The table
lookup model in Module 3 is based on previous work of Anderson [22]. Our framework
is similar in many aspects to Hippodrome [16], which iteratively searches over different
system designs and uses Ergastulum to find the least-cost design in each step. Ergastu-
lum is a system for designing storage systems with a given workload description and
device model [13]. It uses a form of bin packing and solves the problem using a random-
ized greedy algorithm. Ergastulum was motivated by and improved upon Minerva [23],
which uses a similar problem formulation but less-efficient search. Both of these sys-
tems focus on new system design for a specific workload. In contrast, our framework
searches for load-balanced configurations of already-deployed systems, where reconfig-
uration cost if of importance. It is also suited for exploring what-if scenarios for system
consolidation and upgrades. Stardust, which performs a function similar to Module 1,
collects detailed per-request traces as requests flow through node and cluster compo-
nents [11]. Other approaches mine data collected by Stardust for exploring what-if
scenarios [10,24]. However, unlike our system, they use simple heuristics rather than
optimization techniques. Our framework uses only high-level workload descriptions
and performance levels similar to relative fitness models [25].

5 Conclusions

The modularity of our framework allows users to explore functions that best fit their
workloads and systems. The use of multiple optimization methods and explicitly taking
into account the cost of rebalancing when considering optimal configurations is one of
the contributions of this work. Previous approaches have chosen a single method and
designed their load-balancing systems around it.

To the best of our knowledge, we show the first application of evolutionary algorithms
for optimizing storage system configurations. While not provably optimal, evolutionary
algorithm is in our view the most general and versatile approach; it can leverage non-
linear imbalance functions and empirical system models. Integer programming is most
applicable with simple, that is, linear, cost and objective functions and with fewer ele-
ments and load components.

Our framework is practical in terms of (i) using high-level workload descriptions
from periodic collections of performance data, (ii) its applicability to real-world sce-
narios for consolidating data center storage, and (iii) the use of high-level empirical
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performance models. Generating detailed storage models is typically quite difficult.
In contrast, collecting performance data for the table-based lookup model is “easy”,
though it can be resource intensive and time consuming. System characterization under
different system configurations, workloads, and operations (e.g., volume moves) is an
integral part of system development similar to qualifications of a storage system against
a myriad of client host controller cards, operating systems, and so on. Dedicated engi-
neering teams across manufacturers of enterprise storage routinely undergo such tests.
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